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Abstract

Interleukin-3 is a cytokine, which acts on many target cells within the haemopoietic system,

often in synergy with the other cytokines. Streptomyces lividans NCIMB 11416/IL3 p002

secreting human interleukin-3 was used as the host organism in this study of improving target

protein production. Streptomyces also produces several proteases including extracellular en-

doprotease that truncate the N-terminus of the recombinant protein. Federal guidelines and

regulations banning animal-derived medium components necessitate the refinement or rede-

velopment of industrial medium formulations. The development of a defined medium without

animal products is most desirable for the production of pure and safe biological products.

The objective of the proposed research was the development and application of engineering

methodology for the development of a defined medium and the analysis and optimization of a

bacterial bioprocess for recombinant protein production. The underlying hypothesis is that a

significant improvement of target protein productivity is achievable by using appropriate opti-

mization techniques. During the first phase of this study the task was to develop a systematic

procedure for the design and optimization of a chemically defined medium. The study aimed at

replacing casein peptone in conventional medium for S. lividans with essential amino acids and

determining the optimum proportion of the amino acids. To accomplish this, starvation trials

with growth limiting amino acids were performed to establish the baseline for the nutritional

requirement. The starvation trials revealed that essential amino acids for growth and product

formation are amongst the following eight amino acids: Arg, Asn, Asp, Glu, Leu, Met, Phe,

and Thr. Following these preliminary experiments, a statistically based experimental method

called mixture experiments along with distance-based multivariate analysis revealed that Asp,

Leu, Met, and Phe were the essential amino acids. Then, another mixture experiment design

known as simplex lattice design was performed and artificial neural networks were employed

to obtain the optimum proportions of the essential amino acids. The optimal medium was

found to be composed of 56% Asp, 5% Met, and 39% Phe. It was found in previous studies

that in complex media, several types of protease are produced during fermentation. Using the
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defined medium no proteolytic activity was detected in the fermentation broth.

The second optimization method was based on metabolic flux analysis. A comprehensive

metabolic network was developed for S. lividans. The metabolic network included carbohy-

derate and amino acid metabolism in both anabolic and catabolic reactions. According to the

experimental results, the time course of the fermentation was divided into two phases, Phase

E1 and Phase E2. In the first phase amino acids were used as a nitrogen source and in the sec-

ond phase ammonia was the nitrogen source for growth and product formation. The metabolic

network was used to form a set of linear algebraic equations based on the stoichiometry of the

reactions by assuming pseudo-steady state for intracellular metabolites. The metabolic flux

model consisted of 62 intracellular metabolites and 91 biochemical reactions. Two different

objective functions were considered for optimization: maximizing the specific growth rate and

minimizing the redox equivalent. A linear programming approach was used for optimizing

the objective functions. The proposed model was able to predict the specific growth rate

very accurately with a maximum error of 10%. The oxygen uptake rate and carbon dioxide

evolution rate were evaluated with maximum error of 27% and 35%, respectively. Sensitivity

analysis revealed that amino acid uptake was the growth limiting flux during the Phase E1 of

the fermentation. During Phase E2 the uptake rate of ammonia had a significant effect on the

specific growth rate. Sensitivity analysis of the specific growth rate and redox potential with

respect to the biomass components showed that any additional supply of biomass building

blocks (amino acids, nucleotides) would not significantly affect the specific growth rate and

redox potential production as well as the calculated flux pattern.
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Chapter 1

Introduction

1.1 Recombinant protein over-production

Modern biotechnology has become a major participant in global market with an annual

turnover of more than 216.3 billion dollars in 2008 and the market is forecast to have a value of

305.7 billion dollars in 2013, an increase of 41.3% since 2008 (http://www.datamonitor.com).

This industry produces biopharmaceuticals (antibiotics, vaccines, and monoclonal antibod-

ies), yeast (for beer, wine and bread production), health-care products (vitamins), nutrients

(amino acids, polysaccharides) fine chemicals and bulk chemicals (alcohol), by fermentation,

bioconversion, and enzymatic processes. Substrates have been transformed into a wide variety

of products through the metabolism of microorganisms. Nutrients are partly used for biomass

and product synthesis and energy supply, but they are also being used for the synthesis of un-

desirable byproducts and energy dissipation in futile cycles. In many cases, optimization can

provide significant economic benefits because these processes are characterized by significant

price differences between reactants and products. Important aspects in the development and

optimization of these processes are the conversion yields, the product purity and the product

quality. These three aspects can be optimized both at the biochemical level and at the process

1



operation level (Parekh S. and Strobel R. J., 2000).

One of the most important parameters which affects growth, product formation and recovery

in a bacterial fermentation is the medium composition. Therefore, the design of a fermentation

medium is of critical importance during the development of an industrial fermentation. The

development of defined medium without animal products is most desirable for production of

pure and safe biological products. Traditionally, medium design and optimization was done

by varying one factor while keeping the other factors at constant level. This strategy is simple

and easy to implement although it may require a relatively large number of experiments and

frequently fails to achieve the optimal conditions (Kalil S.J et al., 2000).

On the other hand, higher product yields can be achieved by selection and improvement of

microbial strains: for example 100-fold to 1000-fold increases has been recorded for small

metabolites and antibiotics (Demain A.L., 2000; Diez B. et al., 1997). Traditionally, this

task has been carried out by a series of random targeted mutagenesis in a selective envi-

ronment, or by addition of external genetic material followed by selection. These methods

have been very successful in the past, but required lengthly trial and error experimentation.

This scenario is changing due to the evolution of an approach called metabolic engineering

(Bailey, 1991). Metabolic engineering is a science that combines the benefits of molecular

biology, biochemistry, genetics, chemical engineering biotechnology, and mathematical mod-

elling (Stephanopoulos G.N. and Vallino J.J., 1991). Metabolic engineering has two major

components. The first is development of strategies for better understanding the structure of

metabolic systems and intracellular enzymatic reactions. The second component is to apply

the results of these strategies in selected organisms (Torres N.V. and Voit E.O., 2002).

In order to optimize the capacity of microbial metabolism and increase yields, the intracellular

metabolite fluxes have to be quantified. The flux distribution in metabolic pathways deter-

mines the efficiency of the production process. Metabolic flux analysis which only requires

the measurement of extracellular metabolites has been proposed as a means to determine the

flow through primary metabolic pathways (Vallino J.J. and Stephanopoulos G., 1990; Varma
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A. and Palsson B.O., 1994; Cannizzaro C. et al., 2004). It is theoretically possible to measure

and control metabolic conversions on the level of single enzymatic reactions by metabolic flux

analysis methods, with the measurement of only a limited number of extracellular metabolites

(van Gulik W.M. and Heijnen J.J., 1995). Other benefits of this computational method is, de-

fined medium design, elucidation of metabolic and toxicological effects, location of metabolic

control, determination of maximum theoretical yields and a quantitative prediction of bio-

chemical phenotypes from gene data banks (Varma A. and Palsson B.O., 1993a,b,c; Pallson

B. O., 1997; Heijnen J.J. et al., 2004; Ihmels J. et al., 2004).

1.2 Research objectives

The main objective of this study was to develop and apply engineering strategies for the anal-

ysis and optimization of a bioprocess based on Streptomyces lividans producing recombinant

human interleukin-3 (rHuIL-3). Special emphasis was placed on the effect of the fermentation

medium components. To accomplish this objective the following experiments were performed:

• Replace the casein peptone in the complex medium with amino acid cocktail

• Monitor the concentration profiles of the amino acids and use these data as input for

statistical optimization and mathematical modeling

• Search for the most significant amino acids in the medium for recombinant protein

production using mixture experiments and distance-based multivariate analysis

• Apply response surface methodology and artificial neural network to determine the op-

timum level of the essential amino acids for maximum production of the protein

• Construct a mathematical model to simulate the biological system

• Define and optimize plausible objective functions for achieving recombinant protein pro-

duction enhancement
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• Perform batch fermentation to collect experimental data for metabolic flux analysis

It is believed that this research provides a theoretical sound framework that may be used for

the optimization of recombinant protein production by other bacterial hosts.

1.3 Research approach

The primary aim of this research was to develop a mathematical model for improving the

production of the targeted protein. Since there was no unique mathematical model capable of

capturing all features of a biochemical system, statistical methods, artificial neural networks,

and metabolic flux analysis were expected as promising endeavours for achieving the objective.

1.3.1 Mixture design analysis

Mixture design was applied in a sequential manner to investigate the effect of amino acids

on rHuIL-3 production in shake flask cultures. First, starvation trials were carried out to

narrow down the number of probable essential amino acids. Based on the results from the

starvation trials, screening mixture design was performed and the collected data were analyzed

by distance-based multivariate methods to rank the essential amino acids. Then, another

mixture design was used and the data used as input to response surface methodology. Finally

artificial neural networks were employed to find the optimum level of the essential amino acids.

Fermentation experiments were performed at the predicted optimal level of the essential amino

acids and the adequacy of the model to predict the behavior of the microorganism was verified.

1.3.2 Metabolic flux analysis (MFA)

A metabolic network was proposed based on the stoichiometry of bacteria. The basic metabolic

pathways, Embden Mayerhof Parnas (EMP) pathway, pentosephosphate (PP) pathway, tricar-

boxylic acid (TCA) cycle and anaplerotic pathways as well as biosynthetic pathways leading
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to amino acid synthesis were considered. Fermentations were run using the designed defined

medium in 2 and 7 liter nominal volume bioreactors. The off-line extracellular analysis of

key metabolites, biomass and rHuIl-3 were carried out throughout the fermentation. The

accumulated data along with the stoichiometric metabolic network were used to construct a

set of linear programming constraints. Two different objective function were chosen and the

metabolic flux distribution was determined using GAMS (General Algebraic Modelling Sys-

tem) software. The logarithmic sensitivity analysis was used to specify the nutrients which

had the highest effect on the biomass production. A uniform distribution was considered for

biomass components and the effect of the variations of the biomass components on biomass

production was investigated.

1.4 Thesis outline

This thesis consists of 6 chapters and is organized as follows:

Chapter 1 presents introduction, research objectives and research approach.

Chapter 2 provides a comprehensive literature review including the bacterial host, cellular

metabolism, mixture design, distance-based multivariate analysis, artificial neural networks

and metabolic flux analysis.

Chapter 3 presents the material and methods applied in this research including microorganism,

stock culture preparation, medium components and analytical methods used for the analysis

of the fermentation samples.

Chapter 4 describes the application of statistical methods and artificial neural networks for

maximizing the biomass and product production.

Chapter 5 presents the construction of the metabolic network and metabolic flux distribution

for S. lividans.

Chapter 6 summarizes the significant findings of this research and provides some recommen-

dations for future research.
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Chapter 2

Literature review

Since the early 1970s advances in genetics and molecular biology have given rise to the devel-

opment and progress in recombinant DNA technology. The selection of a host for production

of a biological molecule has had a substantial influence on isolation and purification protocols

employed along with their respective cost implications. Undoubtedly, the most expolited host

to express recombinant pharmaceutical products is Escherichia coli. However, its known lim-

itations such as trapped products in inclusion bodies or in the periplasmic spaces, led to the

exploration of other possible hosts.

2.1 Streptomyces as a host for recombinant protein production

Streptomyces strains are non-motile, gram-positive, plasmid containing, non-pathogenic, and

aerobic bacteria. They are widely distributed in nature. Their primary niche is in soil ecosys-

tems, but they also occur in freshwater and marine environments, in salt marsh areas, in

fodders, and related materials, and in the air (Ayadi D.Z. et al., 2007). Under laboratory con-

ditions, they have the tendency to form pellets in liquid as has been observed in shake flask

cultures. Most Streptomycetes grow optimally at mesophilic temperatures ranging 25 - 35◦C .

Some species, however, are known to grow at temperatures well above the mesophilic range
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as high as 50 - 60◦C (Demain A.L. and Solomon, 1985). Streptomycetes can be grouped into

two general categories based on pH requirements for growth. Acidophilic streptomycetes grow

in the pH range of 3.5 - 6.5 with optima near 5, while neutrophilic Streptomycetes grow from

5.0 - 9.0, with optima around pH 7.0. Streptomycetes were historically regarded as fungi, later

as intermediates between fungi and bacteria, before being classified as eubacteria. They are

sensitive to antibacterial antibiotics and lack a nuclear membrane, which by definition, clas-

sifies them as prokaryotes. Nutritionally, Streptomycetes are classified as chemoorganotrophs.

In general, they do not exhibit any special nutritional requirements, most being able to grow

on media consisting of inorganic salts and glucose. They produce proteolytic exoenzymes, and

readily grow on complex proteins. Under certain conditions, Streptomycetes undergo complex

morphological transformation to form spores. When encountering a suitable environment the

spore germinate to produce a germ tube. The germ tube then develops into a branched mycelial

network, which may penetrate and become firmly attached to a solid supporting matrix. From

this mycelial network arise sporogenic hyphae, which grow up into the air and differentiate

to form chains of spores (Figure 2.1). The formation of aerial hyphae often coincides with

the production of antibiotics, providing protection against potential pathogens. In addition to

antibiotics, Streptomyces are also known to secret appreciable amounts of proteinaceous en-

zyme inhibitors. The organism Streptomyces lividans 66 recognizes heterologous prokaryotic

promoters and is almost the sole species of choice as a host for recombinant protein produc-

tion. Two additional advantages of Streptomyces lividans, as a host for heterologous protein

production are the ability to form proper disulfide bonds, and the natural ability to synthesize

a proteinase inhibitor, LEP-10 (Demain A.L. and Solomon, 1985). To date, the genes coding

for polysaccharase of several Streptomycetes have been cloned and expressed in Streptomyces

lividans. Successful recombinant proteins of prokaryotic origin expressed in Streptomyces livi-

dans are typically produced in large quantities and fully secreted. Secretion of prokaryotic

proteins can lead to levels of several grams per liter of culture broth. The yields of eukaryotic

proteins are usually lower. An example is the production of T-cell receptor CD4, which has

been produced in Streptomyces lividans fermentation at over 300 mg/l of culture fluid, which
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is reportedly higher than in Escherichia coli or Chinese Hamster Ovary (CHO) cells (Demain

A.L. and Solomon, 1985). Filtration or centrifugation can easily separate the target product

from the biomass. In addition, the recombinant target protein is frequently the predominant

protein in the culture supernatant. This further translates to significant cost saving in terms

of product recovery and purification.

Figure 2.1: Bacterial host Streptomyces sp. (http://en.wikipedia.org/wiki/Streptomyces)

2.2 Interleukin-3 (IL-3)

IL-3 is a secreted glycoprotein, the peptide core comprising 140 amino acid residues in mice

and 133 residues in the humans. The molecular weight of the polypeptide core is about 14,000

daltons. Like IL-2 and IL-4, IL-3 is a monomer with two intermolecular disulphide bonds.

Il-3 stimulates the proliferation, differentiation, and survival of pluripotential haemopoietic

cells and haemopieotic proginetor cells and their mature progeny of multiple cell lineages. Il-3
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is produced and secreted primarily in response to immunological stimuli by T lymphocytes

activated by specific antigens. The potential clinical utility of IL-3 lies in its ability to enhance

the recovery of haemopoiesis following cytotoxic cancer therapy or bone-marrow transplanta-

tion. IL-3 also has an important role in diseases characterized by increases in mast cells and

basophils, and IL-3 antagonists may provide a new approach to treatment of allergies and

asthma. (Nicola N.A., 1994).

2.3 Review of cellular metabolism

Formulation of the stoichiometery of metabolic pathways is the basis for the quantitative

treatment of cellular metabolism. This requires an appreciation of some basic biochemical

processes along with an overview of different pathways normally present in living cells. There-

fore, the basics of glycolysis, tricarboxylic acid, and anaplerotic pathways as well as amino

acid biosynthesis are reviewed.

2.3.1 Glycolysis

Glycolysis is the sum total of all biochemical reactions by which glucose is converted into

pyruvate. This can be accomplished by more than one pathway and the process takes place

in the cytoplasm. The most frequently encountered pathways are:

1. Embden-Meyerhof-Parnas pathway (EMP).

2. Pentose phosphate pathway (PP).

3. Etner-Doudoroff pathway (ED).

The common entrance of sugars to the glycolytic pathways is through the three hexose

monophosphates, glucose-1-phosphate (G1P), glucose-6-phosphate (G6P), and fructose-6-phosphate

(F6P).
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Figure 2.2: Overview of EMP pathway

In the EMP pathway, 1 mol glucose is converted into 2 mol pyruvate and it can be divided

into two major parts (Figure 2.2). The first part includes six carbon components and does
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not involve any oxidation-reduction reactions. The reaction sequence in this part comprises

two phosphorylation reactions that lead to the production fructose-1,6-diphosphate. Then

aldolase catalyzes the next cleaving reaction, and two three-carbon molecules, glyceraldehyde-

3-phosphate and dihydroxy-acetone phosphate are formed from fructose-1,6-diphosphate. All

components in the second part are three-carbon intermediates. The first oxidation reaction

occurs in the second part of the EMP pathway where glyceraldehyde-3-phosphate is converted

to 1,3-diphosphoglycerate. In this reaction, the coenzyme is reduced to NADH. The final

product of this part is pyruvate which is a key intermediate in metabolism. Thus, the overall

stoichiometry for the conversion of glucose to pyruvate in the EMP is:

GLC + 2 ADP + 2 P + 2 NAD+ → 2 PY R + 2 ATP + 2 NADH + 2 H2O + 2 H+ (2.1)

2.3.2 The pentose phosphate pathway

Many of the biosynthetic reactions require NADPH in addition to ATP. Despite their close

chemical resemblance NADPH and NADH are not metabolically interchangable. Cells nor-

mally maintain their NAD+/NADH ratio near 1000, which favours metabolite oxidation, while

keeping their NADP+/NADPH ratio near 0.01, which favors metabolite reduction (Voet D.

and Voet J.G., 1995). NADPH is generated by the oxidation of glucose-6-phosphate via

an alternative to glycoloysis, the pentose phosphate pathway (Figure 2.3). In PP pathway,

glucose-6-phosphate is oxidized to 6-phosphogluconate, which is further converted to ribulose-

5-phosphate and carbon dioxide. In each of these reactions, 1 mol of NADPH is formed

per mole of glucose-6-phosphate entering the pathway. In the subsequent steps, ribulose-

5-phosphate is converted into ribose-5-phosphate or erythrose-4-phosphate, which are both

precursors for the biosynthesis of aromatic amino acids and nucleotides. In a different se-

quence of reactions, ribulose-5-phosphate may also be converted back to fructose-6-phosphate

and glyceraldehyde-3-phosphate, thus re-entering the EMP pathway.
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Figure 2.3: The pentose phosphate pathway

The overall stoichiometry of the PP depends on the extent to which carbon entering the

PP pathway is recycled back into the EMP pathway and oxidized to form carbon dioxide
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with simultaneous production of reducing power in the form of NADPH, or consumed for the

formation biosynthetic precursors such as five-carbon sugars for ribonucleotide synthesis. For

this reason, PP pathway has been recognized to serve an oxidative as well as an anaplerotic

function, each described by the following overall stoichiometries:

Anaplerotic PP function:

5 G6P + 5 ATP → 6 ribose− 5− P + 5 ADP + 4 ∼ P (2.2)

Oxidative PP function:

G6P + 12 NADP+ + 7 H2O → 12 NADPH + 12 H+ + 6 CO2+ ∼ P (2.3)

The functions of PP cycle are as follows (Dagley S. and Nicholson D.E., 1970):

1. Provides reduced NADP for synthetic purposes such as the synthesis of fatty acids.

2. Provides energy. If all the reacted NADP is completely oxidized and the process is 100%

efficient, 38 molecules of ATP are produced for each molecule of glucose oxidized.

