
An Improved Algorithm for Tor
Circuit Scheduling

by

Can Tang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Can Tang 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Can Tang

iii

Abstract

Tor is a popular anonymity-preserving network, consisting of routers run by volunteers
all around the world. It protects Internet users’ privacy by relaying their network traffic
through a series of routers, thus concealing the linkage between the sender and the recipient.
Despite the advantage of Tor’s anonymizing capabilities, it also brings extra latency, which
discourages more users from joining the network.

One of the factors that causes the latency lies in Tor’s circuit scheduling algorithm,
which allows busy circuits to crowd out bursty circuits. In this work, we propose and
implement a more advanced scheduling algorithm which treats circuits differently, based
on their recent activity. In this way, bursty circuits such as those used for web browsing
can gain higher priority over busy ones such as used for bulk transfer; the performance for
most activities over Tor is improved, while minimal overhead is incurred. Our algorithm
has been incorporated into the latest build of Tor.

v

Acknowledgements

I would like to thank my supervisor, Dr. Ian Goldberg, for his great assistance and
support in my research and grad study. He guided me through everything from research
ideas to theoretic fundamentals and coding techniques. I feel very lucky to have such a
great supervisor.

I would like to thank Ryan Henry, Femi Olumofin, Aniket Kate and Greg Zaverucha
for their comments on the research work and early drafts of this thesis. I would like thank
The Tor Project for their financial support, and also for incorporating our results into the
main Tor code. I would also like to thank my thesis readers Dr. Urs Hengartner and Dr.
Srinivasan Keshav. I would like to acknowledge MITACS and NSERC for their financial
support as well.

I thank my friends Shihong Yan, Penghao Diao, Kun She, Yu Wang, Run Yuan, Zhe
Chen, Xin Gao, Feifei Ling, Bo Wang, Ran Zheng, Ruoyu Hou, Kexin Hou, Guanlong Li,
Mengyuan Dai, He Chen, Wanying Luo, and Qi Xie, for making my life in Waterloo a very
enjoyable experience.

Finally, I would like to thank my parents for supporting everything I do in my life, for
giving me courage when I was depressed, for sacrificing a lot to give me the best education
I could have when I was a child, and for caring about me like I was around while I was
away from home. They don’t ask me for anything, but are always there when I’m in need.
For me, they are the best parents in the world.

vii

Contents

List of Figures xi

1 Introduction 1

2 Overview of Anonymity Networks and Tor 3

2.1 Mix Networks . 3

2.2 Anonymous Remailers . 4

2.2.1 Type-0 Remailers . 4

2.2.2 Type-I Remailers . 5

2.2.3 Type-II Remailers . 5

2.2.4 Type-III Remailers . 5

2.3 Low-latency Anonymity Networks . 6

2.3.1 Anonymizer . 6

2.3.2 Jondonym/AN.ON . 6

2.3.3 Onion Routing . 6

2.4 Tor . 7

2.5 Adversary Model and Attacks . 8

2.6 Tor’s Performance Issues . 9

2.7 Summary . 10

3 Prioritizing Interactive Circuits 13

3.1 Incentives . 13

3.2 How Tor’s Circuits Work . 14

3.3 Circuit Selection based on EWMA . 15

ix

4 Experiments and Results 17

4.1 Implementation Notes . 17

4.2 PlanetLab Simulations . 18

4.2.1 End-to-End Timing Analysis . 18

4.2.2 Fine-grained Timing Analysis . 21

4.3 Experiments on Live Tor Nodes . 24

4.3.1 Bandwidth Requirement for Live Tor Nodes 24

4.3.2 Testbed Setup . 25

4.3.3 Experimental results . 26

4.3.4 Effects on Bulk Transfer . 26

4.4 Overhead . 29

4.5 Compatibility with the Existing Tor . 31

5 Fine-tuning of the Algorithm 33

5.1 Testbed Setup . 33

5.2 Experimental Results . 34

6 Effects on Hidden Services 37

6.1 Overview . 37

6.2 Experimental Results . 39

7 Related Work 41

7.1 Tor over DTLS . 41

7.2 Opportunistic Bandwidth Measurement . 42

7.3 Performance-Based Path Selection . 42

7.4 Providing Incentives for Tor Relays . 43

7.5 Internet QoS Schemes . 43

8 Security Issues 47

8.1 Traffic Analysis . 47

8.2 Strategy Proofness . 48

x

9 Future Work 49

9.1 Reduce the Cell’s Time in the Output Buffer 49

9.2 Prioritize Connections . 50

10 Summary 53

References 53

xi

List of Figures

4.1 The Tor circuit structure for Experiment 1 19

4.2 CDF for time cost of downloading a small file for unprioritized and priori-
tized Tor . 19

4.3 CDF for time cost of downloading a small file for unprioritized and priori-
tized Tor, under traffic simulation . 20

4.4 Time points for a cell’s life cycle in the middle OR, unprioritized 22

4.5 Time points for a cell’s life cycle in the middle OR, prioritized 22

4.6 Cumulative incoming and outgoing cells of the circuit queue in the middle
OR, unprioritized . 23

4.7 Cumulative incoming and outgoing cells of the circuit queue in the middle
OR, prioritized . 23

4.8 Time cells wait in the circuit queue in the middle OR 24

4.9 CDF for time cost of downloading a small file using unprioritized and pri-
oritized middle OR, in the real Tor network 26

4.10 CDF for time cost of downloading a small file using unprioritized and pri-
oritized middle OR, in the real Tor network, during afternoons ET 27

4.11 CDF for time cost of downloading a small file using unprioritized and pri-
oritized middle OR, in the real Tor network, during midnights ET 27

4.12 CDF for time cost of bulk download using unprioritized and prioritized
middle OR, in the real Tor network . 28

4.13 CDF for time cost of downloading a small file for unprioritized and priori-
tized Tor, under CPU-limited scenario . 30

5.1 Comparison of performance for different values of H: CDF 34

5.2 Comparison of performance for different values of H: latency vs. H. Values
for unprioritized Tor are shown by horizontal lines. 35

xiii

6.1 Overview of Hidden Services. Each arrow is a three-hop connection over the
Tor network. 38

6.2 CDF for time cost of connection initialization and webpage fetching for
Hidden Services, for unprioritized and prioritized Tor 39

xiv

Chapter 1

Introduction

Tor [DMS04] is a distributed anonymizing network that provides privacy for its users. The
network is formed by volunteers all around the world running Onion Routers (ORs). The
ORs publish their related information, such as bandwidth and exit policies, to a set of
centralized servers called directory authorities. These directory authorities negotiate with
each other and reach a consensus about the ORs. An end user runs an Onion Proxy
(OP) locally to tunnel application requests through Tor; the OP downloads the consensus
from the directory authorities, randomly picks a set of ORs, choosing them weighted by
their reported bandwidths, and builds circuits through them. Then application traffic is
relayed through the circuit, using layered encryption. In this way, a single OR only sees its
previous OR/OP and next OR/OP, but not the actual sender-recipient relationship, and
the privacy of the user at the transport level is preserved.

The anonymity provided by Tor relies on the size of the anonymity set — the set of users
who could have performed a given action. Currently, there are around 1500 ORs [Tor09],
and an estimated quarter million Tor users. Tor’s rapid expansion period ended by the
end of 2007 (in terms of the number of ORs) [Loe09b]. After that, Tor entered a relatively
stable stage: the number of ORs joining the Tor network roughly equaled the number
leaving it. One of the obstacles for Tor’s further expansion is its performance issues.

There are many causes for Tor’s performance issues. One of the causes is that bursty
circuits do not co-exist with busy circuits very well. When multiple circuits are sharing a
single connection between two ORs, busy circuits such as those for bulk transfer will greatly
degrade the performance of the bursty ones, such as those for web browsing. Although
this effect is inevitable due to the limited bandwidth resources, we want to allocate the
resources more efficiently; that is, to give higher priority to the circuits with low throughput
or short bursts of traffic, and make them faster. This is reasonable from the application
point of view as well: circuits for web browsing or instant messaging are usually sensitive
to delays, while those for bulk transfer are usually not.

1

Our approach is to calculate the exponentially weighted moving average (EWMA) for
the number of cells sent in each circuit. When selecting the circuit to process, we always
pick one with the lowest EWMA value, and flush the cells in that circuit. Newly created
circuits and bursty circuits will usually have a low EWMA value, and so they will be
prioritized.

Experiments showed that our improvement is effective in both PlanetLab simulation
and the live Tor network. In the live experiment, the average time to download a small
file decreased by 21% when we implement our enhancement on a single OR in a circuit.

We give an overview of anonymity networks in Chapter 2. In Chapter 3, we introduce
the incentives and rationality of our proposal, briefly demonstrate the mechanism under-
lying Tor circuits, and propose our improvement. In Chapter 4, we show the results of
some experiments under different scenarios, with analysis of the results and the overhead.
Chapter 5 examines the effect of different parameter values on the performance of our
system, and Chapter 6 explores the performance improvements on Tor’s hidden services.
Chapter 7 provides some related work on improving Tor’s performance. Chapter 8 analyses
the effects of our algorithm on Tor’s security properties. We discuss possible future work
in Chapter 9, and conclude in Chapter 10.

2

Chapter 2

Overview of Anonymity Networks
and Tor

This chapter presents an overview of anonymity networks and Tor, to readers not familiar
with them. A more thorough description of Tor can be found in [DMS04].

2.1 Mix Networks

David Chaum proposed the concept of mix networks [Cha81] to achieve anonymity for
electronic mail. The proposed network consisted of multiple proxies called mixes. A
message is multiply encrypted and sent through a path consisting of multiple mixes. At
each mix, the message is decrpyted, padded to a uniform length, mixed into batches and
sent out. Anyone watching the incoming and outgoing traffic on a mix, except the mix
itself, will not be able to correlate the messages. In this design, unless all the mixes in the
selected path collude, the message sender cannot be linked to the recipient.

Systems such as Babel [GT96], Mixmaster [MCPS03] and Mixminion [DDM03] adopted
Chaum’s mix network design. These systems provided protection against strong global
adversaries. However, for interactive applications such as web browsing, remote login,
or instant messaging, the delay introduced by reordering and mixing is unacceptable.
In order to support anonymized interactive applications, the processes that greatly in-
crease the overall delay should be removed from the design. Anonymizer [Ano10], Jon-
donym/AN.ON [JAP06], Onion Routing [GRS99] and Tor are examples of such a design,
which provide low-latency services for interactive applications. These designs trade off the
strong security properties for better usability.

Real-time response implies that an adversary watching both ends of the communication

3

path can confirm the relationship between the sender and the recipient (traffic confirma-
tion) [Dan03]; thus real-time anonymity networks only resist non-global adversaries. We
will show later by examples of deployed anonymity networks, however, that such an ad-
versary model is reasonable in practice, provided that the network is deployed at a large
scale.

2.2 Anonymous Remailers

People’s growing awareness of their privacy in the digital age can be exhibited in the follow-
ing citation by Johan Helsingius, the operator of the Penet remailer (anon.penet.fi) [Gra94]:

“Some people from a university network really argued about if everybody should
put their proper name on the messages and everybody should be accountable, so
you could actually verify that it is the person who is sending the messages. And
I kept arguing that the Internet just doesn’t work that way, and if somebody
actually tries to enforce that, the Internet will always find a solution around
it. And just to prove my point, I spent two days or something cooking up the
first version of the server, just to prove a point.”

