
Privacy-Preserving Interest Matching for
Mobile Social Networking

by

Qi Xie

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Qi Xie 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Qi Xie

ii

Abstract

The success of online social networking has resulted in increased attention to mobile social
networking research and applications. In mobile social networking, instead of looking for friends
over the Internet, people look for friends who are physically located close and also based on other
self-defined criteria. For example, a person could find other people who are nearby and who
also share the same interests with her by using mobile social networking. As a result, they have
common topics to talk about and may eventually become friends. There are two main approaches
in the existing works. One approach focuses on efficiently establishing friendship and ignores
the protection of private information of the participants. For example, some applications simply
broadcast users’ personal information to everybody and rely on the other users to report the
matches. From a privacy point of view, this approach is bad, since it makes the users vulnerable
to context-aware attacks. The other approach requires a central server to participate in each
matchmaking process. For example, an application deploys a central server, which stores the
profile information of all users. When two nearby client devices query the central server at the
same time, the central server fetches the profile information of both devices from the server’s
database, performs matching based on the information, and reports the result back to the clients.
However, a central server is not always available, so this approach does not scale. In addition, the
central server not only learns all users’ personal information, it also learns which users become
friends.

This thesis proposes a privacy-preserving architecture for users to find potential friends with
the same interests. The architecture has two matchmaking protocols to prevent privacy leaks.
Our protocols let a user learn only the interests she has in common with the other party. One
protocol is simpler, but works only if some assumptions hold. The other protocol is more secure,
but requires longer execution time. Our architecture does not require any central server that is
involved in the matchmaking process. We describe how the protocols work, analyze how secure
the protocols are under different assumptions, and implement the protocols in a BlackBerry
application. We test the efficiency of the protocols by conducting a number of experiments.
We also consider the cheating-detection and friend-recognition problems.

iii

Acknowledgements

I would like to thank my supervisor, Dr. Urs Hengartner, for his great help and support on my
study and research. He guided me through the entire process of writing this thesis with patience
and excellent advices on both technical part and English part.

I would like to thank Dr. Ian Goldberg and Dr. Doug Stinson for carefully examining my
thesis and giving me valuable comments.

I would like to thank Earl Oliver for his helpful suggestions on Bluetooth programming.

I would like to thank my good friend and roommate Richard Jang for helping proofread
my thesis and improve my basketball skills. He and other friends make my life in Waterloo
interesting and joyful.

Finally, I would like to thank my parents. Without their support, I could not come to Canada
or accomplish this thesis.

iv

Dedication

This is dedicated to my parents.

v

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Related Work . 4

1.2.1 Mobile Social Networking Applications 4

1.2.2 Matchmaking Protocols . 5

2 Architecture and Threat Model 10

2.1 System Architecture . 10

2.2 Scenarios . 13

2.2.1 First Encounter . 13

2.2.2 Meet Again . 15

2.3 Threat Model . 17

3 Matchmaking Protocols 19

3.1 Setup . 19

3.1.1 Id Signer . 19

3.1.2 Personal Info Signer . 20

3.2 Fair Exchange Protocol . 21

vi

3.2.1 Initial Phase . 21

3.2.2 Matching Phase . 23

3.2.3 Signature Renewal, Signature Revocation and Tree Update 28

3.2.4 Security Analysis . 29

3.2.5 A Failed Approach . 35

3.3 DDH Protocol . 37

3.3.1 Initial Phase . 38

3.3.2 Matchmaking Phase . 38

3.3.3 Security Analysis . 39

3.3.4 Cheaper DDH Protocol . 43

3.4 A Variant of the Fair Exchange Protocol . 43

3.4.1 Initial Phase . 45

3.4.2 Matchmaking Phase . 46

4 Implementation and Evaluation 50
4.1 Fair Exchange and DDH Protocols . 50

4.1.1 Development Environment . 50

4.1.2 Setup of the PIS Programs . 53

4.1.3 Setup of the Devices . 58

4.1.4 The Implemented Fair Exchange Protocol 59

4.1.5 The Implemented Fast Fair Exchange Protocol 60

4.1.6 The Implemented DDH Protocol . 61

4.1.7 Evaluation . 61

4.2 Implemented Shopping Notification Application 63

4.3 Simulation of the Security of Our Fair Exchange Protocol 65

4.4 Avoiding Manual Pairing of Bluetooth Devices 66

4.4.1 Implemented Solution and Experimental Results 72

5 Conclusion and Future Work 78

References 83

vii

List of Tables

3.1 Publishing Alice’s path does not decrease Bob’s Anonymity 34

3.2 Publishing Alice’s path does decrease Bob’s Anonymity 34

4.1 Execution time . 77

viii

List of Figures

1.1 Li et al.’s symmetric key based protocol . 7

2.1 System Architecture . 11

2.2 Flow Chart for First Encounter . 14

2.3 Flow Chart for Meet Again . 16

3.1 Fair Exchange Setup . 21

3.2 Signature-Based Authentication [25, p. 404] . 24

3.3 Fair Exchange protocol (Single Matching Criterion) 25

3.4 Fair Exchange protocol (Multiple Matching Criteria) 26

3.5 An Example of Multiple Matching Criteria . 27

3.6 Users with Multiple Version of Tree Structure 29

3.7 Tree . 31

3.8 Original DDH Protocol [1] . 37

3.9 Our DDH Protocol . 40

3.10 Cheaper DDH Protocol . 44

3.11 A Small Example of the Distribution of a Store’s Items 46

4.1 Time to Transfer Data . 52

4.2 Interface of Facebook Application . 53

4.3 Interaction Among a User, Facebook, and Our Application Server (Picture from
Facebook) . 54

4.4 Users Interact with PIS Server Through Our Facebook Application 54

ix

4.5 Steps in Figure 4.4 . 55

4.6 XML File . 56

4.7 Random Numbers . 57

4.8 DDH XML File . 58

4.9 Execution Time . 62

4.10 Modular Exponentiation Time . 62

4.11 Execution Time vs. The number of levels of the tree 63

4.12 Execution Time vs. the Number of Items the Store Owns 65

4.13 11-Level Tree . 66

4.14 16-Level Tree . 67

4.15 21-Level Tree . 67

4.16 The Second Solution . 69

4.17 The Third Solution . 70

4.18 The Naı̈ve Fourth Solution . 70

4.19 The Fourth Solution . 71

4.20 First Visit . 73

4.21 Further Visits (if necessary) . 73

4.22 Download a Message . 74

4.23 Upload a Message . 74

4.24 Upload Signatures . 74

4.25 Server Verifies the Signatures . 74

4.26 Query Matching Result . 74

4.27 Complete the Protocol . 75

x

Chapter 1

Introduction

1.1 Introduction

In the last decade, the number of users of two new services has boosted sharply. One service
is online social networking sites, such as Facebook, MySpace, and Flickr, which have gained
great success in the last few years. For example, statistics [15] show that Facebook has more
than 200 million active users, and more than 100 million users log on to Facebook at least once
per day. On average, each user has 120 friends on the site. These sites provide interfaces for
people to communicate with known friends or look for potential friends from the same school or
company. Mobile phone service is the other service that has grown so fast. A report [26] shows
that there were 4.1 billion mobile cellular subscribers in total in March 2009. These numbers are
still growing rapidly.

Mobile social networking integrates these two fast-growing services together. People walk
around with their mobile devices and meet different people, known and unknown ones, every day.
Mobile social networking applications take advantage of the mobility of the mobile devices and
design systems for users to meet potential friends with similar interests or some other criteria.
When two mobile devices are physically located close, they could start to exchange information
without human interaction. In social networking sites, other than communicating with existing
friends, people can find and make friends with other people with similar interests or from the
same school or company, etc. In mobile social networking, users find new friends as they do
at the social networking sites, but mobile social networking adds an extra matching criterion:
physical distance between two users. More specifically, matched friends can immediately meet
each other in person, since they are next to each other; while in social networking sites, this is not
guaranteed. For example, a mobile social networking user may find out that the person setting
next to her on the bus was her schoolmate, or her rigid boss likes the same comedy as she does.

1

Mobile social networking is currently a hot topic in the social networking area. There are nu-
merous applications developed for mobile social networking by different companies or research
groups, e.g., MobiClique [28], Loopt Mix [22], Gatsby [17], StreetSpark [6].

In general, there are two straightforward ways to implement mobile social networking appli-
cations.

1. One way is to broadcast a user’s profile information to the public. MobiClique [28] is an
example of the applications that take this approach. MobiClique users download their pro-
file information from Facebook and send this information to any Bluetooth device nearby.
After receiving a piece of profile information, a device performs a matching between the
received profile information and its own profile information and decides whether the other
party is of the owner’s interest according to the matching result. PodNet [29] is another
example that uses this approach, even though PodNet is not a typical mobile social net-
working application. PodNet is a project for mobile devices to share contents. It allows
mobile devices to provide new ad hoc broadcasting domains and broadcast content, such
as pictures, videos or voice information, to other devices within the radio range. This ap-
proach is quite risky because it leaks users’ private information, and as a result, it increases
the success rate of context-aware, targeted phishing attacks. Ideally, in our problem set-
ting, we want two users to learn only the personal information that they have in common,
because that is sufficient for them to establish friendship. For example, Alice is interested
in playing basketball and fishing, and Bob is interested in reading and playing basketball.
Both of them want to look for new friends who share any common interest. In this exam-
ple, they care only about what they have in common. It does not matter if the other person
likes fishing or boating besides playing basketball.

2. The other way is to introduce a trusted central server in the matchmaking process, and
rely on the central server to perform the matching. Loopt Mix [22], Gatsby [17], and
StreetSpark [6] are examples that use this approach. These applications work similarly. A
central server stores all users’ personal information. Users log into a central server, and
the central server tracks users’ location information. The server informs both users if any
two of them are nearby and could become friends based on both users’ requirements. This
approach has the limitation that it requires the central server to be always available in order
to find a friend. From a privacy point of view, the server learns all users’ personal infor-
mation, the pairs of users who meet each other, and maybe also the location information
of the users.

We discuss more related work in section 1.2. In this thesis, we propose an architecture for mobile
social networking. The architecture uses several matchmaking protocols that are different from
the previous two approaches. We design our architecture based on two principles.

2

1. Ensure privacy by making users reveal only the minimum amount of information to other
users or any trusted party in order to find new friends.

2. Not relying on any central server to perform matching. As a result, users do not need
Internet access to find friends, and the users do not need to be worried about being tracked
by the central server when using this architecture.

Here are the contributions of this thesis.

1. We present an architecture for mobile social networking. Namely, a mobile user can deploy
this architecture to look for friends who share the same interests with her. Our architecture
can also be used to find potential friends who graduated from the same school or worked
for the same company before. However, in this thesis, we use interest matching as an
example.

2. We propose two matchmaking protocols in this architecture for users to exchange informa-
tion. One protocol has much less computational overhead, but it leaks more information
than necessary under some circumstances. The other approach is more secure, but also
more expensive in terms of computation. Furthermore, we propose a faster version of the
first protocol. We analyze the security of the protocols and provide the flexibility for users
to select any protocol to trade off privacy and performance.

3. We implement these two protocols and evaluate their performance.

4. We discover a new application to which we could apply a variant of our first protocol. We
present the variant of our protocol for this application, implement it, and also evaluate the
performance.

5. During our implementation, we discover that a Bluetooth feature in some mobile devices
may become a barrier when applying our architecture. We provide a number of solutions,
implement one of the solutions, and again evaluate the performance.

The rest of the thesis is organized as follows: We define the system architecture in section
2.1. In section 2.2, we describe how our system would be used under different scenarios. Section
2.3 presents the threats or attacks our system deals with or does not. We introduce our simple
matchmaking protocol in section 3.2. We also analyze the security of this approach. To mitigate
some of the weaknesses of this protocol, we propose some methods in section 3.3, including
the DDH approach, which is a more complicated approach. A variant of our matchmaking
protocol can be used for another application. Namely, we propose a protocol for a shopping
notification application in section 3.4. We provide implementation details and an evaluation of
our matchmaking protocols in section 4.1. During our implementation, we find some limitations

3

of Bluetooth communication. We provide several solutions for the problems in section 4.4. We
list a number of research directions and conclude our thesis in section 5.

1.2 Related Work

1.2.1 Mobile Social Networking Applications

Research has been done in the mobile social networking field. Social serendipity [12] deploys
a central server, which contains users’ profiles and user-defined matchmaking preferences. The
central server computes the similarity of users’ profile information based on the profile informa-
tion itself and matchmaking preferences. Users will be notified when they are nearby and the
similarity of their profiles exceeds a threshold. Obviously, the central server has to be involved
in every matchmaking process, which is a huge limitation of this system. In addition, the central
server is able to learn which two users are nearby and become friends. Furthermore, the central
server may be able to track a user’s exact location. MobiClique [28] improves social serendip-
ity by taking the central server away from the matchmaking process, although this system still
requires a central server, Facebook, to assign identifiers to the users. MobiClique allows users
to store their profile information on their mobile devices and exchange their profiles with their
neighbours. New friendships are established based on the received user profiles. This system
does not take malicious users into account. For example, users’ profile information is exchanged
in plaintext, which could be intercepted by anybody within range, and this information could be
used for malicious purposes, such as context-aware attacks. Also, users could be impersonated,
because the system does not have a method to validate identifiers. More importantly, their system
reveals more information than necessary. Our approaches take malicious users into account, and
we use signed identifiers from a legitimate agency to identify users. We try to let other users
learn as little unnecessary information as possible.

SmokeScreen [7] looks at two different social networking problems. One is to hide a user’s
identifier among a group of friends. The other is “missed connections”, the problem that users
met before and they want to talk to each other again at a later time. In the “missed connec-
tions” problem, users convince each other that they were at the same location at the same time.
SmokeScreen prevents users from revealing their real identifiers to undesired people. When
users meet, they exchange opaque identifiers rather than their real identifiers. They record the
time and position when they receive the opaque identifiers and then contact each other at a later
time through a trusted third party, a broker, which is able to read the opaque identifiers. Again,
this approach requests a trusted central server for every matchmaking process. Also, because no
information is shared by the participants before their identifiers are exchanged, there is no incen-
tive for the participants to exchange their real identifiers (they know nothing else about the other

4

party). In SmokeScreen, the broker knows who is interested in solving whose opaque identifier.
SMILE [23] is an advanced version of SmokeScreen, and they further guarantee that the central
server is not able to know which pairs of users encounter each other. Again, they require the
central server to participate in each matchmaking process. They still do not take personal infor-
mation, such as personal interests into account, but only location and time. Our scheme allows
users to establish friendship as soon as they meet each other without requiring any third party to
exist, and we have more matching criteria.

Social Net [34] is a system that detects the same activity pattern (e.g., the time slot a user
goes to gym) between two users and then checks if these two users have a common friend. If
they do, the system informs their friend to introduce these two users to each other. Their system
matches two people depending on their activity patterns, and it also requires the two users to
have a common friend, while our system matches two people depending on various personal
information. In other words, we look at different types of matchmaking criteria. In addition,
their approach requires a third user (the friend that both users have in common) to be physically
present in order for those two users to be matched.

1.2.2 Matchmaking Protocols

The privacy-enhanced feature requests our system to run one or more kinds of matchmaking or
private intersection protocols. Shin and Gligor [32] introduce a privacy-enhanced matchmaking
protocol. This protocol is designed for wish matches. It is based on a PAKE (password-based
authenticated key exchange) protocol, but it replaces users’ real identifiers with pseudonyms, and
after a session key based on their shared secret (they regard users’ wishes as low-entropy secrets)
is exchanged, each party encrypts all messages transferred during the execution (her real identity,
public key, and the certificate for her public key) using the session key. Note that they ignore
the wish credentials to simplify their paper. They have not explicitly defined the term “wish
credentials”; however according to the context we believe wish credentials are certified wishes
issued by a trusted server. Each party computes a digital signature of the messages. Then, they
exchange the messages and signatures. They accept the other party as a matching partner only
if the information that they receive can be verified. They also introduce a credential revocation
method to forbid adversaries from executing the protocol after they are detected. In order to
have this revocation method work, they suggest to have the matchmaker assign pseudonyms to
participants before each protocol execution. Similar to their approach, we also have a third party
assign user ids to the users, but we require users to use consistent user ids. Namely, a user
uses only one id in all matchmaking processes. In addition, we require users to use certified
interests to prevent malicious users from detecting other users’ interests by including all possible
elements. A third party server creates signatures for users including their user ids and personal
information. We use time stamps in the signatures for user id revocation. We revoke user ids

5

by not issuing them new signatures with updated time stamps. One reason not to adopt their
approach is that using pseudonyms makes it impossible for users to recognize each other after
their first meeting. For example, the same two users might run the protocol repeatedly.

Camenisch and Zaverucha [3] propose a protocol for the private intersection problem. Sup-
pose that there are two users, A and B. Each of them has a set, called SA and SB, respectively.
Both user A and user B learn only the intersection of SA and SB, and nothing else. Camenisch
and Zaverucha improve the previous works by taking certified inputs, so that an attacker cannot
explore a user’s set by including all possible elements. They use CL-signatures [2] to sign set
elements. The computational overhead of their protocol is high. They use an advanced crypto-
graphic approach to allow users to perform private intersection and also provide untraceability.
More specifically, a person exchanges different processed information with the other party, and
she is able to prove to the other party that she processed her information correctly. As a result,
she appears as a different person each time running this protocol. It requires a large number of
modular exponentiation operations. They require O(k2) (k is the size of an input set) modular ex-
ponentiations. Our experiments show that the mobile devices we use are slow when performing
modular exponentiations. More data are presented in section 4.1. Our system does not require
untraceability. In contrast, we want users to recognize each other when they meet again. Since
they are physically close, if they cannot recognize each other, they are going to run the protocol
over and over again.

De Cristofaro and Tsudik [8] propose several protocols that are simpler than Camenisch and
Zaverucha’s approach. They require only at most a linear number of exponentiations. Assume
that the size of the client set is kc and the size of the server set is ks. The APSI protocol requires
O(kc) exponentiations for the client and O(kc +ks) exponentiations for the server. The more effi-
cient PSI protocol does not require any exponentiation from the client and O(kc) exponentiations
for the server. However, their protocols cannot verify if a user actually owns a certain certificate.
Namely, a user could “borrow” or “steal” other users’ certificates and pretend that the certificates
are signed for her. After studying their protocols, we did not find a way to add this feature to
their protocols.

Agrawal et al. [1] propose a protocol using a commutative encryption function for private
intersection problems. A commutative encryption function has the property: Ek1(Ek2(P)) =
Ek2(Ek1(P)). Either user only learns that P = P′, when Ek1(Ek2(P)) = Ek2(Ek1(P′)), but neither
of them could learn the other party’s information outside of the intersection because of lacking
necessary key information. This paper suggests the power function, fe(x) = xe mod p, as an
example of a commutative function. The security of their protocol is based on the Decisional
Diffie-Hellman hypothesis (DDH). We improve and implement this approach as one of our ap-
proaches. Its computational overhead is not as bad as Camenisch and Zaverucha’s approach. If
we assume that the size of each user’s set is k, this protocol requires k modular exponentiations
for each user, and it is possible to add the features that we require to this protocol. More details

6

Alice’s input: a
Bob’s input: B = {b1,b2,,bt}

1. Alice randomly chooses R = {r1,r2, ...,rt}

2. Bob randomly chooses S = {s1,s2, ...,st}

3. Alice
a⊕R={a⊕r1,a⊕r2,...,a⊕rt}−−−−−−−−−−−−−−−−−−−→ Bob

4. Bob computes P = a⊕R⊕S = {a⊕rp(1)⊕sp(1),a⊕rp(2)⊕sp(2), ...,a⊕rp(t)⊕
sp(t)}

5. Alice
P,B⊕S
←−−− Bob

6. Alice computes B⊕S⊕R = {b1⊕ s1⊕ r1,b2⊕ s2⊕ r2,,bt⊕ st⊕ rt}.

7. Alice computes B⊕S⊕R ∩ P

Figure 1.1: Li et al.’s symmetric key based protocol

of this work are provided in section 3.3.

