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Abstract

Network virtualization can offer more flexibility and better manageability for the fu-

ture Internet by allowing multiple heterogeneous virtual networks (VN) to coexist on a

shared infrastructure provider (InP) network. A major challenge in this respect is the VN

embedding problem that deals with the efficient mapping of virtual resources on InP net-

work resources. Previous research focused on heuristic algorithms for the VN embedding

problem assuming that the InP network remains operational at all times. In this thesis, we

remove that assumption by formulating the survivable virtual network embedding (SVNE)

problem and developing baseline policy heuristics and an efficient hybrid policy heuristic to

solve it. The hybrid policy is based on a fast re-routing strategy and utilizes a pre-reserved

quota for backup on each physical link. Our evaluation results show that our proposed

heuristic for SVNE outperforms baseline heuristics in terms of long term business profit

for the InP, acceptance ratio, bandwidth efficiency, and response time.
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Chapter 1

Introduction

1.1 Network Virtualization

The current Internet architecture has been supporting various distributed applications and

heterogeneous network technologies quite successfully. However the immense popularity

of the Internet has also turned out to be its biggest obstacle to seamless growth and in-

novation. The rigidity of the current Internet architecture has resulted in the so called

Internet Ossification problem. Due to its multi-provider nature, adopting a new architec-

ture or modifying an existing architecture requires consensus among multiple competing

stakeholders. As a result, alterations to the current Internet are limited to incremental

patches and deployment of new network applications have become increasingly difficult

and error-prone.

Network virtualization has been proposed as a diversifying attribute of the future inter-

networking paradigm that can enable seamless integration of new features to the current

Internet resulting in rapid evolution of the Internet architecture [4,5,9]. By allowing mul-

tiple heterogeneous network architectures to cohabit on a shared physical infrastructure,

network virtualization promises better flexibility, security, manageability and decreased

power consumption for the Internet. In a network virtualization environment (NVE), the

traditional role of the Internet Service Provider (ISP) has been divided into two sepa-

rate entities: (1) the infrastructure providers (InP) who are responsible for deploying and

maintaining physical network resources (routers, links etc.) and the (2) service providers
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(SP) who implement various network protocols and heterogeneous network architectures

on virtual networks (VNs) composed from physical network resources leased from one or

more infrastructure providers.

Virtual Network Embedding (VNE) is the central resource allocation problem in net-

work virtualization. It deals with the efficient mapping of virtual networks onto physical

network resources. More specifically, for each virtual network creation request, the VNE

is responsible for mapping virtual nodes onto physical nodes and virtual edges onto one

or more physical paths. The VNE problem, with constraints on virtual nodes and virtual

links, can be reduced to the NP-hard multi-way separator problem, even if the schedule of

VN requests is known beforehand [3]. Even when all the virtual nodes are already mapped,

the virtual link embedding problem remains NP-hard. In order to reduce the hardness

of the VN embedding problem and enable efficient heuristics, existing research has been

restricting the problem space in different dimensions, e.g., considering the off-line version

of the problem [24, 53], ignoring either node or link requirements [8, 24], assuming infinite

capacity of the substrate nodes and links to obviate admission control [8,24,53], and focus-

ing on specific virtual topologies [24]. Recently the authors in [6, 22] have proposed VNE

heuristics that combine the node and link embedding phases. The authors in [17] have

proposed a distributed algorithm that simultaneously maps virtual nodes and virtual links

without any centralized controller. However, a limitation of all these heuristics is that they

assume the substrate network to be operational at all times, which is not realistic. The

existing heuristics are not capable of handling substrate node and link failures, which may

lead to poor performance and increased frustration for the SP.

In this thesis, we formulate the survivable virtual network embedding (SVNE) problem

to incorporate single substrate link failures in VNE and propose an efficient heuristic for

solving it. To the best of our knowledge, this is the first work to consider survivability

strategies in the network virtualization environment.

1.2 Contributions

Our main contributions in this thesis are as follows:

1. We add survivability mechanisms to the link embedding phase of virtual network

embedding using efficient recovery and protection policies that can increase the long
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term business profit of the InP. We formulate the survivable virtual network embed-

ding (SVNE) problem and provide efficient heuristics to solve it. To the best of our

knowledge, this is the first work to address survivability and failure awareness issues

in network virtualization. In addition to that, our algorithms are also applicable in

similar multi-layer network architectures, e. g. IP-over-WDM networks.

2. We add service level agreement (SLA) assurance to the embedding process by prior-

itizing the restoration of failed virtual links based on customer SLA constraints with

the objective of minimizing the overall impact of failure and maximizing the business

profit of the InP.

3. We propose a hybrid policy heuristic to solve SVNE. This solution is based on linear

programming modules and has a number of configurable parameters. For example,

the InP can control the percentage of resources dedicated for backup recovery and

the number of paths allowed for primary and detour flows. This gives the InP greater

control over its backup resource allocation policies and enables flexibility in deter-

mining the optimal allocation based on current failure patterns. The hybrid policy

also exhibits better performance compared to baseline heuristics.

4. We introduce path-flow based optimization formulations for the different recovery

and protection policies. Besides reducing number of constraints and variables there

are other advantages in a path flow based formulation. The path formulation allows

control over the characteristics of the paths selected for embedding and protection.

For instance, we can directly control the total number of paths and number of hops

per path for quality of service (QoS) purposes. This is not possible with a link-flow

based formulation.

5. We add end-to-end Quality of Service (QoS) guarantees to the link embedding phase

of virtual network embedding using our path indexed mixed integer programming

formulations.

6. We also propose heuristics for incentive compatible virtual network embedding which

can tolerate rational manipulation by different parties involved in the embedding

process (Appendix A).
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1.3 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents the required background

on network virtualization, the virtual network embedding problem and survivability mech-

anisms. It also discusses the existing literature on the virtual network embedding problem

in network virtualization and some relevant literature on survivability in related domains.

Our proposed formulation for SVNE and solutions along with the necessary technical re-

sults are presented in Chapter 3. Chapter 4 presents performance evaluation results. Fi-

nally, we conclude in Chapter 5 by mentioning some possible future research directions.

Appendix A presents our work on incentive compatible virtual network embedding.
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Chapter 2

Background and Related Work

2.1 Network Virtualization Environment

In this section, we give a high level overview of the network virtualization environment

(NVE), by describing the various actors involved and their relationships. Players in the

network virtualization model differ from those in a traditional network environment. The

main difference comes from the decoupling of the single role of the ISP into two different

roles: infrastructure providers (InP) and service providers (SP). From a purely economic

point of view, this decoupling amortizes the high cost of infrastructure management by

sharing capital expenditure across multiple infrastructure providers. It should be noted

that NVE business roles do not map one-to-one to distinct entities, meaning the same

entity can assume two different roles at the same time.

2.1.1 Infrastructure Provider

Infrastructure providers (InP) deploy, and manage physical network resources in an NVE.

They own the physical infrastructure and lease resources to service providers through

well defined programmable interfaces and monetary contracts. There is usually no direct

negotiation between InP’s and end users, instead end users subscribe to services provided

by the SP’s. InP’s communicate and collaborate among themselves to create the complete

end-to-end underlying network based on mutual business relationships.
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2.1.2 Service Provider

Service providers (SP) lease resources from one or more InP’s to create virtual networks

and deploy customized protocols and manage the network resource allocation to offer end-

to-end services to the end users. A service provider can also create child virtual networks

in a recursive manner, and lease its child networks to other SP’s, creating a hierarchy of

networks.

2.1.3 End User

End users in the network virtualization environment can choose to use the services offered

by one or more SP. It can connect to multiple service providers for different services. An

end user can simultaneously connect to multiple service providers for different services.

Services are offered through service level agreements (SLA) negotiated between service

providers and end users.

2.1.4 Broker

Brokers act as mediators in network virtualization environments among InP’s, SP’s and

end users. Their presence simplifies the matching of service provider’s requirements by

aggregating and comparing offers from multiple infrastructure providers. On the other

hand, brokers also allow the end users to choose desirable services from a variety of service

providers offering similar services.

2.2 Network Virtualization Concepts

In this section we define some common terms and concepts pertinent to network virtual-

ization.

2.2.1 Physical Topology

A weighted undirected graph GP = (VP , EP ) usually represents the physical topology,

where each node in the network is a vertex vP ∈ VP , with a set of attributes AvP
. Each

6



physical link between two nodes is represented by an edge eP ∈ EP with an attribute set

AeP
.

2.2.2 Virtual Topology

The virtual topology is similarly represented by another weighted graph GV = (VV , E
V )

with corresponding attribute sets. The virtual topology is also known as a logical topology.

2.2.3 Virtual Node

A virtual node can be a virtual host or a virtual router. A virtual host acts as a packet

source or sink, whereas, a virtual router forwards packets according to the routing protocols

specified for the virtual topology.

2.2.4 Virtual Link

A virtual link can span over multiple physical links, i. e. , it usually corresponds to a

physical path. Often a single virtual link can be mapped to multiple physical paths in-

order to satisfy some of the constraints of the virtual link, e. g. bandwidth constraints that

cannot be satisfied using a single path.

2.2.5 Recursion

In a network virtualization architecture, sometimes it might be necessary to create and

manage one or more virtual networks on top of another virtual network creating a hierarchy

of virtual networks. This is known as recursion or nesting of virtual networks.

2.3 Virtual Network Embedding

Efficient usage of substrate network resources is dependent on effective techniques for

virtual network embedding. The VN embedding problem is quite challenging, due to a

number of practical challenges:
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2.3.1 Node and link constraints

Each VN request is associated with resource constraints, like cpu resources for the virtual

nodes and bandwidth resources for the virtual links that must be met by the embedding

solution. For example, to run a controlled experiment, a researcher could require 1GHz

of cpu power for each virtual node and 10mbps bandwidth for each virtual link. There

may also be additional constraints like geographical location constraints for nodes and

delay constraints for links. The complex combination of multiple node and link constraints

make the embedding problem a computationally difficult multi-constrained optimization

problem.

2.3.2 Admission Control

Finite substrate resources constrains the InP to reject or postpone some VN requests in-

order to meet the resource guarantess for existing virtual networks.

2.3.3 On-line Requests

VN requests arrive in an on-line fashion resulting in sub-optimal performance compared

to the hypothetical case where VN request arrival sequence is known beforehand.

These properties make the VN embedding problem very difficult. In-fact the problem

remains computationally intractable even if some conditions are relaxed. Due to multiple

constraints, the VNE problem is in general NP−hard, even in the off-line case. On the

other hand, traditional techniques for solving on-line problems are not practical in this

case, since the characteristics of the incoming VN requests are generally unpredictable and

the search space is huge when the underlying substrate network is large.

2.4 Node and Link Stress Measures

In order to quantify the resource usage of the substrate network, we use the notion of

stress. The substrate node stress, SN
(
nS
)

is defined as the total amount of CPU capacity

8



allocated to different virtual nodes hosted on the substrate node nS ∈ NS.

SN
(
nS
)

=
∑

∀nV ↑nS

c(nV ) (2.1)

where x ↑ y denotes that the virtual node x is hosted on the substrate node y.

Similarly, the substrate link stress, SE
(
eS
)

is defined as the total amount of bandwidth

reserved for the virtual links whose substrate paths passes through the substrate link

eS ∈ ES.

SE
(
eS
)

=
∑
∀eV ↑eS

b(eV ) (2.2)

where x ↑ y denotes that the substrate path of the virtual link x passes through the

substrate link y.