As a result, starting from the early 90’s, Chaum’s initial design evolved into various
anonymous remailer services, assisting people in preserving their anonymity in email mes-
sages. In this section, we take a brief look at the designs of these systems.

2.2.1 Type-0 Remailers

A type-0 remailer refers to a mail server that accepts email messages from clients, performs
operations on the message to remove all the information that can identify the original
sender, and relays the message to the final destination. In addition, the server can assign
pseudonyms to the actual senders, and maintains a list of the sender-pseudonym relation-
ships. Thus, the reply messages to the pseudonyms can be relayed back to the original
senders. anon.penet.fi, located in Finland, was one of the emerging type-0 remailers in the
early 90’s. By September 1994, anon.penet.fi had over 700,000 registered users.

This type of remailer has the advantage of easy implementation, deployment and main-
tenance. However, the relayed plaintext message made it easy for eavesdroppers to read the
content. Additionally, powerful adversaries can break into the server or exert legal pressure
to the server operator to get the list revealing the linkage between the pseudonyms and
the actual senders. In 1995 and 1996, the Church of Scientology claimed to be harmed by

4

anonymous email sent from anon.penet.fi, and used legal pressure to force the operater to
reveal the identity of the sender. After these two compromises, the operator felt unable to
provide privacy for their users, and shut down the service.

2.2.2 Type-I Remailers

The next generation of remailers, type-I remailers, greatly improved the security compared
to their predecessors. They used encryption for the messages to defeat casual eavesdrop-
pers, removed message logs and identity information from the senders, and adopted chain-
ing in the sending process: messages are relayed through a chain of remailers to the final
destination, to avoid single point of attack.

This design is secure even against more powerful attackers: even large cooperations and
government agencies cannot compromise the chain of remailers easily, since the remailers
are distributed geographically.

There are still attacks available to compromise the anonymity of type-I remailers: the
size correlation attack, which records the sizes of incoming messages and outgoing messages
on a remailer, and correlates these messages using the sizes, and replay attack, which
records the plaintext message, sends it to the remailer multiple times and watches which
outgoing message repeated, so as to discover the corresponding encrypted message.

2.2.3 Type-II Remailers

In order to solve the vulnerabilities of type-I remailers, type-II remailers enhanced the
design by dividing the messages into fixed-sized packets to defeat the size correlation attack,
and by recording message IDs to prevent the replay attack. Mixmaster [MCPS03] is a
representative type-II remailer service.

A big disadvantage of type-II remailers is their poor support for reply messages. The
sender still need to use the insecure type-I style remailer to receive replies.

2.2.4 Type-III Remailers

Type-III remailers, represented by Mixminion [DDM03], have been proposed to address
the problems of type-II remailers. The design further enhanced the security of type-II
remailers. Since the recorded ID list in a type-II remailer needs to be kept short, old
message IDs will expire after a certain amount of time, and the attacker can replay a
message after its ID expires. In type-III remailers, key rotation is used to make the replay
attack infeasible: the remailer will rotate its encryption key regularly, and record every

5

message ID addressed to a given key before the key expires. Forward anonymity is ensured
by using ephemeral keys; exit policies can be configured to prevent exit abuse. In addition,
single-use reply blocks are adopted to support a secure way of receiving replies to messages
sent anonymously.

2.3 Low-latency Anonymity Networks

Privacy protection for email, however, is not sufficient; message delays in the remailer
network can be many hours, or even days. This is inappropriate for protecting other
types of network traffic, such as web browsing, which require low-latency approaches to
anonymity.

2.3.1 Anonymizer

The Anonymizer is the simplest design of a low-latency anonymity network. It consists of
a single trusted server, acting as an anonymizing proxy. The server accepts messages from
the user, strips identifying information, and sends it to the indended recipient. The reply
messages are relayed in the reverse order. The design is similar to that of anon.penet.fi: it
is simple and efficient, yet bears the same vulnerabilities as anon.penet.fi. Users need to
trust the anonymizing server to keep their identities secret.

2.3.2 Jondonym/AN.ON

The Jondonym service is a branch of the AN.ON project [JAP06]. The Jondonym network
consists of multiple mix servers. The mix servers are operated by independent organiza-
tions, and their identities are public. Among these mix servers, the user explicitly selects
those she trusts and forms a cascade. The traffic from the user is encrypted for every mix
server in the cascade and transferred through the cascade. A large number of users will
share the same cascade, thus hiding them among each other.

One of the big advantages of Jondonym, compared to other anonymity networks, is
that only certified persons and organizations can operate its mix servers. This to some
extent prevents malicious mixes from joining the network, and provids some assurance of
the qualities of mixes. On the other hand, this discourages more non-malicious mixes from
joining the network as well, thus slowing down the speed of expansion.

6

2.3.3 Onion Routing

Onion Routing was proposed in 1996 [GRS99] to provide anonymity to interactive appli-
cations on the Internet, such as web browsing and telnet. The initiator of traffic randomly
selects a set of geographically distributed Onion Routers (ORs) to form a path. Different
from Jondonym, these ORs are run by volunteers who do not need to publish their iden-
tities, or get certified by a centralized server. Then initiator chooses a path of ORs, and
creates an onion that contains an encrypted layer for each OR on the path, including the
secret keys for each OR. Internet traffic is multiply encrypted and relayed through this
path. Each OR decrypts one layer of the message and forwards the message to the next
OR in the path. Return traffic is also relayed through the path, but in the reverse order,
and the message is encrypted one more layer at each OR. The design evolved into the Tor
network, which we will discuss in more detail in the next section.

2.4 Tor

The Tor network [DMS04] is the second generation Onion Routing network, and the most
widely used anonymity network. The network consists of over 1000 relays (ORs) located
around the world. The relays provide cryptographic operations on incoming messages and
send them out without mixing and padding, to achieve low latency.

A client runs an Onion Proxy (OP) locally, to accept user-level TCP requests and
relay data to the network. Before the OP can relay data, a circuit consisting of multiple
ORs needs to be created. The circuit will be used to transport data chunked into cells of
fixed length (512 bytes). The set of ORs in the circuit is chosen randomly, weighted by
the reported bandwidth of each OR. Once the set of ORs is decided, the circuit is created
incrementally: the OP builds a TLS connection to the first OR, and negotiates a symmetric
key with it, by sending command cells containing the related cryptographic data. Once
the symmetric key is negotiated, the OP extends the circuit to the second OR by telling
the first OR to build a TLS connection to the second OR, and relay the command cells
sent between the OP and the second OR. Thus a symmetric key with the second OR can
be negotiated, without the second OR knowing the OP’s IP address. In the same way,
the circuit can be extended to the next OR, until the last OR (the exit OR) in the set is
reached. The circuit creation phase is completed at this step.

After circuit creation, the OP can accept user-level requests. It breaks the data from
the application layer into cells, encrypts the cells multiple times using the symmetric keys
negotiated with each OR in the circuit, and sends the cell to the first OR. When receiving
the cell, each OR decrypts the cell using its symmetric key, and forwards the cell to the
next OR in the circuit. At the exit OR, the cell is unencrypted after decryption. The exit

7

OR regroups the cells into TCP streams, and forwards them to the destination server. The
server only sees a TCP connection from the exit OR, without knowing the encryption and
decryption processes in the circuit.

When receiving data from the server, the process is reversed: the exit OR accepts data
from the server, breaks the data into cells, encrypts them and forwards them to the previous
OR in the circuit. Each OR encrypts an extra layer when receiving the cell, and forwards
the cell to its previous OR. The OP will receive the multiply encrypted cell, and decrypts
it with the session keys to get the unencrypted cell. Then the cells will be regrouped into
TCP streams and sent back to the application layer.

None of the ORs except the first (entry) OR knows the initiator of the circuit, and
none of the ORs except the exit OR knows the destination of the traffic it relays. Without
the presense of a global adversary, anonymity for the clients is achieved. But since the exit
OR is the one who talks directly to the server, it is responsible for the behaviour of the
actual client. In order to avoid abuse issues, the operator of an OR can set its exit policy,
which specifies the type of traffic for which it is willing to serve as an exit OR.

Tor also has mechanisms for fairness, rate limiting and congestion control. ORs use a
token bucket approach to ensure a long-term average bandwidth, at the same time per-
mitting short bursts of traffic. Besides TCP’s own congestion control mechanism, Tor
provides both circuit-level throttling and stream-level throttling to achieve better utiliza-
tion of network resources. These mechanisms alone, however, do not achieve the optimal
utilization of network resources, since they ignore the fact that different Tor users have
different bandwidth requirements and delay tolerances.

2.5 Adversary Model and Attacks

Since the data is grouped into fixed-size cells and encrypted at each OR, the appearance of
a cell changes completely when going through an OR. Thus, an adversary cannot correlate
cells based on their bit patterns. But since ORs do not mix cells or provide cover traffic,
an adversary watching both ends of the circuit can correlate cells based on their timing
pattern (end-to-end timing correlation).

In practice, in order for end-to-end timing correlation to work, the attacker needs
to compromize tens of globally distributed ORs to have a non-negligible probability to
compromize the anonymity of a certain Tor client, according to statistics [Tor09]. This
attack is highly impractical even for powerful organizations such as government agencies.

For the same reason, it is difficult to launch DoS attacks, since the targets are dis-
tributed globally and form a large number. Alternatively, the adversary can choose to

8

become part of the network himself, by volunteering as one or more ORs. If the adver-
sary’s bandwidth accounts for certain fraction of the whole network, he will have control
over a corresponding portion of circuits. This is not easy to achieve either, since individual
OR’s bandwidth is capped to a threshold. The adversary needs to fund multiple ORs with
a total bandwidth high enough to attract bulk traffic.

Using techniques described in [MD05], a modest adversary can still launch an attack
against Tor to greatly compromise its anonymity. Instead of passively observing the traffic
pattern, the adversary actively sends his own traffic through a Tor node. Since different
circuits of traffic through a node interfere with each other, he can observe the change in
latency in the target circuit in order to infer whether the node is in the circuit. The attack
cannot directly discover the identity of the client, but will reduce the anonymity of Tor
to a series of known proxies. In practice, as long as the client frequently switches to new
circuits, this attack only has minimal success rate.

The security of the data content at the exit OR should be a significant consideration
by Tor clients, since the data is decrypted into plaintext at the exit OR. A hostile exit OR
can read the sensitive content such as username/password, and may modify the data. The
end-to-end security should be ensured by using end-to-end secure transport protocols like
TLS by the client.

To conclude, although Tor does not provide perfect anonymity, it provides enough
protection in most practical scenarios. In fact, it is currently the most successful deployed
anonymity network.

2.6 Tor’s Performance Issues

Tor entered a rapid expansion stage since its inception in 2004: the number of relays
increased linearly to around 1500 by the end of 2007, and the total bandwidth increased to
around 400 MB/s [Loe09a]. But after that, Tor’s fast pace of expansion ceased, and Tor
has entered a relatively stable stage, in terms of number of ORs and total bandwidth. As
of April 2010, the number of ORs was around 1400 and the total bandwidth was around
420 MB/s [Tor09].

