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Abstract

This dissertation studies the diversity multiplexing tradeoff and the capacity

of wireless half-duplex multiple-relay network.

In part 1, we study the setup of the parallel Multi-Input Multi-Output (MIMO)

relay network. An amplify-and-forward relaying scheme, Incremental Cooperative

Beamforming, is introduced and shown to achieve the capacity of the network in

the asymptotic case of the number of relays (K) goes to infinity with a gap scaling

at most as log(K)
4√K

. This result is shown to hold as long as the power of each relay

is significantly larger than log3(K) log(log(K))
K . In addition, two asymptotic Signal to

Noise Ratio (SNR) regimes are studied: i) In the regime where the source power is

equal to the relays power and both tend to infinity, the proposed scheme is shown

to achieve the full multiplexing gain regardless of the number of relays. ii) In the

regime where the source power is fixed but the power of each relay tends to infinity,

the proposed scheme is shown to asymptotically achieve the network capacity.

In part 2, we study the general setup of multi-antenna multi-hop multiple-

relay network. We propose a new scheme, which we call random sequential (RS),

based on the amplify-and-forward relaying. Furthermore, we derive diversity-

multiplexing tradeoff (DMT) of the proposed RS scheme for general single-antenna

multiple-relay networks. It is shown that for single-antenna two-hop multiple-

access multiple-relay (K > 1) networks (without direct link between the source(s)

and the destination), the proposed RS scheme achieves the optimum DMT. How-

ever, for the case of multiple access single relay setup, we show that the RS scheme

reduces to the naive amplify-and-forward relaying and is not optimal in terms of

DMT, while the dynamic decode-and-forward scheme is shown to be optimal for

this scenario.
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In part 3, we characterize the maximum achievable diversity gain of the multi-

antenna multi-hop relay network and we show that the proposed RS scheme

achieves the maximum diversity gain.

In part 4, RS scheme is utilized to investigate DMT of the general multi-antenna

multiple-relay networks. Here, we show that random unitary matrix multiplica-

tion at the relay nodes empowers the RS scheme to achieve a better Diversity-

Multiplexing Tradeoff (DMT) as compared to the traditional AF relaying. First,

we study the case of a multi-antenna full-duplex single-relay two-hop network, for

which we show that the RS achieves the optimum DMT. Applying this result, we

derive a new achievable DMT for the case of multi-antenna half-duplex parallel

relay network. Interestingly, it turns out that the DMT of the RS scheme is opti-

mum for the case of multi-antenna two parallel non-interfering half-duplex relays.

Furthermore, we show that random unitary matrix multiplication also improves

the DMT of the Non-Orthogonal AF relaying scheme of [26] in the case of a multi-

antenna single relay channel. Finally, we study the general case of multi-antenna

full-duplex relay networks and derive a new lower-bound on its DMT using the RS

scheme.

Finally, in part 5, we study the multiplexing gain of the general multi-antenna

multiple-relay networks. We prove that the traditional amplify-forward relaying

achieves the maximum multiplexing gain of the network. Furthermore, we show

that the maximum multiplexing gain of the network is equal to the minimum

vertex cut-set of the underlying graph of the network, which can be computed in

polynomial time in terms of the number of network nodes. Finally, the argument

is extended to the multicast and multi-access scenarios1.

1
The materials of this work are also reported in [46,47,51,48,49,50,52,53].
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Chapter 1

Introduction

1.1 Motivation

In recent years, relay-assisted transmission, which was first introduced by van der

Meulen in 1971 [15], has gained significant attention as a powerful technique to

enhance the performance of wireless networks, combat the fading effect, extend the

coverage, and reduce the amount of interference due to frequency reuse. The main

idea is to deploy some extra nodes in the network to facilitate the communication

between the end terminals. In this manner, these supplementary nodes act as

spatially distributed antennas for the end terminals.

Multiple-antennas transmission is another technique that has been significantly

investigated in recent years. Information-theoretic results have shown that MIMO

systems have the ability to simultaneously enhance the multiplexing gain (de-

grees of freedom) and the diversity (reliability) in point-to-point wireless fading

links [24, 17, 29]. Motivated by these results on point-to-point MIMO channels,

subsequently there has been a growing interest in studying the application of
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MIMO systems in more complex wireless networks. Specifically, some promis-

ing results are reported regarding MIMO multiple-access and broadcast channels

in [36, 58, 42, 21, 13]. However, even in its simplest form, the capacity of a single-

antenna Gaussian relay channel is still unknown. Due to this complexity, in spite of

all the attention to MIMO systems, there are only a few results known concerning

MIMO relay networks.

More recently, cooperative diversity techniques have been proposed as can-

didates to exploit the spatial diversity offered by the relay nodes (for example,

see [25, 26, 34, 1]). A fundamental measure to evaluate the performance of the ex-

isting cooperative diversity schemes is the diversity-multiplexing tradeoff (DMT)

which was first introduced by Zheng and Tse in the context of point-to-point

MIMO fading channels [29]. Roughly speaking, the diversity-multiplexing trade-

off identifies the optimal compromise between the “transmission reliability” and

the“data rate” in the high-SNR regime.

1.2 General Relay Networks

The classical relay channel was first introduced by Van der Meulen in 1971 [15]. In

[15], a node defined as the relay enhances the transmission of information between

the source and the destination. The most important subsequent results have been

published by Cover and El Gamal [56]. In [56], two different coding strategies

are introduced. In the first strategy, originally named “cooperation”, and later

known as “decode-and-forward” (DF), the relay decodes the transmitted message

and cooperates with the source to send the message in the next block. In the

second strategy, known as “compress-and-forward” (CF), the relay compresses the
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received signal and sends it to the destination. The performance of the DF strategy

is limited by the quality of the source-to-relay channel, while CF’s performance

is mostly governed by the quality of the relay-to-destination channel [56]. The

drawback of using CF strategy is that the transmitted signals by the source and

the relay are independent of each other. Hence, the CF strategy is unable to exploit

the power boosting advantage due to the coherent addition of the signals in the

Gaussian relay channel [56].

Recently, extensions of the relay channel to the multiple relays or to multiple

source/destinations have been investigated in [10, 44, 31, 32, 30, 18, 6, 8]. [18, 30]

develop new coding schemes based on Decode-and-Forward and Compress-and-

Forward relaying strategies for multiple-relay networks. Avestimehr et al. in [6]

present a linear deterministic model for the wireless relay network and characterize

its exact capacity. Applying the capacity-achieving scheme of the corresponding

deterministic model, the authors in [6] show that the capacity of wireless single-

relay channel and the diamond relay channel can be characterized within 1 bit and

2 bits, respectively, regardless of the values of the channel gains. Furthermore,

in [8], the authors show that a variant of the CF relaying achieves the capacity of

any general single-antenna Gaussian relay network within a constant bit number

that only depends on the number of nodes in the network. The authors show

in [9] that the result is still valid for both the multi-antenna Gaussian and the

multi-antenna ergodic Rayleigh fading relay networks.
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1.3 Parallel Relay Networks

A special case of the multiple-relay network is the parallel relay network, which was

first introduced by Schein in [10,44]. In the set up of [10,44], the source broadcasts

its data to two relays and then, the relays transmit their data in a coherent man-

ner to the destination. Hence, the communication is performed in two hops. [44]

studies the symmetric Gaussian parallel single-antenna relay network. Besides

investigating the well-known “compress-and-forward” and “decode-and-forward”

strategies, [44] have also studied the “amplify-and-forward” (AF) strategy. In AF

relaying, the relay(s) simply amplify and transmit their received data to the des-

tination. Despite its simplicity, in many scenarios AF relaying performs very well.

Indeed, [44] shows that the time-sharing between AF and DF achieves the best

lower-bound on the capacity in all SNR regimes. Furthermore, for the scenario

where either the SNR value at the downlink (channel between the relays and the

destination) is large or the SNR values at both the downlink and the uplink (chan-

nel between the source and the relays) are low, the time-sharing between AF and

DF reduces to naive AF relaying and achieves the network capacity, asymptoti-

cally. Moreover, Gastpar in [31] proves that employing AF relaying achieves the

capacity of the Gaussian parallel single-antenna relay network as the number of

relays tends to infinity. AF relaying is also investigated in [43, 2, 19, 39, 20] for

different Gaussian relay network scenarios.

Recently, Bolcskei et al. in [19, 39] extend the work of [31] to the parallel

multiple-antenna parallel relay network. Unlike the parallel single-antenna relay

scenario, in this case the AF multipliers are matrices rather than scalars. Hence,

finding the optimum AF matrices becomes challenging. The authors in [19] study

two scenarios in terms of the CSI assumption at the relays: i) coherent relaying,

4



in which the relays have perfect CSI about their own forward channel (channel

between the relay and the destination) and backward channel (channel between

the source and the relay), and ii) non-coherent relaying, in which the relays have

no CSI. In both scenarios, it is assumed that the source has no CSI while the

destination has perfect CSI about the equivalent end-to-end channel between the

source and the destination. In the coherent scenario, the authors propose a new

AF scheme, called “matched filtering”, and prove that the achievable rate of the

proposed scheme follows the capacity of the parallel MIMO relay network with a

constant gap in terms of the number of relays, K, in the asymptotic case of K →∞.

They also show that this achievable rate grows linearly with the number of transmit

antennas (reflecting the multiplexing gain 1) and grows logarithmically in terms of

the number of relays (reflecting the distributed array gain [19]). Moreover, in the

non-coherent scenario, the simple AF relaying achieves a rate which grows linearly

with the number of transmit antennas, but does not grow with the number of

relays.

Shi et al. [20] present a new AF relaying scheme for the parallel MIMO relay

network using the QR decomposition of the forward and backward channels in

each relay. Relying on numerical results, reference [20] shows that their proposed

scheme outperforms other existing AF schemes for practical number of relays and

practical number of antennas.

1
Note that, however, the multiplexing gain of the “matched filtering” scheme is zero for any

arbitrary number of relays.
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1.4 DMT in Relay Networks

The DMT of relay networks was first studied by Laneman et al. in [25] for half-

duplex relays. In this work, the authors prove that the DMT of a network with

single-antenna nodes, composed of a single source and a single destination assisted

with K half-duplex relays, is upper-bounded by

d(r) = (K + 1)(1− r)+. (1.1)

This result can be established by applying either the multiple-access or the broad-

cast cut-set bound [12] on the achievable rate of the system. Despite its simplicity,

this bound is yet the tightest on DMT2. The authors in [25] also suggest two proto-

cols based on decode-and-forward (DF) and amplify-and-forward (AF) strategies

for a single-relay system with single-antenna nodes. In both protocols, the relay

listens to the source during the first half of the frame, and transmits during the

second half. To improve the spectral efficiency, the authors propose an incremental

relaying protocol in which the receiver sends a single bit feedback to the transmit-

ter and to the relay to clarify if it has decoded the transmitter’s message or needs

help from the relay for this purpose. However, none of the proposed schemes are

able to achieve the DMT upper-bound.

The non-orthogonal amplify-and-forward (NAF) scheme, first proposed by Nabar

et al. in [38], has been further studied by Azarian at al. in [26]. In addition to

analyzing DMT of the NAF scheme, reference [26] shows that NAF is the best in

the class of AF strategies for single-antenna single-relay systems. The dynamic

decode-and-forward (DDF) scheme has been proposed independently in [26,35,33]

2
Indeed, as we will explain in the sequel, Pawar et al. in their recent work [41] have shown

that (1.1) is the exact DMT for the single half-duplex relay channel.
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based on the DF strategy. In DDF, the relay node listens to the sender until it

can decode the message, and then re-encodes and forwards it to the receiver in the

remaining time. Reference [26] analyzes the DMT of the DDF scheme and shows

that it is optimal for low rates in the sense that it achieves (1.1) for the multi-

plexing gains satisfying r ≤ 0.5. However, for higher rates, the relay should listen

to the transmitter for most of the time, reducing the spectral efficiency. Hence,

the scheme is unable to follow the upper-bound for high multiplexing gains. More

importantly, the generalizations of NAF and DDF for multiple-relay systems fall

far from the upper-bound, especially for high multiplexing gains.

Yuksel et al. in [34] apply compress-and-forward (CF) strategy and show that

CF achieves the DMT upper-bound for multiple-antenna half-duplex single-relay

systems. However, in their proposed scheme, the relay node needs to know the

CSI of all the channels in the network which may not be practical.

More recently, Yang et al. in [55] propose a class of AF relaying scheme called

slotted amplify-and-forward (SAF) for the case of half-duplex multiple-relay (K >

1) and single source/destination setup. In SAF, the transmission frame is divided

into M equal length slots. In each slot, each relay transmits a linear combination

of the previous slots. Reference [55] presents an upper-bound on the DMT of SAF

and shows that it is impossible to achieve the MISO upper-bound for finite values

of M , even with the assumption of full-duplex relaying. However, as M goes

to infinity, the upper-bound meets the MISO upper-bound. Motivated by this

upper-bound, the authors in [55] propose a half-duplex sequential SAF scheme. In

the sequential SAF scheme, following the first slot, in each subsequent slot, one

and only one of the relays is permitted to transmit an amplified version of the

signal it has received in the previous slot. By doing this, the different parts of
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the signal are transmitted through different paths by different relays, resulting in

some form of spatial diversity. However, [55] could only show that the sequential

SAF achieves the MISO upper-bound for the setup of non-interfering relays, i.e.

when the consecutive relays (ordered by transmission times) do not cause any

interference on one another.

Yang and Belfiore in [54] study the DMT performance of the NAF scheme

for the multi-antenna parallel relay setup. Moreover, based on the non-vanishing

determinant criterion, the authors constructed a family of space-time codes for

the NAF scheme over multi-antenna channels. However, as shown in [54], the

NAF scheme falls far from the DMT upper-bound in the multiple-antenna setup,

particularly for small values of multiplexing gain. Indeed, even for the case of a

multi-antenna two-hop single-relay setup, the NAF scheme is unable to achieve

the maximum diversity gain of the system.

Yuksel et al. in [34] apply CF strategy and show that CF achieves the DMT

upper-bound for multi-antenna half-duplex single-relay networks. However, in

their proposed scheme, the relay node needs to know the Channel State Infor-

mation (CSI) of all the channels in the network, which may not be practical.

1.5 Achievable Rate of AF Relaying

Among the different relaying strategies, AF relaying turns out to be more suitable

in practice. Indeed, in AF relaying the relays are not supposed to decode the

transmitted message. Instead, they simply forward their observation of the last

time-slot. Hence, the relays consume less computing power. Moreover, the end-

to-end system expends a much smaller amount of delay compared with the other

8



relaying strategies, as the relays do not need to wait a couple of time-slots in order

to decode the source message or compress the received vector. Another advantage

of the AF relaying is that the relay nodes do not need to have any knowledge of

the codebook the source is using.

The AF relaying is mainly investigated in literature in order to exploit the

cooperative diversity for the wireless relay networks (for example, see [25, 26, 55,

54,51,48,49,28]). However, the achievable rate of the AF relaying is unknown for

general wireless relay networks. Indeed, [8] has shown that there exists scenarios

for which the gap between the achievable rate of AF relaying and the capacity of

the Gaussian relay network can be arbitrarily large.

Most recently, Avestimehr et al. in [8] show that a variant of the CF relaying

achieves the capacity of any general single-antenna Gaussian relay network within

a constant bit number that only depends on the number of nodes in the network.

Furthermore, the authors show in [9] that the result is still valid for both the multi-

antenna Gaussian and the multi-antenna ergodic Rayleigh fading relay networks.

For the case of the relay network with nodes which are equipped with multi-

antenna, the gap is only related to the summation of the number of antennas of all

network nodes. Also, by relating the original problem to the linear deterministic

network and applying the result of [7], the authors of [27] show that the maximum

multiplexing gain of the wireless relay networks is equal to the minimum between

the matrix rank corresponding to different cut-sets of the underlying graph of the

network. However, the scheme of [27] also has the drawbacks of CF relaying:

each relay node listens for T time-slots (T should approach infinity such that the

argument is valid) and then multiplies the received vector by a predefined matrix

of size NT×NT , where N is the maximum number of antennas among all nodes of
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the network and sends the result in the following T time-slots. Hence, the scheme

requires high computing power consumption at the relay nodes and imposes a large

delay to the end-to-end network.

In another work [23], the authors show that cooperative communication, ei-

ther between the transmitters or between the receivers, is unable to improve the

multiplexing gain of a wireless 2× 2 single-antenna interference channel.

1.6 Summary of Dissertation

In Chapter 2, we consider the parallel MIMO relay network. The network studied

in this chapter consists of K relays each equipped with N antennas assist in data

transmission between a source and a destination, each equipped with M anten-

nas (N ≥ M). Communication takes place in two equal-time hops and the relays

operate in the half-duplex mode. We propose a new AF protocol called “Incre-

mental Cooperative Beamforming Scheme” (ICBS). We prove that the achievable

rate of ICBS converges to the capacity of the parallel MIMO relay network, for

asymptotically large number of relays, with a gap which vanishes to zero. Next,

we study the performance of ICBS in two asymptotically high SNR regmies: i) In

the regime where the power of both the source and the relays approaches infinity,

we prove that ICBS achieves the full multiplexing gain; and ii) In the regime where

the power of the source is fixed, but the power of each relay approaches infinity,

we show that the gap between the achievable rate of ICBS and the capacity van-

ishes to zero. Finally, through simulation, we compare the achievable rate of ICBS

against the achievable rate of “matched-filtering” scheme of [19] and the upper-

bound on capacity obtained from the point-to-point capacity of the broadcast
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channel. Simulation results show that while the gap between “matched-filtering”

and the upper-bound on capacity remain constant for different number of relays,

the achievable rate of ICBS rapidly achieves the upper-bound capacity.

In Chapter 3, we study DMT in single-antenna multiple-relay networks. Here,

we propose a new scheme, which we call random sequential (RS), based on the

SAF relaying for general multiple-antenna multi-hop networks. The key elements

of the proposed scheme are: 1) signal transmission through sequential paths in the

network, 2) path timing such that no non-causal interference is caused from the

source of the future paths on the destination of the current path, 3) multiplication

by a random unitary matrix at each relay node, and 4) no signal boosting in

amplify-and-forward relaying at the relay nodes, i.e. the received signal is amplified

by a coefficient with the absolute value of at most 1. We derive DMT of the RS

scheme for general single-antenna multiple-relay networks (maximum diversity and

DMT of RS scheme is investigated in the following two Chapters). Specifically,

we derive: 1) the exact DMT of the RS scheme under the condition of “non-

interfering relaying”, and 2) a lower-bound on the DMT of the RS scheme (no

conditions imposed). Finally, we prove that for single-antenna multiple-access

multiple-relay networks (with K > 1 relays) when there is no direct link between

the transmitters and the receiver and all the relays are connected to the transmitter

and to the receiver, the RS scheme achieves the optimum DMT. However, for two-

hop multiple-access single-relay networks, we show that the proposed scheme is

unable to achieve the optimum DMT, while the DDF scheme is shown to perform

optimum in this scenario.

In Chapter 4, we investigate the maximum diversity gain for the general multi-

hop multi-antenna wireless relay network which is introduced in Chapter 3. We
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show that the proposed RS scheme achieves the maximum diversity gain of the

network. Furthermore, we characterize the maximum achievable diversity gain in

terms of the minimum edge cut-set of the underlying graph of the network.

In Chapter 5, we investigate DMT of AF relaying in “multi-antenna” multi-

relay networks. For this purpose, we study the application of the RS scheme

described in Chapter 3. First, we study the simple structure of multi-antenna

full-duplex two-hop single-relay network. We show that unlike the traditional AF

relaying, the RS scheme achieves the optimum DMT. Indeed, random unitary

matrix multiplication empowers the RS scheme to achieve the optimum DMT.

This fact will be elaborated throughout Chapter 5. Furthermore, we generalize

this result to the multi-hop multi-antenna relay networks with single-relay in each

hop. Next, we study the case of multi-antenna half-duplex parallel relay network

and, by deriving its DMT, we show that the RS scheme improves the DMT of the

traditional AF relaying scheme. Interestingly, it turns out that the DMT of the RS

scheme is optimum for the multi-antenna half-duplex parallel two-relay (K = 2)

setup with no direct link between the relays. We also show that utilizing random

unitary matrix multiplication improves the DMT of the NAF relaying scheme

of [26] in the case of a multi-antenna single relay channel. Finally, we study the

class of general full-duplex multi-antenna relay networks whose underlying graph

is directed acyclic and all nodes are equipped with the same number of antennas.

Using the RS scheme, we derive a new lower-bound for the achievable DMT of this

class of networks. It turns out that the new DMT lower-bound meets the optimum

DMT at the corner points, corresponding to the maximum multiplexing gain and

the maximum diversity gain of the network, respectively.

In Chapter 6, we study the achievable rate of the traditional AF relaying in the
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high SNR scenarios for general wireless multiple-antenna multiple-relay networks.

The channel model for this Chapter is the same as the ones used in Chapters 3,

4 and 5, meaning that every two nodes are either connected through a Rayleigh

fading channel or disconnected. Unlike the RS scheme which utilizes matrix mul-

tiplication and a complex scheduling for the relays transmission, in traditional AF

relaying, each relay node forwards its received signal of the last time-slot in the

following time-slot. No channel state knowledge is required at either the source or

any of the relay nodes. However, the destination is assumed to know the end-to-

end channel state. We study the pre-log coefficient of the ergodic capacity in high

SNR regime, known as the multiplexing gain. We prove that the traditional AF

relaying achieves the maximum multiplexing gain for any wireless multi-antenna

relay network. Furthermore, we characterize the maximum multiplexing gain of

the network in terms of the minimum vertex cut-set of the underlying graph of

the network and show that it can be computed in polynomial-time (with respect

to the number of network nodes) using the maximum-flow algorithm. Finally, we

show that the argument can be easily extended to the multicast and multi-access

scenarios as well.

Chapter 7 contains conclusions and directions for future research.
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Chapter 2

Parallel MIMO Relay Networks

2.1 Introduction

In this chapter, we consider a parallel MIMO relay network, in which K relays

each equipped with N antennas assist in data transmission between a source and

a destination, each equipped with M antennas (N ≥ M). It is assumed that there

is no direct link between the source and the destination. All the channels are

assumed to be block Rayleigh fading and all the nodes in the network are assumed

to be fully aware of their corresponding channels. Communication takes place in

two equal-time hops and the relays operate in the half-duplex mode, i.e., the relays

can not transmit and receive simultaneously.

We propose a new AF protocol called “Incremental Cooperative Beamforming

Scheme” (ICBS). In this scheme, considering the uplink channel (from the source

to all the relays) as a point-to-point channel, the relays cooperatively multiply

the uplink channel matrix with a beamforming matrix computed from the Sin-

gular Value Decomposition (SVD) of this channel. Interestingly, to perform such

14



an operation, each relay only needs to know its corresponding sub-matrix of the

beamforming matrix. Moreover, for the outputs to be coherently added at the

destination, each relay has to apply zero forcing beamforming to its corresponding

downlink channel. However, the downlink noise degrades the performance of ICBS

significantly if any of the relays’ downlink channels is ill-conditioned. To enhance

the performance of ICBS in such scenarios, a threshold parameter is introduced

and the relays with ill-conditioned downlink channels are turned off. This strat-

egy improves the overall point-to-point channel from the source to the destination.

However, some diagonal and non-diagonal terms are subtracted from the equiva-

lent end-to-end channel matrix due to turning some of the relays off. Hence, the off

relays can potentially increase the orthogonality defect of the end-to-end channel

matrix.

It is shown that for asymptotically large number of relays, one can simultane-

ously mitigate the downlink noise and the orthogonality defect due to the turned-off

relays. As a result, the achievable rate of ICBS converges to the capacity of parallel

MIMO relay network with a gap scaling as O
�

log(K)
4√K

�
. This result is stronger than

the result of [19] in the coherent scenario, in which they show that their proposed

scheme can asymptotically (K → ∞) achieve the capacity up to a gap of O(1).

Furthermore, we prove that the asymptotic capacity of the parallel relay network

remains the same as long as the power of relays scales as log3(K) log(log(K))
K , and the

capacity is also achievable by ICBS. Finally, we investigate the achievable rate of

ICBS in two high SNR regime scenarios. Numerical results show that the achiev-

able rate of ICBS converges rapidly to the capacity, even for moderate number of

relays.

The main contributions of the chapter are as follows:
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• We derive the asymptotic capacity (K → ∞) of the parallel MIMO relay

network and show that the achievable rate of ICBS converges to the capacity

with a gap which vanishes as O
�

log(K)
4√K

�
.

• We show that the same result can be achieved by ICBS, as long as the power

of each relay scales as ω
�

log3(K) log(log(K))
K

�
.

• ICBS is proved to achieve the full multiplexing gain, regardless of the number

of relays.

• In the regime where the source power is fixed and the power of each relay

tends to infinity, ICBS is shown to achieve the network capacity, asymptot-

ically.

The rest of the chapter is organized as follows. In Section 2.2, the system model

is introduced and the assumptions are stated. In Section 2.3, the proposed scheme

is described. Section 2.4 is dedicated to the asymptotic analysis of the proposed

schemes. Simulation results are presented in Section 2.5. Finally, Section 2.6

concludes the chapter.

2.2 System Model and Assumptions

2.2.1 System Model

The system model in this chapter, as in [19], [39] and [20], is a parallel MIMO

relay network with two-hop relaying and half-dulplexing between the uplink and

downlink channels. In other words, data transmission is performed in two equal-

length time slots; in the first time slot, the signal is transmitted from the source to

the relays, and in the second time slot, the relays transmit data to the destination.

Note that there is no direct link between the source and the destination in this
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model. The source and the destination are equipped with M antennas and each of

the relays is equipped with N antennas. Throughout this chapter, we assume that

N ≥ M . The channel between the source and the relays and the channel between

the relays and the destination are assumed to be quasi-static Rayleigh fading. The

channel from the source to the kth relay, 1 ≤ k ≤ K, is modeled as

rk = Hkx + nk, (2.1)

and the downlink channel is modeled as

y =
K�

k=1

Gktk + z, (2.2)

where the channel matrices Hk and Gk are N × M and M × N i.i.d. complex

Gaussian matrices with zero mean and unit variance, respectively, nk ∼ CN (0, IN)

and z ∼ CN (0, IM) are Additive White Gaussian Noise (AWGN) vectors, rk and

tk are the kth relay’s received and transmitted signal, respectively, and x and y

are the source and the destination signal, respectively (figure 2.1).

The power constraints E[xHx] ≤ Ps and Ex,nk
[tH

k tk] ≤ Pr must be satisfied

for the transmitted signals of the source and the relays, respectively1. We assume

Pr = Ps = P throughout this chapter, except in Theorem 2.8, where we study the

case Pr < Ps = P , and Theorem 2.10, where we study the case Pr � Ps = P .

The task of amplify and forward (AF) relaying is to find the matrix Fk for each

relay to be multiplied by its received signal to form the relay’s output as tk = Fkrk,

such that the power constraint is satisfied for each relay. In this way, the entire

1
Note that in the proposed ICBS, we have assumed that the power constraint for the trans-

mitter and the relays is satisfied for each realization of the channels. However, for deriving the

upper-bound on the capacity in Theorem 2.1, we assume an average power constraint (over all

realizations) for the transmitter, i.e., EH[xHx] ≤ Ps, which is a stronger result.
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source-destination channel is modeled as

y =

�
K�

k=1

GkFkHk

�
x +

K�

k=1

GkFknk + z. (2.3)

Second HopFirst Hop

Relays with N receive/transmit antennas

M
antennas

M
antennas

Rk

Tx Rx

Rk+1

Gk+1

Gk

Hk+1

Hk

Figure 2.1: A schematic of a parallel MIMO relay network

2.2.2 CSI Assumptions

For the proposed ICBS, it is assumed that the source knows the uplink channel,

i.e. H1, · · · ,HK . The source’s knowledge about the uplink channel can be realized

either through the feedback from the relays or by measuring the uplink channel di-

rectly assuming reciprocity of the uplink and its reverse channel. Furthermore, the

source is assumed to send a N ×M matrix containing the the channel information

to each of the relays. This assumption is reasonable when the uplink channel vari-

ation is slow such that the transmitter has enough time and bandwidth resources

to send the channel information to the relays. Furthermore, we assume that each

relay knows its forward channel, i.e. Gk. Finally, it is assumed that the destination
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has perfect knowledge about the equivalent point-to-point channel from the source

to the destination. This information can be obtained through sending pilot signals

by the source, amplified and forwarded at the relay nodes in the same manner as

the information signal.

2.3 Proposed Method

The equivalent uplink channel can be represented as HT �
�
HT

1 |H
T
2 |· · ·|H

T
K

�T
. By

applying Singular Value Decomposition (SVD) to H, we have H = UΣVH . The

diagonal matrix Σ has at most M nonzero diagonal entries corresponding to the

nonzero singular values of H. Consequently, we can rearrange the SVD such that

U is of size NK ×M while V and Σ are M ×M matrices. U can be partitioned

into M ×N sub-matrices as U =
�
UT

1 |U
T
2 |· · ·|U

T
K

�T
. For every 1 ≤ k ≤ K, let us

define βk as βk �
���G†

kU
H
k rk

���
2
. In ICBS, a predefined threshold β is coordinated

between the relays. Consequently, for each realization of the channels, the relays

which satisfy βk ≤ β amplify and forward their received signal by the matrix

Fk �
�

Pr

β G†
kU

H
k and other relays are turned off. In this way, the relays whose

downlink channels are ill conditioned are turned off. It should be noted that as

the active relays satisfy
���G†

kU
H
k rk

���
2
≤ β, the power of their transmitted signal is

guaranteed to be less than or equal to Pr. Let us denote the set of off relays by A,

i.e. A � {k |βk > β }. At the destination side, we have (figure 2.2)

19



y =
�

k∈Ac

GkFkrk + z

=

�
Pr

β

�

k∈Ac

UH
k rk + z

(a)
=

�
Pr

β

��
UHH−

�

k∈A

UH
k Hk

�
x +

�

k∈Ac

UH
k nk

�
+ z

=

�
Pr

β

��
ΣVH

−UH
AHA

�
x + UH

AcnAc

�
+ z. (2.4)

Here, n =
�
nT

1 |n
T
2 |· · ·|n

T
K

�T
, and (a) results from the fact that

�K
k=1 UH

k Hk =

UHH.

RxTx

R1

R2

RK

HK

H2

H1

GK

G1

G2

H =





H1

H2
...
HK





Relay on: (βk ≤ β)
Relay off: (βk > β)

tk = αG†

kU
H
k rk

+UH
1 n1 + UH

3 n3 + · · ·

�
+ z

distortion due to relay 2

y = α






Σ−

� �� �

UH
2 H2V− · · ·



 x�+

Figure 2.2: Incremental Cooperative Beamforming Scheme

As (2.4) shows, by decreasing the value of β, one can guarantee a large value for

signal to the downlink noise ratio at the expense of turning off more relays. Turning

off more relays results in increasing the deviation of the equivalent channel matrix

from ΣVH and decreasing the determinant of the equivalent channel matrix. It will
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be shown in Section 2.4 that for large number of relays, it is possible to guarantee

both having a large value of signal to downlink noise ratio and a small deviation

from ΣVH . Accordingly, we show that the achievable rate of ICBS is at most

O
�

log(K)
4√K

�
below the network capacity.

2.3.1 ICBS in Single Antenna Scenario

In the case that the network nodes are equipped with single antenna, the proposed

ICBS is more easily tractable. In this case, the uplink and downlink channel

matrices reduce to vectors 2, and we have

h = [h1h2 . . . hK ]T ,u =
h�
�h�

, σ = �h� , v = 1, (2.5)

where h = uσvH is the result of the SVD decomposition of the uplink channel.

The k’th relay amplifies the received signal as tk = α
u∗

k

gk

rk.

In ICBS, the relays with βk = |uk|2

|gk|2
�
1 + |hk|

2 Ps

�
≤ β are active and the rest

are turned off. Rewriting (2.4), the received signal at the destination side can be

written as

y =

�
Pr

β

�
�hAc�

2

�h�
x + uH

AcnAc

�
+ z, (2.6)

where Ac is the set of active relays. The above equation implies that if we can

choose the value of β such that
�

Pr

β � 1 and �hAc� ≈ �h�, the capacity of

the uplink channel (which is an upper-bound on the capacity of the system) is

achievable. The first condition requires selecting a small enough threshold value,

while the second condition requires selecting a large enough threshold value to

2
Here, we denote the problem parameters with their equivalent lowercase bold letters for the

vectors or regular letters for the scalars to emphasize on their dimensions
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ensure that there are enough active relays in the network. The second condition

also translates to making the distortion term (defined in (2.4)) as small as possible.

2.4 Asymptotic Analysis

In this section, we consider the asymptotic behavior of the achievable rate of the

proposed schemes. First, we show that in the asymptotic regime of K → ∞, by

properly choosing the value of β, the achievable rate of ICBS converges to the

capacity. Next, we study the asymptotic SNR behavior of ICBS in two regimes:

i) Pr = Ps → ∞; and ii) Pr → ∞. We show that in both SNR regimes ICBS is

asymptotically optimal.

Theorem 2.1 Consider a parallel MIMO relay network in which Ps = Pr = P is

fixed and K → ∞. Then, by setting the threshold as β = log(K)
4√K

, the achievable

rate of ICBS converges to the capacity upper-bound defined on the uplink channel.

More precisely,

lim
K→∞

Cu(K)−RICBS(K) = 0, (2.7)

where Cu(K) = maxQ(.),E[Tr{Q}]≤P
1
2EH

�
log

���IKN + HQHH
���� is the point to point

ergodic capacity of the uplink channel and RICBS(K) is the achievable rate of ICBS.

Proof The sequence of proof of Theorem 2.1 is as follows. In Lemma 2.2, we relate

P [ν > ξ], where ν denotes the norm of the distortion term defined in equation

(2.4), to P[k ∈ A] (the probability of turning off a relay) and P[�Uk�
2 > γ] (the

probability of having a sub-matrix with a norm greater than γ in the unitary matrix

obtained from the SVD of H). In Lemma 2.3, we upper-bound P[�Uk�
2 > γ]. As

a result, In Lemma 2.4, we show that by properly choosing the value of β, with
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high probability, one can simultaneously reduce the effect of the distortion to o(K),

while maintaining a large signal to downlink noise ratio. In Lemma 2.5, we show

that with high probability, all the singular values of HHH scale as NK. Using

Lemmas 2.4 and 2.5, it is concluded that with high probability, the ratio of the

power of distortion to the power of signal approaches zero, while the signal to the

downlink noise ratio approaches infinity at the same time. This is the key idea in

the proof of Theorem 2.1.

