
RootChord

by

Lukasz Cwik

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Lukasz Cwik 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this thesis, we present a distributed data structure, which we call “RootChord”. To
our knowledge, this is the first distributed hash table which is able to adapt to changes
in the size of the network and answer lookup queries within a guaranteed two hops while
maintaining a routing table of size Θ(N

1
2). We provide pseudocode and analysis for all as-

pects of the protocol including routing, joining, maintaining, and departing the network. In
addition we discuss the practical implementation issues of parallelization, data replication,
remote procedure calls, dead node discovery, and network convergence.

iii

Acknowledgements

I would like to thank my supervisor Ian Munro and colleague Bryan Logan for all the
discussions about distributed hash tables we had over the past few months.

iv

Contents

List of Figures vii

List of Algorithms viii

1 Introduction 1

1.1 Previous Work . 2

1.1.1 Chord . 5

1.1.2 Variable Hop Count Lookups . 6

1.1.3 One Hop Lookups . 7

1.1.4 Two Hop Lookups . 8

2 A New Protocol: RootChord 11

2.1 Overview . 11

2.1.1 Notation and Conventions . 12

2.1.2 Function Definitions . 13

2.2 Routing . 14

2.2.1 Finger Table . 14

2.2.2 Network Size Estimate . 15

2.2.3 Network Size Estimate Error Bounds 17

2.2.4 Finger Table Size Bounds . 23

2.2.5 Simple Lookup . 28

2.2.6 Constant Time Lookup . 30

v

2.2.7 Lookups In An Unhealthy Network 33

2.3 Joining . 33

2.4 Network Maintenance . 38

2.4.1 Discovery Of Dead Nodes . 39

2.4.2 A Growing Network . 40

2.4.3 A Shrinking Network . 41

2.5 Network Messaging . 42

2.6 Network Health . 43

3 RootChord Extensions 48

3.1 Data Replication . 48

3.2 Parallelization Of Constant Time Lookup 49

3.3 Extended Dead Node Discovery . 51

3.4 Remote Procedure Calls . 53

3.5 Fast Network Messaging . 56

4 Conclusion 59

References 66

vi

List of Figures

1.1 Existing DHTs Summary . 4

1.2 Event Propagation in D1HT . 7

1.3 Kelips Lookup Protocol . 9

2.1 Graphic representation of a finger table . 14

2.2 Simple lookup example . 29

2.3 Fast lookup example . 31

2.4 Join example . 36

2.5 Network health simulations . 47

3.1 Parallel lookup example . 50

3.2 A remote procedure call . 53

3.3 A recursive remote procedure call . 54

3.4 A semi-recursive remote procedure call . 54

3.5 A recursive remote procedure call . 55

vii

List of Algorithms

1 Computing α . 17
2 Simple lookup . 30
3 Constant time lookup . 32
4 Joining the network . 37
5 Discovery of dead nodes . 39
6 Maintaining a growing network . 40
7 Maintaining a shrinking network . 41
8 Simple message passing . 43
9 Parallel constant time lookup . 51
10 Extended dead node discovery . 52
11 Fast message passing . 58

viii

Chapter 1

Introduction

A distributed hash table (DHT) is a peer-to-peer (P2P) data structure that implements

{key, value} based storage and retrieval operations. This data structure has been heavily

studied since the introduction of what was considered the first DHT by Plaxton et al. [55]

over a decade ago. Initial DHT data structures such as Fasttrack derivatives (Gnutella [3]

and Kazaa [5]) had a best effort query mechanism which could not guarantee a successful

lookup even if the key was in the network. The release of DHTs such as Chord [62] with

guaranteed lookups ignited much more research in this field. Since Chord, many desirable

properties of DHTs have been discovered and discussed. Minimally, we require that a DHT

must be able to insert a {key, value} pair at a peer in such a way that a future lookup

query for the key will succeed. Other desirable properties include:

1. Fault tolerance: The structure should adjust to the failure of some nodes and stale

data should not hamper a system from functioning.

2. Robustness: Queries should always be able to be routed even under heavy churn

1

within the network.

3. Fast queries: The structure should not have to contact many nodes to lookup a

{key, value} pair. Also, a minimal number of messages should be exchanged in

order to complete the requested operation. Internal computation time at hosts is not

counted as message delays are the typical efficiency bottleneck.

4. Different deployment environments: A DHT should adapt dynamically to the size of

the network and have parameters which can be used to fine tune its operation for

specific scenarios.

5. Parallelizable: All aspects of the DHT should be parallelizable to be able to avoid

high latency / low bandwidth nodes.

6. Homogeneous nodes: Each node should behave as every other node and should have

an equal distribution of work. Hence the congestion per node should be equal.

From this list of properties, we have created a new DHT which we call “RootChord”.

This new DHT is a non-trivial adaptation of Chord by Stoica et al. [62]. We begin by

delving into previous work with an explanation of Chord and other relevant DHTs. We

then move onto the protocol in Chapter 2 and discuss extensions in Chapter 3. Finally, we

conclude in Chapter 4.

1.1 Previous Work

The introduction of DHTs such as CAN [57], Chord [62], Pastry [60], and Tapestry [64] in

2001 started a frenzy of research within the field of DHTs. The research progressed within

2

four directions, the first being the development of new features on top of existing DHTs.

One example of this is to allow for ordered data within the DHT as is done in Rainbow

Skip Graphs [23]. The structure supports queries that are based on an ordering, extending

DHTs from being only dictionaries capable of answering membership queries to being able

to perform nearest-neighbour searches and range queries.

At the same time, research progressed into looking at ways to improve the practical

performance of DHTs. Many studies profiled existing DHTs and concluded that issues

arise due to churn in the network and heterogeneity of the nodes. Rhea et al. [59] studied

the effects of slow nodes within OpenDHT (an implementation of Bamboo [59]) within

PlanetLab [8] and concluded that usage of delay aware routing was needed. This meant that

nodes should store round trip time information for peers and adapt the routing technique to

select peers which would respond quickly. Similarly, Falkner et al. [20] profiled one million

users using Azureus’s [1] DHT (a modified version of Kademlia [47]) and noticed that

half the nodes were inactive after 1 hour, while only 5% percent remained after 48 hours.

The unpredictability of this environment leads to heavy tailed session times, inconsistent

routing tables and high overhead even though the operation was robust, leveraging data

replication and routing redundancy.

While research progressed to improve the feature sets and real world practical perfor-

mance of DHTs, theoretical bounds were improved for decreasing the size of the routing

table, and also decreasing the cost of a lookup, but only one at the expense of the other.

The lookup cost is measured by the amount of hops required to reach the destination. A

hop is considered to be the traversal of an edge joining two nodes within a network. Gen-

erally, DHTs are categorized based on their lookup costs. There are those with logarithmic

3

based hop counts such as GosSkip [24], SkipNet [29], and Viceroy [44]. Then there are

those with variable hop counts with expected bounds such as Accordion [41], Symphony

[45], and Mercury [15]. Finally there are those with large routing tables but guaranteed

hop counts which are O(1) such as Kelips [27], OneHop [26], and D1HT [51] (also known

as ERDA).

Koorde
Viceroy Chord

Pastry

Tapestry
Kademlia

Kelips
OneHop
D1HTMercury

Symphony
Accordion

smaller routing table larger routing table
lower communication overhead better lookup performance

Family Trees

Skip Webs NoN Skip Graphs

Routing Table Size

Lookup Hopcount

O(1)

O(log N) O′(log N
log log N)

O(log2 N)

O′(log N
log log N)

O(log N)

O(log N)

O(log N)

2 1

O(N)O(N
1
2)

O′(log2 N
m) O′(log N log log N

log k)

O′ represents an expected bound

k ≥ log N

Notes:

EpiChord

O(k)O(m)

D2B

TOPLUS

OneHop1

1 OneHop also provides a two hop DHT

GosSkip

O(j log N)

O′(log N
log j)

j � N

Skip Graphs2

SkipNet2Strong Rainbow Skip Graphs
Rainbow Skip Graphs2

2 Lookup hopcount with high probability

Bamboo

CAN3

3 CAN is in the O(log N) group even though it is

O(dN
1
d) with table size O(d). Since its minimum is

when d = log N and there are already other DHTs
with routing tables of constant size.

m ≤ log N

Figure 1.1: Existing DHTs Summary

Figure 1.1 shows a layout of many DHTs and their grouping. Black DHTs represent

research in logarithmic based hop routing, blue DHTs represent work in variable hop

count routing, while red DHTs represent work towards constant hop routing. Since we

are creating a DHT which falls into the 2 hop count lookups category, it is important to

consider the DHTs which have similar capabilities to what we have created. Thus, below

4

we start with an explanation of Chord which we base our DHT on, and then proceed to

discuss theoretically similar DHTs such as Kelips and OneHop.

1.1.1 Chord

Chord [62] is a well known DHT with a ring shaped structure and b-bit numerical identifiers.

Chord performs arithmetic operations modulo 2b and the identifier ring is represented as

the integers from 0 to 2b − 1. Keys are chosen from this identifier ring. The successor of

a key k is the first node with identifier greater than or equal to k while the predecessor

is the first node with an identifier strictly less than k. Each node is responsible for all the

keys which they are the successor of. In other words, a node is responsible for all the keys

between its predecessor and itself.

The routing information or finger table maintained by each node contains information

about the nodes that are successively further apart by a power of 2 around the identifier

ring. Hence, a node A knows of all the nodes that are successors of A+2i−1 where 1 ≤ i ≤ b.

In addition, each node knows of its predecessor. Thus the finger table contains b+1 entries.

In practice many of these entries are duplicates which leads to the finger table containing

O(logN) unique entries. These duplicates exist because the expected distance between

two nodes is O(N
logN

). Thus, for values of i near 1, it is highly probable that the successors

of A+ 2i−1 are not unique.

Maintenance of the finger table is handled by a background process which regularly

looks up the successor of A+2i−1 for 1 ≤ i ≤ b. The time between periodic maintenance is

chosen by the application. If the periodic maintenance occurs often, then Chord’s routing

table is more efficient at the cost of more traffic.

5

Routing is done in logarithmic time. This is accomplished by routing to the nearest

finger less than or equal to the destination value. Since the distance between nodes in the

finger table are successors of powers of 2, each hop reduces the distance to the target node

approximately by half.

Replication is application specific but practice has been to store replicas in the r nodes

succeeding the key’s identifier. Larger values of r increase the probability that information

survives node failures but also increases the probability for stale data since many peers

must be updated. The value of r is application specific.

When a Chord node joins, it chooses the SHA-1 hash of its IP address as its identifier.

