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Abstract

Quantum information processing devices promise to solve some problems more

efficiently than their classical counterparts. The source of the speedup is the struc-

ture of quantum theory itself. In that sense, the physical units that are the building

blocks of such devices are its power. The quest then is to find or manufacture a

system that behaves according to quantum theory, and yet is controllable in such

a way that the desired algorithms can be implemented. Candidate systems are

benchmarked against general criteria to evaluate their success. In this thesis, I

advance a particular system and present the progress made towards each of these

criteria. The system is a three-qubit 13C solid-state nuclear magnetic resonance

(NMR) based quantum processor. I report results concerning system characteri-

zation and control, pseudopure state preparation, and quantum error correction.

I also report on using the system to test a central question in the foundation of

quantum mechanics.
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Chapter 1

Introduction

1.1 Quantum Information Processing

Information processing devices that operate based on the laws of quantum physics

are believed to be more powerful than their classical couterparts, in the sense that

they can solve certain important problems –such as simulation of quantum sys-

tems [Fey82] and factoring of large numbers [Sho94]– more efficiently; that is to

say without incurring an overhead in resources such as time or ancillary registers

that grows unfavorably with the size of the problem. There has been much dis-

cussion about the source of this speed up. It has been quite often attributed to

entanglement, or more generally to quantum correlations present in some special

quantum states. It has also been argued that quantum dynamics [LCNV01] plays

an important role. Whatever it may be, it is quite obvious that it is due to the

particular mathematical structure of the underlying physical theory. The quest,

then, is to build such a device from blocks that verifiably behave according to this

structure.

1.2 The Physical Implementation of Quantum Com-

putation

The heading of this section is adopted from the title of a paper by DiVincenzo [DiV00],

in which he discusses, what are now, a widely accepted set of basic criteria for the

physical implementation for quantum computation. These are recognized as the

following 5 requirements:

• A scalable physical system with well characterized qubits.
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• The ability to initialize the state of the qubits to a simple fiducial state, such

as the ground state of some Hamiltonian.

• Long relevant decoherence times, much longer than the gate operation time.

• A universal set of quantum gates.

• A qubit-specific measurement capability.

Many systems have shown great strides in the quest for satisfying these criteria,

and many more have been proposed. Liquid state nuclear magnetic resonance

(NMR) for quantum information processing was introduced in [CFH97, GC97,

CPH98, CLK+00], and has arguably been one of the most successful paradigms to

date: with experiments implementing Deutsch’s problem [JM98, CVZ+98, LBF98];

the Quantum Fourier Transform [WLC01]; Shor’s factoring algorithm [VSB+01];

Quantum clock synchronization algorithm [ZLD+04]; Quantum search [ZLSD02];

Quantum walk [RLBL05]; quantum error correcting protocols [CPM+98, LVZ+99,

SCS+00, KLMN01, BVFC05, LSB+07]; simulation of quantum systems [STH+99,

TSS+00, NSO+05, CYC06]; and the largest demonstrated quantum processor with

12 qubits [NMR+06]. For detailed discussion of the techniques and results to date,

see [CLK+00, LKC+02, VC05, BCC+07]

In this thesis, I present progress made towards the realization of a single crystal

soild-state NMR based quantum information processor. The distinguishing features

of a solid-state NMR system include:

• Higher couplings leading to faster multiqubit gates.

• Dynamic nuclear polarization can lead to highly purified quantum states.

• Long intrinsic decoherence times.

• Fast relaxing spin baths in the form of dipolar networks to facilitate a fresh

supply of ancillas for quantum error correction.

This thesis is primarily about the experimental work; about importing and

improving some of the tools developed elsewhere and applying them in a new

paradigm.
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Chapter 2

System characterization and

control

2.1 Nuclear spins

The archetypal qubit is a spin-1
2

particle in a magnetic field. Spin-1
2

nuclear spins

have been sought after because of their long coherence times, and relative insensi-

tivity to the environment.

2.2 Malonic acid

In this work, we investigate an intermediate step towards the realization of the

solid-state QIP proposed by Cory et. al. [CLK+00]. The system is a macroscopic

single crystal of Malonic Acid, C3H4O4 (shown in Figure 2.1), grown from aqueous

solution. The unit cell contains two molecules related by an inversion symmetry,

and are therefore magnetically equivalent. A small fraction (typically ∼ 1% −
3%) of the molecules are triply labeled with 13C to form an ensemble of processor

molecules diluted in a computationally inert matrix of isotopomers of the same

molecule. During computation, these processors are typically decoupled from the

100% abundant protons in the crystal. Natural abundance 13C are present in the

sample at a rate of ∼ 1%, and their contribution to the signal is easily identifiable

and, if desired, can be eliminated. The fraction of molecules with two 13C nuclei

would be even less at (1%)2, and are therefore negligible.
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C1 C2

Cm

Hm1,2

H1

H2

Figure 2.1: Schematic of the Malonic acid (C3H4O4) molecule. The black spheres

represent Carbon nuclei; the blue, Oxygen; and white, Hydrogen. The plane of the

methylene group is perpendicular to the plane of the Carbons, and so is the plane

of one Carboxyl group, while the other Carboxyl group is approximately parallel.

2.3 NMR Hamiltonian

A nucleus with intrinsic (spin) angular momentum S will possess a magnetic dipole

moment, µ, given by

µ = γS , (2.1)

where γ is called the gyromagnetic ratio, and depends on the nuclear isotope (e.g.

γ1H = 42.58 MHz/T and γ13C = 10.71 MHz/T). This nuclear magnetic dipole will

interact with a given local magnetic field, B, via the Hamiltonian,

H = −µ ·B, (2.2)

producing an energy splitting between the two states corresponding to the moment

being aligned and anti-aligned with the direction of the field (In a field of 7 T, this

splitting will be on the order of 300MHz for 1H and 75MHz for 13C ).

The total Hamiltonian of the system, then, becomes a matter of accounting for

the various sources for magnetic fields, internal and external, that affect the nuclei.

5



2.3.1 External (control) Hamiltonian

NMR relies on a strong static magnetic field to establish1 the dominant terms in

the internal Hamiltonian, and an oscillating transverse field to excite/induce the

transitions. The static field, B0 = B0ẑ, is usually taken to define the z-axis of the

laboratory frame of reference. The interaction of a nuclear spin and the static field

is described by the Zeeman Hamiltonian (2.2),

HZ = −γB0Z = −ω0Z, (2.3)

where Z denotes the pauli operator, σz. (Similarly, X and Y denote the pauli

operators σx and σy)

The transverse field, B1(t), can be written as the sum of two counter rotating

fields in the lab frame:

B1(t) = B1 cos(ωrf t+ φ)x̂

= 1
2
B1 exp [i(ωrf t+ φ)] x̂+ 1

2
B1 exp [−i(ωrf t+ φ)] x̂ ,

(2.4)

where φ is the time independent phase of the transverse field, B1 its amplitude,

and ωrf its angular frequency, or the slope of the phase at time t. The two counter

rotating fields are separated by twice ωrf in frequency, thus counting one of them

irrelevant for NMR. Thus, the Hamiltonian describing the interaction between a

nuclear spin and the transverse field can be written as

H1(ω1, ωrf , φ, t) = e−i(ωrf t+φ)Z ω1X ei(ωrf t+φ)Z . (2.5)

The experiments reported in this thesis were performed in a static field of 7.1T

using a purpose-built probe, whose dual-resonance tank circuit is designed to res-

onate at 300MHz and 75MHz, the Larmour frequencies of 1H and 13C, respectively.

2.3.2 Internal (Natural) Hamiltonian

The internal spin Hamiltonian contains the following relevant contributions:

1. Chemical shift: The static external magnetic field, B0, induces currents

in the molecular electron clouds, which in turn induce a secondary magnetic

field at the nucleus site, partially shielding the nuclear spin from the external

magnetic field. In molecules where the electron distribution is not spherically

1Terms in the Hamiltonian that do not commute with the dominant Zeeman term, and whose

magnitude is small compared to the dominant interaction, are dropped – this is known as the

secular approximation. See Appendix A.6 in [Lev01].
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symmetric, the electron cloud in general is not free to precess about the direc-

tion of the external field. Hence, the induced local field at a certain nuclear

spin in general is not parallel to the applied field [Vee84]. This anisotropic

shielding causes an anisotropic shift, the chemical shift, of the resonance fre-

quency of a nuclear spin of a solid. In general, the magnetic field felt by the

nucleus can be written as

B = B0 + δ ·B0 , (2.6)

where δ is a dimensionless, second rank tensor that determines the magnitude

and direction of the shielding, and is known as the chemical shielding tensor.

In the lab-frame, δ is given by

δ =



δxx δxy δxz
δyx δyy δyz
δzx δzy δzz


 , (2.7)

where δjk is interpreted as the shielding in direction j given the magnetic

field in direction k. The chemical shielding tensor can be written as a sum of

a symmetric tensor and an antisymmetric one. The antisymmetric part has

been shown to affect the NMR line positions only in the second order, and

therefore can be neglected. This information can be encoded in a diagonal

tensor in one special axis system, called the principal axes system, and a

rotation R(θ), which maps this principal axes system to the lab-frame; i.e.

δ = R(θ) ·



δ11 0 0

0 δ22 0

0 0 δ33


 · R(θ)−1 , (2.8)

where θ are the Euler angles parametrizing the rotation; and, by convention,

δ11 ≥ δ22 ≥ δ33 . The values of these three principal values depend on the

location of the nucleus within the molecule, and, if they are not equal (which

is generally the case), then the value of the chemical shift is dependent on the

orientation of the magnetic field with respect to the principal axes system. In

a single crystal solid, all unit cells are in the same orientation with respect to

the external magnetic field, and hence, corresponding nuclei on the molecules

in different unit cells have the same chemical shift – barring external field

inhomogeneities.

The two carbons, C1 and C2, in the carboxyl groups of Malonic acid 2.1,

have approximately the same principal values, as shown in Table 2.1, but

the two principal axes systems are rotated relative to each other allowing for

the possibility of different chemical shift values for C1 and C2 in the same

magnetic field. Figure 2.2 shows that, in fact, that difference could take on

any value from 0 up to 100 ppm (8kHz in 7T field) for some orientations.
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δ11 δ22 δ33

C1 244 179 108

Cm 62 50 18

C2 248 174 111

Table 2.1: Principal chemical shift values for Malonic acid in ppm (TMS) [TFRH80,

Vee84].
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Figure 2.2: Variation of the chemical shift difference between the two Carboxyl

Carbon nuclei, |δC1 − δC2|, as a function of a composite rotation about two axes in

the lab frame. The difference varies from zero to about 8kHz.
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Figure 2.3: Spherical harmonic, Y2
0(θ, φ); The angular dependance of the dipolar

coupling.

2. Direct dipole-dipole coupling: This mutual through-space magnetic in-

teraction between two nuclear magnetic moments can be understood as the

magnetic moment of each spin interacting with the magnetic field caused at

its site by the other. The form of this interaction, in the secular approxima-

tion, depends on whether the interacting spins, labeled i and j, belong to the

same isotopic species (homonuclear), or not (heteronuclear), in the following

way:

Homonuclear: HD = dij(2ZiZj −XiXj − YiYj) ; (2.9)

Heteronuclear: HD = dij 2ZiZj , (2.10)

where dij is the dipolar coupling constant, and is given by

dij = − ~
µ0

16π

γiγj
r3
ij

1

2
(3 cos2 θij − 1) , (2.11)

where µ0 is the permeability of free space, the γs are the gyromagnetic ra-

tios of the interacting spins, rij is the distance between them, and θij is the

angle between the external magnetic field and the vector connecting the two

spins. Thus, the dipolar couplings are anisotropic, with angular dependance

proportional to the zeroth degree second order spherical harmonic (shown in

Figure 2.3). The flip-flop term in the homonuclear dipolar hamiltonian,

9



XX + Y Y = 1
2
(σ+ + σ−)1

2
(σ+ + σ−) + 1

2i
(σ+ − σ−) 1

2i
(σ+ − σ−)

= 1
2
[σ+σ− + σ−σ+],

(2.12)

renders the evolution more complex, and causes spin diffusion to dominate

the dynamics.

3. J-coupling This electron mediated coupling is typically orders of magnitude

weaker than the direct dipolar coupling, and is therefore typically ignored,

but we found that including it in the description of the Hamiltonian provides

more accurate estimates of the controls. There are two components to this

coupling. First, an isotropic component with the form

HJ = πJij(ZiZj +XiXj + YiYj) , (2.13)

where Jij is the isotropic, or scalar, J-coupling constant, and whose value can

be measured in a straight forward manner from a liquid state experiment.

There is also an anisotropic component to the J-coupling which is identical in

form to the dipolar coupling, and is therefore absorbed in the dipolar coupling

constant.

Using the above model, and the geometry of the molecule from X-ray [JRS94]

and neutron scattering data [MK93] and chemical shift anisotropy [TFRH80, Vee84],

one can map out the full intramolecular Hamiltonian as a function of orientation.

We have developed a tool to quickly survey the possible Hamiltonians for a can-

didate system, or to quickly find an orientation with favourable properties for a

particular experiment. This is presented in Appendix B.

However, for high-fidelity control, a precise intramolecular Hamiltonian for the

homonuclear Carbon system is required. This is obtained by fitting a proton-

decoupled 13C spectrum – a process similar to that used in liquid state NMR, but

is complicated by the presence of strong couplings which mix the eigenstates of

the Zeeman Hamiltonian (so they are no longer good eigenstates – see Appendix A

for details). A model Hamiltonian is constructed using an initial guess of the

parameters,

Hlbl =
∑

i

−ωiZi +
∑

j<i

dij(2ZiZj −XiXj − YiYj) +
∑

j<i

πJij(ZiZj +XiXj + YiYj) ,

(2.14)

and a free induction decay (FID) is computed for a state that contains equal am-

plitudes of all single coherences. Instead of simulating the full evolution, which is

computationally expensive, only the contributions to the signal from the observable

terms are tallied. In the eigenbasis of the Hamiltonian, the evolution is quite sim-

ple: each observable matrix element oscillates at a frequency equal to the difference

10



−10−8−6−4−20246810
Frequency [kHz]

In
te

n
s
it
y
 [

a
rb

. 
u

n
it
s
]

 

 

fit

data

Figure 2.4: Real part of a proton-decoupled 13C spectrum obtained (for some

orientation of the crystal) after polarization transfer from the abundant protons in

the crystal. The decoupling pulse sequence used here is SPINAL64 [FKE00]. Also

shown (in solid gray) is the simulated spectrum produced by the fit Hamiltonian.

For more details, see Appendix A.

between the two eigenvalues associated with the eigenvectors connecting the ma-

trix element. Motivated by the observation of differential line-widths even amongst

each set of transition lines, Lorentzian and Gaussian broadening are applied to each

transition line separately. Similarly, an FID is computed under the evolution of the

natural abundance Hamiltonian,

HN.A. =
∑

i

−ωiZi , (2.15)

where ωi are the same as in (2.14). The total simulated FID is the weighted sum

of both FIDs, where the ratio of the weights is determined by the dilution of the

triply-labeled molecules, and is typically left as a parameter in the fit. The real

part of the Fourier transform of the FID is then compared to the real part of the
13C experimental spectrum obtained after polarization transfer from the abundant

protons in the sample. Both spectra are normalized by the integral of the overall

intensity, and a simplex optimization algorithm searches in the parameter space for

values that minimize the squared sum of the residuals between them. A typical

final fit is shown in Figure 2.4.
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2.4 Relaxation

The line broadening extracted from the fit is typically around ∼ 150Hz correspond-

ing to free induction dephasing time, T ∗2 , around ∼ 2ms. This is two orders of

magnitude faster than the intrinsic dephasing time, T2, which is on the order of

∼ 100ms [BMR+06]. The major contribution to T ∗2 is incoherent chemical shift dis-

persion resulting from inhomogeneity of the static field and susceptibility mismatch

due to a non-spherical sample. Other contributions are from homonuclear inter-

molecular couplings and residual heteronuclear couplings (particularly Cm coupling

to the methylene protons).

The spin lattice relaxation time, T1, for the Carbon spins is on the order of

5 minutes, and is therefore irrelevant to the current experiments. The proton

T1 was measured by population inversion methods in different orientations and is

typically about 50s. Since all experiments reported here start with polarization

transfer from the abundant protons to the Carbon spins, we typically wait ∼ 5T1

between runs for the proton ensemble to relax to the thermal state. This presents

a challenge for the experimentalist, and highlights an even more dire need to find

ways to improve the signal-to-noise ratio without resorting to time averaging.

2.5 Control

2.5.1 Controllability

Even though we are operating in the regime where the computational basis differs

from the eigenbasis of the Hamiltonian, the mixing is small enough that we can still

approximately map spins to qubits. This addressability of single qubits, along with

the two body Hamiltonian, is sufficient for universal control [DNBT02, NBD+02].

This answers the question of whether, in principal, the system is fully controllable.

To actuate a desired evolution, we rely on two basic techniques: using multiple pulse

sequences if the desired evolution is in Hamiltonian form; or numerically designed

strongly modulating pulses for propagator design.

2.5.2 Pulse design

Given the time independent internal Hamiltonian, H0, and the form of the control

Hamiltonians, {Hj}j=1...r, the total Hamiltonian of the system can be written as

Hs(t) = H0 +
∑

j

uj(t)Hj , (2.16)
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where uj(t) are the control parameters. The evolution of the system is given by the

propagator

Us(τ, uj) = T exp

[
−i
∫ τ

0

dt

(
H0 +

∑

j

uj(t)Hj

)]
. (2.17)

The central problem of pulse design is how to modulate the control parameters

to realize a desired propagator Ud at some time τ . Or, formulated as an optimization

problem, how to maximize some fitness function Φ(Us, Ud) over the space of feasible

parameters, uj. This problem has proven to be much harder than the opposite

problem: evaluating the propagator (2.17) given a particular sequence of control

parameters. This naturally leads to the following approach to finding a solution to

the original question:

• Start with an arbitrary choice for uj(t), then iterate the following steps until

a satisfactory solution is found.

• Evaluate the propagator Us using Equation (2.17).

• Knowing the desired unitary, Ud, calculate the fitness function Φ.

• Decide on a new set of parameters based on the history of the choice of

parameters and the corresponding fitness functions.

The superiority of one scheme over another is in reducing the complexity of any of

these steps to make the problem more tractable, but as it stands, all of the numerical

schemes reduce to this search over the parameter space for a set of controls that

optimize a given functional.

A common approach [FPB+02, KRK+05] is to parametrize the control Hamilto-

nian such that it is piecewise constant in some rotating frame. i.e. forH1(ω1, ωrf , φ, t)

in Eq. (2.5), taking ωrf , ω1, and φ to be piecewise constant for periods of τm, the

propagator (2.17) reduces to the product of the propagators for each period,

U(τ) =
∏

m

exp
{
−i ωmrf ΣZ

}
exp

{
−i
[
H0 + H̃1(ωm1 , φ

m)
]
τm
}
, (2.18)

where H̃1(ωm1 , φ
m) is the time independent R.F. Hamiltonian in the rotating frame.

Choosing the number of periods to be small greatly reduces the complexity of

evaluating the propagator for the whole pulse sequence. With the fitness function

defined as the gate fidelity (see Appendix D),

Φ(Us, Ud) := FHS(Us, Ud) =
1

d2

∣∣tr(U †sUd)
∣∣2 , (2.19)

13



we were able to demonstrate high fidelity control in our system[BMR+05, BMR+06].

However, this scheme suffered a few drawbacks. First and foremost, the jumps in the

amplitude and phase from one period to another caused phase transient effects that

degraded the quality of the pulses. This is due [Laf08] to the limited bandwidth

of the resonant probe circuit. Also, as the number of parameters expanded to

accommodate a more demanding transformation or to reach for higher fidelities,

the size of the optimization problem became highly taxing on the computational

resources.

We then turn to another scheme [KRK+05] that saw success in liquid state

NMR. The GRadient Ascent Pulse Engineering (GRAPE) algorithm, inspired by

optimal control methods, explores the parameter space more purposefully. Again,

the pulse is discretized into short periods ∆t for which the control Hamiltonian is

piecewise constant, and the propagators for each time step are simulated employing

good knowledge of the Hamiltonians. It is easy to imagine that the local topology

of the fitness function in the parameter space can provide a clue as to the best

direction to move into for the next iteration to improve. The cleverness of the

GRAPE algorithm is not that it evaluates the derivatives of the fitness function,

but rather it is the way it evaluates them from quantities already calculated; namely

the propagator of each time step. For a detailed and fluid explanation, see [Rya09].

We adapt the coded algorithm to find high fidelity implementations for the

strong coupling regime. In addition, we supplement the code with a number of

features, including

• The ability, with the same control fields, to simultaneously realize different

pulses for different internal Hamiltonians. This is useful for example in the

situation where the contribution to the signal from the natural abundance

spins is to be averaged out.

• The ability to smooth pulses on the fly. The user has the option to smooth

pulses every iteration as they are found. Pulses that are too jagged cannot

be faithfully implemented due to the finite bandwidth of the resonant circuit.

Figure 2.5 shows a pulse that has been found with the automatic smoothing

turned on. The r.f. amplitude jumps are mostly less than 1%/µs.

• The ability to explicitly design pulses to be robust to variations in certain

parameters. Figure 2.6 shows the fidelity profile of a typical pulse designed

to be robust against r.f. power variations as well as chemical shift variations.
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Figure 2.5 to variations in these parameters. Shown are the gate fidelity (D.13)

and worst case fidelity [Sil08].
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2.5.3 Pulse Implementation Correction

Today’s technology allows for very high precision pulse shaping, yet it is observed

that the nominal fields in the vicinity of the sample do not match the pulse asked

of the pulse generation unit. The discrepancy, typically in the range of 1%, is quite

significant if one aims for high fidelity control. There are two components to this

deviation; random fluctuations due to noise in the electronics responsible for signal

generation, amplification, and detection; and a systematic portion that is primarily

caused by residual (uncorrected for) non-linearities in the signal generation unit

and the amplifiers, and by the limited bandwidth of the probe circuit.

To rectify [Rya09] these systematic imperfections, a pickup coil connected to

the receiver unit in the spectrometer is used to measure the pulse at the sample

space. This data is fed back for comparison with the original, ‘ideal’, pulse. A new

pulse form that attempts to compensate for the imperfections is computed, and

then sent back to the signal generation unit. This loop is repeated a number of

times to reach a satisfactory, ’close enough’, pulse form. Typically, the user would

pick a number of feedback loops in advance –usually 4-8 is sufficient [Rya09].

Recent improvements to this scheme –to automate the decision making– start by

defining a reasonably ‘close enough’ rectified pulse. First, the closeness of two pulses

is defined as the sum of the squares of the residuals, normalized by the number of

points in the (stroboscopic) observation. The normalization is to facilitate an overall

comparison between pulses of different length. To estimate the contributions to the

deviations that cannot be rectified by the implementation-correction scheme, the

spectrometer is asked to produce the same original pulse a number of times, and

statistics is collected for the discrepancies between the different implementations of

the same pulse, thus establishing a realistic estimate of how well the pulses can be

rectified, or how close is close enough.

