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Abstract

It is known that almost all numbers are transcendental in the sense of Lebesgue

measure. However there is no simple rule to separate transcendental numbers from

algebraic numbers. Today research in this direction is about establishing new transcen-

dence criteria for new families of transcendental numbers.

By applying a recent refinement of Subspace Theorem, Boris Adamczewski and

Yann Bugeaud determined new transcendence criteria for real numbers which we shall

present in this thesis. Published only three years ago, their articles explore combinato-

rial, algorithmic and dynamic approaches in discussing the notion of complexity of both

continued fraction and b-adic expansions of a certain class of real numbers. The con-

dition on the expansions are those of being stammering and non-eventually periodic.

Taking together these articles give a well-structured picture of the interrelationships

between sequence characteristics of expansion (i.e. complexity, periodicity, type of

generator) and algebraic characteristics of number itself (i.e. class, transcendency).
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Chapter 1

Introduction

It is known that almost all numbers are transcendental in the sense of Lebesgue measure.

However there is no simple rule to separate transcendental numbers from algebraic

numbers. Today’s research in this direction is about establishing new transcendence

criteria for new families of transcendental numbers.

I have been studying the most recent results of application of Schmidt’s Subspace

Theorem to establish new transcendence criteria of real numbers made by Boris Adam-

czewski and Yann Bugeaud. Published only three years ago, their articles explore com-

binatorial, algorithmic and dynamic approaches in discussing the notion of complexity

of both continued fraction and p-adic expansions of real numbers. The condition on the

expansions are those of being stammering and non-eventually periodic. These articles

give a well-structured picture of the relationships between sequence characteristics of

expansion (e.g. complexity, periodicity, type of generator) and algebraic characteristics

of the number itself (e.g. class, transcendency).

Despite the fact that all of the articles share the same goal, to separate algebraic and

transcendental numbers, they may be distinguished. The first approach [AB07] involves

combinatorial and quantitative criteria to state that irrational automatic numbers and

irrational numbers with sublinear complexity are transcendental. The second work

[AB05] shows that the continued fraction expansion of an algebraic number of degree

≥ 3 can’t be generated by recurrent or binary morphisms. The third paper [AB06]

is devoted to palindromic numbers as one of the cases when real and p-adic numbers

sharing the same expansion are rational if and only if they are algebraic. Due to Adam-

czewski and Bugeaud we can include in the list of such numbers stammering, morphic

and automatic (numbers whose continued fraction or b-adic expansion is generated by

stammering sequences, recurrent morphism or finite automata).
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The main aim of my thesis is to construct a dialogue between different applications

of Schmidt’s Subspace Theorem in establishing new transcendence criteria. The thesis

is organized as follows. In the first chapter we give an overview of the pre-history

and evolution of Schmidt’s Subspace Theorem as well as its application to study Norm

Form equations and recurrence sequences. Three different approaches to complexity

notion are discussed in the second chapter. Each part recalls some definitions and states

the main results from the above mentioned articles. The third Chapter is devoted to

technical details of applications of the Subspace Theorem.

2



Chapter 2

The Schmidt Subspace Theorem:

pre-history and following evolution

2.1 The Schmidt Subspace Theorem

The history of the fabulous Schmidt Subspace Theorem [Sch72] goes back to the year

1955 when Roth [Rot55] established his original result on diophantine approximation.

In a series of papers published between 1965 and 1972, Schmidt worked on an exten-

sion of Roth’s techniques until he proved his theorem and obtained a simultaneous

approximation result.

Theorem. 1 (Roth)

Suppose α is real and algebraic of degree d ≥ 2 then for each δ > 0 the inequality∣∣∣α− p
q

∣∣∣ < q−(2+δ)

has only finitely many solutions in rationals p/q.

This result asserts that real algebraic numbers cannot be too well approximated by

rational numbers.

An effective generalization of this theorem could be done in at least three directions:

instead of considering an ordinary absolute value of the real number field we can take

any absolute value of Q(α); we can choose the field of approximants Q(α) to be any

number field; or we can involve different valuations in the approximation process of set

of points by an element of Q(α).
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Ridout [Rid58] gave a generalization of Roth’s theorem that yelds the same result for

real algebraic numbers approximated by rationals with respect to different valuations.

Theorem. (Ridout)

Let {p1, . . . , pl}, {q1, . . . , qm} be two disjoint sets of prime numbers 0 < λ, µ < 1.

Let P = P (p1, . . . , pl, λ), Q = Q(q1, . . . , qm, µ) be the sets of integers defined by

P = {p = pa1
1 . . . pal

l p
∗ : p∗ ≤ p1−λ},

Q = {q = qb11 . . . qbmm q∗ : q∗ ≤ q1−µ}.

Then for every real algebraic number α 6= 0, every finite set v1, . . . , vn of ultrametric

places of Q(α) and every ε > 0, the inequality∣∣∣∣α− p

q

∣∣∣∣ n∏
i=1

∣∣∣∣α− p

q

∣∣∣∣
vi

< q−(2+λ+µ−ε)

has only finitely many solutions.

While Roth’s Theorem considers rational approximations to a given algebraic point

on the line, the Subspace Theorem deals with approximations to given hyperplanes

in higher dimensional space, defined over the field of algebraic numbers, by means of

rational points in that space. So one can say that the Subspace Theorem is a higher

dimensional generalization of Roth’s theorem:

Let us denote the norm of x=(x1, . . . , xn) as ‖x‖ := max |xi| : i = 1, . . . , n.

Theorem. 2 (Schmidt Subspace Theorem)

Suppose L1(x), . . . Ln(x) are linearly independent linear forms in x with algebraic

coefficients. Given δ > 0, there are finitely many proper linear subspaces T1, . . . , Tw of

Rn such that every integer point x 6= 0 with

|L1(x) . . . Ln(x)| < ‖x‖−δ

lies in one of these subspaces.

Roth’s theorem is the special case of the Subspace Theorem when n = 2, x = (q, p)

and ‖x‖ is the ordinary absolute value on R2. Take L1(q, p) = q and L2(q, p) = qα− p,
then |L1(x)L2(x)| < ‖x‖−δ corresponds to |q| |qα− p| < (p2 + q2)−δ/2, or

∣∣∣α− p
q

∣∣∣ <
(p2 + q2)−δ/2q−2 < q−δ−2. By the Subspace Theorem the solution x lies in a finite
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number of proper linear subspaces of R2, i.e., rational subspaces of dimension 1. Thus

the set p/q is finite and Roth’s theorem follows.

However, one significant drawback of this theorem is that it is ineffective; the proof

of the theorem does not enable us to determine the subspaces T1, . . . , Tw. The next

significant step in the evolution of Subspace Theorem was done by Schmidt in 1989,

when he gave an explicit upper bound for the number w of subspaces. The quantitative

version involves the notion of heights and normalized absolute values on number fields,

which needs to be introduced before stating the result.

Let K be an algebraic number field. Denote its ring of integers by OK and its

collection of places (equivalent classes of absolute values) by MK . For v ∈ MK , x ∈ K
we define the absolute value |x|v by

(i) |x|v = |σ(x)|1/[K:Q] if v corresponds to the embedding σ : K ↪→ R;

(ii) |x|v = |σ(x)|2/[K:Q] = |σ̄(x)|2/[K:Q] if v corresponds to the pair of conjugate

complex embeddings σ, σ̄ : K ↪→ C;

(iii) |x|v = (N℘)−ord℘(x)/[K:Q] if v corresponds to the prime ideal ℘ of OK .

For any set X let |X| denote the cardinality of X. Then N℘ = |(OK/℘)| is the norm

of ℘ and ord℘(x) is the exponent of ℘ in the prime ideal decomposition of (x), with

ord℘(x) :=∞. In case (i) or (ii) we call v real infinite or complex infinite, respectively;

in the case (iii) we call v finite. The absolute values satisfy the Product formula

∏
v∈MK

|x|v = 1 for x ∈ K\{0}

Definition We define the K-height of x ∈ K to be

ℵK(x) =
∏

v∈MK

max{1, |x|v}

Observe that ℵQ(x) = |x| (the usual absolute value) for x ∈ Z and that

ℵL(x) = ℵK(x)[L:K]

for x ∈ K and for a finite extension L of K.

Definition The height of x=(x1, . . . , xn) ∈ Kn with x 6= 0 is defined as follows

|x|v = max |xi|v, v ∈MK .
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Now define

ℵ(x) =
∏

v∈MK

max{1, |x|v}.

Again, in the special case x ∈ Zn, we have ℵ(x) = ‖x‖. Moreover, we define another

height H by taking Euclidean norms at the infinite places, namely

H(x) =
∏

v∈MK

max{1, |x|v,2},

where |x|v,2 =

((
n∑
i=1

|xi|2v
) 1

2

)d(v)

for v infinite, |x|v,2 = |x|v for v finite, and d(v) = 1
[K:Q]

or 2
[K:Q]

depending on whether

v is real infinite or complex infinite, respectively. Note that for infinite places v, |·|v is

a power of the Euclidean norm.

Now if L = a1x1 + . . .+ anxn is a nonzero linear form with algebraic coefficients we

put H(L) = H(a), a = (a1, . . . , an).

The quantitative version of Schmidt’s Subspace Theorem [Sch89] is as follows

Theorem. 3

Suppose L1(x), . . . Ln(x) are linearly independent linear forms in x = (x1, . . . , xn)

with algebraic coefficients in some algebraic number field K of degree d = [K : Q].

Consider the inequality

|L1(x) . . . Ln(x)| < |det(L1, . . . , Ln)| |x|−δ (2.1)

where 0 < δ < 1.

Then the set of solutions of inequality (2.1) with

x ∈ Zn, ‖x‖ >> max
{

(n!)8/δ, H(L1), . . . , H(Ln)
}
,

is contained in the union of at most w = (2d)226nδ−2
proper linear subspaces of Rn.

