
Improvements in the Accuracy of
Pairwise Genomic Alignment

by

Alexander Karl Hudek

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Alexander Karl Hudek 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Pairwise sequence alignment is a fundamental problem in bioinformatics with wide
applicability. This thesis presents three new algorithms for this well-studied problem.
First, we present a new algorithm, RDA, which aligns sequences in small segments, rather
than by individual bases. Then, we present two algorithms for aligning long genomic
sequences: CAPE, a pairwise global aligner, and FEAST, a pairwise local aligner.

RDA produces interesting alignments that can be substantially different in structure
than traditional alignments. It is also better than traditional alignment at the task of
homology detection. However, its main negative is a very slow run time. Further, although
it produces alignments with different structure, it is not clear if the differences have a
practical value in genomic research.

Our main success comes from our local aligner, FEAST. We describe two main improve-
ments: a new more descriptive model of evolution, and a new local extension algorithm
that considers all possible evolutionary histories rather than only the most likely. Our new
model of evolution provides for improved alignment accuracy, and substantially improved
parameter training. In particular, we produce a new parameter set for aligning human
and mouse sequences that properly describes regions of weak similarity and regions of
strong similarity. The second result is our new extension algorithm. Depending on heuris-
tic settings, our new algorithm can provide for more sensitivity than existing extension
algorithms, more specificity, or a combination of the two.

By comparing to CAPE, our global aligner, we find that the sensitivity increase provided
by our local extension algorithm is so substantial that it outperforms CAPE on sequence
with 0.9 or more expected substitutions per site. CAPE itself gives improved sensitivity
for sequence with 0.7 or more expected substitutions per site, but at a great run time
cost. FEAST and our local extension algorithm improves on this too, the run time is only
slightly slower than existing local alignment algorithms and asymptotically the same.

iii

Acknowledgements

I would like to thank my supervisor, Daniel G. Brown, for his support and guidance in
producing this thesis. Thanks also, to my committee members for their helpful comments,
suggestions, and aid in proofing this document. I am grateful to my family, for listening
to my thoughts and ideas. Finally, I would like to thank NSERC for funding this work.

iv

Dedication

To my sister.

v

Contents

List of Tables xii

List of Figures xvi

1 Introduction 1

1.1 Sequence alignment: definitions and interpretation 2

1.1.1 Score-based alignment . 4

1.1.2 Hidden Markov models and alignment 5

1.1.3 The Viterbi algorithm . 7

1.1.4 Pair hidden Markov models . 7

1.1.5 The alignment pair-HMM . 8

1.2 Summary . 10

2 Related Work 11

2.1 HMM decoding . 11

2.1.1 State posterior decoding . 12

2.1.2 State posterior decoding for pair-HMMs 13

2.1.3 State posterior-Viterbi decoding . 14

2.1.4 Optimal accuracy alignment . 14

2.1.5 AMAP alignments and marginalized posterior decoding 15

2.1.6 Summary . 15

vi

2.2 Seeding . 16

2.2.1 Suffix trees and maximal matching 17

2.2.2 Spaced seeds . 17

2.2.3 Other seeding strategies . 18

2.3 Anchoring alignments of long sequences . 19

2.3.1 Notation and definitions . 19

2.3.2 Fragment chaining heuristic . 20

2.3.3 MUMMER and MUMMER2 . 21

2.3.4 GLASS . 21

2.3.5 OWEN . 21

2.3.6 LAGAN and CHAOS . 22

2.3.7 AVID . 22

2.3.8 ACANA . 23

2.3.9 Work of Brown and Hudek . 23

2.3.10 Other anchoring techniques . 23

2.4 Models of pairwise alignment . 24

2.5 Local pairwise alignment . 26

2.5.1 BLAST, BLASTZ, and LASTZ . 26

2.5.2 WABA . 27

2.5.3 GAME . 28

2.5.4 YASS . 29

2.5.5 Exonerate . 29

2.6 Parameters and training . 29

2.6.1 Pair-HMM parameter training . 30

2.6.2 Work of Chiaromonte, Yap, and Miller 30

2.6.3 Work of Arribas-Gil, Metzler, and Plouhinec 31

2.6.4 FSA and query specific training . 31

2.6.5 Parametric alignment . 31

vii

3 RDA: alignment by segments 32

3.1 Right-Down alignments . 32

3.1.1 Segmentation . 34

3.1.2 Computing an optimal segmentation 35

3.2 Experiments with RDA . 38

3.2.1 Hypotheses . 38

3.2.2 Experiments and results . 39

3.3 Summary . 43

4 Sensitive genomic alignment: methods 45

4.1 CAPE: Anchoring weakly homologous sequence pairs 45

4.1.1 Fixing the number of seed hits . 46

4.1.2 Scoring fragments using local segmentation 46

4.1.3 Segmentation with multiple parameters 48

4.1.4 Handling repeats in real sequence 49

4.1.5 Complete anchoring strategy . 49

4.2 A more descriptive model of evolution . 51

4.3 FEAST: local alignment and a new extension algorithm 52

4.3.1 An extension algorithm for homologies 53

4.3.2 The alignment phase . 55

4.3.3 A data structure for detecting overlaps 56

4.3.4 Seeding local extensions . 58

4.4 Parameter training . 58

4.5 Summary . 61

5 Sensitive genomic alignment: experiments 63

5.1 Inferring parameters for human and mouse local alignments 63

5.1.1 Selecting training regions . 64

viii

5.1.2 Heuristic parameters for training 65

5.1.3 Training a single conservation level 66

5.1.4 Training two conservation levels . 68

5.1.5 Selecting good general purpose parameters 69

5.2 Accuracy of FEAST . 72

5.2.1 Simulated human and mouse sequences 72

5.2.2 Performance on real alignments . 76

5.2.3 FEAST’s annotation . 79

5.2.4 Spurious alignment flanks . 81

5.3 The limits of alignment . 83

5.3.1 Aligning long synthetic sequences with known parameters 84

5.3.2 Aligning long synthetic sequences with unknown parameters 85

5.4 Summary . 90

6 Conclusions 93

References 95

ix

List of Tables

2.1 Summary of HMM decoding techniques relevant to sequence alignment. For
each goal, we describe the relevant algorithm to achieve it on a single HMM
as well as the alignment pair-HMM. 16

3.1 Results of pair rank test for the right-down alignment (RDA), forward algo-
rithm (FA) and Viterbi algorithm (VT). The approximate sequence length
for each set of tests is denoted by n. We use the heuristic version of the
RDA algorithm with k = 40. The entries in the table are the number of
successes out of 100 trials. 40

3.2 Percent of columns correct for various rates of mutation d, measured in
expected substitutions per site. We compare the right-down alignment fol-
lowed by Viterbi within the segments (RDA), versus straight Viterbi (VT).
The approximate sequence length for each set of tests is denoted by n. Each
data set contains 100 alignments and we give the mean µ, sample standard
deviation s, and p-value for each. We calculate the p-value with a paired t-
test using the false discovery rate correction. For RDA, we use the heuristic
version with k = 40. 41

3.3 Percent of columns correct for various rates of mutation d, measured in
expected substitutions per site. We compare the right-down alignment fol-
lowed by Viterbi within the segments (RDA), versus straight Viterbi (VT).
The approximate sequence length for each set of tests is denoted by n. Each
data set contains 100 alignments and we give the mean µ, sample standard
deviation s, and p-value for each. We calculate the p-value with a paired t-
test using the false discovery rate correction. For RDA, we use the heuristic
version with k = 40. 42

x

5.1 Homologous regions of the human and mouse genomes. Regions R1 through
R10 are randomly selected, and the CFTR and HOXD regions are manually
selected. 65