Many reasons account for this cease of expansion, both political and technical. For
example, the data retention laws passed in the beginning of 2008 in Germany discour-
aged many OR operators from continuing running the ORs, because of the uncertainty
of whether running an OR remained legal. In 2009, the Chinese government blocked not
only the Tor website, but the Tor network as well. The unavailability of the Tor web-
site prevented Internet users in China from making themselves acquainted with Tor and
downloading the Tor software, while blocking the Tor network made it technically very

9

difficult to access Tor or volunteer as an OR in mainland China. As a result, this act
almost eliminated all ORs in China.

Aside from political reasons, the main obstacle that keeps potential users and potential
OR operators from joining Tor is its performance issues. Tor users experience much higher
latency compared to those without Tor. The reason is multifold: the multi-hop relay struc-
ture of Tor’s circuit certainly contributes to the overall latency, and this structure cannot
be circumvented; besides, Dingledine and Murdoch [DM09] identified several reasons for
Tor’s bad performance. Some major ones are listed below:

• The Quality of ORs

From [Tor09], we see that most of the network bandwidth comes from only a small
portion of ORs. For the majority of low-bandwidth ORs, they are likely to have low
quality in performance, yet considering their number, they still have chances to be
selected by some Tor clients. Such ORs will certainly degrade the performance of a
circuit once selected.

• Usage Abuse

Tor is intended to provide an anonymizing service for low latency, interactive appli-
cations, but still a large portion of bandwidth is used for bulk transfer. [MBG+08]
This adds a large amount of traffic to the network, slowing it down for everyone.

• Capacity Limitation

Currently, the Tor network does not have enough capacity to satisfy all the user
requests: the OR/user ratio is very low. Although it is made very easy for a client
to become an OR, there is no direct incentive for the user to donate her bandwidth
to the Tor network.

• Path Selection

Tor’s path selection algorithm is not optimal under real network situations. The
selection is based on each OR’s reported bandwidth, which may not be accurate.
Using only the bandwidth as the criterion, not others such as latency and geolocation,
may not result in the optimal path in terms of performance either.

• Network Overhead

Clients need to download and update regularly the directory information from direc-
tory servers, which contains information about each OR. This overhead may still be
high for low-bandwidth users.

10

• Extra Overhead for Hidden Services

Different from regular Tor services, accessing Hidden Services (see Chapter 6) involves
an extra layer of indirection, which adds to the performance overhead.

2.7 Summary

With more and more people realizing the need to protect their online privacy, privacy
enhancing technologies have developed rapidly in the past two decades. Based on Chaum’s
model, several anonymity networks were designed and deployed to provide anonymity for
Internet users. These networks are divided into two categories: high-latency anonymity
networks and low-latency (real-time) anonymity networks.

Tor is the most successfully deployed low-latency anonymity network. It provides ano-
nymity on the IP level for TCP-based applications. Currently there are over 1000 ORs in
the network, operated by volunteers.

There are serious performance issues in the Tor network, which slows down Tor’s further
expansion. Our work will concentrate on improving the performance of Tor, and providing
a better user experience.

11

Chapter 3

Prioritizing Interactive Circuits

In this chapter, we propose our improvement on the circuit scheduling algorithm. First,
we state the incentives for our proposal; next, we describe the process by which Tor ORs
select which data is to be transmitted. Finally, we describe our improvement over the
existing system.

3.1 Incentives

Most users of Tor experience its performance issues: it incurs much higher latency than
direct connections. Although the multi-hop architecture inevitably brings extra latency,
the experienced latency is higher than this effect can explain.

One factor for Tor’s bad performance is its limited capacity: the ORs are run by
volunteers, usually on consumer computers, with limited bandwidth. Within this limited
capacity, there are abuse issues observed in the Tor network. According to McCoy et
al. [MBG+08], a small number of BitTorrent connections consume a very high proportion
of Tor bandwidth. These connections make Tor unusable for many potential users.

Tor provides anonymity by mixing a specific user into a crowd of users; therefore, the
degree of anonymity Tor provides depends on the number of users. Higher latency will
discourage more users from joining the network. Hence, the performance issues do not
only affect user experience, but also degrade Tor’s security properties.

The uses of Tor can be divided into interactive streams and non-interactive streams.
Interactive streams include web browsing, instant messaging, SSH, and telnet, while non-
interactive streams include bulk file transfer such as FTP and BitTorrent. Interactive
streams are usually delay-sensitive: users click on a link to a webpage and wait, expecting
it to appear on the screen in seconds, while non-interactive streams are not: BitTorrent

13

users expect the file download to be completed in hours or even days; they can tolerate
higher delays. We aim to improve Tor’s performance by making ORs process interactive
streams first. This will give interactive users (the majority of Tor users) a better experience,
and will make little difference for non-interactive users.

3.2 How Tor’s Circuits Work

As described in Chapter 2, a client runs an OP locally. The OP randomly selects several
ORs to form a path, then builds a Tor circuit through this path. Each circuit is used
by only one client (OP). Between each pair of ORs on the path, a Tor connection is
established. If multiple circuits use the same two ORs in sequence, they will share a single
connection between the two ORs. Based on the current number of users and ORs, and the
ORs’ capacities, we can infer that usually connections will be shared by multiple circuits,
especially for the connections between high-bandwidth ORs. That is, each OR will have
simultaneous connections to a number of other ORs (but only one connection to any given
OR), and each connection will transport data for a number of circuits.

All Tor traffic is relayed in fixed-size (512-byte) cells. A cell consists of a header field
and a payload. The header contains metadata about the cell, such as the circuit identifier.
When a cell arrives at an OR, the OR decrypts the cell, extracts the information necessary
from the header, and then pushes the cell into the output queue for its circuit (the circuit
queue). The time cost of this process is negligible [Rea08] as a fraction of the overall time
for a cell to be processed by an OR. Circuits with non-empty circuit queues are called
active circuits.

Each connection has an output buffer; data written to that buffer will be transmitted
to the next OR in FIFO order. As multiple circuits generally share a single connection,
the cells in the circuit queues must be multiplexed into the output buffer.

When there is room in the output buffer, the OR will select an active circuit, and move
some cells from its circuit queue to the output buffer. If all of the cells are moved, the
circuit is marked inactive.

The contribution of this work is to change how Tor decides from which active circuit
to select cells. The previous algorithm was simply to select active circuits in round-robin
fashion. We show that by making a more judicious selection, the performance of Tor for
interactive circuits can be notably improved, while minimally affecting performance for
circuits performing bulk data transfer, which tend to be delay insensitive in any event.

In order to prioritize interactive circuits, we need to decide, for example, which circuits
are using HTTP, and which circuits are using BitTorrent. Unfortunately, we cannot de-
termine the application protocol by looking directly at the content of the cells, since all

14

of the cells are encrypted except for at the exit OR. On the other hand, circuits using
HTTP may also perform bulk transfer, and we want to deprioritize them as well. Thus,
the amount of traffic sent recently should be an appropriate criterion on which to base
our scheduling decision. We should mention that we do not want to block BitTorrent or
similar applications by blocking the port number at exit ORs, since Tor is intended to
be application neutral; additionally, port number blocking can be easily circumvented by
those file sharing applications.

3.3 Circuit Selection based on EWMA

We want to have a metric for “how many cells a circuit has sent recently”, and base the
circuit selection decision on this metric. The metric needs to represent an average value
over a period of time of the activity for a circuit, and also needs to decay over time, since
we do not want the activity from long ago to have a large impact on the current decision
for a circuit. The exponentially weighted moving average (EWMA) seems to be a good
choice for this metric.

First, we assign each circuit a cell count value, representing the average number of cells
sent recently. Every time we wish to flush some cells to the connection’s output buffer, we
calculate the decayed cell count value for each circuit, based on the EWMA equation that
supports irregularly-spaced observations:

At+∆t = At · 0.5
∆t
H

where At+∆t is the new cell count value, At is the old cell count value, ∆t is the elapsed
time since the last observation and H is the “half life” parameter; that is, H determines
the interval after which the previous average is reduced by half.

After the calculation, the OR picks the circuit with the smallest cell count value, and
flushes that circuit’s cell queue to the output buffer of the connection; the cell count value
is updated correspondingly:

A′t+∆t = At+∆t + Ct,t+∆t

where Ct,t+∆t is the number of cells sent in the interval (t, t+ ∆t].

In our application, ∆t is the interval between circuit queue flushes, and typically has
a value in the range of milliseconds. The value of H, as well as a switch for turning our
whole algorithm on or off, can be set in the Tor configuration file.

As the equation shows, circuits with low or bursty traffic will have low cell counts.
These circuits are likely to be those which are still in their creation phase, as well as
circuits for web browsing or instant messaging, which are exactly the circuits we want to

15

prioritize. For each OR, cells in interactive circuits will wait for less time in the circuit
queue than without prioritization. The performance of interactive circuits, on the whole,
will be improved. As we show later, the performance of circuits which are deprioritized
suffers only minimally.

In regards to the selection of the algorithm, we are not claiming that EWMA is the
only right choice. We selected EWMA for its ease of implementation and effectiveness in
practice, and show later in this work that it indeed performs well. Other options may also
be appropriate, however, and we leave as future work the question of finding the optimal
choice.

16

Chapter 4

Experiments and Results

4.1 Implementation Notes

We implemented the algorithm based on version 0.2.1.19 of Tor. We modified the function
that selects a circuit among the set of active circuits in a connection and flushes cells from
this circuit to the output buffer. The set of active circuits was stored as a circularly linked
list. The simplified algorithm is described as Algorithm 1:

Algorithm 1 flush from first active circuit(connection conn)

now ⇐ gettime()
circ⇐ conn.active circuits
iter ⇐ circ
min ewma⇐∞
repeat

∆t⇐ now − iter.last time
iter.ewma⇐ iter.ewma× power(0.5,∆t/H)
iter.last time⇐ now
if iter.ewma < min ewma then
min ewma⇐ iter.ewma
circ min ewma⇐ iter

end if
iter ⇐ iter.next

until iter = circ
num flushed⇐ flush circuit(circ min ewma)
circ min ewma.ewma⇐ circ min ewma+ num flushed
return num flushed

17

The algorithm gets the current system time, and updates the EWMA count for each
circuit. It then picks the circuit with the least EWMA count, flushes this circuit to the
output buffer, and adds the number of flushed cells to its EWMA count accordingly. In
the description, iter is the iterator going through the whole circuit list; last time is the
last time the circuit ewma count was updated; H is the parameter used in the EWMA
algorithm we discussed in the previous chapter, which is retrieved from Tor’s configuration
file.

The size of the patch is 12 KB, which adds or modifies fewer than 200 lines of C code.
The implementation does not rely on any libraries, thus not bringing extra overhead to
deployment.

