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Abstract 

The unique performance offerings of NiTi based shape memory alloys (SMAs), which includes the shape 

memory effect (SME), pseudoelasticity (PE) and biocompatibility have led to widespread acceptance of 

these alloys as valuable engineering materials. Over the past several decades the complex metallurgy 

behind the SME and PE properties has for the most part been uncovered and the design and engineering 

knowhow has been demonstrated; facilitating successful application of NiTi devices in numerous 

industries. Specifically, more mature applications in the medical industry including medical devices such 

as, catheters, guide wires, orthodontic arch wires, maxillofacial reconstruction implants, minimally 

invasive surgical tools, and arterial and gastrointestinal stents, have become common practice in 

modern medicine. Recently however, there has been a drive for more demanding functionality of SMAs 

for example to locally modify properties creating tuneable or gradient SME and PE performance. Unique 

processing protocols are therefore necessary to meet these demands and allow SMAs to reach their full 

potential in a wider range of applications. The current thesis successfully details the application of 

pulsed Nd:YAG laser processing along with post-processing techniques to locally tune both the SME and 

PE functional properties of monolithic binary NiTi wires and strip, while maintaining confidence in the 

retained corrosion performance and limited release of biologically harmful Ni ions. This extensive study 

contains three distinct parts which include: i) application of a laser induced vaporization protocol to 

locally embed multiple memories in a monolithic wire actuator; ii) uncovering the process, structure, 

and performance relationship of combined laser, cold working, and heat treatment processes; and iii) 

comprehensive characterization of surface characteristics and their relationship with corrosion 

performance and Ni ion release from laser processed material. 

In the first part of this study, a novel laser induced vaporization protocol capable of locally modifying the 

shape memory effect property was applied to enhance the functionality of a NiTi linear actuator. By 

altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi 

wire enabling dynamic actuation via controlled resistive heating. Characterisations of the actuator load, 

displacement, and cyclic properties were conducted using a custom-built spring biased test set-up. 

Monotonic tensile testing was also implemented to characterise the deformation behaviour of the 

martensite phase. Observed differences in the deformation behaviour of laser processed material were 

found to affect the magnitude of active strain. Furthermore, residual strain during cyclic actuation 

testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser 
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processed actuator allows for the realization of new actuation applications and improved control 

methods for shape memory alloys. 

In the second part of this study, a unique protocol to locally tune the structural and functional 

properties of NiTi based shape memory alloys (SMAs) was developed combining laser-induced 

vaporization, cold work, and heat treatment processes. Unprecedented SMA performance was achieved 

using precise process, structure, property correlations developed in this work. Specific focus was 

directed toward characterizing composition and microstructure of processed material using micro-

particle induced x-ray emission (micro-PIXE) spectroscopy and transmission electron microscopy (TEM) 

respectively. Thermoanalytical properties were identified through differential scanning calorimetry 

(DSC) while the structural and functional properties, including the shape memory effect (SME) and 

pseudoelasticity (PE), were determined using micro-tensile testing at various temperatures. 

Extraordinarily precise control of Ni:Ti ratio was accomplished through laser induced vaporization 

leading to controlled changes in transformation temperatures. Subsequent cold rolling and annealing 

increased the yield strength allowing for tuneable performance offerings including multiple PE plateau 

stresses and combined SME and PE properties in monolithic tensile specimen. Synergistic behaviour of 

adjacent locally processed regions demonstrated a significant increase in SMA functionality and their 

potential in future application. 

Finally, laser processing of NiTi SMAs promises to enable useful multifunctional capabilities for medical 

device applications as demonstrated in parts i) and ii) of this study. However, prior to clinical 

implementation, understanding of the surface characteristics is essential in order to identify any adverse 

performance or biological interaction that may occur. The current study systematically investigated two 

laser processed surface finishes, including as-processed and mechanically polished, while comparing 

them to a chemically etched parent material. Spectrographic characterisation of the surface included; x-

ray photoelectron (XPS), auger electron (AES), and Raman. Corrosion performance and Ni ion release 

were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma 

optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including 

increased roughness, crystallinity, and presence of volatile oxide species, overshadowed any possible 

performance improvements from a decreased Ni:Ti ratio or inclusion dissolution imparted by laser 

processing. However, post-process mechanical polishing was shown to remove these defects and 

restore the performance, making it comparable to chemically etched NiTi material.   
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1 Introduction 

1.1. Background  

The unique shape memory effect of NiTi based alloys (also known as Nitinol) was first discovered in 1963 

by Buehler et al. [1]. The popularity of NiTi alloys compared to shape memory alloys (SMAs) discovered 

earlier, such as Au-Cd [2] and In-Tl [3] alloys, is a result of their superior mechanical and functional 

properties as well as the promotion of the alloy by the world-renowned Naval Ordinance Laboratory [4]. 

NiTi alloys are the most commonly applied SMAs due to superior strength, ductility, recoverable strains, 

corrosion resistance, biocompatibility, and stability of transformation temperatures [4]. Application of 

NiTi alloys however did not occur until the 1980s, before which necessary research was conducted to 

adequately understand the alloy due to the complex nature of the NiTi system [4]. 

In addition to understanding the complex metallurgy behind the SME and PE properties [4], the design 

and engineering knowhow has also now been demonstrated [5, 6] facilitating successful application of 

NiTi devices in numerous industries including, medical, automotive, aerospace, and micro-electronics. 

Their potential in high profile applications such as minimal-invasive surgical tools, biomedical implants, 

and energy harvesting clean technologies are driving innovation and application of these smart 

materials [5-10]. There are however still limitations of the traditional NiTi processing methods and a lack 

of understanding of new promising processing technologies such as, laser processes, that must be 

addressed before NiTi SMAs can reach their full potential in engineering application. Addressing these 

limitations in traditional manufacturing technologies through novel laser processes and better 

understanding the effects of laser processing combined with post-processing treatments on material 

performance is therefore the basis of this thesis work. In particular, detailed studies into the process, 

structure, and performance relationship were conducted, furthering the science of thermomechanical 

processing of NiTi SMAs. Specific focus was directed to medical device requirements as the medical 

device industry has already embraced NiTi SMAs in several extremely successful applications including, 

but not limited to, catheters, guide wires, orthodontic arch wires, maxillofacial reconstruction implants, 

minimally invasive surgical tools, and arterial and gastrointestinal stents [5, 7-9]. The medical device 

industry was identified as having immediate applications suited for enhanced functionality achieved via 

novel laser processing SMA technologies. 
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1.2. Objectives 

The motivation behind this work was to develop novel laser processing protocol to improve the 

functionality of NiTi based SMAs and expand the potential applications suitable for immediate 

implementation of these smart materials. Currently only limited studies exist on the laser processing of 

NiTi SMAs. Therefore, comprehensive analysis of a pulsed Nd:YAG laser process was undertaken, 

addressing the following important objectives: 

1. Demonstrate the application of laser induced vaporization to locally augment the functional 

properties of monolithic NiTi components and characterize necessary performance metrics to 

better understand SME properties and means of actuation and control; 

2. Characterize the process, structure, and performance relationship of Nd:YAG laser processed 

NiTi and explore the possibilities of post-laser processing for improving SME and PE 

performance while further increasing functionality; and 

3. Identify the surface characteristics of laser processed NiTi materials and the effects of laser 

processing on corrosion performance and release of biologically harmful Ni ions. 

1.3. Thesis organization 

This thesis is subdivided into eight chapters. Chapter 2 provides an up to date literature review of the 

physical metallurgy and the processing protocol currently utilized during their manufacture. In this 

chapter the limitations of current processing technologies as well as in our understanding of the 

complex NiTi system are identified. Novel unprecedented local processing technologies including laser 

processing are introduced along with the motivation behind this work. 

Chapter 3 details experimental methods and conditions used in this comprehensive study including 

information regarding the test equipment and procedures followed.  

Chapter 4 reports for the first time on the development and characterization of a laser processed 

monolithic NiTi actuator. Detailed thermal analysis along with tensile testing at various temperatures 

allowed for in-depth understanding of the SME performance, including cyclic behaviour of laser 

processed NiTi SMAs. A simple means of resistive heating control was also developed to identify the 

extensive potential for these novel processed actuators in application. 

Chapter 5 details the process, structure, and performance relationship for laser and post-processed NiTi 

materials. More specifically, the laser induced vaporization mechanism was proven through precision 
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composition measurement made using micro-PIXE spectroscopy and the thermoanalytical properties 

and microstructure were characterized using systematic DSC and TEM analysis. Through tensile testing 

at various temperatures improved performance and extremely unique and desirable functional SME and 

PE properties were demonstrated. 

Chapter 6 characterizes the surface condition of laser processed NiTi material through various 

spectrographic techniques including XPS, AES, and Raman. Correlations between the surface condition 

and corrosion and Ni-ion release performance of laser processed material were also made using cyclic 

potentiodynamic corrosion testing and ICP-OES respectively. Moreover, past theories regarding the 

corrosion and Ni-ion release performance of laser processed NiTi material were tested. Simple surface 

treatments such as mechanical polishing were found to greatly improve the resistance to corrosion 

through removing superficial surface defects and confidence in using laser processed material in medical 

device applications was instilled. 

Chapter 7 details the main conclusions of this research study and future recommendations are provided 

for laser processing technologies and direction of future research. 

Finally, Chapter 8 lists significant contributions to research and development by the author. 
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2 Literature Review 

2.1. Physical metallurgy of NiTi SMAs 

NiTi shape memory alloys are a group of NiTi alloys with near equiatomic composition; as shown in the 

binary Ti-Ni phase diagram of Figure 1 [4, 11]. At room temperature NiTi SMAs are stoichiometric 

intermetallic compounds (IMC). This NiTi IMC is unique since it possesses shape memory properties and 

also remarkably has good mechanical properties such as ductility and strength [4]. Binary NiTi is not a 

line-compound with a fixed composition. Above 923 K (650 °C) Ni is soluble in Ti, therefore through 

quenching supersaturated Ni-rich NiTi SMAs can be produced. Ti-rich supersaturated mixtures on the 

other hand are not possible because Ti cannot dissolve in excess. Besides NiTi, there are many other 

IMCs in the Ti-Ni system. The IMCs that can be found adjacent to near equiatomic NiTi are also very 

important with respect to material properties. The Ti-rich Ti2Ni IMCs, along with TiC are however, 

commonly found in bulk NiTi material due to the ingot casting process during material manufacture [6] 

as shown in Figure 2 [12]. These inclusions are generally not seen to be a large issue affecting material 

performance but limiting inclusions is always seen as best practice [6]. Ti2Ni IMCs are however, 

undesirable in rapid solidification processes such as in welding due to their poor mechanical properties 

often leading to solidification cracking [13].  In contrast, metastable Ni-rich precipitates (i.e. Ni4Ti3, 

Ni3Ti2, and Ni3Ti) are utilized to tailor the functional properties of the alloy and are very important in 

achieving the desired functional and mechanical properties for a specific application [14, 15]. 
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Figure 1: Binary Ti-Ni phase diagram. Inset showing metastable Ni-rich TiNi IMCs. Figure adapted from [4, 
11]. 

The unique shape memory properties of NiTi SMAs are a result of a reversible solid-state phase 

transformation that occurs when the material is subject to external stimuli such as a change in 

temperature or applied stress. This diffusionless martensitic transformation occurs between the parent 

B2 austenite phase and the B19’ martensite phase [6, 16, 17]. The parent B2 austenite phase is a simple 

cubic CsCl type ordered structure with a lattice parameter of 0.3015 nm as illustrated in Figure 3 a) [18]. 

The B19’ martensite phase has a monoclinic structure with lattice parameters of a = 0.2889, b = 0.4120, 

and c = 0.4622 nm with a monoclinic angle β = 96.8°, as illustrated in Figure 3 b) [19]. 

SMA 
Region 
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Figure 2: Microstructures of NiTi: a) optical micrograph of the grain structure of a NiTi alloy with 51.0 at.% Ni; 
b) TEM bright field image showing low dislocation density and carbide of type TiC; c) and d) backscatter SEM 

micrographs of a NiTi alloy with c) 48.6 at.% Ni and d) 51.0 at.% Ni; and e)–g) TEM diffraction patterns of e) 
the B2 phase in NiTi with 51 at.% Ni, f) Ti2Ni in a NiTi alloy with 51 at.% Ni and g) TiC.  Figure taken from [12]. 

 

Figure 3: a) Parent B2 austenite and b) B19’ martensite unit cells (not to scale) 
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2.1.1. Reversible martensitic transformations in NiTi alloys 

Martensitic phase transformation is defined as a shear/shuffle of the crystal lattice that takes place due 

to a change in the thermodynamic stability of the system. The reversible martensitic phase 

transformation that occurs in SMAs is accommodated through twinning of the crystal lattice [19-21]. 

Unlike during martensitic transformation in steel alloys (i.e. fcc → bct) which is accommodated by 

irreversible dislocation motion, twinning in SMAs can be reversible allowing for unique functional 

properties. The slip and twinning type of accommodation for martensitic transformations are illustrated 

in Figure 4. During slip, the atomic planes glide over one another creating irreversible dislocations in the 

crystal lattice. This phenomenon occurs more easily in materials that have fcc and bcc crystal structures 

due to the many slip systems available and/or high stacking fault energies. Twinning on the contrary is 

the shearing of the crystal lattice where the structures on each side of the habit plane are mirror and/or 

rotation related and the atomic movement relative to one another is less than one atomic spacing. 

Twinning occurs in NiTi SMAs because of lack of symmetry and hence a lack of slip systems available, 

increasing the driving force for creating twins following the martensitic phase transformation. The B19’ 

martensite crystal structure has many twinning modes available (Table 1) and only one slip mode 

(   )     B19’. 

 

Figure 4: Martensitic phase transformation accommodation by irreversible slip or reversible twinning in the 
crystal lattice 
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Table 1: Twinning modes in B19’ martensite phase and their respective twinning elements [4] 

Twin type K1 η1 K2 η2 s (i.e. shear) 

{ ̅ ̅ } Type I 
1 ( ̅ ̅ )                     (                 )   ̅ ̅   0.30961 nm 

( ̅  ) [               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ] (               ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  )   ̅    0.30961 

{   } Type I  
(   ) [       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          ] (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅          )       0.14222 

(  ̅ ) [       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ] (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  )    ̅   0.14222 

{   } Type I 
1 (   )             ̅  (           ̅)       0.28040 

(   ̅) [       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ] (       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    )     ̅  0.28040 

〈   〉 Type II 
1,2 (           ̅)       (   )             ̅  0.28040 

(           ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)     ̅  (   ̅) [       ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅    ] 0.28040 

Compound 
(   )       (   )       0.23848 
(   )       (   )       0.23848 

{   ̅} 
3 (   ̅)   ̅  ̅  (   ̅)       0.4250 

1. lattice invariant shear 
2. Dominant twinning mode 

3. {   ̅} twinning is an irreversible deformation twinning mode under heavy deformation 

There are three different paths that the martensitic transformation can take in NiTi base alloy systems 

[4]. These different paths are presented in Figure 5 to assist in the following discussion. The simplest 

path is the first order thermoelastic martensitic transformation from B2 austenite to B19’ martensite. 

This transformation is observed in binary Ni-Ti systems which have either been solution treated or 

possess only low amounts of cold work or precipitation [4]. The second transformation path is from B2 

to the trigonal R-phase and then finally to the B19’ martensite phase. R-phase transformation is a 

martensitic transformation that competes with B19’ martensite in materials that have high dislocation 

density, Ni-rich precipitates, or in ternary alloys that contain Fe [22, 23]. In this case the B19’ martensite 

transformation is suppressed by either the Fe alloying element, dislocations following cold work, and/or 

the precipitation of Ni-rich precipitates, allowing R-phase to form [4]. Chemical substitution of Fe in to 

the matrix, dislocations, and Ni4Ti3 precipitates all resist large lattice variant deformations associated 

with the formation of B19’ martensite. Since the R phase produces a significantly smaller lattice variant 

deformation it will therefore preferentially form [4, 24, 25]. The third transformation path is from B2 

austenite to orthorhombic B19 martensite then finally to B19’ martensite [26]. This type of martensitic 

transformation is only observed in ternary Ni-Ti-Cu systems with Cu compositions above 7.5 at.%. It is 

still debated whether B19 occurs in Ni-Ti-Cu alloys with Cu compositions below 7.5 at.% [4]. 
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Figure 5: Three possible martensitic transformation paths in NiTi based alloys [4]. 

The structural relationships between the B2, B19 and B19’ phases are illustrated in Figure 6 [27]. It can 

be seen that the B2 to B19 martensitic transformation occurs through the common shear/shuffle of the 

basal plane (   )B2 along the    ̅   direction. The transformation to B19’ however also includes a non-

basal (   )   ̅  B2 shear component leading to the monoclinic angle β which is a unique martensitic 

transformation [27]. The B2 to R phase transformation is more complex and not yet fully understood [4] 

therefore not reviewed here. One proposed theory on the precursor R-phase transformation can 

however be found in the Selected Area Diffraction Pattern (SADP) investigation of Wu et al. [28].  

Of the three paths that the transformation can take (i.e. B2-B19’, B2-R-B19’, or B2-B19-B19’) the specific 

path taken depends on precursor events such as phonon softening that directly affects stability of the 

different phases [29]. Phonon softening results in softening of the elastic moduli c’ and c44, which 

represent resistance to basal plane {   }〈  ̅ 〉B2 and non-basal plane {   }〈   〉B2 (i.e. or {   }〈  ̅ 〉  

due to cubic symmetry) shear, respectively [27]. The relative softening of c’ and c44 and the resulting 

anisotropy factor A (=c44/c’) dictates the path that the martensitic transformation takes in NiTi SMAs 

[29]. For example, significant softening in c44 is always observed as temperature approaches the B19’ 

martensite phase transformation temperature which explains the ultimate transformation to B19’, even 

though precursor (R or B19) martensites may occur [4]. It is important to note that the softer the c44 the 

higher the phase transformation temperature of B19’ [4]; addressed in more detail when discussing the 

effects of NiTi alloy composition on functional properties. 
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Figure 6: a) Structural relation between B2, b) B19, and c) B19’. Figure taken from [26]. 

2.1.2. Mechanism for high ductility of NiTi alloys 

Despite the fact that NiTi alloys are IMCs they can exhibit elongation upwards of 50 % in tensile loading 

conditions due to very high ductility, as reported by Miyazaki et al. [30]. This high ductility of the NiTi 

IMC was proposed by Otsuka and Ren [4] to be the result of both the elastic behaviour of the material 

and martensitic transformations. The elasticity constants c’ and c44 are thought to contribute to low 

critical stress for slip in NiTi [27].  Low c’ and c44 compared to other IMCs (Table 2) translates to a 

decrease in rigidity of the crystal structure which is proportional to the stress required to move 

dislocations [27]. Also, the low anisotropy factor ‘A’ of NiTi, calculated to be less than 2, promotes high 

ductility because fracture at grain boundaries is avoided [31]. A softening in both the c’ and c44 occurs in 

NiTi with lowering temperature further towards the martensite start (Ms) phase transformation 

temperature decreasing anisotropy, unlike in other SMAs where only c’ displays softening (Table 2) [27]. 
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Table 2: Elastic properties of NiTi and other β phase alloys near Ms (i.e. SMA IMCs). Table adapted from [27]. 

Elastic properties 
near Ms 

NiTi CuAlNi CuZn CuZnAl AuZnCu AuCd NiAl 

c’ (GPa) 17-19 ~7 8 5.8 3-5 3-3.8 14.6 
Softening of c’ Yes Yes Yes Yes Yes Yes Yes 
c44 (GPa) 35-39 95 90 86 ~60 42 132 
Softening of c44 Yes No No No No No No 
A = c44/c’ 2 13 11 15 20-12 14-11 9 
Softening of A Yes No No No No No No 

The correlation between temperature and elongation during tensile testing was reported by Miyazaki et 

al. [32]; shown in Figure 7. In the B19’ martensite phase at low temperatures, NiTi exhibits high ductility 

due to many twinning modes that are available (Table 1) in addition to the slip mode (   )     B19’. 