In this version of the scheme, the feedback loop runs continuously, and is only

interrupted when it reaches a maximum number of iterations, or, more favourably,

if the figure of merit surpasses an appropriately chosen threshold based on the

aforementioned realistic estimate of the random and systematic contributions to

the deviation.

The pulse implementation imperfections depend on the pulse power. Therefore,

it is important that the pulses are corrected at the power that they will be used at.

However, this value might not be known beforehand since properly corrected pulses

are needed for calibration purposes. One possible solution, which is currently part

of the calibration process, is to correct the calibration pulse at the different powers

in the calibration range, and only use each corrected pulse with the power at which

it has been corrected.

17



Figure 2.7 shows the output of a typical pulse implementation correction pro-

cedure. Shown are the pulse forms of the successive attempts at pulse correction,

as detected by the pickup coil near the sample space. Reported also are the figures

of merit for all trials, and perhaps worth noting is the two orders of magnitude

improvement from the first to the last attempts.
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Chapter 3

Quantum error correction

3.1 Introduction

One of the crucial requirements [DiV00] for quantum information processing is the

ability to protect the fragile quantum information during computation; either by

encoding the information in subspaces of the system’s Hilbert space where it is not

terribly degraded by the noise or by an active scheme that detects and rectifies

errors from time to time, or by a hybrid system of both.

Active quantum error correction was first developed [Sho95, Ste96, CS96] in

analogy to classical error correction. The basic idea being that the information

is encoded redundantly in multiple copies such that a majority type poll after

some of the data has been corrupted would reveal the correct value of the encoded

information.

Possible points of contention arose in relation to this analogy, but clever re-

sponses quickly dispensed of them, culminating in theories of quantum error cor-

rection and fault tolerant quantum computing. A rough sketch of these arguments

are presented below; the interested reader is referred to [Got97, NC00, KLP05] for

more detailed and rigorous accounts.

• As mentioned, in classical error correction, redundancy is used so that if some

bits are corrupted, the majority of the redundant copies remain intact, allow-

ing for recovery; the problem is, this cannot be directly carried over to the

quantum case for there is no universal cloner of quantum states. The solu-

tion can be gleamed in the observation that copying a classical bit amounts

to correlating its value with another’s. The answer, then, lies in employing

quantum correlations to encode quantum coherences; that is to say in using

entanglement to encode superpositions [Sho95, Ste96].
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• In classical error correction it is assumed that it is possible to measure all the

bits to extract the error syndrome, while in the quantum case, measurements

would invariably disturb the state. This is cleverly circumvented [Sho95,

DS96] by designing the syndrome measurement such that it would destroy the

coherences between the syndrome subspaces, while the encoded coherences

are preserved. In other words, the syndrome measurement reveals a global

property about the overall state without distinguishing between the different

encoded states. For example, as will be shown in the next section, the error

syndrome for the 3-bit repetition code is revealed through measurements of

qubit parities without measuring the qubits themselves.

• A classical computer only needs to preserve the bit values, while a quantum

computer also needs to keep phase information. Fortunately, it is straight

forward to make phase errors look like bit errors just by changing bases using

the Hadamard gate. Interestingly, that same gate is all that is needed in

addition to reversible classical computation for universal quantum computa-

tion [Shi02, Aha03].

• There is an infinite number of possible errors. However, by the linearity of

quantum dynamics, if a code corrects for errors E and F , then it will correct

aE+ bF . Thus, when designing a code, we only need to consider whether the

code can correct a basis of errors.

All of the above can be formalised in a theory of quantum error correction [KL97,

BDSW96], the corner stone of which is the following necessary and sufficient con-

dition for perfect recovery of an encoded state after being subjected to errors: A

quantum code C with basis codewords {|ψi〉} will correct for all errors in span(E)

if and only if

〈ψj|E†aEb|ψk〉 = cabδjk, (3.1)

where |ψj〉 and |ψk〉 run over all possible basis codewords, Ea and Eb run over all

possible combinations of errors in E , and cab is independent of j and k. If cab is

equal to δab, the code is a nondegenerate code [Got97]. That is to say, different

errors are distinguishable.

Active quantum error correction techniques have been experimentally realized in

the liquid-state-NMR [CPM+98, LVZ+99, KLMN01] and ion-traps [CLS+04] imple-

mentations of a quantum information processor. In each of these implementations,

a quantum error-correction code (QECC) was used to protect against the partic-

ular errors present in the respective systems. In this Chapter, we report on the

implementation of a three-qubit QECC that corrects phase errors induced by the

environment, in a single-crystal solid-state NMR system.
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3.2 3-bit code

The 3-bit repetition code was introduced by Shor [Sho95] as part of a 9-qubit

code that is able to protect against an arbitrary single qubit error. The phase

variant [Bra96] of the 3-bit repetition code encodes a single qubit in three qubits

as follows:

|0〉 → |0̄〉 = |+ + +〉 , (3.2)

|1〉 → |1̄〉 = |− − −〉 . (3.3)

where |±〉 = |0〉 ± |1〉 and the logical basis are denoted by {|0̄〉, |1̄〉}. In the

stabilizer formalism [Got97, Pou05], the stabilizer group generators for this code

are {XXI, IXX}. This code can be employed to correct for various sets of er-

rors by choosing different decoding circuits, but first, we focus on the set E =

{ZII, IZI, IIZ, III}. It is straight forward to show that the conditions 3.1 are

satisfied: first we evaluate the product E†aEb,

{E†aEb : Ea, Eb ∈ E} =

{ {ZII, IZI, IIZ, ZZI, ZIZ, IZZ} a 6= b

{III} a = b ,
(3.4)

and, noting that Z|±〉 = |∓〉, 〈ψj|E†aEb|ψk〉 evaluates to

• for the case j 6= k,

〈0̄|E†aEb|1̄〉 = 〈1̄|E†aEb|0̄〉 = 0 ∀a, b ; (3.5)

• and for the case j = k,

〈0̄|E†aEb|0̄〉 = 〈1̄|E†aEb|1̄〉 =

{
0 a 6= b

1 a = b .
(3.6)

Thus, putting everything together, we get

〈ψj|E†aEb|ψk〉 = δabδjk , (3.7)

which means that the code will correct for any linear combination of errors in E
(but not a product.) That is to say, it will correct a phase flip on any of the qubits;

or the ”nothing happened” operation; or the dephasing map,

Λθ(ρ) = cos2(θ)IρI + sin2(θ)ZρZ , (3.8)

on one of the qubits; or a selective phase rotation on any of the qubits, for e.g.

Zθ
1 :=e−i θ/2 ZII = cos(θ/2) III − i sin(θ/2) ZII . (3.9)
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Figure 3.1: The quantum circuit of the phase variant of the three-qubit QECC,

showing the encoding, decoding, and error-correction steps. The first two qubits,

the ancillas, are initialized to the |00〉 state, and the third qubit carries the informa-

tion to be encoded. After the decoding and correction operations, the third qubit

is restored to its initial state, while the other two qubits carry information about

which error had occured. The Y
π
2 gate is a π

2
-rotation about the Y axis.

A quantum circuit that accomplishes [Bra96] the encoding, decoding, and error-

correction steps is shown in Fig.3.1. The encoding process takes a qubit in the state

α|0〉+ β|1〉, adds two ancilla qubits prepared in the |00〉 state, and outputs the 3-

qubit encoded state α|+ + +〉 + β|− − −〉. After the error channel, the recovery

process decodes the state on the information-carrying-qubit, and the ancilla qubits

carry syndrome information about the errors that have occurred. The nondegener-

acy of the code (by expression (3.7)) implies that each of the error basis will leave

a particular signature. It is straightforward to show that syndromes 00, 10, 01, and

11 correspond to the occurrence of errors III, ZII, IZI, and IIZ, respectively.

Next, we examine the performance of the 3-bit code under different error models

that might be encountered in our system. The figure of merit used herein to judge

the performance of the code is the entanglement fidelity. In particular, we use the

expression (D.22) in Appendix D for the single-qubit average entanglement fidelity,

which is experimentally accessible by measuring the fraction of surviving signal

given input states X, Y , and Z.
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3.3 Error models

For the computational register under investigation, (dephasing) noise comes in the

following forms:

• Coherent phase errors due to extraneous pulse implementation errors,

phase transients, or superfluous evolution under the natural Hamiltonian (e.g.

under the Zeeman term.) These are unitary errors (that cause no loss of co-

herence) and can therefore be inverted if tracked properly, but in case tracking

that evolution is not possible, quantum error correction becomes a valuable

tool. For example, an error in the form of the phase rotation Zθ
1 (Eq. (3.9))

can be easily inverted if the value of θ is known. However, a quantum error

correcting code (the 3-bit phase code) will correct for that error for any value

of θ, thus precluding the need to track its value.

• Incoherent phase errors due to chemical shift dispersion or other inhomo-

geneities. The loss of coherence is over the ensemble; each member of the

ensemble sees a different value for some coupled classical degree of freedom.

Errors of this nature have been dealt with using refocussing techniques (e.g.

spin echo), or by carefully designing the control fields to generate the same

evolution over the ensemble. Quantum error correction can be used with, or

in lieu of, these other techniques to improve robustness to ensemble errors.

• Decoherent phase errors due to spin diffusion (via the flip-flop term). This

is the picture typically conjured when thinking about quantum noise. The

system of interest couples to an environment –an uncontrollable quantum

degree of freedom initially in some mixed state– and loss of coherence occurs

when this environment is traced over after the interaction.

3.3.1 Correlated phase rotations

Here, the performance of the 3-bit code is examined against a fully coherent error,

whose form and magnitude are completely known. This allows for an analytic

examination of the action of the code, which is a simple yet informative exercise.

The coherent correlated phase rotation error operator (as shown in the quantum

circuit, Fig. 3.2 (c)) is a symmetric three-fold tensor product of the single qubit
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phase gate, Eq. (3.9), and can be expanded as

E(θ) =
3⊗

j=1

Zθ

=(cos θ
2
1l− i sin θ

2
Z1)(cos θ

2
1l− i sin θ

2
Z2)(cos θ

2
1l− i sin θ

2
Z3)

= cos3 θ
2
1l

− i cos2 θ
2

sin θ
2
(Z1 + Z2 + Z3)

− cos θ
2

sin2 θ
2
(Z1Z2 + Z1Z3 + Z2Z3)

+ i sin3 θ
2
(Z1Z2Z3) .

(3.10)

An arbitrary single-qubit input state |φ〉 = α|0〉 + β|1〉 is encoded as |ψ〉 =

α|+ + +〉+ β|− − −〉, which is mapped by the noise operator to

E(θ)|ψ〉 = cos3 θ
2
(α|+ + +〉+ β|− − −〉)

− i cos2 θ
2

sin θ
2
(α|−+ +〉+ β|+−−〉+ α|+−+〉+ β|−+−〉+ α|+ +−〉+ β|− −+〉)

− cos θ
2

sin2 θ
2
(α|− −+〉+ β|+ +−〉+ α|−+−〉+ β|+−+〉+ α|+−−〉+ β|−+ +〉)

+ i sin3 θ
2
(α|− − −〉+ β|+ + +〉) ,

(3.11)

and after the decoding circuit, the 3 qubit state is

D ◦ E(θ)|ψ〉 = cos3 θ
2
(α|000〉+ β|100〉)

− i cos2 θ
2

sin θ
2
(α|111〉+ β|011〉+ α|010〉+ β|110〉+ α|001〉+ β|101〉)

− cos θ
2

sin2 θ
2
(α|101〉+ β|001〉+ α|110〉+ β|010〉+ α|011〉+ β|111〉)

+ i sin3 θ
2
(α|100〉+ β|000〉)

= (α|0〉+ β|1〉)[cos3 θ
2
|00〉+ i cos2 θ

2
sin θ

2
(|10〉+ |01〉)− cos θ

2
sin2 θ

2
|11〉]

+ (α|1〉+ β|0〉)[i cos2 θ
2

sin θ
2
|11〉 − cos θ

2
sin2 θ

2
(|01〉+ |10〉) + i sin3 θ

2
|00〉] .

(3.12)

Taking the partial trace over the two rightmost qubits gives the state

ρd =(cos6 θ
2

+ 2 cos4 θ
2

sin2 θ
2

+ cos2 θ
2

sin4 θ
2
)|φ〉〈φ|

+ (cos4 θ
2

sin2 θ
2

+ 2 cos2 θ
2

sin4 θ
2

+ sin6 θ
2
)|φ′〉〈φ′|

= cos2 θ
2
(cos2 θ

2
+ sin2 θ

2
)2|φ〉〈φ|+ sin2 θ

2
(cos2 θ

2
+ sin2 θ

2
)2|φ′〉〈φ′| ,

(3.13)

where |φ′〉 = α|1〉+ β|0〉. The fidelity of the input state with the decoded state is

〈φ|ρd|φ〉 = cos2 θ
2
|〈φ|φ〉|2 + sin2 θ

2
|〈φ|φ′〉|2 , (3.14)

where the variable substitutions x = cos2 θ
2

and y = sin2 θ
2

were used to simplify

the expression. Note that 〈φ|φ′〉 = (α∗〈0| + β∗〈1|)(α|1〉 + β|0〉) = α∗β + β∗α is a
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real quantity, which makes the second term in Eq. (3.14) always non-negative. The

entanglement fidelity of this single-qubit map is given by Eq. (D.15),

Fe(D ◦ E(θ)) = 1
4

[
F|0〉 + F|1〉 + F|+〉 + F|−〉 + F|+i〉 + F|−i〉

]
− 1

2

= 1
4

[
6 cos2 θ

2
+ 2 sin2 θ

2

]
− 1

2

= cos2 θ
2

= 1
2
(1 + cos θ) .

(3.15)

If the correction step had been applied, the state would have been

C ◦ D ◦ E(θ)|ψ〉 = cos3 θ
2
(α|000〉+ β|100〉)

− i cos2 θ
2

sin θ
2
(α|011〉+ β|111〉+ α|010〉+ β|110〉+ α|001〉+ β|101〉)

− cos θ
2

sin2 θ
2
(α|101〉+ β|001〉+ α|110〉+ β|010〉+ α|111〉+ β|011〉)

+ i sin3 θ
2
(α|100〉+ β|000〉)

= (α|0〉+ β|1〉)[cos3 θ
2
|00〉+ i cos2 θ

2
sin θ

2
(|10〉+ |01〉) + i cos2 θ

2
sin θ

2
|11〉]

+ (α|1〉+ β|0〉)[− cos θ
2

sin2 θ
2
|11〉 − cos θ

2
sin2 θ

2
(|01〉+ |10〉) + i sin3 θ

2
|00〉] ,

(3.16)

and again, tracing out qubits 2 and 3,

ρc =(cos6 θ
2

+ 3 cos4 θ
2

sin2 θ
2
)|φ〉〈φ|

+ (3 cos2 θ
2

sin4 θ
2

+ sin6 θ
2
)|φ′〉〈φ′|

= cos4 θ
2
(1 + 2 sin2 θ

2
) |φ〉〈φ|+ sin4 θ

2
(1 + 2 cos2 θ

2
) |φ′〉〈φ′| ,

(3.17)

and the fidelity with the input state is given by

〈φ|ρc|φ〉 = cos4 θ
2
(1 + 2 sin2 θ

2
)|〈φ|φ〉|2 + sin4 θ

2
(1 + 2 cos2 θ

2
)|〈φ|φ′〉|2 . (3.18)

In this case, the entanglement fidelity is

Fe(C ◦ D ◦ E(θ)) = 1
4

[
F|0〉 + F|1〉 + F|+〉 + F|−〉 + F|+i〉 + F|−i〉

]
− 1

2

= 1
4

[
4 cos4 θ

2
(1 + 2 sin2 θ

2
) + 2

]
− 1

2

= cos4 θ
2
(1 + 2 sin2 θ

2
)

= 1
4
(2 + 3 cos θ − cos3 θ) ,

(3.19)

clearly showing the gain from quantum error correction for 0 < θ < π/2. This

is illustrated in Figure 3.2 (a). Also shown in Figure 3.2 (b) are experimentally

determined entanglement fidelities before and after the correction steps. The error

operator was engineered by shifting the phase of all subsequent pulses as well as

the receiver. Again, the advantage of corrections is clear.
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Figure 3.2: (c) The quantum circuit of the phase variant of the three-qubit QECC,

showing the encoding, decoding, and error-correction steps. The error channel

examined here is a correlated phase rotation on all qubits; (a) The entanglement

fidelities of the 3-bit code correcting for a correlated phase error. The single qubit

unencoded fidelity is shown in green, and in red and blue are the fidelities before and

after the correction step, respectively; (b) The entanglement fidelities as measured

before (red squares) and after (blue circles) the correction step. The correlated

phase error was implemented by changing the reference frame of pulses subsequent

to the noise.
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3.3.2 Full Internal Hamiltonian

Here we examine the performance of the 3-bit phase code under the natural evo-

lution of the system; Between the encoding and recovery operations, the system is

left to evolve unobstructed under the full natural Hamiltonian, both homonuclear

and heteronuclear parts. The experimentally determined entanglement fidelities

are shown in Figure 3.3, demonstrating the advantage of quantum error correction.

The syndrome information (see inset in Figure 3.3) indicate that the dominant

phase error is on the methylene carbon, Cm. The troughs in the unencoded and

decoded data indicate that the error is, at least partially, coherent. However, full

simulation of the dynamics of the carbon subsystem (shown in Figure 3.4) suggest

a longer timescale for the coherent effects. We conclude that the coherent effects

are due to the strong coupling between Cm and (one of) the methylene protons.

This conclusion is reaffirmed by the results reported in (the following) section 3.3.3.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

E
n

ta
n

g
le

m
e

n
t 

F
id

e
lit

y

Interaction period [µs]

 

 

no encoding

uncorrected

corrected0 5 10 15 20 25

0

0.5

1

time [µs]

fr
a
c
ti
o
n
 o

f 
s
ig

n
a
l

 

 

11

01

10

00

Figure 3.3: Experimentally determined entanglement fidelities for (blue squares)

unencoded, (green diamonds) before, and (red circles) after the correction step. Af-

ter encoding, a variable delay is implemented before the recovery process. During

the delay, the system evolves unobstructed under the heteronuclear and homonu-

clear natural Hamiltonians. The troughs in the unencoded and decoded data are

indicative of the presence of a coherent error. The inset shows the intensities mea-

sured for the different syndromes; the dominant error is a phase rotation on the

bottom qubit (Cm).
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Figure 3.4: Shown are full-simulation results of (top) the fraction of surviving

signal for input states X, Y , and Z; and (bottom) the resulting entanglement

fidelity of the evolution map under the natural carbon subsystem Hamiltonian for

various delays. As expected, the dominant contribution comes from the chemical

shift evolution, as evidenced by the (almost) stabilization of the unencoded Z input

state.

3.3.3 Partial decoupling

In this section, the 3-bit phase code is employed to protect a single qubit against

errors from evolution under the natural Hamiltonian of the carbon subsystem as

well as residual heteronuclear couplings between the carbons and protons due to

partial decoupling of the protons using the SPINAL64 sequence [FKE00] at 70kHz.

Figure 3.5 shows a summary of the experimental results. First, we note in compar-

ison to results from the previous section, that the entanglement fidelity is sustained

at higher values for all times. This is consistent with the picture that the heteronu-

clear interactions are the dominant interactions in the absence of decoupling. From

the syndrome information shown in Figure 3.5 (a), the major contributions are from

phase rotations on C1 and Cm. This is to be expected, since, in this orientation,

the chemical shifts of these two spins are the dominant terms in the internal carbon

Hamiltonian.
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Figure 3.5: Summary of experimental results for the partial decoupling map: the

system evolves under the natural Hamiltonian as well as 70khz decoupling fields

that partially modulate the heteronuclear interactions (between the carbons and

protons.) Shown are (b) the single-qubit entanglement fidelities in the cases where

no encoding (blue squares) or the 3-bit code (red circles) are employed; and (a)

syndrome information as extracted from the shown Cm spectra, which were obtained

after the recovery process. The syndrome data shows almost equal contribution

from phase errors on Cm and C1.
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3.4 Two rounds

In the previous sections, and indeed in previous experimental demonstrations of

quantum error correction, it was shown that it is possible to correct for noise with

noisy gates. Obviously, there is a limit to how much implementation errors can be

tolerated before they overwhelm the error correction protocol. Thus, the ability to

demonstrate error correction has become a benchmark of high-fidelity control. A

natural question to ask is, whether we have high-enough-fidelity control to perform

multiple rounds of error correction. Of course, to perform multiple rounds, one

needs a fresh supply of pure (or pure enough) ancillas to ensure that entropy is

flowing in the proper direction. However, assuming we have a fresh supply of

ancillas, is it possible, with the current level of control, to perform meaningful

multiple rounds of quantum error correction?

We devise a way to experimentally determine the entanglement fidelity of multi-

ple rounds of error correction and use it to experimentally determine the entangle-

ment fidelity of two rounds of the 3-bit phase code. The scheme requires a number

of experiments that grows as sm−1, where s is the number of possible nondegenerate

syndromes of the code, and m is the number of rounds of correction performed. In

this sense, the applicability of the scheme is very limited. For our purposes, after

the first round of error correction, the surviving polarization from the various input

states is distributed over the various subspaces of the Hilbert space corresponding

to the various syndromes. For the second round, for each syndrome, we project

into the subspace of the syndrome and perform error correction in that subspace,

and then sum over all possible syndromes. The pulse sequence for this experiment

is shown in Figure 3.6, and the experimental results are shown in Figure 3.7.

We demonstrate that beyond a certain error rate, there is an advantage to

performing multiple rounds of error correction with our current level of control. The

big initial drop in the experimentally determined two-round entanglement fidelity

is due to the projection operation, which obviously would not be needed if pure

ancillas are available.

3.5 Conclusion

We were able to demonstrate the advantage of performing quantum error correction

to protect against phase errors –coherent, incoherent and decoherent– that arise

naturally in the solid-state NMR system. We have shown that this is possible with

the quality of control currently available. Moreover, we have shown that multiple

rounds are also possible with current control levels. In addition to existing methods

like decoupling and refocusing, this is a viable tool in the fight against decoherence.
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Figure 3.7: Summary of experimental results for the partial decoupling map: the

system evolves under the natural Hamiltonian as well as 70khz decoupling fields

that partially modulate the heteronuclear interactions (between the carbons and

protons.) Shown are the single-qubit entanglement fidelities in the cases where no

encoding is employed (blue squares); or one round of the 3-bit code (red circles);

or two rounds of the 3-bit code (black diamonds).
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Chapter 4

Application to foundational

questions

4.1 Testing contextuality on quantum ensembles

with one quantum bit.