5.2 Training regions for human and mouse alignments. Regions R1 through R10
are random selections that each span 500 kb of human sequence. Regions
R1 and R9 have a few EST hits, but are otherwise gene deserts. 66

5.3 Training results for a traditional model of alignment describing a single
mutation rate. We summarize the match/mismatch matrix with percent
identity (%PID), the transversion-transition ratio (TTR), and background
percent GC (GC). We express parameter αi in terms of a gap open penalty
(GOP) and βi in terms of the gap extension penalty (GEP) and mean gap
length (MGL). In region R5, we use DUST [4] with parameter v = 10 due
to excessive repeats. 67

5.4 Trained parameters for the strongly similar and weakly similar sub-models.
We summarize the match/mismatch matrix with percent identity (%ID) and
the transversion-transition ratio (TTR). We express parameter αi in terms of
the gap open penalty (GOP) and βi in terms of the mean gap length (MGL).
In regions R4, R5, R6, and R8, we use DUST with parameter v = 10 due
to excessive repeats. 70

5.5 Number of aligned positions over all training regions for different parameter
sets. There are a total of 5,422,010 human positions and 131,992 known
exon positions. Parameter sets in each category are ordered by positions
aligned. The 2-R8 parameter set is a good compromise between the overall
aligned positions and the aligned exon positions. 71

5.6 Percent of human positions aligned (PPA), false positive rate (FPR), and
true positive rate (TPR), over 50 synthetic human/mouse alignments using
tuned FEAST parameters. There are a total of 1,216,219 human positions.
The PPA metric is a good indicator of sensitivity. 77

5.7 Percent of all positions aligned (PPA All) and percent of exon position
aligned (PPA Exons), over all training regions . There are a total of 5,422,010
human positions and 131,992 known exon positions. FEAST parameters are
tuned with results from synthetic tests. Percentages are relative to the total
bases for each category. 78

xi

5.8 Percent of aligned human positions (PPA) annotated as strongly similar in
three categories, over all training regions. There are a total of 5,422,010
human positions, 131,992 known exon positions, and 190,568 NSCAN po-
sitions. FEAST parameters are tuned with results from synthetic tests.
Percentages are relative to the total bases for each category. 80

5.9 Results of over-extension tests on various scoring schemes for synthetic data.
Let x be the number of unrelated bases included in the extension. We list
the mean µ, and sample standard deviation s, for the distribution of x, as
well as the frequency of seeing no over-extension. 82

5.10 Boundary distributions for alignments of human NUMTs against fugu, mouse,
and chicken mitochondrial sequence. The alignment deviation x is the num-
ber of human bases over (positive) or under (negative) the known boundary.
Each alignment has a left and right boundary, n is the number of boundaries
in each category, and µ is the mean of x. We compare forward extensions
(F) and Viterbi extensions (V) over several parameter sets. 83

5.11 Sensitivity of CAPE and FEAST on approximately 20 kb long synthetic
sequences using correct alignment parameters. 85

5.12 Ordered sets of parameter sets for aligning sequences with unknown param-
eters. The first column indicates the position within the set. 88

5.13 Sensitivity of CAPE and FEAST on approximately 20 kb long synthetic
sequences using incorrect alignment parameters. 90

xii

List of Figures

1.1 An alignment of two input sequences. 3

1.2 A hidden Markov model that generates strings over Σ = {a, b} . State A
emits a and b equally as often and state B always emits b. Once in state B,
we stay there with probability 0.8 and transition with probability 0.2. . . . 6

1.3 The traditional pair-HMM for alignment. State M describes bases that
share a common ancestor. States Ix and Iy describe insertions or deletions
into sequences x and y respectively. Parameters α and β model affine gaps
where α corresponds to the gap open cost and β to the gap extension cost.
To translate probabilities into scores we take the logarithm of an odds ratio
comparing the model probabilities to those from a null hypothesis. The null
hypothesis is that the input symbols are drawn randomly from a background
distribution. 9

2.1 Example of a consecutive seed hit between two sequences. We denote the
seed requiring k = 6 matches as a sequence of ‘1’s. Each ‘1’ indicates
that the position must match. We adopt this notation for consistency with
more complicated seeding descriptions. Symbols joined with a dot indicate
sequence positions satisfying the seed. 16

2.2 Example of a spaced seed hit between two sequences. The seed requires six
matches, denoted by ‘1’s, and has four do not care positions, denoted by
‘0’s. Symbols joined with a dot indicate sequence positions satisfying the
‘1’ positions of the seed. 17

2.3 Example of the ways a half gap seed can be satisfied. Here we specify a
half match position as ‘1/2’. Symbols joined with a dot indicate sequence
positions satisfying the ‘1’ positions of the seed and symbols joined with a
line indicate sequence positions satisfying the ‘1/2’ position. 18

xiii

2.4 Example of fragments in a chain. The diagonal lines represent paired subse-
quences from sequences A and B. The solid fragments can be part of a valid
chain. The dashed fragments are said to conflict because they cannot both
be included in the chain of solid fragments. 20

3.1 Optimal alignment of two sequences according to global alignment, using
typical parameters. 33

3.2 Three possible alignments of two sequences. Each alignment represents an
equally likely evolutionary history, according to the standard model of align-
ment. 33

3.3 Pair-HMM for segmenting alignment. As before, α corresponds to the gap
open cost and β to the gap extension probability. The small states are silent
and the double circled state is the start state. White states represent right
segments (R) which only allow gaps in sequence y. Black states represent
down segments (D) which only allow gaps in sequence x. States TR and TD
are silent transition states between the two segment types. 35

3.4 Dynamic programming to compute the most probable labelling. The look-
back is defined by a k′ by k′ box with a length z tail defined by f(x′). . . . 36

3.5 Shape of the look-back area with k = 40 and y = 7. The look-back area
consists of a k by k box with a tail defined by the function f(x) = 2 + (k−
2)(z − x)y/zy where z = (y + 1)k2/(k + 2y). We shift the tail to the right
by k. 37

3.6 An alignment of human and mouse sequence from human chromosome 7
with (A) RDA and (B) Viterbi. 43

4.1 Pair-HMM for local segmentation. White states represent homologous se-
quence and the black states represent unrelated sequence. Unlabelled states
are silent. 47

4.2 Pair-HMM for global alignment with multiple scoring schemes. The left
gives an overview of the entire pair-HMM. The right box gives the structure
of each sub-model, Si. The white states (S) represent sequence related by a
model of evolution that switches between sub-models S1 through Sk. Black
states (R) represent unrelated sequence. The double circled white state is
the start and stop state. To prevent a cycle of silent states, CAPE uses a
simplified model of random sequence that forces at least one symbol to be
emitted in each sequence. 51

xiv

4.3 Pair-HMM for local alignment with multiple scoring schemes. The left gives
an overview of the entire pair-HMM. The right box gives the structure of
each sub-model, Si. The white states (S) represent sequence related by a
model of evolution that switches between sub-models S1 through Sk. Black
states (R) represent unrelated sequence. The double circled white state is
the start state and the double circled black state is the stop state. 54

4.4 Layout of tree based data structure for quickly detecting extension over-
laps. We represent extensions as a collection of linked segments. A primary
balanced tree indexes collections of overlapping segments by their starting
row. Inserting a new segment causes it, and existing segments, to break into
smaller segments such that starting and ending row of all overlapping seg-
ments are the same. We store overlapping segments in their own balanced
tree by the rightmost column of their lower extremity. 57