3. Provides a source of pentoses for nucleotides.

4. Makes possible the interconversion of hexoses and pentoses.

The Entner-Doudorof pathway is common in Pseudomonads, but there is no evidence of any

Streptomycete using it (Kieser T. et al., 2000). Three intermediates of the EMP pathway,

glyceraldehyde-3-phosphate, 3-phosphoglycerate, and phosphoenolpyruvate and two interme-

diates of the PP pathway, ribose-5-phosphate and erythrose-4-phosphate serve as precursor

metabolites for biosynthesis of amino acids and nucleic acids. The relative flux through the two

glycolytic pathways depends on the requirements of free energy, reducing power in the form

of NADH and NADPH, and the precursor metabolites. The major control points of the EMP

and PP pathways are at the entrance to pathways, i.e., at the phophofructokinase and at the

glucose-6-phosphate dehydrogenase reactions (Zubay G.L., 1998). Glucose-6-phosphate dehy-

drogenase is regulated by the NADPH/NADP+ ratio, whereas phosphofructokinase, which is
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a complex allosteric enzyme, has several effectors. In Saccharomces cervisiae it is activated by

AMP, ammonia, phosphate, and fructose-2,6-bisphosphate, and it is inhibited by ATP. The

cofactors NADH and NADPH serve two different purposes in cellular metabolism. In aer-

obes, NADH is mainly involved in the generation of Gibbs free energy through the oxidative

phposphorylation reaction, whereas NADPH is mainly used in the biosynthesis of building

blocks. Thus, NADH serves as a substrate in the fueling reactions and NADPH serves as a

substrate in the biosynthesis reactions and the ratios NAD+/NADH and NADPH/NADP+

are therefore regulated at different levels.

2.3.3 Tricarboxylic acid (TCA) cycle

TCA cycle, also called Krebs cycle or citric acid cycle, is the second stage of cellular respiration,

by which living cells break down organic fuel molecules in the presence of oxygen to harvest the

energy they need to grow and divide. This metabolic process occurs in most plants, animals,

fungi, and many bacteria. In all eukaryotic organisms the TCA cycle is carried out in the

mitochondrion. The TCA cycle plays a central role in the catabolism of organic fuel molecules

i.e., glucose and some other sugars, fatty acids, and some amino acids. Before these rather

large molecules can enter the TCA cycle they must be degraded into a two-carbon compound

coupled to an organic carrier, called acetyl coenzyme A (acetyl CoA). Once fed into the TCA

cycle, acetyl CoA is eventually converted into carbon dioxide and energy. The TCA cycle

consists of eight steps catalyzed by eight different enzymes (Figure 2.4):

1. Acetyl CoA reacts with the compound oxaloacetate to form citrate and to release coen-

zyme A (CoA).

2. In a succession of reactions, citrate is rearranged to form isocitrate.

3. Isocitrate loses a molecule of carbon dioxide and undergoes oxidation to form alpha-

ketoglutarate.

4. Alpha-ketoglutarate is decarboxylated and oxidized to form succinyl CoA.
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5. Succinyl CoA is enzymatically converted to succinate.

6. Succinate is oxidized to fumarate.

7. Fumarate is hydrated to produce malate; and, to end the cycle.

8. Malate is oxidized to oxaloacetate.

Each complete turn of the cycle results in the regeneration of oxaloacetate and the formation

of two molecules of carbon dioxide. Energy is produced in a number of steps in this cycle of

reactions. In step 5, one molecule of ATP is produced. However, most of the energy obtained

from the TCA cycle is stored in the compounds NAD+ and FAD and converted later to

ATP. Energy transfers occur through the relay of electrons from one substance to another, a

process carried out through the chemical reactions known as oxidation and reduction, or redox

reactions. The major regulatory sites of the TCA cycle are at the citrate synthase, isocitrate

oxidoreductase (dehydrogenase), and α-ketoglutarate oxidoreductase (dehydrogenase). The

activity of all three enzymes is favoured by the low level of the NAD+/NADH ratio, while

the isocitrate dehydrogenase is strongly regulated by this ratio (Stephanopoulos G.N. et al.,

1998). The overall stoichiometery for the complete oxidation of pyruvate in the TCA cycle is:

PY R + 3 H2O + GDP + 2 ∼ P + 4 NAD+ + FAD →

3 CO2 + GTP + 4 NADH + FADH2 + 4 H+
(2.4)

2.3.4 Anaplerotic pathways

There is no net synthesis of α-ketoglutarate and oxaloacetate in TCA cycle and these two

organic acids serve as precursor metabolites for the biosynthesis of amino acids and nucleotides.

Therefore, removal of these organic acids for other cellular functions must be compensated for

by other means. Reaction sequences that fulfill this role are called anaplerotic (meaning filling

up in Greek) pathways. The anaplerotic pathways include the following (Stephanopoulos G.N.

et al., 1998):
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Figure 2.4: TCA cycle

1. Carboxylation of pyruvate to form oxaloacetate by pyruvate carboxylase.
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2. Carboxylation of phosphoenolpyruvate by PEP carboxylase.

3. Oxidation of malate to pyruvate by the malic enzyme.

4. The glycoxylate cycle.

2.3.5 Biosynthetic reaction

The number of building blocks, coenzymes, and prosthetic groups needed for cellular synthesis

is about 75 -100, and these are all synthesized from approximately 12 precursor metabolites by

reactions that employ energy, reducing power, and sources of nitrogen, sulfur, and single carbon

units (Neidhardt F.C. et al., 1990). Biosynthesis pathways differ markedly in complexity, some

are linear, others branched or interconnected. An inspection of the metabolic routes leading

to the individual amino acids reveals that common pathways are frequently employed. Figure

2.5 summarizes the family and precursors for amino acid biosynthesis. Biosynthesis of the

aromatic amino acids is very complicated, and a completely independent pathway of the other

amino acids is employed for histidine biosynthesis (Gottschalk G., 1979).

2.4 Mixture experiments

Statistical experimental design is a well-established concept for the planning and execution of

the informative experiments (Montgomery D.C. and Runger G.C., 2006). The most common

approach, factorial design, has been successfully used for the optimization of fermentation

media. A two-level factorial design requires 2n experiments if n factors have to be investigated.

With n = 20, this would lead to 1,048,576 experiments, which is a prohibitively large number.

For this reason, an alternative statistical design, known as the mixture design was employed.

This experimental design application concerns the preparation and modification of mixtures,

in which the response is assumed to depend only on the relative proportions of the ingredients

present in the mixture and not on the amount of the mixture (Cornell J.A., 2002). In mixture
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18



experiments, the factors are the components of a mixture, and consequently their levels are not

independent. Depending on the experimental objective, the response surface over the simplex

region may be mapped by different mixture designs. A {q, m} simplex lattice design for q

components consists of points defined by the following coordinate settings: the proportions

assumed by each component take the equally spaced values from 0 to 1,

xi = 0,
1
m

,
2
m

, ..., 1; i = 1, 2, ..., q (2.5)

and the {q, m} simplex lattice consists of all possible combinations of the components where

the proportions from Eq. 2.5 are used. In general, the number of points in a {q, m} simplex

lattice design is

N =
(q + m− 1)!
m!(q − 1)!

(2.6)

An alternative to the simplex lattice design is the simplex centroid design. In a q -component

simplex centroid design, there are 2q − 1 points, corresponding to the q permutations of (1,

0, ..., 0) , the



 q

2



permutations of (1
2 , 1

2 , 0, ..., 0) the



 q

3



permutations of (1
3 , 1

3 , 1
3 , 0, ..., 0)

and the overall centroid (1
q , 1

q , ..., 1
q ). Fig. 2.6 shows a simplex lattice and simplex centroid

designs. For more information, the interested reader should consult Cornell (Cornell J.A.,

2002) and Myers and Montgomery (Myers R.H. and Montgomery D.C., 2003).

Mixture models differ from usual polynomials employed in response surface work because of

the constraint
�q

i=0 xi = 1. The standard forms of mixture models that are in widespread use

are:

Linear:

E(y) =
q�

i=1

βixi (2.7)

Quadratic:

E(y) =
q�

i=1

βixi +
� q�

i<j

βijxixj (2.8)
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Figure 2.6: (a) {3, 3} simplex lattice design, (b) simplex centroid design

Full Cubic:

E(y) =
�q

i=1 βixi +
� �q

i<j βijxixj +
� �q

i<j δijxixj(xi − xj)

+
� ��q

i,j,k βijkxixjxk

(2.9)

Special Cubic:

E(y) =
q�

i=1

βixi +
� q�

i<j

βijxixj +
� � q�

i<j<k

βijkxixjxk (2.10)

The terms in these models have relatively simple interpretations. In Eqs. 2.7 through 2.10,

the parameter βi represents the expected response to the pure blend xi = 1 and xj = 0 when

j �= i. The portion
�q

i=1 βixi is called the linear blending portion. When there is a curvature

arising from nonlinear blending between component pairs, the parameter βij represents either

synergistic or antagonistic blending. Higher-order terms are frequently necessary in mixture

models because of two reasons. First, the phenomena studied may be complex and secondly,

the experimental region is frequently the entire operability region and is therefore large, requir-

ing an elaborate model. When the experimental objective is screening, the design supporting

a linear model is useful, but for optimization designs supporting quadratic or special cubic
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models are relevant (Eriksson L. et al., 1998). Screening experiments are used in the beginning

of the experimental work for investigating a large number of components to screen out the

unimportant components or single out the important ones. To do so, it is necessary to know

how to measure the effect of individual components. According to Cornell (Cornell J.A., 2002)

the effect of component i on the response is the change in the value of the response resulting

from a change in the proportion of component i while holding the relative proportions of the

other components constant. The largest change that can be made in the proportion of xi is

one unit. If the change in xi is made along the xi−axis, which is the imaginary line extending

from the base point xi=0, xj= 1
q−1 for all j�=i, to the vertex where xi = 1, xj = 0 for all j �= i,

the proportions xj , j �= i of the other components will remain constant. In Fig. 2.7 the three

xi−axis inside the three-component triangle are shown. The values of the proportions of each

of the other q − 1 components along the xi−axis are xj = (1−xi)
(q−1) , for j �= i. To measure the

effect of all q components simultaneously, using Cox’s model (Cornell J.A., 2002), the data

should be collected at points located on all the axes to permit the estimation of all of the q

parameters in the first-degree model.

Figure 2.7: The xi−axes, i = 1, 2, and 3
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2.5 Distance-based multivariate analysis

Tests for interactions among factors form a very important component of multifactorial exper-

iments. A significant interaction between two factors indicates that the effects of the one of

the factors are not consistent across the levels of the other factor. The individual importance

of single factors may be difficult or even impossible to isolate or interpret in a system where a

number of interactions are present (Hilborn R. and Stearns S.C., 1982). Several nonparamet-

ric multivariate statistical methods are available (Clarke K.R., 1993; Mantel N. and Valand

R.S., 1970) which can be used in an analysis-of-variance approach, but these methods have

the drawback of not generally allowing tests of multivariate interactions between factors in an

ANOVA design. In particular, these methods are not capable of differentiating components of

multivariate variation in structured models. The reason for this is twofold (Legendre P. and

Anderson M.J., 1999). First, the distance used may not be metric, so a linear model cannot

be applied directly. And second, the above methods rely on permutations based on multivari-

ate normality. Distance-based redundancy analysis (db-RDA) which is described by Legendre

and Anderson (Legendre P. and Anderson M.J., 1999) is a comparatively new approach which

has been developed for testing multispecies responses in multifactorial ecological experiments.

This method is applicable to situations where the test is based on a distance measure of the

researcher’s choice. The special advantages of db-RDA are:

1. it can be used with distance measures that are non-Euclidean,

2. it can be used to test interaction terms, or any other term in a structured ANOVA

model,

3. it uses nonparametric permutation methods which do not rely on assumptions of multi-

variate normality.

Steps in the procedure include:

1. calculating a matrix of distances among replicates using a distance measure of choice,
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2. determining the principal coordinates, which preserve the distances,

3. creating a matrix of dummy variables corresponding to the design of the experiment

4. analyzing the relationship between the principal coordinates and dummy variables using

RDA,

5. implementing a test by permutation for particular statistics corresponding to the par-

ticular terms in the model.

For a more detailed discussion one may consult Legendre and Anderson (Legendre P. and An-

derson M.J., 1999) and McArdle and Anderson (McArdle B.H. and Anderson M.J., 2001). A

computer program called DISTLM forward (Anderson M.J., http://www.stat.auckland.ac.nz/∼

mja/Programs.htm (2003; McArdle B.H. and Anderson M.J., 2001) that does a multivariate

multiple regression on the basis of any distance measure and does a forward selection of the

predictor variables with the tests by permutations was used for the analysis of our experimen-

tal data. The program uses the proportion of the total sum of squares that is explained by

the individual variable as the criterion for the forward selection. Output from the program

includes the results of the marginal tests individually, ignoring other variables followed by

the results of forward selection procedure with the conditional tests. Also information on the

correlation among all pairs of explanatory variables, which provides a further check on issues

of multi-co-linearity is included in the output file.

2.6 Artificial neural networks

Artificial neural networks are so named because they can be used to simulate at least partially

the behavior of brain and biological neurons and learn by trial and error. The goal of a

neural network is to map a set of input patterns onto a corresponding set of output patterns.

Networks are first subjected to sets of input and output correspondences for a given system.

After a sufficient number of training iterations, the network learns the pattern in the data fed
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to it. The neural network then applies what it has learned to a new input pattern to predict

the appropriate output. Neural networks are extensively interconnected parallel structures

containing simple processing elements known as neurons or nodes shown in Fig. 2.8. Neurons

are arranged in parallel layers, with each neuron forming a weighted connection to all layers.

There is an input layer where data are represented to the neural network, and an output

layer that holds the response of the network to the input. In between lies at least one layer

known as a hidden layer, that enables neural networks to compute complicated associations

between input and output patterns. According to universal approximation theory, a network

with a single hidden layer with a sufficiently large number of neurons can map any input

to any output, with an arbitrary degree of accuracy. Fig. 2.9 shows a typical three-layered

neural network with N input neurons, H hidden neurons and M output neurons. The number

of input and output neurons is determined by the nature of the problem. The number of

neurons in the hidden layer is often determined by the required accuracy, and is therefore a

parameter in formulating a neural network model. Each neuron receives an input vector, X,

Figure 2.8: A typical neuron j in a layer

with components Xi (i = 1 to N). The output of each neuron is being determined by several

factors other than the inputs. One of those factors is the weight factor, xij for the ith input,

Xi, corresponding to the jth node. The other important factor determining the output of a

24



Figure 2.9: A one hidden layer feed forward neural network

neuron is the bias denoted by Tj for the jth neuron. The final factor governing the output

of a neuron is the transfer function. The most commonly used transfer function is the S-

shaped logistic sigmoid function, which is continuously differentiable, monotonic, symmetric

and bounded between 0 and 1, i.e.,

f(x) =
1

1 + e−x
(2.11)

Another useful transfer function is the hyperbolic tangent function, which is differentiable,

continuous and bounded between -1 and 1:

f(x) = tanh(x) =
ex − e−x

ex + e−x
(2.12)

The hyperbolic tangent transfer function outperforms sigmoid transfer function in predic-

tion networks, and this is because of its greater slope compared to sigmoid transfer function

(Baughman D.R. and Liu Y.A., 1995). The input-output data should be normalized so that

they are in the same range of the transfer function used. The normalization of the inputs also
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avoids overflows due to very large or very small weight factors. Data are normalized using:

�X =
X −Xmin

Xmax −Xmin
(2.13)

where �X is the normalized value and Xmin and Xmax are the minimum and maximum values

of X, respectively. The output from neuron j, in the hidden and the output layers is given by

Eq. 2.14.

�yj = f(uj) = f(
n�

i=1

(wji
�Xi) + Tj) (2.14)

Neural network training is an optimization process, in which an error function is minimized by

adjusting the weight factors and the bias. The error function to be minimized is the individual

sum-squared error between the actual output values and the predicted values, which is given

by (Elkamel A. et al., 2001):

Ei =
M�

i=1

(�yji − yji)2 (2.15)

where �yji and yji are the ith measured and predicted network outputs that correspond to the

ith input, respectively. Therefore, the training process requires a forward pass to calculate an

output and a backward pass to update the weight factors and the bias. One pass through the

set of training patterns along with updating the weight factors and the bias is called a cycle or

epoch (Goh A.T.C., 1995). The details of the algorithm for adjusting the weight factors and

bias to minimize the sum-squared error are described in Baughman and Liu (Baughman D.R.

and Liu Y.A., 1995). The development of a neural network model consists of two steps. The

first step is a training stage, where the network is subjected to a training set of input-output

patterns. The second step is a testing stage, where the performance of the network is tested on

patterns that have not been seen by the network during the training stage. The contribution of

each predictor variable on the response could be determined by variable importance measure,

V I, according to the procedure developed by Garson (Garson G. D., 1991). The procedure

essentially involves partitioning of the weight factors of each hidden neuron into components

associated with each input neuron. The equation proposed by Garson (Garson G. D., 1991)
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for determining the variable importance measure of an input is given by:

V IXp =

�nH

j=1(
|I|P jPnP

k=1 |I|P j,k

|O|j)
�nP

i=1(
�nP

i=1
|I|P i,jPnP

k=1 |I|P i,j,k

|O|j)
(2.16)

where nP is the number of input variables, nH the number of neurons in hidden layer,|I|P j is

the absolute value of the hidden layer weight factor corresponding to the P th input variable

in jth neuron in hidden layer, and |O|j is the absolute value of the output layer weight factor

corresponding to the jth neuron in hidden layer. For more details on the Garson’s methodology

consult Glorfeld (Glorfeld L.W., 1996). Neural networks have been used in section 4.5.2 as an

alternative to a regression model for optimizing the defined medium.