4.2 PlanetLab Simulations

The first part of the experiments were performed on PlanetLab. PlanetLab [PACR03] is
a research network consisting of nodes distributed globally, much like Tor. We selected
a set of five nodes from PlanetLab, and ran a private Tor network on them. A typical
Tor circuit consists of three ORs. The OR directly connecting to an OP, the OR directly
connecting to the server, and the OR in the middle are called the entry OR, exit OR, and
middle OR, respectively. In our experiment, we picked two nodes as directory servers and
three nodes as ORs; we ran our modified Tor on the three ORs.

4.2.1 End-to-End Timing Analysis

Experiment 1 was designed to measure the time cost of downloading a small file (simulating
web browsing), while there are competing bulk transfer circuits. According to [Web08],
the average web page size (including HTML, CSS and images) grew from 93KB to over
312KB, from 2003 to 2008. We picked 300KB as the file size we use for our experiment.
The file is hosted on the same machine as the exit OR, in order to eliminate the variance
introduced by the connection between the web server and the exit OR.

We configured three local clients, who select the same path, as shown in Figure 4.1.
Two clients were performing bulk transfer. We tried to download the 300KB file using
the other client, and recorded the elapsed time. We used H = 66 for the algorithm,
which means that after every 66 seconds, the old cell count will decay by a factor of 0.5.
This corresponds to our initial estimate that a decay of 10% over 10 seconds would be
appropriate. We performed 100 downloads for both unprioritized Tor (the stock Tor) and
our prioritized version of Tor. The cumulative distribution function (CDF) of the results
is shown in Figure 4.2.

18

Figure 4.1: The Tor circuit structure for Experiment 1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.2: CDF for time cost of downloading a small file for unprioritized and prioritized
Tor

In Experiment 1, we observed an average of 32% decrease in the time to download
a small file while there are simultaneous competing bulk transfers — the median time
decreased from 2.60 seconds to 1.75 seconds.

During the experiment, when switching between unprioritized and prioritized Tor, we
switched on the algorithm for all three ORs at the same time. But does prioritizing one
of the ORs contribute the most to the effect, or do all three of them contribute equally to
the improvement? In order to investigate this issue, we selectively turned on the algorithm
on individual ORs, and repeated the experiment to see the effect. We discovered that
switching on the algorithm on the entry and exit ORs does not have noticeable effects,
while by turning on the algorithm on the middle OR, we immediately see an improvement
that is close to the overall improvement we obtained. The reason is that for the nodes we
chose on PlanetLab, the link between the middle OR and the entry OR is slower than the

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.3: CDF for time cost of downloading a small file for unprioritized and prioritized
Tor, under traffic simulation

link between the middle OR and the exit OR, so that cells (being sent from the server
to the client) accumulated at the middle OR. This indicates that the effectiveness of the
algorithm highly depends on the conditions of individual ORs; when an OR’s output link
is congested, cells will wait in the circuit queue for longer periods, and our algorithm will
make a more noticeable difference.

For the real Tor network, the traffic distribution is quite different from the previous
experiment. McCoy et al. [MBG+08] identified the exit traffic protocol distribution of Tor
in 2008. HTTP accounted for 92.45% of all connections and 57.97% of the total bytes sent;
SSL accounted for 4.06% of all connections and 1.55% of the total bytes sent; BitTorrent
accounted for 3.33% of all connections and 40.20% of the total bytes sent. Other protocols
such as Instant Messaging, E-Mail, FTP, and Telnet accounted for less than 1% of both
connections and bytes sent. From the cited results, we can conclude that BitTorrent
consumed a disproportionately large amount of bandwidth compared to other protocols.
This justifies our intention of giving interactive streams higher priority. On the other
hand, in reality, the ratio of busy circuits is not as high as in our previous experiment;
i.e., there are not as many low-priority circuits. To see how much improvement we can
get, we created a traffic simulator that randomly generates network traffic according to the
connection-to-throughput ratio in the above statistics.

In Experiment 2, we ran the traffic simulator on multiple clients, to simulate the Tor
network. We downloaded a small file and recorded the time cost. There were 1000 attempts
for both unprioritized and prioritized Tor. The results are shown in Figure 4.3.

20

Due to the large variance in the network conditions, the results have large variance
in both unprioritized and prioritized Tor (ranging from 1 second to almost 1 minute).
However, from the CDF graph, we can still find 10–20% improvement at most quantiles.

4.2.2 Fine-grained Timing Analysis

In Experiment 3, we examine the life cycle of a cell in an OR, check how much time it
spends at each stage, and see where we have improved.

Remember that when a cell reaches an OR, it enters the circuit queue to which it
belongs, and waits to be flushed to the output buffer of the connection. When the output
buffer is empty or has flushed some cells, one circuit will be selected to flush its cells to
the output buffer. Then the cells wait in the output buffer until they are flushed to the
socket.

The testbed setting is similar to Experiment 1. We use libspe [Rea09] to record the
time points related to the cells: when cells enter the circuit queue, when they are moved
from the circuit queue to the output buffer of the connection, and when they leave the
output buffer. We record those time points of cells in the middle OR (as we mentioned,
using our algorithm on the middle OR showed the most improvement in our experiment),
for both unprioritized and prioritized Tor.

Figures 4.4 and 4.5 show the results for a single download of a small file. The x-axis
indicates the time a cell enters the circuit queue, and the y-axis indicates the time the
cell enters the circuit queue (the straight diagonal line), the time the cell moved from the
circuit queue to the output buffer, and the time the cell is flushed from the output buffer.
Thus the gap between the two lower lines indicates the time a cell spends in a circuit queue,
while the gap between the upper two lines indicates the time a cell spends in the output
buffer, waiting to be written to the socket. We can see that a cell spends most of its life
cycle in the circuit queue waiting to be flushed. The prioritized Tor greatly reduced this
duration.

Figures 4.6 and 4.7 show the cumulative number of incoming and outgoing cells for
the circuit queue. The horizontal gap between the two lines “In” and “Out” represents
the time a cell spends in the circuit queue, while the vertical gap shows the length of
the circuit queue. We can observe that both versions have similar incoming patterns, but
the prioritized version has a more steep slope for outgoing cells, which indicates that the
prioritized version flushes cells from the circuit queue more quickly.

Next, we recorded the time cells spent in the circuit queue. We see significant improve-
ment in these durations; in fact, the average duration spent in the circuit queue decreased
from 653 milliseconds to 115 milliseconds. The actual improvement in latency is even
greater than the improvement in the average duration. Figure 4.8 shows the amount of

21

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2

S
ec

on
ds

Seconds

Flushing Outbuf
Circuit Queue to Outbuf

Arriving in Circuit Queue

Figure 4.4: Time points for a cell’s life cycle in the middle OR, unprioritized

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1 1.2

S
ec

on
ds

Seconds

Flushing Outbuf
Circuit Queue to Outbuf

Arriving in Circuit Queue

Figure 4.5: Time points for a cell’s life cycle in the middle OR, prioritized

22

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

el
ls

Seconds

Cumulative Cells In
Cumulative Cells Out

Figure 4.6: Cumulative incoming and outgoing cells of the circuit queue in the middle OR,
unprioritized

 0

 100

 200

 300

 400

 500

 600

 0 0.5 1 1.5 2 2.5

N
um

be
r

of
 C

el
ls

Seconds

Cumulative Cells In
Cumulative Cells Out

Figure 4.7: Cumulative incoming and outgoing cells of the circuit queue in the middle OR,
prioritized

23

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 0.2 0.4 0.6 0.8 1 1.2

S
ec

on
ds

Seconds

Unprioritized
Prioritized

Figure 4.8: Time cells wait in the circuit queue in the middle OR

time cells wait in the circuit queue, which is just the difference between the lower two lines
in each of Figures 4.4 and 4.5. We can see that as cells arrive, more cells are queuing up
within the OR, making the latency higher. Our improvement is more noticeable when the
cells are queuing up: the decrease in latency is as high as 1 second, in this case. This
explains the results we obtained in Experiment 1.

4.3 Experiments on Live Tor Nodes

In order to test the effectiveness of our algorithm on the real Tor network, we need to
perform the experiments on running Tor nodes, with real Tor traffic going through them.
In this section, we describe our live experiments and results, and analyze the limitations.

4.3.1 Bandwidth Requirement for Live Tor Nodes

The effectiveness of our algorithm depends on whether multiple circuits are sharing a
single connection between a pair of ORs. According to [Tor09], as of March 2010, there
were around 1500 ORs in Tor network, with the highest reported bandwidth as much as
15 MB/s.

We downloaded the descriptors of all the ORs, and calculated the sum of the advertised
bandwidth. The total bandwidth was 440 MB/s. We assume that there are 250,000
simultaneous Tor users (circuits), (this estimate comes from [Loe09b]) who select ORs

24

randomly using their bandwidths as weights. Assume that we have a pair of ORs, each
having bandwidth BW MB/s. The expected number of circuits between this pair of ORs
is then 250000(BW

440
)2 = 1.29(BW)2. In order to see several circuits between the pair to

make the prioritization effective, we require BW ≈ 2 MB/s at least.

The above calculation is only a rough estimate to ensure the ORs we select are in the
right range. The accurate estimate of the number of circuits would be more complicated.

4.3.2 Testbed Setup

Initially, we planned to run three ORs on selected PlanetLab nodes, and let them join
the Tor network. However, among the PlanetLab nodes, few could reach such a high
bandwidth requirement. In fact, most nodes have bandwidth lower than 100 KB/s.1 With
these nodes, it is hardly possible to attract multiple circuits within the connection. We
found one PlanetLab node at Princeton University that has bandwidth as high as 1 MB/s.
However, the daily usage on the node is limited to 10 GB. Since the startup process of
an OR requires several hours to complete (including publishing descriptors, computing
consensus by directory authorities, advertising bandwidth and re-advertising bandwidth
after attracting traffic), the throughput limit makes it impossible to perform any tests.

Instead, we used gurgle.cs.uwaterloo.ca (nickname: planetgurgle), a machine
located at the University of Waterloo, which has a comparably high bandwidth of 3 MB/s.
We also selected two existing ORs with high bandwidth: blutmagie with 10 MB/s, and
coldbotTorHosting1 with 10 MB/s. We used blutmagie as the entry OR, planetgurgle
as the middle OR, and coldbotTorHosting1 as the exit OR. In this way, the estimated
number of circuits between planetgurgle and coldbotTorHosting1 is 1.29(3× 10) ≈ 39,
which is more than enough for our purpose.

The disadvantage compared to using PlanetLab nodes is that we could only control one
OR in our circuit (the middle OR); therefore, the results will only show the improvement
of prioritizing at one hop. However, as we will see later, the results are still noticeably in
our favour.

The target file to fetch is hosted in the University of Waterloo, with a size of 87 KB.
We did not introduce artificial bulk transfer traffic, so this experiment is representative of
normal user experience. We used webfetch [Aiu04] to fetch the file using our configured
circuit. There is a 20-second break between every successive fetch.

1This low bandwidth results from PlanetLab’s bandwidth cap: since several slices share a single node,
the bandwidth for each slice may be capped by the node’s policy.

25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.9: CDF for time cost of downloading a small file using unprioritized and prioritized
middle OR, in the real Tor network

4.3.3 Experimental results

We performed the experiment during different periods in a day, executing 250 downloads
with planetgurgle configured in each of the unprioritized and prioritized modes. The
CDF of the results is shown in Figure 4.9.

