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Abstract

The security of many cryptographic schemes relies on the intractability of the discrete
logarithm problem (DLP) in groups. The most commonly used groups to deploy such
schemes are the multiplicative (sub)groups of finite fields and (hyper)elliptic curve groups
over finite fields. The elements of these groups can be easily represented in a computer
and the group arithmetic can be efficiently implemented.

In this thesis we first study certain subgroups of characteristic-two and characteristic-
three finite field groups, with the goal of obtaining more efficient representation of elements
and more efficient arithmetic in the corresponding groups. In particular, we propose new
compression techniques and exponentiation algorithms, and discuss some potential benefits
and applications.

Having mentioned that intractability of DLP is a basis for building cryptographic pro-
tocols, one should also take into consideration how a system is implemented. It has been
shown that realistic (validation) attacks can be mounted against elliptic curve cryptosys-
tems in the case that group membership testing is omitted. In the second part of the thesis,
we extend the notion of validation attacks from elliptic curves to hyperelliptic curves, and
show that singular curves can be used effectively in such attacks.

Finally, we tackle a specific location-privacy problem called the nearby friend problem.
We formalize the security model and then propose a new protocol and its extensions that
solve the problem in the proposed security model. An interesting feature of the protocol is
that it does not depend on any cryptographic primitive and its security is primarily based
on the intractability of the DLP. Our solution provides a new approach to solve the nearby
friend problem and compares favorably with the earlier solutions to this problem.
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Chapter 1

Introduction

Discrete logarithm cryptography, in its broadest sense, is concerned with cryptographic
schemes whose security relies on the intractability of the discrete logarithm problem (DLP),
together with the underlying mathematical structures, implementation methods, perfor-
mance/usability comparisons etc.

This thesis consists of three contributions in discrete logarithm cryptography. In the
first part of the thesis, we study certain subgroups of characteristic-two and characteristic-
three finite fields and propose new compression techniques and exponentiation algorithms
that use compressed representation of elements in these groups. We discuss the advantages
of using these techniques over the conventional techniques in discrete logarithm cryptog-
raphy. In the second part, we re-emphasize the importance of validating public keys in
discrete logarithm cryptosystems by extending the notion of validation attacks from ellip-
tic curves to hyperelliptic curves, as well as by showing that singular curves can be used
effectively in such attacks. In the last part, we propose a new protocol to solve the nearby
friend problem; its efficiency is comparable to the earlier solutions and its security is based
on the intractability of DLP. Our protocol does not depend on any cryptographic primi-
tive as opposed to other solutions in the literature, which require for example the use of a
homomomorphic encryption scheme.

In Sections 1.1, 1.2 and 1.3, we present a review of the literature, motivate the problems
considered, and summarize our contributions on these three parts.

1.1 Compression in small characteristic finite fields

The Diffie-Hellman key agreement protocol [24] can be used by two parties A and B to
establish a shared secret by communicating over an unsecured channel. Let G = 〈g〉 be a
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prime-order subgroup of the multiplicative group F∗q of a finite field Fq. Party A selects a
private key a and sends ga to B. Similarly, B selects a private key b and sends gb to A.
Both parties can then compute the shared secret gab. Security of the protocol depends on
the intractability of the problem of computing gab from ga and gb; this is called the Diffie-
Hellman problem in G. The best method known for solving the Diffie-Hellman problem
in G is to solve the discrete logarithm problem in G, that is, computing a from ga. If q
is prime (say q = p), then the fastest algorithms known for solving the discrete logarithm
problem in G are Pollard’s rho method [73] and the number field sieve [38]. To achieve a
128-bit security level against these attacks, one needs to select #G ≈ 2256 and p ≈ 23072

[31, Section 4.2]. Note that even though the order of G is approximately 2256, the natural
representation of elements of G, namely as integers modulo p, are approximately 3072 bits
in length. If q is a power of 2 or 3, then one needs to select #G ≈ 2256 and q ≈ 24800

to achieve a 128-bit security level against Pollard’s rho method and Coppersmith’s index-
calculus attack [20, 58]. This brings an overhead both to the efficiency of the protocol and
to the number of bits that need to be stored or transmitted. In recent years, there have
been several proposals for compressing the elements of certain subgroups of certain finite
fields.

The first proposal was by Smith and Skinner in 1994 [83]; see also [10]. The main
idea is that Lucas functions can be used modulo a prime to perform exponentiation in
cryptographic applications. In fact, using this method the elements of the order-(q + 1)
subgroup G of F∗q2 can be identified by their traces over Fq. More precisely, the elements
of G can be uniquely identified up to conjugation over Fq. This construction yields a
compression factor of 2.

Gong and Harn [37] obtained a factor-3/2 compression and efficient exponentiation for
the compressed form of the elements in the order-(p2 +p+1) subgroup G of F∗p3 . Elements
of G are represented by a pair of elements from Fp. Similarly, Giuliani and Gong [34]
obtained a factor-5/2 compression and efficient exponentiation for the compressed form of
the elements in the order-(p4 − p3 + p2 − p + 1) subgroup G of F∗p10 . Brouwer, Pellikaan
and Verheul [13] obtained a factor-3 compression by representing elements of the order-
(p2−p+1) subgroup G of F∗p6 by a pair of elements from Fp. Even though they did not give
an algorithm to exponentiate the elements in G in their compressed form, they noted that
to exponentiate an element in G it suffices to know its compressed form and the exponent.
In 2000, Lenstra and Verheul [59] showed that elements of the order-(p2− p + 1) subgroup
G of F∗p6 can be uniquely represented (up to conjugation over Fp2) by their traces over
Fp2 . Note that the compression factor is the same as in [13]. An important contribution
of Lenstra and Verheul was a very efficient algorithm for exponentiation in G using the
trace representation. More recently, Shirase et al. [78] observed that the elements of the
order-(q −

√
3q + 1) subgroup G of F∗q6 , where q = 3m for some odd number m, can be

uniquely represented (up to conjugation over Fq) by their traces over Fq, thereby achieving
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a factor-6 compression. They also presented an algorithm for exponentiation in G. If g ∈ G
and c is its factor-6 compressed form in Fq, they first lifted c to the trace of g in Fq2 and
thereafter used an analogue of the Lenstra-Verheul algorithm to exponentiate g.

Rubin and Silverberg [74] introduced a compression/decompression method for finite
field elements by using a rational parametrization of an algebraic torus. They observed
that for a positive integer k and a prime power q, one can define an algebraic torus Tq,k, a
ϕ(k)-dimensional algebraic variety over Fq, such that its group Tk(Fq) of Fq-rational points
is isomorphic to the order-Φk(q) (cyclotomic) subgroup Gq,k of F∗

qk . Here, Φk(q) is the kth-
cyclotomic polynomial evaluated at q, and ϕ is Euler’s totient function. For the cases k = 2
and k = 6, Rubin and Silverberg presented explicit compression/decompression algorithms
for the elements of Tk(Fq), and showed that the Smith-Skinner, Gong-Harn and Lenstra-
Verheul representations are based on certain quotients of the algebraic tori, Tq,2, Tq,3 and
Tq,6, respectively, thus explaining the compression ratios of 2/ϕ(2) = 2, 3/ϕ(3) = 3/2 and
6/ϕ(6) = 3. Later, van Dijk et al. [88], improving on an earlier work [89], constructed

an efficient bijection between Tk(Fq) × Fm
k and Fϕ(k)+m

q and obtained, asymptotically, a
compression factor of k/ϕ(k). In particular, when representing i elements in Tk(Fq) for
k = 30 and k = 210, they obtained compression factors 30i/(8i + 2) with m = 2, and
210i/(48i + 24) with m = 24, respectively.

Having summarized the two different compression approaches in finite fields it is natural
to ask the following two questions. First, what is the best possible compression ratio for the
elements of a subgroup G of the multiplicative group F∗ of a finite field F, where F is the
minimal field with G ⊂ F∗? One should of course require the corresponding compression
and decompression functions to be efficiently computable, and the decompression of an
element to be unique or almost unique. Second, how does the torus-based compression
method compare to the trace-based compression method? The first question was partially
answered in [74] for cyclotomic subgroups of finite fields. As already mentioned above,
Rubin and Silverberg noted that one would hope to use only ϕ(k) elements in Fq in order
to (uniquely) represent elements of Gq,k, which, in fact, seems to give the best possible
compression factor as |Gq,k| ≈ qϕ(k). However, one might expect better compression factors
when considering proper subgroups G of Gq,k. In general, it would be desirable to compress
the elements of any order-` subgroup G` ( Gq,k ⊂ F∗

qk by a factor (k log q)/ log ` in any
characteristic.

In the first part of the thesis, we achieve factor-4 and factor-6 compression of certain
proper subgroups G of Gq,4 and Gq,6 in characteristic-two and characteristic-three finite
fields, respectively. In particular, |G| = q ±

√
2q + 1 in characteristic-two fields and

|G| = q ±
√

3q + 1 in characteristic-three fields. Note that these compression factors
are twice the compression factors for groups Gq,4 and Gq,6, which seem to be the best
possible compression factors since |G| ≈ q.

More precisely, we propose two compression methods: trace-based compression and
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torus-based compression. In Chapter 2, we discuss the trace-based compression and its
applications, and present several exponentiation algorithms using trace-based compressed
representation of elements. In Chapter 3, we show that double-exponentiation using trace-
based compressed representation of elements can be performed efficiently. This speeds up
the exponentiation algorithms given in Chapter 2, in addition to allowing us to deploy our
compression technique in some other cryptographic applications. We present our torus-
based compression technique in Chapter 4, together with several exponentiation algorithms
using torus-based compressed representation of elements. Chapter 4 includes a comparison
of the trace-based and torus-based compression techniques, and of the resulting exponenti-
ation algorithms. We also argue in Chapter 4 that the torus-based compression techniques
cannot, in general, be extended to achieve compression factor (k log q)/ log ` for proper
order-` subgroups G` of Gq,k.

Sections 1.1.1, 1.1.2 and 1.1.3 provide more details on our contributions on compression.

1.1.1 Contributions of Chapter 2

Let q = 2m, where m is odd, and note that

q4 − 1 = (q − 1)(q + 1)Φ4(q)

= (q − 1)(q + 1)(q −
√

2q + 1)(q +
√

2q + 1).

In Chapter 2 , we achieve a factor-4 compression for the subgroups G of Gq,4 of orders
q ±
√

2q + 1. We show that the elements of G can be uniquely represented (up to conju-
gation over Fq) using their traces over Fq, and that exponentiation in G can be efficiently
performed using the compressed representations. Our method gives a better compression
factor than the Smith-Skinner system that compresses elements in G by a factor of 2. We
note that our factor-4 compression does not contradict the Rubin-Silverberg observation
about the necessity of using ϕ(k) Fq-elements for representing elements of Gq,k since our
construction compresses elements of subgroups of relatively small order of Gq,k.

Let q = 3m, where m is odd, and note that

q6 − 1 = (q3 − 1)(q + 1)Φ6(q)

= (q3 − 1)(q + 1)(q −
√

3q + 1)(q +
√

3q + 1).

As mentioned earlier, Shirase et al. showed that by using traces over Fq one can achieve a
factor-6 compression (up to conjugation over Fq) for the elements of the order-(q−

√
3q+1)

subgroup G of Gq,6. Moreover, exponentiation in G can be efficiently performed when
elements are represented by their traces over Fq2 . We observe that a similar compression
technique and efficient exponentiation also applies to the order-(q+

√
3q+1) subgroup G of
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Gq,6. Suppose that g ∈ G and c ∈ Fq is its factor-6 compressed representation. We present
six exponentiation algorithms. The first works directly with the compressed element c. The
second algorithm first lifts c to the trace of g over Fq3 , and then employs an exponentiation
algorithm of Scott and Barreto [77]. The third algorithm first lifts c to g, and then uses
a conventional exponentiation method. In the fourth algorithm, we first determine f2(x),
the minimal polynomial of g over Fq2 , by partially decompressing c to an element in Fq2 .
Then we construct Fq6 = Fq2 [x]/(f2(x)), and use a conventional exponentiation method.
The idea of the fifth and sixth algorithms is similar to the fourth algorithm except that we
use the minimal polynomials of g over Fq3 and Fq, respectively. In the case where the base
is fixed, the first algorithm is expected to be at least 54% faster than the XTR3 algorithm
presented in [78].

Besides reducing transmission costs in the Diffie-Hellman and related protocols, we
observe that compression techniques have applications in pairing-based cryptography where
bilinear pairings derived from supersingular elliptic curves of embedding degree 4 and 6
over finite fields F2m and F3m are employed. The pairing values lie in prime-order subgroups
of orders dividing q±

√
2q +1 and q±

√
3q +1 (where q = 2m or q = 3m) of F∗24m and F∗36m ,

respectively, and thus it can be beneficial to compress these pairing values.

1.1.2 Contributions of Chapter 3

Double-exponentiation in the context of compressed representations is the operation of
computing the compressed representation of gak+bl given integers a, b, and the compressed
representations of gk, gl. Having efficient double-exponentiation is crucial in cryptographic
applications. For example, in ElGamal type signature schemes the verifier should per-
form a double-exponentiation to verify the signature on the received message. Moreover,
double-exponentiation can be used to speed up single-exponentiation by representing the
exponent τ = ak+b where k is some fixed integer and a, b are half the bitlength of τ . Then
gk can be precomputed and given τ , one can compute gτ = (gk)a · gb using simultaneous
exponentiation (Straus-Shamir’s trick ; see Algorithm 14.88 in [67]) much more efficiently
than direct exponentiation by τ . As mentioned earlier, the trace function is not multi-
plicative and hence it is not clear if one can favorably exploit this idea when the trace
representation of elements is used.

Lenstra and Stam [84] showed that in the case of factor-2 and factor-3 compression
in large-prime characteristic fields one can perform double-exponentiation very efficiently
and they discuss some related applications such as speeding up the single-exponentiation
algorithm for compressed elements.

In Chapter 3, we show that double-exponentiation that works directly with factor-4
trace-based compressed representation of elements can be performed very efficiently in the
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case of characteristic-two fields, and describe two particular cryptographic applications.
As a first application, we show how to use double-exponentiation to speed up single-
exponentiation thereby obtaining an estimated 20% acceleration over the fastest single-
exponentiation algorithm presented in Chapter 2 when the base is general. Speeding up
the single-exponentiation is important as it speeds up some cryptographic protocols using
the factor-4 compression technique. For example, as we observe in Chapter 2, the factor-4
compression technique can be applied to the image of the symmetric bilinear pairing derived
from an embedding degree k = 4 supersingular elliptic curve defined over a characteristic-
two field. If this pairing is used to implement the identity-based key aggrement protocol of
Scott [76], then the messages exchanged can be compressed by a factor of 4; moreover, the
single-exponentiation in the protocol can be performed using the compressed representation
of elements. As a second application, we give details on deploying factor-4 compressed
representation of elements in the Nyberg-Rueppel signature scheme [72]; our method also
reduces the size of public keys.

1.1.3 Contributions of Chapter 4

In Chapter 4, we first argue that the torus-based compression techniques cannot, in gen-
eral, be extended to achieve compression factor (k log q)/ log ` for proper order-` subgroups
G` of Gq,k. At first glance our arguments might appear to contradict the aforementioned
compression factors 4 and 6 achieved in the case of Gq±

√
2q+1 ⊂ Gq,4 where q is a power of

2, and Gq±
√

3q+1 ⊂ Gq,6 where q is a power of 3. However, we explain why this discrepancy
occurs, and how it helps to work in characteristic-two and three fields to compress the
elements of certain subgroups G` by a factor k ≈ (k log q)/ log `, when ` ≈ q. In partic-
ular, we present torus-based compression methods in characteristic-two and three fields
that achieve factor-4 and 6 compression, respectively. Our approach has the advantage
that computing the decompression functions is essentially free. This yields more efficient
exponentiation algorithms compared to the trace-based exponentiation algorithms where
decompression is quite costly.

1.2 Validation in discrete logarithm cryptosystems

The purpose of public-key validation is to verify that a public key possesses certain arith-
metic properties. Public-key validation is especially important in discrete logarithm pro-
tocols where a party B̂ combines his private key with a public key received from a second
party Â to form a group element σ. A dishonest party Â might select an invalid public
key in such a way that the subsequent use of σ in the protocol leaks information about
B̂’s private key. Lim and Lee [62] demonstrated the importance of public-key validation
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by presenting small-subgroup attacks on some discrete logarithm key agreement protocols
that are effective if the receiver of a group element does not verify that the element belongs
to the desired group of high order (e.g., a prime-order DSA-type subgroup of F∗p). In [9, 4],
invalid-curve attacks were designed that are effective on elliptic curve protocols if the re-
ceiver of a point does not verify that the point indeed lies on the chosen elliptic curve;
see also [64, 66, 65]. Chen, Cheng and Smart [19] illustrated the importance of public-key
validation in identity-based key agreement protocols that use bilinear pairings.

1.2.1 Contributions of Chapter 5

The performance of low-genus hyperelliptic curves has been shown to be competitive with
that of elliptic curves1; see [5] for a summary of recent work. We demonstrate that invalid-
curve attacks can be successfully mounted on protocols based on genus-2 hyperelliptic
curves if the appropriate public-key validation is not performed. We also show that singular
curves can be used in mounting invalid-curve attacks against (hyper)elliptic curve protocols.
We illustrate our attacks on two recently-proposed discrete logarithm protocols — the Twin
Diffie-Hellman key agreement scheme [16] and the XCR signature scheme [55].

In order to analyze invalid-curve attacks on hyperelliptic curve cryptosystems, it is
useful to know the number Ng(q) of isomorphism classes of genus-g hyperelliptic curves
over a finite field Fq. The isomorphism classes of genus-g hyperelliptic curves over an
algebraically closed field K are in 1-1 correspondence with the elements of a (2g − 1)-
dimensional irreducible subvariety Hg of the moduli space Mg over K (see [41, p.347]),
suggesting that number is of the order of q2g−1. This was confirmed by Nart [71], who
gave a closed formula for Ng(q). We give an elementary counting argument that Ng(q) =
2q2g−1 +O(gq2g−2).

1.3 Location privacy

The rapid advent of mobile computing and consequent introduction of new technologies like
smart phones and GPS together with the ever increasing mobility of the human populace
have opened up the possibility of a plethora of services that could not even be conceived of a
decade earlier. Different kinds of location-based services are increasingly becoming popular
among the users of mobile devices [90]. However, this also calls forth a concern about the
privacy of the location information of the users of such devices. So one is confronted with
two contradictory goals – users would like to take advantage of different services that cater
to their needs based on a particular location while at the same time protecting the very

1Elliptic curves are the genus-1 hyperelliptic curves.
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privacy of that location information. How to meet these apparently contradictory goals,
or in other words to get the best of both worlds, is a major technological challenge.

In the last part of the thesis, we focus our attention on the following scenario. Suppose a
user Alice, in a distributed mobile computing environment, wants to determine whether one
of her friends, Bob, is in a nearby location or not. This is the so-called nearby friend problem
and is relevant in the context of social networking and buddy tracking applications [3]. The
trivial solution for Alice is to contact Bob and either reveal her own location to him or
ask Bob to do so. But this comes at the cost of compromising one of the friend’s location
privacy altogether even when they are not actually nearby. Instead the users would like
to have some control over their private location information so that Alice can learn Bob’s
location only if they are actually nearby and Bob is willing to reveal his location to Alice.
The problem might be solved in a privacy-preserving way if we assume the existence of
an ideal trusted third party with whom each party maintains a secret communication
channel. Parties send their private location information to that trusted party who then
decides whether they are nearby or not and informs them accordingly.

Based on the above discussion one may notice that the nearby friend problem is some-
what akin to the socialist millionaires’ problem [45] in cryptology where the two partici-
pants learn whether they both have the same wealth or not without first disclosing their
wealth. This can also be viewed as a concrete instantiation of the privacy-preserving set
operations problem [52] or the two-party private matching problem [32]. However, the
challenge here is to solve it in the resource-constrained environment of mobile devices.

We would like to solve the problem in a distributed setting without taking recourse
to any trusted party and moreover solve it in such a way that the computational require-
ment, communication bandwidth, and number of communication rounds can be kept to
a minimum. This, of course, has to be achieved in a secure way in an adversarial envi-
ronment, i.e., the participants need the assurance that neither its communicating partner
receives any information other than what (s)he is entitled to nor should it be possible for
an eavesdropper to infringe upon their privacy.

Some initial attempts to solve the above problem can be found in the works of Atallah
and Du [25] and Køien and Oleshchuk [54]. However, the solutions are less than satisfactory
as the former requires a semi-trusted third party and several rounds of communications
while the latter has some security vulnerabilities; see [94]. In a pioneering paper, Zhong,
Goldberg and Hengartner [94] proposed three protocols to solve the above problem based on
a cryptographic primitive called homomorphic encryption [36]. They assume that Alice and
Bob establish a secure channel that provides both confidentiality and authentication prior
to running the protocols. Such a communication channel can be established, for example,
through a TLS connection [23]. Their first protocol, called Louis, requires the service of
an online semi-trusted third party. The second protocol, called Lester, does not require
any third party but has the disadvantage that, with some additional work, Alice might be
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able to determine Bob’s location even if they are not considered to be in nearby locations.
The third protocol, called Pierre, does not suffer from any of the above deficiencies. It
is quite efficient, in particular when one uses the homomorphic encryption scheme due
to Cramer, Genarro and Schoenmakers [21] in the elliptic curve setting. Zhong [93] later
proposed another protocol, called Wilfrid, based on the idea of private set intersection
of [32]. This too makes use of homomorphic encryption and a communication channel that
is both confidential and authenticated.

1.3.1 Contributions of Chapter 6

We take the work of Zhong et al. [94] as our point of departure by formalizing the state-
ment of the nearby friend problem as well as its security model. We then proceed to
propose a new protocol, called NFP-I, in the line of Diffie-Hellman type of simple pass-
word exponential key exchange (SPEKE) [44]. An advantage of our protocol is that it
only assumes the existence of an authenticated channel between the two parties, not a
confidential one. Also note that we do not require any other cryptographic primitive such
as homomorphic encryption that was used in [94] and [93]. The protocol is quite simple
and we propose it as a new primitive that might serve as a building block for more com-
plex privacy-preserving applications such as private matching [32]. We provide a security
analysis to show that the protocol meets its desired objectives in the security model under
the decision Diffie-Hellman assumption and a variant of it. Our protocol is quite efficient
and compares favorably with the currently best protocol known, Wilfrid, that achieves the
same functionality (see Table 1.1).

Alice → Bob Bob → Alice decide whether nearby:
# exps message size # exps message size # exps by Alice

Wilfrid 4 4 2.31 2 1
NFP-I 1 1 2 2 1

Table 1.1: Performance comparison between Wilfrid and NFP-I when implemented in a
group G where |G| ≈ 2256 and the discrete logarithm problem is assumed to be hard. Both
protocols require two communication steps. The message size is the number of elements of
G.

We also discuss several extensions of this basic protocol NFP-I. As a byproduct, we
improve the functionality and the performance of the Pierre protocol by applying one of
our extension techniques.
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Chapter 2

Trace-Based Compression by a
Factor-4 and 6

In this chapter we achieve trace-based factor-4 compression for the subgroups G ⊂ F∗q4 of

orders q ±
√

2q + 1, where q = 2m, m is odd; and factor-6 compression for the subgroups
G ⊂ F∗q6 of orders q±

√
3q+1, where q = 3m, m is odd. Moreover, we present and compare

several algorithms for performing exponentiation in G using compressed representations.
In particular, in the case where the base is fixed, we expect to gain at least a 54% speed up
over the fastest previously known exponentiation algorithm that uses factor-6 compressed
representations. The results of this chapter are to appear in [50].

The remainder of this chapter is organized as follows. We begin in Section 2.1 by
describing some cryptographic applications of our compression methods. Section 2.2 intro-
duces some terminology and sets the notation that we will use throughout Chapters 2 and
3. In Section 2.3, we provide some details on previous work. Sections 2.4 and 2.5 describe
our compression and exponentiation techniques for characteristic-two and three fields. The
exponentiation methods are compared in Section 2.6. We make some concluding remarks
in Section 2.8.

2.1 Cryptographic applications

In this section we give some examples of cryptographic protocols where our compression
techniques can be beneficial.

As described in Section 1.1, compression is useful in Diffie-Hellman and related key
agreement protocols where the underlying group is a prime-order subgroup of the mul-
tiplicative group of a finite field. Indeed, Koblitz [53] studied the efficiency of discrete
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logarithm protocols when the underlying group G is a subgroup of F∗q4 for q = 3m, and

where #G divides q ±
√

3q + 1.

Beginning with the seminal work of Joux [47], Sakai-Ohgishi-Kasahara [75] and Boneh-
Franklin [11], bilinear pairings have been widely used to design protocols for various
cryptographic tasks. These protocols can be described using symmetric bilinear pairings
e : G1 ×G1 → G where G1 and G are groups of prime order n. A necessary condition for
the security of these protocols is that the discrete logarithm problems in G1 and G should
be intractable. Such pairings can be realized by selecting G1 to be a group of points in
E1(Fq), where q = 2m and E1 : Y 2 + Y = X3 + X + b where b ∈ {0, 1} is a supersingular
elliptic curve over Fq with #E1(Fq) = q ±

√
2q + 1. This elliptic curve has embedding

degree 4, i.e., the smallest positive integer k for which #E1(Fq) divides qk − 1 is k = 4.
Then G is the order-n subgroup of F∗q4 . For example, if a 128-bit security level is desired,

then one could use E1/Fq : Y 2 + Y = X3 + X with q = 21223 [2]. This curve has the
property that #E1(Fq) = 5n where n is a 1221-bit prime, and so Pollard’s rho method for
solving the discrete logarithm problem in G1 or G has running time approximately 2611.
Moreover, Coppersmith’s algorithm [20] for solving the discrete logarithm problem in G
has running time very roughly 2128 (see Table 6 of [58]).

Symmetric bilinear pairings can also be realized by selecting G1 to be a group of points
in E2(Fq), where q = 3m and E2 : Y 2 = X3 −X ± 1 is a supersingular elliptic curve over
Fq with #E2(Fq) = q ±

√
3q + 1. This elliptic curve has embedding degree 6, and G is

the order-n subgroup of F∗q6 . For example, if a 128-bit security level is desired, then one

could use E2/Fq : Y 2 = X3 − X + 1 with q = 3509 [2]. This curve has the property that
#E2(Fq) = 7n where n is a 804-bit prime, and so Pollard’s rho method for solving the
discrete logarithm problem in G1 or G has running time approximately 2402. Moreover,
Coppersmith’s algorithm for solving the discrete logarithm problem in G has running time
very roughly 2128.

In the Waters signature scheme [91], party A has a private key Z = zP and a public
key ζ = e(P, P )z. In order to sign a message M , A first computes H = Hash(M) ∈ G1,
where Hash is a cryptographic hash function that hashes its input elements into elliptic
curve group elements, and chooses a random integer r ∈ [1, n − 1]. Then A computes
α = Z + rH and β = rP and sends (α, β) as her signature on M . A party B accepts A’s
signature on M if and only if e(α, P ) = ζ · e(β, H). Our compression technique reduces
the size of A’s public key ζ by a factor of 4 or 6. More precisely, at the 128-bit security
level, the size of the public key is reduced from 4892 bits to 1223 bits if E1 is used, or from
4841 bits to 807 bits if E2 is used. In order to verify A’s signature, B can check if the
compressed value of e(α, P )e(β,−H) is equal to the compressed value of ζ.

Another pairing-based application is the identity-based key agreement protocol of Scott
[76]. In Scott’s protocol, party A first computes a particular pairing value g ∈ G, and sends
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PA = ga to party B. Similarly, B computes the pairing value g ∈ G and sends PB = gb

to A. Finally, both A and B compute the shared secret P a
B = P b

A. (For details of the
computations, please refer to [76].) If the symmetric bilinear pairings described above are
employed, then messages exchanged can be compressed by factors of 4 or 6, and moreover
the computations can take place over smaller fields rather than Fq4 or Fq6 .

2.2 Preliminaries and notation

Let q be a prime power, and let Fq denote a finite field with q elements. Let n be a
prime such that gcd(n, q) = 1, and let k be the smallest positive integer such that qk ≡ 1
(mod n). Then Fqk has a multiplicative subgroup of order n which cannot be embedded in
the multiplicative group of any extension field Fqi for 1 ≤ i < k. For such a triple (q, k, n)
we denote the multiplicative group of order n by µn and call k the embedding degree of µn

over Fq.

Let g ∈ Fqk and let s be a positive divisor of k. We assume that g is not contained in

any proper subfield of Fqk . The conjugates of g over Fqs are gi = gqis
for 0 ≤ i < k/s. The

trace of g over Fqs is the sum of the conjugates of g over Fqs , i.e.,

Trs(g) =

k
s
−1∑

i=0

gi ∈ Fqs . (2.2.1)

The minimal polynomial of g over Fqs is the monic polynomial

fg,s(x) =

k
s
−1∏

i=0

(x− gi). (2.2.2)

Note that fg,s(x) ∈ Fqs [x]. When s = 1 we simply use Tr(g) and fg(x) by abuse of notation.
Also, we will assume that the conjugates of g over Fqs are well defined for any integer i by
setting gi = gi mod k/s.

We fix some notation for finite field operations that will be used in the remainder of
the chapter. We will denote by Ai, ai, Ci, Fi, Ii, Si, Mi and mi the cost of operations of
addition, addition by 1 or 2, cubing, exponentiation by a power of the characteristic of
the field, inversion, squaring, multiplication, and multiplication by 2 in Fqi for i = 1, 2, 3.
SRi,j will denote the cost of finding a root of a degree i irreducible polynomial over Fqj .

We use soft-O notation Õ(·) as follows: a = Õ(b) if and only if for some constant c,
a = O(b(log2 b)c).
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2.3 Previous work on trace-based compression factors

2, 3 and 6

2.3.1 Compression factor 2 (LUC cryptosystem)

A Lucas sequence Vi(P, Q) of the second kind is recursively defined by

V0(P, Q) = 0, V1(P, Q) = P, Vi+2 = PVi+1(P, Q)−QVi(P, Q),

where P and Q are elements of a commutative ring with identity. In 1994, Smith and
Skinner [83] proposed cryptosystems, which are analogous to Diffie-Hellman and ElGamal
type cryptosystems, that use Lucas sequences Vi(P, 1) modulo a prime p (also see [70, 82]
for earlier proposals that use Lucas sequences or Dickson polynomials modulo a composite
number). In [83], it was argued that subexponential algorithms to compute discrete loga-
rithms in finite fields cannot be applied to LUC cryptosystems as the Lucas sequences are
not closed under multiplication. However, it was later shown that LUC cryptosytems are
in fact reformulation of cryptosystems that work with the multiplicative subgroup of F∗p2

of order n = p + 1; see [10].

The key idea behind LUC cryptosystems is that Lucas functions can be used to perform
LUC-exponentiation in a finite field. Noting that if P ∈ Fq and x2−Px+1 = (x−α)(x−β)
then Vi(P, 1) = αi + βi, the main idea behind LUC-exponentiation can be summarized as
follows. Let µn = 〈g〉 be the multiplicative subgroup of F∗q2 of order n = q + 1. Let
cu = Tr(gu) be the trace of gu over Fq, and fgu(x) the minimal polynomial of gu over Fq.
Then fgu(x) = x2− cux+1 and the following recursive relation holds for all integers u and
v:

cu+v = cucv − cu−v.

In particular, c2u = c2
u − c0 = c2

u − 2 and c2u+1 = cu+1cu − c1, whence given a state
su = [cu, cu+1] one can compute s2u and s2u+1. This observation leads to an efficient
double-and-add algorithm for computing cab given ca and b, and yields a compression
factor of 2.

2.3.2 Compression factor 3 (LUCKY cryptosystem)

Let µn = 〈g〉 be the multiplicative subgroup of F∗p6 of order n = p2−p+1. Let cu = Tr(gu)
be the trace of gu over Fp, and fgu(x) the minimal polynomial of gu over Fp. Brouwer,
Pellikaan and Verheul [13] obtained a compression factor 3 by identifying elements of µn

with the coefficients of their minimal polynomials over Fp. In particular, they showed that

fgu(x) = x6 − cux
5 + dux

4 − eux
3 + dux

2 − cux + 1,
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where
eu = 2 + 2cu + c2

u − 2du.

Hence, each element gu can be uniquely identified (up to conjugation over Fp) with a
pair (cu, du) ∈ Fp × Fp. Brouwer, Pellikaan and Verheul also presented an algorithm
(see Sections 3.3 and 5 in [13]) to compute (cab, dab) given (ca, da) and an integer b. The
algorithm is as follows. Given (ca, da) we first construct the minimal polynomial of ga over
Fp and adjoin a root ρa of this polynomial to Fp thus obtaining a copy of Fp6 . Next, we raise
ρa to the power b and determine the minimal polynomial of ρb

a over Fp. From the coefficients
of this polynomial we can determine (cab, dab), as required. We note that the exponentiation
algorithm is commutative and so it can be deployed in Diffie-Hellman-type protocols. That
is, given (c1, d1) and integers a and b, if we compute (ca, da) from (c1, d1) and a, and then
compute (cab, dab) from (ca, da) and b; and if we compute (cb, db) from (c1, d1) and b, and
then compute (cba, dba) from (cb, db) and a, then we have (cab, dab) = (cba, dba). The proof
follows from the following theorem.

Theorem 2.3.1. Let F1 be a finite field of order p6, and let g ∈ F1 be an element whose
minimal polynomial mg(x) over Fp has degree 6. Let F2 = F[α]/ (mg(α)), and let Ψ :
F1 → F2 be the isomorphism defined by g 7→ α. Finally, let h ∈ F1 and β = Ψ(h). Then
mh(x) = mβ(x).

Proof. Since mh(h) = 0, we have Ψ(mh(h)) = 0. But Ψ(mh(h)) = mh(Ψ(h)) = mh(β), so
mh(x) is the minimal polynomial of β over Fp.

2.3.3 Compression factor 3 (XTR cryptosystem)

Let p ≡ 2 (mod 3) be a prime and µn = 〈g〉 the multiplicative subgroup of F∗p6 of order

n = p2 − p + 1. Let cu = Tr(gu) be the trace of gu over Fp2 , and fgu(x) the minimal
polynomial of gu over Fp2 . It was observed in [59] that fgu(x) = x3 − cux

2 + cp
ux − 1 and

the following recursive relation holds for all integers u and v:

cu+v = cucv − cp
vcu−v + cu−2v.

In particular, it was shown in [59] that given a state su = [cu−1, cu, cu+1] one can compute s2u

and s2u+1. This observation leads to an efficient double-and-add algorithm for computing
cab given ca and b, and yields a compression factor of 3.

2.3.4 Compression factor 6 (XTR3 cryptosystem)

Let q = 32r+1 and µn = 〈g〉 the multiplicative subgroup of F∗q6 of order n = q −
√

3q + 1.
Let cu = Tr(gu) be the trace of gu over Fq. It was observed in [78] that given cu one can

15



efficiently compute the trace c̃u of gu over Fq2 up to conjugation over Fq. Now, given ca

and b, one can first compute c̃a, then compute c̃ab using an algorithm analogous to that of
XTR, and finally obtain cab = c̃ab+ c̃q

ab. This leads to an efficient double-and-add algorithm
for computing cab given ca and b, and yields a compression factor of 6.

2.4 Multiplicative groups with embedding degree 4

In this section we concentrate on multiplicative groups µn with embedding degree k = 4
over Fq. In other words, we fix parameters (q, n) such that q is a prime power, n is a prime,
gcd(q, n) = 1, q4 ≡ 1 (mod n), and qi 6≡ 1 (mod n) for 1 ≤ i < 4. Finally, we let h be a
positive integer and define th = q + 1− h · n to be the trace of µn over Fq with respect to
the cofactor h. Throughout the rest of this section we will assume that the cofactor h is
fixed, and we simply denote the trace of µn by t instead of th.

In the following lemma we show that g ∈ µn together with its conjugates can be uniquely
represented by the pair (Tr(g), Tr(gt)) of Fq-elements. This already gives us compression
by a factor 2. Furthermore, we will show in Corollary 2.4.5 that in characteristic-two finite
fields it is possible to write all the coefficients of the minimal polynomial of g over Fq in
terms of Tr(g) alone and hence achieve compression by a factor 4.

