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Abstract

Iterative rounding has been an increasingly popular approach to solving network de-

sign optimization problems ever since Jain introduced the concept in his revolutionary

2-approximation for the Survivable Network Design Problem (SNDP) [33]. This

paper looks at several important iterative rounding approximation algorithms and makes

improvements to some of their proofs. We generalize a matrix restatement of Nagara-

jan et al.’s token argument from [42] which we can use to simplify the proofs of Jain’s

2-approximation for SNDP and Fleischer et al.’s 2-approximation for the Element Con-

nectivity (ELC) problem. Lau et al. [38] show how one can construct a (2, 2B + 3)-

approximation for the degree bounded ELC problem, and this thesis provides the proof.

We provide some structural results for basic feasible solutions of the Prize-Collecting

Steiner Tree problem, and introduce a new problem that arises, which we call the

Prize-Collecting Generalized Steiner Tree problem.
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Chapter 1

Introduction

The area of network design looks at designing graphs that satisfy certain desirable prop-

erties. Most network design problems arise from settings in the real world. The Steiner

Tree problem, for example, has many applications including the problem of designing a

network that most efficiently connects a collection of computers. Many of these network

design problems are NP-hard, meaning that there are no known polynomial time algo-

rithms to solve them. We are therefore interested in finding efficient algorithms that can

find near-optimal solutions to these problems. One method of designing these approxima-

tion algorithms is called iterative rounding. This thesis will look at how iterative rounding

can be used to construct approximation algorithms for several important NP-hard network

design problems.

Iterative rounding has been an increasingly popular approach to solving network de-

sign optimization problems ever since Jain introduced the concept in his revolutionary

2-approximation for the Survivable Network Design Problem [33]. The idea is to

model the network design problem as an integer program, and then iteratively use the

linear programming relaxation to come up with an integer solution. The linear program-

ming relaxation is solved, and then any variables above some certain threshold, say 1
s
, are

rounded up. Provided that the removal of these variables maintains a similar linear pro-

gram, and that we can prove that there is always a variable achieving this threshold value,

this method allows one to obtain an integer solution of cost at most s times the optimal

linear programming objective value. The iterative rounding approach has been used in

both undirected network design [9, 18], as well as in directed network design [23, 40].
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Every iterative rounding algorithm that we will examine in this thesis requires some

form of uncrossing argument. This argument is used to obtain structure on a basic feasible

solution x of the linear program (LP) being solved, and such an argument is frequently used

in approximation literature [13, 14, 20]. The argument will give us a basis of particularly

nice structure for the basic feasible solution x. Then, by assuming that every value of

x is below a certain threshold, we can use a counting argument on our basis to derive

a contradiction. There are two common counting arguments, ones based on counting

endpoints of edges, and another based on counting what we call fractional tokens.

Endpoint based arguments, again first introduced by Jain [33], involve assigning the

endpoints of every edge to appropriate constraints in our well structured basis, and then

recounting them to show that if every edge has value below some threshold, we end up

with more endpoints than we started with. The method of reassigning endpoints varies

depending on the problem considered. This style of argument is used in the proof of

Fleischer et al.’s 2-approximation for element connectivity [17] as well as in Lau et al.’s

bicriteria approximation algorithms for degree bounded network design [38, 39]. One key

attribute of such an argument is that endpoints are discrete - they are not to be split into

fractions.

Instead of an endpoint based argument, some iterative rounding approximation algo-

rithms are proven using a fractional token argument. First seen in a bicriteria approx-

imation algorithm by Bansal et al. [5], fractional token arguments work by giving each

variable a number of tokens which it can redistribute fractionally. As in the endpoint based

argument, we then recount our number of tokens to show that if every edge is below some

threshold, we end up with more tokens than when we started. The benefit of a fractional

token based argument is that the analysis can be considerably more straight forward. This

is demonstrated by Nagarajan et al. in [42] where the authors are able to greatly simplify

both the proof of Jain’s 2-approximation for Survivable Network Design [33], as well

as the proof of Boyd and Pulleyblank’s result that there is a 1-edge in any basic feasible

solution to the LP defining the Symmetric Traveling Salesman problem [7].

In this thesis, we will look at various iterative rounding approximation algorithms

for various approximation algorithms, making use of both endpoint and fractional token

arguments, depending on the scenario. We now begin by describing the network design

problems that we will be looking at in this thesis. We then mention our contributions that

will be shown. We will review the work that has taken place in this area, and then we
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will review the fundamental example of iterative rounding, Jain’s 2-approximation for the

Survivable Network Design problem.

1.1 Problems

Here we define the problems that we will be looking at in this thesis. In this thesis we will

only be considering minimization problems. Consider a graph G = (V,E) with costs c on

edges.

Consider a special root node, and a set of terminal vertices. The (minimum cost)

Steiner Tree problem (ST) is to find a minimum cost subgraph of G in which every

terminal vertex is connected to the root. As mentioned earlier, this problem has many

practical applications, such as the design of optical and wireless communication systems,

as well as transportation and distribution networks [31]. This problem was one of the first

few problems proven to be NP-complete by Karp [34] Because of its practical and long

history, the Steiner Tree problem is considered a fundamental network design problem.

A common generalization of the Steiner Tree problem is the Steiner Forest prob-

lem (SF). In this setting we have terminal pairs instead of single vertices. The (minimum

cost) Steiner Forest problem is to find a minimum cost subgraph that contains a path

between every terminal pair. This problem has many applications as well, including the

design of shipping networks between major cities [29]. Because of the fact that we only

have connection requirements between pairs of vertices, the resulting solution may have

multiple components, hence the name of the problem.

A further generalization is the Survivable Network Design problem. In this sce-

nario, we allow integer connectivity requirements ri,j between pairs of vertices i, j. The

Survivable Network Design problem is to find a minimum cost subgraph of G in

which there are ri,j i, j-paths. In the edge connectivity version of the problem (SNDP),

we wish for the paths to be edge-disjoint, and in the vertex connectivity version of the

problem (VCSNDP) we would like them to be vertex-disjoint. A problem of intermediate

difficulty is the Element Connectivity problem (ELC). It is defined by partitioning

our vertices into terminals and non-terminals, and enforcing that connectivity requirements

are only nonzero for pairs of terminals. Further, we define an element to be an edge or

a non-terminal, and in this problem we require our paths to be element-disjoint. These
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problems have applications in designing computer networks where we want computers i

and j to be connected, even if ri,j connections fail [17], where the connections in question

are determined by the variant of the problem chosen.

As these are all NP-hard problems, we should not expect to be able to find optimal

solutions efficiently. We therefore are concerned with finding solutions that are provably

close to optimal, in polynomial time.

1.1.1 Definition. We say that A is an α-approximation algorithm for problem Γ if for

any instance γ of Γ, A returns a feasible solution x to γ of objective value no more than

α times the optimal objective value for γ.

We also study prize-collecting variants of some these problems. Here we consider the

scenario where we do not need to satisfy all connectivity requirements, but we are given

a penalty function π for violating the requirements. The goal is to minimize the cost

of the subgraph chosen plus the penalties paid for all connectivity requirements that are

not satisfied. For example, in the Prize Collecting Steiner Tree (PC-ST), each

terminal v ∈ R has a penalty π(v), and the cost of a chosen subgraph H is
∑

e∈E(H) c(e) +∑
v∈R π(v)z(v) where z(v) = 0 if v is connected to the root, and z(v) = 1 otherwise. We

will refer to the prize-collecting versions of the other problems similarly.

We will also be looking at the degree bounded variants of these problems. In this case,

we allow non-negative integral lower and upper degree bounds, Lv and Bv respectively, on

any vertex v ∈ V . In the subgraph H chosen, we wish to have Lv ≤ |δH(v)| ≤ Bv. We

denote the Degree Bounded Steiner Tree problem by ST-B, and will refer to the

degree bounded variants of the other problems similarly. In this case, we have bicriteria

approximation algorithms, as we wish for solutions with both low cost, and minimal degree

bound violations.

1.1.2 Definition. We say that A is an (α, β(B))-approximation algorithm for degree

bounded problem Γ if for any instance γ of Γ, A returns a feasible solution x to γ of

objective value no more than α times the optimal objective value for γ, and furthermore,

the degree of any vertex v in our solution is ≥ Lv, but no more than β(Bv).
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1.2 Our Contributions and Results

In Chapter 3, we generalize a matrix restatement by Swamy [50] of Nagarajan et al.’s token

argument from [42]. This allows one to easily show that a basic feasible solution for the

LP of a given instance of a network design problem has an edge of value above a certain

threshold, provided that it satisfies constraints of a certain form. We demonstrate how

this fractional token argument simplifies the proof showing the existence of 1
2
-edge in any

basic feasible solution to the standard LP for SNDP, in the same manner in which this is

done in [42].

In Chapter 4, we present Fleischer et al.’s 2-approximation for ELC [17], and give a

much simplified proof using a generalized fractional token argument, very similar to that

of Nagarajan et al. [42]. We then present a (2, 2B + 3)-approximation for ELC-B, with

degree bounds only allowed on terminal vertices. This algorithm is a generalization of a

(2, 2B + 3)-approximation for the SNDP-B given by Lau et al. [38]. The authors claim

that their algorithm can be generalized to one for ELC-B, and this thesis provides the

proof.

In Chapter 5, we present Grandoni et al.’s 3-approximation for the PC-SF problem

[26], with a simplified proof. We then provide some insights toward achieving a Lagrangian

multiplier preserving 2-approximation for PC-ST. We show that performing certain oper-

ations on a basic feasible solution of the natural LP for this problem can result in a similar

problem that we call the Prize Collecting Rooted Steiner Forest problem. We

show that a fractional token argument will not be able to prove a 1
2
-approximation for this

problem, and provide some insights into using an integer decomposition technique instead.

1.3 Related Work

The Steiner Tree problem is a classical problem in computer science research, which

can be traced back as far as Fermat [31]. There have been many improving algorithms

throughout the literature [51, 43, 35, 46, 45], eventually culminating with the current best

algorithm of a ln(4) + ε < 1.39-approximation by Byrka et al. [8]. Their algorithm makes

use of a novel iterative randomized rounding technique.

An early algorithm for the Steiner Forest problem by Agrawal et al. [1] gave a
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(2− 2
s
)-approximation for the problem, where s is the number of distinct terminal vertices.

Later algorithms simplified the analysis and generalized the method [25], but no algorithms

have been found with better approximation ratios.

Consider a Survivable Network Design problem on graph G = (V,E) with costs c

and connectivity requirements rij for pairs of vertices i, j. Let k be the maximum connec-

tivity requirement. The edge-connectivity version of the problem (SNDP) was originally

proposed by Agrawal et al. [1], and a (2 − 2
s
)dlog2(rmax + 1)e-approximation for SNDP

was provided. In this case, rmax is the highest connectivity requirement, s is the number

of vertices with some connectivity requirement, and the authors assume that you can use

an edge multiple times. The current best known approximation algorithm for SNDP is a

2-factor iterative rounding algorithm provided by Jain [33], where edges are not repeated.

We will review this algorithm at the end of this chapter.

The ELC problem was originally proposed by Jain et al. [32]. It can realistically

model the problem of forming computer networks, as in such a scenario both links (edges)

and routers (nonterminals) can fail, but typically network terminals (end hosts) are more

robust. In Jain’s original paper on the problem, he provides a 2Hk-approximation, where

Hk = 1 + 1
2

+ ... + 1
n
. Fleischer et al. [17] generalized Jain’s 2-approximation for SNDP

to achieve a current best 2-approximation for the ELC problem. Cheriyan et al. [9]

subsequently prove a similar but more general algorithm that gives a 2-approximation for

ELC as well.

A general approximation algorithm for the vertex connectivity version of the problem,

VCSNDP, has only recently been discovered. Chuzhoy et al. [12] present the first general

approximation algorithm for this problem, obtaining a O(k3 log n)-approximation. Their

algorithm achieves its goal through solving multiple carefully designed instances of the

Element Connectivity Problem, ELC, a problem of intermediate difficulty to SNDP

and VCSNDP.

1.3.1 Degree Constrained Problems

Network design subject to degree constraints has become an area of greater interest recently.

A simpler setting is to attempt to minimize the maximum degree of a subgraph satisfying

some network requirements. A well-known example is the Minimum Degree Spanning

Tree problem, for which Fürer and Raghavachari provide a combinatorial algorithm that

6



returns a tree of maximum degree at most 1 more than the optimal tree, in the unweighted

case [21]. This result is generalized to the weighted case by Singh and Lau [49], and to the

case of unweighted Steiner trees by Fürer and Raghavachari [22].

A more general setting is one where we desire a minimum cost subgraph satisfying

connectivity requirements in addition to degree bounds Bv for vertices v ∈ V . The first

algorithms for such problems were O(log(n), log(n) ·B)-approximations by Ravi et al. [44]

for each of ST-B, SF-B and SNDP-B. Both results have been significantly improved; in

[38], Lau et al. provide a (2, 2B + 3)-approximation for SNDP-B and note that it can be

extended to a (2, 2B + 3)-approximation algorithm for ELC-B, the proof of which is in

Section 4.2. These results are further improved by Lau and Singh in [39], a current best

(2, B+3)-approximation for SF-Band a (2, B+6k+3)-approximation for SNDP-B, where

k is the maximum connectivity requirement. The authors claim that this result extends

to the element connectivity setting as well. Note that the degree error in this case is only

additive and not multiplicative.

1.3.2 Prize-Collecting Problems

The PC-ST problem was first proposed by Balas [3], but the first approximation algorithm

came from Bienstock et al. [6]. The authors provided a 3-approximation. Goemans and

Williamson improved this factor with a 2-approximate primal dual algorithm [25]. This

was eventually improved to the current best 1.992-approximation due to Archer et al. [2].

The PC-SF problem was first formulated by Hajiaghayi and Jain [29] who provided

a 3-approximate primal-dual algorithm. They also showed a 2.54-approximation for the

problem that makes use of randomized LP rounding. The latter result was then shown

for more general connectivity requirements and penalty functions by Sharma et al. [48].

Grandoni et al. [26] provided a 3-approximate iterative rounding algorithm, and Hajiaghayi

et al. [30] provided an iterative rounding algorithm with the same approximation ratio, but

extended to the more general PC-SNDP setting. In a recent paper by Hajiaghayi et al.

[28] generalized the results by Sharma et al. [48]to include all-or-nothing penalty functions,

giving 2.54-approximations for PC-SNDP and PC-ELC, and O(k3 log n)-approximation

for PC-VCSNDP. By all-or-nothing, we mean that the full penalty is charged even if

connectivity requirements are only slightly violated.
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1.4 Jain’s 2-approximation for SNDP

Jain’s 2-approximation for the Survivable Network Design Problem [33] is a clas-

sic example of an iterative rounding approximation algorithm. This algorithm inspired

many iterative rounding algorithms to follow, such as Fleischer et al.’s 2-approximation

for the Element Connectivity Problem. We start this thesis with a review of this

fundamental algorithm, as it motivates many of the later algorithms that we will encounter.

Consider a graph G = (V,E) with edge costs c ∈ Q+
E and symmetric connectivity

requirements ri,j ∈ ZV×V for any pair of vertices i, j ∈ V . The goal is to find a minimum

cost subgraph H of G such that between any pair of vertices i, j we have at least ri,j

edge-disjoint paths in H.

If we define a function f : 2V → Z by f(A) = max{ri,j : i ∈ A, j /∈ A} for all ∅ 6= A ⊂ V ,

and set f(V ) = f(∅) = 0, then our problem is equivalent to solving the following integer

program (IP):

min
∑
e∈E

c(e)x(e) (IP-f)

s.t. x(δ(A)) ≥ f(δ(A)) ∀A ⊆ V

x(e) ∈ {0, 1} ∀e ∈ E

We relax the last constraints to 0 ≤ x(e) ≤ 1 for all e ∈ E to get the linear relaxation

(LP-f). Jain’s algorithm is actually a 2-approximation for (IP-f) for any weakly super-

modular function f , provided that there is a separation oracle for the linear relaxation of

the respective integer program.

It is easy to see that the function f defined for the SNDP instance is a proper func-

tion. That is, f(V ) = 0 and for any sets A and B, f(A) = f(V − A) and f(A ∪ B) ≤
max{f(A), f(B)}. Jain shows that this implies that f is weakly supermodular (see Lemma

2.4.5).

The algorithm is based on the fact that any basic solution to (LP-f) has an edge of

value at least 1
2
. We can round up these edges, for which we pay at most an additional half

of edge cost, and then solve a smaller residual problem in the same manner. The algorithm

thus relies on the following theorem.

1.4.1 Theorem ([33]). Let f be weakly supermodular and f 6= 0. In any basic solution x

to (LP-f), there is an edge e where x(e) ≥ 1
2
.
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We will provide a proof of this theorem in Chapter 3 using a fractional token argument.

First, we present Jain’s 2-approximation algorithm, Algorithm 1.

Algorithm 1 Iterative Rounding 2-Approximation for SNDP

1: F ← ∅
2: f ′ ← f

3: while F is not feasible for (IP-f) do

4: Solve (LP-f ′), let x be an optimal basic solution

5: For any edge e where x(e) ≥ 1
2
, add e to F , remove e from E

6: f ′(A)← f(A)− |δF (A)| for every A ⊂ V .

7: end while

It is well known that the cut function, |δG(·)| is from the class of submodular functions.

As the difference between a weakly supermodular function and a submodular function

is weakly supermodular, we get that f ′ is weakly supermodular at every stage of our

algorithm, justifying the recursive application of this algorithm. These facts are verified in

Section 2.4.

One should argue that (LP-f) can be solved efficiently. However, this is not our focus

for this algorithm, and refer the interested reader to Jain’s paper [33] where he deals with

these details.

Assuming that the key theorem holds, we justify that the output solution has cost within

a factor of 2 of optimal. To do so, Jain provides an inductive proof which is common to

many of the iterative rounding algorithms that followed.

We assume that the algorithm provides a 2-approximate solution Fres to the residual

problem, and then want to show that we can build this into a 2-approximate solution for

the given instance. Let x∗ be the optimal solution to (LP-f), and let F be all edges with

value x∗(e) ≥ 1
2
. Let OPT and OPTres be the optimal solutions to the given instance and

residual instance respectively. By definition,∑
e∈Fres

c(e) ≤ 2 ·OPTres.

By the definition of the residual problem (LP-f ′), we know that F ∪ Fres is feasible.

Furthermore, we note that x∗ restricted to the residual graph is a feasible solution for the

9



residual problem, and thus

OPTres ≤
∑

e∈E−F

c(e)x∗(e).

Now the cost of F ∪ Fres is∑
e∈Fres

c(e) +
∑
e∈F

c(e) ≤ 2 ·OPTres +
∑
e∈F

c(e)

≤ 2 ·OPTres +
∑
e∈F

2 · x∗(e)c(e) since x∗(e) ≥ 1

2
for e ∈ F

≤ 2 ·
∑

e∈E−F

c(e)x∗(e) + 2 ·
∑
e∈F

c(e)x∗(e)

= 2 ·OPT as x∗ is an optimal solution for (LP-f)

All that remains now is to show the key theorem. Jain’s original argument would obtain

a laminar basis B for the a basic solution x to (LP-f), and proceed with an endpoint

counting argument, eventually showing that we have more edges in the support of x than

sets in B. This is a contradiction, as any basis for x has rank equal to the support of x.

Nagarajan et al. [42] construct a much simpler proof using a fractional token argument,

but the general idea remains the same. Their paper also show how a fractional token argu-

ment can be used to prove the existence of an edge of value one in any extreme point of the

natural LP relaxation for the traveling salesman problem. This allows for a simpler proof

of Boyd and Pulleyblank’s approximation algorithm for the traveling salesman problem.

In this thesis we extend the fractional token argument presented by Nagarajan et al. to

a more complex system of constraints. In Chapter 3 we present this generalized fractional

token argument. In Section 3.1 we show how this fractional token argument allows us to

prove Theorem 1.4.1, completing the proof of Jain’s 2-approximation for SNDP.
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Chapter 2

Basics

In this chapter, we go over all the basic material needed for the rest of the thesis. The

first section deals with some basic graph theory and notation. This is followed by a section

with some standard results from linear programming theory. In section 3 we look at what

is meant by a laminar family, and show how such a family induces a forest. In section

4 we look at proper, submodular, and weakly supermodular functions. We also prove an

uncrossing argument for weakly supermodular functions, which is used in the proof of Jain’s

2-approximation for SNDP. Chapters 5 and 6 generalize the definitions and results found

in chapters 3 and 4 to functions that act on pairs of subsets of vertices. These results are

used in Fleischer’s 2-approximation for ELC, as well as in the (2, 2B + 3)-approximation

for ELC-B shown in section 4.2.