The definitions of node stress and link stress are similar to that in [53] with the difference

that instead of using the actual amount of CPU and bandwidth resources to measure stress,

the authors in [53] represent stress as the number of virtual resources mapped on top of a

physical resource.

2.5 Failures

There are many types of potential failures in a multi-layer network system like the network

virtualization environment (NVE). Not all of them are equally important. A given failure

may be common in one domain, and irrelevant in another. Next we discuss different types

of potential failures in multi-layer networks.

2.5.1 Edge Failures vs. Node Failures

First of all, there are two basic elements that can fail in a network: edges and nodes. In

practice, the failure of a node is equivalent to the failure of all adjacent edges.
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2.5.2 Logical Failures vs. Physical Failures

Failures can occur at the logical or physical layer. Logical failures affect the logical layer

only, and are transparent to the physical layer. In contrast, physical failures not only affect

the physical layer, but also propagate to the logical layer, and if the network is recursive,

any number of upper layers.

2.5.3 Single vs. Multiple Failures

Next we distinguish among single and multiple failures. The single failure case is more

important and common, since the failure probability is often very small, making multiple

simultaneous failures a rare event. On the other hand, considering multiple failures can

facilitate the behavior of large scale systems under typical or high stress.

2.5.4 Errors vs. Attacks

Finally, we can also distinguish errors and attacks. Errors represent failures of randomly

chosen components in the system, which is what we will be concerned in this thesis. On

the other hand, attack scenarios assume the presence of some adversary that exploits a

weak point of the system. A candidate weak point could be a highly stressed node or link,

since removing such nodes and links will disconnect large number of upper layer networks.

2.6 Failure Protection Mechanisms

We now describe some general techniques to increase network robustness to failures.

2.6.1 Proactive vs. Reactive

Proactive failure protection mechanisms constantly keep the system prepared for failures,

before they actually occur. Typically, this can be achieved by keeping a set of pre-computed

backup paths, or by applying some redundant coding. In contrast, reactive mechanisms

are activated only after a failure actually occurs and is detected. Usually, they trigger a
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retransmission of lost data in case of short-lived failure, or they adaptively search for a

new path for long-term failure. Proactive techniques are less resource efficient but fast,

whereas reactive mechanisms more resource efficient but typically slower.

2.6.2 Physical Layer vs Logical Layer

Failure protection mechanisms can be provided at different layers. In case of a physical

layer protection mechanism, a physical failure is detected directly at the physical layer. The

affected paths can be changed to avoid the failed link by (i) replacing the precomputed

paths (proactive technique) or (ii) rerouting on the fly (reactive technique). This is in

general transparent to the logical layer.

On the other hand, in case of reactive failure protection at the logical layer, a physical

failure propagates to the logical layer where it is detected. The logical nodes recalculate

the routes in the logical topology to avoid the failing logical link(s), which is transparent

to the physical layer.

2.7 Network Survivability

Network survivability measures the ability of a network to support committed Quality of

Services (QoS) in the presence of various failure scenarios. It is a generalization of the QoS

guarantee that the network providers commit to their end users. In the case of failures, it

becomes difficult to maintain such QoS requirements without properly pre-planning backup

resources. Network survivability techniques include a set of tools to pre-plan and utilize

backup resources to improve QoS in the presence of failures.

The causes of failures in networks are widespread and most failures are hard to forcast

or eliminate, however it is still possible to minimize the impact of a set of specific fail-

ures by incorporating survivability strategies into the network design phase. Traditional

network survivability techniques have two aspects, survivable network design and network

restoration.
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2.8 Existing Literature on Network Survivability

Survivable Virtual Network Embedding (SVNE) or virtual network embedding in the pres-

ence of arbitrary node and link failures is a research challenge that has yet to be addressed

in the network virtualization literature. Node and link failure survivability problems have

been investigated extensively for optical and multi-protocol label switched (MPLS) net-

works [41], and real time systems [52]. Two well known approaches for handling link failures

in optical networks are protection and restoration. Protection is normally employed at the

substrate network level during the design phase by provisioning backup light-paths. On

the other hand restoration is done at the virtual network level by provisioning the network

with additional capacity and is more reactive in nature. The key to efficient restoration

mechanisms is survivable mapping in the presence of link failures. The authors in [43] men-

tion three existing paradigms for survivable IP-over-WDM mapping algorithms based on

(1) Integer Linear Programs (ILP), (2) Meta-heuristics like Genetic Algorithms (GA), Ant

Colony Optimization (ACO), Tabu Search, and (3) Graph Theoretic algorithms. The most

recent approach based on graph theoretic results called SMART [18, 19] is more efficient

and scalable than ILP and heuristic local search approaches.

SMART repeatedly picks connected subgraphs of the logical topology and finds surviv-

able mappings for them. It then reduces the logical topology by contracting the already

mapped subgraph and continues the process. The authors in [43] continue working in

this direction by exploiting duality between circuits and cuts due to the Max-flow min-cut

theorem in Combinatorial Optimization [30]. They propose primal and dual algorithms

that extend SMART (called CIRCUIT-SMART and CUTSET-SMART) and develop some

heuristics to speed up their algorithms. Recently the authors in [20] extended the Max-

flow min-cut theorem for multi-layer networks. They proposed new connectivity metrics

suited for multi-layer networks and developed some heuristics for maximizing connectivity

in the logical layer using ILP formulations and subsequent LP relaxations and rounding

techniques.

Our work on survivable virtual network embedding (SVNE) differs in a number of

aspects, due to unique challenges introduced by the network virtualization environment.

First, the VNE problem is on-line in nature, whereas the survivable logical topology design

problem in optical and multi-protocol label switched (MPLS) networks [19, 20, 43] is off-

line. Secondly, in NVEs, we need to ensure that all virtual links are intact in the presence
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of failures. This restriction is not present, for example, in optical networks where the goal

is to only ensure that all nodes remain connected in the presence of failures, even if they

are not connected via a direct overlay link. Our contribution also differs from existing work

in terms of the objective formulation. Our aim is to develop a survivable virtual network

embedding solution that simultaneously maximizes the long term revenue for the InP, and

minimizes the long term penalty incurred by the InP due to service violations caused by

failures. This dual nature of the objective function in the presence of failures is absent

both in the existing research on optical and mpls networking domains and the existing VNE

heuristics. Another novel aspect of our work is that we utilize path-flow based optimization

formulations for solving the SVNE problem. The path formulation allows control over the

characteristics of the paths selected for embedding and survivability against failures. For

instance, we can directly control the total number of paths, number of hops per path, and

impose delay constraints on virtual links for QoS purposes. This is not possible with a link-

flow based formulation which has been used for the previous VNE heuristics [6,22,49,53].

In optical networks, end-to-end connection requests arrive on-line and are processed as

soon as they arrive. For a VN request, we have to guarantee survivability of all the VN

links simultaneously, which makes the problem harder. We differentiate between Weak

and Strong survivability in the context of SVNE. Weak survivability only ensures that the

virtual nodes will stay connected in the presence of failures. Strong survivability guarantees

that the original VN topology remains intact in the presence of failures. Failures in the

underlying physical network can give rise to complex multi-layer failures in the network

virtualization environment. Any such failure can effectively cause a cascading series of

errors in the virtual networks directly hosted on those substrate network components,

and possibly in many others that are recursively designed. In NVE, we require strong

survivability since in the basic revenue model for NVE, the service provider pays an amount

that is proportional to the resource (cpu for nodes, bandwidth for links) and VN topology

requirements of the virtual network request. This means that provisioning of backup

resources is essential in an NVE, since without backup provisioning we can only ensure

weak survivability.
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2.9 Existing Literature on Virtual Network Embed-

ding

The VNE problem is similar to the previous works on embedding Virtual Private Networks

(VPNs) in a shared provider topology and the network testbed mapping problem [14,38].

However, a typical VPN request consists only of bandwidth requirements, specified in

terms of a traffic matrix, without any constraint on its nodes. As a result, most VPN

design algorithms come down to finding paths for source/destination pairs. On the other

hand, the Assign algorithm [38] used in Emulab testbed considers bandwidth constraints

alongside constraints on exclusive use of nodes, i.e. different VNs cannot share a substrate

node. But in network virtualization, there are capacity and placement requirements on

both virtual nodes and virtual links; in addition, substrate nodes and links can be shared

by multiple VNs.

All the VNE algorithms come down to two basic phases: (i) assigning virtual nodes

using some greedy heuristics, e.g., assign virtual nodes with higher processing requirements

to substrate nodes with more available resources [49,53]; (ii) embedding virtual links onto

substrate paths using shortest path algorithms [53] in case of unsplittable flows, or using

multi-commodity flow problem solvers in case of splittable flows [42,49]. The authors in [17]

have proposed a distributed algorithm that simultaneously maps virtual nodes and virtual

links without any centralized controller.

The VNE problem is is NP−hard [3], so most research on this problem has focused on

approximation algorithms or fast heuristics. In [53], the authors proposed simple greedy

heuristic algorithms for the VNE problem and developed some additional heuristics to

improve the performance of their algorithms. A different approach was considered in [49],

where the authors proposed to modify the physical substrate network to allow heteroge-

neous virtual networks to be easily accommodated; this approach in fact shifts the com-

putational burden from the virtual networks to the substrate networks.

In order to reduce the hardness of the VN assignment problem and to enable efficient

heuristics, existing research has been restricting the problem space in different dimensions,

which include:

1. Considering offline version of the problem (i.e., all the VN requests are known in

advance) [24,53];
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2. Ignoring either node requirements or link requirements [8, 24];

3. Assuming infinite capacity of the substrate nodes and links to obviate admission

control [8, 24, 53]; and

4. Focusing on specific VN topologies [24].

The authors in [49] consider all these issues, except for the location constraints on the

virtual nodes, by envisioning support from the substrate network through node and link

migration as well as multi-path routing.

Most of the existing algorithms can clearly be separated into two basic phases:

1. Assigning virtual nodes using some greedy heuristics, e.g., assign virtual nodes with

higher processing requirements to substrate nodes with more available resources [49,

53]; and

2. Embedding virtual links onto substrate paths using shortest path algorithms [53]

in case of unsplittable flows, or using multi-commodity flow algorithms in case of

splittable flows [42,49].

Recently the authors in [6, 22] have proposed VNE heuristics that combine the node

and link embedding phases which lead to single phase solutions with increased revenue,

lower cost and better acceptance ratio.
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Chapter 3

SVNE Problem Formulation and

Solutions

In this section, we provide a mathematical formulation of survivable virtual network em-

bedding (SVNE) as an extension of the VNE problem. We then devise efficient heuristics

to solve SVNE. Since we deal with substrate link failures in this thesis, our main focus is

on the second phase of VNE, that is the link embedding phase. For node embedding, we

use the existing heuristics proposed in the literature. As a result our approach to on-line

SVNE for each incoming VN request is as follows:

• Node Embedding: Greedy [49,53], Mixed Integer Programming [6].

• Link Embedding: Add survivability policies to handle arbitrary substrate link fail-

ures. [Thesis Contribution].

The existing node embedding heuristics and path selection mechanisms used in our

SVNE solutions are described in subsequent sections of this chapter.

3.1 Substrate Network

We model the substrate network as a weighted graph GS(NS, ES), where NS and ES

represent the set of substrate nodes and links respectively. Each substrate node x ∈ NS
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has an associated cpu capacity cpu(x) and a geographical location value loc(x). A substrate

link s = (sx, sy) ∈ ES between substrate nodes sx, sy ∈ NS has a bandwidth capacity b(s).