Some papers state that they could solve the private intersection problem by using simple
symmetric key approaches; however, we have found some flaws in these papers. Li et al. [33]
propose to use XOR as the symmetric commutative function, which sharply reduces the com-
putational overhead. In their scheme, they want to find out if an element a from Alice is in the
set B from Bob. The protocol is shown in Figure 1.1. In step 1 and 2, both users randomly
choose a set of random nonces (assuming that Alice knows the size of Bob’s set). In step 4,
Bob does a permutation on a⊕R⊕ S. We denote the set after the permutation P. If there is a
non-empty intersection between B⊕ S⊕R and P, a ∈ B. However, Alice could easily explore
Bob’s whole set in this scheme. Suppose that Alice knows the superset of B, U , then for each
element e ∈U , it is trivial to find r′i such that e⊕ r′i = a⊕ ri. For example, in our problem setting,
attackers could collect the names of people’s interests. When Alice receives the two sets from
Bob in step 5, instead of computing {b1⊕s1⊕r1,b2⊕s2⊕r2,,bt⊕st⊕rt}, she could compute
B⊕S⊕R′ = {b1⊕ s1⊕ r′1,b2⊕ s2⊕ r′2,,bt ⊕ st ⊕ r′t}. If there is a non-empty intersection be-
tween B⊕S⊕R′ and P, e ∈ B. In fact, any commutative encryption function for which attackers
can easily find k′ for a given k such that Ek′(P′) = Ek(P) is improper for our problem setting. (P
and P′ are from a set that is generated by a trusted third party, so the values are out of the control
of the attackers.)

7

Mascetti et al. [24] mention that the above protocol could be applied to their system. This
paper actually acts as a counter-example for deploying this protocol. It would be insecure to do
that. They propose the Hide & Crypt protocol to check if two users are located close to each
other in a secure way. Let us call the users Alice and Bob. Alice is the initiator of the protocol.
Alice’s inputs are indices associated with the neighbourhood of her precise location, and Bob’s
input is the index associated with his precise location. In the paper, the authors mention that they
could use Li et al.’s approach to find out if Bob’s index is in the indices of Alice’s set. If it is,
then Alice and Bob are nearby. Because the indices are publicly known, no matter what Alice’s
input is, she is able to find out Bob’s precise location. It is also helpful to realize that even if they
used a really secure set-inclusion protocol in their scheme, their Hide & Crypt protocol would
still be insecure. The reason is that in their scheme, in order for Alice to hide the cardinality of
her set, she is allowed to add dummy indices to her set. This indicates that there is no way for
Bob to validate Alice’s inputs (there is no way to check if Alice is actually around the place as
she claims). Alice, however, could include all possible indices associated with her guesses about
Bob’s location. It takes more computational effort for Alice to figure out Bob’s location than
using an insecure set-inclusion protocol, but the scheme itself is vulnerable.

Freedman and Nicolosi [16] state that they adopt a symmetric key encryption-based private
intersection scheme for a friend-of-friend problem. For example, if a sender S sends an email
to a recipient R, and R and S have a friend in common, then they have the friend-of-friend rela-
tionship. They claim that their scheme prevents R from learning information about S’s friends
outside of the intersection of their friends. Actually, their scheme fails to achieve this goal.
Essentially, their scheme works in this way: R trusts a group of users, X. S is trusted by a
group of users, Y. R chooses a secure seed SR, and she computes FSR(“arc”,R,X) (F is a cryp-
tographic pseudo-random function) and σX→R = signR′s private key(H(X),H(R), time stamp). She
sends these to each X she trusts. In return, each X sends her secure seed to R. Also each Y
who trusts S computes FSY (“arc”,Y,S), and signY ′s private key(H(S),H(Y), time stamp). Y sends
these to S. In return, S sends her secure seed to Y. When S sends email to R, she generates an
encryption key based on FSY (“arc”,Y,S), and encrypts σX→R using the encryption key. When
R receives information, she checks if she has the right decryption key to decrypt the encrypted
F . If she does, then she shares a friend with S. A simple attack could break this system. Let us
assume that Eve registers a new email address, and she trusts everybody in the system. Accord-
ing to the algorithm, Eve receives the secure seeds from all other users. In other words, Eve is
able to collect all secure seeds from other users in this system, and by applying the secure seeds
to her regular email, she is able to detect all friends of any sender. It can be argued that a user
should send her secure seed back only to users who she trusts. There are two problems with this
argument. Firstly, the paper explicitly mentions that R receives the secure seeds from X after she
sends FSR(“arc”,R,X) and σX→R to them, and secondly, this affects the scalability of this system.

In short, there are problems with the symmetric key based private intersection approaches

8

even though they are cheap in terms of computation. We propose a simple protocol that tries to
mitigate the security problems brought by the symmetric key based private intersection protocols.
Our simple protocol is a little more expensive than Li et al.’s protocol, while it still requires much
less computation power than asymmetric key based private intersection approaches.

We have seen that the existing mobile social networking approaches either require a central
third party in each matchmaking process or do not consider protecting users’ personal informa-
tion. Our system needs only third parties in its setup phase and does not need them in each
matchmaking process, because a central third party is not always reachable. Also, our system
deploys two private intersection protocols, which help users to protect their privacy. Our system
also provides users the flexibility to trade off privacy and cost. According to our analysis in
section 3.2.4, our simple protocol still leaks unnecessary information under some circumstances.
Our asymmetric key based protocol provides users more protection, but at more cost. The asym-
metric key based protocol is for users who care more about their privacy than the execution time
or battery life. Users have the flexibility to run either protocol, and they can make decisions
based on their devices’ statuses, such as the battery life.

9

Chapter 2

Architecture and Threat Model

In this chapter, we introduce the components of our architecture. We also describe what will
happen when two users meet. Finally, we present a threat model for our architecture.

2.1 System Architecture

The architecture for our system for Mobile Social Networking consists of six modules: Profile
Module, Config Module, Matchmaking Module, Schedule Module, Group Module, and File
Sharing Module. Figure 2.1 shows an overview of our system and how information flows. Each
user runs these modules on her mobile device.

The Profile Module stores the user’s personal information, including the user id (more infor-
mation in section 3.1.1) and matchmaking information, such as interests. Each field except the
default contact information in this module is optional; users are not forced to fill any of these
fields. To view or edit any information in this module, users have to provide pre-defined pass-
words. However, a user has to provide a piece of default contact information, such as her email
address, phone number or profile picture.

The Config Module sets the information users want to use for looking for new friends. The
module reads interests from the Profile Module. Only activated interests are going to be sent out
to nearby users for matching. By default, none of the interests is activated. This means that a
user is not looking for a friend. Users can activate or deactivate each interest manually or load
them from the Schedule Module (more details are in Schedule Module). The Config Module
also has system status, ways to communicate, and the types of matchmaking protocols. Users
can set the system status to be online/offline to start the online/offline protocol. To run the online
protocol, the user has to provide a profile picture of herself or her cell phone number depending

10

Figure 2.1: System Architecture

11

on the way how they set to communicate with other users. To run the offline protocol, the user
has to provide her email address (as the default contact information). A confirmation field allows
users to set if they want to automatically add a potential friend to their friend lists. Two users
become potential friends as soon as they find that they have at least one common interest, but
they will be friends only if they add each other to their friend lists. If the confirmation field is
set to “YES”, the user will be notified every time when a potential friend is found. Then, she
can decide whether to add the potential friend to her friend list. Otherwise, a potential friend
is going to be automatically added to the user’s friend list. After the Config Module is set, the
information is passed to the Matchmaking Module, and the Matchmaking Module is able to start
looking for new friends. Users have the option to choose one of our matchmaking protocols (we
will present the protocols in the next chapter) that they want to run in this module.

The Schedule Module allows users to set during which time slot they want to send which
interest to other users. Users need to turn on the Schedule Module to have it work. In this module,
users could save different combinations of their interests, and give names to the combinations.
They set the starting time and ending time for a self-defined time slot and input the name of a
combination, so that in this time slot, only the interests in the combination would be sent. If
a time period does not exist and the Schedule Module is on, the device automatically turns the
system off. This module provides the flexibility for the users to improve the system performance.
For example, if Alice is a graduate student in the security and privacy group of the computer
science department, it does not make any sense for her to look for people interested in security
and privacy while she is meeting her group-mates. Also, for example, if Alice likes playing
basketball, and she brings her mobile phone to the basketball court in her university, then it
is unnecessary for her to look for friends who like basketball at that time. Users can turn the
schedule module off. Users can also schedule the time to switch this module off or on.

The Matchmaking Module is responsible for exchanging information with other users. In
this thesis, we focus on the design, implementation, and evaluation of this module. Ideally, we
want to guarantee that two devices learn only the common interests between them. If there is a
non-empty intersection, they consider each other to be a potential friend. Other than the interests
they have in common, nothing else should be revealed. If both participants are running an online
protocol, then both of them will be notified immediately after a new potential friend is found. A
user could add the new friend to a group using the Group Module, which is introduced in the next
paragraph. For example, if their common interest is playing chess, then she can add this friend
to the chess group using the Group Module (more about this module in the next paragraph). If
at least one of the participants uses the offline protocol, the Matchmaking Module records the
default contact information of the new potential friend and the time of the interaction, so that they
could get in touch at a later time. In this case, both users run the offline protocol, and nobody
will be notified. The Matchmaking Module also keeps a log of any participants on when and
who it talked to.

12

The Group Module provides an interface for users to (re-)group their contacts. A database
is created to store the relationship between groups and contacts in the device. The File Sharing
Module creates a folder for a group. Users can put data into the folders to share with different
friends. When two users meet, they authenticate each other first. We will see how devices
authenticate each other in section 3.2.2. Then, the system knows which groups the other party
belongs to and then grants the other party accesses to the proper information. There is also an
un-contacted group for the new friends found in the offline protocol. A user is allowed to create
a public folder to share information to everyone.

2.2 Scenarios

The architecture could be applied in settings where people do not move far from each other in a
short period of time. For example, a user could use this architecture for mobile social networking
purposes in a bar, bus, train, restaurant, or gym. The reason why we need such settings is that
usually it takes time for a Bluetooth device to discover other Bluetooth devices and then exchange
information. Usually, it takes about 10 seconds to finish scanning for nearby Bluetooth devices.
We provide the execution time of our matchmaking protocols in section 4.1.7.

2.2.1 First Encounter

When two users encounter each other and their devices get connected to each other, their devices
first authenticate each other and then check if they have met before. This is done by checking
if the other user’s user id exists in the database. We say that two users meet for the first time if
their devices cannot find each other’s user id in their databases. They then run the matchmaking
protocol. If they cannot find at least one common interest, they store the time they meet and each
other’s user id in their local databases as an unmatched stranger. If they successfully find one
or more common interests, we say that each user finds a new potential friend. Now, depending
on their config settings, they choose to contact online or offline. For the offline protocol, users
are not notified. The devices automatically exchange their default contact information and their
public key for the next meeting, and the other party’s name is kept as a potential friend in the
local database of each device, until the owner of each device manually sets the name as a friend
later. We can assume that the name of each user/device is globally unique. We are going to
discuss how a name of a user/device is created in section 3.1.1. For the online protocol, users
could require the other party’s profile picture or cell phone number (ways of communication)
in order to establish friendship. If a user requires a picture or cell phone number from another
user, she automatically agrees to send other users her picture or cell phone number. If a user
does not set this information, she would be notified once other users send her the requests. If one

13

Figure 2.2: Flow Chart for First Encounter

14

party does not want to provide such information, they will not establish friendship, but they will
exchange a public key for the next meeting. In this case, the application records each other’s user
id in local databases, marks them as a potential friend, and stores their public key. If neither user
sets to exchange the profile picture or cell phone number, then they are treated as running the
offline protocol. Again, users could report to a trusted third party if they find out that somebody
sent them fake information (e.g., some people may use other people’s pictures as their profile
pictures). As a result, failure to provide valid information could cause suspension of service.
Ideally, a trusted third party should sign the contact information and/or profile pictures for the
users. After the contact information or pictures is exchanged under an online protocol, the system
checks if a user wants to manually add a friend (notification field). If a user sets to not manually
add new friends in the Config Module, the application automatically adds the other party’s user
id into the database of her device as a new friend. Otherwise, the application adds the other party
as a new potential friend and notifies the user. The user will decide if she wants to change it to
a friend. It also records the public key for future contact. Users can also group their new friends
using the Group Module. The flow chart for what happens when two users meet for the first time
is shown in Figure 2.2.

2.2.2 Meet Again

If the other party’s user id exists in a user’s local database, it means that they have met before.
If the user id exists as a friend, the user will be notified that there is an existing friend nearby,
and the devices are not going to run a matchmaking protocol again. If the user id exists as a
potential friend, the devices are going to check if the owner wants to add the other party to
be a friend this time. If the user id exists as an unmatched stranger, it means that they do not
share any common interest. In this case, the devices check if there is an update of their interests
since their last meeting. This could be done by requiring users to record the updates (both the
changes of their interests and the time when the changes are made) of their own interests (Note
that the Matchmaking Module also records the time when two users meet each other). Then,
they inform each other whether there is any update. If there is no update, they simply do not
exchange any other information. Otherwise, they run the matchmaking protocol again using the
new information. Since there could be many unmatched strangers, our device will keep only
the most frequently encounted user ids among the most recent encounters. For those who we
meet once in a while, it does not hurt to run the matchmaking protocol again, if their user ids
are erased from the database (because of the limited size of the device’s memory). Users run the
matchmaking protocol only when their user ids do not exist in anyone’s database. The flow chart
for what happens when two users meet again is shown in Figure 2.3.

15

Figure 2.3: Flow Chart for Meet Again

16

2.3 Threat Model

In our architecture, we provide various protocols and handle various threats. In general, all of
our protocols prevent attackers from

1. Getting users’ interests without getting caught for cheating unless they actually own the
same interests. We provide a detailed analysis later in the thesis to prove this statement.

2. Exploring users’ interests by including all possible or a large number of popular elements
in their interest set (brute force attack). We allow users to create only a limited number
of interests. This is reasonable because a normal user should not have too many interests.
Otherwise, people do not have time to deal with all of them. We eliminate the brute force
attack by adding signatures to the matchmaking protocol. A third party server assigns
signatures to only a limited number of interests for each user.

3. Impersonating other users. We ask each user to create a pair of asymmetric keys and use
the hash value of the public key as her user id. The third party server will include a user’s
user id in a signed certificate. After two users meet each other, they first exchange their
public keys, and they then negotiate a secret using each other’s public key. They can derive
a session key using this secret. This authenticates the partner of the protocol.

4. Eavesdropping the communication between any two users. Sensitive information is en-
crypted by the session key that two users established.

These are some threats we do not consider in our system and some assumptions that we make.

1. Users keep their private keys safe, so that malicious users could not steal their private keys
to impersonate them.

2. The third party server is not compromised by attackers.

3. In our first protocol, we assume that most users are rational and they are honest but curious.
This means that most users are not going to reveal information if it brings them negative
effects.

4. Users trust that their matched friends will not disclose their matched information.

5. Users are going to finish running the protocols once they start.

17

6. We do not consider tracking attacks. In our architecture, we require users to use consistent
user ids. This allows friends to recognize each other, and this makes tracking attacks
possible. However, our communication is based on Bluetooth, which is a short-range
communication technique. The attackers can track the users only when they are nearby. In
other words, this requires the attackers to physically follow the users. A user is vulnerable
to this kind of attack, no matter whether she is using our architecture or not. Even if we
allow users to use different user ids, they will be still traceable. More details are provided
in section 3.2.5.

7. For tampering attacks, we cannot distinguish between the user sending invalid data or a
man in the middle tampering with the traffic. For example, in the case that a signature
from Alice cannot be verified by Bob, Bob should report Alice to our PIS server (we will
introduce this server in section 3.1.2). However, this does not necessarily mean that Alice
sent invalid data; our PIS server assumes that Alice is malicious only if there are enough
users who report Alice for the same problem.

18

Chapter 3

Matchmaking Protocols

In this chapter we introduce two matchmaking protocols for our architecture. For each protocol,
we analyze the security properties.

The Matchmaking Module deploys these two matchmaking protocols. Its goal is to find
potential friends for users, while preserving users’ interests from unnecessary leaks. The users
with non-empty intersection of their interests are considered to be potential friends.

3.1 Setup

3.1.1 Id Signer

An id signer is used to assign an identifier and a certificate of the identifier to each user. It is a
trusted third party; however, this party learns only about identity information and nothing else.
We need this trusted third party because there is no other trivial way to identify and authenticate
a user. A user’s id should be globally unique, and each user should be assigned only one id. The
Bluetooth address could be used as an identifier for each Bluetooth device because it is free and
globally unique. However, it is proven that the Bluetooth address can be modified [18]. IMEI
is an identifier for a mobile phone. Theoretically, IMEI can be used as a user’s id, but so far,
we have not found any literature using IMEI in such a way. One possible reason is that it is
not easy for a mobile device to validate a received IMEI. This could be addressed if the telecom
companies issued IMEI certificates to their customers. If that is the case, the telecom companies
are our id signers.

In short, we need an id signer to verify users’ personal information and issue one user id and
one certificate of the user id for one user. For example, a trusted certificate authority or CA (e.g.,

19

VeriSign) can act as an id signer. A CA issues a digital id for a user, including a public key, name
and email address, name of the CA, serial number of the digital id, digital signature of the CA,
and so on. Usually, it costs money to register a digital id, but people could use the digital id for
other applications, such as secure email. In general, the CAs do not guarantee that they assign
only one user id for each person/device, but this can be done if they co-operate with us. The
CAs usually have detailed information about their customers (sufficient to identify a person).
For example, if a customer requests a user id and the certificate for our system (a CA can just
include any special label in a normal certificate to distinguish the certificates for our system from
the normal ones), the CAs can check the history of this customer and refuse to issue a new user
id for her if she already has one.

3.1.2 Personal Info Signer

When two users communicate with each other, they should show that they are actually using their
“real” information. Since there is no way to guarantee that users use their “real” information,
we limit the number of interests every user could use. By doing this, we prevent a user from
detecting other users’ information by including all possible interests. The personal info signer
(PIS) is responsible for signing users’ interests, so that a user could prove to other users that she
is not using any random information, but certified information. A user should trust another user’s
information only if it is signed by the PIS.

The PIS provides a web page for users to create and/or look up the names of their interests.
Before a user asks the PIS to sign her matchmaking information, she first looks up the web page
to see if her interests already exist. For the interests that already exist, she just re-uses the existing
ones. For the non-existing interests, she creates her own interest names on the page, and the PIS
assigns an id for each interest. The ways how the PIS creates interest ids are different based on
the matchmaking protocol that the users want to run. The reason why we request users to look up
their interest information online is to standardize users’ inputs, since it is harder to find a match
when inputs are made in different people’s preferred fashions (different wording, shorthand). For
example, users may use the term “ping pong” or “table tennis” as the name of the same kind of
sport. A user submits her valid identifier, which she gets from the id signer, and the names of her
interests, which she gets from the web page, to the PIS. The PIS creates corresponding interest
ids and signatures and then sends them back to the user.

The content to be signed is different depending on the matchmaking protocol users adopt.
Generally speaking, the content to be signed includes a user’s id, an interest id, and a time stamp
(time stamps are used for revoking the users’ signatures that are signed by the PIS). Failure
to provide valid signatures or the signed content to other users results in no responses. The
PIS keeps a database of users’ identifiers and their interests and tracks the changes in users’
interests. If a user frequently changes her interests, it is most likely that she does not use her real

20

Figure 3.1: Fair Exchange Setup

information, and she just wants to explore other people’s interests. To discourage this kind of
behaviour, the PIS is going to give a warning to the user at the first time. If it happens again, the
PIS is going to not renew signatures for this user, and as a result, the user is not able to run the
matchmaking protocol with other users anymore.