It is interesting to note that this graph is quite similar to our traffic simulation tests
on PlanetLab (Figure 4.3). With our prioritization algorithm enabled, the median time
decreased from 11.49 seconds to 9.04 seconds. One phenomenon we observed is that during
different periods in a day, the test results differ markedly. The latencies are much lower in
the afternoons ET (Eastern Time; the timezone of New York and Toronto) than around
midnight ET. This may indicate that most Tor users come from the other half of the
globe. Indeed, according to [Loe09a], only a small percentage of Tor users come from
North America and South America combined.

In order to better observe the effectiveness of our patch, we divided the results into two
groups: a “fast” group which were performed during afternoons and a “slow” group which
were performed around midnight. The CDFs are shown in Figure 4.10 and Figure 4.11.

The figures indicate that under various network conditions, our algorithm makes ob-
servable improvement for bursty HTTP downstream traffic.

4.3.4 Effects on Bulk Transfer

Our new scheduling algorithm should not degrade the performance of bulk transfer to any
noticeable extent. By Little’s Law [LG08], L = λW , where L is the queue length (average

26

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.10: CDF for time cost of downloading a small file using unprioritized and priori-
tized middle OR, in the real Tor network, during afternoons ET

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.11: CDF for time cost of downloading a small file using unprioritized and priori-
tized middle OR, in the real Tor network, during midnights ET

27

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

Q
ua

nt
ile

Seconds

Prioritized
Unprioritized

Figure 4.12: CDF for time cost of bulk download using unprioritized and prioritized middle
OR, in the real Tor network

number of cells in the queue), λ is the arrival rate (long term throughput), and W is the
average time a cell spends in the queue (latency). Our algorithm only changes the order
of cells within a queue, thus does not change L and W . Under the assumption that the
buffers are large enough, the long-term throughput for bulk transfer should stay the same.

We also experimentally compared the performance of bulk transfer circuits on our live
node. We used our Tor client to continuously fetch a 4 MB file hosted at the University of
Waterloo. There were 200 trials for each of unprioritized and prioritized Tor. The results
are shown in Figure 4.12.

From the CDF, we see very little effect of our algorithm on bulk transfer. The average
time cost is 416 seconds for unprioritized Tor, with standard deviation 335 seconds, and 419
seconds for prioritized Tor, with standard deviation 403 seconds. There is no statistically
significant difference in the performance of unprioritized and prioritized Tor. In fact, the

Kolmogorov-Smirnov (K-S) statistic [NIS10] for the two distributions is 0.065 <
√

2
N

,

where N = 200 is the size of each sample. This indicates that the (two-sample) K-S
test cannot confirm that the two samples are from different distributions. Additionally,
as we mentioned earlier, bulk transfer usually takes at least several minutes to complete,
and users doing such transfers will have more tolerance of the increased delay if they ever
notice it at all.

28

4.4 Overhead

The overhead for our scheduling algorithm mainly lies in the computation of EWMA values,
and the cost of acquiring the current system time. This requires extra CPU resources
compared to the stock Tor. However, most Tor nodes are limited by the network capacity,
not by their CPUs [Rea08]. Our scheduling algorithm will not degrade the performance of
those nodes.

However, the Tor maintainers reported to us that the busiest Tor nodes are in fact CPU-
limited. For these nodes, we need to make sure that prioritized Tor does not perform worse
than the stock Tor. When we completed the first version of the scheduling algorithm, and
performed local experiments (with very high network capacity, unlike the Tor network),
we found that it did in fact perform worse than the stock Tor, and used a high ratio of
CPU resources. We identified that the frequent calls to gettimeofday accounted for the
majority of the time so consumed. When each cell is flushed, we need to know the system
time in order to correctly update the EWMA values, but system calls at this frequency
become a burden to the CPU.

We observed that during each write event (when cells are flushed into the output buffer),
the differences in time of flushing for each of the cells in that write are usually in the handful
of microseconds range. Since we do not need precision to the microsecond level for the
calculation of EWMA values, we modified the algorithm so that we only acquire the system
time at the beginning of the write event handling process, and store the time value. The
subsequent acquisitions of system time use the cached value instead. In this manner, we
reduced the total number of gettimeofday system call by two orders of magnitude.

After the optimization, we again performed a local experiment to find the overhead.
The experiment was performed on a commodity desktop computer, with AMD Athlon 64
X2 Dual Core 5600+ processor, 3.2GB memory, Ubuntu 8.04 operating system. We ran all
the Tor nodes, including three ORs, two directory authorities, and two OPs locally. The
web server was also hosted locally. This setup maximally stresses the CPU. We performed
the experiment in which the two clients simultaneously fetch a 5MB file from the web
server. There were 200 trials for both unprioritized Tor and prioritized Tor. During the
experiment, the CPU usage went up to 100%, so that our nodes were indeed CPU-limited.
The CDF of the results is shown in Figure 4.13 (“Unprioritized” and “Prioritized (list)”).

The results showed that the average time cost is 1.66 seconds for unprioritized Tor,
with standard deviation 0.15 seconds, and 1.69 seconds for prioritized Tor, with standard
deviation 0.24 seconds. There is no statistically significant difference in the performance
of unprioritized and prioritized Tor in the local experiment, which means that even in the
rare scenario that the Tor node is CPU-limited, the scheduling algorithm will not make it
significantly slower.

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

Q
ua

nt
ile

Seconds

Unprioritized
Prioritized (list)

Prioritized (minheap)

Figure 4.13: CDF for time cost of downloading a small file for unprioritized and prioritized
Tor, under CPU-limited scenario

Nonetheless, Nick Mathewson of The Tor Project has optimized [Mat09] the implemen-
tation of our algorithm to further reduce the overhead. Instead of using a circular linked
list, the active circuits are kept in a minheap-based priority queue. Further, the compu-
tation of the EWMA cell counts is optimized; noting that only the relative, and not the
absolute EWMA cell counts matter (since their purpose is just to pick the active circuit
with the lowest cell count), an arbitrary reference time point is picked, and cell counts are
computed relative to that time. That is, rather than decaying every circuit’s stored cell
count value by a factor of 0.5

∆t
H , and then adding 1 for every cell sent, a single new value V

(representing the current weight of one cell, as compared to a cell sent at the reference time

point) is updated by multiplying it by 0.5−
∆t
H = 2

∆t
H . This value V is added to a circuit’s

cell count for each cell it sends. In our version, we traverse the list of active circuits and
compute the decayed cell count for each one every time a circuit queue is flushed; in the
optimized version, only the count for the circuit being flushed needs to be updated. Every
so often, the cell counts for all circuits can be renormalized by dividing them all by V , and
resetting V to 1. This has the effect of updating the reference time point to the current
time. It is important to note that this optimized computation maintains exactly the same
circuit-selection behaviour as our unoptimized implementation.

Mathewson’s patch not only reduces the load of the EWMA computation, but also
reduces the time cost of picking the highest-priority circuit when many circuits co-exist in
a connection. We performed an experiment to test the overhead with this patch in the
CPU-limited scenario. The results are also shown in Figure 4.13 (“Prioritized (minheap)”).
The average time cost is 1.65 seconds, with standard deviation 0.16 seconds, also not a
statistically significant difference. This version of our algorithm has been committed to
the latest version (0.2.1.21) of Tor.

30

4.5 Compatibility with the Existing Tor

For any upgrade of a distributed system the size of Tor, compatibility is a fundamental
issue to consider. Requiring simultaneous upgrades for all Tor nodes would be a great
resisting force to the implementation. Fortunately, since our algorithm only changes the
order that cells are multiplexed from different circuits within the OR, it does not require
any change in other ORs. Consequently, each OR can be upgraded individually, and each
upgrade would make some improvement, as can be seen by the results of our experiments.

Our algorithm can also be turned on and off conveniently, by setting the parameter in
the Tor configuration file, and switched at runtime by sending a SIGHUP signal to Tor to
reload its configuration file.

31

Chapter 5

Fine-tuning of the Algorithm

The parameter H in our algorithm determines how far back in time we want to look to
calculate the cell counts for the circuits. This time horizon should be chosen to distin-
guish bursty HTTP circuits from circuits for continuous data transfer. For the PlanetLab
experiments, the value of the parameter does not matter much, since the goal is to make
HTTP circuits always have higher priority over bulk transfer circuits, and any value within
a reasonable range will satisfy.

However, for the Tor nodes on the live network, the conditions are more complex.
HTTP circuits are not only competing with bulk transfer circuits, they are competing
with each other as well. The parameter should meet the requirement of distinguishing the
two sets in practical scenarios. On the other hand, the standards may differ from OR to
OR, however, depending on the capacity and the network condition. For example, if an
OR is slow or H is set too small, the algorithm will quickly forget a circuit’s past activity.
A bulk transfer circuit will quickly drop to the same cell count as a newly created HTTP
circuit, and compete with it. On the other hand, if the OR is fast or H is set too large, a
newly created bulk transfer circuit will be prioritized over an HTTP circuit created long
ago.

In this chapter, we experiment with different values of the parameter, to examine the
effects of the parameter on HTTP traffic.

5.1 Testbed Setup

The testbed setup is similar to the setup of our live Tor network test. We selected a variety
of parameter values for the middle OR, planetgurgle, and tested the performance.

33

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 5 6 7 8 9 10

Q
ua

nt
ile

Seconds

Unprioritized
H=1.5

H=3
H=4.5
H=10
H=20
H=33
H=66
H=99

Figure 5.1: Comparison of performance for different values of H: CDF

We used git version 0.2.1.24 of Tor on the middle OR. In the configuration file, the pa-
rameter CircuitPriorityHalflife is the H value we mentioned earlier, which represents
the interval after which the cell count for each circuit is decreased by half.

In this experiment, we randomly select a value for H for our middle OR from the set
{−1, 1.5, 3, 4.5, 10, 20, 33, 66, 99} (-1 indicates unprioritized), and fetch a small file hosted
at the University of Waterloo. We repeat this until each value has 200 datapoints, and
collate the results.

5.2 Experimental Results

The results for the download times for different values of H are shown in Figure 5.1 and
Figure 5.2. Because of the density of the lines, we only show a fraction of the whole CDF
in Figure 5.1. For ease of visualizing the data, in Figure 5.2, we show the 25th, 50th,
and 75th percentile latencies for a range of different H values (the curves) as well as for
unprioritized Tor (the horizontal lines).

The figures show that smaller values of H (1.5, 3, 4.5) perform only marginally better,
if at all, than unprioritized Tor. This makes sense, as the past behaviour of a circuit will
quickly be forgotten, and the bulk transfer circuits will have cell counts low enough to
compete with HTTP circuits. The largest value 99 does not perform much better than
unprioritized Tor either, since for our HTTP circuit, the behaviour will accumulate to a
large cell count value and lose priority. The other values, 10, 20, 33 and 66, seem to be
good values for our OR.