In terms of giving the upper bound for the number of linear proper subspaces,

the next result after Schmidt’s is due to Vojta [Voj89]. Essentially, it says that apart

from finitely many extensions, which are dependent on δ, the solutions of (2.1) are
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in the union of finitely many proper linear subspaces of Rn which are independent of

δ. Moreover, Ru and Vojta formulated the Subspace Theorem with “moving targets”,

where the linear forms L1, ..., Ln from (2.5) vary in a small range.

One of the most significant contributions to the development of the Subspace Theo-

rem was done by Schlickewei. In 1977 Schlickewei [Sch77b] extended Subspace Theorem

of 1972 to the p-adic case and to number fields. In 1990, he generalized Schmidt’s quan-

titative version of the Subspace Theorem to the p-adic case over Q, and later in 1992,

to number fields. The version of the Subspace Theorem due to Schlickewei is the one

that was mainly used by Adamczewski and Bugeaud, it will be stated in Chapter 3.

It should be mentioned that the best version (considering the dependency on the

parameters) of the quantitative Subspace Theorem is due to Evertse [Eve96]. Recently,

Evertse and Schlickewei proved a much more general result involving all algebraic num-

bers and not only those lying in a fixed number field [ES99, ES02].

The powerful tool - Subspace Theorem - and its generalizations and extensions can

be adapted to numerous branches of Number Theory. It’s application to Diophantine

inequalities started with papers “Simultaneous approximation of algebraic numbers

by rationals” [Sch70, Sch91] and “Approximation of algebraic numbers by algebraic

numbers of bounded degree” [Wir69]. Application of Subspace Theorem to Diophantine

equations gave finiteness results for S-unit equations [DR76, Sch77b, vdPS82]. Some

explicit upper bounds for the number of solutions of linear equations in variables which

lie in a multiplicative group derived in [ESS02]. Considering applications of Subspace

Theorem to norm form equations and decomposable form equations, numerous results

could be found in [Sch72, Gy1, Eve95, EGGR02], important research papers in linear

recurrence sequences are [vdPS91, Sch99, CZ98]. We concentrate a little on norm form

equations and linear recurrence sequences in the following pages.
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2.2 Norm form equations

For any set α1 = 1, α2, ..., αm of linearly independent algebraic numbers over Q let us

define the algebraic field extension K by K = Q(α1, ..., αm) with degree n = [K : Q],

m ≤ n, and denote Q-isomorphisms of K ↪→ C as σ1 = id, σ2, ..., σn be the . For any

element α ∈ K, denote the action σi(α) = α(i). Consider the linear forms L(i)(x) =

α
(i)
1 x1 + · · · + α

(i)
m xm for i = 1, ..., n. Then exists a non-zero rational integer a0 such

that the form

F (x) = a0NK/Q(α1x1 + · · ·+ αmxm) = a0

n∏
i=1

L(i)(x) = a0ℵ(L(x))

will be contained in Q[x].

Definition A norm form is any form F of the type F (x) = a0ℵ(L(x)) for some

L as above and a0 ∈ Q×.

Let p1, ..., ps be rational primes with s ≥ 1, and b ∈ Z\{0} a rational integer which

is relatively prime to p1, ..., ps if s > 1.

Definition The equation

F (x) = bpz11 . . . pzs
s (2.2)

in x ∈ Zm, and z1, ..., zs ∈ Z≥0 with (x1, ..., xm, p1, ..., ps) = 1 if s > 1 is called a

norm form equation or more precisely a norm form equation of Mahler type where

F is a norm form.

While x runs through the integer points in Zm and α1, ..., αm are fixed elements of

an algebraic number field K, the linear expression L(x) runs through a Z-module M

of rank m with basis α1, ..., αm. So we could rewrite the norm form equation (2.2) as

a0ℵ(µ) = bpz11 . . . pzs
s ,

where µ ∈M .

Let QM be the set of products qµ with q ∈ Q, µ ∈ M . Then QM consists of

α1x1 + · · · + αmxm with xi ∈ Q (i = 1, . . . ,m). Let E be a subfield of K and let ME

be the set of µ such that λµ ∈ QM for every λ ∈ E. Then ME is a submodule of M .

If E ⊆ E ′, then ME′ ⊆ME and we have MQ = M .

Definition The Z-module M is called non-degenerate if K has no subfield E 6= Q
and E not imaginary quadratic. Otherwise M is called degenerate.
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Degeneracy is important, for if M is degenerate there is a non-zero integer b for

which (2.2) has infinitely many solutions for s = 0. Before justifying this last remark,

we will consider the simplest case which has infinitely many solutions.

Suppose α1, ..., αm form an integral basis for K and put n = m. Then the norm form

equation ℵ(L(x)) = 1 turns into the equation ℵ(ε) = 1 where ε = α1x1 + · · · + αnxn.

Thus ε is a unit and from the Dirichlet’s Unit Theorem it follows that we have infinitely

many solutions unless K is Q or imaginary quadratic.

In general, suppose that there exists a subfield E with ME 6= 0. In this case it is

known that the set DE
M of elements ν ∈ E such that νµ ∈ M , for every µ ∈ M is an

order in E. That is, DE
M is in fact a subring of E which contains 1. The ring DE

M is

called a coefficient ring of ℵ. The group εEM of units of DE
M of norm ℵE/Q(ε) = 1 is a

multiplicative group which is a subgroup CM of index 1 or 2 (depending on whether

ℵ(ε) = −1 ) in the group of all units of DE
M . Hence, by the generalization of Dirichlet’s

Unit Theorem to orders, CM is infinite unless E = Q or E is imaginary quadratic.

Now let µ be a solution of (2.2) and denote the set of elements µε where ε ∈
CM as µCM . Then for every ε ∈ CM we have that ℵ(µε) = ℵ(µ) and µε ∈ ME.

Thus every element of the coset µCM is again a solution of (2.2). We call µCM a

family of solutions of (2.2).

Thus the norm form equation ℵ(µ) = b, µ ∈ ME has infinitely many solutions if

M is degenerate. So the condition of non-degeneracy is necessary in establishing the

finiteness of the number of solutions.

An application of his Subspace Theorem gave Schmidt [Sch71] the finiteness of num-

bers of solutions of (2.2) in the case s = 0 if M is non-degenerate. The generalization

of this result to the case s > 0 is due to Schlickewei [Sch77a]. After Schmidt [Sch72]

derived a finiteness of solutions of (2.2) when s = 0 in terms of families of solutions,

Schlickewei [Sch77a] again extended his result to equation (2.2). Further generalization

of this theorem to an arbitrary algebraic number fields was done by Laurent [Lau84].

We remark that these results are ineffective. An effective finiteness results for

norm form equations where αk has degree at least 3 over the field Q(α1, ..., αk−1) for

k = 1, . . . ,m were established by Győry and Papp [Gy0, Gy1]. These results were

proved with assumption of xm 6= 0 and under condition that M is degenerate. Thus,

it could not be derived from results of Schmidt and Schlickewei . Under the same

assumption of of xm 6= 0 of Győry’s theorem Evertse and Győry [EG85] proved that

the number of solutions of (2.2) is bounded above by

(4 · 7g(2s+2ω(b)+3))m−1

9



where g is the degree of the normal closure of K over Q, and ω(b) counts the number

of distinct prime factors of b.

Considering the case of non-degenerate M and assumption of s = 0 Schmidt applied

his quantitative version of the Subspace Theorem [Sch90] to derive a uniform upper

bound for the number of solutions of (2.2). An upper bound of family of solutions of

equation (2.2) is a nice result of Győry [Gy3], appeared as a clever consequence of a

more general theorem in decomposable form equations. For the case b = 1 the bound

(233n2)m
3(s+1) is due to Evertse [Eve95] (he used an assumption that αk has degree at

least 3 over the field Q(α1, ..., αk−1) for k = 1, . . . ,m) Under this assumption Evertse

and Győry together [EG97] established the bound

(233n2)e(m)(s+1) · ψm(b)

for the number of solutions, where e(m) = 1
3
m(m+ 1)(2m+ 1)− 2 and

ψm(b) =

(
n

m− 1

)ω(b) ∏
p|b,prime

(
p(b) +m− 1

m− 1

)

In the non-degenerate case the upper bound will be (233n2)e(m)(s+ω(b)+1).

10



2.3 Linear recurrence sequences

Definition Linear recurrence sequence of order t is a sequence {uk}k∈Z≥0
of com-

plex numbers where each term is a linear combination of the t preceding terms with

fixed coefficients c0 . . . ct−1 not all equal to zero:

uk+t = ct−1uk+t−1 + · · ·+ c0uk, (k ∈ Z≥0) (2.3)

Let us assume that for a given sequence {uk}k∈Z≥0
we have fixed initial values u0.....ut−1

not all equal to zero. Suppose that t is minimal. The companion polynomial of relation

(2.3) is defined as

P (x) = xt − ct−1x
t−1 − · · · − c0 =

r∏
i=1

(x− αi)di (2.4)

where zeros α1, ..., αr are all distinct.

Given (2.3) and (2.4) and initial values u0.....ut−1, the sequence {uk}k∈Z≥0
can be

represented as the sum of polynomials pi of degree di − 1 (i = 1, ..., r)

uk =
r∑
i=1

pi(k)αki

Solving the equation

uk = 0, (k ∈ Z≥0) (2.5)

is a well-known problem. Similarly, in the case of the norm form equation, the problem

of giving an algorithm to determine explicitly the solutions k of (2.5) seems to be

currently out of reach.

Theorem. 4 (Skolem-Mahler-Lech)

The set of solutions k of equation (2.5) is the union of finitely many arithmetic

progressions and a finite set (possibly empty).

Recall that a nondegenerate sequence {uk}k∈Z≥0
is a sequence, such that for the

roots αi of the companion polynomial P (x) in (2.4) none of the quotients αi/αj (i 6= j)

is a root of unity. By the condition of nondegeneracy the set of solutions of (2.5)

cannot contain an arithmetic progression thus finiteness of equation (2.5) is it is an

easy consequence of the Skolem-Mahler-Lech theorem.