2.1 Graph Basics and Notation

We define a graph G = (V,E) to be a pair consisting of a vertex set V and an edge set

E ⊆ {{u, v} : u, v ∈ V }. We call a v ∈ V a vertex and a e = {u, v} ∈ E an edge. For

convenience, we may write e = uv. We define E(G) = E and V (G) = V .

We define the cut for vertex set A ⊆ V in graph G to be δG(A) = {uv ∈ E : u ∈
A, v /∈ A}. We will often write δ(A) when it is clear over which graph we are taking the

cut. A cut defined for a disjoint pair of vertex sets (A,A′) is given by δG(A,A′) = {uv ∈
E : u ∈ A, v ∈ A′}. For a subset of edges F ⊆ E, we define a cut over this subset by

δF (A) = δG(A) ∩ F . Similarly, we define δF (A,A′) = δ(A,A′) ∩ F .

11



Define the characteristic vector of a set of edges F ⊆ E to be a vector [F ] ∈ {0, 1}E

where [F ](e) = 1 if and only if e ∈ F . For the cut δ(A), A ⊆ V we write [A] = [δ(A)] and

for a cut δ(A,A′) over a disjoint pair of vertex subsets, we write [A,A′] = [δ(A,A′)]. For

any family of sets or set pairs, F , we define Span(F) to be the vector space spanned by

the characteristic vectors of the cuts of the members of F .

For any vector or function x indexed over the set of edges E, we define for any subset

F ⊆ E, x(F ) =
∑

e∈F x(e). Similarly, for any vertex subset A ⊆ V , define x(A) = x(δ(A))

and for any disjoint pair of vertex subsets (A,A′), define x(A,A′) = x(δ(A,A′)).

A directed graph D = (N,A) is defined as a pair consisting of a node set N and an arc

set A ⊆ N ×N . A n ∈ N is called a node and a = (u, v) ∈ A is called an arc with tail u

and head v. Let c be a vector of nonnegative capacities on edges.

A vector x defined on arcs A is a feasible st-flow for s, t ∈ V if

•
∑

(u,v)∈A x(u, v) =
∑

(v,u)∈A x(v, u) for every v ∈ V − {s, t}, and

• x(u, v) ≤ c(u, v) for each (u, v) ∈ A.

The value of an st-flow x is given by (
∑

(s,v)∈A x(s, v)−
∑

(v,s)∈A x(v, s)).

An st-cut A is a set A ⊂ V such that s ∈ A, t /∈ A. The capacity of such an st-cut is

c(A) = c(δ(A)).

The following theorem by Ford and Fulkerson [19] is fundamental to the construction

of separation oracles for several algorithms considered in this thesis.

2.1.1 Theorem ([19]). The maximum value of an st-flow in G is equal to the minimum

capacity of an st-cut.

Another fundamental theorem in graph theory is Menger’s Theorem [41], which we will

use in the formulation of some linear programs throughout this thesis.

2.1.2 Theorem (Menger’s Theorem [41]). Let s and t be non-adjacent vertices in a graph

G. Then the minimum number of vertices separating s from t in G is equal to the maximum

number of vertex disjoint paths from s to t in G.
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2.2 Linear Programming Basics

A linear programming (LP) problem is a problem of optimizing some linear function cTx

over a finite number n of real variables x, subject to a finite number of linear equations and

inequalities Ax ≤ b. Note that we may write a linear equation as two linear inequalities,

justifying the form we use here. Further, we may assume x ≥ 0, as any free variable can be

replaced by the difference of two nonnegative variables. In this thesis, we will only consider

minimization problems.

If x satisfies Ax ≥ b and x ≥ 0 then we say x is feasible. If some feasible solution x

exists for an LP, then we say the LP is feasible, and otherwise, it is infeasible. We call the

polytope P = {x : Ax ≥ b, x ≥ 0} the feasible region for our LP. We say that a feasible

solution x∗ is optimal if cTx∗ = min{cTx : x ∈ P}.

2.2.1 Basic Solutions

Consider a polyhedron P = {Ax ≥ b} ⊆ Rn. Let ai denote row i of A. Let c be a nonzero

vector and β = min{cTx : Ax ≥ b}. The affine hyperplane H = {x : cTx = β} is called

a supporting hyperplane of P . A subset F of P is called a face if F = P ∩ H for some

supporting hyperplane H.

Schrijver shows that the following is an equivalent characterization of a face:

2.2.1 Lemma ([47]). F is a face of P if and only if F = {x ∈ F : A′x = b′} for some

subsystem A′x ≥ b′ of Ax ≥ b.

A minimal face is an inclusion-wise minimal face of P . A basic solution (also called

vertex in some sources) x is an element x ∈ P such that {x} is a minimal face.

2.2.2 Theorem ([47]). If x ≥ 0 for every x ∈ P , then every minimal face F is a set with

a single basic solution.

Proof. Suppose F is not a single basic solution. Let E be the set of inequalities which are

tight for each x ∈ F . Since x∗ is not a basic solution, the affine subspace defined by the

equalities in E is at least one dimensional. Hence, it contains a line, L, passing through

x∗. Because of constraints x ≥ 0, the entire line L is not contained within P - there is
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some point x on L that is on the boundary of P . But then adding this constraint to

the subsystem that defines F (see Lemma 2.2.1) defines a smaller face, contradicting the

definition of F .

We say that a constraint aTi x ≥ bi is tight for a solution x if aTi x = bi. The following

theorem is also proven by Schrijver, and will be used in the proofs of several approximation

algorithms in this thesis.

2.2.3 Theorem ([47]). A solution x ∈ P is a basic solution if and only if the rank of all

tight constraints for x is n.

As many of our approximation algorithms will center on solving LPs, we must show

that we can solve our LPs in polynomial time. To do so, we will require a separation oracle

for our LP. A separation oracle is a polynomial time algorithm that, given a point x, can

either confirm that x is a feasible solution, or provide an inequality that is satisfied by

every feasible solution, but is not satisfied by x. Given a separation oracle, we then invoke

the following theorem to solve our LP in polynomial time.

2.2.4 Theorem ([27]). Given a separation oracle for an LP, the LP can be solved in

polynomial time using the Ellipsoid Method.

However, we often need an optimal basic solution. A standard result from linear pro-

gramming theory (see [10] for example) is that we can find an optimal basic solution in

polynomial time, given any optimal solution. Hence we get the corollary that we desire.

2.2.5 Corollary. Given a separation oracle for an LP, we can find an optimal basic solution

to the LP in polynomial time.

2.3 Laminar Families

Laminar families of sets have a nice structure in the sense that the family can be easily

described by a unique forest. In many iterative rounding approximations we use a laminar

basis for a basic feasible solution to prove the existence of an edge of value above some

threshold. In network design, laminar families are typically found on the set of vertices V

of a graph.
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2.3.1 Definition. We say that two sets A and B cross if none of the sets A − B, B − A
and B ∩ A is empty.

2.3.2 Definition. We say that a family of sets is laminar if no two sets in it cross.

2.3.3 Lemma ([33]). Let L be a laminar family, and let L ∈ L. Let A be some set that

crosses L. Then if L′ ∈ L crosses any set listed below, L′ also crosses A.

1. (A− L)

2. (L− A)

3. (A ∩ L)

4. (A ∪ L)

Proof. Case 1: L′ crosses A− L.

If L ∩ L′ = ∅, it is clear that L′ must cross A. If L′ ⊆ L, then (A − L) ∩ L′ = ∅,
contradicting that L′ crosses A − L. Thus L ⊆ L′. Thus ∃u ∈ L − A ⊆ L′ − A, ∃v ∈
(A− L)− L′ = A− L′, ∃w ∈ A ∩ L ⊆ A ∩ L′, showing that L′ crosses A.

Case 2: L′ crosses L− A.

If L ⊆ L′, then L′ − (L − A) = ∅, contradicting that L′ crosses L − A. Thus L′ ⊆ L.

Thus ∃u ∈ L′ ∩ (L − A) ⊆ L′ − A, ∃v ∈ A − L ⊆ A − L′, ∃w ∈ L′ − (L − A) ⊆ L′ ∩ A,

showing that L′ crosses A.

Case 3: L′ crosses (A ∩ L).

If L ⊆ L′, then L′−A∩L = ∅, contradicting that L′ crosses A∩L. Thus L′ ⊆ L. Thus

∃u ∈ L′ − (L ∩ A) ⊆ L′ − A, ∃v ∈ A− L ⊆ A− L′, ∃w ∈ L′ ∩ (L ∩ A) ⊆ L′ ∩ A, showing

that L′ crosses A.

Case 4: L′ crosses (A ∪ L).

If L ∩ L′ = ∅, it is clear that L′ must cross A. If L′ ⊆ L, then L′ − (A ∪ L) = ∅,
contradicting that L′ crosses A ∪ L. Thus L ⊆ L′. Thus ∃u ∈ L′ − (A ∪ L) ⊆ L′ − A,

∃v ∈ (A ∪ L)− L′ ⊆ A− L′, ∃w ∈ L ∩ A ⊆ L′ ∩ A, showing that L′ crosses A.
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Figure 2.1: An illustration of our cases in Lemma 2.3.3. Left: Case 1, Centre: Cases 2 and

3, Right: Case 4.

2.3.1 Forest Induced by a Laminar Family

Any laminar family naturally induces a forest structure on its sets. To differentiate from

the original graph, it is convenient to refer to vertices and edges in the original graph, and

nodes and arcs in our forest.

2.3.4 Lemma. Any laminar family of sets L induces a unique forest FL where each A ∈ L
is a node, and there is an arc between A to B if and only if B ⊂ A, and for any C ∈ L−{B}
with C ⊂ A, we have C ⊆ B.

Proof. As L is laminar, containment is a partial ordering, and as such every node has at

most one parent.

EDC B

A

ED

C

B

A

Figure 2.2: A laminar family L and its associated forest FL.
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2.4 Proper, Submodular, and Weakly Supermodular

Functions

In this section we define several important classes of functions, and prove an uncrossing

argument for weakly supermodular functions. The uncrossing argument is necessary for

the proof of Jain’s 2-approximation for SNDP [33].

2.4.1 Definition. A function f : 2V → Z is submodular if f(V ) = 0 and for every

A,B ⊆ V , f(A) + f(B) ≥ max{f(A−B) + f(B − A), f(A ∩B) + f(A ∪B)}.

The above definition of submodularity is slightly non-standard, but is commonly used

in literature on SNDP.

2.4.2 Lemma ([33]). For any graph G, the function |δG(·)| is submodular.

Proof. Let A,B ⊆ V . We partition our vertices into four sets, S1 = A − B, S2 = B − A,

S3 = A ∩ B, and S4 = V − (A ∪ B). Note that the following equalities hold (see Figure

2.3):

1. |δG(A)| = |δ(S1, S2)|+ |δ(S1, S4)|+ |δ(S2, S3)|+ |δ(S3, S4)|

2. |δG(B)| = |δ(S1, S2)|+ |δ(S2, S4)|+ |δ(S1, S3)|+ |δ(S3, S4)|

3. |δG(A−B)| = |δ(S1, S2)|+ |δ(S1, S3)|+ |δ(S1, S4)|

4. |δG(B − A)| = |δ(S1, S2)|+ |δ(S2, S3)|+ |δ(S2, S4)|

5. |δG(A ∩B)| = |δ(S1, S3)|+ |δ(S2, S3)|+ |δ(S3, S4)|

6. |δG(A ∪B)| = |δ(S1, S4)|+ |δ(S2, S4)|+ |δ(S3, S4)|

These equalities make it easy to see that |δG(A)|+ |δG(B)| ≥ max{|δG(A−B)|+ |δG(B −
A)|, |δG(A ∩B)|+ |δG(A ∪B)|}.

2.4.3 Definition. A function f : 2V → Z is proper if f(V ) = 0 and the following two

conditions hold:
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Figure 2.3: A line labelled ij represents edges δ(Si, Sj).

1. For every S ⊆ V , f(S) = f(S).

2. For every A,B ⊆ V , f(A ∪B) ≤ max{f(A), f(B)}.

2.4.4 Definition. A function f : 2V → Z is weakly supermodular if f(V ) = 0 and for

every A,B ⊆ V , f(A) + f(B) ≤ max{f(A−B) + f(B − A), f(A ∩B) + f(A ∪B)}.

2.4.5 Lemma ([24]). Every proper function f is weakly supermodular.

Proof. By the definition of proper functions, for any A,B ⊆ V , we have

1. f(A) = f((A−B) ∪ (A ∩B)) ≤ max{f(A−B), f(A ∩B)}

2. f(A) = f(A) ≤ max{f(B − A), f(A ∪B)} = max{f(B − A), f(A ∪B)}

3. f(B) = f((B − A) ∪ (A ∩B)) ≤ max{f(B − A), f(A ∩B)}

4. f(B) = f(B) ≤ max{f(A−B), f(A ∪B)} = max{f(A−B), f(A ∪B)}

By summing the two inequalities involving the minimum of f(A−B), f(B−A), f(A∩
B), f(A ∪B) we see that f is weakly supermodular.

2.4.6 Lemma ([33]). If f is weakly supermodular and g is submodular, then f − g is

weakly supermodular.
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Proof. Let A,B ⊆ V . We have that f(A)+f(B) ≤ max{f(A−B)+f(B−A), f(A∩B)+

f(A∪B)}. Suppose f(A−B)+f(B−A) = max{f(A−B)+f(B−A), f(A∩B)+f(A∪B)},
the other case proceed similarly. Then,

(f − g)(A) + (f − g)(B) = (f(A) + f(B))− (g(A) + g(B))

≤ (f(A−B) + f(B − A))− (g(A−B) + g(B − A))

= (f − g)(A−B) + (f − g)(B − A)

Hence

(f − g)(A) + (f − g)(B) ≤ max{(f − g)(A−B) + (f − g)(B − A),

(f − g)(A ∩B) + (f − g)(A ∪B)}

as desired.

2.4.1 Uncrossing Argument for a Weakly Supermodular Func-

tion

Consider the linear program (LP-f) presented in section 1.4, for some weakly supermodular

function f on a graph G = (V,E). Let x be a basic solution to (LP-f) with 0 < x(e) < 1 for

every e ∈ E. The following uncrossing arguments, first presented in Jain’s 2-approximation

for SNDP, are used to obtain a laminar basis for x that can be useful in proving that some

edge must have an x value above a certain threshold.

We say that a set A is tight if the constraint corresponding to A in (LP-f) is tight.

2.4.7 Lemma ([33]). If two sets A and B are tight, then at least one of the following must

hold:

1. A−B and B − A are also tight, and [A] + [B] = [A−B] + [B − A]

2. A ∩B and B ∪ A are also tight, and [A] + [B] = [A ∩B] + [B ∪ A]
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Proof. Since f is weakly supermodular, either f(A) + f(B) ≤ f(A − B) + f(B − A) or

f(A) + f(B) ≤ f(A∩B) + f(A∪B). We show the proof for the first case, the second case

is proven similarly.

As A and B are tight, we get the following two equalities:

f(A) = x(A−B,B − A) + x(A−B,A ∪B) + x(B − A,A ∩B) + x(A ∩B,A ∪B)

(2.1)

f(B) = x(B − A,A−B) + x(B − A,A ∪B) + x(A−B,A ∩B) + x(A ∩B,A ∪B)

(2.2)

As x is a feasible solution, we also have

f(A−B) ≤ x(A−B,B − A) + x(A−B,A ∪B) + x(A−B,A ∩B) (2.3)

f(B − A) ≤ x(B − A,A−B) + x(B − A,A ∪B) + x(B − A,A ∩B) (2.4)

Then (2.1) + (2.2) ≤ (2.3) + (2.4) implies that x(A ∩ B,A ∪B) = 0, and that the

two inequalities are in fact equalities. Thus A − B and B − A are both tight. Further

there is no edge going between A−B and A ∩B, so in this case we have that [A] + [B] =

[A−B] + [B − A].

Let T denote the family of all tight sets. For a family of sets F , let Span(F) denote the

vector space spanned by [A] for all A ∈ F . Lemma 2.4.7 allows us to prove the following:

2.4.8 Lemma ([33]). For any maximal laminar family, L, of tight sets, Span(L) =

Span(T ).

Proof. Since L ⊆ T , Span(L) ⊆ Span(T ). Suppose Span(L) 6= Span(T ). Then there

exists a set A ∈ T for which [A] /∈ Span(L). Choose such an A that crosses the minimum

number of sets in L. Let L ∈ L be a set that crosses A. By Lemma 2.4.7, we have one of

the following occuring:

1. A− L and L− A are tight, and [A] + [L] = [A− L] + [L− A]

2. A ∩ L and L ∪ A are tight, and [A] + [L] = [A ∩ L] + [L ∪ A]
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We suppose the first case occurs, proof of the second case follows similarly. Since

[A] /∈ Span(L), either [A − L] /∈ Span(L) or [L − A] /∈ Span(L). Again, we prove only

the first case, and the second case follows similarly. Thus [A − L] /∈ Span(L). Note that

A − L does not cross L. By Lemma 2.3.3, any set L′ ∈ L that crosses A − L must also

cross A, contradicting that A crosses a minimal number of sets from L.

We can now find a laminar family of tight constraints that define our basic feasible

solution x, as shown in the following lemma.

2.4.9 Lemma ([33]). There exists a laminar family, B, of tight sets satisfying the following:

1. |B| = |E|,

2. The vectors [A] for all A ∈ B are linearly independent,

3. For every A ∈ B, f(A) ≥ 1.

Proof. Let L be a maximal laminar family of tight sets. Continually remove any set in

this family that can be written as a linear combination of the other members; call the

resulting family B. Thus B satisfies condition 2, and as the span is unchanged, Span(B) =

Span(L) = Span(T ), by Lemma 2.4.8. As x is basic, the dimension of Span(T ) is |E|,
showing that B satisfies condition 1. Finally, note that any tight set must satisfy condition

3 as no edge has zero value.

2.5 Pair-Laminar Families

The groundwork for this and the following section was done by Fleischer et al. [17] for the

proof of their 2-approximation for the Element Connectivity Problem (ELC). The

goal is to be able to construct an uncrossing lemma for ELC, similar to the one used in

Jain’s 2-approximation.

Consider a family of disjoint pairs of subsets of V , F ⊆ 2V × 2V . We refer to a pair

(A,A′) ∈ F as a set pair, and we call A the left-set and A′ the right-set.

We define a relation ≤ on set pairs by (A,A′) ≤ (B,B′) if A ⊆ B and B′ ⊆ A′. It can

be easily verified that this relation is transitive, reflexive and antisymmetric, and hence
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defines a partial order. If (A,A′) ≤ (B,B′) or (B,B′) ≤ (A,A′), we say (A,A′) and (B,B′)

are comparable. Note that (A,A′) ≤ (B,B′) if and only if (B′, B) ≤ (A′, A).

2.5.1 Definition. The pairs (A,A′) and (B,B′) do not pair-cross if:

1. (A,A′) and (B,B′) are comparable, or

2. A ⊆ B′ and B ⊆ A′ (that is, (A′, A) ≤ (B′, B)).

Otherwise, we say (A,A′) and (B,B′) pair-cross.

A

A’B

B’ A

A’B’

B

Figure 2.4: Left: Set pairs satisfy (A,A′) ≤ (B,B′). Right: Set pairs (A,A′) and (B,B′)

not comparable, but do not pair-cross. However, (A′, A) and (B′, B) pair-cross, assuming

all sets are non-empty.

Firstly, note that the two conditions in Definition 2.5.1 cannot hold simultaneously if

the sets involved are non-empty. Further, note that this definition is not symmetric in the

following sense: it is possible that (A,A′) and (B,B′) do not pair-cross while (A′, A) and

(B′, B) do pair-cross. This asymmetry is necessary to ensure that we can formulate an

uncrossing lemma in which one does not get the same set pairs output as were input. We

would like our uncrossing lemma applied to crossing pairs (A′, A) and (B′, B) to return

(A,A′) and (B,B′).

The following lemma is straightforward, but will be useful for reference later.

2.5.2 Lemma. If (A,A′) and (B,B′) do not pair-cross, and A ∩ B 6= ∅, then (A,A′) and

(B,B′) are comparable.

Proof. If they were not comparable, then ∅ 6= A ∩ B ⊆ A ⊆ B′, implying that B and B′

are not disjoint.
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2.5.3 Definition. A collection L of pairs (A,A′) is called pair-laminar if no two pairs in

L pair-cross.

