
Design and Implementation of
Calculated Readout by Spectral
Parallelism (CRISP) in Magnetic

Resonance Imaging (MRI)

by

Simon So

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2010

c© Simon So 2010



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

CRISP is a data acquisition and image reconstruction technique that offers theoreti-
cal increases in signal-to-noise ratio (SNR) and dynamic range over traditional methods in
magnetic resonance imaging (MRI). The incoming broadband MRI signal is de-multiplexed
into multiple narrow frequency bands using analog filters. Signal from each narrowband
channel is then individually captured and digitized. The original signal is recovered by
recombining all the channels via weighted addition, where the weights correspond to the
frequency responses of each narrowband filter. With ideal bandpasses and bandwidth
dependent noise after filtering, SNR increase is proportional to

√
N , where N is the num-

ber of bandpasses. In addition to SNR improvement, free induction decay (FID) echoes
in CRISP experience a slower decay rate. In situations where resolution is limited by
digitization noise, CRISP is able to capture data further out into the higher frequency
regions of k-space, which leads to a relative increase in resolution. The conversion from
one broadband MR signal into multiple narrowband channels is realized using a comb or
bank of active analog bandpass filters. A custom CRISP RF receiver chain is implemented
to downconvert and demodulate the raw MR signal prior to narrowband filtering, and to
digitize the signals from each filter channel simultaneously. Results are presented demon-
strating that the CRISP receiver chain can acquire 2D MR images (without narrowband
filters) with SNR similar to SNR of images obtained with a clinical system. Acquiring 2D
CRISP images (with narrowband filters) was not possible due to the lack of phase lock
between rows in k-space. RMS noise of narrowband, broadband and unfiltered 1D echoes
are compared.
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Chapter 1

Introduction

Calculated Readout by Spectral Parallelism (CRISP) is a method of noise reduction that
can be applied to magnetic resonance imaging (MRI) [1]. The motivation and basic princi-
ples behind CRISP stem from the dispersed Fourier transform spectrograph (dFTS) devel-
oped by Professor Hajian et al. [2]. Other than sharing similar underlying basic principles,
CRISP is a distinct technology from dFTS.

1.1 Dispersed Fourier Transform Spectrograph

Figure 1.1: A simple conventional Fourier transform spectrograph.

Fig. 1.1 illustrates a simple version of a conventional Fourier transform spectrograph
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(FTS). Incoming polarized light is split into two beams by the first beam splitter cube.
One beam travels to the retroreflector to the right and then bounces back. The other
travels down to the second retroreflector and then bounces back. The two reflected beams
are recombined at the second beam splitter cube and the resulting beam hits the detector.
The retroreflector on the right is allowed to move along one axis, and a change in the delay
position of the reflector, denoted as x, corresponds to a change in the path length P1. If
light with wavelength λ is the input, then light from the two different paths constructively
interfere completely when x/λ is an integer and destructively interfere completely when
x/λ is an integer plus 1/2. The captured light intensity, IFTS , is at a maximum when
x = 0, and at a minimum when x = λ/2. As a function of delay x, IFTS oscillates
sinusoidally above and below the mean signal level. The magnitude of oscillation decreases
as x increases and the frequency of oscillation corresponds to the center wavelength of the
bandwidth of the light source. The resulting plot of IFTS versus x is called an interferogram.
The region of x where large deviations from the mean signal level is found is called the
fringe packet. At large x, the oscillations diminish to the mean signal level. Fig. 1.2 shows
a sample interferogram, where the light is captured with a bolometer AC-coupled to the
signal, hence the nearly zero mean signal level [3].

Figure 1.2: A sample interferogram. Light intensity is captured with a bolometer AC-coupled to
the signal [3].

An important point to note is the Fourier relationship between the bandwidth of the
input source, and the width of the envelope of the fringe packet. A wideband light source
has a narrow envelope and fringes disappear quickly as x increases, while a narrowband
light source has a wider envelope with fringes disappearing more slowly as x increases.

The dispersed FTS uses a diffraction grating to separate a broadband signal into mul-
tiple narrowband channels. This has the effect of converting a single broadband FTS into
many narrowband FTSes. The advantage of doing such is twofold. First, due to the
smaller bandwidth of each narrowband channel, sampling requirement for each is reduced.
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The Nyquist theorem is satisfied when the sampling frequency is greater than twice the
bandwidth of the band-limited signal. In order words, the sampling period must be less
than the reciprocal of twice the bandwidth. Therefore, a larger sampling period is possible
with the dFTS without aliasing. Second, narrowband signals correspond to wider fringe
packets, meaning more signal for a larger range of delays. Assuming Poisson distributed
noise, this results in a signal-to-noise improvement in the reconstructed spectrum.

1.2 Application in MRI

In MRI, the signal being measured is in the radio frequency range, 64 MHz for 1.5 T
systems, instead of several THz for optical systems, but the basic principle behind dFTS
can still be applied. Treating the MR signal as a broadband signal, it can be converted into
multiple narrowband channels using analog bandpass filters instead of a diffraction grating.
The narrowband signals are then recombined and the MR image is reconstructed from the
narrowband fragments. This method of processing MR signals is known as CRISP.

1.3 Thesis Contribution and Organization

This thesis investigates CRISP as a method of acquiring and reconstructing MR data.
Chapter 2 offers a review of MRI basics. The expected benefits with CRISP will be
discussed and compared to recent developments in MR data acquisition and image recon-
struction algorithms in chapter 3. Initial experimental and simulation results using an
NMR system are presented.

The construction of a CRISP prototype system is divided into two major sections:
1) implementation of a custom RF receiver chain, and 2) designing and building analog
bandpass filters. Chapter 4 deals with the implementation of a custom RF receiver chain,
demonstrates experimental results acquired with the system, and compares them with
images obtained with a clinical MRI system. Chapter 5 describes the process of design,
implementation, and testing of the analog bandpass filters. Results obtained with filters
and custom receiver chain are shown. Chapter 6 summarizes the results acquired with the
CRISP system and finally, chapter 7 presents some possible future directions for this work.
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Figure 1.3: Organizational diagram for the main chapters of the thesis
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Chapter 2

Basics of MRI

The field of nuclear magnetic resonance (NMR) was founded on the experiments performed
independently by Felix Bloch and Edward Purcell [4, 5]; they were awarded a joint Nobel
Prize in Physics for their discovery in 1952. In an external magnetic field, NMR-active
nuclei precess about the direction of the field. When energy is applied to the system
in the form of a radio frequency (RF) pulse at the frequency of precession, a rotating
magnetic field is generated. This rotating field excite the nuclei such that a magnetization,
precessing about the external field, is established. As a consequence, a current is induced
in an RF receive coil. This resulting signal is the MR signal. Spectroscopy on different
types of solids and liquids can be performed by exploiting this effect. Furthermore, with
careful manipulation of magnetic field gradients and RF pulses, the familiar 2-D and 3-D
images in magnetic resonance imaging (MRI) can be obtained. An explanation of how the
NMR signal is generated and how it is used to produce an image begins with the quantum
mechanical property known as spin.

2.1 Spin

Spin is a form of angular momentum, but unlike classical angular momentum, it is not a
result of physical motion of a particle. Spin is an intrinsic quantity akin to mass or charge.
All elementary particles have an associated spin quantum number, s. The magnitude of
total angular momentum of a particle with spin s is

√
s(s+ 1)~ [6] where s can take on

positive integer or half-integer values, i.e. s = 0, 1/2, 1, 3/2, . . ., and so on. For example,
s = 1/2 for both neutrons and protons.

The angular momentum of a system with multiple parts is a quantized vector sum of
their individual angular momenta. The magnitude of the total angular momentum of a

5



two-part system is given by
√
l3(l3 + 1)~ [6], where l3 is constrained by

|l1 − l2| ≤ l3 ≤ l1 + l2, (2.1)

and l1 and l2 are the quantum numbers of the individual parts.

An atomic nucleus has nuclear spin angular momentum equal to the combination of the
spin angular momentum of their individual constituents, i.e. protons and neutrons, as well
as the orbital angular momentum of the nucleons. The spin quantum number I for the
intrinsic nuclear spin angular momentum follows the following general rules. Nuclei with
an even number of protons and and even mass number have zero spin. Those with odd
number of protons and even mass number have integer spin. Nucleus with an odd mass
number have half-integer spin. The most abundant hydrogen isotope, 1H, has one proton
in its nucleus and therefore has spin 1/2. The nucleus of deuterium, 2H, a relatively rare
hydrogen isotope, has one proton and one neutron and spin 1.

Spin angular momentum and nuclear magnetic moment are proportional to each other
via the relationship [7, 8]:

~µ = γ~S, (2.2)

where γ is a proportionality constant describing the ratio between the magnetic moment
and the angular momentum of a nuclear spin. This constant is known as the gyromagnetic
ratio. For protons, 1H, the gyromagnetic ratio is γ = 2.675×108 rad/s/T . The magnitude
of the magnetic moment can be determined from [7]:

µ = γ~
√
I(I + 1).

However, in general, the direction of the spin angular momentum vector, which is
defined as the spin polarization axis, is random in the absence of an external magnetic
field. Depending on the sign of the gyromagnetic ratio, the magnetic moment vector is
pointing either in the same or opposite direction of the spin polarization axis. In the case
of 1H, which has a positive gyromagnetic ratio, the spin polarization axis and the magnetic
moment vector point in the same direction.

In the presence of an external magnetic field, ~B0, the magnitude of z-component of the
magnetic moment vector is given by

µz = γmI~,

By convention, the z-axis is chosen to be aligned with the direction of the external magnetic
field, i.e. ~B0 = B0

~k [7]. The magnetic quantum number, mI , takes on (2I + 1) possible
values from −I to +I in integer steps. For 1H, since I = 1/2, mI is -1/2 or +1/2, often
referred to as spin ‘down’ and spin ‘up’ states respectively. This corresponds to the two

6



possible orientations of the spin polarization axis of the 1H nucleus in relation to the
~B0 magnetic field. There is an energy difference between these two spin states, which is
important for the generation of an observable signal. Instead of perfectly aligning itself
along the ~B0 field as one could imagine a macroscopic bar magnet would do, ~µ rotates
around the magnetic field in a cone, keeping a constant angle with respect to the field.
This motion is called precession.

Figure 2.1: Precession of nuclear magnetic moment vector (~µ) about external ~B0 field.

2.2 Precession

The precession of the nuclear magnetic moment vector is often compared to the motion of
a child’s spinning top whose axis is tilted away from vertical. In classical physics, analysis
of the motion of a spinning top is complicated by factors such as friction, internal degrees
of freedom, and additional sources of angular momentum [6]. However, the precession of ~µ
in a magnetic field is free of such complications. The angular frequency of precession can
be derived by considering the torque on the magnetic moment [7], ~µ, and recalling from

classical physics that torque is the rate of change of angular momentum, ~S [8]:

d~S

dt
= ~µ×B0

~k.
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From Eq. 2.2, ~µ = γ~S, and so:
d~µ

dt
= γ~µ×B0

~k. (2.3)

Solving Eq. 2.3 results in:

µxy(t) = µxy(0)e−jγB0t

µz(t) = µz(0), (2.4)

where µxy = µx+ jµy. Eq. 2.4 indicates that ~µ precesses about the external magnetic field,

B0
~k, and the frequency of precession is given by:

ω0 = −γB0, (2.5)

where ω0 is the Larmor frequency [6, 7, 9] in radians (ω = 2πf). Since γ is positive for
1H, ω0 is negative. Assuming the magnetic field ~B0 points ‘up’, the negative frequency
indicates that the direction of precession is clockwise when looking ‘down’ from the ‘top’.
One can also use the left-hand rule: fingers curl in the direction of precession and the left
thumb points in the direction of the magnetic field.

Now consider an ensemble of spins, such as all the 1H nuclei in a water sample. With-
out an external magnetic field, spin polarization is isotropic, i.e. spin polarizations are
random and have an equal probability of pointing in any direction in space. With the
B0 magnetic field turned on, all 1H nuclei begin to precess around the field at the same
Larmor frequency. Due to tiny fluctuations in magnetic field strength and direction that
each proton is experiencing, the ‘cones of precession’, that is, the angle between ~B0 and
each microscopic ~µ, may be different for each individual ~µ [6]. However, macroscopically,
considering the ensemble of spins in the water sample, the net distribution of spin polariza-
tions is slightly in favour of the spin states where the magnetic moment vector is aligned
with the magnetic field, as opposed to the orientations where the magnetic moment is
pointing in the opposite direction from the magnetic field. The splitting of energy states is
termed the Zeeman splitting effect (see Fig. 2.2) and the population difference between the
energy states is predicted by the Boltzmann distribution [7]. This population difference

leads to a small net or bulk magnetic moment, ~M , to appear in the water sample along
the longitudinal direction (z-axis).