Schmidt not only gave an effective bound for the number of solutions of (2.5), but

extends the theorem of Skolem-Mahler-Lech to the level of quantitative independency
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of any assumption on nondegeneracy. Moreover, the upper bound from Schmidt’s

result [Sch99] is completely uniform, in other words does depend on initial conditions

u0, . . . , ut−1 of a sequence {uk}k∈Z≥0
or coefficients c0, . . . , ct−1 from recurrence relation

(2.3).

Theorem. 5

Let {uk}k∈Z≥0
be a linear recurrence sequence of order t (possibly degenerate). Then

the set M of solutions k ∈ Z≥0 of equation (2.5), i.e., of uk = 0, consists of finitely

many arithmetic progressions P1, . . . , Ptl and of a finite set M1 such that

c(t) = tl + (M1) ≤ exp(exp(exp(20t))).

In particular for any non-degenerate sequence {uk}k∈Z≥0
equation (2.5) does not

have more than c(t) solutions.

This result was improved by Patrick Brodie Allen in his Master’s [All07] in 2006.

In particular, he showed that one may take c(t) ≤ (exp(exp(t
√

11t))).
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Chapter 3

Notions of complexity.

Transcendence criteria

3.1 Combinatorial approach

3.1.1 Combinatorial transcendence criteria

In two papers, the first [Bor09] published in 1909 and the second [Bor50] in 1950, Borel

studied the b-ary expansion of real numbers, where b > 2 is a positive integer. By his

conjecture it is expected that every irrational algebraic number is normal in base b. In

particular that could mean that if the b-ary expansion of an irrational number is, in

some sense, “simple”, then it is either quadratic or transcendental. The term “simple”

has many interpretations. It may denote real numbers whose expansions have some

regularity, or can be produced by a simple algorithm (see 3.2 Chapter 3), or arise from

a simple dynamical system.(see 3.3 Chapter 3)

In this chapter, we shall focus on the combinatorial properties of the b-adic expan-

sions of irrational algebraic numbers. The first step towards a proof that these numbers

are normal in base b, if true, would be the following conjecture.

Conjecture. 6

If a real irrational number α is clearly abnormal, in the sense that for some b ≥ 2,

its b-ary expansion strongly differs from a normal sequence, then it is transcendental.

This principle uses the notion of normality which in the combinatorial area usually

is associated with the following notion of complexity.
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The usual measure of the complexity of an infinite word u = u1u2... defined on a

finite alphabet is obtained by counting the number p(n) of distinct blocks of length

n occurring in the word u. In particular, if a real number is normal in base b ≥ 2

then its b-adic expansion on the alphabet {0, 1, ..., b − 1} satisfies p(n) = bn for any

positive integer n. Normality of the number means that each one of the bn blocks of

length n occurs in the b-adic expansion of the number occurs with the frequency 1/bn.

The function p is commonly called the complexity function. Periodic sequences have

bounded (finite) complexity, while non-periodic have infinite complexity. For example

quadratic numbers have a periodic continued fraction expansion whose complexity is

bounded. Also the complexity of the decimal expansion of rationals is finite as their

expansion is eventually periodic.

Although Borel’s conjecture is still open, some partial results have been achieved.

First the transcendence of the real numbers whose b-adic expansion behaves as a Stur-

mian sequence was established by Ferenczi and Mauduit [FM97] from a clever reformu-

lation of a theorem of Ridout [Rid57].

Definition A Sturmian sequence (on a binary alphabet) is a non eventually

periodic sequence of minimal complexity, i.e. that satisfies p(n) = n + 1 for every

n ≥ 1. More generally, the sequence u is Sturmian on l letters if p(n) = n+ l − 1.

In other words on the alphabet of cardinality l for a Sturmian sequence p(1) = l,

p(n+ 1)− p(n) = 1 for any n ≥ 1, which means the existence of one word of length n

that is a prefix of two different words of length n + 1 and each of the other words of

length n is a prefix of one and only one word of length n+ 1.

The method that was proposed by Ferenczi and Mauduit [FM97] relies on a combina-

torial translation of a result of Ridout [Rid57] which claims that if the b-ary expansion

of a number contains infinitely many (2+ε)-times repeated concatenations of words

(that is, a word followed by itself and then by its beginning of relative length at least

ε), at distances from the beginning which are comparable with lengths of the consid-

ered words, then it is transcendental. Then the transcendence of the number with the

Sturmian-behaved expansion is a consequence of this criterion and of the combinatorial

properties of Sturmian sequences.

Before stating this properties, we need to introduce some notation from combina-

torics on words.

Let A be a given set, not necessarily finite. The length of a word W on the alphabet

A, that is, the number of letters making up W , is denoted by |W |. For any positive

integer l, we write W l for the word W . . .W (l times repeated concatenation of the word
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W ). More generally, for any positive rational number x, we denote by W x the word

W [x]W,́W´ is the prefix of W of length d(x− [x])|W |e. Here, and in all that follows,

[y] and dye denote, respectively, the integer part and the upper integer part of the real

number y.

Let k ≥ 2 be an integer. To any sequence u on any finite alphabet A = {0, ..., k−1}
we associate the real number whose expansion in base k is 0.u0u1 . . . un . . ., namely

Sk(u) :=
+∞∑
n=0

un
kn+1

Theorem. (Ferenczi and Mauduit)

If θ is an irrational number and for every n ∈ N the expansion of θ in base k begins

with 0.UnVnVnV
′
n , where Un is a possibly empty and Vn is a nonempty word on an

alphabet A = {0, . . . , k−1}, V ′n is a prefix of Vn, |Vn| → +∞, lim sup(|Un| / |Vn|) < +∞
and lim inf(|V ′n| / |Vn|) > 0, then θ is a transcendental number.

Proof. Let rn = |Un| , sn = |Vn|, and choose 0 < ε < lim inf(|V ′n| / |Vn|). Let tn be the

rational number whose expansion in base k is eventually periodic and repeats prefix of

expansion of θ, that is 0.UnVn . . . Vn . . ., then

tn =
an
krn

+
bn
ksn

+
bn
ks2n

+
bn
ks3n

+ . . . =
an
krn

+
bn(k−sn)

1− k−sn
=

an
krn

+
bn

ksn − 1

Thus,

tn =
pn

krn(ksn − 1)

for some integer pn. For n large enough the approximation of θ by rationals tn is

evaluated as

|θ − tn| ≤
1

krn+(ε+2)sn

Now, suppose θ were an algebraic irrational. Then, from a theorem of Ridout

[Rid57], if there exist infinitely many rational numbers Pn/Qn , with Qn = kmnQ′n (the

numbers k,mn and Q′n being integers), such that∣∣∣∣PnQn

− θ
∣∣∣∣ < c1(Qn)−ρ

and
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Q′n < c2(Qn)µ,

where c1 and c2 are positive constants, then ρ ≤ 1 + µ. Since lim inf
sn

rn + sn
=

1

lim sup(rn/sn) + 1
> 0, and up to restricting n to a strictly increasing sequence of

integers, one can suppose that
sn

rn + sn
→ η > 0. In particular, there exist two numbers

ρ and µ such that, for all n in some infinite set,

1 +
sn

rn + sn
< 1 + µ < ρ < 1 + (1 + ε)

sn
rn + sn

.

This choice of ρ and µ together with the choice Pn = pn, Qn = krn(ksn−1),mn = rn,

and Q′n = ksn − 1 gives us the desired contradiction. Hence θ is transcendental.

Q.E.D.

The transcendence in the Sturmian case is then a consequence of this criterion and

of the combinatorial properties of Sturmian sequences.

Theorem. (Ferenczi, Mauduit)

If there exists k such that the expansion of θ in base k is a Sturmian sequence, then

θ is a transcendental number.

Proof. We begin with two lemmas that we will not prove.

Lemma 1 If u is Sturmian on l letters and not recurrent, u is ultimately equal to

a Sturmian recurrent sequence on l′ < l letters.

Lemma 2 If u is a recurrent Sturmian sequence and there exist two words W0 and

W1, and a sequence of integers an ≥ 1, n ≥1, such that if the words Wn, n ∈ N, are

given by the recursion formulas

Wn+1 = W an
n Wn−1

for n ≥ 1, then, for any N ≥ 1 and n ≥ 1, the word u0u1 . . . uN−1 is of the form

X0X1 . . . Xk, where X1, X2, . . . , Xk−1 are equal either to Wn or to Wn+1, X0 is a (pos-

sibly empty) suffix of either Wn or Wn+1, Xk is a ( possibly empty) prefix of either Wn

or Wn+1. This decomposition, which is not unique, is independent of N for fixed n.

As the transcendence does not depend on the initial values of u, it is enough, because

of Lemma 1, to prove our claim if θ = Sk(u) for a recurrent Sturmian sequence u. Let

then an and Wn be as in Lemma 2.
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Then, for each n, a suitable initial segment of u is X0X1 . . . Xk−1 as in Lemma 2;

X0 is either a suffix of Wn , denoted by Tn, or a suffix of Wn+1, which may be a suffix

of Wn−1, denoted again by Tn, or is of the form TnW
cn
n Wn−1 with Tn a suffix of Wn

and 0 ≤ cn ≤ an an integer (every con- sidered suffix may be empty). Then the first bn

words among X1, . . . , Xk−1 are Wn for some integer bn ≥ 0, and then comes one Wn+1

(if not, u would be ultimately periodic).