The node then proceeds to lookup its own identifier treating the result as its successor

and the first finger table entry. The node then searches for its predecessor and additional

fingers. When a node departs, the leaving node informs its predecessor and successor and

transfers the {key, value} pairs to the successor.

1.1.2 Variable Hop Count Lookups

Kleinberg studied the small world phenomenon [37], the principle that we are all linked by

short chains of acquaintances, also known as the “six degrees of separation” phenomenon.

He discovered that one is able to construct a searchable network by using long-range links

whose probabilities decay with distance. This has proved useful in the design of peer-to-

peer file-sharing systems such as Accordion, Symphony, Mercury, and EpiChord which all

rely on this phenomenon.

For example, Accordion uses the small worlds distribution to choose its neighbours:

the probability of a node selecting a neighbour with distance d in the identifier space from

6

itself is proportional to 1
d
. This distribution causes a node to prefer neighbours that are

closer to itself in the identifier space, ensuring that as a lookup gets closer to the target

key there is likely to be a helpful routing table entry.

1.1.3 One Hop Lookups

One hop DHTs rely on total world knowledge to be able to answer lookup queries. Thus

this realm is not limited to only DHTs but routing protocols such as Open Shortest Path

First (OSPF) [7] and Interior Gateway Routing Protocol (IGRP) [4], or epidemic [13, 18]

and gossip [36, 10] protocols. For example D1HT uses an Event Detection and Report

Algorithm (ERDA for short) to disseminate messages in O(log n) time by dividing the

work up among peers. Figure 1.2 shows an example of ERDA in action when peer P needs

to deliver a message to all peers. P would send it to all peers with a distance of 2i away

from itself. These peers at a distance of 2i would then send messages again to all peers up

to 2i−1.

P P1 P2 P3 P4 P5 P6 P7 P8 P9

i = 0

i = 2

i = 3

i = 1 i = 1
i = 0 i = 0 i = 0 i = 0

Figure 1.2: Event Propagation in D1HT

7

1.1.4 Two Hop Lookups

The small world distribution found in the variable hop DHTs such as EpiChord result in

lookups with expected bounds, and hence cannot guarantee that a lookup will succeed

with only 2 hops. While the one hop lookups are based on total world knowledge of every

other node and hence carry the routing table cost of O(N). Thus, we will now look at the

only two DHTs to our knowledge with a lookup cost of 2 hops. These are Kelips [27] and

a variant of OneHop [26]. We will see that both of these schemes suffer from being unable

to scale with changes in the network size.

Kelips

Kelips is a group based DHT that disseminates information about changes in a group by

using a lightweight epidemic multicast protocol [36] for replicating system membership and

file tuple data. Kelips consists of k groups numbered 0 through (k − 1) and each node

lies in a group determined by using a consistent hashing [34, 39] function. This function

maps the node’s identifier (IP address and port number) to an integer in [0, k − 1]. Each

node stores a partial set of other nodes lying in the same group and a constant number

of nodes for every other group. For a {key, value} pair to be inserted, the key is mapped

into a group and an insert request is sent to the closest known contact for that group. The

contacted node chooses a node at random from within its group as the homenode for the

value. The key and homenode are inserted into the gossip stream and disseminated to the

entire group.

Thus for a node to look up a key, it uses the consistent hashing function to map the key

into one of the k groups. The node then contacts the topologically closest known contact

8

for that group which replies with the homenode for said key. Figure 1.3 shows an example

of node 12 in group 0 looking up a key which hashes to group 1. Node 12 contacts node 13

asking for the {key, value} pair. Node 13 responds with the address of the homenode 17.

Group 0 Group 1 Group 2 Group 3

4

12

16

20

9 6 3

13

17

21 13

AB35CE6F

57FE31AB

3580FAB3

9

17

21

HomenodeKey Hash

.

.

.

.

.

.

.

.

.

1

2

3

Figure 1.3: Kelips Lookup Protocol

When k = O(N
1
2), Kelips is able to maintain a routing table of size O(N

1
2) per node.

But Kelips was designed with the value k to be chosen during network creation. Hence the

routing table is really O(max(N
k
, k)) and a poor value for k during network creation will

greatly affect the size of the routing table for each node within the network. Thus Kelips

is unable to handle deployment environments where the network size changes over time.

OneHop Variant

OneHop was originally designed to facilitate a one hop lookup scheme but was adapted to

provide a two hop lookup scheme for larger networks. Here we provide a description of the

two hop scheme.

9

Every node in the overlay is assigned a random 128-bit node identifier. Identifiers are

ordered in an identifier ring modulo 2128. We assume that identifiers are generated such

that the resulting set is uniformly distributed in the identifier space, for example, by setting

a node’s identifier to be the cryptographic hash of its network address. Every node has

a predecessor and a successor in the identifier ring, and it periodically sends keep-alive

messages to these nodes.

Similarly, each item has a key, which is also an identifier in the ring. The mapping

from keys to nodes is based on the one used in Chord [62]. Hence, responsibility for an

item rests with its successor.

The identifier ring is divided into k equal size slices, and one node is tasked with being

the slice leader. The slice leader is responsible for disseminating changes within its own

group. Each node within a group knows of every other node within the same group and

one node for every other group.

When k = O(N
1
2), OneHop is able to maintain a routing table of size O(N

1
2) per node.

And similarly to Kelips, a OneHop node’s routing table is really O(max(N
k
, k)). In addition

to this fault, OneHop also suffers from having the slice leader becoming a bottleneck since

all the nodes within the group rely upon it.

10

Chapter 2

A New Protocol: RootChord

This section describes a new protocol which is similar to Chord [62] in that it uses the

same identifier ring modulo 2b and data replication scheme. The protocols, however, differ

in most other aspects.

In this section we discuss how to find the location of keys, join the network, maintain

the network, leave the network gracefully, and detect node failures. We assume that the

underlying network is both symmetric (if A can communicate directly with B, then B can

communicate directly with A) and transitive (if A can communicate with B and B can

communicate with C, then A can communicate with C).

2.1 Overview

RootChord uses a b-bit identifier space where 2b is much larger than the maximal size of the

network. Identifiers are ordered in an identifier ring modulo 2b. Nodes do not generate their

own identifiers at random but choose an identifier from a set of possible identifiers during

11

the bootstrap process. {key, value} pairs are stored at the first node with an identifier

greater than or equal to the key.

2.1.1 Notation and Conventions

The identifier ring is numbered from 0 to 2b− 1 and all arithmetic is performed modulo 2b

within this ring. Commonly, we refer to A and B as nodes, k as a key, and use the terms

finger table and routing table interchangeably. If we wish to specifically give a node A

or a key k a specific identifier, then we will subscript them. Hence A40 is the node A with

identifier 40 and k25 is the key k with identifier 25.

IfB ∈ (A,A+2b−1], then we say thatB is to the right of A, otherwise ifB ∈ (A−2b−1, A)

then B is to the left of A. We also state that A < B if A is to the left of B and similarly

A > B if A is to the right of B. The Left/Right neighbour of a node A, is the first

node which is to the left/right of A. The successor of a key k is Ak and, if no such node

exists, then it is the first node to the right of k. Similarly, the predecessor is the first node

to the left of k. The distance between two identifiers A and B is the length of the shortest

path from A to B around the identifier ring. The distance is defined as Min(A − B

mod 2b, B − A mod 2b) and is represented as A − B. A gap is considered to be the

distance between two adjacent nodes A and B. The size of a gap is defined as A−B and

without loss of generality, if A ≤ B, then its midpoint is A+
⌊
B−A

2

⌋
.

Finally, N is the size of the network, and NA is A’s estimate of the size. α is the distance

from which a node is responsible for to be able answer successor queries. Specifically, αA

is node A’s estimate for α, and hence A is able to answer any successor query in the range

[A− αA, A+ αA].

12

2.1.2 Function Definitions

A.FunctionCall(. . .) is a remote procedure call to nodeA for procedure FunctionCall(. . .).

If the node is unspecified as in FunctionCall(. . .), it is assumed to represent a procedure

call on the local node. Observe that we are overloading function definitions below.

1. Random(R) returns an integer distributed uniformly at random within the discrete

range R.

2. Random(S) returns an element distributed uniformly at random from the set S.

3. Finger(k) finds the node in the finger table with least distance to k.

4. Finger(R) finds all nodes in the discrete range R in the finger table.

5. Successor(k) finds the node in the finger table which is the successor of k.

6. Successor(R) finds all nodes in the finger table which are successors of any value

in the discrete range R.

7. Predecessor(k) finds the node in the finger table which is the predecessor of k.

8. Midpoint(G) finds the midpoint for a gap G.

9. MinGap(R) returns the smallest gap between all adjacent nodes in the discrete rangeR.

10. MaxGap(R) returns the largest gap between all adjacent nodes in the discrete rangeR.

13

2.2 Routing

Routing in a network consists of an understanding of the constraints on the topology of

the network and the knowledge of the links which nodes know. In this section we start by

describing the contents of the finger table and then move on to show how a node estimates

the size of the network. We conclude with a proof of the bound on the number of nodes

within the finger table and discuss how a node would lookup a key.

2.2.1 Finger Table

α

A
α

α
c

Figure 2.1: Graphic representation

of a finger table

The finger table for a node within this network is

divided into two areas: a set of local peers, and a

set of distant peers.

Local peers are defined as the peer set required

to directly answer any successor queries within a dis-

tance of α. Hence, for a node A, these are all the

peers within the range [A−αA, A+αA] plus the suc-

cessor of A+ αA. Thus if a query is ever made for a

key k ∈ [A−αA, A+αA], then A should be able find

the successor of k in its own cache of peers without

contacting another node.

Distant peers are defined as the set of peers that are required to be contacted to

answer any other successor query. There is a bound on the distance between adjacent

distant peers. It is defined as 2α
c

for some constant c ≥ 1, usually we will take c =
√

2. The

14

constant c is used to guarantee a lookup cost of 2 hops and is discussed further in Section

2.6.

Figure 2.1 shows an example describing the ranges defining the local and distant peer

sets. The range described for A’s local peers is covered by the blue dotted arrows, while

the red dashed lines represent A’s distant peers. One immediately sees that when these

two ranges are combined, the entire address space is covered.