2.3 Bulk Magnetization

Bulk or net magnetization is defined as the sum of all nuclear magnetic moments in a
sample [7]:

~M =
N∑
i=0

~µi,

8



Figure 2.2: Zeeman splitting: observable energy difference between spin states caused by the
presence of a magnetic field.
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Figure 2.3: Bulk magnetization, ~M, is the sum of all nuclear magnetic moments in a sample.

The magnetization vector points in the same direction as the ~B0 field (positive z-axis)
because phase coherence between individual magnetic moments does not exist yet. In
other words, although all the protons are precessing about ~B0 at the Larmor frequency,
they are all out of phase with each other. As a result, the transverse components of all the
magnetic moments cancel each other, and only the longitudinal components constructively
sum together to give a net magnetization vector.

It is convenient here to introduce a rotating frame of reference, as opposed to the
original laboratory frame of reference, which rotates about the z-axis at the Larmor fre-
quency. The transverse axes in the rotating frame are denoted as the x’ and y’ axes. In
this new coordinate system, a vector in the transverse plane rotating about the z-axis at
the Larmor frequency would appear to be stationary. Vectors going slower than the Lar-
mor frequency appear to be rotating anti-clockwise and vectors going faster appear to be
rotating clockwise.

The bulk magnetization vector can be tipped from the z-axis down to the transverse
plane using a short duration, oscillating magnetic field, known as ~B1, orthogonal to the
main magnetic field ~B0, illustrated in Fig. 2.4. In order to have any effect on net magneti-
zation, the frequency of oscillation must satisfy what is known as the resonance condition
[7]:

ωrf = γB0. (2.6)

Therefore, recalling Eq. 2.5, ωrf must equal the Larmor frequency.

The ~B1 field is generated using RF pulses through transmitter coils. For example, a ~B1
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field oscillating at the Larmor frequency between positive and negative x-axis is created
using a coil placed around the x-axis and applying an alternating current at the Larmor
frequency. In the rotating frame of reference, the ~B1 field appears stationary, pointing
along the x’-axis. The net magnetization vector rotates about the ~B1 field. The angle of
rotation is dependent upon the strength and duration of ~B1 [9]:

θ = 2πγτB1, (2.7)

where τ is the time duration of the ~B1 pulse.

A 90◦-pulse tips the net magnetization vector 90◦ toward the y’-axis, as shown in
Fig. 2.4. In the laboratory frame, the net magnetization vector follows a spiral path down
to the transverse plane, making the motion much more difficult to describe, hence the
introduction of the rotating frame of reference. Similarly, a 180◦-pulse rotates the magne-
tization vector 180◦ about the x’-axis and results in the vector pointing in the negative z
direction [7].

Figure 2.4: Net magnetization after application of 90◦-pulse.
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2.4 Bloch Equations

The ~B1 field is turned on for a short period of time and then turned off. The process
through which the spin system returns to its equilibrium state after the ~B1 field is switched
off is called relaxation [9]. The net magnetization vector is split into its longitudinal and
transverse components, Mz and Mxy respectively. The recovery of Mz is termed spin-lattice
or longitudinal relaxation, and the decay of Mxy is called spin-spin or transverse relaxation
[7].

Bloch equations, introduced by Felix Bloch, describe the time-dependent behaviour of
the bulk magnetization vector in a magnetic field. Note that these are only phenomeno-
logical equations and the mechanics of the relaxation process is too detailed to be covered
in this document. In vector form [7], where ~M = (Mx,My,Mz),

d ~M

dt
= γ ~M× ~B− Mx

~i+My
~j

T2

− (Mz −M0
z )~k

T1

.

The terms involving T1 and T2 describe the relaxation process. T1 is the time constant
for longitudinal relaxation and T2 is the time constant for transverse relaxation. Note the
similarity with the classical equation of the motion of a gyroscope, i.e.

d~L

dt
= ~r×m~g.

In component form [4],

dMx(t)

dt
= γ[My(t)Bz(t)−Mz(t)By(t)]−

Mx(t)

T2

dMy(t)

dt
= γ[Mz(t)Bx(t)−Mx(t)Bz(t)]−

My(t)

T2

dMz(t)

dt
= γ[Mx(t)By(t)−My(t)Bx(t)]−

Mz(t)−M0
z

T1

, (2.8)

where M0
z is the longitudinal magnetization at equilibrium. Bx, By and Bz are the x, y, and

z-components of the ~B1 field, where Bx = B1cos(ωrf t), By = B1sin(ωrf t) and Bz = 0. For
simplicity, off-resonance effects are not taken into account, that is, assume ω0 − ωrf = 0.
Eq. 2.8 can then be expressed in the rotating frame of reference as follows [10]:

dMx′(t)

dt
= −Mx′(t)

T2

dMy′(t)

dt
= γMz(t)B1 −

My′(t)

T2

dMz(t)

dt
= γMy′(t)B1 −

Mz(t)−M0
z

T1

. (2.9)
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Note that Mz′ and Mz are equal since they are co-linear.

Consider the free precession scenario, where no RF pulses or ~B1 fields are being applied,
magnetization is allowed to freely recover to equilibrium. In this case, Bx′ and By′ are both
zero, and Eq. 2.9 reduces to [4]:

dMx′(t)

dt
= −Mx′(t)

T2

dMy′(t)

dt
= −My′(t)

T2

dMz′(t)

dt
= −Mz′(t)−M0

z

T1

.

Solving the above system of first-order differential equations yields the following:

Mx′(t) = Mx′(0)e−t/T2

My′(t) = My′(0)e−t/T2

Mz′(t) = Mz′(0)(1− e−t/T1). (2.10)

Mz is known as the longitudinal nuclear magnetization and Mx and My can be combined
to form the transverse nuclear magnetization, Mxy. Eq. 2.10 can be written as:

Mx′y′(t) = Mx′y′(0)e−t/T2

Mz′(t) = M0
z (1− e−t/T1). (2.11)

Transformation from the rotating frame to the laboratory frame, the frame in which signals
are measured, can be done with the following relationship [7]:

Mxy(t) = Mx′y′(t)e
−jω0t.

Therefore,

Mxy(t) = Mxy(0)e−t/T2e−jω0t

Mz(t) = M0
z (1− e−t/T1). (2.12)

As seen in Fig. 2.5 and 2.6, the recovery of the longitudinal magnetization is characterized
by time constant T1 and similarly the decay of transverse magnetization by T2. If a coil were
placed around the x-axis, a signal would be induced by the precession of the transverse
magnetization vector Mxy. Note that Mxy is a circularly polarized magnetic field and
that using one coil around the x-axis will pick up only one of quadrature components.
Two orthogonal coils in quadrature are required to receive both components. Quadrature
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detection methods will be discussed in chapter 4. This signal induced in the receiver coils,
S(t), is called the free induction decay (FID):

S(t) = M0
z e

jω0te−t/T2 .

T1 is the time constant describing the rate at which spins realign with the external magnetic
field and is affected by the spins’ ability to exchange energy with their surroundings. T1 is
shorter for fat, and longer for water. T2 decay is due to distributions of the local magnetic
fields, which causes phase decoherence (dephasing) of the spins and thus a loss of net signal.
Fat has short T2 times and water has long T2 times.

There is a period of ‘receiver dead time’ following an RF pulse where the receiver
electronics are saturated and unable to capture signal [11]. For this reason, the first part
of an FID, which occurs at the time of the RF pulse, is often unobservable. Instead, another
signal known as an ‘echo’ is generated after the FID fades away. The FID decays due to
dephasing of spins; some spins precess faster than others, and some slower than others,
eventually all the spins are at different phases and cancel each other out. A 180◦-pulse is
applied after the FID fades away, which flips all the spins 180◦ such that the faster spins
are now lagging behind the slower spins. After some time, the spins will rephase and begin
to dephase once again. The result is a symmetrical signal, where the rate of rephasing and
dephasing is governed by T2. Fig. 2.7 shows a few examples of echoes.

These echoes are similar to the interferograms produced by FTS instrumentation, shown
previously in Fig. 1.2. MRI echoes, instead of interfering light, are produced by the sum-
mation of RF signals, and the relationship between the bandwidth of light and width of
the resultant fringe envelope is analogous to the relationship between the bandwidth of
the RF signal and the envelope of the resultant echo. This is examined in more detail in
chapter 3.

2.5 Frequency and Phase Encoding

The FID is the combination of signals from all spins in the sample. In order to perform
imaging, there must be a way to differentiate between signals from different physical lo-
cations. If all the spins are precessing at the same frequency and phase, it becomes a
difficult, if not impossible, task to identify the origin of the signal. Phase and frequency
encoding is a technique to localize each voxel (3-D pixel) with a unique frequency and
phase pair such that signal from each voxel could be recovered [9]. If a linear magnetic
gradient were applied across one dimension of the image, say the vertical direction, spins
in the rows experiencing a lower magnetic field would precess more slowly (according to
the Larmor equation) and spins in rows experiencing a larger magnetic field would precess
more quickly. When the gradient is turned off, all the spins precess at the same Larmor
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Figure 2.5: Recovery of longitudinal magnetization.

Figure 2.6: Decay of transverse magnetization.
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Figure 2.7: Examples of MR echoes. From top to bottom: broadband unfiltered, narrowband
filtered low frequency (channel 1/8), narrowband filtered high frequency (channel 8/8).
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frequency again, but each row now has a different phase from the next. Then if a linear
gradient were to be applied across the horizontal direction, spins in each column would
precess at a different frequency. Now, we have encoded each voxel with a frequency and
phase, varying by frequency horizontally and phase vertically. By applying the gradients
in different directions (x, y, z), sagittal, coronal, and axial images can be obtained.

2.6 K-space and Image Reconstruction

In a simple rectilinear acquisition scheme, such as the classic spin echo pulse sequence, the
phase encoding gradient is varied X times where X is the number columns of the resultant
image. A 256x256 image would require 256 different phase encoding steps, and therefore
256 echoes would be acquired. The echoes are arranged in a 2D matrix known as k-space.
The imaging equation can be formulated as:

S(kx, ky) =

∫ ∞
−∞

∫ ∞
−∞

I(x, y)e−j2π(kxx+kyy)dxdy, (2.13)

where kx and ky belong to the set of points in k-space, and I(x, y) is the desired image.
Actual acquired data points in k-space are discrete. Assuming k-space sampling is uniform,
Eq. 2.13 can be written as:

S[m,n] = S(m∆kx, n∆ky) =

∫ ∞
−∞

∫ ∞
−∞

I(x, y)e−j2π(m∆kxx+n∆kyy)dxdy,

where ∆kx and ∆ky are the k-space sampling intervals in the frequency encoding and phase
encoding directions respectively, m = {−∞, . . . ,−1, 0, 1, . . . ,∞} and n = {−∞, . . . ,−1, 0, 1, . . . ,∞}.
Recall the Poisson formula which relates the coefficients of the Fourier series representation
of a function with the periodic extension of its continuous Fourier transform:

∞∑
m=−∞

∞∑
n=−∞

S[m,n]ej2π(m∆kxx+n∆kyy) =
1

∆kx∆ky

∞∑
m=−∞

∞∑
n=−∞

I(x− m

∆kx
, y − n

∆ky
).

In practice, I(x, y) is limited by the field-of-view, that is, I(x, y) = 0 for |x| > Wx/2 and
|y| > Wy/2. The number of data points acquired for the signal S[m,n] is also finite, that is,
m = {−M/2, . . . ,M/2} and n = {−N/2, . . . , N/2}. Since only a finite number of samples
are available, the reconstructed image using the truncated signal is an approximation of
the true image. I(x, y) can be approximately recovered using:

I(x, y) = ∆kx∆ky

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

S[m,n]ej2π(m∆kxx+n∆kyy),
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where |x| < 1/∆kx and |y| < 1/∆ky.

To ensure no aliasing will occur, the k-space sampling interval must be small enough
to satisfy the Nyquist criterion. Consider I(x, y) as a bandlimited signal with maximum
frequencies given by (M/2)∆kx and (N/2)∆ky. Then, to avoid aliasing, the pixel sizes in
I(x, y), ∆x and ∆y, must satisfy:

∆x 6
1

M∆kx
,

and

∆y 6
1

N∆ky
.