4.1.1 Introduction

The Bell-Kochen-Specker (BKS) theorem [Spe60, Bel66, KS67, Mer93] states that

no noncontextual hidden-variables (NCHV) theory can reproduce the predictions

of quantum mechanics for correlations between measurement outcomes of some sets

of observables. Any such set of observables constitutes a proof of the theorem. Re-

cently, Cabello [Cab08] and others [BBCP09] used BKS proofs to derive a set of

inequalities that are satisfied by any NCHV theory but are violated by quantum

mechanics for any quantum state. These inequalities bound certain linear com-

binations of ensemble averages of correlations between measurement outcomes of

compatible observables; thus creating a separation between the predicted outcomes

of quantum mechanics, and the bound that is satisfied by NCHV theories.

This provides an opportunity to test noncontextuality with finite-precision ex-

periments –which has been the subject of contention for many years [Mey99, Cab02,

Mer99]– and without the need for the creation of special quantum states [SŻWZ00,

HLZ+03, BKS+09]. Already, two experiments, on [KZG+09] a pair of trapped 40Ca+

ions, and with single photons [ARBC09], have demonstrated this state-independent

conflict with noncontextuality. In this Section, we examine the application of the

techniques described in the previous chapters towards the problem of testing con-

textuality on quantum ensembles.

The rest of the chapter is organized as follows. First, we sketch the arguments
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leading to one of the inequalities derived in [Cab08]. Then we present an algorithm

to estimate the expectation value of the correlations of measurement outcomes for

ensembles of quantum systems. And lastly, we report and discuss the result of

experimentally implementing the algorithm.

4.1.2 BKSC Inequality

For a quantum system prepared according to some state, ρ, one can assign si-

multaneous outcomes {ν(Sk)} of measurements of a set {Sk} of coobservables (i.e.

comeasureable; mutually compatible; commuting). In this case, the correlation

between the measurement outcomes is given by

π{Sk} =
∏

k

ν(Sk) = ν(
∏

k

Sk) , (4.1)

irrespective of the product ordering. Repeating the preparation and measurement

many times, and averaging over the outcomes, one obtains an estimate of the en-

semble average of the correlation

〈π{Sk}〉ρ = 〈
∏

k

ν(Sk)〉ρ . (4.2)

For the case where the coobservables {Sk} are also dichotomic, with possible

outcomes {ν(Sk) = ±1}, the correlation (4.1) also takes on the possible values

±1, and the ensemble average satisfies −1 ≤ 〈π{Sk}〉ρ ≤ +1. Note, that in this

case, these operators are Hermitian and unitary (also known as Quantum Boolean

Functions).

Consider any set of observables with possible outcomes ±1 arranged in a 3× 3

table such that the observables in each column and each row are coobservable (e.g.

as in Table 4.1). It has been shown [Cab08] that, for any NCHV theory,

β = 〈πr1〉+ 〈πr2〉+ 〈πr3〉+ 〈πc1〉+ 〈πc2〉 − 〈πc3〉 ≤ 4 , (4.3)

where 〈πr1〉 is the ensemble average of the correlation between outcomes of the

observables listed in the first row, and so forth. The above inequality is independent

of the preparation of the ensemble, provided all terms are estimated for the same

preparation.

The inequality is verifiable by considering all possible configurations for the

outcomes of all nine measurements. Let α = πr1 + πr2 + πr3 + πc1 + πc2 − πc3 .

By construction, one can assign simultaneous outcomes to observables listed in the

same row or column. Thus, each term in α can be estimated on a single system.

For a NCHV theory, each observable listed at the intersection of a column and a
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row is assigned the same outcome for the same preparation, whether it is mea-

sured in a row or a column. The histogram in Figure 4.1 shows the distribution

of α for all possible configurations of outcomes of all nine measurements, showing

α ≤ 4. Hence, the ensemble average, with probablistic mixtures of α(s), has to

satisfy β ≤ 4.
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Figure 4.1: A histogram of α = πr1 + πr2 + πr3 + πc1 + πc2 − πc3 for all possible 29

configurations of ±1 outcomes for observables arranged in a 3×3 table as described

in the text.

c1 c2 c3

∏

r1 Z1l 1lZ ZZ +1l

r2 1lX X1l XX +1l

r3 ZX XZ Y Y +1l

∏
+1l +1l −1l

Table 4.1: List of the 2-qubit observables used to show that quantum mechanics vi-

olates inequality (4.3). This list has been used by Peres [Per90] and Mermin [Mer90]

as a BKS proof for 4 dimensional systems. {1l, X, Z, Y } are the single qubit Pauli

operators, and, e.g. ZX := Z ⊗X indicates a measurement of the Pauli-Z on the

first qubit and Pauli-X on the second. The correlation between the outcomes of

measurements of the observables in each row and column are indexed by ri and cj
respectively. For example, the correlation between outcomes of observables listed

in the first row, 〈πr1〉 = 〈Z1l · 1lZ · ZZ〉.
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Now, consider a 2-qubit system (e.g. 2 spin-1
2

particles), and the set of observ-

ables listed in Table 4.1. For any NCHV theory, the inequality (4.3) holds for the

correlations between measurement outcomes of the coobservables listed in each row

and column, where, for e.g., 〈πr1〉 = 〈π{Z1l,1lZ,ZZ}〉 = 〈Z1l · 1lZ · ZZ〉, and so forth.

On the other hand, according to quantum mechanics, the ensemble average

〈π{Sk}〉ρ is given by tr(ρ
∏

k Sk). Thus, for a set of coobservables whose prod-

uct is proportional to the unit operator –as is the case for all rows and columns

of Table 4.1– the quantum mechanical prediction of the ensemble average of the

correlation is equal to the proportionality constant, independent of the initial prepa-

ration of the system. Hence, the quantum mechanical prediction for β is 6, which

violates inequality (4.3).

4.1.3 Algorithm

To measure the correlation between a set of coobservables, consider introducing an

ancillary (probe) qubit, and applying a transformation USk
to the composite system

for each observable Sk, in a manner reminiscent of coherent syndrome measurement

in quantum error correction [DS96]. For an observable S with the spectral decom-

position S = P+ − P−, where P+ and P− are the projectors on the +1 and −1

eigenspaces of S, the transformation US is defined as US = 1l2⊗P+ +Z⊗P− . That

is to say, if the system is in a -1 eigenstate of S, apply a phase flip (Pauli-Z) to

the probe qubit, and if it is in a +1 eigenstate, do nothing. This transformation

can also be expressed as a controlled operation dependent on the state of the probe

qubit:

US = 1l2 ⊗ P+ + Z ⊗ P−
= 1

2
(1l2 + Z)⊗ (P+ + P−) + 1

2
(1l2 − Z)⊗ (P+ − P−)

= |0〉〈0| ⊗ 1ld + |1〉〈1| ⊗ S ,
(4.4)

which is unitary for S unitary. If the system is initially prepared according to ρ, and

the probe qubit in the +1 eigenstate of the Pauli-X operator, |+〉 = (|0〉+ |1〉)/
√

2,

the possible outcomes of Pauli-X measurement on the probe qubit is ±1, with

probabilities p(±1) given by:

p(+1) =tra+s

[
US(|+〉〈+| ⊗ ρ)U †S (|+〉〈+| ⊗ 1ld)

]

=trs
[
〈+|(1l2 ⊗ P+ + Z ⊗ P−)(|+〉〈+| ⊗ ρ)(...)†

∣∣+〉]
=〈+|1l2|+〉〈+|1l2|+〉 trs [P+ρP+]

=trs [P+ρ ] ,

(4.5)
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S1 S2 Sm

X|+〉

ρ
(d)

Figure 4.2: A quantum network to encode the correlation between the outcomes

of measurements {Sk}k=1...m on a d-dimensional system, in the phase of a probe

qubit state. Repeating this procedure for the same preparation ρ and averaging

the outcome of the measurement on the probe qubit gives the ensemble average

〈S1S2 · · ·Sm〉ρ. Alternatively, for an ensemble of quantum systems initially prepared

according to ρ, on which operations are applied in parallel to the individual systems,

an ensemble measurement readily produces 〈S1S2 · · ·Sm〉ρ.

and

p(−1) =tra+s

[
US(|+〉〈+| ⊗ ρ)U †S (|−〉〈−| ⊗ 1ld)

]

=trs
[
〈−|(1l2 ⊗ P+ + Z ⊗ P−)(|+〉〈+| ⊗ ρ)(...)†

∣∣−〉]
=〈−|Z|+〉〈+|Z|−〉 trs [P−ρP−]

=trs [P−ρ ] ,

(4.6)

and the ensemble average

〈X ⊗ 1ld〉 = +p(+1)− p(−1)

= trs [P+ ρ ]− trs [P− ρ ]

= trs [Sρ ]

= 〈S〉ρ .

(4.7)

Thus, to measure the ensemble average of the correlation between a set of coob-

servables, one prepares a probe qubit in the +1 eigenstate of X, and the system

according to ρ. As shown in Figure 4.2, one then applies the unitaries Sk in succes-

sion to the system, controlled on the state of the probe qubit. Since, by definition,

all Sk mutually commute, then the order of their application has no bearing on the

measurement outcome. Repeating this procedure, and averaging the outcome of

the measurement on the probe system produces the correlation between this set of

observables.

Alternatively, one could prepare an ensemble of systems according to ρ; apply

the transformations US in parallel to each member of the ensemble; and perform
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a bulk ensemble measurement to estimate 〈π{Sk}〉ρ. This alleviates the need for

isolation of single quantum systems, and the repeated application of single shot,

projective measurement.

Since inequality (4.3) is valid for any preparation ρ, then one is free to choose

to prepare the system according to the maximally mixed state. In which case, only

one qubit –the probe system– is not maximally mixed. This corresponds to the

model of computation known as Deterministic Quantum Computation with one

qubit (DQC1) [KL98].

4.1.4 Fair Sampling

Suppose the measurement process on the probe qubit was ε-efficient, i.e. returning a

faithful answer ε fraction of the time, and otherwise a uniformly distributed random

outcome. The probabilities p(±1) of obtaining outcomes ±1 will be modified to

p(±1) = 1−ε
2

+ ε trs [P±ρ ] , (4.8)

and the ensemble average to

〈X ⊗ 1ld〉 = ε 〈S〉ρ . (4.9)

One can then estimate the expectation value 〈S〉ρ under an assumption of fair

sampling and knowing the value of ε, which can be established from ε〈1l〉ρ.
This model is equivalent to one where the probe system is initially in the mixed

state (1− ε)1l2
2

+ ε|+〉〈+|, provided the reduced dynamics on the probe qubit, from

preparation to measurement, is represented by a unital map; i.e. a map that

preserves the totally mixed state. To see this, suppose we prepare the probe qubit

in some state ρa and then apply some transformation to the composite system,

whose reduced dynamics on the probe qubit is described by a unital linear map Λ.

Using equation (4.8), an ε-efficient measurement of X = |+〉〈+| − |−〉〈−| has two

possible outcomes ±1 with probabilities

p(±1) = 1−ε
2

+ ε tr [ |±〉〈±| Λ(ρa) ]

= 1−ε
2

tr [ |±〉〈±| ] + ε tr [ |±〉〈±| Λ(ρa) ]

= 1−ε
2

tr [ |±〉〈±| Λ(1l2) ] + ε tr [ |±〉〈±| Λ(ρa) ]

= tr
[
|±〉〈±| Λ

(
(1− ε)1l2

2
+ ε ρa

) ]
,

(4.10)

which are precisely the statistics one obtains in case the probe qubit is initially in

the state (1− ε)1l2
2

+ ε ρa, and the measurement process is faithful.
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4.1.5 Experimental Implementation and Results

We implement the algorithm described in Section 4.1.3 to perform an experimental

measurement of the correlations as described in inequality (4.3) for the observables

listed in Table 4.1. Figure 4.3 shows the six experiments required to estimate the

six terms in (4.3). The key point being that the pulse sequence implementing the

measurement of some observable is the same whether it is being measured with the

coobservables listed in its row or column.

(r1) (c1)
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Z Z

Z

Xρǫ

1
2

1
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X X
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Xρǫ

1
2

1
2

(r2) (c2)

X

X

X

X

Xρǫ

1
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1
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Z Z
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1
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Y
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Xρǫ
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Y

Xρǫ
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2
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Figure 4.3: The quantum networks for the six experiments to estimate β as given

in (4.3). The ensemble is initially prepared according to ρε ⊗ 1l2
2
⊗ 1l2

2
, where ρε =

(1− ε)1l2
2

+ ε|+〉〈+|, and 1l2
2

is the single-qubit maximally mixed state.
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kHz C1 C2 Cm

C1 6.380 0.297 0.780

C2 -0.025 -1.533 1.050

Cm 0.071 0.042 -5.650

Table 4.2: Malonic acid (C3H4O4) Hamiltonian parameters (all values in kHz). El-

ements along the diagonal represent chemical shifts with respect to the transmitter

frequency. Above the diagonal are dipolar coupling constants , and below are J

coupling constants. See Chapter 2 for details of system and Hamiltonian.

The experiment is implemented on the 3-qubit system described in Chapter 2.

The Hamiltonian in the particular orientation used in this experiment is shown in

Table 4.2, and is extracted from a precise fit of a, proton-decoupled, 13C spectrum.

The spectrum and the fit are shown in subfigure (a) of Figure 4.4.

The two spin-1
2

nuclei C1 and C2, constituting the system on which the mea-

surements are performed, are initially prepared according to the totally mixed

state. Cm, representing the probe qubit, is initially prepared according to ρε =

(1− ε)1l2
2

+ ε|+〉〈+|. Figure 4.4 shows the spectrum observed for the initial prepara-

tion, as well as the average of the spectra from the six experiments, representing the

six terms in β of inequality (4.3) with the appropriate signs. Fitting the observable

spectra, taking into consideration the effects of strong coupling, we estimate the

value of β to be 5.2± 0.1, in violation of inequality (4.3). The uncertainty on β is

propagated from the goodness-of-fit figure of merit ascribed to the spectral fitting

process.
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Figure 4.4: Summary of experimental results (solid lines) and the corresponding

spectral fits (dashed lines). Shown are (a) (in green) a proton-decoupled 13C spec-

trum following polarization-transfer from the abundant protons. The central peak

in each quintuplet is due to natural abundance 13C nuclei present in the crystal at

∼ 1%, and we denote them, from left to right, as C1, C2, and Cm (see Figure 2.1

for the labeling of the nuclei.) ; (b) (in blue) the spectrum produced by the initial

preparation procedure, ρε ⊗ 1l2
2
⊗ 1l2

2
, establishing a reference for ε; and (c) and (in

red) the sum of the six spectra corresponding to the six terms in β of inequality (4.3)

with the appropriate signs, scaled by 1
6

for ease of comparison with the reference.

Comparing the final spectrum (c) to the reference spectrum (b) produces a value

of β = 5.2± 0.1
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4.1.6 Simulating decoherence

Decoherence, as it is wont to do, causes deviations from the idealized closed-system

dynamics. To examine its effect, we numerically simulate the dynamics of a simple

model (shown in Figure 4.5) in which each ideal transformation is followed by an

error of a three-fold tensor product of single-qubit dephasing maps, Λ(ρ), given by

the operator sum representation

ρ→ Λ(ρ) =
∑

κ

AκρA
†
κ , (4.11)

where

A0 =


1 0

0
√

1− η


 , A1 =


1 0

0
√
η


 , (4.12)

and the parameter η = 1− exp (−t/T2) depends on the ratio of the pulse-length, t,

to an effective dephasing time, T2. Figure 4.5 shows that the dephasing of the probe

qubit is most critical in observing the effect. Using appropriate estimates [BMR+06]

of this dephasing time, one is able to largely explain the deviation of the experimen-

tal result from the prediction of quantum mechanics in ideal conditions, as shown

in Figure 4.6.

4.1.7 Summary

We have presented a protocol to directly measure correlations between measurement

outcomes, utilizing an ancillary (probe) two dimensional system, with the purpose

of testing quantum contextuality. Conveniently, it can be used directly on ensembles

of quantum systems, without the need for repeated projective measurement on

single systems. Additionally, it can be straightforwardly extended to test similar

inequalities on higher-dimensional systems. Our experimental results demonstrate

–under the assumption of fair sampling– that a three-qubit deterministic quantum

computer with one qubit reveals correlations between measurement outcomes that

cannot be explained by any NCHV theory.
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Figure 4.5: Numerical simulation results of a simple model of decoherence (inset)

showing the expected variation of β as a function of the ratio of the pulse-length, t,

to an effective dephasing time, T2. The different curves are for different simulations.

For example, the blue curve is for a simulation where only the second qubit was

affected by the dephasing map. And so on. The dashed line indicates the bound

on NCHV theories.
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Figure 4.6: Numerical simulation results of a simple model of decoherence (inset)

showing the expected variation of β as a function of the ratio of the pulse-length, t,

to an effective dephasing time, T2. The dashed lines indicate bounds on the expected

performance of the current experiment; for pulse length of 1.5ms, and effective

decoherence times of 2ms (∼ T ∗2 ) and 30ms (∼ intrinsic coherence times [BMR+06]),

the value of β is expected to be 1.1 and 5.3 respectively.
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Chapter 5

Conclusions and outlook

Quantum Information processing (QIP) has the potential to revolutionize informa-

tion processing by providing –for some problems– more efficient solutions than the

best known classical algorithms. The quest is on to examine if there is, in princi-

ple, any roadblocks to the realization of quantum information devices on a large

scale. All at the same while, a lot of effort is directed towards the improvement of

the fidelity of control of small systems, as well as interesting questions relating to

applications of small system quantum information processing.

Liquid state NMR has been one of the most successful implementations of QIP

to date; in terms of the quality of control, the size of the quantum system manip-

ulated, and the coherence times exhibited. However, it has also attracted certain

criticism, mainly due to the highly mixed nature of the states manipulated in that

architecture, and the inability to perform single shot measurement. The extension

of liquid state NMR ideas to the solid state promises to circumvent at least the

former of these problems. This is due to the ability to cool solid state systems to

low temperatures thereby decreasing the thermal energy available to the spins; the

observation of high nuclear polarization in solids after polarization transfer from

electrons; as well as the presence of fast relaxing spin baths in the form of dipolar

networks, which would facilitate a fresh supply of ancillas for quantum error correc-

tion. In addition, the survival of the stronger dipolar couplings in the solid state,

coupled with the long intrinsic coherence times lead to faster multiqubit gates and

lower error rates per gate due to decoherence.

The work in this thesis has promoted one particular device architecture that

employs the magnetic resonance of an ensemble of molecular nuclei in a single

crystal solid. We have shown that, in the strong coupling regime; we are able to

achieve high fidelity control of small systems; we are able to prepare pseudo-pure

states and improve their purity using heat-bath algorithmic cooling; we are able to

show practical advantage from using quantum error correction to protect against
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phase noise; and that the quality of control is sufficient to implement two rounds

of error correction.

Pertaining to quantum control, we have confirmed the intuition that, in practice,

tailoring pulses to have power and bandwidth limits that respect the resonant

circuit’s response enhances our ability to control the system. We have also observed

that classical feedback –even the most straight forward of approaches, in which an

antenna measures the driving fields in the vicinity of the sample– improves the

quality of control significantly.

The methods of control and characterization, as described in Chapter 2 of this

thesis, involve full simulations of the quantum dynamics over the entire Hilbert

space of the computational register, and therefore do not scale favourably. As we

move towards bigger systems, it is not clear whether this limitation can be overcome

in principle without altering the architecture. In practice, I suspect that a strongly

coupled network of eight spins or more is infeasible without improving the efficiency

of the current methods.

One possible direction for improvement is to use the quantum device itself to

simulate the evolution under given control fields. And, provided there is an efficient

way to measure how well the actuated evolution compares to a desired one (which is

currently not known to exist except if the desired evolution is the Identity) one can

imagine varying the controls intelligently to maximize that measure. This would

have the added benefit that the optimization of the control pulses is performed

in the same circumstances that would be present during their application in an

algorithm.

Another scheme, which has shown promise in liquid state NMR [RNL+08,

Rya09], involves decomposing the system into subsystems that capture the domi-

nant dynamics, and then simulating pairs of subsystems at a time to get rid of any

extraneous evolution. The success of such schemes is system dependent since the

coupling networks between the spins have to satisfy certain (physically reasonable)

constraints.

Yet another attractive idea takes advantage of highly symmetric geometric ar-

rangements of spins, e.g. in one dimensional chains [FXBJ07], and employs global

control to perform universal quantum information processing. This would circum-

vent the scalability problem of pulse-design altogether, but at the moment it is not

clear whether these schemes permit a fault tolerant implementation.

As for the promise of high polarization, we have taken a number of concrete

steps to demonstrate that the current level of control is sufficient to implement heat

bath algorithmic cooling fiducially for multiple rounds to incrementally increase the

polarization of one of the computationally active qubits (see Section E.1). For the

model of heat bath algorithmic cooling in which one spin is brought to contact
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with the spin bath at opportune times, one distinguishes two regimes – where

the heat bath spin polarization is much larger than or much smaller than 1
2n

. In

the former, low temperature regime, algorithmically, one can get very close to pure

states. On the other hand, in the high temperature regime, the maximum achievable

polarization is 2n−2 times the heat bath polarization.

In our experiments, with three qubits at room temperature, where the maxi-

mum achievable polarization of one qubit is twice that of the heat bath, we have

accumulated 1.7 times the heat bath polarization in multiple rounds of algorithmic

cooling. In these experiments, the carbon spins of Malonic acid formed the compu-

tational register, while the abundant protons served as the spin bath. The transfer

of polarization from one of the mythelene protons to one of the carbon spins con-

stituted the heath bath contact, and spin diffusion via the dipolar coupling of the

proton spins refreshed the heat bath between the contact operations.

In future experiments, we imagine using electron spins as the source of polar-

ization. The thermal bias of electron spins at cryogenic temperatures and typical

fields of a few Tesla is sufficient to place the experiments in the regime where it is

possible to boost the polarization of nuclear spins to approach unity. As it stands,

boosting the polarization in the high temperature regime is already of practical

importance as it reduces the time required to average the signal for good statistics.

It is perhaps appropriate at this point to mention that the practicality of signal

averaging is hindered mostly by long relaxation times of the polarization source,

which, in this case, is the proton bath.

In Chapter 3, we demonstrated the advantage of performing quantum error

correction to protect against phase errors –coherent, incoherent and decoherent–

that arise naturally in the solid-state NMR system. We have shown that this is

possible with the quality of control currently available. Moreover, we have shown

that two rounds are also possible with current control levels. In addition to existing

methods like decoupling and refocusing, this is a valuable tool in the fight against

decoherence.

For this program, the next major milestone on the road to truly useful quan-

tum information processing devices is to combine the techniques of quantum error

correction with algorithmic cooling, in the low temperature regime, perhaps in a

system with a few more distinguishable spins.

The lessons learnt from NMR as a testbed for ideas of quantum information

processing are already being applied in other implementations (e.g. superconduct-

ing qubits.) This work expands the region of feasibility of these ideas to include

the strong coupling regime.