2.2.2 Network Size Estimate

Estimating the network size is key to control α. α is used to bound the space for which

a node is responsible for to answer successor queries within. Also, by definition, α is used

to differentiate between local and distant peers. The parameter α satisfies the following

equation

α =
2b

N
1
2

. (2.1)

To compute α, one must know the size of the network N . But keeping the number N

accurately among all nodes in the network is too costly. Thus, a node A uses an approxi-

mation algorithm to compute NA and αA, A’s estimates of the network size N and α. This

approximation algorithm assumes that the number of nodes in the region [A−αA, A+αA]

is 2N
1
2 . In other words we assume that

2N
1
2
A = |Finger([A− αA, A+ αA])|

15

and thus we may obtain the approximation

αA =
2b+1

|Finger([A− αA, A+ αA])| .

In general the approximation algorithm goes as follows: a node A begins with αA = 0. A

continuously increases αA while

αA · |Finger([A− αA, A+ αA]| < 2b+1

is satisfied. Below we provide pseudocode to the approximation algorithm and in Section

2.2.3 we prove bounds on the error in the network size and α.

Pseudocode

In the pseudocode of Algorithm 1, lines [5-6] initialize the left and right nodes to A. Line

7 checks that the bound is satisfied. Lines [8-15] expand our local peer range depending on

whether left or right is closer. In the case of a tie, we choose right. Lines [8-15] may have

overshot our αA estimate by adding one too many nodes into our local peer range. Thus,

if a smaller αA still satisfies the constraint on line 16 we compute the new αA on line 17.

16

Algorithm 1 Computing α

1: Preconditions:
2: A is the current network node.
3:
4: ComputeAlpha()
5: left⇐ A
6: right⇐ A
7: while αA · |Finger([A− αA, A+ αA]| < 2b+1 do
8: if right− A ≤ A− left then
9: right⇐ right.Right

10: αA ⇐ right− A
11: else
12: left⇐ left.Left
13: αA ⇐ A− left
14: end if
15: end while
16: if (αA − 1) · (|Finger([A− (αA − 1), A+ (αA − 1)]|) > 2b+1 then

17: αA ⇐ 2b+1

|Finger([A−(αA−1),A+(αA−1)]|
18: end if

2.2.3 Network Size Estimate Error Bounds

Before we prove a bound on the error in the estimate for the network size and α, we include

the definition of healthy which is discussed in greater detail in Section 2.6.

Definition 1. The network is considered healthy if, for any two nodes A and B that

correctly computed their respective estimates αA and αB, αA and αB do not differ by a

factor greater than c.

Theorem 1. In a healthy network with N nodes, for any node A,

N
1
2
A

c2

2
N

1
2
A − c2 + 2

N ≤ NA ≤ c2N
1
2
A

1
2
N

1
2
A + 2c2 − 1

N .

Proof. To prove the minimal and maximal estimates for the network size, we will construct

17

the two possible worst cases. A node A calculates an αA estimate by satisfying the equation

αA =
2b

N
1
2
A

.

Since the network is healthy, for any two nodes A and B, αA and αB can not differ by a

factor greater than c. Hence

αA ≤ cαB and αB ≤ cαA.

We will construct the first worst case to be when a node A underestimates the size of

the network. This occurs when the range [A − αA, A + αA] contains the minimal number

of nodes, while the remaining range (A + αA, A− αA) has the maximal number of nodes.

Let B be a node in the range (A + αA, A − αA) with the greatest α estimate. Then we

know that the following relationships hold by definition

αA = cαB αA =
2b

N
1
2
A

αB =
2b

N
1
2
B

Thus the number of nodes for the segments [A−αA, A+αA] and [B−αB, B+αB] respectively

are

2
2b

αA
= 2N

1
2
A 2

2b

αB
= 2N

1
2
B

18

Rearranging all equations in terms of NA and b we obtain

αA =
2b

N
1
2
A

αB =
2b

cN
1
2
A

N
1
2
B = cN

1
2
A (2.2)

Since the total number of nodes within the network can be computed as

(# of αA gaps) · (# of nodes in αA gap) + (# of αB gaps) · (# of nodes in αB gap)

which is equivalent to

2 ·N
1
2
A +

2b − 2αA
2αB

·N
1
2
B .

By using the substitutions in (2.2) we obtain

2N
1
2
A +

2b − 2 · 2b

N
1
2

A

2 · 2b

cN
1
2

A

· cN
1
2
A

2N
1
2
A +

2bN
1
2
A − 2b+1

N
1
2
A

· cN
1
2
A

2b+1
· cN

1
2
A

2N
1
2
A +

(
N

1
2
A

2
− 1

)
c2N

1
2
A

c2

2
NA − c2N

1
2
A + 2N

1
2
A

N
1
2
A

(
c2

2
N

1
2
A − c2 + 2

)

Now A’s estimate of the size of the network is NA. Therefore, to calculate the error, we

19

compute estimate
actual

NA

N
1
2
A

(
c2

2
N

1
2
A − c2 + 2

) (2.3)

N
1
2
A

c2

2
N

1
2
A − c2 + 2

. (2.4)

Finally, we will construct the second worst case to be when a node A overestimates the

size of the network. This occurs when the range [A − αA, A + αA] contains the maximal

number of nodes, while the remaining range (A+ αA, A− αA) has the minimal number of

nodes. Let B be a node in the range (A+αA, A−αA) with the smallest α estimate. Then

we know that the following relationships hold by definition

αA =
αB
c

αA =
2b

N
1
2
A

αB =
2b

N
1
2
B

Hence the number of nodes for the segments [A − αA, A + αA] and [B − αB, B + αB]

respectively are

2
2b

αA
= 2N

1
2
A 2

2b

αB
= 2N

1
2
B

Rearranging all equations in terms of NA and b we obtain very similar equations as before

αA =
2b

N
1
2
A

αB =
2bc

N
1
2
A

N
1
2
B =

N
1
2
A

c
(2.5)

20

Since the total number of nodes within the network can be computed as

(# of αA gaps) · (# of nodes in αA gap) + (# of αB gaps) · (# of nodes in αB gap)

which is equivalent to

2 ·N
1
2
A +

2b − 2αA
2αB

·N
1
2
B .

By using the substitutions in (2.5) we obtain

2N
1
2
A +

2b − 2 · 2b

N
1
2

A

2 · 2bc

N
1
2

A

· N
1
2
A

c

2N
1
2
A +

2bN
1
2
A − 2b+1

N
1
2
A

· N
1
2
A

c2b+1
· N

1
2
A

c

2N
1
2
A + (

N
1
2
A

2
− 1)

N
1
2
A

c2

1
2
NA + 2c2N

1
2
A −N

1
2
A

c2

N
1
2
A (1

2
N

1
2
A + 2c2 − 1)

c2

Now A’s estimate of the size of the network is NA. Therefore, to calculate the error, we

21

again compute estimate
actual

to obtain

NA

N
1
2

A

c2

(
1
2
N

1
2
A + 2c2 − 1

) (2.6)

c2N
1
2
A

1
2
N

1
2
A + 2c2 − 1

(2.7)

Thus we have bounded from above and below the possible estimates for NA.

From the proof of Theorem 1 we can see that the dominant term in the bound is N
1
2
A .

Thus, for large values of NA, 1
c2
N ≤ NA ≤ c2N is a valid approximation. Intuitively, this

bound makes sense because there are approximately α = N
1
2 segments. Hence, all but

one of these segments have an extra c or 1
c

times as many nodes. Thus, in the two cases,

we either under or over approximate by a factor of c2. From this intuition, we can see it

follows that

Corollary 1. For a healthy network with N nodes, for any node A, then

O
(α
c

)
≤ αA ≤ O(cα).

Proof. From Theorem 1 we know that

N
1
2
A

c2

2
N

1
2
A − c2 + 2

N ≤ NA ≤ c2N
1
2
A

1
2
N

1
2
A + 2c2 − 1

N.

22

Hence,

N
1
2
A

c2

2
N

1
2
A − c2 + 2

N = O
(
N

c2

)
and

c2N
1
2
A

1
2
N

1
2
A + 2c2 − 1

N = O(c2N).

Since

N
1
2 =

2b

α
and N

1
2
A =

2b

αA

then

O
(α
c

)
≤ αA ≤ O(cα).

2.2.4 Finger Table Size Bounds

To show that we satisfy the constraint of Θ(N
1
2) nodes in the finger table, we start by

proving bounds on the number of local peers. Then move on to prove bounds on the

number of distant peers. By combining the two, we show that we satisfy the constraint.

Theorem 2. In a healthy network with N nodes, the total number of local peers is

bounded below by:

2
√

2N

c
− 4

c2

and bounded above by:

2c
√

2N + 4c2

thus,

Θ(N
1
2).

23

Proof. The number of local peers falls directly from Theorem 1. We know that a node A

will have 2b

2αA
= 2N

1
2
A peers in the region [A − αA, A + αA] around it. In the worst case,

node A will have overestimated the size of the entire network to be
c2N

1
2

A

1
2
N

1
2

A +2c2−1
N .

Hence,

NA =
c2N

1
2
A

1
2
N

1
2
A + 2c2 − 1

N

NA =
2c2N

1
2
A

N
1
2
A + 4c2 − 2

N

NA · (N
1
2
A + 4c2 − 2) = 2c2N

1
2
AN

N
1
2
A · (N

1
2
A + 4c2 − 2) = 2c2N since NA > 0

NA + (4c2 − 2)N
1
2
A − 2c2N = 0

Solving for the quadratic roots we obtain

−4c2 + 2 + (4− 16c2 + 16c4 + 8c2N)
1
2

2
and

−4c2 + 2− (4− 16c2 + 16c4 + 8c2N)
1
2

2
.

Taking the positive root and since there are 2N
1
2
A peers in the region [A− αA, A+ αA], we

24

have at most

2N
1
2
A

= −4c2 + 2 + (4− 16c2 + 16c4 + 8c2N)
1
2

≤
√

16c4 + 8c2N since c ≥ 1

≤
√

8c2N +
√

16c4

= 2c
√

2N + 4c2

local peers.

Similarly, in the worst case node A will have underestimated the size of the entire

network to be
N

1
2

A

c2

2
N

1
2

A−c2+2
N .

Hence,

NA =
N

1
2
A

c2

2
N

1
2
A − c2 + 2

N

N
1
2
A

(
c2

2
N

1
2
A − c2 + 2

)
= N since NA > 0

c2

2
NA + (2− c2)N

1
2
A −N = 0

Solving for the quadratic roots we obtain

c2 − 2 + (4− 4c2 + c4 + 2c2N)
1
2

c2
and

c2 − 2− (4− 4c2 + c4 + 2c2N)
1
2

c2
.