5.1 Left: dendrogram of trained parameters for the traditional alignment model.
Right: dendrogram of trained parameters for a model of alignment describ-
ing regions of strong and weak homology. Most pairings remain the same
in both trees, but there are some changes in the top three groups. The two
model parameters have a wider distribution of distances. 68

5.2 ROC curve for the gapped score filter with an x-drop of 25. The filter reduces
false positives until it reaches 10 bits. Above 10 bits, we lose sensitivity with
no change in specificity. For synthetic sequences, 10 bits is the optimal filter
setting. 74

5.3 ROC curve for the gapped x-drop with score filter of 10. We also plots
points corresponding to lastz with default parameters, and lastz using the
1/2-R8 parameter set. 75

5.4 Example dot plot for a subset of our alignment of R8. Blue highlighted
sections are unique to our forward extension alignments. All other dots are
also found with Viterbi extensions. 79

5.5 A test instance for our synthetic flank test. The first 100 bp in each sequence
are identical and the following 200 bp are random. The correct boundary is
at the position at 100 bp and we consider any bases beyond the first 100 to
be part an over-extension. 81

xv

5.6 Sensitivity of our forward based and Viterbi based local segmentation algo-
rithm. The heuristic sensitivity gives the sensitivity predicted by our greedy
parameter set selection algorithm. The true sensitivity is actual sensitivity
when using the greedily selected parameter sets together. 89

xvi

Chapter 1

Introduction

In 1859 Charles Darwin published On the Origin of Species [29] in which he proposed
the idea of evolution. His idea, that organisms change over generations in response to
environmental pressures, has had a profound impact on both culture and science. Under the
theory of evolution, species may differentiate into one or more new species over time. These
new species are related to one another by their common ancestor and share many traits.
Although Darwin observed these shared traits, he did not know the precise mechanism by
which species change over time.

Today, we know that species are described by DNA, a complex molecule comprised of
many smaller molecules called nucleotides. Evolutionary change occurs through changes to
this molecule, where beneficial mutations remain in populations and damaging mutations
quickly disappear. Recently, advances in biotechnology have allowed us to rapidly read
this molecule into computer systems as strings over the four-symbol alphabet, A, T, C,
G, where each symbol represents a single nucleotide. The data describing a single species,
commonly called a genome, can be millions or billions of symbols long. Online databases [3]
now contain the genomes for thousands of species, and the number is quickly growing.

The size of genomes necessitates the use of computer algorithms to analyze and under-
stand them. One of the most basic computational tasks that we perform on genomic data
is identifying the evolutionary relationships between DNA from two or more species. On a
small scale, we wish to identify which individual nucleotides are unique to a species, and
which nucleotides share ancestry. On a larger scale, we look to find entire subsequences
that share a common ancestry.

In this thesis we focus on improving these basic sequence analysis tasks by using a
probabilistic model of evolution. In Chapter 3, we present a new algorithm for discover-

1

ing evolutionary relationships that lie somewhere between the large-scale and small-scale
versions of the problem. Instead of focusing on the relationship between individual bases,
we look for related segments. The problem is substantially different from the large-scale
problem of finding related subsequences: in the large-scale problem, we make no require-
ments on the types of mutations that may occur between the subsequences. As a result,
the large-scale related subsequences are much larger than a typical segment in our new
algorithm.

In Chapter 4, we present three new algorithms. First, we improve the small-scale
problem by extending our model of evolution to be more descriptive. Our new model
can describe a fixed number of distinct evolutionary regimes, each of which mutates at
a different rate. Many parts of the genome change at a slower rate than average due to
being less tolerant of mutation. Typically, these sections describe crucial cell mechanics
that organisms require to survive. Changes that break these mechanisms quickly disappear
from the genome since the host organism dies quickly.

Second, we present two techniques for working with very long DNA sequences. The
long length of genome sequences introduces a related problem: our algorithms become
impractical due to computation time and memory constraints. Thus, in practice we must
use heuristics to constrain the computation. We present improved techniques for two classic
problems in this domain. The first, global alignment, assumes that two input sequences are
completely related to one another and that no rearrangements occur. The second, called
local alignment, relaxes these assumptions by instead finding subsequences that exhibit an
evolutionary relationship. Our improvements to both methods come from evaluating not
just the single most likely evolutionary relationship between sequences, but all possible
relationships under a model.

We now describe some notation, give a more detailed introduction to sequence align-
ment, and describe the mathematical framework on which we base most of our new tech-
niques.

1.1 Sequence alignment: definitions and interpreta-

tion

First we define some basic notation. We use x and y to denote sequences. For sequence
x, we refer to position i as xi and let the first position be x1. We denote the subsequence
of x from i to j as xi...j. We use capital letters for matrices, vectors, and sets. The size
of vector V is |V | and the size of set S is |S|. For vector V , let V (i) be element i where

2

0 ≤ i < |V |. Similarly, we denote elements of matrix M as M(i, j), where i is the row and
j is the column. We now describe the sequence alignment problem and related notation.

Sequence alignment is the primary tool for finding evolutionary relationships between
DNA sequences. A DNA sequence is a string over four symbols: A, T , C, and G. These
symbols represent the nucleotides adenine, thymine, cytosine, and guanine, respectively.
As time passes, DNA sequences incur mutations from a variety of physical processes. Thus,
DNA sequences from individuals of a species contain many differences. Over longer peri-
ods of time, these mutations combined with environmental conditions lead to speciation.
When comparing DNA sequences from different species, large scale changes, such as long
insertions and deletions, duplications, reversals and translocations, are common. The goal
of sequence alignment is to infer which physical mutations occurred using only the mutated
sequences and a mathematical model that abstracts the physical mutation processes.

Given sequences x = x1x2 . . . xn and y = y1y2 . . . ym, we can produce a sequence align-
ment by inserting special gap characters, usually indicated with a dash, into each sequence
such that the aligned sequences have equal length. An alignment, like the one in Figure 1.1,
corresponds to an evolutionary history described in terms of three types of physical muta-
tions: point mutations, insertions, and deletions. To interpret an alignment, we stack the
aligned sequences on top of one another and look at the content of the columns.

A T C C G A G G A T C A - - G G G C
A T C G G A - - A T C A T A G C G C

ATCCGAGGATCAGGGC

ATCGGAATCATAGCGC

align

matches insertion or deletion

mismatches

Figure 1.1: An alignment of two input sequences.

When two nucleotide symbols are in the same column, they either match or they
mismatch. These columns describe two evolutionary predictions. First, the nucleotides
corresponding to each symbol are predicted to have a common ancestor. Second, a
match/mismatch column makes a prediction about point mutations having occurred in
the time since the original sequences diverged. For example, if the symbols mismatch,
then one or both of the nucleotides corresponding to the mismatching symbols incurred a
point mutation. We let xi � yj mean that symbols xi and yj in sequences x and y are in
the same alignment column.

3

When a nucleotide symbol shares a column with a gap symbol, we refer to this as either
an insertion or deletion (indel). Typically, we consider consecutive gap columns as a single
unit, corresponding to a single mutation event. Columns containing only gap symbols
have no meaning and are thus disallowed. For a pair of sequences, we make no distinction
between insertion and deletion events as it is impossible to know the true sequence of
the common ancestor. It could be that the subsequence in question was deleted from the
common ancestor in one sequence, or that it was never in the common ancestor at all and
was instead inserted into the other sequence.