3.2 Fair Exchange Protocol

The basic idea of the fair exchange protocol is for two users to exchange information step by
step, and in each step they reveal only a limited amount of information to each other. The fair
exchange protocol has two phases: the initial phase and the matchmaking phase.

3.2.1 Initial Phase

The initial phase takes two steps. The flow chart of the initial phase is shown in Figure 3.1.

The first step takes place between the id signer and a user (e.g., Alice). Alice sends her
personal information to the id signer. Alice also generates a pair of RSA keys and sends the

21

public key to the id signer. The id signer identifies, authenticates, and issues a certificate (e.g., a
digital id) to Alice. The certificate includes Alice’s RSA public key and Alice’s user id (a user
uses the hash value of her RSA public key as her user id in this protocol). The id signer should
issue exactly one certificate and one user id to one user.

The second step takes place between the PIS and a user (e.g., Alice). The PIS builds a binary
tree. The number of leaf nodes of the tree is an integer exponent of base 2. The number of nodes
is larger than the number of existing interests. The PIS assigns one interest to one leaf node. This
tree is secret, so if Alice does not collude with any other user, she only knows the positions of the
leaf nodes of the interests she has. Alice looks up the names of her interests or creates names for
her interests as described in section 3.1.2. Alice submits the names of her interests and her user
id, along with the certificate issued by the id signer to the PIS. The PIS verifies the certificate
and makes sure that Alice did not misbehave before (based on other users’ complaints). Here
let’s assume that Alice is an honest user, and no other users complained about her. Then, the PIS
locates the interests in the tree and gets the paths from the root to the corresponding leaf nodes.
Each interest can be identified by the path from the root to its leaf node. A path consists of
several subpaths. Each subpath is either left or right to indicate the left or right branch an interest
takes from one level to the next level. Let us denote the path of a user Alice to her interest Y
PA Y , and the subpath of Alice’s interest Y from level i-1 to level i PA Y i. For a path in an L level
tree, there are L−1 subpaths. The idea of the fair exchange protocol is to exchange the subpaths
of interests level by level from the top to the bottom of the tree. A user assembles the subpaths
she receives from the other party and checks if the subpaths down to the current level of each of
her interests match any of the ones she received. The user stops sending the remaining subpaths
of an interest to the other user when she fails to find a match for that interest.

Here is a scheme to guarantee that the users are using their actual subpath information. For
each user, the PIS generates a random number with fixed length for each subpath of each interest
(we denote the random number for PA Y i RA Y i). The purpose of using random numbers is for
commitment. Then, the PIS creates a signature for Alice’s interest Y in the following fashion (we
use h() to denote a cryptographic hash function, and we use s(AY) or signPIS pri key(A ID‖c) to
stand for computing a signature using the PIS’s private key on the content c for Alice): s(AY) =
signPIS pri key

(
A ID‖h(PA Y 1‖RA Y 1)‖...‖h

(
PA Y (L−1)‖RA Y (L−1)

))
. 1 The PIS also computes

the h(PA Y i‖RA Y i) ∀ i ∈ (0,L). The PIS sends the subpaths, the signature, the random numbers,
and the hash values (h(PA Y 1‖RA Y 1),...,h(PA Y (L−1)‖RA Y (L−1))) back to Alice.

1An alternative is to use HMACR(P) instead of h(P‖R)

22

3.2.2 Matching Phase

Let us use the single matching criterion example to demonstrate how matchmaking works. First,
two users run a signature-based authentication protocol [25, p. 404] to identify and authenticate
each other. The protocol is shown in Figure 3.2. In step 1, Alice sends a fixed-length random
number, RA, and her user id to Bob. Then, Bob also generates a fixed-length random number,
RB and creates a signature, signB pri key(RA‖RB‖A ID). In step 2, Bob sends his public key, RB,
Alice’s user id and the signature to Alice. After step 2, Alice verifies signB pri key(RA‖RB‖A ID)
using Bob’s public key, and computes B ID = h(B pub key) to guarantee that Bob’s user id is
the hash value of Bob’s public key. Then, Alice creates a signature, signA pri key(RB‖RA‖B ID).
In step 3, Alice sends her public key, Bob’s user id and the signature to Bob. After step 3,
Bob is going to verify signA pri key(RB‖RA‖B ID) using Alice’s public key, and checks if A ID =
h(A pub key). They accept each other’s user ids only if they can verify the signatures and the user
ids are the hash values of their public keys. Then, the users run the fair exchange protocol shown
in Figure 3.3. In the first two steps, each user sends the signature of his/her interest and the hash
values issued by the PIS to the other party. Each user verifies that the signature he/she received
is computed from the hash values and user id of the other party. If the signatures are invalid, they
abort and the party who aborts the protocol reports the malicious behaviour by the other party to
the PIS. Otherwise, they continue. In the rest of the protocol, after each user received information
from the other party in each step, he/she first checks whether the interest has the same subpath
information at the current level or not. Then, the users verify if h(PX Y i‖RX Y i) for subpath i of
interest Y of user X (Alice or Bob) equals the corresponding hash value they received in step 1
or 2. Generally speaking, if they have different subpath information or the hash value cannot be
verified, they abort. In the latter case, the party who aborts should also report the other party’s
malicious behaviour to the PIS. Otherwise, they continue and exchange the subpath of the next
level. In fact, Alice and Bob behave a little differently. Alice aborts as soon as she finds out that
Bob’s subpath does not match hers. However, Bob should still send the subpath of the current
level to Alice even though his subpath of the current level is different from that of Alice’s. This is
designed for the fairness of this protocol and ensures that Alice and Bob learn the same amount
of information.

Figure 3.4 is a multiple matching criteria example. Let us assume that Alice has m interests,
and Bob has n interests. For each of a user’s interests, the user has one path. As a result, Alice
and Bob are going to learn the number of each other’s interests. After step 2, at each step, Alice
sends the subpaths of a level of her interests that from her point of view Bob could also have.
In step 3, Alice sends all subpaths of the first level of her interests to Bob. After step 3, Alice
does a matching between the subpaths she has and the ones she received from Bob, and only
sends certain subpaths of the current level of her interests to Bob. These subpaths belong to the
interests that are the same as Bob’s subpaths down to the previous level. Bob responds to Alice
with the subpaths of all his interests that they have in common down to the previous level. After

23

Ri: A fixed length random number generated by user i
Alice’s inputs: RA, A ID, A pub key, and A pri key
Bob’s inputs: RB, B ID, B pub key, and B pri key

1. Alice
RA‖A ID
−−−−−→ Bob

2. Alice
B pub key‖RB‖A ID‖signB pri key(RA‖RB‖A ID)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Bob

3. Alice
A pub key‖B ID‖signA pri key(RB‖RA‖B ID)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

Figure 3.2: Signature-Based Authentication [25, p. 404]

that Bob does a matching between Alice’s subpaths and the ones he has to find out what they
have in common down to the current level. Later, we will illustrate how to decide which subpaths
should be sent to the other party. After Bob performs the ith comparison, Bob has ni interests
that share the same subpaths down to the current level with those of Alice. After Alice performs
the ith comparison, Alice has mi interests that share the same subpaths down to the current level
with those of Bob. Again, the users should perform the signature-based authentication before
they run this matchmaking protocol. Similar to the previous example, in the first two steps, users
exchange the signatures of their interests and the hash values. They verify if the signatures are
computed from the hash values and the user id of the other party. They continue executing the
protocol only if the signatures are valid. In the rest of the protocol, each user sends the subpath
information of a certain level of her interests to the other party. Each user also keeps a log of
the current received subpaths for each interest. This log is used to reconstruct the other party’s
paths. After a user receives new information from the other party, she assembles the currently
received subpaths into the log. Note that for each interest she has, she checks whether any of her
interests has the same subpath information down to the current level as the received ones. Then,
she verifies if h(PX Y i‖RX Y i) for subpath i of interest Y that user X (Alice or Bob) has equals
the corresponding hash value she received in step 1 or 2. A user stops sending the other party the
interest whose subpaths do not match any of the received ones. An example is provided to help
explain this in the next paragraph. They continue and exchange the subpath information of the
remaining interests that do match. If any hash value cannot be verified, they abort.

Figure 3.5 shows an example of how users log received subpaths and how users decide which
subpaths they are going to send. We remove the random number, signature, and hash values from
the example for the sake of simplicity. In step 1, Alice sends the subpaths of the first level of
her interests to Bob. Bob logs Alice’s subpaths. Bob responds to Alice with all his subpaths.
Then, he checks his interests and finds that Alice does not have his interest 1 because neither
subpath from Alice’s interests starts with “r”. In the remaining steps, Bob will not send Alice

24

Alice’s inputs: Interest I, RA I i∀i ∈ (0,L), h(PA I i‖RA I i)∀i ∈ (0,L), s(AI)=
signPIS pri key(A ID‖h(PA I 1‖RA I 1)‖...‖h(PA I (L−1)‖RA I (L−1))), PA I i∀i ∈ (0,L),
A ID, B ID
Bob’s inputs: Interest I′, RB I′ i∀i ∈ (0,L), h(PB I′ i‖RB I′ i)∀i ∈ (0,L), s(BI′)=
signPIS pri key(B ID‖h(PB I′ 1‖RB I′ 1)‖...‖h(PB I′ (L−1)‖RB I′ (L−1))), PB I′ i∀i ∈
(0,L), B ID, A ID

1. Alice
h(PA I i‖RA I i)∀i∈(0,L)‖s(AI)−−−−−−−−−−−−−−−−−−−−−→ Bob

2. Alice
h(PB I′ i‖RB I′ i)∀i∈(0,L)‖s(BI′)←−−−−−−−−−−−−−−−−−−−−−− Bob

3. Alice
PA I 1‖RA I 1−−−−−−−−→ Bob

4. Alice
PB I′ 1‖RB I′ 1←−−−−−−−−− Bob

... ...

2L-1. Alice
PA I (L−1)‖RA I (L−1)
−−−−−−−−−−−−−−→ Bob

2L. Alice
PB I′ (L−1)‖RB I′ (L−1)
←−−−−−−−−−−−−−−− Bob

Note. Alice and Bob verify the signatures as soon as they receive the hash values and
signatures from each other. They will execute the remaining steps only if the
signatures are valid. For steps 3 - 2L, Alice aborts the protocol if she fails to
verify the commitment or the subpath she receives does not match the one she
has. Bob aborts the protocol if he fails to verify the commitment; however,
he should still send the current subpath to Alice when the subpath he receives
does not match the one that he has (for the sake of fairness).

Figure 3.3: Fair Exchange protocol (Single Matching Criterion)

25

Alice’s inputs: Interest I j ∀ j ∈ (0,m], RA I j i ∀i ∈ (0,L) ∀ j ∈ (0,m], h(PA I j i‖RA I j i)
∀i ∈ (0,L) ∀ j ∈ (0,m], PA I j i ∀i ∈ (0,L) ∀ j ∈ (0,m], A ID, s(AI j)=
signPIS pri key(A ID‖h(PA I j i‖RA I j i)∀i ∈ (0,L)) ∀ j ∈ (0,m], B ID
Bob’s inputs: Interest I′j ∀ j ∈ (0,n], RB I′j i ∀i ∈ (0,L) ∀ j ∈ (0,n], h(PB I′j i‖RB I′j i)
∀i ∈ (0,L) ∀ j ∈ (0,n], PB I′j i ∀i ∈ (0,L) ∀ j ∈ (0,n], B ID, s(BI′j

)=
signPIS pri key(B ID‖h(PB I′j i‖RB I′j i)∀i ∈ (0,L)) ∀ j ∈ (0,n], A ID

1. Alice
(h(PA I j i‖RA I j i)∀i∈(0,L)‖s(AI j))∀ j∈(0,m]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

2. Alice
(h(PA I j i‖RA I j i)∀i∈(0,L)‖s(AI j))∀ j∈(0,n]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Bob

3. Alice
PA I j 1‖RA I j 1∀ j∈(0,m]
−−−−−−−−−−−−−−−−→ Bob

4. Alice
PB I′j 1‖RB I′j 1∀ j∈(0,n]
←−−−−−−−−−−−−−−−− Bob

... ...

2L-1. Alice
PA I j (L−1)‖RA I j (L−1)∀ j∈(0,mL−2]
−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

2L. Alice
PB I′j (L−1)‖RB I′j (L−1)∀ j∈(0,nL−2]
←−−−−−−−−−−−−−−−−−−−−−−−− Bob

Note. Alice and Bob verify the signatures as soon as they receive the hash values and
signatures from each other. They will execute the remaining steps only if the
signatures are valid. For steps 3 - 2L, Alice aborts the protocol if she fails to
verify the commitment or none of the subpaths she receives matches the ones
she has. Bob aborts the protocol if he fails to verify the commitment; however,
he should still send the subpaths of the current level of all the interests that he
and Alice have in common down to the previous level to Alice (for the sake of
fairness).

Figure 3.4: Fair Exchange protocol (Multiple Matching Criteria)

26

Figure 3.5: An Example of Multiple Matching Criteria

the subpaths of his interest 1, because there is no way that Alice could have the same interest. A
similar thing happens after step 6. Alice knows that none of Bob’s interests starts with subpaths
“llr”, so she does not send the next level subpath of her interest 1 to Bob. The users keep tracking
the subpaths they receive for each interest of the other party. If they have not received an “x” (the
“x” acts as a placeholder so that the users so that users do not need to worry about the ordering
of the interests and can simply send one character for each of their interests2) for an interest,
it means that they could both have this interest, and they keep appending the subpaths of this
interest when they receive it. If a user receives an “x” for an interest, it means that the other party
knows that they cannot both have this interest.

Users should negotiate a session key when they reach the middle of the tree. Krawczyk [20]
provides several authenticated Diffie-Hellman protocols for users to negotiate a session key.
Users should encrypt all subpath and random number information located in the lower half of the
tree to prevent other users from eavesdropping the information. Users could negotiate a session
key when they start the protocol and encrypt all messages between them; however, the upper
half of the subpath and random number information is less sensitive. Namely, even if other users
learn this information, the real interest of a user is still protected by a large number of other
interests. In addition, it is more expensive to encrypt and decrypt all messages. We could use an
authenticated Diffie-Hellman protocol as our signature-based authentication protocol. However,

2As an alternative, it is possible to leave the “x” away and to include additional meta-information.

27

in our implementation and evaluation, we separate these two steps. Namely, two users run the
signature-based authentication first, and then they exchange the subpath information until the
middle of the tree is reached. After that, they run the authenticated Diffie-Hellman protocol and
compute a common session key. Finally, they exchange their remaining subpath information
located under the middle of the tree, and before they send out the information, they encrypt it
using the session key. One reason for doing this is that we are not sure in real life how often two
users are going to exchange their subpaths down to the middle of the tree. It is more expensive to
generate a Diffie-Hellman key pair than simply generating a random number. If it is not a com-
mon case that users will exchange their subpaths down to the middle of the tree, then we should
separate these two steps, since in most cases, users do not even need to negotiate a session key.
We will do more study in the future and find out which way is the better approach.

Note that Alice and Bob are re-using the same sets of random values when they encounter
different users until they renew their signatures. Arguably, this is dangerous, since after Alice
and Bob run this protocol, they learn at least part of each other’s random values. What if they
disclose this information to other users? Here, we have to assume that Alice and Bob would not
do such a thing. In fact, even if we require users to use different sets of random values when
meeting different users, a user could disclose another user’s subpath information to other users
instead of the random values. In the most extreme example, Alice and Bob have an interest in
common. Nobody could stop Alice from telling Carol that Bob has such an interest, no matter
what matchmaking protocol they use.

3.2.3 Signature Renewal, Signature Revocation and Tree Update

As mentioned, time stamps should be included in the signed content. If a user is caught cheat-
ing, the PIS is not going to renew the signatures for this user anymore. If possible, users should
renew their signatures every day, and only accept the most up-to-date signatures. However, in
our architecture, we relax this requirement and let users tolerate out-of-date signatures. To tol-
erate out-of-date signatures means that a user may have more chances to interact with detected
malicious users. In section 3.2.4, we show that if the tree structure for the interests is known
by attackers, our protocol may reveal users’ interests. Therefore, the PIS reconstructs the tree
structure every day to mitigate the effect of leaking the tree structure. Users who want to toler-
ate out-of-date signatures should keep their out-of-date paths, random numbers, and signatures.
Otherwise, they are not able to find appropriate potential friends because of changes to the tree
structure.

How can users decide about the issue date of each other’s signatures and thus which version of
paths, random numbers, and signatures to exchange with each other? Here we propose a protocol
for users to negotiate and decide which information they want to send out. The PIS maintains
a version number for each tree structure. Note that the tree structure remains the same if only

28

Figure 3.6: Users with Multiple Version of Tree Structure

more matchmaking information is added to the tree leaves. In other words, the version number
of a tree structure changes only when the PIS re-shuffles the tree nodes or extends the level of the
tree. The PIS also informs the users about the time stamps included in their signatures. When
two users meet, they should first exchange the version numbers of the trees that they possess.
Then, they should load paths, random numbers, and signature information from the most recent
version tree (most recent version and time stamp) that they have in common. A user can refuse to
exchange information with the other user if she thinks that none of the other user’s information
is tolerable. If a user can tolerate two days of out-of-date signatures, it means that she accepts
signatures that are signed within two days from her most recent signatures. Figure 3.6 shows an
example of how two users with different versions of tree information perform the fair exchange
protocol. In this example, Bob would accept Alice’s version 96, which is signed on 2010/01/28;
however, Alice would refuse to accept any of Bob’s versions, because Bob’s newest signature is
issued on 2010/01/28, which is more than two days from 2010/01/31. Note that in Figure 3.6 we
do not assume that the PIS reconstructs the tree structure every day.

3.2.4 Security Analysis

In this section, we at first analyze the security of our protocol under the following assumption:
all users know only the path information of their own interests. Arguably, a user could publish
the path information of her interests to a publicly accessible place, and as a result, all other users
learn the corresponding paths. Later, we use game theory to prove that if the users are rational,
they are not going to reveal the paths of their interests to other users. Then, we also study the
case when this assumption does not hold. Furthermore, we assume that the users do not leak
each other’s subpath information. The reason for this assumption is mentioned in section 3.2.2.
In section 3.3, we provide a more secure protocol, which does not require these assumptions.
However, that protocol has more computational overhead, and according to our evaluation, that
protocol takes longer to complete under the same setting.

Here are two properties of the fair exchange protocol.

First, a user learns all interests that she has in common with the other party; otherwise the
other party cheats, and the cheating behaviour would be detected. The users exchange the com-

29

mitment before they exchange the paths for their interests. Based on the fact that it is hard to
find h(“l”‖random number 1) = h(“r”‖random number 2) (“l” and “r” represents the left and
right subpath, and the random numbers have a fixed length), the users could not lie about their
subpaths without being caught. Note that there is an exception when the initiator stops sending
the actual subpath information and sends “x” instead for her interests even though the responder
still could have these interests. However, in this case, nobody would gain more information than
the other party. Since we also assume that the main purpose that users use our system is to look
for new friends, but not to explore other users’ interests, we did not consider this exception in
our design. Nevertheless, it is easy to prevent this exception from happening. We could require
the initiator to still send the actual subpath of an interest to the responder at the level she just
found that the responder does not have the interest.

Second, a user cannot learn the interests that she does not have in common with the other
party, unless she cheats, and the cheating behaviour would be detected. Obviously, an attacker
cannot listen to the communication between two users or replay other users’ messages to get
useful information. The reason is that all sensitive information is encrypted by a session key
known only by the two users in the conversation. A user cannot use any uncertified interest/path
information as her input, because the signatures of the interests/paths are verified in the first two
steps and also because of the property of the cryptographic hash functions. The only possible
attack we could find is the guessing attack where an attacker tries to guess a user’s interests based
on the subpath information that the attacker obtains from the user.