The highest ductility is however available in the B2 austenite phase near the Ms temperature due to the 

fact that stress-induced-martensite (SIM) transformation is possible (i.e. with 24 theoretical variants) as 

an additional deformation mode. The lowest ductility occurs at high temperatures where SIM is not 

possible and only the slip mode {   }〈   〉B2 and twinning modes {   }〈   ̅〉B2 are available. 

 

Figure 7: Change in tensile elongation with testing temperature for a Ti - 51.0 at% Ni alloy. Figure taken from 
[32]. 

2.2. Functional properties 

The functional properties of SMAs originate from the thermomechanical response of the material. The 

thermomechanical response of NiTi SMAs can be differentiated into two different functional properties 

depending on whether the austenite ↔ martensite transformation is induced thermally or by applied 

stress. Thermally induced transformation enables the shape memory effect (SME) while the stress 

induced transformation leads to pseudoelasticity (PE) (a.k.a. superelasticity) [6, 16, 17]. The 

thermomechanical response of the NiTi SMA largely depends on temperature. As shown in Figure 8 [30], 

during cyclic tensile testing the test temperature has a large effect on the material performance. More 
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specifically, the SME can be utilized if the material is in the martensite phase and PE can be utilized if the 

material is in the austenite phase; illustrated in the stress-temperature dependence plot of Figure 9 [33]. 

The temperatures which determine current phase of the material are called the phase transformation 

temperatures. The martensite start (Ms) and austenite start (As) temperatures represent the 

temperature at which the austenite → martensite or martensite → austenite phase transformations 

begin, respectively. The martensite finish (Mf) and austenite finish (Af) represent the temperatures at 

which the respective phase transformation is completed. The SME can be observed in Figure 8 (a – e) 

[30] where the temperature is less than Mf and the NiTi alloy is in the martensite state. The residual 

strain observed in the tensile curves of Figure 8 (a – e) can therefore be recovered by heating the 

specimen to a temperature above Af [30]. Pseudoelasticity can be observed in the tensile curves shown 

in Figure 8 (j – l) [30] where the test temperature is just above Af. In this region large amounts of strain 

are possible with complete recovery upon unloading. Miyazaki et al. [34] found that for single crystals, 

10% recoverable strain was possible before permanent straining occurs. However, in polycrystals less 

strain (i.e. < 8%) is possible before permanent strain results [30]. Curves (f – i) of Figure 8 [30] represent 

a partial phase transformation region (As < T < Mf) where the material will possess both SME and PE to a 

certain degree. As the test temperature is increased further above Af, as shown in Figure 8 (m – p) [30], 

perfect PE no longer occurs and permanent strain results. This temperature at which the stress for 

permanent slip becomes lower than the stress to induce SIM is termed ‘Md’ and is identified in Figure 9. 
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Figure 8: Cyclic tensile testing performed on Ti – 50.6 at. % Ni material with increasing test temperatures. 
Shape memory effect temperature range highlighted in red. Pseudoelastic temperature range highlighted in 

blue. Adapted figure from [30] 

SME region 

PE region 
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Figure 9: Stress-temperature dependence of NiTi SMAs for exhibiting SME or PE. Adapted figure from [33] 

2.2.1. Thermally induced phase transformation and the shape memory effect 

As discussed above, when in the martensite phase (i.e. T < Mf) NiTi SMAs can exhibit SME by thermally 

inducing phase transformations. There are two common methods for characterizing the thermal 

response of SMAs. The first method utilizes the change in electrical resistance brought about by changes 

in the crystal structure following a phase change [35]. The second method, and the method used in this 

work, is measuring heat flow during phase changes via the thermoanalytical DSC technique. Using either 

of these techniques the Ms, Mf, As, and Af (including Rs and Rf, if R-phase exists) phase transformation 

temperatures can be identified. A typical DSC plot for a NiTi alloy is presented in Figure 10 where the 

transformation temperatures have been identified and therefore describe the thermal response of the 

specific alloy. The transformation temperatures are found by finding the intercept of the tangents to the 

transformation peak and base line, as per the ASTM F2004-05 standard. A distinct hysteresis in the 

phase transformation temperatures when transforming from martensite to austenite opposed to from 

austenite to martensite is observed in Figure 10. This hysteresis results from internal friction and defects 

in the crystal structure. Hysteresis is largely affected by composition, processing history, and the stress 

state of the particular component [26, 36, 37]. 

Md 
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Figure 10: Typical DSC plot for an annealed NiTi alloy. Phase transformation temperature identified by taking 
tangents of the phase change peaks and the base line. 

The SME refers to the ability of a SMA to undergo a certain degree of deformation and subsequently 

recover its original shape upon heating above Af. The remembered shape is trained by a technique 

called shape-setting where the material is held in a fixed shape during a heat treatment protocol. The 

SME is illustrated in Figure 11 which shows the state of the crystal structure throughout the SME 

process. As illustrated in Figure 11 a), the deformation of martensite is accommodated through 

reversible detwinning of the crystal lattice. This deformation proceeds through twin boundary motion 

where less preferred martensite variants are converted to the most favorable variant under the current 

stress condition, until only a single variant exists [4, 38]. The deformation of martensite is also illustrated 

in Figure 11 b) moving from point A to point B on the stress-strain-temperature plot. In the early stages 

of the deformation of martensite, an elastic region is observed before the martensite detwinning stress 

(σm) is reached where the stress remains almost constant. This constant stress region is followed by the 

elastic straining of the fully detwinned structure. Once the material is in the deformed state and the 

stress has been unloaded, heating to a temperature above As will cause the detwinned martensite to 

begin transforming into austenite. This transformation of the crystal structure translates into the 

recovery of the original trained shape on the macroscopic scale once the temperature reaches above Af. 

This transformation is illustrated in Figure 11 b) moving from B to C. The deformed crystal structure 

remembers its original orientation because of the lattice correspondence [4]. When the temperature is 

returned to below Mf the austenite structure changes back to martensite (i.e. A → B in Figure 11) and 
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the cycle can be repeated. During this phase change from austenite back to martensite upon cooling no 

macroscopic shape change is observed (Figure 11 a)) due to self-accommodation. Self-accommodation is 

the removal of the elastic strain resulting from martensitic transformation through twinning, where 

multiple variants form to relieve strain on the microscopic scale [39]. Often in application, a biasing 

mechanism is required to deform the martensite structure to allow for continuous SME (i.e. actuation). 

This can be done for example by storing energy via a biasing spring during the martensite to austenite 

transformation (i.e. shape change). Therefore, upon transforming back from austenite to martensite the 

stored energy in the spring deforms the martensite (A → B, Figure 11) allowing for continuous SME 

deployment; this concept is discussed in more detail in Chapters 4 and 5. 

  

Figure 11: Illustration of the shape memory effect. a) Response of the NiTi crystal structure during 
deformation, heating and then cooling. b) Stress-strain-temperature response during SME [17] 
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2.2.2. Stress induced phase transformation and pseudoelasticity 

When a NiTi SMA is in the austenite phase (i.e. T > Af) PE is possible by stress induced phase 

transformation. The product of straining the austenite phase is called stress induced martensite (SIM). It 

is however important to note that in order for SIM to be produced the critical stress to induce 

martensite (σSIM) must be below the critical stress for slip as illustrated in Figure 9 [33]. A typical 

solutionized NiTi material cannot exhibit PE due to the yield stress being lower than that of σSIM (i.e. 

critical stress for slip (B) condition in Figure 9). Therefore, strengthening of NiTi alloys is necessary in 

order to increase the critical stress for slip above σSIM (i.e. critical stress for slip (A) condition in Figure 9). 

Typical strengthening protocol for NiTi alloys includes both strain hardening and precipitation 

hardening. Cold work of greater than 25 % [40] coupled with heat treatment at temperatures between 

623 and 773 K (350 – 500 °C) is commonly quoted as an ideal protocol for creating PE NiTi SMAs [4]. This 

thermomechanical processing protocol was designed to precipitate harden the NiTi lattice via coherent 

Ni4Ti3 IMCs [41]. 

Pseudoelastic behaviour of SMAs is usually characterized through tensile testing as illustrated in Figure 

12. A typical cyclic tensile curve, as illustrated in Figure 12 b), can be broken into several different 

segments. During initial loading the austenite phase exhibits elastic deformation (A – B) up until σSIM is 

reached. Once σSIM has been reached an isostress condition is observed (B – C) as the cubic austenite 

structure shears into detwinned SIM, followed by the elastic deformation of the detwinned SIM 

structure (C – D). A serrated appearance often is observed during the isostress PE region (B – C) (Figure 

8) which is attributed to Lüders-like deformation, where strain bands propagate across the gauge length 

of the loaded tensile specimen [42, 43]. Just as for the thermally induced phase transformation during 

the SME, the formation of SIM is reversible. During unloading (D – A) elastic strain is recovered and the 

SIM transforms back into the parent austenite phase. Note that the recovery stress (σr) is lower than 

σSIM. Similar to the hysteresis observed in the thermally induced SME, the hysteresis in PE again arises 

from internal friction and defects in the crystal structure. Up to 8 % recoverable PE strain is possible in 

polycrystalline NiTi material [44] however, if loading continues past 8 % strain permanent plastic 

deformation of the SIM will occur [30]. Texture plays a large role in the ability of the NiTi specimen to 

fully recover strain. Perfect PE (i.e. 100 % recovery of strain) may not be possible due to the yielding of 

unfavorably oriented grains [45]. 



18 
 

 

Figure 12: Illustration of pseudoelasticity. a) Response of the NiTi crystal structure to stress. b) Typical 
stress strain curve for a PE NiTi SMA 

The PE properties are largely affected by the temperature of the NiTi SMA where, σSIM and σr increase 

with temperature; previously shown in Figure 8 [30]. As the test temperature increases above Af the 

stress required to create SIM also increases due to an increase in the stability of the austenite phase. 

This increase in σSIM (and σr) has been observed to be linear as shown in Figure 13 and follows a Clausius-

Clapeyron relation [30, 46, 47]. The Clausius-Clapeyron relation is given in equation (1) [46]: 

  

  
 

   

   
 

where, dσ is the change in σSIM, dT is the change in test temperature, ΔH is the latent heat of 

transformation (eg. obtained from DSC analysis), and ε0 is the transformational strain. The right side of 

equation (1) therefore is the stress rate which is typically between 3 and 20 MPa/°C depending on the 

processing history of the NiTi material [46]. This highlights the importance of understanding the material 

behaviour at the in-service temperature of a particular SMA device. For example, a SMA medical device 

in the mouth such as, an orthodontic arch wire will be at 35 °C however, if the same alloy is used for a 

stent implanted in an artery, the stent will be at 37 °C and will have 6 – 40 MPa greater σSIM. 
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Figure 13: Plateau stress versus temperature plot. Dashed lines represent linear Clausius-Clapeyron relation 
between σSIM (empty circles) and σr (solid circles) and temperature (i.e. when T > Af). Below Af detwinning of 

martensite occurs and above Md plastic deformation of austenite occurs resulting in deviation from the 
Clausius-Clapeyron relation. Adapted figure from [30] 

2.2.3. Effects of composition and ageing treatment 

The functional properties of NiTi SMAs are extremely sensitive to changes in composition. This is largely 

due to the phase transformation temperatures being extremely sensitive to the mole fraction of Ni, as 

shown by Tang [48] and Frenzel et al. [12] in Figure 14. A slight increase in Ni composition above 50 at.% 

drastically decreases the transformation temperature. However, on the Ti-rich side the transformation 

temperatures remain almost constant. This is due to the insolubility of Ti below 50 at.% composition 

(Figure 1) making Ti-rich solid solutions impossible. Therefore, Ti-rich alloys behave the same as 

equiatomic NiTi alloys with an Ms temperature of approximately 338 K (65°C) [4, 48]. Otsuka and Ren [4] 

state that controlling the composition of the NiTi alloy is the most effective way to achieve application 

specific functional properties. However, controlling material composition and experimentally 

quantifying compositions with the required precision is difficult [48, 49]. Also, any internal defects in the 

material created during manufacture can alter the transformation temperatures; discussed in more 

detail in following sections. In fact the deviation of experimental data from Tang’s [48] experimental 

model shown in Figure 14a) have been attributed to such material condition uncertainties and were the 

basis of the improved model developed by Frenzel et al. [12] shown in Figure 14b). These issues in 

material manufacturing and in obtaining data from completely characterized material are areas in which 

laser processing will enable significant contributions to NiTi research; discussed in Chapter 5. 

Md 

σSIM 

σr 

Detwinning
martensite 
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Post processing heat treatments which produce Ni-rich precipitates have also been proven as an 

effective way to modify material functional properties. The precipitation of Ni-rich precipitates depletes 

the NiTi matrix of Ni causing significant increases in transformation temperatures as shown in the time-

temperature-transformation diagram developed by Pelton et al.; Figure 15 [46]. In this work Pelton et al. 

[46] also shows the relation between the Af transformation temperature and σSIM which as discussed 

earlier follows a Clausius-Clapeyron relation (equation 1). An increased in the Af transformation 

temperature caused by increasing Ni depletion of the matrix leads to a decrease in σSIM (i.e. and σr) due 

to a reduction in the thermodynamic stability of the parent austenite phase [50]. It is important to recall 

that the precipitation of Ni4Ti3 precipitates also leads to the intermediate R-phase martensitic 

transformation; discussed above in section 2.1.1. 

It can be deduced that lower Ni:Ti ratios leads to increased transformation temperatures for SME and 

decreased PE stresses as will be discussed in detail in subsequent sections. Hence, the importance of 

material composition and processing history in achieving application specific properties is evident. The 

mechanism behind the compositional effects on the functional properties has been linked to a softening 

in the elastic constants c’ and c44 as the temperature is lowered towards the martensitic phase 

transformation temperature [4, 51]. It has been shown that there is a critical value of c’ at which 

transformation takes place and this value is not sensitive to NiTi composition [52-55]. On the other 

hand, the elastic constants themselves are sensitive both to temperature and composition. In fact, c’ 

and c44 have been shown to be highly sensitive to composition in martensitic alloys due to changes in 

lattice dynamic properties (i.e. phonon dispersion) [56]. Therefore, in order to keep the critical values of 

c’ and c44 constant at martensite transformation, a change in composition must be accompanied by a 

change in transformation temperature [51]. In other words, the magnitude of the energy barrier for 

martensite transformation decreases with increasing Ni content, leading to lower phase transformation 

temperatures and hysteresis [12]. Lattice miss-match between the parent and product phases dictates 

the elastic strain energy at the austenite/martensite interface, modifying the energy barrier for phase 

transformation [12]. 
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Figure 14: Relation between mole-fraction of Ni and Ms temperature in binary NiTi SMAs a) as proposed by 
Tang [48] and b) as proposed by Frenzel et al. [12]. Figures taken from [12, 48]. 

 

Figure 15: Time-temperature-transformation (TTT) diagram showing relation between heat treatment 
temperature, time, and Af transformation temperatures. Figure taken from [46] 

2.3. Traditional thermomechanical processing techniques 

Traditionally NiTi SMAs are fabricated using vacuum induction melting (VIM) or vacuum arc re-melting 

(VAR) technologies followed by hot and cold forming processes where the ingot is shaped into sheet, 

wires, tubes, etc. [49]. Once the NiTi material has been formed into its final geometry, ageing heat 

treatments are applied to fine tune the functional properties of the bulk material to that of a specific 

application [47]; as discussed in section 2.2.3. Typically, commercial NiTi components require ±5 °C 

which means a composition tolerance of 0.05 at.% is necessary [49]. Therefore the melting processes 

must be controlled very precisely. The ability to measure composition with the necessary accuracy of 

a) b) 
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less than ± 1.0 at.% also poses challenges and as a result NiTi material manufacturers provide nominal 

compositions only. Differential scanning calorimetry analysis is therefore usually used as an indirect 

quality check [49] given the linear trend in transformation temperatures with respect to molar mass of 

Ni, shown in Figure 14 [12, 48]. A great deal of complexity comes into play when considering the drastic 

changes that occur not only to the structural properties but also the functional SME and PE properties 

during each processing step before arriving at the final net-shape. Since extensive literature exists on 

these topics, readers are encouraged to reference [4, 6, 16] for a complete review on this topic. General 

processing concepts will be discussed here in order to follow the process – structure – performance 

study in Chapter 5.  

In the as-cast state NiTi SMAs have low yield stress and random crystal texture [57]. This leads to both 

poor mechanical and functional properties of the SMA. As highlighted in Figure 9, a certain yield stress is 

necessary to prevent dislocation motion allowing for more perfect SME and PE properties; meaning no 

buildup of residual strain [33]. Typically NiTi alloys are strengthened via several different mechanisms 

which include grain refinement [58], strain-hardening [50], and precipitation hardening (i.e. Ni4Ti3 

precipitates) [46]. Combinations of hot working, cold working, and annealing/aging heat treatments are 

usually applied during the manufacture of a specific component [4]. It has been shown that for Ni-rich 

alloys a combination of strain hardening and heat treatment is best for increasing the critical stress to 

induce slip (i.e. yield strength), as summarized in detail by Otsuka and Ren [4]. The resulting 

combination of strain-hardening and precipitation hardening allows for more perfect SME and PE 

properties, larger ranges of temperatures at which PE can occur [4], and more stable performance in low 

cycle experiments [35]. With each processing step, the phase transformation characteristics of the NiTi 

SMA are changing. Therefore, the phase transformation temperatures and hence, SME and PE 

properties discussed in sections 2.2.1. and 2.2.2. are also altered. For example, the Differential Thermal 

Analysis (DTA) results in Figure 16 [59] clearly show the effects of deformation and different annealing 

temperatures. The introduction of dislocations into the NiTi matrix decreases and broadens phase 

transformation temperatures [59, 60], introduces R-phase as discussed in section 2.1.1., and can even 

prevent phase transformation from occurring all together in heavily cold worked materials, reducing 

heat of transformation [60]. Subsequent heat treatments again decrease the width of the 

transformation peaks while shifting them to higher temperatures (Figure 16). Depending on the heat 

treatment temperatures R-phase may also remain as identified by the presence of two phase 

transformation peaks (Figure 16). 
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Figure 16: DTA results for deformed Ti-50.6 at. % Ni alloy when subject to subsequent heat treatments. a) 
cooling curves, b) heating curves. Figures taken from [59] 

Finally, crystallographic texture that forms in the component creates anisotropy in martensite 

detwinning and SIM formation. This can lead to phenomena such as higher residual strains because 

martensite variants must rearrange themselves at the expense of dislocation motion to accommodate 

for the applied stress and also drastically different deformation behaviour. The classic example of large 

difference in PE behaviour from a NiTi SMA loaded in tension or compression, as shown in Figure 17, 

highlights the importance of texture with respect to applied stress [57]. It was observed that larger PE 

strains can be achieved when stressed in the direction of 〈   〉 texture and the slope of the plateau 

remains flat [57]. 

a) b) 
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Figure 17: Tensile and compression tests for hot rolled Ti-50.9 at. % Ni SMA having strong 〈   〉 texture on 
the axis of applied stress. Figure adapted from [57] 

2.4. Novel processing protocol for enhanced functionality 

Traditional SMA fabrication technologies can be performance limiting since they produce monolithic 

components which consist of only a single set of phase transformation characteristics. The whole 

component will therefore have the same transformation temperatures and PE properties, limiting its 

functionality. A novel material processing protocol is therefore required to overcome these challenges 

to enable further innovation and application.  

Many methods have been presented to locally control the properties of NiTi based components, 

improving functionality and increasing design flexibility. Specific methods previously attempted 

included, direct electric resistance heat treatment (DERHT) [61, 62], direct hot air heat treatment 

(DHAHT) [61], powder metallurgy (PM) [63-66], gradient annealing [67], joining of multiple alloys [68], 

and more recently novel laser processes [69-72]. All of these techniques aim to enable designs that 

utilize more than one set of functional properties in a monolithic component. However, inherent 

processing issues restricted their widespread application in the current state of the art. For example, 

local heat treatment methods can only be applied to simple geometries, are time intensive, and provide 

a lack of resolution in functional properties [61, 62, 67, 69]. Powder metallurgy methods exhibited issues 

with porosity, poor surface finish and composition inhomogeneity leading to undesirable IMC formation 

[64-66]. Joining of multiple alloys was shown to be relatively effective for simple devices [68]. However, 
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challenges associated with joining such as dissimilar SMAs, IMC formation, large freezing range, and 

more complex joint geometries again limit application [49]. Laser technologies which locally modify 

composition and/or microstructure [69-73] offer the most promising solutions to creating novel NiTi 

devices with improved functionality. The ability to locally process, high speeds, low heat input, high 

cooling rate, and high quality inherent of laser processes, make them excellent candidates for processing 

SMAs. Laser processes will therefore be discussed in more detail in the following section and will be the 

platform technology of studies detailed in Chapters 4 through 6. 