Hence, for every n, u begins by either

(1) the word TnW
bn+an
n Wn−1

(2) the word TnW
cn
n Wn−1, where Tn a suffix of Wn or of Wn−1 and bn and cn are

non-negative integers. Let qn be the length of Wn , satisfying qn+1 = qnan+qn−1. Then:

• if, for infinitely many n, the case (2) occurs with cn ≥ 3, last combinatorial crite-

rion applied for this sequence with Un = Tn and Vn = V ′n = Wn yields the transcendence

of Sk(u);

• if not, we take Un to be Tn in case (1) and TnW
cn
n Wn−1 in case (2), so we have

ultimately (i.e., for each n large enough) |Un| ≤ 5qn. And

If an+bn ≥ 3 for infinitely many n, we take Vn = Wn and apply criterion of Ferenczi

and Mauduit with V ′n = Vn , which yields the result;

If an+bn ≤ 2 ultimately but an+bn = 2 infinitely often, then qn−1 ≥ qn/3 ultimately,

and last combinatorial criterion with Vn = Wn and V ′n = Wn−1 yields the result;

Finally, in the remaining case we must have bn = 0 and an = 1 ultimately. In this

case, where the reader will recognize the Fibonacci recursion, we have also WnWn−1 =

Wn−1Wn−1Wn−4Wn−3, and we apply combinatorial criterion of Ferenczi and Mauduit

with Vn = Wn−1 and V ′n = Wn−4, as |Vn| = qn−1 is then larger than |Un| /10 and smaller

than 8 |V ′n|.

Q.E.D.

Later the following combinatorial criterion given in [FM97] has been used to estab-

lish some new examples of transcendental numbers with low complexity [AC03, AZ98,

AZ00, RZ00].

Criterion. 7

Let b ≥ 2 be an integer. The complexity function of the b-adic expansion of every

irrational algebraic number satisfies

lim inf
n→∞

(p(n)− n) = +∞. (3.1)
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The first result from [AB07] due to Adamczewski and Bugeaud is a considerable

improvement of (3.1).

Criterion. 8

Let b ≥ 2 be an integer. The complexity function of the b-adic expansion of every

irrational algebraic number satisfies

lim inf
n→∞

p(n)

n
= +∞.

A straightforward conclusion from Criterion 8 is that if the b-adic expansion of an

irrational real number has sublinear complexity (i.e., such that p(n) = O(n)) then it is

transcendental.

Actually, we are able to deal also, under some conditions, with non-integer bases.

Given real β > 1, we can expand in base β every real ξ = an . . . a0.a−1 . . . a−m . . . as

due to the β-expansion of ξ, introduced by Rényi [R5́7]

ξ = βnan + βn−1an−1 + . . .+ a0 + β−1a−1 + . . .+ β−ma−m + . . ..

Definition A Pisot (resp. Salem) number is a real algebraic integer bigger than 1,

whose conjugates lie inside the open unit disc (resp. inside the closed unit disc, with

at least one of them on the unit circle).

For example, any integer b ≥ 2 is a Pisot number. In the same article [AB07] by

Adamczewski and Bugeaud we see the following result.

Theorem. 9

Let β > 1 be a Pisot or a Salem number. The complexity function of the β-expansion

of every algebraic number in (0, 1) \Q(β) satisfies

lim inf
n→∞

p(n)

n
= +∞.
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3.1.2 Transcendence criterion for stammering sequences

Different variations of transcendence criterion for stammering sequences are used in all

3 papers as the main tool to prove general results.

Let a = {ak}k≥1 be a sequence of elements from A, that we identify with the infinite

word a1a2 . . . al . . .. Let w be a rational number with w > 1.

Definition We say that a satisfies Condition (∗)w if a is not eventually periodic

and if there exists a sequence of finite words {Vn}n≥1 such that:

(i) For any n ≥ 1, the word V w
n is a prefix of the word a;

(ii) The sequence {|Vn|}n≥1 is increasing.

In other words, a satisfies Condition (∗)w if a is not eventually periodic and if there

exist infinitely many ’non-trivial’ repetitions (the size of which is measured by w) at

the beginning of the infinite word a.

Thus here we introduce a class of sequences with a particular combinatorial prop-

erty: many repetitions close to the beginning of the word.

Definition A sequence satisfying Condition (∗)w for some w > 1 is a stammering

sequence.

In [AB07] one can find a transcendence criterion for the real number α whose β-adic

expansion forms a stammering sequence. This criterion is used futher in the paper as

a key fact to establish the main result.

Theorem. 10

Let β > 1 be a Pisot or a Salem number. Let a = {ak}k≥1 be a bounded sequence

of rational integers. If there exists a real number w > 1 such that a satisfies Condition

(∗)w, then the real number α :=
+∞∑
k=1

ak
βk

either belongs to Q(β), or is transcendental.

The proof of Theorem 10 rests on the Schmidt Subspace Theorem [Sch72] , and more

precisely on a p-adic generalization due to Schlickewei [Sch92] and Evertse [Eve96].

The particular case when β ≥ 2 is an integer was proved in [ABL04] by Adamczewski,

Bugeaud and Luca. Also Adamczewski [Ada04] proved that, under a stronger assump-

tion on the sequence a = {ak}k≥1, that the number β defined in the statement of

Theorem 10 is transcendental.

Theorem 10 is considerably stronger than the criterion of Ferenczi and Mauduit

[FM97]: here the assumption w > 1 replaces their assumption w > 2. The conclusion
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of Theorem 10 also holds if the sequence a is an unbounded sequence of integers that

does not increase too rapidly. However, the Mahler method, when applicable, gives the

transcendence of the infinite series
∑+∞

k=1 akβ
−k for every algebraic number β such that

this series converges. It is possible to get a transcendence criterion for an algebraic

number β which is neither a Pisot nor a Salem number using the approach followed for

proving Theorem 10.

In the [AB05] Adamczewski and Bugeaud are concerned with the same question that

was conjectured by Borel, but in the case when the b-adic expansion of α is replaced

by its sequence of partial quotients. Recall that the eventually periodic continued

fraction expansion of an irrational number α could be only in case if α is a quadratic

irrational. However, still not much known abut bounds on growth of partial quotients of

algebraic numbers with degree strictly greater than 2. The strong belief that sequence

of partial quotients of such a number is unbounded was based on some generalizations

from numerous examples and a conjecture that these numbers share behavior with most

numbers in this respect. The first question about the existence of a limit on the growth

of the sequence of partial quotients of the continued fraction expansion of all real non-

quadratic irrational algebraic numbers was considered by Khintchin [Khi49]. Despite

the fact that since that time no example is known, the condition of sequence bounding

takes an important place in stating transcendence criterion for continued fractions in

all past results [ADQZ01, Dav02, Bax04], in which, roughly speaking, the size w of

the repetition is required to be all the more large than the partial quotients are big.

Unlike these results, the new transcendence criterion established by Adamczewski and

Bugeaud can be easily applied even if α has unbounded partial quotients.

In 1844 Liouville first applied transcendence theory to studying numbers given by

their continued fraction expansions are due to Liouville in 1844. He constructed an

infinite class of real transcendental numbers using continued fractions whose sequence

of partial quotients grows too fast for the number to be algebraic. Later, in the 1850s, he

gave a necessary condition for a number to be algebraic, and thus a sufficient condition

for a number to be transcendental.

Liouville’s criterion essentially says that algebraic numbers cannot be very well

approximated by rational numbers. In other words if a number can be very well ap-

proximated by rational numbers then it occurs to be transcendental, which relates to

the certain exponent of approximation. He showed that if α is an algebraic number of

degree d ≥ 2 and ε > 0 is any number, then the expression∣∣∣∣α− p

q

∣∣∣∣ < 1

qd+ε

20



can be satisfied by only finitely many rational numbers p/q.

In the twentieth century this topic was extensively developed by Maillet [Mai06]. He

showed in 1906, amongst other things, that there exist transcendental numbers whose

continued fractions have bounded partial quotients.

Deeper results could be found in the work by Thue [Thu09], Siegel [Sie21], and

Roth [DR55] who reduced the exponent in Liouville’s work from d + ε to d/2 + 1 + ε,

and finally, in 1955, to 2 + ε respectively. This result, known as the Thue-Siegel-Roth

theorem, is best possible, since if the exponent 2+ε is replaced by just 2 then the result

is no longer true.

Roth’s work effectively ended the work started by Liouville, and his theorem allowed

mathematicians to prove the transcendence of many more numbers, such as the Cham-

pernowne constant. The theorem is still not strong enough to detect all transcendental

numbers, though, and many famous constants including e and π either are not or are

not known to be very well approximable in the above sense [Mah53].

Further investigations in the approximation of algebraic irrationals by rationals

are due to Baker in 1962 and 1964 [Bak64] where he showed that 3
√

2 cannot be too

well approximated. The approximation results on real numbers by quadratic numbers

due to Schmidt in 1967 [Sch67] are a main tool for the next steps by Davison in

1989 [Dav89], and by Queffelec [Que98] who established in 1998 the transcendence

of the Prouhet-Thue-Morse continued fraction. In 2001, Allouche, Davison, Queffelec

and Zamboni [ADQZ01] proved the transcendence of Sturmian continued fractions,

continued fractions whose sequence of partial quotients is Sturmian. The transcendence

of the Rudin-Shapiro and of the Baum-Sweet continued fractions was proved in 2006

by Adamczewski, Bugeaud and Davison [ABD06].

Finally in 2005, Adamczewski and Bugeaud showed that the continued fraction

expansion of an algebraic number of degree at least three cannot be generated by a

binary morphism. The main results of [AB05] are two new combinatorial transcendence

criterion, which considerably improve upon previous results.

The transcendence criterion for “purely” stammering continued fractions was stated

in [AB05] as follows.

Theorem. 11

Let a = {al}l≥1 be a sequence of positive integers. Let {pl/ql}l≥1 denote the sequence

of convergents to the real number α := [0; a1, a2, . . . , al, . . .].

If there exists a rational number w ≥ 2 such that a satisfies Condition (∗)w, then α

is transcendental.
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If there exists a rational number w > 1 such that a satisfies Condition (∗)w, and if

the sequence {q1/l
l }l≥1 is bounded (which is in particular the case when the sequence a

is bounded), then α is transcendental.

