
Computing sparse multiples of
polynomials

by

Hrushikesh Tilak

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Hrushikesh Tilak 2010

I hereby declare that I am the sole author of this thesis. This is a true
copy of the thesis, including any required final revisions, as accepted by my
examiners.

I understand that my thesis may be made electronically available to the
public.

ii

Abstract

We consider the problem of finding a sparse multiple of a polynomial. Given
a polynomial f ∈ F[x] of degree d over a field F, and a desired sparsity
t = O(1), our goal is to determine if there exists a multiple h ∈ F[x] of f
such that h has at most t non-zero terms, and if so, to find such an h.

When F = Q, we give a polynomial-time algorithm in d and the size of
coefficients in h. For finding binomial multiples we prove a polynomial bound
on the degree of the least degree binomial multiple independent of coefficient
size.

When F is a finite field, we show that the problem is at least as hard as
determining the multiplicative order of elements in an extension field of F
(a problem thought to have complexity similar to that of factoring integers),
and this lower bound is tight when t = 2.

iii

Acknowledgements

I would like to thank my supervisor Prof. Mark Giesbrecht for his continuous
encouragement over the past two years. His expertise and ideas helped me
learn new techniques. I also thank him for guiding me while giving me
sufficient independence to explore other problems and areas.

I also wish to thank my co-authors Mark Giesbrecht and Daniel S. Roche for
many interesting discussions during the collaboration for [11]. Without their
help, it would have been very difficult if not impossible to overcome several
technical obstacles faced in the course of this work.

I am grateful to Prof. John May and Prof. Arne Storjohann for agreeing to
read my thesis and providing numerous insightful comments.

iv

Contents

1 Introduction 1

2 Linear algebra formulation 4

2.1 Finding a sparse multiple of bounded height and degree 5

3 Finding short `∞ vectors in lattices 10

4 Coding theory problems 17

4.1 Linear error-correcting codes 17

4.2 Problems . 19

4.3 Sparse vectors in integer lattices 21

5 Binomial multiples over Q 24

6 t-sparse multiples over Q 29

6.1 The cyclotomic case . 29

6.2 The cyclotomic-free case . 31

6.3 Handling cyclotomic factors 34

6.4 An example . 35

v

7 Sparse multiples over Fq 37

7.1 Hardness of t-sparse multiple finding 37

7.2 Probabilistic algorithm for finding binomial multiples 39

7.3 Relationship to problems in cryptography 41

8 Conclusion 43

References 44

vi

Chapter 1

Introduction

Let F be a field, which will later be specified either to be the rational numbers
(Q) or a finite field with q elements (Fq). We say a polynomial h ∈ F[x] is
t-sparse (or has sparsity t) if it has at most t nonzero coefficients in the
standard power basis; that is, h can be written in the form

h = h1x
e1 + h2x

e2 + . . .+ htx
et for h1, . . . , ht ∈ F and e1, . . . , et ∈ N. (1.1)

Sparse polynomials have a compact representation as a sequence of coefficient-
degree pairs (h1, e1), . . . , (ht, et), which allow representation and manipula-
tion of very high degree polynomials. Let f ∈ F[x] have degree d. We examine
the computation a t-sparse multiple of f . That is, we wish to determine if
there exist g, h ∈ F[x] such that fg = h and h has prescribed sparsity t, and
if so, to find such an h. We do not attempt to find g, as it may have a super-
polynomial number of terms, even though h has a compact representation
(see Theorem 5.7).

Sparse multiples over finite fields have cryptographic applications, in par-
ticular correlation attacks on LFSR-based stream ciphers [7, 5]. Sparse mul-
tiples can facilitate efficient arithmetic in extension fields [3]. One of our
original motivations was to understand the complexity of sparse polynomial
implicitization: given a function generating zeros, find a sparse polynomial
with those zeros (see [8]). The linear algebra formulation in Chapter 2 relates
to to the finding the minimum distance of a binary linear code [2, 24] as well
as finding “sparsifications” of linear systems [6].

In general, we assume that the desired sparsity t is a constant. This
seems reasonable given that over a finite field, even for t = 2, the problem

1

is probably computationally hard (Theorem 7.1). In fact, we have reason to
conjecture that the problem is intractable over Q or Fq when t is a parameter.
Our algorithms are singly exponential in t and polynomial in the other input
parameters.

Over Q[x], the analysis must consider coefficient size, and we will count
machine word operations in our algorithms to account for coefficient growth.
We follow the conventions of [17] and define the height of a polynomial as
follows. Let f ∈ Q[x] and r ∈ Q the least positive rational number such that
rf ∈ Z[x]. If rf =

∑
i aix

ei with each ai ∈ Z, then the height of f , written
H(f), is maxi |ai|. It can be easily seen that scaling the input polynomial
does not change this notion of size. This is very desirable for the problem at
hand because the notion of existence of a sparse multiple is not changed if
the input polynomial is multiplied by a scalar.

We examine variants of the sparse multiple problem over Fq and Q. Since
every polynomial f in Fq[x] has a 2-sparse multiple of high degree (namely
xq

e−1− 1 such that Fqe is the splitting field of f), given f ∈ Fq[x] and n ∈ N
we consider the problem of finding a t-sparse multiple of f with degree at
most n. For input f ∈ Q[x] of degree d, we consider algorithms which seek t-
sparse multiples of height bounded above by an additional input value c ∈ N.
We present algorithms requiring time polynomial in d and log c.

The remainder of the thesis is structured as follows.

In Chapter 2, we consider the straightforward linear algebra formulation
of the sparse multiple problem. This is useful over Q[x] once a bound on the
output degree is derived, and also allows us to bound the output size.

In Chapter 3, we give an algorithm for finding the shortest `∞ vector in
an integer lattice. This algorithm forms the basis for algorithms for finding
sparse multiples of rationals multiples presented in the latter sections.

The linear algebra formulation of Chapter 2 connects our problem with
related NP-complete coding theory problems. In Chapter 4, we present these
problems after introducing basic notions relating to linear error-correcting
codes.

In Chapter 5 we consider the problem of finding the least-degree binomial
multiple of a rational polynomial. A polynomial-time algorithm in the size of
the input is given which completely resolves the question in this case. This
works despite the fact that we show polynomials with binomial multiples
whose degrees and heights are both exponential in the input size!

2

In Chapter 6 we consider the more general problem of finding a t-sparse
multiple of an input f ∈ Q[x]. Given a height bound c ∈ N we present an
algorithm which requires polynomial time in deg f and log c, except when f
has repeated cyclotomic factors.

Chapter 7 shows that, even for t = 2, finding a t-sparse multiple of a
polynomial f ∈ Fq[x] is at least as hard as finding multiplicative orders in
an extension of Fq (a problem thought to be computationally difficult). This
lower bound is shown to be tight for t = 2 due to an algorithm for finding
binomial multiples that uses order finding. Related problems considered in
cryptography are discussed at the end of the chapter.

Open questions and avenues for future research are discussed in Chapter 8.

Most of the results in this thesis arose from work that was done in col-
laboration with Mark Giesbrecht and Daniel S. Roche. A conference version
[11] will be presented at International Symposium on Algorithms and Com-
putation 2010.

3

Chapter 2

Linear algebra formulation

The sparsest multiple problem can be formulated using linear algebra. This
requires specifying bounds on degree, height and sparsity; later some of these
parameters will be otherwise determined. This approach also highlights the
connection to some problems from coding theory. We exhibit a randomized
algorithm for finding a t-sparse multiple h of a rational polynomial f of
degree d, given bounds c and n on the height and degree of the multiple
respectively. The algorithm runs in time (logH(f))O(1) · nO(t) and returns
the desired output with high probability.

Let R be a principal ideal domain, with f ∈ R[x] of degree d and n ∈ N
given. Suppose g, h ∈ R[x] have degrees n − d and n respectively, with
f =

∑d
0 fix

i, g =
∑n−d

0 gix
i and h =

∑n
0 hix

i. The coefficients in equation
fg = h satisfy the linear system (2.1).

f0

f1 f0
... f1

. . .

fd
...

. . . f0

fd
. . . f1

. . .
...
fd


︸ ︷︷ ︸

Af,n


g0

g1

...

gn−d


︸ ︷︷ ︸

vg

=



h0

h1

...

hn


︸ ︷︷ ︸

vh

(2.1)

4

Thus, a multiple of f of degree at most n and sparsity at most t corresponds
to a vector with at most t nonzero entries (i.e., a t-sparse vector) in the linear
span of Af,n.

If f ∈ R[x] is squarefree and has roots {α1, · · · , αd}, possibly over a finite
extension of R, then (2.2) also holds. Thus t-sparse multiples of a squarefree
f correspond to t-sparse R-vectors in the nullspace of An(α1, . . . , αd):


1 α1 · · · αn1
1 α2 · · · αn2
...

...
...

...
1 αd · · · αnd


︸ ︷︷ ︸

An(α1,...,αd)


h0

h1

...

hn

 = 0 (2.2)

Formulation (2.2) helps in reasoning about sparse multiples when working
over finite fields, and is used in Section 7.1.

Working over the rationals, an algorithm for finding sparse multiples of
bounded height using the formulation (2.1) is presented in the following sec-
tion.

2.1 Finding a sparse multiple of bounded height

and degree

We now present an algorithm to find the sparsest bounded-degree, bounded-
height multiple h ∈ Q[x] of an input f ∈ Q[x]. Since heightH of a polynomial
is invariant under scaling, we may assume that f, g, h ∈ Z[x] .

The basic idea is the following. Having fixed the positions at which the
multiple h has nonzero coefficients, finding a low-height multiple is reduced
to finding the nonzero vector with smallest `∞ norm in the image of a related
matrix.

Let I = {i1, . . . , it} be a t-subset of {0, . . . , n}, andAIf,n ∈ Z(n+1−t)×(n−d+1)

the matrix Af,n with rows i1, . . . , it removed. Denote by BI
f,n ∈ Zt×(n−d+1)

the matrix consisting of the removed rows i1, . . . , it of the matrix Af,n.

5

Existence of a t-sparse multiple h = hi1x
i1 + hi2x

i2 + · · ·+ hitx
it of input

f is equivalent to the existence of a vector vg such that AIf,n · vg = 0 and
BI
f,n · vg = [hi1 , . . . , hit]

T .