2.7 Metabolic network modelling

In 1991 Bailey discussed the emergence of a new science called metabolic engineering, which

he defined as the improvement of cellular activities by manipulations of enzymatic, transport,

and regulatory functions of the cell with the use of recombinant DNA technology (Nielsen

J., 2001). Metabolic flux analysis, which is based on intracellular metabolite balancing, is a

powerful methodology for the determination of metabolic fluxes along the pathways (Schuster

S.and Klamt S. et al., 2002; Stephanopoulos G.N. et al., 1998). In this approach, the intracel-

lular fluxes are calculated by using a stoichiometric model (metabolic pathway map) for the

major intracellular reactions and applying mass balances around intracellular metabolites. No

kinetic or regulatory information is necessary to build a metabolic network. A set of measured

extracellular fluxes, typically uptake rates of substrates and secretion rates of metabolites, is

used as input to the calculations. The outcome of flux calculation is a metabolic flux map

showing a diagram of the biochemical reactions included in the calculations along with an

estimate of the steady state rate, the flux, at which each reaction in the diagram occurs.
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2.7.1 Metabolic flux analysis

Metabolic flux analysis is a powerful methodology for the determination of the metabolic

pathway fluxes. Intracellular fluxes are calculated by using a stoichiometric model for the

major intracellular reactions and applying a mass balance around intracellular metabolites.

No kinetic or regulatory information is necessary to build the metabolic network. The path-

way fluxes are defined as the rate at which input metabolites are processed to form output

metabolites.

For a metabolic network that contains n metabolites and m metabolic fluxes, assuming pseudo-

steady state condition and negligible dilution effects for growth, the material balance is given

as follows:

S · ν = R (2.17)

where S is an m×n stoichiometric matrix ν is the vector of m metabolites and R is the vector

of the uptake and production rates of all the intracellular and extracellular metabolites. This

equation simply states that over long time periods, the formation fluxes of a metabolite must

be balanced by the degradation fluxes and is the basis for determining the unknown internal

fluxes ν (Lee S.U. and Papoutsakis E.T., 1999).

To determine the metabolic capabilities of a defined metabolic network one needs to solve Eq.

2.17. Three fundamentally different situations are may be encountered. Mathematically, these

situations are as follows:

1. Over-determined system

2. Determined system

3. Under-determined system
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Over-determined system

In over determined systems the number of measurements available is more than the number

of equations. The redundancy of the measurements can be used to calculate the rates of

non-measured metabolites, increase the accuracy of the available measurements through the

application of a least square calculation and identify the main sources of measurement errors

(Stephanopoulos G.N. et al., 1998; Wittmann C. et al., 2004).

Determined systems

If the number of fluxes is equal to the number of metabolites or material balances (i.e. equa-

tions) the system is a called determined system and the solution to Eq. 2.17 is unique and is

easily obtained by standard methods for solving linear equations.

Under-determined system

If the number of metabolic fluxes is greater than the number of mass balances the system is

called under-determined and the number of feasible solutions to Eq. 2.17 is infinite but all

the solutions lie in a restricted region defined as the metabolic genotype of a given organism

(Varma A. and Palsson B.O., 1994). This is the most commonly encountered situation. In

this case linear programming could be used to determine the intracellular flux distributions,

provided that a suitable objective function can be specified. With this approach it is possible

to obtain a unique solution for the intracellular fluxes by optimizing the objective function

subject to the constraints of the metabolic balances (Klamt S. et al., 2002). Because all

variables have to be positive in a linear programming formalism, one may need to rewrite the

model such that the stoichiometry includes forward and reverse reactions. Mathematically,

this optimization can be stated as:

Max/Min Z = C · ν

s.t. S · ν = R
(2.18)
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where C is a row vector, which specifies the influence of each individual fluxes on the objective

function (Stephanopoulos G.N. et al., 1998).

A number of different objective functions have been used for metabolic analysis. These

include the following:

1. Maximize metabolite production. This objective function is used for robustness analysis

of the Escherichia coli metabolic network (Edwards J.S. and Palsson B.O, 2000).

2. Maximize biomass and metabolite production. By weighing these two conflicting objective

functions appropriately, one can explore the trade-off between cell growth and forced

metabolite production in a producing strain (Hochreiter S. and Wagner R., 2007).

3. Minimize nutrient uptake. This objective function is used to determine the conditions

under which the cell will perform its metabolic functions while consuming the minimum

amount of available nutrients (Savinell J.M and Palsson B.O, 1992).

4. Minimizing ATP production or ATP balance error. This objective function is stated to

determine conditions of optimal metabolic energy efficiency (Savinell J.M and Palsson

B.O, 1992).

5. Minimizing net redox production. This objective function finds conditions where the cells

operate to generate the minimum amount or redox potential (Savinell J.M and Palsson

B.O, 1992).

6. Minimize the Euclidean norm. This objective has been applied to satisfy the strategy of

a cell to minimize the sum of flux values, or to channel the metabolites as efficiently as

possible through the metabolic pathways (Bonarius B.P.J. et al., 1996).

2.7.2 Sensitivity analysis

After obtaining the unique solutions to the mass balance equations of over-determined, deter-

mined, and under-determined systems it is important to measure the sensitivity of the solution
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with respect to small perturbations in the measurements. The so-called shadow prices can be

addressed from the dual problem of the linear programming:

πi =
∂Z

∂bi
|boundary (2.19)

These are the derivatives of the objective function at the boundary. The shadow price can

be used to determine whether the cell is limited by a particular constraint (Lee S.U. and

Papoutsakis E.T., 1999).
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Chapter 3

Materials and methods

3.1 Microorganism and medium

Recombinant Streptomyces lividans NCIMB 11416/IL3 p002, was kindly provided by Cangene

Corporation, Mississuaga, Ontario, Canada. This strain was derived from Streptomyces livi-

dans 66 as designated by the John Innes Institute and contains multiple copies of plasmid

encoding for the rHuIL-3 gene with a thiostrepton-resistance marker. The seed culture was

prepared in thiostrepton containing complex medium as described previously (Yun S. et al.,

2001). The basal medium used for growth studies had the following composition (per liter

of de-ionized water): 10.6 g K2HPO4, 5.3 g KH2PO4, 2.5 g (NH4)2SO4, 226 µl polypropylene

glycol (PPG) 2025, 100 ml of 16% (w/v) glucose, 5ml of 20% (w/v)MgSO4, and 1ml trace

element solution. The pH was adjusted to 6.7 before autoclaving for 20min at 121◦C. Glucose

and magnesium sulfate solutions were autoclaved separately. Trace element solution consisted

of (per liter of de-ionized water): 40 g Na2EDTA.2H2O, 11 g CaCl2.2H2O, 7 g FeSO4.7H2O, 2 g

MnCl2.4H2O, 2 g ZnSO4.7H2O, 0.4 g CuSO4.5H2O, 0.4 g CoCl2.6H2O. The amino acid mix-

tures were dissolved in deionized water and the resulting solutions were sterilized by filtration

through a 0.2 µm filter (Millipore) at room temperature.
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3.2 Analytical methods

Samples were analyzed for concentration of cells, glucose, ammonia, amino acids, organic acids,

and protease activity. Each analysis was carried out in triplicate and the average was reported

and used in this study.

3.2.1 Gravimetry

For the estimation of biomass, 10 ml culture samples were centrifuged (5,000 g for 20 min)

in centrifuge tube. The pellet was washed twice with distilled water and vacuum filtered

through a pre-dried and pre-weighed 0.45µm filter (Millipore). The biomass cake was dried

to a constant weight in a convection oven at 85◦C. The first supernatant was filtered through

0.2 µm filters (Millipore) and stored at -35◦C for further analysis of extracellular medium.

3.2.2 Optical density

For optical density (OD) measurements, approximately 5 ml samples were homogenized in a

5 ml cell grinder (Safe-Grind, Wheaton Industries Inc., Millville, NJ) by moving the pestle

20 times. The OD of homogenized mixture was measured at 600 nm in a DU 520 UV/Vis

spectrophotometer (Beckman Coulter Inc., Fullerton, CA). The cell grinder was rinsed with

known volume of dilution water to minimize the cell mass loss in the grinder. Since the OD

of the homogenized mixture must be less than 0.3 absorbance unit to retain in linear range of

the calibration curve, the ground samples were diluted by de-ionized water, accordingly. The

supernatant fermentation broth served as blank. The OD was linearly correlated with the

gravimetric biomass measurements.

3.2.3 Glucose assay

The glucose content of the supernatant was analyzed enzaymatically by a glucose kit following

the procedure of the manufacturer (Megazyme Glucose Test Kit). The method is based on
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oxidase/peroxidase reaction.

3.2.4 Ammonia Assay

Ammonia concentrations were measured by a pH/ISE meter model 710A equipped with am-

monia gas-sensing ion-selecting electrode (Beckman). The pH of all the standard solutions

and samples was adjusted to be higher than 11 by adding a 10 M sodium hydroxide solution.

This is necessary to convert the ammonium ion to ammonia. The hydrophobic membrane of

the electrode allows the ammonia pass through the inner chamber of the electrode where it

is converted back to ammonium ion that is detectable as pH changes in the internal filling

solutions. Different but known concentrations of ammonium chloride solution were used as

the standard solution to calibrate the meter.

3.2.5 Interleukin-3 assay

Total interleukin-3 concentration in fermentation broth samples were estimated using the

Direct Enzyme Linked Immunosorbent Assay (Direct ELISA) and Sodium Dodecyl Sulfate

PolyAcrylamide Gel Electrophoresis (SDS-PAGE).

Direct Enzyme Linked Immunosorbent Assay (Direct ELISA)

The entire assay was performed in a 96-well, high binding polystyrene microtiter plate (Im-

molun 2HB Flat Bottom Microtiter Plates). The primary and secondary antibodies for this

assay were rabbit polyclonal Ab specific to IL-3 (Abcam, Inc., Cambridge, MA), and anti-

rabbit IgG alkaline phosphate conjugate (Sigma-Aldrich, Canada Ltd., Oakville, ON), respec-

tively. p-Nitrophenyl phosphate (Sigma-Aldrich, Canada Ltd., Oakville, ON) was used as the

substrate for the secondary antibody. The chemical composition of the solutions is listed in

Table 3.1. The procedure used for the test is as follows:
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1. Aliquot 100µl of coating buffer into each well of a microtiter except wells in the first

column.

2. Aliquot 150 µl of standard into wells A1 and B1, dilution buffer into wells C1 and D1,

test sample one into wells E1 and F1, and test sample two into wells G1 and H1.

3. Aliquot 50µl from each well in first column into the corresponding well in second column

and repeat for the rest of the columns. Remove 50µl of the contents of the last column

(12th column) and discard it. This will end up with eleven 3-fold dilutions.

4. Cover the plate with an adhesive film and incubate for one hour at 37◦C.

5. Remove the coating solution and wash the plate four times by filling the wells with 250 µl

of washing buffer. The solutions or washes are removed by flicking the plate over a sink.

The remaining drops are removed by patting the plate on a paper towel.

6. Dissolve one vial of rabbit polyclonal Ab specific to IL-3 (Abcam, Inc., Cambridge, MA)

in 1 ml of dilution buffer. Dilute 100 µl of the resulting solution in 11ml of dilution

buffer. Add 100µl of the primary antibody solution to each well.

7. Cover the plate with an adhesive film and incubate for one hour at 37◦C.

8. Wash the plate four times with the washing buffer.

9. Dilute 10 µl of the anti-rabbit IgG alkaline phosphate conjugate (Sigma-Aldrich, Canada

Ltd., Oakville, ON) in 11ml of dilution buffer and add 100µl of the secondary antibody

solution to each well.

10. Cover the plate with an adhesive film and incubate for half an hour at 37◦C.

11. Wash the plate four times with the washing buffer.

12. Dispense 100 µl of alkaline phosphate substrate solution per well.
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13. After sufficient colour development (if necessary add 100 µl of stop solution (1M EDTA

solution) to the wells.

14. Read the absorbance of each well at 405 nm in a DU 520UV/Vis spectrophotometer

(Beckman Coulter)

Table 3.1: ELISA formulations

10 X PBS (Posphate Buffered Saline pH 7.4)

NaCl 80.0 g

KCl 2.0 g

Na2HPO4 14.4 g

KH2PO4 2.4 g

Deionized water (final volume) 1000 ml

pH adjusted to 7.4 ± 0.1 with HCl

Sterilized by filtration and stored at 4◦C

20% (v/v) Tween 20

Tween 20 20 ml

Deionized water (final volume) 100 ml

Sterilized by filtration and stored at 4◦C

Coating Buffer

10 X PBS 100 ml

Deionized water (final volume) 1000 ml

Sterilized by filtration and stored at 4◦C

Dilution Buffer

10 X PBS 10 ml

Bovine Serum Albumin (BSA) 1.0 g

Deionized water (final volume) 100 ml
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Sterilized by filtration and stored at 4◦C

Washing Buffer

10 X PBS 100 ml

20% Tween 20 5 ml

Deionized water (final volume) 1000 ml

Sterilized by filtration and stored at 4◦C

Alkaline Phosphate Buffer

Diethanolamine 97 ml

NaN3 0.2 g

MgCl2.6 H2O 0.1 g

Deionized water (final volume) 1000 ml

pH adjusted to 9.8 ± 0.1 with HCl

Sterilized by filtration and stored at 4◦C

Alkaline Phosphate Substrate

p-Nitrophenyl phosphate 1 tablet

Alkaline Phosphate Buffer 10 ml

SDS-PAGE method

The assay was carried out in a Bio-Rad Mini-Protean 3 (Bio-Rad Laboratories, Inc.). Proteins

in supernatant samples were separated by denaturing discontinuous SDS-PAGE, under reduc-

ing conditions, according to the method of Laemmli (Laemmli U.K., 1970). All the reagents

were purchased from Bio-Rad laboratories Inc. (Mississauga) unless stated to the contrary.

Resolving gel Each resolving (separating) gel was 80× 60×1.5 mm. A mixture of 7.5 ml

resolving gel stock solution and 7.5 ml 30% Acrylamide/Bis solution, 29:1 (3.3% C) and

100 µl ammonium sulphate (APS) were mixed prior to adding 20 µl N,N,N
�
, N

�- tertram-

ethylethylenediamine (TEMED) to initiate the polymerization. Two gels were simultaneously
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prepared in Bio-Rad Mini-Protean 3 multicasting chamber. The solution was poured into the

multicasting chamber and ethanol overlay was applied. Polymerization was typically complete

in 20min. The ethanol overlay was discarded and the top of the resolving gel was rinsed with

de-ionised water.

Stacking gel 3.2 ml stacking gel solution and 0.8 ml 30% Acrylamide/Bis solution 29:1 (3.3%

C) and 33.3µl APS was mixed. 7 µl TEMED was then added to initiate the polymerization.

The stacking gel solution was poured on top of the polymerized resolving gels and the combs

were immediately applied.

Sample preparation 233 µl of 50% trichloroacetic acid (TCA) was added to 1.0ml of su-

pernatant sample in an Eppendorf vial, then vortex mixed and chilled for 10 min prior to

centrifugation for 20min at 5000 g and 4◦C. The liquid solution was discarded to waste col-

lection to obtain a protein pallet. The pallet was dried. For 10 X concentration of samples

100 µl of 1 X Laemmeli sample buffer with β-mercaptoethanol (BME) and for 5 X concentra-

tion 200 µl of BME was add to each vial. Any remaining TCA residue can turn the sample

buffer to yellow. To neutralize TCA and recover the colour of sample buffer known volume

of 1 M sodium hydroxide solution was added to each sample. The samples were heated for

10 min at boiling water and then loaded to the gels.

Running conditions Both anode and cathode chambers were filled with 1X running buffer.

Each well on the gel was loaded with 15 µl sample mixture. Protein electrophoresis was

performed in Bio-Rad Mini-Protean 3 at constant voltage of 100V for 150 min (PowerPac

1000 power supply, Bio-Rad). After electrophoresis, the gels were carefully removed from the

glass plates and left gently shaken in SDS-PAGE fixing and staining solution for about half

an hour. Destaining was achieved by multiple washes with SDS-PAGE de-staining solution.
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Estimation of rHuIL-3 concentration Gels were placed between clear cellophane sup-

ports (Bio-Rad) and dried. Dried gels were then scanned with a flatbed colour scanner at

800 dpi. Purified rHuIL-3 provided by Cangene Corp. (Mississauga, Canada) was used as

standard. The calibration curves were constructed by plotting the intensity standard solu-

tions versus the concentration of the standard solutions. The amount of rHuIL-3 in each

sample was estimated by comparing the intensity of its band with the calibration curve. A

Bio-Rad Quantity One software package was used to measure the trace intensities of the bands

on the gels. To ensure the accuracy, each gel was loaded with at least four lanes of rHuIL-3

standards. The 15 kDa bands on these gels have been confirmed to be rHuIL-3 by running

Western Blots specific to rHuIL-3 (Yahya, 2003).

3.2.6 Protease assay

Protease activity was measured using the method described by Sarath et al.(Beynon R.J.

and Bond J.S., 2000). This method provides an estimate of general proteolytic activity of

the sample. The assay is based on the absorbance measurement of the low molecular weight

coloured peptides, which are the product of the proteolytic action on the protein substrate. All

the samples and reagents were incubated at 32◦C prior to the assay. Azocasein substrate 2%

w/v was prepared by dissolving azocazein in 100 mM phosphate buffer of pH of 6.4 and clarified

by centrifugation at 10000 g for 10 min. Assay was initiated by pipetting 80 µl of azocasein into

a 1.5 ml eppendorf vial containing 48 µl of the cell free supernatant. The reaction mixtures

were vortex mixed and incubated at 32◦C for 24 hours in the presence of 5mM sodium azide

solution to prevent microbial growth. Following incubation 384 µl of 10% TCA added to each

sample and mixed thoroughly to terminate the assay. The contents of the vial were allowed

standing for 15 min to ensure complete precipitation of the remaining azocasein and azocasein

fragments. The sample blanks were prepared by pippetting 48 µl cell free supernatant to a vial

containing 384 µl of 10% TCA. The reaction mixture was vortex mixed and incubated with

samples. After incubation for 24 hours, 80µl of azocasein was added to the sample blank. The
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contents of the vial were allowed standing for 15 min. All samples and sample blanks were

centrifuged at 8000 g for 5 min and 384 µl of the supernatant fluid was transferred to another

vial containing 448 µl of sodium hydroxide. The absorbance of these solutions was determined

at 440 nm using a Multiskan Ascent (Labsystems, Finland). One unit protease activity was

defined to be the amount of enzyme required to produce an absorbance change of 1.0 in a

1 cm cuvette, under the conditions of the assay. The enzyme activity was calculated using the

following equation:

Activity =
αSample − αBlank

0.3
× 832

348
× 512

48
(3.1)

where, αSample and αBlank are the absorbance of the sample and the blank, respectively.