Taking the positive root and since there are 2N
1
2
A peers in the region [A− αA, A+ αA], we

25

have at least

2N
1
2
A

=
2c2 − 4 + 2(4− 4c2 + c4 + 2c2N)

1
2

c2

≥ 2
√

2c2N + 2c2 − 4

c2
since c ≥ 1 and c4 − 4c2 + 4 ≥ 0

≥ 2
√

2N

c
− 4

c2

local peers.

Since c is a constant, we have Θ(N
1
2) local peers.

Theorem 3. In a healthy network with N nodes, the total number of distant peers is

bounded below by

2
√
N − c− 2

c

and bounded above by

c2
√

2N + 2c3

thus,

Θ(N
1
2).

Proof. Let A be a node in the network. A will need at least one peer for each segment

around the circle. Since the identifier space is of size 2b, and each segment is αA

c
, we can

26

derive that the number of distant peers is at most:

2b − 2αA
αA

c

=
2bc

αA
− 2c

By definition we know that

αA =
2b

N
1
2
A

.

Hence

2bc
2b

NA

− 2c = cNA − 2c.

From Theorem 2, we can bound the size of NA from above by

c

(
−4c2 + 2 + (4− 16c2 + 16c4 + 8c2N)

1
2

2

)
− 2c

≤ c

(√
16c4 + 8c2N

2

)
since c ≥ 1

≤ c

(√
8c2N +

√
16c4

2

)

= c(c
√

2N + 2c2)

= c2
√

2N + 2c3

27

Similarly, we can bound the size of NA from below by:

c

(
c2 − 2 + (4− 4c2 + c4 + 2c2N)

1
2

c2

)
− 2c

≥
(
c2 − 2 +

√
2c2N

c

)
− 2c since c ≥ 1 and c4 − 4c2 + 4 ≥ 0

≥ 2
√
N − c− 2

c

Since c is a constant, we have Θ(N
1
2) distant peers.

Theorem 4. In a healthy network with N nodes, the total number of peers is:

Θ(N
1
2)

Proof. This falls directly from the combination of Theorem 2 and Theorem 3.

2.2.5 Simple Lookup

Before we continue on to how a node looks up a key k in constant time, we show a very

simple (albeit poor) routing algorithm. We start by describing the algorithm, then move

on to an example, and finally conclude with pseudocode.

Premise

The premise is that a node will do a linear search by traversing the edge of the ring. The

edge of the ring is formed by left and right neighbour links. Thus, if node A is to look up

28

key k that it does not possess. Then without loss of generality, suppose the key k is to the

left of A, then A will contact its left neighbour B. By continuing the traversal around the

ring to the left, A will eventually find the node which is the successor of k.

Example

A40

A35
A28

A22

A18

k40

(a)

A40

A35
A28

A22

A18

k40

(b)

A40

A35
A28

A22

A18

k40

(c)

Figure 2.2: Simple lookup example

Suppose there existed node A18 that is to find the key k40. A18 starts by noticing that

k40 is to its right and decides to contact its right neighbour A22 as shown in Figure 2.2a.

A22 notices that k40 is still to its right and decides to contact its right neighbour A28 as

shown in Figure 2.2b. Finally, after a few more iterations A41 was contacted and it notices

it is the successor of k40. Thus, A41 finishes the lookup by responding to A18 as shown in

Figure 2.2c.

Pseudocode

In the pseudocode of Algorithm 2, lines [7-8] check the exit condition for when we

are proceeding to the right. While lines [9-10] check the exit condition for when we are

29

Algorithm 2 Simple lookup

1: Preconditions:
2: A is the current network node.
3: k is the value of the key.
4:
5: Lookup(k)
6: loop
7: if k ∈ (A,A.Right] then
8: return A.Right
9: else if k ∈ (A.Left, A] then

10: return A
11: else if A < k then
12: A⇐ A.Right
13: else
14: A⇐ A.Left
15: end if
16: end loop

proceeding around the circle to the left. Finally, lines [11-12] and [13-14] respectively decide

on whether we proceed to the right or left around the circle.

2.2.6 Constant Time Lookup

For a key to be found in 2 hops, we use the knowledge that any node will be able to find

the successor in either its own or a distant peer’s local peer set. Thus we move on to an

example, and then prove that we can guarantee to find the proper successor in 2 hops. We

conclude with some pseudocode describing the algorithm.

Example

Suppose there is a node A that wanted to lookup key k. A starts off by comparing whether

k falls in its local peer set as shown in Figure 2.3a. A then looks at all of the distant peers

30

as shown in Figure 2.3b. Finally A selects the distant peer B which is closest to k as shown

in Figure 2.3c. A asks B for the successor of k, which B then returns.

α

A
α

α
c

k

(a)

A

α
c

k

α

α

(b)

A

α
c

k

α

αB

(c)

Figure 2.3: Fast lookup example

Proof

Theorem 5. In a healthy network, as long as there were no node changes (joins/deaths)

along the route, k can be found in 2 hops.

Proof. Suppose node A wanted to lookup key k. We have two cases, either k is, or is not,

in the range [A− αA, A+ αA]. For the first case, suppose k ∈ [A− αA, A+ αA]. Thus, by

definition, Successor(k) ∈ A.Finger. And A will be able to query Successor(k), thus

locating k in 1 hop.

For the second case, k 6∈ [A− αA, A+ αA], by definition

∃B ∈ A.Finger s.t. B − k ≤ αA
c
.

31

Furthermore, by definition of a healthy network, we know that

αA
c
≤ αB ≤ cαA.

Thus, k ∈ [B−αB, B+αB]. Hence, Successor(k) ∈ B.Finger and B will be able to re-

turn the address of Successor(k) toA. ThereforeA was able to lookup the Successor(k)

in 1 hop. Finally, A will be able to query Successor(k), thus locating k in 2 hops.

Pseudocode

Algorithm 3 Constant time lookup

1: Preconditions:
2: A is the current network node.
3: k is the value of the key.
4:
5: Lookup(k)
6: if A− k < αA then
7: return A.Finger(k)
8: else
9: B ⇐ A.Finger(k)

10: return B.Successor(k)
11: end if

In the pseudocode of Algorithm 3, line 6 checks whether k is in the range [A−αA, A+αA].

If so, line 7 returns the Successor(k) from the contents of A’s finger table. Otherwise,

line 9 finds the closest node to k within A’s finger table which is guaranteed to be within

[A−αA, A+αA]. While line 10 returns the Successor(k) from the contents of B’s finger

table.

32

2.2.7 Lookups In An Unhealthy Network

Suppose we have an unhealthy network with no node changes (joins/deaths) along the

routing path. Let A be a node where αA is maximal in the network and let B be a node

where αB is minimal in the network. Since the maximal gap between distant peers in A’s

finger table is bounded by 2αA

c
, the maximal distance from any key k to a node within A’s

finger table is bounded by αA

c
. Since each node in the network is responsible for a segment

to its left and right of size at least αB, then at most

αA
cαB

=
2b

cN
1
2
A

· N
1
2
B

2b
=

N
1
2
B

cN
1
2
A

hops towards k are required. Thus there are
N

1
2

B

cN
1
2

A

hops required to lookup a value in an

unhealthy network. This result is obvious from the fact that lookups are dependant on

the difference between network size estimates and the parameter c “relaxes” the strict

requirement on the knowledge of α and the size of the network N .

2.3 Joining

For a client to join any network, it must gain enough information to satisfy the requirements

and constraints the network imposes. In this case, a client is required to:

1. Gather the network constants and create the identifier ring.

2. Split the identifier space into segments.

3. Choose an identifier.

33

4. Create its finger table and compute α.

5. Announce its join.

Initially, the client requires the knowledge of a node Z already in the network. The

client contacts Z and obtains the constants b and c and Z’s estimate αZ . Thus the client

now uses the value b to generate the identifier space [0, 2b−1].

With the identifier space created, the client is now required to split the identifier space

into segments. To ensure that nodes boundaries between segments within the network

remain randomly distributed, the client chooses a random integer v from within the iden-

tifier space as its first boundary. It then uses v and the segment size αZ

c
to partition the

identifier space into Y =
⌈

2bc
αZ

⌉
such segments. The segment Si is defined as the discrete

range (v + iαZ

c
, v + (i+ 1)αZ

c
] for i ∈ {0, . . . , Y − 1}.

For each segment, a node is contacted at random to gather information that the client

will use to choose its own identifier. For each node Ri contacted, the information gathered

contains the size of the largest gap Gi in their local peer set and its estimate αRi
. Thus

we now have three sets:

• the nodes R = {R0, . . . , RY−1}.

• the gaps G = {G0, G1, . . . , GY−1}.

• the estimates D = {α0, α1, . . . , αY−1}.

The client uses the gaps and the estimates to choose an identifier for itself. The client

begins by checking if the network is unhealthy by examining the estimates and noticing

that Min(D) < c ·Max(D).

34

If the network is unhealthy, then the client chooses the gap Gl corresponding to the

largest αl. If there is a tie, the tie is broken by choosing the segment with the largest gap.

If the tie still persists, a gap is chosen at random from all those that are tied.

If the network is healthy, and there exists gaps which are at least twice the size of the

smallest gap within G, then the client chooses the largest gap Gl from the set G. If there

is a tie, the client chooses the segment with the largest α, if the tie still persists then the

client chooses the gap at random from all those that are tied. If there does not exist such

a Gl, then the client chooses the gap as if the network was unhealthy.

Using the Gl chosen, the client chooses its identifier to be A = MidPoint(Gl). The

client then looks up its own identifier acquiring B = Successor(A), namely its right

neighbour. Contacting B, the client acquires its left neighbour C. Thus the client now

knows of its position within the identifier space and its two neighbours.

The client is now required to create its finger table and compute α. It turns out that

the distant peers is precisely the set of nodes R. The client now must obtain its local peers,

which it does so by asking B and C for all the local peers which are to the right and left

of itself respectively. With all the local peers gathered, the client computes its estimate

αA. Note that if the network estimate αA is less than the original value αZ which was

used to partition the identifier space, the client will have to look up nodes until it satisfies

the constraint that the maximal size of a gap in its finger table is αA

c
. This is discussed in

further detail in Section 2.4.2.

Finally with the finger table constructed and α computed, the client announces that

it has joined the network completing the join process. The discussion around A’s join

announcement is in Section 2.5.

35

Example

For a client wishing to join the network, it begins by contacting a bootstrap node Z from

which it acquires the network parameters such as the constants b and c and also Z’s estimate

for α. The client then partitions the identifier space into segments of size α
c

starting from

a randomly chosen value v as illustrated in Figure 2.4a.

The client then begins to lookup a random node in each segment Si and acquires from

each Ri the size of the largest gap Gi in its local peer set and also its respective estimate

αRi
. The client uses all this information to chose an identifier A as shown in Figure 2.4b.