From now on, we denote the endpoints of any substrate link s as sx and sy.

3.2 Virtual Network Request

A Virtual Network (VN) request GV (NV , EV ) is also modeled as a weighted graph. VN

requests are associated with constraints and QoS requirements embodied into service level

agreements (SLA) [2]. A virtual node y ∈ NV has a cpu capacity requirement cpu(y)

and geographical location requirement loc(y). A virtual link v ∈ EV is characterized by a

bandwidth capacity requirement b(v) and a delay constraint d(v). d(v) is used to preselect

the set of admissible simple substrate paths1 that can be used to embed v. An example

of a typical substrate network and two virtual network topologies are shown in figure 3.1.

The numerical values beside the substrate nodes and links represent cpu and bandwidth

constraints of those nodes and links respectively.
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Figure 3.1: Mapping of VN requests onto a shared substrate network.

3.3 Resource Usage Metrics

We assume that substrate network resources are finite. As a result, the amount of residual

substrate network resources diminishes as new VN requests are processed. We keep track

1A substrate path that repeats no substrate node.
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of the residual substrate node and link capacities in order to make sure we don’t accept a

request unless there are adequate resources to serve it. The residual capacity of a substrate

node x ∈ NS is defined as:

RN(x) = cpu(x)−
∑
y∈V (x)

cpu(y), (3.1)

where V (x) denotes the set of virtual nodes mapped onto x. Similarly the residual

capacity of a substrate link s ∈ ES is defined as:

RE(s) = b(s)−
∑

{v:∃p∈ΓE(v), s∈p}

b(v), (3.2)

where, ΓE(v) defines the set of paths in the InP that are used to embed the virtual

link v (Section 3.4). The residual capacity values are updated after each new VN request

has been successfully mapped on top of the substrate network as long as there remains

adequate residual resources. The values are also updated after a VN departs and link

failure occurrences and repairs.

In order to protect against single substrate link failures, we dedicate a certain percentage

of bandwidth resources on each substrate link for backup purposes. For a substrate link

s with total bandwidth b(s), α(s)b(s) bandwidth is reserved for primary flows, whereas

β(s)b(s) is reserved for backup flows, where α(s) + β(s) = 1. The residual bandwidth

measure is accordingly decomposed into primary and backup residual bandwidth measures

Rα(s) and Rβ(s) respectively. As a result, we need to keep track of these two residual

bandwidth measures separately.

3.4 VN Embedding

The VN Embedding process refers to the mapping of the virtual network topology (logical

topology) on top of the substrate network topology (physical topology) subject to certain

constraints. The constraints are normally manifested in terms of the residual resource

availability of the substrate network and the QoS parameters specified by the VN request.
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An example of a VN embedding can be seen in figure 3.1. From graph theoretic standpoint,

the VN embedding process can be separated into two separate stages:

1-Node Embedding Phase: Each virtual node from a VN request is mapped to a single

distinct substrate node by a one-to-one mapping:

ΓN : NV ← NS, (3.3)

such that ΓN(x) = ΓN(y), iff x = y ∀x, y ∈ NV , subject to the cpu capacity

constraints: cpu(x) ≤ RN(ΓN(x)) ∀x ∈ NV .

2-Link Embedding Phase: Each virtual link is mapped to either an unsplittable sub-

strate path or a splittable multi-commodity flow based set of paths between the substrate

nodes corresponding to the endpoints of the virtual link. Mathematically, we have a map-

ping:

ΓE : EV ← PS, (3.4)

such that ∀v = (vx, vy) ∈ EV , and PS is the set of simple paths of GS. We have ΓE(v) ⊆
P(ΓN(vx),ΓN(vy)), subject to the bandwidth capacity constraints: b(v) ≤ RE(p), ∀p ∈
ΓE(eV ), where P(z, w) denotes the set of simple substrate paths between substrate nodes

z and w, and RE(p) = mins∈pRE(s). For any virtual link v ∈ EV , we specify the set of

QoS constrained substrate paths for v as P(v) = {p ∈ PS|delay(p) ≤ d(v)}.

3.5 An Example

To clarify the network model, we refer to the scenario in figure 3.1. The substrate network is

GS withNS = {A,B,C,D,E, F,G,H}, ES = {AB,AC,CD,DE,BE,EF,DG,GH,FH}.
The virtual network VN Request 1 is GV with NV = {a, b, c} and EV = {ab, bc, ac}. We

have the embedding of GV on GS as Γ with ΓN(a) = C,ΓN(b) = H,ΓN(c) = B and

ΓE(ab) = {CD,DG,GH},ΓE(bc) = {HF,FE,EB},ΓE(ac) = {CA,AB}.
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3.6 Penalty Function and Business Utility for InP

An SP negotiates a Service Level Agreement (SLA) with the InP for uninterrupted ser-

vice throughout the lifetime of its requested VN. If the SLA contract is violated due to

a substrate resource failure, then this results in frustration on part of the SP and subse-

quent penalty for the InP based on the level of frustration of the SP. Each SP owning a

VN is characterized by a Service class which is represented by a function Sj(db), where

j ∈ {1, 2, . . . , C} and C denotes the number of distinct service classes and db denotes

the bandwidth differential, that is the difference between requested bandwidth and the

bandwidth granted by the InP. We can model Sj(db) as an increasing function, however

for simplicity, we assume that the function takes the shape of a step function, that is for

db < TB, Sj(db) = 0, and for t > TB, Sj(db) = P . We call TB the frustration threshhold

for the service class j. Therefore the set of all SP is partitioned into equivalence classes

based on their respective service class associations. We denote the mapping between VNs

and service classes as ϕ(.), where ϕ(i) = j means that VN i is associated with service class

j. Since we have reserved a percentage of bandwidth on each substrate link for backups,

it cannot be ensured that all the SP will retain their complete VN topology when a failure

occurs. In that case our objective will be to minimize the total penalty incurred due to

SP frustration. For each v ∈ EV and service class j for a VN, we will denote Sj(v) as the

penalty incurred due to service disruption.

Assume that a FAE event FAE(l) occurs where the substrate link l ∈ ES fails with

Mean Time To Failure MTTF (l) and Mean Time to Repair MTTR(l). We define the

availability of a substrate link l as

A(l) =
MTTF (l)

MTTF (l) +MTTR(l)
(3.5)

.

3.7 Network State Representation

In a generalized setting we can represent a network state as a tuple

({TN(x)}x∈V S , {TL(s)}s∈ES ,FN ,FL}), (3.6)
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where TN(x) denotes the number of virtual nodes embedded on the substrate node

x ∈ V S, TL(s) denotes the number of virtual links whose corresponding substrate paths

pass through the substrate link s ∈ ES. FN is a 0−1 vector denoting which substrate nodes

are up and which have failed, that is FN [x] = 0 if x ∈ V S has failed and 1 otherwise. FL
is defined similarly. The network state changes due the occurrence of any of the following

events:

• A new VN request arrives [VN Arrival Event (VNAE)].

• An existing VN request expires [VN Departure Event (VNDE)].

• A network component failure occurs [Failure Occurrence Event (FOE)].

• A failed network component recovers [Failure Repair Event (FRE)].

Since in this thesis we are restricted to single substrate link failures, the FN vector

has the form: FN [x] = 1 ∀x ∈ V S, and the FL vector always has a single 1 entry and 0

elsewhere.

3.8 Formulation of SVNE

We represent the input to SVNE as a tuple < GS, GV , j, l, {α(s)}s∈ES >, where GS and

GV represent the substrate and virtual networks respectively, j represents the service class

of the SP owning GV , l ∈ ES is the failed substrate link, and β(s) = 1 − α(s), such that

β(s) represents the percentage of bandwidth on each substrate link s reserved for backups.

Let Π(GV ) denote the revenue generated from GV , where

Π(GV ) = T (GV )[C1

∑
v∈EV

b (v) + C2

∑
x∈NV

cpu (x)] (3.7)

C1 and C2 are weight factors which represent the relative importance of bandwidth

and cpu to the generated revenue respectively. T (GV ) represents the lifetime of the VN

characterized by GV . Each service class j is associated with a penalty function Sj(.), where

Sj(v) represents the monetary penalty incurred if the bandwidth contract of virtual link v

is violated.
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Let V denote the set of all virtual links affected by the failure of l. Then the expected

total penalty incurred by the InP to the corresponding SP is:

X (GV ; l) = MTTR(l)
∑

v∈V∩EV

Sj(v)
db(v)

b(v)
(3.8)

MTTR(l) is the mean time to repair for l. The difference between the bandwidth

requested for v, and the actual bandwidth supplied by the InP is represented as db(v).

Let GV
1 , G

V
2 , G

V
3 , . . . be the sequence of VN requests, and l1, l2, l3, . . . be the sequence of

substrate link failure events. Then the objective of SVNE is to maximize long term business

profit expressed as:

Π∞ =
∞∑
p=1

∞∑
q=1

[Π(GV
q )−X (GV

q ; lp)] (3.9)

3.9 Restoration and Protection Models

For fast protection against substrate link failures, we employ two types of restoration mech-

anisms in this thesis, namely local (span) restoration and path (end-to-end) restoration. In

the existing literature on survivable topology design, both of these mechanisms fall under

the category of fast restoration mechanisms, due to their low restoration latency. The main

objective in this thesis is to provide link embedding heuristics with fast restoration.

3.9.1 Link Restoration and Protection

For protecting a substrate path p corresponding to a virtual link against single link failures,

we associate a primary path W (p) and for each substrate link e ∈ p, a local backup detour

Be(p). So for a substrate path with k substrate links, there will be k link detours for fast

restoration against single link failures. From now one, when we refer to a path p in this

model, it will consist of {W (p), Be(p, ∀e ∈ p)}. It should also be mentioned that backup

detours for different substrate paths can share bandwidth on their common substrate links.

Link restoration is also known as local restoration due to the localized fault tolerance

mechanism around each substrate link.
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3.9.2 Path Restoration and Protection

In the simplest approach to path restoration, namely 1 : 1 protection, a connection p

consists of a primary working path and a link disjoint backup path. Our approach to

path restoration is more sophisticated in that we use a survivable version of the multi-

commodity flow problem for path restoration in link embedding [44]. A survivable flow

from a substrate node u to v consists of a primary flow of value f among the paths from u

to v, and a distinct secondary flow of the same value f in such a way that both flows pass

through link disjoint paths. Path restoration is also known as global restoration due to its

end-to-end fault tolerance nature.

3.9.3 VN Recovery Policies

A VN Recovery Policy is a set of rules that specify what action to take when a substrate

link fails. We consider the following types of recovery policies in this thesis.

• Policy 1 [BLIND]: Whenever a substrate link l fails, recompute the entire link em-

bedding phase considering the new substrate graph GS
l (V S, ES \ {l}), which is the

residual substrate graph obtained after removing the failed link.

• Policy 2 [PROACTIVE]: Pre-reserving additional backup bandwidth during VN em-

bedding.

• Policy 3 [HYBRID]:

– Proactive Computation of a set of candidate backup detours for each substrate

link of the substrate graph using a path selection heuristic (BDC).

– For each new VN arrival, perform a multi-commodity flow based link embedding

(MFLE).

– For each new failure event, perform the backup detour optimization (BDO).

– Sub-policy 2.1: When a substrate failure occurs, only use the β percentage of

substrate links for the backup detours.

– Sub-policy 2.2: When a substrate failure occurs, use total residual capacity on

substrate links for the backup detours.
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The following sections provide mathematical formulations and heuristics for these dif-

ferent recovery and protection policies.