Lemma 2.2 Consider a parallel MIMO relay network with K relays using ICBS.

We have

P [ν > ξ] ≤
2MNK2

ξ

�
MP[Bk] + γP[Ak] +

1

NK2

�
, (2.8)

where ν is defined as ν �
��UH

AHA
��2

, and Ak and Bk are two events defined as

Ak ≡ {k ∈ A} and Bk ≡ {�Uk�
2 > γ}, respectively.

Proof See Appendix A.

Lemma 2.3 Consider a KN × M Unitary matrix U, where its columns Ui,

i = 1, · · · , M , are isotropically distributed unit vectors in CNK×1. Let W be an

arbitrary N ×M sub-matrix of U. Then, assuming γ ≥ MN
K , we have

P
�
�W�

2
≥ γ

�
≤

NN

MN−2(N − 1)!
(Kγ)N−1

�
1−

γ

M

�N(K−1)
. (2.9)

Proof See Appendix B.

Next, we apply Lemmas 2.2 and 2.3 to prove that for the threshold value defined

in the argument of Theorem 2.1, the distortion term scales as o(K), with a high

probability.
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Lemma 2.4 Assuming β ≥ eγ, we have

P [ν > ξ] ≤
2MNK2

ξ

�
2MP[Bk]+

γ2

β

�
2MPs log

�
β

γ

�
+ 8

γ

β
logMN−1

�
β

γ

�
+ M

�
+

1

NK2

�
, (2.10)

where ν is the distortion term defined in Lemma 2.2. Moreover, for the threshold

value β = log(K)
4√K

, we have

P
�
ν > log2(K)

√
K

�
= O

�
1

4
√

K

�
(2.11)

where ν is the distortion term defined in Lemma 2.2.

Proof See Appendix C.

Although with the threshold value stated by Lemma 2.4, the distortion term

may tend to infinity in terms of K, the signal term tends to infinity more rapidly.

In fact, as the following Lemma shows, the singular values of the whole uplink

channel matrix scale as NK with probability one, as K →∞.

Lemma 2.5 Let A be an r × s matrix whose entries are i.i.d complex Gaussian

random variables with zero mean and unit variance. Assume that r is fixed and

s tends to infinity. Then, with probability one λmax(AAH) ∼ λmin(AAH) ∼ s, or

more precisely,

P
�
s
�
1 + 4

√
r�

�
≥ λmax(AAH) ≥ λmin(AAH) ≥ s

�
1−

√
6r�

��
=

1 + O

�
1

s
�

log (s)

�
, (2.12)

where � �
�

2 log(s)
s .
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Proof See Appendix D.

Next, we prove Theorem 2.1 by using the above lemmas. By applying the

cut-set bound Theorem [12] on the broadcast uplink channel, it can be easily

verified [19], [39] that the point-to-point capacity of the uplink channel, Cu(K), is

an upper-bound on the capacity of the parallel MIMO relay network. Considering

the fact that each of the uplink and downlink channels are used 1
2 portion of the

time (due to the half-duplex assumption), we have a factor of 1
2 in the expression

of Cu(K). Let us define

Cu�(K) � M

2
log

�
KNPs

M

�
+ O

�
4

�
log(K)

K

�
. (2.13)

We first show that Cu�(K) is an upper-bound for Cu(K), and then prove that a

lower-bound for RICBS(K) converges to Cu�(K). In order to prove (2.13) is an

upper-bound for Cu(K), we show that the amount of uplink capacity improvement

obtained from waterfilling the source power between different uplink channel’s

realizations decays as O

�
4

�
log(K)

K

�
as K grows. To upper-bound Cu(K), we have

Cu(K) =
1

2
max
Q(.)

E[Tr{Q}]≤Ps

EH

�
log

���IKN + HQHH
����

(a)
=

1

2
max
Q(.)

E[Tr{Q}]≤Ps

EH

�
log

���IM + HHHQ
����

(b)

≤
M

2
max
Q(.)

E[Tr{Q}]≤Ps

EH

�
log

�
1 +

Tr
�
HHHQ

�

M

��

(c)

≤
M

2
max
Q(.)

E[Tr{Q}]≤Ps

EH

�
log

�
1 +

λmax(HHH)Tr{Q}

M

��
, (2.14)

where maximization is over all functions Q(H) which satisfy the average power

constraint Ps, i.e., E [Tr{Q(H)}] ≤ Ps. Here, (a) follows from the matrix determi-
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nant equality3, (b) results from the fact that for any M ×M positive semidefinite

matrix A with eigenvalues λ1, λ2, . . . ,λM , applying geometric inequality, we have

|A| =
�M

i=1 λi ≤

�P
M

i=1 λi

M

�M

=
�

Tr{A}
M

�M
, and finally, (c) follows from the fact that

for positive semi-definite matrices A and B, we have Tr{AB} ≤ λmax(A)Tr{B}

[22].

Now, we apply Lemma 2.5 in order to upper-bound RHS of (2.14). Let us

define the event C as the event that λmax(HHH) ≤ KN

�
1 + 4

√
M 4

�
2 log(KN)

KN

�
.

Moreover, let us define Cu(K,Q(.)) as the expression inside the max function in

RHS of (2.14). We have

Cu(K,Q(.)) = EH

�
log

�
1 +

λmax(HHH)Tr{Q}

M

����� C
�

P {C}+

EH

�
log

�
1 +

λmax(HHH)Tr{Q}

M

����� C
c

�
P {Cc

} (2.15)

Let us define CQ(H) � log
�
1 + λmax(HH

H)Tr{Q}
M

�
. The first term in the RHS of

(2.15) can be upper-bounded as follows.

EH [CQ(H)| C]
(a)

≤ log



1 +

KN

�
1 + O

�
4

�
log(K)

K

��
EH [Tr{Q}| C]

M





(b)

≤ log

�
KNPs

M

�
+ O

�
4

�
log(K)

K

�
. (2.16)

Here, (a) follows from concavity of the log function and (b) follows from the fact

that EH [Tr{Q}| C] ≤ EH [Tr{Q}] ≤ Ps. Moreover, the second term in the RHS of

3
Assuming A and B to be M ×N and N ×M matrices respectively, we have |IM + AB| =

|IN + BA| [22].
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(2.15) can be upper-bounded as follows.

EH [CQ(H)| Cc]
(a)

≤ log

�
1 +

EH

�
λmax(HHH)

�� Cc
�

M

�
+ log (1 + EH [Tr{Q}| Cc])

(b)

≤ log

�
1 +

KN

P {Cc}

�
+ log (1 + Ps)

≤ log(K) + O

�
1

K

�
+ log (1 + Ps)− log (P {Cc

}) . (2.17)

Here, (a) follows from concavity of the log function and (b) follows from the

facts that i) EH [Tr{Q}| Cc] ≤ EH [Tr{Q}] ≤ Ps, and ii) EH

�
λmax(HHH)

�� Cc
�
≤

EH[λmax(HH
H)]

P{Cc} .

On the other hand, from Lemma 2.5, we know P{Cc} = O

�
1

K
√

log(K)

�
. Ap-

plying this fact and combining (2.15), (2.16), and (2.17), we have

Cu(K,Q(.)) ≤ log

�
KNPs

M

�
+ O

�
4

�
log(K)

K

�
− P {Cc

} log (P {Cc
})

≤ log

�
KNPs

M

�
+ O

�
4

�
log(K)

K

�
= Cu�(K) (2.18)

Now, we lower-bound RICBS(K). Re-arranging (2.4), we have y =
�

Pr

β H�x +

n� where H� � Σ−UH
AHA and n� is the additive colored Gaussian vector with the

covariance matrix Pn� = IM + Pr

β UH
AcUAc . The achievable rate of such a system is

RICBS(K) =
1

2
EH

�
log

�����IM +
PrPs

Mβ
H�HH�P−1

n�

����

��

(a)

≥
M

2
log

�
Pr

Pr + β

�
+

1

2
EH

�
log

�����IM +
Ps

M
H�HH�

����

��
(2.19)

(b)

≥
1

2
EH

�
log

�����IM +
Ps

M
H�HH�

����

��
+ O

�
log(K)

4
√

K

�
(2.20)

27



where (a) follows from the fact that Pn� � (Pr

β + 1)IM and (b) follows from the

assumption that β = log(K)
4√K

. For convenience, let us define RL(K) as

RL(K) � 1

2
EH

�
log

�����IM +
Ps

M
H�HH�

����

��
. (2.21)

Defining the events E and F as

E ≡

�
λmin

�
HHH

�
≥ KN

�
1−

√
6M

4

�
2 log(NK)

NK

��
, (2.22)

and

F ≡

���UH
AHA

��2
≤ log2(K)

√
K

�
, (2.23)

we have

P [E ,F ]
(a)

≥ 1− P[Ec]− P[F c]
(b)
= 1 + O

�
1

4
√

K

�
. (2.24)

Here, (a) follows from union bound inequality and (b) follows from Lemmas 2.4

and 2.5. Let us define Λ � ΣΣH and assume that the diagonal entries of Λ are

ordered as λ1 ≥ λ2 ≥ · · · ≥ λM . Thus, RL(K) can be lower-bounded as
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RL(K) ≥
1

2
P [E ,F ] EH

�
log

�����
Ps

M
H�HH�

����

� �����E ,F

�
(2.25)

(a)

≥ P [E ,F ] EH

�
log

��
M�

i=1

λ
1
2
i −

M�

i=1

i!

�
M

i

� ��UH
AHA

��i

�

M−i�

j=1

λ
1
2
j

�������E ,F

�

+P [E ,F ]
M

2
log

�
Ps

M

�

(b)

≥ P [E ,F ]




EH



log



1−
M�

i=1

i!

�
M

i

� � ��UH
AHA

��2

λmin (HHH)

� i

2




�����E ,F





+
M

2
log

�
Ps

M

�
+

1

2

M�

i=1

EH

�
log (λi)

���E ,F
��

(c)

≥ P [E ,F ]

�
M

2
log

�
Ps

M

�
+

1

2

M�

i=1

EH

�
log (λi)

���E ,F
�
−

M log(K)
√

N 4
√

K

�
1 + O

�
log(K)

4
√

K

���
(2.26)

(d)

≥
M

2
log

�
KNPs

M

�
+ O

�
log(K)

4
√

K

�
. (2.27)

Here, (a) follows from an upper-bound on the determinant expansion 4 of Λ
1
2 −

UH
AHAV, expanded over all possible set entries between Λ

1
2 and UH

AHAV, (b)

follows by upper-bounding the maximum absolute value entry of the matrix UH
AHA

with the matrix Frobenius norm and also lower-bounding λi with λmin(HHH), (c)

results from the upper-bound on �UH
AHA� and the lower-bound on λi obtained

from definition of the events E and F , and finally, (d) follows from the lower-bound

on λi conditioned on the event E and also the upper-bound on P [E ,F ] obtained

4
det (A) =

�
π

(−1)
σ(π)

a1π1a2π2 · · ·anπn ≤
�

π
|a1π1a2π2 · · ·anπn |, where σ is the parity func-

tion of permutation.
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in (2.24). Now, defining

RS (K) =
M

2
log

�
KNPs

M

�
, (2.28)

according to (2.20), (2.21), and (2.27), we have

lim
K→∞

RICBS(K)−RS(K) ≥ 0. (2.29)

Furthermore, following the definition of Cu�(K) in (2.13), we observe

lim
K→∞

Cu�(K)−RS(K) = 0. (2.30)

Knowing Cu�(K) is an upper-bound on the capacity completes the proof.

Corollary 2.6 Achievable rate of ICBS is at most O
�

log(K)
4√K

�
below the upper-

bound on the capacity of the network, i.e. Cu(K).

Proof Revisiting the inequality series, (2.18), (2.20), and (2.27), it is easy to

verify that the achievable rate of ICBS is at most O
�

log(K)
4√K

�
below the capacity

upper-bound.

An interesting fact stated in the following Corollary is that as the number

of relays increases, the instantaneous achievable rate of the ICBS scheme for a

realization of the network channels is at most O
�

log(K)
4√K

�
below the ergodic capacity

of the network, with probability 1 (in probability).

Corollary 2.7 Consider the parallel MIMO relay network and ICBS with the

threshold β = log(K)
4√K

. Let us define RICBS (H,G) as the instantaneous achievable

rate of ICBS for a realization of the network channels. Then, we have

P
�
RICBS (H,G) ≤ Cu(K) + O

�
log(K)

4
√

K

��
= O

�
1

4
√

K

�
.
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Proof First, we note that RICBS (H,G) = 1
2 log

����IM + PrPs

Mβ H�HH�P−1
n�

���
�
. Re-

visiting the inequality series (2.20), we observe that RICBS (H,G) is at most

O
�

log(K)
4√K

�
below the function RL (H,G) � 1

2 log
���IM + Ps

M H�HH�
���. On the other

hand, revisiting the inequality series (2.27), we observe that conditioned on the

events E and F , the function RL (H,G) is at most O
�

log(K)
4√K

�
below the capacity

upper-bound. As a result, conditioned on E
�
F , instantaneous achievable rate of

ICBS is at most O
�

log(K)
4√K

�
below the capacity. This completes the proof.

Another interesting result is that by increasing the number of relays, each relay

can operate with much less power as compared to the source, while the scheme

achieves the same rate asymptotically.

Theorem 2.8 As long as the power of each relay scales as Pr = ω
�

log3(K) log(log(K))
K

�
,

we have

lim
K→∞

RICBS(K)− Cu(K) = lim
K→∞

RICBS(K)−
M

2
log

�
KNPs

M

�
= 0. (2.31)

Proof First, we select β such that β = o(Pr) and β = ω
�

log3(K) log(log(K))
K

�
.

Now, We apply the argument of first part of Lemma 2.4 to upper-bound P [ν > ξ].

Applying Lemma (2.10) with values of γ = 4 log(K)
K and ξ = o(K), we have

P [ν > ξ] = o

�
1

log(K)

�
(2.32)

Now, revisiting the step from (2.19) to (2.20) with the new value of β and Pr

and noting β = o(Pr), we conclude that in this case

RICBS(K) ≥ RL(K) + o(1). (2.33)
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Furthermore, revisiting the steps (2.26) and (2.27) in lower-bounding RL(K) and

noting that ξ = o(K) and P [E ,F ] = P [ν > ξ] = o
�

1
log(K)

�
, we have

RL(K) ≥
M

2
log

�
KNPs

M

�
+ o(1). (2.34)

Combining (2.33) and (2.34) completes the proof.

Theorem 2.9 Consider the parallel MIMO relay network with Ps = Pr = P →∞.

Then, ICBS with the threshold β = P log2(P ) achieves the maximum multiplexing

gain of the network which is equal to M
2 .

Proof First, we can apply the cut-set bound Theorem [12] to upper-bound the

ergodic capacity with the point-to-point capacity of the broadcast uplink channel.

As the broadcast uplink channel can be considered as a (KN)×M MIMO channel

and this channel is active for half of the time, we conclude that M
2 is an upper-

bound on the multiplexing gain of the network.

Hence, we only need to prove that ICBS with the threshold β = P log2(P )

achieves the multiplexing gain of M
2 . To prove, we first show that with probabil-

ity 1 + O
�

1
log(P )

�
all relays are on. The probability of a relay being off can be

upper-bounded by (C.3). Applying Lemma 2.3 for γ = M
�
1− 1

log(P )

�
, we con-

clude P [Bk] = O
�

1
log(P )

�N(K−1)
. Furthermore, we can apply (C.4) to upper-bound

P[Dk]. Noting δ = γ
β ≤

M
P log2(P )

, we conclude P[Dk] = O
�

1
log(P )

�
. Accordingly, the

probability that all relays are on can be lower-bounded as

P {A = ∅} ≥ 1−
K�

k=1

P {Ak}

(a)

≥ 1−
K�

k=1

P {Bk}+P {Dk} = 1+O

�
1

log(P )

�
, (2.35)

where (a) follows from (C.3).
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Now, we apply the inequality (2.19) to lower-bound the achievable rate of ICBS.

We have

RICBS(P ) ≥ RL(P ) +
M

2
log

�
P

P + β

�

(a)

≥
1

2
EH

�
log

�����IM +
P

M
H�HH�

����

��
−

M

2
log (log (P ))

≥
1

2
EH

�
log

�����IM +
P

M
H�HH�

����

�����A = ∅
�

P [A = ∅]−

M

2
log (log (P ))

(b)
=

1

2
EH

�
log

�����IM +
P

M
HHH

����

��
−

M

2
log (log (P ))−

1

2
EH

�
log

�����IM +
P

M
HHH

����

�����A �= ∅
�

P [A �= ∅]

(c)

≥
M

2
log(P ) + O(1)−

M

2
log

�
1 +

P

M
E

�
�H�2

��A �= ∅
��

P [A �= ∅]

−
M

2
log (log (P ))

(d)

≥
M

2
log(P ) + O(1)−

M

2
log (log (P )) (2.36)

Here, (a) follows from the fact that log(1 + x) ≤ x. (b) follows from the fact that

conditioned on A = ∅, we have H� = H. (c) follows from the ergodic capacity

formula for the MIMO point-to-point channel [24] and also concavity of the log

function. Finally, (d) follows from the fact that E
�
�H�2

��A �= ∅
�
≤

E[�H�2]
P[A �=∅] =

MNK
P[A �=∅] and also, knowing that P [A �= ∅] = O

�
1

log(P )

�
. Applying (2.36), we observe

limP→∞
RICBS(P )

log(P ) ≥
M
2 . This completes the proof.

In Theorem 2.9, we have shown the optimality of ICBS in the scenario where the

power of both the source and the relays tends to infinity. In the following theorem,

we study the scenario where only the power of the relays tends to infinity, and

show that ICBS is optimum in this scenario as well.
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Theorem 2.10 Consider the parallel MIMO relay network in which the source

power P and the number of relays K are fixed, but the power of each relay (Pr) tends

to infinity. Then, the ICBS scheme with the threshold β = O
�

Pr

log(Pr)

�
achieves

the capacity of parallel MIMO relay network. More precisely, the achievable rate

of ICBS is at most O
�

1
log(Pr)

�
below the capacity.

Proof The proof applies the same technique as the one that is used in the proof

of Theorem 2.9. We show that the capacity of the network is asymptotically equal

to the achievable rate of ICBS conditioned on A = ∅.

First, Applying Lemma 2.3 for γ = M
�
1− log(Pr)

Pr

�
, we conclude P [Bk] =

O
�

log(Pr)
Pr

�N(K−1)
. Furthermore, we can apply (C.4) to upper-bound P[Dk]. Noting

δ = γ
β ≤

M log(Pr)
Pr

, we conclude P[Dk] = O
�

log2(Pr)
Pr

�
. Accordingly, the probability

that all relays are on can be lower-bounded as

P {A = ∅} = 1 + O

�
log2(Pr)

Pr

�
(2.37)

From the cut-set bound Theorem, the point-to-point capacity of the broadcast

channel is an upper-bound for the ergodic capacity of the network. Let us assume

that for each channel realization H, the input covariance matrix Q�(H) maximizes

the broadcast channel rate, i.e. Q�(H) = argmax
Q,tr(Q)≤Ps

��IM + HHHQ
��. Revisiting

the inequality series of (2.36), we can lower-bound the achievable rate of ICBS as
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follows.

RICBS(Pr)
(a)

≥
1

2
EH

�
log

����IM +
Ps

M
H�HH�Q� (H)

����

�
−

M

2
log

�
1 +

β

Pr

�

(b)

≥ Cub −
1

2
EH

�
log

����IM +
Ps

M
HHHQ� (H)

����

����A �= ∅
�

P [A �= ∅]−

O

�
1

log(Pr)

�

(c)

≥ Cub −
M

2
log

�
1 +

Ps

M
EH

�
�H�2

��A �= ∅
��

P [A �= ∅]−

O

�
1

log(Pr)

�

(d)

≥ Cub −
M

2
log

�
1 +

PsNKPr

log2 (Pr)

�
log2 (Pr)

Pr
−O

�
1

log(Pr)

�

= Cub + O

�
1

log(Pr)

�
, (2.38)

where Cub � 1
2EH

�
log

��IM + Ps

M HHHQ� (H)
��� is the capacity upper-bound based

on the point-to-point capacity of the broadcast channel. Here, (a) follows from

(2.19). (b) follows from the fact that conditioned on A = ∅, we have H� = H. (c)

follows from the same argument as the one used in the proof of (2.14). Finally,

(d) results from the fact that EH

�
�H�2

��A �= ∅
�
≤

EH[�H�2]
P[A �=∅] = MNK

P[A �=∅] . (2.38)

completes the proof.

2.5 Simulation Results

Figure 2.3 shows the simulation results for the achievable rate of ICBS, BNOP

matched filtering scheme [19], and the upper-bound of the capacity based on the

uplink Cut-Set for varying number of relays. The number of transmitting and

receiving antennas is M = N = 2, and the SNR is Ps = Pr = 10dB. While both
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of the schemes demonstrate logarithmic scaling of rate in terms of K, we observe

that there is a significant gap between the BNOP scheme and the scheme proposed

here, reflecting the gap of O(1) in the achievable rate of [19]. On the other hand,

the gap between ICBS and the upper-bound approaches zero, as the number of

relays increases.
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Figure 2.3: Upper-bound of the capacity and achievable rate of ICBS and BNOP

matched filtering schemes vs. number of relays

2.6 Conclusion

A simple new scheme, Incremental Cooperative Beamforming Scheme (ICBS),

based on Amplify and Forward (AF) relaying strategy is introduced in the parallel
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MIMO relay network. ICBS is shown to achieve the capacity of parallel MIMO re-

lay network for K →∞. The scheme is shown to approach the upper-bound of the

capacity with a gap no more than O
�

log(K)
4√K

�
. As a result, it is shown that the ca-

pacity of a parallel MIMO relay network is C(K) = M
2 log

�
1 + KNP

M

�
+O

�
log(K)

4√K

�

in terms of the number of relays, K. Moreover, it is shown that as the number of

relays increases, the relays in ICBS can operate using much less power without any

performance degradation. Finally, two asymptotic SNR regimes are investigated:

i) In the regime where the source power is equal to the relays power and both

tend to infinity, ICBS is shown to achieve the full multiplexing gain, regardless of

the number of relays; and ii) In the regime where the source power is fixed but

the power of each relay tends to infinity, ICBS is shown to achieve the network

capacity with a gap which vanishes as O
�

1
log(Pr)

�
. The simulation results confirm

the validity of the theoretical arguments.
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Chapter 3

Diversity-Multiplexing Tradeoff in

Single-Antenna Multiple-Relay

Networks

3.1 Introduction

In this chapter, we consider the general multi-antenna multiple-relay networks.

The model which is introduced in this chapter is going to be used in the following

chapters, as well. We propose a new scheme, which we call random sequential

(RS), based on the SAF relaying for general multiple-antenna multi-hop networks.

The key elements of the proposed scheme are: 1) signal transmission through

sequential paths in the network, 2) path timing such that no non-causal interference

is caused from the transmitter of the future paths on the receiver of the current

path, 3) multiplication by a random unitary matrix at each relay node, and 4)

no signal boosting in amplify-and-forward relaying at the relay nodes, i.e. the
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received signal is amplified by a coefficient with the absolute value of at most

1. Furthermore, each relay node knows the CSI of its corresponding backward

channel, and the receiver knows the equivalent end-to-end channel. The reason

behind random unitary matrix multiplication at the relays can be described as

follows: Using the traditional AF relaying at multi-antenna relay nodes, there

exists a chance that the eigenvectors corresponding to the large eignenvalues of the

incoming channel matrix of the relay project to the eigenvectors corresponding to

the small eignenvalues of the relay’s outgoing channel matrix. This event degrades

the performance of traditional AF relaying in the MIMO setup. However, in the RS

scheme, utilizing the random unitary matrix multiplication at the relay nodes for

different time-slots, such an event is much more unlikely to happen. Consequently,

the RS scheme achieves better diversity gain and DMT compared to the traditional

AF relaying1.

In this chapter, we study DMT of the RS scheme in single-antenna wireless

relay networks. In the following 2 chapters, the maximum achievable diversity

gain and DMT of the RS scheme are investigated for multi-antenna wireless relay

networks. Here, we derive the DMT of the RS scheme for general single-antenna

multiple-relay networks. Specifically, we derive: 1) the exact DMT of the RS

scheme under the condition of “non-interfering relaying”, and 2) a lower-bound on

the DMT of the RS scheme (no conditions imposed). Finally, we prove that for

single-antenna multiple-access multiple-relay networks (with K > 1 relays) when

there is no direct link between the transmitters and the receiver and all the relays

1
This fact will be elaborated more in the following 2 chapters where we show that RS scheme

achieves the optimum diversity gain in any general multi-antenna wireless relay network and, it

also achieves the optimum DMT in a class of multi-antenna multiple-relay networks.
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are connected to the transmitter and to the receiver, the RS scheme achieves the

optimum DMT. However, for two-hop multiple-access single-relay networks, we

show that the proposed scheme is unable to achieve the optimum DMT, while the

DDF scheme is shown to perform optimally in this scenario.

The rest of the chapter is organized as follows. In section 3.2, the system model

is introduced. In section 3.3, the proposed random sequential scheme is described.

Section 3.4 is dedicated to the DMT analysis of the proposed RS scheme for the

single-antenna relay networks. Finally, section 3.5 concludes the chapter.

3.2 System Model

The setup throughout this chapter consists of K relays assisting the source and

the destination in the half-duplex mode, i.e. at a given time, the relays can either

transmit or receive. Each two nodes are assumed either i) to be connected by a

quasi-static flat Rayleigh-fading channel, i.e. the channel gains remain constant

during a block of transmission and change independently from block to block; or ii)

to be disconnected, i.e. there is no direct link between them. Hence, the undirected

graph G = (V, E) is used to show the connected pairs in the network2. The node

set is denoted by V = {0, 1, . . . , K + 1} where the i’th node is equipped with Ni

antennas. Nodes 0 and K + 1 correspond to the source and the destination nodes,

respectively3. The received and the transmitted vectors at the k’th node are shown

2
Notice that any where the underlying graph is directed, like in Remarks 3.4 and 3.13, the

assumption will be explicitly mentioned.

3
Throughout this chapter, it is assumed that the network consists of one source. However,

in Theorems 3.16 and 3.19, we study the case of two-hop multiple sources single destination

scenario.
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by yk and xk, respectively. Hence, at the destination side of the a’th node, we have

ya =
�

{a,b}∈E

Ha,bxb + na, (3.1)

where Ha,b shows the Na × Nb Rayleigh-distributed channel matrix between the

a’th and the b’th nodes and na ∼ N (0, INa
) is the additive white Gaussian noise.

We assume reciprocal channels between each pair. Hence, Ha,b = HT
b,a. However,

it can be easily verified that all the statements of this chapter are valid under

the non-reciprocity assumption. In the scenario of single-antenna networks, the

channel between nodes a and b is denoted by h{a,b} to emphasize both the SISO

and the reciprocity assumptions. As in [26] and [55], each relay is assumed to

know the state of its backward channel, and moreover, the destination knows

the equivalent end-to-end channel. Hence, unlike the CF scheme in [34], no CSI

feedback is needed. All nodes have the same power constraint, P . Finally, we

assume that the topology of the network is known by the nodes such that they can

perform a distributed AF strategy throughout the network.

Throughout this chapter, we make some further assumptions in order to prove

our statements. First, we consider the scenario in which nodes with a single an-

tenna are used4. Moreover, in Theorems 3.7, 3.9, 3.16, and 3.19, where we address

DMT optimality of the RS scheme, we assume that there is no direct link between

the source(s) and the destination. This assumption is reasonable when the source

and the destination are far from each other and the relay nodes establish the con-

nection between the end nodes. Moreover, we assume that all the relay nodes are

connected to the source and to the destination through quasi-static flat Rayleigh-

fading channels. Hence, the network graph is two-hop. Specifically, we denote the

4
The case of the nodes equipped with multi-antenna is investigated in the following 2 chapters.
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output vector at the source as x, the input vector and the output vector at the

k’th relay as rk and tk, respectively, and the input at the destination as y.

3.3 Proposed Random Sequential (RS) Amplify-

and-Forwarding Scheme

In the proposed RS scheme, a sequence P ≡ (p1, p2, . . . , pL) of L paths5 originating

from the source and culminating in the destination with the length (l1, l2, . . . , lL)

are involved in connecting the source to the destination sequentially (pi(0) =

0, pi(li) = K + 1). Note that any path p of G can be selected multiple times

in the sequence.

Furthermore, the entire block of transmission is divided into S slots, each con-

sisting of T � symbols. Hence, the entire block consists of T = ST � symbols. Let

us assume the source intends to send information to the destination at a rate of

r bits per symbol. To transmit a message w, the source selects the corresponding

codeword from a Gaussian random code-book consisting of 2ST �r elements each

with length LT �. Starting from the first slot, the source sequentially transmits the

i’th portion (1 ≤ i ≤ L) of the codeword through the sequence of relay nodes in pi.

More precisely, a timing sequence {si,j}
L,li
i=1,j=1 is associated with the path sequence.

The source sends the i’th portion of the codeword in the si,1’th slot. Following the

transmission of the i’th portion of the codeword by the source, in the si,j’th slot,

5
Throughout this chapter, a path p is defined as a sequence of the graph nodes

(v0, v1, v2, . . . , vl) such that for any i, {vi, vi+1} ∈ E, and for all i �= j, we have vi �= vj .

The length of the path is defined as the total number of edges on the path, l. Furthermore, p(i)

denotes the i’th node that p visits, i.e. p(i) = vi.
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1 ≤ j ≤ li, the node pi(j) receives the transmitted signal from the node pi(j − 1).

Assuming pi(j) is not the destination node, i.e. j < li, it multiplies the received

signal in the si,j’th slot by a Npi(j)×Npi(j) random, uniformly distributed unitary

matrix Ui,j which is known at the destination side, amplifies the signal by the

maximum possible coefficient αi,j considering the output power constraint P and

αi,j ≤ 1, and transmits the amplified signal in the si,j+1’th slot. Furthermore, the

timing sequence {si,j} should have the following properties

(1) for all i, j, we have 1 ≤ si,j ≤ S.

(2) for i < i�, we have si,1 < si�,1 (the ordering assumption on the paths)

(3) for j < j�, we have si,j < si,j� (the causality assumption)

(4) for all i < i� and si,j = si�,j� , we have {pi(j), pi�(j� − 1)} /∈ E (no noncausal

interference assumption). This assumption ensures that the signal of the

future paths causes no interference on the output signal of the current path.

This assumption can be realized by designing the timing of the paths such

that in each time slot, the current running paths are established through

disjoint hops.

At the destination side, having received the signal of all paths, the destination

decodes the transmitted message w based on the signal received in the time slots

{si,li}
L
i=1. As we observe in the sequel, the fourth assumption on {si,j} converts

the equivalent end-to-end channel matrix to lower-triangular in the case of single-

antenna nodes, or to block lower-triangular in the case of multiple-antenna nodes.

An example of a three-hop network consisting of K = 4 relays is shown in

Figure (3.1). It can easily be verified that there are exactly 12 paths in the graph

connecting the source to the destination. Now, consider the four paths p1 =

(0, 1, 3, 5), p2 = (0, 2, 4, 5), p3 = (0, 1, 4, 5) and p4 = (0, 2, 3, 5) connecting the
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Figure 3.1: An example of a 3-hop network where N0 = N5 = 2, N1 = N2 = N3 =

N4 = 1.

source to the destination. Assume the RS scheme is performed with the path

sequence P1 ≡ (p1, p2, p3, p4). Table 3.1 shows one possible valid timing sequence

associated with RS scheme with the path sequence P1. As seen, the first portion of

the source’s codeword is sent in the 1st time slot and is received by the destination

through the nodes of the path P1(1) ≡ (0, 1, 3, 5) as follows: In the 1st slot, the

source’s signal is received by node 1. Following that, in the 2nd slot, node 1 sends

the amplified signal to node 3, and finally, in the 3rd slot, the destination receives

the signal from node 3. As observed, for every 1 ≤ i ≤ 3, signal of the i’th path

interferes on the output signal of the i + 1’th path. However, no interference is

caused by the signal of future paths on the outputs of the current path. The timing

sequence corresponding to Table 3.1 can be expressed as si,j = i + � i
3�+ j − 1 and

it results in the total number of transmission slots to be equal to 7, i.e. S = 7.

As an another example, consider RS scheme with the path sequence P2 ≡

(p1, p2, p1, p2). Table 3.2 shows one possible valid timing-sequence for the RS

scheme with the path sequence P2. Here, we observe that the signal on every

path interferes on the output of the next two consecutive paths. However, like the
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scenario with P1, no interference is caused by the signal of future paths on the

output signal of the current path. The timing sequence corresponding to Table 3.2

can be expressed as si,j = i+j−1 and it results in the total number of transmission

slots equal to 6, i.e. S = 6.

It is worth noting that to achieve higher spectral efficiencies (corresponding to

larger multiplexing gains), it is desirable to have larger values for L
S . Indeed, L

S → 1

is the highest possible value. However, this can not be achieved in some graphs

(an example is the case of two-hop single relay scenario studied in the next section

where L
S = 0.5). On the other hand, to achieve higher reliability (corresponding to

larger diversity gains between the end nodes), it is desirable to utilize more paths

of the graph in the path sequence. It is not always possible to satisfy both of these

objectives simultaneously. As an example, consider the single-antenna two-hop

relay network where there is a direct link between the end nodes, i.e. G is the

complete graph. Here, all the nodes of the graph interfere with each other, and

consequently, in each time slot only one path can transmit signal. Hence, in order

to achieve L
S → 1, only the direct path (0, K + 1) should be utilized for almost all

the time.

As an another example, consider the 3-hop network in Figure (3.1). As we will

see in the following sections, the RS scheme corresponding to the path sequence

P1 achieves the maximum diversity gain of the network, d = 4. However, it

can easily be verified that no valid timing-sequence can achieve fewer number of

transmission slots than the one shown in Table 3.1. Hence, L
S = 4

7 is the best RS

scheme can achieve with P1. On the other hand, consider the RS scheme with

the path sequence P2. Although, as seen in the sequel, the scheme achieves the

diversity gain d = 2 which is below the maximum diversity gain of the network,
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it utilizes fewer number of slots compared to the case using the path sequence P1.