The results match our assumption: the H value only need ensure that bulk transfer
circuits will have higher cell counts than HTTP circuits; a wide range of values can satisfy

34

 0

 2

 4

 6

 8

 10

 1.5 3 4.5 10 20 33 66 99

La
te

nc
y

(s
ec

on
ds

)

H (seconds, log scale)

75%
Median

25%

Figure 5.2: Comparison of performance for different values of H: latency vs. H. Values
for unprioritized Tor are shown by horizontal lines.

this requirement. A value around 20 or 30 will likely satisfy most ORs in the Tor network.
A global default value can be set in the directory authorities’ consensus, so that OR
operators do not need to manually configure it. Even if an OR operator misconfigures this
value, for example, by setting it to 1.5, the performance will not be greatly harmed, as
shown by our experiment.

However, as the Internet and the Tor network evolve, different protocols will start to use
Tor, and the traffic distribution will not stay constant. The parameter should be regularly
re-evaluated.

35

Chapter 6

Effects on Hidden Services

This chapter gives an overview of Tor’s Hidden Services, and evaluates the effect of our
algorithm on them.

6.1 Overview

Tor’s Hidden Services [DMS04] allow users to provide TCP-based services, such as oper-
ating web servers, without revealing the server’s IP address. A Tor client can both access
and publish Hidden Services.

Figure 6.1 shows the structure of Hidden Services, where each arrow represents a three-
hop connection over the Tor network, not a direct connection. We assume that the service
provider Bob (represented by “Hidden Server” in the figure) wants to publish his hidden
service. First, Bob generates a public/private keypair for his hidden service. Then he
chooses a set of Introduction Points (IP) among the ORs, creates circuits to them, and
sends introduction requests (Arrow 1). Those ORs will send back acknowledgement if
suitable (Arrow 2), which means that they are ready to accept client requests.

After the set of Introduction Points is established, Bob publishes his service descriptor,
containing the public key of the service and the list of Introduction Points, signed with
the private key of the service, to the hidden service directory authorities, through another
circuit to hide his identity (Arrow 3). After this step, the hidden service is published, and
ready to be accessed by clients.

The onion address of the hidden service, which serves as a URL, is a hash of the
service’s public key. The advantage is that the address is self-authenticating: the users do
not need to trust the descriptor downloaded from the directory servers; after connecting to

37

Figure 6.1: Overview of Hidden Services. Each arrow is a three-hop connection over the
Tor network.

the service, she can authenticate the service’s public key by the onion address. Bob then
advertises the onion address to potential clients.

A client Alice (OP) wants to access Bob’s hidden service. First she downloads the
hidden service descriptor from the directory servers (Arrow 4). Then she establishes a
Rendezvous Point (RP), selected from the set of ORs, for the data transfer later (Arrow
5). After receiving an acknowledgement from the Rendezvous Point, she contacts one of
Bob’s Introduction Points through a circuit, and tells Bob her Rendezvous Point through
the Introduction Point (Arrows 6 and 7). Bob optionally authenticates Alice, and then
connects to Alice’s Rendezvous Point through a circuit (Arrow 8). The Rendezvous Point
connects the two circuits, and Alice can attach application-level streams to the circuit, and
access the hidden service.

Because of the different design goals, the underlying network traffic for hidden services
is much more complex than for regular public services. Accessing hidden services involves
more than a dozen ORs and multiple rounds of negotiation; as a result, it is much slower
than accessing public services through Tor.

The most time-consuming part of the process for a client to access a hidden service
is circuit creation. According to statistics [Loe08], the average time for hidden server
circuit creation is 33.8 seconds, much higher than that of public services. After the circuit
creation, the communication between the client and the server becomes almost as fast as
accessing public services through Tor, as we will show later through our experiments.

Our EWMA algorithm is ideal for prioritizing the circuit creation phase of Hidden
Services, since the command cells for circuit creation are the first cells sent by a circuit.
These cells should get the highest priority almost independent from the value of the EWMA

38

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45

Q
ua

nt
ile

Seconds

Prioritized Webpage Download
Unprioritized Webpage Download

Prioritized Connection Initialization
Unprioritized Connection Initialization

Figure 6.2: CDF for time cost of connection initialization and webpage fetching for Hidden
Services, for unprioritized and prioritized Tor

parameter.

6.2 Experimental Results

We tested the performance improvement of Hidden Services, using a similar approach to
our experiments in Section 4.3, above. We used H = 33 for our middle OR. The hidden
server is a desktop machine at the University of Waterloo. The server is also configured to
use planetgurgle as the middle OR for all of its circuits.

We modified webfetch to support SOCKS4a [Lee02], in order to resolve URLs for hidden
services. We also instrumented webfetch to separately record the time for connection
initialization and the time for webpage fetching. For each client instance, we perform four
fetches of the target webpage. The latter three fetches will not include circuit creation,
and so should be much faster than the first one. We performed 200 groups of tests (200
circuit creations). The connection initialization time for the latter three fetches is very
short (averaging 2.0 seconds) compared to the first fetch. Since we are mainly concerned
about the circuit creation, we only show the connection initialization time for the first
fetch, and the download time for webpages. The CDF is shown in Figure 6.2.

As we notice, there are improvements in the connection initialization time in each
quantile. The average time decreased from 19.3 seconds to 17.1 seconds (11.4%). This time
consists of mostly circuit creation. Note that only two hops out of seven are prioritized
(planetgurgle). We expect more improvement if all the ORs in the circuits are prioritized.

39

Chapter 7

Related Work

A number of works examine Tor in an attempt to improve its performance; we give an
overview of some of them in this section.

7.1 Tor over DTLS

One area of investigation in improving Tor’s performance is in fighting the improper appli-
cation of TCP’s congestion control mechanisms, which degrade Tor’s performance. Between
each pair of ORs, multiple circuits may share the same TCP connection, and their traffic
is multiplexed within this connection using the same socket. When the number of unac-
knowledged packets in the socket buffer exceeds the socket’s congestion window, TCP’s
congestion control mechanism takes effect, and TCP will refuse to send more packets until
more acknowledgements are received. This mechanism is desirable if there is only one
circuit using the connection; however, if there is more than one circuit, one circuit sending
too much data and triggering congestion control will cause other circuits to stop sending
as well.

Reardon and Goldberg [RG09] addressed this problem by using a TCP-over-DTLS
tunnel. (DTLS — Datagram Trasport Layer Security — is the UDP-based analogue
of the TCP-based TLS.) Instead of using a TLS/TCP connection between each pair of
ORs, a DTLS/UDP connection is established, to prevent the congestion control mecha-
nism incurred by one circuit from preventing other circuits from sending data. On top
of DTLS/UDP, a user-level TCP connection is established for each circuit, to guarantee
in-order delivery, congestion control and flow control on a per-circuit basis.

Reardon and Goldberg’s work concentrated on a fair application of the congestion
control mechanism: the fault of one circuit should not affect other circuits. In comparison,

41

our approach aims to be fair on resource allocation among circuits: circuits that consume
few resources recently should be prioritized over other circuits.

7.2 Opportunistic Bandwidth Measurement

Tor relies on the ORs’ self-reported bandwidth values as weights to make router selection
decisions. This is not necessarily accurate, and also may encourage malicious ORs to
report a higher bandwidth to attract traffic. Snader and Borisov [SB08] proposed an
opportunistic bandwidth measurement algorithm to replace the self-reported bandwidth;
this is more accurate, and responds to changing load conditions quickly, while at the same
time preventing low-resource routing attacks. In this way, Tor’s bandwidth resources are
allocated more efficiently, and the overall performance is improved.

Snader and Borisov also proposed a mechanism for users to tune Tor’s parameter to
select between circuits for higher performance or higher anonymity, while incurring very
little cost of the other property.

7.3 Performance-Based Path Selection

Since the ORs are distributed globally, a circuit containing multiple intercontinental con-
nections will inevitably bring higher latency. To prevent this, a user can configure her OP
to optimize the path selection based on geographic location: she can choose the entry OR
in her (client’s) country, and choose the exit OR in the server’s country, to minimize the
latency incurred by cross country/continent links.

Panchenko et al. [PPR08] performed experiments on different policies of path selection:
choose ORs uniformly randomly, from different continents, from the same continent, and
from the same country (US and Germany). According to statistics, choosing ORs only
from Germany gave the best results: the median time for circuit setup is 2.72 seconds,
while choosing ORs from different continents resulted in the worst performance, as would
be expected: the median time for circuit setup is 5.15 seconds. The results indicate that
a low geographic diversity of the selected ORs will improve the performance in terms of
latency.

Choosing ORs based on geographic location will harm the anonymity of the user, how-
ever: the middle OR knows that the client is likely from the same country as the entry
OR, and the server is likely from the same country as the exit OR. In addition, choosing
ORs from the same country will increase the risk of choosing ORs from the same operator,
which further reduces anonymity. A geographic diversity of ORs will guarantee the security
properties. Hence, a balance should be maintained between security and performance.

42

Geographic-location-based path selection is essentially attempting to minimize the link-
wise latency. For a more accurate estimation, a user can actively send command cells to
probe the link-wise latency, on which to base the path selection decision. Additional
policies may be needed to guarantee geographic diversity.

7.4 Providing Incentives for Tor Relays

As pointed out by Dingledine [DM09], a main factor of Tor’s performance issues is its
capacity. There are too few ORs to support the current number of Tor users: only a tiny
fraction of Tor users become ORs. With the increasing publicity of the Tor network, more
ORs will join the network, but at the same time more users will enter the network to
consume the increased capacity, making the OR/user ratio stable. Currently, there is no
direct incentive for a Tor user to become an OR. Such incentives are needed to encourage
more Tor users to volunteer as Tor relays and increase the OR/user ratio.

Direct financial support is also a good option for incentives. Androulaki et al. proposed a
payment scheme, PAR [ARS+08], which pays e-cash to the relay operators. The evaluation
indicates that the protocol incurs minimal overhead, but it relies on an e-cash infrastructure
which is not currently available.

Alternately, one can give the ORs some kind of credit to allow them to perform faster
when they themselves are using the Tor network as clients. Ngan et al. [NDW10] proposed
such a reward scheme for Tor ORs. The scheme is based on the judgement of the trusted
directory authorities to perform the bandwidth measurements of the ORs. If an OR’s
bandwidth exceeds some threshold value, the directory authority will give it a “gold star”
in the directory listing. The traffic originated from a “gold star” OR will have higher
priority at each OR along the path.

Since the measurement is performed by the directory authorities, an OR cannot cheat
about its bandwidth to get a “gold star”. It can, however, provide marginal performance
to get the “gold star”. Dividing multiple levels of performance reward based on an OR’s
bandwidth is not a good choice in terms of anonymity: it will result in an easier intersection
attack by an adversary: based on the level of “gold star”, an adversary can narrow the
set of the initiator. Nonetheless, even this marginal increase in the bandwidth will greatly
contribute to the overall capacity of the network.

7.5 Internet QoS Schemes

QoS refers to providing services that guarantee performance qualities for Internet applica-
tions. Those performance qualities include bandwidth, loss, delay and jitter. Several QoS

43

schemes exist for today’s Internet, including Integrated Services (RSVP), Differentiated
Services, MPLS, and Constraint-Based Routing. [ZOS00] There are also schemes for pri-
oritizing bursty traffic in ATM networks. In this section, we introduce some of them, and
compare them to our work.