Lemma 2.4.1. Let µn be the multiplicative subgroup of F∗q4 of order n with embedding
degree 4, trace t, and cofactor h. Let g ∈ µn and let gi, for i = 0, 1, 2, 3, be the conjugates
of g over Fq. (Recall the convention that gi = gi mod 4.) Then
(i) gigi+1 = gt

i for i = 0, 1, 2, 3.
(ii) gigi+2 = 1 for i = 0, 1.
(iii) fg(x) = x4 − Tr(g)x3 + (Tr(gt) + 2)x2 − Tr(g)x + 1.

Proof. (i) gigi+1 = gq+1
i = gt

i since gi is of order n and q + 1− t ≡ 0 (mod n).

(ii) gigi+2 = gq2+1
i = 1 since gi is of order n and q2 + 1 ≡ 0 (mod n).

(iii) Using (i) and (ii) gives

fg(x) =
3∏

i=0

(x− gi)

= x4 −

(
3∑

i=0

gi

)
x3 +

( ∑
0≤i<j≤3

gigj

)
x2 −

( ∑
0≤i<j<k≤3

gigjgk

)
x + 1

= x4 − Tr(g)x3 + (Tr(gt) + 2)x2 − Tr(g)x + 1.
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Suppose we fix a generator g ∈ Fq4 of µn, that is µn = 〈g〉. In order to simplify the
notation we define cu = Tr(gu) for any integer u. Note that c0 = 0, c1 = Tr(g), cu = cu mod n

and cqu = cq
u = cu.

Lemma 2.4.2. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 of order n with embedding
degree k = 4 and trace t. Then for all integers u and v we have
(i) cu = c−u.
(ii) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1).

Proof. (i) This follows from Lemma 2.4.1(ii).
(ii) By Lemma 2.4.1(i) and (ii) it follows that

cucv = (gu
0 + gu

1 + gu
2 + gu

3 )(gv
0 + gv

1 + gv
2 + gv

3)

=
3∑

i=0

gu+v
i +

3∑
i=0

gu
i gv

i+1 +
3∑

i=0

gu
i gv

i+2 +
3∑

i=0

gu
i gv

i+3

= cu+v +
3∑

i=0

gu−v
i (gv

i g
v
i+1) +

3∑
i=0

gu−v
i (gv

i g
v
i+2) +

3∑
i=0

gv
i g

u
i+1

= cu+v +
3∑

i=0

g
u+v(t−1)
i +

3∑
i=0

gu−v
i +

3∑
i=0

g
v+u(t−1)
i

= cu+v + cu+v(t−1) + cu−v + cv+u(t−1).

Theorem 2.4.3. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 of order n with em-
bedding degree 4 and trace t. Then for all integers u and v we have

cu+v = cucv − cu−v(ctv + 2) + cu−2vcv − cu−3v. (2.4.1)

Proof. First start with

cucv = (gu
0 + gu

1 + gu
2 + gu

3 )(gv
0 + gv

1 + gv
2 + gv

3)

= cu+v +
3∑

i=0

3∑
j=0

j 6=i

gu
i gv

j

= cu+v +
3∑

i=0

3∑
j=0

j 6=i

gu−v
i (gv

i g
v
j )

= cu+v +
3∑

i=0

gu−v
i (gtv

i + gtv
i+3 + 1), by Lemma 2.4.1(i) and (ii)
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= cu+v + cu−v + cu−vctv −
3∑

i=0

gu−v
i (gtv

i+1 + gtv
i+2). (2.4.2)

Then observe that

3∑
i=0

gu−v
i gtv

i+1 =
3∑

i=0

gu−v
i gqtv

i

=
3∑

i=0

g
(u−2v)+qv
i since qt ≡ q2 + q ≡ q − 1 (mod n) (2.4.3)

and

3∑
i=0

gu−v
i gtv

i+2 =
3∑

i=0

gu−v
i g−tv

i

=
3∑

i=0

g
(u−2v)−qv
i , since t ≡ q + 1 (mod n). (2.4.4)

Substituting (2.4.3) and (2.4.4) into (2.4.2) we obtain

cucv = cu+v + cu−v + cu−vctv − (c(u−2v)+qv + c(u−2v)−qv). (2.4.5)

Now, let u′ = u− 2v, v′ = qv. Then

u′ + v′(t− 1) ≡ (u− 2v) + q2v ≡ u− 3v (mod n),

v′ + u′(t− 1) ≡ qv + (u− 2v)q ≡ q(u− v) (mod n),

and using Lemma 2.4.2 (ii) with u′, v′ gives

c(u−2v)+qv + c(u−2v)−qv = cu−2vcqv − (cu−3v + cq(u−v))

= cu−2vcv − (cu−3v + cu−v). (2.4.6)

Finally, (2.4.5) and (2.4.6) complete the proof.

2.4.1 Characteristic-two finite fields

Let r be a positive integer, and let q = 22r+1, t = ±2r+1, T = |t|. The values of r for which
q + 1− t = hn and n is prime lead to a multiplicative subgroup µn of F∗q4 of prime order n
with embedding degree 4. Throughout this section we fix h, n, q, t, T and µn = 〈g〉 in this
way, and also write cu = Tr(gu).

The following recursive relations follow from Theorem 2.4.3 by noting that the charac-
teristic of Fq is 2 and also that cvt = cvT = cT

v (see Lemma 2.4.2(i)).
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Corollary 2.4.4. Let µn be the multiplicative subgroup of F∗q4 with embedding degree 4 and
trace t. Then for all integers u and v we have
(i) cu+v = cucv + cu−vc

T
v + cu−2vcv + cu−3v.

(ii) c2u = c2
u.

Corollary 2.4.5. Let µn be the multiplicative subgroup of F∗q4 with embedding degree 4 and
trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x4 + cux
3 + cT

u x2 + cux + 1.

Proof. The proof follows from Lemma 2.4.1(iii) and Corollary 2.4.4(ii).

Remark 2.4.6. Throughout the remainder of this section we will assume without loss of
generality that the trace t is positive. If t is negative then one can replace the expressions
of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without changing the validity of the

results in this section.

2.4.2 An exponentiation algorithm in µn

Corollary 2.4.5 shows that the element gu ∈ µn can be represented uniquely (up to conjuga-
tion) by its trace cu. Our next objective is to develop an efficient method for computing ca

given c1 and a; this is the exponentiation operation in µn. We define s1 = [c−1, c0, c1, c2] =
[c1, 0, c1, c

2
1] to be the initial state. For a given state su = [cu−2, cu−1, cu, cu+1] with u ≥

1, if we can efficiently compute the states s2u = [c2u−2, c2u−1, c2u, c2u+1] and s2u+1 =
[c2u−1, c2u, c2u+1, c2u+2] then we immediately have an efficient double-and-add algorithm
for computing ca given c1 and a.

Theorem 2.4.7. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 with embedding degree
4 and trace t. Let cu = Tr(gu),

A =


c1 c1 0 0
0 c1 c1 0
0 1 ct

1 1
1 ct

1 1 0

 , X =


c2u−3

c2u−1

c2u+1

c2u+3

 , Y =


(cu + cu−2)

2 + c2
u−1c

t
1

(cu+1 + cu−1)
2 + c2

uc
t
1

(cu + cu+1)
2c1

(cu−1 + cu)
2c1

 .

Then
(i) A is invertible and AX = Y .
(ii) If c1 is given then A and A−1 can be efficiently computed.
(iii) c2u−1 = 1

ct+1
1

((cu+1 + cu + cu−1 + cu−2)
2 + (cu + cu−1)

2(ct
1 + c2

1)).

(iv) c2u+1 = c2u−1 + 1
c1

((cu+1 + cu−1)
2 + c2

uc
t
1).
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Proof. (i) Noting that the characteristic of Fq is 2, we can show that the determinant of A is
equal to ct+2

1 . Hence A is invertible if and only if c1 6= 0. In fact, c1 is never zero as otherwise
the minimal polynomial fg(x) = x4 + 1 = (x + 1)4 is not irreducible. This proves the first
part. For the second part we combine the four equations obtained from Corollary 2.4.4
with the following (u, v) values: (2u− 3,−1), (2u− 2,−1), (2u− 1,−1), (2u,−1), and also
note that c2u = c2

u.
(ii) Let A−1[i] be the ith row of A−1. Then one can check that

A−1[1] = [(ct
1 + 1)/ct+1

1 , 1/ct+1
1 , 0, 1/ct

1],

A−1[2] = [1/ct+1
1 , 1/ct+1

1 , 0, 1/ct
1],

A−1[3] = [1/ct+1
1 , (ct

1 + 1)/ct+1
1 , 0, 1/ct

1],

A−1[4] = [(ct
1 + 1)/ct+1

1 , (c2t
1 + ct

1 + 1)/ct+1
1 , 1, (ct+1

1 + 1)/ct
1]

and the proof follows.
(iii) The inner product of A−1[2] and Y is equal to c2u−1, and by part (ii) we can write

A−1[2]Y =
1

ct+1
1

(
(cu+1 + cu + cu−1 + cu−2)

2 + (cu + cu−1)
2(ct

1 + c2
1)
)
.

(iv) The proof is similar to the proof of part (iii).

The formulas for c2u−1 and c2u+1 in Theorem 2.4.7 yield Algorithm 2.1 for exponentia-
tion in µn.

Remark 2.4.8. Algorithm 2.1 can be used to compute cab given ca and b as follows. We
set c′1 = ca and the initial state becomes s′1 = [c′−1, c

′
0, c

′
1, c

′
2] = [ca, 0, ca, c

2
a]. With input c′1

and b, Algorithm 2.1 outputs c′b = cab.

Since the cost of addition is negligible in finite fields of characteristic-two, we will ignore
addition costs in the performance analysis of algorithms in this section. Moreover, we may
ignore the cost (1F1 + 1S1) in the precomputation steps of Algorithm 2.1 as it is negligible
compared to (1I1 + 1M1). Then the cost of Algorithm 2.1 can be approximated as:

Precomputation (steps 2 and 3): 1I1 + 1M1.

Main loop (steps 4–15): (4M1 + 4S1)(`− 1).

We note that Algorithm 2.1 has a limited degree of built-in resistance to side-channel
analysis attacks because the same types of operations are executed whether the bit ai of
the exponent is 1 or 0.
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Algorithm 2.1 A single-exponentiation algorithm
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2
i where ai ∈ {0, 1} and a`−1 = 1

2: su = [cu−2, cu−1, cu, cu+1]← [c1, 0, c1, c
2
1]

3: m1 ← 1/ct+1
1 and m2 ← 1/c1

4: for i from `− 2 down to 0 do
5: c2u−1 ← m1 ((cu+1 + cu + cu−1 + cu−2)

2 + (cu + cu−1)
2(ct

1 + c2
1))

6: c2u ← c2
u

7: c2u+1 ← c2u−1 + m2 ((cu+1 + cu−1)
2 + c2

uc
t
1)

8: if ai = 1 then
9: c2u+2 ← c2

u+1

10: su ← [c2u−1, c2u, c2u+1, c2u+2]
11: else
12: c2u−2 ← c2

u−1

13: su ← [c2u−2, c2u−1, c2u, c2u+1]
14: end if
15: end for
16: Return (cu)

2.4.3 Other algorithms for exponentiation with compressed ele-
ments

Algorithm 2.1 works directly with the factor-4 compressed elements. In this section, we
describe four algorithms for computing cab given ca and b. The first algorithm partially
decompresses ca to an element c̃a ∈ Fq2 , and then uses the LUC method for exponenti-
ating in this representation. The second algorithm decompresses ca to an element in Fq4 ,
and then employs a standard window-NAF exponentiation method. The third and fourth
methods use the Brouwer-Pellikaan-Verheul idea (cf. Section 2.3.2) by using minimal poly-
nomials over Fq2 and Fq, respectively. The five exponentiation algorithms are compared in
Section 2.6.

First, we prove the following.

Lemma 2.4.9. Let µn = 〈g〉 be the multiplicative subgroup of F∗q4 with embedding degree
4, trace t, and cofactor h. Let cu = Tr(gu) and c̃u = Tr2(g

u). Then {c̃u, c̃
q
u} is the set of

roots of the polynomial f̃gu(x) = x2 + cux + ct
u.

Proof. Since g has order n and q + 1 ≡ t (mod n) and q2 ≡ −1 (mod n), we have (x −
c̃u)(x− c̃q

u) = (x− (gu + guq2
))(x− (guq + guq3

)) = x2 + cux + ct
u = f̃gu(x).
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An algorithm based on LUC-exponentiation

We first describe an algorithm to compute ca given c1 and a. The idea of the algorithm is
as follows. Let d̃1 = c̃q

1. Suppose we know an element in the set {c̃1, d̃1}. If c̃1 is known
then we will compute c̃a, and if d̃1 is known then we will compute d̃a. In both cases, we
can determine ca = c̃a + c̃q

a = d̃a + d̃q
a.

Now, by Lemma 2.4.9 one can determine {c̃1, d̃1} from c1 by finding the roots of the
polynomial f̃g(x) = x2 + c1x + ct

1 in Fq2 . By the argument in the previous paragraph, we
may assume without loss of generality that c̃1 is known. Note that the minimal polynomial
of g over Fq2 is fg,2(x) = x2 + c̃1x + 1, and for all integers u and v we have the following
recursive relation (see [83] or Section 2.3.1):

c̃u+v = c̃uc̃v − c̃u−v.

In particular, since the characteristic of the field is 2, we have c̃2u = c̃2
u and c̃2u+1 =

c̃u+1c̃u + c̃1. Thus, if we define su = [c̃u, c̃u+1], then s1 = [c̃1, c̃
2
1], s2u = [c̃2

u, c̃u+1c̃u + c̃1],
and s2u+1 = [c̃u+1c̃u + c̃1, c̃

2
u+1]. This leads to the double-and-add algorithm described in

Algorithm 2.2. We note that Algorithm 2.2 can be used to compute cab given ca and b (cf.
Remark 2.4.8).

Algorithm 2.2 A single-exponentiation algorithm based on LUC-exponentiation
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2
i where ai ∈ {0, 1} and a`−1 = 1

2: c̃1 ← a root of the polynomial x2 + c1x + ct
1, c̃1 ∈ Fq2

3: su = [c̃u, c̃u+1]← [c̃1, c̃
2
1]

4: for i from `− 2 down to 0 do
5: c̃2u+1 ← c̃u+1c̃u + c̃1

6: if ai = 1 then
7: c̃2u+2 ← c̃2

u+1

8: su ← [c̃2u+1, c̃2u+2]
9: else

10: c̃2u ← c̃2
u

11: su ← [c̃2u, c̃2u+1]
12: end if
13: end for
14: Return (c̃u + c̃q

u)

We may ignore the costs (1F1 + 1S2) and 1F2 in the precomputation steps and in step
14 of Algorithm 2.2 as they are dominated by SR2,1 and (1M2 + 1S2)(`− 1), respectively.
Then the cost of Algorithm 2.2 can be approximated as:
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Precomputation (steps 2 and 3): 1SR2,1.

Main loop (steps 4–14): (1M2 + 1S2)(`− 1).

Decompressing and direct exponentiation in µn (Algorithm DDE)

Given ca and an `-bit integer b, in order to compute cab we will decompress ca to ga (or
to one of its conjugates over Fq). Then we will compute gab (up to conjugation over Fq).
Finally, summing the four conjugates of gab over Fq gives cab.

In order to decompress ca we first construct the polynomial f̃ga(x) = x2 + cax + ct
a

(see Lemma 2.4.9) over Fq and find a root in Fq2 ; without loss of generality, suppose that
this root is c̃a. Next we construct the minimal polynomial of ga over Fq2 , i.e., fga,2(x) =
x2 + c̃ax + 1 and find a root of fga,2(x) in Fq4 . Hence we obtain ga or one of its conjugates
over Fq. The decompression can be achieved at a cost of 1SR2,1 + 1SR2,2 (we ignore the
cost 1F1 that is dominated by SR2,1 and SR2,2).

Now, to exponentiate ga ∈ µn (or one of its conjugates over Fq) to the power b, one first

determines the width-w NAF representation of b, i.e., b =
∑`′

i=0 bi2
i where `′ ∈ {` − 1, `},

b`′ 6= 0, each nonzero bi is odd, |bi| < 2w−1, and at most one of any w consecutive digits is
nonzero. The width-w NAF representation of b contains on average `/(w+1) nonzero digits
(see [69] for properties of width-w NAF representations). After precomputing and storing
elements gi = gai for i ∈ {±1,±3,±5, . . . ,±2w−1 − 1}, one can compute gab at an average
cost of ` squarings and `/(w + 1) multiplications in Fq4 . Finally, we note that Karatsuba’s
technique can be used to multiply two elements in Fq4 at a cost of 9M1, and squaring in
µn can be performed at a cost of 4S1. Note that by choosing a suitable polynomial for
the extension Fq4/Fq, we may ignore the cost of polynomial reductions in the extension
field arithmetic. We may also ignore the cost for computing gi’s in the precomputation
step as it is dominated by SR2,1 and SR2,2 and the cost for computing the sum of the four
conjugates of gab.

Hence, the expected cost of computing cab can be approximated as 1SR2,1 + 1SR2,2 +
(4S1 + 9

(w+1)
M1)`.

Direct exponentiation in µn without decompressing (Algorithm BPV-I)

This algorithm is based on the idea of Brouwer, Pellikaan and Verheul (see [13] or Sec-
tion 2.3.2). Suppose ca and an `-bit integer b are given. By Lemma 2.4.9, we can de-
termine the minimal polynomial of ga or gaq over Fq2 at a cost of 1SR2,1 (we ignore the
cost 1F1 that is dominated by SR2,1). Without loss of generality let’s assume that we
know fga,2(x) = x2 + c̃ax + 1. That is, we have a copy of Fq4 = Fq2 [x]/(fga,2(x)) and
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next we compute xb modulo fga,2(x) using the conventional repeated square-and-multiply
algorithm. Since

(τ1x + τ0)
2 = (τ 2

1 c̃a)x + (τ 2
0 + τ 2

1 ),

the squaring step can be achieved at a cost of 1M2 + 2S2. And, since

(τ1x + τ0)x = (τ1c̃a)x + (τ1 + τ2),

the multiplication step can be achieved at a cost of 1M2. Therefore, computing xb =
w1x + w0 with wi ∈ Fq2 costs on average ((1M2 + 2S2) + 1

2
M2)(`− 1). Finally, we compute

cab = Tr(xb) = Tr(Tr2(w1x)+Tr2(w0)) = Tr(w1c̃a) = w1c̃a +(w1c̃a)
q at a cost of 1F2 +1M2.

Hence, the approximate expected cost of the algorithm is 1SR2,1+((1M2+2S2)+
1
2
M2)(`−1)

(we ignore the cost (1F2 + 1M2) in the last step that is dominated by the cost of the main
loop).

Direct exponentiation in µn without decompressing (Algorithm BPV-II)

The idea of the algorithm is similar to Algorithm BPV-I, except that we work with a
minimal polynomial over Fq instead of Fq2 . Given ca and b, we first determine fga(x) =
x4 +cax

3 +ct
ax

2 +cax+1 at a cost of 1F1. Now, we have a copy of Fq4 = Fq[x]/(fga(x)) and
next we compute xb modulo fga(x) using the conventional repeated square-and-multiply
algorithm. Since

x6 ≡ (c3
a + ca)x

3 + (c2t
a + ct+2

a + c2
a + 1)x2 + (ct+1

a + c3
a + ca)x + (ct

a + c2
a) (mod fga(x)),

and
(τ3x

3 + τ2x
2 + τ1x + τ0)

2 = τ 2
3 x6 + τ 2

2 x4 + τ 2
1 x2 + τ 2

0 ,

the squaring step can be achieved at a cost of 6M1 + 4S1. And, since

(τ3x
3 + τ2x

2 + τ1x + τ0)x = (τ3ca + τ2)x
3 + (τ3c

t
a + τ1)x

2 + (τ3ca + τ0)x + τ3,

the multiplication step can be achieved at a cost of 2M1. Therefore, computing xb =
w3x

3 + w2x
2 + w1x + w0 with wi ∈ Fq costs ((6M1 + 4S1) + 1M1)(` − 1). Finally, using

x4 = cax
3 + ct

ax
2 + cax + 1 in Fq4 = Fq[x]/(fga(x)), we can compute cab = Tr(xb) =

Tr(w3x
3 + w2x

2 + w1x + w0) = w3c3a + w2c2a + w1ca = w3ca(c
2
a + ct

a + 1) + w2c
2
a + w1ca

at a cost of 1F1 + 4M1 + 1S1. Hence, the approximate expected cost of the algorithm is
1F1 + (7M1 + 4S1)(` − 1) (we ignore the cost (1F1 + 4M1 + 1S1) in the last step that is
dominated by the cost of the main loop).
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2.5 Multiplicative groups with embedding degree 6

In this section we concentrate on multiplicative groups µn with embedding degree k = 6
over Fq. In other words, we fix parameters (q, n) such that q is a prime power, n is a prime,
gcd(q, n) = 1, q6 ≡ 1 (mod n), and qi 6≡ 1 (mod n) for 1 ≤ i < 6. Finally, we let h be a
positive integer and define th = q + 1− h · n to be the trace of µn over Fq with respect to
the cofactor h. Throughout the rest of this section we will assume that the cofactor h is
fixed, and we simply denote the trace of µn by t instead of th.

In the following lemma we show that g ∈ µn together with its conjugates can be uniquely
represented by the triple (Tr(g), Tr(gt), Tr(g2)) of Fq-elements. In fact, it is easy to show
that Tr(g2) can be written in terms of Tr(g) and Tr(gt). This already gives us compression
by a factor of 3 . Furthermore, as first proven by Shirase et al. [78], Corollary 2.5.5 shows
that in characteristic-three finite fields it is possible to write all the coefficients of the
minimal polynomial of g over Fq in terms of Tr(g) alone and hence achieve compression by
a factor of 6.

Lemma 2.5.1. Let µn be the multiplicative subgroup of F∗q6 of order n with embedding
degree 6, trace t, and cofactor h. Let g ∈ µn and let gi, for i = 0, 1, . . . , 5, be the conjugates
of g over Fq. (Recall the convention that gi = gi mod 6.) Then
(i) gigi+1 = gt

i for i = 0, 1, . . . , 5.
(ii) gigi+2 = gi+1 for i = 0, 1, . . . , 5.
(iii) gigi+3 = 1 for i = 0, 1, 2.
(iv) fg(x) = x6 − Tr(g)x5 + (Tr(gt) + Tr(g) + 3)x4 − (Tr(g2) + 2Tr(g) + 2)x3 + (Tr(gt) +
Tr(g) + 3)x2 − Tr(g)x + 1.

Proof. (i) gigi+1 = gq+1
i = gt

i since gi is of order n and q + 1− t ≡ 0 (mod n).

(ii) gigi+2 = gq2+1
i = gi+1 since gi is of order n and q2 + 1 ≡ q (mod n).

(iii) gigi+3 = gq3+1
i = 1 since gi is of order n and q3 + 1 ≡ 0 (mod n) .

(iv) By (iii) we can write

fg(x) =
5∏

i=0

(x− g0)

= x6 −

(
5∑

i=0

gi

)
x5 +

( ∑
0≤i<j≤5

gigj

)
x4 −

( ∑
0≤i<j<k≤5

gigjgk

)
x3

+

( ∑
0≤i<j≤5

gigj

)
x2 −

(
5∑

i=0

gi

)
x + 1.
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Moreover, by (i), (ii), and (iii) we have

∑
0≤i<j≤5

gigj =
5∑

i=0

gigi+1 +
5∑

i=0

gigi+2 +
2∑

i=0

gigi+3

=
5∑

i=0

gt
i +

5∑
i=0

gi+1 +
2∑

i=0

1

= Tr(gt) + Tr(g) + 3

and

∑
0≤i<j<k≤5

gigjgk =
5∑

i=0

gigi+1gi+2 +
2∑

i=0

5∑
j=0

j 6≡i,i+3 (mod 6)

gigi+3gj +
1∑

i=0

gigi+2gi+4

=
5∑

i=0

g2
i+1 + 2

5∑
j=0

gj + 2

which completes the proof.

Suppose we fix a generator g ∈ Fq6 of µn, that is µn = 〈g〉. In order to simplify the
notation we define cu = Tr(gu) for any integer u. Note that c0 = 0, c1 = Tr(g), cu = cu mod n

and cqu = cq
u = cu.

Lemma 2.5.2. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 of order n with embedding
degree 6 and trace t. Then for all integers u and v we have
(i) cu = c−u.
(ii) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1) + cu+v(t−2) + cv+u(t−2).

Proof. (i) This follows from Lemma 2.5.1 (iii).
(ii) First note that

cucv = (gu
0 + gu

1 + gu
2 + gu

3 + gu
4 + gu

5 )(gv
0 + gv

1 + gv
2 + gv

3 + gv
4 + gv

5)

=
5∑

i=0

gu+v
i +

5∑
i=0

gu
i gv

i+1 +
5∑

i=0

gu
i gv

i+2

+
5∑

i=0

gu
i gv

i+3 +
5∑

i=0

gu
i gv

i+4 +
5∑

i=0

gu
i gv

i+5.
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Observing the equations below with the help of Lemma 2.5.1(i), (ii) and (iii)

5∑
i=0

gu
i gv

i+1 =
5∑

i=0

gu−v
i (gv

i g
v
i+1) =

5∑
i=0

g
u+v(t−1)
i ,

5∑
i=0

gu
i gv

i+2 =
5∑

i=0

gu−v
i (gv

i g
v
i+2) =

5∑
i=0

gu−v
i gv

i+1 =
5∑

i=0

g
u+v(t−2)
i ,

5∑
i=0

gu
i gv

i+3 =
5∑

i=0

gu−v
i (gv

i g
v
i+3) =

5∑
i=0

gu−v
i ,

5∑
i=0

gu
i gv

i+4 =
5∑

i=0

gv
i g

u
i+2 =

5∑
i=0

g
v+u(t−2)
i ,

5∑
i=0

gu
i gv

i+5 =
5∑

i=0

gv
i g

u
i+1 =

5∑
i=0

g
v+u(t−1)
i

leads us to the result.

Theorem 2.5.3. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 of order n with em-
bedding degree 6 and trace t. Then for all integers u and v we have

cu+v = (cu + cu−4v)cv − (cu−v + cu−3v)(ctv + cv + 3) + cu−2v(2cv + c2v + 2)− cu−5v.

Proof. First we start with

cucv = (gu
0 + gu

1 + gu
2 + gu

3 + gu
4 + gu

5 )(gv
0 + gv

1 + gv
2 + gv

3 + gv
4 + gv

5)

=
5∑

i=0

gu+v
i +

5∑
i=0

5∑
j=0

j 6=i

gu
i gv

j

= cu+v +
5∑

i=0

5∑
j=0

j 6=i

gu−v
i (gv

i g
v
j )

= cu+v +
5∑

i=0

gu−v
i (gtv

i + gtv
i+5 + gv

i+1 + gv
i+5 + 1)

= cu+v + cu−v + cu−vctv + cu−vcv

−

(
5∑

i=0

gu−v
i (gtv

i+1 + gtv
i+2 + gtv

i+3 + gtv
i+4)

)

−

(
5∑

i=0

gu−v
i (gv

i + gv
i+2 + gv

i+3 + gv
i+4)

)
.
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Now, since

5∑
i=0

gu−v
i gtv

i+1 =
5∑

i=0

gu−v+qtv
i , by Lemma 2.5.1(i)

= cq4(u−v)+q5tv, since cqu = cu

= cqu−2v, by Lemma 2.5.2(i) and q4 ≡ −q (mod n),
5∑

i=0

gu−v
i gtv

i+2 =
5∑

i=0

gu−v+q2tv
i , by Lemma 2.5.1(i)

= c(u−3v)+qv since q2t ≡ q − 2 (mod n),
5∑

i=0

gu−v
i gtv

i+3 =
5∑

i=0

gu−v+q3tv
i , by Lemma 2.5.1(i)

= c(u−2v)−qv since q3 ≡ −1 (mod n),
5∑

i=0

gu−v
i gtv

i+4 =
5∑

i=0

gu−v+q4tv
i , by Lemma 2.5.1(i)

= cu−2qv, by Lemma 2.5.2(i) and q4t ≡ −2q + 1 (mod n),

5∑
i=0

gu−v
i gv

i+2 =
5∑

i=0

gu−v+q2v
i , by Lemma 2.5.1(i)

= c(u−2v)+qv since q2 ≡ q − 1 (mod n),
5∑

i=0

gu−v
i gv

i+3 =
5∑

i=0

gu−v+q3v
i , by Lemma 2.5.1(i)

= c(u−2v) since q3 ≡ −1 (mod n),

and

5∑
i=0

gu−v
i gv

i+4 =
5∑

i=0

gu−v+q4v
i , by Lemma 2.5.1(i)

= c(u−v)−qv since q4 ≡ −q (mod n),

we have

cucv = cu+v + cu−v + cu−vctv + cu−vcv (2.5.1)

−(cqu−2v + c(u−3v)+qv + c(u−2v)−qv + cu−2qv)

−(cu + c(u−2v)+qv + cu−2v + c(u−v)−qv).
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In order to eliminate some of the terms in equation 2.5.1 let us use Lemma 2.5.2(ii) with
u′ = u− 2v, and v′ = qv. By noting that

cv′ = cv, since cqu = cu,

cu′+v′ = c(u−2v)+qv,

cu′−v′ = c(u−2v)−qv,

cu′+v′(t−1) = c(u−3v)+qv, since q(t− 1) ≡ q2 ≡ q − 1 (mod n),

cu′+v′(t−2) = c(u−3v),

cv′+u′(t−1) = cu−v, since t− 1 ≡ q (mod n) and cqu = cu,

cv′+u′(t−2) = cq(q(u−v)−(u−2v)), since cqu = cu

= c(u−v)−qv, by Lemma 2.5.2(i),

we can rewrite (2.5.1) as

cucv = cu+v + 2cu−v + cu−vctv + cu−vcv (2.5.2)

−(cqu−2v + cu−2qv + cu + cu−2v)

−(cu−2vcv − cu−3v).

By replacing v by −v in (2.5.2) we obtain another equation and summing this with (2.5.2)
gives

cu+3v = 2cucv − 3(cu+v + cu−v)− (ctv + cv)(cu+v + cu−v) + 2cu

+cv(cu+2v + cu−2v) + (cu+2v + cu−2v)− cu−3v + cqu−2v

+cu−2qv + cqu+2v + cu+2qv. (2.5.3)

Also, using Lemma 2.5.2(ii) with u′ = u and v′ = 2v, and noting that

cu′+v′(t−1) = cu+2qv, since t− 1 ≡ q (mod n),

cu′+v′(t−2) = cq(u+2(q−1)v), since cqu = cu and t− 2 ≡ q − 1 (mod n),

= cqu−2v, since q2 ≡ q − 1 (mod n),

cv′+u′(t−1) = cqu+2v, since t− 1 ≡ q (mod n),

cv′+u′(t−2) = cq(2v+(q−1)u), since cqu = cu and t− 2 ≡ q − 1 (mod n),

= c−u+2qv = cu−2qv, since q2 ≡ q − 1 (mod n) and cu = c−u,

we can rewrite (2.5.3) as

cu+3v = 2cucv − 3(cu+v + cu−v)− (ctv + cv)(cu+v + cu−v) + 2cu

+cv(cu+2v + cu−2v)− cu−3v + cuc2v. (2.5.4)
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Finally, using (2.5.4) with u′ = u− 2v and v′ = v results in

cu+v = cucv − (cu−v + cu−3v)(ctv + cv + 3) + cu−2v(2cv + c2v + 2)

+cu−4vcv − cu−5v,

as required.

2.5.1 Characteristic-three finite fields

This section follows along the same lines as Section 2.4.1. Let r be a positive integer, and
let q = 32r+1, t = ±3r+1, T = |t|. The values of r for which q + 1 − t = hn and n is
prime lead to a multiplicative subgroup µn of F∗q6 of prime order n with embedding degree
6. Throughout this section we fix h, n, q, t, T and µn = 〈g〉 in this way, and also write
cu = Tr(gu).

The following recursive relations follow from Theorem 2.5.3, using Lemma 2.5.2(ii) with
u = v, and by noting that the characteristic of Fq is 3 and also that cvt = cvT = cT

v (see
Lemma 2.5.2(i)).

Corollary 2.5.4. Let µn be the multiplicative subgroup of F∗q6 with embedding degree 6 and
trace t. Then for all integers u and v we have
(i) c2u = c2

u + cu + cT
u .

(ii) cu+v = cucv − (cu−v + cu−3v)(c
T
v + cv) + cu−2v(c

2
v + cT

v + 2) + cu−4vcv − cu−5v.

Corollary 2.5.5. Let µn be the multiplicative subgroup of F∗q6 with embedding degree 6 and
trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x6 − cux
5 + (cT

u + cu)x
4 − (c2

u + cT
u + 2)x3 + (cT

u + cu)x
2 − cux + 1.

Proof. The proof follows from Lemma 2.5.1(iv), Corollary 2.5.4(i) and from the fact that
cvt = cvT = cT

v .

Remark 2.5.6. Throughout the remainder of this section we will assume without loss of
generality that the trace t is positive. If t is negative then one can replace the expressions
of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without changing the validity of the

results in this section.

2.5.2 An exponentiation algorithm in µn

Corollary 2.5.5 shows that the element gu can be represented uniquely (up to conju-
gation) by its trace cu. Similarly as in Section 2.5.2, our aim is to develop an effi-
cient method to compute ca given c1 and a. We define s1 = [c−1, c0, c1, c2, c3, c4] to
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be the initial state. For a given state su = [cu−2, cu−1, cu, cu+1, cu+2, cu+3] with u ≥ 1,
if we can efficiently compute the states s2u = [c2u−2, c2u−1, c2u, c2u+1, c2u+2, c2u+3] and
s2u+1 = [c2u−1, c2u, c2u+1, c2u+2, c2u+3, c2u+4] then we immediately have an efficient double-
and-add algorithm for computing ca given c1 and a.

Theorem 2.5.7. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding degree

6 and trace t. Let cu = Tr(gu), C1,t = c1 + ct
1, C1,t,2 = c2

1 + ct
1 + 2, M = (ct

1(c
3
1 + ct+1

1 +
2(ct

1 + 1)) + 2(c3
1 + c1 + 1))−1, and

A =


1 C1,t C1,t 1 0 0
0 1 C1,t C1,t 1 0
0 0 1 C1,t C1,t 1
c1 C1,t,2 c1 0 0 0
0 c1 C1,t,2 c1 0 0
0 0 c1 C1,t,2 c1 0

 , X =


c2u−3

c2u−1

c2u+1

c2u+3

c2u+5

c2u+7

 ,

Y =


(c2u+2 + c2u−2)c1 + c2uC1,t,2

(c2u+4 + c2u)c1 + c2u+2C1,t,2

(c2u+6 + c2u+2)c1 + c2u+4C1,t,2

(c2u + c2u−2)C1,t + c2u+2 + c2u−4

(c2u+2 + c2u)C1,t + c2u+4 + c2u−2

(c2u+4 + c2u+2)C1,t + c2u+6 + c2u

 .

Then
(i) A is invertible and AX = Y .
(ii) If c1 is given then A and A−1 can be efficiently computed.
(iii) c2u−1 = M(c3

1 + 2c2
1 + 2c1 + ct+1

1 , c2
1, 0, 2(c2

1 + ct
1) + c1 + 1, 2(c2

1 + ct+1
1 ) + c1, 2c1)Y .

(iv) c2u+1 = M(2c2
1, 2c

2
1, 0, c1, 2c

t
1 + ct+1

1 + c1 + 1, c1)Y .
(v) c2u+3 = M(c2

1, c
3
1 + 2c2

1 + 2c1 + ct+1
1 , 0, 2c1, 2(c2

1 + ct+1
1 ) + c1, 2(c2

1 + ct
1) + c1 + 1)Y .