At the maximum pixel size, a M × N image is obtained. That is, I[p, q] = I(p∆x, q∆y)
where p = {−M/2, . . . ,M/2} and q = {−N/2, . . . , N/2}. I[p, q] can be obtained by
evaluating the Discrete Fourier Transform (DFT) of S[m,n]:

I[p, q] = ∆kx∆ky

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

S[m,n]ej2π(mp/M+nq/N),

for −M/2 6 u 6M/2 and −N/2 6 v 6 N/2. Note that knowledge of ∆kx and ∆ky is not
required for reconstruction. If both ∆kx and ∆ky are set to 1, then ∆x and ∆y are 1/M
and 1/N respectively. The direct DFT reconstruction formula for MR images is then:

I[p, q] =

M/2−1∑
m=−M/2

N/2−1∑
n=−N/2

S[m,n]ej2π(mp/M+nq/N). (2.14)
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Chapter 3

CRISP

3.1 Calculated Readout by Spectral Parallelism

CRISP is a parallel acquisition principle that can be implemented in MRI in several dif-
ferent ways. First is filterbank CRISP, where the MR signal from the receiver is passed
through a comb of analog bandpass filters, converting one broadband channel into multiple
narrowband channels, hence spectral parallelism. Each narrowband channel is individually
captured with an analog-to-digital converter. In software, a weighted-addition of the nar-
rowband channels is performed to recover the broadband signal, where the weights are the
magnitude response profiles of the narrowband bandpass filters (calculated readout). The
filter response profiles can be estimated by imaging a known, flat and uniform sample.

A second method of implementation is multi-coil CRISP, where multiple coils are placed
physically adjacent to each other and each one is sensitive to a small region of the object.
In this arrangement, the RF coils act as the bandpass filters, and the signal from each
coil is considered narrowband. Each narrowband channel requires a separate RF receiver
chain, in addition to the analog-to-digital converters. The broadband signal is recovered
in similar fashion by weighted-addition of the narrowband channels, where the weights
are now the response profiles of the RF coils, which again can be estimated by imaging a
known, flat and uniform sample.

This thesis is mostly concerned with filterbank CRISP, the first proposed implemen-
tation. From this point onward, filterbank CRISP will be referred to simply as CRISP
unless specified otherwise. The first section of this chapter will review the state of the art
of parallel imaging techniques most relevant to CRISP. The second section will explore
the benefits of CRISP in terms of signal-to-noise and sensitivity improvements, as well
as the imaging scenarios where CRISP is expected to make a difference. Finally, some
experimental and simulation results are presented.
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3.2 State of the Art

Parallel MRI techniques, such as phased array coils, have been around since the 1980s
[12], but became a popular research area only in the past decade [13]. Early parallel imag-
ing techniques were more focused on improving image quality and signal-to-noise (SNR)
using full field-of-view (FOV) acquisitions. Since then, improvements in hardware have
led to higher magnetic field strengths (up to 7 Tesla for clinical use) and faster switch-
ing gradients, which means performance is now limited to a larger extent by physical and
physiological concerns such as specific absorption rate (SAR) or peripheral nerve stim-
ulation (PNS) [14]. Research and development have shifted toward accelerated imaging
and image reconstruction algorithms such as PILS [15], SENSE [16], SMASH [17], and
GRAPPA [18], all of which exploit known sensitivity information about a parallel array of
receive coils in order to reconstruct images from undersampled k-space. It is of note here
that fundamentally, all these methods achieve accelerated imaging at the cost of reduced
SNR [13]. The above algorithms can be roughly divided into two categories: image-domain
methods (PILS, SENSE) and k-space methods (SMASH, GRAPPA). Since CRISP is an
image-domain method, only PILS and SENSE will be described here for comparison.

Partially Parallel Imaging with Localized Sensitivity (PILS) assumes that each compo-
nent coil in an array of surface coils is sensitive only to a localized region of space along the
phase encoding (y) direction. If the full field-of-view (FOV) to avoid aliasing in the phase
encoding direction is Yi, then a coil with localized sensitivity is restricted to receiving signal
from a region of size Yc, where Yc < Yi, centered at y0 where the coil is physically located.
In this case, the FOV can be reduced to Yc without aliasing problems. The reduction in
FOV translates to a reduction in scan time since less phase encoding steps are required.

SENSivity Encoding (SENSE) can be described as a method to “unfold” aliased pixels
in image space. FOV is reduced as a result of undersampling k-space to accelerate imaging.
Aliasing occurs when a full FOV image is reconstructed from the reduced FOV data from
a component coil. Each pixel in the intermediate images resulting from the component
coils is a linear combination of equidistant pixels in the full FOV image, weighted by the
coil sensitivity at the corresponding pixel locations. The signal at location (x,y) of the kth
component coil can be written as [14]:

Ik(x, y) = Ck(x, y1)ρ(x, y1) + Ck(x, y2)ρ(x, y2) + · · ·+ Ck(x, yR)ρ(x, yR)

where k counts from 1 to Nc, the number of coils used, and R is the number of aliased
pixels in the full FOV image. Ck(x, y1) is the coil sensitivity for coil k at pixel location
(x, y1). ρ(x, y1) is the desired pixel value at (x, y1). Ik(x, y) is the pixel value at (x, y) of
the aliased image from coil k. Combining all Nc coils results in a set of Nc linear equations,
with R unknowns:

~I = C · ρ̃ (3.1)
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~I is a length Nc vector containing the value of one chosen pixel for each of the Nc coils. C
is a Nc×R matrix with coil sensitivities at each of the R locations. R must not be greater
than Nc in order to solve the system. Solving Eq. 3.1 is generally possible if the matrix
inverse of C can be found or approximated.

3.3 Comparison to CRISP

PILS and SENSE are similar to CRISP in the sense that the final image is a combination
of multiple intermediate images obtained from reduced FOV signals. In PILS and SENSE,
each component receiver coil could be seen as a analog bandpass filter in the phase encoding
direction [15]. The intermediate images are obtained from the signal of each coil. In
filterbank CRISP, the signal from one coil is filtered into multiple narrower bandwidth
channels using analog bandpass filters, and the intermediate images are derived from the
signal of each of those narrowband channels. In the current implementation of CRISP,
only one receiver coil is used, but in principle it is easily extendible to multiple coils by
duplicating the entire receiver chain for each coil. CRISP on its own is not an accelerated
imaging technique; it does not reduce the number of echoes required. It can, however,
reduce the sampling requirement for echoes, such that a smaller number of data points
is necessary to capture the signals from each narrowband channel when compared to the
original broadband signal.

Fig. 3.1(a) and 3.1(b) illustrate some of the similarities and differences between PILS,
SENSE and CRISP. PILS and SENSE require coil sensitivity profiles along the phase
encoding direction, while filterbank CRISP requires bandpass filter response profiles along
the readout or frequency encoding direction. The intermediate images for PILS and SENSE
have reduced FOV in the phase encoding direction, while the intermediate images for
CRISP have reduced FOV in the frequency encoding direction. In PILS and SENSE, the
bandwidth of the signals from each coil just before the analog-to-digital converter (ADC)
does not change. In CRISP, the ADC sees a smaller bandwidth due to the preceding
bandpass filter.

3.4 CRISP Reconstruction

In this implementation of filterbank CRISP, the broadband MR signal is processed with
a comb of analog bandpass filters, converting it into multiple narrowband signals. Each
individual narrowband signal is acquired with an ADC and the final image is reconstructed
in software using a weighted addition of intermediate images derived from the narrowband
signals. As shown in Fig. 3.1(b), CRISP requires the bandpass filter frequency response
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(a) PILS/SENSE

(b) CRISP

Figure 3.1: Simplified signal flow for (a) SENSE and PILS reconstruction and (b) CRISP recon-
struction.
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profiles in order to perform the reconstruction of the final image. These profiles are esti-
mated using an object with flat and consistent response across the frequency direction.

The bandpass estimation and the image reconstruction process is illustrated with a
concrete example; a water phantom acquired using the CRISP receiver chain, with four
bandpass filters, is shown in Fig. 3.2, where the four partial field-of-view images are recon-
structed from data from the four narrowband bandpass channels respectively. The region
that will be used for bandpass response estimation is highlighted. An image of the same
phantom acquired without CRISP narrowband filters is shown in Fig. 3.3 for reference.
For each narrowband channel, the rows in the highlighted region are averaged to obtain
the response profile corresponding to that filter. Four response curves are obtained, one
for each filter, as illustrated in Fig. 3.4.

Figure 3.2: CRISP intermediate images from four bandpass filtered signals. The image region
used to estimate bandpass filter response is highlighted.

Mathematically, the bandpass estimation can be described, in 1D, as follows. Let F (ω)
represent the known, flat and uniform calibration image. That is, F (ω) = 1 inside the
field-of-view and F (ω) = 0 elsewhere. Bandpass filter i has unknown response Bi(ω), and
i = {0, 1, . . . , N}, where N is the total number of bandpass filters. Filtering the signal
gives the bandpass frequency response:

F (ω)Bi(ω) = Bi(ω),

for i = {0, 1, . . . , N}. The process is the same for all rows of all images. Let Bij(ω) be the
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Figure 3.3: Image of the calibration water phantom acquired without CRISP bandpass filters.
Region used to estimate bandpass filter response is highlighted.

Figure 3.4: CRISP bandpass filter response profiles.
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profile obtained for filter i using row j of channel i. The estimated bandpass response is:

B̂i(ω) =

rowe∑
j=rows

Bij(ω)

rowe − rows + 1
.

where rows and rowe are the start and end row indices respectively. The start and end
rows define the region used to estimate bandpass response profiles and are chosen by visual
inspection of the unfiltered image to determine the flattest, most uniform region possible.

With the filter profiles, weighted addition is performed on the intermediate images
in Fig. 3.2. Let S(ω) represent the spectrum of the noiseless signal and N(ω) the noise
spectrum. The total signal spectrum, F (ω), over the entire bandwidth, BW , is then:

F (ω) = S(ω) +N(ω),

where additive noise is assumed. Let Bi(ω) be the shape of bandpass filter i, centered at
frequency ωi, with bandwidth BWi, and i = {1, . . . , N}, where N is the total number of
bandpass filters. Also, assume the estimated bandpass response is a good approximation
to the true bandpass response, that is, B̂i(ω) ' Bi(ω). Let Gi(ω) be the resulting signal
filtered with bandpass i, that is

Gi(ω) = F (ω) ·Bi(ω)

= [S(ω) +N(ω)] ·Bi(ω)

= S(ω)Bi(ω) +N(ω)Bi(ω).

Weighted addition is then used to reconstruct the image. Let H(ω) be the reconstructed
image. The acquired signals Gi(ω) are multiplied by the bandpass responses and divided
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by the sum of the square of the bandpass responses for normalization:

H(ω) =

N∑
i=1

Gi(ω)Bi(ω)

N∑
i=1

B2
i (ω)

=

N∑
i=1

S(ω)B2
i (ω)

N∑
i=1

B2
i (ω)

+

N∑
i=1

N(ω)B2
i (ω)

N∑
i=1

B2
i (ω)

(3.2)

= S(ω)

N∑
i=1

B2
i (ω)

N∑
i=1

B2
i (ω)

+N(ω)

N∑
i=1

B2
i (ω)

N∑
i=1

B2
i (ω)

(3.3)

= S(ω) +N(ω).

Therefore, the original signal and noise is recovered exactly. Equality between Eq. 3.2
and Eq. 3.3 is justified by the assumptions that both signal and noise are filtered in the
same manner [19], and that noise is independent from signal and the effects of filtering.
This is the case if the signal is filtered in the digital domain, where no effect on SNR
would be observed. Therefore, in order to observe an SNR improvement with CRISP
reconstruction using bandpass filters, the signal should be filtered in the analog domain.
This separates CRISP from other digital filterbank reconstruction techniques in the past
[20]. The reconstructed image is shown in Fig. 3.5(c), along with an image reconstructed
without weighted addition, Fig. 3.5(b), and an unfiltered reference image, Fig. 3.5(a).

3.5 Signal-to-Noise Improvement

An argument for SNR improvement is presented here. The following assumptions are made:

1. Noise, N(ω), is dependent on signal bandwidth. As a simplifying assumption, noise
is assumed to be equal to the square root of the bandwidth, BW , of the initial
bandlimited signal, S(ω). The total signal is S(ω) +N(ω).