We define security as the anonymity of Alice’s unmatched information after she runs the
protocol with a user, Eve. In the analysis, we are going to use the anonymity metric mentioned

in [19], Anonymity =
H(x)
Hmax

= ∑−P(x) log(P(x))
log(N)

. N is the number of interests in this case, and

P(x) is the probability that an interest belongs to Alice in Eve’s point of view. Assume that Alice
has 1 interest and Eve has m interests. The number of all interests in the tree is z (z� m), the
depth of the tree is d, and Alice and Eve do not have any interests in common.

The protocol is perfectly secure if the assumptions hold that a user does not leak her and

other users’ (sub)paths. Anonymity =
(z−m)× (− 1

z−m × log(1
z−m))

log(z)
=

log(z−m)
logz

. This is the

best result any private intersection protocol could get. It is reasonable to assume that it is hard
for other users to learn a large portion of the tree structure, if we assume that most users value
preserving their own privacy higher than exploring other people’s privacy. However, nobody
could stop users from posting the paths representing their interests to a publicly accessible place.
If enough users do so, then the tree structure could be reconstructed. Reconstructing the tree
structure requires a large number of users to publish the paths for their own interests, and we are
going to prove that there is no motivation for them to do so, because it brings negative benefits
to the publishers. We are going to prove that if a user publishes one of her paths, then her value

30

Figure 3.7: Tree

of the Anonymity for the given interest decreases.

Let us take a look at the change of the value of Anonymity for a user’s interest after she pub-
lishes the path of her interest. For example, a user, Alice has an interest, play basketball. She
runs the protocol with Eve and reaches the ith level of the tree. Before she publishes the path

of her information, Anonymity =
log(z−m)

logz
as shown above, because the probability of each

interest belonging to Alice (except the m interests Eve has) is 1
z−m . After Alice or somebody else

publishes the path of the interest, play basketball, to an publicly accessible place, from Eve’s
point of view, the possibility of the published interest belonging to the Alice is 1

2d−i−1 (assume
that Eve has only 1 interest that shares the same subpath down to the ith level of the tree with
Alice, so Eve knows that Alice’s interest is definitely not the one Eve has). The possibility of
any other interest belonging to Alice is (1− 1

2d−i−2)× 1
z−m−1 . Fig 3.7 shows this example.

Anonymity

=
(z−m−1)×

(
−
((

1− 1
2d−i−2

)
× 1

z−m−1

)
× log

((
1− 1

2d−i−2

)
× 1

z−m−1

))
− 1

2d−i−1 log 1
2d−i−1

logz

=

(
−
((

1− 1
2d−i−1

))
× log

((
1− 1

2d−i−1

)
× 1

z−m−1

))
− 1

2d−i−1 log 1
2d−i−1

logz

31

=

(
2d−i−2
2d−i−1

)
× log

((
2d−i−1
2d−i−2

)
× (z−m−1)

)
+ 1

2d−i−1 log(2d−i−1)

logz

=

log

(((
2d−i−1
2d−i−2

)
× (z−m−1)

) 2d−i−2
2d−i−1 ×

(
2d−i−1

) 1
2d−i−1

)
logz

=

log

(

(z−m−1)×
(
2d−i−1

)
2d−i−2

)2d−i−2
2d−i−1

×
(
2d−i−1

) 1
2d−i−1

logz

<

log

(

(z−m)×
(
2d−i−1

)
2d−i−2

)2d−i−2
2d−i−1

×
(
2d−i−1

) 1
2d−i−1

logz

=

log

((z−m)×

(
2d−i−1

)
2d−i−2

)2d−i−2

×
(
2d−i−1

)
1

2d−i−1

logz

=

log

((
(z−m)2d−i−2× (2d−i−1)2d−i−1

(2d−i−2)2d−i−2

) 1
2d−i−1

)
logz

Anonymity decreases after a user publishes her paths if

log

((
(z−m)2d−i−2× (2d−i−1)2d−i−1

(2d−i−2)2d−i−2

) 1
2d−i−1

)
logz

<

log(z−m)
logz

holds.

(z−m > 1)&(z > 1)

log

((
(z−m)2d−i−2× (2d−i−1)2d−i−1

(2d−i−2)2d−i−2

) 1
2d−i−1

)
logz

<
log(z−m)

logz

⇔
(

(z−m)2d−i−2× (2d−i−1)2d−i−1

(2d−i−2)2d−i−2

) 1
2d−i−1

< (z−m)

32

⇔
(

(z−m)2d−i−2× (2d−i−1)2d−i−1

(2d−i−2)2d−i−2

)
< (z−m)2d−i−1

⇔ (2d−i−1)2d−i−1

(2d−i−2)2d−i−2
< (z−m)

We are most interested in the case where Alice and Eve come close to the bottom of the tree,
because the more information they exchange, the more significant effect publishing a path would
bring. Let us take a look at the last 8 steps. When i = d−8,
(2d−i−1)2d−i−1

(2d−i−2)2d−i−2
= 255255

254254 ≈ 692 < z−m (z should be more than two orders of magnitude greater

than m, in our application m is usually less than 20 and z is more than 2000.) We have proved

that at the 8th last level, (2d−i−1)2d−i−1

(2d−i−2)2d−i−2
< z−m, and since (2d−i−1)2d−i−1

(2d−i−2)2d−i−2
decreases as the value of i

increases, if a user exchanges her path information with an attacker down to the last 8 levels of
the tree, the user’s value of Anonymity for the given interest decreases if her path information is
known by the attacker.

Let us turn this problem into a normal form game. A normal form game consists of a finite
set of players. Each player could take a finite number of actions. The outcome for each player
is computed depending on the actions each player takes. In our problem setting, when a user’s
value of Anonymity increases by taking an action, she has positive outcome. She has negative
outcome when her value of Anonymity decreases. In addition, a user gets positive outcome when
any other user’s value of Anonymity decreases. Assume that users care more about their own
privacy than exploring other users’ privacy (so users stop exchanging their information with
each other when the information does not match). In our case, we define the players as the users
of our application. They could choose to either publish or not publish their interests to a publicly
accessible place. In this case, Nash equilibria are defined for each player as the actions that she
takes that always generate at least as good an outcome as taking any other actions, no matter
what actions the other players take.

Let us take a look at two arbitrarily chosen players, Alice and Bob. What will their outcomes
be when they choose to publish or not to publish their paths? Assume that at the moment, no
other players publish their paths. As shown in both Table 3.1 and 3.2, Alice and Bob have better
outcomes when they choose not to publish their information (Nash equilibrium). For example,
in Table 3.1, when Alice publishes her path information but Bob does not, Alice’s value of
Anonymity decreases, and as a result, Bob has a better chance to guess Alice’s interest right. So
in this case, Alice has a negative outcome while Bob has a positive outcome. In Table 3.2, we
have a slightly different situation. After Alice publishes the path of her interest, Bob’s value of
Anonymity also decreases. Bob certainly has a better chance to guess Alice’s interest right, while
Alice or any other user also has a better chance to guess Bob’s interest right. Since we assume
that a user values pretecting her own information higher than exploring other users’ information,

33

Bob
Publish Not Publish

Alice
Publish -1, -1 -1, 1

Not Publish 1, -1 0, 0

Table 3.1: Publishing Alice’s path does not decrease Bob’s Anonymity

Bob
Publish Not Publish

Alice
Publish -1, -1 -1, -1

Not Publish -1, -1 0, 0

Table 3.2: Publishing Alice’s path does decrease Bob’s Anonymity

both users have negative outcomes in this case.

Of course, there could be some people who post their information regardless of the conse-
quences, but the number of such people should be relatively small if users are rational and their
utility function follows our assumption. However, a user’s utility function does not necessarily
follow our assumption. For example, a group of reporters may collude and just share the path
information among themselves to guess a famous person’s interests. In this case, the reporters
obviously value exploring other people’s privacy higher than other purposes (but average users
do not need to worry about this), and our previous analysis is not true. This is a motivation for
introducing our second matchmaking protocol, which is against the guessing attacks. However,
we also emphasize that it requires a large number of users to collude for the attack to be effective,
since the PIS only assigns a limited number of interests to a user. We still consider the case when
the entire tree structure leaks even though we have seen that it is unlikely to happen. Then the
security of users’ privacy also depends on: 1. the depth of the tree; 2. the portion of every path
a user sent to the other user; 3. the context information; 4. the interests that are in each subtree.
Here let us assume that a user has the same chance to choose any interest. We will discuss this
assumption later in this section. A user will not reveal her exact interest to the other party until
she sends the entire path of her interest to the other party. There is a slight chance that users with
different interests could learn each others’ information. It occurs only if the nodes representing
their personal information are siblings in the bottom of the tree. Assume that Alice chooses
interest 1 and Bob chooses interest 2 (the positions of interest 1 and interest 2 are shown in
Fig 3.7). According to the protocol, they are going to reveal the entire paths to each other. The
chance for this to occur is slim. Assume that both Alice and Bob are looking for one interest

in common, and z is the number of total interests. The chance for the above case to occur is
1
z

.

z is usually a large number, and even if z is small, the server could provide sample interests to
enlarge the z value. From a user’s point of view, she cannot tell whether an interest is a sample or

34

submitted by other users. Let us again use the previous example where Alice has 1 interest and
Eve has m interests. The value of Anonymity of Alice’s interest after she sends out the subpath

information of her interest for the first i levels is
∑−P(x) log(P(x))

log(z)
=

log(2d−i−m′)
log(z)

. It reduces

to
log(2d−i−1−m′′)

log(z)
after Alice sends out the subpath from the ith level to the (i+1)th (m′ is the

number of Eve’ interests located in the same sub-tree as Alice’s interest at the ith level and m′′

is the number of Eve’ interests located in the same sub-tree as Alice’s interests at the (i + 1)th

level). It is important to compute the probabilities for different number of paths, which Alice
shares with Eve, down to each level. For m interests, and 2L paths, at each level, Alice possibly
takes [0, min(m,2L)] (we can assume that 2L � m) same subpaths to the next level with Eve.
This makes the problem very hard to solve. We wrote a program to simulate this problem. From
the result, we conclude that this approach can still provide privacy protection even though the
whole tree structure is known by attackers. More details are provided in section 4.1.

The above value of Anonymity of Alice’s interest at each level is computed assuming that
each interest is chosen by Alice with the same probability; however in real life this is not always
the case. For example, some interests are much more common than others. Also, usually people
can be divided into groups based on their gender, age, and even race. Each group of people has
a stereotype, and this possibly makes the success rate of attacks higher when a user’s context
information is known. For example, assume that an attacker knows that he is exchanging interest
information with a young lady, and the young lady likes one of studying math, gardening, moun-
tain climbing, and shopping. Then, the attacker may guess that the lady likes shopping, because
that is the stereotype of young ladies. The popularity of different interests and stereotypes may
help attackers to achieve higher success rates, but they could also help mislead the attackers. As
a result, in our simulation, we assume that from the attackers’ point of view, the chance of each
interest chosen by a user is the same. Another reason for having this assumption is that right now
we do not have any statistics about the popularities of different interests. We also do not know
whether users would want to look for friends based on the popular interests (they would have
tons of friends who have those interests). As a result, maybe there would be more users who
look for friends based on the non-popular interests. In the future, we would like to do more user
studies on this issue. For now, we can analyze only the case where we assume that all interests
have the same popularity in the mobile social networking environment. users if they are worried
about their privacy might be comprised because of the leaking of the tree structure.

3.2.5 A Failed Approach

We have tried to use multiple pseudonyms for the same person to mitigate the problem of the fair
exchange protocol brought by leaking the tree structure. Suppose that Alice has several interests,

35

and she runs the protocol with Eve. In the case that Alice has at least one common interest with
Eve, since Eve learns the tree structure, she is able to guess the rest of Alice’s information, and
thus learn extra information about Alice. If Alice could use different pseudonyms for different
interests, from Eve’s point of view, the interests would look like from different people. Even if
Eve establishes friendship with Alice, Eve cannot tell which other information that she received
belongs to Alice, and she cannot even tell whether or not Alice sent another piece of information.
This protocol requires the presence of other people; otherwise, Eve could be certain that all
pseudonyms belong to Alice. Users may use the Schedule Module to run this protocol when there
are many people around. For example, if a user knows that there is a party at 3:00 pm, she may
only turn on the protocol and look for new friends after the party starts. The presence of other
people makes guessing attacks more unlikely to succeed. However, Eve could still detect whether
two pseudonyms belong to the same person if she receives a pair of pseudonyms at the same time
for several times. For example, Eve meets Alice several times, and she always sees those two
pseudonyms whenever they meet. So it is necessary for the central server to assign a large number
of pseudonyms (we call the pseudonyms for a certain interest pseudonym pool) for each interest.
Alice sets different time slots to exchange different interests. Before sending out a piece of
information, the user’s device randomly chooses a pseudonym from the information’s pseudonym
pool, so that different interests appear from different users. The device should automatically
change the Bluetooth address when using different pseudonyms. This approach requires more
communication overhead and computational overhead. Also, in order to defeat replay attacks,
a user has to prove that she actually owns this pseudonym. Using the hash value of a public
key as a pseudonym is a solution. One problem is that the central server needs to assign dozens
of public keys to each user for each of their interests and create digital signatures combining an
interest with different pseudonyms. It increases the PIS’s burden; however, the PIS does not have
to wait until it receives users’ requests to update the users’ signatures. If the PIS knows that a
group of users are going to renew their signatures every day, it can create the signatures for them
before they request the signatures and when the PIS is idle. Then, the PIS stores the signatures
on its local disk, and sends them to the users when the users request them. (Note: users do not
need to renew their public keys, but they have to renew the digital signatures.)

This approach does not work well because of two reasons. First, it becomes hard for users
to recognize each other when they meet again. This adds lots of overhead, since there are lots
of people we meet every day or quite frequently. By using this approach, we are going to run
the matchmaking protocol with every pseudonym a user owns. Second, the relationship between
different pseudonyms can still be trackable. Even though we use different pseudonyms for the
same interest, the path of this interest does not change. For example, if a user detects that when
he interacts with a number of pseudonyms, they always exchange their subpaths down to the 8th

level. This may indicate that these pseudonyms belong to the same user.

36

Alice’s inputs: SA, set key KA
Bob’s inputs: SB, set key KB

1. Alice computes h(si)KA∀si ∈ SA.
Bob computes h(si)KB∀si ∈ SB.

2. Alice
h(si)KA∀si∈SA−−−−−−−−−→Bob

3. Alice
h(si)KB∀si∈SB←−−−−−−−−−Bob

Alice
(h(si)KA ,(h(si)KA)KB) (∀h(si)KA received from Alice)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−Bob

4. Alice computes Z = (h(si)KB)KA (∀h(si)KB received from Bob)
Alice creates Y = (si,(h(si)KA)KB) ∀si ∈ SA)

5. Alice gets si, ∀si ∈ (SA
⋂

SB) by intersecting the second element of Y and Z.

Figure 3.8: Original DDH Protocol [1]

3.3 DDH Protocol

We have seen that our fair exchange protocol requires some assumptions to hold to be secure. We
have shown that the assumptions are reasonable. Also, our simulation shows that users’ privacy
could be still be protected in most case even if the tree structure is leaked. However, here we
propose another protocol that provides stronger security guarantee for users who have higher
security requirements.

This approach is similar to the one proposed by Agrawal et al. [1]. Let us do a quick review
of their protocol. Assume the users are Alice and Bob. Alice has a set SA, and Bob has a set SB.
Alice randomly chooses a secure key, KA, and Bob randomly chooses a secure key, KB. Their
protocol is shown in Figure 3.8. In Figure 3.8 and the rest of the thesis, we use ae to represent
ae mod p, where p is a safe prime. p is a safe prime if and only if p is a prime number and
(p− 1)/2 is also a prime number. a is a quadratic residue modulo p. To be consistent with
the notation in section 3.2, we use h() to represent a cryptographic hash function. In step 2,
Alice sorts the elements lexicographically and then sends them to Bob. In step 3, Bob also
reorders the elements lexicographically and then sends them to Alice. In step 4, Alice creates
(si,(h(si)KA)KB)∀si ∈ SA) by replacing h(si)KA in the pairs that she received from Bob in step 3
with corresponding si, ∀si ∈ SA. In step 5, Alice computes the intersection between the second
element of the pair (si,(h(si)KA)KB) ∀si ∈ SA) and Z. The first elements of pairs whose second
elements are in the intersection are the information Alice and Bob have in common.

37

This protocol has several problems. First of all, it does not deal with certified information.
Second, Alice learns more information than Bob does, and she could lie about the result. Third,
there is no guarantee that Bob will pair (h(SA)KA,(h(SA)KA)KB) correctly and send the pairs back
to Alice. We improve this protocol and make it fit our requirements. Our DDH protocol has two
phases: initial phase and matchmaking phase.

3.3.1 Initial Phase

The initial phase takes two steps.

The first step takes place between the id signer and a user (e.g., Alice). Alice sends her
personal information to the id signer. Alice also generates a pair of RSA keys and sends the public
key to the id signer. The id signer identifies and authenticates Alice and issues a certificate to her.
The certificate includes Alice’s RSA public key. The id signer should only issue one certificate
to one user. A user would use the hash value of her public key as her user id in this protocol. In
summary, the id signer works the same as the one of the fair exchange protocol.

The second step takes place between the PIS and a user (e.g., Alice). The PIS is different
from the PIS of the fair exchange protocol. The PIS generates a safe prime, p, the first time when
it starts. When a user creates a name for a new interest (no other user has submitted the name yet),
the PIS chooses a quadratic residue modulo p as the id of this interest. Assume that Alice submits
the names of her interests, along with her certificate and her user id to the PIS. The PIS first makes
sure that Alice did not misbehave before (based on other users’ complaints). Here let us assume
that Alice is an honest user, and no other users complained about her. Let us denote the ids of
Alice’s interests by Xi ∀i ∈ (0,m] (assume that Alice has m interests). The PIS creates another
certificate including Alice’s id and a time stamp. This certificate is for Alice to provide to other
users in the signature-based authentication to prove that she is a honest user up to the date when
the certificate is created. The PIS sends Xi ∀i ∈ (0,m], p, signPIS pri key(A ID‖Xi) ∀i ∈ (0,m],
and the certificate back to Alice. Before each matchmaking process, Alice randomly chooses
a value a (a is in the range of [1,q− 1], and q = (p− 1)/2) as her exponent, and computes
the exponentiations, (Xi)a mod p ∀i ∈ (0,m]. Users could pre-compute the exponentiations for
different exponent values when their devices are idle and store the results and corresponding
exponent values for future uses.