Along the way, the current work implicitly affirms the stance that ideas from

Quantum Information Processing will help (directly and indirectly) shed some light
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on the fundamental questions of Physics.

In Section 4.1, the main question at hand is whether nature is fundamentally

contextual; that is to say, whether the outcome of some measurement depends

on the context in which it is measured. A number of recent results have tackled

this question in different settings, and herein we have addressed an important,

hitherto unexplored, piece of the puzzle; proposing and demonstrating a protocol

to experimentally test contextuality without recourse to the isolation of individual

quantum systems nor strong measurement.

Moreover, the work presented in this thesis adds an important contribution to

the crucial question of the source of speed up in quantum computing. Whilst it is

commonly assumed that entanglement is a key resource, the deterministic model of

quantum computation with one qubit (DQC1) is a computational model that shows

a quantum advantage where the role of entanglement is questioned. Demonstrating

that quantum contextuality can be revealed using a DQC1 model, as reported in

Section 4.1, stresses the role of the dynamics in providing this quantum speed up.
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Appendix A

Weak and strong coupling

In this appendix, we motivate the NMR spectrum observed for the physical system

described in Secition 2.3.2.

A.0.8 Hamiltonian

First, consider the internal-spin hamiltonian, Hjk, of two homonuclear spins with

chemical shift frequencies of νj and νk in the rotating frame, interacting via the

dipolar coupling given in Equation (2.9). The matrix representation of the Hamil-

tonian in the Zeeman bases is

Hjk = νjZj + νkZk + djk(2ZjZk −XjXk − YjYk)

=
1

2

(
νΣ+djk

ν∆−djk −djk
djk −ν∆−djk

−νΣ+djk

)
,

(A.1)

where νΣ = νj + νk and ν∆ = νj − νk. The eigenvalues of this hamiltonian are solu-

tions to the characteristic equation given by det(Hjk − λn1l) = 0. Two eigenvalues

are obvious,

λ 4
1

=
1

2
(±νΣ + djk) , (A.2)

corresponding to the eigenvectors:

|v4〉 =




1

0

0

0




, and |v1〉 =




0

0

0

1



. (A.3)
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Thus, the characteristic equation reduces to:

1

2

∣∣∣∣∣∣
ν∆ − djk − 2λ −djk
−djk −ν∆ − djk − 2λ

∣∣∣∣∣∣
= 0 , (A.4)

which is a quadratic equation, whose solutions are the other two eigenvalues:

λ 2
3

=
1

2

(
−djk ±

√
d2
jk + ν2

∆

)
. (A.5)

The eigenvectors, |v 2
3
〉, corresponding to λ 2

3
are the null spaces of Hjk − λ 2

3
1l.

Thus, we wish to solve:


0

0


 =

1

2


ν∆ − djk − (−djk ±

√
d2
jk + ν2

jk) −djk
−djk −ν∆ − djk − (−djk ±

√
d2
jk + ν2

jk)


 |v′2

3
〉

=
1

2


ν∆ ∓

√
d2
jk + ν2

jk) −djk
−djk −ν∆ ∓

√
d2
jk + ν2

jk)


 |v′2

3
〉 .

(A.6)

Making the substitution:

tanφ =
−djk
ν∆

(A.7)

reduces Equation (A.6) to:

0

0


 =

1

2

√
d2
jk + ν2

∆


cosφ∓ 1 sinφ

sinφ − cosφ∓ 1


 |v′2

3
〉

=
sinφ

2

√
d2
jk + ν2

∆




cosφ∓1
sinφ

1

1 − cosφ∓1
sinφ


 |v′2

3
〉

=
sinφ

2

√
d2
jk + ν2

∆



− tanφ/2
cotφ/2 1

1 − cotφ/2
tanφ/2


 |v′2

3
〉.

(A.8)

Therefore, the eigenvectors, |v 2
3
〉, are:

|v2〉 =




0

cos φ
2

sin φ
2

0




, and |v3〉 =




0

− sin φ
2

cos φ
2

0



. (A.9)
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A.0.9 Spectra

The observable (-)single-quantum-transitions operator is given by:

Ij− + Ik− =


0 0

1 0


⊗


1 0

0 1


+


1 0

0 1


⊗


0 0

1 0


 =




0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0



, (A.10)

which has the following form in the eigenbasis of the Hamiltonian:

M− =
∑

n,m

〈vn|Ij− + Ik−|vm〉|νn〉〈νm|

=




1

cos φ
2

sin φ
2

− sin φ
2

cos φ
2

1







0 0 0 0

1 0 0 0

1 0 0 0

0 1 1 0







1

cos φ
2
− sin φ

2

sin φ
2

cos φ
2

1




=




0 cos φ
2

+ sin φ
2

cos φ
2
− sin φ

2
0

cos φ
2

+ sin φ
2

cos φ
2
− sin φ

2

0



,

(A.11)

giving only four transitions with non-zero amplitude, whose frequencies are given

by the difference between the eigenvalues labeling the transition:

σ 43
42

= λ4 − λ 3
2

=
1

2
(νΣ + djk)−

1

2

(
−djk ∓

√
d2
jk + ν2

∆

)

=
νΣ

2
+ djk ±

1

2

√
d2
jk + ν2

∆, and

σ 21
31

= λ 2
3
− λ1

=
1

2

(
−djk ±

√
d2
jk + ν2

∆

)
− 1

2
(−νΣ + djk)

=
νΣ

2
− djk ±

1

2

√
d2
jk + ν2

∆.

(A.12)

If the (-)single-quantum-coherences are equally excited, say by tipping the ther-

mal polarization along the x-direction, then the observed signal will have four peaks,
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with intensities

s 42,21
43,31

= (cos
φ

2
± sin

φ

2
)2

= 1± 2 cos
φ

2
sin

φ

2

= 1∓ djk√
d2
jk + ν2

∆

.

(A.13)

Perhaps this is a good spot to make the following remark. It might seem from

Eq. (A.13) that one can extract the sign of the coupling from the peak heights. Alas,

Eq. (A.12) shows that when the coupling switches sign, so do the peaks’ relative

positions, resulting in the outer peak always having higher intensity regardless of

the sign of the coupling.

For non-interacting spins, i.e. for djk = 0, we recover the two peaks –with equal

intensity– at the chemical shift frequencies of the two spins:

σ 43,21
42,31

=
1

2
(νΣ ± ν∆) = ν j

k
. (A.14)

In the weak regime, djk << ν∆, the transition frequencies are:

σw43
21

= νj ± djk , and

σw42
31

= νk ± djk ,
(A.15)

and the corresponding peak heights are approximately

s 42,21
43,31

= 1∓ djk
ν∆

. (A.16)

Again, there is a doublet separated by 2djk but in the case of the strong coupling

there is a second order chemical shift. The correction term is:

σ 43,21
42,31
− σw43,21

42,31

=
νΣ

2
± 1

2

√
d2
jk + ν2

∆ − ν j
k

=
1
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∆
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− ν j

k
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
νΣ ± ν∆

√
d2
jk

ν2
∆

+ 1


− ν j

k

≈ 1

2

(
νΣ ± ν∆(

d2
jk

2ν2
∆

+ 1)

)
− ν j

k

≈ ±1

4

d2
jk

ν∆

,

(A.17)
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showing that the two doublets are “moving away” from each other. Figure A.1

illustrates this point visually. This shift is quite substantial (e.g. for ν∆ = 10kHz

and djk = 1kHz, shift≈ 1
40
djk = 25 Hz) and is therefore important to account for

when determining the system’s Hamiltonian.
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Figure A.1: Shown are the spectra of two spins interacting via a dipolar coupling

of strength of 250Hz, where their chemical shift difference is 1kHz (dashed blue)

and 10kHz (solid red.) The “tent” effect from strong coupling is apparent in the

differential peak heights. The bottom panel zooms in on the two leftmost peaks

to illustrate the second order shift due to the strong coupling – the two peaks

corresponding to the situation where the spins have only 1kHz apart are shifted

“outwards” towards higher frequency with respect to the weak regime situation.
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Extending the above treatment to 3 spins with different chemical shifts interact-

ing via the dipolar coupling, we find that the transitions of each spin will correspond

to a quartet of peaks centered about their respective chemical shift frequencies. If

the couplings vanish (i.e. non-interacting spins), we recover the three single peaks

at the positions of the chemical shifts.

For the crystal described in Chapter 2, the NMR spectrum is a linear com-

bination of the spectra described for the above two cases; the 13C triply-labeled

molecules would produce a spectrum with the 3 quartets, while the natural abun-

dance 13C nuclei, being dispersed in the crystal would most likely not have a 13C

nucleus as their neighbor on the same molecule, and therefore would produce the

3 singlets spectrum.
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Figure A.2: The contributions to the thermal spectrum from triply labeled and

natural abundance signals.
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Appendix B

Molecular Orientation: a software

package

The NMR Hamiltonian of a network of spins in the solid-state, as detailed in Chap-

ter 2, is anisotropic, with chemical shifts and dipolar couplings varying up to tens

of kHz over possible orientations. For small and medium sized unit cells, say con-

taining 5, 10 or 20 spins, the number of parameters characterizing the Hamiltonian

–in the absence of some simplifying symmetry, etc.– will increase dramatically.

This provides a need for a tool to visualize the Hamiltonian (parameters) as the

orientation varies.

In response, I have written an application with a graphical user interface (GUI)

that can be employed to various ends:

• Quickly surveying the possible Hamiltonians of prospective candidate sys-

tems.

• Locating an orientation with a favorable Hamiltonian for a particular demon-

stration or experiment.

• Simultaneously visualizing a large number of Hamiltonian parameters, as well

as tracking their changes.

• Quickly finding the Hamiltonian for given a particular orientation of the crys-

tal, in an intuitive way.

The application is cross-platform, as it is written in Python, employing the

graphical libraries PyQt4 and matplotlib, as well as numpy and scipy for numerics.

A screenshot of the GUI is shown in Figure B.1. The typical format of an input

file that contains the geometry is shown in Section B.2.
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B.1 Graphical User Interface

y

z

x

Figure B.1: Screen shot of the Graphical User Interface on Mac OS X 10.4. The

knobs allow the user to rotate the field, and the 3D panel shows the chosen param-

eters color coded per the shown colorbar. The color-maps and the limits can be

changed to reflect the choice of finer or coarser graduation. The southeast panel

can show statistical information in a number of options. The text panel (north-

east) shows precise computed values for the Hamiltonian parameters in the current

orientation for closer inspection. The particular information shown here is for the

dipolar couplings of a “unit-cell” of graphene, showing couplings between the cen-

ter Carbon nucleus and the nearest 12 Carbons. The geometry is imported from

(exported to) an ascii file as the one listed in Section B.2.
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B.2 Geometry file for graphene

Nuclei:
C10: C 0.0 (−4.92e−10,0,1.42e−10)
C11: C 0.0 (−2.46e−10,0,2.13e−10)
C08: C 0.0 (−2.46e−10,0,−7.1e−11)
C09: C 0.0 (−4.92e−10,0,0)
C12: C 0.0 (0,0,1.42e−10)
C00: C 0.0 (0,0,0)
C01: C 0.0 (2.46e−10,0,2.13e−10)
C02: C 0.0 (4.92e−10,0,1.42e−10)
C03: C 0.0 (4.92e−10,0,0)
C04: C 0.0 (2.46e−10,0,−7.1e−11)
C05: C 0.0 (2.46e−10,0,−2.13e−10)
C06: C 0.0 (0,0,−2.84e−10)
C07: C 0.0 (−2.46e−10,0,−2.13e−10)

Dipolar Couplings:
C00 C01 − 31.5
C00 C02 + 21.8
C00 C03 + 31.9
C00 C04 + 174.3
C00 C05 − 31.5
C00 C06 − 331.9
C00 C07 − 31.5
C00 C08 + 174.3
C00 C09 + 31.9
C00 C10 + 21.8
C00 C11 − 31.5
C00 C12 − 2655.0

J Couplings:
C00 C04 + 0.0
C00 C08 + 0.0
C00 C12 + 0.0
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Appendix C

Coil Design

Motivating the need for good homogeneity of R.F. fields throughout the sample

is hardly necessary – It is important for the spins throughout the sample to see

approximately the same field, so they will act out the same evolution. Even though

in the current pulse design tools, robustness to slight variations in the R.F. fields

is built-in, it is taxing to the design resources and the range over which the pulses

can be made robust is obviously finite.

One way to ensure high homogeneity is to include it as a design criterion for

the coil that produces the field. Our zeroth order approach was to represent the

solenoid coil by a number of current rings and simulate the field in the imagined

sample space. An optimization of the loops’ locations and radii was performed over

the distribution of the fields in the sample, favouring highly modal distributions.

The code is a simple standalone MATLAB program that is quite flexible with the

design and optimization parameters (and is available upon request from the author

or his supervisor.) Following is a –well documented, and hence self-explanatory–

sample parameter file. For the particular chosen parameters, the solution is repre-

sented in Figures C.1 and C.2 of Section C.2.

C.1 Code

function input params()
%%% This function sets up the parameters needed for coil design

global mu I;
global ktw kLmin kLmax kRmin kRmax nl kpx kpr kWr kdBovB;
global bPlotHist bPlotField bPlotLoops;
global opts firstEst;

%constants
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mu=1.26e−6;%H/m
I=5;%Amps−change if you want;

%coil dimensions (in m)
ktw= .5e−3; %wire thickness (m)
kLmin= 5e−3; %minimum length of coil (m)
kLmax= 14e−3; %maximum

kRmin= 1.5e−3; %minimum inner radius
kRmax= 2.0e−3; %maximum; set same as min if no variability desired

nl=7; %number of loops

%remember:
%loop location.. lx=ax*dx+bx*dx.ˆ3+cx*dx.ˆ5;
%radius distribution.. Rx=ar+br*lx.ˆ2+cr*lx.ˆ4;

%Initial starting point
%[first nl/2 params are for location, rest are for radii ...]
firstEst=[6 3 1 0 0 0];

%sample dimensions (in m) this is the actual volume
%over which the magnetic field is calculated.
%−−radial−−
rmin = 0; %actually for r=0, the field−values sorta don't

%matter because we weight the values by r
rmax = 1.2e−3; %should be less than kRmin−ktw/2
rgrid= 0.025e−3; % radial grid spacing

%−−axial−−
xmin = −2e−3; % should be within the coil.. take it to be ¬ sample size
xmax = +2e−3; %+/− kLmin/2
xgrid= +.025e−3; % axial grid spacing

%−−grid−−
kpx=xmin:xgrid:xmax;
kpr=rmin:rgrid:rmax;

%weight by r
kWr=kpr'; %transpose
for (j=2:length(kpx))

kWr=[kWr kpr'];
end
kWr=kWr./sum(sum(kWr));

%opimization parameters
kdBovB=.01; % +/− percent of mean field to sum over

opts=optimset(optimset('fminsearch'), ...
'MaxFunEvals', 1e9, 'TolFun', 1.0e−5, 'TolX', 1.0e−1);

%plotting options (0: don't Plot, 1: Plot, 2:special option ;) )
bPlotField=1; %3−D plot of field
bPlotHist =2; %Plot of dN vs B
bPlotLoops=1; %Plot of loop distribution
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C.2 Results
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Figure C.1: Shown are the cross-sections of the wire loops (copper circles) and the

spatial distribution within the sample space of the magnitude of the field produced

by current passing through these loops. This solution was found starting from a

uniform distribution of the loops along the axis of the coil.
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Figure C.2: A histogram of the fraction of spins whose local field has the same

magnitude – 80% of the spins see a field magnitude within [0.99 Bmode, 1.01 Bmode].

At the moment, the gain expected from implementing the exact solution that

was found above does not warrant the requisite precision of the coil winding – not

that it is beyond today’s technology. That being said, the lesson learned from this

exercise is a heuristic understanding of which coil windings work better than others.

And, when these lessons were applied in the winding of the coils used in current

experiments, anecdotal improvements of the homogeneity were observed.

As the quality of the control improves, and every little contribution is counted,

revisiting these methods would be, I suspect, highly useful.
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Appendix D

Fidelity

D.1 State fidelity

For pure states, the fidelity is defined as

F (|ψ〉, |φ〉) := |〈ψ|φ〉|2 , (D.1)

which can be interpreted as, for some preparation |φ〉, the probability of measuring

|ψ〉 in a measurement which distinguishes it from the orthogonal states. If one of

the states is mixed, ρ =
∑

j pj|φj〉, we extend the above definition to mean the

probability of measuring |ψ〉 given that the source prepares |φj〉 with probabilities

pj, and the fidelity becomes

F (|ψ〉, ρ) :=
∑

j

pj|〈ψ|φj〉|2

=
∑

j

〈ψ|pj|φj〉〈φj||ψ〉

=〈ψ|ρ|ψ〉 .

(D.2)

This generalizes [Joz94] in the case of two mixed states to

F (ρ, σ) =

(
tr
√√

ρσ
√
ρ

)2

. (D.3)

D.2 Process fidelity

A natural way to compare two quantum processes, E and F , is the fidelity between

their outputs given the same input reference state |ψ〉,

F|ψ〉(E ,F) := F (E(ψ),F(ψ)) . (D.4)
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This is known as the gate fidelity between E and F with respect to the state |ψ〉.
Averaging over an ensemble ρ =

∑
i pi|ψi〉〈ψi|, gives the ensemble average fidelity,

F̄ρ(E ,F) :=
∑

i

piF (E(ψi),F(ψi)) . (D.5)

In the case where this ensemble is a uniform distribution of pure states, one obtains

the average fidelity

F̄ (E ,F) :=

∫
dµ(ψ)F (E(ψ),F(ψ)) , (D.6)

where dµ(ψ) is the unitarily invariant distribution of states known as the Fubini-

Study measure [EAŻ05].

In a setting where information is to be communicated across a channel, or

perhaps stored faithfully in a quantum memory, one might ask how well that channel

or quantum operation compare to the Identity channel. In which case, the gate

fidelity simplifies to F|ψ〉(E , 1l) = 〈ψ|E(ψ)|ψ〉, and the average fidelity to

F̄ (E) =

∫
dµ(ψ)〈ψ|E(ψ)|ψ〉 . (D.7)

An alternative measure [Sch96] is motivated by how well a quantum operation

preserves entanglement between the system of consideration, HS, and a reference

system, HR. The entanglement fidelity of a process E is defined for a mixed state

ρ in terms of its purification |ψ〉 over the space HR ⊗HS as

Fe(E , ρ) :=F|ψ〉(1lR ⊗ E , 1lR ⊗ 1lS)

=〈ψ|1l⊗ E(|ψ〉〈ψ|)|ψ〉 .
(D.8)

This expression can be written in terms of the reduced state and dynamics on

the system alone [Sch96]. If E is represented by the Kraus operator sum E(ρ) =∑
κAκρA

†
κ, then (D.8) has the form

Fe(E , ρ) =
1

d2

∑

κ

|tr(ρAκ)|2 , (D.9)

where d is the dimension of HS. The term entanglement fidelity has come to refer

to the expression Fe(E , ρ) in the special case when ρ is taken to be the maximally

mixed state, and its purification is the maximally entangled state |Ω〉 = 1
d

∑
j |j〉|j〉,

Fe(E) := Fe(E , 1
d
1l) = 〈Ω|1l⊗ E(|Ω〉〈Ω|)|Ω〉 (D.10)

= 1
d2

∑

κ

|tr(Aκ)|2 . (D.11)
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This is also sometimes referred to as the channel fidelity ; and as it turns out [HHH99],

the channel fidelity, Fe(E), and the average fidelity, F̄ (E), are related by the simple

expression

F̄ (E) =
d · Fe(E) + 1

d+ 1
. (D.12)

Imagine you are given two unitary transformations – some Ug and an attempt

to mimic it Um. One way [FVH+02] to judge how well Um mimics Ug is to compute

the channel fidelity of a map that is composed of Ug followed by the reversal of Um,

using (D.11)

Fe(U
†
mUg) =

1

d2

∣∣tr(U †mUg)
∣∣2 = FHS(Um, Ug) . (D.13)

D.3 Estimating single qubit entanglement fidelity

in NMR

For a single qubit, evaluating the average fidelity reduces to [BOS+02] averaging

over the pure states {|0〉, |1〉, |±〉 = 1√
2
(|0〉 ± |1〉), | ± i〉 = 1√

2
(|0〉 ± i|1〉)}. Thus, we

write

F̄ (E) = 1
6

[
F|0〉 + F|1〉 + F|+〉 + F|−〉 + F|+i〉 + F|−i〉

]
, (D.14)

and, using Eq. (D.12),

Fe(E) = 1
2
(3F̄ (E)− 1)

= 1
4

[
F|0〉 + F|1〉 + F|+〉 + F|−〉 + F|+i〉 + F|−i〉

]
− 1

2
.

(D.15)

To experimentally estimate these terms, consider the following scheme. Say we

input the state |+〉〈+| = 1l+X
2

through the unital channel E , and parametrize the

output state as

E(1l+X
2

) = 1
2
(1l + pxxX + pxyY + pxzZ) , (D.16)

then –since E is unital, and above all linear– we must have

E(1l−X
2

) = 1
2
(1l− pxxX − pxyY − pxzZ) . (D.17)

In which case, the fidelities F|±〉 will evaluate to

F|±〉 = 〈±|E(|±〉〈±|)|±〉
= 1

4
tr[(1l±X)(1l± pxxX ± pxyY ± pxzZ)]

= 1
2
(1 + pxx) .

(D.18)
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However, in NMR we have access to pseudo pure states. Consider preparing
1−ε

2
1l + ε|±〉〈±| = 1

2
1l± ε

2
X, and applying E to get

E(1−ε
2

1l + ε|±〉〈±|) = 1−ε
2

1l + ε
2
(1l± pxxX ± pxyY ± pxzZ) . (D.19)

If we measure the polarization in X before and after the channel E , the fraction of

polarization surviving is given by

f|±〉 =
tr[1

2
X(1l± pxx ε2X ± pxy ε2Y ± pxz ε2Z)]

tr[1
2
X(1

2
1l± ε

2
X)]

= pxx ,

(D.20)

which we rename as fx. Substituting in Eqs. (D.18) and (D.15)

F|±〉 =
1

2
(1 + fx) , (D.21)

and

Fe(E) =
1

4
[1 + fx + fy + fz] . (D.22)

D.4 The entanglement fidelity of the depolariz-

ing channel

The depolarizing channel on a d-dimensional system is defined in terms of a single

parameter, p, as

Λ(ρ) = pρ+ (1− p)1l

d
, (D.23)

which, for a single qubit, can be seen as a shrinking, or a scaling, of the Bloch

sphere. First, we find an expression for the composition of depolarizing channels

by induction. Noting that

Λ2(ρ) : = Λ(Λ(ρ))

= pΛ(ρ) + (1− p)1l

d

= p2ρ+ p(1− p)1l

d
+ (1− p)1l

d

= p2ρ+ (1− p2)
1l

d
,

(D.24)

we write

Λn(ρ) = pnρ+ (1− pn)
1l

d
, (D.25)
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and evaluate

Λn+1(ρ) : = Λ(Λn(ρ))

= pΛn(ρ) + (1− p)1l

d

= pn+1ρ+ p(1− pn)
1l

d
+ (1− p)1l

d

= pn+1ρ+ (1− pn+1)
1l

d
.