2. A comb of N ideal bandpass filters are used, where the filter response of filter i is
Bi(ω) = 1 within the filter passband, BWi, and 0 elsewhere. BWi is identical for all
i filters.
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(a) Unfiltered (b) Simple add (c) Weighted add

Figure 3.5: CRISP reconstruction. In (c), noise outside of the FOV is amplified due to the
weighted-add reconstruction.
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3. The combined passband of all bandpass filters span the entire bandwidth, BW , of
the initial signal.

4. Bandpass filter i only allows frequencies within its passband, BWi to pass through,
and attenuates all other frequencies.

5. Signal, S(ω), passing through the filter is unchanged, and can be recovered exactly.

6. As a corollary to Assumption 1, noise, Ni(ω), at the output of filter i is equal to the
square root of the output signal bandwidth,

√
BWi.

Given the above assumptions, passing through bandpass filter i, S(ω) is unchanged in the
passband of the filter BWi, but the noise has changed from

√
BW to

√
BWi:

noise at filter output

noise at filter input
=

√
BWi√
BW

.

With N identical ideal filters available, the bandwidth of each filter is 1/N of the bandwidth
of the initial signal. √

BWi√
BW

=
1√
N
.

Therefore, the noise in each narrowband channel is reduced by
√
N . Since signal is un-

affected by the reconstruction and can be recovered exactly, the SNR of the total recon-
structed signal compared to the total original signal is increased by a factor of

√
N .

In other words, CRISP targets noise that exhibit dependence on signal bandwidth. If
there exists an RMS noise voltage per unit frequency present in the signal, the noise value
is determined by multiplying the RMS noise voltage per unit frequency by

√
BW where

BW is the total bandwidth of the initial signal. If BW is divided into N by N equal filters
with bandwidth BWi, then the noise voltage at the output of each filter is 1/

√
N of the

initial noise value. The part of the signal that lies in the bandwidth of the filters passes
through and is used to fully reconstruct the original signal. In other words, the signal is
unchanged, but the noise has been reduced by

√
N . Therefore, SNR is increased by

√
N .

A subtle point to note is that in order for the filters to have an effect on SNR, the noise
must occur after the signal has been reduced in power, that is, after bandpass filtering.
Filterbank CRISP has minimal impact on noise occurring before filtering, which is another
argument for analog filtering over digital filtering since no further noise is added after signal
digitization.

3.6 Sensitivity Improvement

Recall the relationship between the bandwidth of a signal and its echo. For narrowband
filtered signals, the duration of the echo is extended in comparison to the original unfiltered
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signal. This idea is illustrated in Fig. 2.7 in chapter 2, where the top signal is the unfiltered
broadband signal, and the bottom two are signals from two different narrowband CRISP
channels. In short T2 relaxation scenarios with noise, the signal decays rapidly into the
noise floor, and information may be lost. The reduction in decay rate allows for more signal
to be acquired over time. This is demonstrated with the following experiment where MR
data is acquired with a broadband filter and with a bank of narrowband filters. Digitization
with varying bit levels is simulated using this data.

3.6.1 Experiment and Simulation Results

A small onion sample is imaged on a Bruker 11.7 T NMR magnet. The MR signal is
downconverted using the Bruker receiver chain and then processed using either the CRISP
narrowband bandpass filters or a broadband filter. A 16-bit analog-to-digital converter is
used to acquired the 16-bit signals shown in Fig. 3.6(a) and 3.6(b). The corresponding
reconstructed images are shown in Fig. 3.7(a) and 3.7(b). The 8-bit and 5-bit signals are
simulated from the original 16-bit signals. Figures on the left in Fig. 3.6 show signals from
the output of one of the CRISP narrowband filters, while figures on the right show the
signals after a broadband filter. The broadband signal, with many frequency components,
exhibits a fast decay rate, while a narrowband signal, with fewer frequency components,
decays much more slowly. The difference is most apparent at the 5-bit level, where the
CRISP narrowband signal avoids being digitized to zero for a longer period of time than
the broadband signal. Fig. 3.7 shows the corresponding reconstructed images for each of
the signals in Fig. 3.6.

Furthermore, when digitizing analog signals, such as an MR echo, it is beneficial to set
the maximum input range of the ADC to the maximum peak of the signal. That is, if
the peak signal is +5V, and the ADC is 16-bits, 215 = 32768 represents +5V and -32768
represents -5V. Each bit-level is then 1/32768 × 5V = 0.153 mV. Using the same 16-bit
ADC for a signal with maximum peak to peak of ±2.5V, each bit now represents 0.076
mV, making it more sensitive to smaller signals. In CRISP, by splitting a broadband signal
into multiple narrowband signals, the signal peak in each channel is lower and the power
is spread over a longer period of time. Therefore, the signal can be amplified and the
full range of the ADC can be used more effectively. In short T2 cases, where the signal is
sharply peaked and decays rapidly, CRISP is expected to lead to an improvement in image
quality.

3.7 Conclusion

In this chapter, recent MR image reconstruction methods were discussed; focus was given
to PILS and SENSE since they are image-domain methods like CRISP. Their similarities
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(a) One channel of CRISP 16-bit (b) Broadband 16-bit

(c) One channel of CRISP 8-bit (d) Broadband 8-bit

(e) One channel of CRISP 5-bit (f) Broadband 5-bit

Figure 3.6: Low-bit level digitization simulation FIDs from an onion sample. Sampling rate was
500 kHz, therefore, each tick on the x-axis represent 2 µs.
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(a) CRISP 16-bit (b) Broadband 16-bit

(c) CRISP 8-bit (d) Broadband 8-bit

(e) CRISP 5-bit (f) Broadband 5-bit

Figure 3.7: Low-bit level digitization simulation images from an onion sample.
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and differences were highlighted. Filterbank CRISP was explained and an argument for
SNR improvement formalized. Assuming bandwidth dependent noise, such as thermal
noise, occurring after the CRISP bandpass filters, CRISP offers an upper bound of

√
N

SNR improvement over traditional acquisition and reconstruction methods. An argument
for analog hardware filtering was given, based on the fact that digital filtering affect both
signal and noise in the same way and does not reduce the bandwidth dependent noise that
occurs after filtering. Simulation results that demonstrate sensitivity improvement due to
the extended duration of echoes/FIDs acquired with filterbank CRISP versus traditional
broadband acquisition were shown.
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Chapter 4

RF Receiver Chain

While working with Sergei Obruchkov on a 3T MRI system1, it was determined that the
system digitizes the MR signal at 2.25 MHz. Therefore, an analog MR signal lower than
2.25 MHz is not available. Thus, the goal for the custom receiver chain is to receive the
raw MR signal, and down-convert it to a lower frequency of choice for filtering with CRISP
bandpass filters. The custom receiver chain will from now on be referred to as the CRISP
receiver chain, to eliminate confusion with the receiver chain in the clinical system.

This chapter will introduce the electronic components required to implement a custom
RF receiver chain in order to capture a magnetic resonance signal from a clinical MRI
system. Experimental results comparing the images acquired with the custom receiver
chain and the clinical system will be presented.

In general, a simple RF receiver chain for MR consists of five main components: 1)
(pre-)amplifiers, 2) RF receiver (demodulator/mixer), 3) local oscillator (LO), 4) filters and
attenuators, 5) analog-to-digital converters (ADC). In the CRISP receiver chain, the input
MR signal is obtained by splitting the signal from the clinical system after amplification
by low-noise pre-amplifiers. An NMR RF receiver demodulates the signal using a local
oscillator as the reference. The result is acquired with an analog-to-digital converter and
finally, the image is reconstructed in software.

4.1 Input Signal

The input MR signal is a bandlimited signal, modulated with a carrier frequency ωc equal
to the Larmor frequency ω0.

ω0 =

{
63.864 MHz for B0 = 1.5 T
127.728 MHz for B0 = 3.0 T

1Imaging Research Center at St. Joseph’s Hospital in Hamilton, Ontario.
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The bandwidth of the signal is typically 31.25 kHz and is at -65 dBm (or 128 µVrms or
356 µVpk−pk at 50Ω impedance) just after the receive coils. Fig. 4.1 plots the complex MR
signal spectrum, and Fig. 4.2 plots the signal received by an RF detect coil. Note that the
spectrum is symmetric about zero since the signal is real.

Figure 4.1: Complex MR signal.

Figure 4.2: The signal received by an RF coil.

Accessing the raw signal in a clinical system requires either 1) directly soldering a
connection on the circuit board of the RF coil and running a cable from the magnet room
to the adjacent equipment room, or 2) identifying and intercepting the correct signal in the
equipment room using a power splitter. With the assistance of Ken Bradshaw2, the first
method is implemented. An important detail of note is the insertion of an RF choke on the
coaxial cable carrying the MR signal from the magnet room to the equipment room. The
choke significantly improved signal quality and allowed for images to be captured. The
second method does not require a cable from the magnet room to the equipment room,
but it does require some trial and error to locate the correct signal and access to special
RF connectors and adaptors.

2Sentinelle Medical Inc.
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4.2 RF Receiver

At the heart of the receiver chain is the RF receiver, which performs the downconver-
sion and demodulation of the signal. RF receivers in general can be split into two main
architectures: heterodyne and homodyne. Heterodyne receivers (Fig. 4.3) downconvert
the incoming RF signal down to an intermediate frequency (IF) first, then downconvert
a second time from IF to baseband [21]. Some heterodyne receivers digitize the IF signal
directly with an analog-to-digital converter, and perform the final demodulation stage in
software [22]. Homodyne receivers (Fig. 4.4) downconvert RF signals directly to baseband
[21]. Many RF communication systems, such as AM/FM radios, use the heterodyne ar-
chitecture [23], and MRI systems are no exception. The exact IF depend on the specific
system design and implementation, but is 2.25 MHz for the clinical system that is used for
experiments here.

Fig. 4.5 illustrates one possible implementation of CRISP receiver chain using the ho-
modyne architecture. The lowpass filters in Fig. 4.4 are replaced with two identical banks
of four narrowband bandpass filters, one for the real and one for the imaginary channel.
The outputs are fed into an analog-to-digital converter with eight simultaneous inputs.

Figure 4.3: Simple heterodyne receiver chain. [21]

An NMR receiver is used for the CRISP receiver chain. The receiver has two indepen-
dent I/Q channels, each with a double balanced mixer (SBL1-1) from Mini-circuits with
broadband amplifiers with adjustable gain and a lowpass filter with cutoff frequency ≈ 1
MHz.

4.3 Quadrature Detection

The MR signal as received by a single RF coil is shown in Fig. 4.2. However, the complex
signal with only positive frequencies, as shown in Fig. 4.1, is desired. Mixing with a simple
cos(ω0t) results in the scenario in Fig. 4.6 where the positive and negative images are
aliased together. Now consider the complex signal, e−jω0t. According to Euler’s formula,
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Figure 4.4: Simple homodyne receiver chain. [21]

Figure 4.5: Simple receiver chain with CRISP filterbank.
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e−jω0t decomposes into cos(ω0t)− jsin(ω0t), which is a pair of sinusoids, one in-phase (the
real or I channel) and the other in quadrature, or out of phase by 90◦ (the imaginary or Q
channel). Using this I/Q pair as reference, the positive frequency signal can be recovered,
as illustrated in Fig. 4.7. This is known as quadrature detection [6, 7].

Figure 4.6: Demodulation with real signal cos(ω0t). Note the aliased demodulated baseband
image.

4.3.1 Analog Quadrature Correction

The real (I) and imaginary (Q) component pairs of complex data should be located on
perpendicular axes in the complex plane. However, when the phase difference between the
I/Q pair is not 90◦, the negative frequency component of the acquired data will not cancel
properly. Rather than ideal case where cos(ω0t) − jsin(ω0t) = e−jω0t, mismatch between
pair of quadrature signals results in an additional ejω0t term [21]. Consider the case where
θ represents the error in phase away from quadrature:

cos(ω0t)− jsin(ω0t+ θ) =
1

2

[
ejω0t + e−jω0t

]
− 1

2

[
ej(ω0t+θ) − e−j(ω0t+θ)

]
=

1

2

[
1− ejθ

]
ejω0t +

1

2

[
1 + e−jθ

]
e−jω0t.

Quadrature pair mismatch results in a flipped and upside down version of the image su-
perimposed on the desired image. The effect of quadrature mismatch is illustrated in
Fig. 4.9(a) with an image of a water phantom acquired with the CRISP receiver chain.
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Figure 4.7: Demodulation with complex signal e−jω0t. Note the unaliased baseband image.