Indeed, it achieves L
S = 4

6 .

In the two-hop scenario investigated in the next section, we will see that for

asymptotically large values of L, it is possible to utilize all the paths needed to

achieve the maximum diversity gain and, at the same time, devise the timing

sequence such that L
S → 1. Consequently, it will be shown that in this setup, the

proposed RS scheme achieves the optimum DMT.

3.4 Diversity-Multiplexing Tradeoff

In this section, we analyze the performance of the RS scheme in terms of the DMT

for the single-antenna multiple-relay networks. First, in subsection 3.4.1, we study

the performance of the RS scheme for the case of non-interfering relays where there

exists neither causal nor noncausal interference between the signals sent through

different paths. In this case, as there exists no interference between different paths,

we can assume that the amplification coefficients take values greater than one, i.e.

the constraint αi,j ≤ 1 can be omitted. Under the condition of non-interfering

relays, we derive the exact DMT of the RS scheme. As a result, we show that the

RS scheme achieves the optimum DMT for the setup of non-interfering two-hop

multiple-relay (K > 1) single-source single-destination, where there exists no direct

link between the relay nodes and between the source and the destination (more

precisely, E = {{0, k} , {k,K + 1}}K
k=1). To prove this, we assume that the RS

scheme relies on L = BK paths, S = BK +1 slots, where B is an integer number,

and the path sequence is Q ≡ (q1, . . . , qK , q1, . . . , qK , . . . , q1, . . . , qK) where qk ≡

(0, k, K + 1). In other words, every path qk is used B times in the sequence.
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Here, each K consecutive slots are called a sub-block. Hence, the entire block of

transmission consists of B +1 sub-blocks. The timing sequence is defined as si,j =

i + j − 1. It is easy to verify that the timing sequence satisfies the requirements.

Here, we observe that the spectral efficiency is L
S = 1− 1

S which converges to 1 for

asymptotically large values of S. By deriving the exact DMT of the RS scheme,

we prove that the RS scheme achieves the optimum DMT for asymptotically large

values of S.

In subsection 3.4.2, we study the performance of the RS scheme for general

single-antenna multiple-relay networks. First, we study the performance of RS

scheme for the setup of two-hop single-source single-destination multiple-relay

(K > 1) networks where there exists no direct link between the source and the

destination; However, no additional restriction is imposed on the graph of the in-

terfering relay pairs. We apply the RS scheme with the same parameters used in

the case of two-hop non-interfering networks. We derive a lower-bound for DMT

of the RS scheme. Interestingly, it turns out that the derived lower-bound merges

with the upper-bound on the DMT for asymptotic values of B. Next, we gener-

alize our result and derive a lower-bound on DMT of the RS scheme for general

single-antenna multiple-relay networks.

Finally, in subsection 3.4.3, we generalize our results for the scenario of single-

antenna two-hop multiple-access multiple-relay (K > 1) networks where there

exists no direct link between the sources and the destination. Here, we apply the

RS scheme with the same parameters as used in the case of single-source single-

destination two-hop relay networks. However, it should be noted that here, instead

of sending data from the single source, all the sources send data coherently. By

deriving a lower-bound on the DMT of the RS scheme, we show that in this network
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the RS scheme achieves the optimum DMT. However, as studied in subsection

3.4.4, for the setup of single-antenna two-hop multiple-access single-relay networks

where there exists no direct link between the sources and the destination, the

proposed RS scheme reduces to naive amplify-and-forward relaying and is not

optimum in terms of the DMT. In this setup, we show that the DDF scheme

achieves the optimum DMT.

3.4.1 Non-Interfering Relays

In this subsection, we study the DMT behavior of the RS scheme in general single-

antenna multi-hop relay networks under the condition that there exists neither

causal nor noncausal interference between the signals transmitted over different

paths. More precisely, we assume the timing sequence is designed such that if

si,j = si�,j� , then we have {pi(j), pi�(j� − 1)} /∈ E. This assumption is stronger

than the fourth assumption on the timing sequence (here the condition i < i�

is omitted). We call this the “non-interfering relaying” condition. Under this

condition, as there exists no interference between signals over different paths, we

can assume that the amplification coefficients take values greater than one, i.e. the

constraint αi,j ≤ 1 can be omitted.

First, we need the following definition.

Definition 3.1 For a network with the connectivity graph G = (V, E), an edge

cut-set on G is defined as a subset S ⊆ V such that 0 ∈ S, K +1 ∈ Sc. The weight

of the edge cut-set corresponding to S, denoted by w(S), is defined as

wG(S) =
�

a∈S,b∈Sc,{a,b}∈E

NaNb. (3.2)
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Theorem 3.2 Consider a half-duplex single-antenna multiple-relay network with

the connectivity graph G = (V, E). Assuming “non-interfering relaying”, the RS

scheme with the path sequence (p1, p2, . . . , pL) achieves the diversity gain corre-

sponding to the following linear programming optimization problem

dRS,NI(r) = min
µ∈R̂

�

e∈E

µe, (3.3)

where µ is a vector defined on edges of G and R̂ is a region of µ defined as

R̂ ≡

�
µ

����� 0 ≤ µ ≤ 1,
L�

i=1

max
1≤j≤li

µ{pi(j),pi(j−1)} ≥ L− Sr

�
.

Furthermore, the DMT of the RS scheme can be upper-bounded as

dRS,NI(r) ≤ (1− r)+ min
S

wG(S), (3.4)

where S is an edge cut-set on G. Finally, by properly selecting the path sequence,

one can always achieve

dRS,NI(r) ≥ (1− lGr)+ min
S

wG(S), (3.5)

where S is an edge cut-set on G and lG is the maximum path length between the

source and the destination.

Proof See Appendix E.

Remark 3.3 In scenarios where the minimum edge cut-set on G is achieved by a

cut-set of the MISO or SIMO form, i.e., the edges that cross the cut-set are either

originated from or destined to the same vertex, the upper-bound on the diversity

gain of the RS scheme derived in (3.4) meets the information-theoretic upper-bound

on the diversity gain of the network. Hence, in this scenario, any RS scheme that

achieves (3.4) indeed achieves the optimum DMT.
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Remark 3.4 In general, the upper-bound (3.4) can be achieved for various certain

graph topologies by wisely designing the path sequence and the timing sequence.

One example is the case of the layered network [6] in which all the paths from the

source to the destination have the same length lG. Let us assume that the relays are

allowed to operate in the full-duplex manner. In this case, it easily can be observed

that the timing sequence corresponding to the path sequence (p1, p2, . . . , pL) used

in the proof of (3.5) can be modified to si,j = i + j − 1. Accordingly, the number

of slots is decreased to S = L + lG − 1. Rewriting (E.10), we have dRS,NI(r) =
�
1− r − lG−1

L r
�+

minS wG(S) which achieves (1− r)+ minS wG(S) for large values

of L.

Example 3.5 Consider the half-duplex 3 hops network in Figure 3.1. Let us as-

sume all the nodes are having single-antenna, i.e. Ni = 1. Here, the minimum

edge cut-set is achieved by the MISO and SIMO cuts disconnecting the source or

the destination from the other nodes. As a result, 2(1− r)+ is an upper-bound for

DMT of the network. However, the RS schemes with the timing-sequence depicted

in Tables 3.1 and 3.2 are interfering. Hence, the argument of Theorem 3.2 can

not be applied to analyze their achievable DMT. Yet, Theorem 3.2 can be applied.

Indeed, as lG = 5, from (3.5), there exists a non-interfering RS scheme with DMT

greater than or equal to 2(1 − r
5)

+. Moreover, as the maximum-flow of the graph

can be obtained by the union of two disjoint paths (0, 1, 3, 5) and (0, 2, 4, 5) each

with length 3, the lower-bound on the DMT of non-interfering RS scheme can be

improved to 2(1− r
3)

+.

Example 3.6 Consider the directed half-duplex 3 hops network in Figure 3.2.

Here, similar to Example 3.5, the minimum edge cut-set is achieved by the MISO
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Figure 3.2: An example of a directed 3 hops network where ∀i : Ni = 1.

and SIMO cuts disconnecting the source or the destination from the other nodes.

As a result, 2(1− r)+ is an upper-bound for DMT of the network. It can be easily

verified that, unlike for the graph of Figure 3.1, the RS schemes with the timing-

sequence depicted in Tables 3.1 and 3.2 are non-interfering. Applying Theorem

3.2, DMT of the RS schemes with the timing-sequence in Tables 3.1 and 3.2 are

2(1− 7
4r)

+ and 2(1− 3
2r)

+, correspondingly. Moreover, the RS scheme with the tim-

ing sequence in Table 3.2 can be extended to M repetitions of p1, p2 as follows. The

path sequence consists of L = 2M paths (p1, p2, . . . , p1, p2) and the timing-sequence

is equal to si,j = i + j − 1. As the RS scheme still remains non-interfering, the

argument of Theorem 3.2 can be applied to analyze its achievable DMT. Accord-

ingly, DMT of the above RS scheme equals 2(1− M+1
M r)+. As a result, as M goes

to infinity, the RS scheme achieves the optimum DMT, 2(1− r)+.

Next, using Theorem 3.2, we show that the RS scheme achieves the optimum

DMT in the setup of single-antenna two-hop multiple-relay networks where there

exists no direct link neither between the source and the destination, nor between

the relay nodes.

Theorem 3.7 Assume a single-antenna half-duplex parallel relay scenario with K
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non-interfering relays. The proposed RS scheme with L = BK, S = BK + 1, the

path sequence

Q ≡ (q1, . . . , qK , q1, . . . , qK , . . . , q1, . . . , qK)

where qk ≡ (0, k, K + 1) and the timing sequence si,j = i + j − 1 achieves the

diversity gain

dRS,NI(r) = max
�

0, K (1− r)−
r

B

�
, (3.6)

which achieves the optimum DMT curve dopt(r) = K(1− r)+ as B →∞.

Proof See Appendix F.

Remark 3.8 Note that as long as the complement6 of the induced sub-graph of

G on the relay nodes {1, 2, . . . , K} includes a Hamiltonian cycle 7, the result of

Theorem 3.7 remains valid. However, the paths q1, q2, . . . , qK should be permuted

in the path sequence according to their orderings in the corresponding Hamiltonian

cycle.

According to (3.6), we observe that the RS scheme achieves the maximum

multiplexing gain 1 − 1
BK+1 and the maximum diversity gain K, respectively, for

the setup of non-interfering relays. Hence, it achieves the maximum diversity gain

for any finite value of B. Also, knowing that no signal is sent to the destination

in the first slot, the RS scheme achieves the maximum possible multiplexing gain.

Figure (3.3) shows the DMT of the scheme for the case of non-interfering relays

and various values of K and B.
6
For every undirected graph G = (V,E), the complement of G is a graph H on the same

vertices such that two vertices of H are adjacent if and only if they are non-adjacent in G. [14]

7
A Hamiltonian cycle is a simple cycle (v1, v2, · · · , vK , v1) that goes exactly one time through

each vertex of the graph [14].
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Figure 3.3: DMT of RS scheme in parallel relay network for both “interfering” and

“non-interfering” relaying scenarios and for different values of K, B.

3.4.2 General Case

In this subsection, we study the performance of the RS scheme in general single-

antenna multi-hop wireless networks and derive a lower bound on the corresponding

DMT. First, we show that the RS scheme with the parameters defined in Theorem

3.7 achieves the optimum DMT for the single-antenna parallel-relay networks when

there is no direct link between the source and the destination. Then, we generalize

the statement and provide a lower-bound on the DMT of the RS scheme for the

more general case.

As stated in the section “System Model”, throughout the two-hop network

analysis, we slightly modify our notations to simplify the derivations. Specifically,
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the output vector at the source, the input and the output vectors at the k’th relay,

and the input vector at the destination are denoted as x, rk, tk and y, respectively.

hk and gk represent the channel gain between the source and the k’th relay and

the channel gain between the k’th relay and the destination, respectively. (k) and

(b) are defined as (k) ≡ ((k − 2) mod K)+1 and (b) ≡ b−� (k)
K �. Finally, i(k), nk,

z, and αk denote the channel gain between the k’th and the (k)’th relay nodes,

the noise at the k’th relay and at the destination, and the amplification coefficient

at the k’th relay.

Figure (3.4) shows a realization of this setup with 4 relays. As observed, the

relay set {1, 2} is disconnected from the relay set {3, 4}. In general, the output

signal of any relay node k� such that {k, k�} ∈ E can interfere on the received signal

of relay node k. However, in Theorem 3.9, the RS scheme is applied with the same

parameters as in Theorem 3.7. Hence, when the source is sending signal to the

k’th relay in a time-slot, just the (k)’th relay is simultaneously transmitting and

interferes at the k’th relay side. As an example, for the scenario shown in Figure

(3.4), we have

r1 = h1x + i4t4 + n1,

r2 = h2x + n2.

However, for the sake of simplicity, in the proof of the following Theorem, we

assume that all the relays interfere with each other. Hence, at the k’th relay, we

have

rk = hkx + i(k)t(k) + nk. (3.7)

According to the output power constraint, the amplification coefficient is bounded

as αk ≤

�
P

P
“
|hk|2+|i(k)|

2
”
+1

. However, according to the signal boosting constraint
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Figure 3.4: An example of the half-duplex parallel relay network setup, relay nodes

{1, 2} are disconnected from relay nodes {3, 4}.

imposed on the RS scheme, we have |αk| ≤ 1. Hence, the amplification coefficient

is equal to

αk = min





1,

����
P

P
�
|hk|

2 +
��i(k)

��2
�

+ 1





. (3.8)

In this manner, it is guaranteed that the noise terms of the different relays are

not boosted throughout the network. This is achieved at the cost of working

with the output power less than P . On the other hand, we know that almost

surely 8 |hk|
2 ,

��i(k)

��2 ≤̇1. Hence, almost surely, we have αk
.
= 1. This point will

be elaborated further in the proof of the Theorem. Now, we prove the DMT

optimality of the RS scheme for general single-antenna parallel-relay networks.

Theorem 3.9 Consider a single-antenna half-duplex parallel relay network with

K > 1 interfering relays where there is no direct link between the source and the

8
By almost surely, we mean its probability is greater than 1− P

−δ
, for any value of δ > 0.
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destination. The diversity gain of the RS scheme with the parameters defined in

Theorem 3.7 is lower-bounded as

dRS,I(r) ≥ max
�

0, K (1− r)−
r

B

�
. (3.9)

Furthermore, the RS scheme achieves the optimum DMT dopt(r) = K(1 − r)+ as

B →∞.

Proof See Appendix G.

Remark 3.10 The argument in Theorem 3.9 is valid no matter what the induced

graph of G on the relay nodes is. More precisely, the DMT of the RS scheme can

be lower-bounded as (3.9) as long as {0, K + 1} /∈ E and {0, k} , {K + 1, k} ∈ E.

One special case is that the complement of the induced subgraph of G on the relay

nodes includes a Hamiltonian cycle which is analyzed in Theorem 3.7. Here, we

observe that the lower-bound on DMT derived in (3.9) is tight as shown in Theorem

3.7.

Figure (3.3) shows the DMT of the RS scheme for varying number of K and B.

Noting the proof of Theorem 3.9, we can easily generalize the result of Theorem

3.9 and provide a lower-bound on the DMT of the RS scheme for general single-

antenna multi-hop multiple-relay networks.

Theorem 3.11 Consider a half-duplex single-antenna multiple-relay network with

the connectivity graph G = (V, E) operated under the RS scheme with L paths, S

slots, and the path sequence (p1, p2, . . . , pL). Defining βe for each e ∈ E as the

number of paths in the path sequence that go through e, then the DMT of the RS
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scheme is lower-bounded as

dRS(r) ≥
L

max
e∈E

βe

�
1−

S

L
r

�+

. (3.10)

Proof First, similar to the proof of Theorem 3.9, we show that the entire channel

matrix is lower triangular. At the destination side, we have

yK+1,i =
li�

j=1

h{pi(j),pi(j−1)}αi,jx0,i +
�

j<i

fi,jx0,j +
�

j≤i,m≤lj

qi,j,mnj,m. (3.11)

Here, x0,i is the vector transmitted at the source side during the si,1’th slot as the

input for the i’th path, yK+1,i is the vector received at the destination side during

the si,li ’th slot as the output for i’th path, fi,j is the interference coefficient which

relates the input of the j’th path (j < i) to the output of the i’th path, nj,m is

the noise vector during the sj,m’th slot at the pj(m)’th node, and finally, qi,k,m

is the coefficient which relates nk,m to yK+1,i. Note that as the timing sequence

satisfies the noncausal interference assumption, the summation terms in (3.11) do

not exceed i. Moreover, for the sake of brevity, we define αi,li = 1. Defining

x(s) = [x0,1 (s) x0,2 (s) · · ·x0,L (s)]T , y(s) = [yK+1,1 (s) yK+1,2 (s) · · · yK+1,L (s)]T ,

and n(s) = [n1,1 (s) n1,2 (s) · · ·nL,lL (s)]T , we have the following equivalent lower-

triangular matrix between the end nodes:

y(s) = HTx(s) + Qn(s). (3.12)

Here,

HT =





f1,1 0 0 . . .

f2,1 f2,2 0 . . .
...

...
...

. . .

fL,1 fL,2 . . . fL,L




, (3.13)
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where fi,i =
li�

j=1

h{pi(j),pi(j−1)}αi,j, and

Q =





q1,1,1 . . . q1,1,l1 0 0 0 . . .

q2,1,1 . . . q2,1,l1 . . . q2,2,l2 0 . . .
...

...
...

...
...

...
. . .

qL,1,1 qL,1,2 . . . . . . . . . qL,L,lL−1 qL,L,lL




. (3.14)

Let us define µe for every e ∈ E such that |he|
2 = P−µe . First, we observe

that similar to the proof of Theorem 3.9, it can be shown that i) αi,j
.
= 1 with

probability 19, ii) we can restrict ourselves to the region R+, i.e., the region µ > 0.

These two facts imply that |qi,j,m|≤̇1. This means there exists a constant c which

depends just on the topology of the graph G and the path sequence such that

Pn � QQH � cIL (by a similar argument as in the proof of Theorem 3.9). Hence,

similar to the arguments in the equation series (G.5), the outage probability can

be bounded as

P {E} = P
���IL + PHTHH

T P−1
n

�� ≤ P Sr
�

≤̇ P
�
|HT |

��HH
T

�� ≤ P Sr−L
�

= P
�

�

e∈E

βeµe ≥ L− Sr

�

.
= P

�
µ ≥ 0,

�

e∈E

βeµe ≥ (L− Sr)+

�
, (3.15)

where βe is the number of paths in the path sequence that pass through e. Knowing

that P {µ ≥ µ0}
.
= P−1·µ and computing the derivative, we have fµ(µ) = P−1·µ.

Defining R =
�
µ > 0,

�
e∈E βeµe ≥ (L− Sr)+

�
and applying the results of equa-

9
More precisely, with probability greater than 1− P

−δ
, for any δ > 0.

58



tion series (G.6), we obtain

P {E} ≤̇ P
−min

µ∈R
1 · µ (a)

= P
−

L

maxe∈E βe

�
1−

S

L
r

�+

, (3.16)

where (a) follows from the fact that for every µ ∈ R, (L− Sr)+
≤

�
e∈E βeµe ≤

maxe∈E βe

�
e∈E µe which implies that

�
e∈E µe = 1 · µ ≥

(L−Sr)+

maxe∈E βe

, and on the

other hand, defining µ� such that µ�(ê) = (L−Sr)+

βê

where ê = argmax
e∈E

βe and

otherwise µ�(e) = 0, we have µ� ∈ R and 1 · µ� = L
maxe∈E βe

�
1− S

Lr
�+

. (3.16)

completes the proof of Theorem 3.11.

Remark 3.12 The lower-bound of (3.5) can also be proved by using the lower-

bound of (3.10) obtained for DMT of the general RS scheme. In order to prove

this, one needs to apply the RS scheme with the same path sequence and timing

sequence used in the proof of (3.5) in Theorem 3.2. Putting S = L0dG and S ≤ lGL

in (3.10) and noting that for all e ∈ E, we have βe ∈ {0, L0}, (3.5) is easily

obtained.

Remark 3.13 It should be noted that (3.4) is still an upper-bound for the DMT

of the RS scheme, i.e., even for the case of interfering relays. This is due to the

fact that in the proof of (3.4) the non-interfering relaying assumption is not used.

However, by employing the RS scheme with causal-interfering relaying and applying

(3.10), one can find a bigger family of graph topologies that can achieve (3.4). Such

an example is the two-hop relay network studied in Theorem 3.9. Another example

is the case that G is a directed acyclic graph (DAG)10 and the relays are operating in

the full-duplex mode. Here, the argument is similar to that of Remark 3.4. Assume

10
A directed acyclic graph G is a directed graph that has no directed cycles.
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that each p̂i is used L0 times in the path sequence in the form that p(i−1)L0+j �

p̂i, 1 ≤ j ≤ L0. Let us modify the timing sequence as si,j = i + j − 1 +

� i

L0
�−1�

k=1

l̂k

which results in S = L +
�dG

i=1 li. Here, it is easy to verify that only non-causal

interference exists between the signals corresponding to different paths. However,

by considering the paths in the reverse order or equivalently reversing the time

axis, the paths can be observed with the causal interference. Hence, the result of

Theorem 3.11 is still valid for such paths. Here, knowing that for all e ∈ E, we

have βe ∈ {0, L0} and applying (3.10), we have dRS(r) ≥ dG

�
1− r −

PdG

i=1 li
L0dG

�+

which achieves (3.4) for asymptotically large values of L0.

Remark 3.14 In this remark, we address the problem of designing a proper tim-

ing sequence for the RS scheme. Let us consider the RS scheme with a fixed

path sequence. From Theorem 3.11, we observe that the objective is to maximize

L
max e∈Eβe

�
1− S

L

�+
. As the path sequence is fixed, we conclude that βe is deter-

mined for every edge of the graph. As a result, the objective is to determine a

proper timing-sequence, i.e. satisfying the ordering, causality, and no noncausal

interference assumptions, such that the objective function S
L is minimized. In other

words, the number of used time-slots, S, should be minimized. It turns out that

this optimization problem can be solved by applying Dynamic Programming with a

polynomial time complexity in terms of V and L.

Example 3.15 Consider the half-duplex 3 hops network of Figure 3.1 assuming

all nodes having single-antenna, i.e., ∀i : Ni = 1. According to the argument of

Theorem 3.11, the RS schemes with the path sequences P1 and P2 and the timing

sequences depicted in Tables 3.1 and 3.2 achieve DMT at least greater than or

equal to 2(1 − 7
4r)

+ and 2(1 − 3
2r)

+, respectively. This is due to the fact that for
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both RS schemes, we have maxe∈E βe = β{3,5} = 2. Similar to the argument of

Example 3.6, the RS scheme with the path sequence P2 and the timing sequence of

Table 3.2 can be extended to M repetitions of p1, p2. Accordingly, the RS scheme

achieves the optimum DMT of the network in Figure 3.1 which is 2(1−r)+. Notice

that assuming non-interfering relaying, Example 3.5 could only show that the RS

scheme achieves 2(1− r
3)

+.

3.4.3 Multiple-Access Parallel Relays Scenario

In this subsection, we generalize the result of Theorem 3.9 to the multiple-access

scenario aided by multiple relay nodes. Here, similar to Theorem 3.9, we as-

sume that there is no direct link between each source and the destination. How-

ever, no restriction is imposed on the induced subgraph of G on the relay nodes.

Assuming having M disjoint source nodes, we show that for the rate sequence

r1 log(P ), r2 log(P ), . . . , rM log(P ), in the asymptotic case of B → ∞ (B is the

number of sub-blocks), the RS scheme achieves DMT of dRS,MAC(r1, r2, . . . , rM) =

K
�
1−

�M
m=1 rm

�+
, which is shown to be optimum due to the cut-set bound on

the cut-set between the relays and the destination. Here, the notations are slightly

modified compared to the ones used in Theorem 3.9 to emphasize the fact that

multiple signals are transmitted from multiple sources. Throughout this subsection

and the next one, xm and hm,k denote the transmitted vector at the m’th source

and the Rayleigh channel coefficient between the m’th source and the k’th relay,

respectively. Hence, at the received side of the k’th relay, we have

rk =
M�

m=1

hm,kxm + i(k)t(k) + nk, (3.17)
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where xm is the transmitted vector of the m’th sender. The amplification coefficient

at the k’th relay is set to

αk = min





1,

����
P

P
��M

m=1 |hm,k|
2 +

��i(k)

��2
�

+ 1





. (3.18)

Here, the RS scheme is applied with the same path sequence and timing sequence

as in the case of Theorem 3.7 and 3.9. However, it should be mentioned that in the

current case, during the slots that the source is supposed to transmit the signal,

i.e. in the si,1’th slot, all the sources send their signals coherently. Moreover, at

the destination side, after receiving the BK vectors corresponding to the outputs

of the BK paths, the destination node decodes the messages ω1, ω2, . . . ,ωK by

joint-typical decoding of the received vectors in the corresponding BK slots and

the transmitted signal of all the sources, i.e., in the same way that joint-typical

decoding works in the multiple access setup [12]. Now, we prove the main result

of this subsection.

Theorem 3.16 Consider a multiple-access channel consisting of M transmitting

nodes aided by K > 1 half-duplex relays. Assume there is no direct link between

the sources and the destination. The RS scheme with the path sequence and timing

sequence defined in Theorems 3.7 and 3.9 achieves a diversity gain of

dRS,MAC(r1, r2, . . . , rM) ≥

�
K

�
1−

M�

m=1

rm

�
−

�M
m=1 rm

B

�+

, (3.19)

where r1, r2, . . . , rM are the multiplexing gains corresponding to users 1, 2, . . . ,M .

Moreover, as B →∞, it achieves the optimum DMT which is dopt,MAC(r1, r2, . . . , rM) =

K
�
1−

�M
m=1 rm

�+
.
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Proof At the destination side, we have

yb,k = g(k)tb,k + zb,k

= g(k)α(k)




�

1≤b1≤b,1≤k1≤K
b1K+k1<bK+k

pb−b1,k,k1

�
M�

m=1

hm,k1xm,b1,k1 + nb1,k1

�

 + zb,k,

(3.20)

where pb,k,k1 is defined in the proof of Theorem 3.9 and xm,b,k represents the trans-

mitted signal of the m’th sender in the k’th slot of the b’th sub-block. Similar to

(G.3), we have

y (s) = GΩF

�
M�

m=1

Hmxm (s) + n (s)

�
+ z (s) , (3.21)

where ys,ns, zs,G,Ω,F are defined in the proof of Theorem 3.9, Hm = IB ⊗

diag {hm,1, hm,2, · · · , hm,K} and xm (s) = [xm,1,1(s), xm,1,2(s), · · · , xm,B,K(s)]T . Sim-

ilarly, we observe that the entire channel from each of the sources to the destination

acts as a MIMO channel with a lower triangular matrix of size BK ×BK.

Here, the outage event occurs whenever there exists a subset S ⊆ {1, 2, . . . ,M}

of the sources such that

I (xS(s);y(s)|xSc(s)) ≤ (BK + 1)

�
�

m∈S

rm

�
log(P ). (3.22)

This event is equivalent to

log
��IBK + PHTHH

T P−1
n

�� ≤ (BK + 1)

�
�

m∈S

rm

�
log (P ) . (3.23)

where Pn is defined in the proof of Theorem 3.9, HT = GΩFHS , and

HS = IB ⊗ diag






��

m∈S

|hm,1|
2,

��

m∈S

|hm,2|
2, · · · ,

��

m∈S

|hm,K |
2




 . (3.24)
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Defining such an event as ES and the outage event as E , we have

P {E} = P





�

S⊆{1,2,...,M}

ES






≤

�

S⊆{1,2,...,M}

P {ES}

≤ (2M
− 1) max

S⊆{1,2,...,M}
P {ES}

.
= max

S⊆{1,2,...,M}
P {ES}. (3.25)

Hence, it is sufficient to upper-bound P {ES} for all S.

Defining ĤS = IB ⊗ diag {maxm∈S |hm,1| , maxm∈S |hm,2| , · · · , maxm∈S |hm,K |},

we have ĤSĤH
S � HSHH

S . Therefore,

P {ES} ≤ P
�

log
���IBK + PGΩFĤSĤ

H
S FHΩHGHP−1

n

��� ≤

(BK + 1)

�
�

m∈S

rm

�
log (P )

�

� P
�
ÊS

�
. (3.26)

Assume maxm∈S |hm,k|
2 = P−µk , and |gk|

2 = P−νk , |ik|2 = P−ωk , and R as the

region in R3K that defines the outage event ÊS in terms of the vector [µT , νT , ωT ]T .

Similar to the proof of Theorem 3.9, we have P {R} .
= P {R+} where R+ =

R
�

R3K
+ . Rewriting the equation series of (G.5), we have

P
�
ÊS

�
≤̇ P

�
−BK

log [3 (B2K2 + 1)]

log(P )
+ BK

�
1−

�

m∈S

rm

�
−

�

m∈S

rm ≤

B
K�

k=1

(µk + νk), µk, νk, ωk ≥ 0

�
. (3.27)

On the other hand, as {hm,k}’s are independent random variables, we conclude

that for µ0, ν0 ≥ 0, we have P {µ ≥ µ0, ν ≥ ν0}
.
= P−1·(|S|µ0+ν0). Similar to
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the proof of Theorem 3.9, by computing the derivative with respect to µ, ν, we

have fµ,ν(µ, ν)
.
= P−1·(|S|µ+ν). Defining l0 � −

log[3(B2K2+1)]
log(P ) +

�
1−

�
m∈S rm

�
−

P
m∈S rm

BK , the region R̂ as R̂ �
�
µ, ν ≥ 0, 1

K1 · (µ + ν) ≥ l0
�
, the cube I as I �

[0, Kl0]
2K , and for 1 ≤ i ≤ 2K, Ic

i = [0,∞)i−1 × [Kl0,∞)× [0,∞)2K−i, we have

P
�
ÊS

� (a)

≤̇ P{R̂}

≤

�

R̂
T
I
fµ,ν (µ, ν) dµdν +

2K�

i=1

P
�

[µT , νT ]T ∈ R̂ ∩ I
c
i

�

≤̇ vol(R̂ ∩ I)P
− min

[µ,ν]∈R̂
T
I
1 · (|S|µ + ν)

+ 2KP−Kl0

(b).
= P−Kl0

.
= P

−
h
K(1−

P
m∈S rm)−

P
m∈S rm

B

i

. (3.28)

Here, (a) follows from (3.27) and (b) follows from the fact that R̂
�
I is a bounded

region whose volume is independent of P and the fact that min
[µ,ν]∈R̂

T
I
1·(|S|µ + ν) =

Kl0, which is achieved by having µ = 0. Comparing (3.25), (3.26) and (3.28), we

observe

P {E} ≤̇ max
S⊆{1,2,...,M}

P {ES}≤̇ max
S⊆{1,2,...,M}

P
�
ÊS

�
≤̇P

−
»
K(1−

P
M

m=1 rm)−
PM

m=1 rm

B

–

.

(3.29)

Next, we prove that K
�
1−

�M
m=1 rm

�+
is an upper-bound on the diversity gain

of the system corresponding to the sequence of rates r1, r2, . . . , rM . We have

P {E} ≥ P
�

max
p(t1,t2,...,tK)

I (t1, t2, . . . , tK ;y) ≤

�
M�

m=1

rm

�
log(P )

�
(a).
= P−K(1−

P
M

m=1 rm)
+

.

(3.30)

Here, (a) follows from the DMT of the point-to-point MISO channel proved in [29].

This completes the proof.
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Remark 3.17 The argument of Theorem 3.16 is valid for the general case in which

any arbitrary set of relay pairs are non-interfering.

Remark 3.18 In the symmetric situation for which the multiplexing gains of all

the users are equal to say r, the lower-bound in (3.19) takes a simple form. First,

we observe that the maximum multiplexing gain which is simultaneously achievable

by all the users is 1
M ·

BK
BK+1 . Noting that no signal is sent to the destination in

1
BK+1 portion of the time, we observe that the RS scheme achieves the maximum

possible symmetric multiplexing gain for all the users. Moreover, from (3.19), we

observe that the RS scheme achieves the maximum diversity gain of K for any

finite value of B, which turns out to be tight as well. Finally, the lower-bound on

the DMT of the RS scheme is simplified to
�
K (1−Mr)− Mr

B

�+
for the symmetric

situation.

3.4.4 Multiple-Access Single Relay Scenario

As we observe, the arguments of Theorems 3.7, 3.9 and 3.16 concerning DMT

optimality of the RS scheme are valid for the scenario of having multiple relays

(K > 1). Indeed, for the single relay scenario, the RS scheme is reduced to the

simple amplify-and-forward relaying in which the relay listens to the source in the

first half of the frame and transmits the amplified version of the received signal

in the second half. However, like the case of non-interfering relays studied in [55],

the DMT optimality arguments are no longer valid. On the other hand, we show

that the DDF scheme achieves the optimum DMT for this scenario.

Theorem 3.19 Consider a multiple-access channel consisting of M transmitting

nodes aided by a single half-duplex relay. Assume that all the network nodes are
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equipped with a single antenna and there is no direct link between the sources and

the destination. The amplify-and-forward scheme achieves the following DMT

dAF,MAC(r1, r2, . . . , rM) =

�
1− 2

M�

m=1

rm

�+

. (3.31)

However, the optimum DMT of the network is

dMAC(r1, r2, . . . , rM) =

�
1− 2

�M
m=1 rm

1−
�M

m=1 rm

�+

, (3.32)

which is achievable by the DDF scheme of [26].

Proof First, we show that the DMT of the AF scheme follows (3.31). At the

destination side, we have

y = gα

�
M�

m=1

hmxm + n

�
+ z, (3.33)

where hm is the channel gain between the m’th source and the relay, g is the

down-link channel gain, and α =
�

P
P

P
M

m=1 |hm|2+1
is the amplification coefficient.