Finally, A creates its finger table by combining all distant peers with its left and right

neighbour’s peer sets. Then A announces its join to its left and right neighbours completing

the join process as shown in Figure 2.4c.

α
c

v
v − α

c

· · ·· · ·

v + α
c

Z

(a)

A

α
c

v
v − α

c

· · ·· · ·

v + α
c R0

R1

R 2bc
α −1

R 2bc
α −2

S0

S1

S 2bc
α −1

S 2bc
α −2

(b)

α

A
α

α
c

v
v − α

c

· · ·· · ·

v + α
c R0

R1

R 2bc
α −1

R 2bc
α −2

(c)

Figure 2.4: Join example

Pseudocode

In the pseudocode of Algorithm 4, line 5 begins with acquiring the network constants b

and c. While line 6 generates the random value v which is used to distribute the boundaries

36

Algorithm 4 Joining the network

1: Preconditions:
2: Z is the initial bootstrap node.
3:
4: Join(Z)
5: {b, c} ⇐ Z.{b, c}
6: v ⇐ Random([0, 2b))
7: A.Finger⇐ {Z}
8: R = {}
9: for i = 0 . . . αZ

c
do

10: R⇐ R ∪ {A.Lookup(Random((v + i · αZ

c
, v + (i+ 1) · αZ

c
]))}

11: end for
12: G = {}
13: D = {}
14: for all Ri ∈ R do
15: G⇐ G ∪Ri.MaxGap
16: D ⇐ D ∪Ri.αRi

17: end for
18: {αRj0

, . . . , αRjp
} ⇐Min(D)

19: {αRk0
, . . . , αRkq

} ⇐Max(D)
20: if αRk0

> cαRj0
then

21: A.Id⇐Midpoint(Random(MaxGap({Gk0 , . . . , Gkq})))
22: else
23: {Gm0 , . . . , Gms} ⇐MinGap(G)
24: {Gd0 , . . . , Gdt} ⇐MaxGap(G)
25: if 2Gm0 ≤ Gd0 then
26: {αl0 , . . . , αlw} ⇐Max({αd0 , . . . , αdt})
27: A.Id⇐Midpoint(Random({Gl0 , . . . , Glw}))
28: else
29: A.Id⇐Midpoint(Random(MaxGap({Gk0 , . . . , Gkq})))
30: end if
31: end if
32: B ⇐ Ry.Predecessor(A)
33: C ⇐ Ry.Successor(A)
34: A.Finger⇐ B.Finger([A− αB, A)) ∪ C.Finger((A,A+ αC]) ∪R
35: ComputeAlpha()
36: A.MaintainOnGrow()
37: A.Announce(A, join)

37

for segments amongst nodes uniformly at random. The client adds the bootstrap node to

its finger table in line 7 which it then uses to lookup random nodes in each segment in

lines [8-11]. Lines [12-17] gather the information for the maximal gap sizes and their α

estimates. Lines [18-31] choose A’s identifier, where [20-21] is if the network is detected to

be unhealthy and lines [22-31] otherwise. Line 21 selects the midpoint of the largest gap for

all the segments with the largest α’s. If there is a tie, one of the largest gaps are selected at

random. Lines [25-27] select the gap from the set of all gaps that are at least twice the size

of the smallest gap. If no such gap exists, line 29 selects a gap as line 21 does. Finally, A

gets its left and right neighbours B and C and creates its finger table on lines [32-34]. Line

35 computes α which is further discussed in Section 2.2.2. On line 36, A then verifies that

the network constraints are still met by running the method MaintainOnGrow() which

is further discussed in Section 2.4.2. Finally, line 37 concludes with A’s join announcement

which is discussed in Section 2.5.

2.4 Network Maintenance

An important issue of any network is the work required to maintain its structure and satisfy

any constraints imposed. We begin this section by discussing the discovery of dead nodes.

We then move on to discuss what action is required for a growing network. We conclude

by covering what steps are required for a shrinking network.

38

2.4.1 Discovery Of Dead Nodes

A node may die gracefully, announcing its death to its neighbours, or may vanish inexpli-

cably. For the latter case, we require a mechanism to discover failed nodes.

We employ a simple mechanism whereby if a message has not been received for some

time from a nodes left or right neighbour, we periodically ping them. Therefore our de-

tection mechanism is a simple keep alive scheme. Once a node is detected to have failed,

the node is removed from the finger table and its death is announced. We discuss how the

announcement is propagated in Section 2.5.

Pseudocode

Algorithm 5 Discovery of dead nodes

1: Preconditions:
2: A is the current network node.
3:
4: CheckDead()
5: if ¬A.Ping(A.Left) then
6: dead⇐ A.Left
7: A.Finger⇐ A.Finger \ {dead}
8: A.Announce(dead, death)
9: end if

10: if ¬A.Ping(A.Right) then
11: dead⇐ A.Right
12: A.Finger⇐ A.Finger \ {dead}
13: A.Announce(dead, death)
14: end if

In the pseudocode of Algorithm 5, line 5 pings the left neighbour and if it has failed,

lines [6-9] remove them from the finger table and announce its death. Similarly, lines

[10-14] do the same action for the right neighbour.

39

2.4.2 A Growing Network

When the network is growing, the issue arises that the distance between adjacent dis-

tant peers in a finger table may become too large. This is the case when for a node A,

A’s finger table contains two adjacent nodes B and C such that B < C and B − C >

2αA

c
. This is resolved by having node A choose a new random key r in the segment(

B+C
2
− αA

c
,Min

(
C.Left, B+C

2
+ αA

c

)]
and update A’s finger table by adding the node

D = Successor(r). These steps are repeated for each such B and C in A’s finger table

until the constraint is satisfied. Note that if one allows for a possibility of failure, the con-

straint for the key r may be relaxed to the range
(
Max

(
B, B+C

2
− αA

c

)
,Min

(
C, B+C

2
+ αA

c

))
This reduces the cost of a lookup to find C.Left at the possibility that Successor(r) = C,

in which case a new value of r would have to be chosen until Successor(r) 6= C.

Pseudocode

Algorithm 6 Maintaining a growing network

1: Preconditions:
2: A is the current network node.
3:
4: MaintainOnGrow()
5: while ∃B,C ∈ A.Finger s.t. B + 2αA

c
< C,B and C are adjacent do

6: D ⇐ A.lookup(Random((B+C
2
− αA

c
,Min(C.Left, B+C

2
+ αA

c
)]))

7: A.Finger⇐ A.Finger ∪ {D}
8: end while

In the pseudocode of Algorithm 6, line 5 finds all adjacent nodes B and C that do not

satisfy the required constraint. Line 6 finds the successor of the random value in a range

between B and C. Line 7 updates A’s finger table.

40

2.4.3 A Shrinking Network

When the network is shrinking, we do not have to worry about adjacent nodes within a

nodes finger table from being too distant. This is because the estimate α will be increasing

since the amount of local peers is decreasing. Thus the constraint between adjacent distant

peers will remain satisfied. We now have to worry that a node A may not know all its

local peers. If we let αA be the old segment size and α′A be the new segment size then A

is required to know all the peers to be able to answer any Successor query in the region

[A−α′A, A+α′A]. Thus, when the network is shrinking, a node A looks into its finger table

for B = Predecessor(A − αA) and for C = Successor(A + αA). A then proceeds to

ask for the left and right neighbours of B and C respectively until A is able to answer any

lookup for the new region.

Pseudocode

Algorithm 7 Maintaining a shrinking network

1: Preconditions:
2: A is the current network node.
3:
4: MaintainOnShrink()
5: B ⇐ A.Successor(A− αA)
6: while B ≥ A− αA′ do
7: B ⇐ B.Left
8: A.Finger⇐ A.Finger ∪ {B}
9: end while

10: C ⇐ A.Successor(A+ αA)
11: while C ≤ A+ αA′ do
12: C ⇐ C.Right
13: A.Finger⇐ A.Finger ∪ {C}
14: end while

41

In the pseudocode of Algorithm 7, line 5 acquires the last known local peer to the

furthest left of A. Lines [6-9] add all peers by walking along the perimeter of the circle to

the left until the new bound is satisfied. Line 9 acquires the last known local peer to the

furthest right of A. Lines [11-14] add all peers by walking along the perimeter of the circle

to the right until the new bound is satisfied.

2.5 Network Messaging

Message passing in many distributed schemes either happens recursively, iteratively, or a

combination of both. The problem with network messaging is what form of synchronization

is required to correctly pass a message to all intended recipients. Since we have a very

uniform set of messages, and we have a very specific set of recipients, we do not have to

go to the detail as which would be required by a more complicated distributed system.

A simple method passing scheme is used. The nodes recursively pass the message

around the ring starting from the originating node A in both the left and right directions

up to a distance of α. This scheme has the advantage that the left and right links for a

node are checked regularly as messages circulate around the ring.

Pseudocode

In the pseudocode of Algorithm 8, line 6 handles the message, whether it be a join or

a death. Lines [7-9] announce the message to the left and right neighbours. Lines [10-

13] handle messages which are traversing to the left, while lines [15-18] handle messages

traversing to the right. Lines [11-13, 16-18] pass the message if it has not yet travelled far

enough by using ones own estimate for α.

42

Algorithm 8 Simple message passing

1: Preconditions:
2: A is the current network node.
3: message is either join or death.
4:
5: Announce(message)
6: A.HandleMessage(message)
7: A.Left.AnnounceLeft(message)
8: A.Right.AnnounceRight(message)
9:

10: AnnounceLeft(message)
11: if A−B ≤ αA then
12: A.Left.AnnounceLeft(message)
13: end if
14:
15: AnnounceRight(mesage)
16: if A−B ≤ αA then
17: A.Right.AnnounceRight(message)
18: end if

2.6 Network Health

A network’s health is a measure that is used to evaluate the quality of the network. When

a network is considered to be healthy, then there is a guarantee that the size of the finger

table will be O(N
1
2) and that the lookup cost will be 2 hops. Thus it is important for

any network to understand the actions which improve or deteriorate that health. We start

by defining network health, we then discuss the actions which improve that health, and

conclude with a discussion of the actions which weaken the network.

We repeat our definition of network health:

Definition 2. The network is considered healthy if, for any two nodes A and B that

correctly computed their respective estimates αA and αB, αA and αB do not differ by a

factor greater than c.

43

With a measure for health, then there is a sense that a network can be optimal. With

that we can define network optimality:

Definition 3. A network is considered optimal, if the distances between all adjacent nodes

are equal.