3.10 BLIND Policy Heuristic for SVNE

The BLIND policy is the simplest scheme among all the policies, hence the name. This

policy is oblivious to any underlying structure of the problem space and the failure pattern.

Whenever a substrate link fails, the BLIND policy simply recomputes a new link embedding

for each VN affected by the substrate link failure. Although this policy seems simple, it

has a high recovery complexity and reconfiguration cost, since even though the substrate

link failure will only affect a localized portion of the embedding of a VN, it still recomputes

the entire embedding.

The idea of the blind policy can be summarized in the following algorithm:

Algorithm 1 Blind Recovery Policy

1: procedure BRP(GS,Gl)
2: for all VN’s in Gl do
3: recompute link embedding on GS

l (V S, ES \ {l}).
4: end for
5: end procedure

Here Gl refers to the set of VN’s affected by the failure of l. We can also consider a

slightly enhanced version of the blind policy, where the affected VN’s are ordered in terms

of potential for revenue generation and the total penalty that would be incurred if the VN

is affected by the failure.

3.11 PROACTIVE Policy Heuristic for SVNE

The PROACTIVE policy protects each virtual link using a survivable version of the multi-

commodity flow problem [44]. For each virtual link v, we send a primary flow of value

b(v) and also a secondary flow of value b(v) among the QoS constrained paths allowed for

v. To protect against single substrate link failures, we have to ensure that primary and
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secondary flows are edge disjoint. We formulate the problem as a mixed integer program

in the following manner:

PROACTIVE MIP LE

Minimize

-Objective Function

∑
v∈EV

Sj(v)[1−
∑
p∈P(v)

b2(p, v)

b(v)
] +

∑
v∈EV ,p∈P(v)

b1(p, v) + b2(p, v) (3.10)

Subject to

-Primary and Secondary Capacity Constraints

∑
v∈EV ,p∈P(v)

δs(p)b1(p, v) ≤ Rα(s) ∀s ∈ ES (3.11)

∑
v∈EV ,p∈P(v)

δs(p)b2(p, v) ≤ Rβ(s) ∀s ∈ ES (3.12)

-Primary and Secondary Bandwidth Constraints

∑
p∈P(v)

b1(p, v) = b(v), ∀v ∈ EV (3.13)

∑
p∈P(v)

b2(p, v) ≤ b(v), ∀v ∈ EV (3.14)

-Disjoint Constraints
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b1(p, v) ≤ b(v)σ1(p, v), ∀v ∈ EV ,∀p ∈ P(v) (3.15)

b2(p, v) ≤ b(v)σ2(p, v), ∀v ∈ EV , ∀p ∈ P(v) (3.16)

δs(p)δs(q)[σ1(p, v) + σ2(p, v)] ≤ 1, ∀s ∈ ES (3.17)

-Variables

σ1(p, v) ∈ {0, 1}, ∀v ∈ EV ,∀p ∈ P(v) (3.18)

σ2(p, v) ∈ {0, 1}, ∀v ∈ EV ,∀p ∈ P(v) (3.19)

b1(p, v) ≥ 0, ∀v ∈ EV ,∀p ∈ P(v) (3.20)

b2(p, v) ≥ 0, ∀v ∈ EV ,∀p ∈ P(v) (3.21)

3.11.1 Remarks

• j denotes the service class associated with the VN. Subsequently Sj(v) denotes the

penalty incurred for violating the bandwidth reservation for a virtual link v belonging

to a VN of service type j.

• δs(p) is a link-path indicator variable, i. e. δs(p) = 1 if s ∈ p, 0 otherwise.

• b1(p, v) and b2(p, v) represent the primary and backup flows on the simple path p for

the virtual link v.

• The objective function 3.10 has two parts. The first part is for minimizing the total

penalty incurred due to bandwidth violations, whereas the second part is concerned

with minimizing the overall substrate network usage for primary and secondary flows.

• Constraints 3.11 are the primary and secondary capacity constraints and they specify

that for each substrate link, the overall bandwidth used for primary and secondary

flows must be within the primary and backup residual capacities of that substrate

link respectively.
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• Constraints 3.13 are bandwidth constraints for primary and secondary flows respec-

tively.

• Constraints 3.15 represent the disjoint constraints. They are expressed in terms of

the two integer variables σ1 and σ2. The third constraint in this set of constraints

enforces that only one of them can take the value 1. If σ1 is 0, then the first constraint

forces b1 to 0 also. However if σ1 is 1, then the first constraint is trivially satisfied.

The case for σ2 is similar.

3.11.2 Solution Methodologies

PROACTIVE MIP LE is a mixed integer program, and hence NP−hard to solve. The

usual approach is to relax the integer constraints and solve the relaxed Linear Program (LP)

to obtain a fast heuristic. However the integrality of the MIP stems from the disjointness

constraint 3.15 which forces the primary and backup flows to pass through link disjoint

paths. It should also be noticed that we have a dedicated percentage of bandwidth resources

for backups on each substrate link through the α(s), β(s) values for each substrate link

s ∈ ES. This separation property readily leads towards a fast simple heuristic using two

sequential LP’s as follows:

PROACTIVE LP LE P

-Objective Function

Minimize ∑
v∈EV ,p∈P(v)

b1(p, v) (3.22)

Subject to

∑
v∈EV ,p∈P(v)

δs(p)b1(p, v) ≤ Rα(s) ∀s ∈ ES (3.23)

∑
p∈P(v)

b1(p, v) = b(v), ∀v ∈ EV (3.24)
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We define a boolean variable ϕ(s),∀s ∈ ES which keeps track of the substrate links

that have been used for sending primary flow. These values are then used in the second

LP to avoid conflicts between primary and backup flows on the same substrate link.

PROACTIVE LP LE B

-Objective Function

Minimize ∑
v∈EV

Sj(v)[1−
∑
p∈P(v)

b2(p, v)

b(v)
] +

∑
v∈EV ,p∈P(v)

b2(p, v) (3.25)

Subject to

∑
v∈EV ,p∈P(v)

δs(p)b2(p, v) ≤ (1− ϕ(s))Rβ(s) ∀s ∈ ES (3.26)

∑
p∈P(v)

b2(p, v) ≤ b(v), ∀v ∈ EV (3.27)

Remark

• It should be noted that we have multiplied the term (1 − ϕ(s)) to the right hand

side of the first constraint in 3.26. If a substrate link s has been used for a primary

flow, then ϕ(s) will be 1, forcing the right hand side of that constraint to be 0. This

ensures the disjointness of the primary and secondary flows.

We now have the following polynomial time LP based heuristic:
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Algorithm 2 LP Based Heuristic for Proactive Recovery Policy

1: procedure LPHPP(GS, GV )
2: Solve PROACTIVE LP LE P
3: for all s ∈ ES do
4: ϕ(s) = 0
5: end for
6: for all v ∈ EV do
7: for all p ∈ P(v) do
8: if b1(p, v) > 0 then
9: ϕ(s) = 1

10: end if
11: end for
12: end for
13: Solve PROACTIVE LP LE B
14: end procedure

3.12 HYBRID Policy Heuristic for SVNE

We propose a hybrid policy heuristic for solving SVNE. The heuristic consists of three

separate phases. In the first phase, before any VN request arrives, the InP pro-actively

computes a set of possible backup detours for each substrate link using a path selection

algorithm. Therefore, for each substrate link l, we have a set Dl of candidate backup

detours. The InP is free to utilize any path selection algorithm that suits its purposes,

e. g. k-shortest path algorithm [45], column generation or primal dual methods [1]. The

second phase is invoked when a VN request arrives. In this phase, the InP performs a

node embedding using existing heuristics [6, 53] and a multi-commodity flow based link

embedding, that we denote as HYBRID LP LE. Finally, in the event of a substrate link

failure, a reactive backup detour optimization solution HYBRID LP BDO is invoked which

reroutes the affected bandwidth along candidate backup detours selected in the first phase.

The pseudo-code for the hybrid policy is shown in the following algorithm.
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Algorithm 3 Hybrid Policy Heuristic

1: procedure HRP(GS(NS, ES))
2: for all s ∈ ES do
3: pre-compute candidate detour set Ds.
4: end for
5: for all event arrivals do
6: if event type == VN arrival then
7: compute node embedding for VN GV (NV , EV ).
8: solve HYBRID LP LE.
9: update Rα(s),∀s involved in HYBRID LP LE.

10: end if
11: if event type == Failure arrival then
12: solve HYBRID LP BDO.
13: update Rβ(s),∀s involved in HYBRID LP BDO.
14: end if
15: end for
16: end procedure

We now show the formulations of HYBRID LP LE and HYBRID LP BDO.

3.12.1 Formulation of HYBRID LP LE

In this phase we use a path based multi-commodity flow formulation to embed all the

virtual links simultaneously. For each pair (x, y) ∈ V S × V S, we have a set of preselected

end-to-end paths P(x, y). For a virtual link v ∈ EV , we denote P(v) = P(vx, vy) as

the set of pre-selected QoS constrained simple paths for embedding v, where vx and vy

are the end-points of v. Since the node embedding phase precedes the link embedding

phase, we already know which virtual node is mapped to which substrate node. For any

virtual link v = (x′, y′) ∈ EV , we denote this as x′ → ΓN(x′) = x and y′ → ΓN(y′) = y.

HYBRID LP LE can be expressed as the following linear program:

HYBRID LP LE

-Objective Function

Minimize
∑
v∈EV

∑
p∈P(v)

b(p, v) (3.28)
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Subject to

-Primary Capacity Constraint

∑
v∈EV

∑
p∈P(v)

δs(p)b(p, v) ≤ Rα(s), ∀s ∈ ES. (3.29)

-Primary Bandwidth Constraint

∑
p∈P(v)

b(p, v) = b(v), ∀v ∈ EV (3.30)

Remarks

1. δs(p) is the link-path indicator variable, that is, δs(p) = 1 if s ∈ p, 0 otherwise.

2. The objective function 3.28 corresponds to the revenue function Π for the VN.

3. b(p, v) is the amount of bandwidth allocated on path p for virtual link v. A strictly

positive value for b(p, v) will indicate that p is a substrate path used for v. The values

of b(p, v) are stored and later used in the subsequent phase of the heuristic.

4. Constraint 3.29 is the primary capacity constraint which states that the total primary

bandwidth allocated for all virtual links must be within the primary residual capacity

of each substrate link.

5. Constraint 3.30 is the primary bandwidth constraint which specifies that the total

bandwidth requirement of each virtual link must be distributed among all the QoS

constrained paths allowed for that virtual link.

3.12.2 Formulation of HYBRID LP BDO

HYBRID LP BDO can be expressed as the following linear program.

HYBRID LP BDO

-Objective Function
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Minimize
∑
v∈EV

Sj(v)
∑
p∈P(v)

δl(p)db(p, v)e[1−
∑
d∈Pl

b(d, p, v)

b(p, v)
] (3.31)

Subject to

-Backup Capacity Constraint

∑
v∈EV ,p∈P(v),d∈Dl

db(p, v)e δs(d) b(d, p, v)δl(p) ≤ Rβ(s)∀s ∈ ES (3.32)

-Recovery Constraint

∑
d∈Dl,v∈EV ,p∈P(v)

δl(p) db(p, v)e δs(d) b(d, p, v) ≤
∑

d∈Dl,v∈EV ,p∈P(v)

δl(p) b(p, v) (3.33)

Remarks

1. j represents the service class associated with the VN. Subsequently Sj(v) denotes the

penalty incurred for violating the bandwidth reservation for a virtual link v belonging

to a VN of service type j.