As an example, consider the instance where d = 4, n = 7 and the 3-sparse
multiple is h0 + h3x

3 + h7x
7 (the grey rows correspond to the set I):

f0 0 0 0
f1 f0 0 0
f2 f1 f0 0
f3 f2 f1 f0

f4 f3 f2 f1

0 f4 f3 f2

0 0 f4 f3

0 0 0 f4




g0

g1

g2

g3

 =



h0

0
0
h3

0
0
0
h7


Now let CI

f,n be a matrix whose columns span the nullspace of the matrix
AIf,n. Since R[x] is an integer domain, Af,n has no non-trivial null vector, and
thus has full column rank. Since at most t rows are removed from Af,n, the
nullspace of AIf,n has dimension s ≤ t, and hence CI

f,n ∈ Z(n−d+1)×s. Thus, a
t-sparse multiple h = hi1x

i1 + · · ·+hitx
it of f exists if and only if there exists

a v ∈ Zs such that

BI
f,n · CI

f,n · v = [hi1 , . . . , hit]
T . (2.3)

Note that BI
f,n · CI

f,n ∈ Zt×s.

Algorithm 2.1 outlines this approach. The following lemma shows how to
compute Step 5 efficiently using the Smith normal form.

Lemma 2.1. Given T ∈ Zk×` with k ≥ ` and nullspace of dimension s, we
can compute a V ∈ Z`×s such that the image of V equals the nullspace of T .
The algorithm requires O (̃k`2s log ‖T ‖) bit operations (ignoring logarithmic
factors, and ‖T ‖ denoting the largest magnitude of an entry in T).

Proof. First compute the Smith normal form of the matrix: T = PSQ for
diagonal matrix S = diag(δ1, . . . , δ`−s, 0, . . . , 0) ∈ Zk×` and unimodular ma-
trices P ∈ Zk×k and Q ∈ Z`×`. [23] gives efficient algorithms to compute
such a P, S,Q with O (̃k`2s log ‖T ‖) bit operations.

6

Algorithm 2.1: Bounded-Degree Bounded-Height Sparsest Multiple

Input: f ∈ Z[x] and t, n, c ∈ N
Output: A t-sparse multiple h of f with deg(h) ≤ n and H(h) ≤ c, or

“NONE”
1 for s = 2, 3, . . . , t do
2 foreach s-subset I = (1, i2, . . . , is) of {1, 2, . . . , n} do
3 Compute matrices AIf,n and BI

f,n as defined above

4 if AIf,n does not have full column rank then
5 Compute matrix CI

f,n, a kernel basis for AIf,n
6 h← shortest `∞ vector in the column lattice of BI

f,n · CI
f,n

7 if `∞(h) ≤ c then return h1 + h2x
i2 + · · ·+ htx

it

8 return “NONE”

Then since any vector v in the nullspace of T satisfies PSQv = 0, SQv =
0 also and v is in the nullspace of SQ. Next compute the inverse of Q; this
can be accomplished with the same number of bit operations since ` ≤ k.
Define V to be the last s columns of Q−1.[

. . .

0s

]
︸ ︷︷ ︸

S

Qv = 0⇔ ∃u: Qv =

[
0(l−s)×s

Is

]
u⇔ ∃u: v = Q−1

[
0(l−s)×s

Is

]
︸ ︷︷ ︸

V

u

Due to the diagonal structure of S, V must be a nullspace basis for SQ,
and furthermore V has integer entries since Q is unimodular.

Lemma 2.2 shows that Step 6 can be performed efficiently.

Lemma 2.2. The shortest integer vector, under the `∞ norm, in the image
of a matrix U ∈ Zt×t can be computed by a randomized algorithm which
performs 2O(t log t)tO(1) arithmetic operations.

Proof. Interpret the columns of the matrix U as the basis of a lattice L ⊆ Rt;
integer vectors in the image of U correspond to vectors in the lattice L.

Denote by v∞ the shortest nonzero vector in the lattice under the `∞
norm. We have that `2(v∞) ≤

√
t · `∞(v∞) ≤

√
t · `∞(v) ≤

√
t · `2(v), for

7

any nonzero vector v ∈ L. The first inequality is true for any vector v
in place of v∞ because

√∑
i v

2
i ≤

√∑
i `∞(v)2 ≤

√
t · `∞(v). The second

inequality follows from the definition of v∞, the vector minimizing the `∞
norm. The third inequality follows from

∑
i v

2
i ≥ `∞(v)2, and hence that

`2(v) =
√∑

i v
2
i ≥ `∞(v).

Hence, the `2 norm of the shortest `∞ vector is at most
√
t times the `2

norm of the shortest `2 vector.

[1] give a randomized algorithm which, with high probability, returns the
shortest `2 vector in an integer lattice. They observe that this algorithm can
be modified to return all vectors v such that `2(v) ≤ ν`2(v2) for a constant
ν and v2 ∈ L the shortest `2 vector. Using this modified version with ν =√
t, the above observations guarantee that the shortest `∞ vector in L will

be returned with high probability. Since this modification differs from the
original in a fairly subtle manner, we find merit in working through the
changes and addressing the technical subtleties in Chapter 3.

The correctness and efficiency of Algorithm 2.1 can be summarized as
follows.

Theorem 2.3. Algorithm 2.1 correctly computes a t-sparse multiple h of f
of degree n and height c, if it exists, with (logH(f))O(1) ·nO(t) bit operations.
The sparsity s of h is minimal over all multiples with degree less than n and
height less than c, and the deg h is minimal over all such s-sparse multiples.

Proof. The total number of iterations of the for loops is
∑t

s=2

(
n−1
s−1

)
< nt.

Computing the rank of AIf,n, and computing the matrices BI
f,n and CI

f,n can
each be done in polynomial time by Lemma 2.1. The size of the entries of
CI
f,n is bounded by some polynomial (logH(h) +n)O(1). The computation of

the shortest `∞ vector can be done using 2ut operations on numbers of length
(logH(h) + n)O(1) where the constant u depends only on t, by Lemma 2.2.

The minimality of sparsity and degree comes from the ordering of the for
loops. Specifically, the selection of subsets in Step 2 is performed in reverse
lexicographic order, so that column subsets I corresponding to lower degrees
are always searched first.

8

In this section, (using the algorithm from the following section) we have
presented a randomized algorithm for finding bounded height t-sparse mul-
tiples of rational polynomials. For t = 2, we give a deterministic algorithm
without assuming a priori height bounds in Section 5.

9

Chapter 3

Finding short `∞ vectors in
lattices

In this chapter, we present an algorithm to find the shortest `∞ vector in a
lattice. As mentioned earlier, this is a modification of the algorithm presented
in [1].†

Algorithm 3.1 finds the shortest `∞ vector in a lattice whose shortest `2

vector has length λ1 satisfying 2 ≤ λ1 < 3. This algorithm can be made to
work for any lattice by scaling. More precisely, given a lattice L, we first
run the [16] algorithm to get an approximation λ for λ1(L): λ1(L) ≤ λ ≤
2nλ1(L). Let vk be the vector returned by Algorithm 3.1 when given as input

the lattice 1.5k

λ
L (that is, the basis vectors of L multiplied by 1.5k

λ
) for each

k ∈ {1, 2, 3, . . . , 2n}. For some k in this range, 2 ≤ λ1(1.5k

λ
L) < 3 holds. For

such a k, vk is the shortest `∞ vector in the corresponding lattice, and hence
λ

1.5k
vk is the shortest `∞ vector in the given lattice. Thus it suffices to output

the shortest `∞ vector among { λ
1.5k

vk}.
We will now prove the correctness of Algorithm 3.1 when presented with

a lattice L such that 2 ≤ λ1(L) < 3.

†Our modified version of the algorithm is based on the presentation of [1] by Oded
Regev and his students. The lecture notes can be found at the course webpage: http:

//www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/

10

http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/
http://www.cs.tau.ac.il/~odedr/teaching/lattices_fall_2004/

Algorithm 3.1: Shortest `∞ vector in a lattice

Input: Basis B = {b1, . . . , bn} for lattice L ⊆ Zn such that
2 ≤ λ1(L) < 3

Output: Shortest `∞ vector in L
1 foreach γ ∈ {(3/2)2, (3/2)3, . . .} ∩ [0, 3

√
n+ 1] do

2 R0 ← nmaxi ‖bi‖
3 N ←

⌈
2(7+dlog(γ)e)n log(R0)

⌉
4 Sample points {x1, . . . , xN} uniformly and independently from

Bn(0, γ), the n-dimensional ball of radius γ centered around 0
5 Z ← {1, 2, . . . , N}
6 yi ← xi mod P(B) for every i ∈ Z; P(B) being the parallelogram

of B, defined in proof of 3.2
7 R← R0

8 while R > 2γ + 1 do
9 J ← ∅

10 foreach i ∈ Z do
11 if minj∈J ‖yj − yi‖ > R/2 then
12 J ← J ∪ {i}

13 Z ← Z \ J
14 yi ← yi + xη(i) − yη(i) for i ∈ Z
15 R← R/2 + γ

16 Yγ ← {(xi − yi)|i ∈ Z}
17 v∞ ← arg maxv−w ‖v − w‖∞ for v, w ∈ Yγ and v 6= w, and all γ
18 return v∞

11

As mentioned in the proof of Lemma 2.2, to find the shortest `∞ vector
v∞ in a lattice, it suffices to consider all lattice vectors of `2 norm at most√
n times the norm of the shortest `2 vector. Algorithm 3.1 achieves this by

running the main body of the loop with different values of γ. In a particular
iteration of the outermost loop, with high probability, the algorithm encoun-
ters all lattice vectors v with `2 norm d = ‖v‖ such that 2d/3 ≤ γ < d. Call
all such v interesting. By iterating over a suitable range of γ, it encounters
(with high probability) all interesting vectors. Finally, it returns the shortest
`∞ vector among them, which with high probability is the shortest `∞ vector
in the lattice.

For a particular iteration of the loop (with a fixed γ), the algorithm
uniformly† samples a large number of vectors from an appropriately sized
ball. It then performs a series of sieving steps to ensure that at the end of
these steps, it is left with lattice vectors of sufficiently small `2 norm. Using a
probabilistic argument, it is argued that all interesting vectors are obtained.

The following lemma proves the correctness of the sieving steps. These
correspond to steps 9 to 12 of the algorithm. At the end of this sieving the
algorithm produces a J of size at most 5n.

Lemma 3.1. Given {y1, . . . , yN} ⊆ Rn such that ‖yi‖ ≤ R, the following can
be efficiently computed: a subset J ⊆ [N] of size at most 5n and a mapping
η : [N]→ J such that

∥∥yi − yη(i)

∥∥ ≤ R/2.

Proof. Initially the set J is set to be empty. The algorithm iterates over the
points yi. It adds i to J only if minj∈J(‖yj − yi‖) > R/2. It sets η(j) = j
for j ∈ J . For i /∈ J , it sets η(i) to a j ∈ J such that ‖yj − yi‖ ≤ R/2.