There are many possible alignments for two input sequences. There are two approaches
to producing alignments: score-based and probabilistically. These approaches differ in the
way they modelWe give a brief introduction to both frameworks, although our work uses
probabilistic alignment.

1.1.1 Score-based alignment

Score-based alignment measures sequence similarity with edit distance. Here, matches,
mismatches, and indels are edit operations transforming one sequence into the other. We
assign each edit operation a cost, and the sum of the costs allows us to assign a similarity
measure to a particular alignment. The goal of sequence alignment in this framework is to
find an alignment with maximum score.

This framework was introduced in 1970 by Needleman and Wunsch [62] and is the foun-
dation for many modern alignment algorithms. The original Needleman-Wunsch alignment
algorithm uses dynamic programming to find the optimal alignment in O(m2n2) time and
space for two sequences of length m and n. In 1982 Gotoh [37] presented an improved
version that takes O(mn) time and space. We describe the improved version here.

Let s(xi, yj) be the score of pairing xi with yj. Most simple scoring schemes assign all
matching pairs one score, and all mismatching pairs another. Originally, gaps are scored
linearly: each gap symbol incurs a penalty d. We can compute the score of the optimal
alignment with a simple recurrence:

D(i, j) = max

D(i− 1, j − 1) + s(xi, xj)
D(i− 1, j) + d
D(i, j − 1) + d

(1.1)

To compute the actual alignment, we remember our choices for each D(i, j) and then
trace these backwards from D(n,m). The value of D(n,m) is the score of the optimal
alignment.

4

A major disadvantage of the above algorithm is that linear gaps do not reflect important
properties of gaps in real biological sequences. With linear gaps, the frequency of gaps and
their length are tied. In his 1982 paper introducing the more efficient Needleman-Wunsch
algorithm presented above, Gotoh also introduced affine gap costs. Affine gap costs incur
a penalty to start a gap, and a separate penalty to extend it. The alignment algorithm for
affine gaps follows the same basic recurrence as above, but requires two extra matrices to
model being in a gap:

D(i, j) = max[D(i− 1, j − 1) + s(xi, xj), P (i, j), Q(i, j)] (1.2)

where
P (i, j) = max[D(i− 1, j) + g, P (i− 1, j) + d] (1.3)

and
Q(i, j) = max[D(i, j − 1) + g,Q(i, j − 1) + d]. (1.4)

As before, the value of D(n,m) is the score of the optimal alignment.

In 2009, Cartwright [23] introduced an alignment algorithm that scores gaps using a
power law. This scoring scheme closely matches observed gap distributions in real se-
quences, but the alignment algorithm by Cartwright requires O(n3) time for two sequences
of length n. Thus, it is practical only for very short input sequences.

1.1.2 Hidden Markov models and alignment

An alternate way of interpreting an alignment is to consider it to be a description of a
specific evolutionary history of two sequences. Matches and mismatches represent symbols
that come from a symbol in a common ancestor. Indels represent either an insertion or
deletion in one of the sequences since the common ancestor. We note that an alignment
in this framework does not completely pin down the evolutionary history. For example,
a match may represent either no mutations since the common ancestor, or a series of
mutations ending in the same symbol as in the ancestor. However, an alignment is still a
very specific overall description of evolutionary history.

The score-based Needleman-Wunsch algorithm is equivalent to probabilistic alignment
under a simple model of evolution. To describe how this is so, we first describe hidden
Markov models, the framework on which we base probabilistic alignment. A hidden Markov
model (HMM) is a description of a probabilistic process for generating sequences over a
finite alphabet. HMMs have two distinct uses: generating random sequences from a model,

5

and, given a model and output sequences, inferring information about how those sequences
were produced; this second use is often called HMM decoding [33].

An HMM consists of set S of states, a matrix T of transitions, a matrix E of emissions,
and an alphabet Σ. The transition parameter ti,j is the probability that a process in state
i jumps to state j in the next step. The emission parameter ei,a is the probability that
we emit symbol a from state i. For fixed i we must have

∑
j ti,j = 1, where ti,j ≥ 0 and∑

a∈Σ ei,a = 1, where ei,a ≥ 0. States may also be silent, emitting no symbol, which we
denote as ε. We must always define a start state where the process begins. HMMs may
generate infinite or finite sequences. In the latter case, we must also designate a stop state.
See Figure 1.2 for an example of a simple HMM that generates infinite sequences over the
alphabet Σ = {a, b} .

Figure 1.2: A hidden Markov model that generates strings over Σ = {a, b} . State A emits
a and b equally as often and state B always emits b. Once in state B, we stay there with
probability 0.8 and transition with probability 0.2.

Generating a sequence given an HMM is straightforward. Given an HMM in state i,
we jump to state j with probability ti,j and emit symbol a with probability ej,a. We repeat
this step, jumping from state to state and emitting symbols in a left to right fashion,
either indefinitely or until we reach a stop state. We call the sequence of states we use a
path. Each path π has a probability value that is the product of all the transitions in the
path. The joint probability of a path and a particular output string is the product of both
the transitions in the path and the emissions from the path states. This later probability
corresponds to the probability of a particular alignment.

6

1.1.3 The Viterbi algorithm

While generating random strings is useful in itself, the real power of hidden Markov models
comes from using them to infer how supplied output strings were generated. There are sev-
eral important HMM inference or decoding algorithms; for now, we focus on one technique
which, when applied to a particular model, is equivalent to score-based alignment.

Given an HMM and a sequence x, there are many possible state sequences, or paths, that
produce x. A path of highest probability, π∗, is often useful. For HMMs that correspond
to physical processes, such a path corresponds to a sequence of events that has the highest
likelihood of having taken place.

Pr(x|π∗) = argmax
π

Pr(x|π) (1.5)

For an HMM with |S| states that produces a single string of length n, we can find π∗

in O(|S|2n) time using the Viterbi algorithm. A path that satisfies equation 1.5 is often
called a Viterbi path. The Viterbi algorithm is a simple dynamic programming method:

Initialization: V (1, s) = 1
Recursion: V (i, k) = max` V (i− 1, `)t`,kexi,k

(1.6)

Here, s is the starting state and e is the ending state. The joint path and emission
probability is

Pr(x|π∗) = V (n, e). (1.7)

Variations on this algorithm allow multiple starting or ending states [33]. To recover π∗, we
must also remember the choice we made in assigning each V (i, k). We build π∗ backwards
by tracing our choices of V (i, k) from V (n, e) to V (1, s).

1.1.4 Pair hidden Markov models

So far we have described hidden Markov models that generate a single sequence. How-
ever, HMMs may also emit two or more sequences. We call an HMM that generates two
sequences a pair hidden Markov model (pair-HMM). States now emit, two, one, or no
symbols. Let ea,b,k be the probability that state k emits a in the first sequence and b in
the second sequence. As before, let ε represent the case where we emit no symbol in a
particular sequence.

7

As with HMMs that generate one sequence, pair-HMMs can both generate random
sequences and perform inferences given two supplied sequences. The Viterbi algorithm for
a pair-HMM takes time and space Θ(|S|2mn) for sequences of length n and m. We modify
the dynamic programming recurrence in equation 1.6 as shown in equation 1.8 below.

V (i, j, k) = max
`

V (i− 1, j − 1, `)t`,kexi,yj ,k
V (i− 1, j, `)t`,kexi,ε,k
V (i, j − 1, `)t`,keε,yj ,k

(1.8)

There are pair-HMM versions of many standard HMM inference algorithms. We discuss
these in Chapter 3.