We provide an example of pair-laminar set pairs L = {(A,A′), (B,B′), (C,C ′)} in Figure

2.5. Notice that (A,A′) ≤ (B,B′), (C,C ′) ≤ (B,B′), and (A,A′) and (C,C ′) are not

comparable with ≤, but they satisfy A ⊆ C ′, C ⊆ A′.

A’

C

C’

B

B’

A

Figure 2.5: A pair-laminar collection L = {(A,A′), (B,B′), (C,C ′)} of set pairs

The following technical lemma is parallel to Lemma 2.3.3 in the case of laminar families,

and is needed for the uncrossing lemma that will soon follow. Its proof, consisting of

exhaustive case analysis, is omitted, but can be found in [17].

2.5.4 Lemma ([17]). Let (A,A′) and (B,B′) be set pairs that pair-cross. Let (X,X ′) be a

set pair that does not pair-cross (B,B′). If (X,X ′) pair-crosses any one of (A∩B,A′∪B′),
(A∪B,A′ ∩B′), (A∩B′, A′ ∪B), or (A′ ∩B,A∪B′), then (X,X ′) pair-crosses (A,A′) as

well.

2.5.5 Lemma ([17]). Given pairs (A,A′) and (B,B′), neither (A,A′) nor (B,B′) pair-cross

any of the four pairs (A∩B,A′∪B′), (A∪B,A′∩B′), (A∩B′, A′∪B), or (A′∩B,A∪B′).

Proof. We consider (A,A′), the proof is analagous for (B,B′). We see that:

• (A ∩B,A′ ∪B′) ≤ (A,A′)

• (A,A′) ≤ (A ∪B,A′ ∩B′)

• (A ∩B′, A′ ∪B) ≤ (A,A′)
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• A ⊆ A ∪B′ and A′ ∩B ⊆ A′

Thus (A,A′) does not pair-cross any of the four sets.

2.5.1 Forest Induced by a Pair-Laminar Family

We begin by showing the unique forest associated with the pair-laminar family L from

Figure 2.5. Recall that (A,A′) ≤ (B,B′), (C,C ′) ≤ (B,B′), and (A,A′),(C,C ′) are not

comparable using ≤, but they do not pair-cross. The forest is depicted in Figure 2.6.

A’

C

C’

B

B’

A (B,B’)

(A,A’) (C,C’)

Figure 2.6: A pair-laminar collection L = {(A,A′), (B,B′), (C,C ′)} of set pairs and its

associated forest

2.5.6 Lemma ([17]). If B is a collection of pair-laminar set pairs, then the poset defined

by ≤ on the set pairs in B is described by a unique forest FB.

Proof. Let (A,A′), (B,B′), (C,C ′) ∈ B, with (B,B′) 6= (C,C ′). To show that the partial

order defined by ≤ gives a forest, we only need to show that if (A,A′) ≤ (B,B′) and

(A,A′) ≤ (C,C ′), then (B,B′) and (C,C ′) must be comparable in the partial order. This

would ensure that every node has at most one parent. Thus it suffices to establish that if

• (A,A′) < (B,B′)

• (A,A′) < (C,C ′)

• (C,C ′) 6< (B,B′),

then (B,B′) < (C,C ′). Since B is pair-laminar, (B,B′) and (C,C ′) do not pair-cross. If

(B,B′) 6< (C,C ′), then B ⊆ C ′ and C ⊆ B′, as otherwise they would pair-cross. Then

A ⊆ B ⊆ C ′ and since C ∩ C ′ = ∅, this implies A 6⊆ C, contradicting (A,A′) ≤ (C,C ′).

Thus it must be that (B,B′) ≤ (C,C ′).
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2.6 Two-Set Functions

In this section we generalize many of the definitions and results found in Section 2.4 to

two-set functions, that is, functions that are defined over pairs of subsets of some vertex

set V . We first define upon exactly what family of subsets we require our two-set functions

to be defined.

2.6.1 Definition. We say a family of pairs of subsets of V , F ⊆ 2V × 2V , is two-set

consistent if every pair has disjoint subsets, and if whenever (A,A′), (B,B′) ∈ F , we have

(A ∩B,A′ ∪B′), (A ∪B,A′ ∩B′), (A ∩B′, A′ ∪B), (A′ ∩B,A ∪B′) all in F as well.

Figure 2.7 provides an illustration of the set pairs involved in Definition 2.6.1.

A

A’

B’B

A

A’

B B’

A

A’

B’B

A

A’

B B’

Figure 2.7: From left to right: (A ∪ B,A′ ∩ B′), (A ∩ B,A′ ∪ B′), (A ∩ B′, A′ ∪ B),

(A′ ∩B,A ∪B′)

The following definitions are defined in such a way that will allow us to eventually

formulate a generalized uncrossing argument.

2.6.2 Definition. We say that a two-set function f defined on a two-set consistent family

on V is two-submodular if for all pairs (A,A′), (B,B′) we have

f(A,A′) + f(B,B′) ≥ max{f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′),
f(A ∩B′, A′ ∪B) + f(A′ ∩B,A ∪B′)} (2.5)

2.6.3 Definition. We say that a two-set function f defined on a two-set consistent family

on V is weakly two-supermodular if for all pairs (A,A′), (B,B′) we have

f(A,A′) + f(B,B′) ≤ max{f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′), (2.6)

f(A ∩B′, A′ ∪B) + f(A′ ∩B,A ∪B′)} (2.7)
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When we say a function f is weakly two-supermodular, it is assumed that f is a two-set

function defined on some two-set consistent family on V .

As the functions |δF (·)| and x(·) are submodular in the traditional setting, we see that

we get a parallel result for two-set functions.

2.6.4 Lemma ([17]). The two-set functions |δF (A,A′)| and x(A,A′) are two-submodular.

Proof. Follows by simple counting arguments that show that any edge counted on the right

hand side of (2.5) also appears on the left-hand side. We present one half of the proof, we

will show that

|δF (A,A′)|+ |δF (B,B′)| ≥ |δF (A ∪B,A′ ∩B′)|+ |δF (A ∩B,A′ ∪B′)| (2.8)

A

A’

B B’

Figure 2.8: Used for proof of Lemma 2.6.4

Figure 2.8 shows all possible edges that can be present in the right hand side of (2.8),

with the thick edges appearing twice. Note that any solid thin edge is present on the left

hand side in term |δF (A,A′)|, any dashed edge is present in term |δF (B,B′)|, and the thick

edge is present in both terms. Thus we get that the inequality holds.

2.6.5 Lemma ([17]). If f is weakly two-supermodular and g is two-submodular, then f−g
is weakly two-supermodular.
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Proof. Whichever term of the definition of weak two-supermodularity (2.6) or (2.7) achieves

the maximum, −g(A,A′) − g(B,B′) satisfies the same inequality, by (2.5). Hence (f −
g)(A,A′) + (f − g)(B,B′) satisfies this inequality.

2.6.1 Uncrossing Argument for a Weakly Two-Supermodular Func-

tion

This argument is the two-set parallel to the uncrossing argument for supermodular func-

tions, presented in Section 2.4.1.

Consider a basic feasible solution x to the following LP, defined for a graph G and

weakly two-supermodular function f :

min
∑
e∈E

c(e)x(e) (LP2-f,G,F)

s.t. x(A,A′) ≥ f(A,A′) ∀(A,A′) ∈ F
0 ≤ x(e) ≤ 1 ∀e ∈ E

Suppose further that 0 < x(e) < 1 for every edge e ∈ E.

We say a set pair (A,A′) is tight if the corresponding constraint is tight, x(A,A′) =

f(A,A′).

2.6.6 Lemma (Uncrossing Lemma [17]). If (A,A′) and (B,B′) are tight for a weakly

two-supermodular function f with respect to x, then one of the following holds:

1. (A ∪B,A′ ∩B′) and (A ∩B,A′ ∪B′) are tight, and

[A,A′] + [B,B′] = [A ∪B,A′ ∩B′] + [A ∩B,A′ ∪B′]

2. (A ∩B′, A′ ∪B) and (A′ ∩B,A ∪B′) are tight and

[A,A′] + [B,B′] = [A ∩B′, A′ ∪B] + [A′ ∩B,A ∪B′]

Proof. As f is weakly two-supermodular, either (2.6) or (2.7) hold. Suppose (2.6) holds,

the other case follows similarly. Recall (2.6):

f(A,A′) + f(B,B′) ≤ f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′)
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We know that x(A,A′) is two-submodular by Lemma 2.6.4. Define two-set function h by

h(Z,Z ′) = f(Z,Z ′) − x(Z,Z ′) which is weakly two-supermodular by Lemma 2.6.5. As x

is feasible, x ≥ f =⇒ h ≤ 0. As (A,A′) and (B,B′) are tight, we have h(A,A′) = 0 =

h(B,B′). Thus, by two-supermodularity,

0 = h(A,A′) + h(B,B′) ≤ h(A ∪B,A′ ∩B′) + h(A ∩B,A′ ∪B′) ≤ 0

implying that h(A ∪ B,A′ ∩ B′) = 0 = h(A ∩ B,A′ ∪ B′). Thus (A ∩ B,A′ ∪ B′) and

(A ∪B,A′ ∩B′) are tight.

We get that

[A,A′] + [B,B′] ≥ [A ∪B,A′ ∩B′] + [A ∩B,A′ ∪B′] (2.9)

follows by a counting argument, as every edge that appears in the right-hand side of the

inequality must appear in the left-hand side. We wish to show equality, and will do so

by contradiction. Suppose the inequality is strict for some edge e. As the x-value of

an edge e is the same in all sets that contain e, (2.9) gives that x(A,A′) + x(B,B′) ≥
x(A ∪B,A′ ∩B′) + x(A ∩B,A′ ∪B′), and furthermore, as (2.9) is strict for some edge e,

we also get x(A,A′) + x(B,B′) > x(A ∪B,A′ ∩B′) + x(A ∩B,A′ ∪B′). But then

0 = h(A,A′) + h(B,B′)

= f(A,A′) + f(B,B′)− x(A,A′)− x(B,B′)

≤ f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′)− x(A,A′)− x(B,B′) by defition of f

< f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′)− x(A ∪B,A′ ∩B′)− x(A ∩B,A′ ∪B′)
= h(A ∪B,A′ ∩B′) + h(A ∩B,A′ ∪B′) = 0,

a contradiction.

2.6.7 Lemma ([17]). Let T be the collection of all tight set pairs with respect to x. Then

any maximal pair-laminar collection L of tight set pairs satisfies Span(L) = Span(T ).

Proof. Suppose not. Then Span(L) ⊂ Span(T ) as L ⊂ T . Then there must exist a pair

(A,A′) ∈ T with [A,A′] /∈ Span(L) that pair-crosses a minimum number of set pairs in

L. Let (B,B′) ∈ L be one of the set pairs in L that pair-crosses (A,A′). We use the
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Uncrossing Lemma (Lemma 2.6.6) which states that we can rewrite [A,A′] as a linear

combination of characteristic vectors of pair-laminar tight set pairs. The proof proceeds

based on which condition of the Uncrossing Lemma holds. Suppose condition 1 holds, and

condition 2 holding would proceed similarly.

The lemma gives that (A∩B,A′ ∪B′) and (A∪B,A′ ∩B′) are tight (that is, they are

in T ), and

[A,A′] = [A ∪B,A′ ∩B′] + [A ∩B,A′ ∪B′]− [B,B′]

Since [A,A′] /∈ Span(L), at least one of two vectors [A∪B,A′∩B′] or [A∩B,A′∪B′] is not

in Span(L). We now show that whichever one is not in the span pair-crosses strictly fewer

sets in L than (A,A′), contradicting the definition of (A,A′). Suppose [A ∪ B,A′ ∩ B′] /∈
Span(L), the other case would proceed similarly. Lemma 2.5.4 gives that any set pair

(X,X ′) ∈ L pair-crossing either of (A∪B,A′ ∩B′) must also have pair-cross (A,A′), since

(X,X ′) does not pair-cross (B,B′) by pair-laminarity of L. By Lemma 2.5.5 the set pair

(A ∪ B,A′ ∩ B′) does not pair-cross (B,B′), implying that it pair-crosses fewer set pairs

than (A,A′), a contradiction.

We now get the pair-laminar basis that we were hoping for. This pair-laminar basis is

fundamental to the proof of Fleischer et al.’s 2-approximation for ELC.

2.6.8 Corollary ([17]). For any basic solution x, with 0 < x(e) < 1 for every edge e ∈ E,

there exists a pair-laminar set B of tight set pairs satisfying:

1. |B| = |E|,

2. the vectors [A,A′] for (A,A′) ∈ B are linearly independent,

3. f(A,A′) ≥ 1 for all (A,A′) ∈ B

Proof. Let L be a maximal pair-laminar collection of tight set pairs, Span(L) = Span(T ),

by Lemma 2.6.7. Continually remove any set pair in this set that can be written as a linear

combination of other members of the set; call the resulting set B. Clearly the vectors in

B are now linearly independent, and this operation has not changed the span. Further, as

any vector in B represents a tight constraint, and no x(e) > 0 for every edge e, we must

have f(A,A′) ≥ 1 for all (A,A′) ∈ B. As the tight constraints in B are linearly independent

and span all tight constraints for basic solution x, the constraints in B form a basis for x,

and hence |B| = |E|.
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Chapter 3

Fractional Tokens

In this section we generalize the fractional token argument presented by Nagarajan et al.

[42] in their simplified proof of Jain’s 2-approximation for EC-SNDP. They construct a

n-by-n linear system that is satisfied by the basic feasible solution x. By giving fractional

tokens to each edge, which are then redistributed and counted appropriately using a laminar

system of tight constraints, they are able to contradict the assumption that x(e) < 1
2

for

every edge e.

Swamy [50] reformulated the fractional token argument in [42] using matrix notation.

This allowed one to show that for any problem of similar structure, there must be some

variable of value at least half. We extend this matrix argument, and now allow for a more

complex system of constraints.

We show that any solution x to a n-by-n linear system satisfying the properties similar

to those used in [42] is guaranteed to have some x(j) above a certain threshold, depending

on where column j appears in our system. In the following section, we show that we can

define such a system for our basic feasible solution x for SNDP, which will imply that there

is some edge e where x(e) ≥ 1
2
.

Let k ∈ Z be at least 1. Let M = [Ak, Ak−1, ..., A1] be an n×n matrix. Here each Ai is a

matrix with n rows and some number of columns. Suppose every row of M has a non-zero

entry, and the sum of the entries of some column does not equal zero. Furthermore, the

following properties hold for a column j from As:

[Ms1] Every entry in column j of As is in {+1, 0,−1,−2, ...,−s},
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[Ms2] There is at most one negative entry in column j of As, call it −r if it exists,

[Ms3] If there is such a negative entry, then there are at most r entries of +1 in column j.

If not, then there are at most s entries of +1.

3.0.9 Lemma. Let b ∈ Zn be a vector of integers, and let x = (xk, xk−1, ..., x1)
T be the

solution of the system [Ak, Ak−1, ..., A1](xk, xk−1, ..., x1)
T = b, with x > 0. Then there is a

column j from some submatrix As for which x(j) ≥ 1/s.

Proof. Assume that xj < 1/s for all columns j in submatrix As. We will use a fractional

token argument to show a contradiction. Each variable j will receive one token, and we

will distribute these over the rows of M such that

• each row receives at least one distinct token, and

• there are some unused tokens among the columns.

Such an argument would clearly show the number of columns of A to be larger than the

number of rows, a contradiction.

Let mij be the entry in row i and column j of matrix M . We use the following token

distribution rule. Each column j gives mijx(j) ≥ 0 tokens to row i if mij ≥ 0, and it gives

1−mijx(j) > 0 tokens to row i otherwise.

Note, that conditions [Ms1]-[Ms3] imply that every column redistributes at most one

token. Also note that if mij 6= 0, then column j gives a non-zero amount of tokens to row

i.

We now show that each row receives one token. Consider a row i. Let Is+ be the set of

columns j of As with mij = +1. Similarly, for −r ∈ {−1,−2, ...,−s} define Is−r as the set

of columns j of As with mij = −r.
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Row i then receives ti tokens where

ti :=
k∑
s=1

(x(Is+) +
s∑
r=1

(|Is−r| − rx(Is−r)))

= (
k∑
s=1

s∑
r=1

|Is−r|) +
k∑
s=1

(x(Is+)−
s∑
r=1

rx(Is−r))

= (
k∑
s=1

s∑
r=1

|Is−r|) +
n∑
j=1

mijx(j)

= (
k∑
s=1

s∑
r=1

|Is−r|) + bi

Since b is a vector of integers, ti is an integer as well. As every row has a positive entry,

each row i receives a nonzero amount of tokens. Thus ti > 0 =⇒ ti ≥ 1.

Finally, consider a column j whose entries do not sum to zero. By conditions [Ms2]

and [Ms3], as well as the token redistribution scheme, we see that this column did not

redistribute all its tokens, and hence there are some tokens that have not been distributed,

a contradiction.

In the original fractional token argument and the matrix reformulation by Swamy, the

matrix used assumed As = ∅ for all s 6= 2. This generalized argument can be used in

additional settings, and we will show some applications in the sections that follow.

3.1 Application to Jain’s 2-Approximation for SNDP

In this section we wish to apply the fractional token argument to complete the proof of

Jain’s key theorem, Theorem 1.4.1. We let x be a basic feasible solution to (LP-f) (see

Section 1.4). We may assume x(e) < 1 for every edge e, because if not the algorithm is

able to make progress. We also assume 0 < x(e) for every edge e, because if there is a zero

edge, we can remove it from the problem, and x remains a basic feasible solution of the

reduced problem.

We want to show that there must be some edge e with value x(e) ≥ 1
2
. Let B be our

laminar basis of tight constraints defining x, as given by 2.4.9. Let FB be the unique forest

induced by B, given by Lemma 2.3.4.
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We define a matrix M using FB where rows are indexed by constraints from B. Columns

are indexed by edges e ∈ E. The row for A ∈ L is given by [A] −
∑

C child of A[C]. Note

that M is non-singular as B is a basis for x, and so there is some column with entries

that do not sum to zero, and certainly every row has a nonzero entry. Define b ∈ ZB

by bA = f(A) −
∑

C child of A f(C). Note that x is the unique solution to My = b. If we

can show properties [M21]-[M23] apply to M , then Lemma 3.0.9 applies, and we get that

x(e) ≥ 1
2

for some edge e ∈ E. Note that we are using the lemma with k = 2, M = [A2].

We reproduce properties [M21]-[M23] below for our matrix M with entry A, e represented

by mAe.

[M21] mAe ∈ {0, 1,−1,−2} for every mAe ∈M ,

[M22] There is at most one negative entry in column e of M , call it −r if it exists,

[M23] if there is such a negative entry, then there are at most r entries of +1 in column j.

If not, then there are at most 2 entries of +1.

We now argue that properties [M21]-[M23] apply for this system. Consider a node A

and edge e = uv. Note that at most two of A’s children can have the same edge in their

cut, as otherwise the children would not be disjoint, violating laminarity of L. For an edge

e = uv, the lowest node containing u and the lowest node containing v are the only nodes

that can have a positive entry, and these are the only nodes possible to have e in their cut,

and yet not have any children with e in their cut.

If A has entry −1 for edge e = uv, then there is a unique child, say C with one endpoint,

say u in C (see Figure 3.1). We must have v ∈ A, as otherwise e would be in δ(A). Further,

v cannot be in a separate child, as then e would be in that child’s cut, resulting in an entry

of −2 for A. The lowest node containing u will not contain v as it is a descendent of C,

and hence gets entry of 1 for column e. As A is the lowest node containing v, but e is not

in δ(A), there is no other positive entry for this column.

Finally, if A has entry −2 for edge e, then there are two children of A, one containing

u, the other containing v, with e in their cuts (see Figure 3.2). The lowest node containing

u will thus have e in its cut, and hence an entry of 1, similarly the lowest node containing

v will have an entry of 1 as well.

Hence Lemma 3.0.9 applies, and there must be some edge e with x(e) ≥ 1
2
, proving

Theorem 1.4.1.
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e

C
u

v

Figure 3.1: A set A with entry −1 for edge e.

A

u e v

Figure 3.2: A set A with entry −2 for edge e.
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Chapter 4

Element Connectivity

In this chapter, we look at the Element Connectivity Problem (ELC). The problem,

originally formulated by Jain et al. [32], is motivated by its application in real computer

networks. In such networks, both links and routers may fail, but typically network termi-

nals are more robust [17]. The failure of a network terminal is uncommon, and less vital to

the connectivity of the network as a whole. As such, the designer wants to build a network

protecting against the failure of both links and routers.