2.5. Laser processing 

Traditionally laser processing of NiTi SMAs was largely limited to laser welding [68, 74-79]. Due to the 

high sensitivity of functional properties to thermal events, the low heat input and high cooling rate 

characteristics of laser welding were found to be ideal [74]. However, the means of utilizing laser 

processing methods for improving the performance or enhancing the functionality of traditional SMA 

materials has only very recently gained a lot of momentum [69-73, 80, 81]. New technologies such as 

the patented multiple memory material (MMM) technology [73] and laser annealing [69] have great 

promise to revolutionize the way we process and design SMA devices.  

Remarkably, in the last two years the effectiveness of laser processing has been proven through the 

development and testing of a two way actuator [69] and creation of a multiple memory microgripper 

[71] detailed in Figure 18 and Figure 19 respectively. Also, improved NiTi functional properties were 

achieved through the synergistic approach of laser processing while locally alloying with Cu [70], 

detailed in Figure 20. In these novel laser processing technologies, rapid changes in microstructure 

and/or local chemical composition have proven very effective in fine tuning the functional properties of 

NiTi SMAs. They are however unprecedented techniques and there are several uncertainties that must 

be first be addressed before they can be applied to their full potential. 
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Figure 18: Unique two way memory of functionally graded strip utilizing laser annealing. Arrow indicates 
laser processed side of strip (LS). Adapted figure from [69] 

 

Figure 19: Multiple memory micro-gripper created by MMM laser processing. a) → d) increasing temperature 
via resistive heating. Adapted figure from [71] 
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Figure 20: Locally reduced phase transformation hysteresis with laser annealing Cu into a NiTi SMA. a) base 
material DSC curve, b) laser alloyed NiTiCu material DSC curve showing reduced hysteresis. Adapted figure 

from [70] 

2.5.1. Effects of laser processing on mechanical and functional properties 

It is clear that the yield strength and working strains are reduced following laser processing [82-87]. The 

effects of past material treatments such as cold work, precipitation hardening, etc. are lost following the 

thermal cycles induced by the laser process [82, 84, 87]. Only limited success has been realized from 

post-laser processing techniques in modifying or restoring material properties [83, 88, 89] and in each of 

these studies only aging heat treatments were explored. More fundamental work must be done before 

laser technologies can be applied to their full potential with necessary confidence. 

In addition to poor structural properties, the unique functional properties of SMAs pose more complex 

effects of laser processing which are not well understood in literature. There is much confusion on what 

happens to the functional properties of the alloy after laser processing where several studies seem to 

contradict each other. For example, laser processing has been shown to decrease the phase 

transformation temperatures that are critical to the SME and PE functional properties in studies by Hsu 
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et al. [78] and Chan et al. [89], however other studies have shown either no change [83, 87, 90], 

increases in transformation temperatures [74, 84, 91-93], and/or removal of R-phase transformation 

[84, 87]. Clarification of the effects of processing on the functional properties and identification of the 

mechanisms responsible must therefore also occur. 

2.6. Laser induced vaporization 

In this research study a laser induced vaporization protocol [73] will be utilized to improve our 

understanding of the effects of laser processing on the functional properties of NiTi SMAs as well as 

contribute fundamental research in the area of smart materials. Therefore, this section provides a 

detailed review of the current state of understanding regarding this novel processing method and the 

underlying mechanism behind the technology. This chapter is based off of a study by Khan et al. [72]. 

2.6.1. The vaporization concept 

Composition changes induced by vaporization using high power density processing methods (eg. laser 

beam, electron beam, etc.) is well documented in literature [94-102]. Prior studies have concluded that 

local loss of elemental constituents can be detrimental to the properties of a bulk material. For example, 

it has been reported that the loss of certain alloying elements during laser processing was responsible 

for reduction in solid solution strengthening in Al alloys (i.e. due to loss of Mg) [95, 98] or decreased 

corrosion resistance in stainless steels (i.e. due to loss of Cr) [97, 99-102]. However, by controlling 

elemental loss during laser processing, the local properties of an alloy can theoretically be precisely 

tailored for that of a specific application. NiTi SMAs are a prime example of a group of materials that are 

extremely sensitive to change in composition, as discussed in section 2.2.3., where the advantages of 

elemental loss during processing can be realized. Similarly, transformation temperatures and 

temperature/stress hysteresis in ternary (or quaternary, etc.) NiTi systems and other SMAs, such as Cu-

Al alloys, were also found to be highly composition dependent [103-110]. A laser induced vaporization 

protocol could therefore be used for quickly modifying the local functional properties of monolithic SMA 

components [73, 72]. 

2.6.2. Selective vaporization of elemental constituents  

To apply this novel vaporization protocol to NiTi SMAs the relative vaporization flux of each elemental 

constituent (i.e. Ni and Ti) must be considered to aid in predicting the change in composition. The 

relative loss of elemental constituents during laser processing is determined largely by their volatility 

[56, 95-102]. More specifically, the pressure gradient has been shown to have the largest effect on 
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vaporization flux Ji of each element 𝑖 present in the molten pool during laser processing as shown in 

equation (2) [101, 102]: 

             

where JP,i >> JC,i and JP,i is given by equation (3) [102]: 

       

  
 

  

  

  
   

where ai is the activity of alloying element 𝑖,   
  is the equilibrium vapor pressure of the element 𝑖 over 

pure 𝑖, PL is the summation of equilibrium vapor pressures of all alloying elements on the surface 

layer (Knudsen layer), Mi is the molecular weight of element 𝑖 in the Knudsen layer, Mv is the mean 

molecular weight of vaporized species, and JP is the total vaporization flux caused by the pressure 

gradient. Therefore, relative loss of elemental constituents can be approximated by calculating the 

vapor pressures of each element. Assuming ideal conditions at high temperatures, equilibrium vapor 

pressure of both Ni and Ti is calculated over the alloy mixture of the molten pool via equation (4): [100, 

101] 

       
  

where X𝑖  is the mole fraction of the element 𝑖. The equilibrium pressure   
  of each alloying element 

was calculated with respect to temperature using equation (5): [111] 

     (  
 )    

 

 
       ( )         

where A,B,C,D and E are constant coefficients and T refers to temperature. The corresponding 

coefficients for Ni and Ti are provided in Table 3 [111].  

Table 3: Constant coefficients for calculation of equilibrium vapor pressure (  
 ) of Ni and Ti [111] 

 A B C D E 

Ni -214.3 -3.52E+03 7.49E+01 -1.80E-02 1.51E-06 

Ti -194.8742 -8.27E+03 6.83E+01 -1.73E-02 1.55E-06 

Calculated vapor pressures of Ni and Ti over an equiatomic NiTi alloy as a function of temperature are 

presented in Figure 21 [72]. Significant differences in vapor pressures were observed between the two 

elemental constituents, with Ni being substantially larger over the plotted temperature range. Hence, 
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the vaporization flux of Ni can be expected to be larger than that of Ti during laser processing of a near 

equiatomic NiTi SMA. 

 

 

Figure 21: Nickel and Titanium vapor pressures over an equiatomic NiTi mixture. Significantly higher vapor 
pressure of Nickel corresponds to a comparatively larger vaporization flux. Figure taken from [72]. 

2.6.3. Augmentation of transformation temperatures 

A decrease in the Ni:Ti ratio translates to an increase in phase transformation temperatures as discussed 

in section 2.2.3. [48, 112-115]. Therefore, the anticipated loss of Ni following laser processing was 

expected to increase the phase transformation temperatures. This hypothesis agrees with results from 

the differential scanning calorimetry (DSC) analysis presented in Figure 22 [72]. After processing the NiTi 

alloy, a second set of transformation peaks appears at higher temperatures compared to those of the 

solutionized base metal. Furthermore, during pulsed Nd:YAG laser processing it has been shown that 

vaporization primarily occurs during the first few milliseconds of laser application, when utilizing the 

keyhole laser interaction mode [102]. Therefore, a compound effect resulted when using multiple pulses 

that maximized vaporization. Accordingly, transformation temperatures were found to increase with 

each additional laser pulse, identifying the possibility for high resolution through this laser processing 

protocol (Figure 22). 
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Figure 22: Thermo-analytical differential scanning calorimetry (DSC) analysis. Following laser processing of 
a Ti-50.7 at. % Ni alloy with 0.6 kW peak power and 30 ms pulse duration, a second set of phase 

transformation peaks were identified at higher temperatures. During heating, the endothermic B2 austenite 
peaks were measured. Similarly, the exothermic B19’ martensite peaks were measured during cooling. 

Increasing the number of pulses caused a compound vaporization effect, raising the transformation 
temperatures with increasing number of pulses. Figure taken from [72].  

Relative composition change of laser processed materials is highly dependent on a balance between the 

vaporization flux of elemental constituents and molten pool dilution [101, 102]. Effects of pulse duration 

on transformation temperatures therefore must be considered as shown in Figure 23 [72]. Using a laser 

power of 0.6 kW, increasing pulse duration increased DSC peak intensity. The more prominent 

transformation peaks are a result of an increase in the processed material to base metal volume ratio 

with increased pulse duration. Transformation temperatures of processed material decreased slightly 

(i.e. by < 20 °) with increasing pulse duration, as shown in Figure 24 [72]. Since vaporization flux is 

highest during the first few milliseconds of the laser pulse and decreases drastically with pulse duration 

[102], dilution of the molten pool caused by an increase in volume was likely the mechanism behind 

decreasing transformation temperatures with longer pulse durations. Hence, vaporization flux 

decreased and the pool volume increased with increased pulse duration, leading to smaller changes in 

final composition; consistent with literature [102]. 
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Figure 23: The effect of pulse duration on transformation temperatures as measured by DSC analysis. Less 
significant changes in transformation temperature of the processed region were observed with increasing 

pulse duration and a laser power of 0.6 kW compared to number of laser pulses. Figure taken from [72] 

The effects of laser power on transformation temperatures are shown in Figure 24 [72]. Only a small 

decrease in transformation temperature (i.e. < 10 °) was observed when increasing laser power to 0.9 

kW from 0.6 kW. Similar to the decrease in transformation temperatures with increasing pulse duration, 

increasing the laser power can also cause an increase in dilution of the molten pool leading to lower 

transformation temperatures. 
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Figure 24: Effect of laser power on transformation temperatures. Ms temperature versus pulse duration for 
the 0.6 kW and 0.9 kW laser power conditions. Less than 10 K difference in transformation temperatures was 

observed between the 0.6 kW and 0.9 kW laser power conditions. Figure taken from [72] 

2.6.4. Verification of the vaporization mechanism 

Thus far thermoanalytical DSC analysis was shown to be a useful tool in identifying the effects of laser 

parameters on transformation temperatures. However, it is still necessary to definitively confirm that 

vaporization was in fact the primary mechanism at play. Khan et al. [72] provided evidence that 

composition change due to vaporization is in fact the mechanism responsible for the augmentation 

temperatures including: i) EDS line scan including the base metal and processed region (i.e. after 5 laser 

pulses), ii) EDS analysis performed on the captured plume produced during laser processing showed 

75.5 at. % Ni and 24.5 at. % Ti; and iii) identification of the martensite phase in the processed region 

while the substrate remained in the austenite phase. However, EDS is typically only accurate to ± 1 at.% 

and the changes in composition realized due to vaporization will be an order of magnitude lower taking 

into account the relationship between the Ms temperature and Ni-composition of Δ 83 K/at. % Ni [12]. In 

addition to the absence of definitive composition measurement of pulsed laser processed material, 

there are also other possible mechanisms that can contribute to changes in transformation 

temperatures in NiTi alloys such as, contaminants (i.e. O and C), changes in dislocation density, and 

growth of Ni-rich precipitates; discussed in section 2.2.3. [1, 15, 103, 116]. More accurate composition 

measurement and in depth microstructural analysis must take place to better understand all of the 

mechanisms at play during this vaporization based protocol. 
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2.6.5. Multiple memory material proof of concept 

Multiple memory materials fabricated using controlled constituent vaporization have great potential in 

aiding in the realization and development of novel SMA devices. Proof of concept was demonstrated by 

Khan et al. [72] through the local modification of the transformation temperatures in the NiTi 

component shown in Figure 25. Commercially available material that exhibits a single set of 

transformation temperatures (i.e. single shape memory) was locally processed, as shown in Figure 25a. 

Pulsed Nd:YAG laser processing at the annotated sites caused a localized increase in phase 

transformation temperatures while the phase transformation dynamics in the untreated regions 

remained unchanged. This increase in transformation temperatures allowed for a two-stage (i.e. two-

memory) actuation through sequential heating of the specimen beyond the Af temperatures of the base 

metal and the processed material, respectively. A schematic and photograph of the actuation process 

are shown in Figure 25b and 23c. At low temperatures the entire sample was in the martensitic phase 

and easily deformed (i.e. by detwinning) into a ‘C-like’ shape. Upon heating to a temperature greater 

than T1, the bulk unprocessed base metal transforms to austenite and recovers its original shape, while 

the processed regions remain in the martensite phase. Subsequently, heating to above T2 induces the 

transformation of the processed regions to austenite and the recovery of the second shape memory. 

Although, proof of concept had been demonstrated for locally augmenting transformation temperatures 

via laser vaporization processing [71, 72] much research is still necessary to fully understand the effects 

of laser processing on the structural and functional properties of NiTi SMAs which are critical to their 

performance in application. 
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Figure 25: Multiple memory material proof of concept. a) Four select regions of a commercially available NiTi 
alloy were laser processed, increasing the phase transformation temperatures (Not to scale). b) Schematic 

demonstration of multiple actuations of the laser processed component. c) Actual images of processed 
component during different stages of actuation. After cooling below the martensite finish temperatures of 

both the processed region (T2) and base metal (T1) the component was deformed by detwinning in the 
martensite phase to a “C-like” shape. Upon heating past the austenite phase transformation temperatures of 
the base metal, the base metal recovered its shape while the processed region remains strained and in the 
martensite phase. Further heating past the austenite transformation temperatures of the processed regions 

lead to a second transformation and complete recovery of the original shape of the processed NiTi 
component. Hence, the monolithic component possessed two distinct shape memories after processing. 

Figure taken from [72] 
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2.7. Corrosion resistance and biocompatibility 

The corrosion resistance and biocompatibility of NiTi alloys is attributed to the protective Ti oxide layer 

that forms on its surface. Due to the thermodynamic driving force (i.e. ΔG) Ti oxides dominate over Ni 

oxides on the surface of NiTi material, where ΔG of forming TiO2 and NiO are -940 kJ/mol and -211.7 

kJ/mol respectively [117]. Therefore, like other medical alloys such as Ti6Al4V and 316 stainless steel 

(SS), NiTi alloys possess a passive oxide layer on its surface which increase the corrosion breakdown 

potential and lower the release of harmful Ni ions. As shown by Wever et al. [118], NiTi alloy breakdown 

potential and current density identified through cyclic potentiodynamic corrosion testing, falls 

somewhere in between the Ti6Al4V and 316 SS materials depending on the surface characteristics; 

shown in Figure 26. Also, the Ni ion release from NiTi material when immersed in Hanks’ solution was 

found to be high at first but dropped off quickly, eventually decreasing below detectable limits; shown in 

Figure 27 [118]. The unique nature of the NiTi surface stems from the near equiatomic ratio of Ni to Ti in 

the alloy. Depending on the previous processing history the surface species will contain different 

mixtures of Ti-based surface oxides, Ni-based oxides/hydroxides, and even elemental Ni [119, 120]. As a 

result, the corrosion performance and Ni ion release can vary quite significantly depending on the 

surface condition [119-121]. Different surface treatments such as mechanical polish, electropolish, 

chemical passivation, oxide building heat treatments, etc. are commonly applied which drastically affect 

biocompatibility [75, 120-122]. It is therefore very important to understand the effects of laser 

processing technologies on corrosion and biocompatibility of these NiTi alloys. Albeit, cases of Ni ion 

release from medical devices have been reported during clinical implementation [123, 124], highlighting 

the importance of, and need for, proper characterization; especially for material processed using novel 

protocols. 
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Figure 26: Cyclic potentiodynamic corrosion test results for Ti6Al4V, equiatomic NiTi, and 316 SS alloys. Test 
performed in Hanks’ solution at 37 °C. Adapted figure from [118] 

 

Figure 27: Ni ion release from an equiatomic NiTi alloy immersed in Hanks’ solution at 37 °C; measured using 
Atomic Absorption Spectroscopy. Figure taken from [118]. 

Breakdown 
potential (Eb) 



38 
 

2.7.1. Corrosion performance and biocompatibility of laser processed NiTi 

Currently, only limited studies detail the corrosion performance and biocompatibility of laser processed 

NiTi [75-81, 125, 126], while even fewer attempt to thoroughly characterize its surface [75, 81]. 

Improvements in corrosion performance immediately following laser processing have been reported in 

most studies, including those by Yan et al. [76, 77, 79], Man et al. [80], Cui et al. [81], and Villermaux et 

al. [126]; as shown in Figure 28 [79]. Furthermore, Ni and Ti ion release from laser processed NiTi 

specimen was also shown to remain lower than that found in drinking water as observed by Sevilla et al. 

[125]. These promising results have been attributed to a combination of mechanisms, including 

enhanced surface condition (i.e. reduced roughness, increased oxide stability, etc.), removal of 

contaminants (i.e. carbon and oxide inclusions, additional phases, etc.), and changes in Ni:Ti ratio on the 

surface [75, 76, 79-81]. An example of removing contaminants is provided in Figure 29 following a laser 

surface melting (LSM) process [80]. Insignificant proof stemming from a lack of surface analysis 

however, limits any validation of the above proposed mechanism for improved corrosion and Ni ion 

release performance. This is further complicated by inconsistencies in literature. For example, a study by 

Chan et al. [75] on laser welded NiTi showed a reduction in corrosion performance immediately after 

welding; contradicting all the aforementioned studies showing improvements in the as-processed state. 

Hence, a better understanding and sufficient level of confidence on the mechanisms behind the 

corrosion properties of laser processed NiTi SMAs is required. 

 

Figure 28: Cyclic potentiodynamic corrosion results for the base material (BM) and welded metal (WM), 
highlighting improved resistance to corrosion post-welding. Figure taken from [79]. 



39 
 

 

Figure 29: Comparison of inclusion content in laser surface melted (LSM) versus the NiTi substrate. The dark 
phase consists of Ti2Ni and TiC inclusions in the bulk material. Adapted figure from [80]. 
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2.8. Summary and concluding remarks 

Extensive review of the literature highlights the complexity of the NiTi system, its phase transformation 

characteristics, and most notably in manufacture/processing of NiTi components. The extreme 

sensitivity of the unique SME, PE and biocompatibility properties of NiTi was identified to result from 

factors such as composition, dislocation density, texture, secondary phases, mechanical properties, and 

surface condition. Traditionally the functional properties are fine-tuned through combined hot work, 

cold work, and annealing and/or aging heat treatment by material manufacturers to produce net-shape 

products (i.e. sheet, bar, tube, wires, strip, etc.). These manufacturing processes are however 

performance limiting since each component possesses only one set of thermomechanical properties 

throughout. Novel techniques such as local heat treatments, powder metallurgy, welding and joining, 

and more recently laser processes have been investigated to locally modify functional properties 

improving material functionality. However, only limited success was achieved with these novel protocols 

in their current state of the art. 