Theorem 11 consists of two statements. The first has no condition on the growth

of the sequence {q1/l
l }l≥1. The second statement improves upon Theorem 4 from

[ADQZ01], which requires, together with some extra rather constraining hypotheses,

the stronger assumption w > 3/2.

To avoid situations when repetitions are restricted to appear at the very beginning

of the sequence we can use results from [Dav02], where shifts are allowed, however the

length must be controlled in terms of the size of the repetitions.

Definition Let w and ẃ be nonnegative rational numbers with w > 1. We say

that a satisfies Condition (∗)w,ẃ if a is not eventually periodic and if there exist two

sequences of finite words {Un}n≥1, {Vn}n≥1 such that:

(i) For any n ≥ 1, the word UnV
w
n is a prefix of the word a;

(ii) The sequence

{
|Un|
|Vn|

}
n≥1

is bounded from above by ẃ;

(iii) The sequence {|Vn|}n≥1 is increasing.

We are now ready to state a transcendence criterion for (general) stammering con-

tinued fractions from the [AB05] due to Adamczewski and Bugeaud.

Theorem. 12

Let a = {al}l≥1 be a sequence of positive integers. Let {pl/ql}l≥1 denote the sequence

of convergents to the real number α := [0; a1, a2, . . . , al, . . .]. Assume that the sequence

{q1/l
l }l≥1 is bounded and set M = lim sup

l→+∞
q

1/l
l and m = lim inf

l→+∞
q

1/l
l . Let w and ẃ be

non-negative real numbers with

w > (2ẃ + 1)
logM

logm
− ẃ. (3.2)

If a satisfies Condition (∗)w,ẃ , then α is transcendental.

An immediate consequence of Theorem 12 is the following.

Corollary. 13

Let a = {al}l≥1 be a sequence of positive integers. Let {pl/ql}l≥1 denote the sequence

of convergents to the real number
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α := [0; a1, a2, . . . , al, . . .].

Assume that the sequence {q1/l
l }l≥1 converges. Let w and ẃ be non-negative real numbers

with w > ẃ + 1. If a satisfies Condition (∗)w,ẃ , then α is transcendental.

It is not hard to check that Theorem 12 improves Theorem 6.3 of Davison [Dav02].

Indeed, to apply his transcendence criterion, w and ẃ must satisfy

w > (2ẃ + 3
2
)
logM

logm
.

which is stronger condition than (3.2).

Theorems 11 and 12 yield many new results that could not be obtained with the

earlier transcendence criterion.

Theorem. 14

Let b ≥ 2 be an integer. Let a = {al}l≥1 be a sequence of integers in {0, ..., b − 1}.
Let w and ẃ be non-negative rational numbers with w > 1. If a satisfies Condition

(∗)w,ẃ , then the real number
∑
l≥1

al/b
l is transcendental.

Theorem 14 works for both “purely” and general stammering sequences, i.e., cases

when the repetitions do not occur too far away from the beginning of the infinite word.

Again, the main tool for the proofs of Theorems 11 and 12 is the Schmidt Subspace

Theorem. This (more precisely, a p-adic version of it) is also the key auxiliary result

for establishing Theorem 14.
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3.1.3 Transcendence criterion for palindromic sequences

In this section we introduce a class of sequences, called palindromic sequences, enjoying

another combinatorial property: the appearing of infinitely many symmetric patterns

not far from the beginning of the sequence. This combinatorial property is described

via the notion of reversal. Note that continued fractions involving similar sequences

were previously considered in [ABL04]. The following theorem published in 2004 gave

a new way of identifying transcendental numbers.

Theorem. (Adamczewski, Bugeaud, Luca)

Let α be irrational, and suppose its expansion on the alphabet {0, 1, . . . 9} satisfies

condition (∗)w,ẃ. Then, α is transcendental.

A strong connection between palindromic and stammering sequences is proved in

[AB06], where Adamczewski and Bugeaud presented how initially palindromic se-

quences under the certain assumption that the prefix of word has an excess of rep-

etitions, thus, actually behaves as stammering sequence.

As above, we use the terminology from combinatorics on words. Let A be a finite

set. The length of a finite word W on the alphabet A, that is, the number of letters

composing W , is denoted by |W |. The reversal (or the mirror image) of W := a1 · · · an
is the word W := an · · · a1. In particular, W is a palindrome if and only if W = W .

We identify any sequence a = {an}n≥1 of elements from A with the infinite word

a1a2 · · · an · · · .

Definition An infinite sequence a is called a palindromic sequence if there exist

real numbers w, ẃ and three sequences of finite words {Un}n≥1, {Vn}n≥1, and {Wn}n≥1

such that

(i) for any n ≥ 1, the word WnUnVnUn is a prefix of the word a;

(ii) the sequence

{
|Vn|
|Un|

}
n≥1

is bounded from above by w;

(iii) the sequence

{
|Wn|
|Un|

}
n≥1

is bounded from above by ẃ;

(iv) the sequence {|Un|}n≥1 is increasing.

In other words, a palindromic sequence has the property that infinitely many sym-

metric patterns (i.e., the words UnVnUn) occur not too far from its beginning.

When the word Wn from the definition of a palindromic sequence is empty for any

n ≥ 1, i.e. if ẃ = 0 we call this type of palindromic sequence as initial palindromic

sequence.
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Definition An infinite sequence a is called an initially palindromic sequence if

there exist a real number w and two sequences of finite words {Un}n≥1, {Vn}n≥1 such

that

(i) for any n ≥ 1, the word UnVnUn is a prefix of the word a;

(ii) the sequence

{
|Vn|
|Un|

}
n≥1

is bounded from above by w;

(iii) for any n ≥ 1, |Un+1| ≥ (w + 2) |Un| ;

Numerous examples of classical sequences in word combinatorics, such as Stur-

mian sequences, the Thue-Morse sequence, or paperfolding sequences, turn out to be

palindromic. Palindromic sequences should be compared with stammering sequences

introduced in section 2.1.2: in the first we have some excess of symmetry, while in

second we have some excess of periodicity. We say that a real (resp., p-adic) number is

a palindromic number if its expansion in some base b ≥ 2 (resp., its Hensel expansion)

is a palindromic sequence.

The main result from the [AB06] due to Adamczewski and Bugeaud is a new tran-

scendence criterion for palindromic sequences.

Theorem. 15

Let p be a prime number and let a = {ak}k≥1 be a palindromic sequence on the

alphabet (0, 1, ..., p− 1). Then, the numbers

α :=
+∞∑
k=1

ak
pk
, αp :=

+∞∑
k=1

akp
k (3.3)

are both algebraic if and only if both are rationals.

In transcendence theory, many results assert that at least one number among some

finite list is transcendental. Apparently, Theorem 15 is the first result of this type

which deals with an Archimedean number and a non-Archimedean one.
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3.2 Algorithmic approach

In this section we discuss how the complexity of expansion of real numbers can be

interpreted in an algorithmic way. Here the notion of complexity of sequences will be

related to the notion of complexity of the algorithm implemented on a certain type of

machine chosen to act as a sequence generator. In computational complexity theory

the main criterion in classifying computational problems in terms of complexity is their

inherent difficulty. To measure the difficulty of solving the problem, we focus on the

running time (or the number of steps) that the machine spends to complete the problem

of size n (by any way of measuring of amount of input information). We do not focus

on the particular algorithm from the beginning. Among all possible of them we choose

the fastest first; its running time will give the complexity of the problem. Thus the

time required to solve the problem (i.e., the relationship between size of input and total

steps of solving) can be expressed as a function T (n) of the size of input, that is our

complexity function. Since the time taken on different inputs of the same size can

be different, the worst-case time complexity T (n) is defined to be the maximum time

taken over all inputs of size n.

In 1965, Hartmanis and Stearns [HS65] proposed an approach for the notion of

complexity of real numbers, by involving the quantitative aspect of the notion of cal-

culability introduced by Turing [Tur37].

Definition A real number is said to be computable in time T(n) if there exists

a multitape Turing machine which gives the first n terms of its binary expansion in (at

most) T (n) operations. The simpler real numbers in that sense, that is, the numbers

for which one can choose T (n) = O(n), are said to be computable in real time, in

other words they have sublinear order (of n time) complexity. Rational numbers have

this property.

The problem of Hartmanis and Stearns about the existence of irrational algebraic

numbers which are computable in real time intuitively seems likely to have a negative

answer if ever solved. After Cobham’s [Cob68] restriction of 1968 of this problem to a

particular class of Turing machines (finite automata), there were several attempts by

Loxton and van der Poorten [LvdP82] in 1982, who finally proved [LvdP88] in 1988

that the restricted problem is solved. In particular, Cobham, Loxton and van der

Poorten proved that the b-adic expansion of every irrational algebraic number cannot

be generated by a finite automaton. Later in his paper [Bec94] Becker explained a

serious gap that was found in the solution for the restricted problem [LvdP88], that

was based on Mahler’s method [Mah29, Mah30a, Mah30b].
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3.2.1 Transcendence criterion for k-automatic sequences

Finite automata take the bottom place in the hierarchy of Turing machines as one

of the most basic simulators of machine program computation. As was mentioned

above these kind of machines output “real time” produced expansions of sequences, so

the complexity function is sublinear. The notion of a sequence generated by a finite

automaton, (or more precisely a finite automaton with output function, i.e. a “uniform

tag system”) has been introduced and studied by Cobham in 1972 (see [Cob80, Cob68]).

Theorem. (Cobham)

Automatic sequences have complexity p(n) = O(n).

In 1980, Christol, Kamae, Mendes France and Rauzy [CKFR80] proved that a

sequence with values in a finite field is automatic if and only if the related formal

power series is algebraic over the rational functions with coefficients in this field. This

was the starting point of numerous results linking automata theory, combinatorics and

number theory.

Definition An infinite sequence a = {an}n≥0 is said to be generated by a k-automaton

if an is a finite-state function of the base-k representation of n. This means that there

exists a finite automaton starting with the k-ary expansion of n as input and producing

the term an as output.