We begin by looking at a 2-approximation algorithm by Fleischer et al. [17]. Their

algorithm is inspired by Jain’s 2-approximation for SNDP. Its proof follows the same

outline as Jain’s, except that all the results must be generalized to functions that operate

on pairs of subsets of vertices. Some basic material on pair-laminar families and two-set

functions is available in Sections 2.5 and 2.6 respectively, and this material will be assumed

knowledge. Fleischer et al. finish their proof with an endpoint based argument in [17],

but here we use the generalized fractional token argument from Chapter 3 to give a much

simplified version of the proof.

We also prove a (2, 2B + 3)-approximation algorithm for the Degree Bounded El-

ement Connectivity problem (ELC-B). This algorithm, due to the work of Lau et al.

[37], is modelled off of the authors (2, 2B + 3)-approximation for SNDP-B. In Section 4.2

we generalize the framework to two-set functions and pair-laminar families to prove the

corresponding result for ELC-B.
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4.1 A 2-Approximation Algorithm for ELC by Fleis-

cher et al.

In [17], Fleischer et al. proves a generalization of Jain’s theorem [33], which allows them to

prove a 2-approximation for ELC through iterative rounding using a very similar approach

as Jain’s for EC-SNDP. The difficulty is in formulating an appropriate generalization and

proving the analagous technical results, including an uncrossing lemma. We present Fleis-

cher’s algorithm here, and will use our generalized fractional token argument to complete

the proof. We will then use many of the results proven in this section to prove an approx-

imation algorithm for the degree bounded version of this problem.

4.1.1 Preliminaries

Let G = (V,E) be an undirected graph, let n = |E|. Let c(e) be a cost for each edge

e ∈ E. Partition vertices into terminals R and nonterminals Q. Let ruv define our sym-

metric connectivity requirements between every pair of vertices u, v, but allowing nonzero

connectivity only between pairs of terminals. We define the set of elements to be all edges

and nonterminal vertices. The ELC problem is to find a minimum-cost subgraph H of G

such that for every pair u, v of vertices there are at least ruv element-disjoint u, v-paths in

H.

We will use Menger’s Theorem to formulate an appropriate integer program to solve

the ELC instance. Menger’s Theorem (see Theorem 2.1.2) implies the following corollary,

by using an auxiliary graph that adds a vertex in the middle of each edge, and a clique on

all neighbours of any required vertex r ∈ R− {s, t}.

4.1.1 Corollary ([17]). The minimum number of elements in E ∪ Q separating s from t

in G is equal to the maximum number of element disjoint paths from s to t in G.

A subgraph H of G satisfies the connectivity requirements if, for every pair of terminals

u, v ∈ R, for every subset X ⊆ E ∪ Q with |X| < ruv, we have that u and v are in the

same component of G−X.

4.1.2 Definition. We define an ELC set pair to be a pair (A,A′) where A,A′ ⊆ V are

disjoint and cover all terminals, that is R ⊆ A∪A′. Note that any vertex in (A ∪ A′) must

be a nonterminal.
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Define the two-set function felt over all ELC set pairs (A,A′) by felt(A,A
′) = max{ruv :

u ∈ A ∩R, v ∈ A′ ∩R}, and set felt(A,A
′) = 0 if either A or A′ is empty.

For any set-pair (A,A′), there can be at most one element-disjoint path from A to

A′ through each vertex in (A ∪ A′), as any such vertex is a nonterminal. Thus, for any

feasible subgraph H, the number of edges in δH(A,A′) must be at least felt(A,A
′) −

|Q − A ∪ A′| (= felt(A,A
′) − |(A ∪ A′)|). Thus we define the two-set function gelt by

gelt(A,A
′) = felt(A,A

′) − |Q − A ∪ A′|. This motivates the following linear program and

lemma.

Given a a family of pairs of subsets of V , F ⊆ 2V × 2V and a function f : F → N,

consider the following linear program:

min
∑
e∈E

c(e)x(e) (LP2-f,G,F)

s.t. x(A,A′) ≥ f(A,A′) ∀(A,A′) ∈ F
0 ≤ x(e) ≤ 1 ∀e ∈ E

4.1.3 Lemma. Let F be the family of all ELC set pairs. The set of integral solutions to

the linear program (LP2-gelt, G,F) equals the set of solutions to the corresponding element

connectivity problem.

Proof. Certainly any solution to the element connectivity problem must have, for any set-

pair (A,A′), at least gelt(A,A
′) edges between A and A′, by the preceeding discussion. Let

H = (V,E ′) be the graph of an integral solution to (LP2-gelt, G,F). Suppose there is some

set of elements X ⊆ E∪Q of size |X| < ruv such that u and v are not connected in H−X.

Let A be all vertices in the component of H−X containing u, and let A′ = (V −X∩Q)−A.

Hence there is no edge between A and A′ in H −X, by definition, and R ⊆ A ∪ A′, thus

37



(A,A′) is a set-pair. We have

0 = x(H−X)(A,A
′)

= xH(A,A′)− xX(A,A′)

≥ x(A,A′)− |X ∩ E|
≥ gelt(A,A

′)− |X ∩ E| by feasibility

= felt(A,A
′)− |Q− A ∪ A′| − |X ∩ E|

≥ ruv − |X ∩Q| − |X ∩ E| by choice of (A,A′)

= ruv − |X| > 0 as |X| < ruv

As we have an integral solution, this implies that there must be an edge between A and

A′ in H −X, a contradiction. Hence any integral solution to (LP2-gelt, G,F) is a feasible

solution to the ELC problem.

Just as Jain’s 2-approximation for SNDP is in fact a 2-approximation for (IP-f), we

are going to create an approximation algorithm that finds a 2 approximate integer solution

to (LP2-f,G,F) for any weakly two-supermodular function f (see Definition 2.6.3). Note

that we require such a function to be required over a two-consistent family of set pairs (see

Definition 2.6.1).

A

A’

B’B

A

A’

B B’

A

A’

B’B

A

A’

B B’

Figure 4.1: From left to right: (A ∪ B,A′ ∩ B′), (A ∩ B,A′ ∪ B′), (A ∩ B′, A′ ∪ B),

(A′ ∩B,A ∪B′)

4.1.4 Lemma. The family F of all ELC set pairs is two-set consistent.

Proof. Let (A,A′), (B,B′) be two ELC set pairs. Clearly each of (A ∩ B,A′ ∪ B′), (A ∪
B,A′ ∩ B′), (A ∩ B′, A′ ∪ B), (A′ ∩ B,A ∪ B′) are disjoint pairs of sets, as can be seen in

Figure 4.1.
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Secondly, let U denote the union of one of the listed set pairs. Note that R ⊆ A ∪ A′

and R ⊆ B ∪B′ thus

R ⊆ (A ∩B) ∪ (A ∩B′) ∪ (A′ ∩B) ∪ (A′ ∩B′)
⊆ U as seen in Figure 4.1

Hence each pair is an ELC set-pair.

The approximation algorithm will be based on the following theorem:

4.1.5 Theorem. [[17]] For any weakly two-supermodular function f 6= 0, any basic solu-

tion to (LP2-f,G,F) has at least one variable e such that x(e) ≥ 1/2.

We will prove this theorem later in Section 4.1.4 using the generalized fractional token

argument presented in Chapter 3.

4.1.2 Presentation of the Algorithm

Given a polynomial-time separation oracle for (LP2-f,G,F) we describe the 2-approximation

algorithm for solving the associated integer program.

Algorithm 2 Iterative Rounding 2-approximation

1: F ← ∅
2: G′ ← G = (V,E)

3: f ′ ← f

4: while F is not feasible for (LP2-f,G,F) do

5: Solve (LP2-f ′, G′,F), let x∗ be an optimal basic solution

6: F ← F ∪ {e : x∗(e) ≥ 1
2
}

7: G′ ← (V,E − F )

8: f ′(A,A′)← f(A,A′)− |δF (A,A′)|
9: end while

Note that our residual problem is formed by subtracting of a subset of rounded x values

from edges that are chosen for the final solution, and any such x value is originally at least
1
2
. Thus we are able to prove that the output solution has cost no more than a factor
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of 2 times that of the optimal solution in an identical fashion to the proof of the parallel

theorem in Jain’s 2-approximation for SNDP (see Section 1.4).

Lemmas 2.6.4 and 2.6.5 then give us the following corollary, which justify that our

algorithm can be applied recursively.

4.1.6 Corollary ([17]). If f is weakly two-supermodular, then f(A,A′) − |δF (A,A′)| is

also weakly two-supermodular for any set of edges F ⊆ E.

Theorem 4.1.5 and the above corollary then imply the following theorem.

4.1.7 Theorem ([17]). Given a polynomial-time separation oracle for (LP-f,G,F) and any

subsequent LP created by the algorithm, Algorithm 2 is a polynomial-time 2-approximation

algorithm for finding the minimum cost integer solution to (LP-f,G,F).

To obtain a 2-approximation for ELC, we thus we need to show that gelt is weakly

two-supermodular. We start by showing that felt is weakly two-supermodular. First, we

require some additional notation. Given (A,A′), there is a pair i ∈ A ∩ R, j ∈ A′ ∩ R
that determines the value of felt(A,A

′). Let i(A,A′) denote one such i and j(A,A′) denote a

corresponding j, and call these witnesses for the set pair (A,A′).

4.1.8 Lemma ([17]). The two-set function felt is weakly two-supermodular.

Proof. Given ELC set pairs (A,A′), (B,B′), we need to show one of the following:

• f(A,A′) + f(B,B′) ≤ f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′) (2.6)

• f(A,A′) + f(B,B′) ≤ f(A ∩B′, A′ ∪B) + f(A′ ∩B,A ∪B′) (2.7)

Note that for any pair (B,B′), R ⊆ B ∪ B′, thus i(A,A′) ∈ (A ∩ B) ∪ (A ∩ B′) and

j(A,A′) ∈ (A′ ∩ B) ∪ (A′ ∩ B′). Figure 4.2 depicts all possible locations for each of i(A,A′),

i(B,B′), j(A,A′), j(B,B′).

Call sets A ∩ B and A′ ∩ B′ complements, and sets A ∩ B′ and A′ ∩ B complements.

Note that

I = {i(A,A′), i(B,B′), j(A,A′), j(B,B′)}

intersects two, three, or all four of the sets A ∩B, A′ ∩B′, A ∩B′ and A′ ∩B.
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(B,B’)
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(A,A’)
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A
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Figure 4.2: Showing witness legend

A

A’

B B’

A

A’

B B’

Figure 4.3: I intersects two sets

If only two, then these sets are complements, and we are in one of the two cases depicted

in Figure 4.3. In the left case we get that (2.6) holds, and in the right case (2.7) holds.

Note that felt(A,A
′) = felt(B,B

′).

If I intersects three sets, then two of these are complements with the property that

a witness for (A,A′) is in one set, and a witness for (B,B′) is in the other. We are

thus in a situation symmetric to one of those depicted in Figure 4.4. The inequality of

corresponding to that complementary pair holds. For example, in the left figure, we are

looking at complementary pair (A ∩ B′, A′ ∪ B) and (A′ ∩ B,A ∪ B′), and we see that

inequality (2.7) must hold.

Finally, we have the case where I intersects all four sets, as in Figure 4.5. In this
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A

A’

B B’

A

A’

B B’

Figure 4.4: I intersects three sets

case, select the complementary pair that contains a the witness pair (i, j) with rij =

max{felt(A,A′), felt(B,B′)}. Then the inequality that corresponds to this complementary

pair holds. Say, for example, ri(A,A′),j(B,B′) = max{felt(A,A′), felt(B,B′)}. In our figure,

these are located in complementary pair (A∩B′, A′ ∪B) and (A′ ∩B,A∪B′), and we see

that the corresponding inequality (2.7) must hold.

A

A’

B B’

Figure 4.5: I intersects four sets

4.1.9 Corollary ([17]). The two-set function gelt(A,A
′) is weakly two-supermodular.

Proof. Notice that the function h(A,A′) = |Q − (A ∪ A′)| satisfies (2.5) with equality as
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all arguments are disjoint pairs. Thus h is two-submodular. Applying Lemma 2.6.5 gives

that gelt = felt − h is weakly two-supermodular.

4.1.3 Polynomial Time Separation Oracle

Recall that we require a polynomial time separation oracle for (LP-gelt, G,F) to as well as

any subsequent LP generated in order to be able to run our 2-approximation algorithm. To

do this, we interpret x-values as capacities and transform the graph induced by the current

fractional solution x and the fixed edges F into a directed graph by replacing every edge

by oppositely oriented edges with the same capacity as the original undirected edge, with

fixed edges getting capacity of 1. We then perform a procedure of splitting nonterminal

vertices to model the fact that at most one path can pass through any nonterminal, see

Figure 4.6. Then in the resulting graph, the maximum flow value between u and v is the

vertex connectivity between u and v. If this is less than ruv, the minimum cut reveals a

violated inequality. This gives us a polynomial-time separation oracle for (LP-gelt, G,F)

and thus we can obtain a basic solution in polynomial time using the ellipsoid algorithm

[27].

4.1.4 Application of the Fractional Token Argument

All that remains to show is the existence of a 1
2
-edge in any basic solution. Let x be a basic

feasible solution to (LP-f,G,F) for a weakly two-supermodular function f . If x(e) = 0 for

some e ∈ E, we can remove edge e from the graph G and variable x(e) from (LP-f,G,F).

The residual solution x remains a basic feasible solution to the modified LP. Thus we

assume without loss of generality that x(e) > 0 for all e ∈ E. Thus henceforth, E is the

support of x. We may assume x(e) < 1 for all e ∈ E, as otherwise Theorem 4.1.5 holds

trivially.

We say a set pair (A,A′) is tight if x(A,A′) = f(A,A′). Through a standard uncross-

ing argument for weakly two-supermodular functions (see Section 2.6.1), we can obtain a

laminar basis B that defines x, given by Lemma 2.6.8. Let FB be the unique forest defined

by B. We will use this forest to show that there must be some edge in x of value at least
1
2
.
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Figure 4.6: Splitting procedure - labels are capacities.

To apply the generalized fractional token argument, we use our forest FB to define

a matrix M with rows indexed by set pairs (A,A′) ∈ B and columns indexed by edges

e ∈ E. The row for (A,A′) is given by [A,A′]−
∑

(B,B′) child of (A,A′)[B,B
′]. Note that M is

non-singular as the vectors [A,A′] for (A,A′) ∈ B are linearly independent. Define b ∈ ZB

by b(A,A′) = f(A,A′)−
∑

(B,B′) child of (A,A′) f(B,B′).

Note that x is the unique solution to My = b. We want to apply Lemma 3.0.9, to show

that we get that x(e) ≥ 1
2

for some edge e ∈ E. Note that we are applying the lemma

with M = A2, so we need to satisfy conditions [M21]-[M23] for the matrix M . As M is

non-singular, we have some column whose entries do not sum to zero, and every row has a

nonzero entry. Here we reproduce the conditions for convenience, and then present lemmas

to show that they do indeed hold for our system.

[Ms1] Every entry in column j of As is in {+1, 0,−1,−2, ...,−s},

[Ms2] There is at most one negative entry in column j of As, call it −r if it exists,

[Ms3] If there is such a negative entry, then there are at most r entries of +1 in column j.
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If not, then there are at most s entries of +1.

[M21] m(A,A′),e ∈ {0, 1,−1,−2} for every m(A,A′),e ∈M ,

[M22] There is at most one negative entry in column e of M , call it −r if it exists,

[M23] If there is such a negative entry, then there are at most r entries of +1 in column e.

If not, there there are at most 2 entries of +1.

See Figures 4.7 and 4.8 for an illustration of edges that would create a negative value

for a set pair (A,A′). We first prove a few quick lemmas that will help us show the desired

properties hold.

4.1.10 Lemma. If (A,A′), (B,B′) ∈ B and A ∩ B 6= ∅, then (A,A′) and (B,B′) are

comparable via ≤.

Proof. Suppose not. Then A ⊆ B′ =⇒ B ∩ B′ 6= ∅, a contradiction as set pairs are

disjoint.

4.1.11 Lemma. If (C,C ′) ≤ (A,A′) are set pairs in B, and some edge e = uv is in

both δ(A,A′) and δ(C,C ′), then for any (B,B′) satisfying (C,C ′) ≤ (B,B′) ≤ (A,A′),

e ∈ δ(B,B′).

Proof. Say, without loss of generality, u ∈ A, v ∈ A′. Suppose v ∈ C, thus u ∈ C ′. But

v ∈ A′ ⊆ C ′ implies that C ∩ C ′ 6= ∅, a contradiction.

Thus u ∈ C, v ∈ C ′. Then u ∈ C ⊆ B and v ∈ A′ ⊆ B′, and e ∈ δ(B,B′).

4.1.12 Lemma. Consider node (A,A′) ∈ B with children (Bi, B
′
i) for i = 1...k. For any

edge e = uv, there are at most two children with e in their cut. Furthermore, if there are

two, then e 6∈ δ(A,A′).

Proof. Suppose k ≥ 3 and e is in the cut of 3 distinct children. Without loss of generality,

say e ∈ δ(B1, B
′
1)∩ δ(B2, B

′
2)∩ δ(B3, B

′
3). Since e = uv is in the three cuts, either u or v is

in two of B1, B2, B3. Say u ∈ B1 ∩ B2. But (B1, B
′
1) and (B2, B

′
2) are siblings, and hence

not comparable via ≤, hence u ∈ B1 ⊆ B′2 implies B2 ∩ B′2 6= ∅, a contradiction, thus e

can be in at most two of the children’s cuts.
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Suppose k = 2 and e ∈ δ(B1, B
′
1) ∩ δ(B2, B

′
2). Say u ∈ B1, v ∈ B′1 and v ∈ B2, u ∈ B′2.

Then {u, v} ⊆ B1 ∪ B2 ⊆ A =⇒ e 6∈ δ(A,A′). (see Figure 4.8 (right figure) for an

illustration).

Note that if three set pairs contain an edge e in their cut, then two of them must share

a vertex in their left component, and hence are comparable by Lemma 4.1.10. Thus we

cannot have three set pairs that are pair-wise not comparable, and all having e in their

cuts.

We now argue that properties [M21]-[M23] apply for this system. Lemma 4.1.12 imme-

diately gives that [M21] holds.

B’

B

A

A’

Figure 4.7: A set pair (A,A′) with entry −1 for shown edges.

Consider a node (A,A′) and edge e = uv. Note that at most two of (A,A′)’s children

can have the same edge in their cut by Lemma 4.1.12. For e = uv, the lowest node

containing u in the left set and the lowest node containing v in the left set are the only

nodes that can have a positive entry, and these are the only nodes possible to have e in

their cut, and yet not have any children with e in their cut. This is due to the fact that

for (B,B′) ≤ (C,C ′), B′ ⊆ C ′.

If (A,A′) has entry −1 for edge e = uv, then there is a unique child, say (C,C ′) with

one endpoint, say u in C (see Figure 4.7). No ancestor to (A,A′) has e in its cut, as

otherwise so would (A,A′) by Lemma 4.1.11, contradicting that (A,A′) has entry −1 for

e. We must have v /∈ A′, as otherwise e would be in δ(A), and then the entry for (A,A′)

would be 0, not −1. Further, v cannot be in a separate child, as then e would be in that

child’s cut, resulting in an entry of −2 for (A,A′). The lowest node containing u will have

v in its right set, as it is a descendent of (C,C ′), and hence gets entry of 1 for column e.
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Any other node (B,B′) not comparable to (A,A′) with e in its cut must have v ∈
B, u ∈ A′, but then B ⊆ A′, a contradiction as v /∈ A′. Hence there is no other node with

e in its cut, so we have one node with entry −1 and another with 1 for edge e.

vu

A

e

A’

2B1B

1B’2B’

Figure 4.8: A set A with entry −2 for edge e.

Finally, if (A,A′) has entry −2 for edge e, then there are two children of (A,A′), one

containing u, the other containing v, with e in their cuts (see Figure 4.8). The lowest node

containing u will thus have e in its cut, and hence an entry of 1, similarly the lowest node

containing v will have an entry of 1 as well.

Hence Lemma 3.0.9 applies, and there must be some edge e with x(e) ≥ 1
2
, proving

Theorem 1.4.1.