The I and Q channels only need to be phase-shifted 90◦ relative to each other and
therefore, misalignment could be corrected to some extent in software after data acquisition.
Fig. 4.8 plots phasor x on the complex plane. The real component of x, R, is assumed to
be correct. The correct real and imaginary components for x is R and Icor respectively.
In other words, R and Icor are the data points that should have been acquired if the I
and Q channels are exactly in quadrature. But due to quadrature mismatch, the actual
data collected is R and Iinc. θ is the difference in angle between the correct and incorrect
imaginary axis and φ is the angle of the phasor x with respect to the correct imaginary
axis.

The following equations can be derived from trigonometry:

Iinc
x

= cos(φ− θ) (4.1a)

R

x
= sin(φ) (4.1b)

Icor
x

= cos(φ). (4.1c)

Using the identity cos(φ− θ) = cos(φ)cos(θ) + sin(φ)sin(θ) and Eg. 4.1a, 4.1b, and 4.1c,
the equation for correcting quadrature mismatch can be written as:

Icor =
Iinc −Rsin(θ)

cos(θ)
. (4.2)
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Figure 4.8: Correcting for quadrature mismatch - here, the real channel is assumed to be “correct”,
R and Icor are the correct real (I) and imaginary (Q) axes, Iinc is the incorrect imaginary axis
that data was acquired on, x is the magnitude of the phasor that is being acquired, and θ is the
error in degrees away from exact quadrature.
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In matrix form: [
R
Icor

]
=

[
1 0

−tan(θ) sec(θ)

] [
R
Iinc

]
. (4.3)

Fig. 4.9(b) shows the image after the correction is applied. The quadrature ghost image
is much less visible in the corrected result, but not completely eliminated. This could be
due to the fact that the angle θ was not known exactly, and trial-and-error was used to
find an approximate solution. This process also highlights the point that it is difficult to
generate the I and Q channels in exact quadrature without additional stabilization circuits,
and that once the data has been acquired imperfectly, it may not be possible to recover
the signal perfectly again.
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(a) Without correction

(b) With correction

Figure 4.9: Reconstructed images with mismatched quadrature reference pair.
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4.3.2 Digital Quadrature Detection

Digital quadrature detection is one possible alternative to avoid the inefficiencies and diffi-
culties of quadrature detection in the analog domain. The premise is to sample the signal
at four times the center frequency of the image [24, 25], and at the same time ensuring
that the sampling rate satisfies the Nyquist criterion.3 To give a concrete example, assume
the signal of interest is a real-valued bandpass signal centered at 32 kHz with 32 kHz
bandwidth, as shown in Fig. 4.10.

Figure 4.10: Digital quadrature detection example signal spectrum.

Demodulation of this signal requires the quadrature reference pair sin(2πfct) and
cos(2πfct), where fc = 32 kHz. If sampling rate is set at four times fc, or 128 kHz,
the nth sample correspond to time t = n/128 kHz. The quadrature reference signals now
becomes sin(2πn/4) and cos(2πn/4). Table 4.1 shows the first few values of both of these
reference signals. As a result of this choice of sampling rate, all the even numbered sam-
ples belong to the I channel and all the odd numbered samples belong to the Q channel.
Since the original analog signal was sampled at 128 kHz, the sampling rate in the I and
Q channels is 64 kHz, which is twice the bandwidth (32 kHz) and therefore satisfies the
Nyquist condition.

Table 4.1: Digital quadrature reference signal values from n = 0 to 7.

n 0 1 2 3 4 5 6 7
cos(2πn/4) 1 0 -1 0 1 0 -1 0
sin(2πn/4) 0 1 0 -1 0 1 0 -1

3Nyquist rate is the lower limit on sampling rate to prevent aliasing. Nyquist frequency is the maximum
frequency representable by sampling at the Nyquist rate
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4.4 Local Oscillator

In an MR system, the local oscillator, often generated using a frequency synthesizer, is
needed for transmission of the RF excitation pulses, and also for demodulation of the
RF signal during receive. In order to receive an MR signal from the clinical system, the
CRISP receiver chain needs a local oscillator from either 1) the clinical system itself, or 2)
a separate frequency synthesizer.

The frequency of the local oscillator from the clinical system unfortunately is not on
resonance due to its heterodyne receiver chain design. Instead, it oscillates at 2.25 MHz
above the center frequency during the readout period, when data acquisition occurs. Mix-
ing the MR signal with this local oscillator results in an IF signal centered at 2.25 MHz,
which is incompatible with the NMR RF receiver due to a built-in low-pass filter with
fcutoff ≈ 1 MHz at its output.

For the sake of compatibility with existing equipment and flexibility of selecting any
desired IF frequency, a separate frequency synthesizer is used. The CRISP receiver chain
uses the PTS 500, from Programmed Test Sources, which is an accurate and precise syn-
thesizer that has been used previously for NMR experiments. Fig. 4.11 shows the output
of the unit set at 63.9 MHz.

During data acquisition, the local oscillator is synchronized using a standard 10 MHz
reference signal from the clinical system.

4.5 Phase Drift

When using two separate frequency sources, in this case, one for RF transmit in the clinical
system and the PTS 500 for the CRISP receiver chain, their frequencies and phases must be
locked in order to properly receive the MR signal. Phase locking is critical for 2-D imaging.
In the absence of phase lock, the phase between each row in k-space will be different. S.
Obruchkov plots the difference between properly acquired signal and signal acquired using
the CRISP receiver chain in Fig. 4.12. Looking at the phase data (the left plot in both
figures), data obtained with the clinical system has a relatively consistent pattern across
k-space and is in phase, while data acquired with the CRISP receiver chain seem to have
random and incoherent phase. As a result, in the reconstructed image in Fig. 4.13(a), the
object is smeared across the phase direction. A properly acquired image of the same object
using the clinical system is shown in Fig. 4.13(b) for reference.

One method of correcting the phase drift is to implement a phase-locked loop in the
demodulation circuit, as Fig. 4.14 illustrates.
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Figure 4.11: Output spectrum of PTS 500 frequency synthesizer.
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(a) K-space data from clinical system. Left: phase. Right: magnitude

(b) K-space data from CRISP system. Left: phase. Right: magnitude

Figure 4.12: K-space data from clinical and CRISP systems. Produced by S. Obruchkov.
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(a) Improper phase lock (b) Proper phase lock

Figure 4.13: Effects of improper phase lock between local oscillator and signal resonant frequency.

Figure 4.14: Phased-locked loop for demodulation.
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4.6 Experimental Results

The custom CRISP receiver chain is interfaced with a clinical MR system, from which three
signals are needed: 1) MR signal from RF coil, 2) trigger pulse to signal the beginning
of data acquisition, and 3) 10 MHz reference to stabilize the local oscillator. Fig. 4.15
compares the images obtained with the clinical system versus baseband images obtained
with the CRISP system (without narrowband filters). By inspection, the images from the
CRISP system appear to be blurred. This is due to the issue of phase drift of the CRISP
local oscillator. The effect, shown previously in Fig. 4.13(a), is much more noticeable if
the signal is down-converted to a higher intermediate frequency, rather than baseband.

The signal-to-noise ratio of the images in Fig. 4.15 are shown in Table 4.2. All four
images are normalized to maximum value of 1 before calculations, and SNR is defined as
the RMS of signal over the RMS of noise.

Table 4.2: SNR of images acquired with clinical system and custom CRISP system

Sample SNR with clinical system SNR with CRISP system
(without narrowband filters)

Bone 5.678 (Fig. 4.15(a)) 7.896 (Fig. 4.15(b))
Onion 3.278 (Fig. 4.15(c)) 5.479 (Fig. 4.15(d))

4.7 Conclusion

The major components of a RF receiver chain were discussed, including the RF receiver
and the local oscillator. Specific implementation issues were highlighted such as quadrature
detection, correction and phase drift. The CRISP receiver chain uses an NMR receiver and
PTS500 as the local oscillator. The CRISP system and the clinical system can be operated
concurrently. Images were acquired using both systems and the results were presented.
Images from the CRISP system have higher SNR but are more blurry than images obtained
with the clinical system.
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(a) Beef bone sample with clinical system (b) Beef bone sample with CRISP system
(without bandpass filters)

(c) Onion sample with clinical system (d) Onion sample with CRISP system (with-
out bandpass filters)

Figure 4.15: Comparison of images acquired with clinical system and custom CRISP receiver chain
unfiltered (without narrowband filters). The vertical strip in (c) is an artifact from centering the
sample in the image.
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Chapter 5

Filter Hardware and Data
Acquisition

CRISP requires a comb of analog bandpass filters, each with a narrow bandwidth, and
together spanning the entire bandwidth of a broadband signal. The filters separate the
broadband signal into multiple narrowband channels. This chapter will illustrate the se-
lection, design, and implementation processes of the CRISP narrowband bandpass filters.

Before discussing filter requirements, a few parameters regarding filter specifications
are defined. Fig. 5.1 shows a bandpass filter at center frequency f0. The -3 dB frequencies
are fl and fh. The bandwidth is defined as fh − fl. The passband includes all frequencies
between fl and fh. Rp is the ripple magnitude in the passband, and Rs is the ripple
magnitude in the stopband. The stopband includes all frequencies below fsl and above
fsh. The minimum attenuation in the stopband is Amin.

5.1 Filter Requirements

Normally, the MR signal from the coil, centered at 63.864 ≈ 64 MHz for 1.5 T systems,
is amplified, down-converted, demodulated, filtered and then captured with an ADC. De-
pending on the frequency of the local oscillator (LO) in the CRISP receiver chain, which is
freely adjustable, the resulting signal from down-conversion can be centered at baseband
or some intermediate frequency. The bandwidth of the signal is an adjustable imaging
parameter, and is dependent on the magnetic gradient and field-of-view (FOV). Larger
gradients result in larger bandwidths. The maximum gradient is limited due to dB/dt
(rate of change of magnetic field) limitations imposed by health and safety regulations.
Typical signal bandwidth is 31.25 ≈ 32 kHz. Depending on the amount of amplification
and attenuation prior and during the demodulation stage, the power level of the signal is
variable as well.
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Figure 5.1: Bandpass filter response parameters.

In order to acquire full-FOV images, CRISP requires that the passband of the sum of
all channels spans the 32 kHz bandwidth of the incoming MR signal. For example, if there
are four channels, each would need to have 8 kHz bandwidth. Fig. 5.2 shows the frequency
responses of four ideal bandpass filters each with 8 kHz bandwdith. This requirement
applies regardless of the carrier frequency of the MR signal. If the bandwidths, BW , and
shapes of the filters are required to be identical and only varying in center frequencies,
then the bandwidth of each filter is only a function of the number of CRISP channels:

BW =
32 kHz

N
, (5.1)

where N is the number of channels. Channel bandwidth decreases as the number of channel
increases. The more channels there are, the more stringent the requirements are on the
filters.

Filter bandwidth is intimately related to the concept of a ‘quality’ factor (Q), which
is a dimensionless number describing how tuned or selective a resonant circuit is. There
are a few different definitions of Q depending on context. For bandpass and band reject
filters, Q can be the ratio between the center frequency and the bandwidth:

Q =
fc

∆f
. (5.2)
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Figure 5.2: Bandpass filter responses for ideal four channel CRISP system.

At a given center frequency, the smaller the bandwidth, the higher the Q. Narrowband
filters, therefore, have higher Q than relatively broadband filters. Naturally, high Q circuits
demand higher quality components with tighter tolerances. In the ideal example described
in Fig. 5.2, each of the four channels would have Q of ≈ 8,000, which is quite high. Typical
Q for audio bandpass filters range from 1 to 10, and some band reject filters may approach
Q of 100.

5.2 RF Filters

In an ideal scenario, the entire demodulation stage could be eliminated if filters can be
designed to split the 32 kHz bandwidth signal with a 64 MHz carrier into multiple narrow-
band channels. In this case, RF filters are needed and there are three main types of RF
filters suitable for operation at 64 MHz: 1) resistor, inductor, capacitor (RLC), 2) surface
acoustic wave (SAW), and 3) crystal.

RLC filters are based on passive components, i.e. resistors, inductors and capacitors,
and no active components such as operational amplifiers or transistors. Although relatively
easy to design and analyze at sub-MHz frequencies, they are more complex in the RF range
due to problems such as stray inductances and capacitances. Signal path length becomes
an issue due to shorter wavelengths (λ is 4.68 m at 64 MHz). In general, it is difficult to
achieve high Q filters with steep passband-stopband transitions with passive RLC filters.