Defining the outage event ES for a set S ⊆ {1, 2, . . . ,M}, similar to the case of
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Theorem 3.16, we have

P {ES} = P
�

I (xS ;y|xSc) < 2

�
�

m∈S

rm

�
log(P )

�

= P
�

log

�
1 + P

�
�

m∈S

|hm|
2

�
|g|2 |α|2

�
1 + |g|2 |α|2

�−1

�
<

2

�
�

m∈S

rm

�
log(P )

�

.
= P

��
�

m∈S

|hm|
2

�
|g|2|α|2 min

�
1,

1

|g|2|α|2

�
≤ P−(1−2

P
m∈S rm)

�

(a).
= P

�
�

m∈S

|hm|
2
≤ P−(1−2

P
m∈S rm)

�
+

P
��

�

m∈S

|hm|
2

�
|g|2|α|2 ≤ P−(1−2

P
m∈S rm)

�

(b).
= P

�
�

m∈S

|hm|
2
≤ P−(1−2

P
m∈S rm)

�
+

P
�
|g|2

�
�

m∈S

|hm|
2

�
min

�
P,

1
�M

m=1 |hm|
2

�
≤ P−(1−2

P
m∈S rm)

�

(a).
= P

�
�

m∈S

|hm|
2
≤ P−(1−2

P
m∈S rm)

�
+

P
�
|g|2

�
�

m∈S

|hm|
2

�
≤ P−2(1−

P
m∈S rm)

�
+

P
�
|g|2

�
m∈S |hm|

2

�M
m=1 |hm|

2 ≤ P−(1−2
P

m∈S rm)

�
. (3.34)

In the above equation, P{min(X, Y ) ≤ z} = P {(X ≤ z)
�

(Y ≤ z)}
.
= P{X ≤ z}+

P{Y ≤ z} results in (a). (b) follows from the fact that |α|2 can be asymptotically

written as min
�

P, 1P
M

m=1 |hm|2

�
.
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Since {|hm|
2}M

m=1 are i.i.d. random variables with exponential distribution, it

follows that
�

m∈S |hm|
2 has Chi-square distribution with 2|S| degrees of freedom,

which implies that

P
�

�

m∈S

|hm|
2
≤ P−(1−2

P
m∈S rm)

�
.
= P−|S|(1−2

P
m∈S rm). (3.35)

To compute the second term in (3.34), defining �1 � P−2(1−
P

m∈S rm), we have

P
�
|g|2

�
�

m∈S

|hm|
2

�
≤ �1

�
(a)

≥̇ P
�
|g|2 ≤ �1

�

.
= �1, (3.36)

where (a) follows from the fact that as
�

m∈S |hm|
2 has Chi-square distribution,

we have
�

m∈S |hm|
2
≤̇1 with probability one (more precisely, with a probability

greater than 1− P−δ for every δ > 0). On the other hand, we have

P
�
|g|2

�
�

m∈S

|hm|
2

�
≤ �1

�
≤ P

�
|g|2 |hm|

2
≤ �1

�

.
= �1. (3.37)

Putting (3.36) and (3.37) together, we have

P
�
|g|2

�
�

m∈S

|hm|
2

�
≤ �1

�
.
= �1. (3.38)

Now, to compute the third term in (3.34), defining �2 � P−(1−2
P

m∈S rm), we

observe

�2
.
= P

�
|g|2 ≤ �2

�
≤ P

�
|g|2

�
m∈S |hm|

2

�M
m=1 |hm|

2 ≤ �2

�
(a)

≤̇ P
�
|g|2

�
�

m∈S

|hm|
2

�
≤ �2

�
(b).
= �2.

Here, (a) follows from the fact that with probability one, we have
�M

m=1 |hm|
2
≤̇1

and (b) follows from (3.38). As a result

P
�
|g|2

�
m∈S |hm|

2

�M
m=1 |hm|

2 ≤ �2

�
.
= �2 (3.39)
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From (3.35), (3.38), and (3.39), we have

P {ES}
.
= P−|S|(1−2

P
m∈S rm)

+

+ P−2(1−
P

m∈S rm)
+

+ P−(1−2
P

m∈S rm)
+

.
= P−(1−2

P
m∈S rm)

+

. (3.40)

Observing (3.40) and applying the argument of (3.25), we have

P {E} .
= max

S⊆{1,2,...,M}
P {ES}

.
= P−(1−2

P
M

m=1 rm)
+

. (3.41)

This completes the proof for the AF scheme. Now, to compute the DMT of the

DDF scheme, let us assume that the relay listens to the transmitted signal for the

l portion of the time until it can decode it perfectly. Hence, we have

l = min

�
1, max

S⊆{1,2,...,M}

��
m∈S rm

�
log(P )

log
�
1 +

��
m∈S |hm|

2� P
�
�

. (3.42)

The outage event occurs whenever the relay can not transmit the re-encoded in-

formation in the remaining portion of the time. Hence, we have

P {E} .
= P

�
(1− l) log

�
1 + |g|2 P

�
<

�
M�

m=1

rm

�
log(P )

�
. (3.43)

Assuming |hm|
2 = P−µm and |g|2 = P−ν , at high SNR, we have

l ≈ min

�
1, max

S⊆{1,2,...,M}

�
m∈S rm

1−minm∈S µm

�
. (3.44)

Equivalently, an outage event occurs whenever
�

1− max
S⊆{1,2,...,M}

�
m∈S rm

1−minm∈S µm

�
(1− ν) <

M�

m=1

rm. (3.45)

In order to find the probability of the outage event, we first find an upper-bound

on the outage probability and then, we show that this upper-bound is indeed tight.

Defining R =
�M

m=1 rM and µ =
�M

m=1 µm, we have

R
(a)
>

�
1−

�
m∈S0

rm

1−minm∈S0 µm

�
(1− ν) >

�
1−

R

1− µ

�
(1− ν) . (3.46)
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Here, (a) follows from (3.45). Equivalently,

R
(a)
>

(1− µ)(1− ν)

(1− µ) + (1− ν)
>

1− µ− ν

(1− µ) + (1− ν)
, (3.47)

where (a) follows from (3.46). It can be easily checked that (3.47) is equivalent to

R > (1−R)(1− µ− ν). (3.48)

In other words, any vector point [µ1, µ2, . . . , µM , ν] in the outage region R, i.e.,

the region that satisfies (3.45), also satisfies (3.48). As a result, defining R� as the

region defined by (3.48), we have

P{E} ≤ P{π ∈ R
�
}, (3.49)

where π � [µ1, µ2, . . . , µM , ν]. Similar to the approach used in the proofs of The-

orems 3.9 and 3.16, P{π ∈ R�} can be computed as

P{π ∈ R
�
}

.
= P− 1−2R

1−R . (3.50)

Hence,

P{E}≤̇P− 1−2R

1−R . (3.51)

For lower-bounding the outage probability, we note that all the vectors [µ1, · · · , µM , ν]

for which µm > 0, m = 1, · · · , M and ν > 1−2R
1−R , lie in the outage region defined in

(3.45). In other words,

P{E} ≥ P
�

π >

�
0, · · · , 0,

1− 2R

1−R

��

.
= P− 1−2R

1−R . (3.52)

Combining (3.51) and (3.52) yields

P{E} .
= P− 1−2R

1−R

= P
− 1−2

PM
m=1 rm

1−
P

M
m=1 rm , (3.53)
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which completes the proof for the DMT analysis of the DDF scheme.

Next, we prove that the DDF scheme achieves the optimum DMT. As the

channel from the transmitters to the receiver is a degraded version of the chan-

nel between the transmitters and the relay, similar to the argument of [56] for

the case of single-source single-relay, we can easily show that the decode-forward

strategy achieves the capacity of the network for each realization of the chan-

nels. Now, consider the realization in which for all m we have, |hm|
2
≤

1
M . As

we know, P
�
∀m : |hm|

2
≤

1
M

� .
= 1. Let us assume in the optimum decode-and-

forward strategy, the relay spends l portion of the time for listening to the trans-

mitter. According to the Fano’s inequality [12], to make the probability of error

in decoding the transmitters’ message at the relay side approach zero, we should

have l log
�
1 + P

l

�M
m=1 |hm|

2
�
≥

��M
m=1 rm

�
log(P ). Accordingly, we should have

l ≥
�M

m=1 rm. On the other hand, in order that the receiver can decode the re-

lay’s message with a vanishing probability of error in the remaining portion of the

time, we should have (1− l) log
�
1 + P

1−l |g|
2�
≥

�M
m=1 rm log(P ). Hence, we have

P {E} ≥ P
�
|g|2 ≤ cP

−
„

1−
PM

m=1 rm

1−
P

M
m=1 rm

«

,∀m : |hm|
2
≤

1
M

�
.
= P

−
„

1−
PM

m=1 rm

1−
P

M
m=1 rm

«+

, for

a constant c. This completes the proof.

Figure 3.5 shows DMT of the AF scheme and the DDF scheme for multiple

access single relay setup consisting of M = 2 sources assuming symmetric situation,

i.e. r1 = r2 = r. As can be observed in this figure, although the AF scheme achieves

the maximum multiplexing gain and maximum diversity gain, it does not achieve

the optimum DMT in any other points of the tradeoff region.
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Figure 3.5: Diversity-Multiplexing Tradeoff of AF scheme versus the optimum and

DDF scheme for multiple access single relay channel consisting of M = 2 sources

assuming symmetric transmission, i.e. r1 = r2 = r.

3.5 Conclusion

In this chapter, a general model is described for the multi-antenna multiple relay

networks. In this model, each pair of nodes are assumed to be either connected

through a quasi-static Rayleigh fading channel or disconnected. A new scheme

called random sequential (RS), based on the amplify-and-forward relaying, is intro-

duced for this setup. DMT of the RS scheme is investigated for the single-antenna

multiple relay networks. Bounds on DMT of the RS scheme are derived for a

general single-antenna multiple-relay network. Specifically, 1) the exact DMT of

the RS scheme is derived under the assumption of “non-interfering relaying”; 2)

a lower-bound is derived on the DMT of the RS scheme (no conditions imposed).
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Finally, it is shown that for the single-antenna two-hop multiple-access multiple-

relay network setup where there is no direct link between the transmitter(s) and

the receiver, the RS scheme achieves the optimum diversity-multiplexing tradeoff.

However, for the multiple access single relay scenario, we show that the RS scheme

is unable to perform optimum in terms of the DMT, while the dynamic decode-

and-forward scheme is shown to achieves the optimum DMT for this scenario.
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time-slot 1 2 3 4 5 6 7

P1(1) 0 → 1 1 → 3 3 → 5 — — — —

P1(2) — 0 → 2 2 → 4 4 → 5 — — —

P1(3) — — — 0 → 1 1 → 4 4 → 5 —

P1(4) — — — — 0 → 2 2 → 3 3 → 5

Table 3.1: One possible valid timing for RS scheme with the path sequence P1 =

(p1, p2, p3, p4).

time-slot 1 2 3 4 5 6

P2(1) 0 → 1 1 → 3 3 → 5 — — —

P2(2) — 0 → 2 2 → 4 4 → 5 — —

P2(3) — — 0 → 1 1 → 3 3 → 5 —

P2(4) — — — 0 → 2 2 → 4 4 → 5

Table 3.2: One possible valid timing for RS scheme with the path sequence P2 =

(p1, p2, p1, p2).
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Chapter 4

Maximum Diversity Gain of

Relay Networks

4.1 Introduction

In this chapter, we study the setup of multi-antenna multiple relay network which

is introduced in Chapter 3. We investigate the maximum achievable diversity

gain of the relay network. For this purpose, we utilize the RS scheme which is

proposed in Chapter 3. We prove that the RS scheme achieves the maximum

diversity gain of any multi-antenna wireless relay network. It turns out that the

maximum achievable diversity gain of the network is equal to the minimum weight

between all edge cut-sets of the underlying graph of the network. Hence, for

any relay network, the maximum achievable diversity gain of the network can be

characterized in polynomial time (with respect to the number of network nodes)

using the maximum flow algorithm [14]. However, we show that there exists multi-

antenna scenarios for which the RS scheme does not achieve the optimum DMT.
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Indeed, we show that in order to achieve the optimum DMT, in some scenarios,

multiple interfering nodes have to transmit together (and interfere on the receiver

node of each other) during the same time-slot.

The rest of this chapter is as follows. In section 4.2, we investigate the maximum

achievable diversity gain of the multi-antenna relay networks and in section 4.3,we

conclude the chapter.

4.2 Maximum Diversity Achievability Proof in

General Multi-Hop Multiple-Antenna Scenario

Theorem 4.1 Consider a relay network with the connectivity graph G = (V, E)

and K relays, in which each two adjacent nodes are connected through a Rayleigh-

fading channel. Assume that all the network nodes are equipped with multiple

antennas. Then, by properly choosing the path sequence, the proposed RS scheme

achieves the maximum diversity gain of the network which is equal to

dG = min
S

wG(S), (4.1)

where S is an edge cut-set on G. The edge cut-set and weight of a cut-set are

defined in Defintion 3.1.

Proof First, we show that dG is indeed an upper-bound on the diversity-gain of

the network. To show this, we do not consider the half-duplex nature of the relay

nodes and assume that they operate in full-duplex mode. Consider an edge cut-set
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S on G. We have

P {E}
(a)

≥̇ P {I (X (S) ; Y (Sc) |X (Sc)) < R}

(b)
= P

�
�

k∈Sc

I (X (S) ; Yk|Y (Sc/ {1, 2, . . . , k}) , X (Sc)) < R

�

(c)

≥

�

k∈Sc

P
�

I (X (S) ; Yk|X (Sc)) <
R

|Sc|

�

(d).
=

�

k∈Sc

P−|{e∈E|k∈e,e∩S �=�}|

.
= P−wG(S), (4.2)

where R is the target rate which does not scale with P (i.e., r = 0). Here,

(a) follows from the cut-set bound Theorem [12] and the fact that for the rates

above the capacity, the error probability approaches one (according to Fano’s in-

equality [12]), (b) follows from the chain rule on the mutual information [12], (c)

follows from the facts that i) (Yk, X ({0, 1, . . . , K + 1}) , Y (Sc/ {1, 2, . . . , k})) form

a Markov chain [12] and as a result, I (X (S) ; Yk|Y (Sc/ {1, 2, . . . , k}) , X (Sc)) ≤

I (X (S) ; Yk|X (Sc)), and ii) I (X (S) ; Yk|X (Sc)) depends only on the channel ma-

trices between X (S) and Yk and as all the channels in the network are independent

of each other, it follows that the events
�

I (X (S) ; Yk|X (Sc)) <
R

|Sc|

�

k∈Sc

are mutually independent, and finally (d) follows from the diversity gain of the

MISO channel. Considering all possible cut-sets on G and using (4.2), we have

P {E} ≥̇P−minS wG(S). (4.3)

Now, we prove that this bound is indeed achievable by the RS scheme. First, we

provide the path sequence needed to achieve the maximum diversity gain. Consider
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the graph Ĝ = (V, E,w) with the same set of vertices and edges as the graph G and

the weight function w on the edges as w{a,b} = NaNb. Consider the maximum-flow

algorithm [14] on Ĝ from the source node 0 to the sink node K+1. Since the weight

function is integer over the edges, according to the Ford-Fulkerson Theorem [14],

one can achieve the maximum flow which is equal to the minimum cut of Ĝ or

dG by the union of elements of a sequence (p1, p2, . . . , pdG
) of paths (L = dG).

We show that this family of paths are sufficient to achieve the optimum diversity.

Here, we do not consider the problem of selecting the path timing sequence {si,j}.

We just assume that a timing sequence {si,j} with the 4 requirements defined in

section 3.3 exists. However, it should be noted that as we consider the maximum

diversity throughout the Theorem, we are not concerned with S
L . Hence, we can

select the path timing sequence such that no two paths cause interference on each

other.

Noting that the received signal at each node is multiplied by a random isotrop-

ically distributed unitary matrix, at the destination side we have

yK+1,i = HK+1,pi(li−1)αi,li−1Ui,li−1Hpi(li−1),pi(li−2)αi,li−2Ui,li−2 · · ·αi,1Ui,1Hpi(1),0x0,i

+
�

j<i

Xi,jx0,j +
�

j≤i,m≤lj

Qi,j,mnj,m. (4.4)

Here, x0,i is the vector transmitted at the source side during the si,1’th slot as the

input for the i’th path, yK+1,i is the vector received at the destination side during

the si,li ’th slot as the output for i’th path, Ui,j denotes the multiplied unitary

matrix at the pi(j)’th node of the ith path, Xi,j is the interference matrix which

relates the input of the j’th path (j < i) to the output of the i’th path, nj,m is

the noise vector during the sj,m’th slot at the pj(m)’th node of the network, and

finally, Qi,k,m is the matrix which relates nk,m to yK+1,i. Notice that as the tim-
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ing sequence satisfies the noncausal interference assumption, the summation terms

in (4.4) do not exceed i. Defining x(s) =
�
xT

0,1 (s)xT
0,2 (s) · · ·xT

0,L (s)
�T

, y(s) =
�
yT

K+1,1 (s)yT
K+1,2 (s) · · ·yT

K+1,L (s)
�T

, and n(s) =
�
nT

1,1 (s)nT
1,2 (s) · · ·nT

L,lL
(s)

�T
,

we have the following equivalent block lower-triangular matrix between the end

nodes

y(s) = HTx(s) + Qn(s). (4.5)

Here,

HT =





X1,1 0 0 . . .

X2,1 X2,2 0 . . .
...

...
...

. . .

XL,1 XL,2 . . . XL,L




, (4.6)

where Xi,i = HK+1,pi(li−1)αi,li−1Ui,li−1Hpi(li−1),pi(li−2)αi,li−2Ui,li−2 · · ·αi,1Ui,1Hpi(1),0,

and

Q =





Q1,1,1 . . . Q1,1,l1 0 0 0 . . .

Q2,1,1 . . . Q2,1,l1 . . . Q2,2,l2 0 . . .
...

...
...

...
...

...
. . .

QL,1,1 QL,1,2 . . . . . . . . . QL,L,lL−1 QL,L,lL




. (4.7)

Having (5.46), the outage probability can be written as

P {E} = P
���IL + PHTHH

T P−1
n

�� < 2SR
�

, (4.8)

where Pn = QQH . First, similar to the proof of Theorem 3.9, we can show that

αi,j
.
= 1 with probability 11, and also show that there exists a constant c which

depends just on the topology of graph G and the path sequence such that Pn � cIL.

1
More precisely, with probability greater than 1− P

−δ
for any δ > 0.
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Assume that for each {a, b} ∈ E, λmax (Ha,b) = P−µ{a,b} , where λmax (A) denotes

the greatest eigenvalue of AAH . Also, assume that

γi,j �
��vH

r,max

�
H{pi(j+1),pi(j)}

�
Ui,jvl,max

�
H{pi(j),pi(j−1)}Ui,j−1H{pi(j−1),pi(j−2)} . . .

H{pi(1),0}
���2 = P−νi,j , (4.9)

where vl,max (A) and vr,max (A) denote the left and the right eigenvectors of A

corresponding to λmax (A), respectively. The outage probability can be upper-

bounded as

P {E}
(a)

≤ P
�

λmax

��
HTHH

T P−1
n

� 1
2

�
≤

�
2SR

− 1
�
P−1

�

(b)

≤ P
�
λmax (HT ) ≤ c

�
2SR

− 1
�
P−1

�

(c)

≤ P
�

L�

i=1

�
λmax (Xi,i) ≤ c

�
2SR

− 1
�
P−1

�
�

(d)

≤ P
�

L�

i=1

�
li�

j=1

µ{pi(j),pi(j−1)} +
li−1�

j=1

νi,j ≥ 1− log
c
�
2SR − 1

�

P

��

(e).
= P

�
L�

i=1

�
li�

j=1

µ{pi(j),pi(j−1)} +
li−1�

j=1

νi,j ≥ 1

��
. (4.10)

In the above equation, (a) follows from the fact that 1 + λmax(A
1
2 ) ≤ |I + A| , for

a positive semi-definite matrix A. (b) results from Pn � cIL. (c) follows from the

fact that λmax(HT ) ≥ maxi λmax(Xi,i). To obtain (d), we first show that

λmax(AUB) ≥ λmax(A)λmax(A)
��vH

r,max(A)Uvl,max(B)
��2 , (4.11)
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for any matrices A, U and B. To show this, we write

λmax(AUB) = max
x

�x�2=1

��xHAUB
��2

≥ �vl,max(A)AUB�2

=

�����σmax(A)vH
r,max(A)U

�

i

vl,i(B)σi(B)vH
r,i(B)

�����

2

(a)
=

�

i

��σmax(A)vH
r,max(A)Uvl,i(B)σi(B)vH

r,i(B)
��2

≥
��σmax(A)vH

r,max(A)Uvl,max(B)σmax(B)vH
r,max(B)

��2

(b)
= λmax(A)λmax(B)

��vH
r,max(A)Uvl,max(B)

��2 , (4.12)

where σi(A) denotes the i’th singular value of A, and σmax(A) denotes the singular

value of A with the highest norm. Here, (a) follows from the fact that as {vr,i(B)}

are orthogonal vectors, the square-norm of their summation is equal to the sum-

mation of their square-norms. (b) results from the fact that λi(A) = |σi(A)|2,∀i.

By recursively applying (4.11), it follows that

λmax(Xi,i) ≥

li�

j=1

λmax

�
Hpi(j),pi(j−1)

� li−1�

j=1

γi,j. (4.13)

Noting the definitions of µ{i,j} and νi,j, (d) easily follows. Finally, (e) results from

the fact that as P →∞, the term log
c(2SR−1)

P can be ignored.

Since the left and the right unitary matrices resulting from the SVD of an

i.i.d. complex Gaussian matrix are independent of its singular value matrix [57]

and Ui,j is an independent isotropically distributed unitary matrix, we conclude

that all the random variables in the set
�
{µe}e∈E , {νi,j}1≤i≤L,1≤j<li

�
are mu-

tually independent. From the probability distribution analysis of the singular

values of circularly symmetric Gaussian matrices in [29], we can easily prove
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P {µe ≥ µ0
e}

.
= P−NaNbµ0

e = P−weµ0
e . Similarly, as Ui,j is isotropically distributed,

it can be shown that P {ν(i, j) ≥ ν0(i, j)}
.
= P−ν0(i,j). Hence, defining µ = [µe]Te∈E,

ν = [νi,j]T1≤i≤L,1≤j<li
, and w = [we]e∈E, we have

P {µ ≥ µ0, ν ≥ ν0}
.
= P−(1·ν+w·µ). (4.14)

Let us define R as the region in R|E|+
P

L

i=1 li−L of the vectors
�
µT νT

�T
such

that for all 1 ≤ i ≤ L, we have
�li

j=1 µ{pi(j),pi(j−1)} +
�li−1

j=1 νi,j ≥ 1. Using

the same argument as in the proof of Theorem 3.9, we conclude that P {R} =

P
�
R

�
R|E|+

P
L

i=1 li−L
+

�
. Hence, defining the regionR+ asR+ = R

�
R|E|+

P
L

i=1 li−L
+

and d0 = min
[µT νT ]T∈R+

w ·µ + 1 · ν, which can easily be verified to be bounded, and

applying the same argument as in the proof of Theorem 3.9, we have

P {E} ≤̇P {R+}
.
= P−d0 . (4.15)

To complete the proof, we have to show that d0 = dG, or equivalently, d0 = L (note

that L = dG). The value of d0 is obtained from the following linear programming

optimization problem

min w · µ + 1 · ν (4.16)

s.t. µ ≥ 0, ν ≥ 0,∀i
li�

j=1

µ{pi(j),pi(j−1))} +
li−1�

j=1

νi,j ≥ 1.

According to the argument of linear programming [45], the solution of the above

linear programming problem is equal to the solution of the dual problem which is

max
L�

i=1

fi (4.17)

s.t. 0 ≤ f ≤ 1,∀e ∈ E,
�

e∈pi

fi ≤ we.
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Let us consider the solution f0 = 1 for (4.17). As the path sequence (p1, p2, . . . , pL)

consists of the paths that form the maximum flow in Ĝ, we conclude that for every

e ∈ E, we have
�

e∈pi

1 ≤ we. Hence, f0 is a feasible solution for (4.17). On the other

hand, as for all feasible solutions f we have f ≤ 1, we conclude that f0 maximizes

(4.17). Hence, we have

d0 = min w · µ + 1 · ν
(a)
= max

L�

i=1

fi = L = dG. (4.18)

Here, (a) results from duality of the primal and dual linear programming problems.

This completes the proof.

Remark 4.2 It is worth noting that according to the proof of Theorem 4.1, any

RS scheme achieves the maximum diversity of the wireless multi-antenna relays

network as long as its corresponding path sequence includes the paths p1, p2, . . . , pdG

used in the proof of Theorem 4.1.

Example 4.3 Consider the half-duplex 3 hops network of Figure 3.1. Here, as

the path sequence P1 ≡ (p1, p2, p3, p4) forms the maximum flow of Ĝ, the RS

scheme with the path sequence P1 and the timing sequence of Table 3.1 achieves

the maximum diversity of the network which is equal to 4. However, the diversity

of the RS scheme with the path sequence P2 and the timing sequence of Table 3.2

is equal to 2 as it utilizes just two SISO edges {1, 3} and {2, 4} of the second hop.

Theorem 4.1 shows that the RS scheme is capable of exploiting the maxi-

mum achievable diversity gain in multiple-antenna multiple-relay wireless net-

works. However, as the following example shows, the RS scheme is unable to

achieve the maximum multiplexing gain in a general multiple-antenna multiple-

node wireless network.
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Example 4.4 Consider a two-hop relay network consisting of K = 4 relay nodes.

The source and the destination are equipped with N0 = N5 = 2 antennas, while each

of the relays has a single receiving/transmitting antenna. There exists no direct link

between the source and the destination, i.e. {0, 5} /∈ E. For the sake of simplicity,

assume that the relays are non-interfering, i.e. 1 ≤ a ≤ 4, 1 ≤ b ≤ 4, {a, b} /∈ E.

Let us partition the set of relays into S0 = {1, 2},S1 = {3, 4}. Consider the

following amplify-and-forward strategy: In the i’th time slot, the relay nodes in

Si mod 2 transmit what they have received in the last time slot, while the relay

nodes in S(i+1) mod 2 receive the source’s signal. It can be easily verified that this

scheme achieves a maximum multiplexing gain of r = 2. However, the proposed

RS scheme achieves a maximum multiplexing gain of r = 1.

4.3 Conclusion

In this chapter, the general setup of multi-antenna multiple relay network which is

introduced in Chapter 3, is investigated and the maximum achievable diversity gain

is characterized. Furthermore, the RS scheme is shown to achieve the maximum

achievable diversity gain of the relay network. The maximum achievable diversity

gain is turned out to be equal to the minimum weight between all edge cut-sets

of the underlying graph of the network. However, certain multi-antenna scenarios

are shown in which the RS scheme does not achieve the optimum DMT. Indeed, it

is proved that in order to achieve the optimum DMT, in some scenarios, multiple

interfering nodes have to transmit together (and interfere on the receiver node of

each other) during the same time-slot.
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Chapter 5

Diversity-Multiplexing Tradeoff in

Multi-Antenna Multiple Relay

Networks

5.1 Introduction

In this chapter, we investigate the benefits of AF relaying in multi-antenna multi-

relay networks. For description of the general multi-antenna relay network, you

can refer to Chapter 3. For this purpose, we study the application of the RS

scheme proposed in Chapter 3. The key elements of the proposed scheme are: 1)

signal transmission through sequential paths in the network, 2) path timing such

that no non-causal interference is caused from the transmitted signal of the future

paths on the received signal of the current path, 3) multiplication by a random

unitary matrix at each relay node, and 4) no signal boosting in AF relaying at the

relay nodes, i.e. the received signal is amplified by a coefficient with the absolute
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value of at most 1. We derive the DMT of the RS scheme for multi-antenna

multi-relay networks. To accomplish this task, we first study a simple structure,

namely the multi-antenna full-duplex two-hop single-relay network. We show that

unlike the traditional AF relaying, the RS scheme achieves the optimum DMT.

This fact can be justified as follows: using the traditional AF relaying, there exists

a chance that the eigenvectors corresponding to the largest eignenvalues of the

incoming channel matrix of the relay project to the eigenvectors corresponding to

the small eignenvalues of the relay’s outgoing channel matrix. This event degrades

the performance of traditional AF relaying in the multi-antenna setup. However,

in the RS scheme, due to the random independent unitary matrix multiplication at

the relay nodes for different time-slots, such an event is much less likely to happen.

This fact will be elaborated throughout the Chapter.

Next, we study the case of multi-antenna half-duplex parallel relay network

and, by deriving its DMT, we show that the RS scheme improves the DMT of

the traditional AF relaying scheme. Interestingly, it turns out that the DMT of

the RS scheme is optimum for the multi-antenna half-duplex parallel two-relay

(K = 2) setup with no direct link between the relays. We also show that utilizing

random unitary matrix multiplication improves the DMT of the NAF relaying

scheme of [26] in the case of a multi-antenna single relay channel.

Finally, we study the class of general full-duplex multi-antenna relay networks

whose underlying graph is directed acyclic and all nodes are equipped with the

same number of antennas. Using the RS scheme, we derive a new lower-bound

for the achievable DMT of this class of networks. It turns out that the new

DMT lower-bound meets the optimum DMT at the corner points, corresponding

to the maximum multiplexing gain and the maximum diversity gain of the network,
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respectively. Another point worth mentioning is that the RS scheme is robust in

the sense that it achieves all points of the DMT curve with no modification of the

underlying parameters. In other words, the relay nodes of the network perform

the same operation, no matter at which point of the DMT curve the scheme is

operating.

For description of the system model and the RS scheme, you can refer to

Chapter 3. The rest of the chapter is organized as follows. Section 5.2 is dedicated

to Diversity-Multiplexing Tradeoff analysis of the RS scheme in the multi-antenna

setup. This section is further divided into four subsections as follows. Subsection

5.2.1 studies the multi-antenna single-relay two-hop network and also the multi-

antenna multi-hop relay network with one relay in each hop. Subsection 5.2.2

is dedicated to the multi-antenna half-duplex parallel relay network. The well-

known multi-antenna single-relay channel (with direct link between the source and

the destination) is investigated in subsection 5.2.3. Subsection 5.2.4 studies the

achievable DMT of the RS scheme for the general multi-antenna full-duplex relay

networks whose underlying graph is directed acyclic. Finally, section 5.3 concludes

the chapter.

5.2 Diversity-Multiplexing Tradeoff

5.2.1 Two-Hop Single Relay Network

This setup corresponds to the network consisting of a source, a single full-duplex

relay and a destination with no direct link between the source and the destination.

The source, relay, and destination are equipped with m, p, and n antennas, respec-

tively (see Figure 5.1). The channel between the source and the relay is denoted by
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H and the channel between the relay and the receiver is denoted by G. First, we

study the achievable DMT by the traditional AF scheme in Lemmas 5.1 and 5.2

and show the achievable DMT in general does not match with the optimal value,

which is achievable by the DF scheme1. Then, in Theorem 5.3 we prove that using

the proposed RS scheme, which is a modification of the traditional AF scheme, the

optimal DMT is indeed achievable. Theorem 5.7 generalizes the result of Theorem

5.3 to the case of multi-hop relay network and shows that the proposed RS scheme

still achieves the optimum DMT provided that a certain relationship between the

number of antennas at nodes is satisfied.

First Hop Second Hop

p receive/transmit antennas

m
antennas

Tx

n
antennas

RxRelay

H G

Figure 5.1: Schematic of a multi-antenna single-relay two-hop network

In the traditional AF strategy, the received signal at the relay is multiplied

by a constant α such that the power constraint at the relay is satisfied and then

it is transmitted to the destination. The corresponding received signal at the

destination can be written as

y = αGHxt + αGnr + nd, (5.1)

where xt denotes the transmitted signal from the source and nr ∼ CN (0, Ip)

and nd ∼ CN (0, In) denote the noise vectors at the relay and at the destination,

1
In fact, this configuration is a special case of the degraded relay channel studied by [56].

In [56], the authors show that the DF scheme achieves the capacity of the degraded relay channel.
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respectively.

Lemma 5.1 The DMT of the system given in (5.1) is upper-bounded by the DMT

of the following system:

y = αGHxt + nd, (5.2)

and is lower-bounded by the DMT of the following system:

y = αGHxt +
�

c log(P ) + 1nd, (5.3)

for some constant c.

Proof See Appendix H.

Lemma 5.2 The DMT of the systems in (5.2) and (5.3) are equal.

Proof See Appendix I.

A direct conclusion of the Lemmas 5.1 and 5.2 is that the DMT of the two-

hop network can be expressed as the DMT of the product channel GH which

is computed in [54]. Due to the result given in Proposition 1 in [54], assuming

m, n ≥ p, the DMT of the product channel A = GH is a piecewise-linear function

connecting the points (r, dA(r)), r = 0, 1, . . . , p, where

dA(r) = (p− r)(q − r)−
1

2

�
[(p−∆− r)+]2

2

�
, (5.4)

q = min(m, n) and ∆ = |m − n|. On the other hand, the piecewise-linear func-

tion connecting the integer points (r, (p − r)(q − r)) can be easily derived as the

upper-bound by considering each of the source-relay or the relay-destination cuts.