3.3.2 Matchmaking Phase

Suppose that Alice has interests: X1, X2,...,Xm (m is the size of Alice’s set), and Bob has interests:
Y1, Y2,...,Yn (n is the size of Bob’s set). We are going to use Xa

i for (Xi)a mod p, l(s) for the
length of the string s, and h() for a cryptographic hash function. Let us assume that in this

38

protocol, the party who initiates the communication reports the result first. Assume that Alice
and Bob agree on a value g. Note that user ID = h(pub key). Before running this protocol,
users should run the signature-based authentication to identify and authenticate each other. Also,
when they run the signature-based authentication, both users should exchange their certificates
issued by the PIS to prevent communicating with malicious users. Figure 3.9 shows our DDH
protocol. Steps 1 to 4 are straightforward. Step 5 is required for cheating detection purposes. R
is a random number with fixed length used for commitment purposes. More details are provided
in the next section. In step 6, Bob reports his computed results to Alice for matching. Alice
sends the message to Bob in step 7 for two purposes. First, Alice needs to report her computed
result to Bob, so Bob can perform the matching. Second, Alice needs to reveal the values that
she committed to in step 5. There is no guarantee that Alice will pair

(
Y b

i ,
(
Y b

i
)a
)
∀ i ∈ (0,n]

correctly in step 7. For example, Alice can pair Y b
i with

(
Y b

j

)a
for i 6= j. Later, we will show that

Alice could take advantage from mispairing the data. Bob could also do the same trick to Alice.
As a result, we require Alice and Bob to provide the signatures of the matched information later.
More details are provided in the next section. Alice and Bob both compute the interests they have
in common in step 8. They should not send plaintext of the ids and signatures of the matched
interests to each other, because the information could be eavesdropped, and that is why we need
step 9 to step 12. Alice and Bob negotiate a secret using authenticated Diffie-Hellman [20] to
encrypt sensitive messages, such as their interest ids and corresponding signatures. We could
have combined step 9 to step 12 with our signature-based authentication. However, it would be
more expensive to compute ga than to generate a random number, and we expect that the chance
that two arbitrary users share at least one common interest is not high. Alice and Bob should
exchange the signatures issued by the PIS of the interests that they have in common to prove that
they really have the interests. After step 14, both Alice and Bob verify the signatures and record
the messages if the other party fails to provide correct interest ids and signatures. Even though
everything looks fine, both users should record the other party’s messages at a given probability,
so that at a later time they could submit the recorded messages to the PIS to check if the other
party cheated or not. We explain why this is necessary in the next section.

3.3.3 Security Analysis

Assume that Alice sends messages before Bob does. Agrawal et al. prove that given DDH,
< x, fe(x),y, fe(y) > (fe(x) = xe) is indistinguishable from < x, fe(x),y,z >, when e is not given.
Further, they conclude that for polynomial t and k,

(
x1
fe(x1)

...xt
fe(xt)

...xk
fe(xk)

)
is indistinguishable

from
(

x1
fe(x1)

...xt
fe(xt)

...xk
zk

)
. These properties give us the following results:

1. Bob cannot map xa back to x if he does not know the value of a, which is only known by

39

1. Alice
l(Xa

1)‖Xa
1 ‖...‖l(X

a
m)‖Xa

m‖signA pri key(B ID‖l(Xa
1)‖Xa

1 ‖...‖l(X
a
m)‖Xa

m)
−−→ Bob

2. Alice
l(Y b

1)‖Y b
1 ‖...‖l(Y

b
n)‖Y b

n ‖signB pri key(A ID‖l(Y b
1)‖Y b

1 ‖...‖l(Y
b
n)‖Y b

n)
←−− Bob

3. Alice and Bob verify signatures.

4. Alice computes (Y b
i)a, ∀ i ∈ (0,n]

Bob computes (Xa
i)b, ∀ i ∈ (0,m]

5. Let cmA = l((Y b
1)a)‖(Y b

1)a‖...‖l((Y b
n)a)‖(Y b

n)a‖R

Alice
h(cmA)‖signA pri key(B ID‖h(cmA))
−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

6. Let cmB = l((Xa
1)b)‖(Xa

1)b‖...‖l((Xa
m)b)‖(Xa

m)b

Alice
((Xi)a,(Xa

i)b),∀i∈(0,m]‖signB pri key(A ID‖cmB‖l(Xa
i)‖Xa

i ∀i∈(0,m])
←−−− Bob

7. Alice
(Y b

i ,(Y b
i)a),∀ i∈(0,n]‖R‖signA pri key(B ID‖cmA‖l(Y b

i)‖Y b
i ∀i∈(0,n])

−−−→ Bob

8. Bob gets Yi,∀Yi ∈ (Y b
i)a ⋂ (Xa

i)b

Alice gets Xi,∀Xi ∈ (Y b
i)a ⋂ (Xa

i)b

9. Alice
ga
−→ Bob

10. Alice
gb‖signB pri key(ga‖gb‖A ID)
←−−−−−−−−−−−−−−−−−−−− Bob

11. Alice
signA pri key(gb‖ga‖B ID)
−−−−−−−−−−−−−−−−−−→ Bob

12. Alice computes k = (gb)a & Bob computes k = (ga)b

13. Assume that there are m′ interests in the intersection

Alice
Ek(Xi‖signPIS pri key(A ID‖Xi)),∀ i∈(0,m′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

14. Alice
Ek(Yi‖signPIS pri key(B ID‖Yi)),∀ i∈(0,m′]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Bob

Figure 3.9: Our DDH Protocol

40

Alice. Proof: if Bob could map xa back to x, Bob could compute f−1
a (z), and by checking

whether f−1
a (z) = y or not, Bob can distinguish < x, fa(x),y, fa(y) > and < x, fa(x),y,z >.

This makes sure that before Alice sends Bob the computed result, Bob is not able to get
any of Alice’s interests.

2. Given the value of x1, fa(x1), ...,xt , fa(xt), ...xk−1, fa(xk−1), Bob cannot compute the value
of a. Proof: assume that Bob could compute the value of a, so he is able to compute
fa(xk−1), and by checking if fa(xk−1) = z, Bob could distinguish

(
x1
fa(x1)

...xt
fa(xt)

...xk
fa(xk)

)
from

(
x1
fa(x1)

...xt
fa(xt)

...xk
zk

)
. This guarantees that Bob cannot obtain Alice’s exponent value,

a. As a result, even if Bob collects the id of an interest that he does not have, he cannot
compute ida. He cannot detect if Alice has this interest by checking if ida equals Xa

i ∀i ∈
(0,m].

This protocol prevents Alice and Bob from learning any interest other than the interests that
they have in common. If any user does learn extra interests, they are definitely going to be caught
by the other party for cheating.

1. By sending out {Y b
1 , ...Y b

n }, and getting back {Xa
1 , ...Xa

m} and {(Y b
1 ,(Y b

1)a), ...,(Y b
i ,(Y b

i)a)},
Bob can learn only whether or not Alice has a number of elements in set {Y1, ...Yn}. Ac-
cording to the above two properties, if and only if (Y b

i)a = (Xa
i)b, Bob could learn if Xi

from Alice matches Yi by performing step 8. Otherwise, it is impossible to get the value
of Xi. Note that Bob cannot be certain which interests Alice really shares with him until
they exchange the signatures signed by the PIS including the names of the interests. The
reason is because it is impossible to map xa back to x. In the above protocol, Alice could
pair the Y b

j with
(
Y b

i
)a for j 6= i, and Bob would think Alice has Yj instead of Yi if

(
Y b

i
)a

is in the intersection. Bob would send Yj to Alice. As a result, Alice is able to gain extra
information without being detected. Exchanging the signatures of the original information
prevents this attack from taking place. As a result, it is necessary for both users to exchange
the signatures of the ids of the interests in the intersection. If a user cannot provide a valid
signature signed by the PIS for all her interests in the intersection, the other user should
record the protocol transcript and send it to the PIS. Because Alice receives messages from
Bob that are symmetric to the messages that she sends to Bob, she is also not able to learn
extra interests.

2. Users could not use information not signed by the PIS for them if they do not want to be
banned. For example, Alice does not register X ′, but she sends (X ′)a to Bob, and Bob
actually has X ′. According to the protocol, at the end of the matching, both parties have
to exchange the signatures of the interests that they have in common. These signatures are
signed by the PIS including the interests and their user ids. In this case, Alice would not be

41

able to do that. Also, because Alice has to provide a signature including all exponents that
she computed to Bob in step 1, Bob could provide this signature to the PIS as an evidence
of Alice’s misbehaviour. Alice is not able to compute (Xi)a′ = (X ′)a (assume that Alice
has Xi), and the PIS is going to ban Alice. Note that in order to answer the PIS’s challenge,
a user should keep a list of the exponents that she uses for different users.

3. Users cannot get useful information by replaying other users’ responses. Users have to run
signature-based authentication before they run the DDH protocol. This prevents attackers
from using the signatures signed by other users.

4. Users cannot get useful information by listening to other users’ communication, because
all sensitive information is encrypted.

Both parties will learn all information that they have in common, unless any party cheats.
The DDH protocol provides cheating detection methods. We are going to take a look at how the
protocol detects cheating in two different cases. Let us assume Alice is malicious.

1. Alice wants only to explore Bob’s information but does not want to find a new friend. She is
going to send signA pri key(B ID‖h(garbage‖R)) instead of signA pri key(B ID‖h(cmA)) in
step 5. Later, Alice sends some “garbage” information to Bob instead of (Y a

i)b ∀i ∈ (0,n].
Bob is unable to find out since he is not able to map (Y a

i)b back to Y a
i . However, he is

going to find out immediately if Alice refuses to run step 7. Bob is going to report Al-
ice’s behaviour to the PIS. If enough users report Alice’s malicious behaviour, the PIS is
not going to renew Alice’s signatures any more. If Alice does run step 7 but with incor-
rect information, Bob is not going to find out Alice’s malicious behaviour immediately;
however, Alice takes the risk that Bob may record his message and report to the PIS later
(As we mentioned before, both users should record the other party’s messages at a given
probability, so that at a later time they could submit the recorded messages to the PIS to
check if the other party cheated or not). In this case, Bob has the signed information from
Alice, so the PIS is certain that Alice cheated in this case (Alice cannot prove to the PIS
how the values are computed from), and stops renewing the signatures of her interests and
her certificate.

2. Alice wants to find new friends, but she wants to reveal only one interest if that is enough
to find a new friend. If we remove step 5 from our protocol, Alice could easily achieve
this goal. For example, Alice and Bob have two interests in common. After Alice receives
(Xb

i)a ∀i ∈ (0,m] from Bob, she knows that. Alice can lie and reply only one matched
result back to Bob. In this case, Alice finds a new friend and learns more information
than Bob does. However, this will not happen in our protocol. Alice has to execute step 5
honestly, since she does not know what they have in common at this step. As a result, she

42

has to report (Y a
i)b and R correctly to Bob, since it is hard to find hash(x′) = hash(x) for

x′ 6= x. Otherwise, Bob will detect her malicious behaviour immediately.

3.3.4 Cheaper DDH Protocol

The above protocol is secure, but it requires users’ devices to perform twice the number of ex-
ponentiations of their set size for each matchmaking process (assuming that both users have the
same set size). Is it possible to let the users re-use an exponent value for different matchmaking
processes? Or is it possible to let the PIS perform some computation and thus reduce the client
devices’ loads? Figure 3.10 is a cheaper version of the DDH protocol. In the initial phase of
this protocol, we require the PIS to select an exponent for a user and compute the exponentia-
tion for each of the user’s interests. For example, the PIS randomly generates an exponent, a
(a is in range of [1,q− 1], and q = (p− 1)/2) for Alice, and computes (Xi)a ∀ i ∈ (0,m] and
signPIS pri key(A ID‖(Xi)a) ∀ i ∈ (0,m]. The PIS sends Xi ∀ i ∈ (0,m], a, p, (Xi)a ∀ i ∈ (0,m],
signPIS pri key(A ID‖Xi) ∀ i ∈ (0,m], and signPIS pri key(A ID‖(Xi)a) ∀ i ∈ (0,m] back to Alice. In
the matchmaking phase, only steps 1 and 2 are different from the previous DDH approach. Here,
Alice and Bob exchange the exponentiation results and signatures they got from the PIS. Note
that in this protocol, since users need to exchange the signatures created by the PIS at first, there
is no need for them to exchange their certificate in the signature-based authentication anymore.
They should also compute a signature on the whole message that they want to exchange and also
exchange the signatures.

Note that our security analysis is still valid except the following point: In the previous anal-
ysis, users could not use information not signed by the PIS for them if they do not want to be
banned. Here, users could not use information not signed by the PIS for them at all. For ex-
ample, Alice has to provide signPIS pri key(A ID‖Xa

i) ∀ i ∈ (0,m] for all elements in her set to
prove that she really is assigned to this information before the matching. Unlike the symmetric
encryption based commutative functions, nobody could find X ′a

′
= Xa because of the discrete

logarithm and the way how the X and X ′ values are created. This guarantees that Alice can only
use signPIS pri key(A ID‖Xa) to prove her ownership of interest X but nothing else. Since this
cheaper DDH protocol is less costly, we implement it instead of the DDH protocol we propose
in Figure 3.9.

3.4 A Variant of the Fair Exchange Protocol

Our fair exchange protocol can be applied to other applications that require a light-weight private-
intersection protocol. For example, a user inputs a list of items that she wants to purchase to her

43

1. Alice
∀ i∈(0,m], Xa

i ‖signPIS pri key(A ID‖Xa
i)‖Signature on the whole message

−−→ Bob

2. Alice
∀ i∈(0,n], Y b

i ‖signPIS pri key(B ID‖Y b
i)‖Signature on the whole message

←−− Bob

3. Alice and Bob verify signatures.

4. Alice computes
(
Y b

i
)a

, ∀ i ∈ (0,n]
Bob computes (Xa

i)b , ∀ i ∈ (0,m]

5. Let cmA = l((Y b
1)a)‖(Y b

1)a‖...‖l((Y b
n)a)‖(Y b

n)a‖R

Alice
h(cmA)‖signA pri key(B ID‖h(cmA))
−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

6. Let cmB = l((Xa
1)b)‖(Xa

1)b‖...‖l((Xa
m)b)‖(Xa

m)b

Alice
((Xi)a,(Xa

i)b),∀i∈(0,m]‖signB pri key(A ID‖cmB‖l(Xa
i)‖Xa

i ∀i∈(0,m])
←−−− Bob

7. Alice
(Y b

i ,(Y b
i)a),∀ i∈(0,n]‖R‖signA pri key(B ID‖cmA‖l(Y b

i)‖Y b
i ∀i∈(0,n])

−−−→ Bob

8. Bob gets Yi,∀Yi ∈
(
Y b

i
)a ⋂ (Xa

i)b

Alice gets Xi,∀Xi ∈
(
Y b

i
)a ⋂ (Xa

i)b

9. Alice
ga
−→ Bob

10. Alice
gb‖signB pri key(ga‖gb‖A ID)
←−−−−−−−−−−−−−−−−−−−− Bob

11. Alice
signA pri key(gb‖ga‖B ID)
−−−−−−−−−−−−−−−−−−→ Bob

12. Alice computes k = (gb)a & Bob computes k = (ga)b

13. Assume that there are m′ interests in the intersection

Alice
Ek(Xi‖signPIS pri key(A ID‖Xi)),∀ i∈(0,m′]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Bob

14. Alice
Ek(Yi‖signPIS pri key(B ID‖Yi)),∀ i∈(0,m′]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Bob

Figure 3.10: Cheaper DDH Protocol

44

mobile device. In this thesis, we are going to use the term “item” to represent a kind of products
that a store sells. When she walks by a store, her mobile device exchanges information with the
store following our fair exchange protocol to find out whether the store has any of the items that
the user wants. If the store does, the device notifies the user. However, if we take a closer look at
this particular example, we find that the proposed fair exchange protocol will not work. Usually,
a store owns hundreds or even thousands items. According to our fair exchange protocol, the
user’s device needs to verify all items’ signatures and also download a large number of random
numbers from the store in each step. The computation and communication overheads for mobile
devices are huge.

The shopping notification application is obviously different from the application that we in-
troduced in previous sections for looking for friends who have common interests. First, we do
not need to protect the items available in stores from being learnt by anyone. Second, as men-
tioned in the last paragraph, a store usually owns a large number of items, and this is also a
reason why we do not want to deploy the DDH protocol for this application. We modify our fair
exchange protocol and make it useful for the shopping notification application. The variant of
our fair exchange protocol consists of an initial phase and a matchmaking phase.

3.4.1 Initial Phase

The initial phase of this protocol is different for a user who wants to do shopping and for a store,
which sells items. The initial phase for a store is similar to the fair exchange protocol introduced
in section 3.2. The PIS builds up a tree. Each leaf node represents an item that a store might
sell. Stores send their items to the PIS. The PIS first checks whether an item already exists in the
tree. If the item does not exist in the tree (this store is the first one that submits this item), the
PIS assigns an id to the item and puts the item into an available leaf node. If the item exists, the
PIS locates the item and fetches the path of the item in the tree and its id. The PIS computes a
signature for each item and sends the ids, paths, and the signatures back to the store. The way
how the signatures are created is different from the one introduced in section 3.2. The signatures
for store X are of the following form: s(X) = signPIS pri key (X ID‖item id). These signatures
do not include a random number as a commitment. It is reasonable to remove the commitment,
since we can show that even if the store claims that it owns items that it does not actually have,
the user’s privacy would still be protected by a large cloak (a large number of other items she
does not want to buy). Also, the cheating behaviour of the store could be easily discovered by
the users (they just have to go into the store and they will find out), and this results in a poor
reputation of this store.

The PIS also posts a list of existing items on a publicly accessible website with both the path
and id information. Users who want to go shopping can look up existing items online to input the
items they want to buy to their devices or download a list of existing items including the path and

45

Figure 3.11: A Small Example of the Distribution of a Store’s Items

id information of all items from the PIS directly. In the latter case, the users perform a matching
between their own shopping lists and the list that they downloaded from the PIS to extract the
information that they want. We also modified the matchmaking phase of our previous protocol,
so that even though the tree structure is publicly known, users’ privacy is still well protected.

3.4.2 Matchmaking Phase

Every user sets a k value, so that from other people’s (including the store’s) point of view, there
are at least k possible items that the user may want to purchase. (The PIS provides sample items
to fill all the leaf nodes, but the leaf nodes that contain the sample items are still available for
taking new real items from stores.) Assume that we have an L level tree. When a user is nearby
the store, the user device sends the top L−1−dlog2(k)e levels of subpaths of all its items to the
store. After the store receives the user’s information, it sends all ids and corresponding signatures
of its items that have the same top L−dlog2(k)e levels of subpaths to the user. The user’s device
does a matching on the ids that she received and the ids of the items that she plans to purchase
and verifies the signatures of the items in the intersection. The device notifies the user if the
intersection is not empty and all signatures are valid. If the store cannot provide valid signature
for its items, the user device should record it, and the user should report the store’s malicious
behaviour to the PIS. It is important that the signatures are obtained before the matchmaking. If
users request the signatures after the matchmaking, they would require only the signatures of the
items that the store has (the ones in the intersection of the user’s list and the store’s list). If a
user’s device downloads a list of items from the store, but never asks for any signature, the store
would know that the user wants to purchase something else. Since the tree structure is publicly
known (users are able to download the whole tree to their local devices), the cloak size to protect
the user’s real shopping list might become less than k.

46

We use Figure 3.11 as a small example to illustrate how the matchmaking phase works.
Figure 3.11 shows the distribution of a store’s items. The black leaf nodes are items sold by
the store. Assume that user Alice sets k = 4. When Alice is around the store, her device sends
the top L− 1−dlog2(k)e = 4−dlog2(4)e = 2 levels of subpaths of her items to the store. So
Alice’s device sends “lr” (left and right) to the store. The store knows only that the user wants to
purchase at least 1 item of the 4 items rooted at node A. The store sends the ids and signatures
of item 6 and item 4 back to the user device. The user device finds out that the store has item
6 and then verifies the signature of item 6. The user device notifies the user if the signature is
valid. Note that the user does not have to go into the store to purchase item 6, even if she receives
the notification. For example, she might want to go shopping at a different time or in a different
store. As a result, if a user requires the items rooted at node A, and she does not go into the store,
the store cannot conclude that the user wants something other than item 6 and item 4. From the
store’s point of view, the user has the same probability to buy any of the 4 items.