2. dxe denotes the ceiling of x, that is dxe = 1 iff x > 0. So db(p, v)e = 1 indicates that

p is a path used for the embedding of v. Note that the b(p, v) values are calculated

and stored in the HYBRID LP LE phase.

3. For the failed substrate link l, we have the set of candidate backup detours, Dl =

P(lx, ly) \ {l}.

4. b(d, p, v) denotes the amount of rerouted bandwidth on detour d ∈ Dl for b(p, v), that

is for the primary path p allocated for virtual link v.

5. The objective (equation 3.31) refers to the penalty function formulated in equation

3.8.

6. Constraint 3.32 is the backup capacity constraint which states that the total backup

flow on all the detours passing through a substrate link must be within the backup

residual capacity of that substrate link.
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7. Constraint 3.33 is the recovery constraint and it signifies that the total disrupted

primary bandwidth must be allocated along the precomputed set of detours. The

objective function ensures that the virtual links that have higher penalty values will

be given priority during the recovery.

Discussion

Both HYBRID LP LE and HYBRID LP BDO are linear programs, as a result our pro-

posed HYBRID policy is a polynomial time heuristic for SVNE. Another important feature

of HYBRID is that it decouples primary and backup bandwidth provisioning. As a result,

we don’t need complex disjoint constraints in our solution which would have resulted in

a hard mixed integer program. The objective functions of HYBRID LP LE and HY-

BRID LP BDO jointly solve the long term objective of SVNE as expressed in equation

3.9.

3.13 Heuristics for Node Embedding

3.13.1 Greedy Node Embedding

The main advantage of a greedy node embedding heuristic is that it is simple and cost

efficient, in contrast to iterative methods or meta-optimization techniques, e. g. simulated

annealing. The greedy algorithm maps virtual nodes to substrate nodes with maximum

residual substrate resources in order to minimize the use of resources at bottleneck nodes

and links [49,53]. The metric quantifying available substrate resources is as follows:

H(x) = RN(x)
∑
l∈L(x)

b(l), (3.34)

where L(x) is the set of links adjacent to x, and RN(x) is the residual cpu capacity of x.

This metric leads to the following greedy node embedding algorithm, which assumes batch

processing, i. e. the InP collects VN requests at the end of a fixed time interval, allocates

them simultaneously. The algorithm can be easily converted to a pure online algorithm.
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Algorithm 4 Greedy Node Embedding algorithm

1: procedure Greedy Node Embedding(GV = (NV , EV ))
2: Sort VN requests according to revenue.
3: exit if no requests left.
4: Take the request with largest revenue.
5: Find the set of substrate nodes S that satisfy restrictions and available cpu capacity.

if S = {}, then exit.
6: For each virtual node n ∈ GV , find the substrate node x = argmaxxH(x). Map n

to x.
7: end procedure

3.13.2 D-ViNE Algorithm

In this section, we describe a node embedding heuristic based on a mixed integer program-

ming formulation that maximizes correlation between node and link embedding phases in

order to increase revenue and minimize cost [6]. The basic idea is to augment the sub-

strate graph and simultaneously map the virtual nodes and links using a mixed integer

programming formulation. Since mixed integer programs are computationally intractable,

the authors used relaxation and rounding to develop polynomial time heuristics. For de-

tails, we refer to [6]. We use these existing node embedding algorithms to implement the

node embedding phase of our SVNE solutions.

3.13.3 Deterministic Node Embedding Algorithm

D-ViNE [6] takes online VN requests as inputs and maps them onto the substrate network

one at a time. It takes decisions based only on the past VN requests that it has already

seen, i.e. , D-ViNE uses no look-ahead. Since the integer domain constraints on the

x variables used in the formulation have already been relaxed, we no longer get integer

values for the x variables. Instead, D-ViNE employs deterministic rounding technique to

get integer values for x. We introduce ϕ : NS → {0, 1}, which is initially set to zero for all

nS ∈ NS signifying that all the substrate nodes are initially unused. Whenever a virtual

node is mapped to a particular physical node nS, we set ϕ(nS) to 1 to ensure that no

substrate node is used twice for the same VN request.
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Algorithm 5 Deterministic VNE

1: procedure D-ViNE(GV = (NV , EV ))
2: Create augmented substrate graph GS′

=
(
NS′

, ES′)
3: Solve VNE LP RELAX
4: for all nS ∈ NS do
5: ϕ(nS)← 0
6: end for
7: for all n ∈ NV do
8: if Ω(n) ∩ {nS ∈ NS|ϕ(nS) = 1} = ∅ then
9: VN request cannot be satisfied

10: return
11: end if
12: for all z ∈ Ω(n) do
13: pz ← (

∑
i f

i
µ(n)z + f izµ(n))xµ(n)z

14: end for
15: Let zmax = arg maxz∈Ω(n){pz|ϕ(z) = 0}
16: set MN(n)← zmax
17: ϕ(zmax)← 1
18: end for
19: Update residual capacities of the network resources.
20: end procedure

Description and Discussion

The procedure begins by creating an augmented substrate graph, GS′
=
(
NS′

, ES′)
for the

VN request GV =
(
NV , EV

)
using the augmentation method described [6]. Next it solves

a relaxed linear program to get a fractional solution which is at least as good as the integer

solution. For each virtual node, D-ViNE first checks whether there are any unmapped

substrate nodes within its feasible region (the substrate nodes in the virtual nodes Ω set).

If the corresponding Ω set is empty, D-ViNE stops the embedding process immediately

and rejects the VN request. Otherwise the deterministic rounding procedure is initiated in

line 12.

For each virtual node n, D-ViNE calculates a value pz for each substrate node z ∈
Ω(n) in its cluster. pz is calculated as the product of the value xµ(n)z and the total flow

passing through the meta-edge µ(n)z in both directions. The reason behind using this

multiplication instead of just xµ(n)z is as follows. In the MIP solution xuv is set to binary
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values based on the presence of flows in either direction in the edge (u, v). When the binary

constraint x is relaxed, one might expect that the fractional values of xuv would also be

proportional to the total flow in the edge (u, v). But during the LP relaxation process, the

correlation between the flow variable f and the binary variable x is lost. It is because a

linear program tries to optimize the objective function without violating the constraints;

it does not care about the values as long as they are within their permitted domains. As a

result, in the relaxed linear program, it is possible that the f values are very high and the

corresponding x values are very low or vice versa. Multiplying the f and x values thwarts

the possibility of selecting a substrate node based on high x value but very low f value on

its corresponding meta-edge and vice versa. The ones that have better values for both the

variables f and x are more likely to be in the solution of the MIP than others. D-ViNE

maps the virtual node n onto the unmapped substrate node z (i.e. , ϕ(z) = 0) with the

highest pz value, breaking ties arbitrarily.

3.14 Path Selection Mechanisms

The effectiveness of the proposed heuristics depend on efficient path selection mechanisms.

Especially the proposed hybrid policy heuristic can adopt any path selection algorithm

that suits its purpose. In this section we delineate various path selection mechanisms that

can be utilized in our solutions.

3.14.1 Static Path Selection Heuristics

The k-shortest path algorithm is the simplest heuristic that can be employed in our solu-

tions. It is a static algorithm, in the sense that the path set for each virtual link remains

constant throughout the duration of the virtual network. In our experiments, we used a

k-shortest path algorithm adapted for efficient path computation in communication net-

works [45].

3.14.2 Dynamic Path Selection Heuristics

The first dynamic path selection approach is to use a primal dual formulation, where we

first find the dual LP associated with the relaxed primal LP by swapping variables and
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constraints. The primal dual approach leads to an iterative algorithm which raises another

issue of fast convergence. Normally theoretical convergence guarantees of iterative primal

dual algorithms do not always work well in practice.

The second approach for handling dynamic path selection is to employ a column gen-

eration approach. Here instead of solving the LP with all the flow variables at once, only a

subset of path variables is considered at each step. After solving the LP at each step with

an active set of paths, the path set is updated by adding improved paths and removing

unused paths. This is also an iterative algorithm, however the convergence test is usually

simpler and more practical than the primal dual approach. But an additional issue with

this approach is updating the active path set at each step using an efficient path selection

heuristic.

3.15 Alternative Formulation for SVNE

In this section we present a mixed integer programming formulation for link embedding

with fast substrate link restoration. The goal is to find a feasible multi-commodity flow

for the working paths and local backup detours for each link on the working paths subject

to the flow constraints and bandwidth constraints. The objective is to minimize the total

amount of backup resources required, that is the number of times a substrate link is

included in a backup detour subject to the constraints. A more realistic objective would

be concerned with maximizing shared protection among the backup detours, but we leave

it as a future research direction for now. Since we are concerned with the link embedding

phase of virtual network embedding, we already know the substrate nodes that have been

selected for the endpoints of each virtual link. As a result we can treat each virtual link as

a commodity in the link restorable multi-commodity flow formulation. We employ a path

indexed formulation, since it allows us to handle QoS parameters specified with the VN

request. The components of the MIP are shown below:

LP LE LR

-Objective Function

Minimize
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∑
v∈EV

∑
p∈P(v)

∑
f∈ES

∑
d∈P(f)\{f}

b2(p, v, f, d) +
∑
v∈EV

db(v)

b(v)
(3.35)

subject to

-Link Capacity Constraint

∑
v∈EV

∑
p∈P(v)

δs(p)b1(v, p) +
∑
v∈EV

∑
p∈P(v)

δs(p)
∑

f∈ES\{s}

∑
d∈P(f)\{f}

b2(v, p, f, d) ≤ R(s), ∀s ∈ ES

(3.36)

-Primary Flow Constraint

∑
p∈P(v)

b1(v, p) = b(v), ∀v ∈ EV (3.37)

-Detour Flow Constraint

∑
d∈P(f)\{f}

δf (d)b2(v, p, f, d) ≤ b1(v, p), ∀v ∈ EV ,∀p ∈ P(v),∀f ∈ p (3.38)

-Domain Constraints

b2(p, v, f, d) ≥ 0, ∀v ∈ EV ,∀p ∈ P(v),∀f ∈ p, d ∈ P(f) \ {f} (3.39)

b1(v, p) ≥ 0, ∀v ∈ EV ,∀p ∈ P(v) (3.40)

3.15.1 Remarks

• db(v) = b(v)−
∑

f∈p
∑

d∈P(f)\{f} b2(p, v, f, d)

• The objective (3.35) is to minimize the total amount of backup resources and also

minimize the total bandwidth disruption caused due to failures.
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• The primary and detour flow constraints (3.37, 3.38) specify that for each virtual

link commodity v ∈ EV , the total flow among all QoS constrained paths (working

and backup detours) must be bounded by b(v), the bandwidth requirement of the

virtual link.

• Next we have the substrate link Capacity Constraint (3.36) which limits the total

amount of working and backup flow for all the virtual links passing through a sub-

strate link s to the residual capacity of s, R(s).

• Finally the Domain Constraints (3.40, 3.39) specify the range of values for the flow

variables.

• Since LP LE LR is a linear program, we can solve it in polynomial time.
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Chapter 4

Performance Evaluation

In this chapter, we first describe our simulation environment, then present evaluation re-

sults. Our evaluation is aimed at quantifying the performance of the proposed HYBRID

policy approach to SVNE in terms of long term business profit for the InP by maximiz-

ing revenue earned from VN’s and minimizing the penalty incurred due to substrate link

failures.