Comparing (5.4) with the upper-bound, it follows that the traditional AF scheme
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achieves the optimum DMT only when r ≥ p − ∆. This motivates us to use a

variant of AF scheme which achieves the optimum DMT in all cases. In fact, us-

ing the traditional AF scheme, there are three sources of outage: (i) the outage

in the source-relay link, (ii) the outage in the relay-destination link, and (iii) the

projection of the eigenmodes of H over the eigenmodes of G is very small. More

precisely, the matrix VH(G)U(H), in which VH(G) denotes the right eigenvector

matrix from the Singular Value Decomposition (SVD) of G and U(H) denotes the

left eigenvector matrix from the SVD of H, has very small eigenvalues. The extra

term 1
2

�
[(p−∆−r)+]2

2

�
in (5.4) is due to the third source of outage. The first two

outage events depend on the distribution of the eigenvalues of H and G, while the

third event depends solely on the direction of the eigenvectors of these two matri-

ces. This suggests that in order to eliminate the extra terms in 1
2

�
[(p−∆−r)+]2

2

�
one

can multiply the received signal at the relay by αΘ, for some p× p unitary matrix

Θ (for preserving the power constraint at the relay). However, it should be noted

that if Θ does not change across the transmission block, the performance of the

systems does not change. Therefore, we propose that in each transmission slot an

independent unitary matrix Θl is used and at the destination side the decoding

is performed across L transmission slots2. This is exactly what is being done in

the proposed RS scheme. Indeed, this setup is a simple example of the general

setup of the relay network studied in Chapter 3 in which the source and the desti-

nation are connected through a single path. In this case the proposed RS scheme

reduces to the following: the source’s message is sent using L slots through the

same path; at the relay side the received signal is multiplied by a randomly inde-

2
From practical point of view, the transmission slots are assumed to be long enough to make

the probability of error solely dominated by the outage event. This fact is more elaborated in [29].
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pendent (through different slots) unitary matrix, and subsequently, it is multiplied

by a scalar α ≤ 13 such that the power constraint is satisfied, and the result is

transmitted in the next slot. At the destination, following receiving the signal of

the slots 2, 3, . . . , L + 1, the source message is decoded. In the following theorem,

we show that as long as L is above a certain threshold, the probability of the third

outage event is negligible compared to the first two outage events and hence, the

optimum DMT is achievable by the RS scheme.

Theorem 5.3 Consider a two-hop network consisting of a source with m antennas

and a destination with n antennas that are connected through a full-duplex relay

with p antennas. Let us define q = min(m, n). Providing L is large enough such

that L ≥ min2(p, q) max(p, q), RS scheme achieves the optimum DMT, which is

a piecewise-linear function connecting the points (k, (p − k)(q − k)), where k =

0, 1, . . . , min(p, q).

Proof Using Lemmas 5.1 and 5.2, the DMT of the system using the proposed

RS scheme is equal to the DMT of the following system:

Y = αΩXt + Nd, (5.5)

where Xt � [xt(1), · · · ,xt(L)]T , Y = [y(1), · · · ,y(L)]T , and Nd � [nd(1), · · · ,nd(L)]T ,

in which xt(l), y(l) and nd(l) denote the transmitted signal, received signal and

3
Note that, as can be observed from the proof of Lemma 5.1 in Appendix I, the constraint

α ≤ 1 does not affect the DMT of the system.
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noise in the lth slot, respectively, and

Ω �





A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 · · · AL




, (5.6)

in which Al � GΘlH. Hence, the matrix of the end-to-end channel is a block

diagonal matrix consisting of Al’s. Assuming that the transmitted signals in each

slot are independent of each other, the mutual information between the input and

the output of (5.5) can be written as

I(Xt;Y) =
L�

l=1

log

����I + α2 P

m
AlA

H
l

���� , (5.7)

in which it is assumed that xt(l) ∼ CN (0, P
mIm), ∀l = 1, · · · , k. Using the above

equation, the probability of outage can be written as

P{O} = P
�

L�

l=1

log

����I + α2 P

m
AlA

H
l

���� < Lr log(P )

�
, (5.8)

or equivalently,

P{O} = P






L�

l=1

min(p,q)�

j=1

log

�
1 + α2 P

m
λj(Al)

�
< Lr log(P )




 , (5.9)

where λi(A) denotes the ith ordered eigenvalue of AHA (λ1 > λ2 > · · · > λmin).

Defining γj(B) � −
log(λj(B))

log(P ) and δ � −
log(α2)
log(P ) , we have

P{O} = P






L�

l=1

min(p,q)�

j=1

log

�
1 +

1

m
P 1−δ−γj(Al)

�
< Lr log(P )






.
= P






L�

l=1

min(p,q)�

j=1

(1− δ − γj(Al))
+ < Lr




 . (5.10)
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First, we show that α
.
= 1 (or δ

.
= 0), with probability one4. For this purpose, we

write α2 as follows:

α2 = min

�
1,

P

Ext,nr
{�Hxt + nr�

2}

�

= min

�
1,

P

Tr {HQxt
HH + I}

�

= min

�
1,

P

Tr
�

P
mHHH + I

�
�

= min

�
1,

P
P
m�H�

2 + m

�
. (5.11)

From the above equation, we have

P{δ ≥ δ0} < P
�
�H�2 > P δ0−�

�
, (5.12)

for all δ0, � > 0. Noting that �H�2 has Chi-square distribution with 2mp degrees

of freedom, it follows that

P
�
�H�2 > P δ0−�

�
∼

Pmp(δ0−�)

(mp)!
exp

�
−P δ0−�

�
. (5.13)

Choosing � = δ0
2 , the above equation implies that for δ0 > 0, the probability

P{δ ≥ δ0} approaches to zero much faster than polynomially. More precisely,

defining the event F ≡ {δ >̇ 0}, we have P{F} = o(P−c) for any positive constant

c. Since P{O}≥̇P−(q−r)(p−r) (lower-bound on the outage probability corresponding

to the DMT upper-bound ), we can write

P{O} = P{O|F}P{F}+ P{O|F c
}P{F c

}

(a)
∼ P{O|F c

}, (5.14)

4
Note that due to the definition of α, we always have δ ≥ 0.
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where (a) follows from the fact that P{F} = o (P{O}). In other words, one can

replace δ with zero in (5.10), which results in

P{O} .
= P






L�

l=1

min(p,q)�

j=1

(1− γj(Al))
+ < Lr




 . (5.15)

Moreover, we have

λi(Al) ≤ �Al�
2

(a)

≤ �G�2
�H�2, (5.16)

where (a) results from the fact that �AB�2 ≤ �A�2�B�2, for any two matrices A

and B. Consider a negative number ε. From the above equation, it follows that

P{γi(Al) ≤ ε} ≤ P
�
�G�2

�H�2
≥ P−ε

�

≤ P
�
�G�2

≥ P− ε

2
�

+ P
�
�H�2

≥ P− ε

2
�

(5.13)
∼

P−npε

2

(np)!
exp

�
−P− ε

2
�

+
P−mpε

2

(mp)!
exp

�
−P− ε

2
�

= o
�
P−(q−r)(p−r)

�
. (5.17)

As a result, following (5.14), we can assume that γj(Al) ≥ 0, ∀j = 1, · · · , min(p, q),

in (5.15).

In order to compute the outage probability in (5.15), we need to find the sta-

tistical behavior of γj(Al). Since we are interested in upper-bounding the outage

probability of the RS scheme, finding an upper-bound for γj(Al), or equivalently,

a lower-bound for λj(Al) would be sufficient. This is performed in the following

lemma.

Lemma 5.4 Consider matrices G and H with the size of m×p and p×n, respec-

tively, and a p× p matrix Θ. Assume G and H are singular value decomposed as
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G = U(G)Λ
1
2 (G)VH(G) and H = U(H)Λ

1
2 (H)VH(H), respectively. We have

λi (GΘH) ≥ λi(G)λi(H)λmin

�
VH

(1,i)(G)ΘU(1,i)(H)
�
, (5.18)

where λi(A) and λmin(A) denote the i’th largest eigenvalue and the minimum eigen-

value of AHA, respectively, and A(a,b) denotes the submatrix of A consisting of

the a, a + 1, . . . , b’th columns of A.

Proof See Appendix J.

The above lemma relates λi(Al) to λi(G) and λi(H), which facilitates the

subsequent derivations. A direct consequence of the above lemmas is that

γi(Al) ≤ γi(G) + γi(H) + γmin(Ψi,l), (5.19)

where Ψi,l � VH
(1,i)(G)ΘlU(1,i)(H). As the statistical behaviors of γi(G) and γi(H)

are known from [29], it is sufficient to derive the asymptotic behavior of γmin(Ψi,l),

or equivalently, λmin(Ψi,l), which is performed in the following lemma:

Lemma 5.5 Assuming small enough ε, we have

P {λmin(Ψi,l) ≤ ε} ≤ η i
√

ε, (5.20)

for some constant η.

Proof See Appendix K.

A direct consequence of the above lemma is that

P {γmin(Ψi,l) > θ} ≤̇P− θ

i . (5.21)
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Defining the L×1 vector ψ � [ψ(1), · · · , ψ(L)]T as ψ(l) � max
i

γmin(Ψi,l), we have

P {ψ ≥ ψ0}
(a)
=

L�

l=1

P {ψ(l) ≥ ψ0(l)}

=
L�

l=1

P






min(p,q)�

i=1

(γmin(Ψi,l) ≥ ψ0(l))






(b)

≤̇ P− 1·ψ0
min(p,q) (5.22)

As Θl’s are independent isotropic unitary matrices, their products with any pos-

sibly correlated set of unitary matrices constructs a set of independent isotropic

unitary matrices [57]. Accordingly, Ψi,l’s are independent for different values of

l, which results in (a). Also, (b) follows from Lemma 5.5 and the union bound

inequality.

Let us define the 1×min(p, q) vectors

χ(H) �
�
γmin(p,m)(H), γmin(p,m)−1(H), . . . , γ1+min(p,m)−min(p,q)(H)

�
,

χ(G) �
�
γmin(p,n)(G), γmin(p,n)−1(G), . . . , γ1+min(p,n)−min(p,q)(G)

�
.

Notice that these vectors include the log-values of the corresponding min(p, q)

smallest eigenvalues of HHH and GGH , respectively. Now, applying the result of

Lemma 5.4 to (5.15), we can upper-bound the outage probability of the end-to-end
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channel as

P{O} ≤̇ P






L�

l=1

min(p,q)�

i=1

(1− γi(G)− γi(H)− γmin(Ψi,l))
+ < Lr






≤̇ P






L�

l=1

min(p,q)�

i=1

(1− γi(G)− γi(H)− ψ(l))+ < Lr






(a)

≤̇ P






L�

l=1

min(p,q)�

i=1

�
1− γ1+min(p,n)−i(G)− γ1+min(p,m)−i(H)− ψ(l)

�+
< Lr






= P






L�

l=1

min(p,q)�

i=1

(1− χi(G)− χi(H)− ψ(l))+ < Lr




 , (5.23)

where (a) follows from the fact that the log-values (γi’s) corresponding to the small-

est eigenvalues of HHH and GGH are greater than the log-values corresponding to

the largest eigenvalues of these matrices. According to (5.22), to upper-bound the

outage probability, it is sufficient to upper-bound the probability of the region of

(ψ, χ(H), χ(G)) that satisfies (5.23). The following lemma gives a general formula

for computing such an upper-bound:

Lemma 5.6 Consider a fixed region R ⊆ [0,∞)n. Assume that a uniformly con-

tinuous5 non-negative function f(x) (f(x) ≥ 0) is defined over [0,∞)n such that

for all x ∈ [0,∞)n we have P {y ≥ x} ≤̇P−f(x). Then, we have

P {x ∈ R} ≤̇P− infx∈R f(x). (5.24)

Proof See Appendix L.

5
A uniformly continuous function f : M → N where M ⊆ Rm

,N ⊆ Rn
is a function

that has the following property: for every �, there exists a constant g(�) > 0 such that for all

x,y ∈M, �x− y� ≤ g(�), we have �f(x)− f(y)� ≤ �.
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According to the upper-bound in (5.22) and the distribution of χ(G), χ(H)

derived in [29], we have

P
�

ψ ≥ ψ̂, χ(G) ≥ χ�, χ(H) ≥ χ��
�
≤̇P− 1

min(p,q)

P
L

l=1 ψ̂(l)−
Pmin(p,q)

i=1 aiχ��i +biχ�i

(a)

≤̇ P− 1
min(p,q)

P
L

l=1 ψ̂(l)−
Pmin(p,q)

i=1 (2i−1+|p−q|)(χ�
i
+χ��

i ), (5.25)

where ai � 2[i + min(p, m) − min(p, q)] − 1 + |p −m| and bi � 2[i + min(p, n) −

min(p, q)]− 1 + |p− n| and (a) follows from the fact that

ai = 2[i + min(p, m)−min(p, q)]− 1 + |p−m|

= 2i− 1 + m + p− 2 min(p, q)

≥ 2i− 1 + q + p− 2 min(p, q)

= 2i− 1 + |p− q|, (5.26)

and similarly, bi ≥ 2i− 1 + |p− q. Now, we can apply the result of Lemma 5.6 to

the region defined in (5.23) and the upper-bound derived in (5.25). Accordingly,

we have

P {O} ≤̇P−min(χ(G),χ(H),ψ)∈R
1

min(p,q)

P
L

l=1 ψ(l)+
Pmin(p,q)

i=1 (2i−1+|p−q|)(χi(G)+χi(H)), (5.27)

where the region R is defined as

R �
�

(χ(G), χ(H), ψ)

�����ψ ≥ 0,
L�

l=1

min(p,q)�

i=1

(1− χi(G)− χi(H)− ψ(l))+
≤ Lr,

χ1(G) ≥ · · · ≥ χmin(p,q)(G) ≥ 0, χ1(H) ≥ · · · ≥ χmin(p,q)(H) ≥ 0

�
. (5.28)

Let us assume L ≥ min(p, q)
��min(p,q)

i=1 2i− 1 + |p− q|
�

= min2(p, q) max(p, q).

We define min(p, q) × 1 vector ϕ � [ϕ1, · · · , ϕmin(p,q)]T as ϕi � χi(G) + χi(H) +
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1
L

�L
l=1 ψ(l). For each (χ(G), χ(H), ψ) ∈ R, we have

Lr ≥

L�

l=1

min(p,q)�

i=1

(1− χi(G)− χi(H)− ψ(l))+

=
min(p,q)�

i=1

L�

l=1

max {0, 1− χi(G)− χi(H)− ψ(l)}

≥

min(p,q)�

i=1

max

�
0,

L�

l=1

1− χi(G)− χi(H)− ψ(l)

�

= L
min(p,q)�

i=1

(1− ϕi)
+ . (5.29)

On the other hand, according to (5.27) we have

P{O} ≤̇ P−min(χ(G),χ(H),ψ)∈R
1

min(p,q)

P
L

l=1 ψ(l)+
Pmin(p,q)

i=1 (2i−1+|p−q|)(χi(G)+χi(H))

≤̇ P−min(χ(G),χ(H),ψ)∈R
Pmin(p,q)

i=1 (2i−1+|p−q|)ϕi

(5.29)

≤̇ P−minϕ∈R̂
Pmin(p,q)

i=1 (2i−1+|p−q|)ϕi , (5.30)

where R̂ is defined as

R̂ �




ϕ

������
ϕ1 ≥ · · · ≥ ϕmin(p,q) ≥ 0,

min(p,q)�

i=1

(1− ϕi)
+
≤ r




 , (5.31)

noting that according to the definition of ϕ we can easily conclude that ϕ1 ≥ · · · ≥

ϕmin(p,q) ≥ 0. According to [29], (5.30) defines the probability of outage from the

rate r log(P ) in an equivalent p × q point-to-point multi-antenna Rayleigh fading

channel. Hence, we have

dRS(r) ≥ dp×q(r). (5.32)

On the other hand, due to the cut-set bound Theorem [12] we know that the DMT

of the system is upper-bounded by the minimum of the DMT of the equivalent
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point-to-point p×m and n× p multi-antenna channels. Hence,

dRS(r) ≤ dopt(r) = dp×q(r). (5.33)

Comparing (5.32) and (5.33) completes the proof.

The statement of Theorem 5.3 can be generalized to multi-hop networks. How-

ever, in a general multi-hop network, the RS scheme does not necessarily achieve

the optimum DMT for any number of antennas at the network nodes. The follow-

ing theorem gives a sufficient condition for the RS scheme to achieve the optimal

DMT in a multi-hop network:

Theorem 5.7 Consider a multi-antenna multi-hop network consisting of a sin-

gle source and destination and full-duplex relays, with exactly one relay in each

hop. Assume that each relay is connected to the relays in the previous and next

hop. Moreover, assume that for a fixed 1 ≤ m ≤ h, we have max (Nm, Nm−1) ≤

min (N0, N1, . . . , Nm−2, Nm+1, . . . , Nh) where h denotes the number of hops and Ni

denotes the number of antennas at the relay in the i’th hop. (N0 and Nh denote

the number of antennas at the source and destination, respectively). Providing L

is large enough such that L ≥ min2(Nm, Nm−1) max(Nm, Nm−1), the RS scheme

achieves the optimum DMT, which is a piecewise-linear function connecting the

points (k, (Nm − k)(Nm−1 − k)), k = 0, 1, . . . , min(Nm, Nm−1).

Proof Using the same argument as in Theorem 5.3, we can show that the prob-

ability of outage from the rate r log(P ) is equal to

P{O} .
= P

�
L�

l=1

Nmin�

j=1

(1− γj(Al))
+ < Lr

�
, (5.34)
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where Nmin � min {Nm, Nm−1}, Al � GhΘl,h−1Gh−1 · · ·Θl,1G1, and Gi denotes

the channel matrix between the nodes of the i’th hop and i − 1’th hop. On the

other hand, applying the argument of Lemma 5.4, we have

γi(Al) = γi(Gh) + γmin(Ψi,l,h−1) + γi(Gh−1) + · · ·+ γmin(Ψi,l,1) + γi(G1), (5.35)

where Ψi,l,j � VH
(1,i)(Gj+1)Θl,jU(1,i)(GjΘl,j−1Gj−1 · · ·Θl,1G1). Moreover, we can

easily check that the statement of Lemma 5.5 is yet valid. Hence, similar to

the proof of Theorem 5.3, we define the L × 1 vector ψ � [ψ(1), · · · , ψ(L)]T as

ψ(l) � max
i,j

γmin(Ψi,l,j). We have

P {ψ ≥ ψ0}
(a)
=

L�

l=1

P {ψ(l) ≥ ψ0(l)}

=
L�

l=1

P
�

Nmin�

i=1

h�

j=1

(γmin(Ψi,l,j) ≥ ψ0(l))

�

(b)

≤̇ P
− 1·ψ0

Nmin . (5.36)

As Θl,j’s are independent isotropic unitary matrices, their products with any pos-

sibly correlated set of unitary matrices constructs a set of independent isotropic

unitary matrices [57]. Accordingly, Ψi,l,j’s are independent for different values of

l, j, which results in (a). Also, (b) follows from Lemma 5.5 and the union bound

inequality.

Accordingly, applying (5.35) to (5.34) and rewriting inequality series of (5.23),

we can upper-bound the outage probability as

P{O}≤̇P






L�

l=1

Nmin�

i=1

�
1−

h�

j=1

χi(Gj)− ψ(l)

�+

< Lr




 , (5.37)

where χi(Gj) � γNmin+1−i(Gj), i.e., the reverse ordering of γi(Gj)’s. Let us de-

fine the Nmin × 1 vectors χ(Gj)’s as χ(Gj) � [χ1(Gj), χ2(Gj), . . . ,χNmin(Gj)]T
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containing the corresponding log-values of the Nmin smallest eigenvalues of GjGH
j .

Notice that χ1(Gj) ≥ χ2(Gj) ≥ · · · ≥ χNmin(Gj) ≥ 0. According to the upper-

bound in (5.36) and the statistical behavior of the eigenvalues of GjGH
j derived

in [29], we have

P
�

ψ ≥ ψ̂, χ(Gj) ≥ χ̂(Gj), j = 1, . . . , h
�

≤̇

P
− 1

Nmin

P
L

l=1 ψ̂(l)−
P

h

j=1

PNmin
i=1 (2(i+min(Nj ,Nj−1)−Nmin)−1+|Nj−Nj−1|)χ̂i(Gj)

(a)

≤̇

P
− 1

Nmin

P
L

l=1 ψ̂(l)−
PNmin

i=1 (2i−1+|Nm−Nm−1|)(
P

h

j=1 χ̂i(Gj)). (5.38)

Here, (a) results from the fact that 2 min (Nj, Nj−1) − 2Nmin + |Nj − Nj−1| =

Nj + Nj−1 − 2Nmin ≥ Nm + Nm−1 − 2Nmin = |Nm −Nm−1| which comes form the

assumption of max (Nm, Nm−1) ≤ min (N0, N1, . . . , Nm−2, Nm+1, . . . , Nh). Now, we

can apply the result of Lemma 5.6 to the region defined in (5.38) and the upper-

bound derived in (5.37). Accordingly, we have

P {O} ≤̇

P
−min(χ(G1),...,χ(G

h
),ψ)∈R

1
Nmin

P
L

l=1 ψ(l)+
PNmin

i=1 (2i−1+|Nm−Nm−1|)(
P

h

j=1 χ̂i(Gj)), (5.39)

where the region R is defined as

R �
�

(χ(G1), . . . ,χ(Gh), ψ)

�����χ1(Gj) ≥ · · · ≥ χNmin(Gj) ≥ 0, j = 1, 2, . . . , h

, ψ ≥ 0,
L�

l=1

Nmin�

i=1

�
1− ψ(l)−

h�

j=1

χi(Gj)

�+

≤ Lr




 . (5.40)

Similar to the proof of Theorem 5.3, we define Nmin×1 vector ϕ � [ϕ1, · · · , ϕNmin ]
T

as ϕi � �h
j=1 χi(Gj) + 1

L

�L
l=1 ψ(l). Rewriting the inequality series in (5.29) and

(5.30), we can upper-bound the outage probability as

P{O}≤̇P−minϕ∈R̂
PNmin

i=1 (2i−1+|Nm−Nm−1|)ϕi , (5.41)
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where R̂ is defined as

R̂ �




ϕ

������
ϕ1 ≥ · · · ≥ ϕNmin ≥ 0,

min(p,q)�

i=1

(1− ϕi)
+
≤ r




 . (5.42)

According to [29], (5.41) and (5.42) define the probability of outage from the rate

r log(P ) in an equivalent Nm×Nm−1 point-to-point multi-antenna Rayleigh fading

channel. Hence, we have

dRS(r) ≥ dNm×Nm−1(r). (5.43)

On the other hand, due to the cut-set bound Theorem [12], we know that the DMT

of the system is upper-bounded by the minimum of the DMT of the channels of

different hops. Hence,

dRS(r) ≤ dopt(r) = dNm×Nm−1(r). (5.44)

Comparing (5.43) and (5.44) completes the proof.

Corollary 5.8 Consider a multi-antenna multi-hop network consisting of a single

source, a single destination and full-duplex relays with exactly one relay in each

hop and assume that all the nodes are equipped with N antennas. Providing L is

large enough such that L ≥ N3, the RS scheme achieves the optimum DMT, which

is the piecewise-linear function connecting the points (k, (N−k)2), k = 0, 1, . . . , N .

5.2.2 Parallel Relay Network

In this subsection, we consider the setup of a multi-antenna parallel relay network.

In specific, we consider a two-hop network consisting of K > 1 half-duplex re-

lays with the assumption that there is no direct link between the source and the

destination. The source and the destination are shown by nodes 0 and K + 1,
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respectively, while the K parallel relays are denoted by the nodes 1, 2, . . . , K. Ear-

lier, the optimum DMT of the single-antenna parallel relay network is derived in

Theorems 3.9 and 3.16. Indeed, it is shown in Theorem 3.16 that the RS scheme

can achieve the optimum DMT of the single-antenna multiple-access parallel relay

network. However, much less is known regarding the DMT of the multi-antenna

parallel relay networks.

Here, we show that the RS scheme achieves a better DMT with respect to the

traditional AF relaying and also with respect to the other results reported in the

literature. Moreover, we show that the RS scheme achieves the optimum DMT of

the 2-relay parallel relay network.

Theorem 5.9 Consider a multi-antenna parallel relay network consisting of a

source equipped with m antennas, a destination equipped with n antennas and K

half-duplex relays each equipped with p antennas. Assume that there exists no direct

link between the source and the destination6. For any fixed B ≥ min2(p, q) max(p, q),

the RS scheme7 with L = BK number of paths, S = BK + 1 number of slots, the

path sequence

Q ≡ (q1, . . . , qK , q1, . . . , qK , . . . , q1, . . . , qK),

in which qk ≡ (0, k, K + 1), and the timing sequence si,j = i + j − 1, achieves the

diversity gain

dRS(r) ≥ Kdp×q

��
1 +

1

BK

�
r

�
, (5.45)

where q � min(m, n) and dp×q(r) denotes the diversity gain of the point-to-point

6
Note that in this theorem, the relays are not assumed to be isolated from each other, i.e.,

there may exist some links between the relays.

7
The reader is encouraged to have a look at the definition of RS scheme and its parameters

in Chapter 3.
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p × q multi-antenna Rayleigh fading channel corresponding to the rate r log(P ).

Moreover, as B →∞, the RS scheme achieves the diversity gain Kdp×q(r).

Proof The proof steps are the same as the ones presented for Theorem 3.9 in

Chapter 3 and Theorem 6.7 of [28]. Let us denote the channel between the k’th

relay and the source and the channel between the k’th relay and the destination by

Hk and Gk, respectively. Moreover, let us define r(i) � (i−1) mod K+1. Similar

to the proof of Theorem 3.9, one can easily show that the end-to-end channel from

the source to the destination can be shown by a block lower-triangular matrix.

More precisely, we have

y = Fx +Qnr + nd. (5.46)

Here, x denotes the vector corresponding to all the paths transmitted by the source,

y denotes the vector corresponding to all the paths received by the destination,

F =





F1,1 0 0 . . .

F2,1 F2,2 0 . . .
...

...
...

. . .

FL,1 FL,2 . . . FL,L




, (5.47)

where8 Fi,i = Gr(i)αiΘiHr(i), and

Q =





Q1,1 0 0 . . .

Q2,1 Q2,2 0 . . .
...

...
...

. . .

QL,1 QL,2 . . . QL,L




, (5.48)

8
As only the value of Fi,i is needed in the proof of Theorem 3.9, we just give the value of Fi,i

here. The formula for Fi,j , i < j, is much more complicated and hence, we decide not to bring

it. The same thing for Qi,j defined right after this.
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where Qi,i = Gr(i)αiΘi. The DMT of the end-to-end channel is equal to

dRS(r) = lim
P→∞

−
log (P {I(x;y) < (L + 1)r log(P )})

log(P )

= lim
P→∞

log
�
P

�
log

����ILn + PFFH
�
ILn +QQH

�−1
���
�

< (L + 1)r log(P )
��

− log(P )
.

(5.49)

Noting F is block lower-diagonal and applying Theorem 3.3 in [28], we have

���ILn + PFFH
�
ILn +QQ

H
�−1

��� ≥
L�

l=1

������
In + PFl,lF

H
l,l

�
In +

l�

i=1

Ql,iQ
H
l,i

�−1
������
.

(5.50)

Note that according to the constraint in the RS scheme, we have αl ≤ 1. Hence,

one can apply the same argument as in Lemma 5.2 and show that

P






L�

l=1

������
In + PFl,lF

H
l,l

�
In +

l�

i=1

Ql,iQ
H
l,i

�−1
������
< P (L+1)r





.
=

P
�

L�

l=1

��In + PFl,lF
H
l,l

�� < P (L+1)r

�
. (5.51)

Moreover, using the argument in the proof of Theorem 5.3, one can show that with

probability one, we have αl
.
= 1. Hence, defining Ak,b � GkΘ(b−1)K+kHk, we have

P
�

L�

l=1

��In + PFl,lF
H
l,l

�� < P (L+1)r

�
.
= P

�
K�

k=1

B�

b=1

��In + PAk,bA
H
k,b

�� < P (L+1)r

�
.

(5.52)

Let us define the 1 × K random vector σ = [σ1, σ2, . . . ,σK ] where σk is defined

as σk �
P

B

b=1 log|In+PAk,bA
H

k,b|
B log(P ) . Notice that σk’s are independent of each other. As

B ≥ min2(p, q) max(p, q), we can apply Theorem 5.3 to σk’s. Hence, for any fixed

1×K vector σ̂ ≥ 0, we have

P {σ ≥ σ̂}
(a).
= P−

P
K

k=1 dp×q(σ̂k). (5.53)
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Here, (a) results from Theorem 5.3 and the fact that σk’s are independent of each

other. Denoting the outage event as O, according to (5.49), (5.50), (5.51), and

(5.52), we have

P {O} ≤̇P
�

K�

k=1

σk ≤

�
K +

1

B

�
r

�
. (5.54)

Let us define the region R �
�

σ ≥ 0
���
�K

k=1 σk ≤
�
K + 1

B

�
r
�

. We have

P {O} ≤̇P {R}
(a)

≤̇ P−minσ∈R
P

K

k=1 dp×q(σk) (b)
= P−Kdp×q((1+ 1

BK
)r). (5.55)

Here, (a) results from Lemma 5.6. (b) results from the fact that dp×q(r) is a convex

decreasing function and, as a result, we have 1
K

�K
k=1 dp×q(σk) ≥ dp×q(

1
K

�K
k=1 σk) ≥

dp×q

��
1 + 1

BK

�
r
�
. (5.55) completes the proof of the Theorem.

In the following Theorem, we show that the RS scheme achieves the optimum

DMT for the two-relays half-duplex parallel relay network in which there exists no

direct link between the relays and m = n, but the two parallel relays can have a

different number of antennas. Figure 5.2 shows the schematic of such a network.

Theorem 5.10 Consider a multi-antenna parallel relay network consisting of a

source and a destination each equipped with m antennas, and K = 2 half-duplex

relays equipped with nk, k = 1, 2 antennas. Assume that there exists no direct link

between the source and the destination and also between the two relays. Consider

the RS scheme with L = BK, S = BK + 1, and the path and timing sequences

defined in Theorem 5.9. As B → ∞, the RS scheme achieves the optimum DMT

of the network.

Proof First, notice that according to the argument of Theorem 5.9, as B →∞,

the RS scheme achieves the DMT dRS,∞(r) � min0≤ν≤2r dm×n1(ν)+dm×n2(2r− ν).
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Figure 5.2: A schematic of the MIMO parallel 2 relays network with no direct link

between the source and the destination and also between the relays

Now, to prove the Theorem, we just have to show that dRS,∞(r) is indeed an upper-

bound for the optimum DMT. According to the cut-set Theorem [12], we have an

upper-bound for the capacity of the network for each channel realization. Hence,

we can apply the cut-set Theorem to find an upper-bound for the optimum DMT.

In general, for any arbitrary half-duplex relay network with K relays and any set

{0} ⊆ S ⊆ {0, 1, . . . , K}, we say the network is in the state S, if the network

nodes in S are transmitting and the network nodes in Sc � {0, 1, . . . , K + 1} /S

are receiving. Notice that as the source is always transmitting and the desti-

nation is always receiving, we have 0 ∈ S, K + 1 ∈ Sc. Accordingly, we de-

fine a 1 × 2K state vector ρ such that for any set {0} ⊆ S ⊆ {0, 1, . . . , K}, ρS

shows the portion of time that the half-duplex relay network spends in the state S

(
�

{0}⊆S⊆{0,1,...,K} ρS = 1). As the channels are assumed to be fixed for the whole

transmission period and the relay nodes and the source are assumed to have no

channel state knowledge about their forward channels, we can assume that a fixed
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state vector ρ is associated with the strategy that achieves the optimum DMT. De-

noting the outage event by O, for any general half-duplex relay network consisting

of K relays, we have

P {O}
(a)

≥ min
ρ

P





�

{0}⊆T ⊆{0,1,...,K}


�

{0}⊆S⊆{0,1,...,K}

ρSI (X (S ∩ T ) ; Y (Sc
∩ T

c)|X (S ∩ T c)) < r log(P )










(b).
= min

ρ
max

{0}⊆T ⊆{0,1,...,K}

P





�

{0}⊆S⊆{0,1,...,K}

ρSI (X (S ∩ T ) ; Y (Sc
∩ T

c)|X (S ∩ T c)) < r log(P )




 .

(5.56)

Here, (a) follows from the cut-set bound Theorem [12] and (b) follows from the

union bound on the probability. Now, in our two-relay parallel setup, let us define

two sets T1 � {0, 1} and T2 � {0, 2} corresponding to the two cut-sets. Moreover,

let us define two events O1 and O2 as

O1 �
���Im + PG1G

H
1

�� ≤ ν̂ log(P ),
��In2 + PH2H

H
2

�� ≤ (2r − ν̂) log(P )
�

,

O2 �
���In1 + PH1H

H
1

�� ≤ ν̂ log(P ),
��Im + PG2G

H
2

�� ≤ (2r − ν̂) log(P )
�

,

where ν̂ � argmin
0≤ν≤2r

dm×n1(ν) + dm×n2(2r − ν). Hence, in our setup, (5.56) can be
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simplified as

P {O}
(a)

≥̇ min
ρ

max


P





�

{0}⊆S⊆{0,1,2}

ρSI (X (S ∩ T1) ; Y (Sc
∩ T

c
1 )|X (S ∩ T c

1 )) ≤ r log(P )




 ,

P





�

{0}⊆S⊆{0,1,2}

ρSI (X (S ∩ T2) ; Y (Sc
∩ T

c
2 )|X (S ∩ T c

2 )) ≤ r log(P )










≥ min
ρ

max
�

P
��

ρ{0,1} + ρ{0,1,2}
� ��Im + PG1G

H
1

�� +
�
ρ{0} + ρ{0,1}

� ��In2 + PH2H
H
2

�� ≤ r log(P )
�

,

P
��

ρ{0,2} + ρ{0,1,2}
� ��Im + PG2G

H
2

�� +
�
ρ{0} + ρ{0,2}

� ��In1 + PH1H
H
1

�� ≤ r log(P )
� �

(b)

≥ min
ρ

max
�
1

�
r −

�
ρ{0,1,2} + ρ{0,1}

�
ν̂ −

�
ρ{0,1} + ρ{0}

�
(2r − ν̂)

�
P {O1} ,

1
�
r −

�
ρ{0} + ρ{0,2}

�
ν̂ −

�
ρ{0,2} + ρ{0,1,2}

�
(2r − ν̂)

�
P {O2}

�

(c)

=̇ P−dRS,∞(r), (5.57)

where 1[x] = 1 for x ≥ 0 and is 0 otherwise. Here, (a) results from taking the maxi-

mization of the right-hand side of (5.56) over T1, T2. (b) results from the facts that i)

conditioned onO1 and assuming r ≥
�
ρ{0,1,2} + ρ{0,1}

�
ν̂+

�
ρ{0,1} + ρ{0}

�
(2r−ν̂), we

have
�
ρ{0,1} + ρ{0,1,2}

� ��Im + PG1GH
1

�� +
�
ρ{0} + ρ{0,1}

� ��In2 + PH2HH
2

�� ≤ r log(P );

and ii) conditioned onO2 and assuming r ≥
�
ρ{0} + ρ{0,2}

�
ν̂+

�
ρ{0,2} + ρ{0,1,2}

�
(2r−

ν̂), we conclude that

�
ρ{0,2} + ρ{0,1,2}

� ��Im + PG2G
H
2

�� +
�
ρ{0} + ρ{0,2}

� ��In1 + PH1H
H
1

�� ≤ r log(P ).