Proof. (i) Noting that the characteristic of Fq is 3 and using Corollary 2.5.4(i), we can
show that determinant of A is equal to (c1 − 1)2t+2(c2 − 1). Hence A is invertible if and
only if c1 6= 1 and c2 6= 1. In fact we can show that c1 6= 1 and c2 6= 1 as follows. If c1 = 1
then fg(x) = x6 − x5 + 2x4 − x3 + 2x2 − x + 1 = (x2 + x + 1)(x2 − x + 1)2, and if c2 = 1
then fg(x) = (x2 + 1)(x4 − c1x

3 + (c1 + ct
1 − 1)x2 − c1x + 1). Both cases contradict the

irreducibility of the minimal polynomial fg(x) over Fq. This proves that A is invertible.
Now, combining the six equations obtained from Corollary 2.5.4 with the following (u, v)
values: (2u−3,−1), (2u−2,−1), (2u−1,−1), (2u,−1), (2u+1,−1), (2u+2,−1) and using
Corollary 2.5.4(i) proves that AX = Y .
(ii) The proof follows from part (i) and from the definition of A.
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(iii) A computation in Maple shows that the second row of A−1 is A−1[2] = 1
M

(c3
1 + 2c2

1 +
2c1+ct+1

1 , c2
1, 0, 2(c2

1+ct
1)+c1+1, 2(c2

1+ct+1
1 )+c1), 2c1). The rest follows as c2u−1 = A−1[2]Y

from part (i).
(iv) We compute A−1[3] = 1

M
(2c2

1, 2c
2
1, 0, c1, 2c

t
1 + ct+1

1 + c1 + 1, c1) and conclude from
c2u+1 = A−1[3]Y .
(v) We compute A−1[4] = 1

M
(c2

1, c
3
1+2c2

1+2c1+ct+1
1 , 0, 2c1, 2(c2

1+ct+1
1 )+c1), 2(c2

1+ct
1)+c1+1)

and conclude from c2u+3 = A−1[4]Y .

The formulas for c2u−1, c2u+1, c2u+3 in Theorem 2.5.7 yield Algorithm 2.3 for exponen-
tiation in µn.

Remark 2.5.8. Algorithm 2.3 can be used to compute cab given ca and b as follows. We
replace c′1 = ca and the initial state becomes s′1 = [c′−1, c

′
0, c

′
1, c

′
2, c

′
3, c

′
4] = [ca, 0, ca, Ca,t,2, c

3
a,

C2
a,t,2 + Ca,t,2 + Ct

a,t,2]. With input c′1 and b, Algorithm 2.3 outputs c′b = cab.

We may ignore the costs (9A1 + 4a1 + 1C1 + 1F1 + 2m1) in the precomputation steps
of Algorithm 2.3 and (3a1 + 10m1)(` − 1) in the main loop of Algorithm 2.3 as they are
dominated by (1I1 +2M1 +2S1) and (53A1 +6F1 +23M1 +6S1)(`− 1), respectively. Then
the cost of Algorithm 2.3 can be approximated as:

Precomputation (steps 2–6): 1I1 + 2M1 + 2S1.

Main loop (steps 7–18): (53A1 + 6F1 + 23M1 + 6S1)(`− 1).

We note that Algorithm 2.3 has a limited degree of built-in resistance to side-channel
analysis attacks as the same types of operations are executed whether the bit ai of the
exponent is 1 or 0.

2.5.3 Other algorithms for exponentiation with compressed ele-
ments

Algorithm 2.3 works directly with the factor-6 compressed elements. In this section, we
describe five algorithms for computing cab given ca and b. The first algorithm partially
decompresses ca to an element c̃a ∈ Fq3 , and then uses the LUC method for exponentiating
in this representation. The second algorithm decompresses ca to an element in Fq6 , and
then employs a standard window-NAF exponentiation method. The third, fourth and fifth
methods use the Brouwer-Pellikaan-Verheul idea (cf. Section 2.3.2) by using minimal poly-
nomials over Fq2 , Fq3 and Fq, respectively. The seven exponentiation algorithms including
XTR3 [78] are compared in Section 2.6.

First, we prove the following.
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Algorithm 2.3 A single-exponentiation algorithm
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai2
i where ai ∈ {0, 1} and a`−1 = 1

2: C2 ← c2
1, Ct ← ct+1

1

3: C1,t ← c1 + ct
1, C1,t,2 ← C2 + ct

1 + 2
4: c2 ← C1,t,2 + c1 + 1, c4 ← c2

2 + c2 + ct
2

5: su = [cu−2, cu−1, cu, cu+1, cu+2, cu+3]← [c1, 0, c1, c2, c
3
1, c4]

6: M ← (ct
1(c

3
1 + Ct + 2(ct

1 + 1)) + 2(c3
1 + c1 + 1))−1

7: for i from `− 2 down to 0 do
8: c2u−4 ← c2

u−2 + cu−2 + ct
u−2, c2u−2 ← c2

u−1 + cu−1 + ct
u−1,

c2u ← c2
u + cu + ct

u, c2u+2 ← c2
u+1 + cu+1 + ct

u+1,
c2u+4 ← c2

u+2 + cu+2 + ct
u+2, c2u+6 ← c2

u+3 + cu+3 + ct
u+3

9: Y1 ← (c2u+2 + c2u−2)c1 + c2uC1,t,2,
Y2 ← (c2u+4 + c2u)c1 + c2u+2C1,t,2,
Y4 ← (c2u + c2u−2)C1,t + c2u+2 + c2u−4,
Y5 ← (c2u+2 + c2u)C1,t + c2u+4 + c2u−2,
Y6 ← (c2u+4 + c2u+2)C1,t + c2u+6 + c2u

10: c2u−1 ←M((c3
1 + 2(C2 + c1) + Ct)Y1 + C2Y2 + (2(C2 + ct

1) + c1 + 1)Y4

+(2(C2 + Ct) + c1)Y5 + 2c1Y6)
11: c2u+1 ←M(2C2(Y1 + Y2) + c1(Y4 + Y6) + (2ct

1 + Ct + c1 + 1)Y5)
12: c2u+3 ←M(C2Y1 + (c3

1 + 2(C2 + c1) + Ct)Y2 + 2c1Y4

+(2(C2 + Ct) + c1)Y5 + (2(C2 + ct
1) + c1 + 1)Y6)

13: if ai = 1 then
14: su ← [c2u−1, c2u, c2u+1, c2u+2, c2u+3, c2u+4]
15: else
16: su ← [c2u−2, c2u−1, c2u, c2u+1, c2u+2, c2u+3]
17: end if
18: end for
19: Return (cu)
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Lemma 2.5.9. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding degree

6 and trace t. Also, let cu = Tr(gu) and c̃u = Tr3(g
u). Then {c̃u, c̃

q
u, c̃

q2

u } is the set of roots
of the polynomial f̃gu(x) = x3 − cux

2 + (cu + ct
u)x− (c2

u + ct
u − 2cu + 2).

Proof. Let d̃u = c̃q
u and ẽu = c̃q2

u . Since g has order n and q + 1 ≡ t (mod n) and q3 ≡ −1
(mod n), we can rewrite the minimal polynomial of gu over Fq as

fgu(x) =
[
(x− gu)(x− gq3u)

] [
(x− gqu)(x− gq4u)

] [
(x− gq2u)(x− gq5u)

]
= (x2 − c̃ux + 1)(x2 − d̃ux + 1)(x2 − ẽux + 1)

= x6 − cux
5 + (c̃ud̃u + d̃uẽu + c̃uẽu)x

4 − (2cu + c̃ud̃uẽu)x
3

+(c̃ud̃u + d̃uẽu + c̃uẽu)x
2 − cux + 1.

Comparing the coefficients of this polynomial with the coefficients of fgu(x) as given in
Corollary 2.5.5 we get

c̃ud̃u + d̃uẽu + c̃uẽu = cu + ct
u

c̃ud̃uẽu = c2
u + ct

u − 2cu + 2.

The proof then follows because

(x− c̃u)(x− d̃u)(x− ẽu) = x3 − (c̃u + d̃u + ẽu)x
2 + (c̃ud̃u + d̃uẽu + c̃uẽu)x

−c̃ud̃uẽu

= x3 − cux
2 + (cu + ct

u)x− (c2
u + ct

u − 2cu + 2)

= f̃gu(x).

We will also need the following lemma which was proven in [78].

Lemma 2.5.10. Let µn = 〈g〉 be the multiplicative subgroup of F∗q6 with embedding degree
6 and trace t. Also, let cu = Tr(gu) and c̃u = Tr2(g

u). Then {c̃u, c̃
q
u} is the set of roots of

the polynomial f̃gu(x) = x2 − cux + ct
u.

An algorithm based on the LUC cryptosystem

We will describe a ternary exponentiation algorithm to compute ca given c1 and a. The

idea of the algorithm is as follows. Suppose we know an element in the set {c̃1, c̃
q
1, c̃

q2

1 }. If

c̃1 is known then we will compute c̃a, if c̃q
1 is known then we will compute c̃q

a, and if c̃q2

1 is
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known then we will compute c̃q2

a . In all three cases, we can determine ca = c̃a + c̃q
a + c̃q2

a =
c̃q
a + (c̃q

a)
q + (c̃q

a)
q2

= c̃q2

a + (c̃q2

a )q + (c̃q2

a )q2
.

By Lemma 2.5.9 we can determine {c̃1, c̃
q
1, c̃

q2

1 } based on c1 by finding the roots of the
polynomial f̃g(x) = x3 − c1x

2 + (c1 + ct
1)x− (c2

1 + ct
1 − 2c1 + 2). From our argument in the

previous paragraph, we may assume without loss of generality that c̃1 is known. Note that
the minimal polynomial of g over Fq3 is fg,3(x) = x2 − c̃1x + 1, and for all integers u and
v we have the following recursive relation (see [83] or Section 2.3.1):

c̃u+v = c̃uc̃v − c̃u−v. (2.5.5)

Moreover, it was shown in [77] that the following equations can be deduced from (2.5.5).

c̃3u = c̃3
u (2.5.6)

c̃3u−1 =
1

c̃2
1 − 1

(c̃3
u−1 + c̃1c̃

3
u) (2.5.7)

c̃3u−1 =
1

c̃2
1 − 1

((c̃3
1 + c̃1)c̃

3
u − c̃3

u+1) (2.5.8)

c̃3u+1 =
1

c̃2
1 − 1

((c̃3
1 + c̃1)c̃

3
u − c̃3

u−1) (2.5.9)

c̃3u+1 =
1

c̃2
1 − 1

(c̃3
u+1 + c̃1c̃

3
u). (2.5.10)

We now describe how to obtain c̃a given c̃1 and a; to the author’s knowledge this
exponentiation method was first presented in [77] to compute Lucas sequences. We will
assume that a is written in signed ternary notation, i.e., a =

∑`−1
i=0 ai3

i where ai ∈ {−1, 0, 1}
and a`−1 = 1 First, define two states: s

(0)
u = [c̃u, c̃u+1] and s

(1)
u = [c̃u−1, c̃u]. The algorithm

begins with the state s
(1)
1 = [c̃0, c̃1] = [2, c̃1], and exactly one of the two states, s

(j)
u , j = 0, 1,

will be active during the execution of the algorithm.

If j = 0 in the ith step of the algorithm, then s
(0)
u is active and we will compute c̃3u

based on (2.5.6) and compute one of c̃3u−1 or c̃3u+1 based on (2.5.8) or (2.5.10). In this

case, if ai = 0 then we set j = 0 (i.e., s
(0)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1]; if ai = 1

we set j = 1 (i.e., s
(1)
u becomes active) and s

(j)
u ← [c̃3u, c̃3u+1]; and if ai = −1 we set j = 0

(i.e., s
(0)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1].

If j = 1 in the ith step of the algorithm, then s
(1)
u is active and we will compute c̃3u

based on (2.5.6) and compute one of c̃3u−1 or c̃3u+1 based on (2.5.7) or (2.5.9). In this case,

if ai = 0 then we set j = 1 (i.e., s
(1)
u remains active) and s

(j)
u ← [c̃3u−1, c̃3u]; if ai = 1 we set

j = 1 (i.e., s
(1)
u remains active) and s

(j)
u ← [c̃3u, c̃3u+1]; and if ai = −1 we set j = 0 (i.e.,

s
(0)
u becomes active) and s

(j)
u ← [c̃3u−1, c̃3u].
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At the end of this procedure we obtain c̃a from one of the active states s
(0)
a = [c̃a, c̃a+1] or

s
(1)
a = [c̃a−1, c̃a], as required. The exponentiation method is summarized in Algorithm 2.4.

We may ignore the costs (2A1+2a1+1A3+1C3+1F1+1I1+2m1+1S1) in the precomputation
steps of Algorithm 2.4 and (1m3)(`− 1) + (2A3 + 2F3) in the main loop of Algorithm 2.4
as they are dominated by 1SR3,1 and (2C3 + 2M3)(` − 1), respectively. Then the cost of
Algorithm 2.4 can be approximated as:

Precomputation (steps 2–4): 1SR3,1.

Main loop (steps 5–37): (1A3 + 2C3 + 2M3)(`− 1).

Remark 2.5.11. Montgomery [68] presented several methods (binary, binary-ternary,
CFRC, PRAC) to compute Lucas sequences. The main idea in his methods to compute c̃a

is to build a Lucas chain for a and at each step in the chain to use the recursive formula
c̃u+v = c̃uc̃v− c̃u−v for some suitable u and v (see Table 4 in [68]). The length of the derived
Lucas chains in these algorithms exceed 1.446(log2 a) (see Theorem 8 and Table 5 in [68])
and each step in the chain requires at least 1M3 (see Table 4 in [68]). Therefore, these
methods seem unlikely to outperform Algorithm 2.4 whose cost might be approximated as
2(log3 2)(log2 a)M3 ≈ 1.26(log2 a)M3 after the precomputation step.

Decompressing and direct exponentiation in µn (Algorithm DDE)

Given ca and an integer b, in order to compute cab we will first decompress ca to ga or one
of its conjugates over Fq. Then we will compute gab (up to conjugation over Fq) by working
directly in Fq6 . Finally, summing the six conjugates of gab gives cab.

In order to decompress ga we first construct the polynomial f̃ga(x) = x3 − cax
2 + (ca +

ct
a)x − (c2

a + ct
a − 2ca + 2) (see Lemma 2.5.9) over Fq and find a root in Fq3 ; without loss

of generality, suppose that this root is c̃a. Next we construct the minimal polynomial of
ga over Fq3 , i.e., fga,3(x) = x2 − c̃ax + 1 and find a root of fga,3(x) in Fq6 . Hence we
obtain ga or one of its conjugates over Fq. The decompression can be achieved at a cost of
4A1 + 1a1 + 1F1 + 1S1 + 2m1 + 1SR3,1 + 1SR2,3.

Now, to exponentiate ga ∈ µn (or one of its conjugates over Fq) to the power b, one first

determines the width-w radix-3 NAF representation of b, i.e., b =
∑`

i=0 bi3
i where b` > 0,

each nonzero bi is nonzero modulo 3, and |bi| ≤ (3w − 1)/2. The width-w radix-3 NAF
representation of b contains on average 2`/(2w+1) nonzero digits (see [86] for more details
on width-w radix-3 NAF representations). After precomputing and storing some elements
one can compute gab at an average cost of l cubings and 2l/(2w + 1) multiplications in
Fq6 . Using Karatsuba’s technique, multiplying two elements in Fq6 can be accomplished
with 18 multiplications in Fq. Cubing in µn can be performed at a cost of 6C1. Note that
by choosing a suitable polynomial for the extension Fq6/Fq, we may ignore the costs of
polynomial reductions in the extension field arithmetic.
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Algorithm 2.4 A single-exponentiation algorithm based on LUC-exponentiation
Input: c1 and a
Output: ca

1: Write a =
∑`−1

i=0 ai3
i where ai ∈ {−1, 0, 1} and a`−1 = 1

2: C ← 1/(c2
1 − 1)

3: c̃1 ← a root of the polynomial x3 − c1x
2 + (c1 + ct

1)x− (c2
1 + ct

1 + c1 + 2)
4: C̃ ← c̃3

1 + c̃1

5: j ← 1
6: s

(j)
u = [c̃u−1, c̃u]← [2, c̃1]

7: for i from `− 2 down to 0 do
8: c̃3u ← c̃3

u

9: if j = 0 then
10: {s(0)

u = [c̃u, c̃u+1] is active}
11: if ai = −1 then
12: c̃3u−1 ← C(C̃c̃3

u − c̃3
u+1) {see (2.5.8)}

13: s
(j)
u ← [c̃3u−1, c̃3u]

14: else if ai = 0 then
15: c̃3u+1 ← C(c̃3

u+1 + c̃1c̃
3
u) {see (2.5.10)}

16: s
(j)
u ← [c̃3u, c̃3u+1]

17: else if ai = 1 then
18: c̃3u+1 ← C(c̃3

u+1 + c̃1c̃
3
u) {see (2.5.10)}

19: j ← 1
20: s

(j)
u ← [c̃3u, c̃3u+1]

21: end if
22: else
23: {s(1)

u = [c̃u−1, c̃u] is active}
24: if ai = −1 then
25: c̃3u−1 ← C(c̃3

u−1 + c̃1c̃
3
u) {see (2.5.7)}

26: j ← 0
27: s

(j)
u ← [c̃3u−1, c̃3u]

28: else if ai = 0 then
29: c̃3u−1 ← C(c̃3

u−1 + c̃1c̃
3
u) {see (2.5.7)}

30: s
(j)
u ← [c̃3u−1, c̃3u]

31: else if ai = 1 then
32: c̃3u+1 ← C(C̃c̃3

u − c̃3
u−1) {( see 2.5.9)}

33: s
(j)
u ← [c̃3u, c̃3u+1]

34: end if
35: end if
36: end for
37: Return (c̃u + c̃q

u + c̃q2

u )
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Hence, the average cost of computing cab can be approximated as 1SR3,1 + 1SR2,3 +
(6C1 + 36

(2w+1)
M1)`.

Direct exponentiation in µn without decompressing (Algorithm BPV-I)

This algorithm is based on the idea of Brouwer, Pellikaan and Verheul (see [13] or Sec-
tion 2.3.2). Suppose ca and an integer b =

∑`
i=0 bi3

i, where bi ∈ {0, 1, 2}, in base-3

representation is given. By Lemma 2.5.10, we can determine {c̃a, d̃a}, the set of traces of
ga and gaq over Fq2 . Then the minimal polynomials of ga and gaq over Fq2 are fga,2(x) =

x3−c̃ax
2+c̃q

ax−1 and fgaq ,2(x) = x3−d̃ax
2+d̃q

ax−1. Without loss of generality let’s assume
that we know fga,2(x) (which can be computed at a cost of 1F1 + 1F2 + 1m1 + 1SR2,1).
That is, we have a copy of Fq6 = Fq2 [x]/(fga,2(x)) and next we compute xb modulo fga,2(x)
using the repeated cube-and-multiply algorithm. Since

(τ2x
2 + τ1x + τ0)

3 = τ 3
2 x6 + τ 3

1 x3 + τ 3
0 ,

each cubing (modulo fga,2(x)) can be achieved at a cost of 4A2 + 3C2 + 5M2. Now, since

(τ2x
2 + τ1x + τ0)x = (τ2c̃a + τ1)x

2 + (2τ2c̃
q
a + τ0)x + τ2,

multiplying by x can be achieved at a cost of 2A2+1m2+2M2. Similarly, we can show that
multiplying by x2 can be achieved at a cost of 3A2+2m2+4M2. Therefore, computing xb =
w2x

2+w1x+w0 with wi ∈ Fq2 costs on average (4A2+3C2+5M2+
1
3
(5A2+3m2+6M2))(`−1).

Now,
cab = Tr(xb) = Tr(w2x

2 + w1x + w0) = Tr(w2Tr2(x
2) + w1Tr2(x)).

Also note that Tr2(x) = c̃a, and Tr2(x
2) = c̃2

a + c̃q
a follows from x3 = c̃ax

2 − c̃q
ax + 1 in

Fq6 = Fq2 [x]/(fga,2(x)). Hence, we can write

cab = w1c̃a + (w1c̃a)
q + w2(c̃

2
a + c̃q

a) + (w2(c̃
2
a + c̃q

a))
q

and the expected cost of computing cab is 1SR2,1 + (17
3
A2 + 3C2 + 7M2))(`− 1) (we ignore

the cost (1F1 + 1F2 + 1m1) that is dominated by SR2,1 in the precomputation steps, and
the costs (3m2)(`− 1) in the main loop and (2F2 + 2M2) in the last step).

Direct exponentiation in µn without decompressing (Algorithm BPV-II)

The idea of the algorithm is similar to Algorithm BPV-I except that we work with a
minimal polynomial over Fq3 instead of Fq2 . Suppose ca and an integer b =

∑`
i=0 bi3

i in
width-w radix-3 representation is given. By Lemma 2.5.9, we can determine the set of
minimal polynomials of gaqi

for i = 0, 1, 2. Without loss of generality let’s assume that we
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know fga,3(x) = x2− c̃ax + 1 (which can be computed at a cost of 4A1 + 1a1 + 1F1 + 1S1 +
2m1 + 1SR3,1). That is, we have a copy of Fq6 = Fq3 [x]/(fga,3(x)) and next we compute xb

modulo fga,3(x) using width-w radix-3 NAF exponentiation. Since

(τ1x + τ0)
3 ≡ τ 3

1 (c̃2
a − 1)x + (c̃aτ

3
1 + τ 3

0 ) (mod fga,3(x)),

the cubing step can be achieved at a cost of 1A1+1a1+2C3+2M3+1m3. Using Karatsuba’s
technique, we can show that multiplying two elements in Fq6 = Fq3 [x]/(fga,3(x)) can be
accomplished at a cost of 4M3. Therefore, computing xb = w1x + w0, wi ∈ Fq3 , costs
(1A1 + 1a1 + 2C3 + 2M3 + 1m3 + 8

(2w+1)
M3)`. Hence, the expected cost of computing

cab = Tr(xb) = Tr(w1x + w0)

= Tr(w1Tr3(x) + Tr3(w0)) = Tr(w1c̃a + 2w0)

= w1c̃a + (w1c̃a)
q + (w1c̃a)

q2

is 1SR3,1+(1A1+2C3+2M3+ 8
(2w+1)

M3)` (we ignore the cost (4A1+1a1+1F1+1S1+2m1)

that is dominated by SR3,1 in the precomputation steps, and the costs (1a1 +1m3)` in the
main loop and (2A3 + 2F3 + 1M3) in the last step).

Direct exponentiation in µn without decompressing (Algorithm BPV-III)

The idea of the algorithm is similar to Algorithm BPV-I and BPV-II except that we work
with a minimal polynomial over Fq instead of Fq2 or Fq3 . Given ca and b =

∑`
i=0 bi3

i in
width-w radix-3 representation, we first determine fga(x) = x6− cax

5 + (ct
a + ca)x

4− (c2
a +

ct
a +2)x3 +(ct

a + ca)x
2− cax+1 at a cost of 1S1 (we ignore the cost 2A1 +1a1 +1F1 +2m1).

Now, we have a copy of Fq6 = Fq[x]/(fga(x)), and next we compute xb modulo fga(x) using
width-w radix-3 NAF exponentiation. Since

(τ5x
5 + τ4x

4 + τ3x
3 + τ2x

2 + τ1x + τ0)
3 = τ 3

5 x15 + τ 3
4 x12 + τ 3

3 x9 + τ 3
2 x6 + τ 3

1 x3 + τ 3
0 ,

cubing modulo fga(x) costs at least 6C1 + 21M1. Moreover, using Karatsuba’s technique,
multiplying two elements in Fq6 appears to require at least 18M1 in Fq. Hence computing
cab = Tr(xb) costs at least 2A1 + 1F1 + 1S1 + (6C1 + 21M1 + 36

(2w+1)
M1)`.

2.6 Comparisons

2.6.1 Factor-4 compression

We compare the running times of the five exponentiation algorithms presented in Sec-
tion 2.4. We first analyze the costs SR2,1 and SR2,2. Recall that SR2,1 is the cost of
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finding a root of the irreducible polynomial f̃(x) = x2 + cx + ct for some c ∈ Fq, and SR2,2

is the cost of finding a root of the irreducible polynomial f̃(x) = x2+cx+1 for some c ∈ Fq2 .
Shoup [79] showed that if a square-free degree-m polynomial over Fpl , where p is a small
prime, is known to factor into d distinct irreducible same-degree polynomials over Fpl , then

the factorization of that polynomial can be obtained at a cost of Õ(m(dl)2) Fpl-operations.

Therefore, we may set SR2,1 = Õ(32(log2 q)2) Fq2-operations, and SR2,2 = Õ(128(log2 q)2)
Fq4-operations.

Table 2.1: Comparison of exponentiation algorithms for factor-4 compression. The expo-
nent is an `-bit integer.

Algorithms Precomputation Main Loop

Algorithm 2.1 1I1 + 1M1 (4M1 + 4S1)(`− 1)
Algorithm 2.2 1SR2,1 (1M2 + 1S2)(`− 1)
DDE (Section 2.4.3) 1SR2,1 + 1SR2,2 ( 9

(w+1)
M1 + 4S1)`

BPV-I (Section 2.4.3) 1SR2,1 (3
2
M2 + 2S2)(`− 1)

BPV-II (Section 2.4.3) 1F1 (7M1 + 4S1)(`− 1)

We can conclude from Table 2.1 that, for a suitable choice of w, Algorithm DDE is the
fastest algorithm if the precomputations are done in advance (which is the case if the base
is fixed). Otherwise, Algorithm 2.1 is the fastest one.

Remark 2.6.1. It is possible to obtain better running time estimates (at least for the
running times of the main loops) for some of the algorithms listed in Table 2.1. Adapting
the double-exponentiation technique given in [84] to speed up Algorithm 2.2, one can
estimate the running time of Algorithm 2.2 as 2SR2,1 + (0.75M2)`. Using simultaneous
multi-exponentiation or window-NAF techniques one can optimize the running times of
Algorithms BPV-I and BPV-II. These techniques do not seem to reduce the cost of the
squaring steps in the main loops of Algorithm BPV-I and BPV-II (which are (1M2 +
2S2)(` − 1) and (6M1 + 4S1)(` − 1), respectively) other than transferring some of the
cost to the precomputation phase. The mixed-multiplication method (see [39]) can be
adapted to speed up Algorithm DDE given input values ca and b. More precisely, after
decompressing ca to ga, one can first compute gabh for some h ∈ F∗q2 at an approximate

cost of ( 2
(w+1)

M2)` instead of computing gab using Karatsuba’s multiplication technique at

an approximate cost of ( 9
(w+1)

M1)` (see Section 2.4.3), Then cab can be computed by taking

the square root of Tr((gabh)q2−1) = Tr(gab(q2−1)) = c2ab. Using this method, the cost of
Algorithm DDE can be approximated as 1SR2,1 + 1SR2,2 + ( 6

(w+1)
M1)` + 1I4; the cost of

this faster algorithm is given in Table 2.2. Hence, we still expect Algorithm 2.1 to be the

40



fastest algorithm for general bases and, if the base is fixed, Algorithm DDE to be faster
than Algorithm 2.1 and Algorithm 2.2 for a suitable choice of w.

To be more concrete, we list the expected running times of the five exponentiation
algorithms in a particular setting in Table 2.2 based on the estimates given in Table 2.1.
For the 128-bit security level, we let q = 21223 and t = 2612. Then q +1+ t = 5n where n is
a 1221-bit prime. We will ignore the costs Fi, Si and, using Karatsuba’s technique, assume
M2 = 3M1. We also select w = 5.

Table 2.2: Comparison of exponentiation algorithms for factor-4 compression at the 128-bit
security level. The exponent is an 1221-bit integer.

Algorithms Multiplication cost for gen-
eral bases

Multiplication
cost for fixed
bases

Algorithm 2.1 1I1 + 4881M1 4880M1

Algorithm 2.2 1SR2,1 + 3660M1 3660M1

DDE (Section 2.4.3, Remark 2.6.1) 1SR2,1 + 1SR2,2 + 1I4 +
1221M1

1I4 + 1221M1

BPV-I (Section 2.4.3) 1SR2,1 + 5490M1 5490M1

BPV-II (Section 2.4.3) 8540M1 8540M1

2.6.2 Factor-6 compression

We compare the running times of the six algorithms presented in Section 2.5 and the
XTR3 [78] algorithm. We note that even though the running time of XTR3 is estimated
as 1SR2,1 + (8M1)` in [78], adapting the double-exponentiation technique for speeding up
XTR (see [84]) to XTR3 one can roughly approximate the cost of XTR3 as 2SR2,1+(3M1)`
which we use in Table 2.3.

We first analyze the costs SR2,1, SR2,3 and SR3,1. Similarly as in Section 2.6.1, using
Shoup’s method [79] we may let SR3,1 = Õ(27(log2 q)2) Fq3-operations. Now, we will
consider SR2,1 and SR2,3, and see that these costs are negligible compared to SR3,1. We
let q = 32r+1 and recall that SR2,1 is the cost of finding a root of the irreducible polynomial
f̃(x) = x2− cx + ct over Fq. The roots of this polynomial are 2(c±

√
c2 + 2ct). Since f̃(x)

is irreducible over Fq, C = c2 + 2ct must be a quadratic non-residue in Fq. Moreover, since
q ≡ 3 (mod 4), −1 is a quadratic non-residue in Fq. Therefore, −C is a quadratic residue
in Fq and finding a root of f̃(x) reduces to finding a square root of −C in Fq. Namely, the

roots of f̃(x) are 2(c ±
√
−C
√
−1) and also note that

√
−C = (−C)

q+1
4 and

√
−1 ∈ Fq2 .
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Barreto et al. [6] observed that

q + 1

4
= 6

r−1∑
i=0

(32)i + 1

and that computing

(−C)
q+1
4 =

(
(C2)

Pr−1
i=0 (32)i

)3

(−C)

can be achieved at a cost of 1S1 + (blog2 rc + HW (r))M1. Therefore, after computing√
−1 ∈ Fq2 we can compute a root of f̃(x) in Fq2 at a cost of 1m2 +1M2 +1S1 +(blog2 rc+

HW (r)+1)M1. Hence, we may set 1SR2,1 = 1m2 +1M2 +1S1 +(blog2 rc+HW (r)+1)M1.
Similarly, we can show 1SR2,3 = 1m6 +1M6 +1S3 +(blog2 (3r + 1)c+HW (3r+1)+1)M3.

Table 2.3: Comparison of exponentiation algorithms for factor-6 compression. The expo-
nent is an `-bit integer.

Algorithms Precomputation Main Loop

Algorithm 2.3 1I1 + 2M1 + 2S1 (53A1 +6F1 +23M1 +6S1)(`− 1)
Algorithm 2.4 1SR3,1 (1A3 + 2C3 + 2M3)(log3 2)(`− 1)
DDE (Section 2.5.3) 1SR3,1 + 1SR2,3 (6C1 + 36

(2w+1)
M1)(log3 2)`

BPV-I (Section 2.5.3) 1SR2,1 (17
3
A2 +3C2 +7M2)(log3 2)(`− 1)

BPV-II (Section 2.5.3) 1SR3,1 (1A1 + 2C3 + 2M3 +
8

(2w+1)
M3)(log3 2)`

BPV-III (Section 2.5.3) 1S1 ≥ (6C1+21M1+
36

2w+1
M1)(log3 2)`

XTR3 ([78]) 2SR2,1 (3M1)`

We can conclude from Table 2.3 that, for a suitable choice of w, Algorithm DDE is the
fastest algorithm if the precomputations are done in advance (which is the case if the base
is fixed). Otherwise, XTR3 is the fastest one.

Remark 2.6.2. It is possible to obtain better running time estimates (at least for the
running times of the main loops) for some of the algorithms listed in Table 2.3. Adapt-
ing the double-exponentiation technique given in [84] to speed up Algorithm 2.4, one can
estimate the running time of Algorithm 2.4 as 2SR3,1 + (0.75M3 + 0.17S3)`. Using simul-
taneous multi-exponentiation or window-NAF techniques one might optimize the running
times of Algorithms BPV-I, BPV-II and BPV-III. These techniques do not seem to re-
duce the cost of the cubing steps in the main loops of Algorithms BPV-I, BPV-II and
BPV-III (which are roughly (5M2)(log3 2)` ≈ (6.31M1)`, (2M3)(log3 2)` ≈ (7.57M1)` and
(21M1)(log3 2)` ≈ (13.25M1)`, respectively) other than transferring some of the cost to
the precomputation phase. The mixed-multiplication method (see [39]) can be adapted to
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speed up Algorithm DDE by slightly changing its output value from cab to c2ab given input
values ca and b (we note that Algorithm DDE with this slight change in its output can still
be used in the cryptographic applications mentioned in Section 2.1). More precisely, after
decompressing ca to ga, one can first compute gabh for some h ∈ F∗q3 at an approximate cost

of ( 4
(2w+1)

M3)(log3 2)` instead of computing gab using Karatsuba’s multiplication technique

at an approximate cost of ( 36
(2w+1)

M1)(log3 2)` (see Section 2.5.3). Then Tr((gabh)q3−1) =

Tr(gab(q3−1)) = c2ab can be computed at an approximate cost of 1I6. Using this method, the
cost of Algorithm DDE can be approximated as 1SR3,1+1SR2,3+( 24

(2w+1)
M1)(log3 2)`+1I6;

the cost of this faster algorithm is given in Table 2.4. Hence, we still expect XTR3 to be
the fastest algorithm for general bases and, if the base is fixed, Algorithm DDE to be
significantly faster than the other algorithms for a suitable choice of w.

To be more concrete, we list the expected running times of the seven exponentiation
algorithms in a particular setting in Table 2.4 based on the estimates given in Table 2.3.
For the 128-bit security level, we let q = 3509 and t = 3255. Then q+1−t = 7n where n is an
804-bit prime. We will ignore the costs Ai, ai, Ci, Fi, mi and, using Karatsuba’s technique,
assume M2 = 3M1, M3 = 6M1 and M6 = 18M1. We also assume Si = Mi, and select
w = 5. Note that r = 254, blog2 rc = 8, blog2 (3r + 1)c = 9, HW (r) = 7, HW (3r + 1) = 8,
and 1SR2,1 = 20M1 and 1SR2,3 = 132M1.

Table 2.4: Comparison of exponentiation algorithms for factor-6 compression at the 128-bit
security level. The exponent is an 804-bit integer.

Algorithms Multiplication cost for gen-
eral bases

Multiplication
cost for fixed
bases

Algorithm 2.3 1I1 + 23291M1 23287M1

Algorithm 2.4 1SR3,1 + 6080M1 6080M1

DDE (Section 2.5.3, Remark 2.6.2) 1SR3,1 + 1I6 + 1239M1 1I6 + 1107M1

BPV-I (Section 2.5.3) 10660M1 10640M1

BPV-II (Section 2.5.3) 1SR3,1 + 8301M1 8301M1

BPV-III (Section 2.5.3) ≥ 12314M! ≥ 12313M1

XTR3 ([78]) 2452M1 2412M1
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2.7 Non-uniqueness of factor-6 compression in large

characteristic

Barreto and Naehrig [7, Section 3] suggested that pairing values for the asymmetric pairing
derived from Barreto-Naehrig (BN) elliptic curves can be compressed to one-sixth of their
length. BN pairing values lie in the subgroup µn ⊂ F∗p12 where n = n(x) = 36x4 + 36x3 +

18x2 + 6x + 1, p = p(x) = 36x4 + 36x3 + 24x2 + 6x + 1, and x ∈ Z is such that n(x) and
p(x) are prime. Their compression method identifies the elements of the subgroup µn of
F∗q6 (where q = p2) with their traces over Fq. In fact, given q = p2 and n as above, one can
write t = q + 1 − h · n where t is the trace of the corresponding BN curve over Fq, p - t,
and show that µn has embedding degree 6 over Fq with trace t. However, as one can see
from Lemma 2.5.1, Tr(g) does not suffice to identify an element g ∈ µn uniquely up to its
conjugates over Fq. Hence, it is possible that there are collisions for the trace function.
That is, there may exist elements h1, h2 ∈ µn ⊂ F∗q6 such that h1 and h2 are not conjugates
of each other over Fq and Tr(h1) = Tr(h2), in which case the Barreto-Naehrig compression
method fails.