Laser processes such as laser annealing, laser alloying, and laser induced vaporization have more 

recently shown great promise in achieving local augmentation of functional properties. Local 

augmentation of functional properties combined with the high speeds, low heat input, high cooling rate, 

and high quality inherent of laser processes make them a strong candidate for achieving increase 

functionality of NiTi SMAs. Laser processing of NiTi SMAs is however for the most part unprecedented 

and much research is required before they can be applied successfully in industry. The main 

shortcomings in the current science of laser processing NiTi SMAs identified herein include: 

1. The mechanical properties of laser processed materials degrade following laser processes such as 

laser welding. The thermal cycles of the process induce melting and/or heat treatment to the NiTi 

base material removing or altering any past effects from thermomechanical processing. The 

structural properties must therefore be restored to achieve full functionality of the NiTi SMA in 

particular regarding PE and cyclic performance. Only limited studies however investigate post-laser 

processing techniques. More work in this area is therefore essential in achieving application specific 

performance requirements. 

2. There is much confusion regarding the effects of laser processing on phase transformation 

characteristics. Different laser processing studies show conflicting changes in phase transformation 

temperatures with no explanation or analysis regarding these contradictions (section 2.5.1.). 
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3. Although proof of concept has been demonstrated for laser processes (section 2.5.) including the 

laser induced vaporization protocol (section 2.6.) the process-structure-performance relationship of 

such processes is missing. This makes applying laser technologies to meet demands of a specific 

application impossible. More specifically, definitive measurement of composition changes and 

characterization of microstructure and performance following laser processing have not yet 

occurred. Therefore, even the vaporization mechanism of section 2.6. and its relation to SME and PE 

performance cannot be made with the current understanding. 

4. Only limited studies detail the corrosion performance and biocompatibility of laser processed NiTi 

where in general, improvements in corrosion and Ni ion release performance have been reported 

(section 2.7.1.). However, proposed mechanisms behind this performance including, enhanced 

surface condition, removal of contaminants and additional phases, and changes in Ni:Ti ratio have 

not been adequately investigated. A lack of surface characterization and inconsistencies in literature 

limits any validation of the above proposed mechanisms. A better understanding and sufficient level 

of confidence on the mechanisms behind the corrosion properties and biocompatibility of laser 

processed NiTi SMAs is therefore still required before they can be applied in medical applications. 

The above findings regarding the laser processing of NiTi SMAs directly reflect the objectives of this 

research study, presented in section 1.2., and will therefore be addressed in the coming chapters. 
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3 Experimental Methods and Conditions 

In this section the processing protocol and analysis of NiTi material is provided within the scope of 

applying these augmented SMA materials to medical device applications. Under this scope certain 

constraints were implied such as the specific materials chosen as well as the requirement of smooth, 

defect free surface finish following processing. In the medical industry standard PE material has a Ni 

composition of ~50.8 at. % and the thicknesses of these materials used in medical devices is usually < 

700 µm. Also, Nd:YAG processing was carried out on both wire and sheet material with full and partial 

penetration successfully covering a range of processing scenarios believed to be most useful for medical 

device applications. It is expected that the processing protocol and theoretical concepts developed in 

this work are scalable to materials with different composition, geometries, and larger thicknesses. 

However, work was not carried out to investigate scalability and the manner at which these processes 

and theories scale may not be trivial. 

3.1. Multiple memory actuation experiments 

3.1.1. Material 

Commercially available 410 µm (0.016 in.) diameter wire, manufactured by Memry Corporation was 

used in this study. The nominal composition for NiTi SMA wire was 55.9 wt.% (50.8 at.%) Ni and 44.1 

wt.% (49.2 at.%) Ti. The wire material was thermomechanically processed by the material supplier to 

exhibit SME and PE properties. Prior to laser processing, the wire was chemically etched in a 7.5 vol.% 

HF, 20 vol.% HNO3, balance H2O solution to remove a thick black oxide layer; uniformly reducing the 

wire diameter to 400 µm.  

3.1.2. Laser processing equipment and parameters for wire material 

A LW50 A Miyachi Unitek pulsed Nd:YAG laser system with a 1.06 µm wavelength, 600 µm nominal spot 

diameter and top-hat spatial profile (Figure 30) was used in this work. This particular system was 

equipped with a power monitor allowing for accurate in-situ assessment of incident power output.  
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Figure 30: Top hat spatial profile of laser intensity (focused spot radius = x) 

Laser processing of wire was performed with a spot size of 600 µm in order to ensure the full 400 µm 

diameter wire was irradiated with the incident beam. An automated fixture (i.e. BWH fixture) was used 

to index the wire during processing as shown in Figure 31. Argon shielding gas with a flow rate of 0.42 

m3/hr (15 CFH) was found to be sufficient to avoid oxidation during processing. Laser processing 

parameters (i.e. peak power, pulse shape, frequency etc.) were altered to control the transformation 

temperatures during processing. A 5 ms temporal pulse profile having a 1 ms up and down-slope was 

used with a 1.0 kW peak power as shown in Figure 32. These parameters were found to be sufficient to 

induce the required Ni vaporization while achieving full penetration. Overlapping the processed region 

by 75 % was identified as being the ideal condition for optimum surface finish while eliminating a brittle 

terminal solidification region. 
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Figure 31: Laser fixture for processing NiTi wire. Laser irradiation was directed into the Ar filled cavity where 
the processing occurs. A drive roller type auto-feed system indexes the wire during processing. 

 

Figure 32: Laser processing schedule for processing 400 µm NiTi wire 

3.1.3. Thermal analysis 

A Thermal Analysis Q2000 DSC equipped with a refrigerated cooling system was used to identify the 

phase transformation temperatures of the as-received and laser processed materials. A modified version 

of the ASTM F2004-05 standard test method for transformation temperature of NiTi alloys by thermal 

analysis was adhered to. Testing temperatures ranged between -198 K (-75 oC) to 393 K (120 oC), 

controlled at a rate of 5 K/min. The start and finish transformation temperatures; austenite start (As), 

austenite finish (Af), martensite start (Ms), and martensite finish (Mf) were determined as per the ASTM 
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standard using the TA Instruments Universal Analysis 2000 v4.5A software. Wire pieces having 3 mm 

length were cut and placed into the DSC pan for analysis. 

3.1.4. Tensile testing 

Deformation of the as-received and laser processed materials was assessed using a temperature 

chamber equipped Instron model 5548 micro-tensile tester having load and strain measurement 

accuracy of ± 0.4 % and ± 0.5 µm respectively. Test samples having a 30 mm length were loaded at 

temperatures below Mf of the as-received and laser processed materials (i.e. -50 and 30 °C) under an 

ASTM F2516-07 testing protocol at a rate of 0.8 mm/min. The tests performed at -50 °C were designed 

to mimic the conditions during initial straining of the actuator prior to actuation while the tests 

performed at 30 °C were representative of the condition of the laser processed region of the actuator 

following actuation of the as-received region. 

3.1.5. Dynamic actuation and low cycle performance characterization 

In order to characterize the SME of laser processed material a custom test set-up was constructed to 

characterize the performance of NiTi wire (i.e. linear actuator). A spring biased configuration was 

chosen, as illustrated in Figure 33, similar to that used in references [127-129]. To ensure that the wire 

was completely in the martensite phase prior to heating, dry ice was used; maintaining an ambient 

temperature below -50 °C. A pre-stress of 234 MPa (i.e. 3 kg-f load) was applied via the bias spring to 

achieve the required initial strain in the martensite phase to enable the SME. Actuation was achieved by 

resistive heating causing the wire NiTi material to change phases from martensite to austenite and 

subsequently actuate by recovering the initial strain induced by the bias spring. A constant voltage 

Sorensen XG 33-25 programmable direct current (DC) power supply was used to supply the required 

power. The displacement, load, and electrical resistance were measured during testing using a National 

Instruments PXI-1031 data acquisition (DAQ) module. The change in actuator length (i.e. displacement) 

was measured using a ± 0.2 μm sensitivity Heidenhain displacement sensor and the load was measured 

using a 500 N load cell. 
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Figure 33: Illustration of the spring biased linear actuator test set-up (not to scale) 

Low cycle actuation testing of the NiTi wire actuator was performed in the temperature chamber of the 

Instron micro-tensile tester at a constant temperature of -50 °C. The wire was actuated through 200 

cycles consisting of a 10 second resistive heating segment where the temperature of the wire reached 

above the Af followed by a 10 second cooling segment where the wire was allowed to cool below the Mf 

of both materials. A constant load of 234 MPa (i.e. 3 Kg-f load) was held by the cross-head while 

displacement was measured versus time. A 50 mm length of wire was used in cyclic testing due to a size 

limitation of the temperature chamber. The recoverable (εr) and residual (εp) strains were extracted 

after each activation cycle. 

3.2. Combined laser processing, cold working and heat treating experiments 

3.2.1. Material 

A 0.37 mm thick by 12 mm wide SE508 NiTi strip manufactured by Nitinol Devices and Components 

(NDC) Inc. was used in this study. The nominal composition of this binary NiTi alloy was 55.8 wt.% (50.7 

at.%) Ni and 44.2 wt.% (49.3 at.%) Ti with maximum oxygen and carbon contents of 0.05 and 0.02 wt.%, 

respectively. The as-received cold-rolled material was solutionized at 1073 K (800 °C) for 3.6 ks followed 

by water quench to remove any effects of past treatments during manufacturer. Prior to laser 

processing the NiTi strip was ultrasonicated for 2 minutes, flipping half way, in a 7.5 vol.% HF, 20 vol.% 

HNO3, bal. H2O solution to remove a thick black oxide layer. This chemical etching process uniformly 

reduced the thickness of the strips by 20 µm. 

3.2.2. Laser processing equipment and parameters for strip material 

The same Nd:YAG laser system outlined in section 3.1.2. was used for processing the NiTi strip. During 

laser processing, the top and bottom of the strips were shielded with argon gas to avoid excessive 

oxidation as shown in Figure 34. A flow rate of 14.2 L/min (30 CFH) was found to be sufficient as 

identified by a shiny metallic appearance. A pulsed laser protocol was utilized having a peak power of 

Load cell 
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0.8 kW and the pulse schedule shown in Figure 35a). This particular schedule allowed for full 

penetration through the NiTi strip while reducing the severity of the keyhole dimple at the center of 

each laser spot; a common artifact of pulsed laser processes. Rows of laser spots overlapped by 

approximately 50 % in the x- and y-directions were staggered adjacent to one another ensuring that the 

whole sample area was processed, as shown in Figure 35b). 

 

Figure 34: Laser set-up for processing NiTi strip. Strip material was clamped in fixture with Ar shielding on 
both the top and bottom to prevent oxidation. 

  

Figure 35: a) Laser pulse schedule for processing the NiTi strip and b) scanning electron microscopy (SEM) 
image of laser processed surface with 50 % overlap of pulsed laser spots in the x- and y-directions b) 

3.2.3. Post-processing of laser processed NiTi material 

Post-process cold rolling at 403 K (130 °C), reducing the sample thickness by 27 % (i.e. 350 → 255 µm), 

followed by annealing at 673 K (400 C) for 3.6 ks was performed on select specimen to improve both 

structural and therefore functional properties of the laser processed material. A cross-sectioned image 

of the base material and cold worked material is provided in Figure 36. As discussed in section 2.2.2. 

b) a) 
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cold work above 25 % and 1 hr heat treatments have been found to be ideal for improved structural and 

functional properties [4, 40, 41]. 

 

Figure 36: Cross-section of base material in a) as-received condition and b) cold rolled condition (27% 
reduction) 

3.2.4. Chemical composition measurement 

The chemical composition of a 100 x 100 µm area of each specimen were measured using micro-particle 

induced x-ray emission (micro-PIXE) spectroscopy by rastering a 3 MeV proton beam across cross-

sectioned samples. The X-ray spectra were processed using the Guelph PIXE software package. A least-

squares-fit to the spectrum was conducted to deduced X-ray intensities and convert to concentrations 

using National Institute of Standards and Technology (NIST) materials standards. Using this technique 

the Ni and Ti concentrations were captured with < ± 0.21 at.% measurement accuracy. The high 

sensitivity of micro-PIXE analysis over other techniques such as energy-dispersive x-ray spectroscopy 

(EDS) analysis owns to lower crystal charging from Bremsstrahlung radiation, significantly reducing 

background noise in the obtained x-ray spectra. The highest possible measurement accuracy was 

necessary, since changes in the order of a tenth of an atomic percent can lead to > 10 K variation in 

transformation temperatures of NiTi SMAs [12]. 

3.2.5. Microstructure characterization 

The microstructure was characterized using optical microscopy (OM) and transmission electron 

microscopy (TEM). TEM techniques used includes: scanning transmission electron microscopy (STEM); 

200 µm 
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in-situ heating of the TEM specimen; EDS analysis; and selected area diffraction (SAD). A Jeol 2010F 

TEM/STEM field emission microscope operating at 200 kV and a Philips CM12 analytical TEM with a 

cooling/heating stage operating at 120 kV were used. Multiple TEM specimens were analyzed from each 

sample condition. One prepared using focused ion beam (FIB) and two prepared via jet-polishing. A Zeiss 

NVision 40 FIB was used to prepare the FIB specimen from cross-sectioned optical microscopy samples. 

The jet-polished specimen were prepared using a Struers, Tenupol 5 operating at 243 K (-30 °C) and 15 

V, in a 25 % HNO3 + 75 % CH3OH solution. 

3.2.6. Thermoanalytical analysis 

For thermoanalytical analysis similar equipment and procedures as outlined in section 3.1.3. were used. 

Samples were mechanically punched to 3 mm diameter and placed in the DSC pan. Each sample 

condition was tested at least three times. 

3.2.7. Monotonic and cyclic tensile testing experiments 

 The structural and functional properties were identified through tensile testing performed using similar 

equipment as outlined in section 3.1.4. Strips samples with a 1.5 mm width and 30 mm length were cut 

using wire electrical discharge machining (EDM) to minimize detrimental strain and thermal effects. 

Tensile tests were performed with a 20 mm gauge length and a strain rate of 0.8 mm/min at 

temperatures ranging from 293 – 363 K. Each sample condition was tested at least three times during 

the DSC and tensile testing experiments. 

3.3. Surface characterization and corrosion performance experiments 

3.3.1. Material 

A 0.37 mm thick by 12 mm wide SE508 NiTi strip manufactured by Nitinol Devices and Components 

(NDC) Inc. was used in this study. The nominal composition of this binary NiTi alloy was 55.8 wt. % (50.7 

at. %) Ni and 44.2 wt. % (49.3 at. %) Ti with maximum oxygen and carbon contents of 0.05 and 0.02 wt. 

%, respectively. The as-received material was in the cold-rolled state from the manufacturer. Prior to 

any testing, the NiTi strip was ultrasonicated for 2 minutes, flipping half way, in a 7.5 vol. % HF, 20 vol. % 

HNO3, bal. H2O solution to remove a thick black oxide layer. This chemical etching process uniformly 

reduced the thickness of the strips to 0.35 mm. The chemically etched state is referred to as CE for this 

study. 
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3.3.2. Laser processing equipment and parameters for strip material 

The same Nd:YAG laser system outlined in sections 3.1.2. and 3.2.2. was used for processing the NiTi 

strip in these experiments. A pulsed laser protocol was utilized having a peak power of 0.8 kW and the 

pulse schedule shown in Figure 37a. The laser spots were overlapped by 56 % to ensure that the whole 

sample area was processed as illustrated in Figure 37b. Each spot was pulsed five times to achieve the 

desired thermomechanical properties through change in microstructure and bulk material composition. 

This material state will be referred to as laser processed (LP). 

 

Figure 37: a) laser pulse schedule for partial penetration of NiTi strip, b) illustration of 56 % overlap of laser 
spot configuration allowing for the complete coverage of the desired sample area 

 

3.3.3. Mechanically polished surface 

Mechanical polishing was used to remove any effects of the differing surface topography and chemistry 

created from laser processing, to better characterize the bulk material. Strips were cut in 8 x 8 mm 

squares and progressively ground with 600, 800, 1200 coarse, and 1200 fine grit silicon carbide paper. 

Polishing was then performed with a 0.03 µm colloidal silica suspension and 30% hydrogen peroxide 
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mixture (9:1 ratio). This state will be referred to as laser processed and polished (LP-Pol). Extreme care 

was taken to use consistent grinding/polishing protocol for each individual specimen. 

3.3.4. Material characterization 

To characterize the thermoanalytical properties of the NiTi materials DSC analysis was performed as 

outlined previously in sections 3.1.3. and 3.2.6. 

To observe the microstructure of the bulk material and the surface condition, OM was performed using 

an Olympus BX51M upright inspection and research microscope. The surface condition was 

characterized further using optical profilometry performed on a WYKO NT1100 optical profiler 

manufactured by Veeco having ±1 nm resolution. Three dimensional topographical surface maps of the 

CE, LP and LP+Pol samples and Ra roughness values were obtained from a 1.2 x 0.92 mm area. Analysis 

of surface characteristics after corrosion testing was performed with the use of a JEOL JSM-6460 

scanning electron microscope (SEM) with a 20 kV electron beam. 

For OM, sample cross-sections were progressively ground with 600, 800, 1200 coarse, and 1200 fine grit 

silicon carbide paper. Polishing was then performed with a 0.03 µm colloidal silica suspension and 30% 

hydrogen peroxide mixture (9:1 ratio). Subsequently a 15 s chemical etch in a 3 vol. % HF, 14 vol. % 

HNO3, and bal. H2O solution was applied. 

3.3.5. Surface characterization 

To characterize surface chemistry XPS analysis was conducted using a K-Alpha XPS manufactured by 

Thermo Scientific Inc. using monochromatized Al Kα1 radiation. The source was run at 15 kV and 72 W. 

The emitted photoelectrons were sampled from a 400 x 400 µm area. Sputtering was done with a 2 kV 

Ar+ ion beam rastered over a 2 x 2 mm area. Survey scans were taken at pass energy of 50 eV and a 

binding energy range of 0 – 1300 eV. 

Surface composition depth profiling was achieved using AES. Auger analysis was performed using a PHI 

660 scanning Auger microprobe. A 5 kV (~300 nA) electron beam rastered over a 100 x 100 µm area 

(1,000X) was employed for this investigation.  Sputtering was performed using a 3 kV Ar+ ion beam 

rastered over 2 x 2 mm area.  The sputter rate under these conditions was determined to be ~ 30 

nm/min for a SiO2 on Si layer (280 nA ion current). Sputtering rate for SiO2 on Si substrate has been 

determined to be similar to TiO2 [130]. The oxide thickness was estimated to be where the oxygen 

percentage dropped to half its maximum value. 
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Raman was performed to aid in identification of the surface species present as well as identify the 

degree of crystallinity of the oxide. Spectra were recorded using a Renishaw Ramanscope with a spatial 

resolution of < 1 cm-1. This spectroscope was equipped with a He-Ne laser having a 633 nm wavelength 

and a 5 µm spot size. 

3.3.6. Corrosion testing and Ni ion release measurement 

Potentiodynamic corrosion tests were performed in a phosphate buffered saline (PBS) electrolyte 

(pH7.4) manufactured by MP Biomedicals using a 300 ml double walled corrosion cell as shown in Figure 

38. A GAMRY Instruments potentiostat with Framework v4.35 software was used for controlling the 

tests. A three electrode configuration was used according to the ASTM F2129-08 standard for cyclic 

polarization testing. The reference electrode was a saturated calomel electrode (SCE) and the counter 

electrode was Pt mesh. The working electrode consisted of a custom sample holder, which exposed 0.25 

cm2 of the specimen surface area using an area limiting gasket. All tests were performed at 37 °C to 

simulate biological conditions. Before testing began, the solution was de-aerated with nitrogen for 30 

minutes. The open circuit potential was measured up to one hour, or until it was stable within 0.05 

mV/s. Testing was performed at a scan rate of 0.167 mV/s, starting at -0.5 V and increasing to 1.5 V. 

Scanning was automatically reversed if the current density reached 0.1 mA/cm2. A minimum of three 

specimens was tested for each material condition and representative curves were provided herein. 

Ni ion release measurements were made using a Prodigy ICP-OES manufactured by Teledyne Leeman 

Labs Company. A Ni ion lower limit of detection (LLOD) of 13.2 µg/L (13.2ppb) was determined during 

calibration. A surface area of 1.63 cm2 was immersed in 15 ml of PBS solution for 7 days ± 1 hour at a 

temperature of 37 °C. Seven days is the amount of time specified by ISO 10271 Dental Metallic Materials 

– Corrosion Tests and previously used by D. Vojtech et al. [131]. Moreover, it was previously found by A. 