Specific activity of the protease was defined as units per millilitre per milligram of cell dry

weight.

3.2.7 Amino acid assay

Amino acid analysis of the supernatant samples was performed by High Performance Liq-

uid Chromatography (HPLC) following pre-column derivatization with phenylisothiocyanate

(PITC) as described by Bidlingmeyer et al. (Bidlingmeyer B.A. et al., 1984). The samples

containing up to 50 nmol of each amino acid were dried under high vacuum. Then, 20µl of

ethanol:water:triethylamine (TEA) (2:2:1) was added to the samples and dried again under

vacuum. The residual amino acids were derivitized by adding 20 µl of derivitization reagent.

The derivitization reagent was made fresh consisting of ethanol:water:TEA:PITC (7:1:1:1).

PITC was added to this solution under nitrogen atmosphere. The derivatized form of the

amino acids, were formed by adding 20 µl of the derivatization reagent to the dried samples

under nitrogen environment and sealing them at room temperature for 20 min. The samples

were dried under high vacuum, once more. Reverse phase HPLC was conducted at 55◦C with

a Waters 2690 separation module. The UV detector was controlled at 250 nm. Separation was

performed on an Intersil C8-3 column (150 mm× 4.6 mm, I.D.) with the particle size of 5 µm.

The solvent consisted of two streams: solvents A and B at the total flow rate of 1.0 ml/min.
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Solvent A was aqueous buffer with 0.14M sodium acetate and 0.5 ml/l of TEA. The pH of the

solvent A was adjusted to 6.35 by adding glacial acetic acid. Solvent B was a 60% solution of

acetonitrile in water. The separation gradient started with 10% solvent B increasing to 53%

solvent B in 19 min using the convex curve number 5. Solvent B at the end of each injection

was used to wash out any residual sample components. The derivetized samples were dissolved

in 1.0 ml of solvent A and 15 µl of the resulting solutions were injected into the column. The

concentration of each amino acid in the samples was determined by comparing the area under

the curve with the calibration curves.

3.2.8 Assay of organic acids

Low molecular weight organic acids were determined with a Waters 2690 separation module.

Separation was performed on an Intersil C8-3 column (150 mm× 4.6 mm, I.D.) with the particle

size of 5 µm at 27◦C using the method described by Cawthray (Cawthray G.R, 2003). All the

samples and standards were acidified to pH 2.7 with ortho-phosphoric acid. The mobile phase

composed of 93% 25 mM KH2PO4 and 7% methanol at a flow rate of 1 ml/min. The UV

detector was controlled at 210 nm.

3.2.9 Off-gas analysis

Carbon dioxide and oxygen concentrations were monitored on line at the inlet and outlet of

the fermentor with a solid-state infrared CO2 sensor and an electrochemical oxygen sensor,

respectively (Model 902, Quantek Instruments, USA).
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Chapter 4

Medium design and optimization

4.1 Introduction

Federal guidelines and regulations banning animal-derived medium components necessitate

the refinement or re-development of industrial medium formulations (Zhang J. and Greasham

R., 1999). Medium composition has been known to have a significant effect on product concen-

tration, yield, and volumetric productivity. Therefore, the design of a fermentation medium is

of critical importance during the development of an industrial fermentation. The development

of defined medium without animal products is most desirable for the production of pure and

safe biological products. The employment of a defined medium often leads to better control

strategies, higher growth rates, improved growth yields, and higher cell densities (Yee L. and

Blanch H.W., 1992). Several medium design strategies have been proposed (Kennedy M. and

Krouse D., 1999). Traditionally, medium design and optimization was done by varying one

factor while keeping the other factors at a constant level. This one-factor-at-a-time technique

(Chary C.V.K. et al., 1989; Monot F. et al., 1982) is simple, but interactions between com-

ponents are ignored. In addition, it involves a relatively large number of experiments and the

optimal medium composition can be missed completely. Alternatively, statistically designed

experiments allow the evaluation of more than one factor at a time and the interactions be-
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tween the factors (Gheshlaghi R. et al., 2005; Gouveia E.R. et al., 2001; Ooijkaas L.P. et al.,

1999; Techapun C. et al., 2002), but they require a large number of experiments and are not

suited for minimal medium development. There have been also some attempts on the use

of artificial neural networks and genetic algorithms have been used to model and optimize

fermentation media (Baishan F. et al., 2003; Nagata Y. and Chu K.H., 2003).

A unique combination of neural networks with statistical techniques is presented as a novel

approach to identify the essential amino acids and determine their optimum concentrations

for the growth of Streptomyces lividans and production of Recombinant Human Interleukin-3

(rHuIL-3).

A schematic outline of the technique for design and optimization of a medium is given in

Fig.4.1. Initially, starvation trials with growth limiting amino acid levels were performed to

establish the baseline for nutritional requirements. Following these preliminary experiments,

a screening mixture experiment was designed and distance based multivariate analysis was

performed to establish the rank of the amino acids. A mixture design known as a simplex

lattice design (Cornell J.A., 2002; Myers R.H. and Montgomery D.C., 2003) was performed to

obtain the optimum proportions of the essential amino acids. Finally, a neural network model

was employed as an alternative to the statistical model.

The task at hand was to develop a systematic procedure for the design and optimization of

a chemically defined medium. The study aimed at replacing casein peptone in conventional

medium for Streptomyces lividans (strain 1326) with essential amino acids and determining

the optimum proportion of the amino acids. The organism used secretes fully bioactive recom-

binant human interleukin-3 (rHuIL-3). The proposed methodology is believed to be robust

and can be employed for the optimal medium design for any recombinant platform.
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Figure 4.1: Outline of the technique used for design and optimization of medium

4.2 Materials and Methods

Medium composition used is given in section 3.1 except for the amino acid cocktail. Amino

acid concentrations used were different for different experiments and are described in sections

4.3, 4.4, and 4.5.

4.2.1 Inoculation and Incubation

Streptomyces lividans cultures were grown in 500 ml baffled flasks at a volume ratio of 5:1

in medium containing 10µg/l thiostrepton. The concentration of inoculum in each flask was
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100 µl. The temperature was maintained at 32◦C and agitation at 240 rpm on an Innova 4300

incubation shaker (New Brunswick Scientific Co., USA).

4.2.2 Sampling

Samples of approximately 10ml were taken aseptically after 24 h of fermentation. The samples

were centrifuged (5000 g for 20 min) in centrifuge tubes. The supernatant were stored at -35◦C

for later analysis.

4.3 Starvation Trial

To establish growth limiting conditions, growth studies in equimolar amino acid solutions at

suboptimal concentrations were carried out. For brevity, these tests are referred to as starva-

tion trials. The results are shown in Fig.4.2. Growth was measured both in terms of optical

density and biomass. The results in Fig.4.2 indicate that reducing the total concentration of

amino acids below 0.25 g/l limits growth noticeably. Thus, an initial amino acid concentra-

tion of 0.25 g/l was employed as a minimum nutrient requirement for Streptomyces lividans.

The supernatant samples corresponding to the stoppage point of growth were analyzed for

amino acids. The results were overlaid on the initial amino acid profile to show the changes of

amino acid concentration during the fermentation. A typical diagram of amino acid concen-

trations in fresh medium and the supernatant is shown in Fig.4.3. This figure corresponds to

an initial concentration of 0.25 g/l of amino acids in the medium. Amino acid analysis of the

fresh medium and the supernatant were carried out in triplicates and the reported data are

the average values. The results of amino acid analysis for the rest of the fermentation with

different amounts of initial amino acid were the same as in Fig.4.3. It is evident that eight of

the twenty amino acids were completely or almost completely consumed when growth ceased.

These amino acids included: Arginine, Asparagine, Aspartic acid, Glutamic acid, Leucine,

Methionine, Phenylalanine, and Threonine. However this is not a definitive indication of ab-
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Figure 4.2: The effect of total amino acid concentration on biomass production

solute requirement of these amino acids by the bacterial culture. To clarify this ambiguity,

fermentations were run with these identified eight amino acids only, the complementary twelve

that were not exhausted, and all twenty amino acids in the medium. The results of these fer-

mentations are given in Table 4.1. These results indicate that deleting the complementary

twelve amino acids has no significant effect on growth. Accordingly, the identified eight amino

acids were chosen for further study as potential essential amino acids and a screening mixture

experiment was designed to rank the importance of the amino acids.
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Figure 4.3: Amino acid concentration in fresh medium and first supernatant

Table 4.1: Test of growth dependence on amino acid combinations

Number of Total weight of Biomass

Amino Acids Amino Acids (g/l) (g/l)

Identified 8 0.630 1.85

Complementary 12 0.870 0.64

All 20 1.500 1.81

None 0.000 0.28
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4.4 Screening mixture experiment

A screening mixture experiment was designed to rank the importance of the identified eight

amino acids. The design was performed with the aid of Design Expert version 6.0.4 statistical

software (Stat-Ease Inc., Minneapolis, MN). The corresponding design and results are shown

in Table 4.2. A total amino acid concentration of 0.25 g/l was used in the experimental de-

sign. Then the DISTLM forward program (Anderson M.J., http://www.stat.auckland.ac.nz/∼

mja/Programs.htm (2003) was employed for distance-based multivariate analysis using forward

selection (McArdle B.H. and Anderson M.J., 2001) to rank the identified amino acids. This

program needs two input files in ASCII*.txt format. The first input file contains the data ma-

trix of the response variables Y (rHuIL-3 concentration and biomass) normalized by dividing

each column by the greatest value in the corresponding column, and the other input file is

an X matrix containing 36 predictor variables. The predictor variables are 8 amino acid mole

fractions in the experimental design (primary predictor variables) and the remaining 28 pre-

dictor variables are the binary interaction of those 8 primary predictor variables. Euclidean

distance was the choice of the distance measure. After running the program 18 out of 36

variables explained one hundred percent of the variability in the data which meant that the

degrees of freedom was eighteen.

Table 4.2: Screening mixture experiment design and results

Mole fraction Biomass rHuIL-3

Run Arg Asp Asn Glu Leu Met Phe Thr (g/l) (mg/l)

1 0.169 0.128 0.129 0.142 0.127 0.145 0.160 0.000 0.953 47.7

2 0.173 0.132 0.133 0.000 0.131 0.149 0.165 0.119 1.224 52.6

3 0.070 0.053 0.054 0.059 0.053 0.060 0.601 0.048 0.839 37.9

4 0.079 0.539 0.060 0.066 0.059 0.068 0.075 0.054 0.848 25.2

5 0.171 0.130 0.131 0.143 0.000 0.146 0.162 0.117 1.247 36.8

Continued on next page
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Table 4.2 – continued from previous page

Mole fraction Biomass rHuIL-3

Run Arg Asp Asn Glu Leu Met Phe Thr (g/l) (mg/l)

6 0.616 0.052 0.052 0.057 0.052 0.059 0.065 0.047 0.727 35.1

7 0.151 0.115 0.116 0.127 0.114 0.130 0.144 0.104 1.178 41.2

8 0.171 0.000 0.131 0.144 0.129 0.147 0.162 0.117 1.103 45.5

9 0.079 0.060 0.541 0.066 0.059 0.067 0.075 0.054 1.332 42.4

10 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.423 0.0

11 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.396 0.0

12 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.112 0.0

13 0.174 0.132 0.133 0.146 0.131 0.000 0.165 0.119 0.142 0.0

14 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.206 0.0

15 0.083 0.063 0.063 0.069 0.062 0.071 0.079 0.510 0.813 34.5

16 0.074 0.056 0.057 0.062 0.056 0.573 0.070 0.051 0.805 38.2

17 0.151 0.115 0.116 0.127 0.114 0.130 0.144 0.104 0.963 42.1

18 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.0

19 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.116 0.0

20 0.177 0.134 0.135 0.148 0.133 0.151 0.000 0.121 0.852 37.1

21 0.075 0.057 0.057 0.567 0.057 0.064 0.071 0.051 1.011 39.8

22 0.171 0.130 0.000 0.144 0.129 0.147 0.162 0.117 0.772 24.6

23 0.151 0.115 0.116 0.127 0.114 0.130 0.144 0.104 0.866 49.0

24 0.000 0.135 0.136 0.150 0.134 0.153 0.169 0.122 0.915 32.7

25 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.246 4.9

26 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.495 25.4

27 0.079 0.060 0.061 0.066 0.537 0.068 0.075 0.054 1.050 31.0

28 0.151 0.115 0.116 0.127 0.114 0.130 0.144 0.104 1.005 40.0

29 0.151 0.115 0.116 0.127 0.114 0.130 0.144 0.104 0.985 40.7
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A summary of the computer output is shown in Fig. 4.4. This figure presents the percent vari-

ability of the response matrix (normalized rHuIL-3 and biomass concentration) as explained by

the individual amino acids and their binary combinations. Using this information, the proba-

ble amino acid requirement (starting with the highest ranked single amino acid, methionine)

was calculated by summing the corresponding probability values.

Figure 4.4: Percent variability

The predicted rank is shown in Table 4.3. Verification of the rank predicted by the computer

program was done by another series of fermentations, in which the total amino acid concen-

tration was 0.25 g/l. The first run contained only methionine (Met), the second Met and

aspartic acid (Asp) with equimolar concentration, the third one Met, Asp, and phenylalanine

(Phe) with equimolar concentration, and so on. The results of these fermentation runs are
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shown in Table 4.3. It is obvious that after leucine (Leu), addition of the rest of the identified

amino acids decreases the growth. This is due to dilution of the essential amino acids. As

mentioned previously, the total amount of the amino acids concentration was fixed, therefore,

by adding more amino acids to the solution the essential amino acids the concentrations de-

creased. Based on these findings, Met, Asp, Phe and Leu were singled out as the essential

amino acid candidates.

Table 4.3: Predicted rank of amino acid combinations and corresponding biomass concentra-

tion (ranking obtained by DISTLM forward computer program)

Variable Probability Biomass (g/l)

Met 0.09 0.52

Met+Asp 0.47 1.23

Met+Asp+Phe 0.47 1.84

Met+Asp+Phe+Leu 0.53 1.92

Met+Asp+Phe+Leu+Glu 0.67 1.49

Met+Asp+Phe+Leu+Glu+Asn 0.82 1.55

Met+Asp+Phe+Leu+Glu+Asn+Arg 0.97 -

Met+Asp+Phe+Leu+Glu+Asn+Arg+Thr 1.00 -

4.5 Defined medium optimization by mixture experiments method

The mixture experiment method was rearranged to obtain the best possible minimal medium

composition for Streptomyces lividans. The standard simplex design is a boundary point

design. With the exception of the overall centroid, all design points are on the boundaries

of the simplex. To make predictions about properties of complete mixtures more runs are

required in the interior of the simplex. Hence, the usual simplex design was augmented with

four axial runs and five design points were done in replicate to check the accuracy of the model
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and the lack of fit. Therefore, the total number of experiments supporting a quadratic model

with four components would be 24. The experimental design and the results summarized in

Table 4.4. The total amount of amino acids used in these experiments was 0.25 g/l.

Table 4.4: Experimental design and results for four-

component mixture experiment

Mole fraction rHuIL-3 (mg/l)

Run Asp Leu Met Phe Experimental Regression Neural network

1 0.000 0.000 0.525 0.475 28.13 27.13 28.29

2 0.000 0.000 1.000 0.000 17.48 17.78 15.70

3 0.475 0.000 0.525 0.000 55.31 59.20 53.64

4 0.000 0.475 0.525 0.000 15.34 19.75 17.80

5 0.594 0.119 0.169 0.119 40.35 54.77 43.78

6 0.000 0.950 0.050 0.000 20.43 21.71 19.74

7 0.000 0.950 0.050 0.000 20.42 21.71 19.74

8 0.119 0.119 0.644 0.119 35.72 34.52 33.32

9 0.000 0.475 0.050 0.475 20.91 29.10 18.62

10 0.475 0.000 0.050 0.475 78.01 68.79 76.00

11 0.950 0.000 0.050 0.000 45.30 44.03 43.83

12 0.119 0.119 0.169 0.594 49.49 43.93 49.25

13 0.000 0.000 0.050 0.950 32.96 36.49 34.16

14 0.317 0.317 0.050 0.317 62.74 46.75 61.56

15 0.000 0.000 1.00 0.000 15.06 17.78 15.70

16 0.119 0.595 0.169 0.119 26.78 29.41 29.53

17 0.238 0.238 0.288 0.238 50.91 44.21 51.44

18 0.000 0.000 0.050 0.950 35.36 36.49 34.16

19 0.317 0.000 0.367 0.317 72.95 58.02 73.85

Continued on next page
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Table 4.4 – continued from previous page

Mole fraction rHuIL-3 (mg/l)

Run Asp Leu Met Phe Experimental Regression Neural network

20 0.000 0.317 0.367 0.317 28.52 25.33 29.65

21 0.317 0.317 0.367 0.000 39.35 40.41 39.04

22 0.475 0.475 0.050 0.000 40.36 32.87 40.67

23 0.950 0.000 0.050 0.000 44.10 44.03 43.83

24 0.475 0.000 0.050 0.475 74.02 68.79 76.00

4.5.1 Multiple regression analysis

Based on the experimental values, statistical testing using Fisher’s statistical test was carried

out. The experimental design and statistical analysis of the results was performed with the

aid of Design Expert version 6.0.4 statistical software (Stat-Ease Inc., Minneapolis, MN). The

values of regression coefficients were calculated and the following equation which includes all

terms regardless of their significance was derived for rHuIL-3:

rHuIL− 3 = 33.7×Asp + 18.8× Leu + 15.9×Met + 26.6× Phe

+6.1×Asp× Leu + 97.7×Asp×Met + 151.4×Asp× Phe

+3.1× Leu×Met + 24.7× Leu× Phe + 59.8×Met× Phe

(4.1)

The model F -value was 4.04 implying that the model is significant. The P -values for and

terms were less than 0.05 indicating that these terms are significant at a probability level of

95% and the remaining interaction terms were insignificant at that level. The insignificant

terms of the model of Eq.4.1 were eliminated to give the following improved model:

rHuIL− 3 = 44.0×Asp + 21.7× Leu + 17.8×Met + 36.5× Phe

+113.2×Asp×Met + 114.1×Asp× Phe
(4.2)

The analysis of variance for the improved model is summarized in Table 4.5. An F -value of

the improved model of 12.76, and a P -value of less than 0.0001 indicate that there is less than
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0.05% chance that a model F-value this large could occur due to noise. P -values less that 0.05

indicate that the model terms are significant at a probability level of greater than 95%. In

this case, linear component interactions, are significant model terms. The R2 of the regression

model was 0.78. Because the coefficient of Asp in the model was greater than the coefficients

of Phe, Leu, and Met, one would conclude that Asp has higher impact on rHuIL-3 production

by Streptomyces lividans than Phe, Leu, and Met. Furthermore, since the interaction between

Asp and Met, and Asp and Phe has a positive coefficient and these coefficients are greater

than the coefficients of the individual amino acids, the interaction terms have higher impact

on product formation than the individual amino acids.