We searched for collisions in the case x ∈ {−41,−15,−7,−3,−2,−1, 1, 5, 6, 7, 20} and
discovered one when x = 6 (where n = 55117 and q = (55333)2). We list below one
BN and eight BN-like sets of parameters (p, n, T, g, u, v) such that n | (p4 − p2 + 1),
µn = 〈g〉 is the order-n subgroup of F∗q6 , and (gu, gv) is a collision with colliding value
T = Tr(gu) = Tr(gv). The first example corresponds to the parameter of a BN curve.
The subgroups µn in examples (2)–(5) can be realized as the images of pairing functions
defined on elliptic curves over Fp having embedding degree 12; these elliptic curves are not
BN curves. On the other hand, the subgroups µn in examples (6)–(9) cannot be realized
as the image of pairing functions defined on elliptic curves over Fp since n is not in the
Hasse interval [(

√
p− 1)2, (

√
p + 1)2].

1. (55333, 55117, 45541, g, 2583, 6758) where
Fq = Fp[z]/(z2 + 2),
Fq6 = Fq[w]/(w6 + 51894z + 9346),
g = (5638z + 51877)w5 + (13297z + 52777)w4 + (20924z + 25318)w3 + (12991z +
51370)w2 + (12014z + 15762)w + 15570z + 33355.

2. (113, 97, 46, g, 20, 29) where
Fq = Fp[z]/(z2 + 101z + 3),
Fq6 = Fq[w]/(w6 + 112z),
g = (77z+47)w5+(29z+36)w4+(52z+24)w3+(58z+14)w2+(70z+19)w+35z+49.
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3. (297457, 296941, 170970, g, 42243, 120695) where
Fq = Fp[z]/(z2 + 5),
Fq6 = Fq[w]/(w6 + 226781z + 185746),
g = (16282z+114368)w5+(264807z+131493)w4+(52866z+175278)w3+(153254z+
81017)w2 + (55521z + 87692)w + 27500z + 23791.

4. (757363, 758053, 147442, g, 195883, 532217) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 538552z + 38070),
g = (155890z+54538)w5+(593065z+407753)w4+(421831z+252766)w3+(260748z+
405992)w2 + (426293z + 142508)w + 240615z + 248519.

5. (758743, 758053, 181973, g, 26808, 304248) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 205464z + 531602),
g = (644749z+587471)w5+(152111z+593113)w4+(218499z+561168)w3+(605298z+
638869)w2 + (634695z + 684366)w + 667616z + 318403.

6. (107873, 100333, 10836z + 78750, g, 6775, 11682) where
Fq = Fp[z]/(z2 + 3),
Fq6 = Fq[w]/(w6 + 70681z + 104404),
g = (74900z + 35768)w5 + (67288z + 57726)w4 + (107242z + 94650)w3 + (31629z +
3630)w2 + (87341z + 35135)w + 64176z + 45731.

7. (107873, 100333, 97037z + 78750, g, 14995, 20801) where
Fq = Fp[z]/(z2 + 3),
Fq6 = Fq[w]/(w6 + 70681z + 104404),
g = (71680z + 68567)w5 + (99591z + 66980)w4 + (34944z + 30340)w3 + (8164z +
61554)w2 + (29313z + 44640)w + 33137z + 62160.

8. (147347, 135193, 56095z + 80249, g, 4989, 12193) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 76671z + 35636),
g = (120469z + 82203)w5 + (77634z + 4734)w4 + (127289z + 74128)w3 + (106306z +
13444)w2 + (82983z + 115891)w + 34710z + 136734.
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9. (147347, 135193, 91252z + 80249, g, 3676, 12104) where
Fq = Fp[z]/(z2 + 1),
Fq6 = Fq[w]/(w6 + 76671z + 35636),
g = (113834z + 48691)w5 + (87284z + 70855)w4 + (85568z + 73528)w3 + (102712z +
53673)w2 + (13537z + 46246)w + 105305z + 14472.

2.8 Concluding remarks

We have shown how to compress, by a factor of 4, pairing values of the commonly-used
symmetric bilinear pairings over characteristic-two fields, and also further explored com-
pressing pairing values of symmetric bilinear pairings over characteristic-three fields by a
factor of 6. We have shown how one can exponentiate using the compressed pairing values.
Our exponentiation algorithms are reasonably efficient. In particular, if the base is fixed
then we expect at least a 54% speed up over the fastest previously known algorithm XTR3

for the factor-6 compression case.
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Chapter 3

Double Exponentiation in
Compressed Cyclotomic Subgroups

In Chapter 2, using the trace representation of elements, we showed how to compress
elements of subgroups G ⊂ F∗q4 of orders q ±

√
2q + 1, where q = 2m, m is odd, by a

factor of 4. We also showed that single-exponentiation can be efficiently performed using
compressed representations. In this chapter we show that double-exponentiation can be
efficiently performed using factor-4 compressed representation of elements. In addition to
giving a considerable speed up to the fastest single-exponentiation algorithm for general
bases (see Algorithm 2.1 in Chapter 2), double-exponentiation can be used to adapt our
compression technique to ElGamal-type signature schemes. The results of this chapter
appeared in [49].

The remainder of this chapter is organized as follows. In Section 3.1 we review our
work on factor-4 compression presented in Chapter 2. Section 3.2 presents our double-
exponentiation algorithm and an analysis of the algorithm. Two cryptographic applications
of our double-exponentiation algorithm are given in Section 3.3. We make some concluding
remarks in Section 3.4. Throughout this chapter we use the same terminology and notation
introduced in Section 2.2.

3.1 A review of factor-4 compression

Let r be a positive integer, and let q = 22r+1, t = ±2r+1, T = |t|. The values of r for which
q + 1− t = hn and n is prime lead to a multiplicative subgroup µn of F∗q4 of prime order n
with embedding degree 4 and trace t. We fix h, n, q, t, T and µn = 〈g〉 in this fashion, and
also write cu = Tr(gu). Note that c0 = 0 and cuT = cT

u .
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Table 3.1: Cost of Algorithm 2.1 (page 21) for factor-4 compression. The exponent is an
`-bit integer.

Algorithm Precomputation Main Loop

Algorithm 2.1 1I1 + 1M1 (4M1 + 4S1)(`− 1)

The following theorem shows that gu ∈ µn can be uniquely represented (up to conju-
gation over Fq) by its trace, thus providing compression by a factor 4. From now on, we
will refer to this group µn ⊂ F∗q4 as the factor-4 subgroup of F∗q4 with trace t.

Theorem 3.1.1 (restatement of Corollary 2.4.5). Let µn = 〈g〉 be the factor-4 subgroup of
F∗q4 with trace t. Let fgu(x) be the minimal polynomial of gu ∈ µn over Fq. Then

fgu(x) = x4 + cux
3 + cT

u x2 + cux + 1.

Next, we recall some facts from Chapter 2 that we will use in Section 3.2.

Lemma 3.1.2. Let µn = 〈g〉 be the factor-4 subgroup of F∗q4 with trace t. Then for all
integers u and v we have
(i) cu+v = (cu + cu−2v)cv + cu−vc

T
v + cu−3v (restatement of Corollary 2.4.4(i)).

(ii) cu = c−u (restatement of Lemma 2.4.2(i)).
(iii) c2u = c2

u (restatement of Corollary 2.4.4(ii)).
(iv) cucv = cu+v + cu−v + cu+v(t−1) + cv+u(t−1) (restatement of Lemma 2.4.2(ii)).

Remark 3.1.3. Throughout the remainder of this chapter, we will assume without loss of
generality that the trace t is positive. If t is negative then one can replace the expressions
of the form c

p(t)
u , where p is some polynomial, by c

p(T )
u without changing the validity of the

results in this chapter.

Let a, b be integers with 0 < a, b < n. Single-exponentiation to the base a in µn is
the operation of computing cab given ca and b. Five single-exponentiation algorithms were
presented in Chapter 2. We concentrate on Algorithm 2.1 (page 21) which works directly
with ca, and is the fastest exponentiation algorithm for general bases.

Next, we give a generalization of Theorem 4.7 in Chapter 2 that will be used in Sec-
tion 3.2 to describe a double-exponentiation algorithm in µn.

Theorem 3.1.4. Let µn = 〈g〉 be the factor-4 subgroup of F∗q4 with trace t. Let cu = Tr(gu),

A =


cv cv 0 0
0 cv cv 0
0 1 ct

v 1
1 ct

v 1 0

 , X =


c2u−3v

c2u−v

c2u+v

c2u+3v

 , Y =


(cu + cu−2v)

2 + c2
u−vc

t
v

(cu+v + cu−v)
2 + c2

uc
t
v

(cu + cu+v)
2cv

(cu−v + cu)
2cv

 .
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Then
(i) A is invertible and AX = Y .
(ii) If cv is given then A and A−1 can be efficiently computed.
(iii) c2u−v = 1

ct+1
v

((cu+v + cu + cu−v + cu−2v)
2 + (cu + cu−v)

2(ct
v + c2

v)).

Proof. The proof is analogous to the proof of Theorem 4.7 in Chapter 2.

Corollary 3.1.5. Let µn = 〈g〉 be the factor-4 subgroup of F∗q4 with trace t. Let cv, c2u−v

and su,v = [cu−2v, cu−v, cu, cu+v] be given. Then
(i) cu+2v = (cu+v + cu−v)cv + cuc

t
v + cu−2v, and can be computed at a cost of 1F1 + 2M1.

(ii) c2u+v = (cu+v + cu−v)cu + cvc
t
u + c2u−v, and can be computed at a cost of 1F1 + 2M1.

(iii) cu−3v = (cu + cu−2v)cv + cu−vc
t
v + cu+v, and can be computed at a cost of 1F1 + 2M1.

(iv) c3u−v = (cv + c2u−v)cu + cu−vc
t
u + cu+v, and can be computed at a cost of 1F1 + 2M1.

(v) cu−4v = cu+2v + (cu + cu−2v)(c
2
v + ct

v + 1) + cu−vc
t+1
v , and (cu+2v, cu−4v) can be computed

at a cost of 1F1 + 5M1 + 1S1.
(vi) c4u−v = c2u+v + (cv + c2u−v)(c

2
u + ct

u + 1) + cu−vc
t+1
u , and (c2u+v, c4u−v) can be computed

at a cost of 1F1 + 5M1 + 1S1.
(vii) c3u+v = c3u−v + (cu+v + cu−v)(c

2
u + ct

u + 1) + cvc
t+1
u , and (c3u−v, c3u+v) can be computed

at a cost of 1F1 + 5M1 + 1S1.

Proof. (i)–(iv) follow from Lemma 3.1.2(i) and (ii).
(v) Using Lemma 3.1.2(i) and (ii), we first write

cu+2v = (cu+v + cu−v)cv + cuc
t
v + cu−2v (3.1.1)

cu−4v = (cu−v + cu−3v)cv + cu−2vc
t
v + cu. (3.1.2)

Now, adding (3.1.1) and (3.1.2) together and replacing cu−3v = (cu+cu−2v)cv+cu−vc
t
v+cu+v

gives cu−4v = cu+2v +(cu + cu−2v)(c
2
v + ct

v +1)+ cu−vc
t+1
v . Finally, once cu+2v is computed as

in (i) at a cost of 1F1 +2M1, it is clear that cu−4v can be computed at a cost of 3M1 +1S1,
which completes the proof.
(vi) The proof follows as in (v) after interchanging u and v.
(vii) The proof follows as in (v) after replacing (u, v) by (u− v, u).

3.2 Double-exponentiation in factor-4 groups

Definition 3.2.1. Let µn = 〈g〉 be the factor-4 subgroup of F∗q4 with trace t, and as usual
let cu = Tr(gu). Let a, b, k, l be integers with 0 < a, b, k, l < n. Double-exponentiation
to the base (k, l) in µn is the operation of computing cak+bl given a, b, cl and sk,l =
[ck−2l, ck−l, ck, ck+l].
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We assume that a, b, k, l are strictly positive as otherwise double-exponentiation just be-
comes a single-exponentiation. Note that k and l are not necessarily known.

A double-exponentiation algorithm was presented by Stam and Lenstra [84] for second-
degree and third-degree recursive sequences. Their algorithm is an adaptation of Mont-
gomery’s method [68] to compute second-degree recursive sequences. In this section, we
adapt the techniques used in [84, 68] and present a double-exponentiation algorithm for
fourth-degree recursive sequences.

Algorithm 3.1 starts with u = k, v = l, d = a > 0, e = b > 0, from which it follows
that ud + ve = ak + bl = τ , cv and su,v are known, and c2u−v can be computed at a cost
of 1F1 + 1I1 + 3M1 + 3S1 by Theorem 3.1.4. The reason we introduce the term c2u−v in
step 2 of Algorithm 3.1 is to avoid the repeated computation of c2u−v during the updates.
In the main part of the algorithm, u, v, d, e will be updated so that ud + ve = ak + bl = τ
holds, d, e > 0, and (d + e) decreases until d = e. Also, cv, c2u−v and su,v are updated
according to the new values of u and v. When d = e, we will have τ = d(u + v) and
su,v = [cu−2v, cu−v, cu, cu+v]. Finally, we compute cτ = cd(u+v) using a single-exponentiation
algorithm. Table 3.2 gives the update rules for u, v, d, e, cv, c2u−v and su,v. Table 3.3 gives
the cost of each update operation and the factor by which each update reduces (d + e).
The cost analysis as summarized in the third column of Table 3.3 follows from Table 3.2
and Corollary 3.1.5.

Table 3.2: Update rules for double-exponentiation in factor-4 groups

Rule Condition d e u v cv c2u−v su,v = [cu−2v, cu−v, cu, cu+v]

if d ≥ e
R1 d ≤ 4e d− e e u u + v cu+v cu−v [cu+2v, cv, cu, c2u+v]
R2 d ≡ e (mod 2) (d− e)/2 e 2u u + v cu+v c3u−v [c2

v, cu−v, c
2
u, c3u+v]

R3 d ≡ 0 (mod 2) d/2 e 2u v cv c4u−v [c2
u−v, c2u−v, c

2
u, c2u+v]

R4 e ≡ 0 (mod 2) d e/2 u 2v c2
v c2

u−v [cu−4v, cu−2v, cu, cu+2v]
else
S e > d e d v u cu cu−2v [c2u−v, cu−v, cv, cu+v]

Correctness: Let m = gcd(a, b), a = ma′, and b = mb′. It is easy to see that if m = 2rm′,
r ≥ 0, and m′ is odd then after step 6 in Algorithm 3.1 we will have f = 2r, d = m′a′, e =
m′b′. Moreover, after step 9, we will have d = e = m′ and d(u + v) = m′a′k + m′b′l
since ud + ve is kept invariant while applying the rules in Table 3.2. Hence, ak + bl =
2rm′a′k + 2rm′b′l = f · d(u + v), cak+bl = cf ·d(u+v), and the correctness of the algorithm

follows from Lemma 3.1.2(iii), as cf ·d(u+v) = cf
d(u+v).
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Table 3.3: Analysis of update rules for double-exponentiation in factor-4 groups

Rule Condition Cost Reduction factor for (d + e)

if d ≥ e
R1 d ≤ 4e 2F1 + 4M1 ≥ 5/4, < 2
R2 d ≡ e (mod 2) 1F1 + 5M1 + 2S1 2
R3 d ≡ 0 (mod 2) 1F1 + 5M1 + 2S1 ≥ 5/3, < 2
R4 e ≡ 0 (mod 2) 1F1 + 5M1 + 2S1 > 1, < 10/9
else
S e > d 0 1

Algorithm 3.1 A double-exponentiation algorithm
Input: a > 0, b > 0, cl and sk,l = [ck−2l, ck−l, ck, ck+l]
Output: cak+bl

1: u← k, v ← l, d← a, e← b, su,v ← sk,l

2: c2u−v ← 1
ct+1
v

((cu+v + cu + cu−v + cu−2v)
2 + (cu + cu−v)

2(ct
v + c2

v))

3: f ← 1
4: while d and e are both even do
5: d← d/2, e← e/2, f ← 2f
6: end while
7: while d 6= e do
8: Execute the first applicable rule in Table 3.2
9: end while

10: Compute cd(u+v) using Algorithm 2.1 with input cu+v and d

11: Return cf
d(u+v)

Analysis: The running time analysis of Algorithm 3.1 is similar to that in [68]. We will
ignore the costs F1 and S1. If R4 is never required during the execution of Algorithm 3.1,
then it is clear from Table 3.3 that the cost of the second while loop in Algorithm 3.1 never
exceeds

max(4 log5/4 (a′ + b′), 5 log2 (a′ + b′), 5 log5/3 (a′ + b′))M1 ≈ 12.4 log2 (a′ + b′)M1.

Now, suppose that R4 is used i > 0 times successively, with the starting (d, e) value (d1, e1).
That is, d1 > 4e1, d1 ≡ 1 (mod 2), and e1 ≡ 0 (mod 2). Let (d2, e2) be the updated value
of (d, e) after i applications of R4. Clearly, d1 = d2 and e1 = e22

i. Now, only the rule R2 is
applicable, and suppose we apply R2 and R3 (possibly after R2) j times until R1 qualifies
(i.e. d ≤ 4e) or j ≤ i; and suppose that the (d, e) value is updated to (d3, e3). Clearly,
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e2 = e3 and d3 ≤ d2/2
i. If d3 ≤ 4e3 then

(d1 + e1)

(d3 + e3)
≥ 5e1

5e3

= 2i.

If j = i then
(d1 + e1)

(d3 + e3)
≥ d2 + e22

i

d2/2j + e2

= 2i.

In both cases, the value (d + e) value is reduced at least by a factor of 2i at a cost of
5(i+ j)M1 ≤ 10iM1. Hence, the total cost of the second while loop in Algorithm 3.1 never
exceeds 12.4 log2 (a′ + b′)M1. Using Algorithm 2.1 for step 10 in Algorithm 3.1, we can
conclude that the total cost of Algorithm 3.1 never exceeds 12.4 log2 (a + b)M1.

In our experiments we observed that the performance of Algorithm 3.1 in practice is
remarkably better than the upper bound 12.4 log2 (a + b)M1. Moreover, the behavior of
Algorithm 3.1 becomes very stable as (a + b) gets larger. We tested the performance of
Algorithm 3.1 with 220 randomly chosen pairs (a, b) such that a ∈ [1, 2609), b ∈ [1, 2612) and
a, b ∈ [1, 21221). The intervals ([1, 2609), [1, 2612)) are relevant for obtaining a faster single-
exponentiation algorithm at the 128-bit security level (see Section 3.3.1), and the inter-
val [1, 21221) is relevant for deploying our double-exponentiation algorithm in the Nyberg-
Rueppel signature scheme at the 128-bit security level (see Section 3.3.2). Our experimental
evidence suggests that the main loop in steps 7–9 of Algorithm 3.1 is executed approxi-
mately 1.45 log2 (A + B) times on average (where A = a/gcd(a,b), B = b/gcd(a,b)), and
that the average number of multiplications per iteration is 4.39. Moreover, R1 is used in
around 61% of the total number of iterations. In our experiments, as one might expect,
gcd(a, b) is very small and the cost of step 10 is 2.32M1 on average (see Table 3.4). Note
that step 11 can be performed at a negligible cost. Hence, we may conjecture that the
expected running time of Algorithm 3.1 is (1.45 · (0.61 · 4 + 0.39 · 5)) log2 (a + b)M1 ≈
6.37 log2 (a + b)M1.

3.3 Applications of double-exponentiation in factor-4

groups

In this section we discuss two applications of double-exponentiation of compressed elements
in factor-4 groups. We show in Section 3.3.1 that double-exponentiation can be used to
obtain faster single-exponentiation of compressed elements in factor-4 groups. Next, we
show in Section 3.3.2 that double-exponentiation allows us to use compression techniques
in ElGamal type signature schemes and furthermore obtain shorter public keys. As an
illustrative example, we provide details for the Nyberg-Rueppel signature scheme.
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Table 3.4: Practical behavior of Algorithm 3.1 at the 128-bit security level. 220 pairs
(a, b) were randomly chosen such that a ∈ [1, 2609), b ∈ [1, 2612) and a, b ∈ [1, 21221). A =
a/gcd(a, b) and B = b/gcd(a, b).

Average Standard deviation

a ∈ [1, 2609), (a, b) ∈ [1, 21221) a ∈ [1, 2609), (a, b) ∈ [1, 21221)
b ∈ [1, 2612) b ∈ [1, 2612)

log2 (a + b) 611.4 1221 1.058 0.816
log2 (A + B) 611 1221 1.251 1.053

# of iterations (of steps 7–9) 1.451 · log2 (A + B) 1.453 · log2 (a + b) 0.018 0.012
# of multiplications per iteration 4.390 4.390 0.027 0.019

(during steps 7–9)
# of multiplications in step 10 2.320 2.315 5.414 5.412

Rule Average usage Standard deviation
R1 0.610 0.610 0.027 0.019
R2 0.175 0.175 0.013 0.009
R3 0.129 0.129 0.012 0.008
R4 0.085 0.085 0.013 0.009

Throughout this section we let µn = 〈g〉 be the factor-4 subgroup of F∗q4 with trace t,
and let T = |t|.

3.3.1 Speeding up single-exponentiation

Algorithm 3.1 can be turned into a single-exponentiation algorithm as follows. Suppose
we want to compute crs given cr and 0 ≤ s < n. Clearly, if s = 0 then crs = 0. Suppose
s 6= 0, and write s = aT + b where 0 ≤ a ≤ T and 0 ≤ b < T (this can be done as
T =

√
2q and n = q + 1− t). If a = 0 then crs = crb can be computed using Algorithm 2.1.

If b = 0 then crs = craT = cT
ra (recall that T is a power of 2) can be computed by first

computing cra from cr and a using Algorithm 2.1, and then raising the result to the T ’th
power. Now, suppose a, b 6= 0. Then crs = carT+br = cak+bl, where k = rT and l = r. In
other words, crs can be computed from a, b, cl = cr and sk,l = [cr(T−2), cr(T−1), crT , cr(T+1)]
using Algorithm 3.1. Note that cl is already given, and sk,l is the last su value obtained
from running Algorithm 2.1 with input cr and T . Our discussion yields Algorithm 3.2 for
single exponentiation in µn.

Let C1(i) denote the cost of Algorithm 2.1 when the input exponent b is approximately
an bic-bit integer. Similarly, let C2(i) denote the cost of Algorithm 3.1 when the sum of
the two input exponents is approximately an bic-bit integer. If s ≈ n and if one uses
Algorithm 2.1 to compute [cr(T−2), cr(T−1), crT , cr(T+1)] in step 12 of Algorithm 3.2 then

53



Algorithm 3.2 A single-exponentiation algorithm
Input: cr and s
Output: crs

1: if s = 0 then
2: crs ← 0
3: else
4: Write s = aT + b, where T = |t|, 0 ≤ a ≤ T , 0 ≤ b < T
5: if a = 0 then
6: Use Algorithm 2.1 to compute crb from cr and b
7: crs ← crb

8: else if b = 0 then
9: Use Algorithm 2.1 to compute cra from cr and a

10: crs ← cT
ra

11: else
12: Compute su = [cr(T−2), cr(T−1), crT , cr(T+1)] from cr and T
13: sk,l ← su, cl ← cr

14: Use Algorithm 3.1 to compute cak+bl from a, b, cl and sk,l

15: crs ← cak+bl

16: end if
17: end if
18: Return crs

the running time of Algorithm 3.2 is approximately C1((log2 n)/2) + C2((log2 n)/2) since
T ≈

√
n. Therefore, we can conclude from Table 3.1, and from the running time analysis

of Algorithm 3.1 at the end of Section 3.2, that the running time of Algorithm 3.2 will
not exceed (4 log2 n + 12.4 log2 n)M1/2 = 8.2(log2 n)M1 and the running time of Algo-
rithm 3.2 is expected to be (4 log2 n+6.37 log2 n)M1/2 ≈ 5.19(log2 n)M1. Moreover, in the
case that the base cr is fixed, sk,l in Algorithm 3.2 can be precomputed, and the running
time of Algorithm 3.2 is expected to be 6.38(log2 n)M1/2 = 3.19(log2 n)M1. Assuming
the base cr is fixed, we may conclude that Algorithm 3.2 is faster than Algorithm 2.1.
However, for general bases, Algorithm 2.1 remains the fastest single exponentiation al-
gorithm in factor-4 groups, unless we can find a more efficient method for computing
[cr(T−2), cr(T−1), crT , cr(T+1)] given cr and T .

We now argue that [cr(T−2), cr(T−1), crT , cr(T+1)] can be computed at a negligible cost.
This will refine Algorithm 3.2 and give a faster single-exponentiation algorithm than Al-
gorithm 2.1 for general bases. We first need the following theorem.

Theorem 3.3.1. Let µn = 〈g〉 ⊂ F∗q4 be a factor-4 group with trace t, and let cr = Tr(gr).
Then
(i) crt = ct

r.
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(ii) cr(t−1) = cr.
(iii) cr(t−2) = ct

r.
(iv) cr(t+1) is a root of F (x) = x2 + ct+1

r x + (ct+2
r + c3t

r + c2
r + c4

r).

Proof. (i) follows because t is a power of 2 and char(Fq) = 2.
(ii) cr(t−1) = crq = cq

r = cr since q ≡ t− 1 (mod n).
(iii) cr(t−2) = crqt = ct

r since qt ≡ q2 + q ≡ q − 1 ≡ t− 2 (mod n).
(iv) First note that

cr(2t−1) =
1

ct+1
r

(
(cr(t+1) + crt + cr(t−1) + cr(t−2))

2
)

+
1

ct+1
r

(
(crt + cr(t−1))

2(ct
r + c2

rt)
)
, (3.3.1)

by using Theorem 3.1.4(iii) with u = rt and v = r. Moreover, using Lemma 3.1.2(iv) with
u = rt and v = r together with the fact that cr(t−1) = cr from part (ii), we can show that

cr(2t−1) = ct+1
r + cr(t+1). (3.3.2)

Now, combining (3.3.1) and (3.3.2) we can write

c2
r(t+1) + ct+1

r cr(t+1) + (ct+2
r + c3t

r + c2
r + c4

r) = 0,

which proves the result.

Suppose now that cr is known and that t > 0, whence T = t (we can similarly argue
when t < 0). By Theorem 3.3.1(i), (ii), and (iii), we can compute [cr(T−2), cr(T−1), crT ] at a
cost of 2F1. We also know that the roots of F (x) = x2+Bx+C, B, C ∈ Fq, B 6= 0, are given
by {r1, r2} = {B ·R(C/B2), B ·(R(C/B2)+1)}, where R(C/B2) is a root of x2+x+(C/B2),
and if r1, r2 ∈ Fq then they can be computed at a negligible cost (see [40, Section 3.6.2]).
By Theorem 3.3.1(iv), the roots of F (x) = x2 + ct+1

r x + (ct+2
r + c3t

r + c2
r + c4

r) are in Fq, and
so can be computed efficiently. Hence, we can determine [cr(T−2), cr(T−1), crT , cr(T+1)] at a
negligible cost, up to the ambiguity that we cannot differentiate between the roots cr(T+1)

and cr(T+1) + cT+1
r of F (x) (see Theorem 3.3.1). This ambiguity problem can be resolved

if the sender of cr is also required to compute cr(T+1) and send one extra bit b ∈ {0, 1}
to help the receiver distinguish cr(T+1) from cr(T+1) + cT+1

r (see Section 3.3.2 for a similar
discussion on how b can be determined).

Hence, assuming that we have a general base cr and that the distinguisher bit b is known,
the running time of Algorithm 3.2 does not exceed (12.4 log2 n)M1/2 = 6.2(log2 n)M1.
Based on our experiments (see Table 3.4), the running time of Algorithm 3.2 is expected
to be (6.37 log2 n)M1/2 ≈ 3.19(log2 n)M1; this is 20% faster than Algorithm 2.1 which
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requires a negligible precomputation and has running time 4(log2 n)M1 (see Table 3.1).
Note that the Diffie-Hellman key exchange protocol is an example of the scenario where cr

and b can be computed from c1 by one of the communicating parties and sent to the other
party.

To be more concrete, we compare the expected running time of our new single-exponenti-
ation algorithm (Algorithm 3.2) with the previously known fastest single-exponentiation
algorithm (Algorithm 2.1) at the 128-bit security level when general bases are employed.
We let q = 21223 and t = 2612. Then q + 1 − t = 5n where n is a 1221-bit prime, and
F∗q4 has a factor-4 subgroup µn of order n. For any exponent s ∈ [1, n − 1], we can write

s = a · 2612 + b where a has bitlength at most 609 and b has bitlength at most 612, and
compute crs using Algorithm 3.2 with input cr, s and these a, b values. Based on our
experiments, the average cost of Algorithm 3.2 is 3895M1 (see Table 3.4). Note that this
is 20% less than the cost of Algorithm 2.1, which is 4880M1.

3.3.2 Nyberg-Rueppel signature scheme in factor-4 groups

The Nyberg-Rueppel signature scheme [72] can be modified to be used with compressed
representations of elements in µn as follows. We suppose that q, n and c1 are system-wide
parameters; alternately, they may be included in a party’s public key. Alice chooses a
random integer k ∈ [1, n − 1] and computes sk,1 = [ck−2, ck−1, ck, ck+1]. Alice’s public key
is sk,1 and her private key is k. To sign a message M , Alice chooses a random integer
a ∈ [1, n− 1] and computes ca. Alice extracts a session key K = Ext(ca) from ca, and uses
a symmetric-key encryption function E to encipher M under K: e = EK(M). Moreover,
she computes the hash h = H(e) of the encrypted text and sets s = k ·h+a mod n. Alice’s
signature on M is (e, s).

If Bob wants to verify Alice’s signature (e, s) on M , he first computes h = H(e),
replaces h by −h mod n, and computes chk+s from sk,1 and c1. Note that this is a double-
exponentiation to the base (k, 1). Bob extracts the session key K ′ = Ext(chk+s) from chk+s

and computes e′ = EK′(M). Bob accepts the signature if and only if e′ = e.

One advantage of using the compressed representation of elements in µn with the
Nyberg-Rueppel signature scheme is that c1 is a system parameter instead of (the longer)
g. We further show that it is possible to have a shorter public key at the expense of some
negligible precomputation. In particular, we show that ck+1 is a root of a certain quadratic
polynomial Pk whose coefficients are determined by c1, ck−1 and ck. That is, Alice can omit
ck+1 from her public key and instead specify one bit to help Bob distinguish ck+1 from the
other root of Pk.
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Consider the matrix

Mu =


cu cu+1 cu cu+1

cu+1 cu+2 cu+3 cu+4

cu+2 cu+3 cu+4 cu+5

cu+3 cu+4 cu+5 cu+6

 .

Giuliani and Gong [35] showed that the characteristic polynomial of the matrix M−1
u ·Mu+k

is equal to the characteristic polynomial of gk over Fq, namely fgk(x) = x4+ckx
3+ct

kx
2+1.

In particular, using Lemma 3.1.2(i), we can compute the characteristic polynomial Pk of
M−1
−2 ·Mk−2 and find that the coefficient C2(Pk) of x2 in Pk(x) satisfies

(c1ct)
2C2(Pk) = (c2

1 + c2
t )c

2
k+1 + (c1ct((ck−2 + ck) + c1ck−1 + ckct))ck+1

+(c1(ck−2 + ck))
2 + c2

1ct(ck−2ck + (ck−1 + ck)
2)

+c1ck−1ct(c
2
1ck + ck−2 + ck) + (ck−1(c1 + c2

1 + ct))
2

+c2
k(c

4
1 + c3

t ).

We should note that c1 6= 0 as otherwise fg would not be irreducible over Fq. Since
Pk = fgk , we must have C2(Pk) = ct

k yielding the following result.

Theorem 3.3.2. ck+1 is a root of the polynomial Pk(x) = Ax2 + Bx + C where

A = c2
1 + c2

t

B = c1ct((ck−2 + ck) + c1ck−1 + ckct)

C = (c1(ck−2 + ck))
2 + c2

1ct(ck−2ck + (ck−1 + ck)
2 + ct

kct)

+c1ck−1ct(c
2
1ck + ck−2 + ck) + (ck−1(c1 + c2

1 + ct))
2

+c2
k(c

4
1 + c3

t ).

First note that A = 0 if and only if c1 = ct, that is, if and only if g and gt are conjugates
over Fq. Using q2 ≡ −1 (mod n) and q ≡ t − 1 (mod n), we can show that this is never
the case.

Now, the roots of Pk(x) = Ax2 + Bx + C, B, C ∈ Fq, A, B 6= 0, are given by {r1, r2} =
{(B/A) · R(AC/B2), (B/A) · (R(AC/B2) + 1)}, where R(AC/B2) is a root of x2 + x +
(AC/B2). Furthermore, if r1, r2 ∈ Fq then they can be computed at a negligible cost (see
[40, Section 3.6.2]).

If A, B 6= 0, then Alice’s public key can be ([ck−2, ck−1, ck], b) where b ∈ {0, 1} is
determined by Alice to help Bob to distinguish ck+1 from the other root of Pk. For example,
Alice can do this as follows. She first computes ck+1 (ck+1 is obtained for free while
computing ck from c1 using a single-exponentiation algorithm) and determines the roots
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r1, r2 of Pk together with integers corresponding to the bit representations of r1 and r2, say
i1 and i2, respectively. We may assume without loss of generality that i1 < i2. If ck+1 = r1

then Alice sets b = 0, otherwise she sets b = 1. Given Alice’s public key, Bob can easily
recover sk,1 at a negligible cost and verify Alice’s signatures.

If A 6= 0 and B = 0 in Pk(x), then ck+1 can be uniquely computed by taking the square
root of C/A in Fq at a negligible cost.

To be more concrete, we compare the length of public keys when compression is deployed
with the length of public keys in the original scheme at the 128-bit security level. As in
Section 3.3.1, we let q = 21223 and t = 2612, whence q + 1 − t = 5n where n is a 1221-
bit prime and F∗q4 has a factor-4 subgroup µn of order n. We find that the length of a
public key when compression is deployed is 3669 bits, while the public key length without
compression is 4892 bits.

3.4 Concluding remarks

We showed that double-exponentiation can be efficiently performed using factor-4 com-
pressed representation of elements in factor-4 groups. This allowed us to speed up single-
exponentiation and also to use compression techniques in ElGamal type signature schemes.

A future research goal is to further speed up single-exponentiation and double-exponenti-
ation algorithms that use compressed representation of elements. One possibility is that
Algorithm 3.1 can be optimized by taking into account update rules different from those
given in Table 3.2 (see for example [68] and [84]). Another possibility is to search for bet-
ter parameters. For example, at the 128-bit security level, generating parameters q, n such
that µn ⊂ F∗q4 is a factor-4 group, q = 2m ≈ 21200, and n is a 256-bit prime, would result in
shorter exponents and therefore a speed up by a factor of more than 4. Such parameters
can be found by searching for a suitable prime factor n of N1 =gcd(Φ4m(2), q + 1 − t)
or N2 =gcd(Φ4m(2), q + 1 + t), where Φ4m is the (4m)th-cyclotomic polynomial of degree
ϕ(4m), and ϕ is Euler’s totient function. Note that when ϕ(m) is significantly smaller
than m, then factoring Ni is expected to be easier than factoring q + 1± t. For example,
when m = 1209, N2 is a 718-bit integer and has a 271-bit prime factor n.

We expect that our double-exponentiation algorithm can be adapted to the factor-6
groups that arise as multiplicative subgroups of characteristic-three finite fields [78, 50].
However, further analysis would be needed to estimate its efficiency, and to judge how the
resulting single-exponentiation method compares to previously known algorithms.
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Chapter 4

Torus-Based Compression by a
Factor-4 and 6

In this chapter, we extend the torus-based compression technique for cyclotomic subgroups
Gq,4 ⊆ F∗q4 and Gq,6 ⊆ F∗q6 , and obtain compression factor-4 for the subgroups G ( Gq,4 of

orders q ±
√

2q + 1, where q = 2m, m is odd, and factor-6 compression for the subgroups
G ( Gq,6 of orders q ±

√
3q + 1, where q = 3m, m is odd. We present exponentiation

algorithms that use torus-based compressed representations of elements, and compare them
to the trace-based exponentiation algorithms. We also argue that, in general, the torus-
based compression technique is unlikely to extend to obtain better compression factors for
proper subgroups of cyclotomic subgroups of Gq,k.