Michiardi et al. [132] that Ni ion release stabilized and dropped to almost zero after 5 days. The Ni 

concentration in the control sample, determined to be 16.3 (± 10.2) µg/L, was subtracted from the total 

Ni concentrations found for each sample. The results provided in this work were normalized by the 

particular surface area for each sample and were the mean values of three measurements. 
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Figure 38: Cyclic potentiodynamic corrosion cell operating at 37 °C  
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4 Dynamic Actuation and Control of a Novel Laser-processed 

NiTi Linear Actuator 

To assess the SME properties of laser processed NiTi material a spring biased multiple memory linear 

actuator was developed. The processing parameters were selected in order to establish two distinct 

actuations of the wire actuator; one resulting from the SME of the as-received region and the second 

from a laser processed region. A peak laser power of 1.0 kW with a 5 ms temporal pulse profile, outlined 

in section 3.2.2., was used in this work. Half of the 100 mm length of the wire actuator was processed as 

illustrated in Figure 39 a). An optical micrograph of the interface between the as-received and processed 

regions is provided in Figure 39 b). The work presented and described in this chapter has been 

previously published by Pequegnat et al. [133]. 

 

Figure 39: a) Schematic illustration of linear actuator (not to scale) and b) optical micrograph of interface 
between as-received region and laser processed region [133] 

4.1. Transformation temperatures of processed wire 

Differential scanning calorimetry results for both as-received and laser processed materials are shown in 

Figure 40. The As, Af, Ms, and Mf phase transformation temperatures extrapolated from the DSC curves 

are summarized in Table 4. Transformation temperatures of the processed material increased 

significantly compared to the as-received material as expected following the laser induced vaporization 

protocol described in section 2.5. In this study the Af and Mf temperatures were increased by 71.7 °C 

and 46.6 °C respectively. Hence, it was to be expected that during resistive heating less heat input (i.e. 

lower voltages) would be required to actuate the as-received region of the actuator compared to the 

laser processed region. For example once the Af temperature of the as-received region (19.5 °C) has 
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been reached, 50 % of the wire will be in the austenite phase. Following further heating past the Af 

temperature of the laser processed region (91.2 °C), the whole wire actuator will be in the austenite 

phase. 

Table 4: Phase transformation temperatures (°C) from thermo-analytical DSC analysis [133] 

 As Af Ms Mf 

As-received Material -22.3 19.5 9.8 -14.6 
Processed Material 73.5 91.2 62.0 32.0 

 

 

Figure 40: DSC data for as-received and laser processed materials [133] 

4.2. Actuation and shape memory effect 

Actuation was induced using a voltage profile which first increased from 0.5 V to 1.8 V then decreased 

back to 0.5 V while monitoring wire displacement. Voltage stepping of 0.05 V every 2 seconds was used 

to ensure steady heating and cooling, as shown in Figure 41 a). With increasing voltage, wire 

temperature surpassed Af for the as-received and laser processed regions of the processed actuator, 

subsequent decrease in voltage induced cooling below Mf of both regions. Figure 41 b) shows the two 

distinct actuations in the displacement measurement for the laser processed actuator. Upon application 

of voltage, first the as-received region transformed from martensite to austenite causing the processed 
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actuator to initially recover 2.48 mm of strain. Increasing the voltage further triggered the second 

actuation and recovery of an additional 1.0 mm of strain from the laser processed region. As the voltage 

decreased the reverse effect was observed, first the processed region transformed from austenite to 

martensite followed by the same transformation in the as-received region. The bias spring facilitates 

straining the actuator first by 1.0 mm then by 2.48 mm as phase transformation to martensite takes 

place in the laser processed and the as-received regions, respectively. Also shown in Figure 41 b) is the 

displacement trend from a 100 mm as-received actuator that was subject to the same voltage profile. 

Only one actuation was observed however, 5.32 mm maximum displacement was achieved; a 34.6 % 

larger active strain than the laser processed actuator. 

 

Figure 41: a) Voltage profile and b) displacement measurements [133] 

Through laser processing, different regions of the actuator were ‘programmed’ to fully actuate giving 

the desired load and displacement at specific temperatures. The length (i.e. volume) of each of the 
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processed regions as well as the transformation temperature can be easily adjusted to obtain the 

desired response. Therefore, the need for partial transformation using minor hysteresis loops was not 

necessary for dynamic actuation. For example, a simple DC voltage profile such as that shown in Figure 

42 a) was used with the two memory actuator developed in this study. In the first voltage pulse the 

voltage was increased to 1.4 V allowing for quick heating of the linear actuator and subsequently 

actuation of the as-received region. The voltage was then backed off slightly to 1.1 V maintaining a 

temperature just above the Af of the as-received region. Following the first actuation a displacement of 

2.48 mm was achieved yielding a 274 MPa stress. Next the voltage was increased to 1.8 V increasing the 

temperature above the Af of the laser processed region, where the second actuation occurred. A total 

displacement of 3.48 mm was achieved yielding a fully actuated stress of 287 MPa. Two distinct changes 

in resistance were also clearly observed in the resistance measurement shown in Figure 42 c) where the 

resistance of the laser processed region behaves as expected during SME actuation. This change in 

resistance has proven to be useful when developing control systems for SMA actuators [128, 134].  

As demonstrated, using a laser processed actuator greater control over the amount of actuation and the 

temperatures at which these actuations occur can now be achieved using simple control methods. 

Extraordinarily, laser processed actuators can now be actuated in a passive manner where the 

temperature of the ambient environment gives the desired dynamic response; enabling countless new 

applications for SMAs. 
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Figure 42: Dynamic actuation of a two memory laser processed linear actuator by resistive heating. a) DC 
voltage profile, b) actuation displacement, and c) resistance measurement [133] 
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4.3. Stress-strain behaviour and the detwinning of martensite 

To better understand the effects of laser processing on the SME, monotonic tensile tests were 

performed. The results from tests performed at -50 °C, simulating the initial pre-straining of the 

processed actuator, are presented in Figure 43 a). The deformation behaviours of the martensite phase 

of as-received material and laser processed material are shown for up to 10 % strain. There are two 

notable differences in the stress-strain behaviour of the laser processed material compared to the as-

received material. These differences include the absence of the serrated, flat ‘Lüders-like deformation’ 

and a substantially larger martensite reorientation or flow stress (i.e. σm of Figure 11) in the laser 

processed material. 

 

Figure 43: Detwinning of martensite in as-received and laser processed regions at -50 °C a), comparison of 
detwinning stresses and strains at -50 °C and 30 °C for laser processed material b) [133] 
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The presence of Lüders-like deformation in NiTi alloys is the result of sudden reorientation of martensite 

during deformation resulting in the propagation of a macroscopic strain band [135] similar to that 

discussed in section 2.2.2. during the austenite to SIM transformation. This reorientation of martensite 

consists of neighbouring martensite variants becoming twin related, propagation/migration of the 

interface between neighbouring variants, and further detwinning of the reoriented martensite variants 

as discussed in section 2.2.1. [4, 38]. Once the stress exceeds the barrier stress for martensite 

reorientation the stress drops slightly and remains almost constant creating the stress-plateau as 

observed in the stress-strain curve for the as-received material in Figure 43 a) [38, 136]. The ability of a 

strain band to propagate and lead to a stress-plateau is heavily dependent on the texture of the NiTi 

alloy [38, 135, 137]. After initiation of the strain band no additional stress is necessary for propagation if 

a majority of the twinned martensite variants have a habit plane in the same direction as the local strain 

band [135]. The local stress concentration adjacent to the strain band is therefore sufficient to cause 

propagation. Liu et al. [137] found when deforming martensite in the rolling direction that a stress-

plateau was possible. Murasawa et al. [135] showed similar results with rolled NiTi sheet that had been 

heat treated below 400 °C, where it was identified that the strain band and habit plane both exist at -55° 

and +55° to the loading direction. Therefore, it was deduced that during loading parallel to the drawing 

direction of the as-received wire the texture of the material was such that the formation and 

propagation of a strain band was possible leading to the stress-plateau observed during the deformation 

of the martensite structure (Figure 43 a)). In fact, Frick et al. [57] showed that the texture of cold drawn 

is ideal for tensile loading, leading to the formation of a flat long stress-plateau during the detwinning of 

martensite.  

The absence of the Lüders-like deformation in the laser processed material was also attributed to 

texture effects. Since the laser processed material had solidification type microstructure the texture was 

expected to be significantly different from the as-received drawn wire. The sloped strain-hardening 

behaviour observed in Figure 43 a) for the laser processed material was a result of the inability to form 

and propagate a macroscopic strain band. When the priority habit planes exist in several different angles 

relative to the loading direction, a single flow stress for martensite reorientation does not exist, and 

therefore the sudden appearance of a stress-plateau is not observed [135]. Increasing stresses are 

necessary to reorient martensite variants having different angles from the loading direction leading to 

the strain-hardening effect as observed for the laser processed material in Figure 43 a). Murasawa et al. 

[135] and Liu et al. [137] obtained similar strain-hardening trends during the tensile testing of NiTi sheet 
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having a recrystallized texture and when loading in the transverse direction to the rolling direction, 

respectively. 

The greater σm of the laser processed material shown in Figure 43 a) was a result of the martensite in 

the laser processed material being more stable at -50 °C than that in the as-received material. Since the 

reorientation of martensite is dependent on the movement of mobile defects, such as interfaces 

between neighbouring variants and twins which occur by thermal activation mechanisms, higher stress 

is required to cause reorientation. Miyazaki et al. [30] showed that the flow stress increases with 

decreasing temperature below Mf. Since the difference between the test temperature of -50 °C and Mf 

of the laser processed material was 46.6 °C (or 57 %) greater than that of the as-received material, a 

larger σm was expected. 

4.4. Effect of martensite properties on actuator performance and SME 

The strain-hardening behaviour of the laser processed material and higher σm had a large effect on the 

active strain in the as-received and processed regions of the actuator.  As denoted by (i) and (ii) in Figure 

43 a), the amount of initial strain in the processed and as-received regions following the 234 MPa pre-

stress were 1.2 % and 8.3 % respectively. The amount of strain experienced during the deformation of 

martensite is directly related to the magnitude of active strain possible via the SME [34]. Therefore, a 

greater displacement was expected during actuation of the as-received region of the actuator as 

observed in Figure 41 b) and Figure 42 b). From the activation of the as-received region 71.3 % of the 

actuator’s active strain was recovered. Following actuation of the as-received region the temperature of 

the actuator was above 19.5 °C, the Af temperature of the as-received material, and the stress reached 

274 MPa. Therefore, the properties of the laser processed region must be considered under these 

conditions. Tensile tests performed at 30 °C for the processed material are therefore more 

representative at this stage of actuation. Since the stress has increased in the actuator following the first 

actuation and σm has decreased due to temperature effects, the strain in the laser processed region has 

increased to 2.8 % as indicated by (iii) in Figure 43 b). The initial 2.8 % strain in the laser processed 

region was 25 % of the total initial pre-straining in the actuator, corresponding well with the 28.9 % 

recovery of active strain following the actuation of the laser processed region (Figure 41 b) and Figure 42 

b)). Hence, the interactions between the two different regions of the processed actuator having 

different thermomechanical properties becomes apparent and the smaller active strain compared to the 

as-received actuator (Figure 41 b)) was explained. This result highlights new design considerations that 

must be taken into account when applying laser processing to NiTi SMAs. 
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4.5. Cyclic SME performance 

The cyclic performance of NiTi SMAs, although not discussed until this point, is of great interest due to 

historically poor performance [46]. During processing of SMAs for actuation applications it is critical to 

overcome the continual build-up of residual strain (εp) during cyclic actuation to ensure consistent 

performance over the component’s service life. The results from the 200 cycle actuation test are shown 

in Figure 44. The εp in the laser processed actuator caused by cyclic degradation was found to stabilize 

after approximately 150 cycles. Similar results have previously been presented in literature where cyclic 

degradation accumulated during each loading cycle will stabilize between 100 – 200 cycles [138-140]. 

This stabilization is the result of the reorientation/stabilization of preferred martensite variants and 

development of dislocations during early cycles. Different thermomechanical treatments have been 

found to affect how quickly this stabilization process occurs as discussed by Sofla et al. [139]. More 

notably, the εr remains almost unchanged after 200 cycles where only a 0.6 % decrease was measured 

from the first and last cycle. Therefore, the low cycle performance of the laser processed material was 

comparable to traditional SMA materials. 

 

Figure 44: Recoverable strain (εr) and residual strain (εp) measured during cyclic actuation testing [133] 

4.6. Chapter summary 

In this chapter, a laser processing technology was demonstrated to improve the functionality of a NiTi 

wire linear actuator by augmenting the SME properties. The addition of a second memory allowed for 

two distinct actuations using controlled resistive heating. The performance of this novel wire actuator 

was characterized and a better understanding of the SME properties of laser processed material was 
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obtained. Tensile tests identified significant differences in the stress-strain behaviour during the 

deformation of martensite in the as-received and laser processed materials. Lüders-like deformation did 

not occur in the laser processed material. Instead, strain-hardening took place during the reorientation 

of martensite. Also, the σM was found to be substantially higher for the laser processed material due to 

higher phase transformation temperatures and the inherent temperature dependence of martensite 

stability. It is evident that more work is necessary to understand this laser process in order to select 

application specific phase transformation behaviour. Relationships between the process, structure and 

performance must be drawn before laser processes can be utilized to create useful devices.  
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5 Tuneable NiTi Shape Memory Alloy Functional Properties 

Through Combined Laser Processing, Cold work and Heat 

Treatment 

In this study we explore the effects of Nd:YAG laser processing combined with subsequent cold work 

and heat treatment for the first time. Precision control in manufacturing becomes increasingly complex 

following such a combined thermomechanical processing protocol; recall sections 2.3. – 2.6. Successful 

application was only possible with complete understanding of the process, structure and performance 

relationship and development of necessary correlations. Therefore, this study was focused on 

quantifying changes in composition and characterizing the microstructure of processed NiTi material. 

Correlations between the microstructure and performance metrics such as phase-transformation 

characteristics and tensile performance were also made. Specific focus was directed to enhancing the 

structural and functional properties of laser processed materials to demonstrate unique performance 

offerings realized through application of this novel combination of SMA processing techniques. Recall 

the post-processing protocol used in this study included 27 % cold work (i.e. reduction in thickness) 

followed by subsequent heat treatment for 3.6 ks at 673 K (400 oC). 

5.1. Results 

5.1.1. Composition analysis 

The number of pulses per laser spot was found to be the best method for controlling changes in 

transformation temperatures using vaporization based laser processing protocol [72]. In this study using 

micro-PIXE analysis the composition change with each laser pulse was measured, clearly identifying the 

relationship between the number of laser pulses parameter and resulting Ni:Ti ratio of the bulk material, 

shown in Figure 45. The base material (BM) Ni composition was measured to be 50.8±0.21 at.% which 

agreed well with the nominal composition of 50.7 at.% provided by the material manufacturer. The 

slope of the linear fit indicated that after each laser pulse the Ni composition decreases by 0.16 at.% 

implying precision control of the process and resulting alloy composition. Composition homogeneity was 

also investigated by taking composition measurements from three different regions of the single pulse 

laser spot, as illustrated in Figure 45. The composition within the laser spot was found to be uniform 

where an average composition of 50.71±0.03 at.% Ni. 
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Figure 45: Ni composition versus number of pulses per laser spot, measured at location A of the inset 
illustration using micro-PIXE with an error of ± 0.21 at. %. Measurements were also taken at points B and C to 

asses composition homogeneity within laser spot 

For the remainder of this study it was necessary to overlap laser spots to ensure that the whole sample 

area was processed. The 1 pulse per spot (1P) and 2 pulses per spot (2P) laser parameters were selected 

because with overlapping in both the x- and y-directions, the final composition change in the sample 

was significantly higher than that of the single spot results provided in Figure 45. Avoiding a Ti-rich alloy 

was desired to prevent the formation of Ti-rich intermetallics such as Ti2Ni, which can lead to 

embrittlement and solidification cracking [141]. In both the 50% overlapped 1P and 2P conditions the 

composition remained Ni-rich with measured Ni concentrations of 50.46±0.15 at.% and 50.16±0.15 at.% 

respectively. 

5.1.2. Thermoanalytical characteristics 

The DSC results from the BM, 1P, 1P with cold work (1P+CW), 1P with cold work and heat treatment 

(1P+CW+HT), 2P, 2P with cold work (2P+CW), and 2P with cold work and heat treatment (2P+CW+HT) 

samples are provided in Figure 46. The BM sample undergoes transformation between the parent, B2 

austenite phase and the B19’, martensite phase (Figure 46a)). Although two sets of phase 

transformation peaks were observed on both heating and cooling they were both identified as resulting 

from B19’ ↔ B2 transformations due to large peak to peak hysteresis (i.e. > 25 K) between each set of 

phase transformation peaks [142, 143]. There are several mechanisms that could result in multiple 

martensite transformations in the BM sample as identified in references [60, 142, 143]. The 1P and 2P 

laser processed sample exhibit single stage transformation with measured peak to peak hysteresis of 

26.4±1.7 K and 33.2±1.6 K respectively (Figure 46 b) & e)). The transformation temperatures increase 
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after laser processing with the 2P sample having the highest transformation temperatures (Table 5). 

Increasing phase transformation temperatures and hysteresis with decreasing Ni-content was expected 

and agrees well with literature [12, 48]. 

After cold rolling the phase transformation peaks of the 1P+CW and 2P+CW samples become shallow 

and wide while shifting to lower temperatures (Figure 46 c) & f)). A second peak also appears on the 

cooling portion of the curve. Shallow and wide phase transformation peaks are typical to cold worked 

microstructures since heterogeneity in internal stresses is created which broadens the range of 

transformation energy required for complete phase transformation [59, 60]. Large dislocation density 

has also been shown to suppress martensitic phase transformation all together, reducing heat of 

transformation [60]. 

Following heat treatment of the cold rolled samples the phase transformation peaks for 1P+CW+HT and 

2P+CW+HT samples narrow, increase in intensity, and shift to higher temperatures (Figure 46 d) and g)). 

This is typically observed following a recovery and/or recrystallization process [144, 145]. Shifts in phase 

transformation temperatures to higher temperatures can however also be attributed to a decrease in 

the matrix Ni content through precipitation of Ni-rich, Ni4Ti3 intermetallics [146]. Partial cycle DSC scans 

confirmed the secondary phase transformation peak on the cooling curve as R-phase transformation 

due to the small peak to peak hysteresis (4.2 K) between the B2 → R and B19’ → B2 phase 

transformations [142, 143]; shown in Figure 47 for the 1P+CW+HT sample. The phase transformation 

peaks in Figure 46 were therefore labeled accordingly. 
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Figure 46: Differential scanning calorimetry results for a) base material (BM) sample, b) 1 pulse (1P) sample, 
c) 1 pulse with cold work (1P+CW) sample, d) 1 pulse with cold work and heat treatment (1P+CW+HT) sample, 

e) 2 pulse (2P) sample, f) 2 pulse with cold work (2P+CW) sample, and g) 2 pulse with cold work and heat 
treatment (2P+CW+HT) sample. 
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Figure 47: a) 1 pulse with cold work and heat treatment (1P+CW+HT) partial DSC scan between 293 and 393 K 
and b) full cycle DSC scan, identifying secondary peak as an R-phase transformation peak on the cooling 

curve 

 

Table 5: Average phase transformation temperature for BM, as-processed and processed, cold worked and 
heat treated samples (K) 

 Rs Rf Ms Mf As Af 

BM N/A N/A 258.2±4.3† 218.7±3.4† 253.7±0.4† 284.1±2.1† 

1 Pulse N/A N/A 291.6±3.2 263±2.4 293.2±2.2 317±3.5 

2 Pulse N/A N/A 321.4±2.8 281±2.9 315.5±1.8 350±3.1 

1P+CW+HT 326.1±0.8 305.4±1.1 281.2±5.1 231.7±6.7 300.2±2.3 326±1.1 

2P+CW+HT 334.6±0.8 -- ‡ -- ‡ 262±9.6 319.1±2.4 348.3±1.6 

†Two sets of B2 ↔ B19’ phase transformation peaks were overlapping and therefore were considered to be one large peak when recording 

phase transformation temperatures 

‡B2 ↔ R and R ↔ B19’ peaks overlap and therefore phase transformation temperature was not measured 

5.1.3. Functional properties 

Representative results from cyclic tensile testing, performed up to 6 % strain at temperatures of 293, 

333, and 353 K are provided in Figure 48 for the as-processed 1P and 2P tensile specimen. At 293 K both 

the 1P and 2P specimen were in the B19’ martensite phase (Table 5). Therefore, upon loading 

deformation of the tensile specimen proceeds by detwinning of the martensite phase and this strain was 

not recovered upon unloading (Figure 48 a) and d)). Subsequent heating of the specimen above the Af 

temperature however did lead to the recovery of strain due to SME. The extent of the strain recovered 
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was measured and illustrated with an arrow and circle symbol on the x-axis of Figure 48. At 333 K the 2P 

sample was still in the martensite phase due to higher As temperature (Table 5) and therefore behaved 

similarly to the specimen tested at 293 K. The average residual strain following the SME was found to be 

below 0.9 % for both the 1P and 2P specimen. Above the Af temperatures of the 1P (326±1.1 K) and 2P 

(348.3±1.6 K) samples the tensile specimen deformed plastically and the residual strain was greater than 

3.5 % following unloading of the stress (Figure 48 b), c) and f)). 