(D.26)

That is to say, the decomposition of n identical deoplarizing channels is a depolar-

izing channel, whose parameter is the n-th power of the original channel.

The single qubit depolarizing channel can be written as

Λ1(ρ) = p 1lρ1l +
(1− p)

4
(XρX + Y ρY + ZρZ + 1lρ1l) , (D.27)

which is to say that Λn
1 can be described by the Kraus operators:

{Aκ}κ =

{√
1 + 3pn

2
1l,

√
1− pn

2
X,

√
1− pn

2
Y,

√
1− pn

2
Z

}
, (D.28)

and using Eq. (D.11), the entanglement fidelity is

Fe(Λ
n
1 ) = 1

4

∑

κ

|tr(Aκ)|2

=
1 + 3pn

4
.

(D.29)
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Appendix E

Other significant contributions

E.1 Heat-bath Algorithmic cooling

State-preparation of quantum bits in or near a known state poses a challenge to

the implementation of scalable quantum computation; a challenge that is espe-

cially highlighted in the case of ensemble implementations. Such preparation is

required in initializing a quantum computer for computation, and in dynamically

and continually supplying fresh qubits in a low-entropy state as ancillas for error

correction.

Remarkably, there exist implementation independent techniques that employ

quantum logic operations to obtain a subset of highly-polarized qubits from an

initial set of weakly-biased ones. The latest of these techniques, the partner pairing

algorithm (PPA) introduced by Schulman et al. makes use of a reset bit that can be

brought in thermal contact with a heat bath at appropriate times to pump entropy

out of the computational bits.

My contribution was to figure out the explicit quantum network needed to

implement the PPA on a three qubit system. I was also involved with pulse sequence

design.
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Experimental implementation of heat-bath
algorithmic cooling using solid-state
nuclear magnetic resonance
J. Baugh1, O. Moussa1, C. A. Ryan1, A. Nayak1,2,3 & R. Laflamme1,3

The counter-intuitive properties of quantum mechanics have the
potential to revolutionize information processing by enabling the
development of efficient algorithms with no known classical
counterparts1,2. Harnessing this power requires the development
of a set of building blocks3, one of which is a method to initialize
the set of quantum bits (qubits) to a known state. Additionally,
fresh ancillary qubits must be available during the course of
computation to achieve fault tolerance4–7. In any physical system
used to implement quantum computation, one must therefore be
able to selectively and dynamically remove entropy from the part
of the system that is to be mapped to qubits. One such method is
an ‘open-system’ cooling protocol in which a subset of qubits can
be brought into contact with an external system of large heat
capacity. Theoretical efforts8–10 have led to an implementation-
independent cooling procedure, namely heat-bath algorithmic
cooling. These efforts have culminated with the proposal of an
optimal algorithm, the partner-pairing algorithm, whichwas used
to compute the physical limits of heat-bath algorithmic cooling11.
Here we report the experimental realization of multi-step cooling
of a quantum system via heat-bath algorithmic cooling. The
experiment was carried out using nuclear magnetic resonance of
a solid-state ensemble three-qubit system. We demonstrate the
repeated repolarization of a particular qubit to an effective spin-
bath temperature, and alternating logical operations within the
three-qubit subspace to ultimately cool a second qubit below
this temperature. Demonstration of the control necessary for
these operations represents an important step forward in the
manipulation of solid-state nuclear magnetic resonance qubits.

Nuclear magnetic resonance (NMR)-based ensemble quantum
information processing (QIP) devices have provided excellent test
beds for controlling non-trivial numbers of qubits12–15. A solid-state
NMR QIP architecture builds on this success by incorporating the
essential features of the liquid-state devices while offering the
potential to reach unit polarization and thus control more qubits15,16.
In this architecture, the abundant nuclear spins with polarization P
form a large-heat-capacity spin-bath that can be either coupled to, or
decoupled from, a dilute, embedded ensemble of spin-labelled
isotopomers that comprise the qubit register. Bulk spin-cooling
procedures such as dynamic nuclear polarization are well known
and capable of reaching polarizations near unity15,17. This architec-
ture is one realization within a large class of possible solid-state QIP
systems in which coherently controlled qubits can be brought into
contact with an external system that behaves as a heat bath. The
principles and methods applied in solid-state NMR QIP will there-
fore apply to many other systems. An additional motivation is
development of control techniques that future quantum devices

will harness. For this experiment, we develop a novel technique to
implement the controlled qubit–bath interaction, and also report the
first application of strongly modulating pulses18 to solid-state NMR
for high-fidelity, coherent qubit control.

The three-qubit quantum information processor used here is
formed by the three spin-1/2 13C nuclei of isotopically labelled
malonic acid molecules, occupying a dilute fraction of lattice sites
in an otherwise unlabelled single crystal of malonic acid (unlabelled,
with the exception of naturally occurring 13C isotopes at the rate of
1.1%). The concentration of labelled molecules was 3.2%. Malonic
acid also contains abundant spin-1/2 1H nuclei, which comprise the
heat-bath. Figure 1 shows the 1H-decoupled, 13C-NMR spectrum for
the crystal (and crystal orientation) used in this work. The spectrum
shows the NMR absorption peaks of both the qubit spins (quartets)
and natural abundance 13C spins (singlets), the latter being incon-
sequential for QIP purposes. The table in Fig. 1 lists the parameters of
the ensemble qubit hamiltonian obtained from fitting the spectrum,
and also includes couplings involving the methylene protons calcu-
lated for this crystal orientation from the known crystal structure19.
Experiments were performed at room temperature at a static mag-
netic field strength of 7.1 T, where the thermal 1H polarization is
PH < 2:4£ 1025.

In this orientation, the methylene carbon Cm has a dipolar
coupling of 19 kHz to Hm1 of the methylene 1H pair, whereas no
other 13C-1H dipolar coupling in the system is larger than 2 kHz
(see Fig. 1 for atom nomenclature). Therefore, a spin-exchange
hamiltonian of the form

Hex ¼
j[C;k[H

X Djk

3

j j
zj

k
z þ j j

yj
k
y þ j j

xj
k
x

2
ð1Þ

that couples the two nuclear species will generate dynamics domi-
nated by the large Cm–Hm1 coupling at short times (the Djk are
13C–1H dipolar couplings, indices j,k run over 13C,1H nuclei,
respectively, and jab is the b-axis Pauli operator for spin a). Starting
from the natural coupling hamiltonian, Hnat ¼

j[C;k[H

P
Djkj

j
zj

k
z=2; we

applied a multiple-pulse ‘time-suspension’ sequence20 synchronously
to both 13C and 1H spins to create the effective spin-exchange
hamiltonian (in the toggling frame), to lowest order in the Magnus
expansion of the average hamiltonian21. Application of the sequence
for the Cm–Hm1 exchange period t ¼ 3/(4 £ 19 kHz) < 40 ms results
in an approximate swap gate (state exchange) between the Cm and
Hm1 spins. With an initial bulk 1H polarization PH, this procedure
yields a selective dynamic transfer of polarization P

0
¼ hPH to Cm,

where 0 # jhj# 1 and ideally jhj ¼ 1. We define the effective spin-
bath temperature to be that which corresponds to the experimentally
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obtained P
0

under this procedure, and refer to this transfer as a
refresh operation. We obtained P 0 < 0.83PH experimentally, and
found that repeated refresh operations showed no loss in efficiency
given at least a 6 ms delay for 1H–1H equilibration. However, we
observed a decay of PH as a function of the number of repetitions,
due to accumulated control errors, which lead to an identical loss in
the refresh polarization.

The experiment consists of the first six operations of the partner-
pairing algorithm (PPA) on three qubits: three refresh operations,
and three permutation gates that operate on the qubit register. This is
described in the quantum circuit diagram of Fig. 2. During the
register operations, the 1H polarization is first rotated into the
transverse plane, and then ‘spin-locked’ by a strong, phase-matched
radio frequency (r.f.) field that both preserves the bulk 1H polariza-
tion and decouples the 1H–13C dipolar interactions. As 1H–1H
dipolar interactions are merely scaled by a factor 21/2 under spin-
locking, Hm1 is allowed to equilibrate with the bulk 1H nuclei via spin
diffusion. This occurs on a timescale longer than the transverse
dephasing time (T2(Hm) < 100 ms), but much shorter than the spin–
lattice relaxation time TH

1 < 50 s
� �

of Hm1. Hence, Hm1 plays the role
of the fast-relaxing qubit described in the protocol of ref. 11. The first
two register operations are swap gates; the third is a three-bit
compression (3BC) gate8–10 that boosts the polarization of the first
qubit, C1, at the expense of the polarizations of the other two qubits.

Ideally, the protocol builds a uniform polarization on all three qubits
corresponding to the bath polarization (first five steps), then selec-
tively transfers as much entropy as possible from the first qubit to the
other two (last step). The last step (3BC) leads to a polarization boost
by a factor of 3/2 on the first qubit. Subsequently, the heated qubits
can be re-cooled to the spin-bath temperature, and the compression
step repeated, iteratively, until the asymptotic value of the first-bit
polarization is reached. This limiting polarization depends only on
the number of qubits and the bath polarization11, and is ideally
P(C1) ¼ 2P 0 for three qubits (for n qubits it is 2n22P 0 in the regime
P 0

,, 22n, and 1.0 in the regime P 0
.. 22n (refs 11, 22)). The first six

steps carried out here should yield a polarization of 1.5P 0 on C1,
assuming ideal operations.

The control operations performed here are quantum control
operations: state-independent unitary rotations in the Hilbert
space. However, it should be noted that the heat-bath algorithmic
cooling gates are all permutations that map computational basis
states to other computational basis states. Therefore, gate fidelities
were measured with respect to correlation with these known states,
rather than the manifold of generic quantum states. We took
advantage of this property to further optimize the control parameters
of the 13C gates (register operations) for the state-specific transfor-
mations of the protocol. These operations were carried out using
numerically optimized control sequences referred to as strongly
modulating pulses18. Such pulses drive the system strongly at all
times, such that the average r.f. amplitude is comparable to, or greater
than, the magnitude of the internal hamiltonian. This allows inhomo-
geneities in the ensemble qubit hamiltonian to be efficiently refocused,
so that ensemble coherence is better maintained throughout the gate
operations.

In this set of experiments, the 13C qubit spins are initialized to
infinite temperature (a preceding broadband 13C p/2 excitation pulse
is followed by a dephasing period in which 1H dipolar fields
effectively dephase the 13C polarization). Following the fifth step,

Figure 1 | Characteristics of the dilute 3-13C malonic acid spin system.
Bottom, 1H-decoupled, 13C spectrumnear the [010] orientationwith respect
to the static magnetic field. The blue-dashed line is the experimental NMR
absorption spectrum, and the solid red line is a fit. Multiplet assignments are
indicated by the labels C1, C2 and Cm. The central peaks in each multiplet
correspond to natural abundance 13C in the sample, which are
inconsequential for QIP purposes. The peak height differences in the 3-13C
molecule peaks indicate the strong coupling regime, that is, the 13C–13C
intramolecular dipolar couplings are significant compared to the relative
chemical shifts. Top, table showing the 13C rotating-frame hamiltonian
parameters (chemical shifts along diagonal; dipolar coupling strengths
off-diagonal; all values in kHz) obtained from the spectral fit. It also includes
calculated dipolar couplings involving the methylene protons based on the
atomic coordinates19 and the crystal orientation obtained from the spectral
fit.

Figure 2 | Schematic quantum circuit diagram of the implemented
protocol. Time flows from left to right. The three-bit compression (3BC)
gate is shown here decomposed as control-not gates and a control-control-
not (Toffoli) gate. The gate sequence corresponds to the first six steps of the
partner-pairing algorithm11 on three qubits. The input state is a collective
polarization PH of the bulk 1H. The refresh operation is approximately 40 ms
in duration, whereas the register operations are between 0.7 and 1.3ms in
duration. Thermal contact takes place during 1H spin-locking pulses that
begin just before the register operations, and extend an additional 12ms
after each operation. Hm1 can be thought of as an additional ‘special
purpose’ qubit in this experiment; despite non-selective 1H control (due to
bulk hydrogenation), the refresh and thermal contact operations could be
performed using collective 1H control. Thus, Hm1 serves as a fast-relaxing
‘qubit’ and the bulk 1H-bath as a thermal bath of large heat capacity.
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polarizations (in units of P
0
) of 0.88, 0.83 and 0.76 (^0.03) are built

up on C1, C2 and Cm, respectively. The final 3BC operation yields
P(C1)/P

0
¼ 1.22 ^ 0.03, an increase of 48% compared to the average

polarization (0.82) following step five. Despite control imperfections
that effectively heat the qubits at each step, we are able to cool the C1

qubit ensemble well below the effective 1H spin-bath temperature.
The results are summarized in Fig. 3; in Fig. 3a are shown the

spectral intensities corresponding to 13C spin polarizations following
each of the six steps, and in Fig. 3b the integrated intensities are
graphed in comparison with the ideal values. We note that the overall
fidelity of the experiment, F ¼ 1.22/1.50 ¼ 0.81, implies an error per
step of 3.7%. This error rate is only about a factor of two larger than
the average error per two-qubit gate obtained in a benchmark liquid-
state NMR QIP experiment12. Furthermore, the state-correlation
fidelity of the 3BC gate over the polarizations on all three qubits is
0.96 ^ 0.03. From Fig. 3b, it can be seen that the fidelity of the refresh
operation drops off roughly quadratically in the number of steps; this
is consistent with the loss of bulk 1H polarization due to pulse
imperfections both in the multiple-pulse refresh operations and in
the spin-locking sequence. As the broadband pulses have been
optimized for flip-angle in these sequences, we suspect that the
remaining errors are mainly due to switching transients that occur in
the tuned r.f. circuitry of the NMR probe head, and to a lesser extent
off-resonance and finite pulse-width effects that modify the average
hamiltonian20. Similar effects lead to imperfect fidelity of the 13C
control. With suitable improvements to the resonant circuit response

and by incorporating numerical optimization of the multiple-pulse
refresh operations, we expect that several iterations of the protocol
could be carried out and that the limiting polarization of 2P

0
could be

approached in this system. The same methodologies should also be
applicable in larger qubit systems with similar architecture. For a six-
qubit system using the PPA, a bath polarization P 0

. 0.2 would be
sufficient, in principle, to reach a pure state on one qubit22. Such bulk
nuclear polarizations are well within reach via well-known dynamic
nuclear polarization techniques17; for example, unpaired electron
spins at defects (g-factor ¼ 2) in a field of 3.4 T and at temperature
4.2 K are polarized to 0.5.

This work demonstrates that solid-state NMR QIP devices could
be used to implement active error correction. Given a bath polariza-
tion near unity, the refresh operation implemented here would
constitute the dynamic resetting of a chosen qubit. This would
allow a new NMR-based test bed for the ideas of quantum error
correction and for controlled open-system quantum dynamics in the
regime of high state purity and up to approximately 20 qubits.

METHODS
NMR experiments were carried out at room temperature on a Bruker Avance
solid-state spectrometer operating at a field of 7.1 T, and a purpose-built dual
channel r.f. probe. The sample coil had an inner diameter of 3 mm, and the
employed p/2 broadband pulse lengths were 1.25 ms and 0.75 ms for 13C and 1H,
respectively. The sample was a 4 £ 1.5 £ 1.5 mm3 single crystal of malonic acid
grown from aqueous solution with a 3.2% molecular fraction of 3-13C labelled
molecules. Spectra were obtained by signal averaging for 80 scans. The proton
spin–lattice relaxation time was TH

1 ¼ 50 s; so the delay between scans was set
to 6TH

1 ¼ 300 s: The average 13C free-induction dephasing rate (with 1H
decoupling) was 1=T*2 ¼ ð2 msÞ21 in our sample. This rate is dominated by
the ensemble dispersion of chemical shifts, much of which is effectively removed
by the control operations. Design of the strongly modulating 13C pulses followed
very closely the methodology described in ref. 18, and penalty functions were
adjusted to favour average r.f. amplitudes comparable to or greater than the
magnitude of the 13C rotating-frame hamiltonian. These pulses were optimized
and simulated over a five-point distribution of r.f. amplitude corresponding to
the measured distribution over the spin ensemble (j ¼ 6.2% in r.f. amplitude).
The ‘time-suspension’ sequence applied synchronously to 13C and 1H was a
12-pulse subsequence of the Cory 48-pulse sequence20. The delays between
pulses were adjusted so that the total length of the sequence was 40ms. 1H spin-
locking/decoupling was carried out at an r.f. amplitude of 250 kHz. The spectra
in Fig. 3 were obtained by applying a p/2 broadband pulse to read out the spin
polarizations. The absolute value of the refresh polarization P 0 was determined
by comparing the initial refresh polarization on Cm and the thermal equilibrium
13C polarization PC measured in a separate experiment. These yield the ratio of
P 0 to PC, and P 0 to PH using the fact that PH ¼ 3.98PC.
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We experimentally demonstrate multiple rounds of heat-bath algorithmic cooling in a 3 qubit solid-state
nuclear magnetic resonance quantum information processor. By pumping entropy into a heat bath, we are
able to surpass the closed system limit of the Shannon bound and purify a single qubit to 1.69 times the
heat-bath polarization. The algorithm combines both high fidelity coherent control and a deliberate
interaction with the environment. Given this level of quantum control in systems with larger reset
polarizations, nearly pure qubits should be achievable.

DOI: 10.1103/PhysRevLett.100.140501 PACS numbers: 03.67.Lx, 05.70.�a, 76.60.�k

Using quantum mechanics to process information prom-
ises the possibility to dramatically speed up certain com-
putations and simulations [1]. Many experimental paths are
being pursued in the goal of coherently manipulating quan-
tum systems [2]. The standard circuit based model has
certain experimental criteria [3], one of which is the ability
to initialize pure fiducial quantum states. This is needed not
only to create the initial state for many quantum algo-
rithms, but it is also necessary to have pure qubits on de-
mand throughout the computation in order to compute
fault-tolerantly in the presence of errors [4]. However,
many physical implementations are able to initialize only
mixed states with a certain bias towards the desired state.
In these cases it will almost certainly be necessary to run
some protocol to purify the qubits. Aside from quantum in-
formation purposes, the ability to increase the bias of nu-
clear spins is fundamentally important in nuclear magnetic
resonance (NMR) where small signal to noise ratios are
usually overcome with signal averaging. A boost in the
initial bias by a factor b would reduce the experiment time
by b2.

A potential solution is algorithmic cooling which is
essentially classical and based on early work from
von Neumann [5]. If the bits start with some bias �, so
the probability of being in the state 0 or spin up is P" �

1��
2

and P# �
1��

2 , then the application of a logic gate can
compress the uncertainty into some fraction of the qubits
and increase the bias on the rest, cooling them below their
thermal polarization. Using these ideas it was shown that
by starting with a sufficient number of qubits it is possible
to initialize a small number of qubits to a fiducial state with
near certainty [6,7]. However, for the starting biases typical
of room temperature NMR, that sufficient number is an
impractically large number; e.g., to purify only one qubit
requires �1012 spins. In a closed system, the compression
step is limited by the Shannon bound (the total entropy of
the system is conserved) and usually the Sorensen bound
[8] (unitary transformations) as well. As a relevant ex-
ample, with three qubits, each starting with the same
polarization �, it is not possible to amplify the bias of
one qubit to more than 1:5�.

If we consider an open system, and allow the ability to
pump entropy through a qubit reset step, then we can
surpass the Shannon bound. Every compression step cools
some subset of qubits and heats up the remainder of the
qubits above the heat-bath temperature. If these heated
qubits are cooled back to the heat-bath temperature, the
total entropy of the qubit system has decreased. The cool-
ing algorithm then consists of alternating rounds of cooling
and compression [9–12]. Recently Schulman et al. [13]
have shown an optimal algorithm, the partner pairing
algorithm (PPA), for the scenario of having one special
purpose reset qubit. They also showed a crucially impor-
tant threshold: given n qubits and a heat-bath bias of ��
2�n then it is possible to almost perfectly purify the system
with resources growing polynomially in n; whereas, if ��
2�n, the maximum bias achievable on one qubit is �2n�2

[14]. A similar system with differential relaxation rates has
been considered for error correction purposes and could
also be used for purification [15]. Several parts of the
cooling algorithms, including both the compression step
[16] and the reset [17], have been experimentally demon-
strated using NMR quantum information processors (QIP).
These were combined by Baugh et al. [18] to show one
round of cooling three qubits and the compression step.
However, sufficient control was lacking to demonstrate
multiple rounds of cooling and compression. Here, we
present experimental results showing multiple rounds of
resetting and compression steps allowing us to go beyond
the Shannon bound for the first time.

NMR offers one of the most advanced implementations
of a QIP with high fidelity control and several qubits [19].
The qubits are nuclear spins in a bulk ensemble sample
where many, ideally identical, copies of the processor are
manipulated in parallel. Readout consists of measuring the
expectation value of operators averaged over the sample. A
large static magnetic field provides the quantization axis
and for spin 1=2 nuclei, two Zeeman energy levels. The
majority of previous work in NMR QIP has focused on
liquid state systems that have a simple Hamiltonian and
good coherence properties. Solid-state systems are more
difficult to control in practice but offer intrinsically longer
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coherence times, the ability to pump entropy out of the
system of interest into a spin bath, and the potential for
much higher initial polarizations. The specific system used
here is a three qubit processor molecule, malonic acid [20].
The sample is a macroscopic single crystal, where a small
fraction (�3%) of the molecules are triply labeled with 13C
to form the processor molecules. The 100% abundant
protons in the crystal form the heat bath. A proton-
decoupled 13C spectrum is shown in Fig. 1. An accurate
natural Hamiltonian is necessary for high fidelity control
and is obtained from precise spectral fitting. The spectrum
is simulated from the evolution of the natural Hamiltonian,
and the Hamiltonian parameters (chemical shifts, dipolar
couplings, and the much weaker J couplings, which are
usually ignored in the solid state) are then varied to opti-
mize the fit through a least squares minimization. The
control pulses are designed to be robust to the large uncer-
tainty (�150 Hz) in chemical shift and are fortuitously
robust to the much smaller uncertainties (<10 Hz) in the
coupling constants.