Table 4.5: ANOVA table for the improved model

Source of variation SS df MS F P > F

Model 2.130 5 0.430 11.51 < 0.0001

Linear mixture 1.480 3 0.490 13.27 < 0.0001

Asp Met 0.280 1 0.280 7.45 0.0137

Asp Phe 0.400 1 0.400 10.88 0.0040

Residual 0.670 18 0.037

Lack of Fit 0.540 13 0.041 1.56 0.3275

Pure error 0.130 5 0.026

Total 2.800 23

4.5.2 Artificial neural network

The architecture of the neural network developed in this work was an input layer of 4 neurons

and an output layer of one neuron only corresponding to rHuIL-3 concentration. Only one

hidden layer was used. Different numbers of neurons (4, 5, and 6 neurons) were tried in

the hidden layer, checking each time if the developed neural network succeeded in reading
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an error target. It was found that a network with one hidden layer of four neurons gave

sufficiently accurate predictions. Both sigmoid and tangent hyperbolic functions were tried

as transfer functions and it was found that because of its greater slope compared to sigmoid

function, tangent hyperbolic function produced better results. The data set obtained from

mixture experiments comprising 24 experimental runs was used as the training set to optimize

the weights of the neural network. The R2 of the neural network for the training data set

was found to be 0.9987. The trained network was used to furnish predictions of rHuIL3

concentrations for the data points that were not used in the training network. This validation

step is important to check generalization characteristics of the developed neural network.

Another set of 8 experimental runs were carried out by choosing combinations of mole fractions

of amino acids which were not taken earlier to validate the neural network model and verify the

final regression model. The results of the verification experiments are given in Table 4.6. The

R2 of the neural network for the testing data was 0.9559. Fig.4.5 shows the network-predicted

rHuIL3 concentrations for training and validation data sets plotted against the corresponding

experimental data. The solid circles represent the network-trained outputs while the open

circles denote the network-predicted outputs for input variables belonging to the validation

set. The neural network model not only fits the training data very well but also provides

predictions of the validation data that are very close to the experimental measurements. The

rHuIL-3 concentrations calculated from the multiple regression equation (Eq. 4.2) is also

shown in Fig. 4.5 for comparison. It is obvious that the neural network predictions are much

closer to the line of perfect prediction than those of regression polynomial equation, confirming

the usefulness of the neural networks as empirical models in response surface analysis.

4.5.3 Optimization of defined medium

Contour plot obtained from the regression model over the simplex region (Fig. 4.6) showed the

existence of a local optimum within the experimentally explored range. The location of the

optimum could be obtained by solving the optimization problem using sequential quadratic
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Table 4.6: Verification of regression and neural network models

Run Mole fraction rHuIL-3 (mg/l)

Asp Leu Met Phe Experimental Regression Neural network

1 0.250 0.250 0.250 0.250 39.98 44.21 37.13

2 0.500 0.000 0.500 0.000 54.16 59.20 49.18

3 0.000 0.500 0.500 0.000 22.69 19.75 17.89

4 0.000 0.000 0.500 0.500 23.18 27.14 21.73

5 0.170 0.160 0.500 0.170 45.31 38.97 47.60

6 0.500 0.160 0.170 0.170 50.77 54.04 48.66

7 0.170 0.500 0.170 0.160 29.62 33.58 30.96

8 0.170 0.170 0.160 0.500 47.23 45.04 47.12

programming algorithm. The response surface and neural network models for rHuIL-3 pro-

duction in terms of the amino acid composition were used to find the optimum level of amino

acid by solving the following nonlinear optimization problem:

Max[rHuIL− 3 production]

s.t.

Asp + Leu + Met + Phe = 1

0 ≤ Asp ≤ 0.95

0 ≤ Leu ≤ 0.95

0.05 ≤ Asp ≤ 1

0 ≤ Phe ≤ 0.95

(4.3)

This problem was solved using MATLAB (The MathWorks, 2007). MATLAB includes an

optimization toolbox that implements various numerical optimization routines, including se-

quential quadratic programming algorithm to solve for the constrained optima. The MATLAB

function fmincon solves the constrained problems and was employed in this research to find

the optimal composition of amino acids in the medium. The maximum value of the objective
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Figure 4.5: Predicted vs. actual rHuIL-3 concentration

function (rHuIl-3 production) using multiple regression model was found to be 67.95mg/l,

and according to the neural network model, the maximum achievable rHuIL-3 concentration

for this fermentation was 76.00 mg/l. The combinations of mole fractions of the four amino

acids giving the maximum concentration according to both models are listed in Table 4.7. To

verify the results of the optimization, four shake flask fermentations were carried out using

the optimal amino acid composition of the minimal medium and rHuIL-3 concentration was

found to be 80.03± 8.24 mg/l. The maximum identified by the neural network model is 10.6%

higher than the maximum identified by the multiple regression analysis. This difference in-

dicates that solution obtained by multiple regression analysis with poor modeling capacity is

not guaranteed to be optimum. Therefore, the ability of the model to approximate the true
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response surface with a high degree of accuracy is of the key importance in optimization step.

Figure 4.6: Contour plot of rHuIL-3 production (mg/l) over simplex region

Table 4.7: Maximum rHuIL-3 concentration and the optimum input sets

Model rHuIL-3 Mole fraction

(mg/l) Asp Leu Met Phe

Multiple regression 67.95 0.53 0.00 0.05 0.42

Neural network 76.00 0.56 0.00 0.05 0.39
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The recombinant host strain employed in this study has an absolute requirement for me-

thionine. In cells methionine has multiple functions. Besides being an amino acid residue

in proteins, it acts as an initiator of protein synthesis and is a methyl donor in several bio-

chemical reactions. The genes leading to methinonine synthesis in Streptomyces lividans are

not very well known, but the disruption of the methylenehydrofolate gene (metF) has been

reported to lead to methionine dependence (Blanco J.and Coque J.J. and Martin J.F., 1998).

The beneficial effect of aspartic acid in the medium on the growth of Streptomyces has been

observed previously (Cheng Y.R. et al., 1995). The overproduction of recombinant protein is

known to impose a metabolic burden on the host. It appears that aspartic acid provides a

convenient entry into the Krebs cycle and acts as a supplementary energy source. The role of

aspartic acid as an energy supplement is supported by our findings that the optimal level of

aspartic acid is replaceable with a glutamic acid/aspartic acid mixture with nearly identical

results. Phenylalanine provides a ready-made aromatic ring and is a known precursor for the

synthesis of tyrosine. The important aspect of this study is not with regard to the specific acid

requirements of Streptomyces lividans for the optimal production of a recombinant protein.

Rather, this study presents a novel, statistics-based methodology for the rapid identification

of the key amino acids and the determination of their optimal composition for producing a

recombinant product. The methodology can be applied for any other organism.

4.6 Conclusion

Starvation trials used in the first step were an efficient approach to provide an initial screen

concerning which amino acid affects rHuIL-3 production and cell growth. Mixture experiments

and distance-based multivariate analysis used in the second step to rank the essential amino

acids and finally another mixture experiment was used to find the optimal composition of the

medium. The final composition of the chemically defined minimal medium to produce rHuIL-3

by S. lividans after the three steps is as follows: 0.25 g of an amino acid mixture comprising

42% Asp, 5% Met, 53% Phe, 10.6 g K2HPO4, 5.3 g KH2PO4, 2.5 g (NH4)2SO4, 226µl PPG
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2025, 100 ml of 16% (w/v) glucose, 5 ml of 20% (w/v) MgSO4.7 H2O, and 1ml trace element

solution. Evidently, the quantities of the components may be individually manipulated to

achieve a desired nutrient limitation regarding growth yield.

The hybrid neural network-sequential quadratic programming algorithm approach is described

in this work. This novel methodology serves as a viable alternative to the traditional mul-

tiple regression approach for modeling and optimization of fermentation media. The input

space of a neural network model can be optimized using a sequential quadratic programming

algorithm. It appears that neural networks provide a better fit to experimental data than

multiple regression models. Starvation trials used in the first step were efficient to provide

initial screening for those amino acids which affect rHuIL-3 production and cell growth.
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Chapter 5

Metabolic flux analysis

5.1 Introduction

Human recombinant proteins, rather than extracts from plasma, are increasingly used today in

pharmaceutical applications due to the lower immune response and reduced risk of transmission

of disease. Naturally secreting bacteria such as Streptomyces spp. are promising hosts for the

expression of products in which glycosylation is not crucial (Sathyamoorthy M. et al., 1996).

Among the streptomycetes, Streptomyces lividans with its reduced restriction-modification

barrier and low level of endogenous peptidase is particularly suitable for the expression of

recombinant proteins (Brawner M.E., 1994).

The flux distribution in metabolic pathways determines the efficiency of the production pro-

cess. Nutrients are partly used for biomass and product synthesis as well as energy supply.

In addition, they are also being used for the synthesis of side products and energy dissipation

in futile cycles. In order to optimize the capacity of microbial metabolism and increase yields

the intracellular metabolite fluxes should be quantified. Metabolic flux analysis which only

requires the measurement of extracellular metabolites has been proposed as a means to de-

termine the flow through primary metabolic pathways, identify the energetic parameters and

determine maximum theoretical yields (Naeimpoor F. and Mavituna F., 2000; Vallino J.J. and
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Stephanopoulos G., 1990, 1993; Varma A. and Palsson B.O., 1994). With the measurement

of only a limited number of extracellular metabolites, it is theoretically possible to measure

and control metabolic conversions on the level of individual enzymatic reactions by metabolic

flux analysis methods (van Gulik W.M. and Heijnen J.J., 1995). The analysis is based on

network stoichiometry and conservation of mass. A great advantage of the stoichiometric ap-

proach is that it forms a set of linear algebraic equations at steady state, which enables linear

optimization.

Although metabolic flux analysis has been applied for numerous microorganisms, there have

been only two reports applying metabolic flux analysis to Streptomyces lividans. Daae and

Isson (Daae E.B. and Ison A.P., 1999)developed a sensitivity analysis method based on stoi-

chiometry only, and using their method they were able to analyze the impact of the perturba-

tions in the measured fluxes on the unmeasured fluxes and also the impact of the changes in

biomass composition on the calculated metabolic reactions. Avignone Rossa (Avignone Rossa

C. et al., 2002) applied the metabolic flux analysis technique to carbon metabolism of S. livi-

dans, producing two different antibiotics, the polyketide actinorhodin and the tripyrrole unde-

cylprodigiosin in chemostat cultures and showed that the production of both antibiotics were

negatively correlated with PP pathway. We applied the technique of metabolic flux analysis to

carbon and nitrogen metabolism of S. lividans producing recombinant human interleukine-3

(rHuIL-3). The biochemical network developed was underdetermined and the system could

be solved only by applying several constraints and using an optimization method. The linear

programming approach with two different objective functions was utilized to obtain the in-

tracellular metabolic flux distribution of Streptomyces lividans 66 producing the recombinant

human interleukin-3 (rHuIL-3). In previous studies the production of rHuIL-3 by S. lividans

has been shown to be strictly growth associated (Yahya, 2003). Therefore it is convenient to

optimize the growth rate in order to optimize recombinant protein productivity. The main ob-

jective was to develop a stoichiometry-based model to simulate the behavior of the S. lividans,

to determine the maximum theoretical growth rate and to predict the effect of any change in

some fluxes on the behavior of the cell. Also, another objective function, minimizing redox
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potential production, was used for metabolic analysis. The topology of the system under two

different objectives were compared.

5.2 Matrials and methods

Microorganism

The recombinant Streptomyces lividans NCIMB 11416/IL3 p002, was kindly provided by Can-

gene Corporation, Winnipeg, Manitoba, Ontario, Canada. This strain was derived from Strep-

tomyces lividans 66 as designated by the John Innes Institute and contains multiple copies

of the plasmid encoding the rHuIL-3 gene with a thiostrepton-resistance marker. Cangene’s

patented production technology CANGENUSTM was designed so that the product is con-

stitutively over-expressed and secreted by the host in high levels relative to other naturally

secreted components. The expressed recombinant protein is non-glycoslated, correctly folded,

homogenous and bioactive.

5.2.1 Seed stock preparation

Streptomyces inocula were grown in 500 ml baffled flasks containing 12.5 mg/l thiostrepton

in seed medium at a volume ratio of 5:1 for 24 hr, with temperature regulated at 30 - 32◦C

and agitation at 240 rpm on an Innova 4330 refrigerated incubator shaker (New Brunswick

Scientific Co., NJ, USA). The mycelium was harvested after 24 hr by centrifugation at 5000 g

for 5 min and resuspended in fresh sterile seed medium to 50% of the original suspension

volume. 20% (w/v) sterile skim milk was added bringing the volume to the original culture

volume. The mixture was thoroughly mixed and fractionated into 1ml aliquots and stored at

- 80◦C until required for inoculum preparation.
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5.2.2 Medium composition

The chemically defined medium used for growth studies had the following composition (per liter

of de-ionized water): 10.6 g K2HPO4, 5.3 g KH2PO4, 2.5 g (NH4)2SO4, 226 µl polypropylene

glycol (PPG) 2025, 100 ml of 16% (w/v) glucose, 5 ml of 20% (w/v) MgSO4, and 1ml trace

elemenat solution. The pH was adjusted to 6.7 before autoclaving for 20min at 121◦C. Glucose

and magnesium sulfate solutions were autoclaved separately. Trace element solution consisted

of (per liter of de-ionized water): 40 g Na2EDTA.2H2O, 11 g CaCl2.2H2O, 7 g FeSO4.7H2O,

2 g MnCl2.4H2O, 2 g ZnSO4.7H2O, 0.4 g CuSO4.5H2O, 0.4 g CoCl2.6H2O. The amino acid

mixture used in this study was based on the minimal defined medium designed by Nowruzi

et. al. (Nowruzi K. et al., 2008) with some modifications. The composition of amino acid

mixture used in medium was (% by weight): aspartic acid 37, glutamic acid 41, methionine

5, and phenylalanine 17. A total amount of 1 g/l of the amino acid mixture was dissolved in

deionized water and the resulting solution was sterilized by filtration through a 0.2 µm filter

(Millipore) at room temperature.

5.2.3 Fermentation

100 µl of the thawed seed culture was used to inoculate 100 ml of the fermentation medium

containing 10 mg/l of thiostrepton in a 500 ml baffled flask. The culture was grown under

exactly the same conditions as for the seeds. This culture was used as inoculum for the

fermenter.

Batch fermentation experiments were performed in either a 2 l Bioflo fermenter (New Brunswick

Scientific Co., NJ, USA) with a working volume of 1.5 l or a 7 l Applikon bioreactor (App-

likon Dependable instruments, Holland) with the working volume of 4.5 l using the medium

described above. The bioreactor cultures were inoculated with a 5% (v/v) inoculum size. The

culture temperature was kept at 32± 0.5◦C. Air was supplied at a rate of 1 vvm and was steril-

ized through a hydrophobic 0.2 µm membrane filter (Millipore). The broth was agitated using

three six bladed Rushton turbine impellers rotating at 200 - 400 rpm. The dissolved oxygen
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was monitored and kept above 40% of saturation value using the variable agitation scheme.

Carbon dioxide and oxygen concentrations were monitored on line at the inlet and outlet of

the fermentor.

5.3 Theoretical considerations

5.3.1 Model construction

The metabolic model for the growth of S. lividans has been developed using the published

information for this microorganism. The existence of Embden-Meyerhof pathway (EMP) and

pentose phosphate pathway (PP) were reported by Salas et al. (Salas J.A. et al., 1984) for

related species, namely S.coelicolor, S. antibiotics, S. scabies, and S. reticuli. Therefore, it was

reasonable to assume that EMP and PP are functioning in S. lividans as well. Since several

studies failed to produce any evidence for existence of Entener-Doudoroff (ED) pathway in

any streptomycete, this pathway was not included in the metabolic model (Alves A.M.C.R.

et al., 1994; Dekleva M.L. and Strohl W.R., 1988; Kieser T. et al., 2000). During growth on

amino acids, the microorganism must transfer carbon from the malate/oxaloacetate pool to

the phosphoenolpyruvate pool. This indicates that gluconeogenic pathway should be active as

well (Roubos, 2002). It has been shown that pyruvate phosphate dikinase is responsible for the

lower part of the gluconeogenic reaction in Propionibacterium and Microbispora when grown on

carbon which enters the TCA cycle (Eisaki N. et al., 1999; Evans H.J. and Wood H.G., 1971).

In this work pyruvate is assumed to be synthesized by an NAD-dependent malate dehydro-

genase and pyruvate is subsequently converted to phosphoenolpyruvate by pyruvate dikinase.

Dekleva and Strohl (1988) proved that a complete tricarboxylic acid (TCA) cycle exists in both

S.lividans and Streptomyces C5. They, however, failed to detect glyoxylate pathway enzyme

activity in S. lividans, Streptomyces C5 and S. aurofaciens. The enzyme phosphoenolpyru-

vate carboxylase has been identified as the main anaplerotic enzyme in several streptomycetes

(Bramwell H. et al., 1993; Dekleva M.L. and Strohl W.R., 1988). This enzyme is therefore
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likely to be the case for the S. lividans as well. The main gluconeogenic step in S. parvulus

was identified to be a reaction converting oxaloacetate to phosphoenolpyruvate (Inbar L. and

Lapidot A., 1991). Streptomyces species contain both NADH dehydrogenase I and II and it is

not clear whether both are functioning during exponential growth. In many microorganisms,

the presence of NADH dehydrogenase II activity seems to be associated with rapid carbon

conversion by fermentation as shown by S. cerevisiae, C. glutamicum, B. subtillus and E. coli

(Roubos, 2002). One may assume that the lack of fermentation products by S. lividans is

an indication that NADH dehydrogenase I is active and NADH dehydrogenase II is inactive.