4.1 Simulation Environment

We implemented a discrete event simulator for SVNE adapted from our ViNE-Yard sim-

ulator [6]. Since network virtualization is still not widely deployed, the characteristics of

VN’s and failure are not well understood yet. Specifically there are no analytical or exper-

imental results on the substrate and virtual network topology characteristics, VN arrival

dynamics or link failure dynamics in network virtualization. As a result, we use synthetic

network topologies, and poisson arrival processes for VN’s and link failures in our sim-

ulations. However our choice of substrate and virtual topologies and VN arrival process

parameters are chosen in accordance with previous work on this problem [6, 49]. We used

the GNU linear programming toolkit to solve all the linear programs in our formulations.

The substrate network topologies in our experiments are randomly generated with 50

nodes using the GT-ITM tool [18] in 25 x 25 grids. Each pair of substrate nodes is randomly

connected with probability 0.5. The cpu and bandwidth resources of the substrate nodes
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Notation Description

Simulation Parameter: α Percentage of bandwidth of a substrate link
for primary flow.

Simulation Parameter: γ = λF

λV
Ratio of failure and VN arrival rate.

Simulation Parameter: nV Number of VN nodes.

Simulation Parameter: k Number of paths allowed for link embedding
and detours.

Performance Metric: π Average business profit in the long run.

Performance Metric: ar Average acceptance ratio in the long run.

Performance Metric: bru Average backup resource usage percentage in
the long run.

Performance Metric: t Average response time to a failure.

Table 4.1: Simulation Parameters and Performance Metrics

and links are real numbers uniformly distributed between 50 and 100. We assume that

both VN requests and substrate link failure events follow a Poisson process with arrival

rates λV and λF . The ratio γ = λF

λV
is a parameter that we vary in our simulations. We

use realistic values for MTTR(l) based on failure characteristics of real ISP networks [25]

which represent InP networks in a NVE. In each VN request, the number of virtual nodes

is a uniform variable between 2 and 20. The average VN connectivity is fixed at 50%.

The bandwidth requirement of a virtual link is a uniform variable between 0 and 50, and

the penalty value Sj(v) for a virtual link v is set to a uniform random variable between 2

and 15 monetary units. In our simulations, we set α(s) = α, ∀s belonging to the substrate

network and vary α, where 0 ≤ α ≤ 1. For each set of experiments conducted, we plotted

the average of 5 values for the performance metrics. The simulation parameters and output

performance metrics are shown in Table 4.1.
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Notation Algorithm Description

SVNE-Greedy-Hybrid Greedy Node Embedding with Hybrid Policy

SVNE-DViNE-Hybrid DViNE Node Embedding with Hybrid Policy

SVNE-Greedy-Proactive Greedy Node Embedding with Proactive Pol-
icy

SVNE-DViNE-Proactive DViNE Node Embedding with Proactive
Policy

SVNE-Greedy-Blind DViNE Node Embedding with Blind Policy

SVNE-DViNE-Blind DViNE Node Embedding with Blind Policy

Table 4.2: Compared Algorithms

4.2 Comparison Method

Comparing our heuristics with previous work is difficult since the earlier heuristics do not

consider substrate resource failures. As a result we evaluate our proposed hybrid policy

against two base-line policies. The first one (we call it a blind policy) recomputes a new

embedding for each VN affected by the substrate link failure. The second one is a proactive

policy which pre-reserves both primary and backup bandwidth for each virtual link on link

disjoint substrate paths. We omit details of these baseline policies due to space limitation.

For node embedding, we use greedy [53] and DViNE heuristics [6]. In our evaluation, we

have compared six algorithms that combine different node embedding strategies [6,53] with

our proposed survivable link embedding strategies, namely, SVNE-Greedy-Hybrid, SVNE-

DViNE-Hybrid, SVNE-Greedy-Proactive, SVNE-DViNE-Proactive, SVNE-Greedy-Blind,

and SVNE-DViNE-Blind, as shown in the following Table .

4.3 Evaluation Results

We use several performance metrics for evaluation purposes in our experiments. We mea-

sure the long term average profit earned by the InP by hosting VN’s. The profit function
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Figure 4.1: Business profit against α

depends on both the revenue earned from VN’s by leasing resources and penalties incurred

due to service disruption caused by substrate link failures. The penalty depends on both

the amount of bandwidth violated due to a failure and the time it takes to recover from

a failure as expressed in equations 3.8 and 3.9. We also measure the long term average

acceptance ratio, percentage of backup bandwidth usage and response time to failures.

We present our evaluation results by summarizing the key observations in the following

subsections.

4.3.1 Acceptance ratio and Business profit:

The hybrid policy leads to higher acceptance ratio and increased business profit in the

presence of failures. Figures 4.1 shows the long term business profit against the percentage

α of substrate link bandwidth for primary flows, while Figure 4.2 does it against the ratio

of failure and VN rate γ. We notice that over the range of values for α and γ, the hybrid

policy outperforms both the blind and proactive policies. Also the hybrid policy generates

the highest profit at α = 80%, whereas the proactive and blind policies generate lesser

profit with increased values of α. As α increases, there is less bandwidth available for
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Figure 4.2: Business profit against γ

backups on the substrate link and this hinders the performance of these policies. This also

affects the hybrid policy, but it still has better performance due to its reactive nature. The

profit and acceptance ratio for the blind policy drops more rapidly than the hybrid policy

against increase in γ as shown in Figures 4.2 and 4.4. Although, the profit for the proactive

policy increases with γ, it is still outperformed by the hybrid policy for the range of the

simulation parameters.

4.3.2 Responsiveness to Failures:

The hybrid policy has faster reaction time to failures than its counterparts. In Figure 4.6,

we notice that the hybrid policy reacts faster than the blind policy when a failure occurs.

When a substrate link fails, the blind policy recomputes the entire embedding, which is

time consuming. The hybrid policy, on the other hand, only re-routes the bandwidth of

the affected virtual links which results in faster response time and ultimately lower penalty

values for the InP.
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Figure 4.3: Acceptance ratio against α

4.3.3 Bandwidth Efficiency:

The hybrid policy is bandwidth efficient. The proactive policy pre-reserves additional

bandwidth for each virtual link during the instantiation phase. On the other hand, the

hybrid policy does not pre-reserve any backup bandwidth during the link embedding phase.

It pre-selects the candidate paths for re-routing and allocates backup bandwidth only when

an actual failure occurs. As a result, the average bandwidth usage increases less rapidly

with γ compared to the blind policy. This is shown in Figure 4.5.

4.3.4 Performance on Specific VN Topologies

Up until now we have focused on arbitrary VN request topologies in our evaluations. How-

ever, some classes of topologies are naturally expected to be more prevalent than others

due to their use in popular applications. For example, hub-and-spoke topologies are com-

monly used to connect distributed sites to a centralized server e.g.in content distribution

networks. In this section, we compare the performance of the proposed policies on two

different classes of topologies: hub-and-spoke and mesh.
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Figure 4.4: Acceptance ratio against γ

Hub-and-Spoke Topologies

We have used similar simulation settings for this set of experiments while ensuring hub-and-

spoke topologies in the VN requests instead of random graphs. Table 4.3.4 summarizes the

results of the compared algorithms for the five performance metrics. The results presented

here are for an arrival rate of 4 VNs per 100 time units, and we present all values after

standard deviations of their successive samples become negligible. The algorithms used for

this experiment are the exact same ones without any topology-specific modifications.

As seen in Table 4.3.4, relative performance of the compared algorithms are unchanged

for hub-and-spoke topologies. Careful readers will notice that related observations for

random graph requests also hold true in this case.

Mesh Topologies

Mesh topologies can be considered to be at the opposite end of the spectrum of specific

topologies. In this case, we again use similar experimental settings and make sure that the

VN requests form full mesh topologies. Simulation results in steady states are summarized
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Figure 4.5: Backup resource usage against γ

in Table 4.3.4 for similar experimental conditions. The algorithms used for this experiment

are also without any topology-specific modifications.

The most noticeable change in this case is overall performance reductions across the

board, a large portion of which can be attributed to the natural dense formation of mesh

topologies that call for more resources than substrate can provide. However, relative

performance of the compared algorithms are mostly unchanged.

4.3.5 Effect of k: Number of Paths Allowed

We also evaluate our performance metrics against k (Figures 4.7, 4.8, 4.9), which specifies

the size of the path-sets for primary and detour flows in our path-flow based formulations.

The results indicate the superior performance of the hybrid policy against the baseline

policies. However there is some variability among the performance metrics for different

values of k, which could suggest that a SVNE solution that continuously updates k in

order to improve performance, might be better than a static solution that always uses the

same value for k. This might also point towards iterative approaches using primal dual or

column generation approaches.
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Figure 4.6: Response time against VN size
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Figure 4.7: Business Profit against k

In this set of experiments, we vary the value of k between 5, 10, 15, 20, 25, and 30. We
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Business Profit Acceptance Ratio Backup Usage

SVNE-Greedy-Hybrid 0.756 0.642 0.459

SVNE-DViNE-Hybrid 0.813 0.717 0.395

SVNE-Greedy-Proactive 0.662 0.576 0.835

SVNE-DViNE-Proactive 0.525 0.496 0.887

SVNE-Greedy-Blind 0.372 0.412 0.695

SVNE-DViNE-Blind 0.441 0.324 0.760

Table 4.3: Comparative Performance on Hub-and-Spoke Topologies

Business Profit Acceptance Ratio Backup Usage

SVNE-Greedy-Hybrid 0.743 0.675 0.489

SVNE-DViNE-Hybrid 0.876 0.777 0.391

SVNE-Greedy-Proactive 0.608 0.580 0.809

SVNE-DViNE-Proactive 0.598 0.501 0.882

SVNE-Greedy-Blind 0.333 0.417 0.699

SVNE-DViNE-Blind 0.448 0.321 0.708

Table 4.4: Comparative Performance on Mesh Topologies

observe a similar trend in performance against k, since the hybrid policy exhibits better

performance compared to the baseline policies. For business profit, we observe that the

hybrid policy with DViNE has highest profit for value k = 5, whereas, for the other values

of k, the hybrid policy with greedy node embedding has maximum profit. For the previous

set of experiments, we did not observe any significant variation in performance due to the

selected node embedding heuristic. This implies that the performance metrics against k

are affected by the selected node embedding mechanism. However the acceptance ratio

against k experiments do not exhibit any variation due to the selected node embedding

heuristic.
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Figure 4.8: Acceptance Ratio against k
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Figure 4.9: Backup Resource Usage against k
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Chapter 5

Conclusions and Future Works

5.1 Summary of Contributions

Network virtualization stands at a unique point in the virtualization design space by sup-

porting dual purposes. On one hand, it provides a powerful means to run multiple custom

networks on top of a single shared substrate thereby enabling the de-ossification of the cur-

rent Internet architecture and leading towards a long term solution for the future Internet.

On the other hand, it also plays a vital role in running multiple network experiments in

a shared experimental facility (e. g. GENI, VINI), and allowing networking researchers

access to real testbeds instead of simulators to test novel algorithms and protocols.