Recall some definitions from automata theory and combinatorics on words.

Definition Let k be an integer with k ≥ 2. We denote by
∑

k the set {0, 1, ..., k−1}.
A k-automaton is defined as a 6-tuple

A = (Q,
∑

k, δ, q0,∆, τ) ,

where Q is a finite set of states,
∑

k is the input alphabet, δ : Q ×
∑

k → Q is the

transition function, q0 is the initial state, ∆ is the output alphabet and τ : Q → ∆ is

the output function.

For a state q inQ and for a finite wordW = w1w2...wn on the alphabet
∑

k, we define

recursively δ(q,W ) by δ(q,W ) = δ(δ(q, w1w2...wn−1), wn). Let n ≥ 0 be an integer and

let wrwr−1 . . . w1w0 in (
∑

k)
r+1 be the k-ary expansion of n; thus, n =

r∑
i=0

wik
i.

Definition We denote by Wr the word w0w1...wr. Then, a sequence a = {an}n≥0 is

said to be k-automatic if there exists a k-automaton A such that an = τ(δ(q0,Wn))

for all n ≥ 0.
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Example Due to Thue we know that any binary sequence of length 4 must contain

a square, i.e., two consecutive identical blocks. He was interested in existence of infi-

nite sequence on three letters without squares. Also he was interested in determining

whether it is possible to find an infinite binary sequence that contains no cube, i.e., no

three consecutive identical blocks, or even no overlap. The answer to all three ques-

tions is given by a well-known classical example of a binary automatic sequence - the

Thue-Morse sequence.

This sequence begins with a = {an}n≥0 = 0110100110010 . . .. It can be defined by

the following rule: an is equal to 0 (resp. to 1) if the sum of the digits in the binary

expansion of n is even (resp. is odd).

It is easy to check that this sequence can be generated by the 2-automaton

A = ({q0, q1}, {0, 1}, δ, q0, {0, 1}, τ),

where δ(q0, 0) = δ(q1, 1) = q0, δ(q0, 1) = δ(q1, 0) = q1, and τ(q0) = 0, τ(q1) = 1.

Example A classical example of a binary automatic number is given by

+∞∑
n=1

1

22n

which is transcendental, as proved by Kempner [Kem16].

In 1994 Becker [Bec94] established that, for any given non-eventually periodic au-

tomatic sequence u = u1u2 . . ., the real number
∑
k≥1

ukb
−k is transcendental. Criterion

8 confirms straightforwardly this conjecture, since any automatic sequence has a sub-

linear complexity function. The following theorem due to Adamczewski and Bugeaud,

stated as their main result and proved in [AB07], is a direct consequence of Criterion

8.

Theorem. 16

Let b ≥ 2 be an integer. The b-adic expansion of any irrational algebraic number

cannot be generated by a finite automaton. That is, irrational automatic numbers are

transcendental.
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3.2.2 Transcendence criterion for morphic sequences

Theorem. 17 (Cobham)

A sequence can be generated by a finite automaton if and only if it is generated by

a uniform morphism.

Thanks to Cobham [Cob80], we know that sequences generated by finite automata

can be characterized in terms of iterations of morphisms of free monoids generated by

finite sets.

Definition For a finite set A, we denote by A∗ the free monoid generated by A. The

empty word is the neutral element of A∗. Let A and B be two finite sets. A function

from A to B∗ can be uniquely extended to an homomorphism between the free monoids

A∗ and B∗. We call such a homomorphism a morphism from A to B.

The morphism is uniform if all words in the image of A have the same length. Let

φ be a morphism from A into itself. Then φ is said to be prolongable if there exists

a letter a such that φ(a) = aW , where W is a non-empty word such that φk(W ) is a

nonempty word for every k ≥ 0. In that case, the sequence of finite words {φk(a)}k≥1

converges in AN (endowed with the product topology of the discrete topology on each

copy of A) to an infinite word a = lim
k→+∞

φk(a). This infinite word is clearly a fixed point

for φ and we say that a is generated by the morphism φ. Moreover, if every letter

occurring in a occurs at least twice, then we say that a is generated by a recurrent

morphism. If the alphabet A has two letters, then we say that a is generated by a

binary morphism. More generally, an infinite sequence a in AN is said to be morphic

if there exist a sequence u generated by a morphism defined over an alphabet B and a

morphism from B to A such that a = φ(u).

Example The Fibonacci morphism δ defined from the alphabet 0, 1 into itself by

δ(0) = 01 and δ(1) = 0 is a binary, recurrent morphism which generates the Fibonacci

infinite word.

a = lim
n→+∞

δn(0) = 010010100100101001 . . ..

This infinite word is the most famous example of a Sturmian sequence [MH40].

Lemma. 3 (Morse, Hedlund). For all n ≥ 0, the Fibonacci word has exactly n+ 1

distinct factors of length n.
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Definition We say that a real number α is automatic (respectively, generated by

a morphism, generated by a recurrent morphism, or morphic) if there exists an integer

b ≥ 2 such that the b-adic expansion of α is automatic (respectively, generated by a

morphism, generated by a recurrent morphism, or morphic).

Theorem 16 establishes a particular case of the following widely believed conjecture.

Conjecture 18 Irrational morphic numbers are transcendental.

The method introduced in [AB07] allows one to confirm this conjecture for a wide

class of morphisms.

Theorem. 19

The binary expansion of algebraic irrational numbers cannot be generated by a mor-

phism.

Theorem 19 is much more general than that of [FM97] combined with a result of

Berstel and Seebold [BS93] that binary irrational numbers which are a fixed point of

a primitive morphism or of a morphism of constant length ≥ 2 are transcendental, as

observed by Allouche and Zamboni [AZ98].

For b-adic expansions with b ≥ 3, Adamczewski and Bugeaud obtained a similar

result as in Theorem 19, but using an additional assumption.

Theorem. 20

Let b ≥ 3 be an integer. The b-adic expansion of an algebraic irrational number

cannot be generated by a recurrent morphism.

However, it is not proved yet that ternary algebraic numbers (expansion on base 3

alphabet) cannot be generated by a morphism. Consider for instance the fixed point

u = 01212212221222212222212222221222 . . .

of the morphism defined by 0 → 012, 1 → 12, 2 → 2, and set α =
∑
k≥1

uk3
−k. The

method introduced in [AB07] by Adamczewski and Bugeaud does not apply to show

the transcendence of α. The transcendence of α follows as a consequence of deep

transcendence results proved in [Ber97] and in [DNNS96], concerning the values of

theta series at algebraic points.

The main contribution from the [AB05] toward questions with morphic sequences

is the following result, which fully solved a question studied by Queffelec [Que00].
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Theorem. 21

The continued fraction expansion of an algebraic number of degree at least three

cannot be generated by a recurrent morphism.

The following corollary is a direct consequence of Theorem 21.

Corollary. 22

The continued fraction expansion of an algebraic number of degree at least three

cannot be generated by a binary morphism.
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3.3 Dynamical approach

In this Section, we will discuss the notion of symbolic complexity of sequences from a

dynamical point of view.

Definition Let A be a given set, finite or not. A subshift on A is a symbolic

dynamical system (X,S), where S is the classical shift transformation defined from AZ≥1

into itself by S({an}n≥1) = {an}n≥2 and X is a subset of AZ≥1 such that S(X) ⊂ X.

With an infinite sequence a in AZ≥1 , we associate the subshift Ima = (X,S), where

X := O(a) denotes the closure of the orbit of the sequence a under the action of S. The

complexity function pa of a sequence a associates with any positive integer n the

number pa(n) of distinct blocks of n consecutive letters occurring in it. More generally,

the complexity function p= of a subshift = = (X,S) associates with any positive integer

n the number p=(n) of distinct blocks of n consecutive letters occurring in at least one

element of X.

With a subshift = = (X,S) on Z≥1 one can associate the set C= defined by

C= = {α ∈ (0, 1), α = [0; a1, a2 . . .] such that {an}n≥1 ∈ =}.

In particular, if a real number α lies in C= , then this is also the case for any α in

Cα := {Tn(α)}n≥0, where T denotes the Gauss map, as truncating shift operator for

the continued fractions defined from (0, 1) into itself by T (x) = 1/x − b1/xc so that

T ([0; a1, a2, . . .]) = [0; a2, a3, . . .].

One manner in which to examine the complexity of the continued fraction expansion

of α is to study the behavior of the sequence {Tn(α)}n≥0, precisely, we are interested in

the structure of the underlying dynamical system (Cα, T ). We can intuitively assume

that there exist a strong connection between the size of Cα and complexity is the

continued fraction expansion of α, in other words the complexity increases with the

growth of size of Cα.

Therefore, this assumption gives a conclusion that in case of too simple structure

of the symbolic dynamical system = we can expect that no algebraic number of degree

at least three appears in C=.

Adamczewski and Bugeaud stated the following main question in transcendence

dynamic theory: “Let = be a subshift on Z≥1 with sublinear complexity, that is, whose

complexity function satisfies p=(n) ≤ Mn for some absolute constant M and any pos-

itive integer n. Does the set C= only contain quadratic or transcendental numbers?”
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This question opens a wild area to research, and it is not much done yet after Morse

and Hedlund [MH40] claimed that a subshift = whose complexity function satisfies

p=(n) ≤ n for some positive integer n is periodic. In that case, it follows that C= is a

finite set composed only of quadratic numbers. Moreover, it is shown by Allouche in

[ADQZ01] that for a Sturmian subshift = (a subshift with complexity p=(n) = n+1 for

every n ≥ 1), the set C= is an uncountable set completely made up by transcendental

numbers. The following result of Adamczewski and Bugeaud from the [AB05] slightly

improves this result.

Theorem. 23

Let = be a subshift on Z≥1. If the set C= contains a real algebraic number of degree

at least three, then the complexity function of = satisfies

lim
n→+∞

p=(n)− n = +∞.