The remainder of this chapter is organized as follows. In Section 4.1, we give some
details on torus-based compression. In Section 4.2, we present our argument for the diffi-
culty of obtaining the optimal compression factor k for the elements of G` ( Gq,k ⊆ Fqk ,
where ` ≈ q. We analyze two particular cases in Sections 4.3 and 4.4 and show that, in
contrast to our pessimistic arguments in Section 4.2, one can obtain factor-4 and factor-6
compression by extending torus-based compression techniques. In Sections 4.5 and 4.6 we
describe several exponentiation algorithms based on our compression/decompression tech-
niques. In Section 4.7 we give a comparison of exponentiation algorithms and conclude
that torus-based exponentiation algorithms outperform the trace-based exponentiation al-
gorithms and the conventional exponentiation algorithms. We state some open problems
in Section 4.8.
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4.1 A review of torus-based compression

Let q be a prime power and Fq denote the finite field of order q, and recall that Gq,k is
the cyclotomic subgroup of F∗

qk , where |Gq,k| = Φk(q). Throughout this chapter, we will
denote the trace function TrFqi/F

qj
: Fqi → Fqj by Trqi,qj .

Let V be an algebraic variety defined over Fqk via the set of solutions of a system of
(multivariate) polynomial equations (f1(X), f2(X), . . . , fr(X)), fi ∈ Fqk [X]. Note that
(f1(X), f2(X), . . . , fr(X)) can equivalently be represented as a system of polynomials
(g1(Y ), g2(Y ), . . . gs(Y )) defined over Fq, by considering Fqk as a k-dimensional vector space
over Fq. The algebraic variety that corresponds to this new system of polynomial equations
is called the Weil restriction of scalars from Fqk to Fq and denoted ResF

qk/FqV . In partic-

ular, (ResF
qk/FqV )(Fq) ∼= V (Fqk), where V (F) denotes the F-points of V . For example, if

Gm is the multiplicative group then we have (ResF
qk/FqGm)(Fq) ∼= Gm(Fqk) = F∗

qk .

Definition 4.1.1. [74] An algebraic torus T of dimension d over Fq is an algebraic group
defined over Fq that, over some finite extension field F, is isomorphic to (Gm)d. Such a
field F is called a splitting field for T; or we say T splits over F.

Definition 4.1.2. [74] A rational map between algebraic varieties is a function defined
by quotients of polynomials that is defined almost everywhere. A birational isomorphism
between algebraic varieties is a rational map that has a rational inverse. A d-dimensional
variety over Fq is rational over Fq if it is birationally isomorphic over Fq to Ad, where A is
the affine d-space. A variety V over Fq is called stably rational over Fq if V ×Ar is rational
over Fq for some r ≥ 0.

As noted in [74], ResF
qk/FqGm is a k-dimensional algebraic torus over Fq that splits

over Fqk . Rubin and Silverberg define a subvariety (and an algebraic subgroup) Tq,k of
ResF

qk/FqGm to be the intersection of the kernels of the norm maps NF
qk/F : ResF

qk/FqGm →
ResF/FqGm, for all Fq ⊆ F ( Fqk . That is,

Tq,k = Ker

ResF
qk/FqGm

⊕NF
qk /F

−−−−−→
⊕

Fq⊆F(F
qk

ResF/FqGm

 .

They show that Tq,k is an algebraic torus of dimension ϕ(k) that splits over Fqk , and that

Tq,k(Fq) ∼= {g ∈ Fqk : NF
qk/F(g) = 1 for all Fq ⊆ F ( Fqk} = Gq,k.

It is known that the torus Tq,k is rational over Fq if k is a prime power or a product
of two prime powers; and that Tq,k is always stably rational. In particular, Rubin and
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Silverberg presented explicit birational maps (or equivalently compression/decompression
maps) ρ : Tq,k → Aϕ(k) when k = 2 and k = 6, thereby achieving compression factors
2/ϕ(2) = 2 and 3 = 6/ϕ(6) for groups Gq,k. The compression and decompression maps
that correspond to the case k = 2 will be the building blocks in our arguments, so we
explicitly state them here for future reference.

Let Fq2 = Fq[σ]/(f(σ)). If q is even, we set f(σ) = σ2 + σ + c with c ∈ Fq and
Trq2,2(c) = 1. If q is odd, we set f(σ) = σ2 − c where c ∈ Fq is a quadratic non-residue.
Then

C : Gq,2 \ {±1} → Fq (4.1.1)

g0 + g1σ 7→ g0 + 1

g1

,

and

D : Fq → Gq,2 (4.1.2)

α 7→
{

α+σ
α+1+σ

if q is even,
α+σ
α−σ

if q is odd,

define the compression and the decompression maps, respectively [74]. After observing
that

Gq,2 = {g0 + g1σ : g0, g1 ∈ Fq and (g0 + g1σ)q+1 = 1}

=

{
{g0 + g1σ : g0, g1 ∈ Fq and g2

0 + cg2
1 + g0g1 = 1} if q is even,

{g0 + g1σ : g0, g1 ∈ Fq and g2
0 − cg2

1 = 1} if q is odd,

one can check that C and D are inverses of each other when they are defined, and that

D(α)D(β) = D
(

αβ + c

α + β + 1

)
if q is even, (4.1.3)

D(α)D(β) = D
(

αβ + c

α + β

)
if q is odd. (4.1.4)

We note that formulas (4.1.3) and (4.1.4) can be used to perform multiplication and ex-
ponentiation in Gq,2 \ {±1} when working with the compressed representation of elements
in Fq.

4.2 On the (im)possibility of optimal compression

In Section 4.1 we saw that one can at best hope to compress the elements of Gq,k ⊂ F∗
qk

by a factor k/ϕ(k) which seems to be the optimal compression factor as |Gq,k| ≈ qϕ(k).
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However, we also saw in Chapter 2 that for k = 4 and k = 6, one can compress further by
a factor of 2 and obtain compression factor 2k/ϕ(k) = k for the elements of certain proper
subgroups G` of Gq,k. In particular, for k = 4 we have q = 2m and ` = q ±

√
2q + 1, and

for k = 6 we have q = 3m and ` = q±
√

3q +1; in both cases, m is odd. Note that, in both
cases, G` ≈ q and so k is the optimal compression factor. In general, it would be desirable
to compress the elements of any order-` subgroup G` ( Gq,k ⊆ F∗

qk by an optimal factor

(k log q)/ log ` in any characteristic.

We first recall some details on how to achieve compression factor k = 4 in characteristic-
two fields using the trace representation of elements, and explain why this compression
technique does not seem to generalize to fields with characteristic different from two.

Let q = 2m, t =
√

2q and ` = q± t + 1, where m is odd. We note that Φ4(q) = q2 + 1 =
(q + t− 1)(q − t + 1) and G` ⊂ Gq,4 ⊂ F∗q4 has embedding degree k = 4 with respect to q.
In Chapter 2, we have shown that if g ∈ G` then the minimal polynomial fg of g over Fq is

fg(x) = x4 − Trq4,q(g)x3 + Trq4,q(g)tx2 − Trq4,q(g)x + 1.

One readily deduces that g can be uniquely identified up to conjugation over Fq from
Trq4,q(g), thereby achieving factor-4 compression. A natural extension is to try to represent
the elements of G` with embedding degree 4 using their traces over Fq, where q is not even.
We fix parameters (q, `) such that q is a prime power, gcd(q, `) = 1, q2+1 ≡ 0 (mod `), and
qi 6≡ 1 (mod `) for 1 ≤ i < 4. We have shown in Chapter 2 that the minimal polynomial
fg of g ∈ G` over Fq can be computed as

fg(x) = x4 − Trq4,q(g)x3 + (Trq4,q(g
q+1) + 2)x2 − Trq4,q(g)x + 1.

Therefore, two Fq-elements (as opposed to only one) are generally required to identify g
uniquely up to its conjugates over Fq, unless one of Trq4,q(g) or Trq4,q(g

q+1) can be obtained
from the other. In fact, one can find parameters (q, `), and elements g1, g2 ∈ G` ( Gq,4

such that g1 and g2 are not conjugates over Fq but Trq4,q(g1) = Trq4,q(g2).

Next, we give some evidence that, in general, compressing the elements of G` ( Gq,k ⊆
F∗

qk by an optimal factor (k log q)/ log ` might not be possible using tori-like techniques.

Again, we consider the case k = 4 and ` ≈ q. Note that (k log q)/ log ` ≈ 4. Let Fq2 =
Fq[w]/(g(w)) and Fq4 = Fq2 [σ]/(f(σ)) for some suitable f and g. Let g = g0+g1σ ∈ G` and
recall from Section 4.1 that if g 6= ±1 then it can be uniquely identified with an element
α ∈ Fq2 if f(σ) is of the form σ2 − c or σ2 + σ + c; see (4.1.1) and (4.1.2). More precisely,
if g = g0 + g1σ then α = (g0 + 1)/g1 and g = D(α), where D(α) = (α + σ)/(α − σ) if q
is even, and D(α) = (α + σ)/(α + 1 + σ) if q is odd. Let α = a + bw for some a, b ∈ Fq.
Note that the compression of g into (a, b) does not utilize the fact that g lies in a proper
subgroup G` of Gq,4. Therefore, one might try to compress g further into b (or a), by using
the relation g` = 1 to obtain an expression for one of a and b in terms of the other. For
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example, the most naive way would be to use the relation g` = 1 and obtain a polynomial
P (x, y) ∈ Fq[x, y] such that P (a, b) = 0. Then we would hope to find a among the roots of
P (x, b) = 0. Since we also want the corresponding decompression function to be efficiently
computable and almost one-to-one we might ask the following question.

Question: What is the minimum expected degree and sparsity of a polynomial P (x, y) ∈
F̄q[x, y] such that (i) for (almost) all b ∈ Fq there exists an (almost) unique solution a ∈ Fq

to P (x, b) = 0; and (ii) for α = a + bw we have D(α) ∈ G`.

Remark 4.2.1. Given
(

n+m
n

)
pairs (Xi, zi) ∈ Fm

q × Fq, an nth degree polynomial P in m

variables can be constructed such that P (Xi) = zi. Note that
(

n+m
n

)
is the number of ways

of choosing n elements from a set of m + 1 elements with repetitions allowed, which is
therefore the maximum number of monomials in P . Hence, when m = 2 we would expect
deg(P (x, y)) ≤

√
` ≈ √q.

4.3 Factor-4 compression in characteristic two

Let q = 2m, m odd, t =
√

2q, ` = q + 1− t and ¯̀= q + 1 + t. Then

q4 − 1 = (q2 − 1)(q2 + 1)

= (q2 − 1)(q + 1− t)(q + 1 + t).

Let G` ⊂ Gq,4 ⊂ F∗q4 and G¯̀ ⊂ Gq,4 ⊂ F∗q4 be subgroups such that |Gq,4| = q2 + 1,

|G`| = ` and |G¯̀| = ¯̀. In this section, we set Fq2 = Fq[w]/(w2 + w + c0) and Fq4 =
Fq2 [σ]/(σ2 + σ + c1). We must have Trq,2(c0) = Trq2,2(c1) = 1.

Lemma 4.3.1. Let Fq2 = Fq[w]/(w2 + w + c0) and Fq4 = Fq2 [σ]/(σ2 + σ + c1) with
Trq,2(c0) = Trq2,2(c1) = 1. Then

σq + σ =
m−1∑
i=0

c2i

1 = u0 + u1w, (4.3.1)

σt + σ =

(m−1)/2∑
i=0

c2i

1 = u2 + u3w, (4.3.2)

wq + w = 1, (4.3.3)

wt + w =

(m−1)/2∑
i=0

c2i

0 = u4, (4.3.4)

for some ui ∈ Fq. In particular, u1 = 1.
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Proof. The equalities can be proven by repeatedly squaring the equations σ2 + σ = c1 and
w2 + w = c0. We have u1 = 1 since

1 = Trq2,2(c1) = (σ + σq) + (σ + σq)q = u1(w + wq) = u1.

We furthermore assume throughout this section that σ2 + σ = c1 = u5 + u6w, where
u5, u6 ∈ Fq.

Let g = g0 + g1σ ∈ Gq,4. We already know from Section 4.1 that if g 6= 1 then g can be
compressed to an element α = (g0 + 1)/g1 ∈ Fq2 , and that a compressed element α ∈ Fq2

can be decompressed to obtain g = (α + σ)/(α + 1 + σ) ∈ Gq,4 \ {1}. Our objective is to
show that g ∈ {G`, G¯̀} \ {1} can further be compressed to b ∈ Fq, and that a compressed
b ∈ Fq can be decompressed to obtain g ∈ {G`, G¯̀} \ {1}. The following theorem plays a
key role.

Theorem 4.3.2. Let g = (α + σ)/(α + 1 + σ) ∈ Gq,4 \ {1} where α = a + bw ∈ Fq2 for
some a, b ∈ Fq. If g ∈ G` then a is a root of the polynomial

P1(x, b) = xt + x + bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b + (u0u3 + u2 + u6),

where the ui’s are as specified in Lemma 4.3.1. If g ∈ G¯̀ then a is a root of the polynomial

P1(x, b) = xt + x + bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b + (u0u3 + u2 + u6 + 1).

Proof. Let g = (α+σ)/(α+1+σ) ∈ G` \{1}. After expanding and simplifying gq+1−t = 1,
we find that α + σ is a root of

P (x) = xq+t + xq+1 + xt+1 + xt.

Now, writing α = a + bw for some a, b ∈ Fq and simplifying P (α + σ) = 0 gives us

P (α) = a2 + ab + (σq + σ)a + (w2 + w)b2 + bat + wtbt+1

+(w(σq + σ) + σt + σ)b + (σq + σ + 1)at

+(wt(σq + σ + 1))bt + (σq(σt + σ) + σt(σ + 1))

= a2 + ab + (u0 + w)a + c0b
2 + bat + (u4 + w)bt+1

+((u0 + u3 + 1)w + (c0 + u2))b + (u0 + 1 + w)at

+((u0 + u4)w + (c0 + u0u4 + u4))b
t + (u0u3 + u2 + u6)w

+(c0u3 + u0u2 + u2 + u5)

= P0(a, b) + P1(a, b)w = 0,
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where

P0(a, b) = atb + (u0 + 1)at + a2 + ab + u0a + u4b
t+1

+(c0 + u0u4 + u4)b
t + c0b

2 + (c0 + u2)b

+(c0u3 + u0u2 + u2 + u5),

P1(a, b) = at + a + bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b

+(u0u3 + u2 + u6).

Hence, if g = α+σ
α+1+σ

∈ G` for some α = a + bw ∈ Fq2 with a, b ∈ Fq, we must have
P0(a, b) = P1(a, b) = 0. In particular, a must be a root of the polynomial

P1(x) = P1(x, b) = xt + x + bt+1 + (u0 + u4)b
t + (u0 + u3 + 1)b + (u0u3 + u2 + u6).

The case when g ∈ G¯̀ \ {1} can be proved similarly.

Lemma 4.3.3. Let P1(x) = xt + x + u ∈ Fq[x]. Then P1(x) = 0 has a solution in Fq if
and only if Trq,2(u) = 0. If Trq,2(u) = 0 then P1(x) = 0 has exactly two solutions a0, a1 in
Fq, and a1 = a0 + 1.

Proof. We first prove that P1(x) = 0 has a solution in Fq if and only if Trq,2(u) = 0.
Suppose that P1(x) = xt + x + u = 0 has a solution, say a ∈ Fq. Then

Trq,2(u) = Trq,2(a
t + a) = Trq,2(a)t + Trq,2(a) = 0. (4.3.5)

Now, define a half-trace function H : Fq → Fq as follows1

H(u) =

(m−1)/2∑
i=0

u2i

. (4.3.6)

Then H(u)t + H(u) = u + Trq,2(u), and so H(u) ∈ Fq is a solution to P1(x) = 0 when
Trq,2(u) = 0.

Next we prove that if Trq,2(u) = 0 then P1(x) = 0 has exactly two solutions, namely
H(u) and H(u) + 1. We first consider the case m = 4i + 3. Note that q = 2m and
t =
√

2q = 22i+2. Let us fix a normal basis to represent Fq as an m-dimensional vector
space over F2. In this representation, we may set

x = (x0, x1, . . . , x2i, x2i+1, x2i+2, x2i+3, . . . , x4i+1, x4i+2),

xt = (x2i+1, x2i+2, . . . , x4i+1, x4i+2, x0, x1, . . . , x2i−1, x2i),

u = (u0, u1, . . . , u2i, u2i+1, u2i+2, u2i+3, . . . , u4i+1, u4i+2).

1The definition is similar to the one in [40, Section 3.6.2]
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Then P1(x) = 0 has a solution if and only if the linear system of equations determined by

xj + x2i+2+j = u2i+2+j, 0 ≤ j ≤ 2i, (4.3.7)

x2i+1+j + xj = uj, 1 ≤ j ≤ 2i + 1, (4.3.8)

x2i+2 + x0 = u0 (4.3.9)

has a solution X = (x0, x1, . . . , x4i+2) ∈ Fm
2 . We can see from (4.3.7) and (4.3.8) that

a choice of x0 ∈ {0, 1} fixes xj for all 1 ≤ j ≤ 4i + 2, and hence fixes two vectors X0

and X1 in Fm
2 . Now, it follows from (4.3.9) that P1(x) = 0 has a solution if and only if

x0 + x2i+1 = u0. Therefore, P1(x) = 0 has at most two solutions in Fq. In particular, when
P1(x) = 0 has a solution a0 then there are exactly two solutions and the other solution is
a1 = a0 + 1 since

P1(a0 + 1) = (a0 + 1)t + (a0 + 1) + u = at
0 + a0 + u = 0.

The case m = 4i + 1 can be similarly proven.

Now, we are ready to describe our compression/decompression maps that achieve factor-
(4 log q/(1 + log q)) compression.

Theorem 4.3.4. For some fixed representation of Fq as an m-dimensional vector space
over F2, let j be a coordinate position such that the vector representations of β and β + 1
differ in the jth coordinate position for all β ∈ Fq. Let G ∈ {G`, G¯̀}. Define a compression
map

C : G \ {1} → {0, 1} × Fq (4.3.10)

g 7→ (i, b),

where g = g0 + g1σ, (g0 + 1)/g1 = a + bw, and i is the jth bit in the vector representation
of a. And define a decompression map

D : {0, 1} × Fq → G \ {1} (4.3.11)

(i, b) 7→ (α + σ)/(α + 1 + σ),

where α = a+bw, and a is one of the two roots of P1(x, b) (see Theorem 4.3.2) whose jth bit
when represented as a vector over F2 is equal to i. Then C and D are inverses of each other
when they are defined. Moreover, if D(0, b) ∈ G then D(1, b) ∈ G and D(0, b)D(1, b) = 1.

Proof. It follows from Theorem 4.3.2 and Lemma 4.3.3 that C and D are inverses of each
other when they are defined. Now, by Lemma 4.3.3, P1(x, b) has exactly 2 solutions a0 and
a1 in Fq, and a1 = a0 + 1. Note that since g = α+σ

α+1+σ
∈ G with α = a + bw corresponding

to (a0, b), the element h = α+1+σ
α+σ

corresponds to (a1, b) and is in fact the multiplicative
inverse of g. It follows that D(0, b)D(1, b) = 1.
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Remark 4.3.5. Let G ∈ {G`, G¯̀}. We should note that D is only defined on a subset of
{0, 1} × Fq. In particular, D(i, b) ∈ G \ {1} if (i, b) = C(g) for some g ∈ G \ {1}. It would
be interesting to determine whether P1(x, b) = 0 has any solution in Fq when b ∈ Fq and
(i, b) 6= C(g) for all i ∈ {0, 1} and g ∈ G \ {1}.

Remark 4.3.6. The polynomials P0(x, y) and P1(x, y) are both of degree (t + 1) ≈ √q
which is in accordance with Remark 4.2.1. However, P1(x, b) is very sparse and moreover it
is easy to find a root a ∈ Fq, in contrast to what one would expect in general for high-degree
polynomials.

4.4 Factor-6 compression in characteristic three

Let q = 3m, m ≡ 5 (mod 12), t =
√

3q and ` = q + 1− t. Then

q6 − 1 = (q3 − 1)(q3 + 1)

= (q3 − 1)(q + 1)(q2 − q + 1)

= (q3 − 1)(q + 1)(q + 1− t)(q + 1 + t).

Let G` ⊂ Gq,6 ⊂ F∗q6 be subgroups such that |Gq,6| = q2 − q + 1 and |G`| = `. Since

f(w) = w3 − w − 1 has splitting field F33 and gcd(3, m) = 1, f is irreducible over Fq and
we set Fq3 = Fq[w]/(w3 − w − 1). We also let c0 ∈ Fq3 be a quadratic non-residue and set
Fq6 = Fq3 [σ]/(σ2 − c0).

Lemma 4.4.1. Let Fq3 = Fq[w]/(w3 − w − 1) and Fq6 = Fq3 [σ]/(σ2 − c0) where c0 ∈ Fq3

be a quadratic non-residue. Then

σt = c1σ,

σq = c2σ,

σq2

= c3σ,

wt = w,

w2t = w2,

wq = w + 2,

w2q = w2 + w + 1,

wq2

= w + 1,

for some c1, c2, c3 ∈ Fq3.

Proof. The equalities can be proven by using the defining equations of σ and w, and noting
that w32k

= w + 2k and w32k+1
= w + 1 + 2k.
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We furthermore assume throughout this section that ci = u3i + u3i+1w + u3i+2w
2 for

i = 0, 1, 2, 3, where uj ∈ Fq.

Let g = g0 + g1σ ∈ Gq,6. We already know from Section 4.1 that if g 6= ±1 then g can
be compressed to an element α = (g0 + 1)/g1 ∈ Fq3 , and that a compressed α ∈ Fq3 can be
decompressed to obtain g = (α + σ)/(α− σ) ∈ Gq,6 \ {±1}. Our objective is to show that
g ∈ G` can be compressed to c ∈ Fq, and that a compressed c ∈ Fq can be decompressed
to obtain g ∈ G` \ {±1}. The following theorem plays a key role.

Theorem 4.4.2. Let g = (α + σ)/(α− σ) ∈ G` \ {±1} where α = a + bw + cw2 for some
a, b, c ∈ Fq. Then (x1, x2, x3, x4, x5, x6) = (a, at, b, bt, c, ct) is a root of each fi and gi for
i = 0, 1, 2, where

f0 = u0u3u6 + u0u4u8 + u0u5u7 + u1u3u8 + u1u4u7 + u1u5u6

+u1u5u8 + u2u3u7 + u2u4u6 + u2u4u8 + u2u5u7 + u2u5u8

+u3x
2
1 + (u4 + 2u5)x

2
3 + (u3 + 2u4 + 2u5)x

2
5 + (2u6 + 2)x1x2

+(2u7 + 2u8 + 2)x5x6 + (2u6 + 2u8 + 2)x3x6 + (2u8 + 1)x2x3

+(2u7 + 2)x2x5 + (2u6 + 2u8 + 2)x4x5 + (2u3 + 2u5)x1x3

+(u3 + 2u4 + u5)x1x5 + 2u3x3x5 + 2u7x3x4 + 2u7x1x6

+2u8x1x4,

f1 = u0u3u7 + u0u4u6 + u0u4u8 + u0u5u7 + u0u5u8 + u1u3u6

+u1u3u8 + u1u4u7 + u1u4u8 + u1u5u6 + u1u5u7 + u1u5u8

+u2u3u7 + u2u3u8 + u2u4u6 + u2u4u7 + u2u4u8 + u2u5u6

+u2u5u7 + 2u2u5u8 + u4x
2
1 + (2u3 + u4)x

2
3 + (2u3 + u5)x

2
5

+(2u6 + 2u7 + u8 + 1)x5x6 + (2u7 + 2u8 + 1)x3x4

+(2u6 + 2u7 + 2u8 + 2)x3x6 + (2u6 + 2u8 + 2)x2x3

+(2u7 + 2u8 + 2)x2x5 + (2u6 + 2u7 + 2u8 + 1)x4x5

+(2u7 + 2u8)x1x6 + (2u6 + 2u8 + 2)x1x4 + u3x1x5

+(2u3 + 2u4 + 2u5)x1x3 + 2u4x3x5 + 2u7x1x2,
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f2 = u0u3u8 + u0u4u7 + u0u5u6 + u0u5u8 + u1u3u7 + u1u4u6

+u1u4u8 + u1u5u7 + u1u5u8 + u2u3u6 + u2u3u8 + u2u4u7

+u2u4u8 + u2u5u6 + u2u5u7 + u2u5u8 + 2u7x2x3 + u5x
2
1

+(u3 + 2u4 + u5)x
2
3 + (2u3 + 2u4)x

2
5 + (2u4 + 2u5)x1x3

+(2u3 + u4)x1x5 + 2u8x1x2 + 2u5x3x5 + 2u7x1x4

+(2u6 + 2u7 + 2u8 + 1)x5x6 + (2u6 + 2u8 + 2)x3x4

+(2u7 + 2u8 + 1)x3x6 + (2u6 + 2u8 + 2)x2x5

+(2u7 + 2u8 + 2)x4x5 + (2u6 + 2u8 + 2)x1x6,

g0 = u2u7u11 + u2u8u10 + u2u8u11 + u0u6u9 + u1u7u10 + u0u7u11

+u0u8u10 + u1u6u11 + u2u7u9 + u1u8u9 + u1u8u11 + u2u6u10

+(2u9 + 2 + u6)x
2
1 + (u9 + u6 + 2u8 + u11)x3x1

+(2u9 + 1 + 2u8 + u10 + 2u11 + 2u7 + u6)x1x5

+(u7 + u8 + 2u10 + u11 + 1)x2
3

+(2u6 + 2u7 + 2u9 + u10 + u11 + 2)x2
5 + (2u6 + u9 + 1)x3x5

g1 = u0u6u10 + u0u7u9 + u0u7u11 + u0u8u10 + u0u8u11 + u1u6u9

+u1u6u11 + u1u7u10 + u1u7u11 + u1u8u9 + u1u8u10 + u1u8u11

+u2u6u10 + u2u6u11 + u2u7u9 + u2u7u10 + u2u7u11 + u2u8u9

+u2u8u10 + 2u2u8u11 + (u7 + 2u10)x
2
1

+(u6 + u7 + 2u8 + u9 + 2u10)x
2
3

+(u7 + 2u8 + u9 + 2u11 + 2)x2
5

+(2u6 + u7 + 2u8 + u9 + u10 + u11 + 1)x1x3

+(2u6 + u8 + 2u9)x1x5 + (2u7 + u10)x3x5,

g2 = u1u6u10 + u1u7u9 + u1u7u11 + u1u8u10 + u1u8u11 + u2u6u9

+u2u6u11 + u2u7u10 + u2u7u11 + u0u6u11 + u0u7u10 + u0u8u9

+u0u8u11 + u2u8u9 + u2u8u10 + u2u8u11 + (u8 + 2u11)x
2
1

+(2u7 + u8 + u10 + u11)x1x3

+(2u6 + 2u7 + u9 + 2u10 + 1)x1x5

+(u6 + u7 + u8 + 2u9 + u10 + 2u11 + 2)x2
3

+(2u6 + u8 + u9 + u10 + 1)x2
5 + (2u8 + u11)x3x5,
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where ci = u3i + u3i+1w + u3i+2w
2, for i = 0, 1, 2, 3, are as specified in Lemma 4.4.1.

Proof. Let g = (α + σ)/(α − σ) ∈ G` \ {±1}. Expanding the equations gq2−q+1 =
1 and gq+1−t = 1 and simplifying using Lemma 4.4.1 yields the polynomials fi, gi ∈
Fq[x1, x2, . . . , x6] for i = 0, 1, 2 such that (x1, x2, x3, x4, x5, x6) = (a, at, b, bt, c, ct) is a root
of each fi and gi, as required.

Theorem 4.4.2 suggests that one can compress an element g ∈ G` \ {±1} to an element
c ∈ Fq. Given a compressed representation c of an element g, one might reconstruct g
by finding a common root (a, at, b, bt, c, ct) of the fi and gi. This may be achieved by
constructing a Groebner basis of the ideal in Fq[x1, x2, . . . , x6] generated by fi and gi

evaluated at x5 = c, x6 = ct for i = 0, 1, 2. The next corollary shows that this is indeed
possible in the case that c0 = −1.

Corollary 4.4.3. Let Fq3 = Fq[w]/(w3−w−1) and Fq6 = Fq3 [σ]/(σ2+1). Let fi, gi be as in
Theorem 4.4.2. Then a Groebner basis of the ideal 〈f0, f1, f2, g0, g1, g2〉 in Fq[x1, x2, . . . , x6]
is

P1 = x1 + 2x2
3x4 + 2x3x4x5 + x3 + x2

5x6 + 2x5,

P2 = x2 + 2x3
3x

2
4 + 2x2

4x
3
5 + x4x

3
5x6 + x3

5x
2
6 + 2x6,

P3 = x2
3x4x5 + 2x2

3 + x3x4x
2
5 + 2x3x5 + 2x3

5x6 + 2x2
5 + 2,

P4 = x3x
2
4x

2
5 + x3x4x5 + x3 + 2x2

4x
3
5 + 2x4x

3
5x6 + 2x4x

2
5

+2x3
5x

2
6 + 2x5 + 2x6,

P5 = x3x6 + 2x4x5 + 2x5x6 + 1,

P6 = x3
4x

3
5 + 2x4x

3
5x

2
6 + 2x3

5x
3
6 + 2x2

6 + 2.

Proof. If one sets c0 = −1 in Theorem 4.4.2 then g1 = g2 = 0, and the polynomials fi and
g0 simplify to

f0 = 2x2
1 + x1x3 + 2x1x5 + x2x3 + 2x2x5 + x3x5 + 2x2

5 + 2x5x6 + 2,

f1 = x1x3 + 2x1x5 + 2x2x5 + x2
3 + x3x4 + 2x4x5 + x2

5 + 2x5x6,

f2 = x1x5 + 2x2
3 + x3x6 + 2x4x5 + x2

5 + 2x5x6,

g0 = 2x1x5 + x2
3 + 2x2

5 + 1.

It can be verified using Magma with the commands

R < x1, x2, x3, x4, x5, x6 >:= PolynomialRing(FiniteField(3), 6);

B := [R!f0, R!f1, R!f2, R!g0];

I := ideal < R|B >;

GroebnerBasis(I);
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that a Groebner basis of the ideal 〈f0, f1, f2, g0〉 in Fq[x1, x2, . . . , x6] is determined by the
Pi’s, as required.

4.4.1 Decompression procedure

Let Fq3 = Fq[w]/(w3−w−1) and Fq6 = Fq3 [σ]/(σ2+1). Let g = (α+σ)/(α−σ) ∈ G`\{±1}
where α = a + bw + cw2 for some a, b, c ∈ Fq. By Theorem 4.4.2 and Corollary 4.4.3, bt

must be a root of

P6(x4) = c3x3
4 + 2c2t+3x4 + 2(c3(t+1) + c2t + 1). (4.4.1)

In fact, there are exactly three roots of P6(x4) in Fq, and if r is a root then the other two
roots are given by r ± ct. Therefore, if c is given, bt can be determined uniquely up to 3
elements, that is, bt ∈ {r, r − ct, r + ct}. Once bt is fixed, one can solve for b uniquely by
using P5(x3) = 0, where P5(x3) is obtained by evaluating P5 at x4 = bt, x5 = c, x6 = ct (see
Corollary 4.4.3), or by using the fact that b 7→ bt is a Frobenius map. Having determined
b, bt, c and ct we can use P2(x2) = 0, where P2(x2) is obtained by evaluating P2 at x3 = b,
x4 = bt, x5 = c, x6 = ct (see Corollary 4.4.3), to solve for at uniquely. Finally, a can
be determined either by using P1(x1) = 0, where P1(x1) is obtained by evaluating P1 at
x3 = b, x4 = bt, x5 = c, x6 = ct (see Corollary 4.4.3), or by using the fact that a 7→ at is a
Frobenius map.

To summarize, suppose that g ∈ G`\{±1} and g = (α+σ)/(α−σ) with α = a+bw+cw2.
If c is given, then the three pairs (x1h, x3h), h = 1, 2, 3 can be efficiently determined such
that (a, b, c) ∈ {(x1h, x3h, c) : h = 1, 2, 3}. In fact, one can check that c 6= 0 and

{(x1h, x3h, c) : h = 1, 2, 3} = {(a, b, c), (a− b + c, b + c, c), (a + b + c, b− c, c)}.

Suppose now that we have fixed some representation of Fq as an m-dimensional vector space
over F3. Then there must exist a smallest index j such that exactly one of x3h’s j’th trit is
equal to b’s j’th trit, say i ∈ {0, 1, 2}, when they are represented as vectors over F3. This
yields one-to-one compression/decompression maps that achieve factor-(6 log q)/(2+ log q)
compression.

Theorem 4.4.4. Define a compression map

C : G` \ {±1} → {0, 1, 2} × Fq (4.4.2)

g 7→ (i, c),

where g = g0+g1σ, (g0+1)/g1 = a+bw+cw2, and i is defined above. Define a decompression
map

D : {0, 1, 2} × Fq → G` \ {±1} (4.4.3)

(i, c) 7→ (α + σ)/(α− σ),
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where α = a + bw + cw2, and a, b can be constructed as described above. Then C and D
are inverses of each other when they are defined. Moreover, if D(0, c) ∈ G` \ {±1} then
D(i, b) ∈ G` \ {±1} for i = 1, 2, and D(0, c)D(1, c)D(2, c) = 1.

Proof. It is clear from our arguments above that C and D are inverses of each other when
they are defined. Now, let c ∈ F∗q be such that g = (α + σ)/(α − σ) ∈ G` \ {±1}, where
α = a + bw + cw2. Let i1 be the jth trit of b, where j is the smallest index such that if
(b + c)’s j’th trit is i2 and (b − c)’s j’th trit is i3, then i1, i2, i3 are pairwise different. It
follows from our arguments above that the decompression function satisfies D(ih, c) = gh,
where gh = (αh−σ)/(αh +σ), and α1 = a+bw+cw2, α2 = (a−b+c)+(b+c)w+cw2, α3 =
(a + b + c) + (b − c)w + cw2. Moreover, one can check that g1 = g, g2 = g−q = gq4

, and
g3 = gq2

, that is g1g2g3 = 1, as required.

Remark 4.4.5. We should note that D is only defined on a subset of {0, 1, 2} × Fq. In
particular, D(i, c) ∈ G` \ {±1} if (i, c) = C(g) for some g ∈ G` \ {±1}. It would be
interesting to determine whether P6(x) = 0 has any solution in Fq when c ∈ Fq and
(i, c) 6= C(g) for all i ∈ {0, 1, 2} and g ∈ G` \ {±1}.

Remark 4.4.6. It would be interesting to prove similar results for q = 3m where m 6≡ 5
(mod 12), and for any quadratic non-residue c0 ∈ Fq3 , c0 6= −1. The main difficulty when
c0 6= −1 seems to be that the polynomials fi, gi are defined strictly over Fq rather than
over F3 which is the case when c0 = −1.

4.5 Factor-4 compression and exponentiation algorithms

In this section, we analyze the efficiency of the compression and decompression meth-
ods proposed in Section 4.3. The efficiency of these methods matters because given a
compressed representation of an element, one can consider a variety of exponentiation al-
gorithms that can work directly with that compressed representation, or with partially or
fully decompressed representations of the element.

We first show that compression and decompression can be achieved at a negligible cost.
Then we describe two exponentiation algorithms and provide a performance comparison.

4.5.1 Compression/decompression costs

Let q = 2m, m odd, t =
√

2q and ` = q+1−t. Let G` ⊂ F∗q4 be the subgroup with |G`| = `.

Let Fq2 = Fq[w]/(w2+w+c0) and Fq4 = Fq2 [σ]/(σ2+σ+c1), where Trq,2(c0) = Trq2,2(c1) = 1.
We further assume that Fq is represented as an m-dimensional vector space over F2 via a
polynomial basis {1, z, . . . , zm−1}.
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We first show that the compression and decompression maps described in Theorem 4.3.4
are very efficiently computable.