SAW filters convert electrical signals into mechanical waves and then back into electrical
signals using a piezoelectric substrate with input and output interdigital transducers (IDT),
as Fig. 5.3 demonstrates. The IDTs are metal electrodes, created using lithographic tech-
niques, similar to those used for semiconductors and integrated circuits. When a voltage
is applied across the input IDT, it generates a surface wave on the piezoelectric substrate.

51



The pitch – spacing between the ‘fingers’ – of the electrodes determines the wavelength,
and therefore frequency, of the wave generated. The response is strongest at the frequency
that corresponds to the length of the pitch and weaker at other frequencies, hence it acts as
a bandpass filter. The surface wave propagates through to the output IDT, which converts
it into an output voltage.

Figure 5.3: A simple SAW filter.

Commercially available SAW filters can operate anywhere from 20 MHz to 3 GHz.
A transversely-coupled resonator (TCR) filter is a specific design of a SAW filter whose
operation frequencies range from 50 MHz to 200 MHz. TCR filters offer bandwidths as
narrow as 0.05% of center frequency, which is 32 kHz if the center frequency is 64 MHz[26].

Crystal filters use crystal resonators to achieve high-Q bandpass filters. Quartz crystals
have excellent mechanical and electric properties, good temperature stability, and can have
unloaded Q (i.e. not connected to any other circuit components) of up to 100,000, and
are therefore a good choice for extremely narrowband bandpass filters. Crystal filters can
range from 1 kHz to 150 MHz with bandwidths as low as 0.01% of center frequency, which
is 6.4 kHz if center frequency is 64 MHz[27].

High-Q bandpass filters can be designed with both SAW and crystal resonators. Crystal
filters edge out SAW filters when considering suitability for CRISP due to its narrower
bandwidths. However, commercially available SAW and crystal resonators are usually
designed for standard frequencies such as 455 kHz and 10.7 MHz for AM/FM radio, or
70 MHz for satellite communications, and so on. As a result, the cost of designing and
manufacturing SAW or crystal filters with custom, non-standard, bandwidth and center
frequencies is quite high in terms of both time and money. For example, specialized
equipment and trained technicians/engineers are needed to grow and cut the quartz crystal
to resonate at the desired custom frequencies. It was decided that implementing RF filters
at 64 MHz while satisfying the bandwidth and roll-off requirements of CRISP cannot be
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done with readily available components and a down-conversion of the MR signal is required
such that the CRISP filters could be designed for lower frequencies.

5.3 Passive and Active Filters

Instead of designing filters to operate at 64 MHz, the filters could be placed after a demod-
ulation stage, which could be adjusted to suit the frequency range of the filters by tuning
the local oscillator. At lower frequencies, from baseband to a few MHz, filter designs can be
split into two main categories: passive and active. Active filters using operation amplifiers
offer several advantages over passive filters [28]:

1. No inductors needed, which tend to be lossy and pick up EM noise.

2. Sharper rolloff, frequency response and higher Q possible (compared to passive).

3. Higher and adjustable gain possible.

4. Op-amps can act as buffer to reduce loading effects.

5. Physically smaller footprint in general.

6. Ease of manufacturing and parts readily available.

Active filters have disadvantages as well:

1. Performance suffers at higher frequencies due to finite gain-bandwidth product and
finite Q of op-amps.

2. Requires external power source.

3. Higher noise floor when compared to passive filters.

Regarding the first disadvantage, there are a few commercially available op-amps with
GBWP in the GHz range. However, designing circuits at RF frequencies still require paying
careful attention to stray capacitance and inductance both of which are safely negligable
at lower frequencies. In addition, if maximum Q is limited, low center frequencies allow
for narrower bandwidth filters. With that said, it is not desirable to go to the extreme
and design the filters too close to baseband due to extra noise sources such as flicker (1/f)
noise [29]. For these reasons, the filters are designed for frequencies in the 10-50 kHz range.
This way, noise close to DC is avoided, and the frequencies are still low enough to allow
for filters with relatively narrow bandwidths to be constructed.
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Switched-capacitor filters are another type of active filter that are usually considered
along with passive and active filters at these frequencies. They are available in monolithic
packages and generally do not require external resistors or capacitors [28]. The cutoff
frequency (3 dB point) is adjusted via an external input clock, which is used to control the
rate of sampling. Because switched-capacitor filters sample the input signal, they operate
in the discrete domain, in contrast to standard active and passive filters, which are both
considered analog or continuous filters. Since CRISP requires filtering to be in the analog
domain, switched-capacitor filters are not suitable for this application.

5.4 Filter Response Types

The next step in the filter design process is to select the desired filter response that matches
most closely with the ideal. Filter response, essentially a mathematical model of the
behaviour of the filter as the input signal frequency varies, is often expressed as a transfer
function between input and output, H(s) = Y (s)/X(s). There are five basic types of
frequency responses: 1) Butterworth, 2) Chebyshev I, 3) Chebyshev II, 4) Bessel, and 5)
Elliptic. The low-pass responses of each filter type are presented here.

5.4.1 Butterworth

Butterworth filters offer a maximally flat passband by placing equally spacing poles around
the unit circle in the s-plane. The squared magnitude of the frequency response of an nth-
order Butterworth low-pass filter [30] is:

|H(jω)|2 =
1

1 + ( ω
ωp

)2n
,

where ωp is the cutoff (-3 dB) frequency at the edge of the passband.

5.4.2 Chebyshev I

Chebyshev type I filters are known for their characteristic ripple in the passband and flat
stopband. Instead of equally spacing poles in a unit circle, the poles for a Chebyshev filter
are arranged on an elongated ellipse at the center of s-plane with its major axis on the
imaginary axis. The squared magnitude frequency response of an nth-order Chebyshev
low-pass filter [30] is:

|H(jω)|2 =
1

1 + ε2T 2
n( ω

ωp
)
,
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where Tn is the nth-degree Chebyshev polynomnial and ε is determined by the allowable
passband ripple in dB (Rp) [30]:

Tn(x) = cosh(n · arccosh(x)), for |x| > 1

ε =
√

10RdB/10 − 1.

5.4.3 Chebyshev II

Chebyshev type II filters, sometimes referred to as the inverse Chebyshev, has flat pass-
bands but ripples in the stopband. The squared magnitude frequency response of an
nth-order inverse Chebyshev filter is [30]:

|H(jω)|2 =
1

1 + 1
ε2T 2

n(ωs
ω

)

.

Note that ωs, the edge of the stopband, is specified rather than the edge of the passband,
ωp as in Chebyshev type I filters.

5.4.4 Bessel

Bessel filters offer maximally linear phase response, which is beneficial in applications where
preservation of phase between frequencies is critical. The nth-order transfer function is
based on the nth-order reverse Bessel function, θn(s) [30]:

H(s) =
θn(0)

θn( s
ωc

)
,

and

θn(s) =
N∑
k=0

aks
k where

a0 = 1

ak+1 =
2(N − k)

(2N − k)(k + 1)
ak, for k = 0, 1, . . . , N − 1.

There is no convenient closed-form expression for the squared magnitude of the frequency
response of a Bessel filter [30].
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5.4.5 Elliptic

The elliptic filter, also known as the Cauer filter after Wilhelm Cauer, allows for ripples
in both the passband and the stopband. It has the steepest transition possible out of all
previously mentioned filter responses for a given order. The squared magnitude frequency
response [30] is :

|H(jω)|2 =
1

1 + ε2R2
n(s)

,

where Rn is the nth-order Chebyshev rational function, which can be written as a ratio of
polynomials:

Rn(s) = (s)r
L∏
i=1

[(
s2 − ξ2

i

1− s2k2ξ2
i

)(
1− k2ξ2

i

1− ξ2
i

)]
,

where n = 2L+ r, r = 1 if n odd and 0 if n even, and k = ωp/ωs. Finding ξi requires the
evaluation of elliptic integrals. ξi is defined by the Jacobi elliptic function, cd(z, k):

ξi = cd(uiK, k)

ui =
2i− 1

N
, i = 1, 2, . . . , L,

and K is the complete elliptic integral of the first kind :

K =

π/2∫
0

dθ√
1− k2sin2θ

.

Understanding the mathematics behind elliptic filters can be quite involved. However,
the actual process of designing and implementing an elliptic filter is well-documented [30,
31, 32]. There are built-in MATLAB functions such as ellip, ellipap, and ellipk that
significantly ease the design process for elliptic filter, and functions are available for all the
aforementioned filter types as well.

Ripples in the passband are acceptable for CRISP as long as they can be characterized,
and ripples in the stopband are acceptable if the minimum attenuation is high enough.
Since the response of elliptic filters is the closest to the ideal, the preliminary CRISP
filter design follow the elliptic filter design procedure outlined in [32] and is detailed in
Appendix A.

5.5 MAX274

MAX274 is an analog active filter IC from Maxim Integrated Products. It features four
independently adjustable and cascadable second-order sections capable of center frequen-
cies up to 150 kHz. Filter parameters are adjusted using four external resistors (R1, R2,
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R3, R4) per filter section. Appendix B derives the transfer function for one second-order
section and the relationships between center frequency (f0 = ω0/2π), Q, and gain (G0).
These equations are used to calculate the external resistor values based on the desired filter
characteristics. Maxim offers a filter design software package1 with the equations built in,
which eliminates the need to calculate resistor values manually.

The MAX274 IC has limits on realizable center frequency f0 and Q, which is due to
factors such as the finite gain-bandwidth product of internal op-amps. As a result, actual
performance of high-Q or high frequency designs will deviate from simulations. For the
sake of getting predictable performance, designs are kept within the range of usable f0 and
Q recommended by the vendor. The maximum recommend Q for f0 at 40 kHz is 30.

MAX274 requires additional external components in order to implement elliptic designs
due to the extra zeroes in the frequency response, and the relatively low maximum Q value
restricts designs to Butterworth filters only. The following table show the f0 and Q for
both cascaded second-order sections for each of eight bandpass filters:

Table 5.1: Designed f0 and Q values for CRISP bandpass filters.

1st Section 2nd Section
Channel Overall f0 f0 Q f0 Q

1 12 kHz 11.205 kHz 8.431 12.618 kHz 8.423
2 16 kHz 15.268 kHz 11.222 16.598 kHz 11.369
3 20 kHz 19.269 kHz 14.163 20.673 kHz 14.161
4 24 kHz 23.229 kHz 17.073 24.631 kHz 16.872
5 28 kHz 27.341 kHz 19.617 28.633 kHz 19.613
6 32 kHz 31.398 kHz 22.528 32.895 kHz 22.533
7 36 kHz 35.619 kHz 25.557 36.430 kHz 25.501
8 40 kHz 39.025 kHz 28.000 40.859 kHz 28.601

Each filter is a fourth-order Butterworth bandpass filter with two cascaded second-order
sections. The bandwidth of each is designed to be 2 kHz.

5.6 Simulations

Using the general 2nd-order bandpass transfer function:

H(s) = G0

s(ω0

Q
)

s2 + s(ω0

Q
) + ω2

0

,

1www.maxim-ic.com/tools/other/software/274SOFT.ZIP
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and values in Table 5.1, frequency responses are simulated and plotted using IDL2, as
shown in Fig. 5.4.

Figure 5.4: IDL simulation of CRISP bandpass filter magnitude frequency responses. Starting
from left, magnitude frequency response of bandpass filter centered at 12 kHz, 16 kHz, 20 kHz,
24 kHz, 28 kHz, 32 kHz, 36 kHz, and 40 kHz.

Note that the response curve for the first six filters agree with expectations, that is, flat
passbands, ≈ 2 kHz bandwidth, and ≈ 24 dB/octave roll-off rate, but the second-to-last
filter (channel #7 centered at 36 kHz) has a smaller bandwidth and a sharper response
than others, and the last filter (channel #8 centered at 40 kHz) has a small dip in the
passband. This could be a result of the filter software design procedure, which rounds off
resistor values to accommodate for practical resistor tolerances, and then recalculates the
f0 and Q values, resulting in the numbers in Table 5.1. Another possibility is that the
poles of the filters have reached the maximum recommended Q limit, leading to deviation
from the desired filter response.

In order to fix the imperfections, a SPICE3 model circuit simulation is created to
quickly view circuit response changes as a result of fine adjustments to component values.

2IDL by ITT Visual Information Solutions is a software package very similar to MATLAB by Math-
Works, for data analysis, visualization, and simulations.