Classical example of subshifts with low complexity is linearly recurrent subshifts.

Let = = (X,S) be a subshift and W be a finite word. The cylinder associated with

〈W 〉 is, by definition, the subset 〈W 〉 of X formed by the sequences that begin in the

word W . A minimal subshift (X,S) is linearly recurrent if there exists a positive

constant c such that for each cylinder 〈W 〉 the return time to 〈W 〉 under S is bounded by

c |W |. The following theorem by Adamczewski and Bugeaud [AB05] solve the question

stated above to this specific class of subshifts with low complexity.

Theorem. 24

Let = be a linearly recurrent subshift on Z≥1. Then, the set C= is composed only of

quadratic or transcendental numbers.
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Chapter 4

Application of Schmidt Subspace

Theorem

As was mentioned above, the proof of the transcendence criterion (Theorem 10) for

stammering sequence rests on an improvement of Theorem 3, which is the p-adic gen-

eralization of the quantitative version of the Subspace Theorem [Lau84]. This criterion

is of great importance as, after the Subspace Theorem, it plays the most important role

in the proof of the general results achieved in [AB07], [AB05] and [AB06]. The main

point of this chapter is to illustrate the proof of Theorem 10 given originally in [AB07].

Later in the subsequent papers [AB05] and [AB06], Adamczewski and Bugeaud gave

modified criteria for stammering sequences with additional conditions on bounds w

and w′ for sequences from Condition (∗)w,w′ . Proofs of those criteria repeat the same

approach that is demonstrated below.

Proof of Theorem 10

Proof. Let us fix the parameter w > 1 and keep the conditions from Theorem 10, i.e.

take sequences {Un}n≥1 and {Vn}n≥1 denoted in Condition (∗)w. Also set rn = |Un|,
sn = |Vn| for any n ≥ 1. We will show that the real number

α :=
+∞∑
k=1

ak
βk

either is in Q(β), or is transcendental. The general line of proof is to consider ap-

proximations to the real number α in the number field Q(β) infinitely many times by

rationals obtained from α by truncating its expansion and completing it by periodicity.

Precisely, for any positive integer n, we define the sequence {b(n)
k }k≥1 by
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b
(n)
h = ah for 1 ≤ h ≤ rn + sn,

b
(n)
rn+h+jsn

= arn+h for 1 ≤ h ≤ sn and j ≥ 0.

Observe that the sequence {b(n)
k }k≥1 is eventually periodic, with pre-period Un and

with period Vn. Set our rational approximations αn as

αn =
+∞∑
k=1

b
(n)
k

βk
(4.1)

The difference is

α− αn =
+∞∑

k=rn+dwsne+1

ak − b(n)
k

βk

Note that |UnV w
n | = rn+sn bwc+dsn(w − bwc)e = rn+sn(bwc+dw − bwce) where

(bwc+ dw − bwce) = dwe is exactly the part that we repeat in αn.

Lemma 3 For any integer n, there exists an integer polynomial Pn(X) of degree

at most rn + sn − 1 such that

αn =
Pn(β)

βrn(βsn − 1)
.

Moreover, the coefficients of Pn(X) are bounded in absolute value by 2 maxk≥1 |ak|.

Proof. From (4.1) we have

αn =
rn∑
k=1

ak
βk

+
+∞∑

k=rn+1

b
(n)
k

βk
=

rn∑
k=1

ak
βk

+
1

βrn

+∞∑
k=1

b
(n)
rn+k

βk

=
rn∑
k=1

ak
βk

+
1

βrn

sn∑
k=1

arn+k

βk

(
+∞∑
j=0

1

βjsn

)
=

rn∑
k=1

ak
βk

+
sn∑
k=1

arn+k

βk+rn−sn(βsn − 1)

=
Pn(β)

βrn(βsn−1)
,

where we define

Pn(X) =
rn∑
k=1

akX
rn−k(Xsn − 1) +

sn∑
k=1

akX
sn−k.

Q.E.D.
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Let K = Q(β), d = [K : Q]. We assume that α is algebraic, and we consider the

following linear forms of three variables with algebraic coefficients. For the place v

corresponding to the embedding of K in R defined by β ↪→ β we choose the continu-

ation of |·|v to Q defined by |x|v = |x|1/d. Set L1,v(x, y, z) = x, L2,v(x, y, z) = y, and

L3,v(x, y, z) = αx+ αy + z. From (4.1) and Lemma 3 we conclude that

|L3,v(β
rn+sn ,−βrn ,−Pn(β))|v = |α(βrn(βsn − 1))− Pn(β)|1/d

=|βrn(βsn − 1)(α− αn)|1/d <

∣∣∣∣∣βrn+sn
1

βrn+dwsne

+∞∑
k=1

ak+rn+dwsne − b
(n)
k+rn+dwsne

βk

∣∣∣∣∣
1/d

� (βsn−dwsne)1/d <
1

β(w−1)sn/d
(4.2)

Here and later the constants implied by the Vinogradov symbol depend (at most) on

α, β and maxk≥1 |ak|, but are independent of n. Let us denote by S∞ the set of all other

infinite places on K and by S0 the set of all finite places on K dividing β. Note that

in our case S0 is empty because β is an algebraic unit. For any v in S = S0 ∪ S∞, set

L1,v(x, y, z) = x, L2,v(x, y, z) = y, and L3,v(x, y, z) = z. Clearly, for any v in S, the forms

L1,v, L2,v and L3,v are linearly independent. Let us take xn = (βrn+sn ,−βrn ,−Pn(β))

and estimate the product

∏
:=
∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

=
∏
v∈S

∣∣βrn+sn
∣∣
v
|βrn|v

|L3,v(xn)|v
|xn|3v

from above. By the product formula and the definition of S, we immediately get that

∏
=
∏
v∈S

|L3,v(xn)|v
|xn|3v

(4.3)

Since the polynomial Pn(X) has integer coefficients and since β is an algebraic

integer, we have |L3,v(xn)|v = |Pn(β)|v ≤ 1 for any integer and for any place v in S0.

Moreover, as the conjugates of β have moduli at most 1, we have for any infinite place

v in S∞

|L3,v(xn)|v � (rn + sn)dv/d,

where dv = 1 or 2 according as v is real infinite or complex infinite, respectively.

Together with (4.2) and (4.3), this gives
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∏
� (rn + sn)d−1/dβ−(w−1)sn/d

∏
v∈S
|xn|−3

v

� (rn + sn)d−1/dβ−(w−1)sn/d
∏
v∈S

H(xn)−3,

since |xn|v = 1 if v does not belong to S. By Lemma 3, and from the fact that the

moduli of the complex conjugates of β are at most 1, we see that

H(xn)� (rn + sn)dβ(rn+sn)/d.

It follows from Condition (∗)w that

∏
v∈S

3∏
i=1

|Li,v(xn)|v
|xn|v

� (rn + sn)dwH(xn)−(w−1)sn/(rn+sn)H(xn)−3 � H(xn)−3−ε,

for some positive real number ε.

Now we apply the quantitative version of the Subspace Theorem to conclude that

the points xn lie in a finite number of proper subspaces of K3. So there exist a non-zero

triple (x0, y0, z0) in K3 and infinitely many integers n such that

x0 − y0
βrn

βrn+sn
− z0

Pn(β)

βrn+sn
= 0.

After taking the limit along this subsequence of integers and noting that {sn}n≥1

tends to infinity, we get that x0 = z0α. Thus, α belongs to K = Q(β).

Q.E.D.

Proof of Criterion 8

Proof. Let α be an irrational number. Without loss of generality, we assume that α is

in (0, 1) and we denote by 0.u1u2 . . . uk . . . its b-adic expansion. The sequence {uk}k≥1

takes its values in {0, 1, . . . , b−1} and is not eventually periodic. We assume that there

exists an integer c ≥ 2 such that the complexity function p of {uk}k≥1 satisfies

p(n) ≤ cn for infinitely many integers n ≥ 1.
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We shall derive that Condition (∗)w is then fulfilled by the sequence {uk}k≥1 for a

suitable w > 1. By Theorem 10, this will imply that α is transcendental.

Let nk be an integer with p(nk) ≤ cnk. Denote by U(l) the prefix of u := u1u2 . . . of

length l. By the pigeonhole principle, there exists (at least) one word Mk of length nk

which has (at least) two occurrences in U((c+ 1)nk). Thus, there are (possibly empty)

words Ak, Bk, Ck and Dk, such that

U((c+ 1)nk) = AkMkCkDk = AkBkMkDk and |Bk| ≥ 1

We observe that |Ak| ≤ cnk. We have to distinguish three cases:

(i) |Bk| > |Mk| ;

(ii) d|Mk| /3e ≤ |Bk| ≤ |Mk|;

(iii) 1 ≤ |Bk| ≤ d|Mk| /3e

Case (i). Under this assumption, there exists a word Ek such that

U((c+ 1)nk) = AkMkEkMkDk.

Since |Ek| ≤ (c − 1) |Mk|, the word Ak(MkEk)
s with s = 1 + 1/c is a prefix of u.

Moreover, we observe that

|MkEk| ≥ |Mk| ≥
|Ak|
c

.

Case (ii). Under this assumption, there exist two words Ek and Fk such that

U((c+ 1)nk) = AkM
1/3
k EkM

1/3
k EkFk.

Thus, the word Ak(M
1/3
k Ek)

2 is a prefix of u. Moreover, we observe that∣∣∣M1/3
k Ek

∣∣∣ ≥ |Mk|
3
≥ |Ak|

3c

Case (iii). In this case, Bk is clearly a prefix of Mk, and we infer from BkMk = MkCk

that Bt
k is a prefix of Mk, where t is the integer part of |Mk| / |Bk|. Observe that t ≥ 3.

Setting s = bt/2c, we see that Ak(B
s
k)

2 is a prefix of u and

|Bs
k| ≥

|Mk|
4
≥ |Ak|

ck
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In each of the three cases above, we have proved that there are finite words Uk, Vk

such that UkV
1+1/c
k is a prefix of u and:

• |Uk| ≤ cnk;

• |Vk| ≥ nk/4;

• w ≥ 1 + 1/c > 1.