The above approach requires the user’s device to download a lot of digital signatures. If we
take a deeper look at this problem, we find that the signatures can be removed in this protocol.
The whole point of having the signatures in our original fair exchange protocol is for a user to
provide a commitment to other users to show that this user has registered a piece of information
with the PIS. In that case, we want to preserve both users’ privacy and do not want to reveal too
much information at each step. Here, since we do not care about the store’s privacy at all, and
we allow the user’s device to query any number of items from the store, we do not need this
commitment anymore. One may argue that by providing the signatures, the store can prove to
the users that they actually registered the items with the PIS. However, as we briefly mentioned
before, the store does not have any motivation to cheat in this case, because it could be found
out by the users easily, and the consequence is huge. Possibly, no one wants to go shopping in
those stores that misbehaved. In this simpler approach, we requires the store to create a digital
signature by signing its digital id (issued by some trusted identifier issuer) and the item ids that a
user requests. The digital signature will be sent to the user along with the item ids. In this way,
the user is able to verify that the message is from a registered store and able to report to PIS if
cheating behaviour is detected.

The choice of the value of k is a tradeoff between performance and privacy. Obviously, the
larger the k value is, the more privacy the user has. However, it also means that (most likely) the
more id and signature information needs to be sent to the user by the store, and the longer it takes
for the data transfer. As a result, if a user sets a small k value, the cloak size to protect the item
she wants to purchase is small. If a user sets a large k value, there could be not enough time to
complete the matchmaking phase while the user is passing by the store.

We can improve the previous scheme to address this problem. We require a user to set a
k value, and a t value, which is the maximum time that it can take for the matchmaking to
complete. A user no longer sends the top L−dlog2(k)e levels of subpaths of her items to the

47

store. Instead, she queries the number of the store’s items. According to the current data rate, the
amount of data that needs to be transferred, and the t value, the user’s device can decide whether
it should request the store to send ids and signatures of all items or whether it should send the
top level of the subpaths of the user’s item to the store, and request the store to return the number
of items that share the same subpath as the user’s item. At each level d < L− 1−dlog2(k)e,
the user’s device is going to make a decision whether it should send the next level subpath of
its item to the store and query the number of the store’s items that share the same subpaths
(including the one it just sent), or whether it should require the store to send all items that share
the same subpaths down to the current level. The protocol should be aborted if the current level
d = L− 1−dlog2(k)e, and there is still not enough time for the store to send all information
to the user. All data communication between a user’s device and the store should be protected
by encryption. Of course, this improvement could be done only when we find a good indicator
of the current data transferring rate. We did not find a good one in our implementation, so we
implemented a slightly different mechanism. In addition, we did not find a way to establish
HTTP persistent connections with BlackBerry devices, so that a device has to establish a new
HTTP connection for each HTTP request. This adds extra cost when a device queries a web
server multiple times. According to [11], we cannot reuse the same HTTPConnection Object in
JavaMe.

Since we did not find a good indicator for data transferring rates and there is this HTTP
connection problem (one HTTP connection for one HTTP request), we propose an alternative
way to make our application more flexible. We provide the users three options, high/medium/low
privacy, for this application. We should make it clear to the users that high privacy requires the
most data downloading and it takes the longest to execute, and so on. The high privacy option
means that the device will download every item’s id from the store. The medium privacy option
starts from one quarter down the tree, and downloads all items that share the same subpaths with
the items the user wants down to the first quarter of the tree. The low privacy option starts from
the middle of the tree, and downloads all items that share the same subpaths with the items the
user wants down to the middle of the tree.

Suppose that we have a 20 level tree, the user wants 10 items, which are in a store, and the
store has the same number of items in each subtree before the middle of the tree. By running the
medium privacy option, the device needs to download less than 1/3 of the store’s item ids, and
by running the low privacy option, the device needs to download less than 1/100 of the store’s
item ids. In addition, the less id information the user’s device downloads, the less time it takes
to finish the matchmaking (the time for the matchmaking is linear in the number of ids a device
downloads). We have not finished implementing this approach yet, and this will be handled in
the future. We implemented the “high” privacy mode and present it in the section 4.2.

Private Information Retrieval (PIR) [5] is an alternative approach for the shopping notification
application. Olumofin et al. [27] introduce a PIR approach that allows a user to query multiple

48

databases owned by different companies. The user is able to hide the information that she is
really interested from each company and is still able to get the relevant information back. This
approach requires several companies to collaborate to host multiple databases and at the same
time, they should not collude to subvert a user’s privacy. This makes it hard to deploy. There is
ongoing work to improve the efficiency of single-server PIR [4].

49

Chapter 4

Implementation and Evaluation

In this chapter, we first present how we implemented our architecture, including the implemen-
tation of the PISes (one for each protocol) and a client program for different protocols. Then, we
evaluate the performance of our protocols and provide a brief analysis of the results. During our
implementation, we found that a Bluetooth feature of some mobile devices reduces the flexibility
and scalability of our system. We propose several solutions for this problem and implement one
of the solutions. At last, we evaluate the performance of the implemented solution.

4.1 Fair Exchange and DDH Protocols

4.1.1 Development Environment

We implemented our protocols on two BlackBerry 8820 devices. The two BlackBerry devices
act as the mobile devices owned by two users. We deploy a web, an application and a database
server to build the PISes. We did not implement the id signer, and we assume that the users
already hold valid identity certificates. We use the Java platform, Standard Edition 6 develop-
ment kit to develop our PIS programs and the BlackBerry Java Development Environment 4.5.0
for users’ devices. A PIS includes the PIS program, interface and backend databases. More
information about the PIS programs is in section 4.1.2. A Facebook application serves as the
web interface to our PISes. The Facebook application is implemented using PHP and HTML.
More details about the PISes are also presented in section 4.1.2. The data communication is done
through Bluetooth. The Bluetooth communication is done using the RFCOMM StreamConnec-
tion. RFCOMM provides emulation of RS 232 serial ports. The most straightforward fashion
for two Bluetooth devices to communicate is the server-client model. We will introduce how a
device chooses its role in this model in section 4.1.3. We adopt this model in our application.

50

Our first goal was to understand the Bluetooth data exchange time and transfer rate. We
conducted a number of tests on the data exchange time. The data exchange time of the client is
from the time just before it sends the message (before the write() function is called) to the time
it completely receives the message from the server (after the read() function returns). The data
exchange time of the client consists of the following periods:

1. time for the client to send its message;

2. time for the server to receive the data;

3. time for the server to send its message (the server sends its message to the client as soon
as it received all data from the client);

4. time for the client to receive the data.

The data transfer time, the time to transfer a certain amount of data from one device to the
other, is the total time of period 1 and 2, or period 3 and 4. If we assume that the total time of
period 1 and 2 equals the total time of period 3 and 4, the data transfer time is half of the data
exchange time of the client. Figure 4.1 shows the data transfer time for different amounts of data.
Each point in our graph is half of the average value of 10 measurements of the data exchange
time of the client. In the figure, we use an error bar to show the standard deviation of the 10
measurements. For the same amount of information, the data exchange time is different when
it is sent at once or at multiple times (send one byte in each write() call). We can see that the
data transfer time is slow and could be the bottleneck of the overall performance. The average
data transfer rate is about 30 Kbps when we are using one write() call. However, this value is
much smaller than the bandwidth of Bluetooth 2.0, which is 2.1 Mbps. There are three possible
reasons why the data rate is low in our devices. First, we use the RFCOMM StreamConnection,
which has extra costs to guarantee ordering, perform error checking, and so on. Second, it is
costly to read data out of the receiving buffer. We tried the readFully() functions to fetch the data
from the buffer, and they are much faster than the read() functions that we are currently using.
However, the readFully() functions are problematic when two devices are not fully synchronized.
Fully synchronized means that when one device is sending data, the other party has to fetch the
data at the same time. Third, according to [10] and [9], the data rates of BlackBerry devices
are slow and differ significantly depending on their OS versions. We would like to investigate
more on the data transfer issues in the future. Since now the data transfer is slow, it means that
we are able to improve the performance of our protocol by trading some data transfer operations
(IO operations) for some simple computational operations. We process the data that users try
to send to each other to shrink the size of the data, and as a result, we get higher performance.
This motivates us to implement a faster version of our fair exchange protocol that sends less data.
More details about the fast fair exchange protocol can be found later in this chapter. In addition,

51

Figure 4.1: Time to Transfer Data

in our implementation, we also add a zlib on top of the data communication channel to compress
the content that needs to be exchanged.

We set up two different PISes. One is for the fair exchange protocol, and the other one is for
the DDH protocol. We assume that our users want to re-use their interests from Facebook for our
application. We implemented a Facebook application as the web interface for users to submit
their interests to the PISes to sign. We set up a MySQL database for storing users’ id and interest
information. The database consists of 6 tables. Three of them are for the fair exchange protocol
and the other three are for the DDH protocol. For each protocol, there is a table containing the
public key and private key information for the PISes, and for the DDH protocol, there is another
field in this table to store the big safe prime information. Let us call this table the PIS table.
Again, for each protocol, there are two other tables. One table is used to store users’ mobile
device ids (a mobile device id is just the user id we mentioned in previous sections. Here we call
it the mobile device id to distinguish it from the Facebook user id), Facebook user ids, and their
interest information. There is another field in this table named processed. This field indicates
whether a row in the table is processed by the PISes. Let us call this table the userInfo table. The
other table simply contains the mobile device id for the users waiting for processing. We call
this table the waiting list table. We are going to illustrate the usage of these tables in the next
paragraph.

Figure 4.2 shows the interface of our Facebook application. The Facebook user id and in-
terests are exported from the Facebook database. We configure our application to use IFrame
as the render mode for our application’s canvas page (“A canvas page is the address where your

52

Figure 4.2: Interface of Facebook Application

application lives on Facebook.” [14]). The mobile device id field contains a user’s mobile device
id. More specifically, this field should contain the hex value of the hash value of the public key of
a user’s mobile device. Everytime a user accesses this page, the page checks if the mobile device
id associated with this user’s Facebook user id exists in the userInfo tables. If it does, this field
is automatically filled with the mobile device id. Otherwise, the user has to enter the id herself.
A user can choose to request the protocol she wants to run with other users. If she wants to run
both protocols, she has to submit this form twice, once for each protocol. The text area contains
this user’s interests. The information is from the interest field of the user’s Facebook profile.
Figure 4.3 shows the interaction among a user, Facebook, and our appplication server. More
details about how a traditional IFrame canvas works can be found in [13]. Figure 4.4 shows the
flowchart of how a user interacts with the PISes, including the backend database and programs,
through our Facebook application. We will describe how the PIS programs work in section 4.1.2.
We treat the interaction between Facebook and our appplication interface as a blackbox, and call
it PIS interface. Figure 4.5 illustrates what happens in each step.

4.1.2 Setup of the PIS Programs

The PIS programs are the core of our PISes. Our PIS programs are two Java Jar files that are run
on the same machine as our web and database server. One PIS program is for the fair exchange
protocol. It takes an integer, n, as an argument and constructs an n-level tree (2n interests in total)
as described in section 3.2, when it starts. The number of levels of the tree can be increased if

53

Figure 4.3: Interaction Among a User, Facebook, and Our Application Server (Picture from
Facebook)

Figure 4.4: Users Interact with PIS Server Through Our Facebook Application

54

0. A PIS program keeps querying the waitinglist table for user ids. (This step
takes place before any user can have her interests signed.)

1. A user submits the form through the PIS interface as shown in Figure 4.2. The
user’s interests along with her Facebook id and mobile device id are inserted
into the userInfo table, and the processed fields for the new records are labelled
to be 0.

2. After the new records are inserted into the userInfo table, the mobile device id
is inserted into the waitinglist table.

3. Remember that before any user can submit her information to sign, we have a
PIS program keep querying the waitinglist table for user ids. After step 2, the
waitinglist table finally has something, the mobile device id(s) just inserted in,
to send back to the PIS program. (Here, we require the PIS program to pull in-
formation from the database to sign, because the PIS interface is implemented
in PHP and this is the best way that we found to pass information from a PHP
program to a Java program.)

4. The PIS program queries the unprocessed records associated with the mobile
device id(s) returned by the waitinglist table. At the same time, the PIS pro-
gram queries the PIS table for the server private key information, and the big
prime number if the user wants to sign her information for the DDH protocol.

5. The userInfo table and PIS table return the information that the user queries.

6. The PIS program creates an XML file using the information it gets from the
userInfo table and makes the file available to the user for downloading.

7. The PIS program updates the processed field of all records that it just processed
to be 1. The PIS program deletes the mobile device id(s) it just processed from
the waitinglist table.

Figure 4.5: Steps in Figure 4.4

55

Figure 4.6: XML File

there are more interests in real life. More tests and user studies should be done before we can
decide on a proper n value. The n value should also be related to the number of interests in the
real world. The PIS program takes unprocessed information from the userInfo table as inputs and
outputs XML files. An example of the XML file generated by the PIS program is shown in Figure
4.6. A path field in the XML file acts as the id of an interest. It is a string composed of “left”
and/or “rigt” presenting left and right subpaths. We use “rigt” for a right subpath to keep the
string the same length as “left”, so that attackers cannot perform guessing attacks based on the
length of the subpaths. We also could just use the character “l” and “r” to represent the subpaths.
Note that an XML file cannot contain binary values, so we have to encode the binary values
into hex or Base64 representation. The standard Java does not support Base64 even though it is
much more efficient than the hex representation. We tried a number of open source Java Base64
applications and found none of them work compatibly with the BlackBerry JDE. As a result, we
encode all our binary values into hex numbers.

In our original protocol, the PIS program randomly generates a 128-bit long number for
each subpath, and composes the numbers into a string, and puts it in a random number field.
We modified the original fair exchange protocol and made a fast fair exchange protocol. In the
fast fair exchange protocol, we allow users to exchange the top n/2 levels of the subpaths of
their interests at once. As we can see from Figure 4.1, the time for exchanging data is expensive,
while computing hash values is cheap (we provide data in section 4.1.7). We generate the random
numbers for the subpaths of different interests in a special way, so that when users run the fast fair

56

Figure 4.7: Random Numbers

exchange protocol, the amount of data they need to exchange can be sharply reduced, and thus
the protocol execution time is shorter. More information about the fast fair exchange protocol
can be found in section 4.1.5. Here is how we generate the random numbers. For each user, we
randomly generate one 128-bit number for each interest. We compute the hash of this random
number and use it as the random number for the bottom level subpath. Then, we compute the
hash of the random number of the bottom level subpath for the second last level subpath, and
so on. Figure 4.7 shows the way to generate the random numbers. Note that “interest 1” and
“interest 2” share same subpaths, but there are different random numbers for the same subpath
for different interests. We use the nextByte() function in Sun Java’s SecureRandom class to
generate the random number. The PIS program computes the hash value for the subpath and the
corresponding random number of each level of an interest, and puts them into the hash value
field separated by commas. We use Sun Java’s Signature class and get the “SHA1withRSA”
instance to compute signatures. We use SHA-1 as the cryptographic hash function, RSA private
keys to sign signatures, and RSA public keys to verify signatures. The output XML files include
the information described above and the PISes’ public key. All signatures, hash values and
random numbers are converted into hex representations before they are stored in the XML file.
We assume that the communication between the PISes and a user is secure. Ultimately, the
communication should be protected by SSL.

The other PIS program is for the DDH protocol. It takes inputs from the DDH tables and
outputs XML files. An example XML file of the DDH protocol is shown in Figure 4.8. The
PIS program generates a 1026-bit safe prime, p, and puts it in the “modulus” field in the XML
file. We use the probablePrime() function in Sun Java’s BigInteger class. This function does not
guarantee to return a prime, but the chance that the returned number is not a prime is extremely

57

Figure 4.8: DDH XML File

small. By default, there is only 1/280 chance that the value is not a prime. The input from a
user includes her mobile device id and her interests. The PIS program hashes the name of each
interest and uses the square of the hash values as the interest id. The PIS program puts the interest
id into the id field. The PIS program randomly generates a 1024-bit number as a user’s exponent
of the power function. It checks and makes sure that the exponent is smaller than p/2, and puts
it in the exponent field. The PIS program computes idexponent and puts it into the “PowerId”
field. The PIS program also computes signatures for the id and powerId and puts them in the
“idSignature” and “PowerIdSignature” fields. Again, all values stored in the XML file are in
their hex representations.

4.1.3 Setup of the Devices

The first time a user uses this BlackBerry application on her device, the application provides an
interface for her to create a new mobile device id. She simply presses a button to create a new
pair of RSA keys. The hex string of the hash value of the public key is computed and used as
the mobile device id. The key pair and the mobile device id are stored in the persistent storage
of the device. She needs to submit her interests through the Facebook application to sign. After
she does so, she will receive an XML file for each protocol. She stores the XML files in the
device memory, and then she is ready to run the matchmaking protocol. As mentioned, we adopt
the server-client model for two Bluetooth devices to communicate. Users can choose “Run as a
Server” or “Run as a Client” from the menu bar of our application to start a server or a client.
We will see more about server and client devices in the next two sections. The application also
provides an interface for users to select which protocol they are going to run, and for which

58

interests they want to look for potential friends.

Our application is now used only for testing purposes, so users need to manually select to
run as a server or a client. In the future, we will improve our implementation, so that a device
can automatically change its roles. A device should run as a server most of the time and wait for
incoming connections, and it periodically becomes a client and searches for nearby servers.

Server Device

Selecting “Run as a Server” from the menu bar makes the device a server in a two party com-
munication and starts a service on the device. Each service is identified by a unique 128-bit id,
which is called UUID. We randomly pick a UUID value and use this value as the UUID value
for our matchmaking services on all mobile devices. In other words, all servers use this value as
the UUID of this service. After the service starts, it blocks the application and listens to incom-
ing connections. When a client connects, the server is going to open an output stream to send
messages and an input stream to receive messages.

Client Device

Selecting “Run as a Client” from the menu bar makes the device a client. A client first scans
for nearby Bluetooth devices and returns them. If nothing returns, it means that either there is
no Bluetooth device around or there is a Bluetooth device around, but the client device fails to
detect it. For each returned device, the application is going to search services with the UUID
of the matchmaking service. Only the service using this UUID will be returned. The returned
service contains a connection URL for a client to connect to the server. The client then opens an
output stream to this URL to send messages, and an input stream to receive messages.

4.1.4 The Implemented Fair Exchange Protocol

Our implementation allows the server and the client to send 256 sub-messages and 65,536 bytes
in each sub-message at once. We need the sub-messages to convey the information for different
interests. The first byte indicates the number of sub-messages included in this piece of message.
The first two bytes of each sub-message indicate the actual length of the information in this sub-
message. The first byte indicates the most significant bits and the second byte indicates the least
significant bits.

Our application requests a client to send information first. Suppose that a client successfully
connects to a server. They run the signature-based authentication protocol. In this protocol, they

59

generate 128-bit random numbers using RIM’s PKCS1MGF1PseudoRandomSource class. They
successfully exchange their RSA public keys and verify that the other party has the corresponding
private key. The devices compute each other’s user ids using the other party’s public key. This
guarantees that the other party is who they claim they are. Then, the devices exchange their
signatures and hash values of the subpaths and their corresponding random numbers in the first
two steps. After verifying all the signatures, the client and server are going to exchange their
subpath information and random numbers. Each time, they exchange the information for a level.
Upon receiving the information, each party computes the hash values and checks if the hash
values match the corresponding hash values that they received in the first two steps. Each party
uses a StringBuffer for tracking the subpaths received so far for each interest. If the hash values
match, they append the received subpaths to the StringBuffers. Otherwise, they append the
string “NULL”, and report an error. Each party also keeps track of the paths it received so far and
compares the received paths to the paths that it owns. If a party finds that the other party cannot
have one of her interests (a part of one of her paths does not match any of the received subpaths
so far), the party labels this path as “unmatched” and next time she sends the string “NULL”
instead of the actual subpath and random number information. (Note that for fairness, the server
performs the comparison after it sends out the information of the current level.) If a party finds
that it does not have one of the other party’s paths, it also label this path as “unmatched”. If the
devices receive a “NULL” string as the subpath or random number for a path, they should first
check if this path is labelled as “unmatched”. If it is not, the devices report an error. Otherwise,
they do not compute the hash value for this subpath and random number, but add a “NULL” string
to the corresponding StringBuffer directly. The devices stop when one of them finds out that it
has to send a “NULL” string for all subpath information or when the bottom of the tree is reached.
The communication of the second half of the path information is encrypted using AES with the
key derived from the secret generated from the authenticated Diffie-Hellman protocol, in case
that other nearby devices may eavesdrop the information. In the authenticated DH protocol, we
use RIM’s DHCryptoSystem class to generate a DH public/private key pair. In order to exchange
ga and gb as described, we exchange the DH public keys. Then, the devices share a secret using
the generateSharedSecret() function of RIM’s DHKeyAgreement class. This function generates
“the shared secret using a given public key (from another party) and a private key with the option
of using cofactor exponentiation” [31]. For simplicity, in this thesis, let us say that this function
computes a value k = (ga)b = (gb)a.