From the definition of optimality, we can see that it immediately follows that for any

two nodes A and B, αA = αB. Also, when a network is optimal, the key distribution is

uniform and any node may be chosen at random with high probability by just selecting

the successor of a random integer in the identifier space. Thus, many beneficial properties

arise from having an optimal network.

For our network, the only actions which change the distribution of nodes is when a node

joins or departs. Generally we will see that when a node joins the network, it improves

the health of the network, while when nodes depart we can approximate the amount of

degradation.

Thus, we now argue that the network health generally improves when nodes are being

added. In our join heuristic, we had two cases, the first case the network is unhealthy

and the node is added to the segment with the largest α. Thus it is easy to see that the

difference in the minimal and maximal α’s around the circle has either stayed the same

or decreased. The α will have only stayed the same if there were multiple segments with

the same minimal α. There is a bound on such a number of segments, so eventually when

enough nodes have been added, the distance between the minimal and maximal α’s will

have decreased.

The second case was when the network was healthy and the set of gaps were used to

determine the join location. We can see that if there was a gap that was at least twice the

44

size of the smallest gap, then by splitting it in half we have created two equal size gaps

These gaps are now each closer to the size of the smallest gap, thus the network has moved

closer to optimality. If all the gaps are within a factor less than 2 of each other, then we

use the same procedure as if the network was unhealthy to choose a gap and hence attempt

to improve the network. Obviously, we begin to hamper the network when the network is

close to or is optimal.

The other case which affects the networks health is when nodes leave the network. In

this case, adjacent gaps are being merged and in general the size of the gaps is increasing.

The problem is that network health is not measured by the difference in the sizes of the

smallest and largest gaps. It is measured by the density of the segments around the circle.

Thus we argue that if we assume each segment to be a bucket, and add a ball to each bucket

representing a node death in said segment then this would be a close approximation. This

is because as nodes die, α increases and in a sense one ball could be in two buckets at

the same time. We will show through simulation the effect of removing nodes from the

network would have on the density of segments around the circle. Now, if we begin with

an optimal network, then we can state that there are m = N
1
2 segments. We assume that

each segment has the same probability of being chosen, namely 1
m

. If 1
k

of all the nodes

die, then this follows a binomial distribution with n = N
k

and p = 1
m

. Hence the expected

number of deaths per segment is

E[X] = np =
N

k

1

N
1
2

=
m

k
.

45

and the variance in the number of deaths is

V ar[X] = np(1− p) =
N

k
· 1

m

(
1− 1

m

)
=
m2

mk
·
(
m− 1

m

)
=
m− 1

k
.

We are interested in the distribution of the number of nodes in the segments. Hence, we

look at the standard deviation

σ = V ar[X]
1
2 =

(
m− 1

k

) 1
2

<
(m
k

) 1
2
.

For a network to remain healthy, we would like to have no more than a factor of c between

the minimal and maximal number of nodes in a bucket. Note that α = E[x] = m
k

.

(m
k

) 1
2 ≤ cα

2(m
k

) 1
2 ≤ cm

2k

2k
1
2

c
≤ m

1
2

4k

c2
≤ m

Thus, as a network increases in size, we can see that the stability of the network health

also increases in view of large numbers of node deaths.

In Figure 2.5a we show the maximal ratio between the minimal and maximal alpha

after 10000 rounds when 10%, 50%, and 90% of the nodes leave. In Figure 2.5b we show

a histogram of the distribution for minimal and maximal alpha when half of a network

containing 100 nodes leave over 1000000 trial runs. In Figure 2.5c we show a histogram of

the distribution for minimal and maximal alpha when half of a network containing 1000000

46

nodes leave over 10000 trial runs.

10^2 5x10^2 10^3 5x10^3 10^4 5x10^4 10^5 5x10^5 10^6
1

1.5

2

2.5

3

3.5

4

4.5

(a)
1 1.5 2 2.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 105

(b)
1.07 1.08 1.09 1.1 1.11 1.12 1.13 1.14
0

500

1000

1500

2000

2500

3000

3500

(c)

Figure 2.5: Network health simulations

47

Chapter 3

RootChord Extensions

This chapter deals with ideas that do not affect the theoretical bounds of the network but

have been shown to increase performance in practice. We discuss recommendations on

how to replicate data, parallelize lookups, extend dead node discovery, implement remote

procedure calls and pass messages in the network expediently.

3.1 Data Replication

The purpose of data replication is to increase the robustness of the network. If a node

dies storing the only copy of data within the network, the data will have been lost. Thus

many schemes for data replication have been studied such as using error correcting codes

in Rainbow Skip Graphs [23] to add a level of robustness.

We recommend that data replication occur as it does in Chord [62], where up to r

successors of a key k become the nodes that store replica copies of the data. This has

48

the advantage that these r successors naturally in the system already learn of the demise

of neighbours, hence a suitable replacement can be found before all r replicas vanish.

Secondly, if a node were to join, it would be able to assume the role of a replica and

distribute the work of gathering all the data it must store from the previous r replicas.

And, finally, having replicas allows one to relax the rate of convergence for join and death

messages for local peers. This is because on a lookup, a node may return all the replicas

which it knows of that store the data. Thus the system would only fail if all r replicas

failed or were replaced by new nodes before these changes converged.

3.2 Parallelization Of Constant Time Lookup

The purpose of parallelization of lookups in a distributed hash table is to use the availability

of multiple possible routes to the destination to our advantage. This advantage is two-fold,

the first being that by using multiple routes, one can regularly get to the destination faster.

The second, and more important advantage, is that we are able to avoid very slow or dead

nodes. A study by Sairou et al. [61] on file sharing systems has shown that a significant

fraction of nodes are connected over high latency / low bandwidth links. The presence

of even one such slow logical hop on a path greatly increases the cost of the lookup. On

the flipside, the problem with parallelization is obviously the added messaging cost and

implementation complexity.

For the network protocol we have discussed, a node A is able to use a parallel lookup

scheme when attempting to lookup a key k from a distant peer. It turns out that any

distant peer in the range [k − cαA, k + cαA] may be able to answer the query in a healthy

network. Thus A uses a constant size subset (one including the peer A would have normally

49

chosen) of peers over the range [k − cαA, k + cαA]. This subset would contain at most x

distant peers where x is a constant. x is considered to be the parallelization factor. We

now proceed with an example followed by pseudocode.

Example

Let A be a node that is to look up key k as shown in Figure 3.1a. Assume that k would not

be able to be answered from A’s local peer set. Then A would look at the range between

[k − cα, k + cα] as shown in Figure 3.1b. A would then select all the distant peers falling

into that range as the candidates used for the parallel lookup as shown in Figure 3.1c.

The green dotted line represents the distant peer which A would have used for a regular

lookup, while the red dashed lines represent peers which could be used to parallelize the

lookup. A then chooses a constant size subset (one which includes the green dotted line

distant peer) to use as parallel routes.

A

α
c

k

(a)

A

α
c

k

cα

cα

(b)

A

α
c

k

cα

cα

(c)

Figure 3.1: Parallel lookup example

50

Pseudocode

Algorithm 9 Parallel constant time lookup

1: Preconditions:
2: A is the current network node.
3: k is the key A wishes to lookup.
4: x is the parallelization factor (x ≥ 1).
5:
6: if k 6∈ [A− αA, A+ αA] then
7: candidates⇐ A.Finger([k − cαA, k + cαA])
8: candidates⇐ (select x closest to k) ∈ candidates
9: return candidates.Finger(k)

10: else
11: return A.Finger(k)
12: end if

In the pseudocode of Algorithm 9, lines [6-9] handle the case for when a query can

be parallelized. Line 7 selects all candidates from A’s finger table. Line 8 reduces the

candidates to a set of size x. Note that this set of candidates contains the distant peer A

would have been used in a non-parallelized lookup. Line 9 calls a lookup on each of the

candidate’s finger table in parallel. Lines [10-11] handle the case when A does not need to

contact a distant peer and is able to answer the lookup from its own finger table.

3.3 Extended Dead Node Discovery

A problem with our protocol is that there is no background dead node discovery for distant

peers. For example, a node A will never remove a node outside of the range [A−αA, A+αA]

unless A attempts to contact it directly. A direct communication from A to all nodes in A’s

finger table outside of the range [A− αA, A + αA] is unlikely. Thus a measure is required

to prune dead links or it is highly likely that each node will accumulate many of them.

51

The idea is that whenever a node A communicates with a distant peer B, A will query B

about the status of nearby distant peers to attempt to reduce the number of dead links.

Each time A communicates with B, A piggy backs on its original request to B a list of

all the distant peers A knows of in the range [B − cαA, B + cαA]. Thus when B responds

to the original request from A, it also returns the status of the nodes A queried about.

The status for each node returned can either be that it exists, is dead, or unknown. For

each node that is dead, B also responds with a suitable replacement, namely the closest

node to the dead node. Since B has knowledge of the nodes in [B−αB, B+αB], it will be

able to answer about the status of nodes over that range. The problem lies when these two

intervals differ and for any nodes that fall outside of B’s range, it must respond unknown.

Pseudocode

Algorithm 10 Extended dead node discovery

1: Preconditions:
2: A is the current network node.
3: B is the network node A is about to communicate with.
4: request is the original request.
5:
6: candidates⇐ A.Finger([B − cα,B + cα]) \ A.Finger([A− α,A+ α])
7: {result, candidateInfo} ⇐ B.Message(request, candidates)
8: for all dead, replacement ∈ candidateInfo do
9: A.Finger⇐ A.Finger \ {dead} ∪ {replacement}

10: end for

In the pseudocode of Algorithm 10, line 6 gathers the candidates from A’s finger table.

Line 7 communicates with B and stores the results and information about the candidates.

Lines [8-10] replace all dead nodes with their replacements.

52

3.4 Remote Procedure Calls

AB

C

D

Figure 3.2: A remote procedure call

A remote procedure call is a protocol that one ap-

plication uses to request a service from an applica-

tion located remotely. The difference between a local

and remote call to the initiating application is made

transparent by the underlying framework providing

the service. It may be that the remote procedure

call is overlaid on top of the operating system or an-

other framework. Remote procedure calls were ini-

tially created so that an application may be able to

communicate with other components without a di-

rect understanding of the underlying network, whether this be the Internet or a computing

cluster. Generally, remote procedure calls are of three forms when recursion is involved.

The first is purely recursive, the second is semi-recursive, and finally the last one is purely

iterative. We will discuss all three, but first form the basis from which the examples in the

sections below are derived. Figure 3.2 contains nodes A, B, C and D. The green node A

will be the originator of the call while the blue node D will be the desired destination of

the call. Finally, A knows only of B, B knows only of C, and C knows only of D. Let

black solid lines represent calls while red dashed lines represent returns.