Consequently, the sequence {|Uk| / |Vk|}k≥1 is bounded from above by 4c. Moreover,

it follows from the lower bound |Vk| ≥ nk/4 that we may assume that the sequence

{|Vk|}k≥1 is strictly increasing. This implies that the sequence u satisfies Condition

(∗)1+1/c. By applying Theorem 10 with β = b, we conclude that α is transcendental.

Q.E.D.

Proof of Theorem 15

Proof. Theorem 15 is the consequence of the following more general result by Adam-

czewski and Bugeaud from the same paper [AB06].

Theorem. 25

Let b ≥ 2 be an integer and let a = {ak}k≥1 be a palindromic sequence on the

alphabet {0, 1, . . . , b − 1}, with parameters w, w′,. Assume that a is not ultimately

periodic. Let p be a prime divisor of b and let pu be the greatest power of p dividing b.

Assume that

log pu

log b
>

w′

1 + w′
.

Then at least one of the numbers α :=
+∞∑
k=1

ak
pk
, αp :=

+∞∑
k=1

akp
k is transcendental.

Proof. Consider a palindromic sequence a = {ak}k≥1 from the condition of theorem

and fix the parameters w, w′. Let sequences {Un}n≥1, {Vn}n≥1 and {Wn}n≥1 be as

denoted in the definition for palindromic sequences. Also set rn = |Un|, sn = |Vn| and

tn = |Wn| for any n ≥ 1.

Then the sequence a represented as a = WnUnVnUn . . . acts as expansion for the

numbers α, αp.

Let assume that α and αp are algebraic. Our aim is to show that they are ra-

tionals. Here again we do the same approximations of α by a rational construction
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of an appropriate polynomial whose coefficients repeat the beginning of palindromic

sequence.

Define the integer polynomial Pn(X) for any positive integer n by

Pn(X) =
tn∑
k=1

akX
k +

2rn+2tn+sn∑
k=tn+1

a2rn+2tn+sn−k+1X
k.

Then we see that the rational number Pn(b)/b2rn+2tn+sn+1 has the b-adic expansion

0.WnUnVnUnWn and we evaluate the approximation of α as∣∣∣∣α− Pn(b)

b2rn+2tn+sn+1

∣∣∣∣ ≤ 1

b2rn+tn+sn+1

At the same time

Pn(X) =
rn+tn∑
k=1

akX
k +

2rn+2tn+sn∑
k=rn+tn+1

a2rn+2tn+sn−k+1X
k.

Consequently, for any prime divisor p of b, we have

|αp − Pn(b)|p ≤ |b|
rn+tn+1
p

We consider the linearly independent linear forms with algebraic coefficients

L1,∞ = αx− y, L2,∞ = x, L3,∞ = z,

L1,p = x, L2,p = y − αpz, L3,p = z,

and for every prime number p′ 6= p dividing b, we set

L1,p′ = x, L2,p′ = y, L3,p′ = z.

We evaluate the product of the norms of these linear forms at the integer points

xn = (b2tn+2rn+sn+1, Pn(b), 1).

Let us evaluate products first without dividing by norm of xn. For the set of infinite

places

Π∞ =
3∏
i=1

|Li,∞|∞ =
∣∣αb2tn+2rn+sn+1 − Pn(b)

∣∣ b2tn+2rn+sn+1

=

∣∣∣∣α− Pn(b)

b2rn+2tn+sn+1

∣∣∣∣ b2(2tn+2rn+sn+1) ≤ b2(2tn+2rn+sn+1)−(2rn+tn+sn) = b3tn+2rn+sn+2

For any prime divisor p of b
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Πp =
3∏
i=1

|Li,p|p = |b|2tn+2rn+sn+1
p |Pn(b)− αp|p ≤ |b|

2tn+2rn+sn+1+(rn+tn+1)
p

= |b|3tn+3rn+sn+2
p = p−u(3tn+3rn+sn+2)

Finally product for all prime numbers p′ 6= p dividing b

Πp′|b =
3∏
i=1

|Li,p′|p′ =
∏
p′|b

|b|2tn+2rn+sn+1
p′ |Pn(b)|p′ ≤

∏
p′|b

|b|2tn+2rn+sn+1
p′

Since the polynomial Pn(b) has integer coefficients and since b is an algebraic integer,

we have |Pn(β)|p′ ≤ 1 for any integer p′.

Note that b = puk, where k could be represented as k−1 =
∏
p′|b
|b|p′ . Then∏

p′|b

|b|2tn+2rn+sn+1
p′ = k−(2tn+2rn+sn+1)

Collecting all products and dividing by H(xn) we obtain∏
n

� H(xn)−3Π∞ΠpΠp′|b = H(xn)−3[puk]3tn+2rn+sn+2p−u(3tn+3rn+sn+2)k−(2tn+2rn+sn+1)

= H(xn)−3p−u(rn)ktn = H(xn)−3p−u(rn)

(
b

pu

)tn
= H(xn)−3btnp−u(rn+tn)

Recall that, by assumption, there is a real number w′ such that tn ≤ w′rn for any

n ≥ 1. Consequently, we infer that∏
n

� H(xn)−3btnp−u(rn+tn) ≤ H(xn)−3(bw
′
p−u(1+w′))rn .

It follows from condition of theorem that there exists a positive real number C < 1

satisfying
∏
n

� H(xn)−3Crn . Thus, by Conditions (ii) and (iii) from the definition of

an initially palindromic sequence, we get that∏
n

� H(xn)−ε

for some positive real number ε. We then apply Subspace Theorem and conclude that

there exists a nonzero integer triple (z1, z2, z3) and an infinite set of distinct positive

integers N1 such that

z1b
2tn+2rn+sn+1 + z2Pn(b) + z3 = 0,

for any n in N1. Dividing this equation by b2tn+2rn+sn+1 and letting n tend to infinity

along N1, we get that z1 + z2α = 0, thus α is rational. Consequently, the sequence a is

ultimately periodic and each αp is rational.
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Q.E.D.

Proof of Theorem 15. Since the condition of Theorem 25 is satisfied whenever b is a

prime number, Theorem 15 is just a case of Theorem 25. Indeed, in the case of b prime

the only divisor of b is b itself, so pu = b and the condition of Theorem 25 corresponds

to

log b

log b
= 1 >

w′

1 + w′
.

which is always true since 1 + w′ > w′.

Q.E.D.

Proof of Theorem 16

Proof. Suppose that we have a non-eventually periodic automatic sequence {ak}k≥1

defined on a finite alphabet A. By a result of Cobham [Cob80] there exist a morphism

ϕ from an alphabet B = {1, 2, . . . , r} to the alphabet A and a uniform morphism φ

from B into itself such that a = ϕ(u), where u is a fixed point for φ. It follows by

a result of Cobham that if the sequence u satisfies Condition (∗)w and if ϕ is a non-

erasing morphism (the image length of any letter under ϕ is at least 1) then a = ϕ(u)

satisfies Condition (∗)w as well. By the pigeonhole principle, the prefix of length r + 1

of u can be written under the form W1uW2uW3, where u is a letter and W1, W2, W3

are (not necessary non-empty) finite words.

Let us define the sequences {Un}n≥1 and {Vn}n≥1 as Un = φn(W1) and Vn = φn(uW2)

for any n ≥ 1. Now we need to check that the assumptions of Theorem 10 are satisfied

by u. Remember that φ is a morphism of constant length, so

|Un|
|Vn|

≤ |Wn|
|W2|+ 1

≤ r − 1

thus, bounded above. On the other hand, φn(u) is a prefix of Vn of length at least

|Vn| /r. It follows that Condition (∗)1+1/r is satisfied by the sequence u, and also by the

sequence a. Let b ≥ 2 be an integer. Applying Theorem 10 with β = b, we conclude

that the automatic number
∑+∞

k=1 akb
−k is transcendental.

Q.E.D.
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algebriques. C. R. Acad. Sci. Paris, 339:11 – 14, 2004.

[AC03] B. Adamczewski and J. Cassaigne. On the transcendence of real numbers

with a regular expansion. J. Number Theory, 103:27 – 37, 2003.

[Ada04] B. Adamczewski. Transcendance “a la Liouville” de certain nombres réels.
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2 et divers problémes de probabilites

en chaines. C. R. Acad. Sci. Paris, 230:591 – 593, 1950.

[BS93] J. Berstel and P. Seebold. A characterization of overlap - free morphisms.

Disc. Appl. Math., 46:275 – 281, 1993.

[CKFR80] G. Christol, T. Kamae, M. Mendes France, and G. Rauzy. Suites alge-

briques, automates et substitutions. Bull. Soc. math., 108:401 – 419, 1980.

[Cob68] A. Cobham. On the Hartmanis - Stearns problem for a class of tag ma-

chines. Conference Record of 1968 Ninth Annual Symposium on Switching

and Automata Theory, pages 51–60, 1968.

[Cob80] A. Cobham. Uniform tag sequences. Math. Systems Theory, 6:164 – 192,

1980.

[CZ98] P. Corvaja and U. Zannier. Diophantine equations with power sums and

universal Hilbert sets. Indag. Math., 9:317 – 332, 1998.

[Dav89] J. L. Davison. A class of transcendental numbers with bounded partial

quotients. Theory and Applications, pages 365 – 371, 1989.

[Dav02] J. L. Davison. Continued fractions with bounded partial quotients. Proc.

Edinburgh Math. Soc., 45:653 – 671, 2002.

44



[DNNS96] D. Duverney, Ke. Nishioka, Ku. Nishioka, and I. Shiokawa. Transcendence

of Jacobis theta series. Proc. Japan Acad., A72:202 – 203, 1996.

[DR76] E. Dubois and G. Rhin. Sur la majoration deformes lineaires a coeffi-
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