The experiment consisted of four rounds of cooling and
compression. The quantum circuit implemented is shown
in Fig. 2. The carbon register is initialized to infinite
temperature by dephasing the thermal polarization. The
bulk 1H polarization was then rotated into the plane and
held with a rf spin-locking pulse. Selective transfer of the
polarization from Hm1;2 to Cm served as the refresh step
(see below). During the spin-locking periods, which also
serve to decouple the protons during the logic gates, the
proton dipolar coupling network allows for spin diffusion.
Thus, Hm1;2 are cooled by the rest of the proton bath and
return to the heat-bath temperature prior to the next refresh
step. The polarization on Cm is swapped to C1 or C2 with a
carbon control sequence. Once the heat-bath polarization is
built up on all three spins, the polarization is then com-
pressed onto C2. C2 has the smallest proton-carbon cou-
pling and so is least affected by errors due to incomplete
decoupling and imperfect refresh steps. Ideally, this first
compression step should boost the polarization of C2 to
1:5� the heat-bath polarization (end of step 1 in Fig. 2).
Subsequent steps involve returning Cm and C1 to the heat-
bath temperature and repeating the compression step. In
this limit of the heat-bath polarization �� 2�n, the polar-
ization on C2 will asymptotically approach 2� [14].

The refresh step is achieved by selectively transferring
polarization from the methylene protons Hm1;2 to the ad-
jacent carbon Cm. Heteronuclear polarization transfer can
be achieved through multiple pulse techniques or cross
polarization (CP); we found CP better preserved the heat-
bath polarization. Radio frequency fields drive two spin
species at the same nutation frequency (Hartman-Hahn
matching condition) which allows them to exchange po-
larization and their spin temperatures to equalize. During
initial contact the polarization may coherently oscillate
between strongly coupled proton and carbon spins [21]
because, for the relevant input states, the CP condition
gives an exchange Hamiltonian. Thus, a very short CP
pulse can selectively swap the polarization from Hm1=m2

to Cm while negligibly affecting the much more weakly
coupled C1 and C2. When a refresh step was required, the
proton spin-locking power was smoothly reduced over
10 �s to the Hartman-Hahn matching condition for
25 �s and then smoothly returned to high power.
Experimentally we found we could increase the polariza-
tion on Cm by 3:3� , similar to the enhancement from
conventional CP (the theoretical maximum is 3:98� ). It
should be noted that although CP is the most common
method for polarization enhancement of rare spins, it is
not the most efficient. In certain cases, adiabatic demag-
netization may be able to boost the polarization of the rare
spins above the heat-bath bias [22].

The carbon control pulses are optimal control sequences
implementing unitary quantum gates even though the PPA
requires only classical gates that permute the diagonal
elements of the density matrix. The pulses (see Fig. 2)
are numerically optimized using the GRAPE algorithm
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FIG. 1 (color online). The proton-decoupled 13C spectrum of
malonic acid in the orientation used in the experiments. The
experiments were performed in a static field of 7.1 T using a
purpose-built probe. Also shown is the molecule and a table of
the Hamiltonian parameters (kHz). Diagonal elements give
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Hamiltonian values are obtained from the spectral fit. The peak
heights give information about the relative strengths of the
dipolar and the indirect J couplings. The three central peaks of
each multiplet are from the natural abundance of 13C present in
the molecule at � 1%. Combining the fitting information with
crystal structure data from neutron scattering experiments [31]
gives the orientation of the molecule with respect to the static
magnetic field and from that the proton-carbon dipolar cou-
plings.
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[23]—starting from a random guess the pulse is iteratively
improved through a gradient ascent search. In bulk ensem-
bles there are inevitable distributions of control parameters
across the sample. In the current case these cause incoher-
ent loss (T
2 � 2 ms) at a much faster rate than the intrinsic
T2 � 100 ms [20]. In the present work the most important
distributions are the static magnetic field and the rf control
field. In order to obtain high experimental fidelities, it was
important to demand that the pulses apply the same unitary
gate across a range of static fields and pulsing powers. The
GRAPE pulses were numerically optimized to have a fidelity

(jtr�UygoalUsim	j
2=22n) of above 0.9975 averaged over a

distribution of�5% in rf amplitude and�150 Hz in static
field. Although the inhomogeneities here are specific to
ensemble systems, the utility of robust control will be
applicable in single quantum systems for miscalibration,
and uncertainty or slow drift in the Hamiltonian. The
pulses were corrected for nonlinearities in the pulse gen-
eration and transmission to the sample through the use of a
simple feedback circuit which measured the rf field at the
sample and corrected the pulse accordingly. The most
important element for achieving high fidelity control was
to ensure that the control fields were within the bandwidth
of the hardware. The finite bandwidth of the circuitry
produces pulse distortions at switching points [24]. A
solution is to use only smoothly varying control fields.
Although limiting the bandwidth of the optimal control
pulses may lead to longer than time-optimal pulses, inco-

herent sources of decoherence can still be refocused and
higher experimental fidelities result.

With these improvements in control we were able to
implement repeated rounds of cooling and compression.
The polarization is increased for up to four compression
steps as shown in Fig. 3. At that point, the polarization of
C2 is 1:69� which is well above the Shannon bound of
1:5�. Furthermore, we have built up a non-negligible po-
larization on the other two qubits of 0:84� and 0:79�
increasing the total information content [17] of the system
(see [25]). Our control is now limited by two factors.
During the carbon control sequences, the protons are de-
coupled by the spin-locking pulse. This is equivalent to cw
decoupling which gives poor decoupling bandwidth as a
function of the decoupling power (limited by hardware
constraints), particularly if the decoupled spins have strong
dipolar couplings as in this case. Unfortunately, more
efficient decoupling techniques such as SPINAL64 [26] do
not preserve the magnetization of the decoupled spins, a
necessity for this experiment. We are also limited by the
nonideality of the heat bath: the proton system is a finite
size and so every refresh step heats the bath. This amount is
roughly calculated as the ratio of the number of carbons to
protons. Given our 3% labeling (13C3H4O4) this is�0:5%.
Furthermore, there is relaxation during the spin-locking
pulses (T1 in the rotating frame, T1�) gradually warming
the heat bath during the experiment.

This experiment represents a step towards creating pure
qubits in systems where we have imperfect initialization.
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FIG. 2 (color online). The quantum circuit implemented (see text) with the ideal polarizations noted in terms of the heat-bath
polarization �. Each set of swap and compression gate is considered a step and the ideal polarization on the target qubit C2 should
increase as 1.5, 1.75, 1.88, 1.94 in steps 1 through 4. The refresh operations swap polarization from Hm1;2 to Cm with a short contact CP.
The thermal contact between Hm1;2 and the rest of the proton bath takes place during the spin-locking decoupling pulse for the duration
of the carbon register operations. The swap gates are 1.6 ms and the compression gate 2.2 ms. The compression gate is equivalent to a
permutation of the diagonal elements of the density matrix, and one possible implementation is shown decomposed as C-NOT-NOT and
Toffoli gates [14]; however, it was implemented as a single GRAPE pulse. The bottom trace shows the amplitude of the radio frequency
control fields for the pulse sequence. The inset shows in detail the two quadrature components of one of the GRAPE control pulses
which implements a unitary swap gate between qubits 1 and 3.
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We have demonstrated that with sufficient control multiple
rounds of cooling and compression can be achieved and the
optimal control applied here should be applicable in other
QIP systems. Future work will concentrate on starting with
a reset step that has a sufficiently high polarization. Once
errors are considered, perfectly pure qubits are no longer
possible. These experiments, together with our recent work
on error characterization [27], suggest an error per gate of
approximately 1%. As noted above, this is largely limited
by incomplete proton decoupling, a problem specific to this
system, and not the control techniques themselves or de-
coherence. Even with an error model of a depolarizing rate
of 1% per gate, simulations suggest that with 3=5 qubits,
close to pure qubits with polarizations above 97% are
possible with reset polarizations of only 87%=81%.
Complete plots of the above threshold scaling behavior
are available in Ref. [25]. These polarizations and number
of controllable qubits are within reach in a variety of
electron-nuclear systems [28,29]. For example, nitrogen
vacancy electronic centers in diamond can be optically
pumped to �80% [30], or the thermal bias of electron
spins (g � 2) at cryogenic temperatures and typical fields
of a few Tesla provides sufficient polarization.

C. R. would like to thank M. Ditty for his technical
expertise with the spectrometer. This work was funded
by NSERC, CFI, CIFAR, QuantumWorks, and DTO.
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FIG. 3 (color online). Table of the measured polarization (with
respect to the initial refresh step) of each spin after the com-
pression gates (steps 6, 10, 14, 18 in the PPA). All results are
�0:02. For the final compression step the heat-bath polarization
is no longer needed which allows a switch from the spin-locking
cw decoupling to the more efficient SPINAL64 [26] (without the
switch the enhancement is 1:67� ). The spectra show a com-
parison of the first refresh step (swapped to C2) and the final
signal after four compression steps. There is a clear boost of
signal on C2, and also substantial polarization on C1 and Cm. The
distortions in the spectrum evident for C1 and Cm are due to
residual natural abundance 13C signal.
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E.2 Symmetrized characterization of noisy quan-

tum processes

Fully characterizing quantum processes is a very daunting task as the number of

parameters describing a process grows doubly exponential. One is left to wonder

if it is worth it to go through the effort of acquiring all the information about a

process – to what end? If one wishes to extract a certain piece of information

about a process –like whether it can be described by a Markovian master equation,

or what the probabilities of one or two qubit errors are– then why not measure

it directly. This work about finding an efficient way to access relevant partial

information about a quantum process.

The idea was J.Emerson’s brainchild, and he came up with the first algorithm.

R.Laflamme adapted the algorithm to the NMR setting for the special case of two

qubits. My first contribution was to generalize the NMR version to an arbitrary

number of qubits, and figure out how to extract the relevant information from the

NMR experiments. I also helped in designing the test cases for the experimental

demonstration in liquid state and solid state. I analysed the data using a maximum

likelihood algorithm to extract the relevant information from the data.

I am also very proud of the figures in this paper – I designed and produced them

all save for Figure 2 in the supplementary material.
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verse order, as in this case, is the real essence of
the Heisenberg uncertainty principle. Besides
its fundamental importance, the experimental
implementation of such a sequence of basic
quantum operations is an essential tool for the
full-scale engineering of a quantum light state
optimized for a multitude of different tasks (15),
including robust quantum communication. As
any quantum operation, including non-Gaussian
operations, is composed of photon additions and

subtractions (i.e, it can be expressed as f ð%a; %a†Þ),
our experimental results constitute a step toward
the full quantum control of a field and the gen-
eration of highly entangled states (16).
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Symmetrized Characterization of
Noisy Quantum Processes
Joseph Emerson,1,2 Marcus Silva,2,3 Osama Moussa,2,3 Colm Ryan,2,3 Martin Laforest,2,3
Jonathan Baugh,2 David G. Cory,4 Raymond Laflamme2,3,5

A major goal of developing high-precision control of many-body quantum systems is to realize
their potential as quantum computers. A substantial obstacle to this is the extreme fragility of
quantum systems to WdecoherenceW from environmental noise and other control limitations.
Although quantum computation is possible if the noise affecting the quantum system satisfies
certain conditions, existing methods for noise characterization are intractable for present
multibody systems. We introduce a technique based on symmetrization that enables direct
experimental measurement of some key properties of the decoherence affecting a quantum system.
Our method reduces the number of experiments required from exponential to polynomial in the
number of subsystems. The technique is demonstrated for the optimization of control over nuclear
spins in the solid state.

Quantum information enables efficient
solutions to certain tasks that have no
known efficient solution in the classical
world, and it has reshaped our under-

standing of computational complexity. Harnessing
the advantages of the quantum world requires
the ability to robustly control quantum systems
and, in particular, counteract the noise and deco-

herence affecting any physical realization of quan-
tum information processors (QIPs). A pivotal step
in this direction came with the discovery of quan-
tum error correction codes (QECCs) (1, 2) and
the threshold theorem for fault-tolerant (FT) quan-
tum computation (3–6). To make use of quantum
error correction and produce fault-tolerant pro-
tocols, we need to understand the nature of the
noise affecting the system at hand. There is a
direct way to fully characterize the noise using a
procedure known as process tomography (7–9).
However, this procedure requires resources that
grow exponentially with the number of subsystems
(usually two-level systems called WqubitsW) and
is intractable for characterizing the multi-qubit
quantum systems that are presently realized

Fig. 4. Experimental WFs (corrected for detection inefficiency) for (A) the original thermal state; (B) the
photon-added-then-subtracted state; (C) the photon-subtracted-then-added state. (D) presents sections of
the above Wigner functions (black squares correspond to the thermal field; red circles and blue triangles
correspond to the photon-added-then-subtracted and the photon-subtracted-then-added states, respec-
tively), together with the corresponding theoretical predictions (solid curves) (2).

1Department of Applied Math, University of Waterloo,
Waterloo, ON N2L 3G1, Canada. 2Institute for Quantum
Computing, University of Waterloo, Waterloo, ON N2L 3G1,
Canada. 3Department of Physics and Astronomy, University
of Waterloo, Waterloo, ON N2L 3G1, Canada. 4Department of
Nuclear Science and Engineering, Massachusetts Institute of
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for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada.

www.sciencemag.org SCIENCE VOL 317 28 SEPTEMBER 2007 1893

REPORTS

 o
n 

M
ar

ch
 1

1,
 2

01
0 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

82



(10–12). We introduce a general symmetrization
method that allows for direct experimental char-
acterization of some physically relevant features
of the decoherence and apply it to develop an
efficient experimental protocol for measuring multi-
qubit correlations and memory effects in the noise.
Compared with existing methods (13), the pro-
tocol yields an exponential savings in the number
of experiments required to obtain such informa-
tion. In the context of applications, this infor-
mation enables optimization of error-correction
strategy and tests of some assumptions underlying
estimates of the FT threshold. Moreover, the
estimated parameters are immediately relevant
for optimizing experimental control methods.

Focusing on a system of n qubits, a complete
description of a general noise model L requires
O(24n) parameters. Clearly an appropriate
coarse-graining of this information is required;
the challenge is to identify efficient methods for
estimating the features of practical interest. The
method we propose is based on identifying a
symmetry associated with a property of interest,
and then operationally symmetrizing the noise
to yield an effective map ‾L, with a reduced

number of independent parameters reflecting
these properties (Fig. 1). This symmetrization
is achieved by conjugating the noise (Fig. 2)
with a unitary operator drawn randomly from the
relevant symmetry group and then averaging over
these random trials (14–18). We show below
that rigorous statistical bounds guarantee that the
number of experimental trials required is inde-
pendent of the dimension of the group. Hence,
our randomization method leads to efficient par-
tial characterization of the map L whenever the
group elements admit efficient circuit decom-
positions.

We apply this general idea to the important
problem of estimating the noise parameters that
determine the performance of a broad class of
QECCs and the applicability of certain assump-
tions underlying FT thresholds. In general, QECCs
protect quantum information only against cer-
tain types of noise. A distance-(2t + 1) code
refers to codes that correct all errors simulta-
neously, affecting up to t qubits. Hence, the
distance of a QECC determines which terms
in the noise will be corrected and which will
remain uncorrected. The latter contribute to
the overall failure probability. To estimate the
failure probability, many fault-tolerance theo-
rems assume that the noise is independent
from qubit to qubit or between blocks of
qubits. Another common assumption is that
the noise is memoryless and hence Markovian
in time. Our protocol enables measurements
of these noise correlations under a given ex-
perimental arrangement without the exponen-
tial overhead of process tomography. This
protocol is efficient also in the context of an
ensemble QIP with highly mixed states (19).

We start by expanding the noise operators in
the basis Pi ∈ Pn, consisting of n-fold tensor
product of the usual single-qubit Pauli operators

{1, X, Y, Z} satisfying the orthogonality relation
Tr[Pi Pj] = 2n dij. The Clifford group Cn is
defined as the normalizer of the Pauli group Pn:
it consists of all elements Ui of the unitary group
U(2n) satisfying UiPjUi

† ∈ Pn for every Pj ∈ Pn.
The protocol requires symmetrizing the channel
L → ‾L by averaging over trials in which the
channel is conjugated by the elements of C1
applied independently to each qubit (Fig. 2). An
average over conjugations is known as a WtwirlW
(20), and we call the above a C1⊗n-twirl.

Separating out terms according to their Pauli
weight w, where w ∈ {0,...,n} is the number of
nonidentity factors in Pl, letting the index nw ∈
{1, ..., ðnwÞ} count the number of distinct ways
that w nonidentity Pauli operators can be dis-
tributed over the n factor spaces, and the index
iw = {i1, ..., iw } with ij ∈ {1, 2, 3 } denote which
of the nonidentity Pauli operators occupies the
j th occupied site, we obtain (see SOM text)

LðrÞ ¼ ∑
n

w¼0
∑
n
w

� �

nw¼1
rw;nw∑

iw

Pw;nw;iw rPw;nw ;iw

ð1Þ
where the reduced parameters rw,nw are fixed
by L and pw = 3

w∑ðnwÞ
nw ¼ 1

rw,nw are the proba-
bilities of w simultaneous qubit errors in the
noise. Some intuition about how a C1⊗n

-twirl
simplifies the task of noise characterization is
obtained by analyzing the case of a single qubit
(SOM text).

To measure these probabilities, we probe ‾L
with input state |0〉 ≡ | 0〉⊗n, followed by a pro-
jective measurement of the output state in the
basis |l〉. This yields an n-bit string l ∈ {0, 1}n.
Let qw denote the probability that a random
subset of w bits of the binary string l has even
parity. This gives the eigenvalues of ‾L as cw ≡
〈
___
Z⊗w〉 = 2qw − 1, and we obtain pw′ = ∑wWw′,w

−1 cw,

(a) (b)

ΛΛ

Λ

Fig. 1. Schematic of coarse-graining by symmetriza-
tion. Averaging the noise L by twirling under a sym-
metry group yields an effective noise process that has
a reduced number of independent parameters. Distinct
symmetrization groups [represented by (a) red and (b)
blue] uniformize different subsets of parameters.

Table 1. Summary of experimental results. The first four sets of experiments
(three sets on the two-qubit liquid-state system and one on the three-qubit
solid-state system) were designed to characterize the performance of the

protocol under engineered noise. The final two sets demonstrate characteriza-
tion of the (unknown) natural noise affecting the quantum memory created by
multiple-pulse time-suspension sequences with different pulse spacings.

No. System Map description Kraus operators
(Ak)

k p0 p1 p2 p3

1 CHCI3 Engineered: p = [0,1,0]. 1ffiffi
2

p {Z1, Z2} 288 0.000+0.004 0.991+0.009−0.015 0.009+0.017−0.009 -
2 CHCI3 Engineered: p = [0,0,1]. {Z1 Z2} 288 0.001+0.006−0.001 0.004+0.011−0.004 0.996+0.004−0.011 -
3 CHCI3 Engineered: p = [14,

1
2,
1
4]. {exp[i p4(Z1 + Z2)]} 288 0.254+0.010−0.010 0.495+0.021−0.020 0.250+0.019−0.019 -

4 C3H4O4 Engineered: p = [0,1,0,0]. 1ffiffi
3

p {Z1, Z2, Z3} 432 0.01+0.01−0.01 0.99+0.01−0.03 0.01+0.02−0.01 0.00+0.01

5 C3H4O4 Natural Noise (i) unknown 432 0.44+0.01−0.02 0.45+0.03−0.03 0.10+0.04−0.08 0.01+0.03−0.01
6 C3H4O4 Natural Noise (ii) unknown 432 0.84+0.01−0.01 0.15+0.02−0.03 0.01+0.03−0.01 0.00+0.02

Fig. 2. Quantum circuit.
One experimental run
consists of a conjugation
of the noise process L.
The standard protocol
requires conjugation on-
ly by an element Ci,

whereas the ensemble protocol requires conjugating L also by a permutation ps of the qubits. The stan-
dard protocol requires only one input state | 0〉⊗n, whereas the ensemble protocol requires n distinct input
operators rw.

σπ Λ π

Λ

Λ
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where the matrix Ww′,w
−1 is a matrix of com-

binatorial factors (SOM text). If in each single-
shot experiment, the Clifford operators are
chosen uniformly at random, then with K = O
[log(2n)/d2] experiments we can estimate each
of the coefficients cw to precision d with con-
stant probability. All imperfections in the pro-
tocol contribute to the total probabilities of
error. The protocol can be made robust against
imperfections in the input state preparation,
measurement, and twirling by factoring out the
values cw(0) measured when the protocol is per-
formed without the noisy channel: cw → c̃w =
cw/cw(0).

The cw can be applied directly to test some
of the assumptions that affect estimates of the
fault-tolerance threshold (21, 22). In particular, a
noisy channel with an uncorrelated distribution
of error locations, but with arbitrary correlations
in the error type, is mapped under our symmetri-
zation to a channel that is a tensor product of n
single-qubit depolarizing channels. A channel
satisfying this property will exhibit the scaling
cw = c1

w. Hence, observed deviations from this
scaling imply a violation of the above assump-
tion. However, there are correlated error models
that also give rise to this scaling, so the converse
implication does not hold.

Furthermore, we can test for non-Markovian
properties by repeating the above scheme for
distinct time intervals mt with increasing m. If,
over the time scale t, the noise satisfies the

Markovian semigroup property Lt ° Lt = L2t

(23), then so will the twirled map‾Lt ° ‾Lt = ‾L2t.
Consequently, the coefficients cw(mt) measured
over the time-scalemt will satisfy cw(mt) = cw(t)

m.
Observed deviations from this scaling imply
non-Markovian effects in the untwirled noise.
However, again the converse does not hold;
consistency with this scaling does not guarantee
that the untwirled noise obeys the Markovian
semigroup property.

When applying {cw} to estimate {pw}, the
statistical uncertainty for pw grows exponentially
with w (SOM text). This still allows for charac-
terization of other important features of the noise.
Specifically, the probability p0 is directly related
to the entanglement fidelity of the channel, so
this protocol provides an exponential savings
over recently proposed methods for estimating
this single figure of merit (16, 24, 25). [For
another approach, see (17)]. Hence, by actually
implementing any given code, we can bound
the failure probability of that code with only
O[log(2n)/d2] experiments and without mak-
ing any theoretical assumptions about the noise.
Moreover, on physical grounds, we may expect
the noise to become independent between qubits
outside some fixed (but unknown) scale b, after
which the pw decreases exponentially with w.
The scale b can be determined efficiently with
O(nb) experiments.

Although a characterization of the twirled
channel is useful given the relevance of twirled

channels in some fault-tolerant protocols (22),
the failure probability of the twirled channel
gives an upper bound to the failure probability
of the original untwirled channel whenever the
performance of the code has some bound that is
invariant under the symmetry associated with
the twirl. This holds quite generally in the con-
text of the symmetry considered above because
the failure probability of a generic distance-(2t + 1)
code is bounded above by the total probability of
error terms with Pauli weight greater than t, and
this weight remains invariant under conjugation
by any Ci ∈ C1⊗n.