Resource allocation and survivability in network virtualization offer a large number of

research challenges that span multiple research areas in theory, and systems. In this thesis,

we have addressed the important aspect of adding survivability to network virtualization

in-order to ensure seamless operation of the virtual networks embedded on top of an InP in

the presence of failures. In this regard, we have formulated the SVNE problem to incorpo-

rate substrate failures in the virtual network embedding problem. We have also proposed

baseline policy solutions and an efficient hybrid policy heuristic to solve SVNE. To the best

of our knowledge this is the first attempt to add survivability to virtual network embed-

ding algorithms along with support for business profit oriented optimization. Moreover,

our proposed heuristic can be extended to deal with multiple link failures, and subse-

quently combined with a node migration strategy [48] to solve the single substrate node
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failure problem. We have shown detailed formulations of our proposed SVNE policies and

derived efficient heuristics using optimization techniques. We also performed evaluations

to demonstrate the validity and importance of our contributions.

5.2 Future Research Directions

There are many possible research directions that can be directly pursued from our current

work. We know briefly mention some of the important extensions and directions:

5.2.1 Survivability in Multi-domain NVE

Survivability in a multi-domain NVE could raise further challenges since it involves both

intra and inter domain link failures. Multiple simultaneous inter-domain and intra-domain

failures could lead to complex scenarios requiring more sophisticated recovery and protec-

tion mechanisms than just intra-domain survivability mechanisms. However inter-domain

survivability mechanisms are predicated on complete end-to-end multi-domain virtual net-

work embedding solutions, which is still an unresolved research problem.

5.2.2 Resource Allocation and Survivability in Recursive NVE

It would also be interesting to extend survivability to recursive NVE, where the first level

VNs can act as InPs to a second level of VNs. Resource allocation, protection, and restora-

tion issues in such recursive environments could be investigated under cross layer optimiza-

tion or network utility maximization (NUM) frameworks. However a global optimization

formulation for resource allocation and survivability in recursive NVE would assume the

existence of a single party that controls all the layers. Since this scenario is not practi-

cal, the solution to such a global optimization problem would further require distributed

solutions using dual decomposition techniques.

5.2.3 Adaptive SVNE

Our proposed solutions to SVNE are static in the sense that at any given solution instance

we have fixed values for the α : β proportions and k. However the revenue of the InP might
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depend on complex combinations of these parameters which points towards dynamic solu-

tions to SVNE using control theory or statistical machine learning techniques. Feedback

control mechanisms can be utilized to continuously monitor the performance metrics and

use the feedback to adapt the simulation parameters in-order to further improve the per-

formance of the mechanisms.

5.2.4 Service Differentiation Aware SVNE

In our SVNE formulation, we specify a fixed partition among primary and backup substrate

resources. We can introduce service differentiation into the model by further subdividing

the backup resource percentage into multiple service classes, where a higher service class

will have a larger portion of the backup percentage, but will also have to pay more to the

InP for better survivability guarantee. Service differentiation mechanisms like Paris metro

pricing schemes have been shown to increase revenue for ISP’s. Similar mechanisms can

be utilized in service differentiation aware SVNE to further improve performance.
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Appendix A

Incentive Compatible Virtual

Network Embedding

In this appendix, we attempt to initiate a systematic study of network virtualization from

a game theoretic and mechanism design perspective. In an Internet scale network virtual-

ization environment, it is not economically feasible to pool all network resources with one

infrastructure provider that will be solely responsible for resource allocation. As a result

the physical resources will be distributed across a number of infrastructure providers. Be-

cause of conflicting goals and economic interests, the InP’s may act strategically to increase

their own utility which may conflict with the global goal of social welfare maximization.

If a virtual network request requires using network resources that are distributed across

multiple InP’s, then a participating InP might lease resources that locally optimize its own

resource usage. It can do that by lying about its local topology or choosing paths that are

less costly locally but can result in higher global cost. In other words, since the internal

topology and resources owned by an InP are local and private information, it can choose

to misrepresent its resources and local topology in-order to maximize its utility. So assum-

ing that the strategic InPs will act in their own interest, the resources (nodes and links)

selected for mapping the virtual network request might result in a sub-optimal resource

allocation, which might not coincide with the virtual network embedding that would result

if the InPs were truthful about their internal resources and local topology. This strategic

setting suggests the use of mechanism design [26, 29, 31] to force the InPs to align their

local interests with the global goal of social welfare maximization, where a social welfare
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maximizing outcome will be a virtual network embedding that minimizes the global cost

of the selected resources. Here the system wide goal is to solve a global resource allocation

problem, where each InP (agent) controls a certain part of the resource pool.

We now mathematically define the virtual network embedding problem [6,49,53] modi-

fied from a mechanism design perspective. The components and assumptions of the network

model are described below:

• The topology of the substrate network is modeled as a weighted graphGS(VS, ES, c(.)),

where VS is the set of substrate nodes, ES is the set of substrate links and c : ES → R
is the edge cost function. Let nS = |VS| and mS = |ES|. We assume that the sub-

strate nodes have zero cost.

• The topology of the virtual network is modeled as another graph GV (VV , EV ), where

VV , EV , nV , mV are defined similarly.

• The goal of the virtual network embedding problem is to compute an embedding

that maps each virtual node to a substrate node and maps each virtual link to

a substrate path. Mathematically, we have to compute an embedding Γ(ΓV ,ΓE),

where ΓV : VV → VS and ΓE : EV → 2ES .

• We assume that distinct virtual links will be mapped to edge-disjoint substrate paths,

that is, for e1
V , e

2
V ∈ EV and e1

V 6= e2
V , we have ΓE(e1

V ) 6= ΓE(e2
V ). We call this the

edge-disjoint property.

• We define the cost of an embedding as the sum of the edges selected for the embedding

as

C(Γ) =
∑

eV ∈EV

∑
eS∈ΓE(eV )

c(eS) (A.1)

Our main objective is to compute the embedding that minimizes the cost function

defined above.
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A.1 Virtual Network Embedding and Mechanism De-

sign

A.1.1 Economic Model

The main objective of this work is to study the virtual network embedding problem from

a mechanism design perspective. To this end, we require a suitable economic model that

captures the strategic interactions among self interested parties in a network virtualization

environment. We choose to model this strategic interaction such that each substrate link

on the substrate network topology is owned by a self interested strategic agent. There are

a number of reasons for adopting this simple economic model. First of all, we believe that

this model could be a reasonable starting point for more complicated economic models.

And secondly, a similar model was adopted by Nisan and Ronen [28] in their seminal

paper Algorithmic Mechanism Design to study the strategic aspects of Network Routing.

Although in a realistic setting, various subnetworks of the Internet topology are owned

by separate Internet Service Providers (ISP) or Infrastructure Providers (InP), we make

these assumptions to keep the analysis of the algorithms and the mechanism tractable,

while maintaining practical viability. Our results in this model can provide insights and

guidelines for strategy proof pricing schemes for virtual network embedding in a more

complex setting where each InP owns a subnetwork instead of just a physical link of the

global topology. Our goal is to obtain a minimum cost embedding in the presence of self

interested agents owning the substrate links. Mechanism design [27, 29, 31] is concerned

with the aggregation of privately known preferences of self-interested rational agents into

a social choice. The main goal of mechanism design is to discover protocols for dealing

with strategic agents that achieve the stated goal of the designer. The protocol has to be

designed in such a way that the actions of the selfish agents are properly aligned with the

system wide goal of the central designer. In this appendix work, we assume the existence

of a central authority responsible for implementing the mechanism for the embedding

problem, the case where the computational task of the mechanism is distributed among

the rational agents, called Distributed Algorithmic Mechanism Design (DAMD) [10, 11],

which is a more realistic model for an Internet scale system, will be discussed later. The

most famous result in the mechanism design literature is the Vickrey-Clarke-Groves (VCG)

mechanism [7, 13, 46]. In a VCG mechanism, each agent submits its preferences directly
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in a single stage to a central mechanism design authority who then computes a payment

function for each agent. The power of the VCG mechanism arises from the fact that it is a

truthful mechanism, which means that agents do not have any incentive to lie about their

preferences. So the VCG mechanism successfully aligns all the agent’s private preferences

with the system designers global design objective.

We now formally apply the VCG mechanism in the context of the virtual network

embedding problem. Since we are applying the VCG mechanism, we can assume that the

agents will be truthful. In that case the bulk of the work shifts to designing appropriate

payment functions in an efficient manner. Our goal here is to compute the embedding that

will minimize the cost function defined in A.1. Since each substrate link (substrate edge) e

is controlled by a strategic agent, we compute the VCG payment for each edge e as follows:

pe =

{
C(Γ(ΓV ,ΓE;GS − e))− C(Γ(ΓV ,ΓE;GS|e=0)) if e belongs to the embedding

0 otherwise

Here C(Γ(ΓV ,ΓE;GS−e)) corresponds to the cost of the embedding without taking the

edge e into account, whereas the term C(Γ(ΓV ,ΓE;GS|e=0)) is the cost of the embedding

after subtracting the cost of the edge e. So we can see from the payment function, that if

an edge e is not a part of the embedding, then it receives a zero payment. Otherwise its

payment is the difference between the cost of the embedding without e and the cost of the

embedding assuming e is free.

A.1.2 Components of the Proposed Mechanism

The main goal is to use VCG type mechanisms for the Virtual Network Embedding prob-

lem. Here we assume the existence of a central authority responsible for computing the

mechanism. The components of the proposed mechanism are described as follows:

• Players: Each substrate link of the substrate graph is owned (controlled) by a

strategic agent. So there are n = |ES| players in the mechanism.

• Outcomes: All possible embeddings of the virtual network on top of the substrate

network form the set of outcomes O. It should be noted that the number of possible
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outcomes will be exponential.

• Bids: Each agent bids the cost of its substrate link ci. He may lie about the true cost

in order to avoid being part of the selected embedding, that is ci is not necessarily

equal to the actual cost of the link c(eS), where eS ∈ ES.

• Objective Function: The objective function is to compute the minimum cost em-

bedding from the set O of all possible embeddings. The output function is defined

as f : Rn → O.

• Payment Functions: We use VCG type payment functions, pi : Rn → R. The

payment for an agent owning link e is as follows:

pe =

{
C(Γ(ΓV ,ΓE;GS − e))− C(Γ(ΓV ,ΓE;GS|e=0)) if e ∈ Γ

0 otherwise

A.1.3 Efficient Computation of the Payment Functions

We now shift our focus towards the algorithmic aspects of the problem. Without VCG pay-

ments the algorithmic problem only consists of computing the cost minimizing embedding

only once. However in the presence of VCG payments, we need to compute the embedding

n+1 times (we assume n denotes the number of edges in the selected embedding): once for

the original network GS and n times for the substrate network with each edge e removed,

that is for each G − e. We will start with simple brute force algorithms and then gradu-

ally tweak the algorithm to reduce its time complexity. The idea of our first algorithm is

very simple, however we believe it is a good starting point for developing strategy proof

embedding algorithms for network virtualization. The virtual network embedding problem

actually asks for a minimum cost subgraph of the substrate network onto which the virtual

network will be mapped. An optimal way to do it will be to check all possible ways to map

the virtual nodes on the physical nodes, and then for each possible node mapping, find the

shortest path between the physical nodes corresponding to the end point virtual nodes of

each virtual link. This computation must be performed n + 1 times. The pseudo-code of

the algorithm is given below.