• Integrated Services

Integrated Services is a QoS scheme which requires dynamic resource reservation.
It negotiates with the routers in the communication path to reserve resources at
each router, thus providing quantifiable QoS for the specified network flow. RSVP
(Resource Reservation Protocol) is a protocol in which the receiver reserves resources
along the path. Before the flow is initiated, the sender sends a PATH message to
the intended receiver; along the path, each router reports its resource capacities in
the PATH message. When receiving the PATH message, the receiver replies with
a RESV message, requesting for resources along the path; routers on the path can
either accept or reject the request. Once the request is accepted by all the routers,
the resources such as bandwidth and buffer space will be allocated for the flow.

• Differentiated Services

Differentiated Services attempt to divide services into several classes. It is a class-
based service framework using packet tagging. The scheme uses the TOS byte in IPv4
header as Differentiated Service CodePoint (DSCP), to select the per-hop behaviour
of the packet at each router. The per-hop behaviour specifies the relative quality
received by the packet, such as weight for sharing bandwidth or priority for dropping.
Before the packet enters the DSCP domain, its DSCP is defined by the client or the
entry router according to the quality of service the packet should receive. Then, the
router in the DSCP domain only need look at the DSCP field to decide the service
for the packet. Compared to Integrated Services, no negotiation and reservation is
required, thus providing better scalability.

• Queue Scheduling

The end-to-end delay of a packet results from propagation, transmission and queueing
delay. Propagation delay is the time the physical signal transfers between routers,
and the transmission delay is given by the packet size divided by the link bandwidth.
These two delays are determined physically. Queueing delay is the amount of time
packets spent waiting in a queue before being transmitted. We can adjust queueing
delay by adopting different scheduling policies. Basic policies include First Come
First Serve (FCFS), priority scheduling, Weighted Fair Queue (WFQ), and others.

This scenario slightly differs from Tor’s ORs since ORs are not dedicated network
routers. The Tor application only controls the order of cells within itself, not on

44

the operating system level. Nonetheless, these scheduling policies still apply. For
example, the cells in the OR’s output buffer is sent out FCFS. If the cells can be
tagged with priorities, a priority scheduling can be integrated in the output buffer to
provide better QoS for prioritized circuits.

• Bursty Traffic Prioritization

In [MF97], Fernandez et al. proposed an efficient scheduling policy to guarantee
the performance of high-priority bursty traffic. Assuming that the connections at a
switch share the outgoing bandwidth, the scheme divides the bandwidth resources
into bandwidth units, each equal to the maximum burst of each connection. The
connections are divided into two classes: high priority and low priority. Bandwidth
units are allocated on the burst level: they will be allocated to a connection when
the connection has a burst of traffic, and will be recycled when the burst is finished.
High-priority connections are given the unit whenever a unit is available, while low-
priority connections are given the unit only when the unit is available and the total
number of low-priority connections is less than a threshold value. Once allcated the
unit, the burst has exclusive use of the assigned bandwidth, and so the performance
is guaranteed. With this scheme, a good balance of performance of connections and
efficient use of bandwidth resource is achieved.

Our approach is similar to the above efforts, in the sense that Tor is an overlay network
and ORs act like Internet routers; we wish to improve the QoS of HTTP traffic by adjusting
the scheduling policies within ORs. However, none of them directly applies to our situation.
For example, in contrast to Fernandez’s scheme, our algorithm cannot decide beforehand
which circuit should have higher priority: we aim to prioritize the bursts themselves, not
a specified circuit. Other limitations exist as well: Tor does not have ISP support; deep
packet inspection is unavailable since the packets are encrypted; in order not to violate Tor’s
availability, we cannot reserve bandwidth resources or drop excess circuits; due to Tor’s
decentralized design, payment for better performance is not yet available. These limitations
prevent the existing Internet QoS schemes from directly applying to our situation.

Our EWMA algorithm is simple and effective in our situation. Nonetheless, incorpo-
rating ideas from other QoS techniques into Tor would be an interesting avenue for future
work.

45

Chapter 8

Security Issues

Users choose Tor mainly for the security and anonymity it provides. Care should taken to
make sure that any modifications to the architecture do not bring extra security vulner-
abilities. In this chapter, we discuss the possible effects of our algorithm on the security
properties of Tor.

8.1 Traffic Analysis

An important question is naturally whether our improvements in performance would enable
an attack not previously present. We point out for emphasis that Tor is known to be
insecure against an adversary that can see both ends of a circuit [LRWW04, MZ07, SS03].
The most apparent avenue for attack is for an attacker, who can see just one end of a
circuit, to try to determine whether the other end is an OR that has been upgraded to use
this protocol, or not, by observing the performance of the circuit.

Here, Tor’s large variance in performance comes in handy. Although our method pro-
vides a noticeable improvement, the improvement is still small as compared to the very
large variance; see Figure 4.9. It would seem to be as easy for an attacker to learn in the
stock Tor, for example, whether the OR at the other end of the circuit had high or low
bandwidth.

One may also contemplate an attack in the style of [EDG09], wherein the attacker con-
structs his own circuits through various ORs in the network in order to observe interference
with a target circuit. This attack is already possible in stock Tor [EDG09]; the fixes to Tor
made as a result of that paper (limiting circuits to eight hops) only prevent the bandwidth
amplification portion of the attack.

47

8.2 Strategy Proofness

Since the prioritization decisions are based on the behaviour of each circuit, a user can
modify her bulk transfer protocol to open many circuits and transfer parts of the file with
each circuit in a bursty way. Each circuit will then have a lower EWMA value, and will
be prioritized over HTTP and other interactive protocols.

Because our EWMA algorithm does not degrade the performance of bulk transfer a
lot, there is no strong incentive for those bulk transfer users to implement such modifi-
cations. However, such modifications can make a specified protocol prioritized over any
other protocol on Tor. We should note that our algorithm does not introduce this attack,
since a user can still build multiple circuits on her protocol to make it more competitive,
even with unprioritized Tor. Indeed, using multiple TCP connections on the regular (non-
Tor) Internet will yield an unfair share of bandwidth. [PRG+10] Investigations into the
countermeasures will be a good direction for future work.

48

Chapter 9

Future Work

Our work concentrated on giving priorities to interactive streams in order to reduce the time
an interactive cell spent within an OR, and thereby reduce the overall latency experienced
by an interactive Tor client. There are other approaches that can prioritize interactive
streams and reduce the time within an OR as well. In this chapter, we discuss those
approaches and problems.

9.1 Reduce the Cell’s Time in the Output Buffer

In the fine-grained analysis of a cell’s time spent within the OR, we observed that our
modifications resulted in a reduction in the amount of time a cell spends waiting to be
flushed from the circuit queues of interactive circuits to the connection output buffer.
We also observed that the cells still wait in the connection output buffer for a noticeable
amount of time. If this time can be reduced, hopefully interactive circuits will benefit more
in reducing the latency.

One possible approach is to make the output buffer a priority queue, instead of a FIFO
list. Each cell will be tagged with a priority during the computation of the EWMA value,
and the cells will be flushed from the output buffer in the order of priority. Since the
number of cells is large, maintaining such a queue may bring large overhead as well.

A problem with this approach is that prioritizing individual cells instead of circuits
will possibly result in priority inversion and head-of-line blocking: when the priority of a
circuit changes from high to low, the order of cells belonging to this circuit in the output
buffer will not change, but when the priority change from low to high, newly arrived cells
will be tagged “high priority” and pushed to the output buffer, and will be inserted before
those earlier arrived low priority cells. We should avoid this change of order so as to allow

49

the exit OR to successfully regroup the data stream. If we tag the incoming high-priority
cells as “low priority” when there are still low-priority cells from the same circuit left in
the output buffer, the circuit will remain low-priority as long as not all low-priority cells
are flushed at some point. This results in priority inversion.

Existing techniques can be adopted to avoid priority inversion in this situation. One
simple solution is to upgrade the priority of all low-priority cells in the output buffer when
a high-priority cell from the same circuit arrives. Then the original order of the cells is
preserved. A more advanced data structure is required to implement the priority queue in
order to ensure efficiency.

9.2 Prioritize Connections

By the protocol distribution in the Tor network [MBG+08] and the bandwidth distribution
among the ORs [Tor09], we can infer that only a small portion of interactive circuits
get prioritized by our algorithm. Most of the interactive circuits will not be prioritized,
although there are likely to co-exist bulk transfer circuits sharing the same OR that degrade
the performance of interactive circuits. That is because although those circuits share the
same OR, they do not share the same connection, thus interactive circuits cannot be
prioritized within the connection.

Accordingly, another direction of future work is to prioritize connections on an OR as
well. Simply assigning higher priority to the idle connections may be problematic, since a
busy connection may not be doing a bulk transfer; it may simply contain many circuits,
all doing web browsing. Slowing down this connection is not the desired behaviour.

Thus, besides watching the connection’s activity, we need to watch the circuits within
it as well: namely, to count the number of interactive and non-interactive circuits within
the connection, by using the EWMA algorithm, for example. Then, we can assign priority
based on the number of interactive circuits within a connection: give higher priority pro-
portionally to the connections with more interactive circuits. Along with the prioritization
in the previous section, ideally, all the interactive circuits on an OR will be prioritized over
those non-interactive ones.

Based on the EWMA algorithm, long term starvation for bulk transfer will not hap-
pen, since the cell count will drop exponentially when starved. However, compared to
prioritizing circuits within a connection, prioritizing connections will possibly degrade the
performance of bulk transfer: a connection with a single bulk transfer circuit will be depri-
oritized in this scenario, whereas it would not be in our existing scheme. Little’s Law may
apply here, suggesting that the overall performance of bulk transfer would not degrade,
but we require experiments to measure this effect empirically. On the other hand, a bulk

50

transfer client will receive even better performance than in the unprioritized case when he
creates multiple “interactive” circuits to perform the task.

Hence, we must ensure that any change in performance by prioritization should not be
so drastic that it encourages bulk transfer users to strategically change their clients against
the algorithm.

51

Chapter 10

Summary

In this work we examined one source of Tor’s performance issues. One of the factors
that contributed to the bad performance for interactive streams is the unfair scheduling
algorithm between circuits: interactive circuits will be greatly slowed down because of co-
existent non-interactive circuits on the same connection. We proposed an EWMA-based
scheduling algorithm to prioritize the interactive circuits, and performed experiments on
PlanetLab and the live Tor network. The results show that under realistic network traffic,
interactive streams in prioritized Tor performs about 10% to 20% better, in terms of
latency. The algorithm is completely compatible with the current Tor network: the ORs
can be upgraded gradually, it can be turned on and off easily and on the fly, and will take
effect immediately. Also, the algorithm brings little overhead, even on CPU-limited ORs.