4.2 A (2, 2B + 3)-approximation for degree bounded

ELC

In this section we look at the degree bounded version of the element connectivity prob-

lem (ELC-B). We will be using a lot of the machinery developped in the proof of Fleis-

cher’s 2-approximation for ELC. We will model our framework on Lau et al’s (2, 2B + 3)-

approximation for EC-SNDP in their extended abstract [37]. They claim that their method-

ology can be extended to get a (2, 2B + 3)-approximation for the element connectivity

version of the problem with degree bounds on terminals only. This thesis will provide the

proof of this algorithm.
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4.2.1 Preliminaries

Let G = (V,E) be our graph, with vertices partitioned into terminals R and non-terminals

Q. Let c(e) be our cost for edge e ∈ E, and let ruv be our connectivity requirement for

vertices u, v, with ruv > 0 ⇐⇒ {u, v} ⊆ R. Let W ⊆ R be our set of terminals with

degree constraints. For a vertex v ∈ W let Lv and Bv be our lower and upper bounds on

v respectively.

We have felt(A,A
′) = max{ruv : u ∈ A ∩ R, v ∈ A′ ∩ R} and gelt(A,A

′) = felt − |Q −
(A∪A′)|, as defined in Fleischer’s ELC algorithm. We let F be the set of all ELC set pairs.

Then, with the same reasoning as before, integer points of the following LP are exactly the

solutions to the ELC-B instance when f = gelt:

min
∑
e∈E

c(e)x(e)

s.t. x(A,A′) ≥ f(A,A′) ∀(A,A′) ∈ F
x(δ(v)) ≤ Bv ∀v ∈ W
x(δ(v)) ≥ Lv ∀v ∈ W (4.1)

0 ≤ x(e) ≤ 1 ∀e ∈ E

First we show that we may assume that there are no constraints of form (4.1). For any

lower bound Lv > 0 for a vertex v ∈ W , degree constraints of the form x(δ(v)) ≥ Lv can be

incorporated as connectivity constraints by setting f({v}, {v}) = max{gelt({v}, {v}), Lv},
and f = gelt otherwise. We show that f is still weakly two-supermodular.

4.2.1 Lemma. f as defined above is weakly two-supermodular.

Proof. Let (A,A′), (B,B′) be two ELC set pairs. Note that if neither one of (A,A′) or

(B,B′) has the form ({v}, {v}) for some v ∈ W : Lv > gelt({v}, {v}), then

f(A,A′) + f(B,B′) = gelt(A,A
′) + gelt(B,B

′),

and the result follows, as gelt is weakly two-supermodular and gelt ≤ f .

Suppose, without loss of generality, (A,A′) = ({v}, {v}) for some v ∈ W with Lv >

gelt({v}, {v}). As v ∈ R, either v ∈ B or v ∈ B′.
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If v ∈ B then it is easy to see that

f(A,A′) + f(B,B′) = f(A ∪B,A′ ∩B′) + f(A ∩B,A′ ∪B′),

and if v ∈ B′ then

f(A,A′) + f(B,B′) = f(A ∩B,A′ ∪B′)′ + f(A′ ∩B,A ∪B′).

Thus we have shown that we may assume, without loss of generality, that there are no

lower bound constraints, as these can be incorporated into a function f that is still weakly

two-supermodular. Hence we now want to find integer solutions to the following LP:

min
∑
e∈E

c(e)x(e) (LP3-f,G,F , B)

s.t. x(A,A′) ≥ f(A,A′) ∀(A,A′) ∈ F
x(δ(v)) ≤ Bv ∀v ∈ W

0 ≤ x(e) ≤ 1 ∀e ∈ E

4.2.2 Presentation of the Algorithm

The (2, 2B + 3)-approximation algorithm is as follows:

4.2.2 Theorem. Provided that the algorithm terminates, F is a (2, 2B+3)-approximation.

Proof. The proof that this algorithm is a 2-approximation on the cost is identical to that

of the proof in Jain’s 2-approximation for SNDP, see Section 1.4.

We prove that for every vertex v ∈ W , degF (v) ≤ 2Bv+3. Consider a degree constraint,

say for vertex v, and focus on the last iteration in which B′v changes or the constraint gets

deleted. Suppose we have added α edges incident to v prior to this iteration. Since each

edge added had value ≥ 1
2
, Bv ≥ α/2 +B′v, or restated, α ≤ 2Bv − 2B′v.

If in this is the last iteration in which B′v is changed (constraint not deleted), say we

add β ≥ 1 more edges incident to v. Thus the final degree of v is α + β. We must have

had B′v ≥ β/2 as x(e) ≥ 1
2
. Therefore we have α + β ≤ 2Bv − 2B′v + 2B′v = 2Bv.
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Algorithm 3 Iterative Rounding (2, 2B + 3)-approximation

1: F ← ∅
2: G′ ← G = (V,E)

3: f ′ ← f

4: B′ ← B

5: while F is not feasible for (LP3-f,G,F , B) do

6: Solve (LP3-f ′, G′,F , B′), let x∗ be an optimal basic solution

7: If there exists a v ∈ W such that |δ(v)| ≤ 4, remove v from W , return to while

8: For any edge e = uv where x∗(e) ≥ 1
2
, add e to F , decrease B′u and B′v by x∗(e)

9: G′ ← (V,E − F )

10: f ′(A,A′)← f(A,A′)− |δF (A,A′)| for all (A,A′) ∈ F
11: end while

If we delete this constraint in this iteration and solve the problem for the relaxed

version, in the worst case the final solution contains all 4 remaining edges incident with v.

Thus, in the final solution, the degree of v is at most α+ 4 ≤ 2Bv − 2B′v + 4. Since α+ 4

is an integer, and B′v > 0, this gives that α + 4 ≤ 2Bv + 3, as desired.

4.2.3 Polynomial Time Separation Oracle

The separation oracle for (LP3-f,G,F , B) is nearly identical to the separation oracle used

in Fleischer’s 2-approximation for ELC, see Section 4.1.3. The only difference is that for

every v ∈ W , we check that x(δ(v)) ≤ Bv, and return this constraint if the proposed

solution x does not satisfy the degree bound.

4.2.4 Basic Feasible Solution Structure Lemma

Our goal is now to show that this algorithm does indeed terminate. We wish to show that

in every iteration there is some progress made. Suppose that this is not the case. Let

x be our basic optimal solution to (LP3-f,G,F , B). Suppose that |δ(v)| ≥ 5 for every

v ∈ W , and 0 < x(e) < 1
2

for every e ∈ E. We use a counting argument to arrive at a

contradiction. We start by getting some structure on our basic feasible solution x.
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4.2.3 Theorem. Let f be a weakly two-supermodular function, x a basic feasible solution

of (LP) such that 0 < x(e) < 1 for all e ∈ E. Then there exists a pair-laminar basis B
that partitions into a set of singletons D for degree constraints and the remaining set C for

connectivity constraints where:

1. Every set ({v}, V − {v}) ∈ D has x(δ(v)) = Bv > 0,

2. Every set (A,A′) ∈ C has x(A,A′) = f(A,A′) ≥ 1,

3. |B| = |D|+ |C| = |E|,

4. Characteristic vectors [A,A′] for all (A,A′) ∈ B are linearly independent,

5. x is the unique solution to the equations

{x(δ(v)) = Bv : ({v}, V − {v}) ∈ D}
⋃
{x(A,A′) = f(A,A′) : (A,A′) ∈ C}

Proof. Let TD and TC be the set of all tight degree constraints and the set of all tight

connectivity constraints respectively. By Lemma 2.6.7, we can let L be a maximal pair-

laminar collection of tight set pairs for connectivity constraints such that Span(L) =

Span(TC). Continually remove any constraint from L∪ TD that can be written as a linear

combination of others. Let the resulting constraints be D ⊆ TD and C ⊆ L ⊆ TC. As L is

pair-laminar, so is C. We have that Span(D∪C) = Span(TD ∪L) = Span(TD ∪TC) = |E|.
Thus |D ∪ C| = |E|. Conditions 1 and 2 are clear as x(e) > 0 for any edge e. Conditions 4

and 5 are clear by construction.

We show that B := D ∪ C is pair-laminar. Any two sets ({v1}, V − {v1}), ({v2}, V −
{v2}) ∈ D do not pair-cross as {v1} ⊆ V −{v2} and {v2} ⊆ V −{v1}. Consider (A,A′) ∈ C
and ({v}, V − {v}) ∈ D. Either v ∈ A in which case ({v}, V − {v}) ≤ (A,A′) or v 6∈ A in

which case v ∈ A′ as R ⊆ A ∪ A′, thus {v} ⊆ A′ and A ⊆ V − {v}. Thus the set pairs do

not pair cross, and so B is pair-laminar.

Note that any set pair is only included once in B due to linear independence, and hence

will correspond to either a degree or connectivity constraint.
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4.2.5 Endpoint Based Counting Argument

In this section we present the endpoint based counting argument that will contradict that

0 < x(e) < 1
2

for every edge e, and |δ(v)| ≥ 5 for every v ∈ W .

Every edge e = uv has two endpoints, u and v. There are a total of 2|E| endpoints in

G. If we can assign endpoints to set pairs in B in such a way that root nodes get at least 3

endpoints, and any other node gets at least 2, then we get that 2|E| > 2|B|, contradicting

Theorem 4.2.3.

Construct the unique pair-laminar forest FB on B given by Lemma 2.5.6. We begin by

defining how a set pair can own an endpoint.

4.2.4 Definition. We say that a set pair (A,A′) ∈ B left-owns endpoint u of edge e = uv

if (A,A′) is the lowest node in FB with u ∈ A and v ∈ A′ (implying e ∈ δ(A,A′)).

4.2.5 Definition. We say that a set pair (A,A′) ∈ B right-owns endpoint u of edge e = uv

if (A,A′) is the parent of the highest node (C,C ′) in FB with v ∈ C and u ∈ C ′ (implying

e ∈ δ(C,C ′)).

Note that any two set pairs with a common element in their left-set are comparable by

Lemma 2.5.2, and hence both of the above notions of owning an endpoint are well defined.

We would like at most one set pair to own an endpoint, and this is accomplished with the

following definition.

4.2.6 Definition. We say that a set pair (A,A′) ∈ B owns endpoint u of edge e = uv if it

is the lowest node that either left-owns or right-owns u.

We must show that this notion of owning an endpoint is well defined.

4.2.7 Lemma. The definition of a set pair owning an endpoint is well defined.

Proof. Consider an endpoint u of an edge e = uv. Since the notions of left-owning and

right-owning an endpoint are well defined, we just need to show that if one set pair (A,A′)

left-owns u and another (B,B′) right-owns u, then (A,A′) and (B,B′) are comparable,

and hence one is lower.

If (B,B′) right-owns u, then (B,B′) is parent to the highest set pair (C,C ′) with

v ∈ C, u ∈ C ′. Thus v ∈ C ⊆ B. Now if (A,A′) and (B,B′) were not comparable, we

have u ∈ A ⊆ B′, but this contradicts the definition of (C,C ′).
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Figure 4.9 illustrates what a set pair (A,A′) looks like when it owns endpoint u of edge

e = uv.

v

u

e

A’

A

1C’
2C’

2C1C
u

u

v

u

e

A’

A

1C’
2C’

2C1C

Figure 4.9: (A,A′) owns endpoint u of e. Left: (A,A′) left-owns u. Right: (A,A′) right-

owns u, also shows 2 other possible locations for u.

We will need a few technical lemmas before we can complete the counting argument.

4.2.8 Lemma. Suppose (A,A′) owns endpoint u of e = uv. Then

1. (A,A′) does not own endpoint v of e,

2. u /∈ A′,

3. For any child (C,C ′) of (A,A′), u /∈ C.

Proof. 1. Suppose (A,A′) owns endpoint v of e. Clearly it cannot left-own both or

right-own both u and v, so say without loss of generality that it left-owns u and right

owns v. Thus u ∈ A, v ∈ A′, and (A,A′) is parent to some (C,C ′) with v ∈ C, u ∈ C ′.
But v ∈ C ⊆ A, a contradiction.

2. Suppose u ∈ A′. Then (A,A′) must right-own u, so (A,A′) is parent to the highest

node (C,C ′) with v ∈ C, u ∈ C ′. But v ∈ C ⊆ A, contradicting the definition of

(C,C ′).
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3. Suppose u ∈ C. If (A,A′) left-owns u then v ∈ A′ ⊆ C ′, contradicting that (A,A′)

left-owns u.

If (A,A′) right-owns u then (A,A′) has some child (B,B′) with v ∈ B, u ∈ B′. Thus

(C,C ′) 6= (B,B′). But then we have u ∈ C and v ∈ B ⊆ C ′, again implying that

there is a lower set that left-owns u.

4.2.9 Lemma. Let (A,A′) ∈ B have k children (Ci, C
′
i), i = 1...k. Set pair (A,A′) owns an

endpoint of e if and only if e is in exactly one of the cuts δ(A,A′), δ(Ci, C
′
i) for i = 1...k.

Proof. (⇒) Say (A,A′) owns endpoint u of edge e = uv.

Case 1: e ∈ δ(Ci, C ′i) for some i.

Note that u /∈ Ci by Lemma 4.2.8 fact 3. Thus v ∈ Ci, u ∈ C ′i, see Figure 4.10.

A

A’

iC v

u

e
C’i

Figure 4.10: Edge e from proof of Lemma 4.2.9

We cannot have e ∈ δ(Cj, C ′j) for some other child (Cj, C
′
j) of (A,A′), as then we

would have u ∈ C ′j, violating Lemma 4.2.8 fact 3. Further, v ∈ Ci =⇒ v ∈ A,

and u /∈ A′ =⇒ e /∈ δ(A,A′), by Lemma 4.2.8 fact 2.

Case 2: e 6∈ δ(Ci, C ′i) for any i.

Then a must left-own u, implying that e ∈ δ(A,A′).
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(⇐) Suppose e is in exactly one of the cuts δ(A,A′), δ(Ci, C
′
i) for i = 1...k.

Case 1: e ∈ δ(A,A′)

If u ∈ A, v ∈ A′, we immediately get that v ∈ C ′i for each child. As e /∈ δ(Ci, C ′i)
for any i, we have u /∈ Ci for any child, thus (A,A′) owns endpoint u of e.

Case 2: e ∈ δ(Ci, C ′i) for some i.

Say without loss of generality that v ∈ Ci, u ∈ C ′i. For every other child (Cj, C
′
j),

v ∈ Ci ⊆ C ′j. Thus u /∈ Cj for any child (Cj, C
′
j) as this would imply e ∈ δ(Cj, C ′j)

(see Figure 4.10).

Note that v ∈ Ci ⊆ A. As e /∈ (A,A′), u /∈ A′, and thus (A,A′) is parent to the

highest node (Ci, C
′
i) with v ∈ Ci, u ∈ C ′i, and no lower node than (A,A′) has u

in its left-set. Hence (A,A′) owns endpoint u.

We now use an idea that comes from the original proof of Jain’s 2-approximation for

SNDP [33]. We define a notion of corequirement for a set, and a will look at sets that

have low corequirement because these set pairs will have the fewest endpoints available to

them. We will have to treat these set pairs more carefully than the others.

4.2.10 Definition. We define the corequirement of an edge e to be coreq(e) = 1
2
−

x(e), and the corequirement of a set pair to be coreq(A,A′) =
∑

e∈δ(A,A′) coreq(e) =
1
2
|δ(A,A′)|−x(A,A′). Note that if (A,A′) ∈ C then coreq(A,A′) = 1

2
|δ(A,A′)|−f(A,A′).

Note that for (A,A′) ∈ C, coreq(A,A′) is an integer if and only if |δ(A,A′)| is even,

and coreq(A,A′) ∈ {1
2
, 3
2
, 5
2
, ...} if and only if |δ(A,A′)| is odd. In the latter case, we say

coreq(A,A′) is half-integral.

We can now state the lemma that will give us our final contradiction.

4.2.11 Lemma. Let T be a subtree of our forest rooted at node (A,A′). The endpoints

owned by T can be redistributed in such a way that (A,A′) gets at least 3, and each

descendent gets at least 2. Further, if coreq(A,A′) 6= 1
2

then (A,A′) gets at least 4, and

if (A,A′) ∈ D then (A,A′) gets at least 5.
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We will prove this lemma by induction. But before we can prove the lemma, we need

to build some facts about set pairs with low corequirement. As mentioned, these sets have

to be treated more carefully because they have fewer available endpoints. Note that any

set pair corresponding to a degree requirement is a leaf in our pair laminar family.

The following three lemmas will help us prove the inductive case of our lemma. The

only difficult cases are when we are at a non-leaf node with only connectivity constraints as

children. In particular, the more sets with low corequirement, the more difficult it will be

to accumulate endpoints for the root node. As we are only dealing with tight connectivity

constraints, we know that the f -value of any set pairs involved is an integer.

The following lemma is quite lengthy, but does involve some nice counting arguments.

It is used to cover the case of when we have a node with at most three children, all with low

corequirement, and when that node owns three minus the number of children in endpoints.

4.2.12 Lemma. Suppose (A,A′) ∈ C has α ≥ 1 children, all in C, each with corequirement

of 1
2
, and (A,A′) owns β endpoints. If α + β = 3, then coreq(A,A′) = 1

2
.

Proof. We begin by showing that |δ(A,A′)| is odd, which implies that coreq(A,A′) ∈
{1
2
, 3
2
, 5
2
, ...}. We then complete the proof by showing that coreq(A,A′) < 3

2
.

Let (C1, C
′
1), ..., (Cα, C

′
α) be the children of (A,A′). Note that as each child (Ci, C

′
i) has

coreq(Ci, C
′
i) = 1

2
, we know |δ(Ci, C ′i)| is odd.

Case α = 1, β = 2:

For convenience, we write (C,C ′) = (C1, C
′
1). As these are tight connectivity con-

straints, we have

f(A,A′) = x(A,A′) = x(δ(A,A′)− δ(C,C ′)) + x(δ(A,A′) ∩ δ(C,C ′)) (4.2)

f(C,C ′) = x(C,C ′) = x(δ(C,C ′)− δ(A,A′)) + x(δ(A,A′) ∩ δ(C,C ′)) (4.3)

As both f(A,A′) and f(C,C ′) are integers, by subtracting (4.2) − (4.3) we get that

x(δ(A,A′)− δ(C,C ′))− x(δ(C,C ′)− δ(A,A′)) ∈ Z (4.4)

If this value is nonzero then one of δ(A,A′) − δ(C,C ′) or δ(C,C ′) − δ(A,A′) has at

least 3 edges, since each edge has value less than 1
2
. But these are the exact edges that
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give (A,A′) an endpoint by Lemma 4.2.9, and (A,A′) owns β = 2 endpoints, hence (4.4)

must be zero. Since (A,A′) owns exactly 2 endpoints, there must be one edge in each set

δ(A,A′)− δ(C,C ′) and δ(C,C ′)− δ(A,A′). Thus

|δ(A,A′)| = |δ(A,A′)− δ(C,C ′)|+ |δ(A,A′) ∩ δ(C,C ′)|
= |δ(C,C ′)− δ(A,A′)|+ |δ(A,A′) ∩ δ(C,C ′)|
= |δ(C,C ′)|, which is odd.

Case α = 2, β = 1:

Note that any edge in δ(C1, C
′
1) ∩ δ(C2, C

′
2) has one endpoint in C1 and the other in

C2, both contained within S. Thus δ(A,A′) ∩ δ(C1, C
′
1) ∩ δ(C2, C

′
2) = ∅.

We define the following sets to partition our edges:

A := δ(A,A′)− (δ(C1, C
′
1) ∪ δ(C2, C

′
2))

B := δ(C1, C
′
1) ∩ δ(A,A′)

C := δ(C2, C
′
2) ∩ δ(A,A′)

D := δ(C1, C
′
1)− (δ(A,A′) ∪ δ(C2, C

′
2))

E := δ(C2, C
′
2)− (δ(A,A′) ∪ δ(C1, C

′
1))

F := δ(C1, C
′
1) ∩ δ(C2, C

′
2)

Notice that

δ(A,A′) = A ·∪B ·∪C

δ(C1, C
′
1) = B ·∪D ·∪F

δ(C2, C
′
2) = C ·∪E ·∪F

Lemma 4.2.9 gives that A ·∪D ·∪E are the exact edges that contribute endpoints to

(A,A′). Thus |A ·∪D ·∪E| = |A| + |D| + |E| = β = 1. As |δ(C1, C
′
1)| and |δ(C2, C

′
2)| are

both odd, we have that

|δ(C1, C
′
1)|+ |δ(C2, C

′
2)|+ 1 is odd

(|B|+ |D|+ |F|) + (|C|+ |E|+ |F|) + (|A|+ |D|+ |E|) is odd

|B|+ |C|+ |A| = |A ·∪B ·∪C| = |δ(A,A′)| is odd
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A

A’

{
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D
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C1

C2

C’1

C’2

Figure 4.11: Illustration of edge partition when α = 2. Note that C and E are omitted,

but they are similar to B and D respectively.