It is clear that this procedure runs in polynomial time. To see that the
size of J is at most 5n, note that all the balls of radius R/4 and centered
at yj for j ∈ J are disjoint. This is because every pair of points in J are
separated by a distance greater than R/2, by construction of J . Also, these
balls are contained in a ball of radius R + R/4 since ‖yi‖ ≤ R. Thus the
total number of disjoint balls, and hence the size of J , can be bounded above
by comparing the volumes: |J | ≤ (5R/4

R/4
)n = 5n

†The analysis and the proof of correctness of the algorithm work even if an almost-
uniform sampling over rational vectors of sufficiently large description is performed. This
is because the description of sufficiently small lattice vectors is only a polynomial in size
of the basis vectors. This obviates precision and representation issue concerns.

12

The algorithm views every sampled vector xi as a perturbation of a lattice
vector xi− yi for some yi. The idea is the following: initially yi is calculated
so that xi is a perturbation of some large lattice vector. Iteratively, the
algorithm either obtains shorter and shorter lattice vectors corresponding to
xi, or discards xi in some sieving step. At all stages of the algorithm, xi− yi
is a lattice vector. These observations are made concrete by the following
two lemma.

Lemma 3.2. {yi} can be found efficiently in Step 6; and {xi − yi} ⊆ L.

Proof. For a fixed xi, yi is set to (xi mod P(B)) where P(B) denotes all
vectors contained in the parallelogram {

∑n
i=1 αibi|0 ≤ αi < 1}, with bi being

the given basis vectors. Thus yi is the unique element in P(B) such that
yi = xi − v for v ∈ L. From this definition of yi, we get that xi − yi ∈ L for
every i.

It is easy to see that yi can be calculated efficiently: simply represent yi
as a rational linear combination of the basis vectors {bi} and then truncate
each coefficient modulo [0, 1).

Lemma 3.3. Yγ ⊂ L ∩Bn(0, 3γ + 1).

Proof. By Lemma 3.2, (xi − yi) ∈ L for all i before the start of the loop.
It needs to be proved that the same holds after the loop, and furthermore,
all the resulting lattice vectors lie in Bn(0, 3γ + 1). Whenever the algorithm
modifies any yi, it sets it to yi+xη(i)−yη(i); and thus a lattice vector (xi−yi)
changes into (xi − yi) − (xη(i) − yη(i)). Since both of the terms are lattice
vectors, so is their difference. Thus Yγ ⊂ L.

We will now show that the invariant yi ≤ R is maintained at the end of
every iteration. This suffices to prove that xi − yi ∈ Bn(0, 3γ + 1) because
xi ∈ Bn(0, γ) and ‖yi‖ ≤ 2γ + 1 by loop termination condition.

Initially, yi =
∑n

j=1 αjbj for some coefficients αj satisfying 0 ≤ αj < 1.
Thus ‖y‖ ≤

∑
j ‖bj‖ ≤ nmaxj bj ≤ R0 = R. Consider now the result of the

change yi → yi+xη(i)−yη(i). We have that
∥∥yi + xη(i) + yη(i)

∥∥ ≤ ∥∥yi − yη(i)

∥∥+∥∥xη(i)

∥∥. First of these terms is bounded by R/2 because of construction of
η(.) in Lemma 3.1. From ‖xi‖ ≤ γ, we get that ‖yi‖ ≤ R/2 + γ. Since the
value of R gets updated appropriately, the invariant ‖yi‖ ≤ R is maintained
at the end of the loop.

13

The following crucial lemma says that Yγ can be used to compute all
interesting vectors:

Lemma 3.4. Let v ∈ L be a lattice vector such that 2
3
‖v‖ ≤ γ < ‖v‖. Then,

with probability at least 1− 1/2O(n), Yγ contains both w and w ± v for some
w.

Using this lemma, we can prove our main theorem:

Theorem 3.5. Algorithm 3.1 runs in time 2O(n logn)nO(1) and outputs the
shortest `∞ vector with probability at least 1− 1/2O(n).

Proof. Since the length λ1(L) of the shortest `2 vector is assumed to satisfy
2 ≤ λ1(L) < 3, we have that the `2 norm of the shortest `∞ vector v∞ satisfies
‖v∞‖ < 3

√
n. Since the algorithm iterates over several γ in an appropriate

range, by Lemma 3.4, some Yγ contains w and w± v∞ for some w with high
probability. Since the algorithm computes the differences of the vectors in
Yγ, it outputs v∞ with high probability.

The number of sampled points in each iteration of the outer loop is
2O(n log γ). Since γ = O(

√
n) and each arithmetic operation takes time nO(1),

the algorithm runs in time 2O(n logn)nO(1).

To prove Lemma 3.4, a probabilistic argument will be employed. The
proof can be broken into three steps. First, identify a set of good points from
the sampled points, and argue that this set is large. Next, argue that there
must exist a lattice point which corresponds to lots of good points. Finally,
argue that an imaginary probabilistic step does not essentially change the
behaviour of the algorithm. Combined with the existence of a lattice point
corresponding to many good points, this imaginary step allows us to argue
that the algorithm encounters both w and w±v for an appropriate interesting
v.

Let v be an interesting lattice vector. That is, 2
3
d ≤ γ < d for d = ‖v‖.

For the iteration where the algorithm uses a value of γ in this range, we
will denote by C1 the points in the set Bn(v, γ) ∩Bn(0, γ). Similarly, C2 =
Bn(−v, γ) ∩ Bn(0, γ). By choice of γ, C1 and C2 are disjoint. We will call
the points in C1 ∪ C2 as good. Following lemma shows that probability of
sampling a good point is large.

14

Lemma 3.6. Pr[xi ∈ C1] ≥ 2−2n

Proof. The radius of both Bn(0, γ) and Bn(v, γ) is γ. The distance between
the centers is d = ‖v‖. Thus the intersection contains a sphere of radius
1
2
(2γ − d) = γ − d/2 whose volume V ol(Bn(0, γ − d/2)) gives a lower bound

on the volume of C1. Comparing with V ol(Bn(0, γ)) and using the fact that

γ ≥ 2
3
d, we get that Pr[xi ∈ C1] ≥ V ol(Bn(0,γ−d/2))

V ol(Bn(0,γ))
≥
(
γ/4
γ

)n
= 2−2n.

Informally, the following lemma says that even if the size of Z is large at
the end of the inner loop, the set {xi − yi} has many repetitions.

Lemma 3.7. |Yγ| ≤ (3γ + 2)n

Proof. The points in L are separated by a distance of at least 2 since λ1(L) ≥
2. Hence balls of radius 1 around each lattice point are pairwise disjoint. If we
consider only the balls corresponding to points in Yγ, all of them are contained
in a ball of radius 3γ + 2 since Yγ ⊆ Bn(0, 3γ + 1) by Lemma 3.2. Thus the

total number of points in Yγ is at most V ol(Bn(0,3γ+2))
V ol(Bn(0,1))

= (3γ + 2)n.

The following lemma argues that there must be a lattice point corre-
sponding to many good points.

Lemma 3.8. With high probability, there exists w ∈ Yγ and I ⊆ Z such that
|I| ≥ 23n, and for all i ∈ I, xi ∈ C1 ∪ C2 and w = xi − yi.

Proof. Since Pr[xi ∈ C1 ∪ C2] is at least 2−2n by Lemma 3.6, and the num-
ber of points sampled is

⌈
2(7+dlog(γ)e)n log(R0)

⌉
, the expected number of good

points sampled at the start is at least 2(5+dlog(γ)e)n log(R0). The loop performs
log(R0) iterations removing (by Lemma 3.1) at most 5n points per iteration.
The total number of good points remaining in Z after the sieving steps is
(2(5+dlog(γ)e)n − 5n) log(R0) ≥ 2(4+dlog(γ)e)n log(R0) since 5n ≤ 23n.

By Lemma 3.7, |Yγ| ≤ (3γ + 2)n. Since 3γ + 2 ≤ 4γ for γ ≥ (3/2)2,
|Yγ| ≤ 2(2+log(γ))n. Hence, there exists a w ∈ Yγ corresponding to at least
2(4+dlog(γ)e)n log(R0)

2(2+log(γ))n ≥ 23n good points.

15

The final step in the analysis is to argue that for such a w ∈ Yγ, we must
also have that w ± v ∈ Yγ with high probability for an interesting v ∈ L.

Proof of Lemma 3.4

Consider the iteration where γ satisfies 2
3
‖v‖ ≤ γ < ‖v‖ for an interesting

lattice vector v.

It can be easily seen that x ∈ C1 if and only if x − v ∈ C2. Consider an
imaginary process performed just after sampling all the xi. For each xi ∈ C1,
with probability 1/2, we replace it with x − v ∈ C2. Similarly, for each
x ∈ C2, we replace it with x + v ∈ C1. (This process cannot be performed
realistically without knowing v, and is just an analysis tool.) The definition
of yi is invariant under addition of lattice vectors v ∈ L to xi, and hence the
yi remain the same after this process.

Since the sampling was done from the uniform distribution and since
(x ∈ C1) ↔ (x − v ∈ C2) is a bijection, this process does not change the
sampling distribution.

We may postpone the probabilistic transformation xi ↔ (xi − v) to the
time when it actually makes a difference. That is, just before the first time
when xi is used by the algorithm. The algorithm uses xi in two places. For
i ∈ J during the sieving step, we perform this transformation immediately
after computation of J . Another place where xi is used is the computation
of Yγ. We perform this transformation just before this computation.

In the original algorithm (without the imaginary process), by Lemma 3.8,
there exists a point w ∈ Yγ corresponding to at least 23n good points. Let
{xi} be this large set of good points. With high probability, there will be
many xi which remain unchanged, and also many xi which get transformed
into xi ± v. Thus, Yγ contains both w and w ± v with high probability.

16

Chapter 4

Coding theory problems

All our algorithms require time exponential in t, and are only polynomial-
time for constant t. It is natural to ask whether there are efficient algorithms
which require time polynomial in t. Unfortunately, we conjecture this prob-
lem is probably NP-complete. We give some evidence for the conjectured
hardness by pointing out related problems from coding theory.

First we introduce some basic terminology from coding theory. Then
we introduce some NP-hard problems, and display how they relate to the
problems at hand.

4.1 Linear error-correcting codes

In this chapter we introduce some basic notions from coding theory which
will be used in subsequent sections.

The basic premise of coding theory is to transmit messages across noisy
channels by introducing structured redundancy. The simplest kind of proto-
col, called Forward Error Correction in the literature, begins with the sender
encoding the message into a longer encoded message which is transmitted
across a noisy channel. The receiver obtains a potentially corrupted version
of the encoded message. Using a decoding algorithm, the original message
can be obtained from the corrupted version of the encoding because of the
carefully added redundancy.