1.1.5 The alignment pair-HMM

The standard HMM for alignment, shown in Figure 1.3 is a simple three state pair-
HMM that produces two infinite sequences of nucleotides over the DNA alphabet Σ =
{A, T, C,G}. State M emits pairs of symbols that share a common ancestor. These sym-
bols may mismatch, representing mutation, or they may match representing either no
mutation or compensatory mutations. States Ix and Iy emit single nucleotides into se-
quence x and sequence y respectively. These states model insertions (or deletions) in one
sequence relative to the common ancestor. Parameter α is the probability that we start an
insertion and parameter β is the probability that we continue an insertion having already
started it.

Given two biological sequences x and y, we use the Viterbi algorithm to find a state se-
quence π∗. The state sequence π∗ corresponds to an optimal alignment of x and y according
to the model. State M corresponds to alignment columns with two nucleotides and states
Ix and Iy correspond to columns with a nucleotide over a gap character, or vice versa. To
complete the mapping to score-based sequence alignment we convert probabilities to scores
with an odds ratio. An odds ratio compares the probability that our sequences come from
the pair-HMM in Figure 1.3 to the probability that our sequences come from a model of
random DNA. We convert this ratio to a score by taking the logarithm, usually in base-2.
The result is a score in bits, where positive values indicate that the data comes from our
pair-HMM and negative values indicate it comes from the model of random DNA. Our
model of random DNA is very simple, we draw symbols one at a time from a distribution
over Σ. This distribution may be uniform over the DNA symbols, or some symbols may
occur more often than others. For example, some areas of genomes have a high frequency
of A’s and T ’s, while other regions have a high frequency of G’s and C’s.

8

Figure 1.3: The traditional pair-HMM for alignment. State M describes bases that share
a common ancestor. States Ix and Iy describe insertions or deletions into sequences x
and y respectively. Parameters α and β model affine gaps where α corresponds to the
gap open cost and β to the gap extension cost. To translate probabilities into scores we
take the logarithm of an odds ratio comparing the model probabilities to those from a null
hypothesis. The null hypothesis is that the input symbols are drawn randomly from a
background distribution.

9

In this framework, Viterbi decoding is identical to the Needleman-Wunsch algorithm
with affine gaps [33]. We can model linear gaps by setting α and β to be equal. Both
Viterbi and Needleman-Wunsch take time and space Θ(mn).

1.2 Summary

In this thesis we focus on improving probabilistic sequence alignment. While basic sequence
alignment has enjoyed much success, it fails to capture critical properties of real biological
data. We address this by extending the basic pair-hidden Markov model for alignment to
allow for more descriptive alignments. Additionally, we show how to use more sensitive
inference algorithms for pair-HMMs to improve homology detection. These techniques
have no score-based counterpart, nor do they return an alignment. However, they still fall
within the context of probabilistic alignment.

In the next chapter we describe related work that includes both probabilistic techniques
as well as score-based techniques. We also discuss several heuristics for aligning very
long sequences. In the remaining chapters, we describe our contributions to the area of
probabilistic alignment.

10

Chapter 2

Related Work

In this chapter we discuss work that is both directly related to our improvements, and
supporting work which we use to build fully functional, and practical alignment programs.
We describe related work on six basic topics. First, we describe methods for using hidden
Markov models to perform various types of inferences. Second, we describe a heuristic
called seeding that finds very short highly similar subsequences in linear time in the length
of the input. Third, we describe a heuristic for constraining the computation time and space
of global alignment called anchoring. Fourth, we describe existing alignment algorithms
and models of evolution. Fifth, we describe heuristics and techniques for performing local
alignment. And finally, we describe work related to inferring alignment parameters from
real DNA sequences.

2.1 HMM decoding

Despite the importance of sequence alignment, there are relatively few alternatives to
Viterbi decoding for sequence alignment. The most common alternative decoding technique
is posterior decoding. Here, rather than optimizing over the paths through a pair-HMM,
we optimize the locations of individual symbol pairs over all possible paths. This technique
maximizes the accuracy of matches and mismatches by considering all possible evolutionary
histories, and all of the input data, when choosing to pair two symbols. Its main downside
is inaccurate insertions, as the algorithm does not consider gap structure when choosing
to pair a symbol or leave it unpaired.

A variant of posterior decoding, called posterior-Viterbi, attempts to get the best of

11

both Viterbi and posterior decoding by considering a particular path in addition to pos-
terior probabilities in the final alignment step. In the next two sections we describe both
these techniques in detail and describe existing work that uses them.

2.1.1 State posterior decoding

Posterior decoding [33] is one of the most useful alternate decoding techniques to Viterbi.
Its power comes from the use of posterior probabilities. Given a sequence x and an HMM,
the state posterior probability Pr(πi = k|x) describes the likelihood that symbol xi is
emitted from state k. In contrast to Viterbi, which concerns itself with single paths, the
state posterior probability considers all paths that produce the sequence x.

The algorithm for posterior decoding has three components: the forward algorithm, the
backward algorithm, and a final step combining the forward and backward probabilities.
Each step can be implemented with dynamic programming taking O(|S|2n) time and space
for an input sequence of size n and HMM with |S| states.

Forward algorithm

The forward algorithm computes the overall probability that a hidden Markov model pro-
duces a sequence x. Conceptually, it produces the sum of the probabilities of all paths
that generate x. The forward algorithm is a dynamic programming algorithm that takes
O(|S|2n) time and space for a sequence of length n and HMM with |S| states, start state
s, and end state e.

Initialization: F (1, s) = 1
Recursion: F (i, k) =

∑
` F (i− 1, `)t`,kexi,k

(2.1)

In the recurrence in equation 2.1, each F (i, k) computes the probability that we produce
x1...i given that we emit xi from state k. The probability that we produce x is

Pr(x) =
∑
π

Pr(x|π) = F (n, e). (2.2)

Backward algorithm

The backward algorithm is the counterpart to the forward algorithm. It computes the
same value, that is, the probability that an HMM produces a sequence x, but does so with
a recurrence that processes x from the end rather than the beginning.

12

Initialization: B(n, e) = 1
Recursion: B(i, k) =

∑
` tk,`exi,`B(i+ 1, `)

(2.3)

The value B(i, k) in equation 2.3 is the probability that we produce the subsequence
xi+1...n starting from state k. The probability that we produce x is

Pr(x) =
∑
π

Pr(x|π) = B(1, s). (2.4)

State posterior sequence

Combining the forward probabilities and backward probabilities, we obtain a formula for
the state posterior probability.

Pr(πi = k|x) = F (i, k)B(i, k)/Pr(x) (2.5)

As a final step, we produce a sequence π̂ where each π̂i maximizes equation 2.5 for
a position i. The path π̂ may not represent a valid path through the HMM, nor does it
preserve length distributions on states.