53

References

[Aiu04] Tony Aiuto. webfetch. http://tony.aiu.to/sa/webfetch/, 2004. Accessed
April 2010. 25

[Ano10] The Anonymiser. http://anonymizer.com, 2010. Accessed April 2010. 3

[ARS+08] Elli Androulaki, Mariana Raykova, Shreyas Srivatsan, Angelos Stavrou, and
Steven M. Bellovin. PAR: Payment for Anonymous Routing. In Proceedings
of the 8th Privacy Enhancing Technologies Symposium, pages 219–236, 2008.
43

[Cha81] David Chaum. Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. In Communications of the ACM, volume 24, pages 84–88, 1981.
3

[Dan03] George Danezis. Statistical Disclosure Attacks: Traffic Confirmation in Open
Environments. In Proceedings of Security and Privacy in the Age of Uncer-
tainty, pages 421–426, May 2003. 4

[DDM03] George Danezis, Roger Dingledine, and Nick Mathewson. Mixminion: De-
sion of a type III anonymous remailer protocol. In Proceedings of 2003 IEEE
Symposium on Security and Privacy, pages 2–15, May 2003. 3, 5

[DM09] Roger Dingledine and Steven Murdoch. Performance Improvements on
Tor or, Why Tor is slow and what we’re going to do about it. http:

//www.torproject.org/press/presskit/2009-03-11-performance.pdf,
2009. Accessed April 2010. 9, 43

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-
Generation Onion Router. In Proceedings of the 13th USENIX Security Sym-
posium, pages 303–320, 2004. 1, 3, 7, 37

[EDG09] Nathan Evans, Roger Dingledine, and Christian Grothoff. A Practical Con-
gestion Attack on Tor Using Long Paths. In Proceedings of the 18th USENIX
Security Symposium, pages 33–50, August 2009. 47

55

http://tony.aiu.to/sa/webfetch/
http://anonymizer.com
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf
http://www.torproject.org/press/presskit/2009-03-11-performance.pdf

[Gra94] Volker Grassmuck. “Don’t Try to Control the Network Because it’s Im-
possible Anyway”. http://waste.informatik.hu-berlin.de/Grassmuck/

Texts/remailer.html, 1994. Accessed April 2010. 4

[GRS99] David Goldschlag, Michael Reed, and Paul Syverson. Anonymous Connections
and Onion Routing. Communications of the ACM, 42(2):39–41, 1999. 3, 6

[GT96] Ceki Gulcu and Gene Tsudik. Mixing E-mails with Babel. In Network and
Distributed Security Symposium (NDSS 96), pages 2–16, February 1996. 3

[JAP06] JAP — Anonymity & Privacy. http://anon.inf.tu-dresden.de/index_

en.html, 2006. Accessed April 2010. 3, 6

[Lee02] Ying-Da Lee. SOCKS 4A: A Simple Extension to SOCKS 4 Protocol. http:

//ss5.sourceforge.net/socks4A.protocol.txt, 2002. Accessed June 2010.
39

[LG08] John D.C. Little and Stephen C. Graves. Little’s Law. http://web.mit.

edu/sgraves/www/papers/Little’s%20Law-Published.pdf, 2008. Accessed
April 2010. 26

[Loe08] Karsten Loesing. Privacy-enhancing Technologies for Private Services. PhD
thesis, University of Bamberg, 2008. 38

[Loe09a] Karsten Loesing. Measuring the Tor Network. http://metrics.torproject.
org/papers/directory-requests-2009-06-25.pdf, 2009. Accessed April
2010. 9, 26

[Loe09b] Karsten Loesing. Measuring the Tor Network from Public Di-
rectory Information. http://freehaven.net/~karsten/metrics/

measuring-tor-public-dir-info-final.pdf, 2009. Accessed April
2010. 1, 24

[LRWW04] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright.
Timing Attacks in Low-Latency Mix-Based Systems. In Ari Juels, editor, Pro-
ceedings of Financial Cryptography (FC ’04), pages 251–265. Springer-Verlag,
LNCS 3110, February 2004. 47

[Mat09] Nick Mathewson. gitweb.torproject.org. http://gitweb.torproject.org/

tor.git?a=commit;h=06e8370c33d6ccb73d55e9e8c3d2673c48d7b328, 2009.
Accessed April 2010. 30

56

http://waste.informatik.hu-berlin.de/Grassmuck/Texts/remailer.html
http://waste.informatik.hu-berlin.de/Grassmuck/Texts/remailer.html
http://anon.inf.tu-dresden.de/index_en.html
http://anon.inf.tu-dresden.de/index_en.html
http://ss5.sourceforge.net/socks4A.protocol.txt
http://ss5.sourceforge.net/socks4A.protocol.txt
http://web.mit.edu/sgraves/www/papers/Little's%20Law-Published.pdf
http://web.mit.edu/sgraves/www/papers/Little's%20Law-Published.pdf
http://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf
http://metrics.torproject.org/papers/directory-requests-2009-06-25.pdf
http://freehaven.net/~karsten/metrics/measuring-tor-public-dir-info-final.pdf
http://freehaven.net/~karsten/metrics/measuring-tor-public-dir-info-final.pdf
http://gitweb.torproject.org/tor.git?a=commit;h=06e8370c33d6ccb73d55e9e8c3d2673c48d7b328
http://gitweb.torproject.org/tor.git?a=commit;h=06e8370c33d6ccb73d55e9e8c3d2673c48d7b328

[MBG+08] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Dou-
glas Sicker. Shining Light in Dark Places. In Proceedings of the 8th Privacy
Enhancing Technologies Symposium, pages 66–67, 2008. 10, 13, 20, 50

[MCPS03] Ulf Möller, Lance Cottrell, Peter Palfrader, and Len Sassaman. Mixmaster
Protocol — Version 2. http://www.abditum.com/mixmaster-spec.txt, July
2003. Accessed April 2010. 3, 5

[MD05] Steven J. Murdoch and George Danezis. Low-Cost Traffic Analysis of Tor. In
Proceedings of 2005 IEEE Symposium on Security and Privacy, May 2005. 8

[MF97] Matt W. Mutka and Jose Roberto Fernandex. A Burst-Level Priority Scheme
for Bursty Traffic in ATM Networks. In Proceedings of Sixth International
Conference on Computer Communications and Networks, pages 11–16, 1997.
45

[MZ07] Steven J. Murdoch and Piotr Zieliński. Sampled Traffic Analysis by Internet-
Exchange-Level Adversaries. In Proceedings of the 7th Privacy Enhancing
Technologies, pages 167–183, Ottawa, Canada, 2007. 47

[NDW10] Tsuen-Wan “Johnny” Ngan, Roger Dingledine, and Dan S. Wallach. Building
Incentives into Tor. In Proceedings of Financial Cryptography (FC10), January
2010. 43

[NIS10] NIST/SEMATECH. e-Handbook of Statistical Methods. http://www.itl.

nist.gov/div898/handbook/index.htm, 2010. 28

[PACR03] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe. A
Blueprint for Introducing Disruptive Technology into the Internet. SIGCOMM
Comput. Commun. Rev., 33(1):59–64, 2003. 18

[PPR08] Andriy Panchenko, Lexi Pimenidis, and Johannes Renner. Performance Anal-
ysis of Anonymous Communication Channels Provided by Tor. In Proceedings
of 2008 Third International Conference on Availability, Reliability and Secu-
rity, pages 221–228, March 2008. 42

[PRG+10] Reinaldo Penno, Satish Raghunath, Vijay K. Gurbani, Richard Woundy,
and Joe Touch. LEDBAT Practices and Recommendations for Manag-
ing Multiple Concurrent TCP Connections. http://www.ietf.org/id/

draft-ietf-ledbat-practices-recommendations-00.txt, February 2010.
Accessed April 2010. 48

57

http://www.abditum.com/mixmaster-spec.txt
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.ietf.org/id/draft-ietf-ledbat-practices-recommendations-00.txt
http://www.ietf.org/id/draft-ietf-ledbat-practices-recommendations-00.txt

[Rea08] Joel Reardon. Improving Tor using a TCP-over-DTLS Tunnel. Master’s thesis,
University of Waterloo, 2008. http://uwspace.uwaterloo.ca/bitstream/

10012/4011/1/thesis.pdf. 14, 29

[Rea09] Joel Reardon. libspe. http://crysp.uwaterloo.ca/software/, 2009. Ac-
cessed April 2010. 21

[RG09] Joel Reardon and Ian Goldberg. Improving Tor using a TCP-over-DTLS Tun-
nel. In Proceedings of the 18th USENIX Security Symposium, pages 119–133,
2009. 41

[SB08] Robin Snader and Nikita Borisov. A Tune-up for Tor: Improving Security and
Performance in the Tor Network. In Proceedings of 16th Annual Network and
Distributed System Security Symposium, 2008. 42

[SS03] Andrei Serjantov and Peter Sewell. Passive Attack Analysis for Connection-
Based Anonymity Systems. In Proceedings of ESORICS 2003, pages 116–131,
October 2003. 47

[Tor09] Tor Network Status. http://torstatus.kgprog.com/, 2009. Accessed April
2010. 1, 8, 9, 10, 24, 50

[Web08] WebSiteOptimization.com. Average Web Page Size Triples Since 2003. http:
//www.websiteoptimization.com/speed/tweak/average-web-page/,
2008. Accessed April 2010. 18

[ZOS00] Weibin Zhao, David Olshefski, and Henning Schulzrinne. Internet Qual-
ity of Service: an Overview. http://www.cs.columbia.edu/techreports/

cucs-003-00.pdf, 2000. Accessed April 2010. 44

58

http://uwspace.uwaterloo.ca/bitstream/10012/4011/1/thesis.pdf
http://uwspace.uwaterloo.ca/bitstream/10012/4011/1/thesis.pdf
http://crysp.uwaterloo.ca/software/
http://torstatus.kgprog.com/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.websiteoptimization.com/speed/tweak/average-web-page/
http://www.cs.columbia.edu/techreports/cucs-003-00.pdf
http://www.cs.columbia.edu/techreports/cucs-003-00.pdf

	List of Figures
	Introduction
	Overview of Anonymity Networks and Tor
	Mix Networks
	Anonymous Remailers
	Type-0 Remailers
	Type-I Remailers
	Type-II Remailers
	Type-III Remailers

	Low-latency Anonymity Networks
	Anonymizer
	Jondonym/AN.ON
	Onion Routing

	Tor
	Adversary Model and Attacks
	Tor's Performance Issues
	Summary

	Prioritizing Interactive Circuits
	Incentives
	How Tor's Circuits Work
	Circuit Selection based on EWMA

	Experiments and Results
	Implementation Notes
	PlanetLab Simulations
	End-to-End Timing Analysis
	Fine-grained Timing Analysis

	Experiments on Live Tor Nodes
	Bandwidth Requirement for Live Tor Nodes
	Testbed Setup
	Experimental results
	Effects on Bulk Transfer

	Overhead
	Compatibility with the Existing Tor

	Fine-tuning of the Algorithm
	Testbed Setup
	Experimental Results

	Effects on Hidden Services
	Overview
	Experimental Results

	Related Work
	Tor over DTLS
	Opportunistic Bandwidth Measurement
	Performance-Based Path Selection
	Providing Incentives for Tor Relays
	Internet QoS Schemes

	Security Issues
	Traffic Analysis
	Strategy Proofness

	Future Work
	Reduce the Cell's Time in the Output Buffer
	Prioritize Connections

	Summary
	References