59



Algorithm 6 VCG-ViNE: VCG Computation for Virtual Network Embedding

1: procedure VCG-ViNE(GS, GV )
2: Let Cmin be the cost of the lowest cost embedding
3: Cmin ←∞
4: Let pvcg denote the VCG payment vector corresponding to the lowest cost embed-

ding
5: for all

(
nS

nV

)
possible node embeddings do

6: Let ΓV be the currently selected node embedding
7: Let pc be the current VCG payment vector
8: C ← 0
9: for all eV = (n1

V , n
2
V ) ∈ EV do

10: Let n1
S = ΓV (n1

V ) and n2
S = ΓV (n2

V )
11: Find the shortest path P between n1

S and n2
S on GS

12: Let d(P ) be the cost of P
13: C ← C + d(P )
14: for all e ∈ P do
15: Compute shortest path d(P − e) when e is removed from GS

16: pc[e]← (d(P − e))− (d(P )|e=0)
17: end for
18: end for
19: if C < Cmin then
20: Cmin ← C
21: pvcg[e]← pc[e],∀e ∈ ES
22: end if
23: end for
24: Return Cmin and pvcg
25: end procedure

The correctness of the algorithm depends on the following lemma. The lemma holds

because of the edge-disjoint property that we imposed on our network model.

Lemma 1 Let GS(VS, ES, c(.)) be the substrate network and GV (VV , EV ) be the virtual

network. Let the lowest cost embedding of GV onto GS be Γ(ΓV ,ΓE). Consider a substrate

link e ∈ ES that has been selected by the embedding Γ. Let pΓ
e denote the VCG price for e

with respect to the embedding Γ. There exists a path P ∈ ΓE(EV ) such that1 e ∈ P. Then

pΓ
e = pPe , where pPe denotes the VCG price for e with respect to the path P.

1ΓE(EV ) is the set of all paths in GS that correspond to the virtual links in GV .
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Description of the Algorithm

We now describe some of the details of the algorithm. The for loop in line 5 runs over all

possible node embeddings. The second for loop in line 9 goes through each virtual link

with respect to a fixed node embedding. For each virtual link, we compute the shortest

path between the substrate nodes corresponding to the end point virtual nodes of that

virtual link. Once a shortest path has been computed, we compute the payment for each

substrate link on that shortest path by removing that substrate link from the topology and

recomputing the shortest path. We keep track of the node embedding that corresponds to

the lowest cost embedding and finally return the cost of the minimum embedding and the

VCG payment vector.

We now discuss the time complexity of the proposed algorithm. There are
(
nS

nV

)
ways

to map the virtual nodes to physical nodes. For each possible node mapping, we have

to compute O(nS) shortest paths2 for each of the O(n2
V ) virtual links. One shortest path

computation can be done in O(nS log nS + n2
S) time using standard Dijkstra’s algorithm.

So the total running time of the proposed algorithm is O(
(
nS

nV

)
.nS.n

2
V .(nS log nS+n2

S)). The

authors in [16] showed that VCG prices for each edge on a shortest path can be computed

in time bounded by the time complexity of just one shortest path computation. Using this

result, the brute force approach can be improved to O(
(
nS

nV

)
.n2
V .(nS log nS + n2

S)) time.

A.2 More Realistic Models

In this section, we discuss extensions to more realistic network scenarios. Specifically we

mention some ways to extend the basic network and economic model used in this work.

A.2.1 More Realistic Network Models

We mentioned earlier that our adopted network model had some limitations. For exam-

ple, we have been concerned with the embedding of a single virtual network. A natural

extension is to consider more than one virtual network request arriving over time. In that

case, we can apply the VCG mechanism and the algorithm VCG-ViNE separately for each

2The length of any path in a graph containing n nodes is atmost n− 1
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arriving virtual network request. Since it is possible to share the bandwidth of one sub-

strate link among multiple virtual networks, we would have to keep track of the remaining

available bandwidth for each substrate link. However, since the remaining available band-

width for each substrate link is also private information only known to the agent owning

that link, this might lead to another level of strategic behavior on behalf of the agents.

Moreover, it is also possible to hypothesize strategic interaction at a different granularity

in the presence of incoming online virtual network requests. We can assume that each

separate virtual network request is performed by strategic agents (the service providers)

who want to maximize their utility from using the substrate network resources as much as

possible. Normally a virtual network request will also contain a time duration parameter

indicating how long the virtual network wants to utilize the substrate resources. An agent

in this case might lie about the duration in-order to maximize utility. As an example, con-

sider a service provider that requires a virtual network to serve end users every alternate

day for one month. So it requires substrate network resources for 15 days, but in-order

to avoid the virtual network creation costs and release costs, the service provider agent

might register the required time duration parameter as one month, which is not its true

time duration preferences. Also a service provider might want to keep the virtual network

for more time than required in anticipation of future resource needs. This will block other

service providers from using the substrate network resources and will decrease network re-

source utilization in the long run. So we can see that service provider agents can not only

lie about their preferences for substrate network resources, but they can also misrepresent

their time duration by reporting false start times and end times. This scenario is very

close in nature to the online mechanism design setting [12,32,34,35], where a dynamically

changing set of agents interact with the mechanism over an extended period of time. An

online mechanism is an extension of the classical mechanism design framework, which in-

troduces the notion of time dependency and the agents can arrive and depart at discrete

points of time. As a result the mechanism must make decisions at each time step. One of

our future research directions would be to investigate the online mechanism design aspect

of dynamic network virtualization environments.
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A.2.2 More Realistic Economic Models

In our basic economic model, we assumed that each substrate link was owned and controlled

by a strategic agent. This is not very realistic and does not correspond to the way the real

Internet topology is organized. If we consider the Internet to be a massive scale graph,

then different disjoint subgraphs would be owned by separate autonomous systems (AS).

The AS’s themselves are connected by inter-domain links. An example of this is shown in

figure A.1.

Figure A.1: More Realistic Economic Models.

An easy way to extend our results would be allow each AS to bid separately for each of

its substrate links. However this works only if we ignore substitutability and complemen-

tarity effects3. If such effects cannot be ignored, then we can resort to the known results in

case of single minded bidders [21]. A single minded bidder only cares about one particular

set of items. In our case, the agent will only be concerned with the set of substrate links

that fall within its designated AS. We can then apply the greedy payment scheme from [21]

which preserves truthfulness. Notice that this payment function is a non VCG payment

scheme and only works for a restricted subclass of single minded bidders. It should also

be noted that the inter-domain links are not controlled by any agent. It might be possible

3Complementarity: valuation for a set of substrate links can be more than sum of valuations for the
individual substrate links, Substitutability: valuation for a set of substrate links can be less than sum of
valuations for the individual substrate links.
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that these links are controlled by the central mechanism designer or jointly by the ASs

that are interconnected by a private inter-domain link.

A.2.3 Distributed Computation of VCG Payments

In the traditional mechanism design (MD) and algorithmic mechanism design (AMD) set-

ting [29], it is assumed that a trusted center exists that implements the required economic

mechanisms. However in an Internet scale network virtualization environment, it is no

longer feasible to transmit all relevant private information to a central trusted author-

ity. There are a number of reasons for this. First of all, the InPs will most likely form

a Peer-to-Peer (P2P) network with peering relationships. As a result no one InP might

agree to take on the role of the trusted center. Secondly, the communication overhead of

transmitting information to a center (if one exists) might be prohibitive at such a large

scale. This calls for a decentralized approach that not only distributes incentives but also

the computation of mechanism among the InPs and leads us to the realm of Distributed

algorithmic mechanism design (DAMD) [10,11]. DAMD differs from AMD in a number of

ways, for example the complexity measures for DAMD include network complexity which

measures the number of messages passed over the network, message size, local computation

and local storage required for the messages used to implement the mechanism. Another

important difference is that the task of computing the mechanism is now distributed across

the strategic agents. As a result in DAMD agents can not only manipulate their private

valuations, but also the results of the local computations required for mechanism. These is-

sues suggest that DAMD is the most suitable economic model for studying problems in the

domain of networking. The DAMD approach has been recently used to study networking

problems like web-caching, P2P file sharing, and overlay network construction.

We now discuss some approaches towards distributed computation of VCG payments

[33] for our proposed mechanism. A distributed algorithm will delegate the task of comput-

ing the outcome and payment functions of the mechanism among the agents themselves,

in the absence of any central authority. It can be easily seen that distribution leads to

further scope of manipulation since the agents can change the computational results that

they have control over. As an example, consider a set of agents organized in a ring topol-

ogy and the agents are performing a distributed algorithm for the second price auction by

passing around the two top most bids (tokens) along the ring. As a result an agent can
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manipulate the second highest bid when the token comes to that agent and if no other

agent further changes the token, then that manipulative agent can get the item at a lower

price. One approach to prevent computational manipulations is to use replication [33]. In

this technique, the set of agents are divided into two groups and each group computes its

own version of the outcome and payment functions. If the results from the two groups

match, then the outcome and payments are enforced. If they don’t match, then at least

one agent in one group cheated and a severe penalty is enforced on all agents4. It should be

noted that in these distributed settings, truthfulness can no longer be achieved in dominant

strategies, rather we have to resort to the slightly weaker solution concept of ex-post Nash

equilibrium [40]. Another issue that should be addressed is that the payment function for

an agent i should be computed by any subset of agents excluding i to avoid manipulation.

An approach that can be adapted to our economic model is to utilize a distributed hash ta-

ble (DHT) type system, where the payment for each substrate link agent will be performed

by a subset of neighboring5 substrate link agents. This type of scheme has been applied in

the context of incentive mechanisms for promoting cooperation in P2P networks [15,47].

A.3 Related Work

Traditionally computer networks has been a very rich application area for game theory

and mechanism design. However to the best of our knowledge our work is the first to

formally apply mechanism design in the context of the virtual network embedding problem

in network virtualization. There has been a number of research projects that studied

the stability and co-existence of multiple overlay networks on top of a native IP network

which is quite similar to the network virtualization setting [23, 37]. However these results

are concerned with post mapping phases, that is after the overlay networks have been

constructed, whereas our results are more concerned with the strategic aspects of the

virtual network formation phase. Also these works are more related to the classic results on

selfish routing by Roughgarden and Tardos [39]. Recently Yuen and Li applied mechanism

design to study the dynamic multicast tree formation problem in overlay networks [50].

The same authors also investigated applications of mechanism design for dynamic topology

4In this case we need a central authority to enforce penalties, so the approach is not completely dis-
tributed.

5Two substrate links are neighbors if they share a substrate node.
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formation in autonomous networks [51].

A.4 Conclusion

The presence of multiple types of stake-holders at different levels of granularity (end-users,

service providers and infrastructure providers) in a network virtualization environment

naturally leads to large scale strategic interactions among the different parties. We believe

that mechanism design is an appropriate tool for smoothing out the conflicting interests

and preferences of this diverse set of agents. In this appendix work we have initiated

a systematic study of network virtualization from a mechanism design perspective. We

have specifically focused on the virtual network embedding problem in the presence of

multiple infrastructure providers controlling disjoint parts of the shared substrate infras-

tructure. Our main contribution in this appendix work is the application of the classic VCG

mechanism to solve the virtual network embedding problem in the presence of strategic

agents. We have developed a simple algorithm for computing the VCG payments and

discussed ways to extend the results to more realistic scenarios. In the future we will

perform experiments using simulation tools and PlanetLab test-beds [36] to test the scal-

ability and performance of our initial results. We will also apply tools from game theory

and mechanism design to address some other important problems in network virtualiza-

tion, e. g. efficient market mechanisms for dynamic network virtualization environments

where service providers and infrastructure providers can buy and sell substrate network

resources in the presence of brokers who monitor the market and determine market clearing

prices. We can also examine recursive network virtualization environments where the ser-

vice providers themselves can resell the network resources they purchased from the infras-

tructure providers and add infinitum. These hierarchical and recursive environments and

interactions would ultimately lead to a very complex and multi-level network virtualization

marketplace that can be analyzed and controlled using tools from both micro-economics

and macro-economics.
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