 

Figure 48: Representative results for the cyclic tensile testing of as-processed material performed at 293, 
333, and 353 K. Curves a), b) and c) correspond to the 1P sample while curves d), e) and f) correspond to the 
2P sample. The arrow and circle symbol denote the average strain recovered due to the SME upon heating 

the samples above their respective Af temperature. 
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Representative results from cyclic tensile testing of the 1P+CW+HT and 2P+CW+HT tensile specimen are 

provided in Figure 49. The most notable change in cyclic tensile performance was that the tensile 

specimen exhibit PE when cycled at temperatures above their respective Af phase transformation 

temperatures (Figure 49 b), c), g) and h)). Therefore, cold rolling and heat treatment restored the PE 

property of the previously laser processed SMA. A minimum average residual strain of 0.35 % was 

achieved with the 1P+CW+HT specimen at 333 K (Figure 49b). Following a Clauseus-Clapeyron relation 

(equation (1)) the PE plateau stress increases with temperature at a rate within the 3 – 20 MPa/°C range 

as sited in section 2.2.2. As a result, for both the 1P+CW+HT and 2P+CW+HT specimen the PE plateau 

stress becomes quite high at 363 K and the return plateau was found to become sloped (Figure 49 g) and 

h)). The sloped return plateau was also accompanied by a larger residual strain. This phenomenon had 

previously been observed when the temperature at which the critical stress for permanent slip becomes 

lower than the stress to form stress induced martensite (i.e. Md) was exceeded as shown in Figure 8 [30, 

147]. 

At temperatures below Af the 1P+CW+HT and 2P+CW+HT samples behave similarly to the as-processed 

samples, as shown in Figure 49 a), d) and e). At 353 K the 2P+CW+HT specimen exhibits both SME and 

PE (Figure 49 f)) due to incomplete phase transformation to the high temperature B2 austenite phase at 

the test temperature (Figure 46). The residual strain after SME recovery of the cold worked and heat 

treated specimen was less than 1.2 %, slightly higher than that of the as-processed material. 
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Figure 49: Representative results from cyclic tensile testing of cold worked and heat treated laser processed 
material performed at 293, 333, 353, and 363 K. Curves a), b) and c) correspond to the 1P+CW+HT sample 

while curves d), e), f) and g) correspond to the 2P+CW+HT sample. The arrow and circle symbol denote the 
strain recovered due to the SME upon heating the samples above their respective Af temperatures. 
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5.1.4. Mechanical Properties 

To determine the yield stress, ultimate tensile stress, and failure strain, tensile specimens were pulled to 

failure. Representative tensile test results for BM and the as-processed specimen (i.e. 1P and 2P) are 

provided in Figure 50 a). The results for the cold worked and heat treated specimen (i.e. 1P+CW+HT and 

2P+CW+HT) are provided in Figure 50 b). Each of the curves in Figure 50 a) were quite different from 

one another. This was however expected since the phase transformation characteristics of the BM, 1P, 

and 2P samples varied (Figure 46). In fact, the BM sample was in the austenite phase at the test 

temperature of 293 K (20 °C) and the observed plateau resulted from the formation of stress induced 

martensite (SIM) while the 1P and 2P samples were in the martensite phase and the stress plateau 

resulted from the detwinning of the martensite phase. In general as-processed material was found to 

exhibit the largest strains at failure however they also had the lowest yield strengths (< 300 MPa) and 

ultimate tensile stresses (~500 MPa). Following subsequent cold rolling and heat treatment the yield 

stress of the laser processed material was improved significantly, where yielding was not observed to 

begin up to the failure load (Figure 50 b)). The shape of the 1P+CW+HT and 2P+CW+HT curves were very 

similar as both materials were in the martensite phase. However, the 2P+CW+HT sample had lower 

ultimate tensile strength and strain at failure. Both the 1P+CW+HT and 2P+CW+HT samples exhibited a 

more brittle like failure. 
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Figure 50: Tensile testing to failure at 293 K. As-received and as-processed sample conditions (BM, 1P and 
2P) a), cold worked and  heat treated sample conditions (1P+CW+HT and 2P+CW+HT) b) 

5.1.5. Microstructure 

The BM was found to have large (20 – 50 μm) equiaxed B2 austenite grains as shown in Figure 51 a). 

Large equiaxed grains are typical of annealed NiTi material [146]. Ti2Ni inclusions were identified 

throughout the BM microstructure as indicated by an arrow in Figure 51 a) and shown at higher 

magnification in Figure 51 c). Selected area diffraction patterns were used to confirm the structure of 

the inclusions to be Ti2Ni (Figure 51 d)). Energy dispersive x-ray spectroscopy analysis identified the 

average composition to be 65.34±0.67 at.% Ti, 32.35±0.84 at.% Ni and 2.31±1.27 at.% O. Oxygen has 

been found to be soluble in Ti2Ni and not NiTi hence, the small amount found during EDS analysis [12]. 
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The presence of the Ti-rich Ti2NiOx inclusions resulted from the casting process and they are commonly 

found in NiTi material [6]. 

 

Figure 51: Microstructure of BM identified through bright field TEM images and SADPs. a) Large equiaxed B2 

austenite grains with Ti2NiOx inclusions (marked with arrows), b) SADP B2 austenite   ̅    zone axis, c) 

Ti2NiOx inclusion in B2 matrix, d) SADP for Ti2Ni FCC structure       zone axis 

After laser processing the solidification structure was quite different from the BM microstructure as 

shown in OM images Figure 52 a) to d) for the 1P and 2P samples. Large columnar dendritic parent 

grains were observed growing from the edge of the laser spot towards the center; typical for a pulsed 

laser process [74, 89]. Epitaxial growth during solidification can be seen from the edge of the 

overlapping laser spots (Figure 52 a) and b)). Surface relief was observed due to the presence of 

martensite lathes in the 1P sample as indicated by arrows in Figure 52 a) and c). These martensite lathes 

were only observed in certain areas due to an incomplete martensitic phase transformation at room 

temperature (298 K); post-mechanical grinding and polishing of the sample. The 2P sample however 
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etched darker as the whole sample contained a martensite lathe relief pattern resulting from completed 

martensitic transformation. Also, an increase in the amount of the dark etching phase was observed in 

the 2P sample (Figure 52 d)). From TEM analysis the large prior austenite grains identified in Figure 52 

were found to contain many different martensite variants due to self-accommodation of stresses (Figure 

53 a) and b)) [4]. In general, the phases identified via SADP analysis validated the DSC peaks identified in 

Figure 47. The 1P sample contained domains of both the B19’ and B2 phases, again due to incomplete 

transformation at the test temperature (298 K) consistent with the OM findings (Figure 52). The 2P 

sample was in the B19’ martensite phase as shown in Figure 53 b). The B19’ martensite phase was 

observed by twinning in TEM images and SADP of the 2P specimen shown in Figure 53 c). Moreover, 

with heating twinned martensite variants disappeared as they transformed to the B2 austenite phase as 

shown in Figure 10 d) and e) at temperatures of 298 K and 373 K respectively, confirming large parent 

grains in the laser processed material. 

 

Figure 52: Low magnification OM image of a) 1P sample and b) 2P sample. High magnification OM images of 
c) 1P and d) 2P samples. Dashed lines indicate boundaries between overlapping laser spots 
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Figure 53: Microstructure laser processed 1P and 2P samples. a) Bright field TEM image 1P sample and b) 2P 

sample, c) SADP of twinned B19’ martensitic structure       zone axis 

 

Figure 54: a) Low magnification bright field TEM image of 2P sample at 298 K and b) at 373 K (inset SADP of 

B2 austenite structure   ̅    zone axis). Arrows indicates identifying feature between figures a) and b) 
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The large Ti2NiOx inclusions found in the BM (Figure 51 c)) were not found in the laser processed 

material as they were likely dissolved during laser melting. Instead, fine Ti2Ni and Ti2NiOx precipitates 

were found primarily at the boundaries between dendritic grains due to micro-segregation using STEM 

(Figure 55 a)) having average composition of 61.22±2.68 at.% Ti, 32.41±3.13 at.% Ni and 6.37±3.2 at.% 

O. This finding agrees well with the optical micrographs of Figure 52 where etching preferentially 

dissolved the Ti2NiOx phase. Through EDS analysis fine (< 100 nm) Ti-rich precipitates having an average 

composition of 80.49±8.3 at.% Ti, 4.93±5.53 at.% Ni, and 14.51±6.51 at.% O were also observed as 

shown in Figure 55 b). These precipitates were not identified explicitly in this study but were also 

observed in a laser welding study by Shloβmacher et al. [82]. In contrast, Ni-rich precipitates were not 

identified in as-laser processed material. Due to the composition being near stoichiometric NiTi in the 

laser processed material and high cooling rates inherent to the pulsed laser process the Ni4Ti3 

precipitates did not form. Similar results were found by Kompatscher et al. [149] in solutionized and 

quenched near equiatomic NiTi.  

  

Figure 55: Precipitates identified using STEM analysis. a) Image of Ti2Ni precipitate (59.8 at.% Ti and 40.2 
at.% Ni) at grain boundary in 2P sample and b) Ti-rich inclusion (84.5 at.% Ti, 1.7 at.% Ni, and 13.8 at.% O) in 

2P sample. Arrows indicate location of EDS analysis 

Following cold rolling and heat treatment of the laser processed material; fine martensite variants were 

found to reside in large elongated parent grains. R-phase was identified through the DSC results of 

Figure 46 and SADPs taken during TEM analysis of the 1P+CW+HT specimen (Figure 56 a) and b)). Typical 

1/3〈   〉B2 superlattice reflections originating from the R-phase [28, 150] were clearly observed in 

Figure 56 b). R-phase and fine B19’ martensite variants are typically found in cold worked and heat 

treated materials [4, 28]. Dislocations and fine coherent Ni4Ti3 precipitates combined with the large 

transformation strains of the B19’ martensite phase prevent large variants from forming while 
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promoting the formation of R-phase due to an inherently lower transformation strain as discussed in 

section 2.1.1. [151]. The fine structure of the cold worked and heat treated specimen made 

microstructural analysis difficult as shown in Figure 56c) for the 2P+CW+HT specimen. From SADP 

analysis of the fine structured regions, nano-crystallites were identified having specific texture, likely 

inherited from the parent grain [152, 153]. Diffractions spots form B19’ martensite and R-phase were 

identified along with some extra spots which were attributed to fine oxide inclusions. Also, arched spots 

indicated the strained state of the crystal lattice. 

   

Figure 56: Microstructure of 1P+CW+HT and 2P+CW+HT samples. a) Bright field TEM micrograph of 

1P+CW+HT specimen, b) SADP of R-phase (   ̅   zone axis) in 1P+CW+HT specimen, c) bright field TEM 
micrograph of 2P+CW+HT specimen (SADP inset image), and d) STEM image of Ti2NiOx (63 at.% Ti, 31.8 

at.%Ni, and 5.2 at.% O) precipitate at prior dendritic grain boundary 

The Ti2NiOx precipitates were again observed at the prior dendritic grain boundaries as shown in Figure 

56 d). They were however partially broken up and displaced due to the cold working. Even solutionizing 

heat treatments are unable to dissolve Ti2Ni precipitates due to their inherent stability [154], hence it 
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was expected they would remained after cold rolling and 673 K heat treatment. The Ti-rich phase was 

found to remain seemingly unaffected. Ni4Ti3 precipitates were still not observed in the cold rolled and 

heat treated laser processed material even though the 3.6 ks, 673K aging has been shown in several 

other studies to produce fine coherent precipitates (10 – 30 nm) in near equiatomic NiTi alloys [58, 144, 

151]. 

5.2. Discussion 

With the results presented in this study we can now discuss critical relationships between the laser, cold 

rolling, and heat treatment processes and the resulting microstructure and performance. Using in depth 

understanding of this combination of processing techniques and the relationships developed herein it 

was demonstrated how tunable, locally graded functional properties were embedded in monolithic NiTi 

SMA materials. 

5.2.1. Phase transformation temperature versus composition relationship 

Laser induced vaporization occurs due to the high temperatures reached within the laser spot [100-102]. 

Since Ni has a higher vaporization pressure than Ti (Figure 21) it was deduced that the flux of the Ni 

alloying constituent leaving the molten NiTi pool will be greater than that of Ti. As a result the overall Ni 

composition of the re-solidified NiTi material will have reduced as suggested in section 2.6. Through 

accurate measurement of the composition in this study via Micro-PIXE spectroscopy the vaporization 

mechanism behind augmented transformation temperatures has now been definitively proven. 

Surprisingly, with each laser pulse a precisely controlled decrease in Ni composition was possible (i.e. -

0.16 at. % Ni/laser pulse) as identified in Figure 45. If we now plot the change in composition after each 

laser pulse (i.e. 1 – 10 pulses per spot) against the respective Ms transformation temperature we 

observe the relationship between the phase transformation characteristics of pulsed laser processed 

material and Ni:Ti ratio, shown in Figure 57. This relationship for NiTi SMAs has been identified as critical 

for meeting application specific performance demands and therefore the basis behind thermodynamics 

based models, such as those developed by Tang [48] and more recently by Frenzel et al. [12] shown in 

Figure 14. For the Ni-rich laser processed samples (i.e. 1 – 5 pulses per spot), as the Ni composition 

increases, Ms decreases at a rate of -72.36 K/at.% Ni. This result agrees very well with -83 K/at.% Ni 

found by Frenzel et al. [12]. The 10.64 K/at.% Ni discrepancy between the results of Figure 57 and the 

model created by Frenzel et al. [12] can be explained by oxygen and carbon pick-up which was not 

accounted for in this work. Multiple melt procedures are traditionally used to homogenize NiTi material 

composition but with each melt the cumulative amount of oxygen and carbon picked-up increases [12]. 
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It is logical to assume that a similar phenomenon occurs during multiple laser pulses. Increasing oxygen 

and carbon content leads to an overall increase in the Ni-content of the matrix through the formation of 

Ti2NiOx and TiC, resulting in decreased Ms and hence would lead to a shallower slope to the trend 

observed in Figure 57. Once the laser process material became Ti-rich (i.e. > 5 pulses per spot) the Ms 

temperature was found to stabilize at 338 K (65 °C) due to Ti saturation (Figure 57). With decreasing the 

Ni:Ti ratio further, Ti2Ni is precipitated while the matrix composition remains constant resulting in no 

change in the Ms phase transformation temperature [12, 48]. The critical relationship between Ni 

concentration and phase transformation temperatures has therefore been proven using NiTi alloys 

created by laser induced vaporization in this study.  

 

Figure 57: Ms phase transformation temperature versus Ni composition of the single laser spot 1-10 pulse 
samples. Number of laser pulses per spot identified above each respective data point 

Through adjusting laser parameters such as, peak power, pulse time the temperatures within the laser 

spot as well as the interaction mode between the laser energy and the material (i.e. conduction or 

keyhole mode) will change, affecting vaporization flux. This effect has been modeled by He et al. [100, 

101] and Jandaghi et al. [102] for the conduction and keyhole laser modes respectively. Therefore it is 

proposed that by using combinations of laser parameters and pulsing schedules, any desired 

composition in a binary NiTi component can be achieved with great compositional and positional 

precision, further highlighting the great potential of the now proven laser induced vaporization process. 

5.2.2. Relationship between structural and functional properties of laser processed NiTi 

Previous studies characterizing structural and functional properties of laser processed NiTi alloys 

exclusively investigated laser welds [82-89, 148]. In each of these studies during cyclic tensile testing 



81 
 

yielding takes place in the laser processed region resulting in increased residual strain. The effects of 

past material treatments such as cold work and precipitation hardening were lost following the thermal 

cycles of laser processes, reducing the yield stress [82, 84, 87]. As shown in Figure 48 a), 6d) and 6e), 

both the 1P and 2P as-processed materials exhibited SME at temperatures below their respective As 

phase transformation temperatures with less than 0.9 % residual stress. However, when cycled above 

their Af temperatures significant plastic deformation occurred and PE was not possible with residual 

strains greater than 3.5%. From Figure 50 it was observed that the yield strength of the 1P and 2P as-

processed material was between 300 and 350 MPa. The PE plateau stress was therefore higher than the 

critical stress to induce slip (i.e. yield stress) resulting in the permanent deformation of the tensile 

specimen (Figure 48 b), c) and f)). A similar phenomenon was observed by Shloβmacher et al. [148] who 

conducted the only other study investigating the tensile performance of a completely laser processed 

specimen. Without cold work and/or fine coherent Ni-rich, Ni4Ti3 precipitates, which have been shown 

to be very effective at blocking dislocation motion in NiTi alloys [46], the yield stress of laser melted 

material was therefore too low for PE to occur, as illustrated in Figure 9. Since the martensite 

detwinning stresses of the 1P and 2P samples (< 200 MPa) were observe to be below the yield stress of 

the material (Figure 50 a)), the SME property of as-laser processed material could however still be 

utilized. Similar findings were arrived at by Tuissi et al. [87] regarding the ability to use laser welded NiTi 

for low stress SME applications as well as in Chapter 5 in developing the laser processed linear actuator. 

Limitations in functionality of as-laser processed material have therefore now been identified where 

only the SME is possible in as-laser processed material because the martensite detwinning stress 

remains below the yield stress. 

In addition to reducing the yield stress, laser processing has also been shown to reduce the ductility of 

NiTi alloys [82-85]. The columnar dendritic microstructure with Ti2Ni and Ti2NiOx intermetallics 

populating the grain boundaries has been cited as the mechanism behind reduced ductility and partially 

brittle failure of laser processed NiTi alloys [86]. These Ti2Ni and Ti2NiOx phases were observed in the 

laser processed material in this study (Figure 55 a) and Figure 56 d)) therefore explaining reductions in 

ultimate tensile strength and failure strain observed in Figure 50 a). The 2P sample was observed to 

have a relatively larger amount of Ti2Ni and Ti2NiOx intermetallics (Figure 52 b)) likely resulting from 

lower Ni:Ti ratio and higher oxygen pick-up [12]. Therefore, it was not surprising that the strains at 

failure were observed to be lowest in the 2P specimen. However, the maximum strain at failure was 

always above 10% strain for the as-processed material (Figure 50) indicating that full use of the SME was 

possible, since the maximum recoverable strain of polycrystalline NiTi SMAs is approximately 8 % [44]. 
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5.2.3. Effects of post-process cold work and heat treatment 

It has become quite clear that in order to improve the functional performance of laser processed NiTi 

SMAs the yield strength must be increased. Post-processing heat treatment at 673 K (400 °C) for 3.6 ks 

was shown by Yan et al. [88] to improve fatigue properties of laser welded NiTi. Similarly, heat 

treatments at 623 k (350 °C) for 3.6 ks were shown by Chan et al. [89] to improve the structural and PE 

properties. In both of the aforementioned cases, improvements in fatigue and functional performance 

were attributed to precipitation hardening effects resulting from coherent Ni4Ti3 precipitates. Heat 

treatments at higher temperatures (i.e. > 723 K) however were found to have little to no effect due to 

the substantially larger size of the precipitates formed [89]. It has been found that Ni4Ti3 precipitates 

lose their coherency and therefore their effectiveness at blocking dislocation motion when they reach 

sizes greater than 150 – 300 nm [57] depending on degree of cold work, where this critical size has been 

suggested by Treppmann et al. [155] to decrease with increasing cold work. 