17

Depending on the nature (randomized, adversarial, etc.) of the noise in
the channel and the desired efficiency of the encoding and decoding algo-
rithms, various kinds of protocols are chosen which promise successful trans-
mission with high probability.

In the theory of error-correcting codes, the following characterizes many
commonly seen protocols: The alphabet is a finite sized set, usually F2 or
other small finite fields. All messages are of length m, and all encodings
are of length n ≥ m. The noise is assumed to be adversarial; there exists a
constant k (0 ≤ k ≤ n), and the adversary can modify any k positions of the
encoded message.

Thus, an error-correcting code is a subset C ⊆ Fn of size |F |m.

We will assume all of the above in this section. Furthermore, we will
assume existence of two randomized algorithms E and D, the encoding and
decoding algorithms respectively. The encoding algorithm E takes as input
a message string in Fm, and outputs a string in F n. The decoding algorithm
D takes as input a string from F n, and outputs a string in Fm. Furthermore,
it is guaranteed that for all corrupted versions of a codeword with at most
a fixed number of corruptions, D outputs the original message with high
probability. To make this rigorous, we need the notion of distance of an
error-correcting code.

Definition 4.1. Let d : Fn×Fn → N denote the Hamming distance function,
which counts the number of indices in which two vectors differ. The distance
of an error-correcting code C ⊆ F n is defined to be minx 6=y d(x, y) over x, y ∈
C.

The distance of an error-correcting code is a very important parameter
which influences how many errors the code can tolerate. As an example,
for the simplest decoding scheme of outputting the message with codeword
nearest to the received word, it is easy to see that a code with distance d can
tolerate up to b(d− 1)/2c errors. That is to say, given that the codeword is
corrupted in at most b(d− 1)/2c positions, the receiver can correctly obtain
the original message.

One well-studied family of encoding schemes is linear error-correcting
codes:

Definition 4.2. A linear error-correcting code E is a linear mapping E :
Fm → F n specified by a matrix M ∈ Fm×n.

18

There are two matrices associated with a linear error-correcting code. The
generator matrix G ∈ Fn×m defines the encoding algorithm: Interpret the
message as a vector v ∈ Fm, and then, Gv defines the associated codeword.
The second matrix H ∈ F(n−m)×m, called the parity-check matrix, assists
in detecting if a received message is an encoded message: Hu = 0 ⇐⇒
∃v: Gv = u.

The popularity of this family arises from the fact that the encoding algo-
rithms are usually very efficient. In the case where the message is transmitted
without errors, very efficient decoding algorithms also exist. As we will see
later, the problem of decoding with errors is NP-hard.

4.2 Problems

Maximum likelihood decoding

Under the presence of adversarial noise (and even in the case of random
noise), one possible decoding strategy is to output the codeword which min-
imizes the number of errors. Under general probabilistic error models, this
translates into the following: Given a string y ∈ Fn, output the codeword
x ∈ F n such that Pr[y is received|x is sent] is maximized. Under adversarial
noise, this translates into finding the codeword nearest (under the Hamming
metric) to the received message.

The problem of M aximum Likelihood Decoding is as follows:

Maximum Likelihood Decoding: Given a matrix H ∈ F(n−m)×n, a vector s ∈
Fn−m and an integer w, is there a vector x ∈ Fn such that Hx = s and
Hamming weight |x| of x is less than w?

When viewed as a linear algebra problem, this translates into finding
the sparsest solution to a system of linear equations. [2] proved that this
problem is NP-hard over F2. While this result shows NP-hardness for very
general matrices, [13] showed that this problem NP-hard for the class of
Reed-Solomon codes. These codes interpret the input as a degree m − 1
polynomial. The encoding consists of evaluating these polynomials at n fixed
points (using, for instance, the formulation in (2.2)).

19

[13] use a matrix similar to the one in Equation 2.2 in their hardness proof.
However, this falls short of proving the hardness of finding sparse multiples
for square-free polynomials because the maximum likelihood problem allows
(and essentially utilizes in hardness proof) choice of the right hand side while
in the case of the sparse multiple problem, it is zero. The natural question
of whether similar techniques can be used to prove hardness for our problem
remains unanswered.

Minimum distance problem

Our definitions above do not preclude very different algorithms for different
message lengths. However, we will be mostly interested in “uniform” families
of codes. One possible condition that can be imposed is that there is an
encoding algorithm which works for messages of all lengths.

For such uniform families of codes, usually the goal is to optimize two
parameters. The first parameter is the length of the encoding. The second
parameter is distance of the error-correcting code.

Reducing the length of the encoding facilitates cheaper transmission costs.
Increasing the distance ensures that the algorithm works under large amount
of corruptions. It should be intuitively clear that these two goals are orthog-
onal. Shannon’s theorem makes these notions rigorous, and gives a lower
bound on the length of the encodings in terms of distance and other related
parameters.

On the other hand Gilbert-Varshamov bound asserts that there exists
error-correcting codes with sufficiently small encoding lengths. Attaining
this bound is a primary goal in designing error-correcting codes. It is known
that random linear error-correcting codes achieve this bound, and hence a
protocol choosing a random encoding scheme for every length performs very
well in practice.

An algorithm for computing the minimum distance of a linear error-
correcting code would ensure generation of codes with guarantees on distance
of the code. Formally, the problem can be defined as follows:

MD-Linear (Minimum distance of a linear error-correcting code): Given an
integer w and a linear error-correcting code C, is there a codeword of
Hamming weight at most w?

20

If C is specified by its generator matrix G, the problem is to find a sparse
vector in the image of G. If the code is specified by its parity check matrix
H, the problem is to find if H has a sparse null vector.

Unfortunately, [24] proved that the problem of computing the minimum
distance of an error-correcting code is NP-hard.

The problem of finding the minimum distance of a linear error-correcting
code translates into finding a sparse null vector of the parity check matrix.
Using the notation of Equation 2.2, finding sparse null vectors of structured
matrices would solve the problem of finding sparse multiples of square-free
matrices. Unfortunately, the hardness reduction of [24] does not seem to
carry over for proving hardness for instances arising out of our problem.

4.3 Sparse vectors in integer lattices

Techniques similar to those used in [24] prove that the problem of finding
sparse vectors in integer lattices is NP-complete, a problem that was stated
to be open in [6]. We prove this result in Theorem 4.3. Again, this result
comes very close to proving the hardness for finding sparse multiples over
rationals, except for a last column.

Sparse Lattice Vector : Given a lattice L ⊆ Zn specified by its basis vec-
tors {b1, . . . , bn} and an integer w, is there a lattice vector with Ham-
ming weight at most w?

Theorem 4.3. The problem Sparse Lattice Vector of finding a low Hamming
weight lattice vector in an integer lattice specified by its basis is NP-complete.

Proof. To see that the problem is in NP, a non-deterministic machine can
guess the positions at which the lattice vector is nonzero. All that remains is
to remove the corresponding rows and verify that the columns of the surviving
submatrix are linearly dependent. The latter can be done deterministically
using standard linear algebra algorithms. In the following, we give a NP-
hardness proof.

We give a Cook-reduction from the problem Subset Sum, a well-known
NP-complete problem.

The standard formulation of Subset Sum over integers is as follows:

21

Subset Sum : Given distinct integers {z1, . . . , zn}, a target integer t and a
positive integer w ≤ n, is there a non-empty subset S ⊆ {1, . . . , n} of
size exactly w such that such that

∑
i∈S zi = t?

Given an instance {z1, . . . , zn} of subset sum, to check if there is a subset
of size w summing to t, the reduction first creates the following matrix:

Mw =


1 1 · · · 1 0
z1 z2 · · · zn 0
...

...
...

...
...

zw−1
1 zw−1

2 · · · zw−1
n 1

zw1 zw2 · · · zwn t

 ∈ Z(w+1)×(n+1). (4.1)

Lemma 4.4 (stated and proved below) shows that Mw has a null vector
of sparsity at most w + 1 if and only if zi1 + zi2 + · · · + ziw = t for some
i1 < i2 < . . . < iw.

To create an instance of Sparse Lattice Vector, the reduction creates a ma-
trix N such that the columns of N span the nullspace of M (see Lemma 2.1).
The instance (L, w), where L is the column lattice L of N , is fed to an
algorithm claiming to solve the Sparse Vector Problem.

Lemma 4.4. The matrix Mw from (4.1) has a null vector of Hamming weight
w + 1 if and only if zi1 + zi2 + · · ·+ ziw = t for some i1 < i2 < . . . < iw.

Proof. The row-rank of Mw is w + 1 since they contain a Vandermonde
submatrix with distinct zi. Therefore any null vector has sparsity at least
w + 1. Consider a (w + 1)-sized subset of columns. If the last column is
not in this set, the chosen columns form a Vandermonde matrix. Since zi
are all distinct, the determinant of this Vandermonde matrix is nonzero and
hence there doesn’t exist a null vector of sparsity w + 1 excluding the last
column. Therefore assume that the last column is among those chosen, the
determinant of the resulting matrix can be expanded as:∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 0
zi1 · · · ziw 0
...

...
...

zw−1
i1

· · · zw−1
iw

1
zwi1 · · · zwiw t

∣∣∣∣∣∣∣∣∣∣∣
= t

∣∣∣∣∣∣∣∣∣
1 1 · · · 1
zi1 zi2 · · · ziw
...

...
...

...
zw−1
i1

zw−1
i2

· · · zw−1
iw

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
zi1 · · · ziw
...

...
...

zw−2
i1

· · · zw−2
iw

zwi1 · · · zwiw

∣∣∣∣∣∣∣∣∣∣∣
.

22

The first of the matrices on the right-hand side is a Vandermonde matrix,
whose determinant is well-known to be

∏
ij≤ik(zij − zik). The second matrix

is a first-order alternant ([20]) whose determinant is known to be (zi1 + zi2 +
· · · + ziw)

∏
ij≤ik(zij − zik). Hence the determinant of the entire matrix is

(t − zi1 − zi2 − · · · − ziw)
∏

ij≤ik(zij − zik). Since all the zi are distinct, the
determinant vanishes if and only if the first term vanishes which holds when
there exists a subset of {z1, z2, . . . , zn} of size w summing to t.