NADPH is needed for a number of anabolic reactions, but is normally required by a small num-

ber of enzymes, e.g. glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase,

and isocitrate dehydrogenase. Both NADPH- and NADH-requiring 6-phosphogluconate dehy-

drogenase have been reported for various Streptomyces (Dekleva M.L. and Strohl W.R., 1988).

Similar results have been found for glucose-6-phosphate dehydrogenase from various strepto-

mycetes (Neuzil J et al., 1986, 1988). In this study it was assumed that NADPH needed

for biosynthesis is mainly produced by the PP pathway. As in other organisms, adenosine

triphosphate (ATP) is the main energy carrier for intracellular energy transfer, but several

biochemical reactions are facilitated by pyrophosphate instead of ATP. Furthermore, it is

known that polyphosphate can be used as an ATP substitute or as an energy source for the

phosphorylation of AMP or NAD+ (Blum E. et al., 1997; Kornberg A., 1995). It may be

assumed that pyrophosphate hydrolysis is equivalent in energy to the formation of 1 ATP.

Depending on the use of NADH dehydrogenase I or II the maximal ATP yield per oxygen,

P/O ratio, is 2.5 or 1.5 (Nielsen J. et al., 2002).

A single reaction based on fixed biomass composition was employed for the formation of the

biomass from monomers. It accounts for amino acid integration into various intracellular

components ranging from protein to cell wall. The energy required for metabolic functions

other than growth is also taken into account. These functions include, maintenance of trans-

membrane gradients, macromolecular turnover, cellular motility and maintaining cellular os-

molarity. Since it has proven difficult to quantify each on of these functions individually, a
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phenomenological measure known as maintenance coefficient has gained widespread use (Marr

A.G. et al., 1963; Pirt S.J., 1965). Most maintenance requirements are energy related and may

therefore be termed as ATP maintenance requirements. Maintenance represents a significant

drain on metabolic resources at low growth rates. A schematic outline of the major metabolic

pathways is depicted in Fig. 5.1. The complete set of reactions of the metabolic network is

given in Appendix A.
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Figure 5.1: The general overview of the proposed metabolic pathways for S. lividans
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Metabolic balancing

The transient material balances for all the components in a metabolic network containing n

metabolites and m metabolic fluxes is given as follows:

dψ

dt
= S · ν −R (5.1)

where ψ is an n-dimensional vector of metabolite mass per cell, ν is the vector of m metabolites,

S is an m × n stoichiometric matrix, m is the number of metabolites and n is the number

of fluxes. R is the vector of the uptake and production rates of all the intracellular and

extracellular metabolites, which can be calculated from experimental measurements. The

element Sij is the stoichiometric coefficient of metabolite i in reaction j. A negative value of Sij

indicates that metabolite i is consumed in reaction j, whereas a positive value of Sij indicates

that metabolite i is produced. Assuming pseudo-steady state conditions and negligible dilution

effects for growth (Stephanopoulos G.N. et al., 1998), the transient mass balance can be

simplified to consider only steady-state behavior as follows:

S · ν = R (5.2)

The mass balance equations for the fermentation can be written in the matrix form as follows:

dψ(t)
dt

= RX(t) (5.3)

To calculate the values of R for the extracellular metabolites from experimental data Eq. 5.3

is integrated as follows:

� t

0
dψ(t) = R

� t

0
X(t)dt⇒

ψt −ψ0 = R(CHt − CH0)

(5.4)

where CH is the cumulative volumetric cell-hour defined as (Dutton R.L. et al., 1998):

CH =
� t

0
Xdt (5.5)
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As shown in Eq. 5.4 the slope relating the metabolite concentration to the cumulative volumet-

ric cell-hours is the instantaneous value of R. The use of the cumulative volumetric cell-hours

concept allows for assessment of the productivity and the biological capacity for production on

the same cumulative basis (Gao J. et al., 2007). The volumetric cell-hours can be calculated

by a simple integration technique, using the logarithmic mean of the cell density between data

points as follows (Dutton, 1998):

CH =
t�

0

�
Xt+∆t −Xt

ln(Xt+∆t/Xt)
× (tt+∆t − tt)

�
(5.6)

Finally, the fluxes ν can be calculated from the reaction rates R by using the matrix equation

(Eq. 5.2). Since the number of unknown intracellular fluxes are greater than the number of

metabolites i.e. m < n, Eq. 5.2 represents an underdetermined system of linear algebraic

equations with a potentially infinite solutions. Consequently, the number of feasible flux

distributions allowed by this equation is infinite. The flux distribution can be estimated

by formulating a suitable objective function and using linear programming (Hillier F.S. and

Lieberman G.J, 2001). The vector ν can be partitioned into two vectors, one containing

unknown internal fluxes and one containing unknown exchange fluxes (Gheshlaghi R. et al.,

2007). Hence,

SI · νI + SE · νE = R (5.7)

Vector νI consists of nI unknown internal fluxes and vector νE consists of nE unknown

exchange fluxes. SI and SE are the columns of S corresponding to νI and νE , respectively.

The linear programming is formulated as follows:

Min Z =
�

cjνj

s.t. SI · νI + SE · νE = R

(1− �i)Ri ≤ Ri ≤ (1 + �i)Ri

0 ≤ νI
j ≤ αj

νE
i,min ≤ νE

i ≤ νE
i,max

(5.8)

where cj is a coefficient expressing to the importance of each flux in the objective function. Due

to the characteristics of the Simplex algorithm, the elements of the solution vectors, νI and
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νE, will always be non-negative. Consequently, reversible reactions must be formulated as two

separate reactions, in opposite directions. The third set of the constraints in Eq. 5.8 states this

property for unknown internal fluxes. The first set of constraints is the steady state material

balances, the second set is associated with any possible errors involved in the measured fluxes,

and the last set of constraints implies upper and lower bounds on each exchange flux. In this

model, the elements of R are defined to be positive if the metabolite was exiting the system

and negative if it was entering the system. The mathematical model was programmed in

the GAMS (General Algebraic Modelling System) environment which is used for optimization

purposes (Rosenthal R.E., 2008).

The calculated fluxes are based on estimates from experimental measurements of exchange

fluxes. It is therefore pertinent to calculate the sensitivity of the objective function Z with

respect to perturbations in the ith measured exchange flux. This could be done using the

shadow price of the linear programming which is defined as follows (Pannel D.J., 1997):

λi =
∂Z

∂bi
(5.9)

The shadow prices were calculated from the mathematical duality of the primary linear op-

timization problem. Since the exchange fluxes vary significantly in their absolute value the

relative or logarithmic sensitivity coefficient was used for comparison purposes (?). The log-

arithmic sensitivity of the objective function in response to changes in ith measured flux can

be expressed as follows (Gheshlaghi R. et al., 2007):

Λ(Z, bi) =
∂Z/Z

∂bi/bi
=

∂ lnZ

∂ ln bi
=

bi

Z
λi (5.10)

As shown in Eq. 5.10, to compute the logarithmic sensitivity coefficient, shadow price values,

the measured exchange fluxes and the optimal value of the objective function are needed.

5.4 Experimental results and discussion

Three fermentations were performed under identical conditions and the averages of the three

sets of observations were used as shown in Figs. 5.2, 5.3 and 5.4. The profiles were found
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to be reproducible, since fermentation repeats produced almost identical results. During the

first phase of fermentation, designated as growth Phase E1, immediately after inoculation the

biomass increases in an exponential manner with µ= 0.078 h−1. Thereafter, the exponential

growth rate decreases from µ= 0.078 h−1 to µ= 0.035 h−1, as observable in the biomass plot.

The start of this growth phase (Phase E2) is estimated from logarithmic plot of biomass as

shown in Fig. 5.5. The stationary phase is reached when glucose is completely exhausted. The

elemental balances for carbon and nitrogen were calculated to verify the measurements. During

Phase E1, aspartic acid and glutamic acid were used up completely and the concentration of

phenylalanine, glucose and ammonia decrease by 50%, 9% and 4%, respectively. The complete

depletion of aspartic acid and glutamic acid in fermentation medium corresponds to end of

the Phase E1 and start of growth Phase E2, which indicates a switch in cellular metabolism.

5.4.1 Metabolic flux distribution

The extracellular metabolite fluxes were calculated from the metabolic concentration profiles

for each phase. In order to verify the results of each simulation, the oxygen uptake rate and

carbon dioxide evolution rates were set to be determined by the optimization program. Two

different objective functions were examined:

1. Optimizing biomass production by maximizing the specific growth rate,

2. Optimizing with respect to redox metabolism by minimizing excess NAD(P)H produc-

tion.

The mathematical form of the objective functions is shown in Table 5.1, and the results from

these calculations and experimental measurements are summarized in Table 5.2 and discussed

below.

The logarithmic sensitivities of the objective functions with respect to nutrients were deter-

mined for different periods of the fermentation and presented in Table 5.3.
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Figure 5.2: Biomass and rHuIL-3 concentration profiles during fermentation

Maximizing specific growth rate

Phase E1. Metabolic flux distribution at this period yielded a maximum specific growth rate

of µ= 0.072 h−1 which deviates 8% from the measured value as given in Table 5.2. The specific

oxygen uptake rate and specific carbon dioxide evolution rate was determined and compared

to measured rates, showed 23% and 19% error, compared to the measured rates, respectively.

The PP pathway was active and 58% of the glucose was diverted to this pathway. During high

NADPH requirement of the cells, the flux through the PP pathway has been reported to be high

(Jorgensen H. et al., 1995; Obanye A.I.C. et al., 1996). In most bacteria, glucose-6-phosphate

dehydrogenase and 6-phosphogluconate dehydrogenase are NADP-dependent, therefore, ev-

ery glucose-6-phosphate entering PP pathway would generate two NADPH. However, in S.

lividans glucose-6-phosphate dehydrogenase is NADP-dependent but 6-phosphogluconate de-

hydrogenase has been found to be NAD-dependent (Alves A.M.C.R. et al., 1994; Dekleva M.L.

and Strohl W.R., 1988). This means that only one NADPH is generated for every glucose-6-
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Figure 5.3: Biomass and rHuIL-3 concentration profiles during fermentation

phosphate entering PP pathway, therefore, this pathway needs to be more active in S. lividans,

to meet the biosynthetic demand for NADPH. The net amount of redox potential produced

was 5.81 mmol/gDW hr. This includes the functioning of both NADH and NADPH. Since as-

partic acid and glutamic acid directly enter the TCA cycle after deamination, the latter part

of the gluconeogenic pathway is active and 30% of malate produced in TCA cycle is estimated

to converted to pyruvate by malic enzyme. The flux distribution through the major pathways

is shown in Figs. 5.6, 5.7 and 5.8. The total amount of ATP produced during this stage was

14.06 mmol/gDW hr, which 28% was used for cellular maintenance such as transport, repair,

heat production, and secondary metabolism.

Among the nutrients, aspartic acid, glutamic acid and ammonia were found to have positive

shadow prices and phenylalanine and glucose were calculated to have zero shadow prices, in-

dicating that aspartic acid, glutamic acid and ammonia can be used to improve the growth
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Figure 5.4: Amino acids and ammonia concentration profiles during the fermentation

during this period but phenylalanine and glucose have no effects on the growth during Phase

E1. These results indicate that during Phase E1, cell growth was limited by nitrogen uptake,

not by glutamic glucose. Moreover, all the remaining amino acids except histidine and pheny-

lalanine, and all nucleotides other than IGP had positive shadow prices, indicating they can be

used to improve the growth. Furthermore, examination of the computed logarithmic sensitiv-

ities led to some important observations. Although aspartic acid, glutamic acid and ammonia

had the same shadow prices, their logarithmic sensitivities were different, so any changes in

their uptake rate would have different effects on the specific growth rate. The highest value

of the logarithmic sensitivity was 0.44 for aspartic acid, indicating that aspartic acid uptake

was growth limiting during Phase E1. Quantitatively, this value means that should the uptake

rate for aspartic acid increases by 10%, then the specific growth rate would increase by 4.4%.

Phase E2. The flux data corresponding to Phase E2 were used to evaluate the metabolic dis-

tribution of this phase. The maximum specific growth rate was determined to be µ= 0.028 h−1
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Figure 5.5: Natural logarithm of biomass v.s. time

which was 10% less than the measured value. However, both the specific oxygen uptake rate

and carbon dioxide evolution rate were overestimated by 9% and 33% in comparison with ex-

perimental data. The carbon flux through the PP pathway decreased to 52% of total carbon

flux due to decrease in biomass growth rate. The net amount of redox potential produced was

3.55 mmol/gDW h, which is 41% less than Phase E1. The total amount of ATP produced in this

stage was 6.72 mmol/gDW h, which 31% was used for cellular maintenance. Unlike in Phase E1

the gluconeogenic pathway was not active in Phase E2, and both aspartic acid and glutamic

acid were produced through the TCA cycle. Aspartic acid was produced by transamination of

oxaloacetate and glutamic acid was produced by NADP-dependent glutamate dehydrogenase

enzyme.

Similar to Phase E1 all amino acids except histidine and phenylalanine had a positive shadow

price. Histidine had a negative shadow price and phenylalanine had a zero shadow price. Again

glucose had a zero shadow price meaning that its uptake rate can not be used to increase the

specific growth rate. Ammonia had a logarithmic sensitivity of 1, indicating that ammonia is
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Table 5.1: Mathematical form of the objective functions used

Objective function Mathematical form

Maximizing specific growth rate ν64

ν6 + ν10 + ν11 + ν18 + ν21 + ν22+

Minimizing redox potential ν26 + ν27 + ν29 + ν31 + r32 + 2 r39

+ν44 + ν46 + ν52 + ν57 + ν59 + ν60

Table 5.2: Experimental and simulation results obtained using different objective functions at

different phases of fermentation

Experimental Maximizde µ Minimize NAD(P)H

Phase E1 Phase E2 Phase E1 Phase E2 Phase E1 Phase E2

µ (h−1) 0.078 0.031 0.072 0.028 0.070 0.027

rO2 (mmol/gDW h) 2.19 0.89 2.83 0.98 2.82 0.96

rCO2 (mmol/gDW h) 1.35 0.40 1.67 0.60 1.63 0.60

growth limiting in this stage.

Minimizing the production of excess redox potential

Phase E1. The objective of minimizing NAD(P)H production may be realistic, since it would

not be beneficial for the cell to have an excess of oxidizing power. The results obtained with

this objective function was almost the same as the objective previously discussed. Metabolic

flux distribution at Phase E1 yielded a specific growth rate of µ= 0.070 h−1 which is 10% less

than the measured value as given in Table 5.2. The specific oxygen uptake rate and specific

carbon dioxide evolution rate was determined and showed 22% and 17% error, compared to

the measured rates, respectively. The PP pathway was active and 56% of the glucose was
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Table 5.3: Logarithmic sensitivities of the nutrients at different stages for objective functions

Maximize µ Minimize redox potential

Nutrient Phase E1 Phase E2 Phase E1 Phase E2

Asp 0.44 0 -0.07 0

Glc 0 0 1.22 0

Glu 0.32 0 0.03 0

NH3 0.24 1 -0.2 -0.17

Phe 0 0 0.02 1.17

diverted to this pathway which is 2% less than employing the objective function to maximize

the specific growth rate. The optimal redox potential produced was 5.78 mmol/gDW h which is

0.5% less than the redox potential produced with the specific growth rate as the objective. The

total amount of ATP produced in this stage was 12.58 mmol/gDW h and 25% of the produced

amount was used for cellular maintenance purposes. Malic enzyme was active converting

malate into pyruvate.

Aspartic acid and ammonia had negative shadow prices, while glucose, glutamic acid and

phenylalanine had positive shadow prices. This means that higher uptake rates of glucose,

glutamic acid and phenylalanine favours the minimization of the excess redox potential. How-

ever, the logarithmic sensitivities of the amino acids were very small compared to glucose and

ammonia. Glucose had the highest logarithmic sensitivity of 1.21.

Phase E2. The flux data corresponding to this phase were used to evaluate the metabolic

distribution of this phase. The specific growth rate was determined to be µ= 0.027 h−1 which

was 10% less than the measured value. However, both the specific oxygen uptake rate and

carbon dioxide evolution rate were overestimated by 7% and 33% in comparison to the observed

experimental data. The carbon flux through the PP pathway was 51% of total carbon flux

and was 1% less than the pervious objective. Unlike the Phase E1 results, malic enzyme was
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Figure 5.6: Flux distribution in EMP pathway during different stages for the objective func-

tions

not active in Phase E2. The optimal redox potential produced was 3.42 mmol/gDW h which is

40% less than the Phase E1 and 4% less than the amount of redox potential produced when

tmaximizing the specific growth rate was the objective. The net amount of ATP produced in

this phase was 6.61 mmol/gDW h and 30% of this was consumed for cellular maintenance.

5.5 Discussion

All the major pathways were active throughout the fermentation and the flux distribution

was almost the same for the two different objective functions. However, fluxes through the

pathways were different during different phases of the fermentation. The relative flux size

through the PP pathway depends on the medium composition and the specific growth rate.

The results of the simulations showed that the flux through PP pathway increased with the

specific growth rate from 51% to 58% during the fermentation. According to Cochrane et. al.
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Figure 5.7: Flux distribution in PP pathway during different stages for the objective functions

(Cochrane V.W. et al., 1953), the PP pathway was the primary glucose catabolic route in S.

reticuli and S. coelicolor. Furthermore, it has been reported that during spore germination of

S. antibioticus the PP pathway for glucose catabolism increases relative to the EMP pathway,

and it became the primary metabolic route (Salas J.A. et al., 1984). All this evidence supports

the importance of the PP pathway in glucose catabolism and the assumption that NADPH

needed for biosynthesis is mainly produced by the PP pathway.

During the growth Phase E1, both aspartic acid and glutamic acid are available for the cell

and both enter the TCA cycle directly. This causes malic acid to be active during the first

stage of the growth. But this enzyme is inactive during the second stage since aspartic acid

and glutamic acid are no more available for the cell.

The energy requirement for maintenance was expressed in terms of ATP hydrolysis. The results

showed that the maintenance requirements accounted for up to 31% of the total production

depending on the objective function and the fermentation stage.
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Figure 5.8: Flux distribution in TCA pathway during different stages for the objective func-

tions

As depicted in Fig. 5.5 the microorganism displayed a diauxic growth pattern that was caused

by a shift in metabolic pathways in the middle of the growth cycle. The specific growth rate

increased rapidly during the first 23 h of the fermentation when the amino acids served as

both the main carbon and nitrogen sources. After the amino acids were exhausted, ammonia

became the main nitrogen source and the growth rate dropped during this time. The specific

growth rate gradually decreased and reached zero at 70 h as the cell concentration reached its

maximum value. One could conclude that the low concentration of organic nitrogen sources

was the main reason for the slow growth after 23 h, while the depletion of glucose was the

reason for cessation of the growth at 70 h. After this time specific growth rate became slightly

negative due to cell lysis.