In this work, cold rolling was performed by reducing the thickness of the laser processed NiTi material 27 

% before the 673 K (400 °C), 3.6 ks heat treatment. The combination of cold work and ageing heat 

treatments is most effective at increasing the critical stress to induce slip (i.e. yield strength), as 

summarized by Otsuka and Ren [4]. The resulting combination of work-hardening and precipitation 

hardening allows for more perfect SME and PE properties, larger ranges of temperatures at which PE 

can occur [4], and more stable performance in low cycle experiments (Figure 44 ) [35, 133]. As shown in 

Figure 49 b), c), g), and h), following cold work and heat treatment the 1P+CW+HT and 2P+CW+HT laser 

processed materials again exhibit PE. Therefore, the post-processing treatment effectively restored the 

PE properties of the laser processed material. The SME and PE performance of the 1P+CW+HT and 

2P+CW+HT materials was however not perfect. Residual strains upwards of 1.2 % were found to result 

from both the SME and PE at the temperatures tested (Figure 49). From the metallurgical analysis, Ni4Ti3 

precipitates were not identified. It is therefore possible that the post-processing schedule in this study 

was therefore a cold work and 673 K (400 °C), 3.6 ks anneal opposed to an aging heat treatment. 

Miyazaki et al. [50] was able to achieve SME and PE properties in a Ti-rich, 49.8 at. % Ni cast alloy using a 

similar cold work and anneal protocol. The near equiatomic compositions of Ti – 50.46±0.15 at.% Ni and 

Ti – 50.16±0.15 at.% Ni of the 1P and 2P specimen may have contributed to Ni4Ti3 precipitates not 

forming in laser processed material [149]. In creating a functionally graded laser processed material it 

would therefore be beneficial to start off with a material with higher Ni content and fine tune the 

functional and structural properties using the final aging step of the combination processing protocol. 

This may also mitigate the formation of Ti-rich intermetallics that form due to microsegregation. It is 
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also known that a partially recrystallized structure with grain sizes in the order of 10 – 20 nm is ideal for 

PE with limited residual strains [152]. Although a fine partially recovered structure was identified after 

cold work and heat treatment in this study (Figure 56), fine recrystallized grains were not observed 

throughout the whole microstructure. Recrystallization was therefore in the early stages, likely having 

only occurred in the highest energy regions. 

With optimization of the combined laser, cold work and heat treatment protocol it is expected that the 

functional performance of laser-processed NiTi material can be improved even further. It is proposed 

that by investigating different heat treatment temperature and times, precipitation of Ni4Ti3 precipitates 

will be found to occur. Also, introducing recrystallization heat treatments (e.g. at 873 K) at intermediate 

steps [58] in the cold working process will add grain refinement to the list of strengthening mechanisms 

applied to the laser processed material.  

5.2.4. Unique performance offerings 

It has been shown in several studies that through locally modifying the composition and/or 

microstructure of NiTi SMAs unique performance offerings can be realized. For example, Meng et al. 

[69] showed unique two-way SME actuation through partial laser annealing of NiTi strip, Daly et al. [70] 

laser alloyed Cu into NiTi strip locally augmenting phase transformation characteristics and tuning 

hysteresis, and finally the performance of multiple memory materials that exhibit multiple shape 

changes have been realized through the vaporization based laser processing protocol studied herein [71, 

133]. All of the aforementioned studies however lack complete understanding of process and resulting 

structure. Therefore, the performance of the laser processed NiTi SMA was not ideal. For example, the 

PE property could not be achieved. Using the unique combination of laser processing plus post-process 

cold work and heat treatment in this study, two additional unique and desirable performance offerings 

via laser processing can now be achieved: 1) synergistic SME and PE and 2) multiple PE stresses in 

monolithic components. 

Proof of concept showing a monolithic component with both PE and SME properties was demonstrated 

by creating a tensile specimen containing equal lengths of 1P+CW+HT and 2P+CW+HT processed 

material. This specimen was pulled to 8 % strain at a temperature of 333 K (60 °C) as shown in Figure 58 

a). A combined effect of the SME from the 2P+CW+HT portion of the gauge length (Figure 49 e)) and the 

PE response of the 1P+CW+HT portion of the gauge length (Figure 49 b)) therefore occurs in zones (i) 

and (ii), respectively. Through introducing both SME and PE properties into a monolithic NiTi component 

a ‘self-biasing’ mechanism was achieved. The PE portion of the component can be used to store energy 
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created by the shape change of the SME region. With this mechanism the use of an independent biasing 

component (i.e. the spring in Chapter 4) [133] is no longer necessary for cyclic SME actuation. This ‘self-

biasing’ concept allows for unprecedented functional performance of monoclinic SMA components, 

greatly increasing their functionality. 

In Figure 58 b) multiple PE plateaus were achieved by processing only half of the gauge length followed 

by cold rolling and heat treatment. Zone (i) of Figure 58b) therefore corresponds to the PE response of 

the 1P+CW+HT condition (Figure 49b)) while zone (ii) represents the PE response of BM that has been 

cold worked and heat treated (BM+CW+HT). The protocol presented in this work provides an effective 

method to the locally tune PE stresses. This will greatly enable SMA based medical device technologies 

taking advantage of the biomimetic stress profiles by allowing for varying PE stresses throughout the 

component. 
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Figure 58: a) Half PE and half SME (i.e. 1P & 2P+CW+HT at 333 K), b) two PE plateaus (i.e. BM+CW+HT & 
1P+CW+HT at 333K) 

5.3. Chapter summary 

In this chapter progress was made in the understanding of the laser induced vaporization process and 

the importance of post-processing techniques including cold work and heat treatment. The vaporization 

mechanism was finally confirmed using the high measurement accuracy of micro-PIXE spectroscopy. 

Remarkably, through accurate composition measurement great precision of the vaporization 
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mechanism with respect to the number of laser pulses per spot parameter was identified. This highlights 

the potential of this technology in locally tuning functional properties of monolithic NiTi components.  

Combining local augmentation of transformation temperatures via the laser induced vaporization with 

post-processing cold work and heat treatment was found to restore the yield strength of laser processed 

material. As a result of the improved structural properties the PE property of laser processed material 

was observed for the first time.  

Critical relationships developed between the process conditions, microstructure and SME, PE and 

mechanical performance provide a platform for further optimization of the combined laser processing 

and post-process techniques. The results from this study therefore promise substantial improvements in 

performance with further optimization of the post-processing protocol for example by precipitating 

Ni4Ti3 precipitates, creating favorable crystal texture and refining parent austenite grains.  
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6 Effects of Laser Processing on Surface Characteristics of NiTi 

Shape Memory Alloys 

The aim of the present study was to investigate the corrosion and Ni ion release performance of pulsed 

Nd:YAG laser processed NiTi. Specific focus was directed on characterizing changes in surface 

characteristics and modification to the bulk material composition and microstructure. The contributions 

of this study aid in forming a more solid understanding of aspects surrounding the corrosion and 

biocompatibility performance of laser processed NiTi materials that have been inadequately addressed 

in literature to date; discussed in section 2.7.1. Note that the definition of biocompatibility used here 

pertains to a device that is passive in nature, meaning it does not interact with the living tissue or cells. 

6.1. Results 

In this comprehensive study the results presented below were obtained from experiments carefully 

designed to systematically uncover the bulk material properties of the CE, LP and LP-Pol samples, 

followed by their resulting surface conditions, and finally their corrosion and Ni ion release 

performance. First the bulk material was characterized using DSC analysis to identify the effects of laser 

processing on the thermoanalytical properties of the SMA as well as give insight into changes in Ti/Ni 

ratio. Optical microscopy was then used to understand the microstructure and identify secondary 

phases which may contribute to changes in the stability of the oxide layer. Next the surface 

characteristics of the CE, LP, and LP-Pol materials were fully characterized using optical profilometry, 

XPS, AES, and Raman spectroscopy to determine roughness, identify surface species present, and 

characterize the oxide thickness and degree of crystallinity, respectively. Finally, the performance of 

each of the NiTi samples was assessed using cyclic potentiodynamic corrosion testing and ICP-OES for 

identifying Ni ions released, allowing for further discussion on the process, property, and performance 

relationship as it applies to laser processed NiTi SMAs. 

6.1.1. Thermal Analysis 

From the DSC results shown in Figure 59 a) it was observed that following laser processing two sets of 

phase transformation peaks were present. The first set of peaks, at lower temperatures, corresponds to 

the BM and heat affected zone (HAZ) adjacent to the laser processed material. The second set of higher 

temperature peaks corresponds to the Ni depleted laser processed material; discussed in section 2.6. 

Figure 59 b) shows the location of the LP and BM/HAZ regions in the laser processed material. The phase 

transformation temperatures and peak to peak hysteresis are provided in Table 1. Large hysteresis 
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between phase transformation upon heating and cooling is typical of B2 austenite ↔ B19’ martensite 

transformations in a binary NiTi alloy [142].  

   

 

Figure 59: a) Differential scanning calorimetry (DSC) results for laser processed NiTi material and b) cross-
sectional image of processed sample identifying the LP and BM/HAZ regions 

Table 6: Transformation temperatures and hysteresis (i.e. measured peak to peak) from DSC analysis (°C) 

 As Af Ms Mf Hysteresis 

BM/HAZ (B21 ↔ B19’1) -30.7 2.8 -21.6 -55.5 25.4 

LP (B22 ↔ B19’2) 59.6 87.8 64.9 19.5 35.1 

6.1.2. Microstructure 

The microstructure of cross-sectioned BM (i.e. CE) and LP material is provided in Figure 60. The BM 

showed an equiaxed grain structure (Figure 60a) with many large dark etching inclusions. These 

inclusions are common in NiTi alloys and have previously been identified as carbon and oxygen based 

inclusions resulting from the ingot casting process discussed in section 2.1. [79]. Within the solidified 

laser spot epitaxial growth of grains growing from the laser spot edge toward the center was observed 

(Figure 60 b) and c)). The aforementioned large inclusions were not present in the LP region; however, 

they were still detected adjacent to the laser spot in the HAZ (Figure 60 b)). High temperature thermal 

cycles during processing induced partial recrystallization in the HAZ as shown in Figure 60 b), where fine 

grains were identified (Figure 60 a)). At higher optical magnification, a finer secondary dark phase was 

observed within the LP region as shown in Figure 60 d). These phases were more prominent in the 

regions where multiple laser spots overlap. They result from microsegregation of Ti between dendritic 

grains during solidification, forming the Ti-rich Ti2Ni phase as identified in Chapter 5. This phase is known 
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to have limited solubility of oxygen [12]. During pulsed laser processes oxygen pick up leads to the 

formation of Ti2NiOx even in Ni-rich alloy as shown in Chapter 5, since oxygen is not soluble in the NiTi 

matrix [12]. 

 

Figure 60: Microstructure of cross-sectioned samples. a) BM (i.e. CE), b) edge of LP region and HAZ, c) 
overlapped laser spots, and d) high magnification image of LP region.  

6.1.3. Optical microscopy and surface profiling 

Surface micrographs of the CE and LP samples are shown in Figure 61. Topographical maps are also 

provided in Figure 62 for each of the sample surface conditions. The CE sample appeared to be relatively 

rough and with many pits. In contrast, the dendritic solidification structure of the LP material was 

smoother at a microscopic scale; however there are large peaks and valleys between the overlapping 

laser spots. Although the smoothest surface observed was from the LP-Pol sample, slight surface relief 

was still observed in the optical micrograph shown in Figure 61 c); likely due to thermoelastic phase 

transformation following mechanical grinding and polishing. The surface roughness, Ra, was measured 

to be 1.63 µm, 2.43 µm and 0.01 µm for the CE, LP, and LP-Pol samples respectively (Figure 62). 
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Figure 61: Optical micrographs of a) CE, b) LP and c) LP-Pol surfaces 
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Figure 62: 3D topographical surface maps for a) CE (Ra = 1.63 µm), b) LP (Ra = 2.43 µm) and c) LP-Pol (Ra = 

0.01 µm) samples. Special thanks to Andrew Michael and Jeff Wang for assisting with surface topography 
measurement. 

6.1.4. Surface Chemistry and Depth Profile 

A combination of XPS, AES, and Raman spectroscopy was implemented to identify the structure and 

chemistry of the different NiTi surfaces. First, XPS results for each of the samples are presented in Figure 

63 to Figure 65. The identified species and their respective binding energies are summarized in Table 7 

to aid in further discussion. 
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Table 7: Species identified via XPS analysis on the CE, LP and LP-Pol surfaces and their respective binding 
energies (eV) 

 
Peak Energy (eV) Constituent 

Present in Sample 

CE LP LP-Pol 

Ni 

852.68 Ni 2p2/3 yes yes yes 

855.66 Ni2O3 no yes no 

859.51 sat. Ni 2p2/3 yes yes yes 

Ti 

454.85 Ti 2p2/3 yes yes yes 

458.76 TiO2 2p2/3 yes yes yes 

460.48 Ti 2p2/3 yes yes yes 

464.40 TiO2 2p2/3 yes yes yes 

Oxygen 

530.24 TiO2 yes yes yes 

532.40 
C=O, C-O, 
OH-Ti-OH 

yes yes no 

533.76 H2O-Ti-H2O no no yes 

Carbon 

285.17 C-C yes yes yes 

286.63 C-O yes yes yes 

288.32 C=O yes yes yes 

 

Figure 63 shows the XPS depth profile of the CE sample. Trace amounts of elemental Ni were observed 

on the surface with increased intensity at longer etch times. Titanium was primarily in the form of TiO2 

with a shift to metallic Ti as etch depth increased. Oxygen was mostly in the form of metallic oxide (TiO2) 

with some carbon bonding or possible metallic hydroxides on the surface. 

Surface XPS analysis of the LP sample, shown in Figure 64, also contained trace amounts of elemental Ni, 

however Ni2O3 was also identified. Although at a binding energy of 855.66 eV constituents other than 

Ni2O3 are possible, the known presence of a black plume deposited on the surface during laser 

processing [72] suggests that it was in fact Ni2O3. Furthermore, the intensity of elemental Ni increased 

with etch depth; however Ni2O3 was not detected below the surface. Titanium on the surface also 

formed an oxide in the form of TiO2, which shifted to metallic Ti deeper into the sample surface. A 

relatively more gradual change from TiO2 to metallic Ti is indicative of a thicker oxide layer. Oxygen was 

mostly in the form of metallic oxide (TiO2) with some carbon bonding or possible metallic hydroxides on 

the surface, similar to the CE sample (Figure 63). 
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Figure 63: XPS depth profile of the CE sample at 0s, 60s and 80s etch times. Special thanks to Andrew 
Michael for assisting with XPS analysis. 
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Figure 64: XPS depth profile of the LP sample at 0s, 60s and 80s etch times. Special thanks to Andrew 
Michael for assisting with XPS analysis 
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Figure 65: XPS depth profile of the LP-Pol sample at 0s, 60s and 80s etch times. Special thanks to Andrew 
Michael for assisting with XPS analysis 

Analysis of the LP-Pol, shown in Figure 65, identified a greater amount of elemental Ti and Ni on the 

surface compared to the CE and LP samples. Titanium was primarily in the form of TiO2 and shifted to 

metallic Ti as depth increased. A more rapid change from TiO2 to metallic Ti was indicative of a thinner 

oxide layer compared to both the CE and LP samples. Oxygen was mostly in the form of metallic oxide 
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(TiO2), however some hydrated Ti from polishing was observed; in agreement with previous studies 

investigating mechanically polished NiTi surfaces [119]. 

The AES depth profile of the C, O, Ni and Ti signals for all samples are shown in Figure 66. These graphs 

plot relative atomic concentration as a function of SiO2 etch time. The oxide thickness for the CE and LP 

samples were 11.5 nm and 13.5 nm, respectively. In contrast, the oxide thickness for the LP-Pol sample 

was about half that of CE and LP samples, near 6 nm. No significant Ni enrichment of the surface interior 

was identified in any of the samples. Thick oxides must be present to begin to observe this Ni enriched 

layer [156]. The oxygen and carbon levels remain quite high in the extreme surface interior/bulk of the 

CE sample compared to that in the laser processed samples. This could be an artefact of higher 

contaminant levels (i.e. large TiC and Ti2NiOx inclusions) resulting from the material manufacturing 

process [79].  

From the Raman spectrometry results given in Figure 67, the degree of crystallinity of the surface oxide 

was identified. It was observed that the CE and LP-Pol samples had an amorphous surface oxide by the 

absence of measured Raman bands. For the LP sample, an amorphous surface oxide was also identified 

within a laser spot (LP1 region, Figure 67 b)). However, adjacent to where the laser spots overlap, in an 

approximately 20 µm wide band (LP2 region, Figure 67 b)), some degree of crystallinity was observed. 

The low intensity, broad nature of the measured Raman bands in this LP2 region can result from the thin 

nature of the oxide layer and/or low degree of crystallinity respectively [157], making definitive crystal 

structure identification difficult. From past literature it has been shown that TiO2 in either the Rutile and 

Anatase crystal structures and even TiNiO3 have been identified on the surface of NiTi [157, 158]; each 

of which have Raman bands which may contribute to the trend identified in Figure 67. 



97 
 

 

Figure 66: Auger depth profiles for a) CE, b) LP, and c) LP-Pol samples. The vertical dashed line corresponds 
to the approximated oxide thickness. Special thanks to Andrew Michael for assisting with AES analysis. 
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Figure 67: a) Raman spectra for 800 – 100 cm
-1

 wavenumber survey, and b) SEM image of the LP2 region 
where adjacent laser spots overlap (located between the dashed lines). Special thanks to Andrew Michael for 

assisting with Raman analysis. 

6.1.5. Cyclic Potential Polarization and Ni ion release 

Representative cyclic potential polarization curves for each of the samples are shown in Figure 68. 

Breakdown potential of the LP sample was lower than both the CE and LP-Pol sample, as it broke down 

and corroded at a significantly lower potential (i.e. ~550 mV). Each sample had a similar current density 

ranging between 7x10-7 and 7.5x10-7 A/cm2 in the passive region of the curve, indicating similar rates of 

metal dissolution. Spikes in the current density were observed in the CE curve, which likely correspond 

to rapid pitting and re-passivation. The equilibrium corrosion potentials were found to vary by > 100 mV 

for all tests. 
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Figure 68: Representative potentiodynamic cyclic polarization curves for CE, LP and LP-Pol samples. Special 
thanks to Andrew Michael and Jeff Wang for assisting with electrochemical corrosion testing. 

Scanning electron micrographs of the NiTi surface following the potentiodynamic cyclic polarization 

tests are provided in Figure 69. The CE and LP-Pol samples showed uniform pitting across the surface; 

shown in Figure 69 a) and c). Pit defects observed in the LP-Pol sample were much smaller compared to 

the CE sample. In the LP sample, only few areas exhibited extensive localized corrosion, as shown in 

Figure 69 b). It was noted that localized corrosion in the LP samples was preferential where the laser 

spots overlap each other, as illustrated by the dashed lines in Figure 69 b). Therefore corrosion 

originated in the LP2 region adjacent to each pulse (Figure 67 b)). 

Aside from the corrosion performance, the amounts of Ni ions released into the PBS solution after 7 

days for the CE and LP-Pol samples were below the detection limit of 13.2 μg/L (13.2 ppb). However, Ni 

ion release for the LP samples was 12.3 μg/L, after subtracting the Ni concentration measured in the 

control. 
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Figure 69: SEM images of corroded surfaces: a) CE; b) LP; and c) LP-Pol 
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6.2. Discussion 

6.2.1. Effects of Laser Processing on Surface Characteristics 

The corrosion performance and biocompatibility of NiTi SMAs are strongly linked to factors such as 

chemical composition, oxide thickness, surface chemistry, and roughness [69, 77, 80, 81, 122, 159]. It is 

therefore necessary to further discuss the effects of laser processing on these material characteristics. 