23

Chapter 5

Binomial multiples over Q

In this chapter we completely solve the problem of determining if there exists
a binomial multiple of a rational input polynomial (i.e., a multiple of sparsity
t = 2). That is, given input f ∈ Q[x] of degree d, we determine if there
exists a binomial multiple h = xm − a ∈ Q[x] of f , and if so, find such an
h with minimal degree. The constant coefficient a will be given as a pair
(r, e) ∈ Q× N representing re ∈ Q. The algorithm requires a number of bit
operations which is polynomial in d and logH(f). Unlike the case of t-sparse
multiples for t ≥ 3 considered in a later chapter, no a priori bounds on the
degree or height of h are required. We show that m may be exponential in d,
and log a may be exponential in logH(f), and give a family of polynomials
with these properties.

Algorithm 5.1 begins by factoring the given polynomial f ∈ Q[x] into
irreducible factors (using, e.g., the algorithm of [16]). We then show how
to find a binomial multiple of each irreducible factor, and finally provide a
combining strategy for the different multiples.

The following theorem of [21] characterizes binomial multiples of irre-
ducible polynomials. Let φ(n) be Euler’s totient function, the number of
positive integers less than or equal to n which are coprime to n.

Fact 5.1 ([21], Proposition 4, Corollary 2.2). Let f ∈ Q[x] be irreducible of
degree d. Suppose the least-degree binomial multiple of f (if one exists) is of
degree m. Then there exist n, t ∈ N with n | d and φ(t) | d such that m = n · t.

The following, easily derived from explicit bounds in [22], gives a polyno-
mial bound on m.

24

Algorithm 5.1: Lowest degree Binomial Multiple of a Rational Poly-
nomial

Input: f ∈ Q[x]
Output: The lowest degree binomial multiple h ∈ Q[x] of f , or

“NONE”
1 Factor f into irreducible factors: f = xbf1 · f2 · fu
2 if f is not squarefree then return “NONE”
3 for i = 1, 2, 3, . . . , u do
4 di ← deg fi
5 mi ← least k ∈ {di, . . . , di · (d3di ln ln die+ 7)} s.t. xk rem fi ∈ Q
6 if no such mi is found then return “NONE”
7 else ri ← xmi rem fi

8 m← lcm(m1, . . . ,mu)
9 foreach 2-subset {i, j} ⊆ {1, . . . , u} do

10 if |ri |mj 6= |rj |mi then return “NONE”

11 else if sign(r
m/mi
i) 6= sign(r

m/mj
j) then m← 2 · lcm(m1, . . . ,mu)

12 return xb(xm − rm/m1

1), with r1 and m/m1 given separately

Lemma 5.2. For all integers n ≥ 2, φ(d3n ln lnne+ 7) > n.

Proof. Following [22], Fact 6.16 of [10] shows that for all n ≥ 3

φ(n) >
0.56146 · n

ln lnn
·
(

1− 1.41

ln2 lnn

)
.

It is then easily derived (say using Maple) that φ(n) > 0.4n/ ln ln(n) for
n ≥ 9428. We similarly note that

0.4(3n ln lnn)

ln ln(3n ln lnn)
> n

for n ≥ 77, and that the left hand side is an increasing function of n in this
range. Thus

φ(d3n ln ln(n)e) ≥ 0.4(3n ln lnn)

ln ln(3n ln lnn)
> n

for n ≥ 9428. The inequality is verified mechanically (say using Maple) for
2 ≤ n ≤ 9428.

25

Combining Fact 5.1 with Lemma 5.2, we obtain the following explicit
upper bound on the maximum degree of a binomial multiple of an irreducible
polynomial.

Theorem 5.3. Let f ∈ Q[x] be irreducible of degree d. If a binomial multiple
of f exists, and has minimal degree m, then m ≤ d · (d3d ln ln de+ 7).

Proof. By Fact 5.1, m = n · t such that n | d and φ(t) | d. Define ξ(n) =
d3n ln lnne+7, and define ξ−1(n) to be the smallest integer such that ξ(ξ−1(n)) ≥
n. From Lemma 5.2, we have that φ(ξ(n)) > n for n ≥ 2. Hence, d ≥ φ(t) ≥
ξ−1(t). Since ξ is a non-decreasing function, d ≥ ξ−1(t) implies that ξ(d) ≥ t.
Thus m = n · t ≤ d · ξ(d) ≤ d · (d3d ln ln de+ 7).

The above theorem ensures that for an irreducible fi, Step 5 of Algo-
rithm 5.1 computes the least-degree binomial multiple xmi − ri if it exists,
and otherwise correctly reports failure. It clearly runs in polynomial time.

If f has any repeated factor, then it cannot have a binomial multiple
(see Lemma 6.1 below). So assume the factorization of f is as computed in
Step 1, and moreover f is squarefree. If any factor does not have a binomial
multiple, neither can the product. If every irreducible factor does have a
binomial multiple, Step 5 computes the one with the least degree. The
following relates the degree of the minimal binomial multiple of the input
polynomial to those of its irreducible factors.

Lemma 5.4. Let f ∈ Q[x] be such that f = f1 · · · fu ∈ Q[x] for distinct,
irreducible f1, . . . , fu ∈ Q[x]. Let fi |xmi − ri for minimal mi ∈ N and
ri ∈ Q, and let f |xm − r for r ∈ Q. Then lcm(m1, . . . ,mu) |m.

Proof. It suffices to prove that if f |xm − r and fi |xmi − ri for minimal mi

then mi |m since any multiple of f is also a multiple of fi.

Assume for the sake of contradiction that m = cmi + ` for 0 < ` < mi.
Then for any root α ∈ C of fi, we have that r = αm = αcmi · α` = rci · α`.
Since r and ri are both rational, so is α`. Also α` = β` for any two roots
α, β ∈ C of fi. Hence fi |x` − α` and ` < mi, contradicting the minimality
of mi.

Thus mi |m, and therefore lcm(m1, . . . ,mu) |m.

26

Lemma 5.5. For a polynomial f ∈ Q[x] factored into distinct irreducible
factors f = f1f2 . . . fu, with fi |xmi − ri for ri ∈ Q and minimal such mi,
a binomial multiple of f exists if and only if |ri |mj = |rj |mi for every pair
1 ≤ i, j ≤ u. If a binomial multiple exists, the least-degree binomial multiple
of f is xm−rm/mii such that m either equals the least common multiple of the
mi or twice that number. It can be efficiently checked which of these cases
holds.

Proof. Let αi ∈ C be a root of fi. For any candidate binomial multiple xm−r
of f , we have (from Lemma 5.4) that mi |m.

First, suppose that such a binomial multiple exists: f |xm−r with r ∈ Q.

It is easily seen from αmi = r and αmii = ri that r
m/mi
i = r. Since this holds

for any fi, we see that r
m/mi
i = r = r

m/mj
j for any 1 ≤ i, j ≤ u. Thus

|ri |mj = |rj |mi must hold.

Conversely, suppose that |ri |mj = |rj |mi holds for every pair 1 ≤ i, j ≤
u. We get that |αi |lmimj = |αj |lmjmi , and hence

∣∣αli∣∣ =
∣∣αlj ∣∣ for l =

lcm(m1, . . . ,mu). But αli are all rational since mi | l. Thus α2l
i = α2l

j for
every pair i, j . Thus, there exists a binomial multiple of the original poly-
nomial of degree 2l.

To check whether αli = αlj holds (or in other words if the degree of the
binomial multiple is actually the lcm), it suffices to check whether the sign
of each αli is the same. This is equivalent to checking whether the sign of

each r
l/mi
i is the same. Since we can explicitly compute l and all the ri, the

sign of each r
l/mi
i can be easily computed from the sign of ri and the parity

of l/mi.

It is easy to see that Algorithm 5.1 performs polynomially many arith-
metic operations. The following is, then, an easy consequence of Lemma 5.5.

Theorem 5.6. Given a polynomial f ∈ Q[x], Algorithm 5.1 outputs the least-

degree binomial multiple xm − r
m/mi
i (with ri and m/mi output separately)

if one exists or correctly reports the lack of a binomial multiple otherwise.
Furthermore, it runs in deterministic time (d+H(f))O(1).

27

The constant coefficient of the binomial multiple cannot be output in
standard form, but must remain an unevaluated power. Polynomials ex-
ist whose minimal binomial multiples have exponentially sized degrees and
heights.

Theorem 5.7. For any d ≥ 841 there exists a polynomial f ∈ Z[x] of
degree at most d log d whose minimal binomial multiple xm − a is such that
m > exp(

√
d). Also, H(f) ≤ exp(2d log d) and H(a) > 2exp(

√
d).

Proof. We construct the family from a product of cyclotomic polynomials.
Let pi ∈ N be the ith largest prime, and let Φpi = (xpi − 1)/(x − 1) ∈ Z[x]
be the pi

th cyclotomic polynomials (whose roots are the primitive pi
th roots

of unity). This is well known to be irreducible in Q[x].

Let ` =
√

2d and g =
∏

1≤i≤` Φpi . Then, using the fact easily derived
from [22] that i log i < pi < 1.25i log i for all i ≥ 25 and verifying that
(pi − 1) ≤ 1.5i log i mechanically for smaller values of i,

deg g =
∑

1≤i≤`

(pi − 1) ≥
∑

1≤i≤`

i =
l(l + 1)

2
≥ d,

and

deg g =
∑

1≤i≤`

(pi − 1) ≤
∑

1≤i≤`

1.5i log i ≤ 1.5

(
`2 + `

2
log `

)
≤ d log d,

The degree m of the minimal binomial multiple is the lcm of the order of
the roots, and hence equal to the product of primes less than or equal to p`.
This is exp(ϑ(p`)) (where ϑ is the Chebyshev theta function), and for ` ≥ 41

m ≥ exp(ϑ(p`)) ≥ exp(ϑ(`)) ≥ exp

(
`

(
1− 1

log `

))
≥ exp

(√
d
)
,

for d ≥ 841, again by [22].

Now let f = g(2x), so the minimal binomial multiple of f is xm − 1/2m.
We have that

H(g) ≤
∏

1≤i≤`

(1 + pi) ≤ 2`
∏

1≤i≤`

pi ≤ exp(2` log `)

and

H(f) ≤ 2deg(g)H(g) ≤ 2d log d exp(d log d+ 2
√

2d log
√

2d) ≤ exp(2d log d).

for all ≥ 841.

28

Chapter 6

t-sparse multiples over Q

We examine the problem of computing t-sparse multiples of rational poly-
nomials, for any fixed positive integer t. As with other types of polynomial
computations, it seems that cyclotomic polynomials behave quite differently
from cyclotomic-free ones. Accordingly, we first examine the case that our
input polynomial f consists only of cyclotomic or cyclotomic-free factors.
Then we see how to combine them, in the case that none of the cyclotomic
factors are repeated.