3SPICE (Simulation Program with Integrated Circuit Emphasis) is an electronic circuit simulation
framework. LTspice IV from Linear Technology is the specific program used here.
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The circuit diagram for one second-order filter section on the MAX274 IC is illustrated in
Fig. B.1. All eight bandpass filters circuits are modelled, the first of which (f0 = 12 kHz)
is shown in Fig. 5.5.

Figure 5.5: SPICE circuit simulation of 12 kHz CRISP bandpass filter.

With the aid of the SPICE simulation, resistor values are tuned to obtain much more
uniform responses from all eight bandpass filters. The magnitude frequency response curves
in Fig. 5.6 demonstrate the results of this adjustment. Appendix C tabulates the initial
and final resistor values for the CRISP bandpass filters.

5.7 Breadboard

For the first prototype, the circuit is laid out on a breadboard. Fig. 5.7 shows the circuit
schematic for one MAX274 IC, which includes two different narrowband bandpass filters.
Simple buffers using TL071 op-amps in a non-inverting configuration provide isolation for
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Figure 5.6: SPICE simulated frequency response for the CRISP bandpass filters after resistor
tuning.

the inputs and outputs for each filter. Variable resistors are used throughout due to the
non-standard resistor values in the design. The populated breadboard is shown in Fig. 5.8.

The breadboard prototype is functional, but handling and debugging the circuit with
all the loose wires is a tedious task. The filters are fairly noisy, especially when placed in
the RF equipment room, likely due to EM noise entering the system through the exposed
wires. The next step is to move the circuit to a more permanent and less fragile platform:
printed circuit board.

5.8 Printed Circuit Board

The PCB is designed to contain all eight bandpass filters, and the input and output buffers
for each filter. The gain at the input and output of each filter is adjustable via variable
resistors. As a compromise between cost and ease of soldering, through-hole, instead of
surface-mount, components are used. Each variable resistor in the breadboard prototype
translates to two standard-value resistors on the PCB. The combination of two standard
resistors approximate the desired resistances and the deviation from the designed value for
any pair of resistors is less than ±0.9 %.
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Figure 5.7: CRISP bandpass filters MAX274 breadboard layout schematic.
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Figure 5.8: CRISP bandpass filters breadboard prototype.
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In addition to the narrowband filters, an eighth-order Butterworth broadband filter
with passband from 8 kHz to 30 kHz is also implemented using the same PCB design
with minor adjustments. Since an eighth-order filter requires four second-order sections,
the entire MAX274 IC is utilized. Recall the schematic in Fig. 5.7. The output of filter
1 can be routed to the input of filter 2, and by cascading four second-order sections, an
eighth-order filter is realized without significant modifications to the PCB design.

Fig. 5.9 and 5.10 show the top and bottom layer traces respectively. The top layer is
reserved for power and ground, and the bottom layer for signals. Fig. 5.11 shows the PCBs
populated with all resistors and buffers in place, but is missing three MAX274 ICs4 and
the ribbon cable and power connectors.

5.9 Testing

Frequency sweeps are performed on all filters and the responses of narrowband filters 1 to
4, narrowband filters 5 to 8, and the broadband filter are shown in Fig. 5.12, 5.13 and 5.14
respectively. For the narrowband filters, the actual center frequencies correspond well with
the designed values, as seen in Table 5.2, with maximum center frequency error of 1.28%.
The passband bandwidths turned out to be 2.0 ± 0.1 kHz for all but the last filter, which
has a 2.4 kHz bandwidth. The ripple in the passband of this filter is visible in Fig. 5.13,
which is a result of inaccurate resistor values, leading to 1) uneven gain between the two
poles, 2) error in the location of the poles, and 3) error in the Q of the poles.

Table 5.2: Error between actual and designed center frequencies for CRISP narrowband bandpass
filters.

Designed f0 Actual f0 Percent Error
12 kHz 11.89 kHz 0.92%
16 kHz 15.89 kHz 0.69%
20 kHz 19.9 kHz 0.50%
24 kHz 23.84 kHz 0.67%
28 kHz 27.85 kHz 0.54%
32 kHz 31.96 kHz 0.13%
36 kHz 35.54 kHz 1.28%
40 kHz 39.68 kHz 0.80%

Noise measurements were taken to see if the filters introduce additional noise. The
filters are connected to the ADC, without any input signals. The first set of measurements

4The two circuits on the top PCB are identical, only one of them is used
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Figure 5.9: CRISP filters PCB top layer
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Figure 5.10: CRISP filters PCB bottom layer
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Figure 5.11: Narrowband bandpass filters (bottom) and broadband filter (top) partially popu-
lated. Missing three MAX274 ICs, ribbon and power connectors.
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Figure 5.12: Frequency sweep of CRISP PCB narrowband filters 1-4 with spectrum analyzer.
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Figure 5.13: Frequency sweep of CRISP PCB narrowband filters 5-8 with spectrum analyzer.
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Figure 5.14: Frequency sweep of CRISP PCB broadband filter with spectrum analyzer.
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are taken (500 kHz sampling rate, ±2.5V input range) without powering on the filters, and
then a second set taken after turning on the filters (but still without any input signals).
The average RMS noise for all channels is 3.3 mV with the filters off, and 3.0 mV with
the filters on. Converting the noise into its power spectrum, it is found that the average
noise floor for all channels is -43 dBm with the filters off and -45 dBm with the filters
on. Therefore, the filters are not introducing any additional noise that would significantly
affect the ADC’s ability to distinguish between signal and noise.

5.10 Analog-to-Digital Conversion

National Instruments (NI) PCI-6123 is used as the analog-to-digital converter. It offers
eight simultaneous analog input channels, each with maximum sampling rate of 500 kHz at
16-bit resolution. Input voltage can be set to one of four ranges ±10, ±5, ±2.5, or ±1.25
V. A simple C++ program using NI APIs is written to record data. A program waits for
a trigger pulse from the MR system to signal the beginning of data acquisition.

The most convenient trigger pulses to access are the “Scope Trigger” and the “Receiver
Unblank”, both of which are available using BNC connectors. Using either of these signals
for triggering leads to the acquisition of more data than necessary. That is, the pulses occur
well before the beginning of the MR echoes, meaning some post-processing is required to
determine the proper beginning and end of every echo. Another available signal, the signal
of choice, is the “In View” pulse, which goes high when the clinical system begins data
acquisition and is more accurate, but requires a non-standard connector/adaptor.

5.11 Conclusion

Design and performance requirements for the CRISP narrowband bandpass filters were
presented. Various RF, low frequency, active and passive bandpass filter technologies
were discussed and arguments based on the feasibility of implementation were given. The
MAX274 active filter IC was chosen for the bandpass filters and a breadboard prototype
was implemented. Noise and durability were two key issues with the breadboard prototype.
A PCB version of the bandpass filter was realized and tested. The results indicate that
the filters function as expected. NI PCI-6123 was used as the analog-to-digital converter
and the “In View” signal was used to trigger the start of data acquisition.
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Chapter 6

Results and Discussion

6.1 Summary of Results

In chapter 3, sensitivity improvement with CRISP is demonstrated using an 8-channel nar-
rowband filterbank and a Bruker 11.7 T NMR magnet. The results of the experiments and
simulations show that CRISP offers a sensitivity improvement for rapidly decaying signals
such as those obtained from samples with short T2-relaxation times. CRISP separates the
broadband MR signal into multiple narrowband signals, and in doing so, decreases the rate
of decay of the signals in each narrowband channel, enabling the signals to remain above
the noise floor for a longer period of time. In the low bit-rate digitization simulations, an
improvement in image resolution is achieved due to CRISP.

In chapter 4, implementation of the custom CRISP RF receiver chain is detailed and
images acquired with the system are presented. The receiver chain is able to acquire images
with higher SNR compared to the clinical system. However, upon visual inspection, the
quality of the images is inferior due to blurring in the phase direction. This blurring is
caused by the phase drift between the local oscillator in the CRISP receiver chain and the
local oscillator used to generate the MR signal in the clinical system.

Chapter 5 describes the design, implementation, and testing of the CRISP narrowband
bandpass filters. The CRISP filterbank requires the input MR signal to be centered in the
middle of the combined passband of the narrowband filters in order to recover the full FOV
of the image. The passbands of the filters span from 11 kHz to 41 kHz, which indicates
that the signal should be centered at 26 kHz. However, due to the phase drift of the local
oscillator in the CRISP receiver chain, acquiring a 2D non-baseband image results in the
blurring effect, seen previously in chatper 4, in the reconstructed image. Centering the 32
kHz bandwidth MR image at baseband, the signal will only be seen in the first two of eight
channels of the CRISP filterbank. Therefore, only a fraction of the total FOV appears in
the reconstructed CRISP image.
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Note that this phase drift issue affects only 2D imaging since only the phase between
rows of k-space is affected. 1D acquisition is still feasible. With that in mind, the data
from the bone sample presented in chapter 4 is analyzed in one dimension. Fig. 6.1 is
obtained by plotting the rows of k-space on top of each other for the unfiltered image
and for one channel (ch. 3) of the CRISP filterbank. Noise statistics for the unfiltered
broadband echoes and the narrowband filtered echoes are calculated. Relative to the
unfiltered broadband signal, it is expected that some narrowband channels would have
less noise, but that the average noise from all narrowband channels should not deviate
significantly from the broadband noise. Table 6.1 shows the RMS noise calculated from
the first 100 samples of the broadband unfiltered signal, one channel of the narrowband
filtered signal, and the average over all eight narrowband filtered signals.

Table 6.1: RMS noise of echoes from bone sample.

Signal RMS noise
Broadband unfiltered 20.5 mV

Narrowband filtered (channel 3) 7.2 mV
Narrowband filtered (averaged over all 8 channels) 22.4 mV

In another experiment, water samples are doped with varying concentrations of mag-
nesium chloride (MnCl2) solution to simulate signal from short T2 material. A broadband
filter constructed using the same MAX274 IC as the narrowband filters, with passband
spanning frequencies from 8 kHz to 30 kHz, is used as a comparison. The average RMS
noise over all trials of the experiment is listed in Table 6.2.

Table 6.2: Average RMS noise over all trials in MnCl2 experiment for unfiltered, broadband
filtered, and narrowband filtered signals.

Signal RMS noise
Broadband unfiltered 6.8 mV
Broadband filtered 1.3 mV

Narrowband filtered (averaged over all 8 channels) 0.8 mV

For the bone sample, the average RMS noise for narrowband filtered signals is 10%
higher than the broadband unfiltered signal. In the MnCl2 experiment, the average RMS
noise for narrowband filtered signals is 38% lower than the broadband filtered signal. This
inconsistency can simply be due to the fact that different type of samples are used for the
two experiments. Different SNR can result from different samples because the RF receiver
coil is loaded differently. However, even if the overall noise is slightly higher, as Table 6.1
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(a) Without narrowband filters

(b) With narrowband filters (channel 3)

Figure 6.1: Acquired echoes from beef bone with CRISP receiver chain.
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demonstrates, lower noise floors are observed in some narrowband channels, which lead to
an increase in SNR for the image regions that correspond to those channels.

6.2 Limitations

This current implementation of filterbank CRISP makes use of analog bandpass filters in
and around the audio frequency range (20 Hz to 20 kHz). The additional equipment and
circuitry required to downconvert the MR signal from 64 MHz to 26 kHz limits the potential
improvement that could be achieved with CRISP. Compared to the receiver chain in the
clinical system, the custom CRISP receiver chain is relatively simple and not optimized
for operation at the MR frequencies. In addition, the phase drift caused by the usage of
a different and separate local oscillator for the CRISP receiver chain limits 2D imaging
capabilities. At this current state, the CRISP system can only capture 1D scans reliably.

In order for CRISP to demonstrate an SNR improvement, the signal ideally should be
dominated by bandwidth dependent noise occurring after filtering. Noise in MRI, to a large
extent, comes from thermal noise in the patient. Therefore, the current implmentation of
filterbank CRISP has limited effect on SNR.
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Chapter 7

Conclusion

A filterbank CRISP prototype was implemented, which included a custom receiver chain
and analog bandpass filters. Results were obtained using a clinical system. Images acquired
showed that it is feasible to achieve image with SNR comparable to those produced by the
clinical system. However, due to issues with drifting phase from row to row in k-space,
acquiring full-FOV, non-baseband 2D CRISP images were not possible. RMS noise in 1D
echoes from two different experiments were compared and inconsistency in the average
RMS noise was observed. Despite the higher average noise in the narrowband signals when
compared to the broadband unfiltered signal, a few narrowband channels exhibited lower
noise floors than that of the unfiltered signal, in addition to the slower decay rate observed
across all narrowband channels.