Since monomeric cellular compositions for streptomycetes are currently unavailable, the biomass

composition and demands assumed for S. lividans were taken from a typical E. coli cell
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(Daae E.B. and Ison A.P., 1999; Ingraham J.L. et al., 1983). The process of determining

the monomeric composition is very laborious and expensive, hence, before committing cost

and time to such study one should consider the implications of using an assumed composition

taken from E. coli cell. This study assessed the implications of this assumption assuming a

uniform distribution for each of the biomass components. The range assumed for each biomass

component was ± 20% of the reported values for E. coli. The percentage change in each cal-

culated flux due to changes in each of the biomass components are presented in Table 4. The

percent change in each flux was calculated by running the simulation program 15 times for

each phase with of the objective functions by randomly choosing a value for each biomass

component from an assumed uniform distribution. Then, the calculated fluxes were averaged

and a 95% confidence interval was calculated for each flux. The reported values for percent

change in each flux in Table 4 are the ratio of the 95% confidence interval to average value of

the fluxes calculated by the simulation program.

The changes in flux vary from 0.22% in metabolites such as BPG and PG to 7.91% in MTHF.

Changes in ATP production was 0.35% to 0.93% and changes in objective functions, specific

growth rate and redox potential were 1.64% to 1.69%, 0.29% to 0.57%, respectively. The high-

est percentage changes are for the smaller fluxes, therefore, they do not have any significant

effect on the objective functions. Therefore, it may be concluded that possible changes in the

biomass composition will have little or no impact on the primary metabolic fluxes. This con-

cluded that using a typical E. coli cellular monomeric composition to represent Streptomyces

lividans biomass composition will not significantly affect the calculated fluxes.
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Table 5.4: Percentage change in the calculated fluxes due to

changes in each biomass component

Maximize µ Minimize redox potential

Flux Phase E1 (%) Phase E2 (%) Phase E1 (%) Phase E2 (%)

ν1 0.00 0.00 0.00 0.00

ν2 5.46 2.37 5.09 2.30

ν3 1.03 0.47 0.98 0.46

ν4 1.03 0.47 0.98 0.46

ν5 1.03 0.47 0.98 0.46

ν6 0.50 0.22 0.49 0.23

ν7 0.50 0.22 0.49 0.23

ν8 0.62 0.26 0.59 0.27

ν9 0.80 0.37 0.78 0.37

ν10 3.87 2.16 3.87 2.13

ν11 3.87 2.16 3.87 2.13

ν12 4.80 2.46 4.80 2.43

ν13 2.82 1.76 2.82 1.73

ν14 4.47 2.37 4.47 2.32

ν15 4.54 2.39 4.54 2.34

ν16 5.20 2.56 5.20 2.60

ν17 - 0.92 - 0.92

ν18 0.58 0.36 0.56 0.41

ν19 1.90 1.03 1.82 1.05

ν20 1.90 1.03 1.82 1.05

ν21 1.90 1.03 1.82 1.05

ν22 1.54 1.06 1.51 1.08

Continued on next page
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Table 5.4 – continued from previous page

Maximize µ Minimize redox potential

Flux Phase E1 (%) Phase E2 (%) Phase E1 (%) Phase E2 (%)

ν23 1.60 1.10 1.57 1.12

ν24 1.54 1.06 1.51 1.08

ν25 1.66 1.00 1.64 1.02

ν26 2.54 1.00 2.47 1.02

ν27 0.93 - 0.95 -

ν28 3.97 3.97 3.97 4.32

ν29 2.43 2.43 2.43 2.42

ν30 2.95 2.95 2.95 2.97

ν31 5.99 5.99 5.99 5.94

ν32 - 0.53 - 0.52

ν33 2.31 2.31 2.31 2.36

ν34 7.06 7.06 7.06 7.01

ν35 4.69 4.69 4.69 4.70

ν36 3.75 1.20 3.32 1.20

ν37 5.38 5.38 5.38 5.33

ν38 5.79 5.79 5.79 5.79

ν39 4.32 4.32 4.32 4.30

ν40 6.60 6.60 6.60 6.63

ν41 6.16 6.16 6.16 6.15

ν42 7.63 7.63 7.63 7.63

ν43 4.15 4.15 4.15 4.15

ν44 6.48 6.48 6.48 6.45

ν46 5.04 5.04 5.04 5.00

ν47 6.83 6.83 6.83 6.79

Continued on next page
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Table 5.4 – continued from previous page

Maximize µ Minimize redox potential

Flux Phase E1 (%) Phase E2 (%) Phase E1 (%) Phase E2 (%)

ν48 7.76 7.76 7.76 7.72

ν49 6.18 - 5.61 -

ν50 2.02 2.02 2.02 2.03

ν51 3.71 3.71 3.71 3.75

ν52 3.90 3.90 3.90 3.90

ν53 7.18 7.18 7.18 7.16

ν54 6.71 6.71 6.71 6.69

ν55 7.76 7.76 7.76 7.72

ν56 2.92 2.92 2.92 2.94

ν57 6.37 6.37 6.37 6.40

ν58 6.18 6.18 6.18 6.18

ν59 2.60 2.60 2.60 2.64

ν60 7.91 7.91 7.91 7.90

ν61 0.97 0.44 0.95 0.47

ν62 1.46 1.05 1.44 1.07

ν63 6.40 5.02 6.07 5.03

ν65 0.71 0.40 0.70 0.42

ν66 1.05 0.58 1.02 0.61

µ 1.69 1.69 1.69 1.64

NAD(P)H 0.57 0.29 0.55 0.33

ATP 0.93 0.45 0.90 0.35
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5.6 Conclusion

A flux based approach was performed for analysis of the metabolic network of S. lividans.

The metabolic network included both degradative and biosynthetic reactions. The network

consisted of 91 biochemical reactions and 62 intracellular metabolites. It included glycolysis

(EMP), pentose phosphate (PP) pathways, tricarboxylic acid cycle (TCA), anaplerotic reac-

tions, the metabolism of amino acids, biosynthesis of nucleotides and biosynthesis of biomass.

The proposed model along with the experimental measurements was used to construct the

stoichiometric matrix corresponding to the process with unknown fluxes. Linear programming

with experimental constraints was used to determine the the optimized specific growth rate

and redox potential at different stages of fermentation. The bioreaction network presented

in this study is a general pathway which can be valid for any bacterial cell with some mi-

nor modifications. This model can be used to find the theoretical metabolic distribution and

clarify the metabolic behavior of the microorganisms along with experimental data. In this

study, two objectives were considered, optimizing biomass production by maximizing specific

growth rate, and optimizing redox metabolism by minimizing excess NAD(P)H production.

The model developed in this work was able to predict the specific growth rate very accurately

with a maximum error of 10%. Moreover, the oxygen uptake rate and carbon dioxide evolution

rate were evaluated with maximum error of 27% and 35%, respectively. It should be noted that

the off-gas analyzer was not able to display the levels of oxygen and carbon dioxide in outlet

gas accurately, consequently the experimentally measured values of these two metabolites were

less accurate.

Sensitivity analysis revealed that amino acids uptake was the growth limiting fluxes during the

Phase E1 of the fermentation. During the second growth phase the uptake rate of ammonia

had a significant effect on the specific growth rate. Glucose was not growth limiting within

the experimental range. Logarithmic sensitivity analysis revealed that during the Phase E1 a

10% increase in aspartic acid uptake rate will increase biomass by 4.4% and during the Phase

E2 a 10% increase in ammonia uptake rate will increase the biomass uptake rate by 10%.
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The sensitivity analysis of the specific growth rate and redox potential with respect to the

biomass components showed that biomass building blocks would not affect the specific growth

rate and redox potential production as well as the calculated flux pattern significantly. Hence,

it was concluded that using E. coli biomass composition to represent S. lividans biochemical

demands is an acceptable compromise.
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Chapter 6

Conclusions and recommendations

6.1 Conclusions

In this thesis two approaches, the first based on statistical methods and the second on metabolic

flux analysis, are presented for maximizing the recombinant protein (rHuIL-3) production rate.

An emerging recombinant protein production platform, Streptomyces lividans 66, was used as

the host organism in a model bacterial fermentation. This section summarizes the findings of

the thesis.

Medium formulation had a profound impact on rHuIL-3 expression and post-secretion stabil-

ity. Complex medium offered higher growth rates and crude rHuIL-3 concentrations at the

expense of elevated protease activity. Defined medium supported growth and retained product

authenticity and repressed protease activity.

As a first step, starvation trials were used to provide an initial screening of amino acids that

affect cell growth and rHuIL-3 production. Using this approach the number of potentially

significant amino acids were narrowed down to eight, namely: Arg, Asn, Asp, Glu, Leu, Met,

Phe, Thr.

Screening mixture design in combination with distance-based multivariate analysis was efficient
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in specifying and ranking the most significant amino acids with regard to cell growth and

product formation. Based on this analysis the ranking of the amino acids was as follows: Met,

Asp, Phe, Leu, Glu, Asn, Arg, and Thr. Among these amino acids Met, Asp, Phe, and Leu

were proven to be essential for cell growth and product formation.

An augmented simplex mixture design with four components (Asp, Leu, Met, and Phe) was

used to explain the nature of the response surface. Analysis of variance (ANOVA) revealed

that the obtained model was significant and there was no statically significant lack of fit.

According to this analysis, Asp×Met and Asp×Phe interactions had the greatest effect on

the product formation. An artificial neural network with one input layer of four neurons

corresponding to the four amino acids and one hidden layer of four neurons and one output

layer of one neuron corresponding to rHuIL-3 was trained to predict the concentration of the

product. A tangent hyperbolic transfer function produced better predictions compared to a

sigmoid transfer function. The artificial neural network provided a better fit to experimental

data than a multiple regression model.

A sequential quadratic algorithm was used to optimize both the multiple regression and the

artificial neural network models in terms of product formation. The optimum amino acid

levels were found to be Asp 56%, Met 5%, and Phe 39%. The maximum theoretical rHuIL-3

concentration was 76.00 mg/L at the optimum levels of the amino acids. An experimen-

tal maximum rHuIL-3 concentration of 80.03± 8.24 mg/L was achieved using the optimum

medium composition supported the applied methodology.

Based on the aforementioned results, one may conclude that mixture designs, distance-based

multivariate analysis and artificial neural networks are powerful tools in designing and opti-

mizing a defined medium for recombinant protein production by S. lividans.

A metabolic network was developed for S. lividans and used as a predictive tool. The bio-

chemical network was underdetermined therefore the solution space was too wide. To reduce

the solution space, experimental flux measurements of the key metabolites were considered as

inputs to the model. This approach was found to be effective in order to achieve a realistic
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model. The proposed model was able to predict biomass concentration accurately throughout

the fermentation.

The growth period was divided into two distinct phases, Phase E1 and E2, based on the

slope of the logarithmic plot of biomass. During Phase E1, Asp and Glu acid were used up

completely and the concentration of Phe, glucose and ammonia decreased by 50%, 9% and

4%, respectively. The specific growth rate during this phase was µ=0.078 h−1. During Phase

E2 the specific growth rate decreased to µ=0.035 h−1. Growth stopped when glucose was

completely exhausted.

Two different objective functions were considered: (1) optimizing biomass production by max-

imizing the specific growth rate and (2) optimizing with respect to redox metabolism by min-

imizing excess NAD(P)H production. The flux distribution obtained from the two objectives

was almost identical. The PP pathway was active during Phase E1 for both objectives and

56-58% of glucose flux was diverted to this pathway. The glucose flux through the PP pathway

during Phase E2 reduced slightly to 51-52% of the total.

Sensitivity analysis indicated that, in the concentration range chosen for nutrients, the nitrogen

sources (amino acids in Phase E1 and ammonium nitrogen in Phase E2) were growth limiting

rather than glucose. Sensitivity of the biomass formation reaction with respect to biomass

components revealed that the specific growth rate was not affected by the biomass composition.

Also, this analysis showed that the internal fluxes were not affected by biomass composition

as well.

6.2 Recommendations

Although two methodologies have been applied successfully to identify and optimize key

metabolites that enhance recombinant protein production, the following recommendations

for future studies are proposed.

S. lividans was proven to be a promising host, but this study was limited to recombinant
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rHuIL-3 expression only. The proposed statistical technique along with the artificial neural

network model should be examined for S. lividans expressing other recombinant proteins. It

should be also applied for optimizing medium and recombinant protein production with new

emerging hosts, for example Pichia pastoris. Various Pichia species have been widely used on

a laboratory scale for protein expression by recombinant DNA methodology.

The metabolic flux model should be reduced to elementary flux modes, which are the sim-

plest metabolic paths connecting the substrate to the products. Correlation analysis should

be performed to formulate a biomass model for predicting biomass and recombinant protein

concentrations as a function of the extracellular metabolite concentration. Then the biomass

model could be combined with the elementary flux modes to get an integrated model capable

of predicting concentration values of substrates, biomass, and product by utilizing only start-

ing concentrations as input. The metabolic model could be modified by introducing integer

variables in the optimization program in order to evaluate different sets of the solutions that

have the identical objective value and satisfy the constraints.

Throughout this study the steady-state analysis of the network stoichiometry was considered

which produced algebraic equations as the constraints of the optimization problem. An alter-

native approach would be investigating the system under unsteady-state conditions and using

differential equations as the constraints of the optimization problem. This approach would

allow investigating the benefits and optimization of a fed-batch culture for producing rHuIL-

3. An important consideration to assess is whether to initiate fed-batch operation during the

Phase E1 of growth using amino acid mixtures or in Phase E2 using inorganic nitrogen. Pre-

sumably, the maintenance of the Phase E1 for extended time periods would result in faster

growth, hence higher productivity. On the other hand, the sustained maintenance of Phase

E2 would be economically more attractive, since the medium costs would be significantly less.

All experiments in this study were run at a constant temperature 32◦C and neutral pH. It is

known, that the bacterium, S. lividans contains multiple copies of the plasmid encoding rHuIL-

3. Temperature and pH shifts have been reported to be beneficial for recombinant protein
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production in several bacteria by increasing the plasmid copy number. The temperature or

pH sensitivity of rHuIL-3 production by Streptomyces is unknown. Therefore, the effects of

temperature and pH shifts on growth and product formation need further investigations. The

basal growth medium for growth of Streptomyces contains animal-based nutrients including

peptone. The use of complex medium resulted in faster growth than the amino acid mixtures.

However, a shown in this thesis, peptides in this medium led to the production of proteases

thereby compromising the authenticity of the product. The trend in the pharmaceutical

industry is the replacement of animal-based fermentation medium components. Therefore,

an investigation of the effect of the plant-based peptide medium on the productivity and the

authenticity of the recombinant protein is recommended.
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Appendix 1

Component List

αKG α-ketoglutarate

ACCOA acetyl coenzyme A

AICAR 5-aminoimidazole-4-carboxamide ribonucleotide

ADP adenosine-5-diphosphate

ALA alanine

AMP adenosine-5-monophosphate

ARG argenine

ASN asparagine

ASP aspartic acid

ATP adenosine-5-triphosphate

BPG 1,3-bisphosphoglycerate

CHOR chorismate

CITR citrate

CMP cytidine monophosphate

CO2 carbon dioxide

CYS cysteine

DAHP dihydroxyacetone phosphate

E4P erythrose-4-phosphate

F16P fructose-1,6-bisphosphate

F6P fructose-6-phosphate

FAD flavine adenine dinucleotide (oxidized)

FADH2 flavine adenine dinucleotide (reduced)

FTHF formyl tetrahydrofolate

FUM fumurate
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G6P glucose-6-phosphate

GAP 3-phosphoglyceraldehyde

GLC glucose-6-phosphate

GLN glutamine

GLU glutamic acid

GLY glycine

GMP guanosine-5-monophosphate

Gu6P gluconate-6-phosphate

HIS histidine

ICIT isocitrate

IGP imidazole glycerol phosphate

ILE isoleucine

IMP inosine monophosphate

LEU leucine

LYS lysine

MAL malate

MET methionine

MTHF methylene tetrahydrofolate

NAD nicotinamide adenine dinucleotide (oxidized)

NADH nicotinamide adenine dinucleotide (reduced)

NADP nicotinamide adenine dinucleotide phosphate (oxidized)

NADPH nicotinamide adenine dinucleotide phosphate (reduced)

NH3 ammonia

O2 oxygen

OAA oxaloacetate

PEP phosphoenolpyruvate

PG 3-phosphoglycerate
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PHE phenylalanine

PRO proline

PRPP 5-phosphoribosyl pyrophosphate

PYR pyruvate

R5P ribulose-5-phosphate

Ru5P ribose-5-phosphate

S7P sedoheptulose-7-phosphate

SER serine

SUC succinate

SUCCOA succinate coenzyme A

THF tetrahydrofolate

THR thronine

TMP thymidine monophosphate

TRP tryptophane

TYR tyrosine

UMP uridine monophosphate

VAL valine

X5P xylulose-5-phosphate
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Biochemical reactions in the metabolic network

Glycosis

1. GLC + ATP → G6P + ADP

2. G6P ↔ F6P

3. F6P + ATP ↔ F16DP + ADP

4. F16DP + H2O ↔ GAP + DHAP

5. DHAP ↔ GAP

6. GAP + NAD+ ↔ BPG + NADH

7. BPG + ADP ↔ GP + ATP

8. GP ↔ PEP

9. PEP + ADP→ PYR + ATP

Pentose Phosphate Pathway

10. G6P + NADP+ → Gu6P + NADPH

11. Gu6P + NADP+ → Ru5P + NADPH + CO2

12. Ru5P ↔ X5P

13. Ru5P ↔ R5P

14. R5P + X5P ↔ GAP + S7P

15. GAP + S7P ↔ E4P + F6P
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16. E4P + X5P ↔ GAP + F6P

Tricarboxylic Cycle Pathway

17. PYR + ATP + CO2 ↔ OAA + ADP

18. PYR + NAD+ → ACCOA + NADH + CO2

19. ACCOA + OAA → CITR

20. CITR ↔ iCITR

21. iCITR + NAD+ ↔ αKG + NADH + CO2

22. αKG + CoA + NAD+ ↔ SUCCOA + NADH + CO2

23. SUCCOA + ADP ↔ SUC + ATP + CoA

24. SUC + FAD ↔ FUM + FADH2

25. FUM ↔ MAL

26. MAL + NAD+ ↔ OAA + NADH

27. MAL + NAD+ ↔ PYR + CO2 + NADH

Amino acid biosynthesis

28. 2 PEP + E4P + NADPH + ATP → CHOR + ADP

29. PG + GLU + NAD+ ↔ SER + αKG + NADH

30. SER + FTHF ↔ Gly + MTHF

31. SER + NAD+ ↔ CYS + NADH

32. αKG + NADPH + NH3 ↔ GLU + NADP+
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33. GLU + NH3 + ATP ↔ GLN + ADP