(c) results from i) P {O1} = P {O2}
.
= P−dm×n1 (ν̂)−dm×n2 (2r−ν̂) = P−dRS,∞(r) and
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Figure 5.3: Parallel relay network with K = 2 relays, each node with 3 antennas

and no direct link between source and destination.

ii) ρ0 + ρ0,1 + ρ0,2 + ρ0,1,2 = 1 (due to the definition of ρ) which results in having

r −
�
ρ{0,1,2} + ρ{0,1}

�
ν̂ −

�
ρ{0,1} + ρ{0}

�
(2r − ν̂) = −

�
r −

�
ρ{0} + ρ{0,2}

�
ν̂−

�
ρ{0,2} + ρ{0,1,2}

�
(2r − ν̂)

�

and consequently,

1
�
r −

�
ρ{0,1,2} + ρ{0,1}

�
ν̂ −

�
ρ{0,1} + ρ{0}

�
(2r − ν̂)

�
+

1
�
r −

�
ρ{0} + ρ{0,2}

�
ν̂ −

�
ρ{0,2} + ρ{0,1,2}

�
(2r − ν̂)

�
= 1.

(5.57) completes the proof of the theorem.

Figure 5.3 shows the DMT of various schemes for the parallel relay network

with K = 2 relays and m = n = p = 3, i.e. 3 antennas at each node. As it is
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shown in Theorem 5.10, the RS scheme achieves the optimum DMT. However, if

we do not apply random unitary matrix multiplication at the relay nodes, applying

the steps in the proof of Theorem 5.9, one can easily show that the RS scheme

achieves the DMT of KdGH(r), where dGH(r) denotes the DMT of the product

of the channel matrix H from the source to the relay and the channel matrix G

from the relay to the destination (see (5.4)). Finally, applying the NAF scheme

of [26, 38], one can easily show that the DMT KdGH(2r) is achievable.

5.2.3 Multiple-Antenna Single Relay Channel

In this subsection, we consider the most-studied scenario in the relay network,

the single relay setup, in which a direct link exists between the source and the

destination. The relay is assumed to be half-duplex. There have been extensive

research on this particular setup toward characterization of the DMT. The authors

of [26] have shown that the NAF scheme achieves the best DMT among all possible

AF relaying schemes for the Single-Input Single-Output (SISO) single half-duplex

relay channel. However, here we show that using independent uniformly random

unitary matrices across different time-slots improves the DMT of the NAF scheme

for the multi-antenna setup. In order to exploit the potential benefit from random

unitary matrix multiplication, the source transmits in 2B consecutive time-slots. In

the odd time-slots, the relay listens to the source signal. In the even time slots, the

relay multiplies the received signal from the last time-slot with a uniformly random

unitary matrix and then amplifies the result with the maximum possible coefficient,

which is less than or equal to 1. The destination decodes the transmitted message

based on the joint decoding of the signal it receives in the 2B time-slots.
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Theorem 5.11 Consider a single relay channel consisting of a source, a half-

duplex relay, and a destination equipped with m, p, and n antennas, respectively.

Let us consider a modified NAF scheme that benefits from the random unitary

matrix multiplication at the relay node and the joint decoding at the destination side

through 2B time-slots. Assuming B ≥ min2(p, q) max(p, q) where q � min(m, n),

the modified NAF scheme achieves the following DMT

dMNAF (r) ≥ dm×n(r) + dp×q(2r). (5.58)

Proof The proof is similar to the proof of Theorem 5.9. Indeed, assuming the

source-destination, source-relay, and relay-destination channel matrices are de-

noted by F, H, and G, respectively, we can show that the end-to-end channel

matrix is equal to

F =





F 0 0 0 . . .

αGΘ1H F 0 0 . . .

0 0 F 0 . . .

0 0 αGΘ2H F . . .
...

...
...

...
. . .





. (5.59)

Here, we observe that the lower-diagonal elements are independent of the diagonal

elements. Hence, we can apply Theorem 3.3 in [28]. Accordingly, the DMT cor-

responding to the end-to-end system is greater than or equal to the summation of

the DMT of the forward channel F and the DMT of a two-hop channel utilized in

half of the time. In other words, dMNAF (r) ≥ dm×n(r) + dp×q(2r). Details of the

proof are similar to the proof of Theorem 5.9.

Figure 5.4 compares the achievable DMT of the NAF scheme with the achiev-

able DMT of the modified NAF scheme for the single relay channel with m = n =
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Figure 5.4: DMT of the NAF scheme versus the modified NAF scheme for Multiple-

antenna single relay channel with i)3 antennas ii)4 antennas at each node.

p = 3 and m = n = p = 4 antennas. Reference [54] has shown that the NAF

protocol achieves the DMT dNAF (r) ≥ dm×n(r) + dGH(2r). As we observe, the

modified NAF scheme outperforms the NAF scheme for small values of r.

5.2.4 General Full-Duplex Relay Networks

Here, we generalize the statement of Remark 3.13 to the multi-antenna case. In-

deed, it is shown in Chapter 3 that the RS scheme achieves a linear DMT connect-

ing the points (0, dmax) and (rmax, 0), where dmax denotes the maximum diversity

and rmax denotes the maximum multiplexing-gain (which is 1) for single-antenna
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full-duplex relay networks whose underlying graph is directed acyclic9. Here, we

derive the multi-antenna counterpart to Remark 3.13. The reader should refer to

Chapter 3 for description of the multi-antenna wireless relay network model and

to Definition 3.1 for the definition of edge cut-set and the weight of a cut-set in a

graph.

Theorem 5.12 Consider a full-duplex multi-antenna multi-relay network with the

graph G = (V, E) where G is directed acyclic. Assume each node has N antennas.

The RS scheme achieves the following DMT

dRS(r) = min
S

wG(S)
dN×N(r)

N2
, (5.60)

where dN×N(r) denotes the DMT of a N ×N multi-antenna channel.

Proof Using the same path sequence as the one in the proof of Remark 3.13

and applying the result of Corollary 5.8, (5.60) can be derived. The steps are the

same as the steps in the proof of Theorem 5.9, noting the equivalent point-to-point

channel is block lower-triangular and the function dN×N(r) is convex decreasing.

Remark 5.13 According to (5.60), a specific RS scheme with fixed path and tim-

ing sequences can simultaneously achieve the maximum diversity gain, which is

minS wG(S) (refer to Chapter 4), and the maximum multiplexing gain, which is N

in a multi-antenna relay network whose underlying graph is directed acyclic. In

other words, the RS scheme is robust in the sense that it achieves the corner-points

of the optimum DMT with no modification of the scheme parameters.

9
Recall that a directed graph is called directed acyclic if it contains no directed cycle.
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Figure 5.5: An example of a multi-antenna directed acyclic network with full-

duplex relays, each node equipped with 2 antennas.

Figure 5.5 shows an example of a directed acyclic network. The relays are oper-

ating in the full-duplex mode and each node is equipped with two antennas. Here,

the weight of the minimum cut-set depicted in the figure is 8. Hence, applying the

argument of Theorem 5.12, the RS scheme achieves dRS(r) = 2d2×2(r). However,

the DMT upper-bound is equal to dub(r) = d2×4(r), which is obtained from the

same cut-set. Although the two DMT’s are equal in the corner-points, they do not

coincide in between.

5.3 Conclusion

In this chapter, we derived new DMT results in various setups of multi-antenna

relay network using AF relaying. For this purpose, the application of RS scheme

proposed in Chapter 3 was studied. It was shown that random unitary matrix

multiplication at the relay nodes enables the RS scheme to achieve a better DMT

in comparison to the traditional AF relaying. First, the multi-antenna full-duplex

single-relay two-hop network was studied for which the RS scheme was shown to
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achieve the optimum DMT. This result was also generalized to the multi-antenna

multi-hop full-duplex relay network with one relay in each hop. Next, applying this

result, a new achievable DMT was derived for multi-antenna half-duplex parallel

relay networks. Interestingly, it turned out that the DMT of the RS scheme is

optimum for the multi-antenna half-duplex parallel two-relay setup with no direct

link between the relays. Moreover, random unitary matrix multiplication was

shown to improve DMT of the NAF scheme of [26] in the setup of multi-antenna

single relay channel. Finally, the general full-duplex multi-antenna relay network

was studied and a new lower-bound was obtained on DMT using the RS scheme,

assuming that the underlying network graph is directed acyclic.
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Chapter 6

Multiplexing Gain of

Multi-Antenna Relay Networks

In this chapter, we investigate the potential benefits of “traditional” AF relay-

ing in the wireless multiple-antenna multiple-relay networks with Rayleigh fading

channels. For description of the system model, the reader is referred to Chapter 3.

In contrast to more complex AF relaying’s such as RS scheme, in traditional AF

relaying, each relay node forwards its received signal of the last time-slot in the

following time-slot. No channel state knowledge is required at either the source or

any of the relay nodes. However, the destination is assumed to know the end-to-

end equivalent CSI. This CSI can be acquired through some pilot signals sent by

the source through the relay network.

We study the pre-log coefficient of the ergodic capacity in high SNR regime,

known as the multiplexing gain. In chapter 5, we have shown existence of certain

multi-antenna wireless relay networks for which the RS scheme does not achieve

the optimum multiplexing gain. However, here, we prove that the traditional AF
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relaying achieves the maximum multiplexing gain for any wireless multi-antenna

relay network. Furthermore, we characterize the maximum multilexing gain of the

network in terms of the minimum vertex cut-set of the underlying graph of the

network and show that it can be computed in polynomial-time (with respect to

the number of network nodes) using the maximum-flow algorithm. Finally, we

show that the argument can be easily extended to the multicast and multi-access

scenarios as well.

The rest of the chapter is organized as follows. Section 6.1 defines the concepts

needed in the proof and explains the main results of the chapter. Section 6.2 is

dedicated to the proof of the main result. Section 6.3 concludes the chapter.

6.1 The Main Result

Recall from Chapter 3 that the wireless relay network can be represented by a

graph G = (V, E) such that the adjacent nodes in V are connected by a quasi-

static flat Rayleigh-fading channel and non-adjacent nodes are disconnected from

each other. In this chapter, we consider the networks with a directed underlying

graph. However, it can be easily verified that the argument is yet valid for the

undirected graphs. Also, recall that the number of antennas as node i is denoted

by Ni. Nodes 0 and K + 1 correspond to the source and the destination nodes,

respectively. Moreover, recall from Chapter 3 that the received and the transmitted

vectors at the k’th node are shown by yk and xk, respectively. Hence, at the receiver

side of the a’th node, we have

ya =
�

(b,a)∈E

Ha,bxb + na, (6.1)
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where Ha,b shows the Na × Nb Rayleigh-distributed channel matrix between the

a’th and the b’th nodes and na ∼ N (0, INa
) is the additive white Gaussian noise.

All nodes have the same power constraint, P .

In the studied traditional AF relaying, all the relays are always active and, in

each time-slot, each relay sends the amplified version of the signal it has received

in the last time-slot. For definition of the edge cut-set and the weight of the edge

cut-set, the reader is referred to Definition 3.1. In order to state the main argument

of the chapter, we need the following definition, as well.

Definition 6.1 For a relay network with the directed connectivity graph G =

(V, E), a vertex cut-set on G is defined as a subset C ⊆ V such that any directed

path in G from 0 to K + 1 intersects with one of the nodes in C. In other words,

in the subgraph of G induced1 by V − C the destination node K + 1 is disconnected

from the source node, 0. The capacity of a vertex cut-set is defined as

cG(C) =
�

v∈C

Nv. (6.2)

It should be noted that according to the above definition, the subsets {0} and

{K + 1} are vertex cut-sets on G.

Theorem 6.2 Consider a general multi-antenna full-duplex relay network with the

directed connectivity graph G = (V, E). The traditional AF relaying achieves the

maximum multiplexing gain of the network, which is equal to

mG = min
C

cG(C), (6.3)

1
For a graph G = (V,E) and a subset S ⊆ V , the subgraph of G induced by S is defined as a

graph GS whose underlying vertex set is S and any two nodes in GS are connected by an edge

if and only if the similar nodes in G are connected by an edge.
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40 1 3

2

minimum vertex cut-set

Figure 6.1: A wireless multi-antenna relay network. N0 = N4 = 6, N1 = 3, N2 =

2, N3 = 4. The minimum vertex cut-set is depicted.

where C is a vertex cut-set on G.

Remark 6.3 It is worth noting that the maximum multiplexing gain value of every

multi-antenna network is computable in polynomial time. Indeed, as it is shown

in the proof of Theorem 6.2, the maximum multiplexing gain of the network is

equal to the minimum vertex cut-set of the network graph G or equivalently, the

minimum cut of the graph Ĝ defined in the proof of the Theorem. Noting construct-

ing Ĝ is feasible in polynomial time, its vertex size is linear with V and also the

minimum cut is computable in polynomial time from the Ford-Fulkerson Theorem,

we conclude that the maximum multiplexing gain of the network is computable in

polynomial time.

Figure 6.1 shows an example of a wireless multi-antenna relay network. In this

network, N0 = N4 = 6, N1 = 3, N2 = 2, N3 = 4. The vertex cut-set which has the

minimum capacity is C = {1, 2} and its associated capacity is equal to cG(C) = 5.

Hence, the maximum multiplexing gain of the network is 5, which is achievable by

the traditional AF relaying.
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The argument of Theorem 6.2 can be easily generalized to the multicast and

multi-access scenarios as well. In the multicast scenario, the source aims to send a

common message to multiple destinations. In contrast, in the multi-access scenario,

multiple source nodes attempt to send their independent messages to the common

destination node.

Theorem 6.4 (Multicast Scenario) Consider a general multi-antenna full-duplex

relay network with the directed connectivity graph G = (V, E). The source node

s ∈ V aims to send a common message to multiple destinations t1, t2, . . . , tM ∈ V .

The traditional AF relaying achieves the maximum multiplexing gain of the system,

which is equal to

mmc
G = min

1≤i≤M
mG(s, ti), (6.4)

where mG(s, t) is the minimum vertex cut-set between s and t. In other words,

mG(s, t) � minC cG (C) over all vertex cut-sets C between s and t.

Proof The proof is straightforward. First, it should be noted that the ergodic

capacity of the multicast problem is less than or equal to the minimum value of the

network ergodic capacities between the source and each of the destination nodes.

As a result, mmc
G ≤ min1≤i≤M mG(s, ti). On the other hand, in the traditional

AF relaying investigated in Theorem 6.2, the relay nodes and the source perform

the same operation no matter which node the message is being sent to or what

the network connectivity graph is. Hence, the argument of Theorem 6.2 can be

applied for the network between s and each ti. Therefore, the traditional AF

relaying achieves the multiplexing gain mmc
AF ≥ min1≤i≤sM mG(s, ti). This proves

the argument of the Theorem.

The following Theorem generalizes the argument of Theorem 6.2 to the multi-
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access scenario.

Theorem 6.5 (Multi-Access Scenario) Consider a general multi-antenna full-duplex

relay network with the directed connectivity graph G = (V, E). Multiple sender

nodes s1, s2, . . . , sM ∈ V aim to send independent messages w1, w2, . . . , wM with

the rates r1 log(P ), r2 log(P ), . . . , rM log(P ) to a common destination node t ∈ V .

Let us define the “multiplexing gain region” of the network as the set of all possible

M-tuples (r1, r2, . . . , rM) for which the destination can almost surely decode the

message of all senders. Then, the traditional AF relaying achieves the optimum

multiplexing gain region of the network. Furthermore, the optimum multiplexing

gain region of the network is equal to

M
ma
G =

�
(r1, r2, . . . , rM)

�����∀S ⊆ {1, 2, . . . ,M} ,
�

m∈S

rm ≤ mG(S, t)

�
, (6.5)

where mG(S, t) is the minimum vertex cut-set between {si |i ∈ S } and t. In other

words, mG(S, t) � minC cG (C) over all vertex cut-sets C between {si |i ∈ S } and t.

Proof First, we prove that the optimum multiplexing gain region of the network

is a subregion of Mma
G . Next, we prove that the traditional AF relaying achieves all

the points that lie in Mma
G . For any subset S ⊆ {1, 2, . . . ,M}, we assume that the

sender nodes in {si |i ∈ S } are multiple distributed antennas of a super-node ŝ and

other sender nodes, i.e. {si |i /∈ S }, do not interfere on the signals corresponding

to ŝ. Hence, we can apply the argument of Theorem 6.2 for the multiplexing

gain of the network between ŝ and t. Accordingly, for any M -tuples that lies

in the optimum multiplexing gain region of the network we have
�

m∈S rm ≤

mG(S, t). Now, we prove that the traditional AF relaying achieves all points

that lie in the region Mma
G . Let us consider an arbitrary point (r1, r2, . . . , rM) ∈
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Mma
G . Let us assume the senders are transmitting independent codewords from

independent gaussian codebooks of size P r1 , P r2 , . . . , P rM , respectively. Each relay

node amplifies its received signal of the current time-slot and forwards it in the next

time-slot. Let us denote the vectors transmitted by s1, s2, . . . , sM as x1,x2, . . . ,xM ,

respectively, and the vector received by t as y. Going through the same steps as

in the proof of Theorem 6.2, one can show that the multiplexing gain region of AF

relaying is equal to the multiplexing gain region of a multiple-access channel with

the equation

y =
M�

i=1

Hixi + n, (6.6)

where Hi is a matrix of size Nt × Nsi
, corresponding to the end-to-end channel

from si to t, its entries are multivariate polynomials of the channel gains of the

network and n is the white gaussian noise vector of variance 1. The destination

performs the jointly typical decoding [12] in order to decide on the transmitted

messages. The destination can decode with the error probability approaching 0 iff

for any subset S ⊆ {1, 2, . . . ,M}, we have

�
�

i∈S

ri

�
log(P ) ≤ I (xS ;y|xSc) , (6.7)

where xS � {xi |i ∈ S } and Sc � {1, 2, . . . M} − S. Furthermore, from (6.6), we

have

I (xS ;y|xSc) = E
�

log

�����INt
+ P

�

i∈S

HiH
H
i

�����

�
. (6.8)

Let us consider the network between the super-node ŝ consisting of all nodes

{si|i ∈ S} as the sender and t as the destination. Revisiting equations (6.14)
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and (6.33) for the network between ŝ and t, we conclude2

lim
P→∞

E
�
log

��INt
+ P

�
i∈S HiH

H
i

���

log P
= mG(S, t). (6.9)

Therefore, in the high SNR regime, the constraint in (6.7) is equivalent to the

constraint
�

i∈S ri ≤ mG(S, t). However, this constraint is satisfied as the M -

tuples (r1, r2, . . . , rM) lies in the region Mma
G . Hence, the destination can decode

the transmitted messages with an error probability approaching 0 for any M -tuples

that lies in Mma
G . This completes the proof.

6.2 Proof of Theorem 6.2

First, we prove the argument for the layered graphs. A graph is called layered if

all the paths from the source node to the destination node have the same length.

Next, we generalize the argument to any directed graph.

The traditional AF relaying scheme can be described as follows. The source

node generates a gaussian codebook with codewords of length TN0 where N0 is

the number of antennas at the source. In each time-slot, the source node transmits

the corresponding N0 symbols of the codeword. Following that, each relay node

observes the power of its received signal in every time-slot. If the power of the

received signal of the relay is less than or equal to P log(P ), it amplifies the received

signal by 1√
log(P )

and transmits the amplified signal in the next time-slot. Denoting

the path length from the source to the destination by lG, the destination node K+1

receives the transmitted symbol of the source node after lG − 1 time-slots. First,

2
Here, we used the assumption of layered network in the proof of Theorem 6.2. However, the

argument is yet valid for the general case.
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we find a lower-bound on the probability that all the relay nodes are active. Let

us consider a relay node i. Defining Di as the event that the relay node i is active,

P {Di} can be lower-bounded as

P {Di} = P
�
E

�
�yi�

2�
≤ P log(P )

�

≥ P




P
�

(j,i)∈E

�Hi,j�
2 + 1 ≤ P log(P )




 (6.10)

Here, yi denotes the received vector of size Ni at the node i and Hi,j denotes the

channel from node j to node i. Let us define mi as mi � Ni

�
(j,i)∈E Nj. Noting

that
�

(j,i)∈E �Hi,j�
2 is a Chi-square random variable with 2mi degree of freedom,

we have

P {Di} ≥ 1−
mi−1�

k=0

(log(P )− P−1)k

k!
eP−1−log(P )

≥ 1− ci
(log(P ))mi−1

P
, (6.11)

where ci � e
�mi−1

k=0
1
k! . In deriving (6.11), it is assumed P is large enough such

that P ≥ 1. Now, defining D as the event that all the relay nodes of the network

are active, we have

P {D} = P
�
∩

K
i=1Di

�

(a)

≥ P






K�

i=1




P
�

(j,i)∈E

�Hi,j�
2 + 1 ≤ P log(P )











(b)

≥ 1− c
logd (P )

P
, (6.12)

where c, d ≥ 0 are constants that depend only on the characteristics of the graph

G. Here, (a) follows from (6.10) and (b) follows from (6.11) and the fact that

the events A1,A2, . . . ,AK where Ai �
�

P
�

(j,i)∈E �Hi,j�
2 + 1 ≤ P log(P )

�
are
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independent. From (6.12), we observe that P {D} ∼ 1. Hence, without any loss of

generality, we can assume that with probability 1, all the relay nodes are active. In

other words, the multiplexing gain of this system is equal to the system in which

all the relay nodes are always active and transmit. On the other hand, from the

above argument, we know that for all the channels Hi,j with probability 1 we have

�Hi,j�
2
≤ log(P ). Knowing that for all relay nodes the amplification coefficient is

equal to 1√
log(P )

, we conclude that with probability 1 the power of the equivalent

noise at the destination side is less than or equal to a constant that depends only

on the topology of the network graph. As a result, the multiplexing gain of the

AF relaying is equal to the multiplexing gain of a point-to-point channel whose

matrix is equal to the equivalent matrix from the source to the destination. Let us

denote the equivalent NK+1 × N0 channel matrix, the source transmitted vector,

and the destination received vector by H, x, and y, respectively. Accordingly,

the multiplexing gain of the AF relaying is equal to the multiplexing gain of the

following channel model

y = Hx + n (6.13)

where n ∼ CN
�
0, INK+1

�
. In other words, denoting the multiplexing gain of the

AF relaying by mAF , we have

mAF = lim
P→∞

E
�
log

��IN0 + PH
H

H
���

log(P )
. (6.14)

It should be noted that the entries of H are multivariate polynomials of the entries

of {Hi,j}(j,i)∈E.

Now, let us construct a graph Ĝ = (V̂ , Ê) as follows. Corresponding to each

relay node 1 ≤ i ≤ K of the original graph G, we add 2Ni nodes in Ĝ and

denote them by ai,1, ai,2, . . . , ai,Ni
and bi,1, bi,2, . . . , bi,Ni

, respectively. Moreover,
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for every 1 ≤ i ≤ K, 1 ≤ j ≤ Ni, we add an edge from ai,j to bi,j. In other

words, (ai,j, bi,j) ∈ Ê. Also, corresponding to the source and destination nodes

of G, we add N0 + NK+1 + 2 nodes to Ĝ and denote them by b0,1, b0,2, . . . , b0,N0

and s (corresponding to the source node) and aK+1,1, aK+1,2, . . . , aK+1,NK+1 and

t (corresponding to the destination node), respectively. s is connected to b0,j’s

and also aK+1,j� ’s are connected to t. In other words, (s, b0,j) , (aK+1,j� , t) ∈ Ê, for

1 ≤ j ≤ N0, 1 ≤ j� ≤ NK+1. Finally, corresponding to each pair (i1, i2) ∈ E we

have (bi1,j1 , ai2,j2) ∈ Ê for all possible values of 1 ≤ j1 ≤ Ni1 and 1 ≤ j2 ≤ Ni2 .

According to the Ford-Fulkerson Theorem [14], there exists a family of ν edge-

disjoint paths P ≡ {p1, p2, . . . , pν} in Ĝ from s to t where ν is the min-cut value

on Ĝ from s to t. Considering the topology of Ĝ, it is easy to verify that pi’s

are also vertex disjoint. To show this fact, it should be noted that for every node

v, v �= s, t, we have either δI(v) ≤ 1 or δO(v) ≤ 1 where δI(v) and δO(v) denote the

incoming and outgoing degree of v.

Let us consider the network channels realization in which, for every pair (i1, i2) ∈

E, the (j2, j1)’th entry of the matrix Hi2,i1 is equal to 1 if one of the paths in P

passes through the edge (bi1,j1 , ai2,j2). Otherwise, the corresponding entry is equal

to 0. More precisely, we have

Hi2,i1(j2, j1) =





1 ∃ 1 ≤ v ≤ ν : (bi1,j1 , ai2,j2) ∈ pv

0 otherwise
(6.15)

For each 1 ≤ v ≤ ν, let us denote the first node after s and the last node before t

that the path pv passes through by b0,βv
and aK+1,γv

, respectively. Since the paths

are vertex disjoint, we have βv �= βv� and γv �= γv� for every v �= v�. Moreover, as the

paths are vertex disjoint, the equivalent end-to-end channel matrix corresponding
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to this channel’s realization is equal to

H(i2, i1) =





1 ∃ v : i2 = γv, i1 = βv

0 otherwise
(6.16)

From (6.16) and knowing that γv’s and βv’s are different for different values of v

imply that for this realization of network channels, we have

Rank (H) = ν. (6.17)

Having (6.17) and applying Theorem 2.11 of [27], we conclude

lim
P→∞

E
�
log

��IN0 + PH
H

H
���

log(P )
≥ ν. (6.18)

Combining (6.14) and (6.18), we have

mAF ≥ ν. (6.19)

Now, we prove that ν is indeed the maximum multiplexing gain of the network.

If ν = min(N0, NK+1), the argument is valid as the maximum multiplexing gain of

the network is less than or equal to the number of antennas at either the source

or the destination side. Hence, we only have to prove the argument for the case in

which ν < min(N0, NK+1).

Lemma 6.6 Consider the graph Ĝ = (V̂ , Ê). Assume ν < min(N0, NK+1) where

ν is the minimum-cut value over Ĝ from s to t. There exists a cut-set S ⊆ V̂ −{t}

over Ĝ of minimum weight (wĜ (S) = ν) and a vertex cutset C ⊆ V − {0, K + 1}

of minimum capacity over G such that

ÊS =
�

v∈C

Nv�

i=1

{(av,i, bv,i)} , (6.20)
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where ÊS denotes the edges that cross the cut-set, i.e.

ÊS �
�

(u, v)
���(u, v) ∈ Ê, u ∈ S, v ∈ Sc

�

.

Proof Let us consider a cut-set S ⊆ V̂ −{t} over Ĝ of minimum-value. For every

v ∈ V̂ , let us define ∆O(v) �
�

(v, u)
���(v, u) ∈ Ê

�
and ∆I(v) �

�
(u, v)

���(u, v) ∈ Ê
�

.

It is easy to verify that we have |∆O(ai,j)| = |∆I(bi,j)| = 1 for all possible val-

ues of i and j. Furthermore, for a subset S ⊆ V̂ , let us define AS and BS as

AS � {ai,j |ai,j ∈ S } and BS � {bi,j |bi,j ∈ S }, respectively. Let us define a new

cut-set T as T = {s} ∪AT ∪ BT where

AT � AS ∪
�

v
���v ∈ ASc ,

���∆I(v) ∩ ÊS

��� ≥ 1
�

,

BT �
�

v
���v ∈ BS ,

���∆O(v) ∩ ÊAT ∪S

��� = 0
�

. (6.21)

We prove that T is also a cut-set of minimum weight. According to the definition

of T , we have AS ⊆ AT and BT ⊆ BS . Now, we have

wĜ(T )− wĜ(S) =
���ÊT

���−
���ÊS

���

=
����ÊAT ∪S

���−
���ÊS

���
�

+
����ÊT

���−
���ÊAT ∪S

���
�

(a)
=

�

v∈AT −AS

����∆O(v) ∩ ÊAT ∪S

���−
���∆I(v) ∩ ÊS

���
�

+

�

v∈BS−BT

����∆I(v) ∩ ÊT

���−
���∆O(v) ∩ ÊAT ∪S

���
�

(b)

≤

�

v∈AT −AS

����∆O(v) ∩ ÊAT ∪S

���− 1
�

+
�

v∈BS−BT

����∆I(v) ∩ ÊT

���− 1
�

(c)

≤ 0. (6.22)
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Here, (a) follows from the fact that AS ⊆ AT and BT ⊆ BS and using the basic

arguments of Graph Theory [14] in counting the number of edges of a directed

graph. (b) follows from the fact that for every v ∈ AT −AS we have
���∆I(v) ∩ ÊS

��� ≥

1, and also for every v ∈ BS − BT we have
���∆O(v) ∩ ÊAT ∪S

��� ≥ 1. Finally, (c)

follows from the facts that i) since AT −AS ⊆ A for every v ∈ AT −AS we have

|∆O(v)| = 1, and ii) since BS−BT ⊆ B for every v ∈ BS−BT we have |∆I(v)| = 1.

(6.22) proves that T is also a cut-set of minimum weight over Ĝ.

Now, we prove that there exists a subset C ⊆ V − {0, K + 1} such that ÊT =
�

v∈C

Nv�

i=1

{(av,i, bv,i)}. In order to prove, we first show that for every possible value

of j we have b0,j ∈ T and aK+1,j ∈ T c. Since wĜ(T ) = ν < N0, there exists a

value of j such that b0,j ∈ T . According to the definition of T , we conclude that���∆O(b0,j) ∩ ÊT

���
(a)
=

���∆O(b0,j) ∩ ÊAT ∪S

��� = 0 where (a) follows from the fact that

there exists no edge in Ĝ between the nodes in the subset B, i.e. (B×B)∩ Ê = ∅.

Now, let us assume there exists a value j� such that b0,j� ∈ T c. Since s ∈ T , we

have
���∆I(b0,j�) ∩ ÊT

��� = 1. Hence, considering the cutset T̂ = T ∪ {b0,j�}, we have

wĜ(T̂ )− wĜ (T ) =
���∆O(b0,j�) ∩ ÊT̂

���−
���∆I(b0,j�) ∩ ÊT

���

=
���∆O(b0,j) ∩ ÊT̂

���− 1

=
���∆O(b0,j) ∩ ÊT

���− 1

= −1. (6.23)

(6.23) contradicts with the assumption that T is a cut-set of minimum value.

Hence, for all possible values of j we have b0,j ∈ T . Using the same argument,

for all possible values of j we have aK+1,j ∈ T c. Hence, the edges that cross

the cutset T are either of type (ai,j, bi,j), which we call inner edges, or of type

(bi1,j1 , ai2,j2), which we call outer edges. Now, we prove that all edges that cross
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the cutset T are inner edges. Let us assume an outer edge (bi1,j1 , ai2,j2) ∈ ÊT .

We have
���∆O(bi1,j1) ∩ ÊAT ∪S

��� =
���∆O(bi1,j1) ∩ ÊT

���
(a)
> 0 where (a) follows from the

fact that (bi1,j1 , ai2,j2) ∈ ÊT . This inequality contradicts with the assumption that

bi1,j1 ∈ BT . Hence, all the edges that cross T are inner edges.

Finally, we prove the argument of Lemma. Let us define a subset C ⊆ V −

{0, K + 1} as

C �
�

v
���v ∈ V − {0, K + 1},∃ i : (av,i, bv,i) ∈ ÊT

�
. (6.24)

We prove that ÊT =
�

v∈C

Nv�

i=1

{(av,i, bv,i)} ,. First, it should be noted that since all

the edges that cross the cutset are inner edges, we have ÊT ⊆
�

v∈C

Nv�

i=1

{(av,i, bv,i)}.

Now, let us assume that (av,i, bv,i) ∈ ÊT for some v ∈ C. Accordingly, we have���∆I (bv,i) ∩ ÊT

��� = 1. Since T is a cutset of minimum weight, we conclude that���∆O (bv,i) ∩ ÊT ∪{bv,i}

��� > 0. Hence, for every 1 ≤ i� ≤ Nv we have

���∆O (bv,i�) ∩ ÊT ∪{b
v,i�}

���
(a)
=

���∆O (bv,i) ∩ ÊT ∪{bv,i}

��� > 0. (6.25)

Here, (a) results from the fact that i) ∆O (bv,i) = ∆O (bv,i�) and ii) there exists no

edge between the nodes in B. From (6.25) and the definition of T , we conclude

that for all 1 ≤ i� ≤ Nv, we have bv,i� ∈ T
c. Using the same argument, we conclude

that for all 1 ≤ i� ≤ Nv we have av,i� ∈ T . As a result,
Nv�

i�=1

{(av,i� , bv,i�)} ⊆ ET .

This proves

ÊT =
�

v∈C

Nv�

i=1

{(av,i, bv,i)} . (6.26)

Now, we show that C is a vertex cutset over G. Let us assume C is not a vertex

cut-set. Hence, there exists a path (0, v1, v2, . . . , vl, K + 1) where vi ∈ V − C for
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all possible vi’s. Accordingly, we construct a path P from s to t in Ĝ as

P ≡ (s, b0,1, av1,1, bv1,1, av2,1, bv2,1, . . . , avl,1, bvl,1, aK+1,1, t) . (6.27)

It is easy to verify that P is a valid path over Ĝ. Furthermore, as for all vi’s we

have vi ∈ V −C, we conclude (avi,1, bvi,1) /∈ ET . Also, since (bvi,1, avi+1,1) is an outer

edge, we have (bvi,1, avi+1,1) /∈ ET . Hence, P does not cross T . This contradicts

with the assumption that T is a valid cut-set over Ĝ. As a result, C is a vertex

cut-set over G.

Finally, we prove that C is a minimum vertex cut-set over G. Let us consider

any arbitrary cut-set C � ⊆ V − {0, K + 1} over G. Let us consider the subgraph

of G induced by V − C � and denote the set of all vertices to whom the source has

a directed path by Q. Clearly, since C is a vertex cut-set, we have {K + 1} /∈ Q.