Case α = 3, β = 0:

As before, δ(A,A′) ∩ δ(Ci, C ′i) ∩ δ(Cj, C ′j) = ∅ for any i 6= j. Similarly, δ(C1, C
′
1) ∩

δ(C2, C
′
2) ∩ δ(C3, C

′
3) = ∅. As (A,A′) owns no endpoints, Lemma 4.2.9 implies that any

edge e ∈ δ(A,A′)
⋃3
i=1 δ(Ci, C

′
i) is a member of exactly two of the cuts δ(A,A′), δ(C1, C

′
1),

δ(C2, C
′
2), δ(C3, C

′
3).

We define the following sets to partition our edges:

A := δ(A,A′) ∩ δ(C1, C
′
1)

B := δ(A,A′) ∩ δ(C2, C
′
2)

C := δ(A,A′) ∩ δ(C3, C
′
3)

D := δ(C1, C
′
1) ∩ δ(C2, C

′
2)

E := δ(C1, C
′
1) ∩ δ(C3, C

′
3)

F := δ(C2, C
′
2) ∩ δ(C3, C

′
3)
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Figure 4.12: Illustration of edge partition when α = 3.

Notice that

δ(A,A′) = A ·∪B ·∪C

δ(C1, C
′
1) = A ·∪D ·∪E

δ(C2, C
′
2) = B ·∪D ·∪F

δ(C3, C
′
3) = C ·∪E ·∪F

As |δ(Ci, C ′i)| is odd for each i = 1, 2, 3, we get that

|δ(C1, C
′
1)|+ |δ(C2, C

′
2)|+ |δ(C3, C

′
3)| is odd

(|A|+ |D|+ |E|) + (|B|+ |D|+ |F|) + (|C|+ |E + |F|) is odd

|A|+ |B|+ |C| = |A ·∪B ·∪C| = |δ(A,A′)| is odd

We now complete the proof by showing that coreq(A,A′) < 3
2
, which implies that

coreq(A,A′) = 1
2

as the corequirement of a set pair (A,A′) is half integral if |δ(A,A′)| is
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odd. We have that

coreq(A,A′) =
∑

e∈δ(A,A′)

coreq(e)

≤
α∑
i=1

∑
e∈δ(Ci,C′i)

coreq(e) +
∑

e∈δ(A,A′)−[∪αi=1δ(Ci,C
′
i)]

coreq(e) (4.5)

≤
α∑
i=1

coreq(Ci, C
′
i) +

∑
e has endpoint owned by (A,A′)

coreq(e)

=
α

2
+

∑
e has endpoint owned by (A,A′)

coreq(e) (4.6)

Recall that α + β ≤ 3. As the sum in (4.6) has β terms and coreq(e) < 1
2
, if β > 0 then

coreq(A,A′) < 3
2
.

If β = 0, then refer to the sets defined above in Case α = 3, β = 0, and see Figure

4.12. Note that there must be some edge in one of D,E, or F, as otherwise [A,A′] =

[C1, C
′
1] + [C2, C

′
2] + [C3, C

′
3], contradicting linear independence of C, given by Theorem

4.2.3. This implies that the inequality on (4.5) is strict, thus coreq(A,A′) < 3
2
.

The following lemma is to ensure that a node with a single low corequirement child

can acquire at least three endpoints in total. It will be able to take one endpoint from its

child, and will own at least two itself.

4.2.13 Lemma. If a node (A,A′) ∈ C has exactly one child (C,C ′) ∈ C, then (A,A′) owns

at least 2 endpoints.

Proof. By the same reasoning as Case α = 1, β = 2 of Lemma 4.2.12, we have that line

(4.4) holds:

x(δ(A,A′)− δ(C,C ′))− x(δ(C,C ′)− δ(A,A′)) ∈ Z

We cannot have that both the sets δ(A,A′)−δ(C,C ′) and δ(C,C ′)−δ(A,A′) are empty,

otherwise [A,A′] = [C,C ′], a contradiction to Theorem 4.2.3. If one set is empty, then in

order for the above quantity to be an integer, the other set must have at least 3 edges, as

every edge has value ≤ 1
2
. If both are non-empty, then there is at least one edge in each

set. Every one of these edges provides an endpoint to (A,A′) by Lemma 4.2.9, and thus

(A,A′) owns at least 2 endpoints.
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This final lemma is similar to the previous one, but in the case that a node has two

children, at least one of which has low corequirement. If we can show this node owns one

endpoint, then it will be able to accumulate enough endpoints in the inductive case.

4.2.14 Lemma. If a node (A,A′) ∈ C has two children (C1, C
′
1) and (C2, C

′
2) in C, and

coreq(C1, C
′
1) = 1

2
, then (A,A′) owns at least one endpoint.

Proof. Suppose (A,A′) does not own any endpoints. Then the sets δ(A,A′)− (δ(C1, C
′
1)∪

δ(C2, C
′
2)), δ(A,A

′)− (δ(C1, C
′
1)∪ δ(C2, C

′
2)), and δ(A,A′)− (δ(C1, C

′
1)∪ δ(C2, C

′
2)) are all

empty, by Lemma 4.2.9 (see Figure 4.13).

A’

A

2C’

1C’
2C

1C

Figure 4.13: Every edge is in two cuts.

Note that

|δ(A,A′)| = |δ(C1, C
′
1)|+ |δ(C2, C

′
2)| − 2|δ(C1, C

′
1) ∩ δ(C2, C

′
2)| (4.7)

As coreq(C1, C
′
1) = 1

2
, |δ(C1, C

′
1)| is odd, thus by (4.7) the parity of |δ(A,A′)| and
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|δ(C2, C
′
2)| are not the same. Further,

coreq(A,A′)− coreq(C2, C
′
2) =

∑
e∈δ(A,A′)

coreq(e)−
∑

e∈δ(C2,C′2)

coreq(e)

=
∑

e∈δ(A,A′)∩δ(C1,C′1)

coreq(e)−
∑

e∈δ(C2,C′2)∩δ(C1,C′1)

coreq(e)

≤
∑

e∈δ(C1,C′1)

coreq(e) (4.8)

= coreq(C1, C
′
1) =

1

2

Similarly,

coreq(C2, C
′
2)− coreq(A,A′) =

∑
e∈δ(C2,C′2)∩δ(C1,C′1)

coreq(e)−
∑

e∈δ(A,A′)∩δ(C1,C′1)

coreq(e)

≤
∑

e∈δ(C1,C′1)

coreq(e) (4.9)

= coreq(C1, C
′
1) =

1

2

As [A,A′] 6= [C1, C
′
1] + [C2, C

′
2], we must have δ(C2, C

′
2) ∩ δ(C1, C

′
1) 6= ∅, which implies

that the inequality (4.8) is strict. Similarly, as [C2, C
′
2] 6= [A,A′] + [C1, C

′
1], we must

have δ(A,A′) ∩ δ(C1, C
′
1) 6= ∅ implying that the inequality (4.9) is strict as well. Thus the

corequirements of (A,A′) and (C2, C
′
2) differ by strictly less than 1

2
, which implies that they

are equal. But this contradicts that |δ(A,A′)| and |δ(C2, C
′
2)| have different parity.

Finally, we are ready to prove our counting argument. The following proves Lemma

4.2.11. Recall that we have a subtree T of our pair-laminar forest, and we want to re-

distribute endpoints in T in such a way that the root (A,A′) gets at least 3, and each

descendent gets at least 2. Furthermore, if coreq(A,A′) 6 1
2

then (A,A′) gets at least 4,

and if (A,A′) is a degree constraint, then (A,A′) gets at least 5.

Proof. Note that any set (A,A′) of fractional value x(A,A′) must be a degree constraint.

For any degree constraint ({v}, V − {v}) ∈ D, this set pair is a leaf and owns 5 endpoints

as |δ(v)| ≥ 5. Consider (A,A′) ∈ C that is a leaf. As x(A,A′) = f(A,A′) ≥ 1 and every

edge has value < 1
2
, |δ(A,A′)| ≥ 3 so (A,A′) owns at least 3 endpoints. If |δ(A,A′)| = 3
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then coreq(A,A′) = 1
2

and only 3 endpoints are required, and otherwise (A,A′) collects

at least 4 endpoints.

We say that a set pair has a surplus of p if p + 2 endpoints have been assigned to it

inductively. Consider a non-leaf (A,A′) ∈ C. Apply this endpoint redistribution procedure

to each subtree of (A,A′) inductively.

If (A,A′) has two or more children, one of which is a degree constraint, then it can

collect 3 surplus endpoints from the degree constraint, and 1 surplus endpoint from any

other child.

If (A,A′) has one child (C,C ′) that is a degree constraint, then δ(A,A′) 6= δ(C,C ′) by

linear independence. Thus there is some edge in δ(A,A′)− δ(C,C ′) or δ(C,C ′)− δ(A,A′),
which will give an endpoint to (A,A′) by Lemma 4.2.9. Thus (A,A′) gets that one endpoint,

and 3 surplus endpoints from (C,C ′).

We have now dealt with all cases involving degree constraints, so all children of our root

can be assumed to be connectivity constraints. Suppose non-leaf (A,A′) ∈ C has α ≥ 1

children and owns β ≥ 0 endpoints. If α + β ≥ 4 then (A,A′) can collect 4 endpoints.

Suppose α + β ≤ 3.

Case α =1: Lemma 4.2.13 implies that β ≥ 2. If β > 2 then (A,A′) can collect 4 endpoints.

If β = 2 and the child has corequirement 6= 1
2
, then (A,A′) collects 2 surplus

from the child and owns β = 2 endpoints, thus can collect 4 endpoints. If the

child has corequirement = 1
2
, then α + β = 3, and Lemma 4.2.12 implies that

coreq(A,A′) = 1
2
, and (A,A′) can collect 3 endpoints, 1 surplus from the

child, and the 2 that it owns.

Case α =2: If both children have corequirement 6= 1
2
, (A,A′) gets 2 surplus endpoints from

each to collect 4 endpoints. Otherwise, Lemma 4.2.14 implies that β ≥ 1. If

β ≥ 2 then (A,A′) can get 1 surplus endpoint from each child and owns

at least 2 itself to collect 4 endpoints, so suppose β = 1. If one child has

corequirement 6= 1
2

then (A,A′) collects 2 surplus endpoints from that child, 1

from the other child, and owns β = 1 to collect 4 endpoints. Otherwise, each

child has corequirement of 1
2
. But then α + β = 3 and Lemma 4.2.12 implies

that coreq(A,A′) = 1
2
, and (A,A′) can collect 3 endpoints: 1 from each child

and the β = 1 it already owns.
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Case α =3: If any child has corequirement 6= 1
2
, (A,A′) collects 2 surplus endpoints from

that child and 1 from every other to get at 4 endpoints. Otherwise Lemma

4.2.12 implies that coreq(A,A′) = 1
2

and (A,A′) can collect 3 endpoints,

taking 1 surplus endpoint from each child.

4.2.6 Experimental Results

We had hoped that this (2, 2B+3)-approximation for degree bounded element connectivity

would also work with degree bounds on nonterminals. However, some new insight would

be required to be able to show that this current algorithm would work with bounds on

nonterminals. The roadblock is that the degree bound constraints for nonterminals cannot

easily be added into our pair-laminar basis B family of tight constraints. We are able to

add any terminal vertex v as a leaf node ({v}, V −{v}) to B because for any ELC set pair

(A,A′) ∈ B, we have that all terminals are contained in A ∪ A′. This ensures that the set

pair ({v}, V − {v}) does not pair-cross with any other set pair in B. As we do not have

the same property for nonterminals, these constraints would have to be dealt with in some

other way.

We coded Algorithm 3, allowing degree bounds on nonterminals, in an attempt to either

build evidence that this algorithm may work with degree bounds on nonterminals, or else

to find a basic solution from which the algorithm could not make progress; that is, every

edge has value < 1
2
, and every vertex has at least 5 edges incident to it. Such a basic

solution would be a counterexample showing that the iterative rounding method will not

work when degree bounds are placed on nonterminals.

Graphs were generated for a specified number of vertices n, and each edge was added

with probability 1
2
. We then increased the number of edges around any vertices with

degree below some minimum threshold. This was done because any vertex incident to a

low number of edges would simply remove the degree bound constraint altogether, and

we know that any counterexample must make use of degree constraints on nonterminals.

Edges were given weights distributed uniformly at random between 1 and some parameter

maxWeight, normally set to be 5. Degree bounds Bv for any vertex v were assigned to

be an integer between 1 and |δ(v)/2| − 2 uniformly at random, where the interval was
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chosen so that it was not trivial to satisfy degree bounds within a 2Bv + 3 factor. Finally,

connectivity requirements for vertices u, v were chosen to be between 0 and min{Bu, Bv}
uniformly at random.

We generated approximately 1000 feasible instances. All instances had between n = 8

and n = 15 vertices, as our program would run too slowly with a large number of vertices.

Our minimum vertex degree threshold varied between 7 and n−1 edges. No counterexample

was found, the algorithm was able to solve all instances to find a (2, 2B + 3)-approximate

solution. However, this could be the result of only testing on graphs with a small number

of vertices, as it seems that if there is a counterexample, it would have to occur on a larger

graph where degree constraints will have a greater impact. It could also be the case that

there is a counterexample on a small number of vertices, but the algorithm just did not

generate this instance. However, these experiments do give hope that this algorithm will

work with degree bounds on non-terminals, and hence we present the following conjecture.

4.2.15 Conjecture. If we allow degree constraints on all vertices, W ⊆ V , then Algorithm

3 is a (2, 2B + 3)-approximation for ELC-B.
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Chapter 5

Prize Collecting Network Design

We begin this section with a review of a 3-approximation algorithm for the Prize- Col-

lecting Steiner Forest problem by Grandoni et al. [26]. We then take a look at

the Prize-Collecting Steiner Tree problem, and attempt to develop an efficient 2-

approximation that has a certain Lagrangean multiplier preservation property. We are not

able to prove such an algorithm in full generality, but we do provide some results about

the structure of a basic feasible solution for the problem. We then take a look at a new

problem that arises naturally when we manipulate a basic feasible solution of the Prize-

Collecting Steiner Tree problem. We call the new problem the Prize-Collecting

Generalized Steiner Tree problem, and provide some insights as to the hardness of

this problem.

5.1 Prize-Collecting Steiner Forest

In the Prize-Collecting Steiner Forest problem we are given an undirected graph

G = (V,E), with edge costs c and a set of k terminal pairs T = {(s1, t1), ..., (sk, tk)} with

a penalty for each pair πi. We wish to find a minimum cost subgraph H of G in which all

terminal pairs are connected.

Here we present a 3-approximation algorithm for the PC-SF problem, due to Grandoni

et al. [26]. This algorithm uses iterative rounding, which is justified through an endpoint

counting argument. We simplify the proof by using a technique we call merging columns to
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take care of shared cuts, an idea seen by Hajiaghayi et al. in [30]. We were hoping to find

a fractional token argument for this problem, but this is difficult to achieve because of the

variables needed to denote whether or not a pair is connected. However, this motivated us

to look at the simpler Prize-Collecting Steiner Tree problem, and we take a look

at that problem in the next section.

The PC-SF problem can be formulated with the following integer program:

min
∑
e∈E

c(e)x(e) +
k∑
i=1

π(i)z(i) (IP-SF’)

s.t. x(A) + z(i) ≥ 1 ∀(si, ti) ∈ T,A ⊂ V : |A ∩ {si, ti}| = 1

x(e), z(i) ∈ {0, 1} ∀e ∈ E, i ∈ {1, ..., k}

We may relax this to a linear program (LP-SF’) by relaxing the last constraint to

x(e), z(i) ≥ 0 for all e ∈ E, i ∈ {1, ..., k}. The 3-approximation is based on the following

lemma.

5.1.1 Lemma ([26]). In any basic feasible solution (x, z) to (LP − SF ′), for at least one

edge e, x(e) ≥ 1
3
, or for at least one i = 1, ..., k, z(i) ≥ 1

3
.

We can now present the 3-approximation for PC-SF, Algorithm 4.

Algorithm 4 Iterative Rounding 3-Approximation for PC-SF

1: F ← ∅
2: while (There are non-trivial terminal pairs) do

3: Solve (LP-SF’), let (x, z) be an optimal basic solution

4: Pay penalties for pairs i ∈ 1, ..., k where z(i) ≥ 1
3

and remove this terminal pair

from future consideration

5: For any edge e where x(e) ≥ 1
3
, add e to F and contract the edge in G

6: end while

Using the same inductive proof as seen in Jain’s approximation algorithm for SNDP

(see Section 1.4), we get a 3-approximation for PC-SF, provided that Lemma 5.1.1 holds.

We now work towards showing Lemma 5.1.1.
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Let (x, z) be a basic feasible solution. We may assume x(e) < 1
3
, z(i) < 1

3
for all

e ∈ E, i = 1, ..., k, as otherwise the lemma follows. If x(e) = 0 for some edge, we can

remove this edge, and (x, z) is still a basic feasible solution for the resulting problem. We

thus have 0 < x(e) < 1
3

for every edge e, and 0 ≤ z(i) < 1
3

for every i = 1, ..., k. We

may also assume that the graph is connected, as otherwise we could split the problem into

subproblems for each connected component, and sove each separately.

Note that in this setting, our constraints are defined based on a set A ⊂ V and a

terminal pair (si, ti). We let [A, i] be the 0, 1 vector over both edges and i defining terminal

pairs, such that [A, i] that represents the left hand side of this constraint. That is [A, i](e) =

1 if e ∈ δ(A) and 0 for any other edge, [A, i](j) = 0 if j 6= i and [A, i](i) = 1 if this is a

non-pure constraint, 0 otherwise. As (x, z) is a basic feasible solution, there exists a basis

of tight constraints that define (x, z). We say that a family of constraints is laminar if the

corresponding sets defining these constraints form a laminar family.

5.1.2 Lemma ([26]). There is a laminar basis B of tight constraints defining (x, z), with

|B| = |E|+ k′, where k′ is the number of terminal pairs with nonzero z value.

Proof. Let T be the set of tight constraints, and consider a maximal laminar subset L of

T . Suppose Span(L) ( Span(T ). We define the number of crossings of a set B to be

cross(B) = |{A ∈ L : A crosses B}|.

Choose a vector [B, j] ∈ T − Span(L) minimizing cross(B). By maximality of L,

cross(B) ≥ 1. Let A ∈ L one such set that crosses B. Notice that by Lemma 2.3.3, each

of A− B, B − A, A ∩ B, A ∪ B have strictly smaller crossing number than B, and hence

are all in Span(L). If we can write B as a linear combination of these four sets, we then

have that B ∈ Span(L), a contradiction.

Note that the following two equations hold:

x(A) + x(B) = x(A ∩B) + x(A ∪B) + 2x(A−B,B − A)

x(A) + x(B) = x(A−B) + x(B − A) + 2x(A ∩B,A ∪B)

We distinguish a few subcases:
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Case 1: A−B separates a ∈ {i, j}, B − A separates b ∈ {i, j}, a 6= b. Then

2− z(i)− z(j) ≤ x(A−B) + x(B − A)

= x(A) + x(B)− 2x(A ∩B,A ∪B)

≤ x(A) + x(B)

= 2− z(i)− z(j)

Thus [A-B,a] and [B-A,b] are tight. Moreover, x(A∩B,A ∪B) = 0 implying that

δ(A ∩B,A ∪B) = ∅, thus

[B, j] = [A−B, a] + [B − A, b]− [A, i].

Case 2: A ∪B separates a ∈ {i, j} and A ∩B separates b ∈ {i, j}, b 6= a. Then

2− z(i)− z(j) ≤ x(A ∪B) + x(B ∩ A)

= x(A) + x(B)− 2x(A−B,B − A)

≤ x(A) + x(B)

= 2− z(i)− z(j)

By the same argument as in case 1,

[B, j] = [A ∪B, a] + [B ∩ A, b]− [A, i].

Case 3: We may assume without loss of generality that si ∈ A−B, ti ∈ B−A, sj ∈ A∩B,

and tj ∈ A ∪B.