Specifically, we will show that, given any rational polynomial f which
does not have repeated cyclotomic factors, and a height bound c ∈ N, we
can compute a sparsest multiple of f with height at most c, or conclude that
none exists, in time polynomial in the size of f and log c (but exponential in
t).

First, notice that multiplying a polynomial by a power of x does not affect
the sparsity, and so without loss of generality we may assume all polynomials
are relatively prime to x; we call such polynomials non-original since they
do not pass through the origin.

6.1 The cyclotomic case

Suppose the input polynomial f is a product of cyclotomic factors, and write
the complete factorization of f as

f = Φei
i1
· Φe2

i2
· · ·Φek

ik
, (6.1)

29

where Φj indicates the jth cyclotomic polynomial, the ij’s are all distinct,
and the ei’s are positive integers.

Now let m = lcm(i1, . . . , ik). Then m is the least integer such that
Φi1 · · ·Φik divides xm − 1. Let ` = maxi ei, the maximum multiplicity of
any factor of f . This means that (xm − 1)` is an (` + 1)-sparse multiple
of f . To prove that this is in fact a sparsest multiple of f , we first require
the following simple lemma. Here and for the remainder, for a univariate
polynomial f ∈ F[x], we denote by f ′ the first derivative with respect to x,
that is, d

dx
f .

Lemma 6.1. Let h ∈ Q[x] be a t-sparse and non-original polynomial, and
write h = a1 + a2x

d2 + · · · + atx
dt. Assume the complete factorization of

h over Q[x] is h = ath
e1
1 · · ·h

ek
k , with each hi monic and irreducible. Then

maxi ei ≤ t− 1.

Proof. Without loss of generality, assume h is exactly t-sparse, and each
ai 6= 0.

The proof is by induction on t. If t = 1 then h = a1 is a constant, so
maxi ei = 0 and the statement holds. Otherwise, assume the statement holds
for (t− 1)-sparse polynomials.

Write the so-called “sparse derivative” h̃ of h as

h̃ =
h′

xd2−1
= a2d2 + a3d3x

d3−d2 + · · ·+ at−1dt−1x
dt−1−d2 .

For any i with ei > 0, we know that hei−1
i divides d

dx
h, and hi is relatively

prime to xd2−1 since the constant coefficient of h is nonzero. Therefore hei−1
i

divides h̃. By the inductive hypothesis, since h̃ is (t − 1)-sparse and non-
original, ei−1 ≤ t−2, and therefore ei ≤ t−1. Since i was chosen arbitrarily,
maxi ei ≤ t− 1.

An immediate consequence is the following:

Theorem 6.2. Let f ∈ Q[x] be a product of cyclotomic polynomials, written
as in (6.1). Then

h = (xlcm(i1,...,ik) − 1)maxi ei

is a sparsest multiple of f .

30

Proof. Clearly h is a multiple of f with exactly maxi ei + 1 nonzero terms.
By way of contradiction, suppose a (maxi ei)-sparse multiple of f exists; call
it h̄. Without loss of generality, we can assume that h̄ is non-original. Then
from Lemma 6.1, the maximum multiplicity of any factor of h̄ is maxi ei− 1.
But this contradicts the fact that each Φei

i must divide h̄. Therefore the
original statement is false, and every multiple of f has at least maxi ei + 1
nonzero terms.

6.2 The cyclotomic-free case

We say a polynomial f ∈ Q[x] is cyclotomic-free if it contains no cyclotomic
factors. Here we will show that a sparsest multiple of a cyclotomic-free
polynomial must have degree bounded by a polynomial in the size of the
input and output.

First we need the following elementary lemma.

Lemma 6.3. Suppose f, h ∈ Q[x] with f irreducible, and k is a positive
integer. Then fk|h if and only if f |h and fk−1|h′.

Proof. The ⇒ direction is straightforward.

For the ⇐ direction, suppose f |h and fk−1|h′. Let ` be the maximum
multiplicity of f in h, and write h = f `g with g ∈ Q[x] relatively prime to f .

We can write h′ = f `−1 (fg′ + `f ′g). Now, by way of contradiction, as-
sume that k > `. Then f divides fg′ + `f ′g, and therefore f divides `f ′g.
But this is impossible from the assumption that f is irreducible and relatively
prime to g. Therefore k ≤ `, and fk|f `|h.

The following technical lemma provides the basis for our degree bound
on the sparsest multiple of a non-cyclotomic polynomial.

Lemma 6.4. Let f, h1, h2, . . . , h` ∈ Q[x] be non-original polynomials, where
f is irreducible and non-cyclotomic with degree d, and each hi satisfies deg hi ≤
u and H(hi) ≤ c. Also let k,m1,m2, . . . ,m` be positive integers such that

fk|(h1x
m1 + h2x

m2 + · · ·+ h`x
m`).

31

Then fk divides each hi whenever every “gap length”, for 1 ≤ i < `, satisfies

mi+1 −mi − deg hi ≥
1

2
d · ln3(3d) · ln

(
uk−1c (t− 1)

)
. (6.2)

Proof. The proof is by induction on k. For the base case, let k = 1. Then we
have a separate, inner induction on `. The inner base case, when k = ` = 1,
is clear since f is non-original. Now assume the lemma holds whenever k = 1
and 1 ≤ `−1 < r for some r ≥ 2. Let g1 = h1x

m1 and g2 = h2+· · ·+h`xmr−m2 ,
so that f | (g1 + g2x

m2). Since

m2 − deg g1 ≥
1

2
d · ln3(3d) · ln(c(t− 1)),

we can apply [17, Proposition 2.3] to conclude that f | g1 and f | g2. This
means f |h1 and, by the inner induction hypothesis, f |hi for 2 ≤ i ≤ ` as
well. Therefore the lemma holds whenever k = 1.

Now assume the lemma holds whenever ` ≥ 1 and 1 ≤ k < s, for some
s ≥ 2. Next let ` be arbitrary and k = s. So we write f s|(h1x

m1+· · ·+h`xm`).

The derivative of the right hand side is

h′1x
m1 +m1h1x

m1−1 + · · ·+ h′`x
m` +m`h`x

m`−1,

which must be divisible by f s−1. But by the induction hypothesis, f s−1 also
divides each hi, so we can remove all terms with hi from the previous formula
and conclude that f s−1| (h′1xm1 + · · ·+ h′`x

m`).

Since each H(hi) ≤ c and deg hi ≤ u, the height of the derivative satisfies
H(h′i) ≤ uc. A second application of the induction hypothesis therefore
shows that each h′i is divisible by f s−1. Since s − 1 ≥ 1, we already know
that each hi is divisible by f , and then applying Lemma 6.3 completes the
proof.

Our main tool in proving that Algorithm 2.1 is useful for computing the
sparsest multiple of a rational polynomial, given only a bound c on the height,
in polynomial time in the size of f and log c, is the following degree bound
on the sparsest height-bounded multiple of a rational polynomial.

32

Theorem 6.5. Let f ∈ Q[x] with deg f = d be cyclotomic-free, and let
t, c ∈ N such that f has a nonzero t-sparse multiple with height at most c.
Denote by n the smallest degree of any such multiple of f . Then n satisfies

n ≤ 2(t− 1)B lnB, (6.3)

where B is the formula polynomially bounded by d, log c, and log t defined as

B =
1

2
d2 · ln3(3d) · ln

(
ĉ (t− 1)d

)
, (6.4)

and ĉ = max(c, 35).

Proof. Let h be a t-sparse multiple of f with degree n and height H(h) ≤ c.
Without loss of generality, assume d ≥ 1, t ≥ 2, and both f and h are
non-original.

By way of contradiction, assume n > 2(t − 1)B lnB. For any univari-
ate polynomial define the gap lengths to be the differences of consecutive
exponents of nonzero terms. Split h at every gap greater than 2B lnB by
writing

h = h1x
m1 + h2x

m2 + · · ·+ h`x
m` ,

where each hi ∈ Q[x] has nonzero constant term and each gap length satisfies
mi+1 − mi − deg hi > 2B lnB. Since we split h at every sufficiently large
gap, and h has at most t nonzero terms, each hi has degree at most u =
2(t− 1)B lnB.

We want to show that the gap length 2B lnB is sufficiently large to apply
Lemma 6.4. For this, first notice that 2B lnB = B ln(B2). Since B is
positive, B2 > 2B lnB, so the gap length is greater than B ln(2B lnB).

Since ĉ ≥ 35, B ≥ 2.357, and then

(d−1) ln(2B lnB)·ln(ĉ(t−1)d) > ln
(

(2B lnB)d−1 · ĉ(t− 1)d
)

= ln
(
ud−1ĉ (t− 1)

)
.

Then from the definition of B in (6.4), the gap length satisfies

2B lnB > B ln(2B lnB) >
1

2
d · ln3(3d) · ln

(
ud−1ĉ (t− 1)

)
.

Finally, notice that the maximum multiplicity of any factor of f is at
most deg f = d. (So, using the notation of Lemma 6.4, d ≥ k.) Therefore

33

Lemma 6.4 applies to each factor of f (to full multiplicity) and we conclude
that f divides each hi.

But then, since there is at least one gap and ` > 1, h1 is a multiple of f
with fewer terms and lower degree than h. This is a contradiction, so we are
done.

In order to compute the sparsest multiple of a rational polynomial with
no cyclotomic or repeated factors, we therefore can simply call Algorithm 2.1
with the given height bound c and degree bound as specified in (6.3).

6.3 Handling cyclotomic factors

Suppose f is any non-original rational polynomial with no repeated cyclo-
tomic factors. Factor f as f = fC · fD, where fC is a squarefree product
of cyclotomics and fD is cyclotomic-free. Write the factorization of fC as
fC = Φi1 · · ·Φik , where Φn is the nth cyclotomic polynomial. Since every
ith root of unity is also a (mi)th root of unity for any m ∈ N, fC must di-
vide the binomial xlcm{i1,...,ik} − 1, which is in fact a sparsest multiple of fC
(Theorem 6.2) and clearly has minimal height.

Then we will show that a sparsest height-bounded multiple of f is either
of small degree, or can be constructed as a sparsest height-bounded multiple
of fD times the binomial multiple of fC specified above. Algorithm 6.1 uses
this fact to compute a sparsest multiple of any such f .

Theorem 6.6. Let f ∈ Q[x] be a degree-d non-original polynomial with no
repeated cyclotomic factors. Given f and integers c and t, Algorithm 6.1
correctly computes a t-sparse multiple h of f satisfying H(h) ≤ c, if one
exists. The sparsity of h will be minimal over all multiples with height at
most c. The cost of the algorithm is (d · logH(f) · log c)O(t).