Lemma 4.5.1. Let P1(x) = xt + x + u ∈ Fq[x]. If P1(x) = 0 has a solution in Fq then it
can be computed at a cost of (m−1)/2 squarings and (m−1)/2 additions in Fq. If storage
for m Fq-elements is available then finding the Fq-solutions of P1(x) = 0 in Fq requires on
average m/2 additions in Fq.

Proof. Let u =
∑m−1

i=0 uiz
i and suppose that P1(x) = xt + x + u = 0 has a solution in Fq.

It follows from Lemma 4.3.3 that the solutions in Fq are given by H(u) and H(u) + 1,

where H(u) =
∑(m−1)/2

i=0 u2i
, which can be computed at a cost of (m− 1)/2 squarings and

(m− 1)/2 additions in Fq. If one can store H(zi) for 0 ≤ i < m then

H(u) =
m−1∑
i=0

uiH(zi)

can be computed at a cost of m/2 additions on average.

Theorem 4.5.2. Let C and D be compression and decompression maps, respectively, as
described in Theorem 4.3.4. Then compression via C requires 1 division in Fq2 and decom-
pression via D requires (m− 1)/2 squarings and (m− 1)/2 additions in Fq, and 1 division
in Fq4. If storage for m Fq-elements is available then decompression requires on average
m/2 additions in Fq and 1 division in Fq4.

Proof. The proof follows from Theorem 4.3.4 and Lemma 4.5.1.

4.5.2 Exponentiation algorithms

Recall that in our compression method, given g = g0 + g1σ ∈ G` \ {1}, we first compress
g to α = (g0 + 1)/g1 = a + bw, and then compress α to (i, b) where i ∈ {0, 1}. By
Theorem 4.5.2, compressing g to (i, b) and decompressing (i, b) to α (and to g) can be
achieved at a negligible cost. In this context, we call α a half-compressed element.

We present two exponentiation algorithms to compute ge given C(g) = (i, b) and e ∈ Z.
The first exponentiation algorithm, which we call HCTBE (Half-Compressed Torus-Based
Exponentiation), partially decompresses (i, b) to α and then uses a multiplication formula
for half-compressed elements. The output is then compressed to obtain C(ge). The second
algorithm, which we call FDDE (Fully-Decompressed Direct Exponentiation Algorithm),
fully decompresses (i, b) to g and uses a conventional square-and-multiply exponentiation
algorithm in Fq4 .
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The HCTBE algorithm

The algorithm makes use of the multiplication formula (4.1.3) to compute C(ge). The
formula requires an inversion in Fq2 that makes the exponentiation algorithm quite costly
if one tries to use (4.1.3) directly. However, the problem can be overcome as follows. If
g = g0 +g1σ, h = h0 +h1σ ∈ G` \{1} are represented by α = (g0 +1)/g1, β = (h0 +1)/h1 ∈
Fq2 , respectively, then we have

g · h =

(
α + σ

α + 1 + σ

)(
β + σ

β + 1 + σ

)
=

αβ + c1 + (α + β + 1)σ

αβ + c1 + α + β + 1 + (α + β + 1)σ
.

In other words, if the product of any two elements in G` is computed by this formula then
the result will be of the form

x + yσ

x + y + yσ
, for some x, y ∈ Fq2 . (4.5.1)

In particular, given C(g) = (i, b) and e ∈ Z, one can first decompress (i, b) to α, and then
perform an exponentiation to compute C(ge) by using the formulas(

x + yσ

x + y + yσ

)2

=
x2 + y2c1 + y2σ

x2 + y2c1 + y2 + y2σ
,(

α + σ

α + 1 + σ

)(
x + yσ

x + y + yσ

)
=

αx + yc1 + (αy + x + y)σ

αx + yc1 + αy + x + y + (αy + x + y)σ
,

in the square and multiply steps of the exponentiation algorithm. Note that by (4.5.1) it
suffices to only keep track of the numerator during the computations, and to do a single
division in Fq4 to obtain ge and finally its compressed value C(ge). Our discussion yields
Algorithm 4.1.

Assuming that c1 ∈ Fq2 is chosen so that the cost of multiplying an element by c1 is
negligible, the cost of the squaring step (step 5), and the cost of the multiplication step
(step 7) in Algorithm 4.1 is approximately 2 squarings in Fq2 and 2 multiplications in Fq2 ,
respectively.

The FDDE algorithm

After decompressing C(g) = (i, b) to g = g0 + g1σ, we use a conventional square-and-
multiply exponentiation algorithm as described in Algorithm 4.2. Since

(x + yσ)2 = x2 + y2c + y2σ,

(g0 + g1σ)(x + yσ) = g0x + g1yc + (g0y + g1x + g1yc)σ,
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Algorithm 4.1 The HCTBE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi2
i where bi ∈ {0, 1} and bs−1 = 1

2: Decompress C(g) to α by using Theorem 4.3.4
3: x← α, y ← 1
4: for i from s− 2 down to 0 do
5: y′ ← y2, x′ ← x2 + y′c1

6: if bi = 1 then
7: x′ ← αx + yc1, y′ ← αy + x + y
8: end if
9: x← x′, y ← y′

10: end for
11: g′ ← (x + yσ)/(x + y + yσ)
12: Compress (g′) to C(g′) = (i′, b′), by using Theorem 4.3.4
13: Output (i′, b′)

each squaring step (step 5) in Algorithm 4.2 requires 2 squarings in Fq2 . Using Karatsuba’s
technique, each multiplication step (steps 7-8) requires 3 multiplications in Fq2 . We assume
that c1 ∈ Fq2 is chosen appropriately so that the cost of multiplying an element by c1 is
negligible.

A comparison with trace-based exponentiation

In Chapter 2, we have shown that it is possible to compress elements of G` by a factor 4
by identifying an element g ∈ G` with its trace Trq4,q(g). Given Trq4,q(g) and an integer
e, five exponentiation algorithms were proposed and analyzed in Chapter 2 to compute
Trq4,q(g

e). The algorithms are based on the following ideas:

1. Use Trq4,q(g) directly and perform computations in Fq (Algorithm 2.1 in Chapter 2).

2. First decompress Trq4,q(g) to Trq4,q2(g). Then use Trq4,q2(g) directly and perform
computations in Fq2 (Algorithm 2.2 in Chapter 2).

3. First decompress Trq4,q(g) to g and perform computations in Fq4 (Algorithm DDE in
Chapter 2).

4. First decompress Trq4,q(g) to Trq4,q2(g). Then use Trq4,q2(g) to construct a copy of
Fq4 based on the minimal polynomial of g over Fq2 , and perform computations in Fq4

(Algorithm BPV-I in Chapter 2).
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Algorithm 4.2 The FDDE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi2
i where bi ∈ {0, 1} and bs−1 = 1

2: Decompress C(g) to g = g0 + g1σ by using Theorem 4.3.4
3: x← g0, y ← g1

4: for i from s− 2 down to 0 do
5: y′ ← y2, x′ ← x2 + y′c1

6: if bi = 1 then
7: u0 ← (g0 + g1)(x

′ + y′), u1 ← g0x
′, u2 ← g1y

′, u3 ← u2c1

8: x′ ← u1 + u3, y′ ← x′ + u0 + u2

9: end if
10: x← x′, y ← y′

11: end for
12: g′ ← (x + yσ)
13: Compress (g′) to C(g′) = (i′, b′), by using Theorem 4.3.4
14: Output (i′, b′)

5. Use Trq4,q(g) to construct a copy of Fq4 based on the minimal polynomial of g over
Fq, and perform computations in Fq4 (Algorithm BPV-II in Chapter 2).

If a decompression is performed then it is the most expensive step in these algorithms.
Therefore, the algorithms based on (1) and (5) are overall faster than the algorithms based
on (2), (3) and (4). In particular, Algorithm 2.1 in Chapter 2 was reported to be the fastest
exponentiation algorithm in the case of using a general base Trq4,q(g), and its performance
was further improved in Chapter 3 (see Algorithm 3.1). However, once decompression
can be performed in advance, such as in the case of using a fixed base Trq4,q(g), then the
algorithm based on (3) is the fastest.

Note that by Theorem 4.5.2, given C(g) for some g ∈ G` \ {1}, one can recover g (and
also Trq4,q(g) and Trq4,q2(g)) at a negligible cost. Hence, it is more advantageous to use
C(g) instead of Trq4,q(g). For example, using C(g), we can obtain faster exponentiation
algorithms than the trace-based exponentiation algorithms in the case of a general base
Trq4,q(g), by simply computing Trq4,q(g) from C(g) and adapting an algorithm based on
(3).
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4.6 Factor-6 compression and exponentiation algorithms

This section is analogous to Section 4.5. We analyze the efficiency of the compression
and decompression methods proposed in Section 4.4. We first show that compression and
decompression can be achieved at a negligible cost, and then describe two exponentiation
algorithms and provide a performance comparison.

4.6.1 Compression/decompression costs

Let q = 3m, m odd, t =
√

3q and ` = q + 1 − t. Let G` ⊂ F∗q6 be the subgroup with

|G`| = `. Let Fq3 = Fq[w]/(w3−w− 1). and Fq6 = Fq3 [σ]/(σ2− c0) where c0 is a quadratic
non-residue in Fq3 . We further assume that Fq is represented as an m-dimensional vector
space over F3 via a polynomial basis {1, z, . . . , zm−1}.

Lemma 4.6.1. Let P6(x) = c3x3 + 2c2t+3x + 2(c3(t+1) + c2t + 1) ∈ Fq[x] for some c ∈ Fq.
If P6(x) = 0 has a solution in Fq and storage of m Fq-elements is available, then finding
the Fq-solutions requires on average 2m/3 additions, 2 multiplications, 1 squaring and 1
division in Fq.

Proof. First observe that if B ∈ Fq is a quadratic non-residue and x3 + Bx + C = 0 has a
solution in Fq then all solutions are given by

{r1, r2, r3} = {(−B)1/2R(D), (−B)1/2(R(D) + 1), (−B)1/2(R(D) + 2)},

where D = C/(−B)3/2 and R(D) is a root of

x3 − x + D.

Clearly, if x3 − x + D = 0 has a solution R(D) ∈ Fq then it can be found trit-wise when
a normal basis {θ, θ3, . . . , θ3m−1} is used to represent Fq as an m-dimensional vector space

over F3. Let us suppose that R(D) =
∑m−1

i=0 Riθ
3i

and the m Fq-elements

θ3i

=
m−1∑
j=0

θijz
j, 0 ≤ i < m

are precomputed and stored. Then a solution

R(D) =
m−1∑
i=0

Ri

m−1∑
j=0

θijz
j

to x3 − x + D = 0 is obtained in Fq, at an average cost of 2m/3 additions in Fq.
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Now, in order to find a solution of P6(x) = c3x3 + 2c2t+3x + 2(c3(t+1) + c2t + 1) = 0 in
Fq, we first compute B = 2c2t+3/c3 = 2c2t and C = 2(c3(t+1) + c2t + 1)/c3. Then

D = C/(−B)3/2 = (2(c3(t+1) + c2t + 1)/c3t+3)

can be computed at a cost of 1 multiplication, 1 squaring and 1 division in Fq (we ignore
the cost of addition in Fq and Frobenius operations). From our argument above we can
find a solution of x3− x + D = 0 in Fq at an average cost of 2m/3 additions in Fq. Hence,
the solutions of P6(x) = 0 are given by

{r1, r2, r3} = {ctR(D), ct(R(D) + 1), ct(R(D) + 2)},

and can be obtained at an average cost of 2m/3 additions, 2 multiplications, 1 squaring
and 1 division in Fq.

From now on, we shall assume that m ≡ 5 (mod 12) and c0 = −1.

Theorem 4.6.2. Let C and D be compression and decompression maps, respectively, as
described in Theorem 4.4.4. Then compression via C requires 1 division in Fq3 and decom-
pression via D requires on average 2m/3 additions, 2 multiplications, 1 squaring, 1 division
in Fq, and 1 division in Fq6, with a storage of m Fq-elements.

Proof. The proof follows from Theorem 4.4.4 and Lemma 4.6.1.

4.6.2 Exponentiation algorithms

Recall that in our compression method, given g = g0 +g1σ ∈ G`\{±1}, we first compress g
to α = (g0 +1/g1) = a+ bw + cw2, by a factor 2, and then compress α to (i, c), i ∈ {0, 1, 2}
by a factor of 3. By Theorem 4.6.2, compressing g to (i, c), and decompressing (i, c) to α
(and to g) can be achieved at a negligible cost. In this context, we call α a half-compressed
element.

We present two exponentiation algorithms to compute ge given C(g) = (i, c) and e ∈ Z.
The first exponentiation algorithm, which we call HCTBE (Half-Compressed Torus-Based
Exponentiation), partially decompresses (i, c) to α and uses a multiplication formula for
half-compressed elements. The output is then compressed to obtain C(ge). The second
algorithm, which we call FDDE (Fully-Decompressed Direct Exponentiation Algorithm),
fully decompresses (i, c) to g and uses a conventional cube-and-multiply exponentiation
algorithm in Fq6 .
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The HCTBE algorithm

The algorithm makes use of the multiplication formula (4.1.4) to compute C(ge). If g =
g0+g1σ, h = h0+h1σ ∈ G`\{±1} are represented by α = (g0+1)/g1, β = (h0+1)/h1 ∈ Fq3 ,
respectively, then we have

g · h =

(
α + σ

α− σ

)(
β + σ

β − σ

)
=

αβ + c0 + (α + β)σ

αβ + c0 − (α + β)σ
.

In other words, if the product of any two elements in G` is computed by this formula then
the result will be of the form

x + yσ

x− yσ
, for some x, y ∈ Fq3 . (4.6.1)

In particular, given C(g) = (i, c) and e ∈ Z, one can first decompress (i, c) to α, and then
perform an exponentiation to compute C(ge) by using the formulas(

x + yσ

x− yσ

)3

=
x3 + y3c0σ

x3 − y3c0σ
,(

α + σ

α− σ

)(
x + yσ

x− yσ

)
=

αx + yc0 + (αy + x)σ

αx + yc0 − (αy + x)σ
,(

α− σ

α + σ

)(
x + yσ

x− yσ

)
=

αx− yc0 + (αy − x)σ

αx− yc0 − (αy − x)σ

in the cube and multiply steps of the exponentiation algorithm. Note that by (4.6.1) it
suffices to only keep track of the numerator during the computations, and to do a single
division in Fq6 to obtain ge and finally its compressed value C(ge). Our discussion yields
Algorithm 4.3.

Since c0 = −1, the cost of the cubing step (step 5) and the cost of the multiplication step
(step 7 or step 9) in Algorithm 4.3 is approximately 2 cubings in Fq3 and 2 multiplications
in Fq3 , respectively.

Remark 4.6.3. Granger, Page and Stam [39, Section 3.2] proposed an exponentiation al-
gorithm that works in the quotient group F∗q6/F∗q3 where q = 3m, m is odd, and mimics the
mixed addition method for point multiplication on elliptic curves. Algorithm 4.1 can be
seen as analogous to their algorithm. The main difference is that they identify g = g0 +g1σ
with α = g0/g1 instead of α = (g0 + 1)/g1 and therefore their method cannot be directly
adapted to obtain a fast exponentiation algorithm in G` ⊂ F∗q6 . In particular, it was re-
ported in [39, Table 3] that exponentiation in F∗q6/F∗q3 is more efficient than exponentiation
in G`. The HCTBE algorithm equalizes the efficiency of exponentiation algorithms in G`

and F∗q6/F∗q3 .
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Algorithm 4.3 The HCTBE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi3
i where bi ∈ {−1, 0, 1} and bs−1 = 1

2: Decompress C(g) to α by using Theorem 4.4.4
3: x← α, y ← 1
4: for i from s− 2 down to 0 do
5: x′ ← x3, y′ ← y3c0

6: if bi = 1 then
7: x′ ← αx + yc0, y′ ← (αy + x)
8: else if bi = −1 then
9: x′ ← αx− yc0, y′ ← (αy − x)

10: end if
11: x← x′, y ← y′

12: end for
13: g′ ← (x + yσ)/(x− yσ)
14: Compress (g′) to C(g′) = (i′, c′), by using Theorem 4.4.4
15: Output (i′, c′)

The FDDE algorithm

After decompressing C(g) = (i, b) to g = g0 +g1σ, we use a conventional cube-and-multiply
exponentiation algorithm as described in Algorithm 4.4. Since

(x + yσ)3 = x3 + y3c0σ,

(g0 + g1σ)(x + yσ) = g0x + g1yc0 + (g0y + g1x)σ,

(g0 − g1σ)(x + yσ) = g0x− g1yc0 + (g0y − g1x)σ,

each cubing step (step 5) in Algorithm 4.4 requires 2 cubings in Fq3 . Using Karatsuba’s
technique, each multiplication step (steps 7-8 or steps 10-11) requires 3 multiplications in
Fq3 (note that c0 = −1).

A comparison with trace-based exponentiation

In Chapter 2, we have shown that it is possible to compress elements of G` by a factor 6
by identifying an element g ∈ G` with its trace Trq6,q(g). Given Trq6,q(g) and an integer
e, six exponentiation algorithms were proposed and analyzed in Chapter 2 to compute
Trq6,q(g

e). The performance of these six algorithms were also compared with a previously-
known exponentiation algorithm XTR3 in [78]. The algorithms are based on the following
ideas:
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Algorithm 4.4 The FDDE exponentiation algorithm
Input: C(g) and e
Output: C(ge)

1: Write e =
∑s−1

i=0 bi3
i where bi ∈ {−1, 0, 1} and bs−1 = 1

2: Decompress C(g) to g = g0 + g1σ by using Theorem 4.4.4
3: x← g0, y ← g1

4: for i from s− 2 down to 0 do
5: x′ ← x3, y′ ← y3c0

6: if bi = 1 then
7: u0 ← (g0 + g1)(x

′ + y′), u1 ← g0x
′, u2 ← g1y

′, u3 ← u2c0

8: x′ ← u1 + u3, y′ ← u0 − (u1 + u2)
9: else if bi = −1 then

10: u0 ← (g0 − g1)(x
′ + y′), u1 ← g0x

′, u2 ← −g1y
′, u3 ← u2c0

11: x′ ← u1 + u3, y′ ← u0 − (u1 + u2)
12: end if
13: x← x′, y ← y′

14: end for
15: g′ ← (x + yσ)
16: Compress (g′) to C(g′) = (i′, c′), by using Theorem 4.4.4
17: Output (i′, c′)

1. Use Trq6,q(g) directly and perform computations in Fq (Algorithm 2.3 in Chapter 2).

2. First decompress Trq6,q(g) to Trq6,q3(g). Then use Trq6,q3(g) directly and perform
computations in Fq3 (Algorithm 2.4 in Chapter 2).

3. First decompress Trq6,q(g) to g and perform computations in Fq6 (Algorithm DDE in
Chapter 2).

4. First decompress Trq6,q(g) to Trq6,q2(g). Then use Trq6,q2(g) to construct a copy of
Fq6 based on the minimal polynomial of g over Fq2 , and perform computations in Fq6

(Algorithm BPV-I in Chapter 2).

5. First decompress Trq6,q(g) to Trq6,q3(g). Then use Trq6,q3(g) to construct a copy of
Fq6 based on the minimal polynomial of g over Fq3 , and perform computations in Fq6

(Algorithm BPV-II in Chapter 2).

6. Use Trq6,q(g) to construct a copy of Fq6 based on the minimal polynomial of g over
Fq, and perform computations in Fq6 (Algorithm BPV-III in Chapter 2).

7. First decompress Trq6,q(g) to Trq6,q2(g). Then use Trq6,q2(g) directly and perform
computations in Fq2 (Algorithm XTR3 in [78]).
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The algorithms based on (1), (4), (6) and (7) are overall faster than the algorithms
based on (2), (3) and (5) because of the expensive decompression operations required in
the latter algorithms. In particular, it was reported in Chapter 2 that XTR3 in [78] can be
further sped up and it is the fastest exponentiation algorithm for general bases Trq6,q(g).
However, if decompression can be precomputed, for example when the base Trq6,q(g) is
fixed, then the algorithm based on (3) is the fastest.

Note that by Theorem 4.6.2, given C(g) for some g ∈ G` \ {±1}, one can recover
g (and also Trq6,q(g), Trq6,q2(g) and Trq6,q3(g)) at a negligible cost. Hence, it is more
advantageous to use C(g) instead of Trq6,q(g). For example, using C(g), we can obtain
faster exponentiation algorithms than the trace-based exponentiation algorithms in the
case of a general base Trq6,q(g), by simply computing Trq6,q(g) from C(g) and adapting an
algorithm based on (3).

4.7 A comparison of exponentiation algorithms

In this section, we estimate the running times of the exponentiation algorithms discussed
in Sections 4.5.2 and 4.6.2, and compare them with the fastest previously-known expo-
nentiation algorithms. We consider the case of a general base, C(g) or Trqk,q(g), which
turns to be the most interesting case because when the base is fixed we may ignore the
cost of obtaining one of C(g) and Trqk,q(g) from the other, and hence obtain an equivalent
performance in torus-based and trace-based exponentiation algorithms.

We denote by Ci, Mi, and Si the operations of cubing, multiplication, and squaring
in Fqi for i = 1, 2, 3. We assume that S2 = 2S1 for characteristic two, C3 = 3C1 for
characteristic three, and also assume, using Karatsuba’s technique, that M2 = 3M1 and
M3 = 6M1.

Note that the HCTBE and FDDE algorithms can easily be modified to work with
window NAF techniques. In particular, we assume that the width-w radix-2 and radix-
3 NAF representation of the exponent e are used in for the characteristic-two and the
characteristic-three cases, respectively. Note that width-w radix-2 and radix-3 NAF rep-
resentations of e contain on average 2 log2 e/(w + 1) and 2 log3 e/(2w + 1) nonzero digits,
respectively; see for example [86].

The estimated costs of the exponentiation algorithms are presented in Table 4.1. In
our analysis, we ignore the compression/decompression costs and also the precomputation
costs required for window NAF methods as they are negligible comparing to the overall
cost of algorithms.

Assuming that S1 and C1 are essentially free in characteristic-two and characteristic-
three fields, respectively, and setting w = 3, we can estimate the cost of FDDE as
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Table 4.1: Comparison of exponentiation algorithms for factor-4 and factor-6 compression
in the case of a general base. The exponent is e.

Algorithms Main Loop

Characteristic-two fields
Algorithm 3.1 (3.19M1) log2 e
FDDE (4S1 + 9

(w+1)
M1) log2 e

HCTBE (4S1 + 6
(w+1)

M1) log2 e

Characteristic-three fields
XTR3 in [78] (3M1) log2 e
FDDE (6C1 + 36

(2w+1)
M1) log3 e

HCTBE (6C1 + 24
(2w+1)

M1) log3 e

(2.25M1) log2 e, and the cost of HCTBE as (1.5M1) log2 e in characteristic-two fields. Sim-
ilarly, the cost of FDDE and HCTBE in characteristic-three fields can be approximated as
(3.24M1) log2 e and (2.16M1) log2 e, respectively.

Therefore, if we require that the input to an exponentiation algorithm and the output
of the algorithm are the compressed representation of g and ge, it seems best to com-
press g to C(g) by a factor of 4 or 6, and to use the HCTBE algorithms to compute the
factor-4 or factor-6 compressed representation C(ge) of ge. It also seems that the HCTBE
algorithms outperform the fastest previously-known exponentiation algorithms in G`. The
reason is that compression/decompression costs in the HCTBE algorithms are negligible
and that each multiplication step in the HCTBE algorithm in characteristic-two requires
6M1 whereas it would require 9M1 in a conventional exponentiation algorithm adapt-
ing Karatsuba’s method. Similarly, each multiplication step in the HCTBE algorithm in
characteristic-three requires 12M1 whereas it would require 18M1 in a conventional expo-
nentiation algorithm adapting Karatsuba’s method (see also Remark 4.6.3).

To be more concrete, we list the expected running times of the six exponentiation
algorithms in a particular setting in Table 4.2 based on the estimates given in Table 4.1.
For the 128-bit security level, in the characteristic-two case we let q = 21223 and t = 2612.
Then q + 1 + t = 5` where ` is a 1221-bit prime. We will ignore the cost S1. In the
characteristic-three case, we let q = 3509 and t = 3255. Then q + 1 − t = 7` where ` is an
804-bit prime. We will ignore the cost C1. In both cases, we choose w = 3.
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Table 4.2: Comparison of exponentiation algorithms for factor-4 and factor-6 compression
in the case of a general base at the 128-bit security level. The exponent is an 1221-bit
integer in the characteristic-two case, and an 804-bit integer in the characteristic-three
case.

Algorithms Main Loop

A characteristic-two field
Algorithm 3.1 3895M1

FDDE 2747M1

HCTBE 1831M1

A characteristic-three field
XTR3 in [78] 2412M1

FDDE 2609M1

HCTBE 1739M1

4.8 Concluding remarks

We showed that by building on torus-based compression techniques, it is possible to com-
press elements in G` by a factor of 4 when |G`| = ` = q + 1± t, q = 2m and t =

√
2q; and

by a factor of 6 when |G`| = ` = q + 1− t, q = 3m and t =
√

3q. Our methods achieve the
best possible compression ratio in G`, and moreover have the feature that the compres-
sion and decompression maps are computable at a negligible cost. We discussed several
exponentiation algorithms and, in particular, showed that HCTBE outperforms the fastest
exponentiation algorithms in both the characteristic-two and the characteristic-three cases.

We believe that our techniques can be adapted for groups G` where ` = q + 1 + t and
q = 3m.

Our compression method compresses g ∈ G` to an element C(g) in Fq. However, given
C(g) and e ∈ Z, all the exponentiation algorithms to compute C(ge) first decompresses
C(g) (at least partially), and then exponentiate. It is natural to ask if one can devise a
multiplication formula for g, h ∈ G` which computes C(g) ∗ C(h) = C(gh) directly in Fq
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Chapter 5

Validation in (Hyper)elliptic Curve
Cryptosystems

In this chapter we extend the notion of an invalid-curve attack from elliptic curves to
genus-2 hyperelliptic curves. We also show that invalid singular (hyper)elliptic curves
can be used in mounting invalid-curve attacks on (hyper)elliptic curve cryptosystems, and
make quantitative estimates of the practicality of these attacks. We thereby show that
proper key validation is necessary even in cryptosystems based on hyperelliptic curves. As
a byproduct, we enumerate the isomorphism classes of genus-g hyperelliptic curves over a
finite field by a new counting argument that is simpler than the previous methods.

The remainder of this chapter is organized as follows. After laying some of the mathe-
matical groundwork in Section 5.1, we present in Section 5.2 our derivation of the number
of genus-g hyperelliptic curves over a finite field. In Section 5.3, we extend the notion
of an invalid curve from elliptic curves to genus-2 curves. We also present the notion of
an invalid singular curve, and enumerate the invalid elliptic and genus-2 singular curves.
Our invalid-curve attacks are demonstrated and analyzed in Section 5.4; we conclude in
Section 5.5.

The results of this chapter are joint work with B. Ustaoglu and are to appear in [51].

5.1 Preliminaries and previous results

Notation. The operator [xi] denotes the coefficient extraction operator when x is an inde-
terminate. For indeterminate x and polynomial f(x) we adopt the convention [xi]f(x) =
fi. The set of monic polynomials of degree d over a finite field Fq is denoted by Pd;
the subset of polynomials with at least one repeated root will be denoted by P̃d. Let
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f̃ = f̃d−1, f̃d−2, . . . , f̃d−i be an ordered sequence where each f̃j ∈ Fq. Then

Pd
f̃

:= {xd + f̃d−1x
d−1 + · · ·+ f̃d−ix

d−i + fd−i−1x
d−i−1 + · · ·+ f0 | fd−i−1, . . . , f0 ∈ Fq}.

For example, P2
−3 denotes the set of polynomials of the form x2 − 3x + f0 where f0 ∈ Fq.

A hyperelliptic curve H of genus-g over a finite field Fq is defined by a non-singular
Weierstrass equation

H : y2 + H(x)y = F (x),

where F, H ∈ Fq[x], F is monic, deg(F ) = 2g + 1, and deg(H) ≤ g. The Jacobian
JH(Fq) of H over Fq is the quotient group of the degree zero divisors defined over Fq by
the group of principal divisors defined over Fq. The divisor classes D̄ ∈ JH(Fq) are in
one-to-one correspondence with the pairs of polynomials (u, v) with u, v ∈ Fq[x], deg(v) <
deg(u) ≤ g, u monic, and u | (v2 +Hv−F ); we write D̄ = [u, v]. JH(Fq) is a finite abelian
group with |JH(Fq)| ∈ [(

√
q− 1)2g, (

√
q + 1)2g] [92]. Given two divisor classes D̄1 = [u1, v1]

and D̄2 = [u2, v2] ∈ JH(Fq), Cantor’s algorithm [14] can be used to find the unique divisor
D̄ = [u, v] such that D̄ = D̄1 + D̄2.

If char(Fq) 6∈ {2, 2g + 1} then the same curve H (up to isomorphism) can be given by
the equation

H : y2 = f(x) = x2g+1 +

2g−1∑
i=0

fix
i. (5.1.1)

The non-singularity requirement on the equation of H means that f has no repeated roots,
in which case H is said to be non-singular. If an equation (5.1.1) has the property that
f has x0 as a repeated root, we call H a singular curve, and (x0, y0), where y2

0 = f(x0), a
singular point on H.

The remainder of this work assumes that a hyperelliptic curve H of genus-g over a
finite field Fq is given via (5.1.1). The set of all (non-singular) genus-g hyperelliptic curves
over Fq will be denoted by H∗. When a hyperelliptic curve H is defined over Fq we will
abbreviate JH(Fq) to JH.

5.2 The number of genus-g hyperelliptic curves

In this section we estimate the number of non-isomorphic genus-g hyperelliptic curves given
by (5.1.1). First we need the following formula for the number of monic polynomials with
no repeated roots and fixed second leading coefficient.

Theorem 5.2.1. Let g ≥ 1 be an integer, Fq be a finite field, and f2g ∈ Fq. Then

|P2g+1
f2g
\ P̃2g+1

f2g
| = q2g − q2g−1.
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Proof. Let F̄q denote the algebraic closure of Fq. The argument proceeds by induction on
g.

For g = 1, consider f(x) = x3 + f2x
2 + f1x + f0 ∈ P3

f2
. Since f has degree three, it can

have at most one repeated root, say α. If α ∈ F̄q \ Fq then the conjugates of α are also
repeated roots of f contradicting the fact that f has at most one repeated root. Therefore
α ∈ Fq. Factoring f gives f(x) = (x− α)2(x − β), where β = −f2 − 2α. Hence, the only
degree of freedom is α and so |P̃3

f2
| = q. And, since |P3

f2
| = q2, we have |P3

f2
\ P̃3

f2
| = q2− q.

Assume the result holds for all integers 1, 2, . . . , (g − 1), where g ≥ 2. We will show
the result holds for g. Let f(x) = x2g+1 +

∑2g
j=0 fjx

j ∈ P2g+1
f2g

. To each repeated root α of

f with multiplicity k ≥ 2, we associate bk/2c pairs (α, α); we call each such pair a paired
repeated root of f corresponding to α. Note that f can have at most g paired repeated
roots. Since f ∈ Fq[x], if f has exactly i paired repeated roots then it can be written as
f = a2b, where a, b ∈ Fq[x],

a(x) = xi + ai−1x
i−1 + · · ·+ a0,

b(x) = x2(g−i)+1 + βx2(g−i) + b2(g−i)−1x
2(g−i)−1 + · · ·+ b0,

and b has no repeated roots in F̄q. Since the coefficient β in b(x) satisfies β +[x2i−1]a(x)2 =
f2g, β is determined by a and f2g. For a fixed i ∈ [1, g− 1] the number of polynomials a is
qi. By induction, the number of polynomials b of degree 2(g− i)+1 that have no repeated
roots and have fixed β is q2(g−i) − q2(g−i)−1. Therefore, the number of polynomials f with
exactly i paired repeated roots is qi · (q2(g−i) − q2(g−i)−1) = q2g−i − q2g−i−1. For i = g the
polynomial f factors as a2(x − β) and as before β is determined by a and f2g. Then the
number of polynomials f with exactly g paired repeated roots equals the number of choices
for a, which is qg.

Hence, the number of polynomials f with at least one paired repeated root is

|P̃2g+1
f2g
| = qg +

g−1∑
i=1

(q2g−i − q2g−i−1) = qg + q2g−1 +

g−1∑
i=2

q2g−i −
g−1∑
i=1

q2g−i−1 = q2g−1.

Finally, since |P2g+1
f2g
| = q2g, we have

|P2g+1
f2g
\ P̃2g+1

f2g
| = |P2g+1

f2g
| − |P̃2g+1

f2g
| = q2g − q2g−1,

which completes the argument.

Setting f2g = 0 in Theorem 5.2.1 determines the number of polynomials that define a
genus-g hyperelliptic curve over Fq, where char(Fq) 6∈ {2, 2g+1}. However, such curves can
have more than one representation, and we do not wish to distinguish between isomorphic
curves. The following result, due to Lockhart [63], gives a one-to-one correspondence
between isomorphism classes of curves and equivalence classes of Weierstrass equations.
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Theorem 5.2.2. [63, Proposition 1.2] If H1 and H2 are two genus-g hyperelliptic curves
defined over Fq, then H1 and H2 are isomorphic over Fq if and only if there exists α ∈ F∗q,
β ∈ Fq, and t ∈ Fq[x] with deg(t) ≤ g, such that the change of coordinates (x, y) →
(α2x + β, α2g+1y + t(x)), transforms the equation of H1 to the equation of H2.

Invalid-curve attacks are based on the curve representation (and the explicit group
law). Hence we are interested in isomorphisms that preserve the representation of curves.
Lockhart’s theorem can be specialized to suit our needs as follows.

Suppose that char(Fq) is odd and char(Fq) - (2g + 1). Let H be a genus-g hyperelliptic
curve over Fq, and let τ : (x, y)→ (α2x + β, α2g+1y + t(x)) be an isomorphism to another
genus-g hyperelliptic curve over Fq. We claim that if τ preserves the form of equation
(5.1.1), it must be the case that β = 0 and t(x) = 0. Indeed, if t(x) 6= 0 then applying τ
to H will result in a linear term in y, which is not present in (5.1.1). Now, applying the
transformation (x, y)→ (α2x + β, α2g+1y) to (5.1.1), the coefficient of x2g is (2g + 1)βα4g

which has to be zero as in (5.1.1). Since α 6= 0 and char(Fq) - (2g + 1) it must be the
case that β = 0. Therefore, the class of transformations that correspond to isomorphisms
of a hyperelliptic curve that preserve (5.1.1) are of the form (x, y)→ (α2x, α2g+1y), where
α ∈ F∗q. From now on, when we talk about isomorphisms we will identify them with the
element α.

In Theorem 5.2.3 we estimate the number of isomorphism classes of genus-g hyperel-
liptic curves over finite fields Fq of odd characteristic not dividing 2g + 1. Note that by
Theorem 5.2.1, the number of polynomials f ∈ Fq[x] that give rise to a genus-g hyperelliptic
curve is q2g− q2g−1, and since the number of isomorphisms (nonzero field elements) is q−1
we expect that the number of non-isomorphic curves to be about q2g−1. A slightly stronger
result is proved independently in [71, Theorem 3.3]. The proof given here is simpler and
is presented for completeness.

Theorem 5.2.3. Let g be fixed. Let Fq be a finite field of odd characteristic p, and suppose
that p - (2g + 1) and q > 4g + 2. Then the number of non-isomorphic genus-g hyperelliptic
curves over Fq is

Ng(q) = 2q2g−1 +O(gq2g−2).

Proof. Let f ∈ P2g+1
0 \ P̃2g+1

0 . Define zi(f) = 0 if fi = 0, and zi(f) = 1 otherwise.
We will abbreviate zi(f) to zi in case f is clear from context. We call the sequence
z(f) = (z0, z1, . . . , z2g−1) the characteristic sequence of f . We will use abz̃ to denote the
sequence z where z0 = a, z1 = b, and the remaining entries are given by z̃. Let Hz

ab be
the set of polynomials f with characteristic sequence z such that (z0, z1) = (a, b). Let

|z| denote the number of nonzero entries in a sequence z. Then |Hz
10| ≤ (q − 1)|z| and

|Hz
01| ≤ (q − 1)|z|.
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An isomorphism α acting on the curve y2 = f(x) preserves the characteristic sequence
z. Indeed, applying an isomorphism α : (x, y)→ (α2x, α2g+1y) to (5.1.1) results in

α4g+2y2 = α4g+2x2g+1 + α4g−2f2g−1x
2g−1 + · · ·+ α2f1x + f0,

which can be rewritten as

y2 = x2g+1 + α−4f2g−1x
2g−1 + · · ·+ α−4gf1x + α−4g−2f0.