Chemical composition plays a particularly important role in the formation of chemical species on a 

materials surface, where amorphous TiO2 is preferred over mixtures of Ni- and Ti-oxides and the 

presence of elemental Ni is undesirable all together [119-121]. Following laser processing the bulk 

material composition drastically changes. Moreover, in the current work laser processing parameters 

were selected to induce preferential vaporization of Ni, leaving a Ni depleted region in the bulk material. 

Although this change in composition was small, evidence of preferential vaporisation can be observed in 

the DSC results shown in Figure 59, where the Ni depleted LP material exhibited higher phase 

transformation temperatures. Specifically, the 86.5°C increase in the Ms transformation temperature 

(Table 6) can be used to estimate the change in local bulk chemical composition using the 

thermodynamic models shown in Figure 14 [12, 48]. A decrease in the Ni composition of 0.48 at.% was 

predicted using Tang’s model (i.e. 180 ° change / at.% Ni) [48] and an even larger decrease of 1.04 at.% 

Ni was predicted using the more recent model presented by Frenzel et al. [12] (i.e. 83 ° change / at.% 

Ni). An increase in bulk material Ti/Ni ratio following laser processing was suggested by Man et al. [80] 

to be one of the mechanisms behind improved corrosion performance of laser surface melted NiTi 

SMAs. A higher bulk Ti/Ni ratio was implied to correlate with an improvement of Ti/Ni ratio at the 

material surface, leading to the formation of a more robust TiO2 oxide. To investigate this mechanism 

further and for better comparison with literature [160], the Ti/Ni ratios measured via AES analysis were 

plotted as a function of depth in Figure 70. Higher Ti/Ni ratios observed in the CE and LP samples reflect 

Ni depletion that occurs during the chemical etching and laser processing procedures respectively [130, 

161]. The LP and CE samples had similar Ti/Ni ratios on the surface, however the LP sample did in fact 

show a slightly higher maximum ratio and the ratio remained higher to a greater depth. This suggests 

that more Ni was removed from the surface during laser processing compared to chemical etching and 

correlates well with greater oxide thickness identified on the LP sample (Figure 66). The LP-Pol sample 

however, had a much lower Ti/Ni ratio and reached bulk concentrations sooner than both the CE and LP 

samples. 
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Figure 70: Ti/Ni ratio depth profiles measured via AES analysis for the CE, LP and LP-Pol samples 

Now with a better understanding of the composition of the bulk material and the subsurface layers, it is 

essential to discuss the oxide species that form on each respective substrate as well as other importance 

surface characteristics, such as surface roughness and degree of crystallinity of oxides. In this study, the 

CE sample was selected as the baseline since chemical etching was already a necessary step to remove 

the thick black oxide prior to NiTi medical device deployment, to clean the surface and build TiO2 while 

leaching out Ni [130, 161]. Furthermore this black oxide has also been shown to cause embrittlement of 

the laser processed region [74]. After etching, the CE samples had a rough pitted appearance with a 

roughness value, Ra of 1.63 µm (Figure 61 and Figure 62). The surface chemistry of the CE sample was 

similar to that found in literature [130] where amorphous TiO2 oxide was found to preferentially form 

with only trace amounts of elemental Ni present (Figure 63 and Figure 67). 

In contrast to the CE samples, the LP samples were subjected to several high power density laser pulses. 

However, aside from the presence of Ni2O3, surface chemistry was similar to the CE sample (Figure 63 

and Figure 64). Since Ni2O3 was no longer detectable after a 20s sputter during XPS analysis it was only 

present on the top most surface layer and was presumed to result from condensation of Ni-rich plume 

during laser processing [72]. The LP sample oxide was formed on top of the re-solidified material and 

subjected to several heating cycles as adjacent laser spots were made. These subsequent thermal cycles 

can contribute to thickening the oxide. The LP material exhibited only a slightly thicker oxide layer (13.5 

nm) than the CE specimen (11.5 nm). The Ar shielding used in the laser process prevented excessive 



103 
 

oxide growth by limiting the oxygen available for reaction. Thermal cycles experienced during processing 

in the LP samples however, may have resulted in the ~20 µm wide LP2 region, having a higher degree of 

crystallization, adjacent to each laser spot as shown in Figure 67.  

The LP-Pol sample showed higher amounts of elemental Ti and Ni on the surface compared to the LP 

and CE samples (Figure 65). The increase in elemental Ti was due to only partial oxidation of Ti in air at 

room temperature [119]. Partial oxidation also contributed to the lowest Ti/Ni ratio, shown in Figure 13, 

while forming the thinnest oxide layer of 6 nm. This higher elemental Ni concentration can be attributed 

to mechanical polishing procedure not selectively removing Ni, while acid etching and laser processing 

do so through leaching [130, 161] and vaporization (Chapter 5) mechanisms respectively. Mechanical 

polishing did however, decrease the surface roughness to Ra = 0.01 µm from a Ra value of 2.43 µm 

(Figure 62) and facilitated the formation of a favourable uniform, amorphous oxide on the surface 

(Figure 67).  

6.2.2. Corrosion and Ni Ion Release Performance 

It has previously been shown that chemical etching produces a surface that is highly resistant to both 

general and pitting corrosion [161, 162]. The CE sample tested in this study showed the best corrosion 

resistance through cyclic polarization testing. When considering only the increase in Ti/Ni ratio and 

oxide thickness, the LP sample could be expected to have similar performance as the CE sample. 

Moreover, according to literature, laser surface melting can improve corrosion performance [80, 81]. 

However, the LP samples exhibited a breakdown potential of about half that of the CE and LP-Pol 

samples (~ 500 mV) as well as exhibiting the highest Ni ion release of 12.3 µg/L.  

There are several factors that contribute to the decreased breakdown potential and increase in Ni ions 

released from the LP sample. The re-melted surface of the laser spot was relatively smooth compared to 

the roughness values of the CE material, which has been suggested in several studies [77, 79-81] to 

contribute to an improve corrosion behaviour of laser processed NiTi; discussed in section 2.7.1. 

However, micro-crevices also formed at the intercept of four laser spots (Figure 62) along with a region 

of higher crystallinity adjacent to each laser spot (Figure 67). This topography lead to the highest overall 

roughness measured of all three samples. Since localized corrosion was observed to occur where the 

laser spots intercept (Figure 69 b)), micro-crevices and partially crystalline oxide in the LP2 region were 

concluded to play a critical role in degrading corrosion performance. Another possible contribution to 

decrease corrosion resistance and increased Ni ions released was the presence of Ni2O3 on the top 

surface of the LP samples. Previous studies have shown that a homogeneous oxide is more stable than a 
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heterogeneous oxide [119]. A mixture of oxides can lead to a segregation of species that leaves the 

oxide layer more susceptible to corrosion. In addition, an amorphous oxide layer is also more stable and 

corrosion resistant [119]. 

As mentioned above, a higher Ti/Ni ratio suggests the formation of a more robust protective oxide layer 

however, in the bulk material this can also lead to the formation of secondary phases between dendrites 

due to microsegregation. In laser surface melting Man et al. [80] and Cui et al. [81] both imply Ni 

constituent loss due to vaporization and they identified the Ti2Ni, Ti-rich phase using X-ray diffraction in 

the laser melted region. Secondary phases, Ti2Ni and Ti2NiOx were also identified at prior parent grain 

boundaries due to microsegregation and oxygen pick-up in Chapter 5. The secondary phases identified 

in the LP cross-sectioned sample (Figure 60) were therefore, also Ti2Ni or Ti2NiOx. The presence of 

inclusions on the surface of NiTi also affects the homogeneity/uniformity and therefore stability of the 

oxide layer [120]. In addition, Ni-rich regions form around Ti-rich phases leading to the presence of 

elemental Ni and increased Ni ion release [120]. 

After mechanical polishing, the LP-Pol sample had comparable corrosion resistance as the CE sample. 

Similar results were also observed from the Ni ion release test where both the CE and LP-Pol samples 

produced no detectable amount of Ni ions after a 7 day immersion in PBS solution. Mechanical polishing 

of the laser processed material removes any undesirable surface topography, crystallized oxides, and 

Ni2O3 species. The thin amorphous oxide with lower Ti/Ni ratio (Figure 66 and Figure 70) was found to 

have improved corrosion and Ni ion release performance. These results suggest that changes to the bulk 

material from laser processing such as, increased Ti/Ni ratio and the formation of Ti2Ni and Ti2NiOx 

phases at dendritic grain boundaries did not significantly affect the corrosion resistance of the bulk 

material. The change in corrosion resistance observed in the LP material comes from one or more 

characteristics present on the top-most surface which can be removed via post-processing procedures 

such as mechanical polishing. 

6.2.3. Laser processed NiTi as a Biomaterial 

Just as in other NiTi processing techniques, the corrosion and biocompatibility of laser processed NiTi 

surfaces can vary depending on many factors as discussed in section 2.7. The current study showed, 

contrary to other laser processing studies examining laser surface melting [80, 81] or laser welding [76-

78, 126], that the corrosion performance and Ni ion release levels were not improve immediately after 

processing; in line with the findings of Chan et al. [75].  
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Even though a decrease in breakdown potential was observed in the current study, the magnitude was 

still on par with stainless steel [118] and the metal dissolution rate remained unchanged in the passive 

region. Moreover, based on the number of days tested and volume of PBS solution used in the Ni ion 

release test, the average Ni ion release rate of as-laser processed material (LP) was negligible compared 

to the daily dietary intake of 300 -500 µg/day [163], the critical concentration for allergic response of 

600 – 2500 µg/day [164], and the in vitro cytotoxicity limit of 30 ppm [165]. So taken in context, 

although the corrosion and ion release performance of the LP sample was lower compared to the other 

sample conditions analysed in this study, the performance in general was still good. For example in less 

demanding medical applications such as minimally invasive surgical tools, which have relatively short 

service lives and limited exposure to patients, the performance of as-laser processed materials could be 

acceptable. Moreover, it was shown that for more demanding biocompatibility applications such as, 

implantable medical devices, laser processed NiTi SMAs can also be used as long as the effects of 

processing on the surface characteristics are well understood and if necessary, an appropriate post-

laser-process surface treatment is utilized. 

6.3. Chapter summary  

In this chapter the surface of laser processed NiTi material was characterized through comprehensive 

spectrographic analysis and roughness measurement. Past theories regarding the corrosion and Ni ion 

release properties of laser processed NiTi, presented in section 2.7.1. were tested. It was identified that 

detrimental surface characteristics such as increased roughness, crystallinity, and presence of volatile 

oxide species, overshadowed any possible performance improvements from a decreased Ni:Ti ratio or 

inclusion dissolution. 

Laser processed samples were shown to have acceptable corrosion and ion release performance having 

breakdown potentials comparable to stainless steel and Ni ion release levels below biologically harmful 

levels. Post-laser process mechanical polishing (i.e. LP-Pol sample) was found to improve corrosion 

performance comparable to that of the CE control sample. Therefore, confidence in applying laser 

processing protocol to medical device applications was restored. With a solid understanding of the 

surface conditions of the laser processed material and if necessary application of an appropriate post-

process surface treatment excellent corrosion and Ni ion release properties can be achieved. 
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7 Conclusions and future outlook 

In the current thesis work pulsed Nd:YAG processing of binary, near equiatomic NiTi SMAs was explored. 

More specifically, several novel laser processing protocols for increasing functionality, the dynamic 

actuation and control, the process–structure–performance relationship, and the corrosion and Ni ion 

release of laser processed NiTi SMAs were investigated. Identification of critical post-processing 

techniques for improving performance and functionality were also addressed. Fundamental 

understanding of novel laser processing and post-laser processing techniques, as well as in the design 

and control of laser processed components was achieved through this work. 

The following sections contain the major conclusions from this work and detail recommendations for 

future research direction. 

7.1. Conclusions 

7.1.1. Dynamic actuation and control of a novel laser-processed NiTi linear actuator 

In this work a state-of-the-art laser processing technology was demonstrated to improve the 

functionality of a NiTi wire linear actuator for the first time. The addition of a second memory allowed 

for two distinct actuations using controlled resistive heating. The performance of this novel linear 

actuator was characterized and a better understanding of the results has been obtained. The main 

findings were as follows: 

1. Laser processing enabled the modification of thermomechanical properties in a monolithic NiTi 

SMA. Compared to the as-received material, the transformation temperatures were increased after 

laser processing allowing for the development of a two memory linear actuator. 

2. Dynamic actuation was achieved using resistive heating and the simplicity of the DC control method 

was demonstrated. Dynamic activation of SMAs via a passive control method is now possible 

substantially broadening possible NiTi SMA applications. 

3. Tensile tests identified significant differences in the stress-strain behaviour during the deformation 

of martensite in the as-received and laser processed materials. Lüders-like deformation did not 

occur in the laser processed material. Instead, strain-hardening took place during the reorientation 

of martensite. Also, the σM was found to be substantially higher for the laser processed material due 

to higher phase transformation temperatures and the inherent temperature dependence of 

martensite stability.  
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4. The interaction between the two different regions of the linear actuator was identified during each 

stage of actuation. The substantially lower σM of the as-received material led to a much larger active 

strain in the as-received region. Following activation of the as-received region, the stress and 

temperature in the laser processed region changed with increasing pre-strain, complicating the 

determination of total active strain. New design considerations for laser processed NiTi SMAs were 

therefore identified. 

5. From cyclic actuation testing εp was found to stabilize after approximately 150 cycles while εr 

remained almost constant over all 200 cycles demonstrating expected NiTi SMA low cycle 

behaviour. 

7.1.2. Tuneable NiTi shape memory alloy functional properties through combined laser 

processing, cold work and heat treatment 

Utilizing a novel combination of laser induced vaporization, cold working and heat treatment, increased 

functionality and unique performance offerings of monolithic NiTi SMA components were 

demonstrated. In this study the composition, microstructure, and performance of processed binary NiTi 

alloys were characterized allowing for the realization of critical relationships between the processing 

protocol and resulting microstructure and material performance. The most significant findings of this 

study include: 

1. Using a pulsed vaporization based laser processing protocol the composition, microstructure and 

therefore functional properties can be locally tailored. A linear relationship between Ni:Ti ratio and 

the number of laser pulses per spot parameter (- 0.16 at. % Ni/laser pulse) was realized. The change 

in composition correlated well with changes in phase transformation temperatures, proving the 

previously proposed relationship between elemental Ni content and Ms temperature for binary NiTi 

SMAs. The precise nature of laser induced vaporization therefore allowed for embedding a tuneable 

local gradient of composition and microstructure in NiTi components. 

2. The SME of NiTi SMAs in the as-laser processed condition was found to be possible due to the 

martensite detwinning stress being lower than the yield stress. Also, maximum strains at failure 

were found to be greater than 10 % allowing for full range of SME in polycrystalline NiTi SMAs. 

3. Post-laser processing cold rolling (i.e. 27 % thickness reduction) followed by a 673 K (400 °C) for 3.6 

ks anneal restored the PE property of laser processed material through increasing yield strength. Ni-

rich Ni4Ti3 precipitates however, were not identified using this combined laser processing, cold 

rolling and heat treatment processing protocol. 
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4. Two unique and highly desirable performance offerings were identified using the novel combination 

of laser processing, cold work and heat treatment. The first unique property demonstrated was 

synergistic response of adjacent SME and PE regions and the second was the addition of multiple PE 

stress plateaus. Having both SME and PE in a monolithic NiTi SMA component allows for a ‘self-

biasing’ mechanism where the PE region stores the energy created during SME allowing for cyclic 

actuation. This ‘self-biasing’ effect enables new actuation applications to be realized, especially in 

small scale micro-actuation. Multiple PE components are also immediately applicable to current 

medical device technologies such as guide wires, catheters, stents and orthodontic arch wires. 

7.1.3. Effects of laser processing on surface characteristics of NiTi shape memory alloys 

The current study systematically investigated the corrosion performance and Ni ion release performance 

of a laser processed NiTi. Surface conditions, including, chemistry, oxide thickness, composition, 

microstructure, and roughness were thoroughly characterized. The most significant findings of this study 

included: 

1. Laser processing removed large TiC, Ti2Ni, and Ti2NiOx inclusions present in the base material. Fine 

Ti2Ni and Ti2NiOx secondary phases were however identified at dendritic grain boundaries in the 

solidification structure. As observed through the excellent resistance to pitting corrosion and non-

detectible amounts of Ni ions released from the LP-Pol samples, these secondary phases were 

however not found to significantly affect the corrosion performance.  

2. Superficial surface conditions such as large peaks and valleys between laser pulses, the presence of 

a crystalline oxide region adjacent to each laser spot, and Ni2O3 oxide resulting from plume 

deposited on the surface led to local breakdown of the LP samples and higher cumulative amount 

of Ni ions released. Following mechanical polishing of the LP material the corrosion performance 

and Ni ion release performance was therefore found to be restored. 

3. A decrease in bulk material Ni composition on the order of 0.48 – 1.04 at. % following laser 

processing had insignificant effects on corrosion performance and Ni ion release compared to 

surface characteristics induced by the pulsed laser process. 

4. The corrosion resistance and amount of Ni ions released from pulsed Nd:YAG laser processed NiTi 

SMAs remained acceptable. However, with appropriate post processing treatments such as 

mechanical polishing the performance can be greatly improved, allowing for their utilization in a 

wider range of medical applications. 
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7.1. Future outlook 

1. Low cycle performance of as-laser processed wire was shown to behave as expected with εr 

remaining constant over 200 cycles and εp became stable after just 150 cycles in Chapter 4. 

However, the fatigue performance of such laser processed material has yet to be determined. If 

such laser processed components are going to be applied their service life must be considered. For 

example, a surgical tool for minimally invasive surgery may be used < 100 times before it is 

discarded however, implantable arterial stents must survive up to 108 low strain loading cycles 

induced by the beating heart [166]. From the current results, the as-laser processed material could 

be used for low cycle life devices however, systematic SME and PE fatigue testing must be 

undertaken before they can be applied to high cycle applications with confidence. 

2. The post-processing techniques applied in Chapter 5 restored PE through increasing yield stress 

however, this protocol was not optimized. More research into the optimization of the combined 

laser, cold work, and heat treatment processes is necessary to achieve the greatest possible 

increase in performance and functionality. Specific areas for improvement may include: i) selecting 

heat treatment parameters that produce Ni4Ti3 precipitates since these precipitates have been 

cited as the most effective way to improve structural and functional properties [57] and ii) 

investigation into the evolution of texture during each processing step since crystal texture plays a 

critical role in deformation behaviour [38, 57, 135, 137]. 

3. More complex ternary NiTi alloys offer performance benefits such as the reduced hysteresis offered 

by NiTiCu which is currently used in many orthodontic applications such as for arch wires or higher 

transformation temperatures offered by NiTiPd or NiTiZr alloys [167-170]. The laser induced 

vaporization protocol is based on the vapor pressure of the different elements in the molten pool 

as detailed in section 2.6. The flux of the different elements leaving the molten pool will therefore 

determine the final properties of the ternary NiTi alloy. Research into this area could yield some 

very interesting performance offerings that have not yet been realized. 

4. Numerical modeling of the vaporization process in NiTi alloys based on the work of He et al. [100, 

101] and Jandaghi et al. [102] would be a huge asset when seeking to apply laser induced 

vaporization to real life SMA applications. Using the composition measurement such as the results 

obtained in Chapter 6, a model could be created to predict the effects of different laser parameters 

on the change in Ni:Ti ratio, theoretically enabling the selection of combinations of subsequent 

laser pulses to achieve any desired phase transformation temperature. 
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5. Understanding of the effects of laser processing on corrosion performance has been greatly 

improved with the discovery that superficial surface defects dictate the corrosion and Ni ion release 

behaviour in Chapter 6. With this knowledge other post-processing treatments that remove these 

superficial defects such as chemically etching or combinations of chemical etch and water boiling or 

autoclaving also have great potential to improve performance and should be considered. Moreover, 

since NiTiCu ternary alloys are heavily used in the orthodontic industry the effects of laser 

processing on the corrosion performance and ion release of these ternary alloys should also be 

addressed.  
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