4.1.5 The Implemented Fast Fair Exchange Protocol

The fast fair exchange protocol is the same as the original fair exchange protocol except it allows
both parties to exchange the first half of the subpaths and random numbers at once. Because
of the special way that the PIS generates the random numbers for interests (or paths), we only

60

require the users to exchange the random numbers for the last level subpaths of the first half
of the tree. The rest of the random numbers can be computed by hashing the received random
numbers.

Here we sacrifice some privacy for performance. We allow users to exchange the first half of
their subpaths, since even if two users do not have any information in common down to the mid-
dle of the tree, there is still a large enough cloak to protect both users’ real information. (When
the tree structure is not compromised, this protocol is as secure as the normal fair exchange pro-
tocol.) For example, there are two users, each of them has 1 interest, and they try to find out if
they have an interest in common. Assume that the tree structure is known to the users. For a
21-level tree, two users exchange the top 10 subpaths. Even in the case that they do not have
anything in common, from each user’s point of view, the other party has equal chance to have
any of the 211 = 2048 interests. Note that users do not need to run the fast protocol for a small
tree structure, if they think the cloak size is not large enough to protect their real information, and
it does not take too long to execute the fair exchange protocol for a small tree structure anyway.
More information about the executation time of different protocols is in section 4.1.7.

4.1.6 The Implemented DDH Protocol

The first step of the DDH protocol, the signature-based authentication is the same as in the
previous protocols. Then, the devices exchange information in the “PowerId”(PI) field in their
XML file. They retrieve the information in the “exponent”(e) and “modulus”(m) fields, and
cast them into two big integer numbers using RIM’s CryptoInteger class. They also cast the PI
information to big integer numbers. Then, they compute PIe mod m. Instead of exchanging the
pair (PI,PIe mod m) in the steps 6 and 7 in our proposed DDH protocols, we only exchange
h(PIe mod m). This sharply cuts the communication overhead but adds little computational
overhead. Since as we mentioned in section 3.3 that it is impossible for a user who does not
know the value of e to map PIe mod m back to PI, it is the same whether users send the pair
(PI,PIe mod m) or h(PIe mod m). The other steps are straightforward and the same as shown
in Figure 3.10.

4.1.7 Evaluation

In general, the fast fair exchange protocol is the fastest protocol, and the fair exchange protocol
is faster than the DDH protocol. The execution times of the three protocols are shown in Figure
4.9. In the tests, the PIS program builds an 11-level tree for the fast and original fair exchange
protocols. The computation of modular exponents is expensive. The time to sign a message
is about 120 ms; while the time to verify a message is about 20 ms, because the RSA public

61

Figure 4.9: Execution Time

Figure 4.10: Modular Exponentiation Time

62

Figure 4.11: Execution Time vs. The number of levels of the tree

keys are much shorter than the private keys. Figure 4.10 shows the time to perform modular
exponentiations on the PIs (the “PowerId” values). It takes about 250 ms to perform a modular
exponentiation on the value of one PI. We used the functions from the BlackBerry JDE for sign-
ing and modular exponentiation. We do not have the source code of these functions and do not
know why the modular exponentiation function in the CryptoInteger class takes longer than the
signing function in the PKCS1SignatureSigner class. We guess that RIM optimized the signing
function. For each interest, a device needs to perform exactly one modular exponentiation in our
DDH protocol. We also find that the data communication overhead is more expensive than the
computational overhead of computing the hash values, and that is why we generate the random
values in the special way. For the 15 interests and 11-level case, each user would transfer 960
less bytes but compute 60 more hash functions. The time for computing 60 hashes is about 30
ms.

The execution time of the fair exchange protocol and fast fair exchange protocol increases as
the number of levels of the tree increases. Figure 4.11 shows the trend of the increase (each user
has 15 interests). We also provide the execution time of our DDH protocol, which is independent
of the number of levels, in the figure for comparison purposes. Every data point in Figures 4.9,
4.10, and 4.11 is the average value of 10 experiments.

4.2 Implemented Shopping Notification Application

We also implemented the shopping notification application as a part of our BlackBerry applica-
tion, and evaluated the performance. We use an access point from the Computer Science Building

63

at the University of Waterloo and an access point from the author’s home. For testing purposes,
we hardcoded the server URL to be a server located at the University of Waterloo. This server is
used to simulate a server owned by a store. Note that an access point can be set up and config-
ured to directly access a server according to the service type, and the URLs of the actual servers
should not be hardcoded. The communication between the device and the access point is done
by WiFi.

We also create the PIS on the same server. The PIS of this application is much simpler than
the ones of the fair exchange and DDH protocols. For simplicity, we have not implemented the
web interface for stores to sign their items or for users to look up their items. The PIS connects
to a database, which has a table for storing the id and path information of the items the store has.
The id and path information is created by a Java executable Jar file that works similar to the PIS
for our (fast) fair exchange protocol. The only difference is that there is no signature created for
the items. Again, for testing purposes, we assume that a user has 10 items in her shopping list and
the store has all of these items. We randomly choose 10 items from the database as our sample
shopping list and store them in the BlackBerry local disk. In order to make the matchmaking
process faster, we require the shopping list and the ids that the store sends to the user to be
sorted.

Figure 4.12 shows the test results for the execution time of our application when the store has
different numbers of items. Every data point in the graph is the average value of 10 experiments.
In the test, we download all item ids that the store owns to simulate the “high” privacy mode of
this protocol. In the test, the PIS builds a 20 level tree for storing all items from different stores.
An item’s id is the SHA-1 hash value of its path, so each id is 20 bytes. If the store owns 500
items, the mobile device has to download 10,128 bytes of information from the store’s server
(128 is the length of the signature that the store creates). We can see that the execution time of
this application using the school access point is faster than the one using the home access point.
We believe that this is because that the server is located at the University of Waterloo and it is
faster to access it through the internal network. We did not investigate this observation in more
detail because it is out of the scope of this thesis.

As mentioned in section 3.4, we have not found a good indicator for the data downloading
speed. We tried the getAPInfo() function from the WLANInfo class, and then used the get-
DataRate() function to fetch the current data rate in Mbps. However this always returns the
theoretical upper bound of the access point. We also used the getSignalLevel() function to get
the signal strength in dBm; however, this is not a good indicator, either. The value of the signal
strength changes rapidly and does not seem to have a strong correlation with the data transfer
speed.

64

Figure 4.12: Execution Time vs. the Number of Items the Store Owns

4.3 Simulation of the Security of Our Fair Exchange Protocol

In this simulation, we want to test how effectively the fair exchange protocol can protect users’
privacy after the tree structure is leaked. We vary the number of levels of the tree that the PIS
constructs, and the number of interests that each user has. We randomly generate a number of
interests for each user, and test whether they have at least one common interest. If they do not,
then we test the number of levels of subpaths that they are going to exchange before they abort
(the size of the cloak). We say that two users reach level n of the tree if the two users abort the
protocol before they exchange the (n+1)th level of subpaths. Figures 4.13, 4.14, and 4.15 show
our simulation results for 11-, 16-, and 21-level tree, respectively. For every graph, we ran the
simulation 500 times when both users have 5, 10, or 15 interests (1500 simulations in total for
every graph). For every simulation, we recorded the highest level of the tree that the two users can
reach (with 0 being the root level). The x-axis represents the levels that the two users can reach at
each simulation. The y-axis represents the number of times that the two users reach a level in the
500 simulations. Note that the y values of the last point of the x-axes (x = 12) represent the times
that the two users reach the bottom of the tree and they have at least one common interest (e.g.,
11-level tree cannot have 12 levels). From the graphs, we can see that when the number of the
levels of the tree is fixed, the more interests each party has, the more chances they are going to
reveal their unmatched information to each other. When the number of interests each party wants
to exchange with the other is fixed, the more depth the tree has, the lower the chance they will
reveal their unmatched information to each other. Namely, there will be a large cloak protecting
her real interests. As a result, the more users use our application and the more interests are stored
on our server, the more privacy users would have after the tree structure is leaked. On the other

65

Figure 4.13: 11-Level Tree

hand, the more users we have, the more chances the tree structure is going to leak.

4.4 Avoiding Manual Pairing of Bluetooth Devices

In order for two BlackBerries to communicate through Bluetooth, we need to pair those devices
by manually entering a pairing key. This is really a limitation when somebody wants to run
our application without user interaction. This does not mean that our application is useless.
Essentially, this is just a feature of BlackBerry Bluetooth. To the best of our knowledge, there are
various kinds of mobile devices that do not have this requirement. Windows Mobile devices give
their users the option to allow unpaired devices to connect [35]. A developer also mentioned in
the BlackBerry forum that many other kinds of mobile devices do not have this limitation [36].
BlackBerries have this feature to prevent an arbitrary Bluetooth device from connecting, thus
unpaired devices cannot perform attacks through Bluetooth. However, we believe that RIM can
do a better job by having a finer access control granularity. For example, they can set different
services to different access levels. If a service or application allows arbitrary users to connect,
then the service or application should not access any critical data. All data are default to be
critical unless specified by the owners. In this way, the unpaired attackers are unable to access
any sensitive information through the service or application they connect to.

We now provide some solutions for devices that do not support automatic pairing.

The first and the simplest solution is to require two users to manually pair their devices and

66

Figure 4.14: 16-Level Tree

Figure 4.15: 21-Level Tree

67

then run our application to find out what they have in common. This is a little awkward, because
a user has to find out whether another one is using our application. However, once two users
pair their devices, they may find an interesting topic to talk about based on their matching result.
In this solution, the users should make sure that they do not have any other critical Bluetooth
service running during the matchmaking period. They should remove each other’s device from
their paired device list before they restart the other critical Bluetooth services if they do not trust
each other.

The second solution is a little more complicated and also requires extra hardware, but it lets
users find out who else is running our application automatically. In this solution, we need an
Access Point (AP) and a back end server. Note that this back end server is not our PIS. The
AP and server are provided by bars, long distance coach companies, or any other companies
who want to attract more customers by supporting our application. We assume that the server is
honest but curious. The companies may want to collect their customers’ information, but they do
not want to be caught for misbehaving. Otherwise, they may lose business. In this solution, the
server can learn the users who run our application, but the server is not going to learn whether
or not two users become friends or which interests that the users have in common. Figure 4.16
shows the solution. It requires that users set their devices’ Bluetooth device identifiers to the the
hex values of the hash values of their public keys as a part of their BlackBerry names. Assume
when Alice queries the server, there are no other users looking for friends using our application.

However, the range of WiFi may be different from the range of Bluetooth (usually the range
of WiFi is larger than the range of Bluetooth). In other words, Bob may not be able to find Alice
because the distance between them is too far. Also, again, because the two devices need to be
paired, the users should make sure that they do not have any other critical Bluetooth services
running during the matchmaking period, and they should remove each other’s device from their
paired device list before they restart the other critical Bluetooth services if they do not trust each
other.

The third solution takes the reverse way that the second one does. In the second solution,
the AP and server simply find potential application participants for the users. The matchmaking
processes are still done through Bluetooth, and thus there is a potential issue as mentioned. The
third solution uses Bluetooth for finding nearby people, but not for running the matching protocol
and therefore requires no pairing. Assume that Alice and Bob are two users using this solution,
and they have got their information signed by the PIS. Alice has m interests and Bob has n.
Figure 4.17 shows how this solution works. Note that in order to use this solution, we have to
assume that the server is honest and the server does not want to learn users’ information at all.
Essentially, any passive listener could reveal Alice’s s value to the server.

The fourth solution performs matchmaking through the server using WiFi. BlackBerry de-
vices do not support “ad hoc” networks, so that devices cannot communicate each other di-
rectly [30]. In this solution, the server is going to know who and who have something in common,

68

1. Alice queries the server (through the AP) to check whether there is any user
available before t1, and finds out that currently there is no available users. Alice
notifies the server that she will be back and check again at t1. Alice also tells
the server about her device id. The server puts Alice’s information in a waiting
queue.

2. Bob submits his device id and queries the server to check if any user is available
before t2. Assume that t2 ≥ t1, the server checks its database, and randomly
chooses one user who satisfies the criteria. Also, the server guarantees that
the two users have not talked during the current day. We assume that this time
Alice is chosen. Alice and Bob have not met during the current day. The server
randomly generates a 4-digit pairing key and sends it to Bob along with the
value of t1 +ε and Alice’s device id. ε is a small integer whose unit is seconds.
This value is to guarantee that Alice has enough time to fetch information from
the server. Also, the server now removes Alice’s information from the waiting
queue, and adds Alice and Bob’s information as a pair to its history.

3. Alice queries the server at t1, and the server sends Alice the pairing key, Bob’s
device ID and the ε .

4. Alice and Bob are both notified by their devices at t1 + ε . Bob is going to
search for Alice using Bluetooth, and pair with Alice using the pairing key.

5. Alice will run our application as a server, and Bob will be the client.

Figure 4.16: The Second Solution

69

1. Assume that when Alice tries to search for nearby protocol participants, there
is no one around her. Alice randomly generates a key, s. Alice computes hash
values, hi = h(l(s)‖s‖Xi) ∀i∈ (0,m](An alternative is to use HMAC), and signs
each hash value using her own private key, si = signA pri key(A ID‖hi) ∀i ∈
(0,m]. Alice sends the hash values, signatures, along with her public key to the
server. Alice uses s as part of her BlackBerry’ Bluetooth name. Alice also uses
her device id as part of her Bluetooth name.

2. Bob is near Alice. Bob searches for nearby Bluetooth devices, and is able
to obtain Alice’s device name. As a result, Bob gets s and Alice’s device id.
Bob computes hi = h(l(s)‖s‖Yi) ∀i ∈ (0,n], and signs each hash value using
his own private key, si = signB pri key(B ID‖hi) ∀i ∈ (0,n]. Bob uploads the
information to the server and informs the server that he wants to match with
Alice (by providing Alice’s device id).

3. The server verifies both users signatures first. Then, it checks whether a hash
value submitted by Alice matches a hash value uploaded by Bob. If so, the
server sends the corresponding signatures from Bob to Alice, and also the cor-
responding signatures from Alice to Bob.

4. The two users should also exchange the signatures (the ones signed by the PIS)
of their information that they have in common.

Figure 4.17: The Third Solution

1. The server groups a pair of users the same way as that of the second solution,
except at this time, the server does not generate the pairing key.

2. Alice and Bob connect to the server at t1 + ε .

3. Alice and Bob run the signature based authentication protocol through the
server (the server simply forwards the messages from one user to another).

4. Alice and Bob run the fair exchange or DDH protocol through the server.

Figure 4.18: The Naı̈ve Fourth Solution

70

1. The server groups a pair of users the same way as that of the second solution,
except that this time, the server does not generate the pairing key.

2. Alice and Bob connect to the server at t1 + ε .

3. Alice and Bob run the signature-based authentication protocol and the authen-
ticated Diffie-Hellman protocol to negotiate a session key, k, through the server
(the server simply forwards the messages from one user to another).

4. Alice computes hash values, hi = h(length(k)‖k‖Xi) ∀i ∈ (0,m],
and signs each hash value using her own private key, si =
signAlice pri key(Alice ID‖Bob ID‖hi) ∀i ∈ (0,m]. Alice sends the hash
values, signatures, along with her public key to the server. So does Bob. (An
alternative approach is to compute a HMAC of the interest using k as the MAC
key and then sign the MAC value.)

5. The server verifies all the signatures provided by Alice and Bob, and it will
continue the next step if all signatures are valid.

6. The server finds out the intersection between the hash values. Then, it informs
both Alice and Bob about the hi, and si values that they have in common.

7. Alice and Bob then exchange their corresponding signatures signed by the PIS
through the server. The signatures are encrypted by k.

Figure 4.19: The Fourth Solution

71

but the server is not going to find out what they have in common. Figure 4.18 shows the naı̈ve
fourth solution. In this solution, the server simply acts as a bridge between two users. Note that
in our fair exchange and DDH protocols, users are going to run an authenticated DH protocol,
and sensitive information is encrypted by the generated session key. As a result, the server will
not learn any useful information. We could improve the fourth solution to hide users’ identities
from the server, and we are going to leave this for future work. However, this solution is rather
tedious and expensive. A message from Alice to Bob now becomes two messages: a message
from Alice to the server and another from the server to Bob. In fact, we can always ask the server
to do more. For example, we can ask the server to perform the matchmaking. Figure 4.19 shows
how the protocol works, but note that if we require the server to perform the matchmaking, we
have to assume that the server does not collude with either Alice or Bob. Otherwise, for example,
Bob could share the k value with the server or the server sends Alice’s hash values to Bob. Then,
Alice’s privacy would be broken. We also assume that users connect to the server through a
secure channel. If either party cheats by using information that is not signed by the PIS, they are
going to be found out right away for not being able to provide valid signatures. Since they signed
the information at step 5 using their own private keys, the signatures become evidence of their
misbehaviour. As a result, it is important that the server validates all signatures, but we could
not hide the device identities from the server in this approach. Also note that in this solution,
we use a symmetric-key based approach, which is much simpler than an asymmetric-key based
approach, such as DDH. If we require the users to run the DDH protocol but require the server to
perform the matching, the assumption that the server does not collude with any user would still
hold for the solution to be secure. Otherwise, for example, Alice computes ((Yi)b)a∀i ∈ (0,n]
and Bob computes ((Xi)b)a∀i ∈ (0,m]. They submit the results to the server for matching. The
server could simply inform Alice that there is no common information between Alice and Bob,
while the server informs Bob about Alice’s computation results. It is worthwhile to notice that
this approach is a little more secure than the symmetric-key based approach, since in this case,
Bob and the server learn only Alice’s interests that match the ones that Bob has.

4.4.1 Implemented Solution and Experimental Results

We implemented the second version of our fourth solution, and evaluated the performance. We
re-use the XML document issued by the PIS for the DDH protocol as the input of each client
device. The matching server is located at the University of Waterloo.

The matching server hosts four “static” tables and some dynamically generated tables. By
static, we mean that the table always exists in the database, no matter whether there are devices
communicating with each other through the server or not. The first “static” table is the wait-
ingQueue. This table is used to store the information of the devices that have not found a partner
to run this protocol with. This table records the device id, the public key and the time when the

72

Figure 4.20: First Visit

Figure 4.21: Further Visits (if necessary)

device is coming back to revisit the server for querying a partner. The second “static” table is
the chattable. This table keeps all the pairs of devices that are currently exchanging information
with each other through the server. For each pair of devices in the chattable, the server dynam-
ically creates a table. This table contains the messages that each device sends to its partner and
the server. This table’s name should be unique. We planned to use the concatenation of the
two devices’ ids as the table’s name; however, MySQL cannot take such a long string as a table
name. We use the id of the device with the smaller id value as the table name, since we assume
that a device is going to talk to at most one other device at one time. Alternatively, we could
get rid of this assumption by using the hash value of the concatenation of the two devices’ ids
as the table’s name. The third one is the history table. This table keeps the records of the pairs
of devices that have executed this protocol in the past 24 hours. This table is used to make sure
that no two same devices would be paired again by the server within a day. The fourth table
is verificationQ. This table is to inform a Java program to verify the signatures signed by the
client devices. Our server code is written in PHP, and the signature related functions are from
OpenSSL. The OpenSSL signature verification function requires the public keys in PEM format.
However, we cannot convert Java generated public keys to the PEM format. We wrote a Java
program, which frequently (every 0.02s when it is idle) checks the verificationQ for the names
of the tables that require signature verification. The Java program verifies the signatures and
updates the table with the verification result. Our PHP server script is going to respond to the
clients according to the verification results.