Our protocol is efficient also in the context
of an ensemble QIP (19). We prepare deviations
from the identity state of the form rw = Z⊗w ⊗
1⊗(n−w), with w ∈ {1, ... n}; hence, the (non-
scalable) preparation of pseudo-pure states is
avoided. As illustrated in Fig. 2, the ensemble pro-
tocol consists of conjugating the process L→ Li,s

with a randomly chosen pair (Ci,ps) in each run,
where ps is a random permutation of the qubits.
For input operator rw, the output is s

out
w,i,s = Li,s(rw).

Averaging the output operators soutw,i,s over i and s
returns the input operator scaled by cw.

We performed an implementation of the above
protocol on both a two-qubit (chloroform CHCl3)
liquid-state and a three-qubit (single-crystal
Malonic acid C3H4O4) solid-state nuclear
magnetic resonance QIP (26). The results of
these experiments are summarized in Table 1.
Statistical analysis for one liquid-state set is
shown in fig. S1 and for the final two solid-state
sets in Fig. 3. The final two sets of (solid-state)
experiments were performed to characterize the
unknown residual noise occurring under (i) one
cycle of a C48 pulse sequence (27) with 10 ms
pulse spacing, and (ii) two cycles of C48 with 5
ms pulse spacing. The C48 sequence is designed
to suppress the dynamics due to the system's
internal Hamiltonian and could be used, for
example, for quantum memory. The evolution
of the system under this pulse sequence can be
evaluated theoretically by calculating the Mag-
nus expansion (28) of the associated effective
Hamiltonian, under which the residual effects
appear as a sum of terms associated with the
Zeeman and dipolar parts of the Hamiltonian,
including cross terms. Roughly speaking, effec-
tive suppression of the kth term of the Hamil-
tonian takes places when gk tk << 1, where gk is
the strength of the term and t−1k is the rate at
which it is modulated by the pulse sequence.
Generally, shorter delays lead to improved per-
formance unless there is a competing process
at the shorter time scale. Although two repe-
titions of the sequence with the pulse spacing
of 5 ms has twice as many pulses as the single
sequence with the 10 ms spacing, the proba-
bilities of one-, two-, and three-body noise
terms all decrease substantially (Table 1).
However, the averaging under the 5 ms falls
short of ideal performance as a result of in-
complete (heteronuclear) decoupling of the
qubits (three carbon nuclei) from the envi-

Fig. 3. Results for pw from experiments 5 and 6 in Table 1. Shown are projections of the four-
dimensional likelihood function onto various probability planes. The asymmetry seen in some of the
confidence areas is a result of this projection. The results for one cycle with 10 ms pulse spacing
(experiment 5) are in red, and the results for two cycles with 5 ms spacing (experiment 6) are in blue.
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ronment (nearby hydrogen nuclei) (SOM text).
For both sequences, the noise coefficients cw do
not statistically deviate from the scaling implied
by uncorrelated errors (fig. S3), although, as
noted above, this does not guarantee that the
errors are uncorrelated.

Our method provides an efficient protocol
for the characterization of noise in contexts
where the target transformation is the identity
operator, for example, a quantum communica-
tion channel or quantum memory. However, the
protocol also provides an efficient means for
characterizing the noise under the action of a
nonidentity unitary transformation. One approach
is to decompose the unitary transformation
into a product of basic quantum gates drawn
from a universal gate set, where each gate in
the set acts on at most 2 qubits simultaneous-
ly. Hence, the noise map acting on all n qubits
associated with any two-qubit gate can be
determined by applying the above protocol to
other n−2 qubits while applying process
tomography to the two qubits in the quantum
gate. Another approach is to estimate the aver-
age error per gate for a sequence of m gates,
such that the composition gives the identity
operator. Such a sequence can be generated by
making use of the cyclic property Um = 1 of
any gate in a universal gate set or by choosing a
sequence of m−1 random gates followed by an

mth gate chosen such that the composition gives
the identity transformation.

References and Notes
1. P. W. Shor, Phys. Rev. A 52, R2493 (1995).
2. A. M. Steane, Phys. Rev. Lett. 77, 793 (1996).
3. P. W. Shor, Proceedings of the Symposium on the

Foundations of Computer Science, 56 (IEEE press, Los
Alamitos, California, 1996).

4. D. Aharonov, M. Ben-Or, Proceedings of the 29th Annual
ACM Symposium on the Theory of Computing, 176
(ACM Press, New York, 1996).

5. A. Y. Kitaev, Uspekhi Mat. Nauk. 52, 53 (1997).
6. E. Knill, R. Laflamme, W. Zurek, Science 279, 342

(1998).
7. I. Chuang, M. Nielsen, J. Mod. Opt. 44, 2455 (1997).
8. G. M. D'Ariano, P. Lo Presti, Phys. Rev. Lett. 86, 4195

(2001).
9. M. Mohseni, D. Lidar, Phys. Rev. Lett. 97, 170501

(2006).
10. H. Haffner et al., Nature 438, 643 (2005).
11. D. Leibfried et al., Nature 438, 639 (2005).
12. C. Negrevergne et al., Phys. Rev. Lett. 96, 170501

(2006).
13. A. Childs, I. Chuang, D. Leung, Phys. Rev. A 64, 012314

(2001).
14. J. Emerson, Y. Weinstein, M. Saraceno, S. Lloyd, D. Cory,

Science 302, 2098 (2003).
15. B. Levi, C. Lopez, J. Emerson, D. G. Cory, Phys. Rev. A 75,

022314 (2007).
16. J. Emerson, R. Alicki, K. Zyczkowski, J. Opt. B: Quantum

and Semiclassical Optics 7, S347 (2005).
17. C. Dankert, R. Cleve, J. Emerson, E. Livine,

quant-ph/0606161 (2006).
18. W. Dur, M. Hein, J. Cirac, H.-J. Briegel, Phys. Rev. A 72,

052326 (2005).

19. D. G. Cory et al., Fortschr. Phys. 48, 875 (2000).
20. C. Bennett, D. DiVincenzo, J. Smolin, W. Wootters, Phys.

Rev. A 54, 3824 (1996).
21. P. Aliferis, D. Gottesman, J. Preskill, Quant. Inf. Comp 6,

97 (2006).
22. E. Knill, Nature 434, 39 (2005).
23. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and

Applications, Lecture Notes in Physics 286, 12 (1987).
24. E. Fortunato et al., J. Chem. Phys. 116, 7599 (2002).
25. M. Nielson, Phys. Lett. A 303, 249 (2002).
26. Materials and methods are available as supporting

material on Science Online.
27. D. G. Cory, J. B. Miller, A. N. Garroway, J. Magn. Reson.

90, 205 (1990).
28. U. Haeberlen, Advances in Magnetic Resonance,

Ed. J. Waugh, Academic Press, New York (1976).
29. This work benefited from discussions with R. Blume-Kohout,

R. Cleve, M. Ditty, D. Gottesman, E. Knill, B. Levi, and
A. Nayak and was supported by the National Science
and Engineering Research Council of Canada (NSERC)
grants 250673 and 327778, Ontario Research
Development Challenge Fund (ORDCF) grant 3232301-05,
Army Research Office/Laboratory for Physical Sciences
(ARO/LPS) grant W911NF-05-1-0469, and Army
Research Office/Mathematics of Information
Technology and Complex Systems (ARO/MITACS) grant
W911NF-05-1-0298.

Supporting Online Material
www.sciencemag.org/cgi/content/full/317/5846/1893/DC1
Materials and Methods
SOM Text
Figs. S1 to S3
References

25 May 2007; accepted 29 August 2007
10.1126/science.1145699

Nuclei-Induced Frequency Focusing of
Electron Spin Coherence
A. Greilich,1* A. Shabaev,2,3* D. R. Yakovlev,1,4 Al. L. Efros,2† I. A. Yugova,1,5 D. Reuter,6
A. D. Wieck,6 M. Bayer1†

The hyperfine interaction of an electron with the nuclei is considered as the primary obstacle to
coherent control of the electron spin in semiconductor quantum dots. We show, however, that the
nuclei in singly charged quantum dots act constructively by focusing the electron spin precession about a
magnetic field into well-defined modes synchronized with a laser pulse protocol. In a dot with a
synchronized electron, the light-stimulated fluctuations of the hyperfine nuclear field acting on the
electron are suppressed. The information about electron spin precession is imprinted in the nuclei
and thereby can be stored for tens of minutes in darkness. The frequency focusing drives an electron
spin ensemble into dephasing-free subspaces with the potential to realize single frequency
precession of the entire ensemble.

The possibility of encoding quantum infor-
mation in the spins of quantum dot (QD)
electrons has attracted considerable at-

tention (1, 2). The spatial confinement protects
the spins against the primary relaxation mecha-
nisms in bulk, all of which arise from coupling of
spin and orbital momenta. However, the electron
hyperfine interaction with the lattice nuclei is en-
hanced by confinement, leading to spin deco-
herence and dephasing (3–10) and thus posing
severe difficulties for processing quantum infor-
mation. General schemes for suppressing deco-
herence have been discussed already (11). Electron
spin relaxation in QDs may be overcome by po-

larizing the nuclear spins (12, 13), but the high
degree of polarization required, close to 100%
(12), has not been achieved yet (14–16).

We find that the hyperfine interaction, rather
than being detrimental, can be used as a precision
tool by demonstrating that it modifies the con-
tinuous mode spectrum of the electron spin pre-
cession in a QD ensemble into a few discrete
modes. The information on this digital spectrum
can be stored in the nuclear spin system for tens
of minutes because of the long nuclear memory
times (17, 18).

In a QD ensemble, fast electron spin dephas-
ing arises not only from nuclear field fluctuations

but also from variations of the electron g factor,
leading to different spin precession frequencies.
The dephasing due to these unavoidable varia-
tions can be partly overcome by mode-locking
(19), which synchronizes the precession of spe-
cific electron spin modes in the ensemble with
the clocking rate of a periodic pulsed laser. Still, it
leaves a substantial fraction of dephased electron
spins, whose precession frequencies do not satisfy
themode locking conditions.We demonstrate that
the nuclear spin polarization adjusts the electron
spin precession frequency in each quantum dot
such that the whole ensemble becomes locked on
very few frequencies.

The experiments were done on an ensemble
of self-assembled (In,Ga)As/GaAs QDs (19, 20),
each dot containing on average a single electron
(21). The electron spin precession about a per-
pendicular magnetic field was studied by a pump-
probe Faraday rotation (FR) technique with ps
time resolution (22). Spin coherence is generated
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Materials and Methods

The two-qubit liquid-state experiments were performed on a sample made from 10mg of 13C labeled chloroform
(Cambridge Isotopes) dissolved in 0.51ml of deuterated acetone. The experiment was performed on a 700MHz Bruker
Avance spectrometer using a dual inverse cryoprobe. The pulse programs were optimized on a home-built pulse
sequence compiler which pre-simulates the pulses in an efficient pairwise manner and takes into account first order
phase and coupling errors during a pulse by modifications of the refocussing scheme and pulse phases [1]. The solid-
state experiments were performed on a single crystal of malonic acid which contained ≈7% triply labeled 13C molecules
[2]. The experiments were performed at room temperature with a home-built probe. Apart from an initial polarization
transfer, the protons were decoupled using the SPINAL64 sequence [3]. The required control fields that implemented
the unitary propagators and state-to-state transformations were found using the GRAPE optimal control method [4]
and made robust to inhomogeneities in both the r.f. and static fields. The implemented versions of the pulses were
corrected for non-linearities in the signal generation and amplification process through a pickup coil to measure the
r.f. field at the sample and a simple feedback loop.
The error probabilities for each experiment were calculated using a constrained maximum likelihood function. The

results of this analysis for one of the liquid-state experiments are shown in Fig. S1.

Supporting Text

Effect of Clifford Twirling on a Single Qubit

We can give some intuitive idea of how twirling leads to a reduction of the number of independent parameters by
considering the case of a noisy channel for a single qubit. To demonstrate the main idea most directly, we consider a
simple stochastic noise model of the form

Λ(ρ) = po1ρ1 + pxXρX + pyY ρY + pzZρZ

which has three independent parameters (where po+px+py+pz = 1). Under conjugation, the Clifford operators map
each non-identity Pauli operator to another Pauli operator [5]. For example, conjugation of the Pauli operators under
the Hadamard gate H, which is an element of the Clifford group, has the following effect: HXH† = HXH = Z,
HYH = −Y , and HZH = X. Hence the H-conjugated noise model takes the form

HΛ(HρH)H = po1ρ1 + pxZρZ + pyY ρY + pzXρX.

More generally, the 12 elements of the Clifford group for a single qubit divide into subsets of operators, where the
elements of each subset map each non-identity Pauli to one of the three possible non-identity Pauli’s. By averaging
over each possible conjugation (operationally defined by the circuit given in Fig. 2), each of the possible Pauli errors
becomes equiprobable, and the noise model transforms to the twirled form

Λ(ρ) → Λ(ρ) = poρ+ (p1/3)(XρX + Y ρY + ZρZ),

where p1 = px + py + pz. As a result, we only need to estimate the probability of any one Pauli error in the twirled
channel, and from that we can estimate the total probability of all 3 distinct single qubit Pauli errors in the un-twirled
channel. The general analysis of a C⊗n

1 -twirl is described in detail below.
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FIG. 1: Results for Experiment #3 in Table 1. Shown is the Maximum Likelihood (ML) estimate, pexp =
[0.254+0.010

−0.010
, 0.495+0.021

−0.020
, 0.250+0.019

−0.019
], for the error probabilities of the engineered noise, A1 = {exp[−iπ(Z1 + Z2)/4]}, for

which the calculated values are p = [1/4, 1/2, 1/4]. Also shown are the confidence regions for the 68%, 95%, and 99% con-
fidence levels (C.L.), which can be determined from the log of a likelihood function, logL. The experiment was performed
on a 2-qubit liquid-state NMR processor, and the noise was implemented by appropriately phase-shifting the pulses. These
experiments illustrate the precision with which the protocol can be implemented under conditions of well-developed quantum
control.

The other main ingredient of our analysis is the use of statistical bounds to prove that the set of all possible
conjugations (which is exponentially large in the number of qubits) need not be performed to estimate the average.
Specifically, the set of conjugations needs to be sampled a number of times that grows only logarithmically with the
number of qubits. The details of this statistical analysis are provided further below.

General Analysis of the Symmetrisation

More generally, the generic noise affecting a quantum state ρ (a positive matrix of dimension D × D) can be

represented by a completely positive map of the form Λ(ρ) =
∑D2

k=1 AkρA
†
k, which is normally subject to a trace-

preserving condition
∑

k A
†
kAk = 1. We focus here on systems of n qubits so that D = 2n.

We start by expanding the noise operators in a basis of Pauli operators Pi ∈ Pn consists of n-fold tensor product of

the usual single-qubit Pauli operators {1, X, Y, Z}, giving Ak =
∑D2

i=1 α
(k)
i Pi/

√
D, where α

(k)
i = Tr[AkPi]/

√
D, and

the Pauli’s satisfy the orthogonality relation Tr[PiPj ] = Dδij . The Clifford group Cn is defined as the normalizer

of the Pauli group Pn: it consists of all elements Ui of the unitary group U(D) satisfying UiPjU
†
i ∈ Pn for every

Pj ∈ Pn. For further details of the Clifford group see [5].
We can analyze the effect of the twirl C⊗n

1 by noting that any element Ci ∈ C⊗n
1 can be expressed as Ci = PjYl,

where Pj ∈ Pn and Yl ∈ Y⊗n
1 , and where we consider as equivalent elements of each group that differ only by a phase.
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Hence, the C⊗n
1 -twirl of an arbitrary channel Λ consists of the action

Λ(ρ) → Λ(ρ) =
1

|C⊗n
1 |

|S⊗n
1 |∑

j=1

|Pn|∑

l=1

∑

k

S†
jP

†
l AkPlSjρS

†
jP

†
l A

†
kPlSj . (1)

where |C⊗n
1 | = |S⊗n

1 | |Pn|. The effect of the Pauli-twirl is to create the channel
∑

i aiPiρPi, where ai =
∑

k |α
(k)
i |2/D

are probabilities, known as a Pauli channel. The effect of the symplectic-twirl on the Pauli channel is to map each of
the non-identity Pauli operators to a uniform sum over the 3 non-identity Pauli operators. To express this we separate
out terms according to their Pauli weight w, where w ∈ {0, . . . , n} is the number of non-identity factors in Pl. We let
the index νw ∈ {1, . . . ,

(
n
w

)
} count the number of distinct ways that w non-identity Pauli operators can be distributed

over the n factor spaces, and the index iw = {i1, . . . , iw} with ij ∈ {1, 2, 3} denote which of the non-identity Pauli
operators occupies the j’th occupied site. Hence we have,

Λ(ρ) =
1

|S⊗n
1 |

|S⊗n
1 |∑

j=1

n∑

w=0

(nw)∑

νw=1

3w∑

iw=1

aw,νw,iwS
†
jPw,νw,iwSjρS

†
jPw,νw,iwSj . (2)

For any term with arbitrary but fixed w and νw the effect of symplectic-twirl is

1

|S⊗n
1 |

3w∑

iw=1

aw,νw,iw

|S⊗n
1 |∑

j=1

S†
jPw,νw,iwSjρS

†
jPw,νw,iwSj =

(
1

3w

3w∑

iw

aw,νw,iw

)
3w∑

jw=1

Pw,νw,jwρPw,νw,jw . (3)

Consequently we obtain,

Λ(ρ) =

n∑

w=0

(nw)∑

νw=1

rw,νw

3w∑

iw=1

Pw,νw,iwρPw,νw,iw (4)

where rw,νw
= 1

3w

∑3w

iw=1 aw,νw,iw .
The effect of actual or virtual permutations of the qubits chosen uniformly at random is to produce the effective

channel

Λ
Π
(ρ) =

n∑

w=0

pw

(nw)∑

νw=1

3w∑

iw=1

1

3w
(
n
w

)Pw,νw,iwρPw,νw,iw , (5)

where

pw = 3w
(nw)∑

νw=1

rw,νw
. (6)

This symmetrized channel can now be probed experimentally by inputting the initial state |0〉 ≡ |0〉⊗n and per-
forming a projective measurement in the computational basis |l〉, where l ∈ {0, 1}n. If we distinguish outcome bit
strings only according to their Hamming weight h ∈ 0, . . . , n, the effect is equivalent to a random permutation of the
qubits. Observe that only Pauli X and Y errors will affect the Hamming weight because Pauli Z errors commute
with the input state. Hence the probability of measuring an outcome with Hamming weight h is

uh =
n∑

w=0

Rhwpw

where Rhw =
(
w
h

)
2h/3w gives the number of Pauli operators of weight w of which exactly h are either X or Y, and

where

pw = 3w
(nw)∑

νw=1

rw,νw
=

(nw)∑

νw=1

3w∑

iw

pw,νw,iw (7)
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is a quantity of interest, i.e., the total probability of all Pauli errors with weight w. Noting that the n × n matrix
Rhw satisfies Rhw = 0 when h > w and hence is upper triangular, estimates of the pw can be recovered trivially from
the measured probabilities uh after n back-substitutions.
Furthermore, we can determine more direct information about the noise map if we instead distinguish outcome bit

strings only by the parity of a random subset of w qubits. The effect of this is also equivalent to a random permutation
of the qubits. Thus, we experimentally implement the C⊗n

1 -twirl Λ(ρ), and virtually implement the permutation-twirl

Λ
Π
(ρ) by averaging over random choices of subsets of w qubits. The probability qw that the parity of random subset

of w qubits is even is related to 〈Z⊗w〉, the average of all permutations of Pauli operators with w factors of Z and
n− w identity factors, according to

cw ≡ 〈Z⊗w〉 = qw − (1− qw) = 2qw − 1, (8)

where the cw correspond to the eigenvalues of the twirled map. In order to clarify the information content of the cw
and their relation to the error probabilities pw we will make use of the Liouville representation of the twirled channel
which is described in the following subsection.

Liouville Representation of the Twirled Channel

Because any two operators Pm,νm,im ∈ Pn either commute or anti-commute, it follows that

Λ
Π
(Pm,νm,im) = (Pr(comm)− Pr(anti-comm))Pm,νm,im = cmPm,νm,im , (9)

where Pr(comm) (Pr(anti-comm)) is the probability of the channel Λ
Π
acting with a noise operators Pw,νw,iw which

commutes (anti-commutes) with Pm,νm,im . Thus, the Pauli operators Pm,νm,im are the eigenoperators of the channel

with corresponding eigenvalues cm. The eigendecomposition of Λ
Π
is given by

Λ
Π
(ρ) =

n∑

w=0

cwM
c
w(ρ), (10)

where M c
w are the superoperators

M c
w(ρ) =

1

2n

(nw)∑

νw=0

3w∑

iw=0

Pw,νw,iwtr(Pw,νw,iwρ). (11)

We can also rewrite the usual parameterisation of Λ
Π
as

Λ
Π
(ρ) =

n∑

w=0

pwM
p
w(ρ), (12)

where Mp
w are the superoperators

Mp
w(ρ) =

1

3w
(
n
w

)
(nw)∑

νw=0

3w∑

iw=0

Pw,νw,iwρPw,νw,iw . (13)

By considering the Liouville representation of these superoperators it is easy to show that the M c
w are orthogonal and

that the Mp
w are orthogonal. Thus, {cw}nw=0 parameterizes the channel Λ

Π
uniquely, and {pw}nw=0 also parameterizes

the same channel uniquely. Using the Liouville representation it follows that these parameterizations are related by
a (n+ 1)× (n+ 1) matrix Ω such that

cw =

n∑

w′=0

pw′Ωw,w′ , (14)

pw =
n∑

w′=0

cw′Ω−1
w,w′ (15)
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with Ω defined by

Ωw,w′ =
4n

3w+w′(n
w

)(
n
w′
) 〈M c

w,M
p
w′〉 (16)

Ω−1
w,w′ = 〈Mp

w,M
c
w′〉, (17)

where 〈·, ·〉 is the Hilbert-Schmidt inner product of superoperators acting on Liouville space defining the notion of
orthogonality discussed above. To obtain an explicit expression for Ωw,w′ , we start from (9) and observe that a Pauli
operator of weight w is scaled by a channel of the form

Nw′(ρ) =
1

3w′( n
w′
)

( n
w′)∑

νw′=0

3w
′

∑

iw′=0

Pw′,νw′ ,iw′ρPw′,νw′ ,iw′ . (18)

This implies

Ωm,w = −1 +

min(m,w)∑

L=max(0,w+m−n)

(
n−m
w−L

)(
m
L

)
(
n
w

) 3L + (−1)L

3L
, (19)

and, using (16) and (17), it follows that

Ω−1
m,w =

3m+w
(
n
m

)(
n
w

)

4n
Ωm,w. (20)

For the case of two-qubit channels, this matrix is given by

Ω =




1 1 1
1 1

3 − 1
3

1 − 1
3

1
9


 (21)

Ω−1 =
1

16




1 6 9
6 12 −18
9 −18 9


 , (22)

and for the case of three-qubit channels, it is given by

Ω =




1 1 1 1
1 5

9
1
9 − 1

3
1 1

9 − 5
27

1
9

1 − 1
3

1
9 − 1

27


 (23)

Ω−1 =
1

64




1 9 27 27
9 45 27 −81

27 27 −135 81
27 −81 81 −27


 (24)

Uncorrelated Noise Locations

A noise channel over n qubits that has a distribution of error locations which is uncorrelated, but otherwise
arbitrary, is mapped under twirling and random permutations to a channel which is a tensor product of n single-qubit
depolarizing channels. Each of these single-qubit channels has the form

D(ρ) = (1− p)ρ+
p

3
(XρX + Y ρY + ZρZ) (25)

and scales a single-qubit Pauli operator by c1 = 1 − 4
3p. Thus, the n qubit channel will scale a Pauli operator with

weight w by cw = cw1 .
This is only a necessary condition for the independence of the distribution of error locations because there are

correlated error models which can also give rise to this exponential scaling law. Hence, statistical disagreement
with the exponential scaling law implies that the distribution of the error locations is (statistically unlikely) to be
uncorrelated, although statistical agreement with the scaling law does not guarantee that the errors are uncorrelated.
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Circuit Complexity and Statistical Analysis

The circuit complexity is depth 2 with only 2n single-qubit gates required for the protocol. The outcome from any
single experiment is just a binary string. The number of such trials required to estimate the probability qw of even
parity for a random subset of w bits to within a given precision δ is clearly independent of the number of qubits
because the problem is reduced to the simple task of estimating the probability of a 2-outcome classical statistical
test. More precisely from the Chernoff inequality, any estimate of the exact average E[X] = qw after K independent
trials satisfies,

Pr(| 1
K

K∑

i=1

Xi − E[X]| > δ) ≤ 2 exp(−δ2K). (26)

We see that the number of experiments required to estimate qw to precision δ with constant probability is at most,

K = log(2)δ−2,

where each experiment is an independent trial consisting of a single shot experiment in which the Clifford gates are
chosen uniformly at random. The number of experimental trials required to estimate the complete set of probabilities
{q1, . . . , qw, . . . qn} can be obtained from the union bound,

Pr(∪wEw) ≤
∑

w

Pr(Ew) (27)

which applies for arbitrary events Ew. In our case each Ew is associated with the event that | 1K
∑K

k=1 Xk −E[X]| > δ
and similarly ∪wEw is the probability that at least one of the n estimated probabilities qw satisfies this property (i.e.,
is an unacceptable estimate) after K trials. Whence, the probability that at least one of the n estimated probabilities
is outside precision δ of the exact probability is bounded above by,

Pr(∪wEw) ≤ 2n exp(−δ2K).