2.1.2 State posterior decoding for pair-HMMs

The forward and backward algorithms extend naturally to pair hidden Markov models,
although the time and space complexity increase substantially. For sequences x and y
with lengths n and m, and a pair-HMM with k states, both the forward and backward
algorithms take time and space Θ(kmn). The forward recurrence becomes

F (i, j, k) =
∑
`

F (i− 1, j − 1, `)t`,kexi,yj ,k
F (i− 1, j, `)t`,kexi,ε,k
F (i, j − 1, `)t`,keε,yj ,k

(2.6)

where F (i, j, k) is the probability that we produce x1...i and y1...j ending in state k. The
backward recurrence is defined similarly with B(i, j, k) being the probability that we pro-
duce xi+1...n and yj+1...m starting from state k. We define Pr(xi � yj|x, y, k) to be the prob-
ability that we emit xi and yj from state k. In terms of forward and backward values we
have

Pr(xi � yj|x, y, k) = F (i, j, k)B(i, j, k)/Pr(x, y). (2.7)

13

There is no straight-forward analogue to the final step of the posterior decoding algo-
rithm for HMMs that output one sequence. However, for pair-HMM for sequence alignment
Miyazawa [58] describes a probability alignment which captures a similar intention. In a
probability alignment we assign to each xi the yj that maximizes

Pr(xi � yj|x, y) = argmax
k

Pr(xi � yj|x, y, k). (2.8)

As with posterior decoding on HMMs that output a single sequence, this alignment may
not represent a valid path through the pair-HMM. In that sense it may not even be a valid
alignment. However, Miyazawa shows that if we only assign pairs where Pr(xi � yj|x, y) ≥
0.5, and assign the remaining symbols to gaps, the alignment will always be valid. In
addition to ignoring the gap length distributions, the biggest problem with this approach
is that very few symbols are aligned.

2.1.3 State posterior-Viterbi decoding

Fariselli, Martelli, and Casadio [35] introduce posterior-Viterbi decoding in which they
limit the state path to valid paths through the HMM. They replace the final step of the
posterior decoding algorithm with a Viterbi-like recurrence. Let

δ(s, k) =

{
1 if ts,k > 0
0 if ts,k = 0

(2.9)

and the posterior-Viterbi recurrence be

PV (i, k) = max
`
PV (i− 1, `)δ(`, k) Pr(πi = k|x). (2.10)

The optimal state path is recovered by remembering each choice of PV (i, k) and tracing
backwards from the end state.

2.1.4 Optimal accuracy alignment

A similar algorithm was proposed earlier for the alignment pair-HMM. In 1998, Holmes
and Durbin [43] introduced the optimal accuracy alignment. This alignment maximizes
the state posterior probabilities for match states. The recurrence is simple

OA(i, j) = max
`

OA(i− 1, j − 1) Pr(xi � yj|x, y,M)
OA(i− 1, j)
OA(i, j − 1)

. (2.11)

14

Here we let M be the match state and our recurrence is over the the lengths of input
sequences x and y.

2.1.5 AMAP alignments and marginalized posterior decoding

Introduced in 2007 by Schwartz and Pachter [71, 72], and later used in FSA [11], the
AMAP alignment algorithm is similar to the optimal accuracy alignment, but also defines
posterior probabilities for insertion states. Specifically, they define Pr(xi � −|x, y) = 1 −∑m

j=1 Pr(xi � yj|x, y), the probability of no homology for xi, and give a similar definition
for Pr(− � yj|x, y), the probability of no homology for yj. Schwartz also adds a heuristic
parameter γ for weighting the impact of insertion posterior probabilities. An optimal
AMAP alignment hγ is defined as

hγ = argmaxh 2
∑

(i,j)∈hP Pr(xi � yj|x, y)+

γ
(∑

i∈hIx
Pr(xi � −|x, y) +

∑
j∈hIy

Pr(− � yj|x, y)
)
,

(2.12)

where hP is the set of positions that are paired in h, hIx is the set of positions in x that
are unpaired, and hIy is the set of positions in y that are unpaired. The parameter γ must
be between 0 and 1 and controls how much impact the gap posterior probabilities have on
the final alignment.

In 2008 Lunter et al. [54] introduce marginalized posterior decoding (MPD) for both the
standard alignment pair-HMM and an extended alignment pair-HMM that models short
and long insertions. MPD decoding is equivalent to AMAP with γ = 1.

2.1.6 Summary

We have described four decoding techniques for hidden Markov models. Where appropriate,
we have also described related algorithms designed specifically for the alignment pair-HMM.
See Table 2.1 for a summary. The techniques in this thesis focus mainly on the forward
algorithm for pair-HMMs. Although typically the forward and backwards algorithms are
used as part of a more complicated decoding technique, they may also be used on their
own.

15

Optimality Goal HMM Alignment pair-HMM
single path Viterbi Viterbi
state posterior posterior decoding probability alignment
sequence
valid state posterior posterior-Viterbi decoding optimal accuracy alignment
sequence AMAP alignment

marginalized posterior decoding
transition posterior transition posterior decoding none
sequence
probability related forward or backward forward or backward

Table 2.1: Summary of HMM decoding techniques relevant to sequence alignment. For
each goal, we describe the relevant algorithm to achieve it on a single HMM as well as the
alignment pair-HMM.

2.2 Seeding

Seeding is the first heuristic step in many anchoring techniques. It is also crucial to other
heuristic forms of alignment such as local alignment, one of the topics of Chapter 4. The
goal of seeding is to find a first set of candidate points for further evaluation.

The basic idea is to look for short subsequences that satisfy some simple matching
requirements. The simplest seed, called a consecutive seed, looks for k consecutive matches
between two sequences. Most early alignment programs such as BLASTN [5, 6] and
FASTA [52] use this type of seed. We call a pair of subsequences that satisfy a seed a
seed hit. See Figure 2.1 for an example. Finding all consecutive seed hits for sequences of
length m and n takes O(m+ n) time with an implementation that uses hashing.

ATTGGATACGGATAG
ATCCGATACGGATCA

111111

Figure 2.1: Example of a consecutive seed hit between two sequences. We denote the seed
requiring k = 6 matches as a sequence of ‘1’s. Each ‘1’ indicates that the position must
match. We adopt this notation for consistency with more complicated seeding descriptions.
Symbols joined with a dot indicate sequence positions satisfying the seed.

16

2.2.1 Suffix trees and maximal matching

Extending the concept of consecutive matches are maximal unique matches (MUMs) and
maximal exact matches (MEMs). A MEM is a pair of subsequences where extending the
sequences to the left or right introduces a mismatch. A MUM adds the constraint that
the pair of subsequences must be unique among all such pairs between two sequences. We
can find both MUMs and MEMs in O(n+m) time and space using a data structure called
a suffix tree [39]. MUMs are used for anchoring in the MUMMER and MUMMER2 [30,
31, 53] genomic alignment programs. MEMs are used in MAVID and AVID [12, 13] and
GAME [26].

2.2.2 Spaced seeds

Although FLASH [22] used a collection of spaced seeds in 1993, and WABA [49] used
a specific spaced seed in 2000, the general idea of spaced seeds was made popular by
PatternHunter [55] in 2002. Here, we may denote positions that can either match or
mismatch in our matching criteria. The most common notation for a spaced seed is a
string of 1’s and 0’s, where 1 positions denote that a match is required, and a 0 position
denotes a position we may ignore. For example, the seed 1101 requires two matches followed
by either a match or mismatch, and ending with a match. Under this scheme, consecutive
seeds become strings of k 1’s. See Figure 2.2 for an illustrated example.

ATTGGCTACGGTTAG
ATCGGATACGGATCA

1101101001

Figure 2.2: Example of a spaced seed hit between two sequences. The seed requires six
matches, denoted by ‘1’s, and has four do not care positions, denoted by ‘0’s. Symbols
joined with a dot indicate sequence positions satisfying the ‘1’ positions of the seed.