After having introduced the tables of the database, let us take a look at the flow of the exe-
cution. Figure 4.20 shows what may happen when a device visits the server for the first time. A

73

Figure 4.22: Download a Message

Figure 4.23: Upload a Message

Figure 4.24: Upload Signatures

Figure 4.25: Server Verifies the Signatures

Figure 4.26: Query Matching Result

74

Figure 4.27: Complete the Protocol

device sends its information, such as its device id, public key, and the time to revisit the server,
to the server. The server checks if there is a partner for this device. The server randomly gen-
erates and sends a secret (e.g. a cookie) to the device for future authentication. The server also
informs the device about the partner’s information if there is a partner for this device. The com-
munication between the server and a client is encrypted by a session key that is shared between
them. (They run an authenticated DH protocol to share a session key. As an alternative, they can
communicate through HTTPS.) Figure 4.21 shows what a device should do if it does not find
a partner in the first visit. Basically, the device has to resubmit its information along with the
secret that it got from the server. Then, the server will either return it the partner’s information
or ask it to try again next time. Figure 4.22 shows how a device fetches the messages from its
partner through the server. The device sends the secret that it got from the server and its query
to the server. The server would return the result or an error if anything goes wrong to the device.
Figure 4.23 shows how a device puts a message onto the server for the partner to retrieve. The
device sends the secret and its message to the server. The server checks whether the other party
has read the previous message from this device. (The reason for doing this is explained in the
next paragraph.) If it has, the server inserts the message into the database. Otherwise, the server
delays the insertion until the other party reads the previous message from this device. After that,
a comfirmation will be sent to the device. Figures 4.24 and 4.25 show how a device submits its
signed signatures to the server and how the server deals with the signatures. After a user submits
her signatures to the server, a Java-based verifier program is going to verify the signatures and
report the result to the server. Figure 4.26 shows how a device queries the server for their match-
ing result. It is described in the step 6 of Figure 4.19. Figure 4.27 shows how a device informs
the server about the completion of the protocol. If both devices do so, the server will clean up
the chat logs between these two devices and record them into the history table, so that they do
not get paired again in the next 24 hours.

We start measuring the execution time after a device downloads the other’s public key from
the dynamically created table. The public key information is stored into the database when a

75

device visits the server for the first time, and it will be moved to the dynamically created table
by the server when a partner is found. We start measuring from this point because if we started
measuring earlier, a device might wait for an arbitrary long time for a partner. Also, the public
key information is the first message that they will get after both of them know that they found a
partner. We finish measuring the execution time after the device verifies the partner’s signatures
issued by the PIS. In order to make our code clean, we require that a client downloads at most
one message per visit (otherwise, there are more cases to handle). As a result, we also require a
device not to upload a message to the server for its partner until its previous message has been
read by the partner. We performed multiple experiments. Each of them consists of a number
of individual tests. In each test, we run the implemented solution on both of the devices. For
each of the experiments, most of the tests finish in about 7 or 8 seconds. However, this is not
always the case. For example, around 4 or 5 o’ clock in the afternoon, the execution time of the
protocol becomes much longer (more than 30 seconds), and during our tests, we tried to avoid
this time slot. Even when excluding this time slot, we still have some tests that take more than
10 seconds to complete. We did not further investigate the reason of this. As a representative
example, we list the 6 tests from one of the experiments in Table 4.1 to show that WiFi is slower
and more unstable than Bluetooth. Table 4.1 shows the distribution of the execution time of this
protocol. In the table, we list the execution time and the distribution of the execution time of
all 6 tests as well as the averages and standard deviations. The time to upload or download a
message is recorded just before the device sends out the request and ended just after it receives
the result or confirmation from the server. For simplicity, the execution time is tested on one
device. The total execution time of both devices is about the same in most of the cases. In
the tests, each user has 8 interests, and 5 of them are the same. We perform the tests in our
lab at the University of Waterloo. From the table, it is obvious that the most time consuming
part of this protocol is the data communication. Indeed, there is little computation involved
except to sign and verify the signatures. As opposed to earlier experiments, we show individual
measurement results for this experiment. For the Bluetooth experiments, the variation was low.
For WiFi, the time for data communication is rather unstable, and it varies a lot from one test
to another. Generally speaking, the execution time of this solution is longer than the protocols
running through Bluetooth. One reason is that we did not find a way to establish HTTP persistent
connections with BlackBerry devices, so that a device has to establish a new HTTP connection
for each HTTP request. According to [11], we cannot reuse the same HTTPConnection Object in
JavaMe. The other reason is that BlackBerry devices have issues with their WiFi [21]. Another
drawback of this solution is that WiFi is more power consuming than Bluetooth. In addition,
this solution requires extra hardware, such as a WiFi access point and a matchmaking server. As
a result, this should only be considered a solution only if automatic Bluetooth pairing is not an
option.

76

1 2 3 4 5 6 Ave St. Dev
Total execution time (ms) 6248 6136 6368 7484 6768 14956 7993.3 3446.1

Time to put dh public key (ms) 716 772 412 568 588 2312 894.7 705.6
Time to download dh public

key & signature (ms) 828 1236 700 616 616 1748 957.3 451.4
Time to put dh signature (ms) 740 560 736 652 852 660 700 99.5
Time to sign signatures (ms) 976 952 1024 1012 980 976 986.7 26.5

Time to upload signatures (ms) 724 732 664 676 820 608 704 72.4
Time to query result (ms) 524 508 712 2056 728 4924 1575.3 1740.8

Time to exchange signatures (ms) 1280 972 1704 1500 1788 3336 1763.3 825.4

Table 4.1: Execution time

77

Chapter 5

Conclusion and Future Work

In this thesis, we presented an architecture for preserving users’ interest information from unnec-
essary leaks in mobile social networking applications. In particular, we proposed and studied two
matchmaking protocols. These two protocols are designed to allow only users with same inter-
ests to learn each other’s interests that they have in common. As a byproduct, we also presented
a shopping notification protocol. This protocol allows a user to query a store’s item list to find
out if there is any item she wants to purchase. This protocol hides the real item the user wants
to purchase in a number of dummy items. We implemented a BlackBerry application that runs
these protocols and evaluated the performance. During our implementation, we discovered that
the BlackBerry Bluetooth has a feature that requires two devices to be manually paired before
they can exchange information. We proposed several solutions for this problem and implemented
one of the solutions.

One obvious and important problem we have to solve in the future is to fix the Bluetooth pair-
ing problem. As we briefly mentioned before, we believe that it should be safe to allow arbitrary
Bluetooth device to connect, if we carefully design the access control scheme for mobile devices.
In the prototype we implemented, we focused on implementing the Matchmaking Module of our
system. In the future, it would be necessary to complete the implementation of all other modules.
For example, the Schedule, Group, and File Sharing Modules are not implemented yet. Right
now, we simply display the matchmaking results to the screen on both devices. Later, a better
handler should be added to allow devices to exchange users’ contact information or other profile
information according to the configurations. In the current stage, we display only the informa-
tion to user’s device if cheating is detected, and we should improve our implementation to report
the malicious behaviours to our PIS. We should keep looking for better alternative matchmaking
protocols that fit our setting. It would be interesting to perform more sophisticated matching
as well. Right now, we allow only the exact matching (two terms should be exactly the same).
We proposed a protocol for our shopping notification application. We would like to finish the

78

implementation of this protocol.

Mobile social networking has brilliant future, and there are also a lot of privacy-related prob-
lems. We believe that our architecture and protocols are able to solve part of the problems and
motivate more useful solutions.

79

References

[1] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant. Information shar-
ing across private databases. In in Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pages 86–97. ACM Press, 2003. ix, 6, 37

[2] Jan Camenisch and Anna Lysyanskaya. A Signature Scheme with Efficient Protocols. In
SCN, pages 268–289, 2002. 6

[3] Jan Camenisch and Gregory M. Zaverucha. Private Intersection of Certified Sets. In Finan-
cial Cryptography, pages 108–127, 2009. 6

[4] Carlos Aguilar Melchor. High-Speed Single-Database PIR Implementation. http://

petsymposium.org/2008/hotpets/PIR.pdf, 2008. accessed 07 2010. 49

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In
FOCS ’95: Proceedings of the 36th Annual Symposium on Foundations of Computer Sci-
ence, page 41, Washington, DC, USA, 1995. IEEE Computer Society. 48

[6] Christina Warren. StreetSpark: Foursquare for Dating. http://mashable.com/2010/

05/11/streetspark/. accessed 05 2010. 2

[7] Landon P. Cox, Angela Dalton, and Varun Marupadi. Smokescreen: flexible privacy con-
trols for presence-sharing. In MobiSys ’07: Proceedings of the 5th international conference
on Mobile systems, applications and services, pages 233–245, New York, NY, USA, 2007.
ACM. 4

[8] Emiliano De Cristofaro and Gene Tsudik. Practical Private Set Intersection Protocols with
Linear Computational and Bandwidth Complexity. Cryptology ePrint Archive, Report
2009/491, 2009. http://eprint.iacr.org/2009/491.pdf. 6

[9] Daniel. Bluetooth Stack Test Methodology. http://brainmurmurs.com/blog/2006/

12/13/bluetooth-stack-test-methodology/, 12 2006. accessed 07 2009. 51

80

http://petsymposium.org/2008/hotpets/PIR.pdf
http://petsymposium.org/2008/hotpets/PIR.pdf
http://mashable.com/2010/05/11/streetspark/
http://mashable.com/2010/05/11/streetspark/
http://eprint.iacr.org/2009/491.pdf
http://brainmurmurs.com/blog/2006/12/13/bluetooth-stack-test-methodology/
http://brainmurmurs.com/blog/2006/12/13/bluetooth-stack-test-methodology/

[10] Daniel. What did RIM Do To Their Bluetooth Performance? http://brainmurmurs.

com/blog/2006/12/12/what-did-rim-do-to-their-bluetooth-performance/, 12
2006. accessed 07 2009. 51

[11] Darryl L. Pierce. The JavaME Frequently Asked Questions List. http://bellsouthpwp.
net/m/c/mcpierce/javamefaq.html#reuse_httpconnection_object. accessed 07
2010. 48, 76

[12] Nathan Eagle and Alex Pentland. Social Serendipity: Mobilizing Social Software. IEEE
Pervasive Computing, 4(2):28–34, 2005. 4

[13] Facebook. Choosing between an FBML or IFrame Application. http://wiki.

developers.facebook.com/index.php/Choosing_between_an_FBML_or_IFrame_

Application. accessed 02 2010. 53

[14] Facebook. Facebook developer: Get started. http://developers.facebook.com/get_
started.php. accessed 02 2010. 53

[15] Facebook. Statistics. http://www.facebook.com/press/info.php?statistics. ac-
cessed 07 2009. 1

[16] Michael J. Freedman and Antonio Nicolosi. Efficient Private Techniques for Verifying
Social Proximity. In Proc. 6th International Workshop on Peer-to-Peer Systems (IPTPS
07), Bellevue, WA, February 2007. 8

[17] Gatsby. About Gatsby. http://meetgatsby.com/about. accessed 05 2010. 2

[18] Hardware. Change or Modify Bluetooth Device hardware (MAC)
address. http://www.siddharthabbineni.com/tech/hardware/

change-bluetooth-device-mac-address.html. accessed 05 2010. 19

[19] Sachin Katti, Jeffery Cohen, and Dina Katabi. Information Slicing: Anonymity Using
Unreliable Overlays. In Proceedings of the 4th USENIX Symposium on Network Systems
Design and Implementation (NSDI), April 2007. 30

[20] Hugo Krawczyk. SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE-Protocols. In CRYPTO, pages 400–425, 2003. 27, 39

[21] Kyle McInneson. BlackBerry browser comparisons has WiFi
been fixed? http://www.blackberrycool.com/2009/09/14/

blackberry-browser-comparisons-has-wifi-been-fixed/, 09 2009. accessed 07
2010. 76

81

http://brainmurmurs.com/blog/2006/12/12/what-did-rim-do-to-their-bluetooth-performance/
http://brainmurmurs.com/blog/2006/12/12/what-did-rim-do-to-their-bluetooth-performance/
http://bellsouthpwp.net/m/c/mcpierce/javamefaq.html#reuse_httpconnection_object
http://bellsouthpwp.net/m/c/mcpierce/javamefaq.html#reuse_httpconnection_object
http://wiki.developers.facebook.com/index.php/Choosing_between_an_FBML_or_IFrame_Application
http://wiki.developers.facebook.com/index.php/Choosing_between_an_FBML_or_IFrame_Application
http://wiki.developers.facebook.com/index.php/Choosing_between_an_FBML_or_IFrame_Application
http://developers.facebook.com/get_started.php
http://developers.facebook.com/get_started.php
http://www.facebook.com/press/info.php?statistics
http://meetgatsby.com/about
http://www.siddharthabbineni.com/tech/hardware/change-bluetooth-device-mac-address.html
http://www.siddharthabbineni.com/tech/hardware/change-bluetooth-device-mac-address.html
http://www.blackberrycool.com/2009/09/14/blackberry-browser-comparisons-has-wifi-been-fixed/
http://www.blackberrycool.com/2009/09/14/blackberry-browser-comparisons-has-wifi-been-fixed/

[22] Looptmix. Looptmix. http://www.looptmix.com/. accessed 05 2010. 2

[23] Justin Manweiler, Ryan Scudellari, and Landon P. Cox. SMILE: Encounter-Based Trust
for Mobile Social Services. In Proceedings of ACM CCS 2009, November 2009. 5

[24] Sergio Mascetti, Claudio Bettini, Dario Freni, X. Sean Wang, and Sushil Jajodia. Privacy-
Aware Proximity Based Services. In MDM ’09: Proceedings of the 2009 Tenth Interna-
tional Conference on Mobile Data Management: Systems, Services and Middleware, pages
31–40, Washington, DC, USA, 2009. IEEE Computer Society. 8

[25] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 2001. ix, 23, 24

[26] MOCOM2020. 4.1 Billion Mobile Phone Subscribers Worldwide. http://www.

mocom2020.com/2009/03/41-billion-mobile-phone-subscribers-worldwide/,
03 2009. accessed 07 2009. 1

[27] Femi G. Olumofin, Piotr K. Tysowski, Ian Goldberg, and Urs Hengartner. Achieving Ef-
ficient Query Privacy for Location Based Services. In Privacy Enhancing Technologies,
pages 93–110, 2010. 48

[28] A-K Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot. Mobiclique: Middleware
for Mobile Social Networking. In WOSN’09: Proceedings of ACM SIGCOMM Workshop
on Online Social Networks, August 2009. 2, 4

[29] Podnetadmin. PodNet - Mobile Distribution of User-generated Content. http://www.

podnet.ee.ethz.ch/. accessed 05 2010. 2

[30] Research In Motion Limited. Wi-Fi enabled BlackBerry smartphones. http://

na.blackberry.com/eng/ataglance/networks/WiFiCellularWhitepaper.pdf. ac-
cessed 07 2010. 68

[31] RIM. BlackBerry JDE 4.5.0 API Reference: Class DHKeyAgreement. http:

//www.blackberry.com/developers/docs/4.5.0api/net/rim/device/api/

crypto/DHKeyAgreement.html. accessed 07 2009. 60

[32] Ji Sun Shin and Virgil D. Gligor. A New Privacy-Enhanced Matchmaking Protocol. In 16th
Annual Network & Distributed System Security Symposium, 2008. 5

[33] Li Shundong, Wang Daoshun, Dai Yiqi, and Luo Ping. Symmetric cryptographic solution
to Yao’s millionaires’ problem and an evaluation of secure multiparty computations. Inf.
Sci., 178(1):244–255, 2008. 7

82

http://www.looptmix.com/
http://www.mocom2020.com/2009/03/41-billion-mobile -phone-subscribers-worldwide/
http://www.mocom2020.com/2009/03/41-billion-mobile -phone-subscribers-worldwide/
http://www.podnet.ee.ethz.ch/
http://www.podnet.ee.ethz.ch/
http://na.blackberry.com/eng/ataglance/networks/WiFiCellularWhitepaper.pdf
http://na.blackberry.com/eng/ataglance/networks/WiFiCellularWhitepaper.pdf
http://www.blackberry.com/developers/docs/4.5.0api/net/rim/device/api/crypto/DHKeyAgreement.html
http://www.blackberry.com/developers/docs/4.5.0api/net/rim/device/api/crypto/DHKeyAgreement.html
http://www.blackberry.com/developers/docs/4.5.0api/net/rim/device/api/crypto/DHKeyAgreement.html

[34] Michael Terry, Elizabeth D. Mynatt, Kathy Ryall, and Darren Leigh. Social net: using
patterns of physical proximity over time to infer shared interests. In CHI ’02: CHI ’02
extended abstracts on Human factors in computing systems, pages 816–817, New York,
NY, USA, 2002. ACM. 5

[35] Unknown. Pair a Windows Mobile device and a Windows XP SP2 Computer. http:

//www.sembee.info/windowsmobile/sync-bluetooth2.asp. accessed 05 2010. 66

[36] User udi. Obex Push messages to from Nokia to BB using J2ME.
http://supportforums.blackberry.com/t5/Java-Development/

Obex-Push-messages-to-from-Nokia-to-BB-using-J2ME/m-p/228088;

jsessionid=A8D7AFF45C647A12ADC5DDD35F323EB2. accessed 05 2010. 66

83

http://www.sembee.info/windowsmobile/sync-bluetooth2.asp
http://www.sembee.info/windowsmobile/sync-bluetooth2.asp
http://supportforums.blackberry.com/t5/Java-Development/Obex-Push-messages-to-from-Nokia-to-BB-using-J2ME/m-p/228088;jsessionid=A8D7AFF45C647A12ADC5DDD35F323EB2
http://supportforums.blackberry.com/t5/Java-Development/Obex-Push-messages-to-from-Nokia-to-BB-using-J2ME/m-p/228088;jsessionid=A8D7AFF45C647A12ADC5DDD35F323EB2
http://supportforums.blackberry.com/t5/Java-Development/Obex-Push-messages-to-from-Nokia-to-BB-using-J2ME/m-p/228088;jsessionid=A8D7AFF45C647A12ADC5DDD35F323EB2

	List of Tables
	List of Figures
	Introduction
	Introduction
	Related Work
	Mobile Social Networking Applications
	Matchmaking Protocols

	Architecture and Threat Model
	System Architecture
	Scenarios
	First Encounter
	Meet Again

	Threat Model

	Matchmaking Protocols
	Setup
	Id Signer
	Personal Info Signer

	Fair Exchange Protocol
	Initial Phase
	Matching Phase
	Signature Renewal, Signature Revocation and Tree Update
	Security Analysis
	A Failed Approach

	DDH Protocol
	Initial Phase
	Matchmaking Phase
	Security Analysis
	Cheaper DDH Protocol

	A Variant of the Fair Exchange Protocol
	Initial Phase
	Matchmaking Phase

	Implementation and Evaluation
	Fair Exchange and DDH Protocols
	Development Environment
	Setup of the PIS Programs
	Setup of the Devices
	The Implemented Fair Exchange Protocol
	The Implemented Fast Fair Exchange Protocol
	The Implemented DDH Protocol
	Evaluation

	Implemented Shopping Notification Application
	Simulation of the Security of Our Fair Exchange Protocol
	Avoiding Manual Pairing of Bluetooth Devices
	Implemented Solution and Experimental Results

	Conclusion and Future Work
	References