Proof. Step 1 can be accomplished in the stated complexity bound using
[16]. The cost of the remaining steps follows from basic arithmetic and
Theorem 2.3. Define h to be sparsest multiple of f of least degree that
satisfies H(h) ≤ c. We have two cases:

34

Algorithm 6.1: Rational Sparsest Multiple

Input: Bounds t, c ∈ N and f ∈ Q[x] a non-original polynomial of
degree d with no repeated cyclotomic factors

Output: t-sparse multiple h of f with H(h) ≤ c, or “NONE”
1 Factor f as f = Φi1 · Φi2 · · ·Φik · fD, where fD is cyclotomic-free
2 n← degree bound from (6.3)

3 ĥ← bt/2c-sparse multiple of fD with H(ĥ) ≤ c and deg ĥ ≤ n, using
Algorithm 2.1

4 h̃← t-sparse multiple of f with H(h) ≤ c and deg h ≤ n, using
Algorithm 2.1

5 if ĥ =“NONE”and h̃ =“NONE” then return “NONE”

6 else if ĥ =“NONE”or sparsity(h̃) ≤ 2 · sparsity(ĥ) then return h̃
7 m← lcm{i1, i2, . . . , ik}
8 return ĥ · (xm − 1)

Case 1: deg h ≤ n. Then the computed h̃ must equal h. Furthermore, since
this is the sparsest multiple, either ĥ does not exist or the sparsity of
ĥ is greater than or equal to the sparsity of h̃. So h = h̃ is correctly
returned by the algorithm in this case.

Case 2: deg h > n. Then, using Lemma 6.4, since fD | h, h can be written
h = h1 + xih2, for some i > deg h1, and fD divides both h1 and h2.
By Theorem 2.3, sparsity(ĥ) must then be less than or equal to each of
sparsity(h1) and sparsity(h2). But since sparsity(h) = sparsity(h1) +
sparsity(h2), this means that the sparsity of ĥ · (xm− 1) is less than or
equal to the sparsity of h, and hence this is a sparsest multiple.

6.4 An example

Say we want to find a sparsest multiple, with coefficients at most 1000 in
absolute value, of the following polynomial over Z[x]:

f = x10 − 5x9 + 10x8 − 8x7 + 7x6 − 4x5 + 4x4 + x3 + x2 − 2x+ 4.

35

Note that finding the sparsest multiple would correspond to setting t = 10
in the algorithm (since the least-degree 11-sparse multiple is f itself). To
accomplish this, we first factor f using [16] and identify cyclotomic factors:

f = (x2 − x+ 1)︸ ︷︷ ︸
Φ6

· (x4 − x3 + x2 − x+ 1)︸ ︷︷ ︸
Φ10

· (x4 − 3x3 + x2 + 6x+ 4)︸ ︷︷ ︸
fD

.

Next, we calculate a degree bound from Theorem 6.5. Unfortunately, this
bound is not very tight (despite being polynomial in the output size); using
t = 10, c = 1000, and f given above, the bound is n ≤ 11 195 728. So for
this example, we will use the smaller (but artificial) bound of n ≤ 20.

The next step is to calculate the sparsest 5-sparse multiple of fD and
10-sparse multiple of f with degrees at most 20 and heights at most 1000.
Using Algorithm 2.1, these are respectively

ĥ = x12 + 259x6 + 64,

h̃ = x11 − 3x10 + 12x8 − 9x7 + 10x6 − 4x5 + 9x4 + 3x3 + 8.

Since the sparsity of ĥ is less than half that of h̃, a sparsest multiple is

h = (x12 + 259x6 + 64) · (xlcm(6,10) − 1)

= x42 + 259x36 + 64x30 − x12 − 259x6 − 64

36

Chapter 7

Sparse multiples over Fq

We prove that for any constant t, finding the minimal degree t-sparse mul-
tiple of an f ∈ Fq[x] is harder than finding orders of elements in Fqe . The
latter problem is thought to be hard, essentially of the same complexity as
factoring integers. In the second section, we tightly characterize (up to ran-
domization) the complexity of finding binomial multiples over finite fields. In
the last section, we discuss connections of the problem with those considered
in cryptographic settings.

7.1 Hardness of t-sparse multiple finding

Formal problem definitions are as follows:

SpMul
(t)
Fq (f, n): Given a polynomial f ∈ Fq[x] and an integer n ∈ N, deter-

mine if there exists a (nonzero) 2-sparse multiple h ∈ Fq[x] of f with
deg h ≤ n.

OrderFqe (a, n): Given an element a ∈ F∗qe and an integer n < qe, determine
if there exists a positive integer m ≤ n such that am = 1.

The problem OrderFqe (a, n) is well-studied (see for instance [19]), and has
been used as a primitive in several cryptographic schemes. Note that an
algorithm to solve OrderFqe (a, n) will allow us to determine the multiplicative

37

order of any a ∈ F∗qe (the smallest nonzero m such that am = 1) with
essentially the same cost (up to a factor of O(e log q)) by using binary search.

The reduction from OrderFqe (a, n) to SpMul
(t)
Fq (f, n) works as follows:

Given an instance of OrderFqe (a, n), we first check if the order oa of a is less
than t by brute-force. Otherwise, we construct the minimal polynomial gai
(over Fq) for each a0, a1, a2, . . . , at−1. We only keep distinct gai , and call the

product of these distinct polynomials fa,t. We then run the SpMul
(t)
Fq (f, n)

subroutine to search for the existence of a degree n, t-sparse multiple of the
polynomial fa,t.

Theorem 7.1. Let a ∈ Fq be an element of order at least t. Then the least
degree t-sparse multiple of fa,t is xoa − 1 where oa is the order of a.

Proof. It is easy to see that xoa − 1 is a multiple of the given polynomial.
We need to prove that it is actually the least-degree t-sparse multiple.

By equation 2.2 in Chapter 2, a degree n multiple h of fa,t corresponds
to the following set of linear equations:

1 1 1 · · · 1
1 a a2 · · · an−1

1 a2 a4 · · · a2n−2

...
...

...
...

...
1 at a2t · · · atn−t


︸ ︷︷ ︸

A(fa,t,n)


h0

h1

...
hn−1

 = 0.

To prove that no t-sparse multiple h of degree less than oa exists, it
suffices to show that any t columns of A(fa,t, oa−1) are linearly independent.
Consider the (t× t)-matrix corresponding to some choice of t columns:

B =


1 1 · · · 1
ai1 ai2 · · · ait
...

...
...

...
ati1 ati2 · · · atit


This Vandermonde matrix B has determinant

∏
1≤j<k≤t(a

ik − aij) which

is nonzero since ij < ik < oa and hence aij 6= aik . Thus the least-degree
t-sparse multiple of the given polynomial is xoa − 1.

38

Algorithm 7.1: Least degree binomial multiple of f over Fq
Input: f ∈ Fq[x]
Output: The least degree binomial multiple h of f

1 Factor f = xbf e11 · f e22 · f
e`
` for irreducible f1, . . . , f` ∈ Fq[x], and set

di ← deg fi
2 for i = 1, 2, . . . , ` do
3 ai ← x ∈ Fq[x]/(fi), a root of fi in the extension Fqdi
4 Calculate oi, the order of ai in Fq[x]/(fi).

5 n1 ← lcm({oi/ gcd(oi, q − 1)}) for all i such that di > 1
6 n2 ← lcm({order(ai/aj)}) over all 1 ≤ i, j ≤ u
7 n← lcm(n1, n2)

8 h̃← (xn − an1)
9 e← dlogp max eie, the smallest e such that pe ≥ ei for all i

10 return h = xb(xn − an1)p
e

7.2 Probabilistic algorithm for finding bino-

mial multiples

Next we give a probabilistic algorithm for finding the least degree binomial
multiple for polynomials f ∈ Fq. This algorithm makes repeated calls to an
OrderFqe (a, n) (defined in the previous section) subroutine. Combined with
the hardness result of the previous section (with t=2), this characterizes
the complexity of finding least-degree binomial multiples in terms of the
complexity of OrderFqe (a, n), up to randomization.

Algorithm 7.1 solves the binomial multiple problem in Fq by making calls
to an OrderFqe (a, n) procedure that computes the order of elements in ex-

tension fields of Fq. Thus SpMul
(2)
Fq (f) reduces to OrderFqe (a, n) in proba-

bilistic polynomial time. Construction of an irreducible polynomial (required
for finite field arithmetic) as well as the factoring step in the algorithm make
it probabilistic.

Theorem 7.2. Given f ∈ Fq[x] of degree d, Algorithm 7.1 correctly computes
a binomial multiple h of f with least degree. It uses at most d2 calls to a
routine for order finding in Fqe, for various e ≤ d, and dO(1) other operations
in Fq. It is probabilistic of the Las Vegas type.

39

Proof. As a first step, the algorithm factors the given polynomial into irre-
ducible factors. Efficient probabilistic algorithms for factoring polynomials
over finite fields are well-known ([9]).

First, suppose the input polynomial f is irreducible, i.e. ` = e1 = 1 in
Step 1. Then it has the form f = (x − a)(x − aq) · · · (x − aq

d−1
) for some

a ∈ Fqd , where d = deg f . If f = (x− a), the least-degree binomial multiple
is f itself. Therefore, assume that d > 1. Let the least-degree binomial
multiple (in Fq[x]) be xn − β

Since both a and aq are roots of (xn − β), we have that an = anq and
an(q−1) = 1. Thus, the order oa of a divides n(q − 1). The minimal n for
which oa | n(q − 1) is n = oa

gcd(oa,q−1)
. Since this n ensures that an = anq, it

also simultaneously ensures that each aq
i

is also a root.

Notice that this n equals n1 computed on Step 5, and n2 computed on
Step 6 will equal 1, so the algorithm is correct in this case.

Now suppose the input polynomial f is reducible. The factorization step
factors f into irreducible factors f = f e11 f

e2
2 · · · f

e`
` . Let f̌ = f1f2 · · · f` denote

the squarefree part of f .

Being irreducible, each fi has the form fi(x) = (x − ai)(x − aqi) · · · (x −
aq

di−1

i) for some ai ∈ Fqd , and di = deg fi. We notice two facts:

• If f̌(x) | xn−a for some a ∈ Fq, we have that ani = anj for all 1 ≤ i, j ≤ `,
and hence that (ai

aj
)n = 1. Thus order(ai

aj
) | n. The least integer

satisfying these constraints is n2 computed on Step 6.

• As before for the case when the input polynomial is irreducible and of
degree more than one: di > 1 implies that oi

gcd(oi,q−1)
| n for oi the order

of ai. The least integer satisfying these constraints is n1 computed on
Step 5.