Now, let us define a cut-set T � over Ĝ as

T
� � {0} ∪ (∪1≤i≤N0 {b0,i}) ∪ (∪v∈Q ∪1≤i≤Nv

{av,i, bv,i}) ∪ (∪v∈C� ∪1≤i≤Nv
{av,i}) .

As there exists no directed path from s to V − (C � ∪Q ∪ {s}) in the subgraph of G

induced by V −C �, we conclude that there exists no edge from the nodes in {0}∪Q

to the nodes in V − (C � ∪Q ∪ {s}). As a result, we have

ÊT � =
�

v∈C�

Nv�

i=1

{(av,i, bv,i)} . (6.28)

Hence, for any vertex cut-set C � over G we have ν ≤ cG(C �). Knowing that there

exists a vertex cut-set C such that ν = cG(C), we conclude that C is the minimum

vertex cut-set over G. This completes the proof of the Lemma.

Applying Lemma 6.6, for ν < min(N0, NK+1) we have ν = minC cG(C) where C

is a vertex cut-set on G. On the other hand, when ν = min(N0, NK+1), we have
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ν ≥ minC cG(C). Hence, applying (6.19) we have

mAF ≥ min
C

cG(C). (6.29)

Finally, we upper-bound the maximum multiplexing gain of the network. Let

us denote the maximum multiplexing gain of the network by mG. Let us consider

the vertex cut-set C with minimum capacity on G. In the cases where C = {0}

or C = {K + 1}, we have mG ≤ min{N0, NK+1} = cG(C). Let us assume the

network is operating during T time-slots. Let us denote the vector that the source

transmits from time-slot 1 upto τ and the vector that the source transmits during

the time-slot τ by xτ and x(τ), respectively. Similarly, yτ and y(τ) are defined.

Furthermore, let us define xC and yC as the vectors that the nodes in C transmit

and receive, respectively. Since C has the minimum capacity between the vertex

cut-sets, the situation where C �= {0} and C �= {K +1} implies {0, K +1}∩C = ∅.

As C is a vertex cut-set, (x,xC,y) form a Markov chain. Hence, we have

C
(a)
= lim

T→∞

1

T
E

�
I

�
xT ;yT

�� (b)

≤ lim
T→∞

1

T
E

�
I

�
xT ;xT

C
�� (c)

≤ lim
T→∞

1

T
E

�
I

�
xT ;yT

C
��

,

(6.30)

where C is the ergodic capacity of the network and the operator E is performed

over all channels’ realizations. Here, (a) follows from the Fano inequality [12], (b)

follows from the fact that (x,xC,y) form a Markov chain, and (c) follows from

the fact that (x,yC,xC) form a Markov chain. Now, E
�
I

�
xT ;yT

C
��

can be upper-
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bounded as

E
�
I

�
xT ;yT

C
�� (a)

≤

�

v∈C

E
�
h

�
yT

v

��
− E

�
h

�
yT
C

��xT
��

=
�

v∈C

E
�
h

�
yT

v

��
−

T�

τ=1

E
�

h
�
y(τ)
C

��yτ−1
C ,xT

��

(b)

≤

�

v∈C

E
�
h

�
yT

v

��
−

T�

τ=1

E
�

h
�
n(τ)
C

��

(c)

≤

�

v∈C

T�

τ=1

E
�
h

�
y(τ)

v

�
− h

�
n(τ)

v

��

(d)

≤ T

�
�

v∈C

Nv

�
log(P ) + TO(1)

= TcG(C) log(P ) + TO(1). (6.31)

Here, (a) follows from the fact that h
�
yT
C
�
≤

�
v∈C h

�
yT

v

�
, (b) follows from the fact

that n(τ)
C is independent from

�
xT ,yτ−1

C ,y(τ)
C − n(τ)

C

�
and applying entropy power

inequality3 [12], and (c) follows from the fact that h
�
n(τ)
C

�
=

�
v∈C h

�
n(τ)

v

�
and

h
�
yT

v

�
≤

�T
τ=1 h

�
y(τ)

v

�
. In order to prove (d), let us define v− as the set of

vertices from whom there exsits an edge to v, i.e. v− � {u |(u, v) ∈ E }. We

have E
�

h
�
y(τ)

v

�
− h

�
n(τ)

v

��
= E

�
I

�
x(τ)

v− ;y(τ)
v

��
, which is equal to the ergodic

capacity of a cG(v−)×Nv MIMO system. As a result E
�

h
�
y(τ)

v

�
− h

�
n(τ)

v

��
=

min (cG(v−), Nv) log(P )+O(1) ≤ Nv log(P )+O(1), which results in (d). Combining

(6.30) and (6.31), we have

mG ≤ min
C

cG(C). (6.32)

3
According to the entropy power inequality, for any independent random vectors a and b of

size n we have 2
2
n h(a+b) ≥ 2

2
n h(a)

+ 2
2
n h(b)

. As a result h(a + b) ≥ h(a).
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Comparing (6.29) and (6.32), we conclude

mG = mAF = min
C

cG(C). (6.33)

(6.33) completes the proof of the Theorem for the case of the layered networks.

Now, we prove the argument of the Theorem for the case of any arbitrary

networks. First, it should be noted that the inequality series (6.30) and (6.31) are

still valid for any arbitrary network. As a result, (6.32) is still valid. Hence, we

just need to prove mAF ≥ minC cG(C).

In the traditional AF relaying, the network is operated through time-slots t =

1, 2, . . . , T as follows. The source sends a codeword of length T from its gaussian

codebook. Each relay node amplifies its received signal from the last time-slot and

forwards it in the next time-slot with the possible amplification coefficient 1√
log(P )

,

similar to what explained for the layered network. The destination decodes the

transmitted message using the joint decoding of its received vector from all of its

antennas during the time-slots t = 1, 2, . . . , T . Noting the destination has NK+1

antennas, its received vector is of size TNK+1. Let us denote the transmitted vector

at the source and the received vector at the destination by x = xt,n1 and y = yt,n2 ,

respectively, where 1 ≤ t ≤ T , 1 ≤ n1 ≤ N0 and 1 ≤ n2 ≤ NK+1. Using the same

argument we applied for the layered network, we conclude that the multiplexing

gain of the AF relaying is equal to the multiplexing gain of a point-to-point MIMO

channel whose matrix is of size TNK+1 × TN0 and its entries are multivariate

polynomials of the entries of the network channels matrices {Hi,j}(j,i)∈E. Let us

denote this channel matrix by H = H((t2, n2), (t1, n1)) where 1 ≤ t1, t2 ≤ T ,

1 ≤ n1 ≤ N0, and 1 ≤ n2 ≤ NK+1. In other words, we have

mAF =
1

T
lim

P→∞

E
�
log

��IN0 + PH
H

H
���

log(P )
. (6.34)
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Here, the expectation is performed over all network channels realization. Now, let

us consider the corresponding graph Ĝ = (V̂ , Ê), which was previously defined for

the unlayered network. It can be shown that the entries of H are related to the

weight of paths in Ĝ as follows.

H((t2, n2), (t1, n1)) =
�

p

w(p),

s.t. p(1) = b0,n1 & p(l(p)− 1) = aK+1,n2 & l(p) = 3 + 2(t2 − t1). (6.35)

Here, the summation is over the weight of all paths p of length4 3 + 2(t2 − t1) in

Ĝ from s to t such that p(1) = b0,n1 and p(l(p)− 1) = aK+1,n2 . Furthermore, the

weight of a path p is defined as

w(p) �
�

Hi2,i1(j2, j1),

s.t. (bi1,j1 , ai2,j2) ∈ Ê & p passes through (bi1,j1 , ai2,j2) . (6.36)

Applying the same argument as for the layered network, there exists a family of

ν vertex-disjoint paths P ≡ {p1, p2, . . . , pν} in Ĝ from s to t where ν is the min-cut

value on Ĝ from s to t. Now, let us consider the network channels realization in

which for every pair (i1, i2) ∈ E, the (j2, j1)’th entry of the matrix Hi2,i1 is equal

to 1 if one of the paths in P passes through the edge (bi1,j1 , ai2,j2), and otherwise

the corresponding entry is equal to 0. More precisely, we have

Hi2,i1(j2, j1) =





1 ∃ v : pv passes through (bi1,j1 , ai2,j2)

0 otherwise
(6.37)

From (6.36) and (6.37) and knowing the fact that the paths are vertex disjoint, we

4
The length of a path p, which is denoted by l(p), is defined as the number of edges that the

path goes through.
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conclude that for every path p in Ĝ from s to t, we have

w(p) =





1 ∃ 1 ≤ v ≤ ν : p = pv

0 otherwise
(6.38)

For each 1 ≤ v ≤ ν, let us denote the first node after s and the last node before t

that the path pv passes through by b0,βv
and aK+1,γv

, respectively. Since the paths

are vertex disjoint, we have βv �= βv� and γv �= γv� for every v �= v�. Applying this

fact, (6.35), and (6.38), we conclude that the equivalent end-to-end channel matrix

corresponding to this specific realization for the network channels is equal to

H((t2, n2), (t1, n1)) =





1 ∃ v : n1 = βv, n2 = γv, l(pv) = 2(t2 − t1) + 3

0 otherwise
.(6.39)

From (6.39) and knowing that γv �= γv� and βv �= βv� for every v �= v�, we have

Rank (H) =
ν�

v=1

�
T −

l (pv)− 3

2

�
≥ ν

�
T −

lĜ − 3

2

�
= ν (T − lG + 1) , (6.40)

where lĜ and lG denote the maximum length of a simple path5 connecting the

source to the destination in G and Ĝ, respectively. Having (6.40) and applying

Theorem 2.11 of [27], we conclude

lim
P→∞

E
�
log

��IN0 + PH
H

H
���

log(P )
≥ ν (T − lG + 1) . (6.41)

Combining (6.34) and (6.41), we have

mAF ≥ ν −
ν (lG − 1)

T
. (6.42)

5
A path p in a graph G = (V,E) is called simple, if it passes through each vertex of V just

once.
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Applying Lemma 6.6, for ν < min(N0, NK+1), we have ν = minC cG(C) where C

is a vertex cut-set on G. On the other hand, when ν = min(N0, NK+1), we have

ν ≥ minC cG(C). Hence, applying (6.42), we have

mAF ≥ min
C

cG(C)−
v (lG − 1)

T
, (6.43)

where C is a vertex cut-set on G. Having T → ∞ completes the proof of the

Theorem.

6.3 Conclusion

The general wireless multi-antenna multiple-relay network, introduced earlier in

Chapter 3, is investigated in high SNR regime. The pre-log coefficient of the er-

godic capacity of the network is studied in the high SNR regime, known as multi-

plexing gain. It is shown that the “traditional” AF relaying achieves the maximum

multiplexing gain of the network. Furthermore, the maximum multiplexing gain of

the network is proved to be equal to the minimum vertex cut-set of the underlying

graph of the network, which can be computed in polynomial time in terms of the

number of network nodes. Finally, the argument is extended to the muticast and

multi-access scenarios.
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Chapter 7

Conclusion and Future Research

This dissertation focuses on Diversity Multiplexing Tradeoff and capacity results

in relayed wireless networks.

In Chapter 2, we consider the parallel MIMO relay network. The network stud-

ied in this chapter consists of K relays each equipped with N antennas assist in data

transmission between a source and a destination, each equipped with M anten-

nas (N ≥ M). Communication takes place in two equal-time hops and the relays

operate in the half-duplex mode. We propose a new AF protocol called “Incre-

mental Cooperative Beamforming Scheme” (ICBS). We prove that the achievable

rate of ICBS converges to the capacity of the parallel MIMO relay network, for

asymptotically large number of relays, with a gap which vanishes to zero. Next,

we study the performance of ICBS in two asymptotically high SNR regmies: i) In

the regime where the power of both the source and the relays approaches infinity,

we prove that ICBS achieves the full multiplexing gain; and ii) In the regime where

the power of the source is fixed, but the power of each relay approaches infinity,

we show that the gap between the achievable rate of ICBS and the capacity van-
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ishes to zero. Finally, through simulation, we compare the achievable rate of ICBS

against the achievable rate of “matched-filtering” scheme of [19] and the upper-

bound on capacity obtained from the point-to-point capacity of the broadcast

channel. Simulation results show that while the gap between “matched-filtering”

and the upper-bound on capacity remain constant for different number of relays,

the achievable rate of ICBS rapidly achieves the upper-bound capacity.

In Chapter 3, we study DMT in single-antenna multiple-relay networks. Here,

we propose a new scheme, which we call random sequential (RS), based on the

SAF relaying for general multiple-antenna multi-hop networks. The key elements

of the proposed scheme are: 1) signal transmission through sequential paths in the

network, 2) path timing such that no non-causal interference is caused from the

source of the future paths on the destination of the current path, 3) multiplication

by a random unitary matrix at each relay node, and 4) no signal boosting in

amplify-and-forward relaying at the relay nodes, i.e. the received signal is amplified

by a coefficient with the absolute value of at most 1. We derive DMT of the RS

scheme for general single-antenna multiple-relay networks (maximum diversity and

DMT of RS scheme is investigated in the following two Chapters). Specifically,

we derive: 1) the exact DMT of the RS scheme under the condition of “non-

interfering relaying”, and 2) a lower-bound on the DMT of the RS scheme (no

conditions imposed). Finally, we prove that for single-antenna multiple-access

multiple-relay networks (with K > 1 relays) when there is no direct link between

the transmitters and the receiver and all the relays are connected to the transmitter

and to the receiver, the RS scheme achieves the optimum DMT. However, for two-

hop multiple-access single-relay networks, we show that the proposed scheme is

unable to achieve the optimum DMT, while the DDF scheme is shown to perform
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optimum in this scenario.

In Chapter 4, we investigate the maximum diversity gain for the general multi-

hop multi-antenna wireless relay network which is introduced in Chapter 3. We

show that the proposed RS scheme achieves the maximum diversity gain of the

network. Furthermore, we characterize the maximum achievable diversity gain in

terms of the minimum edge cut-set of the underlying graph of the network.

In Chapter 5, we investigate DMT of AF relaying in “multi-antenna” multi-

relay networks. For this purpose, we study the application of the RS scheme

described in Chapter 3. First, we study the simple structure of multi-antenna

full-duplex two-hop single-relay network. We show that unlike the traditional AF

relaying, the RS scheme achieves the optimum DMT. Indeed, random unitary

matrix multiplication empowers the RS scheme to achieve the optimum DMT.

This fact will be elaborated throughout the Chapter 5. Furthermore, we generalize

this result to the multi-hop multi-antenna relay networks with single-relay in each

hop. Next, we study the case of multi-antenna half-duplex parallel relay network

and, by deriving its DMT, we show that the RS scheme improves the DMT of the

traditional AF relaying scheme. Interestingly, it turns out that the DMT of the RS

scheme is optimum for the multi-antenna half-duplex parallel two-relay (K = 2)

setup with no direct link between the relays. We also show that utilizing random

unitary matrix multiplication improves the DMT of the NAF relaying scheme

of [26] in the case of a multi-antenna single relay channel. Finally, we study the

class of general full-duplex multi-antenna relay networks whose underlying graph

is directed acyclic and all nodes are equipped with the same number of antennas.

Using the RS scheme, we derive a new lower-bound for the achievable DMT of this

class of networks. It turns out that the new DMT lower-bound meets the optimum
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DMT at the corner points, corresponding to the maximum multiplexing gain and

the maximum diversity gain of the network, respectively.

In Chapter 6, we study the achievable rate of the traditional AF relaying in the

high SNR scenarios for general wireless multiple-antenna multiple-relay networks.

The channel model for this Chapter is the same as the ones used in Chapters 3,

4 and 5, meaning that every two nodes are either connected through a Rayleigh

fading channel or disconnected. Unlike the RS scheme which utilizes matrix mul-

tiplication and a complex scheduling for the relays transmission, in traditional AF

relaying, each relay node forwards its received signal of the last time-slot in the

following time-slot. No channel state knowledge is required at either the source or

any of the relay nodes. However, the destination is assumed to know the end-to-

end channel state. We study the pre-log coefficient of the ergodic capacity in high

SNR regime, known as the multiplexing gain. We prove that the traditional AF

relaying achieves the maximum multiplexing gain for any wireless multi-antenna

relay network. Furthermore, we characterize the maximum multiplexing gain of

the network in terms of the minimum vertex cut-set of the underlying graph of

the network and show that it can be computed in polynomial-time (with respect

to the number of network nodes) using the maximum-flow algorithm. Finally, we

show that the argument can be easily extended to the multicast and multi-access

scenarios as well.

7.1 Future Research Directions

The dissertation can be continued in several directions as briefly explained in what

follows.
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Here, we investigated wireless relay networks in the asymptotic scenarios, either

large number of relays or high SNR regime. We derived the asymptotic capacity,

multiplexing gain, diversity gain, and DMT in many scenarios using the AF re-

laying. Another interesting scenario in which AF relaying is potentially useful is

very low SNR regime (as an example, see [5, 40]). A good direction for the future

research is to consider the wireless relay networks in very low SNR regime and

investigate scaling of the ergodic capacity and the outage capacity.

In another research work [3,4], we considered the K user Gaussian interference

channel in high SNR regime and derived its degree of freedom (DOF) for almost all

channels coefficients values. Here, we showed that traditional AF relaying achieves

the optimum multiplexing gain in wireless multi-antenna relay networks. As an

extension, we can study multiplexing gain (or equivalently, DOF) of AF relaying

in wireless relay network with multiple disjoint source-destination pairs interfering

on each other.
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Appendix A

Proof of Lemma 2.2

Applying the Markov inequality, we have

P [ν > ξ] ≤
E

�
�UH

AHA�
2
�

ξ
(a)

≤
E [�UA�

2�HA�
2]

ξ
(b)

≤
E [�UA�

2�H�2]

ξ
. (A.1)

Here, (a) is obtained by applying the norm product inequality on matrices [22],

and (b) results as HA is a submatrix of H. Now, let us define the event Z ≡

�
�H�2 < 2s

�
where s � MNK. We can write

E
�
�UA�

2
�H�2

�
= E

�
�UA�

2
�H�2

��Z
�
P[Z] + E

�
�UA�

2
�H�2

��Zc
�
P[Zc]

(a)

≤ 2sE
�
�UA�

2
�
+ ME

�
�H�2

��Zc
�
P[Zc], (A.2)

where (a) follows from the facts that i) conditioned on Z, �H�2 can be upper-

bounded by 2s, and ii) E [�UA�
2|Z] P[Z] ≤ E [�UA�

2] ≤ �U�2 = M . Hence, it is

sufficient to upper-bound the term E [�H�2| Zc] P[Zc].
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Since �H�2 is the sum of s i.i.d. random variables with unit mean and unit vari-

ance, we have E [�H�2] = s and Var [�H�2] = s. Therefore, using the Chebyshev

inequality [22], we have

P[Zc] = P
�
�H�2 > 2s

�
≤

1

s
. (A.3)

Now, we can upper-bound E [�H�2| Zc] P[Zc] as follows.

�
E

�
�H�2

��Zc
�
P[Zc]− sP[Zc]

�2
=

�� ∞

x=2s

(x− s) f�H�2(x)dx

�2

(a)

≤

� ∞

x=2s

f�H�2(x)dx ·

� ∞

x=2s

(x− s)2 f�H�2(x)dx

(b)

≤
1

s
· s = 1. (A.4)

Here, (a) follows from the Cauchy-Schwarz inequality and (b) results from (A.3)

and the fact that Var [�H�2] = s. From inequalities (A.3) and (A.4), we conclude

E [�H�2| Zc] P[Zc] ≤ 2. Combining this fact with (A.1) and (A.2), we have

P [ν > ξ] ≤
2MNKE [�UA�

2] + 2M

ξ
. (A.5)

To upper-bound E [�UA�
2], we have

E
�
�UA�

2
�

= KE
�
�Uk�

2
|Ak

�
P[Ak]

= K
�
E

�
�Uk�

2
|Ak, Bk

�
P[Ak, Bk] + E

�
�Uk�

2
|Ak, B

c
k

�
P[Ak, B

c
k]

�

(a)

≤ K (MP[Bk] + γP[Ak]) . (A.6)

Here, (a) follows from the facts that i) the norm of Uk is upper-bounded by �U�2 =

M , and ii) conditioned on the event Bc
k, it is upper-bounded by γ. Combining (A.5)

and (A.6) completes the proof.
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Appendix B

Proof of Lemma 2.3

Let us denote Wi as the ith column of W. In [11], it has been shown that

f�Wi�2(x) =
Γ(NK)

Γ(N)Γ(NK −N)
xN−1(1− x)NK−N−1, i = 1, · · · , M, (B.1)

which corresponds to the Beta distribution with parameters N and NK − N .

Therefore, we have

P
�
�W�

2
≥ γ

�
= P

�
M�

i=1

�Wi�
2
≥ γ

�
≤ P

�
max

i
�Wi�

2
≥

γ

M

� (a)

≤ MP [Fi] , (B.2)
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where (a) results from the Union bound on the probability, and Fi ≡
�
�Wi�

2 ≥
γ
M

�
.

Defining γ� � γ
M , and using (B.1), we obtain

P
�
�W�

2
≥ γ

�
≤ M

�
1− F�Wi�2(γ

�)
�

= M
Γ(NK)

Γ(N)Γ(NK −N)

� 1

γ�
xN−1(1− x)NK−N−1dx

(a)
= M

N�

n=1

(NK − 1)!

(N − n)!(NK −N + n− 1)!
γ�N−n(1− γ�)NK−N+n−1

≤ M
N�

n=1

(NKγ�)N−n(1− γ�)NK−N

(N − n)!

=
M(NKγ�)N−1(1− γ�)NK−N

(N − 1)!
×

�
1 +

N−1�

n=1

(N − 1)(N − 2) . . . (N − n)

(Kγ�)n

�

(b)

≤
NN

MN−2(N − 1)!
(Kγ)N−1

�
1−

γ

M

�N(K−1)
, (B.3)

where (a) follows from the integration by part, and (b) follows from the fact that

γ ≥ MN
K .
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Appendix C

Proof of Lemma 2.4

Applying Lemma 2.2, we have

P [ν > ξ] ≤
2MNK2

ξ

�
MP[Bk] + γP[Ak] +

1

NK2

�
. (C.1)

Now, we upper-bound P[Ak] as follows. The event Ak occurs whenever the event

Ex,nk

����G†
kU

H
k rk

���
2
�

> β occurs. On the other hand, conditioned on occuring Bc
k,

we have

Ex,nk

����G†
kU

H
k rk

���
2
�
≤ γλ−1

min(G
H
k Gk)

�
1 + Ps�Hk�

2
�
, (C.2)

where (C.2) follows from the product norm inequality of matrices. Hence, con-

ditioned on occuring Ak and Bc
k, we have λmin(GH

k Gk) < γ
β (1 + Ps�Hk�

2). Let

us define δ � γ
β and Dk as the event in which λmin(GH

k Gk) < δ (1 + Ps�Hk�
2).

Accordingly, we have P[Ak, Bc
k] ≤ P[Dk]. Hence, we can upper-bound P[Ak] as

follows.

P[Ak] = P[Ak, Bk] + P[Ak, B
c
k] ≤ P[Bk] + P[Dk] (C.3)
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Moreover, P[Dk] can be upper-bounded as follows.

P[Dk] ≤ P
��

λmin(G
H
k Gk) ≤ 2Psδ log

�
1

δ

�
+ δ

� �

�
1 + Ps�Hk�

2
≥ 2Ps log

�
1

δ

�
+ 1

��

≤ P
�
λmin(G

H
k Gk) ≤ 2Psδ log

�
1

δ

�
+ δ

�
+ P

�
�Hk�

2
≥ 2 log

�
1

δ

��

(a)
=

� 2Psδ log( 1
δ
)+δ

x=0

Me−Mxdx +
1

Γ(MN)

� ∞

x=2 log( 1
δ
)
xMN−1e−xdx

≤ 2MPsδ log

�
1

δ

�
+ Mδ +

�
MN−1�

m=0

xme−x

m!

�

x=2 log( 1
δ
)

(b)

≤ δ

�
2MPs log

�
1

δ

�
+ 8δ logMN−1

�
1

δ

�
+ M

�
. (C.4)

Here, (a) results from the fact that the minimum eigenvalue of GH
k Gk can be

lower-bounded by the minimum eigenvalue of WH
k Wk where Wk is any arbitrary

M × M submatrix of Gk [22] and also, from the probability density function of

the minimum singular value of a square i.i.d. complex Gaussian matrix, derived

in [16]. (b) follows from δ ≤ e−1 and the fact that
�∞

m=0
2m

m! < 8.

Combining (C.1), (C.3), and (C.4), we have

P [ν > ξ] ≤
2MNK2

ξ
×

�
2MP[Bk] +

γ2

β

�
2MPs log

�
β

γ

�
+ 8

γ

β
logMN−1

�
β

γ

�
+ M

�
+

1

NK2

�
(C.5)

This proves the first part of Lemma. Now, assuming ξ = log2(K)
√

K, β = log(K)
4√K

,

and γ = 4 log(K)
K , we know γ ≤

β
e for large enough values of K. Hence, we can

apply (C.5). We have

P [ν > ξ] ≤
2MNK

√
K

log2(K)

�
2MP[Bk] + O

�
log2(K)K− 7

4

��
(C.6)
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Now, since we have γ ≤ MN
K for large enough number of relays, we can apply the

argument of Lemma 2.3 to upper-bound P[Bk]. Applying Lemma 2.3 and noting

(1− γ
M )N(K−1) ≤ e−

γ

M
N(K−1), we have

P[Bk] = O

�
(log(K))N−1

K4

�
(C.7)

Combining (C.6) and (C.7) completes the proof of the second part of Lemma.
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Appendix D

Proof of Lemma 2.5

The (i, j)th entry of AAH , denoted as [AAH ]i,j, can be written as

[AAH ]i,j = aia
H
j , (D.1)

where ai is the vector representing the ith row of A. Let us define B as

B � [bT
1 | · · · |b

T
r ]T , (D.2)

where bi =
ai

�ai�
, i = 1, · · · , r. We have

[BBH ]i,j =



 1 i = j

γ(i, j) i �= j
, (D.3)

where γ(i, j) � bibH
j =

aiaH
j

�ai��aj�
. The pdf of z(i, j) = |γ(i, j)|2 has been computed

in [11], Lemma 3, as

pz(i,j)(z) = (s− 1)(1− z)s−2. (D.4)
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Let us define C as the event that z(i, j) < 1√
s for all i �= j. Using (D.4), we have

P[C] = P
�
�

i�=j

�
z(i, j) <

1
√

s

��

(a)

≥ 1−
r(r − 1)

2

�
1−

1
√

s

�s−1

= 1 + O(e−
√

s), (D.5)

where (a) results from the Union bound on the probability, noting that z(i, j) =

z(j, i), ∀i, j. Conditioned on C, the orthogonality defect of B, defined as
Q

r

i=1 �bi�2

|BB
H|

,

can be written as

δC(B) =
1��BBH

��

≤
1

1− r(r−1)
2
√

s −
r!− r(r−1)

2 −1

s

(a)

≤
1

1− r2

2
√

s

, (D.6)

where δC(B) denotes the orthogonality defect of B, conditioned on C, and (a)

follows from the assumption that s is large enough such that
2(r!− r(r−1)

2 −1)
r <

√
s

which results in
r!− r(r−1)

2 −1

s < r
2
√

s . Hence, using the fact that the orthogonality

defect of A and B are equal, conditioned on C we can write

r�

i=1

λi =
��AAH

��

=
r�

i=1

�ai�
2

�
1−

r2

2
√

s

�
, (D.7)
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where λi’s denote the eigenvalues of AAH . Moreover,

r�

i=1

λi = Tr{AAH
}

=
r�

i=1

�ai�
2. (D.8)

Now, let us define events Di as follows:

Di ≡
�
s(1− �) < �ai�

2 < s(1 + �)
�

, i = 1, · · · , r, (D.9)

where � �
�

2 log(s)
s . Since �ai� =

�s
j=1 |ai,j|

2, where ai,j denotes the (i, j)th entry

of A, and having the fact that |ai,j|
2 are i.i.d. random variables with unit mean

and unit variance, using Central Limit Theorem (CLT), 1
s�ai�

2 approaches, in

probability, to a Gaussian distribution with unit mean and variance 1
s , as s tends

to infinity. More precisely, defining X �
1
s
�ai�2√

1
s

and using Theorem 5.24 in [37], we

can write q � P
�
−

�
2 log(s) < X −

√
s <

�
2 log(s)

�
as follows:

q= 1−
�
1− Φ

��
2 log(s)

��
exp





γ3

√
2
�

log3(s)

3σ3
√

s




−

Φ
�
−

�
2 log(s)

�
exp




−
γ3

√
2
�

log3(s)

3σ3
√

s




 + O
�
s−1/2e− log(s)

�

(a)
=1−

1

2
�

π log(s)
e− log(s)



1 + ρ

�
log3(s)

s
+ O

�
log3(s)

s

�

−

1

2
�

π log(s)
e− log(s)



1− ρ

�
log3(s)

s
+ O

�
log3(s)

s

�

 + O

�
1

s
√

s

�

= 1−
1

s
�

π log(s)

�
1 + O

�
log3(s)

s

��
+ O

�
1

s
√

s

�
, (D.10)
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where Φ(.) denotes the CDF of the normal distribution, σ2 and γ3 denote the

second and third moments of |ai,j|
2, respectively, and ρ � γ3

√
2

3σ3 . (a) follows from

i) the approximation of Φ(x) for large x by 1− 1√
2πx

e−
x
2

2 , ii) ex = 1 + x + O(x2),

for x → 0, and iii) the fact that σ and γ3 are constants which incurs that ρ is

constant. From the above equation, P[Di] can be computed as

P[Di] = P
�
1− � <

1

s
�ai�

2 < 1 + �

�

= P
�
√

s−
�

2 log(s) <
1
√

s
�ai�

2 <
√

s +
�

2 log(s)

�

= P
�
−

�
2 log(s) < X −

√
s <

�
2 log(s)

�

= 1 + O

�
1

s
�

log(s)

�
, (D.11)

in which we have used the definitions of � and X, which are
�

2 log(s)
s and 1√

s�ai�
2,

respectively. Conditioned on C and D, where D � �r
i=1Di, and using (D.7) and

(D.8), we can write

η �
�r

i=1 λi

λ
r

≥

�r
i=1 [s(1− �)]

�
1− r2

2
√

s

�

�
1
r

�r
i=1 s(1 + �)

�r

≥ (1− 2�)r

�
1−

r2

2
√

s

�

(a)

≥ 1− 3r�, (D.12)

where λ � 1
r

�r
i=1 λi and (a) follows form i) (1 − 2�)r ≥ 1 − 2r� and ii) s is

large enough such that r2

2
√

s < r�. Suppose that λmin(AAH) = αλ (α < 1) and
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λmax(AAH) = βλ (β > 1). We have

η
(a)

≤
αλ

�
1

r−1(rλ− αλ)
�r−1

λ
r

=
α(r − α)r−1

(r − 1)r−1
, (D.13)

where (a) follows from the fact that knowing λmin(AAH), the product of the rest

of the singular values is maximized when they are all equal. Hence, having the

sum constraint of rλ yields
�r

i=1 λi < αλ
�

1
r−1(rλ− αλ)

�r−1
. Using (D.12) and

(D.13), and noting that f(α) � 1− α(r−α)r−1

(r−1)r−1 can be lower-bounded in the interval

[0, 1] by r(1−α)2

2(r−1) , we have

1−
α(r − α)r−1

(r − 1)r−1
≤ 3r�

⇒
r(1− α)2

2(r − 1)
≤ 3r�

⇒ α ≥ 1−
�

6(r − 1)�. (D.14)

Similarly, we have

β ≤ 1 + 3
√

r� (D.15)

Moreover, conditioned on D, we have s(1 − �) ≤ λ ≤ s(1 + �). Consequently,

conditioned on C and D we have

s
�
1 + 4

√
r�

� (a)

≥ s(1 + �)
�
1 + 3

√
r�

�
≥ λmax(AAH),

s
�
1−

√
6r�

� (a)

≤ s(1− �)
�
1−

�
6(r − 1)�

�
≤ λmin(AAH), (D.16)
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where (a) follows assuming � is small enough. As a result,

P
�
s
�
1 + 4

√
r�

�
≥ λmax(AAH) ≥ λmin(AAH) ≥ s

�
1−

√
6r�

��

≥ P[C ∩D]

(a)
= P[C]P[D]

(b)
= P[C] (P[Di])

r

(D.5),(D.11)
=

�
1 + O(e−

√
s)

� �
1 + O

�
1

s
�

log(s)

��r

= 1 + O
� 1

s
�

log(s)

�
, (D.17)

where (a) follows from the fact that the norm and direction of a Gaussian vector

are independent of each other [57], i.e., {�ai�}
M
i=1 and {bj}

M
j=1 are independent of

each other, and as a result, the event C which is defined on {bj}
M
j=1 and D which is

defined on {�ai�}
M
i=1 are independent of each other. (b) follows from the fact that

Di’s are independent and have the same probability.
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Appendix E

Proof of Theorem 3.2

Since the relay nodes are non-interfering, the achievable rate of the RS scheme for

a realization of the channels is equal to

RRS,NI

�
{he}e∈E

�
=

1

S

L�

i=1

log



1 + P
li�

j=1

|αi,j|
2
��h{pi(j),pi(j−1)}

��2
�

1 +
li−1�

j=1

li−1�

k=j

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�−1



 ,

(E.1)

where ∀j < li : αi,j =
�

P

1+
˛̨
˛h{pi(j−1),pi(j)}

˛̨
˛
2
P

and αi,li = 1 (since pi(li) = K + 1).

In deriving the above equation, we have used the fact that as the paths are non-

interfering, the achievable rate can be written as the sum of the rates over the paths.