34. GLU + 2NADPH + ATP → PRO + 2NADP+ + ADP

35. 2 GLU + ASP + NADPH + 2ATP → ARG + αKG + FUM + NADP+ + 2 ADP

36. OAA + GLU ↔ ASP + αKG

37. ASP + NH3 + ATP → ASN + ADP

38. ASP → ALA + CO2

39. ASP + NADPH + NADH + 2ATP ↔ THR + NADP+ + NAD+ + ADP

40. THR + GLU + NADPH → ILE + αKG + NH3 + NADP+

41. ASP + GLU + PYR + SUCCOA + 3 NADPH + ATP → LYS + αKG + SUC + CO2

+ 3 NADP+ + ADP

42. ASP + 2NADPH + 2 ATP → MET + 2NADP+ + 2 ATP

43. PYR + GLU + NADPH → VAL + αKG + NADP+

44. VAL + ACCOA + NAD+ → LEU + CO2 + NADH

45. CHOR + GLU → PHE + αKG + CO2

46. CHOR + GLU + NAD+ → TYR + αKG + CO2 + NADH

47. CHOR + GLN + PRPP + SER → TRP + PYR + GLU + GAP + CO2

48. IGP + 2NADH → HIS + 2NAD+

49. ASP ↔ FUM + NH3

Nucleotide biosynthesis

50. R5P + ATP → PRPP + ADP
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51. PRPP + ASP + 2 GLN + GLY + CO2 + 4 ATP → AICAR + 2GLU + 4 ADP

52. PRPP + ASP + NH3 + NAD+ + 2 ATP → UMP + NADH + 2 ADP

53. UMP + MTHF → TMP + THF

54. UMP + GLN + ATP → CMP + GLU + ADP

55. PRPP + GLN + ATP → IGP + AICAR + GLU + ADP

56. AICAR + ASP + FTHF + ATP → IMP + FUM + THF

57. IMP + GLN + NAD+ + ATP → GMP + GLU + NADH + ADP

58. IMP + ASP + ATP → AMP + FUM + ADP

59. ACCOA + THF + NADPH + ATP → FTHF + CO2 + NADH + FADH2

60. MTHF + NAD+ ↔ FTHF + NADH

Oxidative Phosphorylation

61. NADH + 0.5 O2 + (p
o ) ADP → NAD + (p

o ) ATP

62. FADH2 + 0.5 O2 + (p
o ) ADP → FAD + (p

o ) ATP

63. ATP → ADP

Biomass

64. 2.4998 ACCOA + 0.1897 AMP + 4.2856 ATP + 0.1514 CMP + 0.0709 F6P + 0154 G6P +

0.129 GAP + 0.0485MTHF + 5.1875NADPH + 0.0276 OAA + 0.0511 PEP + 0.0235 PG

+ 0.0276 PYR + 0.0235 R5P + 0.0235 S7P + 0.0247 TMP + 0.1360UMP + 0.5432 ALA

+ 0.281 ARG + 0.229 ASN + 0.229 ASP + 0.087 CYS + 0.25 GLN + 0.5478GLU +

0.585 GLY + 0.09 HIS + 0.276 ILE + 0.428 LEU + 0.326 LYS + 0.146 MET + 0.176 PHE
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+ 0.21PRO + 0.334 SER + 0.241THR + 0.054TRP + 0.131 TYR + 0.402 VAL + →

Biomass + 0.2109αKG + 0.0235 NADH + 0.2856 ADP

65. O2 →

66. → CO2
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Appendix 2

Flux distribution through the metabolic network (mmol/gDW h)

Maximize µ Minimize redox potential

Flux Phase E1 Phase E2 Phase E1 Phase E2

ν1 0.6200 0.4800 0.6200 0.4800

ν2 0.2564 0.2280 0.2668 0.2300

ν3 0.4474 0.3762 0.4523 0.3756

ν4 0.4474 0.3762 0.4523 0.3756

ν5 0.4474 0.3762 0.4523 0.3756

ν6 0.9826 0.8235 0.9900 0.8189

ν7 0.9826 0.8235 0.9900 0.8189

ν8 0.8827 0.7850 0.8929 0.7810

ν9 1.2141 1.0245 1.2148 1.0095

ν10 0.3625 0.2515 0.3521 0.2495

ν11 0.3625 0.2515 0.3521 0.2495

ν12 0.1980 0.1508 0.1924 0.1483

ν13 0.1645 0.1007 0.1598 0.1013

ν14 0.1067 0.0784 0.1037 0.0794

ν15 0.1050 0.0777 0.1020 0.0787

ν16 0.0913 0.0724 0.0887 0.0689

ν17 0.0000 0.1026 0.0000 0.1009

ν18 1.0303 0.6375 1.0314 0.6268

ν19 0.7154 0.5160 0.7255 0.5074

ν20 0.7154 0.5160 0.7255 0.5074

ν21 0.7154 0.5160 0.7255 0.5074

Continued on next page
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– continued from previous page

Maximize µ Minimize redox potential

Flux Phase E1 Phase E2 Phase E1 Phase E2

ν22 0.8579 0.4861 0.8503 0.4781

ν23 0.8343 0.4770 0.8273 0.4691

ν24 0.8579 0.4861 0.8503 0.4781

ν25 0.8729 0.5109 0.8599 0.5024

ν26 0.6089 0.5109 0.6083 0.5024

ν27 0.2640 0.0000 0.2516 0.0000

ν28 0.0137 0.0053 0.0133 0.0098

ν29 0.0983 0.0379 0.0955 0.0373

ν30 0.0657 0.0253 0.0638 0.0249

ν31 0.0061 0.0023 0.0059 0.0023

ν32 0.0000 0.2234 0.0000 0.2242

ν33 0.1008 0.0389 0.0980 0.0382

ν34 0.0146 0.0056 0.0141 0.0055

ν35 0.0215 0.0083 0.0209 0.0081

ν36 -0.1085 0.0967 -0.1191 0.0951

ν37 0.0159 0.0061 0.0154 0.0060

ν38 0.0386 0.0149 0.0375 0.0146

ν39 0.0353 0.0136 0.0343 0.0134

ν40 0.0187 0.0072 0.0182 0.0071

ν41 0.0236 0.0091 0.0230 0.0090

ν42 0.0107 0.0041 0.0104 0.0041

ν43 0.0636 0.0245 0.0618 0.0241

ν44 0.0353 0.0136 0.0343 0.0134

ν46 0.0097 0.0037 0.0094 0.0037

Continued on next page
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– continued from previous page

Maximize µ Minimize redox potential

Flux Phase E1 Phase E2 Phase E1 Phase E2

ν47 0.0040 0.0016 0.0039 0.0015

ν48 0.0064 0.0024 0.0062 0.0024

ν49 -0.0492 0.0000 -0.0527 0.0000

ν50 0.0560 0.0216 0.0544 0.0213

ν51 0.0229 0.0088 0.0223 0.0087

ν52 0.0228 0.0088 0.0221 0.0086

ν53 0.0018 0.0007 0.0017 0.0007

ν54 0.0110 0.0043 0.0107 0.0042

ν55 0.0064 0.0024 0.0062 0.0024

ν56 0.0293 0.0113 0.0284 0.0111

ν57 0.0159 0.0061 0.0154 0.0060

ν58 0.0134 0.0052 0.0130 0.0051

ν59 0.0912 0.0352 0.0886 0.0346

ν60 -0.0267 -0.0103 -0.0259 -0.0101

ν61 4.7049 1.4343 4.6959 1.4149

ν62 0.9491 0.5213 0.9388 0.5126

ν63 3.7606 1.6645 3.8498 1.6329

ν65 1.6640 0.6041 1.6284 0.5987

ν66 2.8270 0.9778 2.8174 0.9638

µ 0.0723 0.0279 0.0703 0.0274

NAD(P)H 5.8062 3.4168 5.7834 3.5486

ATP 8.3516 3.9915 8.3451 4.1677
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Random biomass components chosen from uniform distribution for Runs 1 to 8

Comp. Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

ACCOA 2.1312 2.7249 2.0732 2.4790 2.7304 2.9510 2.6372 2.5263

AKG 0.2515 0.2362 0.1984 0.2179 0.2484 0.2483 0.1715 0.2083

ALA 0.5884 0.5038 0.6482 0.5091 0.5405 0.5827 0.4542 0.4750

AMP 0.2031 0.1519 0.1549 0.2085 0.2094 0.1860 0.1559 0.1905

ARG 0.2941 0.3224 0.2280 0.3184 0.2931 0.3005 0.3048 0.2830

ASN 0.2575 0.1950 0.2144 0.2150 0.1961 0.2238 0.2333 0.2570

ASP 0.1855 0.2259 0.2499 0.2443 0.2288 0.2605 0.2352 0.2023

ATP 3.3213 3.3127 4.2357 4.2627 4.1714 3.5874 3.8123 4.3921

CMP 0.1604 0.1773 0.1387 0.1327 0.1764 0.1284 0.1292 0.1545

CYS 0.0801 0.0805 0.0963 0.0770 0.0706 0.0739 0.0797 0.0924

F6P 0.0732 0.0644 0.0834 0.0691 0.0714 0.0820 0.0830 0.0581

G6P 0.0149 0.0155 0.0145 0.0169 0.0168 0.0124 0.0176 0.0134

GAP 0.1415 0.1069 0.1223 0.1490 0.1199 0.1334 0.1297 0.1194

GLN 0.2591 0.2383 0.2265 0.2537 0.2742 0.2442 0.2919 0.2237

GLU 0.5972 0.4910 0.6147 0.6315 0.5695 0.4772 0.5233 0.6562

GLY 0.5622 0.4912 0.6143 0.6265 0.6378 0.6339 0.5633 0.6575

GMP 0.2496 0.2224 0.2702 0.2387 0.2056 0.1858 0.2671 0.2216

HIS 0.1017 0.0735 0.0897 0.1047 0.0793 0.0857 0.0795 0.1051

ILE 0.3273 0.2322 0.2502 0.2294 0.2743 0.3239 0.2521 0.2235

LEU 0.4910 0.4726 0.4370 0.5656 0.4240 0.5020 0.4001 0.5783

LYS 0.3780 0.3710 0.2851 0.3067 0.2790 0.3160 0.3725 0.2681

MET 0.1281 0.1469 0.1294 0.1536 0.1417 0.1487 0.1735 0.1240

MTHF 0.0567 0.0427 0.0527 0.0442 0.0487 0.0441 0.0519 0.0541

NADH 0.0255 0.0207 0.0215 0.0245 0.0281 0.0269 0.0214 0.0209

Continued on next page
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– continued from previous page

Comp. Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8

NADPH 4.8559 4.6025 5.6287 4.5261 4.1823 5.1129 5.6672 6.0738

OAA 0.0269 0.0233 0.0307 0.0253 0.0283 0.0311 0.0240 0.0287

PEP 0.0526 0.0508 0.0554 0.0547 0.0525 0.0487 0.0496 0.0440

PG 0.0213 0.0240 0.0215 0.0196 0.0282 0.0201 0.0243 0.0263

PHE 0.1622 0.1827 0.1584 0.1574 0.1441 0.1637 0.1456 0.2062

PRO 0.1719 0.1747 0.2055 0.1934 0.1811 0.2217 0.2246 0.2294

PYR 0.0270 0.0312 0.0270 0.0240 0.0233 0.0239 0.0296 0.0274

R5P 0.0204 0.0260 0.0257 0.0199 0.0242 0.0245 0.0198 0.0240

S7P 0.0196 0.0254 0.0257 0.0240 0.0272 0.0248 0.0257 0.0200

SER 0.2707 0.3542 0.2939 0.2725 0.3314 0.3049 0.2764 0.3468

THR 0.2095 0.2209 0.2149 0.2714 0.2360 0.2061 0.1954 0.2815

TMP 0.0277 0.0280 0.0296 0.0245 0.0256 0.0206 0.0241 0.0217

TRP 0.0611 0.0609 0.0623 0.0434 0.0525 0.0614 0.0593 0.0646

TYR 0.1470 0.1536 0.1347 0.1358 0.1241 0.1100 0.1291 0.1336

UMP 0.1518 0.1402 0.1480 0.1308 0.1603 0.1460 0.1402 0.1113

VAL 0.3281 0.4027 0.4757 0.4256 0.3995 0.4689 0.4253 0.3668
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Random biomass components chosen from uniform distribution for Runs 9 to 15

Comp. Run 9 Run 10 Run 11 Run 12 Run 13 Run 14 Run 15

ACCOA 2.3828 2.9643 2.9353 2.7947 2.2937 2.8625 2.6062

AKG 0.1776 0.2102 0.2244 0.2315 0.2241 0.1832 0.2165

ALA 0.6127 0.4547 0.5625 0.5658 0.4711 0.5161 0.5346

AMP 0.1816 0.2001 0.1696 0.2263 0.1595 0.2020 0.1856

ARG 0.2879 0.3348 0.3261 0.3114 0.2709 0.2859 0.2972

ASN 0.2033 0.2040 0.1921 0.2306 0.2371 0.2134 0.2195

ASP 0.2590 0.2521 0.2242 0.2361 0.2139 0.2441 0.2330

ATP 3.4324 4.8170 3.6617 3.8676 3.2790 4.6507 3.9146

CMP 0.1545 0.1402 0.1655 0.1780 0.1255 0.1747 0.1526

CYS 0.0977 0.1001 0.0826 0.0898 0.0754 0.0795 0.0840

F6P 0.0810 0.0712 0.0834 0.0670 0.0674 0.0687 0.0731

G6P 0.0178 0.0130 0.0170 0.0180 0.0167 0.0122 0.0155

GAP 0.1119 0.1254 0.1049 0.1167 0.1399 0.1492 0.1264

GLN 0.2258 0.2235 0.2857 0.2107 0.2547 0.2274 0.2457

GLU 0.4746 0.4490 0.5924 0.6440 0.4454 0.4522 0.5442

GLY 0.5914 0.6508 0.5967 0.6167 0.4989 0.5499 0.5922

GMP 0.2106 0.2056 0.1877 0.1911 0.2077 0.2090 0.2195

HIS 0.0793 0.0883 0.0820 0.0769 0.1068 0.0764 0.0878

ILE 0.2302 0.2373 0.2828 0.2625 0.2518 0.2463 0.2588

LEU 0.5361 0.5709 0.4913 0.4153 0.4306 0.5257 0.4886

LYS 0.3830 0.3391 0.3223 0.3252 0.2860 0.3482 0.3272

MET 0.1261 0.1739 0.1546 0.1648 0.1750 0.1286 0.1478

MTHF 0.0510 0.0575 0.0528 0.0484 0.0507 0.0399 0.0497

NADH 0.0221 0.0226 0.0216 0.0224 0.0234 0.0211 0.0231

Continued on next page
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– continued from previous page

Comp. Run 9 Run 10 Run 11 Run 12 Run 13 Run 14 Run 15

NADPH 4.2977 6.0988 4.6573 5.9970 4.8734 5.6971 5.1622

OAA 0.0275 0.0316 0.0282 0.0280 0.0268 0.0240 0.0274

PEP 0.0536 0.0582 0.0416 0.0590 0.0473 0.0468 0.0511

PG 0.0253 0.0251 0.0217 0.0245 0.0221 0.0212 0.0232

PHE 0.1910 0.1590 0.1520 0.1864 0.1757 0.1686 0.1681

PRO 0.2344 0.1807 0.1831 0.1727 0.2144 0.2285 0.2011

PYR 0.0275 0.0326 0.0321 0.0227 0.0303 0.0315 0.0279

R5P 0.0256 0.0263 0.0229 0.0188 0.0227 0.0232 0.0232

S7P 0.0279 0.0268 0.0199 0.0237 0.0229 0.0260 0.0243

SER 0.3156 0.3044 0.3951 0.3458 0.2697 0.2721 0.3110

THR 0.2254 0.2673 0.1942 0.1937 0.2826 0.2026 0.2287

TMP 0.0256 0.0221 0.0219 0.0248 0.0290 0.0209 0.0247

TRP 0.0594 0.0512 0.0494 0.0439 0.0537 0.0557 0.0556

TYR 0.1511 0.1456 0.1229 0.1521 0.1146 0.1257 0.1343

UMP 0.1482 0.1382 0.1229 0.1313 0.1430 0.1148 0.1376

VAL 0.3247 0.3442 0.4368 0.3644 0.3310 0.3878 0.3915
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Figure 1: Protease activity and Biomass and rHuIL-3 concentration profiles during fermenta-

tion with casein peptone

Figure 2: SDS-PAGE of supernatant samples from fermentor with casein peptone

119



Figure 3: SDS-PAGE of supernatant samples from fermentor with defined medium
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Figure 4: Dependence of glucose uptake on volumetric cell hours
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qNH3 = -0.1584 (mmol/gDWh) 

qNH3 = -0.2605 (mmol/gDWh) 
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Figure 5: Dependence of ammonia uptake on volumetric cell hours
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Figure 6: Dependence of amino acid uptake on volumetric cell hours
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Figure 7: O2 and CO2 concentration profiles during fermentation
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Figure 8: Dependence of rHuIL-3 production on volumetric cell hours
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Table 5: Extracellular concentration of measured metabolites

(g/l)

Time (h) Biomass Asp Glu Phe Glucose NH3 IL-3 (mg/l)

0 0.16±0.20 0.39 0.32 0.15 12.10 0.68 0

6 0.28±0.19 0.38 0.30 0.14 11.85 0.68 0

14 0.53±0.23 0.20 0.16 0.12 11.58 0.67 8±13

19 0.67±0.26 0.06 0.05 0.11 11.37 0.66 15±9

23 1.00±0.27 0.00 0.00 0.08 10.98 0.65 23±11

29 1.13±0.13 0.00 0.00 0.06 9.98 0.58 29±14

37 1.35±0.28 0.00 0.00 0.04 8.64 0.51 32±9

43 1.52±0.33 0.00 0.00 0.02 7.69 0.46 47±7

49 1.87±0.21 0.00 0.00 0.01 6.42 0.40 50±5

54 2.18±0.47 0.00 0.00 0.00 4.90 0.35 60±9

62 2.92±0.50 0.00 0.00 0.00 2.84 0.27 68±9

69 4.41±0.50 0.00 0.00 0.00 0.77 0.17 88±10

77 4.33±0.51 0.00 0.00 0.00 0.00 0.08 89±4
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