The minimal n is the least common multiple of all the divisors obtained
from the above two types of constraints, which is exactly the value computed
on Step 7. The minimal degree binomial multiple of f̌ is xn − an1 .

It is easily seen that for the smallest e such that pe ≥ ei, (xn − an)p
e

is
a binomial multiple of f . The following claim proves that it is actually the
minimal degree binomial multiple.

40

Claim. Let e be the smallest non-negative integer such that pe ≥ max ei.
Then the minimal degree binomial multiple of f is (xn−ani)p

e
for n obtained

as above.

Proof of claim. Let the minimal degree binomial multiple of f be xn̂ − b.
Factor n̂ as n̂ = ňpc for maximal c, and write (xn̂ − b) as (xň − b1/pc)p

c
. The

squarefree part of f , f̌ divides (xň− b1/pc), and hence (by constraints on and
minimality of n) (xn − an1) | (xň − b1/pc). Thus ň ≥ n.

Since c is chosen maximally, p does not divide ň, and hence xň − b1/pc is
squarefree. Using this and the fact that f divides (xň − b1/pc)p

c
, it is seen

that pc ≥ ei holds for all ei, and hence pc ≥ pe. This, along with ň ≥ n,
completes the proof.

7.3 Relationship to problems in cryptogra-

phy

Problems concerning sparse multiples have been considered in the cryptogra-
phy community to some extent. The problem arises in this area of research
due to its use in breaking Linear Feedback Shift Register (LFSR) based
stream ciphers.

For the scope of this presentation, it suffices to say that a LFSR is a
mechanism for generating pseudo-random bits, each bit being generated from
a fixed linear combination of the last few bits.

Stream ciphers based on LFSRs combine outputs of finite number of LF-
SRs using a nonlinear function. The recurrence of a LFSR can be described
using a polynomial over F2. To resist attacks, this polynomial is chosen to be
a dense primitive polynomial. Furthermore, because of the nature of possi-
ble attacks, it is desirable that this polynomial not have a low-degree sparse
multiple.

Some effort has been devoted in literature to reason about the least de-
gree sparse multiples of primitive polynomials. [14, 12, 18] study trinomial
multiples of primitive polynomials. They prove several results regarding the

41

number of low-degree trinomial multiples, the structure of trinomial multi-
ples and about trinomials having large number of primitive factors. They
also give algorithms for finding sparse multiples.

Although the techniques used in these papers might be useful in gaining
some intuition, the results do not seem to directly apply to our problem.
This is for two reasons. Firstly, the results mostly concentrate on proving
upper bounds on the degree of the least degree trinomial multiples of all
polynomials. Thus, they fail to give any meaningful bounds for the case
when the given polynomial has a trinomial multiple of degree much lesser
than the average. Also, unfortunately, the algorithms presented are heuristic,
and hence fail to provide any rigorous complexity guarantees.

In addition to the above discussion about the choice of the polynomial of
the LFSR, another place where sparse multiples appear in the area’s litera-
ture is correlation attacks on LFSR based stream ciphers. See for instance
[15, 4]. These attacks require several sparse multiples of degree less than a
large bound. However, since the algorithms for finding the sparse multiples
employ algorithms for known hard problems (see [5, 7]), not much attention
is devoted to optimizing the degree of the sparse multiples. Again, as before,
the techniques are largely heuristic, and lack rigorous complexity guarantees.

It is a hope that completely characterizing complexities of sparsity prob-
lems over finite fields would help design better heuristics for the problem
instances used in practice.

42

Chapter 8

Conclusion

In this thesis, we have exhibited an efficient algorithm to compute the least-
degree binomial multiple of any rational polynomial. We have also shown
how to compute t-sparse multiples of rational polynomials that do not have
repeated cyclotomic factors, for any fixed t, and given a bound on the height
of the multiple.

We have also shown that, even for fixed t, finding a t-sparse multiple of
a degree-d polynomial over Fq[x] is at least as hard as finding the orders of
elements in Fqd . In the t = 2 case, there is also a probabilistic reduction in the
other direction, so that computing binomial multiples of degree-d polynomials
over Fq[x] probabilistically reduces to order finding in Fqd .

Several important questions remain unanswered. Although we have an
unconditional algorithm to compute binomial multiples of rational polyno-
mials, computing t-sparse multiples for fixed t ≥ 3 requires an a priori height
bound on the output as well as the requirement that the input contains no
repeated cyclotomic factors. Removing these restrictions is desirable (though
not necessarily possible).

Open Problem 8.1. For t ≥ 3, remove the necessity of height bounds as
part of the input.

Our algorithm for finding t-sparse height-bounded multiples for rational
polynomials, and the algorithm for finding binomial multiples of polynomials
over finite fields use randomization. Over finite fields, algorithms for factoring

43

polynomials give the algorithm its probabilistic nature. Over the rationals,
the randomization is due to the subroutine for finding short l∞ vector in fixed-
dimension lattices. A very interesting question is to investigate whether these
algorithms can be made deterministic. In particular, over the rationals, it
seems plausible that a much simpler deterministic algorithm for finding short
l∞ vector exists.

Open Problem 8.2. Can the randomized algorithms in this thesis be made
deterministic?

Regarding lower bounds, we know that computing t-sparse multiples over
finite fields is at least as hard as order finding, a result which is tight (up
to randomization) for t = 2, but for larger t we believe the problem is even
harder. Specifically, we suspect that computing t-sparse multiples is NP-
complete over both Q and Fq, when t is a parameter in the input.

Open Problem 8.3. If t is part of the input, is the problem of finding
t-sparse multiples NP-hard?

44

References

[1] Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for
the shortest lattice vector problem. In Symp. Theory of Computing
(STOC’01), pages 601–610, 2001. 8, 10

[2] E. R. Berlekamp, R. J. McEliece, and H. C. van Tilborg. On the in-
herent intractability of certain coding problems. IEEE Transactions on
Information Theory, 24(3), 1978. 1, 19

[3] R. P. Brent and P. Zimmermann. Algorithms for finding almost irre-
ducible and almost primitive trinomials. In Primes and Misdemeanours:
Lectures in Honour of the Sixtieth Birthday of Hugh Cowie Williams,
Fields Institute, page 212, 2003. 1

[4] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation
attacks: An algorithmic point of view. In EUROCRYPT ’02: Proceed-
ings of the International Conference on the Theory and Applications of
Cryptographic Techniques, pages 209–221, London, UK, 2002. Springer-
Verlag. 42

[5] F. Didier and Y. Laigle-Chapuy. Finding low-weight polynomial multi-
ples using discrete logarithms. In Proc. IEEE International Symposium
on Information Theory (ISIT 2007), pages 1036–1040, 2007. 1, 42

[6] Sebastian Egner and Torsten Minkwitz. Sparsification of rectangular
matrices. J. Symb. Comput., 26(2):135–149, 1998. 1, 21

[7] Laila El Aimani and Joachim von zur Gathen. Finding low weight
polynomial multiples using lattices. Cryptology ePrint Archive, Report
2007/423, 2007. http://eprint.iacr.org/2007/423.pdf. 1, 42

45

http://eprint.iacr.org/2007/423.pdf

[8] I. Z. Emiris and I. S. Kotsireas. Implicitization exploiting sparseness. In
Geometric and algorithmic aspects of computer-aided design and manu-
facturing, volume 67 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., pages 281–297, 2005. 1

[9] Joachim von zur Gathen and J. Gerhard. Modern Computer Algebra,
chapter 14, pages 367–380. Cambridge University Press, New York, NY,
USA, 2003. 40

[10] Mark Giesbrecht. Nearly Optimal Algorithms for Canonical Matrix
Forms. PhD thesis, University of Toronto, 1993. 196 pp. 25

[11] Mark Giesbrecht, Daniel S. Roche, and Hrushikesh Tilak. Computing
sparse multiples of polynomials. Submitted to International Symposium
on Algorithms and Computation, 2010. iv, 3

[12] Kishan Chand Gupta and Subhamoy Maitra. Primitive polynomials over
gf(2) - a cryptologic approach. In ICICS ’01: Proceedings of the Third
International Conference on Information and Communications Security,
pages 23–34, London, UK, 2001. Springer-Verlag. 41

[13] Venkatesan Guruswami and Alexander Vardy. Maximum-likelihood de-
coding of reed-solomon codes is NP-hard. In SODA ’05: Proceedings
of the sixteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 470–478, 2005. 19, 20

[14] K Jambunathan. On choice of connection-polynomials for LFSR-Based
stream ciphers. In Progress in Cryptology INDOCRYPT 2000, volume
1977 of Lecture Notes in Computer Science, pages 149–159. Springer
Berlin / Heidelberg, 2000. 41

[15] Thomas Johansson and Fredrik Jnsson. Improved fast correlation
attacks on stream ciphers via convolutional codes. pages 347–362.
Springer-Verlag, 1999. 42

[16] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261(4):515–534, 1982. 10, 24, 34,
36

46

[17] H. W. Lenstra, Jr. Finding small degree factors of lacunary polynomi-
als. In Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997),
pages 267–276. de Gruyter, Berlin, 1999. 2, 32

[18] Subhamoy Maitra, Kishan Chand Gupta, and Ayineedi Venkateswarlu.
Results on multiples of primitive polynomials and their products over
gf(2). Theoretical Computer Science, 341(1-3):311 – 343, 2005. 41

[19] A. R. Meijer. Groups, factoring, and cryptography. Math. Mag.,
69(2):103–109, 1996. 37

[20] Thomas Muir. A Treatise on the Theory of Determinants. Dover Pub-
lications, 2003. 23

[21] Lawrence J. Risman. On the order and degree of solutions to pure
equations. Proc. Amer. Math. Soc., 55(2):261–266, 1976. 24

[22] J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions
of prime numbers. Ill. J. Math., 6:64–94, 1962. 24, 25, 28

[23] Arne Storjohann. Algorithms for Matrix Canonical Forms. PhD thesis,
Swiss Federal Institute of Technology Zürich, 2000. 6

[24] Alexander Vardy. The intractability of computing the minimum distance
of a code. IEEE Transactions on Information Theory, 43(6):1757–1766,
1997. 1, 21

47

	Introduction
	Linear algebra formulation
	Finding a sparse multiple of bounded height and degree

	Finding short vectors in lattices
	Coding theory problems
	Linear error-correcting codes
	Problems
	Sparse vectors in integer lattices

	Binomial multiples over Q
	t-sparse multiples over Q
	The cyclotomic case
	The cyclotomic-free case
	Handling cyclotomic factors
	An example

	Sparse multiples over Fq
	Hardness of t-sparse multiple finding
	Probabilistic algorithm for finding binomial multiples
	Relationship to problems in cryptography

	Conclusion
	References