Note that A and B separate both i and j. Thus x(A) + z(j) ≥ 1 = x(A) + z(i)

and x(B) + z(i) ≥ x(B) + z(j), implying zi = zj. Call the common value z for

simplicity. Then,

4− 4z ≤ x(A−B) + x(B − A) + x(A ∪B) + x(B ∩ A)

= 2x(A) + 2x(B)− 2(x(A−B,B − A) + x(A ∩B,A ∪B))

≤ 2x(A) + 2x(B)

= 4− 4z
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This implies that [A− B, i], [B − A, i], [A ∪ B, j] and [A ∩ B, j] are all tight, and

there are no edges in δ(A−B,B − A) or δ(A ∩B,A ∪B). Thus

2[A, i] + 2[B, j] = [A ∪B, j] + [A ∩B, j] + [A−B, i] + [B − A, i],

as desired.

Thus we have that Span(T ) = Span(L), and we know Span(T ) has dimension |E|+k′.
Let B be a maximal linearly independent subset of L. Then B is the basis we desire, and

|B| = |E|+ k′.

Let B be a laminar basis of tight constraints defining (x, z). We say that a set A ∈ B if

there is a constraint [A, a] ∈ B for some a. Note that some sets may appear in B more than

once, of course with different terminal pairs. We call such a set a shared cut. Note that if

A is a shared cut with terminal pairs a and b, then z(a) = z(b). This basis will be much

simpler to deal with if we can find a way to shared cuts. We now define a procedure to deal

with these shared cuts. This procedure is used in Hajiaghayi et al.’s iterative rounding

algorithm for this problem [30], but they do not justify the lemma that follows in their

paper.

Let S ∈ B be a shared cut with a 6= b and [S, a], [S, b] ∈ B. Consider the following

procedure, which we call a column merge on colums. Suppose we replace every instance of

variables z(a) and z(b) in our problem with a new variable z(ab), and set z(ab) = z(a) =

z(b). We call this a column merge on variables a and b of our problem, because we are

adding together these columns in our constraint matrix to form a new column.

5.1.3 Lemma. Consider a shared cut S with [S, a], [S, b] ∈ B, b 6= a. Apply a column

merge to variables a and b. Remove one of the duplicate [S, ab] constraints from B so that

this constraint now only appears once. Then this new x, z is a basic solution in the new

problem with basis B.

Proof. Suppose we have [S, a], [S, b] both in B. We want to show that after performing

the column merge, our new constraints are still linearly independent. Let B = {χ0 =

[S, a], χ1 = [S, b], χ2, ...χs} be our original basis for x, z. We remove χ0 from our system,

and add columns a and b together, call the new variable ab, to get our new system B′ =
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{χ′1 = [S, ab], χ2, ...χs}. Suppose this new system is linearly dependent, that is, there exist

αi, i = 1, ..., s not all zero such that

s∑
i=1

αiχ
′
i = 0

Note that this implies
∑s

i=1 αiχi(y) = 0 for every variable y 6= ab.

For variable ab, we have

0 =
s∑
i=1

αiχ
′
i(ab)

=
s∑
i=1

αiχi(a) +
s∑
i=1

αiχi(b)

We cannot have
∑s

i=1 αiχi(a) = 0 =
∑s

i=1 αiχi(b) as otherwise
∑s

i=1 αiχi = 0, contradict-

ing that B is a basis.

Thus
∑s

i=1 αiχi(a) = −
∑s

i=1 αiχi(b) 6= 0. Hence we can scale our αi such that

s∑
i=1

αiχi(a) = 1

s∑
i=1

αiχi(b) = −1

s∑
i=1

αiχi(y) = 0 for all y /∈ {a, b}

But this implies that χ0 − χ1 = [S, a]− [S, b] is in Span{χ1, χ2, ..., χs}, violating linear

independence of B.

5.1.4 Corollary. Through iterated application of Lemma 5.1.3, we may assume there are

no shared cuts in B.

This reduction gives that each set in B is tight with only one pair. Thus a tight

set uniquely determines a tight pair, and we can now use the terms tight set and tight

constraint interchangeably. Let FB be the induced forest on B (see Lemma 2.3.4). We will

need to use the fact that every node in our laminar family induced a connected subgraph,

and we show this with the following lemma.
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5.1.5 Lemma ([26]). Let A ∈ B. Then A induces a connected component.

Proof. Suppose not. Let C1 and C2 be two non-empty sets that partition A and have no

edges between them. Note that x(A) = x(C1) + x(C2). Suppose A is tight for terminal

si ∈ A, ti /∈ A. Suppose without loss of generality that si ∈ C1. Then x(A) + z(a) =

x(C1) + x(C2) + z(a) = 1 and x(C1) + z(a) ≥ 1, thus x(C2) = 0.

Hence C2 has no edges coming out of it, implying that our graph is not connected, a

contradiction.

We now use an endpoint argument to contradict that 0 < x(e) < 1
3

for every edge e ∈ E
and z(i) < 1

3
for every terminal pair i.

We assign each endpoint u of edge e = uv, to the lowest set in our laminar forest

that contains u. These endpoints are then redistributed according to the following rule:

starting from the leaves, each set A keeps 2 endpoints and sends any other endpoints up

to its parent, of which there are at least one. This will then show that every set gets two

endpoints, and some are remaining, implying that —B— ¡ —E—, contradicting Lemma

5.1.2.

Let us show by induction that each set A sends deg(A)− 2 > 0 endpoints to its parent.

A leaf set A receives deg(A) endpoints. Note that deg(A) ≥ 3, since otherwise there would

be a variable of value at least 1
3
. Hence A keeps 2 endpoints, and sends deg(A)− 2 > 0 to

its parent.

Consider an internal node A. Let A1, ..., Ah be its children, and A′ = A − (
⋃k
i=1Ai)

be all remaining vertices in A. We let out(Ai) be the number of edges crossing Ai and A.

Similarly, we let out(v) be the number of edges crossing A that are incident to v ∈ A′.

Let m′ be the number of edges with both endpoints in A, but not both endpoints in some

single child Ai. Then

h∑
i=1

deg(Ai) +
∑
v∈A′

deg(v) =
h∑
i=1

out(Ai) +
∑
v∈A′

out(v) + 2m′.

Note that deg(A) =
∑h

i=1 out(Ai) +
∑

v∈A′ out(v). Hence we get that A receives

h∑
i=1

(deg(Ai)− 2) +
∑
v∈A′

deg(v) = deg(A) + 2m′ − 2h
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endpoints. Recall that A requires deg(A) tokens, so that it can keep 2 and pass on deg(A)−
2. As A induces a connected component, m′ ≥ |A′| + h − 1 ≥ h − 1. If m′ ≥ h then we

have enough endpoints and we are done.

Suppose m′ = h − 1. Thus A′ = ∅, and the Ai’s partition A. Moreover, Ai’s induce a

tree T ′ with one edge between each pair of adjacent children. Note that we cannot have

h = 1 as otherwise A1 = A, so we know h ≥ 2. Thus T ′ contains at least two leaves, say

A1 and A2. Say A is tight with pair (sa, ta) with sa ∈ A, ta /∈ A. Then at least one of A1

or A2 does not contain sa, say sa /∈ A1. Say A1 is tight with (s1, t1) and s1 ∈ A1, t1 /∈ A1.

We have x(A) + z(a) = 1 = x(A1) + z(a1). Let e be the unique edge between A1 and

A− A1. Note that x(A) = (x(A1)− x(e)) + (x(A− A1)− x(e)). Furthermore, as A− A1

separates (sa, ta), x(A− A1) + z(a) ≥ 1.

Putting this together, we get

2x(e) + z(b) = [x(A1) + x(A− A1)− x(A)] + [1− x(A1)]

= x(A− A1) + [1− x(A)]

= x(A− A1) + z(a)

≥ 1

This implies that either x(e) ≥ 1
3

or z(b) ≥ 1
3
, a contradiction.

5.2 Prize-Collecting Steiner Tree

In this section we consider the Prize-Collecting Steiner Tree (PC-ST) problem,

which is a special case of the Prize-Collecting Steiner Forest problem in which

terminal pair shares some common vertex. We attempt to prove an iterative rounding

approximation algorithm using our generalized fractional token argument. We are not able

to prove such an algorithm, but we do provide some interesting structural results about

basic feasible solutions to the standard LP for this problem.

In the Steiner Tree problem, we have a special vertex r called the root, and we have

a set of terminals R that we wish to connect to the root. We are allowed to leave some

terminal vertices v ∈ R disconnected from the root, but for every such vertex we pay a

price π(v).
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PC-ST can be naturally formulated with the following integer linear program (IP-ST):

min
∑
e∈E

c(e)x(e) +
∑
v∈R

π(v)z(v) (IP-ST)

s.t. x(A) + z(v) ≥ 1 ∀A ⊂ V − {r}, v ∈ R : v ∈ A
x(e), z(v) ∈ {0, 1} ∀e ∈ E, v ∈ R

The interpretation is that x(e) = 1 ⇐⇒ e ∈ T , and z(v) = 0 ⇐⇒ v is connected to r

in T . Let (LP-ST) be the linear relaxation of (IP-ST), where we replace the last constraint

of (IP-ST) with

0 ≤ x(e), z(v) ≤ 1,∀e ∈ E, v ∈ R.

Note that, as long as the optimal fractional solution contains a variable x(e) ∈ {0, 1}
or z(v) = 1, we can reduce the problem and iterate. In particular, setting x(e) to 0 is

equivalent to removing edge e, setting x(e) to 1 is equivalent to contracting edge e, and

setting z(v) to 1 is equivalent to removing v from the set of terminals R. Unfortunately,

the problem resulting from setting some z(v) to 0 is no longer a standard PC-ST problem.

To maintain a PC-ST problem, we will not remove variable z(v) when z(v) = 0, but we

will have to find some other variable that we can round in order to make progress. Our

algorithm hinges on the following key conjecture, which we have not yet been able to prove

in the general case.

5.2.1 Conjecture. Any optimal basic solution to (LP-ST) contains either an edge e where

x(e) = 0, an edge e where x(e) ≥ 1
2
, or a terminal v where z(v) = 1.

With such a property, we would be able to design a Lagrangean multiplier preserving

approximation algorithm for this problem. We say an approximation algorithm for a prize

collecting problem is Lagrangian multiplier preserving if the output solution (x, z) satisfies

cTx+ α · π(z) ≤ α · (cTx∗ + π(z∗)) for any optimal solution (x∗, z∗).

Such an algorithm would allow us to construct an algorithm for the k-Steiner Tree

problem, which is the problem where one wants to connect at least k terminals to the root

(and no penalties are paid for other non-connected terminals) using the methods in Chudak

et al. [11]. These authors show how Goemans and Williamson’s 2-approximate Lagrangean

multiplier preserving algorithm for PC-ST[25] can be translated into a 5-approximation
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algorithm for the k-Steiner Tree problem, which is the problem where one wants to

connect at least k terminals to the root (and no penalties are paid for other non-connected

terminals). The same could be done with this iterative rounding algorithm if we can prove

that it is indeed a 2-Lagrangean multiplier preserving approximation algorithm.

Assuming Conjecture 5.2.1, consider the following natural iterative rounding algorithm.

Compute an optimal basic solution (x, z) to (LP-ST). If there is an edge e with x(e) = 0,

remove the edge and iterate on the reduced problem. If there is a terminal v with z(v) = 1,

we pay that penalty, and remove v from the set of terminals, and then iterate on the reduced

problem. Otherwise, take an edge e with x(e) ≥ 1
2
, round it up to 1, reduce the problem and

iterate. As we round up edge costs on edges that are at most 1
2
, and we only pay penalties

when they are paid by the optimal fractional solution, we get the following theorem by

standard inductive arguments.

5.2.2 Theorem. Given Conjecture 5.2.1 algorithm above is a Lagrangean multiplier pre-

serving 2-approximation for PC-ST.

5.2.1 Preliminaries

For sets of vertices A,B ⊆ V , we define A×B = {e ∈ E : e ∈ δ(A) ∩ δ(B)}. We say a set

A ⊆ V − {r} separates a (from the root r) if a ∈ A.

Consider an optimal fractional basic solution (x, z) to (LP-ST). We formulate a new LP

in which we do not have any variables z(v) where z(v) = 0. Define R0 = {v ∈ R : z(v) = 0}
and R+ = R−R0. Call our new LP (LP-ST’), and define it as follows:

min
∑
e∈E

c(e)x(e) +
∑
v∈R+

π(v)z(v) (LP-ST’)

s.t. x(A) + z(v) ≥ 1 ∀A ⊂ V − {r}, v ∈ R+ : v ∈ A (5.1)

x(A) ≥ 1 ∀A ⊂ V − {r}, v ∈ R0 : v ∈ A (5.2)

0 ≤ x(e), z(v) ≤ 1 ∀e ∈ E, v ∈ R+

Note that (x, z) is still an optimal basic solution to (LP-ST’). Further, we only have

variables z(v) if z(v) > 0. We now have two different types of constraints. We call
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a constraint of type (5.2) a pure constraint, and a constraint of type (5.1) a non-pure

constraint. We denote the characteristic vector of the constraint for set A ⊆ V − {r} and

terminal v ∈ A by [A, a], and this can represent either a pure or a non-pure constraint.

As (x, z) is a basic solution, there is a basis of linear independent tight constraints B that

defines (x, z).

If [A, a] ∈ B, for convenience we say A ∈ B. For a given set A ∈ B, there may be

multiple constraints of type [A, a] in B. We call the number of occurrences of A in B the

multiplicity of A, and denote this by m(A), and if m(A) ≥ 2 we say A is a shared cut.

Note that m(A) = 1 if [A, a] ∈ B for some a ∈ R0, as shown by the following lemma.

5.2.3 Lemma. If [A, a] ∈ B for some a ∈ R0, then [A, b] 6∈ B for any b ∈ R− {a}.

Proof. Suppose [A, b] ∈ B. If b ∈ R0, then [A, a] = [A, b], contradicting that B is linearly

independent. If b ∈ R+, then x(A) + z(a) = 1 = x(A) contradicts that z(b) > 0.

5.2.2 Laminar Basis

Let T be the set of all tight constraints for (x, z) in (LP-ST’). For a family of tight

constraints F ⊆ T , we define Span(F) to be the vector space spanned by vectors [A, a] ∈
F . We say a family of constraints F is laminar if the family of sets A ∈ F is laminar. We

will now show that there exists a laminar basis for (x, z) in (LP-ST’).

5.2.4 Theorem. There is a laminar basis for (x, z) in (LP-ST’).

Proof. Consider any maximal laminar subset L of tight constraints. Assume, for purpose

of contradiction, that Span(L) ( Span(T ). Define the number of crossings of a set A ∈ T
to be cross(B) = |{A ∈ L : A crosses B}|. Choose a vector [B, b] ∈ T − Span(L)

minimizing cross(B). By maximality of L, we have cross(B) ≥ 1, otherwise we could

add [B, b] to L. Let [A, a] ∈ L be a constraint such that A crosses B and A. Note that

we could have a ∈ R0 or b ∈ R0. If this is the case, say with a, we will want to refer to

variable z(a) for convenience; just set z(a) = 0. We will show that [B, b] can be expressed

as a linear combination of tight vectors, all having a strictly smaller crossing number than

B. By assumption, all sets with smaller crossing number are in Span(L), implying that
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[B, b] is also in Span(L), a contradiction. We now show how to uncross A and B. Note

that following two equations hold by a simple counting argument:

x(A) + x(B) = x(A ∩B) + x(A ∪B) + 2x((A−B)× (B − A))

x(A) + x(B) = x(A−B) + x(B − A) + 2x((A ∩B)× (A ∪B))

We distinguish a few subcases based on the locations of a and b, up to symmetry:

Case 1: A ∩B ∩ {a, b} = ∅.

Then A − B separates a and B − A separates b. Thus x(A − B) ≥ 1 − z(a) and

x(B − A) ≥ 1− z(b), by feasibility of (x, z).

(1− z(a)) + (1− z(b)) ≤ x(A−B) + x(B − A)

= x(A) + x(B)− 2x((A ∩B)× (A ∪B))

≤ x(A) + x(B)

= (1− z(a)) + (1− z(b))

Thus we actually have equality on all lines above, so we have that [A−B, a] and

[B − A, b] are tight. Further, we have x((A ∩ B) × (A ∪B)) = 0 meaning that

there are no edges in (A∩B)× (A ∪B). Note that any set in L that crosses A−B
also crosses B by Lemma 2.3.3, but A − B does not cross A, so cross(A − B) <

cross(B). Similarly, B −A has strictly smaller crossing number than B, giving us

the desired contradiction:

[B, b] = [A−B, a] + [B − A, b]− [A, a].

Case 2: A ∩ B ∩ {a, b} 6= ∅. Say, without loss of generalization, a ∈ A ∩ B. Then A ∩ B
separates a and A∪B separates b. Thus x(A∩B) ≥ 1−z(a) and x(B∪A) ≥ 1−z(b).

(1− z(a)) + (1− z(b)) ≤ x(A ∩B) + x(B ∪ A)

= x(A) + x(B)− 2x((A−B)× (B − A))

≤ x(A) + x(B)

= (1− z(a)) + (1− z(b))

Thus we actually have equality on all lines above, so we have that [A ∩ B, a] and

[B∪A, b] are tight. Further, we have x((A−B)×(B−A)) = 0 meaning that there
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are no edges in (A−B)× (B−A). As both A∩B and A∪B have strictly smaller

crossing number than B, by Lemma 2.3.3, we get the desired contradiction:

[B, b] = [A ∩B, a] + [B ∪ A, b]− [A, a].

Thus we have Span(L) = Span(T ). Taking a maximal linearly independent set from L
gives us the basis we desire.

5.2.3 Maximality

We have thus shown that there is a laminar basis L for (x, z) in (LP-ST’). Let FL be the

unique forest induced by distinct sets in L by Lemma 2.3.4.

First notice that as we descend a tree in our forest, the z-values are non-decreasing.

Formally, suppose [A, a], [B, b] ∈ L and B ⊆ A. Then A separates b, so by feasibility

x(A) + z(b) ≥ 1. Since x(A) + z(a) = 1, we get z(b) ≥ z(a). This implies that all pure

cuts are going to occur at the top of our forest FL.

We now wish to get further control over the structure of our basis, namely, we would

like sets with high multiplicity to appear as high as possible in our forest.

5.2.5 Definition. The level of a set A ∈ L in FL is the number of edges on the unique

path from the root to A in FL.

5.2.6 Definition. The multiplicity vector of a laminar basis L is the vector (k0, ..., kp)

where ki is the sum of the multiplicities of all tight sets in L at level i in our forest FL.

We say that a laminar basis L is maximal if it maximizes the multiplicity vector in the

lexicographical sense.

We will begin with a maximal laminar basis, and will use it to get a basis that is

continuous in the sense that terminals will appear in paths in the forest induced by the

laminar family.

5.2.4 Continuity

Note that for any terminal a, all tight constraints of the type [A, a] ∈ L for some set A

form a chain in our laminar family. Otherwise there would be two disjoint sets containing
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a. However, in our forest FL, this chain may not necessarily be continuous with respect to

the terminal a, as there could be constraints tight with other terminals in between those

constraints in our chain. Formally, we define a discontinuity for terminal a ∈ R+ to be a

triple [C, a] ∈ L, [A, a] ∈ L, and B ∈ L, where C ( B ( A and [B, a] /∈ L. We say a

laminar basis is continuous if it induces no discontinuity. We say that a constraint [A, a]

is valid if a ∈ A.

We would like to show that we can construct a laminar basis that is continuous. We will

process a maximal laminar basis to construct a continuous one. Throughout the following

proof, we will be looking at constraints [A, a], [B, b] ∈ L and modifying them to get the

structure we desire. A terminal swap to a on [B, b] means that we remove [B, b] from

L and replace it with [B, a] to get a new laminar basis L′. In order to perform such a

terminal swap, we will need to show that the new constraint [B, a] is tight, and the span

of all constraints has not reduced. This latter requirement is equivalent to showing that

[B, b] is in the span of L′. Note that any such swap is reversible, we could replace [B, a]

with [B, b] to get our original laminar basis L. Note that a terminal swap does not affect

the multiplicity vector for the laminar basis.