53

Recursive Remote Procedure Calls

AB

C

D

Figure 3.3: A recursive remote pro-

cedure call

A recursive remote procedure call occurs when A

contacts B, and B contacts C passing on A’s re-

quest. Furthermore, C will pass on A’s request to

the destination D. The response from D returns to

C, then to B, and finally to A.

The advantage of this approach is two-fold, the

first being that the underlying network only needs

be symmetric. Thus it works in schemes such as

IPv4 where NAT may occur. Secondly, the contact

information for D is never known to A, thus a level of secrecy is maintained. The major

disadvantage of such a scheme is that the parameters of the procedure and return value

must be passed to all intermediary nodes. This could be very expensive and is dependant

on the size of the parameters and return value.

Semi-Recursive Remote Procedure Calls

AB

C

D

Figure 3.4: A semi-recursive remote

procedure call

The second type of remote procedure call is semi-

recursive (i.e. essentially tail recursion [30]).

Reusing our example from the purely recursive re-

mote procedure call, the primary difference is that

not only A’s parameters are passed onto C from B,

but also A’s identity and contact information as the

originating caller. Then this same information is

54

passed onto D. Where D, instead of returning the

response to C, it closes the loop and delivers the response directly to A.

The advantage of such a scheme is that in a homogenous network where the communi-

cation times between nodes are approximately the same, this becomes the fastest scheme

to make procedure calls when the size of the parameters of the procedure calls are small.

The disadvantage of such a scheme is that that the parameters must still be passed to all

intermediary nodes. As in recursive procedure calls, this could be very expensive and is

solely dependant on the size of the parameters.

Iterative Remote Procedure Calls

AB

C

D

Figure 3.5: A recursive remote pro-

cedure call

The final, and most widely used, method is an itera-

tive approach. The difference between the recursive

approaches and the iterative approach is that if A

wants to contact D, then it asks B for D’s address.

B replies with C’s address as it believes that C is

closer to D. Finally, A contacts C and acquires D’s

address and thus A contacts D directly.

Again the advantage of this approach is two-fold.

The first being that if the parameters and return val-

ues from a procedure are large in comparison to the

underlying communication about D’s contact infor-

mation, then it is only transferred once. The second advantage is that the underlying

framework is able to cache C and D’s address, and any further calls to C or D will not

55

require contacting B. The disadvantage of this methodology is that in practice this is the

slowest method if D is only contacted once. This occurs because many underlying frame-

works make links between nodes that can communicate with each other quickly. Thus the

distance travelled for all the messages is usually greater than the other two approaches.

Conclusion

If the protocol is used to store vast quantities of data then the purely recursive approach is

not suitable because of the high communication cost of retrieving information. Similarly,

for data replication of large volumes of storage, either a high price is paid to pass on the

data to be stored to distant nodes, or a limit is placed on which nodes the data can be

replicated onto. Thus the iterative approach is most suited for the protocol because the

high availability of node contact information allows for greater caching of information. It

also allows for the greatest flexibility for data retrieval and replication.

3.5 Fast Network Messaging

By only passing messages on the outside of the ring, the rate at which the network converges

is Θ(N
1
2) (i.e. if a node drops out, Θ(N

1
2) messages are sent sequentially to update the

network). Thus to increase the rate at which the system converges, messages need to be

passed to more than just the left and right neighbours but care has to be taken to not miss

any nodes or duplicate work.

The issue is that there is a possibility that the node that the message originated from

may yet not know of a node that had just recently joined. This is resolved by having each

56

node which receives a message to check whether there are any nodes within a range given

to it and further pass the message a long. Below we provide an algorithm which places the

burden of delivery on the originating node hence making the system converge at O(1) rate.

There are many ways which we could adapt this to make it a recursive process making the

system converge at a logarithmic rate such as in D1HT [51] and shown in Figure 1.2.

Pseudocode

In the pseudocode of Algorithm 11, lines [6-12] announce the messages to all A’s local

peers handing them a section which they are responsible for. Lines [15, 23] handle whether

the message is a join or death. Lines [16-20, 24-28] handle passing the message on to any

nodes that may have recently joined.

57

Algorithm 11 Fast message passing

1: Preconditions:
2: A is the current network node.
3: B is the node the message is about.
4: message is either join or death.
5:
6: Announce(B,message)
7: for all ai ∈ A.Finger(A− α,A) do
8: ai.AnnounceLeft(B,message, (A.Predecessor(ai), ai))
9: end for

10: for all ai ∈ A.Finger(A,A+ α) do
11: ai.AnnounceRight(B,message, (ai, A.Successor(ai)))
12: end for
13:
14: AnnounceLeft(B,mesage, range)
15: A.HandleMessage(message)
16: if A−B ≤ α then
17: for all ai ∈ A.Finger(range) do
18: ai.AnnounceLeft(B,message, (A.Predecessor(ai), ai))
19: end for
20: end if
21:
22: AnnounceRight(B,mesage, range)
23: A.HandleMessage(message)
24: if A−B ≤ α then
25: for all ai ∈ A.Finger(range) do
26: ai.AnnounceRight(B,message, (ai, A.Successor(ai)))
27: end for
28: end if

58

Chapter 4

Conclusion

We have introduced “RootChord”, a new distributed hash table that is able to dynamically

adapt to the size of the network. This protocol is fault tolerant, parallelizable, and is able

to do queries within 2 hops at the cost of storing a Θ(N
1
2) size routing table in each

node. The protocol considers all nodes to be equal, and hence no node is burdened with

additional work. Nodes within the network are able to accurately estimate the size of the

network. These network size estimates are off by no more than a factor of approximately

c2 of the actual network size.

Additionally, we have presented a detailed description and pseudocode for all major

aspects of the protocol including that of lookups, joins, deaths, network maintenance and

messaging. We have extended lookups to be intelligently parallelizable and have shown

the cost of a lookup when the network becomes “unhealthy”. We have explored dead node

discovery and given a technique which is “lazy”. Lazy in the sense that it will only acquire

about nodes which it is interested in and ignore all other nodes. We have extended this

59

technique with a sense of locality, thus nodes which are near what is queried will also be

checked. We have also considered some of the practical implications to the design as how

to message, replicate data, and even which type of remote procedure call most benefits

this DHT. We have explored the issue of network convergence with respect to messaging

and showed multiple messaging protocols which would be suitable for different deployment

scenarios.

There are both practical and theoretical questions that are left remaining. In practice,

we need to see how this protocol actually handles being in the wild. Whether it is truly

able to adapt to many network environments and what is the actual cost of storing such a

large routing table compared to other DHTs. An analysis of the number of stale records

over time would also be beneficial and finally what occurs to the distribution of identifiers

under our join protocol and how far away it is from optimal in practice.

On the theoretical side, a better approximation to the effect node deaths have on the

network is required. Future research could address the questions of whether this ring

structure where neighbours almost form “cliques” have other applications beyond this

DHT. What properties do these not so perfect “cliques” exhibit? Can we design a structure

from these “cliques” which is able to route in O(d) yet only have a finger table of size

O(N
1
d)?

60

References

[1] Azureus. http://www.vuze.com/. 3

[2] BGP. http://www.cisco.com/en/US/docs/internetworking/technology/

handbook/bgp.html.

[3] Gnutella. http://www.gnutellaforums.com/. 1

[4] IGRP. http://www.cisco.com/en/US/tech/tk365/technologies_white_

paper09186a00800c8ae1.shtml. 7

[5] Kazaa. http://www.kazaa.com. 1

[6] Napster. http://www.napster.com.

[7] OSPF. http://www.cisco.com/en/US/tech/tk365/technologies_white_

paper09186a0080094e9e.shtml. 7

[8] PlanetLab. http://www.planet-lab.org. 3

[9] 1st Symposium on Networked Systems Design and Implementation (NSDI 2004),
March 29-31, 2004, San Francisco, California, USA, Proceedings. USENIX, 2004.
62

[10] André Allavena, Alan Demers, and John E. Hopcroft. Correctness of a gossip based
membership protocol. In PODC ’05: Proceedings of the twenty-fourth annual ACM
symposium on Principles of distributed computing, pages 292–301, New York, NY,
USA, 2005. ACM. 7

[11] Lars Arge, David Eppstein, and Michael T. Goodrich. Skip-webs: efficient distributed
data structures for multi-dimensional data sets. In PODC ’05: Proceedings of the
twenty-fourth annual ACM symposium on Principles of distributed computing, pages
69–76, New York, NY, USA, 2005. ACM.

61

http://www.vuze.com/
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/bgp.html
http://www.cisco.com/en/US/docs/internetworking/technology/handbook/bgp.html
http://www.gnutellaforums.com/
http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a00800c8ae1.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a00800c8ae1.shtml
http://www.kazaa.com
http://www.napster.com
http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094e9e.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094e9e.shtml
http://www.planet-lab.org

[12] James Aspnes and Gauri Shah. Skip graphs. In SODA ’03: Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete algorithms, pages 384–393,
Philadelphia, PA, USA, 2003. Society for Industrial and Applied Mathematics.

[13] N.T.J. Bailey. Epidemic Theory of Infectious Diseases and its Applications. Hafner
Press, second edition edition, 1975. 7

[14] Philip A. Bernstein and Nathan Goodman. Concurrency control in distributed
database systems. ACM Comput. Surv., 13(2):185–221, 1981.

[15] Queries Ashwin Bharambe and Ashwin R. Bharambe. Mercury: Supporting scalable
multi-attribute range. In In SIGCOMM, pages 353–366, 2004. 4

[16] K. Mani Chandy and Leslie Lamport. Distributed snapshots: determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.

[17] Frank Dabek, Jinyang Li, Emil Sit, James Robertson, M. Frans Kaashoek, and Robert
Morris. Designing a dht for low latency and high throughput. In NSDI [9], pages 85–
98.

[18] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott Shenker,
Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic algorithms for repli-
cated database maintenance. In PODC ’87: Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing, pages 1–12, New York, NY, USA,
1987. ACM. 7

[19] Aisling O’ Driscoll, Susan Rea, and Dirk Pesch. Performance evaluation and modeling
of the chord dht structured overlay for ad-hoc networks, 2008.

[20] Jarret Falkner, Michael Piatek, John P. John, Arvind Krishnamurthy, and Thomas
Anderson. Profiling a million user dht. In IMC ’07: Proceedings of the 7th ACM
SIGCOMM conference on Internet measurement, pages 129–134, New York, NY, USA,
2007. ACM. 3

[21] Pierre Fraigniaud and Philippe Gauron. D2b: A de bruijn based content-addressable
network. Theoretical Computer Science, 355(1):65–79, 2006. Complex Networks.