The staggering of the required matches has two purposes. First, it reduces the to-
tal number of possible substrings by extending the length of the seed. And secondly, by
reducing the likelihood of adjacent hits. If a consecutive seed hits a location containing
many consecutive matches, it will also hit all adjacent locations until a mismatch occurs.
In contrast, a space seed hit does not guarantee that the hit location contains many con-
secutive matches, thus adjacent positions may not hit the seed. For long regions with

17

long consecutive matches, the longer length of spaced seeds also contributes to fewer ad-
jacent matches. Sensitivity improvements depend on the choice of seed pattern. Many
authors [14, 21, 47, 27] have designed algorithms for finding optimal seeds given a statis-
tical profile for homologous sequences.

PatternHunter II [46] achieves further improvement in sensitivity by using more than
one spaced seed. This introduces the problem of choosing an optimal set of spaced seeds,
rather than finding an optimal single seed. There are many approaches to choosing an
optimal set of spaced seeds [46, 77, 80]. As with a single seed, a set of seeds can be
optimized to detect particular types of homology.

2.2.3 Other seeding strategies

While the above seeding strategies are the most popular, there are still many more strate-
gies. Chen and Sung describe half gapped seeds [24], a variation on spaced seeds. They
allow positions to be labelled as half matches, which require either a match in that posi-
tion, or that the symbol in the first subsequence at the positions matches one of the two
neighbouring positions in the second subsequence. See Figure 2.3 for an example of the
ways a half position can be satisfied. The YASS [64] local aligner uses transition seeds
that extend spaced seeds with positions that match transition mutations (A ↔ T or C ↔
G). Mismatch seeds, used by CHAOS [19] and BLAT [48], limit the number of mismatches
that occur in a fixed window of size k. A hit is considered to be any pair of subsequences
of length k, with fewer than n mismatches.

ATTGGCTCCGGTTAG
ATCGGATCAGGATCA

1101½01001
ATTGGCTCCGGTTAG
ATCGGATTCGGATCA

1101½01001
ATTGGCTTCGGTTAG
ATCGGATCAGGATCA

1101½01001

Figure 2.3: Example of the ways a half gap seed can be satisfied. Here we specify a half
match position as ‘1/2’. Symbols joined with a dot indicate sequence positions satisfying
the ‘1’ positions of the seed and symbols joined with a line indicate sequence positions
satisfying the ‘1/2’ position.

Vector seeds [15, 17] generalize and extend both spaced seeds and mismatch seeds. A
vector seed is represented as a sequence of numbers and a threshold. Given a pair of sub-
sequences and a vector seed, we compute a score by summing the numbers at each match
position. We call the pair a seed hit if the score is greater than or equal to the threshold.
For example the seed ((1, 0, 1, 1), 3) , is a vector seed that is equivalent to the spaced seed

18

“1011.” and the seed ((1, 1, 1, 1, 1, 1), 5) , is a mismatch seed of length 6 allowing one
mismatch. Vector seeds can also express more complex match criteria that combine both
spaced seed features, mismatch seed features, as well as the ability to assign different
weights to each match location. For example, the seed ((1, 1, 0.5, 1, 1, 0.5), 4) scores the
third match positions by half each and only requires a total score of 4. This seed is not
equivalent to any spaced seed or mismatch seed.

Finally, Mak, Gelfand, and Benson [56] describe indel seeds that allow small insertions
and deletions within hit constraints. An indel seed pattern may contain an ‘X’ symbol,
which indicates that the position is either a match, or is missing from one of the two sub-
sequences under consideration. For example the seed “11XX11” allows either two missing
symbols at the ‘X’ positions, one missing symbol, or no missing symbols.

2.3 Anchoring alignments of long sequences

The techniques of Section 2.1 work well on sequences with lengths of up to several thousand
symbols. However, the quadratic run time of those algorithms make their use on sequences
of millions of symbols impractical. We solve this problem using anchoring, a heuristic for
constraining the dynamic programming space of the algorithms in Section 2.1.

Anchoring algorithms by necessity must be fast. The goal is to find pairs of short sub-
sequences from both input sequences that are highly likely to be part of the final alignment
or alignments. Anchoring typically uses several steps: finding a set of candidate position
pairs, evaluating each pair, and finally choosing a subset of pairs to use as anchors. We use
these three phases in the following sections that describe existing anchoring techniques for
global genomic alignment. Although our focus in on pairwise alignment, we also include
global multiple aligners when appropriate. Pairwise alignment is a sub-problem of multiple
alignment.

2.3.1 Notation and definitions

Given sequences x and y, a fragment consists of a pair of subsequences xi...j and yk...`. An
anchor is a fragment that we use to constrain a dynamic programming algorithm operating
on sequences x and y. We say an anchor or fragment is correct if at least one base from the
subsequence of x and one base from the subsequence of y truly share a common ancestor,
and incorrect otherwise. The area of subsequences xi...j and yk...` is (j − i+ 1)(`− k + 1).

19

We say a set of fragments covers x and y if every base of x and y is contained in exactly
one fragment.

Since score-based alignment may be more familiar, we present the probabilities of open-
ing and extending gaps as scores in the remainder of this document. To convert a proba-
bility to a score in bits, we take the negative base-2 logarithm of the probability value.

2.3.2 Fragment chaining heuristic

Fragment chaining is a widely used heuristic for choosing a set of anchors from a set
of potential anchors, or fragments. Chaining has two goals: choosing a set of anchors
consistent with a global alignment, and choosing a set of anchors that is most likely to be
correct among the set of consistent fragment sets.

Sequence A

Se
qu

en
ce

 B

Figure 2.4: Example of fragments in a chain. The diagonal lines represent paired subse-
quences from sequences A and B. The solid fragments can be part of a valid chain. The
dashed fragments are said to conflict because they cannot both be included in the chain of
solid fragments.

A consistent set of fragments is a set that we are able to build a global alignment
around. A set of fragments under consideration for anchoring typically includes many false
fragments. These false fragments represent positions that satisfy the requirements of the
previous steps despite not being truly homologous. As a result, the set of potential anchors
will contain many conflicting fragments. A pair of fragments conflict if they cannot both be
part of a single global alignment. For example, in Figure 2.4 there is no global alignment

20

that contains both of the designated fragments. Each fragment may also have a score that
represents its likelihood to be correct. Chaining can take such scores into consideration
when resolving conflicts.

Optimal fragment chaining uses dynamic programming to choose a set of fragments that
do not conflict and have the highest combined score. For n fragments the naive algorithm
takes time O(n2), although more sophisticated chaining algorithms bring this down [34].

2.3.3 MUMMER and MUMMER2

MUMmer [30] and MUMmer 2 [31], introduced in 1999 and 2002 respectively, use suffix
trees to find a set of fragments. In MUMmer, the set of fragments is the set of maximal
matches that are unique in all sequences (MUMs). MUMmer 2 relaxes the uniqueness
requirement in the query sequence, finding all maximum exact matches (MEM) instead.
The final set of anchors is taken to be the longest non-conflicting chain of fragments. This
is equivalent to fragment chaining with each fragment having a score of 1.

2.3.4 GLASS

In 2000, GLASS [8] introduced recursive anchoring. In this scheme, anchors are chosen
in passes, where the anchoring requirements are relaxed in each pass. The intuitive idea
is that obviously correct anchors should be chosen first, followed by weaker fragments in
regions that are still too large to align with dynamic programming.

Each phase consists of four steps. First, GLASS uses consecutive seeding to find a set
of initial fragments. Second, the score of each fragment is set to the sum of the alignment
scores for the left and right flanking twelve positions. In the third step, GLASS uses
fragment chaining to reduce the set of fragments to the highest scoring set of consistent
fragments. Finally, any fragments within this set that have a score below a threshold are
discarded.