Another type of swap that we will consider is a set swap. In this case, a set swap to

B on [A, a] would remove [A, a] from L and replace it with [B, a]. For our purposes, we

will only consider set swaps when both A,B ∈ L. As before, for this to maintain a tight

basis, we need to show that [B, a] is tight and that [A, a] is in the span of the new family

of constraints. If A ⊂ B, we say that this is an increasing set swap and if B ⊂ A, and A

is a shared cut in L, we say it is a decreasing set swap. This terminology is consistent in

the sense that an increasing set swap increases our multiplicity vector and a decreasing set

swap decreases our multiplicity vector. Note that we do require for A to be a shared cut

in L for a decreasing set swap to necessarily decrease the multiplicity vector. Importantly,

note that any decreasing set swap is reversible, and the reverse swap in an increasing set

swap. That is, we can always reverse a decreasing set swap to return to a laminar basis

with a higher multiplicity vector.

In the following procedure, we begin with a maximal laminar basis L, and perform

terminal swaps and decreasing set swaps to convert this into a continuous basis. If at any

step we are able to perform an increasing set swap to B on some constraint [A, a], where

A ⊂ B, then we get a contradiction: we can reverse all terminal swaps and decreasing set

swaps, and since B ∈ L, we now have a laminar basis with higher multiplicity vector than
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L. Note that indeed B ∈ L, as set swaps do not introduce any new sets into L. Thus at

every stage in this algorithm, we are not able to perform an increasing set swap, and this

fact will be used in our proof. We start with a helper lemma that essentially builds our

procedure.

5.2.7 Lemma. Let L be a maximal laminar basis. Let L′ be a laminar basis obtained

from L through performing terminal swaps and decreasing set swaps. Let C be the root

of FL. C may appear with multiple terminals, let a be the one that appears lowest in FL′ ,

and suppose a ∈ R+. Furthermore, suppose there is a discontinuity for a in L′. Let [A, a]

be the highest constraint in which a appears and such that below [A, a], there is no further

discontinuity for a. Let [B, b] be a parent of L, b 6= a. Then we show two properties:

1. We may perform a terminal swap to a on [B, b], maintaining a laminar basis, and

2. B is not a shared cut in L′.

Proof. First note that C separates b and B separates a, thus z(a) = z(b) and x(A) =

x(B) = x(C). Thus constraints [A, b], [B, a], and [C, b] are all tight constraints. Note that

a ∈ B, and b ∈ C.

However, [A, b] /∈ L′, as otherwise we could perform an increasing set swap to B on

[A, a], since [A, a] = [B, a]− [B, b] + [A, b], which is a contradiction.

Similarly, [B, a] /∈ L′, as otherwise we could perform an increasing set swap to C on

[B, b], since [B, b] = [C, b]− [C, a] + [B, a].

List all the constraints in L′ as χ1 = [B, b], χ2 = [A, a], χ3, ..., χp. As L′ is a basis, we

know that there are coefficients αi, βi for i = 1, ..., p, each set being not all zero, such that

[A, b] =
∑p

i=1 αiχi and [B, a] =
∑p

i=1 βiχi.

Observe that [A, a]+[B, b] = [A, b]+[B, a] =
∑p

i=1(αi+βi)χi. Note that if (α1+β1) 6= 1

then we could write χ1 = [B, b] as a linear combination of χi for i = 2, ..., p, which violates

that the constraints in our basis are linearly independent. Thus (α1 + β1) = 1.

First suppose β1 = 0, thus α1 = 1. Then [B, b] = 1
α1

([A, b] −
∑p

i=2 αiχi) = [A, b] −∑p
i=2 αiχi. Thus

[C, b] = [C, a]− [A, a] + [A, b]

= [C, a]− [A, a] + [B, b] +

p∑
i=2

αiχi
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Thus we could perform an increasing set swap to C on [B, b], but this is a contradiction.

Hence it must be that β1 6= 0.

Thus, we get that [B, b] = 1
β1

([B, a]−
∑p

i=2 βiχi), and we may perform a terminal swap

to a on [B, b].

We have shown property 1 for our lemma. Let us perform this terminal swap to

a on [B, b]. If B is a shared cut, then there is some [B, d] ∈ L′, d 6= a. But then

[B, a] = [C, a]− [C, d] + [B, d], thus we may perform an increasing swap to C on [B, a], a

contradiction. Hence B is not a shared cut in L′.

We now provide our procedure for creating a continuous laminar basis.

5.2.8 Lemma. There is a laminar basis of tight valid constraints L for (x, z) in (LP-ST’)

that is continuous.

Proof. Start with a maximal laminar basis of tight constraints, L. We will process L
to construct a continuous laminar basis of tight constraints, L′. We will be removing

constraints from L and adding constraints to L′, and will always maintain that L ∪ L′ is

a feasible basis, and L′ is continuous. Start with L′ = ∅.

If L = ∅, then we are done. Also, we may immediately process any node [C, a] that is

a pure cut, that is, a ∈ R0, as these cuts must appear at the top of our forest, and do not

induce any discontinuity. By process, we mean remove this constraint from L and add it

to L′. We now assume all such nodes are dealt with.

Start with a root of the forest FL, call it C. C may appear in L with multiple terminals,

let a be the one that appears lowest in our forest FL. Let [A, a] be the lowest constraint

in L in which a appears, and let C represent every constraint in L defined for a set B with

A ( B ( C.

By iterative application of Lemma 5.2.7, we may perform a terminal swap to a on every

[B, b] ∈ C, and no such B is a shared cut (see Figure 5.1). We have now ensured there is

no discontinuity in a in L.

If C is a shared cut, we need to do a bit more processing. Suppose [C, d] ∈ L for some

d 6= a, and let D be the lowest set in FL such that [D, d] ∈ L. Note that [D, d] /∈ C, as

this would imply d = a. Note also that z(a) = z(d). Choose the lowest common ancestor

[B, a] ∈ C of both [A, a] and [D, d]. We perform a decreasing set swap to B on [C, d], which
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[B,a]

[A,a]

...

... ...

[C,a]

[A,a]

...

[B,b]

... ...

[C,a]

Figure 5.1: A depiction of the basic swap to remove discontinuity from a

maintains a laminar basis as [B, d] is tight, and [C, d] = [C, a]− [B, a] + [B, d] (see Figure

5.2).

i i]

[B ,a]  [B ,a ]i i i

......

...

[A,a]

...

[C,a]

[A ,a  

i[B ,a]

[A ,a  i i]

[C,a ]i

......

...

[A,a]

...

[C,a]

Figure 5.2: A depiction of the second swap made when C is a shared cut

We now remove C, [A, a], and [C, a] from L and add these to our final solution L′. Note

that a is continuous in L, and no set in L can induce discontinuity in a if added to L′. We

now iteratively perform this process on the remaining constraints L. As we always make

progress, and with every step we ensure a new terminal is continuous in our final basis,

this proves that the final laminar basis is continuous. We now have [D, a] ∈ L for every

D ∈ C1.
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5.2.5 Application of the Fractional Token Argument

We are unfortunately not able to show that our algorithm makes progress in the general

case. However, if our basic feasible solution x has a laminar basis with no shared cuts,

then we can prove that we can find either an edge e with x(e) ≥ 1
2

or a vertex v ∈ R+ with

z(v) ≥ 1. We can show this by means of our fractional token argument.

To apply the generalized fractional token argument, we define a matrix A with rows

indexed by constraints from our maximal continuous laminar basis, L. Columns are indexed

by edges e ∈ E and terminals v ∈ R with z(v) > 0. The entry in row [A, a] ∈ L is given by

[A, a]−
∑

[B,b] child of [A,a][B, b]. Note that A is non-singular as L is a basis for (x, z). Define

b[A,a] = 1 − |{children of [A, a]}|. Note that [x, z] is the unique solution to Ay = b. As B
is a basis, our matrix is non-singular and hence has some column whose entries does not

sum to zero, and each row has some nonzero term. If we can show properties [M21]-[M23]

hold for edge columns and [M11]-[M13] hold for z columns, then Lemma 3.0.9 applies, and

we get that x(e) ≥ 1
2

for some edge e ∈ E or z(v) = 1 for some terminal v ∈ R.

First we justify that [M21]-[M24] hold for the edge columns in our system. Consider a

node [A, a] and edge e = uv. Note that at most two of [A, a]’s children can have the same

edge in their cut, as otherwise the children would not be disjoint, violating laminarity of

L. For an edge e = uv, the lowest node containing u and the lowest node containing v

are the only nodes that can have a positive entry, and these are the only nodes possible to

have e in their cut, and yet not have any children with e in their cut.

If [A, a] has entry −1 for edge e, then there is a unique child, say [B, b] with one

endpoint, say u in B. We must have v ∈ A, as otherwise e would be in δ(A). Further, v

cannot be in a separate child, as then e would be in that child’s cut, resulting in an entry

of −2 for [A, a]. The lowest node containing u will not contain v as it is a descendent of

[B, b], and hence gets entry of 1 for column e. As A is the lowest node containing v, but e

is not in δ(A), there is no other positive entry for this column.

Finally, if [A, a] has entry −2 for edge e, then there are two children of A, one containing

u, the other containing v. The lowest node containing u will thus have e in its cut, and

hence an entry of 1, similarly the lowest node containing v will have an entry of 1 as well.

Note that by the fact that L is a feasible basis, we have that for any non-pure constraint

[A, a] ∈ L, a ∈ A. Combined with the fact that L is laminar and continuous, we see that any

v ∈ R with z(v) > 0 induces a chain in our laminar forest FL of constraints that are tight
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using v. Consider the column of our matrix corresponding to v. The row corresponding to

the parent of the top node of this induced chain will have entry −1, the row for the lowest

node in the chain will have entry 1, and any other row will have entry 0. This establishes

properties [M11]-[M13], and thus justifies the use of Lemma 3.0.9, proving that we have

either an edge e with value x(e) ≥ 1
2
, or a terminal v with z(v) = 1.

We show in the next section one possible method of resolving the problem of shared

cuts, and how it naturally induces a new network design problem.

5.3 Prize-Collecting Generalized Steiner Tree

One method that we looked at for resolving shared cuts was to perform a column merge

on the associated terminals. Suppose we have [S, a], [S, b] ∈ B, with a, b ∈ R+, a 6= b, and

consider the new problem after performing a column merge on variables a and b, for which

x, z is still a basic feasible solution (see Lemma 5.1.3). This new system defines a new

problem, which we call the Prize-Collecting Generalized Steiner Tree problem

(PC-GST) (not to be confused with the Prize-Collecting Steiner Forest problem).

It is defined by a graph G = (V,E), a cost function c : E → Q+, groups of vertices

R1, R2, ..., Rk with a common root r in each, and a penalty function π : 1, ..., k → Q+.

The goal is to find a minimum cost subgraph H of G, where the cost of H is defined to be

c(H) =
∑

einE(H) c(e) +
∑k

i=1 π(i)z(i), where z(i) = 0 ⇐⇒ the vertices in Ri are in the

same component in H.

We first present an LP for this problem in which integer solutions to the LP correspond

to feasible solutions for the problem.

min
∑
e∈E

c(e)x(e) +
∑
v∈R+

π(v)z(v) (LP-PCGST)

s.t. x(A) + z(i) ≥ 1 ∀A ⊆ V − {r} : A ∩ (Ri − {r}) 6= ∅ (5.3)

0 ≤ x(e), z(i) ≤ 1 ∀e ∈ E, i ∈ {1, ..., k}

By Lemma 5.1.3, the merging of columns a and b results in a PC-GST problem in

which x, z is still a basic solution. In this new problem, we have a variable ab ∈ R+ where
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z(ab) = 0 ⇐⇒ both a and b are connected to the root r, so it is easy to see that we are

now in a PC-GST problem.

5.3.1 Counterexample for an Iterative Rounding Approximation

Algorithm

We had hoped that the PC-GST problem could be approached via iterative rounding,

which would allow us to then solve our original PC-ST problem. In order to achieve the

2 Lagrange multiplier preserving approximation algorithm that we were hoping for in the

PCST, we need to be able to show that in any basic solution to PCRSF, there is either a

zero edge variable, an edge with value at least 1
2
, or a z variable with value 1. However,

the following example that shows that there are basic feasible solutions for the PCSRF

problem in which every edge variable has value 1
k
, and a maximal z value of k−2

k
.

We have some k ≥ 3, R1 = {r, 1, 2, ..., k}, π(1) = 1, R2 = {r, v}, π(2) = m for some

large m, c(e) = 1 for every edge e ∈ E.

...

r

v

3 k21

Figure 5.3: Example with a bad basic solution

Note that the optimal solution is x(e) = 1
k

for every edge e and z(1) = k−2
k

, z(2) = 0.

It has optimal value 2 + k−2
k

< 3. If we set k = 3, we see that z(1) = 1
3

= x(e) for every

edge e, meaning that an iterative rounding approach to this problem will not be able to

do any better than a 3-approximation.
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Note that to show that x, z is a basic solution, we require 2k+2 tight, linearly indepen-

dent constraints that hold for the solution. In this case, one such basis for x, z are given

by the constraint z(2) = 0 in addition to the constraints of type 5.3 for the following set

group pairs:

1. ({i}, 1) for each i ∈ {1, ..., k}

2. ({v}, 2)

3. ({v, i}, 2) for each i ∈ {1, ..., k}

There is, however, a nice way to deal with this extreme point. Note that if we multiply

our basic feasible solution by k, we now get that every edge value is integer. We then put

k · x(e) as the capacity on each edge, and then double each edge to get an Eulerian graph.

Let λ(r, x) denote the connectivity between r and x.

We would like a result similar to this following theorem by Bang-Jensen et. al. [4], but

with an additional property we will explain later. In this result, a pre-flow digraph is one

in which every vertex other than a special root has more incoming edges than outgoing

edges, and thus we may think of our Eulerian graph as a pre-flow digraph.

5.3.1 Theorem ([4]). In a pre-flow digraph D = (U,A) with root z, for any integer k ≥ 1

there is a family F of k disjoint arborescences of root z so that every node x belongs to

min(k, λ(z, x)) members of F .

In our case we use z = r and apply for k trees. For our basic feasible solution, we can

pick trees as follows:

1. Define Ti to be the tree ri+ iv for each i ∈ {1, ..., k − 2}.

2. Define Tk−1 to be
⋃k
i=1 ri

3. Define Tk to be rk + ki+
⋃k−1
i=1 iv

Note that we additionally have the property that all of R1 is contained within the 2

trees Tk−1, Tk, and R2 = {v} is contained within all k trees. That is, R1 is contained within

a 1 − z(1) = 2
k

fraction of all trees, and R2 is contained within a 1 − z(2) = 1 fraction of

trees (i.e. all trees).
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In general, this special property that we desire is that Ri is contained within at least

1− z(i) fraction of all trees.

We let c(Ti)+π(Ti) represent the cost for feasible solution Ti in the PC-GST problem.

Choose i∗ to be a tree of minimum cost. Note that by construction,

c(Ti∗) + π(Ti∗) ≤
1

k
(
k∑
i=1

c(Ti) +
k∑
i=1

π(Ti))

=
1

k
·

k∑
i=1

c(Ti) +
1

k
·

k∑
i=1

π(Ti)

≤ 2cTx+ π(z)

Thus if we can always obtain such a Ti∗ we can get a 2-approximation algorithm for

PC-GST that is Lagrangean multiplier preserving. In order to get such an algorithm, we

need the following conjecture, as explained above.

5.3.2 Conjecture. Let D = (V,A) be an Eulerian multigraph with a special vertex z,

and terminal groups of vertices R1, R2, ..., Rs with z in each group. There is a family

F of k edge-disjoint trees rooted at z so that every group Ri ⊆ V belongs to at least

r(x) = min(k, 1
2
· λ(z,Ri)) members of F , where λ(z, Ri) is the minimum connectivity

between z and any vertex v ∈ Ri.

5.3.2 Hardness of Approximation

We provide some insights that may show that it is unlikely that we will be able to find a

Lagrangean multiplier preserving approximation for PC-GST. We first need to introduce

a problem that we call the k-Generalized Steiner Tree (k-GST), in which our goal

is to find a minimum cost tree that connects at least k groups Ri.

As explained earlier, Chudak et al. [11] have shown how a constant factor Lagrangean

multiplier preserving algorithm for PC-ST can be translated into a constant factor ap-

proximation algorithm for the k-Steiner Tree problem through a Lagrangean relaxation

technique. A parallel result is not yet known for k-GST, but a similar approach could

work. Thus if we show that it is hard to create a constant factor k-GST approximation

algorithm, it is likely also hard to find a constant factor Lagrangean multiplier preserving

approximation algorithm for PC-GST.
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First, we introduce a few other problems for which we have known hardness results.

Given a graph G = (V,E) and a parameter k, the Densest k-Subgraph problem

is to find a set of k vertices with maximum number of induced edges. This problem has

been well studied [36, 15], and the best known approximation algorithm is a O(n
1
3 − ε)-

approximation algorithm for some small ε > 0. [16]. On the hardness side, it is known

that there is no polynomial time approximation scheme for this problem [36].

The Minimum k-Edge Coverage (MkEC) problem is the problem of finding the

minimum number of vertices in a graph G whose induced subgraph has at least k edges.

Hajiaghayi and Jain [29] show the following theorem.

5.3.3 Theorem ([29]). If there is a polynomial time α-approximation algorithm A for

Minimum k-Edge Cover, then there is a polynomial time 2·α2-approximation algorithm

for the Densest k-Subgraph problem.

We now show a reduction from MkEC to k-GST.

5.3.4 Theorem. If there is a polynomial time α-approximation for k-GST, then there is

a polynomial time α-approximation for MkEC.

Proof. For a graph instance G = (V,E) of MkEC, we construct an instance of the k-GST

problem as follows. Construct a star graph S with a center c and a unit-cost edge cv for

every v ∈ V (G). For each edge uv ∈ E(G), construct a group Ruv = {c, u, v} for our

k-GST instance.

Now, note that any subgraph of S that connects at least k of the groups Ruv corresponds

to a set of vertices whose induced subgraph in G has at least k edges, and vice versa. Thus

we apply our α-approximation for PC-GST to S to get an α-approximation to MkEC.

The reduction shown immediately gives us the following result.

5.3.5 Corollary. If there is a polynomial time α-approximation for k-GST, then there is

a polynomial time O(α2) approximation for the Densest k-Subgraph problem.

Corollary 5.3.5 gives us that any algorithm for k-GST of approximation factor bet-

ter than O(n
1
6
−ε) improves the best current approximation factor for the Densest k-

Subgraph problem. A further observation is that the k-GST problem is hard even on

star graphs.
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Following the Lagrangean relaxation techniques explained in [11], one may be able

to show that a constant factor Lagrangean multiplier preserving algorithm for PC-GST

would result in a constant factor approximation algorithm for k-GST. Of course, this must

be further investigated. If this parallel result holds, however, this would imply that it is

hard to find a constant factor Lagrangean multiplier preserving algorithm for PC-GST.
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Chapter 6

Future Work

After looking at many different network design approximation algorithms, there are sev-

eral remaining open questions. One question is whether the generalized fractional token

argument present in Chapter 3 can be used to produce a Lagrangian multiplier preserving

algorithm for any network design problem, but in particular, for the Prize-Collecting

Steiner Tree problem. Are there other scenarios in which we can use this generalized

version of the argument. We briefly looked at a hyperedge covering problem, in which case

we would begin to see the submatrix A3 come into play, but the constraints did not take on

the exact form described. When subtracting characteristic vectors of cuts in hypergraphs,

we can end up with multiple negative entries in one column, which is not allowed by the

current version of the token argument. Can the argument be modified to deal with this

scenario?

Another open question is the existence of a bicriteria approximation algorithm for

the Degree Bounded Element Connectivity problem, with degree bounds on all

vertices. One could attempt to determine whether or not the (2, 2B + 3)-approximation

presented in this paper will work with degree bounds on nonterminals (see Conjecture

4.2.15). As of yet, there is no non-trivial approximation algorithm that can deal with

degree bounds on nonterminals. Another direction would be to improve the error on the

degree bounds. Perhaps a better bicriteria algorithm can be proven using Lau and Singh’s

(2, 6rmax + 3)-approximation for Degree Bounded Survivable Network Design as

a model.

One could formalize whether the Lagrangean relaxation techniques explained in [11]
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will translate to the creation of a constant factor approximation algorithm for the k-

Generalized Steiner Tree problem given a constant factor Lagrangean multiplier

preserving algorithm for the Prize Collecting Generalized Steiner Tree problem.

If this is the case, as mentioned in Section 5.3, it would be hard to find such a constant

factor Lagrangean multiplier preserving algorithm for PC-GST.

One last open question in this area would be to consider whether the current best of

2.54-approximation algorithms for Prize-Collecting Steiner Forest, Survivable

Network Design, and Element Connectivity can be improved to 2-approximations

with some new insight.
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