[22] L. Garces-Erice, K. W. Ross, E.W. Biersack, P. A. Felber, and G. Urvoy-Keller.
Topology-centric look-up service. In in COST264/ACM Fifth International Workshop
on Networked Group Communications (NGC, pages 58–69. Springer, 2003.

[23] Michael T. Goodrich, Michael J. Nelson, and Jonathan Z. Sun. The rainbow skip
graph: a fault-tolerant constant-degree distributed data structure. In SODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 384–393, New York, NY, USA, 2006. ACM. 3, 48

62

[24] Rachid Guerraoui, Sidath B. Handurukande, Kevin Huguenin, Anne-Marie Kermarrec,
Fabrice Le Fessant, and Etienne Riviere. Gosskip, an efficient, fault-tolerant and
self organizing overlay using gossip-based construction and skip-lists principles. In
P2P ’06: Proceedings of the Sixth IEEE International Conference on Peer-to-Peer
Computing, pages 12–22, Washington, DC, USA, 2006. IEEE Computer Society. 4

[25] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The impact of dht routing geometry on resilience and proximity. In SIGCOMM ’03:
Proceedings of the 2003 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 381–394, New York, NY, USA, 2003.
ACM.

[26] Anjali Gupta, Barbara Liskov, and Rodrigo Rodrigues. Efficient routing for peer-
to-peer overlays. In NSDI’04: Proceedings of the 1st conference on Symposium on
Networked Systems Design and Implementation, pages 9–9, Berkeley, CA, USA, 2004.
USENIX Association. 4, 8

[27] Indranil Gupta, Ken Birman, Prakash Linga, Al Demers, and Robbert van Renesse.
Kelips: Building an efficient and stable p2p dht through increased memory and back-
ground overhead. In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03, 2003. 4, 8

[28] Indranil Gupta, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh. Efficient and adap-
tive epidemic-style protocols for reliable and scalable multicast. IEEE Trans. Parallel
Distrib. Syst., 17(7):593–605, 2006.

[29] Nicholas J.A. Harvey, A Nicholas J., Harvey John, John Dunagan, Michael B. Jones,
Stefan Saroiu, Marvin Theimer, and Alec Wolman. Skipnet: A scalable overlay net-
work with practical locality properties, 2003. 4

[30] Jani Hautakorpi and Gonzalo Camarillo. Evaluation of dhts from the viewpoint of
interpersonal communications. In MUM ’07: Proceedings of the 6th international
conference on Mobile and ubiquitous multimedia, pages 74–83, New York, NY, USA,
2007. ACM. 54

[31] David R. Jefferson. Virtual time. ACM Trans. Program. Lang. Syst., 7(3):404–425,
1985.

[32] Norman L. Johnson and Samuel Kotz. Urn Models and Their Application: An Ap-
proach to Modern Discrete Probability Theory (Probability & Mathematical Statistics).
John Wiley & Sons Inc, 1977.

[33] Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal distributed
hash table. pages 98–107, 2003.

63

[34] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: distributed caching protocols for
relieving hot spots on the world wide web. In STOC ’97: Proceedings of the twenty-
ninth annual ACM symposium on Theory of computing, pages 654–663, New York,
NY, USA, 1997. ACM. 8

[35] Daishi Kato and Toshiyuki Kamiya. Evaluating dht implementations in complex
environments by network emulator. In IPTPS 07: Proceedings of the 6th International
Workshop on Peer-to-Peer Systems, February 2007.

[36] David Kempe, Jon Kleinberg, and Alan Demers. Spatial gossip and resource location
protocols. In STOC ’01: Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pages 163–172, New York, NY, USA, 2001. ACM. 7, 8

[37] Jon Kleinberg. The small-world phenomenon: an algorithm perspective. In STOC
’00: Proceedings of the thirty-second annual ACM symposium on Theory of computing,
pages 163–170, New York, NY, USA, 2000. ACM. 6

[38] Ben Leong, Barbara Liskov, and Erik D. Demaine. Epichord: Parallelizing the chord
lookup algorithm with reactive routing state management. In IN PROCEEDINGS OF
THE 12TH INTERNATIONAL CONFERENCE ON NETWORKS, pages 1243–1259,
2004.

[39] Daniel Lewin. Consistent hashing and random trees : algorithms for caching in dis-
tributed networks. Master’s thesis, Massachusetts Institute of Technology, 1998. 8

[40] Jinyang Li, Jeremy Stribling, Thomer M. Gil, Robert Morris, and M. Frans Kaashoek.
Comparing the performance of distributed hash tables under churn. In Proc. of the
3rd International Workshop on Peer-to-Peer Systems, February 2004.

[41] Jinyang Li, Jeremy Stribling, Robert Morris, and M. Frans Kaashoek. Bandwidth-
efficient management of dht routing tables. In NSDI’05: Proceedings of the 2nd confer-
ence on Symposium on Networked Systems Design & Implementation, pages 99–114,
Berkeley, CA, USA, 2005. USENIX Association. 4

[42] Jinyang Li, Jeremy Stribling, Robert Morris, M. Frans Kaashoek, and Thomer M.
Gil. A performance vs. cost framework for evaluating dht design tradeoffs under
churn. IEEE INFOCOM, 1:225–236, 2005.

[43] David Liben-Nowell, Hari Balakrishnan, and David Karger. Analysis of the evolution
of peer-to-peer systems. In PODC ’02: Proceedings of the twenty-first annual sym-
posium on Principles of distributed computing, pages 233–242, New York, NY, USA,
2002. ACM.

64

[44] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scalable and dynamic
emulation of the butterfly. In PODC ’02: Proceedings of the twenty-first annual
symposium on Principles of distributed computing, pages 183–192, New York, NY,
USA, 2002. ACM. 4

[45] Gurmeet Singh Manku, Mayank Bawa, Prabhakar Raghavan, and Verity Inc. Sym-
phony: Distributed hashing in a small world. In In Proceedings of the 4th USENIX
Symposium on Internet Technologies and Systems, pages 127–140, 2003. 4

[46] Gurmeet Singh Manku, Moni Naor, and Udi Wieder. Know thy neighbor’s neighbor:
the power of lookahead in randomized p2p networks. In STOC ’04: Proceedings of
the thirty-sixth annual ACM symposium on Theory of computing, pages 54–63, New
York, NY, USA, 2004. ACM.

[47] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer information sys-
tem based on the xor metric. In IPTPS ’01: Revised Papers from the First Interna-
tional Workshop on Peer-to-Peer Systems, pages 53–65, London, UK, 2002. Springer-
Verlag. 3

[48] David L. Mills. Network time protocol (ntp). Technical report, RFC, United States,
1985.

[49] David L. Mills. On the accuracy and stablility of clocks synchronized by the network
time protocol in the internet system. SIGCOMM Comput. Commun. Rev., 20(1):65–
75, 1990.

[50] David L. Mills. Computer Network Time Synchronization: The Network Time Proto-
col. CRC Press, Inc., Boca Raton, FL, USA, 2006.

[51] Luiz Monnerat and Luiz R. Monnerat. D1ht: A distributed one hop hash table.
Technical report, In Proc of the 20th IEEE Intl Parallel & Distributed Processing
Symposium (IPDPS, 2005. 4, 57

[52] J. Ian Munro, editor. Proceedings of the Fifteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, January 11-14,
2004. SIAM, 2004. 66

[53] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers.
The state of peer-to-peer simulators and simulations. SIGCOMM Comput. Commun.
Rev., 37(2):95–98, 2007.

[54] Moni Naor, Udi Wieder, and Small Worlds. Know thy neighbor’s neighbor: Better
routing for skip-graphs and small worlds, 2004.

65

[55] C. Greg Plaxton, Rajmohan Rajaraman, Andrea W. Richa, and Andr’ea W. Richa.
Accessing nearby copies of replicated objects in a distributed environment. pages
311–320, 1997. 1

[56] Dongyu Qiu and R. Srikant. Modeling and performance analysis of bittorrent-like
peer-to-peer networks. In SIGCOMM ’04: Proceedings of the 2004 conference on
Applications, technologies, architectures, and protocols for computer communications,
pages 367–378, New York, NY, USA, 2004. ACM.

[57] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker.
A scalable content-addressable network. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and protocols for computer
communications, pages 161–172, New York, NY, USA, 2001. ACM. 2

[58] Sean Rhea, Byung-Gon Chun, John Kubiatowicz, and Scott Shenker. Fixing the
embarrassing slowness of opendht on planetlab. In WORLDS’05: Proceedings of the
2nd conference on Real, Large Distributed Systems, pages 25–30, Berkeley, CA, USA,
2005. USENIX Association.

[59] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn
in a dht. In ATEC ’04: Proceedings of the annual conference on USENIX Annual
Technical Conference, pages 10–10, Berkeley, CA, USA, 2004. USENIX Association.
3

[60] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In Middleware ’01: Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems Platforms
Heidelberg, pages 329–350, London, UK, 2001. Springer-Verlag. 2

[61] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A measurement study
of peer-to-peer file sharing systems. 2002. 49

[62] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans Kaashoek,
Frank Dabek, and Hari Balakrishnan. Chord: a scalable peer-to-peer lookup protocol
for internet applications. IEEE/ACM Trans. Netw., 11(1):17–32, 2003. 1, 2, 5, 10,
11, 48

[63] Kevin C. Zatloukal and Nicholas J. A. Harvey. Family trees: an ordered dictionary
with optimal congestion, locality, degree, and search time. In Munro [52], pages 308–
317.

[64] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and. Technical report, Berkeley, CA, USA,
2001. 2

66

	List of Figures
	List of Algorithms
	Introduction
	Previous Work
	Chord
	Variable Hop Count Lookups
	One Hop Lookups
	Two Hop Lookups

	A New Protocol: RootChord
	Overview
	Notation and Conventions
	Function Definitions

	Routing
	Finger Table
	Network Size Estimate
	Network Size Estimate Error Bounds
	Finger Table Size Bounds
	Simple Lookup
	Constant Time Lookup
	Lookups In An Unhealthy Network

	Joining
	Network Maintenance
	Discovery Of Dead Nodes
	A Growing Network
	A Shrinking Network

	Network Messaging
	Network Health

	RootChord Extensions
	Data Replication
	Parallelization Of Constant Time Lookup
	Extended Dead Node Discovery
	Remote Procedure Calls
	Fast Network Messaging

	Conclusion
	References