Note that P
�li

j=1 |αi,j|
2
��h{pi(j),pi(j−1)}

��2 and 1+
�li−1

j=1

�li−1
k=j |αi,k|

2
��h{pi(k),pi(k+1)}

��2

represent the effective signal power and the noise power over the ith path, respec-
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tively. Hence, the probability of outage equals

P {E} = P
�
RRS,NI

�
{he}e∈E

�
≤ r log (P )

�

(a).
= P






L�

i=1

max




P−1, min

�
��h{0,pi(1)}

��2
j�

k=1

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�li−1

j=0






≤ P Sr−L

�

(b).
= max

t1,t2,...,tL
1≤ti≤li

P
�

L�

i=1

max

�
P−1,

��h{0,pi(1)}
��2

ti−1�

k=1

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�

≤ P Sr−L

�

(c).
= max

S1,S2,...,SL

Si⊆{1,2,...,li−1}

max
t1,t2,...,tL

max{x∈Si}<ti≤li

P
�

L�

i=1

max

�
P−1, P |Si|

��h{pi(ti),pi(ti−1)}
��2

�

k∈Si

��h{pi(k),pi(k−1)}
��2

�

≤ P Sr−L

�
. (E.2)

Here, (a) follows from the facts that i) ∀x ≥ 0 : max {1, x} ≤ 1+x ≤ 2 max {1, x},

which implies that 1 + PΘ ≈ max(1, PΘ), where

Θ �
li�

j=1

|αi,j|
2
��h{pi(j),pi(j−1)}

��2
�

1 +
li−1�

j=1

li−1�

k=j

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�−1

,
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and ii) for all xi ≥ 0, 1
M min

�
1
xi

�M

i=1
≤

��M
i=1 xi

�−1
≤ min

�
1
xi

�M

i=1
, which implies

that
�

1 +
li−1�

j=1

li−1�

k=j

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�−1

≈

min



1,






�
li−1�

k=j

|αi,k|
2
��h{pi(k),pi(k+1)}

��2
�−1






li−1

j=1



 .

(b) follows from the fact that for any increasing function f(.) , we have

max
1≤i≤M

P {f (xi) ≤ y} ≤ P
�

f

�
min

1≤i≤M
xi

�
≤ y

�
≤ M max

1≤i≤M
P {f (xi) ≤ y} .

(c) follows from the fact that

0.5 min
�

1, P
��h{pi(k),pi(k−1)}

��2
�
≤

��αi,kh{pi(k),pi(k−1)}
��2 ≤

min
�

1, P
��h{pi(k),pi(k−1)}

��2
�

,

which implies that
��αi,kh{pi(k),pi(k−1)}

��2 ≤ min
�

1, P
��h{pi(k),pi(k−1)}

��2
�

. In the last

line of (E.2), Si denotes the subset of {1, 2, · · · , ti−1} for which P
��h{pi(k),pi(k−1)}

��2 ≤

1.

Assuming |he|
2 = P−µe , we define the region R ⊆ R|E| as the set of points

µ = [µe]e∈E that the outage event occurs. Let us define R+ = R ∩ (R+ ∪ {0})
|E|.

As the probability density function diminishes exponentially as e−P µe for positive

values of µe, we have P {R+}
.
= P {R}. Hence, we have

P {E} .
= P {R+}

(a).
= max

S1,S2,...,SL

Si⊆{1,2,...,li−1}

max
t1,t2,...,tL

max{x∈Si}<ti≤li

P {R (S, t)}

(b).
= max

t
1≤ti≤li

P {R0 (t)} , (E.3)
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where

R (S, t)≡

�
µ ∈ (R+ ∪ {0})

|E|
���L− Sr ≤

L�

i=1

min

�
1, µ{pi(ti),pi(ti−1)} +

�

k∈Si

µ{pi(k),pi(k−1)} − |Si|

��
,

t = [t1, t2, . . . , tL], S = [S1, · · · ,SL], and R0 (t) ≡ R (�,�, . . . ,�, t1, t2, . . . , tL), in

which � denotes the null set. Here, (a) follows from (E.2). In order to prove (b),

we first show that

min

�
1, µ{pi(ti),pi(ti−1)} +

�

k∈Si

µ{pi(k),pi(k−1)} − |Si|

�
≤

max
t�
i
∈Si∪{ti}

min
�

1, µ
{pi(t�i),pi(t�i−1)}

�
. (E.4)

In order to verify (E.4), consider two possible scenarios: i) for all t�i ∈ Si∪ {ti},

we have µ
{pi(t�i),pi(t�i−1)}

≤ 1. In this scenario, as in the left hand side of the

inequality, we have the summation of |Si| + 1 positive parameters with value less

than or equal to 1 subtracted by |Si|, we conclude that the left hand side of the

inequality is less than or equal to µ
{pi(t�i),pi(t�i−1)}

for any t� ∈ Si ∪ {ti}. Hence,

(E.4) is valid; ii) At least for one t� ∈ Si∪{ti}, we have µ
{pi(t�i),pi(t�i−1)}

> 1. In this

scenario, the right hand side of the inequality is equal to 1 and accordingly, (E.4)

is valid. According to (E.4), we have R (S1, t) ⊆
�

t
�

t�
i
∈Si∪{ti}

R0 (t�), which results in

(b) of (E.3).

On the other hand, we know that for µ0 ≥ 0, we have P {µ ≥ µ0}
.
= P−1·µ0

.

By taking derivative with respect to µ, we have fµ(µ)
.
= P−1·µ. Let us define

l0 � min
µ∈R0(t)

1 · µ and µ0 � arg min
µ∈R0(t)

1 · µ, I � [0, l0]
2K , Ic

0 � [µ0(1),∞) ×

[µ0(2),∞)×· · ·×[µ0(L),∞) and for 1 ≤ i ≤ L, Ic
i � [0,∞)i−1×[l0,∞)×[0,∞)L−i.
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It is easy to verify that Ic
0 ⊆ R0(t). Hence, we have

P {R0(t)}
(a).
= P {Ic

0}+

�

R0(t)
T
I
fµ (µ) dµ +

L�

i=1

P {R0(t) ∩ I
c
i }

(b).
= P−l0 . (E.5)

Here, (a) follows from the facts that i) P
��M

i=1Ai

�
.
=

�M
i=1 P {Ai}, and ii) Ic

0 ⊆

R0(t) and RL
+ = I

� ��L
i=1 I

c
i

�
which imply that

R0(t) = I
c
0

� �
R0(t)

�
I

� �
�

M�

i=1

�
R0(t)

�
I

c
i

��
.

(b) follows from the facts that
�

R0(t)
T
I fµ (µ) dµ≤̇vol (R0(t)

�
I) P−l0 and P {Ic

0} =

P {µ ≥ µ0}
.
= P−l0 , noting that vol (R0(t)

�
I) is a constant number independent

of P , and P {R0(t) ∩ Ic
i } ≤ P {Ic

i } = P−l0 . Now, defining µ̂ = [min {µe, 1}]e∈E

and gt(µ) =
�L

i=1 min
�
1, µ{pi(ti),pi(ti−1)}

�
, it is easy to verify that gt(µ̂) = gt(µ)

and at the same time 1 · µ̂ < 1 · µ unless µ̂ = µ. Hence, defining ĝt(µ) =
�L

i=1 µ{pi(ti),pi(ti−1)}, we have

dRS,NI(r) = min
t

1≤ti≤li

min
µ≥0

gt(µ)≥L−Sr

1 · µ = min
t

1≤ti≤li

min
0≤µ≤1

ĝt(µ)≥L−Sr

1 · µ = min
µ∈R̂

1 · µ, (E.6)

where R̂ =

�
µ

�����0 ≤ µ ≤ 1,
L�

i=1

max
1≤j≤li

µ{pi(j),pi(j−1)} ≥ L− Sr

�
. This proves the

first part of the Theorem.

Now, let us define GP = (V, EP) as the subgraph of G consisting of the edges

in the path sequence, i.e. EP = {{pi(j), pi(j − 1)} ,∀i, j : 1 ≤ i ≤ L, 1 ≤ j ≤ li}.

Assume Ŝ = argmin
S

wGP(S), where S is a cut-set on GP. We define µ̂ as µ̂e =

(L−Sr)+

L for all e ∈ EP such that |e ∩ Ŝ| = |e ∩ Ŝc| = 1 and µ̂e = 0 for the other
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edges e ∈ E. As all the paths cross the cutset Ŝ at least once, it follows that

max1≤j≤li µ{pi(j),pi(j−1)} = (L−Sr)+

L , which implies that µ̂ ∈ R̂. Hence, we have

dRS,NI(r) ≤ 1 · µ̂ =
(L− Sr)+

L
min
S

wGP(S)
(a)

≤
(L− Sr)+

L
min
S

wG(S)

(b)

≤ (1− r)+ min
S

wG(S), (E.7)

where (a) follows from the fact that as GP is a sub-graph of G, we have min
S

wGP(S) ≤

min
S

wG(S) and (b) results from S ≥ L. This proves the second part of the Theo-

rem.

Finally, we prove the lower-bound on the DMT of the RS scheme. Let us de-

fine dG = minS wG(S). Consider the maximum flow algorithm [14] on G from the

source node 0 to the sink node K + 1. According to the Ford-Fulkerson Theo-

rem [14], one can achieve the maximum flow which is equal to the minimum cut

of G by the union of elements of a sequence (p̂1, p̂2, . . . , p̂dG
) of paths with the

lengths
�
l̂1, l̂2, . . . , l̂dG

�
. Now, consider the RS scheme with L = L0dG paths and

the path sequence (p1, p2, . . . , pL) consisting of the paths that achieve the max-

imum flow of G such that any path p̂i occurs exactly L0 times in the sequence.

Considering (l1, l2, . . . , lL) as the length sequence, we select the timing sequence as

si,j =
�i−1

k=1 lk + j. It is easy to verify that, not only the timing sequence satisfies

the 4 requirements needed for the RS scheme, but also the active relays with the

timing sequence are non-interfering. Hence, the assumptions of the first part of the

Theorem are valid. Moreover, we have S ≤ lGL. According to (3.3), the diversity

gain of the RS scheme equals

dRS,NI(r) = min
µ∈R̂

�

e∈E

µe. (E.8)
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As µ ∈ R̂, we have

(L− Sr)+
≤

L�

i=1

max
1≤j≤li

µ{pi(j),pi(j−1)}
(a)

≤ L0

�

e∈E

µe, (E.9)

where (a) results from the fact that as (p̂1, p̂2, . . . , p̂dG
) form a valid flow on G (they

are non-intersecting over E), every e ∈ E occurs in at most one p̂i, or equivalently,

in at most L0 number of pi’s. Combining (E.8) and (E.9), we have

dRS,NI(r) ≥
(L− Sr)+

L0
≥ (1− lGr)+ dG = (1− lGr)+ min

S
wG(S). (E.10)

This proves the third part of the Theorem.
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Appendix F

Proof of Theorem 3.7

First, according to the cut-set bound Theorem [12], the point-to-point capacity of

the uplink channel (the channel from the source to the relays) is an upper-bound on

the achievable rate of the network. Accordingly, the diversity-multiplexing curve of

a 1×K SIMO system which is a straight line (from the multiplexing gain 1 to the

diversity gain K, i.e. dopt(r) = K(1− r)+) is an upper-bound on the DMT of the

network. Now, we prove that the proposed RS scheme achieves the upper-bound

on the DMT for asymptotically large values of S.

As the relay pairs are non-interfering (1 ≤ k ≤ K : {k, (k mod K) + 1} /∈ E),

the result of Theorem 3.2 can be applied. As a result

dRS,NI(r) = min
µ∈R̂

�

e∈E

µe, (F.1)

where

R̂ =

�
µ

����� 0 ≤ µ ≤ 1,
BK�

i=1

max
1≤j≤2

µ
{q(i−1) mod K+1(j),q(i−1) mod K+1(j−1)}

≥

BK − (BK + 1)r

�
. (F.2)
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Hence, we have

BK

�
1− r −

1

BK
r

�+ (a)

≤ B
K�

k=1

max
�
µ{0,k}, µ{K+1,k}

�
≤ B

�

e∈E

µe, (F.3)

where (a) results from the fact that every path qk is used B times in the path

sequence. Hence, DMT can be lower-bounded as

dRS,NI(r) ≥ K

�
1− r −

1

BK
r

�+

. (F.4)

On the other hand, considering the vector µ̂ = [µ̂e]e∈E where ∀1 ≤ k ≤ K : µ̂{0,k} =
�
1− r − 1

BK r
�+

and ∀k, k� �= 0 : µ̂{k,k�} = 0, it is easy to verify that µ̂ ∈ R̂. Hence,

dRS,NI(r) ≤
�

e∈E

µ̂e = K

�
1− r −

1

BK
r

�+

. (F.5)

Combining (F.4) and (F.5) completes the proof.
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Appendix G

Proof of Theorem 3.9

First, we show that the entire channel matrix is equivalent to a lower triangular

matrix. Let us define xb,k,nb,k, rb,k, tb,k, zb,k,yb,k as the portion of signals that is

sent or received in the k’th slot of the b’th sub-block. At the destination side, we

have

yb,k = g(k)tb,k + zb,k

= g(k)α(k)




�

1≤b1≤b,1≤k1≤K
b1K+k1<bK+k

pb−b1,k,k1 (hk1xb1,k1 + nb1,k1)



 + zb,k. (G.1)

Here, pb,k,k1 has the following recursive formula p0,k,k = 1, pb,k,k1 = i((k))α((k))p(b),(k),k1 .

Defining the square BK × BK matrices G = IB ⊗ diag {g1, g2, · · · , gK}, H =
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IB ⊗ diag {h1, h2, · · · , hK}, Ω = IB ⊗ diag {α1, α2, · · · , αK}, and

F =





1 0 0 0 . . .

p0,2,1 1 0 0 . . .

p0,3,1 p0,3,2 1 0 . . .
...

...
...

...
. . .

pB−1,K,1 pB−1,K,2 . . . p0,K,K−1 1





, (G.2)

where ⊗ is the Kronecker product [22] of matrices and IB is the B × B iden-

tity matrix, and the BK×1 vectors x (s) = [x1,1(s), x1,2(s), · · · , xB,K(s)]T , n (s) =

[n1,1 (s) , n1,2(s), · · · , nB,K(s)]T , z (s) = [z1,2(s), z1,3(s), · · · , zB+1,1(s)]T , and y (s) =

[y1,2(s), y1,3(s), · · · , yB+1,1(s)]T , we have

y (s) = GΩF (Hx (s) + n (s)) + z (s) . (G.3)

Here, we observe that the matrix of the entire channel is equivalent to a lower

triangular matrix of size BK × BK for a MIMO system with a colored noise.

The probability of outage of such a channel for the multiplexing gain r (r ≤ 1) is

defined as

P {E} = P
�
log

��IBK + PHTHH
T P−1

n

�� ≤ (BK + 1)r log (P )
�

, (G.4)

where Pn = IBK + GΩFFHΩHGH , and HT = GΩFH. Assume |hk|
2 = P−µk ,

|gk|
2 = P−νk , |ik|2 = P−ωk , and R as the region in R3K that defines the out-

age event E in terms of the vector [µT , νT , ωT ]T , where µ = [µ1µ2 · · ·µK ]T , ν =

[ν1ν2 · · · νK ]T , ω = [ω1ω2 · · ·ωK ]T . The probability distribution function (and also

the complement of the cumulative distribution function) decays exponentially as

P−P−δ

for positive values of δ. Hence, the outage region R is almost surely equal
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to R+ = R
�

R3K
+ . Now, we have

P {E}
(a)

≤ P
�
|HT |

2
|Pn|

−1
≤ P−BK(1−r)+r

�

(b)

≤ P
�
−B

K�

k=1

�
µk + νk −min

�
0, µk, ω(k)

��
−

BK log(3) + log |Pn|

log (P )
≤

−BK(1− r) + r

�

(c)

≤̇ P
�
−BK

log [3 (B2K2 + 1)]

log(P )
+ BK (1− r)− r ≤ B

K�

k=1

(µk + νk),

µk, νk, ωk ≥ 0

�
. (G.5)

Here, (a) follows from the fact that for a positive semidefinite matrix A, we have

|I + A| ≥ |A| and (b) follows from the fact that

|αk|
2 = min

�
1,

P

P 1−µk + P 1−ω(k) + 1

�
≥

1

3
min {1, P, P µk , P ω(k)}

and assuming P is large enough such that P ≥ 1. Finally, (c) is proved as follows:

As |αk| ≤ 1, we conclude pn,k,k1 ≤ 1. Hence, the sum of the entries of each

row in FFH is less than B2K2. Now, consider the matrix A � B2K2I − FFH .

From the above discussion, it follows that for every i, we have Ai,i ≥
�

i�=j |Ai,j|.

Hence, for every vector x, we have xTAx ≥
�

i<j |Ai,j|x2
i + |Ai,j|x2

j ± 2|Ai,j|xixj =
�

i<j |Ai,j| (xi ± xj)
2
≥ 0, and as a result A is positive semidefinite, which implies

that FFH � B2K2IBK . Consequently, we have Pn � IBK + B2K2GΩΩHGH .

Moreover, Knowing the fact that P {R} .
= P {R+}, and conditioned onR+, one has

|gk|
2 ≤ 1, which implies that GGH � I. Combining this with the fact that ΩΩH �

I (as |αk|
2 ≤ 1, ∀k) yields Pn � IBK + B2K2GΩΩHGH � (B2K2 + 1) IBK .

Moreover, conditioned on R+, we have min
�
0, µk, ω(k)

�
= 0. This completes the

proof of (c).
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On the other hand, we have P {µ ≥ µ0, ν ≥ ν0, ω ≥ ω0}
.
= P−1·(µ0+ν0+ω0),

for any vectors µ0, ν0, ω0 ≥ 0. Similar to the proof of Theorem 3.2, by taking

derivative with respect to µ, ν, we have fµ,ν(µ, ν)
.
= P−1·(µ+ν). Defining l0 �

−
log[3(B2K2+1)]

log(P ) + (1− r)− r
BK , R̂ �

�
µ, ν ≥ 0, 1

K1 · (µ + ν) ≥ l0
�
, the cube I as

I � [0, Kl0]
2K , and for 1 ≤ i ≤ 2K, Ic

i � [0,∞)i−1 × [Kl0,∞) × [0,∞)2K−i, we

observe

P {E}
(a)

≤̇ P{R̂}
(b)

≤

�

R̂
T
I
fµ,ν (µ, ν) dµdν +

2K�

i=1

P
�

[µT , νT ]T ∈ R̂ ∩ I
c
i

�

≤̇ vol(R̂ ∩ I)P

− min
[µT

0 ,νT

0 ]
T∈R̂

T
I
1 · (µ0 + ν0)

+ 2KP−Kl0

(c).
= P−Kl0

.
= P−[K(1−r)− r

B
]. (G.6)

Here, (a) follows from (G.5), knowing R̂ =
�
R̂

�
I

� � ��M
i=1

�
R̂

�
Ic

i

��
and using

the union bound on the probability results in (b), and (c) follows from the fact that

R̂
�
I is a bounded region whose volume is independent of P . (G.6) completes

the proof of Theorem 3.9.
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Appendix H

Proof of Lemma 5.1

Assuming a multiplexing gain of r, the diversity of the original system can be

written as

d(r) = lim
P→∞

−

log
�
P

�
log

���I + α2PGHHHGH
�
I + α2GGH

�−1
��� < r log(P )

��

log(P )
.(H.1)

Since α2GGH � 0, it follows that

���I + α2PGHHHGH
�
I + α2GGH

�−1
��� <

��I + α2PGHHHGH
�� . (H.2)

This implies that

d(r) ≤ du(r) � lim
P→∞

−
log

�
P

�
log

��I + α2PGHHHGH
�� < r log(P )

��

log(P )
, (H.3)

which is the DMT of the system in (5.2). Moreover, from the output power con-

straint P for the relay1, we have α = min
�
1, P

E{�Hxt+nr�2}

�
. As a result, we have

α2GGH
� �G�2I. (H.4)

1
Note that as we are looking for a lower-bound for the DMT, it is fine to select any arbitrary

value for α which satisfies the output power constraint.
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Defining the event C ≡ {�G�2 > c log(P )}, and noting that �G�2 is a Chi-square

random variable with 2pn degrees of freedom, we have

P{C } =
pn−1�

k=0

(c log(P ))k

k!
e−c log(P )

∼ d(log(P ))pn−1P−c, (H.5)

where d = ck

k! . Defining the outage event of the system in (5.1) as O, we have

P{O} = P{O|C }P{C }+ P{O|C c
}P{C c

}

≤ P{C }+ P{O|C c
}P{C c

}. (H.6)

Conditioned on C c, the probability of the outage event can be upper-bounded as

P{O|C c
} ≤ P

�
log

����I + α2 P

c log P + 1
GHHHGH

���� < r log(P )

���� C c

�
, (H.7)

which is equal to the probability of the outage event of the system in (5.3), denoted

as Ol, conditioned on C c. In other words, P{O|C c} ≤ P{Ol|C c}. Substituting in

(H.6) yields

P{O} ≤ P{C }+ P{Ol|C
c
}P{C c

}.

≤ P{C }+ P{Ol}. (H.8)

Since the capacity of the two-hop network is equal to the capacity of both the

source-relay and the relay-destination links, it follows that the outage event O

includes Osr, the event of outage in the source-relay link, and Ord, the event of

outage in the relay-destination link. As a result,

P{O} ≥ max {P{Osr}, P{Ord}}

(a)

≥̇ max
�
P−mp, P−pn

�

≥̇ P−pn. (H.9)
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(a) results from the fact that the outage probability corresponding to the multi-

plexing gain r is greater than or equal to the outage probability corresponding to

the multiplexing gain 0. Setting c = 2pn− 1, from (H.5), it is concluded that

P{C }
P{O} = Θ

��
log(P )

P

�pn−1
�

. (H.10)

From the above equation and (H.8), it follows that

P{O}≤̇P{Ol}, (H.11)

which incurs that the DMT of the original system is lower-bounded by the DMT

of the system in (5.3). This completes the proof of Lemma 5.1.
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Appendix I

Proof of Lemma 5.2

Defining P � = P
c log(P )+1 , the DMT of the system in (5.3) can be written as

dl(r) = lim
P→∞

−
log

�
P

�
log

��I + α2P �GHHHGH
�� < r log(P )

��

log(P )

(a)
= lim

P �→∞
−

log
�
P

�
log

��I + α2P �GHHHGH
�� < r� log(P �)

��

log(P �)
(b)
= du(r

�)

(c)
= du(r), (I.1)

where r� � r log(P )
log(P �) and (a) follows from the fact that as P � = P

c log(P )+1 , we have

P = P � [c log(P �) + O(log log(P �))], which implies that limP→∞
log(P �)
log(P ) = 1. In

other words, in the first line of the preceding equation, one can substitute log(P )

by log(P �). (b) results from the fact that the second line in the right hand side of

the preceding equation is exactly the DMT of the system in (5.2) at r�, which is

denoted by du(r�). Finally, (c) follows from the facts that limP→∞
r�

r = 1 and the

continuity of the DMT curve which implies that du(r�) = du(r). This completes

the proof of Lemma.

176



Appendix J

Proof of Lemma 5.4

First, notice that for values of i > min {m, p} or i > min {p, n}, λi(G) or λi(H)

are defined as zero. Hence, the argument of this lemma is obvious in these cases.

Now, we prove the argument for i ≤ min{m, n, p}. According to the Courant-

Fischer-Weyl Theorem [22], we have

λi (GΘH) = max
S,dim(S)=i

min
x∈S

�GΘHx�2

�x�2 . (J.1)
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Now, let us define S0 = �v1 (H) ,v2 (H) , . . . ,vi (H)� where vj (H) denotes the j’th

column of V (H) and �a1, a2, . . . , ak� denotes the span of a1, a2, . . . , ak. We have

λi (GΘH) ≥ min
x∈S0

�GΘHx�2

�x�2

(a)
= min

x�∈Ci

��GΘHV(1,i) (H)x�
��2

�x��2

= min
x�∈Ci

���GΘU(H)Λ
1
2 (H)In×ix�

���
2

�x��2

= min
x�∈Ci

���GΘU(H)Λ
1
2
(1,i)(H)x�

���
2

�x��2

= min
x
�∈Ci

�x��2≥1

���GΘU(H)Λ
1
2
(1,i)(H)x�

���
2

= min
x
�∈Ci

�x��2≥1

���GΘU(1,i)(H)Λ
1
2
i (H)x�

���
2

(b)

≥ min
y
�∈Ci

�y��2≥1

λi(H)
��GΘU(1,i)(H)y�

��2

(c)
= min

y
�∈Ci

�y��2≥1

λi(H)
���Λ

1
2 (G)VH(G)ΘU(1,i)(H)y�

���
2

(d)

≥ min
y
�∈Ci

�y��2≥1

λi(H)
���Λ

1
2
(1,i)(G)VH

(1,i)(G)ΘU(1,i)(H)y�
���

2

(e)

≥ min
y
�∈Ci

�y��2≥1

λi(G)λi(H)
��VH

(1,i)(G)ΘU(1,i)(H)y�
��2

(f)
= λi(G)λi(H)λmin

�
VH

(1,i)(G)ΘU(1,i)(H)
�
, (J.2)

where In×i denotes the diagonal identity n × i matrix and Λ
1
2
i (H) denotes the

square submatrix of Λ
1
2 (H) consisting of its first i rows and first i columns. Here,
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(a) follows from the fact that i) x ∈ S0 is equivalent to x = V(1,i)x� for some x� ∈ Ci;

and ii) �x�2 = �x��2. (b) follows from the fact that for any x� ∈ Ci, �x��2
≥ 1,

defining y� = 1√
λi(H)

Λ
1
2
i x�, we have �y��2

≥ �x��2
≥ 1. (c) follows from the fact

that for any unitary matrix P, we have �PA�2 = �A�2. (d) follows from the fact

that defining z� = ΘU(1,i)(H)y�, we have

���Λ
1
2 (G)VH(G)z�

���
2

=
���Λ

1
2
(1,i)(G)VH

(1,i)(G)z�
���

2

+
���Λ

1
2
(i+1,m)(G)VH

(i+1,m)(G)z�
���

2

.

(e) follows from the fact that defining w� = VH
(1,i)(G)ΘU(1,i)(H)y�, we have

���Λ
1
2
(1,i)w

�
���

2

≥ λi(G) �w��
2. Finally, (f) follows from the Courant-Fischer-Weyl

Theorem [22]. (J.2) completes the proof of Lemma.
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Appendix K

Proof of Lemma 5.5

We have

��Ψi,lΨ
H
i,l

�� = λmin(Ψi,l)
i−1�

j=1

λi(Ψi,l)

(a)

≤ λmin(Ψi,l)

�
Tr

�
Ψi,lΨ

H
i,l

�

i− 1

�i−1

, (K.1)

where (a) follows from the Geometric Inequality and the fact that
�i−1

j=1 λi(Ψi,l) ≤

Tr
�
Ψi,lΨ

H
i,l

�
. Tr

�
Ψi,lΨ

H
i,l

�
can be upper-bounded as follows:

Tr
�
Ψi,lΨ

H
i,l

�
=

��VH
(1,i)(G)ΘlU(1,i)(H)

��2

(a)

≤
��V(1,i)(G)

��2 ��ΘlU(1,i)(H)
��2

(b)

≤
��V(1,i)(G)

��2 ��U(1,i)(H)
��2

(c)
= i2. (K.2)

In the preceding equation, (a) follows from the the fact that �AB�2 ≤ �A�2�B�2

for any two matrices A and B. (b) results from the fact that �ΘA� = �A�, for

any matrix A and any unitary matrix Θ. Finally, (c) follows from the fact that
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as U(H) and V(G) are unitary matrices, each of their columns has unit norm.

Combining (K.1) and (K.2) yields

��Ψi,lΨ
H
i,l

�� ≤ λmin(Ψi,l)

�
i2

i− 1

�i−1

, (K.3)

which implies that

λmin(Ψi,l) ≥ c
��Ψi,lΨ

H
i,l

�� , (K.4)

for some constant c. Denoting the jth column of Ψi,l as Ψ(j)
i,l , we write the deter-

minant of Ψi,lΨ
H
i,l as

��Ψi,lΨ
H
i,l

�� =
i�

j=1

βj, (K.5)

where βj denotes the square norm of the projection of Ψ(j)
i,l over the null-space of

the subspace spanned by
�
Ψ(s)

i,l

�j−1

s=1
. Combining (K.4) and (K.5) yields

P {λmin(Ψi,l) ≤ ε} ≤ P
�

i�

j=1

βj ≤ κε

�

≤ P
�

i�

j=1

�
βj ≤

i
√

κε
�
�

(a)

≤

i�

j=1

P
�
βj ≤

i
√

κε
�

, (K.6)

where κ = 1
c and (a) follow from the union bound on the probability. Ψ(s)

i,l can be

considered as the projection of the sth column of the matrix Rl � ΘlU(1,i)(H),

denoted by R(j)
l , over the i-dimensional subspace spanned by {Vt(G)}i

t=1, which is

denoted by P . Now, consider a random unit vector w in P , which is orthogonal to

the first j−1 columns of the matrix Rl. Since {Ψ(s)
i,l }

j−1
s=1 are the projections of the
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first j − 1 columns of Rl over P , it follows that w is also orthogonal to {Ψ(s)
i,l }

j−1
s=1.

In other words, w belongs to Q
⊥, the null-space of the subspace spanned by

�
Ψ(s)

i,l

�j−1

s=1

1. Hence, we have

βj =
���Ψ(j)

i,l

H
∗Q

⊥
���

2

≥

���Ψ(j)
i,l

H
w

���
2

, (K.7)

where aH ∗ T denotes the projection of the vector a over the subspace T . The

second line in the preceding equation follows from the fact that the norm of the

projection of a vector over a subspace is greater than the norm of the projection

of that vector over any arbitrary unit vector in that subspace. Since Ψ(j)
i,l is the

projection of R(j)
l over P , R(j)

l can be written as

R(j)
l = Ψ(j)

i,l + Ψ(j)
i,l

⊥
, (K.8)

where Ψ(j)
i,l

⊥
denotes the projection of R(j)

l over P
⊥, the null-space of P . Since

w ∈ P , it follows that wHΨ(j)
i,l

⊥
= 0. This means that Ψ(j)

i,l

H
w = R(j)

l

H
w.

Combining the above with (K.7) yields

βj ≥

���R(j)
l

H
w

���
2

. (K.9)

Since Θl and U(H) are unitary matrices and U(H) is isotropically distributed [57],

it follows that ΘlU(H) is an isotropic unitary matrix. This means i)
�
R(s)

l

�j

s=1
is

an orthonormal set, which implies that R(j)
l is orthogonal to R(s)

l , s = 1, · · · , j−1,

and ii) R(j)
l is an isotropic unit vector. As a result, R(j)

l is an isotropic unit vector

in the (p− j + 1)-dimensional subspace perpendicular to
�
R(s)

l

�j−1

s=1
. Noting that

1
Note that as j ≤ i, Q

⊥
has at least dimension of 1.
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w is also in this subspace and R(j)
l and w are independent of each other, from [11],

Lemma 3, the CDF of Zj �
���R(j)

l

H
w

���
2

can be computed as

FZj
(z) = 1− (1− z)p−j. (K.10)

Combining (K.6), (K.9), and (K.10), it follows that

P {λmin(Ψi,l) ≤ ε} ≤

i�

j=1

FZj
( i
√

κε)

=
i�

j=1

�
1−

�
1− i

√
κε

�p−j
�

(a)

≤

i�

j=1

(p− j) i
√

κε

= η i
√

ε, (K.11)

where η = i(p − i+1
2 ) i
√

κ. In the above equation, (a) follows from the fact that

(1− x)n ≥ 1− nx, ∀n ≥ 0, 0 ≤ x ≤ 1. This completes the proof of Lemma 5.5.
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Appendix L

Proof of Lemma 5.6

We can assume that f(x) is defined such that x ≤ y ⇒ f(x) ≤ f(y); otherwise, we

can redefine f(x) as f(x) = infy≥x f(y). Let us define the set S(�) for every � > 0

as S(�) �
�
x ∈ [0,∞)n

��d(x,R) ≤
√

n�, x

� ∈ Zn
�

where d(x,R) = infy∈R �x− y�.

Also, let us define the partial order ≤ for two setsA,B ⊆ [0,∞)n as follows: A ≤ B

iff for every x ∈ B there exists a y ∈ A such that y ≤ x1. One can easily verify that

S(�) ≤ R. Now, let us define the set L(�) as L(�) � {x ∈ S(�) |�y ∈ S(�),y < x},

i.e. L(�) consists of the minimal members of S(�). Notice that the elements of S(�)

can be mapped to the elements of Zn
+ such that the partial order < between the

real vectors is kept between the corresponding integer vectors2. For every subset

A ⊆ Zn
+ and every x ∈ A, there exists a minimal member y ∈ A such that y ≤ x.

Accordingly, we have such a property for S(�). This means L(�) ≤ S(�). Noticing

S(�) ≤ R, we conclude that L(�) ≤ R. On the other hand, it is easy to check that

1
It should be noted that ≤ has the properties that i) A ≤ B and B ≤ C, results in A ≤ C;

and ii) A ≤ A.

2
Such a mapping could be as follows: m(x) =

x

�
.

184



L(�) is a finite set, i.e. |L(�)| < ∞. Hence, we have

P {R}
(a)

≤ P





�

x�∈L(�)

(x ≥ x�)





(b)

≤ |L(�)| max
x�∈L(�)

P {x ≥ x�}
(b)

≤̇ P−minx∈L(�) f(x), (L.1)

where (a) follows from L(�) ≤ R and (b) follows from the fact that |L(�)| < ∞.

Now, let us define h(�) = minx∈L(�) f(x). For every �, we have h(�) < infx∈R f(x)

(otherwise, according to (L.1), the statement of the Lemma is proved). Now,

we prove that lim�→0 h(�) exists and in fact, we have lim�→0 h(�) = infx∈R f(x).

As f(x) is uniformly continuous, there exists a positive function g(�) (g(�) > 0)

such that for all x,y, �x− y� ≤ g(�), we have |f(x) − f(y)| ≤ �. Consider any

positive constant δ > 0 and any � ≤ g(δ)√
n . According to the definition, for any

x ∈ L(�), there exists a y ∈ R such that �x− y� ≤
√

n� ≤ g(δ). Accordingly,

|f(x)−f(y)| ≤ δ. Hence, we have h(�) = minx∈L(�) f(x) ≥ infx∈R f(x)−δ. On the

other hand, we know h(�) ≤ infx∈R f(x). This proves lim�→0 h(�) = infx∈R f(x).

Noticing lim�→0 h(�) = infx∈R f(x) and applying (L.1) proves the Lemma.
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