Thus the curves y2 = f(x) for f ∈ Hz
ab have the same automorphism group; we denote

this group by AutHz
ab. Observe also that if the mapping α is an automorphism then the

order of α in Fq must divide 4g + 2. Since q > 4g + 2, |AutHz
ab| is no larger than 4g + 2

which yields ∑
z

|Hz
01|(|AutHz

01| − 2) ≤ 4g
∑

z

|Hz
01| ≤ 4g

∑
z

(q − 1)|z|

= 4g

2g−1∑
|z|=1

(
2g − 2

|z| − 1

)
(q − 1)|z|

= 4g(q − 1)

2g−1∑
i=1

(
2g − 2

i− 1

)
(q − 1)i−1

= 4g(q − 1)

2g−2∑
i=0

(
2g − 2

i

)
(q − 1)i

= 4g(q − 1)q2g−2

= O(gq2g−1).

Note that in the above equations, the sequence z has its first two coordinates fixed, and
therefore the remaining |z| − 1 nonzero entries are chosen from 2g − 2 possible indices.
Similarly, we have ∑

z

|Hz
10|(|AutHz

10| − 2) = O(gq2g−1).

If both z0 and z1 are equal to zero, then 0 is a repeated root of f . So if f has no repeated
roots then at least one of z0 or z1 is nonzero. By Theorem 5.2.1 we have∑

z

(|Hz
11|+ |Hz

01|+ |Hz
10|) = q2g − q2g−1.

An automorphism α that fixes f when f1 and f0 are simultaneously nonzero must satisfy
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α2 = 1. There are two such automorphisms, so |AutHz
11| = 2. Therefore,

Ng(q) =
∑

z

|Hz
ab|

[F∗q : AutHz
ab]

=
∑

z

|Hz
ab||AutHz

ab|
|F∗q|

=
∑

z

|Hz
ab||AutHz

ab|
q − 1

=
∑
01z̃

|Hz
01||AutHz

01|
q − 1

+
∑
10z̃

|Hz
10||AutHz

10|
q − 1

+
∑
11z̃

|Hz
11||AutHz

11|
q − 1

=
1

q − 1

(∑
01z̃

|Hz
01||AutHz

01|+
∑
10z̃

|Hz
10||AutHz

10|+
∑
11z̃

2|Hz
11|

)

=
1

q − 1

(∑
01z̃

|Hz
01||AutHz

01|+
∑
10z̃

|Hz
10||AutHz

10|+ 2

(
q2g − q2g−1 −

∑
01z̃

|Hz
01| −

∑
10z̃

|Hz
10|

))

=
1

q − 1

(∑
01z̃

|Hz
01| (|AutHz

01| − 2) +
∑
10z̃

|Hz
10| (|AutHz

10| − 2) + 2
(
q2g − q2g−1

))
=

1

q − 1

(
O(gq2g−1) +O(gq2g−1) + 2q2g − 2q2g−1

)
=

1

q − 1

(
2q2g +O(gq2g−1)

)
= 2q2g−1 +O(gq2g−2),

as required.

5.3 Invalid and singular curves

We now extend the notion of invalid elliptic curves, proposed by Antipa et al. [4], to genus-
2 curves. We emphasize that invalid curves are defined with respect to a specific curve
representation and explicit formulae for the group law. That is, given a curve representation
and formulae for the group operations that do not make use of a specific coefficient in
the selected curve representation, one can define an invalid curve with respect to that
representation-formulae pair. If the explicit formulae utilize all the coefficients in the
curve representation then invalid curves in this context do not exist. However, for curves
of genus-1 and genus-2, which are widely considered for cryptographic applications, the
notion of invalid curves is indeed relevant and important.

In the genus-1 setting, we use the affine formulae for the group law as described in [5,
Section 13.2.1], and refer to these formulae as F1a throughout this chapter. The explicit
computations in F1a require only the coefficient f1. In our definition of invalid elliptic
curves, we include singular elliptic curves as well.
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Definition 5.3.1. Let E be an elliptic curve defined over Fq with equation

E : y2 = x3 + f1x + f0.

An invalid curve relative to E and F1a is an elliptic curve over Fq with equation

IE : y2 = x3 + f1x + f̃0,

where f̃0 6= f0 and IE is not isomorphic to E . In addition, if the polynomial f̃(x) =
x3 + f1x + f̃0 has a repeated root then IE is called an invalid singular curve relative to E
and F1a.

In the genus-2 setting, we will use the affine formulae for the group law as described in [5,
Section 14.3.2], and refer to these formulae as F2a throughout this chapter. The formulae
F2a depends only on f2 and f3. In our definition of invalid hyperelliptic curves, we include
singular hyperelliptic curves as well.

Definition 5.3.2. Let H be a genus-2 hyperelliptic curve defined over Fq with equation

H : y2 = x5 + f3x
3 + f2x

2 + f1x + f0.

An invalid curve relative to H and F2a is a hyperelliptic curve over Fq with equation

IH : y2 = x5 + f3x
3 + f2x

2 + f̃1x + f̃0,

where (f̃1, f̃0) 6= (f1, f0) and IH is not isomorphic to H. In addition, if the polynomial
f̃(x) = x5 +f3x

3 +f2x
2 + f̃1x+ f̃0 has a repeated root then IH is called an invalid singular

curve relative to H and F2a.

Invalid singular curves are very interesting in the genus-1 case. If SE is an invalid
singular curve over Fq relative to the elliptic curve E over Fq and F1a, then SE has exactly
one singular point P = (x0, y0). Applying the isomorphism (x, y)→ (x+x0, y + y0) to SE ,
we can assume that SE is given by the equation

SE : y2 = x3 + a2x
2, a2 ∈ Fq,

and P = (0, 0) is the singular point of SE . Now, let y2 − a2x
2 = (y − αx)(y − βx) where

α, β ∈ F̄q. If a2 = 0 then α = β = 0, and P is called a cusp singularity of SE . If a2 6= 0
then α = −β, and α2 = a2; P is called a node singularity of SE . In this case, α, β ∈ Fq

if a2 is a quadratic residue in Fq; and α, β ∈ Fq2 \ Fq, otherwise. It is well known that
the set SEns(Fq) of non-singular Fq-points on SE together with the point at infinity forms
a group and in fact the group law F1a for E is also the group law for SE . Moreover, if
P is a cusp singularity of SE then SEns(Fq) is isomorphic to the additive group of Fq. If
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P is a node singularity of SE and α ∈ Fq then SEns(Fq) is isomorphic to F∗q; and if P
is a node singularity of SE and α ∈ Fq2 \ Fq then SEns(Fq) is isomorphic to the order-
(q +1) multiplicative subgroup of F∗q2 . In all cases, the isomorphisms and their inverses are
efficiently computable (see [42, Section 7.2] for more details). The key point in applying
singular invalid-curve attacks is that the group law for non-singular elliptic curves can
readily be used for the non-singular part of singular elliptic curves.

The next theorem assumes the setting in Definition 5.3.1 and establishes the existence
and the number of invalid singular elliptic curves.

Theorem 5.3.3. Over Fq, where gcd(q, 6) = 1, the number of invalid singular curves
relative to y2 = x3 + f1x + f0 and F1a is

(i) 1, if f1 = 0;

(ii) 2, if −f1

3
is a quadratic residue in Fq.

(iii) 0, if −f1

3
is a quadratic non-residue in Fq;

Proof. Let f1 ∈ Fq be fixed and consider the set of polynomials

P3
0,f1

= {Pf ′0
(x) = x3 + f1x + f ′0 : f ′0 ∈ Fq}.

If Pf ′0
(x) has a repeated root in F̄q then we must have

Pf ′0
(x) = x3 + f1x + f ′0 = (x + a)2(x + k0), a, k0 ∈ Fq,

or equivalently,

k0 = −2a (5.3.1)

f1 = −3a2 (5.3.2)

f ′0 = −2a3. (5.3.3)

For a fixed f1, we consider the solutions (a, k0, f
′
0) to (5.3.1)–(5.3.3).

Case (i). If f1 = 0 then (0, 0, 0) is the only solution to (5.3.1)–(5.3.3) and so P3
0,f1

has
exactly one polynomial that has a repeated root, namely P (x) = x3. In this case, the curve
defined by y2 = P (x) has a cusp singularity at S = (0, 0).

Case (ii). If −f1/3 = a2
1 for some a1 ∈ F∗q then (a1,−2a1,−2a3

1) and (−a1, 2a1, 2a
3
1) are

the only two solutions to (5.3.1)–(5.3.3). Hence, P3
0,f1

has exactly two polynomials with
repeated roots: P (x) = x3 + f1x − 2a3

1 in which case the curve defined by y2 = P (x) has
a node singularity at S = (−a1, 0); and P (x) = x3 + f1x + 2a3

1 in which case the curve
defined by y2 = P (x) has a node singularity at S = (a1, 0).
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Case (iii). If −f1/3 is a quadratic non-residue in Fq then the system defined by (5.3.1)–
(5.3.3) has no solutions and so P3

0,f1
does not contain any polynomial with repeated roots.

In the attacks described in Section 5.4, the adversary will need curves with small-order
subgroups. In the genus-1 case the adversary has the ability to choose f̃0, and in [4,
Section 4.4] it was already argued that an adversary can efficiently find suitable invalid
curves, essentially by picking curves at random. To extend that argument for genus-2 we
need the following result.

Theorem 5.3.4. Suppose that gcd(q, 30) = 1. The number of invalid singular curves
relative to y2 = x5 + f3x

3 + f2x
2 + f1x + f0 and F2a over Fq is between q − 3 and q + 3.

Proof. Let f2, f3 ∈ Fq be fixed, and consider the set of polynomials

P5
0,f3,f2

= {Pf ′1,f ′0
(x) = x5 + f3x

3 + f2x
2 + f ′1x + f ′0 : f ′1, f

′
0 ∈ Fq}.

If Pf ′1,f ′0
(x) has repeated roots in F̄q, then there are two (not mutually exclusive) possibili-

ties:

Case 1. There exist a, b, k0 ∈ Fq such that

Pf ′1,f ′0
(x) = x5 + f3x

3 + f2x
2 + f ′1x + f ′0 = (x2 + ax + b)2(x + k0). (5.3.4)

Comparing the coefficients of the same degree terms, we have

k0 = −2a (5.3.5)

f3 = 2b− 3a2 (5.3.6)

f2 = −(2a3 + 2ab) (5.3.7)

f ′1 = b2 − 4a2b (5.3.8)

f ′0 = −2b2a. (5.3.9)

We obtain from (5.3.6) and (5.3.7) that a must satisfy 5a3 + f3a + f2 = 0. Moreover, since
f2 and f3 are already fixed, any choice of a fixes k0 and b by (5.3.5) and (5.3.6). Therefore,
the number of polynomials Pf ′1,f ′0

(x) of the form (5.3.4) is at most three.

Case 2. There exist a, k0, k1, k2 ∈ Fq such that

Pf ′1,f ′0
(x) = x5 + f3x

3 + f2x
2 + f ′1x + f ′0 = (x + a)2(x3 + k2x

2 + k1x + k0).
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Comparing the coefficients of the same degree terms, we have

k2 = −2a (5.3.10)

k1 = f3 + 3a2 (5.3.11)

k0 = f2 − 2a(f3 + 2a2) (5.3.12)

f ′1 = 2af2 − 3a2f3 − 5a4 (5.3.13)

f ′0 = a2f2 − 2a3f3 − 4a5. (5.3.14)

For a fixed pair (f2, f3) ∈ Fq×Fq, we first count the number of solutions (a, k0, k1, k2, f
′
0, f

′
1)

to (5.3.10)–(5.3.14). Note that if a = 0 then we must have k0 = f2, k1 = f3, k2 = f ′0 =
f ′1 = 0. On the other hand, if a 6= 0, we have k1 6= f3 and (k1 − f3)/3 is a quadratic
residue in Fq for exactly (q − 1)/2 elements k1 ∈ Fq. For each such k1, we obtain two
solutions determined by setting a equal to the square roots of (k1 − f3)/3. That is, there
are 1 + 2((q − 1)/2) = q solutions in total and each solution (a, k0, k1, k2, f

′
0, f

′
1) leads to

a polynomial Pf ′1,f ′0
(x) which has either one or two paired repeated roots in Fq. We note

that different solutions may lead to the same polynomial Pf ′1,f ′0
(x). It is easy to see that

this occurs only if Pf ′1,f ′0
(x) has exactly two paired repeated roots in Fq and in this case

we show that, for a fixed Pf ′1,f ′0
(x), there could exist at most two different solutions that

yield this polynomial. The proof is as follows. Suppose there are three different solutions
S := (a, k0, k1, k2, f

′
0, f

′
1), S̃ := (ã, k̃0, k̃1, k̃2, f

′
0, f

′
1) and Ŝ := (â, k̂0, k̂1, k̂2, f

′
0, f

′
1) that yield

the polynomial Pf ′1,f ′0
(x). If a = ã then S = S̃ by (5.3.10), (5.3.11) and (5.3.12). Therefore,

we will assume that a, ã and â are pairwise different; and in this case one can see that
(x + ã)2(x + â)2 | (x3 + k2x

2 + k1x + k0), which is impossible.

We are now ready to prove the theorem. Suppose that the number of polynomials
Pf ′1,f ′0

(x) that have exactly two paired repeated roots both of which are in Fq is β, and
the number of polynomials Pf ′1,f ′0

(x) that have exactly two paired repeated roots both
of which are in Fq2 \ Fq is γ. Then, by our above argument, the number of solutions
(a, k0, k1, k2, f

′
0, f

′
1) to (5.3.10)–(5.3.14), such that each solution leads to a polynomial

Pf ′1,f ′0
(x) that has exactly two paired repeated roots both of which are in Fq, is at most 2β.

Hence, there are at least q − 2β polynomials Pf ′1,f ′0
(x) having exactly one paired repeated

root in Fq, and there are at least (q − 2β) + β + γ polynomials Pf ′1,f ′0
(x) with at least one

repeated root in F̄q. By Case 1, β + γ ≤ 3, and we can see that q − β + γ ≥ q − 3.

From Case 1 and Case 2 there are at most q +3 polynomials Pf ′1,f ′0
(x) with at least one

repeated root in F̄q.

Remark 5.3.5. Let H : y2 = x5 + f3x
3 + f2x

2 + f1x + f0 be a genus-2 hyperelliptic
curve defined over Fq. According to Theorem 5.3.4, there are at least χ = q2− q− 3 curve
equations (including the equation of H) relative to H and F2a. We now argue that if f2 6= 0
or f3 6= 0 then at least χ

6
of these (non-singular) curves are pairwise non-isomorphic. Let
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H′ and H′′ be two genus-2 hyperelliptic curves over Fq such that

H′ : y2 = x5 + f3x
3 + f2x

2 + f ′1x + f ′0
H′′ : y2 = x5 + f3x

3 + f2x
2 + f ′′1 x + f ′′0 .

The curves H′ and H′′ are isomorphic if there is an isomorphism α

α : (x, y)→ (α2x, α5y)

that applied to H′ gives the equation of H′′. Applying α to H′ gives

αH′ : y2 = x5 + α−4f3x
3 + α−6f2x

2 + α−8f ′1x + α−10f ′0.

If f2 6= 0 or f3 6= 0 then H′ is isomorphic to H′′ only if α4 = 1 or α6 = 1. This proves
that at least χ

6
of the curves relative to H and F2a are pairwise non-isomorphic. Hence

there are at least (χ
6
− 1) isomorphism classes of invalid curves relative to H and F2a when

f2 6= 0 or f3 6= 0. We are justified in omitting the case f2 = f3 = 0 in our argument since
there are at most 10 isomorphism classes of such genus-2 hyperelliptic curves defined over
Fq; see [28].

5.4 Invalid-curve attacks

Suppose that a discrete logarithm cryptographic protocol requires party B̂ to use his static
(long-term) private key b by computing σ = bP for some incoming P ∈ JH, where H is a
genus-1 or genus-2 hyperelliptic curve and P has order n. If B̂ does not verify that P ∈ JH
then an adversary M could launch an invalid-curve attack to learn b by selecting P ∈ JI
where I is an invalid curve or an invalid singular curve with respect to H (and either F1a

or F2a). Invalid-curve attacks come in two flavors.

In a small subgroup attack [62],M selects I so that JI has an element P of small order
r. The order r is small enough so that the discrete logarithm problem in 〈P 〉 is feasible
via exhaustive search; typically r is a small prime. Small subgroup attacks can be used
in situations where M is able to obtain a quantity that is derived from bP , for example
k = H(bP ) where H is a cryptographic hash function. In this case, M would compute
k′ = H(iP ) for all i ∈ [0, r− 1] until k′ = k, after whichM concludes that b ≡ i (mod r).
By repeating the procedure for different curves I (and different primes r) the value b can
be recovered via the Chinese Remainder Theorem.

In a large subgroup attack [64, p.58], M selects an invalid curve I so that JI has an
element P of large order t ≈ n and so that the discrete logarithm problem in 〈P 〉 can be
efficiently solved; this is the case if t is smooth, or if there exists an efficiently computable
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mapping from 〈P 〉 to another group where efficient DLP algorithms are known. Large
subgroup attacks can be used in situations where M is able to obtain the group element
bP itself. In this case,M would compute b mod t, and thereafter efficiently determine b.

There are two main reasons that invalid-curve attacks can be used byM in the above
setting. First, the representation of elements in the valid group JH is the same as the
representation of elements in the invalid group JI . Second, the implementation of the
group operation in the valid group JH is applicable to the invalid group JI without any
modification. We illustrate our invalid-curve attacks on two recently-proposed discrete log-
arithm protocols — the Twin Diffie-Hellman key agreement scheme and the XCR signature
scheme — that are successful if public-key validation is not performed. We emphasize that
our attacks do not illustrate any weaknesses in these protocols, but rather serve to em-
phasize the importance of public-key validation. More precisely, the attacks we describe
do not require the adversary to tamper with hardware or modify registers; the attacks
exploit only omission of public-key validation. Since validation in the case of curve-based
cryptography does not require full exponentiation but only a constant number of field
multiplications, it introduces a negligible efficiency overhead. Therefore validation should
always be performed in conjunction with curve-based protocols.

5.4.1 Twin Diffie-Hellman (TDH)

Cash, Kiltz and Shoup [16, Section 4] proposed and analyzed a simple Diffie-Hellman type
protocol depicted in Figure 5.1. The security of TDH relies on the twin Diffie-Hellman
assumption which is equivalent to the computational Diffie-Hellman assumption. This is
in contrast with many other key agreement protocols (e.g. [57, 87]), where security has only
been proven with respect to the gap Diffie-Hellman assumption – this is the assumption
that the computational Diffie-Hellman problem is hard even if the solver is given an oracle
for the decisional Diffie-Hellman problem.

We extend the small subgroup attacks on the static Diffie-Hellman protocol to the TDH
protocol in the genus-2 setting. We show how, even in the restricted security model used
in [16], an adversary can successfully break the protocol should honest parties fail to obtain
assurances that the static public keys of their peers were validated. This demonstrates the
importance of requiring that all elements belong to the correct group.

Informally, the security model in [16] allows the adversaryM to observe the interaction
between honest parties, obtain session keys computed by honest parties, register corrupt
parties withM’s choice of static public key, and interact with honest parties on behalf of
corrupted parties. The model did not (explicitly) require any checks on the static public
keys chosen by the adversary when registering corrupt parties. The implication is that the
adversary can register invalid static keys.
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Â

x, X = xG

a, A = aG
A, X −→

←− B, Y

B̂

y, Y = yG

b, B = bG

κ = H
(
Â, B̂, CDH(A, B), CDH(A, Y ), CDH(X, B), CDH(X, Y )

)
Figure 5.1: The twin Diffie-Hellman protocol. The underlying group is 〈G〉. Party Â’s
static key pairs are (A, a) and (X, x), while party B̂’s static key pairs are (B, b) and (Y, y).

We now describe an attack that allowsM to recover the static private key of an honest
party. Suppose that the underlying group is a prime-order subgroup of JH, where H is the
hyperelliptic curve defined by the polynomial y2 = x5 + f3x

3 + f2x
2 + f1x + f0 over Fq.

Suppose also that honest parties use group addition formula F2a (recall that F2a does not
explicitly use the coefficients f1 and f0). In this case M chooses invalid curves IH1 and
IH2 relative to H and F2a such that the invalid curves have points of small orders u and
v, respectively, with gcd(u, v) = 1.

Using the notation in Figure 5.1, assume that Â is corrupt and B̂ is honest. Suppose
that when M registers Â, M picked X ∈ IH1 of order u and A ∈ IH2 of order v. Then
M initiates a session with B̂ and obtains the session key κ = H(Â, B̂, Ab, Ay, Xb, Xy) that
B̂ computes. NowM computes

κ′ = H(Â, B̂, Ai1 , Ai2 , X i3 , X i4),

where i1, i2 range over Zv and i3, i4 range over Zu, until κ′ = κ in which caseM learns that
b ≡ i1 (mod v), b ≡ i3 (mod u), y ≡ i2 (mod v) and y ≡ i4 (mod u). For concreteness,
suppose that u, v ≈ 210. Note that M has to perform roughly 240 steps before κ′ = κ,
which is a feasible amount of computation. After repeating the procedure for other orders
(u, v),M can recover B̂’s static private key (b, y).

Recall from Remark 5.3.5 that there are at least (q2 − q − 9)/6 isomorphism classes of
invalid curves relative to H and F2a, where f2 6= 0 or f3 6= 0 in the equation of H. We
can reasonably assume that the distribution of orders of these invalid curves follows the
distribution of orders of all genus-2 curves over Fq. Under this assumption, the invalid
curves have group orders that are almost uniformly distributed over the Hasse interval
[(
√

q− 1)4, (
√

q + 1)4] (see [60, Proposition 1.9] and [61, Theorems 1.1 and 11.5] for results
on the distribution of genus-1 and 2 curves over the Hasse interval). Thus, by randomly
selecting invalid curves H′, the adversary will quickly find one with group order divisible
by a small prime. The bottleneck in the search is the time for computing the cardinality
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of JH′(Fq). With current technology, computing the cardinality of JH′(Fq) is feasible for
80-bit fields Fq [33], but not quite feasible for 128-bit fields Fq.

5.4.2 Singular elliptic curves

Krawczyk [55, Section 4.1 Definition 2] proposed the exponential challenge-response (XCR)
signature scheme for a cryptographically strong group G = 〈G〉 of prime-order n. In the
XCR signature scheme the signer B̂ with static key pair (B, b) signs a message for a verifier
Â who submits a challenge X = xG. The signature on a message m with a challenge X is
(σ, Y ), where Y = yG is a random group element of B̂’s choice and σ = (y + H(Y,m)b)X.
Â can verify the signature (σ, Y ) using her knowledge of x via σ = x(Y + H(Y,m)B).
In the description of XCR in [55] there is an additional check which is not applicable for
elliptic curves and hence is omitted here.

As before the goal of the adversaryM is to learn the static private key b of the signer
B̂. The large subgroup attack assumes that the adversary can learn the ephemeral private
key y that B̂ chooses to sign a message m. The attack proceeds as follows. M selects an
arbitrary message m and an invalid curve H′ having an element X of large smooth order
t ≈ n. The signer B̂ signs m and returns (σ, Y ) toM. The adversary learns the ephemeral
private key y and can thereafter deduce b mod t by using the Pohlig-Hellman algorithm to
compute the logarithm of H(Y,m)−1(σ−yX) = bX to the base X; b can then be efficiently
determined. Alternatively,M can mount a small subgroup attack. In that case, assuming
that M’s computational power is O(250), M will need to select invalid curves H′ having
elements X of 100-bit order t. To recover the secret b,M will need roughly b521/100c = 5
interactions with the signer.

For concreteness, suppose now that the signer uses an elliptic curve of the form y2 =
x3 − 3x + f0 over the prime field Fp where p = 2521 − 1. Such an elliptic curve has been
specified by NIST in the FIPS 186-2 Standard [30]. Consider

E− : y2 = x3 − 3x + 2 = (x + 2)(x− 1)2

and
E+ : y2 = x3 − 3x− 2 = (x− 2)(x + 1)2

over Fp, where gcd(p, 6) = 1. According to Theorem 5.3.3(ii), E+ and E− are invalid
singular curves relative to any curve E defined via y2 = x3− 3x+ f0 over Fp. In particular,
E+ and E− are invalid singular curves relative to all the five NIST curves defined over prime
fields [30]. The sets of non-singular points on E+ and E− over Fp (together with the point
at infinity) form groups isomorphic to F∗p that share the same group law with E . Moreover,
the isomorphisms are efficiently computable (see the discussion after Definition 5.3.2).
Using E+,M can mount the following large subgroup attack. M picks a point X of order
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p − 1 on E+. As before M interacts with the signer and obtains a signature (σ, Y ) on a
message m. Suppose M is able to learn B̂’s ephemeral private key y. Then M can map
H(Y,m)−1(σ − yX) to µ ∈ F∗p and X to g ∈ F∗p, and then use subexponential discrete
logarithm algorithms [38, 48] to compute logg µ thus obtaining b mod (p− 1). Note that
the discrete logarithm algorithm of [48] has a first phase that can be precomputed before the
attack is launched. Subsequently, the second phase quickly computes individual logarithms
and can reuse the precomputations in multiple applications of the attack.

We note that in the case of the NIST prime p = 2521− 1, discrete logarithms in F∗p can
be more efficiently computed using the Pohlig-Hellman algorithm since the largest prime
factor of the order of F∗p is only 88 bits in length. We also note that an easier way to
launch a large subgroup attack is to use the supersingular curve E : y2 = x3 − 3x over
Fp of order p + 1 = 2521. For this curve, discrete logarithms can be computed extremely
efficiently using the Pohlig-Hellman algorithm. However, this speedup is not applicable
for all primes. For example, the supersingular curve E : y2 = x3 − 3x over Fp where
p = 2384 − 2128 − 296 + 232 − 1 is the 384-bit NIST prime has a subgroup of 188-bit prime
order

r = 213458640757090462592068633975230757544124954331352889061,

and hence the large subgroup attack cannot be immediately applied. However, the embed-
ding degree of E is two, and the discrete logarithm problem can be efficiently mapped via
pairings to F∗p2 .

5.5 Concluding remarks

We have demonstrated that invalid-curve attacks can be extended to hyperelliptic curve
cryptosystems that use genus-2 curves defined over prime fields and the addition formula
F2a. The attacks can be extended in various ways. First, the attacks are applicable when
genus-2 curves defined over binary fields are used together with the addition formulas given
in [5, Section 14.3.2]. Furthermore, the attacks can be extended to genus-3 hyperelliptic
curves using the addition formulas in [5, Section 14.6.1, Section 14.6.2]. More interestingly,
it is also possible to use invalid singular hyperelliptic curves to mount attacks analogously
as was done in Section 5.4.2 with singular elliptic curves. For example, suppose H : y2 =
x5 + f3x

3 + f2x
2 + f1x + f0 is a non-singular genus-2 hyperelliptic curve defined over Fq.

By the proof of Theorem 5.3.4, there exist at least q−6 invalid singular curves IH relative
to H and F2a such that IH : y2 = (x + a)2(x3 + k2x

2 + k1x + k0) and x3 + k2x
2 + k1x + k0

has no repeated roots; let E : y2 = x3 +k2x
2 +k1x+k0 be the corresponding elliptic curve.

Let Jns(Fq) denote the group of degree zero divisor classes of IH over Fq such that the
support of the divisors does not contain the singular point (−a, 0). An explicit isomorphism
from Jns(Fq) to the group E(Fq), which is induced by ρ : IH \ {(−a, 0)} → E such that

99



ρ(x, y) = (x, y/(x+a)) and ρ(∞) =∞, can be used to map the discrete logarithm problem
in Jns(Fq) to E(Fq). Hence, if the validation check is omitted in a cryptographic protocol

employing H that requires a party B̂ to compute bD̄ for some incoming D̄ ∈ JH, then an
adversaryM can recover the static private key b of B̂ in time O(

√
q) rather than O(q).

Altogether, these attacks emphasize the importance of validating public keys in discrete
logarithm cryptosystems.
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Chapter 6

A New Protocol for the Nearby
Friend Problem

In this chapter, we investigate the so-called nearby friend problem. The problem has
emerged in the context of location-based services such as social networking and is closely
related to the issue of location privacy. In particular, we are interested in the question
of how Alice can efficiently determine whether a friend Bob is at a nearby location or
not. This has to be achieved without a third party and where Alice neither reveals any
information about her own location nor can she extract any information about Bob’s actual
location when they are not nearby. Similarly, no eavesdropper should be able to gain any
information about their actual locations, whether they are actually nearby or not. The
problem becomes more challenging as both Alice and Bob are restricted in computational
power and communication bandwidth. Starting from an earlier work by Zhong et al., we
formalize the protocol definition and the security model and then propose a new protocol
that solves the problem in the proposed security model. An interesting feature of the
protocol is that it does not depend on any other cryptographic primitive, thus providing
a new approach to solve the nearby friend problem. Our basic protocol and its extensions
compare favorably with the earlier solutions for this problem. The protocol might be of
use in other privacy-preserving applications.

The remainder of this chapter is organized as follows. In Section 6.1 we introduce a
formal definition of the nearby friend problem and its security model. In Section 6.2 we
propose the basic protocol NFP-I and discuss its security. In Section 6.3 we discuss some
extensions of the basic primitive and compare our protocols with the currently best known
protocols. One of our extension techniques also applies to some of the previously known
protocols and, in particular, improves the functionality and the performance of the Pierre
protocol. Finally we conclude in Section 6.4 with some open problems in this emerging
area.
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The results of this chapter appeared in [18], a joint work with S. Chatterjee and A.
Menezes.

6.1 Problem definition and security model

In this section we propose a formal definition and security model for the nearby friend
problem. The protocol definition is developed from the informal description of the problem
in [94].

6.1.1 Nearby friend problem

Let L be the publicly known set of all possible locations. The elements of L can be
expressed in two-dimensional coordinates such as floating point numbers or integers to
represent some geographical location or block on the surface of the earth. Alternatively,
they can be some description of a location such as the ZIP code or the street address.
We assume there exists a natural notion of nearbyness for the elements of L such that
given L1, L2 ∈ L it is easy to decide whether they are nearby or not. For example, when
locations are represented by Cartesian coordinates, given two such elements L1, L2 ∈ L one
can compute the Euclidean distance between them. In this context, we say two location
points L1, L2 ∈ L are nearby (denoted as L1 ≡ L2) if the Euclidean distance between L1

and L2 is less than or equal to some threshold distance d.

A scheme to solve the nearby friend problem is a two-party protocol NFP between an
initiator I and a responder R. It is assumed that both parties agree upon a description
of L (and the corresponding notion of nearbyness) before running the protocol. It is also
assumed that the parties establish a communication link which is authenticated, but not
necessarily confidential, before executing the protocol. Such an authenticated link can
be established, for example, by deriving a session key using a standard key agreement
protocol and then MACing all messages using that session key. I’s input to NFP is
her secret location information LI ∈ L while R’s input is his secret location information
LR ∈ L. Both parties exchange some messages based on their secret input and what they
receive from the other party. At the end, the protocol generates an output for the initiator,
namely the initiator will learn whether LI ≡ LR or not. (The responder does not learn
any information about the initiator’s location LI .)

6.1.2 Security model

To model (all) possible leakage of information, we consider two different kinds of computationally-
bounded adversaries – passive and active. In the former case, the target of an eavesdropper
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who observes the exchanged messages in a protocol run is either to extract any information
about I or R’s true location or to just decide whether they are actually nearby or not.
The case of a passive adversary is relevant in our context as we only assume the existence
of an authenticated link between I and R. The work of Zhong et al., in contrast, assumes
the existence of a communication channel (such as TLS connection) which provides both
confidentiality and authentication. To prevent active attacks, on the other hand, one of I
or R is treated as the adversary where the goal is to extract any information about the
other party’s location. In the following description, a protocol transcript stands for the
collection of all the messages transmitted between the two parties during a typical protocol
run.

Passive Adversary.

We would like to provide the adversary with as much power as possible while limiting
its task to the minimum. Intuitively the goal is to show that even if the adversary has
some a priori information about I’s (or R’s) possible locations it should not be able to
distinguish the protocol transcript for one location of I (or R) from any other. We also
want the assurance that after observing the protocol messages the adversary should not
be able to infer whether the participants are actually nearby or not. In other words, the
protocol transcript when I and R are actually nearby should not be distinguishable from a
protocol transcript when they are not. This is formally modeled through the following two
games between an adversary A and a challenger C. In the following and all the subsequent
games between A and C it is assumed that the set of location points L and the measure
of nearbyness are publicly known and hence available to A.

The initiator’s privacy. This is modelled by the following game.

G1: A chooses two distinct locations LI,0, LI,1 ∈ L for I and one location LR ∈ L for R.1

The challenger C selects b ∈R {0, 1} and provides A with a protocol transcript correspond-
ing to LI,b as I’s location and LR as R’s location. A outputs a guess b′ and wins if b = b′.
We define the advantage of the adversary A in attacking the scheme NFP with respect
to I’s location as

AdvINFP,A =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that NFP preserves location privacy for I against a passive adversary if AdvINFP,A
is negligible for all possible A.

1It should be understood that there are no further restrictions on A’s choices for LI,0, LI,1 and LR.
For example, A can choose LR to be nearby to LI,0 or LI,1 (or both).
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The responder’s privacy. The aim of the adversary in this case is similar to that in
the former. Formally we have:

G2: A chooses one location LI ∈ L for I and two distinct locations LR,0, LR,1 ∈ L for R.
C selects b ∈R {0, 1} and provides A with a protocol transcript corresponding to LI as I’s
location and LR,b as R’s location. A outputs a guess b′ and wins if b = b′. We define the
advantage of the adversary A in attacking the scheme NFP with respect to R’s location
as

AdvRNFP,A =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that NFP preserves location privacy forR against a passive adversary if AdvRNFP,A
is negligible for all possible A.

A protocol secure against a passive adversary in terms of the above two games gives
the assurance that after observing a protocol transcript neither can the adversary distin-
guish between two locations of I (or R) nor would it be possible to decide whether the
participants are actually nearby or not.

Active Adversary.

The aim here is to model the case of malicious participants. In particular, we are interested
in formulating the security assurance of I vis-a-vis R and vice versa. Since one of the
participants in the protocol is now treated as the adversary, (s)he is allowed to behave
arbitrarily in the protocol run.

Initiator’s privacy wrt the responder. This is stronger than the case of G1. Namely,
we have the following:

G3: A plays the role of R and chooses two distinct locations L0, L1 ∈ L for I. C picks Lb

where b ∈R {0, 1} as I’s location point and executes the protocol with A. A’s task is to
output a guess b′ of b and it wins if b = b′. The advantage of the adversary A in the role
of the responder in attacking the scheme NFP with respect to I’s location is defined as

AdvINFP,R =

∣∣∣∣Pr[b = b′]− 1

2

∣∣∣∣ .
We say that NFP preserves location privacy for I against an active adversary if AdvINFP,R
is negligible for all possible A.
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Responder’s privacy wrt the initiator. Note that it is easy for a malicious I to verify
a guess L′R of R’s location by choosing her own location as nearby to L′R. This kind of
probing attack cannot be prevented because of the very nature of the problem. The only
safeguard for R is not to participate in the protocol if he has some reason to believe that
I is behaving suspiciously. The aim here is rather to ensure that a malicious I does not
learn any information (other than what the protocol entitles her) about R’s location LR
when the latter is uniformly distributed in L. This is captured in the following game.