This implies that at most K = O(δ−2 log(2n)) experimental trials are required to estimate each of the components of
the (probability) vector (q1, . . . , qn) to within precision δ with constant probability.
Similarly, for the ensemble QIP scheme, in which n distinct input states must be prepared, the protocol requires

k = O(log(2n)/δ2) runs for each input state in order to estimate the n output parameters cw to precision δ with
constant probability.

Statistical Uncertainty for the pw Estimates

Given an estimate of the cw = 〈Z⊗w〉 with some variance σ2, the variance of the estimate of a particular pw is given
by

σ2
w =

n∑

i=0

n∑

j=0

Ω−1
w,iΩ

−1
w,jCov(ci, cj) (28)

Assuming the estimates for all cw have the same variance, the positivity constraint on the covariance matrix of the
cw estimates requires that |Cov(ci, cj)| ≤ σ2, yielding the upper bound

σ2
w ≤ σ2

∑

i

∑

j

∣∣Ω−1
w,iΩ

−1
w,j

∣∣ . (29)

From (9), it is clear that

|Ωw,w′ | ≤ 1, (30)

so the from (20) we have

σw ≤ σ3w
(
n

w

)
. (31)
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FIG. 2: Bounds on Standard Deviation for Statistical Estimates of pw. Analytic upper bound on standard deviation
scaling factor, and numerical calculations for scaling factor with worst case correlations.

Using the fact that

(
n

w

)
≤ nwew

ww
, (32)

we can rigorously show that the uncertainty σw on the estimate of pw is bounded by

σw ≤ σ

(
3

w

)w

nwew. (33)

Exact numerical computation of the uncertainty scaling factor σw

σ , depicted in Fig. S2, indicates that for fixed w
the uncertainty grows as a polynomial in n, but the degree of that polynomial depends linearly on w. For large n, we
find that

σw

σ
≈ ekw+anmw+b, (34)

where k = −1.6± 0.1, a = 11.8± 1.8, m = 0.639± 0.009, and b = −0.98± 0.16.
These numerical results support our analytic bound indicating that applying the cw estimates to estimate the

multi-body noise probabilities p′w to within a fixed precision, for 0 ≤ w′ ≤ b < n with b a constant, requires O(nb)
experiments.
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Generalization: the Pauli-twirl

We expect that the C⊗n
1 -twirl is a first step in a hierarchy of tests available under the general symmetrization

approach, with each test giving more fine-grained information. One obvious example of a more fine-grained test is a
variation of the protocol in which only a Pauli-twirl is applied enables a estimation of the O(n3) relative probabilities
of Pauli X, Y and Z errors. The full scope of information that can be estimated efficiently via the symmetrisation
approach is an important topic for further research.

Solid-state NMR Experimental Results

The results of the solid-state experiments are calculated after factoring out the effect of decoherence occurring
during the twirling operations, as described in the main text, in order to isolate the noise associated with the time-
suspension sequence. It should be noted that this was a small effect: the twirling operations accounted for only ' 1%
fidelity loss per gate.
As noted in the main text, shorter pulse-spacing should lead to improved performance unless there is a competing

process at the faster time-scale. Although we see improved performance in the averaging of the homonuclear dipolar
Hamiltonian (as evident from experiments #5 and #6 in Table 1), the performance falls short of that expected from
numerical simulations of the homonuclear 3-qubit system. In particular, the 5µs pulse-sequence is still limited by
decoherence from incomplete (heteronuclear) decoupling of the qubits (carbon nuclei) from the environment (nearby
hydrogen nuclei). At the 5µs pulse-spacing the carbon nuclei are being modulated on a time-scale close to the proton
decoupling frequency, suggesting that the decoupling sequence may no longer be averaging the heteronuclear coupling
to zero. The simple modification of the twirling protocol (in which the permutations are not performed on the weight
w = 1 input states) allows for determining which qubit accrues the greatest single-qubit errors. The results were
consistent with identifying the primary source of single-qubit errors as the qubit whose (heteronuclear) coupling to
the hydrogen is an order of magnitude larger than that of the other two qubits.
We have applied the test for the presence of correlations to the experimental results for the cw from experiments

#5 and #6 in Table 1. The results are shown in Fig. S3. For both experiments the results are statistically consistent
with the uncorrelated scaling law, though, as already noted, this does not imply that the un-twirled noise consists of
uncorrelated errors.
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FIG. 3: Test for Correlations in the Solid-state Experiments. Experimental values for the cw for the 5µs (blue) and
10µs (black) pulse-sequences, plotted against the uncorrelated scaling law obtained by a least-squares fit (dashed red) with c1
as free parameter. Error-bars correspond to statistical (standard deviation) and experimental errors added in quadrature. The
goodness-of-fit for the 5µs and 10µs pulse-spacing sequences is χ2 = 0.32 and χ2 = 1.98, respectively, for nd = 2.
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E.3 Approximating the Jones Polynomial

In this work, we experimentally implement a DQC1 algorithm to evaluate a knot

invariant known as the Jones polynomial. This problem is complete for the com-

plexity class DQC1 and is the first experimental implementation of such a problem.

Implemented on the four carbon nuclei in crotonic acid the experiment distinguished

between all knots whose braid representations have three strands and four cross-

ings. The experiment showed that with current control available in liquid state

NMR, we were able to correctly distinguish topologically distinct knots 91% of the

time.

G. Passante and I modified the original algorithm by Shor and Jordan to be

suitable for implementation in NMR. This required a modification of the encoding of

the braid representation. The algorithm calls for an estimation of a weighted trace

of the implemented unitary. To accomplish that, we introduced an extra ancilla,

and rotated its state such that the measurement readily revealed the weighted trace.

95



Experimental Approximation of the Jones Polynomial with One Quantum Bit

G. Passante,1 O. Moussa,1 C. A. Ryan,1 and R. Laflamme1,2

1Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
2Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2J 2W9, Canada

(Received 17 September 2009; published 18 December 2009)

We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state

nuclear magnetic resonance quantum information processor. This is the first experimental implementation

of a complete problem for the deterministic quantum computation with one quantum bit model of

quantum computation, which uses a single qubit accompanied by a register of completely random states.

The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical

mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm

developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that

for the restricted case of knots whose braid representations have four strands and exactly three crossings,

identifying distinct knots is possible 91% of the time.

DOI: 10.1103/PhysRevLett.103.250501 PACS numbers: 03.67.Lx, 03.67.Ac, 76.60.�k

Quantum information processors have the potential to
solve some problems exponentially faster than current
classical methods [1]. While much effort has been concen-
trated on the most conventional circuit model of computa-
tion which involves preparation of pure fiducial quantum
states, other models of computation, where only one pure
quantum bit is required, still offer efficient solutions to
classically intractable problems. Deterministic quantum
computation with one quantum bit (DQC1) is such a model
[2]. It extracts the power of 1 bit of quantum information
alongside a register of many qubits in a completely random
state. Study of DQC1 was originally motivated by liquid
state nuclear magnetic resonance (NMR), which is a high
temperature ensemble model of quantum computation.
Although this model of computation is weaker than con-
ventional models with many pure qubits, it has been shown
to have several important applications where classical
methods are inefficient: simulating quantum systems [2],
estimating the average fidelity decay under quantum maps
[3], and quadratically signed weight enumerators [4].
Additionally, the approximation of the Jones polynomial
at the fifth root of unity has recently been shown to
completely encapsulate the power of DQC1 [5]. DQC1
algorithms have been experimentally implemented in op-
tics [6] and liquid and solid state NMR [7–9]—none of
which has been shown to be DQC1 complete. In [8], the
authors implement a DQC1 algorithm on two qubits to
evaluate the Jones polynomial at various points for specific
knots. This Letter describes the implementation of an
instance of a DQC1-complete algorithm [5], which scales
for any size knot.

Unlike its name suggests, DQC1 does not require a
completely pure qubit to provide an advantage over known
classical methods, but rather a small fraction of a pure
qubit. This pseudopure state is almost completely mixed
with a small bias towards the ground state, and is used as

the control qubit in the DQC1 algorithm. A unitary is
performed on the qubits in the completely mixed state
and is controlled by the pseudopure qubit (Fig. 1).
Measurements of h�xi and h�yi yield the real and imagi-

nary parts of the trace of the unitary, normalized by the
amount of polarization on the pure qubit.
Applications for the Jones polynomial are extensive in

physics; for example, the fields of statistical mechanics,
quantum field theory, and quantum gravity would benefit
from an efficient method for approximating this polyno-
mial [10]. Knot invariants help to solve a fundamental
problem in knot theory: determining if two knots, defined
as the embedding of the circle in R3, are topologically
different, up to ambient isotopy. Two knots can only be
confirmed identical if one can be maneuvered into the other
by a sequence of Reidemeister moves, which keep the
topological properties of knots intact. This process is
very tedious as often the sequence of Reidemeister moves
requires an increase in the number of crossings in the knot.
Even the simplest such problem of identifying the unknot,
a circle with no crossings, has been shown to be contained
in the complexity class NP [11]. Knot invariants, such as
the Jones polynomial, have the same value for different
representations of the same knot. In other words, if a knot
invariant evaluates to different values for two knots, they
are guaranteed to be distinct. This makes them a welcome
alternative to sequences of Reidemeister moves.

FIG. 1. The DQC1 circuit where the pure qubit has a bias of "
towards the ground state. Measurements of h�xi and h�yi will
yield the real and imaginary parts of "TrðUnÞ=2n, respectively.
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Unfortunately, exact evaluation of the Jones polynomial at
all but a few points is hard for the complexity class #P [12].
Several efforts for finding quantum algorithms for the
Jones polynomial have been attempted and approximations
at several special points have been shown to be complete
for the complexity class BQP [13,14]. Largely building on
this work it was then shown that approximations of the
Jones polynomial for trace or plat closures at principal
roots of unity can be computed on a quantum computer
in polynomial time [15]. Later it was shown that for the plat
closure the problem is BQP complete [16,17]. The algo-
rithm developed by Shor and Jordan shows that approx-
imating the Jones polynomial at the fifth root of unity for
any knot is a complete problem for DQC1.

For the purposes of this algorithm, knots are described in
the discrete language of braid groups. Every knot can be
written as a braid, which is a series of strands crossings
over and under each other with loose ends at both the top
and bottom. Braids can then be converted into a knot by the
trace closure which connects the top and bottom ends of the
braid in sequential order. The braid group form strands Bm

is generated by s1 . . . sm�1 that denote elementary cross-
ings where si indicates the ith strand crossing over the (iþ
1)th strand and s�1

i indicates strand (iþ 1) crossing over

strand i. These elementary crossings satisfy the relations:
sisj ¼ sjsi for jj� ij> 1 and siþ1sisiþ1 ¼ sisiþ1si.

The implemented algorithm utilizes the Fibonacci rep-
resentation of the braid group Bn, which is described in the
context of the Temperley-Lieb recoupling theory [18]. In
this theory there are two particles p and �, which exhibit
the following properties: p interacts with another p to
create a p or a � particle, � interacts with a p to always
create a p particle, and two �’s never interact. Strings of
these particles create a basis in a complex vector space.
More details of this representation can be found in [18], but
for our purposes it suffices to state that for a braid with m
strands the basis vectors containmþ 1 elements of p’s and
�’s with the restriction that no two � particles be beside one
another. These basis vectors are then transformed into the
computational basis and unitary matrices �i, which repre-
sent each elementary crossing in the braid group, are
constructed. For the particular form of these unitaries,
please refer to [5].

The algorithm developed by Shor and Jordan approx-

imates the Jones polynomial at the single point t ¼ e2i�=5

by finding the weighted trace of a unitary that describes the
braid representation of the knot. The algorithm is modified
for this implementation and the varied portions are de-
scribed below. The primary difference is in the encoding
of the basis states. The Fibonacci basis vectors consist of
four distinct subspaces, only two of which are relevant for
the algorithm: the fm vectors of the form � . . .p and fm�1

of the form � . . . � , where fn ¼ ½1; 1; 2; 3; . . .� is the
Fibonacci sequence. These are the only two subspaces
that are encoded in this implementation. The Zeckendorf
representation, z0 ¼ 2n�1s1 þ

P
m�1
i¼2 siþs1fi converts the

Fibonacci basis vectors into integers that are then con-
verted to a nonsaturated computational basis. The second
notable difference is the method used to calculate the
weighted trace, defined as

WTr ¼ 1� ðtrace of subspace � . . . �Þ þ�

� ðtrace of subspace � . . .pÞ; (1)

where � ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio. Implementing
these weights for our encoding is achieved by purifying the
second qubit, then applying a rotation taking j0i to
ð ffiffiffiffi

�
p j0i þ j1iÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�
p

, which ensures that each subspace
receives the desired weight. The computational model now
contains two initialized qubits; however, this modification
does not change the computational power as DQC(k) is
known to have the same computational power as DQC1 for
k that can grow logarithmically with the total number of
qubits [5]. The extra basis states are accounted for in the
final calculation of the Jones polynomial. The circuit for
our evaluation of the Jones polynomial for braids with four
strands can be seen in Fig. 2. It is worthwhile to note that
the off-diagonal elements in the rotated pure qubit do not
contribute to the algorithm as the unitary matrices Un are
always block diagonal, thereby eliminating the off-
diagonal elements in the calculation of the trace. The state
of the top qubit at the completion of the algorithm is

� ¼ 1

2n�1ð1þ�Þ
1 WTrðUy

n Þ
WTrðUnÞ 1

 !

;

which upon measurement of h�xi and h�yi yields the real
and imaginary parts of M ¼ WTrðUnÞ=½2n�1ð1þ�Þ� re-
spectively, where n is the number of qubits in the bottom
register. The measured quantity M is then used to calcu-
late the approximation of the Jones polynomial VðtÞ, cor-
responding to the trace closure of the given braid at

t ¼ ei2�=5,

Vðei2�=5Þ ¼ ½�ðei2�=5Þ4�3w��1½2n�1ð1þ�ÞM� ��;
where � ¼ ð2n�1 � fmÞ�þ ð2n�1 � fm�1Þ and w is the
writhe of the braid, defined as the number of positive
crossings minus the number of negative crossings.

FIG. 2. Circuit diagram for the approximation of the Jones
polynomial for the knots whose braid representations consist of
four strands. The initial state given is the traceless deviation
matrix. The single qubit gates are the Hadamard and the rotation
for implementing the weights of the trace. The measurements
performed on the top qubit are expectation values of the Pauli x
and y operators.
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Liquid state NMR offers one of the most advanced
implementations of quantum information processors with
high fidelity control of multiple qubits [19]. The qubits are
a bulk ensemble of identical spin-1=2 nuclei that exhibit a
two-level energy structure in the presence of a strong
magnetic field. The ensemble of approximately 1020 mole-
cules is manipulated in parallel and an ensemble measure-
ment is performed using quadrature detection of the free
induction decay to give h�xi and h�yi. The algorithm

described above was demonstrated in liquid state NMR
for the set of knots whose braid representations have four
strands and three crossings. There are six distinct knots in
this set and hence, six distinct Jones polynomials. The goal
of the experiment is to distinguish between two distinct
knots given their braid representations. The subspaces of
interest have f4 ¼ 3 and f4�1 ¼ 2 basis states, respec-
tively; thus, the encoding of the basis states requires 3
qubits in the bottom register and a fourth as the control
qubit.

The experiment was implemented on a Bruker Avance
700 MHz spectrometer using the molecule transcrotonic
acid (shown in Fig. 3). The four qubits are experimentally
realized by the four carbon nuclei, synthesized to be
carbon-13, while the hydrogen are decoupled using the
WALTZ-16 [20] composite pulse sequence. C1 is our read-
out qubit whose initial state is the thermal state of � ¼
1þ "Z, C2 is purified to the pseudopure state j0ih0j, and
the remaining C3 and C4 are initialized to the completely
mixed state. The radio frequency (rf) pulses that imple-
ment the unitary transformations are numerically gener-
ated using the GRAPE algorithm [21,22] which starts from
a random guess and is then iteratively improved through a
gradient ascent search. The GRAPE pulses are optimized

to produce a fidelity jtrðUy
goalUsimÞj2=d2, where d is the

dimension of the Hilbert space of Ugoal, of no less than

0.998 and are designed to be robust to small inhomogene-
ities (�3%) in the rf control field. Each controlled-�i

unitary transformation is designed as a single pulse of
60 ms. The pulses are corrected for nonlinearities in the
pulse generation and transmission to the sample by mea-
suring the rf signal at the position of the sample using a
feedback loop and iteratively modifying the pulse accord-

ingly. Through the feedback loop the implemented pulse
can be measured and was found to have a simulated fidelity
of 0.99 after correction.
The resulting spectrum is fit and compared to a reference

spectrum, traditionally of the initial state, to give the
expectation value results. In this experiment, pulses whose
propagator was designed to be the identity were generated
using GRAPE to have the same length and the same
average power and fidelity as the controlled �i. These
pulses were implemented and used to create a reference
spectrum in an attempt to normalize some decoherence
effects. The state measured after three successive identity
pulses, totaling 180 ms had only 60% of the original signal
(see Fig. 4), indicating this as a crucial step in the experi-
mental procedure.
The algorithm was implemented for 18 different braids,

which correspond to 6 distinct Jones polynomials. The
results are displayed in Fig. 5. Systematic errors from
imperfect initial state preparation and decoherence not
captured by the reference state result in the offsets from
the theoretical values. The main contribution to the spread-
ing of the experimental points is the finite fidelity of the
optimal control pulses.
Two values of the Jones polynomial at best can distin-

guish between two knots if they are sufficiently far apart,
and at worst, give no information, as even evaluations of
the Jones polynomial that are identical would not be suffi-
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FIG. 4 (color online). The dashed (red) spectrum represents
the pseudopure state immediately after creation in the top (a)
graph. The solid (black) spectrum is the same pseudopure state
after 180 ms of pulses designed to perform the identity. In the
bottom graph (b), the solid spectrum (black) indicates the final
state of the experiment and it is compared to simulation [dashed
(blue)]. This particular experiment is for the knot whose braid
representation has crossings s1s2s3.
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cient information to conclude the two knots are identical.
This leads to two types of errors when interpreting the data:
passive and fatal errors. Passive errors occur when two
distinct knots are impossible to distinguish because of their
relatively close distance to one another, while fatal errors
occur when two identical knots are determined to be dis-
tinct. The success rate for determining whether knots are
distinct is calculated as the average of the percent of
distinct knots correctly identified and the percent of iden-
tical knots correctly indistinguishable. The error ellipses
give a direct method for determining if two knots are
distinct. If the error ellipses for a pair of knots do not
overlap then it is inferred that the knots are distinct,
whereas if the two ellipses overlap no information is
gained. For the confidence region plotted in Fig. 5, 134
of the possible 135 pairs of distinct knots are correctly
distinguished with 3 fatal errors of a possible 18, corre-
sponding to a success rate of 91%.

Approximation of the Jones polynomial is an example of
a classical problem that appears intractable, but that can be
solved using a one clean qubit quantum computer. This is
the first experimental implementation of a DQC1-complete
problem, and is performed in liquid state NMR with four
qubits, resulting in a 91% success rate for braids with four
strands and a total of three crossings. In future work it will
be interesting to see how the values of the Jones polyno-
mial spread as you scale to larger knots and what size knot
can be experimentally implemented before noise and con-
trol errors destroy the quantum advantage.
G. P. would like to thank M. Ditty for his technical

expertise with the spectrometer. This work was funded
by NSERC, QuantumWorks, and CIFAR.

[1] M. Nielsen and I. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press,
Cambridge, U.K., 2000).

[2] E. Knill and R. Laflamme, Phys. Rev. Lett. 81, 5672
(1998).

[3] D. Poulin, R. Blume-Kohout, R. Laflamme, and H.
Ollivier, Phys. Rev. Lett. 92, 177906 (2004).

[4] E. Knill and R. Laflamme, Inf. Proc. Lett. 79, 173 (2001).
[5] P.W. Shor and S. P. Jordan, Quantum Inf. Comput. 8, 681

(2008).
[6] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A.G.

White, Phys. Rev. Lett. 101, 200501 (2008).
[7] C. A. Ryan, J. Emerson, D. Poulin, C. Negrevergne, and

R. Laflamme, Phys. Rev. Lett. 95, 250502 (2005).
[8] R. Marx, A. Fahmy, L. Kauffman, S. Lomonaco, A. Spörl,

N. Pomplun, T. Schulte-Herbrüggen, J. Myers, and S.
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