The current implementation of filterbank CRISP has only eight narrowband channels.
Since SNR improvement increases with the square root of the number channels, in theory,
increasing the number of channels by four will bring about a factor of two improvement
over the current system. Therefore, a factor of eight improvement could be gained with
a 512-channel CRISP system, at which point the level of resolution and image quality
improvement at 8-bit digitization shown in Fig. 3.7, could be seen at 16-bit. The maximum
number of possible narrowband channels is limited by the number of pixels in the image
in the frequency direction and by the narrowest possible bandpass filter.

Interfacing a custom analog RF receiver chain with a separate local oscillator with an
existing clinical MRI system was lengthy process, much of it due to the novelty of processing
the MR signal in the analog domain, while a majority of signal processing in current
commercial systems is done in the digital domain. Many of the lessons learned during the
design, construction, and testing of the CRISP system are not written in literature. Small
details can make a difference with analog RF equipment, for example, the quality of coax
cables make an observable improvement in signal and image quality (RG223 cables are
superior to RG58).
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7.1 Future Work

There are a few obvious extensions to the work presented. The first is to implement a
phased-locked loop in the demodulator in order to correct the phase drift that is currently
limiting 2D imaging capabilities. Second, RF narrowband filters such as crystal or SAW
filters should be further investigated. By designing and constructing crystal filters, the MR
signal can be filtered directly without the demodulation stage. By placing the filterbank
further up the chain and closer to the RF receive coils, it opens up the possibility of directly
digitizing the signal at 64 MHz.

The filterbank can be moved all the way up the chain and implemented as multiple
receiver coils each tuned to a narrow range of frequencies. However, this may not be
feasible since the coil Q required would be ≈ 16,000 for an eight-channel CRISP system at
1.5 T.

CRISP can also be operated concurrently with accelerated parallel MRI reconstruction
algorithms such as PILS, SENSE, SMASH or GRAPPA. Each coil in the MRI array can
be paired with a bank of narrowband filters at the output and the corresponding number
of ADCs. A reconstruction algorithm that takes into account both coil and bandpass filter
sensitivities would then be used to generate the images.

The sensitivity improvement offered by CRISP may have application in ultra-low-field
(ULF) MRI where SNRs are inherently lower, allowing CRISP to make more of an impact
in image quality. Very sensitive detectors such as superconducting quantum interference
devices (SQUID) can generate MR images with very small magnetic fields [33]. CRISP can
potentially improve image quality in SQUID-based MR imaging, which can be traded-in
for imaging with even smaller magnetic field, perhaps as small as Earth’s own field. If
ULF MR can provide images of high quality, such as those necessary for diagnosis, the
larger, more expensive superconducting magnets that cost thousands of dollars per year to
maintain may no longer be necessary.
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Appendix A

Designing Elliptic Filters

The bandpass design procedure from [32] is used. The overall steps are:

1. Convert filter requirements to normalized lowpass specifications.

2. Select appropriate lowpass filter from normalized frequency response curves.

3. Use normalized lowpass parameters and transform into bandpass filter.

The normalized lowpass specifications are:

Passband bandwidth fu − fl = 36000− 34000 = 2000
Center frequency f0 =

√
flfu = 34985.71137

Stopband bandwidth f2 − f20
f2

= 37000− 34985.711372

37000
= 3918.919

Bandpass steepness factor As = stopband bandwdith
passband bandwidth

= 3918.919
2000

= 1.96

To estimate the filter order required, several parameters need to be determined. The
following is the design of a filter centered at 35 kHz. The rest of the filters can be design
in exactly the same manner. Saal and Zverev have tabulated elliptic functions using

Passband ripple RdB = 0.5 dB
Minimum stopband attenuation Amin = 50 dB

Lowest stopband frequency at which Amin occurs Ωs = 1.96

Ripple factor ε =
√

10RdB/10 − 1 = 0.3493

filter order n, parameter θ in degrees, and reflection coefficient ρ in percent. The angle θ
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Figure A.1: Visualization of transformation of elliptic lowpass poles and zeroes to bandpass poles
and zeroes
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determines the steepness of the filter:

θ = arcsin(
1

Ωs

) = 30.92◦.

The reflection coefficient:

ρ =
V SWR− 1

V SWR + 1
=

√
ε2

1 + ε2
= 0.3298,

where V SWR is the voltage standing wave ratio and ε is the ripple factor. In order to use
Fig. 2-86 in [32] to estimate filter order, ρ is converted to Ap using table provided. Doing
a simple linear interpolation, Ap is determined to be ≈10 dB.

Amin + Ap = 50 + 10 = 60 dB

Ωs = 1.96.

The curve indicates that a filter of n = 5 provides the required attenuation.

The poles and zeroes of a 5th-order elliptic lowpass filter are found from the normalized
filter design table (Table 11-56 in [32]). Therefore,

θ 31.0
Ωs 1.9416
Amin 59.93
σ0 0.52122
σ1 -0.12238
σ3 -0.37845
Ω1 1.0488
Ω2 3.1460
Ω3 0.7013
Ω4 2.0274

Complex pole pair 1 -0.12238±1.0488j
Complex pole pair 2 -0.37845±0.7013j

Real pole -0.52122
Imaginary zero pair 1 ±3.1460j
Imaginary zero pair 2 ±2.0274j

A series of design equations, obtained from Chapter 5 of [32], are used to determine
the center frequency fr, gain A, Q factor Q, and zero frequency f∞ for each of the five

80



Figure A.2: Poles and zeroes of normalized 5th-order elliptic lowpass

Section fr A Q f∞
1 33952.622 8.632 143.003 31980.875
2 36050.235 8.632 143.003 38272.875
3 34291.399 2.106 46.232 33017.005
4 35694.081 2.106 46.232 37071.805
5 34985.711 1 33.561 n/a
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Figure A.3: State-variable biquad topology with additional zero.

filter sections: The state-variable biquad in Fig. A.3 is chosen as the filter topology to
implement. The additional op-amp in the lower right corner makes it possible to realize a
zero above or below the resonant frequency. When f∞ < fr, such as in sections 1 and 3,
the transfer function is:

T (s) =
−R6

R

s2 + 1
R2R3C2 (1− R3R

R4R5
)

s2 + 1
R1C

s+ 1
R2R3C2

.

When f∞ > fr, such as in sections 2 and 4, the transfer function is:

T (s) =
−R6

R

s2 + 1
R2R3C2 (1 + R3R

R4R5
)

s2 + 1
R1C

s+ 1
R2R3C2

.

The general bandpass transfer function is:

T (s) =
H(s2 − ω2

∞)

s2 + ωr

Q
s+ ω2

r

.
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Equating the coefficients, we can use the following equations to calculate resistor values:

R1 = R4 =
Q

2πfrC

R2 = R3 =
R1

Q

R5 =
f 2
rR

Q|f 2
r − f 2

∞|

R6 =
f 2
rR

f 2
∞

for f∞ > fr

R6 = R for f∞ < fr.
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Appendix B

Derivation of MAX274 second-order
section transfer function

Figure B.1: Circuit diagram of one second order section in MAX274

In this section, the transfer function for the second-order filter section in MAX274 is
derived. The result will reveal exactly how the filter parameters center frequency ω0, gain
G0, and Q vary with the four external resistors, R1, R2, R3, and R4. Recall that the
impedance of a capacitor is

Zc =
1

jωC
,

where in this case C = 79.575 pF. As well, for convenience and to simplify expressions, we
define

R′ = R4 + 5kΩ.
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Treat the first op-amp from the left as a summing amplifier, summing Vo and Vi weighted
by R3 and R1 respectively. At the output of the first op-amp:

V1

Rx

=
Vi
R1

+
Vo
R3

V1 =
Rx

R1

Vi +
Rx

R3

Vo. (B.1)

The second op-amp sums V1 and V4, weighted by Ry and R2 respectively. At the output
of the second op-amp:

− jωCV3 =
V1

Ry

+
V4

R2

. (B.2)

At the output of the third op-amp, which is in a simple inverting configuration:

Vo = −V3. (B.3)

Finally, at the output of the last op-amp:

− jωCV4 =
Vo
R′

V4 =
Vo

−(R + 5k)jωC
. (B.4)

Substituting Eq. B.3 and B.4 into Eq. B.2:

− jωCVo =
V1

Ry

+
Vo

−jωR2R′

V1

Ry

=

[
jωC +

1

jωR2R′C

]
Vo. (B.5)

Substituting Eq. B.1 into Eq. B.5:

− Rx

RyR1

Vi −
Rx

RyR3

Vo =

[
ω2R′R2C

2 + 1

jωR′R2C

]
Vo

− Rx

RyR1

Vi =

[
ω2R′R2C

2 + 1

jωR′R2C
+

Rx

RyR3

]
Vo

Vo
Vi

=
− Rx

RyR1[
ω2RyR′R2R3C2+RyR3+jωRxR′R2C

jωRyR′R2R3C

]
Vo
Vi

=
− Rx

RyR1
(jωRyR

′R2R3C)

ω2RyR′R2R3C2 +RyR3 + jωRxR′R2C
.
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Dividing top and bottom by RyR
′R2R3C

2, substituting s = jω, and simplifying:

H(s) =
s( Rx

RyR1C
)

s2 − s( Rx

RyR3C
) + ( 1

R′R2C2 )
. (B.6)

Compare Eq. B.6 with the general 2nd-order bandpass transfer function:

H(s) = G0

s(ω0

Q
)

s2 + s(ω0

Q
) + ω2

0

,

where G0 is the gain at the center frequency f0. To match up the coefficients, multiply the
top of Eq. B.6 by R3

R3
:

H(s) =
s( Rx

RyR3C
)(R3

R1
)

s2 − s( Rx

RyR3C
) + ( 1

R′R2C2 )
.

Equating the coefficients, we have:

ω0

Q
=

Rx

RyR3C

ω2
0 =

1

R′R2C2

G0 =
R3

R1

. (B.7)

Solving for ω0:

ω0 =
1

C

√
1

R′R2

ω0 =
1

C

√
1

(R4 + 5kΩ)R2

. (B.8)

Solving for Q:

Rx

RyR3C
=

1
C

√
1

(R4+5kΩ)R2

Q

Q =

√
1

(R4 + 5kΩ)R2

(
Ry

Rx

)(R3). (B.9)

86



Appendix C

Initial and Final Resistor Values for
CRISP Filters

The following tables detail the initial resistor values obtained with Maxim’s filter design
software and the final resistor values after fine tuning with the aid of a SPICE simulation.
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Table C.1: CRISP bandpass filter resistor values before and after fine adjustments, for filters 1-4

Filter f0 Section Resistor Initial (kΩ) Final (kΩ)

12 kHz

R1 196 210
1 R2 178 178

R3 301 301
R4 174 174
R1 205 187

2 R2 158 158
R3 267 267
R4 174 154

16 kHz

R1 205 220
1 R2 130 130

R3 294 294
R4 127 127
R1 210 200

2 R2 121 121
R3 274 274
R4 115 115

20 kHz

R1 200 220
1 R2 105 105

R3 294 294
R4 97.6 97.6
R1 200 200

2 R2 97.6 97.6
R3 274 274
R4 90.9 90.9

24 kHz

R1 196 220
1 R2 86.6 86.6

R3 294 280
R4 80.6 80.6
R1 205 210

2 R2 80.6 80.6
R3 274 260
R4 76.8 76.8
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Table C.2: CRISP bandpass filter resistor values before and after fine adjustments, for filters 5-8

Filter f0 Section Resistor Initial (kΩ) Final (kΩ)

28 kHz

R1 210 220
1 R2 73.2 73.2

R3 287 240
R4 68.1 68.1
R1 205 210

2 R2 69.8 69.8
R3 274 230
R4 64.9 64.9

32 kHz

R1 215 196
1 R2 63.4 63.4

R3 287 220
R4 59 59
R1 174 196

2 R2 60.4 60.4
R3 274 205
R4 56.2 56.2

36 kHz

R1 255 230
1 R2 56.2 57

R3 287 220
R4 51.1 52
R1 237 210

2 R2 54.9 54.9
R3 280 210
R4 49.9 49.9

40 kHz

R1 169 210
1 R2 51.1 50

R3 287 190
R4 46.4 46.4
R1 178 200

2 R2 48.7 48.7
R3 280 180
R4 44.2 44.2
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