G4: A initiates the protocol and provides the challenger with a message as in a valid
protocol run. In response C chooses a location point LR for R uniformly at random from
the set of all possible locations L and completes the protocol with A based on that location.
A’s task is to output a guess L′R of R’s location and it wins if L′R ≡ LR. Suppose there
are (at most) k locations in L which are considered as nearby to a particular location. The
advantage of the adversary A in the role of the initiator in attacking the scheme NFP
with respect to R’s location is defined as

AdvRNFP,I =

∣∣∣∣Pr[L′R ≡ LR]− k + 1

|L|

∣∣∣∣ .
For a justification of the threshold probability (k +1)/|L|, see the argument for Claim 3 in
Section 6.2. We say thatNFP preserves location privacy forR against an active adversary
if AdvRNFP,I is negligible for all possible A.

6.2 The NFP-I protocol

We introduce our protocol to solve the nearby friend problem. The protocol, which we
call NFP-I, can also be viewed as a basic primitive to solve more complex private match-
ing problems as we discuss later. The protocol resembles a Diffie-Hellman type of key
exchange [24], and enjoys some attractive features in terms of performance and security.

6.2.1 Construction

A location corresponds to some point on a surface area such as the surface of the earth. In
the protocol we assume that the set of locations consists of some distinct areas which are
disjoint. Each such area defines a cell and each cell is identified by a unique description.
This cell identifier can be the name of a city or the ZIP code of an area or some other
description such as the name of an institution. For example, “Waterloo-University of
Waterloo” or “Waterloo-Wilfrid Laurier University” can serve as the identifiers of two
different cells. Such a description should be fixed a priori and two parties are said to be
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Public information: A set of locations L, a multiplicative group G = 〈g〉 of prime
order p, and an injective function f : L → G∗.
Input: The initiator I’s input is her secret location LI and the responder R’s input is his
secret location LR.

1. I computes gI = f(LI), chooses α ∈R Z∗p, and computes a = gα
I . I sends a to R.

2. Upon receiving a from I, R first computes gR = f(LR), chooses β ∈R Z∗p, and

computes b1 = gβ
R and b2 = aβ. R sends (b1, b2) to I.

3. Upon receiving (b1, b2) from R, I computes b′2 = bα
1 . I outputs nearby if b′2 = b2;

otherwise it outputs notnearby.

Figure 6.1: The NFP-I protocol.

nearby if and only if they belong to the same cell. Zhong has proposed a similar strategy
for the Wilfrid protocol [93].

NFP-I protocol. In the protocol description, L is the set of locations, G is a multiplica-
tive group of prime order p, and g is a publicly known generator of G. More concretely,
we will take G to be the group E(Fq) of points on a randomly selected elliptic curve E of
prime order p defined over a finite field of prime order q ≈ 2256. For example, E could be
the curve P-256 specified in NIST’s FIPS 186-3 standard [31]. Furthermore, we will assume
that 3 ≤ |L| ≤ 240, and that the adversary’s running time is bounded by 280. Under these
conditions, the adversary is unable to compute discrete logarithms in G. Moreover, since
the discrete logarithm problem in G is random self-reducible, the adversary is also unable
to solve a single instance given up to 240 instances of the problem.

Before executing the protocol, the parties need to establish an authenticated channel
between them. We also need an injective function f that, given the description of a cell
L ∈ L, maps it to a unique non-identity element of G. Such a map-to-point function can
be obtained in a way as suggested in [11, 12, 43] in the case where G is an elliptic curve
group. For such an instantiation, f behaves like a random function in the sense that the
discrete logarithm of f(L) to the base g is presumably hard to compute; f is treated as
a random oracle in the security argument of [11, 12]. We assume that f is public. The
protocol is presented in Figure 6.1.

The protocol NFP-I is quite efficient in terms of computation and communication
bandwidth. After the execution of the protocol I will find R to be nearby if they belong
to the same cell.
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6.2.2 Security

We show that the protocol NFP-I maintains all the security attributes defined in Sec-
tion 6.1. In particular, I’s location privacy is preserved information theoretically while
that of R is based on the hardness of the decision Diffie-Hellman problem for a passive
adversary and a variant of it in case of an active adversary.

Claim 1. The initiator’s privacy is information theoretically secure with respect to a
passive as well as an active adversary. That is, no adversary can win the game G1 or G3

with nonzero advantage even when it has unbounded computational power.

Argument. We establish the claim wrt G1; the case for G3 is analogous. A picks two distinct
locations LI0 , LI1 for I and one location LR for R. Suppose that f(LI0) = gI0 , f(LI1) =
gI1 , and f(LR) = gR. Suppose that C selects b = 0; the case b = 1 is similar. Then
C provides A with a transcript of the form 〈gα

I0
, gβ
R, gαβ

I0
〉 where α and β are randomly

selected from Z∗p. But G is a cyclic group and hence gI0 = gk
I1

for some k ∈ Z∗p. So the

transcript can also be viewed as 〈gkα
I1

, gβ
R, gkαβ

I1
〉. Hence A cannot determine whether this

transcript corresponds to (LI0 , LR) where the randomizer for I is α or to (LI1 , LR) where
the randomizer for I is kα. �

Recall that the decision Diffie-Hellman (DDH) problem in G is to decide, given 〈g, gα, gβ,
h〉, whether h is equal to gαβ, where α, β ∈R Zp, and h is either gαβ or a random element
of G. The decision Diffie-Hellman assumption in G asserts that the DDH problem is hard
in G.

Claim 2. The location privacy of R is preserved with respect to a passive adversary under
the decision Diffie-Hellman assumption in G where f is treated as a random oracle.

Reductionist argument. Given an adversary A with a non-negligible advantage ε in game G2

we show how to construct a DDH solver. The challenger is provided with a DDH problem
instance 〈g, gα, gβ, h〉. A selects one location LI for I and two distinct locations LR0 and
LR1 for R. At any point during the game A can ask for an evaluation of f on any location
in L. For each such distinct query C chooses a distinct random x ∈ Z∗p and returns gx as
the output of f . Let’s suppose f(LI) = gxI , f(LR0) = gy0 and f(LR1) = gy1 . C chooses
a random b ∈ {0, 1} and returns the transcript 〈(gα)xI , (gβ)yb , hxI〉. If h = gαβ then this
is a proper protocol transcript for LI , LRb

. Otherwise, the transcript is independent of b.
Thus, A’s probability of success in the former case will be 1/2 ± ε and that in the latter
case will be 1/2. Hence, C has an advantage ε/2 in solving the DDH problem. On the
other hand, if DDH problem is easy in G then one can trivially break the protocol. Hence
the security of NFP-I in terms of G2 is equivalent to the hardness of DDH problem in
G. �
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Claim 3. No computationally bounded malicious initiator will be able to find the location
of the responder with a probability of success greater than 2/|L|.

Heuristic argument. We first consider a probing attack. A guesses some location L1 ∈ L,
computes f(L1) ∈ G∗, and sets g̃ = f(L1)

α for some α ∈ Z∗p as its message. As a
response the challenger chooses a location LB uniformly at random from L, computes
h = f(LB) ∈ G∗, chooses β ∈R Z∗p, and provides (b1, b2) = (hβ, g̃β) as the message coming
from the responder. If bα

1 = b2 A returns L1, otherwise it returns L2 ∈R L \ {L1}. The
probability of success for A in this game is

1

|L|
+

(
1− 1

|L|

)(
1

|L| − 1

)
=

2

|L|
.

Since we cannot prevent this kind of probing attack we want the assurance that this is the
best A can do.

Let S = {h1, h2, . . . , hn} be the (random) subset of G which corresponds to the range
of f . A knows S because A has access to f . Note that for any g̃ ∈ G∗ and i ∈ {1, . . . , n}
we have hi = g̃ki for some ki ∈ Z∗p. But the randomness property of f assures that no
computationally bounded A can find two distinct elements hi, hj ∈ S so that A knows the
discrete log of both hi, hj to the base g̃ ∈ G∗ of its choice. If A can successfully find LB

given (hβ, g̃β) then that amounts to finding h = f(LB) where LB ∈R L and where g̃ is
chosen by A. Let h = g̃γ for some γ ∈ Z∗p. We consider two mutually exclusive cases: (i)
A knows γ and (ii) A does not know γ.

(i) A knows γ. In this case A can easily obtain h as h = g̃γ. But h = f(LB) is chosen from
S after A has output g̃. So the best A can do is to use a plug-and-pray strategy – choose
a random h′ ∈ S and then set g̃ = (h′)k for some known k. The probability that h = h′ in
this case is 1/|L| and this corresponds to L1 = LB in the probing attack discussed above.

(ii) A does not know γ. If A can successfully predict LB then that amounts to finding
h ∈ S given 〈g̃γβ, g̃β〉 where g̃ ∈ G is first chosen byA after which β ∈R Z∗p and h = g̃γ ∈R S
are chosen by the responder. This is a hard problem when A has no role in the choice of g̃
and h = g̃γ comes from the whole group G. (This is the so-called divisible computational
Diffie-Hellman (DCDH) problem where the task is to find gx/y given 〈g, gx, gy〉 for randomly
selected x, y ∈ Z∗p. In [29] it has been shown that the DCDH problem is equivalent to the
computational Diffie-Hellman problem.) We assume that DCDH remains hard even when
the adversary is allowed to choose the base g̃ and g̃γ comes from the random subset S. So
it would appear that the best strategy for A is to return a random guess h′ ∈ S of h. The
probability of success in this case is again 1/|L| and this corresponds to the case L2 = LB

in the probing attack. �

This heuristic argument can be further formalized in terms of a reduction to a non-
standard version of the decision Diffie-Hellman problem as shown below. Abdalla and
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Pointcheval introduced several such interactive assumptions in [1]. These are termed by
the authors as chosen-basis decisional Diffie-Hellman assumptions (CDDH1 and CDDH2)
and password-based chosen-basis decisional Diffie-Hellman assumptions (PCDDH1 and
PCDDH2). They showed how one can use a PCDDH1 solver (resp. PCDDH2 solver) to
solve the CDDH1 problem (resp. CDDH2 problem). They also provided lower bounds
for CDDH1 and CDDH2 problem in the generic group model of Shoup [80]. However,
Szydlo [85] observed that one can easily break the CDDH1 and CDDH2 problems. No
such attack is yet known for the other two assumptions, namely PCDDH1 and PCDDH2.

Here we show how an adversary in terms of the game G4 against NFP-I can be used
to construct a PCDDH2 solver. Note that the reduction only goes in one way and it is not
known whether an efficient adversary against PCDDH2 will also make NFP-I vulnerable.

Password-based chosen-basis decisional Diffie-Hellman assumption (PCDDH2). Let G =
〈g〉 be a cyclic group of some prime order p, and let P be a random function from {1, . . . , n}
into G. The problem is defined in terms of the following interactive game between an
adversary B and a challenger C.

B, given oracle access to P , chooses two elements g1, g2 ∈ G and gives them to C. C
chooses a random k ∈ {1, . . . , n}, a random r ∈ Z∗p, and a random b ∈ {0, 1}. C then
obtains u = P(k) and computes (g1/u)r. If b = 0, it outputs 〈gr

2, (g1/u)r, k〉, otherwise it
outputs 〈gr

2, h, k〉, where h is a random element of G. The task of B is to guess the value
of b. The PCDDH2 assumption asserts that this problem is hard in G.

Reductionist argument. Given an adversary A with a non-negligible advantage against
NFP-I in G4, we show how one can construct an algorithm B to solve the PCDDH2
problem. B sets |L| = n and then uses P to simulate f . When A sends some g̃ as a
message from the initiator it sets g1 = 1, where 1 is the identity element of G and g2 = g̃
and sends them to C. When it receives the challenge 〈g3, g4, k〉 from C, B sends 〈g−1

4 , g3〉
as the corresponding message in NFP-I. If g4 = (g1/u)r then this corresponds to 〈ur, g̃r〉,
which is a valid protocol transcript for a location LB such that f(LB) = P(k). Otherwise
the transcript is independent of LB. Hence, any advantage of A in finding LB can be
converted to an advantage of B to solve the PCDDH2 problem. �

6.3 Extensions and comparisons

In this section we consider several extensions of the basic primitive. So far we have treated
locations as detached cells and two parties are considered nearby if and only if they are in
the same cell. This is perfectly acceptable for some applications where cells are few and
far between (say the large cities of the world). In such a scenario if the protocol informs
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I that R is not nearby then with overwhelming probability they are not in geographically
close locations. However, this might not be the case if cells are dense. As an illustrative
example consider the following situation. I’s location identifier is “Waterloo-University of
Waterloo-The Mathematics and Computer Building” and that ofR is “Waterloo-University
of Waterloo-Davis Centre”. Since these two buildings are represented as different cells,
NFP-I will return them as not nearby even though they are physically quite close.

One way to model such scenarios is to allow a hierarchy of cells, where cells in the
lowest level represent smallest areas (say a building), which are contained in the next level
cells (say a street), and so on. Such a granular description was first proposed by Zhong
in [93]. Returning to our previous example, using a two-level description I’s location will be
{“Waterloo-University of Waterloo”, “Waterloo-University of Waterloo-The Mathematics
and Computer Building”} and that of R {“Waterloo-University of Waterloo”, “Waterloo-
University of Waterloo-Davis Centre”}. I and R may first run the protocol on the higher-
level set and if they are in the same cell then on the lower level. However, they can easily
send all the information in a single run.

We have described the situation with ` = 2 level hierarchy. However it is easy to extend
it to any ` > 2 depending upon the application. The modified version maintains all the
security attributes of the original protocol because both I and R use different randomizers
for different levels. The protocol will also maintain its better performance over Wilfrid.

For completeness we now describe the Wilfrid protocol and compare it with the NFP-I
protocol.

6.3.1 The Wilfrid protocol

The Wilfrid protocol adapts Freedman, Nissim and Pinkas’ protocol (FNP04) [32] to solve
the two-party set intersection problem. In such a scheme, there are two parties I and R
with their private sets LI = {LI1 , LI2 , . . . , LIm} and LR = {LR1 , LR2 , . . . , LRn}, respec-
tively, where LI ,LR ⊂ L for some domain L. I and R exchange messages and at the
end I learns LI ∩ LR. Of course, the privacy of the users’ sets should be preserved as
much as possible. FNP04 relies on homomorphic encryption; if E is an encryption function
with some domain L in which an addition operation is defined, then E is called (addi-
tively) homomorphic if given E(L1) and E(L2) one can efficiently compute E(L1 + L2). By
convention, we will write E(L1 + L2) = E(L1)E(L2).

A high-level description of FNP04 to solve the set intersection problem is as follows. For
simplicity, we assume that there is an injective embedding of L into Zp: Li ↪→ zi, and we
write without loss of generality that LI = {zI1 , zI2 , . . . , zIm} and LR = {zR1 , zR2 , . . . , zRn}.
Moreover, we assume that H : Zp → G is an efficiently computable cryptographic hash

110



function. Initiator I uses a homomorphic encryption function EA with domain Zp, and
with respect to his public key A. I computes the polynomial

P (X) =
m∏

j=1

(X − zIj
) =

m∑
j=0

IjX
m−j ∈ Zp[X],

and sends EA(Ij) for j = 0, . . . ,m to R. R chooses a random number rk ∈ [1, p] and
computes Ck = EA(rkP (zRk

) + zRk
) for k = 1, . . . , n, and sends Ck to I. Note that Ck can

be computed using the homomorphic properties of EA. In particular,

EA(P (zRk
)) =

m∏
j=0

EA(Ij)
zm−j
Rk

= (((E(I0)
zRkE(I1))

zRk · · · )zRk E(Im−1))
zRk E(Im),

and

Ck = EA(rkP (zRk
) + zRk

) = EA(P (zRk
))rkEA(zRk

).

I decrypts Ck to Dk = DA(Ck) and checks if Dk ∈ LI , which is expected to be the case if
and only if zRk

∈ LI .
Now, we let G be a group of order p with generator g and describe a (randomized) ho-

momorphic encryption scheme (CGS97) proposed by Cramer, Gennaro and Schoenmakers
[21]. The encryption function is

EA : Zp → G×G

m 7→ (gr, Ar+m),

where A = ga is the public key of some user and r ∈ [1, p] is a randomly chosen integer.
The corresponding decryption function is

DA : G×G → Zp

(c1, c2) 7→ DLOGA(c−a
1 c2),

where DLOGA(x) is the discrete logarithm of x in G with respect to the base A. One can
check that

EA(m1 + m2) = EA(m1)EA(m2).

FNP04 can be modified so that I does not need to perform decryption in the last
step of the protocol; see [32]. For example, if CGS97 is deployed in the protocol, then
after computing EA(P (zRk

)) = (e1, e2), the responder R computes Ck = (c1, c2) = (e1, e2 ·
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H(zRk
)), and sends it to I. I now checks if c−a

1 c2 = H(z) for some z ∈ LI . Note that if
zRk
∈ LI then P (zRk

) = 0 and (c1, c2) = (gr, Ar · H(zRk
)) for some r ∈ [1, p]. That is, if

zRk
∈ LI then c−a

1 c2 = H(zRk
), and if zRk

6∈ LI then c−a
1 c2 looks like a random element in

G.

It follows that using CGS97 in the two-party set intersection protocol, I is required to
perform 2(m+1) exponentiations in the first step and send 2(m+1) group elements. R is
required to perform 2mn + 2n exponentiations and send 2n group elements. To determine
the intersection LI ∩ LR, I has to perform n exponentiations in the last step. Note that
when the size of L is significantly smaller than p then one can further optimize the protocol
by using the hash values of the zi’s, which would reduce the number of exponentiations
performed by R to 2n + 2mn(log2 |L|/ log2 |G|).

The Wilfrid protocol now follows in a straightforward manner. We might assume that
I and R in the Wilfrid protocol both use the level ` hierarchy of cells, i.e., LI = LR = `.
For a 128-bit security level, the system parameters might be chosen such that |L| = 240 and
|G| = 2256. It follows from our argument above that if CGS97 is deployed in the Wilfrid
protocol, then I is required to perform 2(` + 1) exponentiations in the first step and send
2(`+1) group elements. R is required to perform 2`+5`2/16 exponentiations and send 2`
group elements. To decide whether R is nearby, I has to perform at most ` (and at least
1) exponentiation.

In Table 6.1 we compare our protocol NFP-I with the Wilfrid protocol, the currently
best protocol known that achieves the same functionality.

Alice → Bob Bob → Alice decide whether nearby:
# exps message size # exps message size # exps by Alice

Wilfrid 2(` + 1) 2(` + 1) 2` + 5`2/16 2` ≤ `
NFP-I ` ` 2` 2` ≤ `

Table 6.1: Performance comparison between Wilfrid and NFP-I when implemented in a
group G where the discrete log problem is assumed to be hard. Both protocols require two
communication steps. The message size is the number of elements of G. We assume that
the hierarchy level is ` and that |L| = 240 and |G| = 2256.

6.3.2 The Pierre protocol

For still some other applications it might be more useful to consider a contiguous area.
Suppose I is at some geographical location on the surface of the earth and is interested to
know whether R is within a disc of radius d centered at her own location. In other words,
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I should be able to find R as nearby as long as the Euclidean distance between the two
does not exceed d.

The Lester protocol in [94] provides a solution to this problem. However, the solution
is not fully satisfactory. To determine whether R is within a distance d, I needs to solve
a discrete log problem in the range of [0, d · 2t], where t is some safety factor chosen by R.
On the other side, R has no knowledge (and control) on d. In fact, the protocol allows I
to extract some information about R’s location even when the distance between them is
greater than d. For example, with twice (resp. three times) as much work I can determine
whether R is within a distance 2d (resp. 3d).

In the Pierre protocol [94], instead of considering a disc around I, a contiguous surface
area is divided into square grid cells of side length d and the coordinates of each party are
expressed in integral units of d. After execution of the protocol, I will find R if they are
in the same cell or R is in one of the eight adjacent cells.

For completeness, we next describe the Pierre protocol.

Assume that locations are expressed in integer coordinates (X, Y ), with the positive X
and Y axes making an angle of 90 degrees, and that each square grid cell has side length d.
I andR are considered nearby if eitherR is in the same cell as I, orR is in one of the eight
cells that are adjacent to I’s cell. In the protocol, each cell is identified with its bottom left
corner, and each location (XA, YA) is identified with (xA, yA) = (bXA/dc, bYA/dc). In this
representation, if I’s andR’s locations are identified with LI = (xI , yI) and LR = (xR, yR)
then they are considered nearby if and only if the square of the Euclidean distance between
LI and LR is one of 0, 1 or 2, i.e., if and only if

DI,R = (xI − xR)2 + (yI − yR)2 ∈ {0, 1, 2}.

For example, if I is in the cell labelled I0 as shown in Figure 6.2, then after executing the
protocol I will findR to be nearby if and only ifR is in one of the nine cells I0, I1, . . . , I8.

The Pierre protocol relies on homomorphic encryption (see Section 6.3.1) and can be
described as follows. Suppose I has public key A, and I and R’s locations are identified
with LI = (xI , yI) and LR = (xR, yR). I computes EA(x2

I + y2
I), EA(2xI), EA(2yI) and

sends these three encrypted texts to R. R chooses three random integers r0, r1, r2 and,
using homomorphic properties of Ea, computes

EA(DI,R) =
EA(x2

I + y2
I)EA(x2

R + y2
R)

EA(2xI)xREA(2yI)yR
,

EA(r0DI,R) = EA(DI,R)r0 ,

EA(r1(DI,R − 1)) =

(
EA(DI,R)

EA(1)

)r1

,

EA(r2(DI,R − 2)) =

(
EA(DI,R)

EA(1)EA(1)

)r2

,
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Figure 6.2: Discretization of the surface into square cells.

and sends C0 = EA(r0DI,R), C1 = EA(r1(DI,R − 1)) and C2 = EA(r2(DI,R − 2)) to I. I
decides that they are nearby if and only if one of the Ci’s corresponds to the encryption
of 0.

Note that when CGS97 is deployed in the Pierre protocol, we can argue similarly as
in Section 6.3.1 and conclude that I is required to perform 6 exponentiations and send
6 group elements to R. R is required to perform 8 + 4(log2 |L|/ log2 |G|) exponentiations
and send 6 group elements. To decide whether R is nearby, I has to perform at most 3
exponentiations.

6.3.3 NFP-II: NFP with hexagonal discretization

In the following we use a slightly different discretization technique, suggested to us by
David Wagner (University of Waterloo). Instead of using square grid cells we tile the
surface by regular hexagons (see Figure 6.3). This gives a better approximation of a circle
around I’s location.

Assume that the locations are expressed in integer coordinates (X, Y ), with the positive
X and Y axes making an angle of 60 degrees and each hexagonal cell has side length d.
With this representation, the centers of the cells will be at the points (dx, dy) with x, y
integers and x − y ≡ 0 (mod 3). Given a location (XA, YA) we can find the center of the
corresponding cell (xA, yA) as follows. Let x0 = bXA/dc and y0 = bYA/dc. If x0 − y0 ≡ 1
(mod 3) then (xA, yA) = (x0, y0+1); else if x0−y0 ≡ 2 (mod 3) then (xA, yA) = (x0+1, y0);
else if XA + YA ≤ d(x0 + y0 + 1) then (xA, yA) = (x0, y0); else (xA, yA) = (x0 + 1, y0 + 1).
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Figure 6.3: Discretization of the surface into hexagonal cells.

In the protocol, I first finds the center of the cell she is in (labelled I0) and then the
center of the six adjacent cells (labelled I1, . . . , I6 as shown in Figure 6.3). After executing
the protocol I will find R to be nearby if and only if he is in one of these seven cells. She
will also learn exactly in which cell he is. Let L be the set of the hexagonal cells where
each cell is identified by its center point. Note that L depends upon d and I and R must
agree upon this value prior to running the protocol.

Let G be a multiplicative group of prime order p and let g be a publicly known generator
of G. In the protocol description, f : L → G∗ is an injective function that takes as input a
center point of a cell and outputs a random element in G∗. Such a map-to-point function
can be constructed in an analogous way as described in Section 6.2.1. Before executing
the protocol, the parties establish an authenticated channel between them. The protocol
is presented in Figure 6.4.

Security. In the protocol NFP-II, I uses a separate randomizer αj for each Ij, hence
the argument in Claim 1 for NFP-I can be trivially extended to NFP-II. So the location
privacy of the initiator is information theoretically preserved with respect to a passive as
well as an active adversary. Similarly, for a passive adversary we can extend the argument
in Claim 2 to show that breaking the location privacy of R is equivalent to solving the
DDH problem in G. Thus NFP-II provides the same assurances as NFP-I in terms of
the security games G1, G2 and G3.

However, the situation is a little different when we consider the location privacy of the
responder with respect to a malicious initiator. I can now deviate from the protocol and
choose seven different cells (not necessarily adjacent) as her input. If R happens to be
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Public information: A description of the set of locations L, a multiplicative group
G = 〈g〉 of prime order p, and an injective function f : L → G∗.
Input: The initiator I’s input is her secret cell and the six adjacent cells LI =
(I0, I1, I2, I3, I4, I5, I6) and the responder R’s input is his secret cell LR.

1. For 0 ≤ j ≤ 6, I computes gI,j = f(Ij), chooses αj ∈R Z∗p, and computes aj = g
αj

I,j.
I sends (a0, a1, a2, a3, a4, a5, a6) to R.

2. Upon receiving (a0, a1, a2, a3, a4, a5, a6) from I,R first computes gR = f(LR), chooses
β ∈R Z∗p, and then computes b = gβ

R and hj = aβ
j for 0 ≤ j ≤ 6. R sends to I the

tuple (b, h0, h1, h2, h3, h4, h5, h6).

3. Upon receiving (b, h0, h1, h2, h3, h4, h5, h6) fromR, I computes h′j = bαj for 0 ≤ j ≤ 6.
I outputs nearby if hj = h′j for some 0 ≤ j ≤ 6. Otherwise it outputs notnearby.

Figure 6.4: The NFP-II protocol.

in one of these cells then I can easily detect that in the verification step (i.e., Step 3) of
NFP-II. If not it returns a random cell from the rest. So its probability of success in the
probing attack will be 8/|L| (it is 2/|L| in NFP-I). In Claim 3 we argued that the probing
attack is the best strategy for a malicious initiator in NFP-I. A similar argument can be
put forth for NFP-II also based on related but stronger complexity assumptions.

Performance. In NFP-II, I performs seven group exponentiations to compute her
message while R performs eight exponentiations to generate his message. I needs at most
seven more exponentiations to decide whether R is nearby or not. The message from I to
R consists of seven elements of G and that from R to I consists of eight elements of G.
After executing the protocol I will find R to be nearby if they belong to the same cell or
if R is in one of the six cells adjacent to I’s. I will also learn that R is in the jth cell wrt
I if h′j = hj, 0 ≤ j ≤ 6.

We note that the Pierre protocol can also be modified to use hexagonal tilling. In
fact, using this technique, the Pierre protocol will gain a better performance in addition
to having a better approximation of a circle around I’s location. We provide more details
in the next section.

6.3.4 The Pierre protocol with hexagonal discretization

Let I and R be at locations LI = (XI , YI) and LR = (XR, YR). Suppose that LI and LR
are identified with LS

I = (xS
I , y

S
I ) and LS

R = (xS
R, yS

R) when using square cells; and with
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LH
I = (xI , yI) and LH

R = (xR, yR) when using hexagonal cells.

Recall that when discretizing the plane using square cells I and R are nearby if and
only if DS

I,R ∈ {0, 1, 2} where DS
I,R is the square of the Euclidean distance between LS

I
and LS

R. Therefore, R has to send 3 encrypted texts EA(r0D
S
I,R), EA(r1(D

S
I,R − 1)) and

EA(r2(D
S
I,R − 2)). On the other hand, discretizing the plane using hexagonal cells we can

show that I and R are nearby if and only if DH
I,R ∈ {0, 3} where DS

I,R is the square of
the Euclidean distance between LH

I and LH
R. Therefore, it suffices for R to send only 2

(instead of 3) encrypted texts EA(r0D
H
I,R) and EA(r1(D

H
I,R− 3)). More precisely, DH

I,R and
EA(DH

I,R) can be computed as follows:

DH
I,R = (xI

2 + yI
2 + xIyI)− xI(2xR + yR)

−yI(2yR + xR) + (xR
2 + yR

2 + xRyR),

and

EA(DH
I,R) =

EA(xI
2 + yI

2 + xIyI)EA(xR
2 + yR

2 + xRyR)

EA(xI)2xR+yREA(yI)2yR+xR

In particular, in Figure 6.3 we have I0 = (4, 4), I1 = (3, 6), I2 = (5, 5), I3 = (6, 3), I4 =
(5, 2), I5 = (3, 3), I6 = (2, 5), and DH

I0,I0
= 0 and DH

I0,Ij
= 3 for j = 1, 2, . . . , 6.

Hence, if the Pierre protocol is modified to be used with hexagonal tilling (and CGS97
is deployed), then R is now required to perform 6 + 4(log2 |L|/ log2 |G|) exponentiations
and send 4 group elements. To decide whether R is nearby, I has to perform at most 2
exponentiations; see Table 6.2.

6.3.5 Comparisons

In Table 6.2 we give a rough performance comparison of Pierre, the Pierre protocol modified
to use hexagonal tiling (which we call Pierre∗), Wilfrid using hexagonal tiling, and NFP-
II. We assume that the protocols are implemented in a multiplicative group in the discrete
log setting. We only count exponentiation in the underlying group G as that is the most
computationally intensive part. We further assume that |L| = 240 and |G| = 2256. The
values in Table 6.2 follow from our arguments in Section 6.3.1, 6.3.2, 6.3.3 and 6.3.4.

All the protocols require two communication steps and the messages are elements of
G. Note that Pierre and Wilfrid both require that the parties establish a communication
channel that is both confidential and authenticated prior to running the protocol and uses
homomorphic encryption, while NFP-II only requires an authenticated channel and does
not use any other cryptographic primitive.
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I → R R → I decide whether nearby:
# exps message size # exps message size # exps by I

Pierre 6 6 8.62 6 ≤ 3
Pierre∗ 6 6 6.62 4 ≤ 2
Wilfrid 16 16 4.18 2 1
NFP-II 7 7 8 8 ≤ 7

Table 6.2: Performance comparison between Pierre, Wilfrid and NFP-II.

In terms of overall performance, Pierre∗ is currently the best choice in this case, while
NFP-II compares favorably with Wilfrid. In NFP-II we can further reduce the message
size from R to I by individually hashing the group elements h0, . . . , h6 using a standard
hash function and sending the hash digests. Such an optimization is not possible for
the other protocols as the messages consist of ciphertexts of the underlying homomorphic
encryption scheme.

Remark 6.3.1. In Pierre, a malicious responder can always fool the initiator into believing
that they are in nearby locations. This may not be a problem as long as I can physically
check that R is not actually in the location where she is supposed to be. Nor is this an
issue for the security of I as R cannot gain any information about her location. In fact
our security model does not account for this kind of dishonest responder. However, our
protocol and Wilfrid appear to resist such behavior.

6.4 Concluding remarks

We formulated a definition and security model of the nearby friend problem in the context
of location-based services. We proposed a protocol that efficiently solves the problem in
the proposed security model. Our approach is distinct from the previous solutions to this
problem as it does not depend on any other cryptographic primitive and requires only an
authenticated link. We believe that the basic primitive we proposed will be useful in other
contexts.
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Chapter 7

Future Work

We finish this thesis by stating some open problems and directions for future research.

In Chapters 2, 3 and 4 we discussed several exponentiation algorithms that work
with the compressed representations of elements and compared their performance. In
our comparisons, we ignored, for example, the cost of squaring in characteristic-two fields,
the cost of cubing in characteristic-three fields and the costs of (torus-based) compres-
sion/decompression. It would be desirable to implement the algorithms to verify their
relative efficiency.

In Chapter 4 we showed how to compress elements of G ⊂ Gq,4 ⊂ F∗q4 of orders q±
√

2q+
1, where q = 2m, m is odd, by a factor of 4. Our technique allows us to compress elements
of subgroups G`, G¯̀⊂ Gq,12 ⊂ F∗q12 of orders ` = q2−t1+q−t2+1 and ¯̀= q2+t1+q+t2+1,

where t1 =
√

2q3, t2 =
√

2q and q = 2m, m is odd, by a factor of 4 because

q6 + 1 ≡ 0 (mod `),

(q3 −
√

2q3 + 1) ≡ 0 (mod `),

and

q6 + 1 ≡ 0 (mod ¯̀),

(q3 +
√

2q3 + 1) ≡ 0 (mod ¯̀).

However, the optimal compression factor is 6 since |Fq12 |/|G`| ≈ |Fq12 |/|G¯̀| ≈ 6. It would
be interesting to achieve the compression factor 6 in G` and G¯̀ as these groups appear as
the images of bilinear pairing functions defined on supersingular hyperelliptic curves with
embedding degree 12.

In Chapter 6 we proposed new protocols to solve the nearby friend problem. The
nearby friend problem can be viewed as a concrete instantiation of the private matching
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problem. The latter problem consists of a large class of problems such as (multi-party) pri-
vate set intersection problem, cardinality set intersection problem, private set disjointness
test. Since our protocols do not depend on any other cryptographic primitive it would be
interesting to investigate if they can be extended to solve other private matching prob-
lems and compare them with the existing protocols. For example, NFP-I can be used to
determine whether two singleton sets are equal or not. Similarly, its hierarchical version
discussed in Chapter 6.3 can be used to find the intersection of two ordered lists. It would
be more challenging to examine whether our approach can be extended to solve the pri-
vate set intersection problem or whether it is applicable in the multi-party setting. One
naive approach to solve the two-party set intersection problem is to modify NFP-I as in
Figure 7.1. We call this new protocol the NFP-2PSI protocol.

Public information: A description of the set of elements L, a multiplicative group
G = 〈g〉 of prime order p, and an injective function f : L → G∗.
Input: The initiator I’s input is her secret set LI = (LI0 , LI1 , . . . , LIm−1) and the responder
R’s input is his secret set LR = (LR0 , LR1 , . . . , LRn−1).

1. For 0 ≤ i ≤ m − 1, I computes gI,i = f(LIi
), chooses α ∈R Z∗p, and computes

ai = gα
I,i. I sets LI ∩ LR ← ∅ and sends (a0, a1, . . . , am−1) to R.

2. Upon receiving (a0, a1, . . . , am−1) from I, R first computes gR,j = f(LRj
) for 0 ≤ j ≤

n− 1, chooses β ∈R Z∗p, and then computes bj = gβ
R,j and hi = aβ

i for 0 ≤ i ≤ m− 1.
R sends to I the tuple (b0, b1, . . . , bn−1, h0, h1, . . . , hm−1).

3. Upon receiving (b0, b1, . . . , bn−1, h0, h1, . . . , hm−1) from R, I compares m and n. If
n ≤ m then I computes h′j = bα

j for 0 ≤ j ≤ n − 1, then if hi = h′j for some
0 ≤ i ≤ m − 1 and I sets LI ∩ LR ← (LI ∩ LR) ∪ LIi

. If m < n then I computes
b′i = hα−1

i for 0 ≤ i ≤ m − 1, and if bj = b′i for some 0 ≤ j ≤ n − 1 then I sets
LI ∩ LR ← (LI ∩ LR) ∪ LIj

.

Figure 7.1: The NFP-2PSI protocol.

In NFP-2PSI, I is required to perform m exponentiations in the first step and send
m group elements. R is required to perform m + n exponentiations and send m + n
group elements. To determine the intersection LI ∩ LR, I has to perform min{m, n}
exponentiations in the last step. In Table 7.1, we give a rough comparison of FNP04
(see Chapter 6.3.1) and NFP-2PSI. According to Table 7.1, NFP-2PSI is better than
FNP04 in terms of computational complexity and communication bandwidth. However, the
security of the NFP-2PSI protocol should be analyzed carefully as the security arguments
for the NFP-I protocol do not seem to apply directly in this case.
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I → R R → I compute LI ∩ LR:
# exps message size # exps message size # exps by Alice

FNP04 2(m + 1) 2(m + 1) 2n + 2mn(log2 |L|/ log2 |G|) 2n n
NFP-2PSI m m m + n m + n min{m, n}

Table 7.1: Performance comparison between FNP04 and NFP-2PSI when implemented
in a group G where the discrete log problem is assumed to be hard. Both protocols require
two communication steps. The message size is the number of elements of G.
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