GLASS recursively applies this procedure between anchors, reducing the size of the
initial consecutive seed each time it recurses.

2.3.5 OWEN

OWEN [69, 65], in 2002, introduced an anchoring procedure that combined automated
heuristics with manual adjustments from a user. OWEN allows users to manually issue

21

commands that perform specific heuristics. For example, users can ask the system to find
similarities between two subsequences, either exhaustively, or using consecutive seeding. A
similarity in OWEN is a set of islands in close proximity to each other. Each island, similar
to our fragments, represents a pair of subsequences with at least m matches in each frame
of length n, and at least k overall frames. This is similar to an ungapped local alignment.

Other actions include filtering similarities by p-value, resolving conflicts by chaining
similarities or by using a greedy conflict resolution algorithm, and performing final refined
alignment with Needleman-Wunsch.

2.3.6 LAGAN and CHAOS

LAGAN [20], introduced in 2003, uses CHAOS [19] alignments as fragments in its anchoring
procedure. CHAOS forms local alignments by using mismatch seeds to find an initial set
of fragments, then forming local chains of seeds using a cost function that considers both
the diagonal distance between hits as well as the off diagonal distance, which are forced
indels. Chains terminate when the distance to the next fragment is too large. The score
of each CHAOS alignment is the total number of matches in the seed hits that it contains.

LAGAN chooses a set of CHAOS alignments as anchors using the standard chaining
heuristic. Unlike previous aligners that require the final alignment to pass through each
anchor, LAGAN uses anchors as a loose constraint, requiring only that the final align-
ment pass within several bases of each anchoring CHAOS alignment. The CHAOS based
anchoring procedure from LAGAN is also used in conjunction with DIALIGN [19].

2.3.7 AVID

AVID [12] is a global aligner that uses suffix trees to seed its anchoring procedure. Unlike
MUMmer, AVID uses both maximal exact matches (MEMs) and maximal unique matches
(MUMs) from both sequences. AVID also uses a recursive anchoring strategy similar to
GLASS.

The anchoring procedure starts by finding all MEMs, which includes the MUMs, then
discards all that are less than half the length of the longest MEM. Each MEM is assigned
a score that is based on the length of the MEM and the score of the alignments for the
10 bp to the left and right of the MEM. The optimal chaining heuristic is then used to
select anchors first from all the MUMs, then recursively from the MEMs. The algorithm
recurses from the beginning on all unanchored subsequence pairs that are too long to align.

22

2.3.8 ACANA

ACANA [44] uses a greedy approach to anchoring genomic sequences of up to several
thousand bases. Although ACANA requires O(mn) time for sequences of length m and n,
and is thus too slow to anchor long genomic sequences, we include it here for its ability to
align distantly related sequence, a major focus of our work.

ACANA uses local alignments, the topic of section 2.5, to anchor global alignments
of genomic sequences in a greedy, GLASS-like recursive anchoring procedure. In each
recursive step, ACANA first finds all local alignments and assigned each a modified score
of v log u, where v is the score of the alignment and u is the length. Alignments with
score below 1 or length below 5 are assigned a modified score of 0. Alignments with
modified score less than 90% of the top scoring alignment are filtered out. The remaining
alignments are assigned a new score Ga = ua +

∑
b ub, where ua is the previous modified

score for alignment a, and b iterates over all remaining non-conflicting alignments. The
alignment a with highest Ga is taken as an anchor. The algorithm then recurses in each
flanking region.

2.3.9 Work of Brown and Hudek

In 2004, we [18] introduced a prototype global multiple aligner that uses a mathematical
model of global alignment to select a seed weight and a score threshold to minimize the
number of incorrect anchors. Given a weight w and threshold T , they use a prefix or repeat
of a single spaced seed with weight w to find a set of fragments. The score of a fragment
for two sequences is the sum of the matches and mismatches within it. Fragments with
score below T are discarded and anchors are selected from the remaining fragments with
the standard chaining heuristic. I extended this work in my masters thesis [45] to include
GLASS-like recursive anchoring, both for fragment finding and in the model of anchored
global alignment.

2.3.10 Other anchoring techniques

PECAN [67] uses exonerate [75] local alignments as anchor candidates. FSA [11] uses
either MUMs or exonerate local alignments as anchor candidates. On pairs of sequences,
FSA and PECAN use anchor-choosing procedures equivalent to the standard fragment
chaining heuristic.

23

2.4 Models of pairwise alignment

In this section we describe both score-based models of alignment as well as models based
on pair hidden Markov models (pair-HMMs). Many of these algorithms are part of either
local or multiple aligners, but we include them as the techniques are relevant to our work.

WABA [49] uses a complex five state alignment pair-HMM. Their model emits symbols
on transitions, rather than on entering a new state as presented in Chapter 1. The WABA
pair-HMM models three new features: it models short gaps and very long gaps separately,
highly conserved and weakly conserved non-coding DNA, and coding DNA.

MCALIGN2 [79] extends the standard pair-HMM for alignment to explicitly model
gaps of lengths 1 bp, 2 bp, and 3 bp or more. This change is made due to the observation
that gaps of length 1 and 2 bp are over-expressed in real alignments of two Drosophila
species, if one assumes a geometric length distribution.

Michael et al. [57] introduced a score-based alignment algorithm that allows for the use
of different scoring schemes for different sections of the alignment. Their jumping alignment
model charges a jump cost to switch scoring schemes. We use this work as the basis for
our own probabilistic model of evolution, which we describe in section 4.2 of Chapter 4.

Schultz et al. [70] present a jumping profile hidden Markov model (profile-HMM) for
aligning a sequence to a multiple alignment A of sequence families. In their model the
alignment of the sequence may jump between family subtypes of the multiple alignment.
A family subtype can be thought of as a multiple alignment consisting only of sequences
from A that belong to the same sequence subtype. There is a probabilistic jump cost
associated with switching subtypes during alignment.

Pecan [67] is a multiple aligner based on Probcons [32] that uses posterior alignment
constrained to the set of valid alignments. The Pecan alignment pair-HMM is extended
to allow transitions between gap states, in addition to transitions between gap and match
states. Paten et. al. also explore the use of a mixture model for gaps, extending the
pair-HMM to model short and long affine gaps.

Arribas-Gil, Metzler, and Plouhinec [7] propose a pair-HMM for alignment that contains
sub-models for strong and weak conservation. The sub-model for strong conservation has
no gaps, and the sub-model for weak conservation has affine gaps. The alignment can
transition between these models with a given probability.

Lunter et al. [54] use a pair-HMM for local alignment to study how model parameters
and decoding techniques affect alignment quality. Their pair-HMM includes an optional
model of long and short gaps. Using parameters obtained from blastz [73] alignments of

24

human and mouse sequence, they simulate sequences with various base compositions and
mutation rates. For each set of training sequences, they test various properties including:
using correct indel rates, correct substitution rates, a mixture gap model, the correct
base composition, and two posterior decoding methods in addition to Viterbi. They find
that the mixture gap model and posterior decoding had the largest impact on accuracy,
with the other features providing little improvement. We note, however, that the fraction
of homologous positions correct in all their data was fairly high, and they did not test
substitution rates greater than 0.4. Our work is mostly concerned with alignment regions
with accuracy rates much below 80% of positions being correct. Chapter 5 describes
experiments on sequences containing much more mutation.

FSA [11] extends the standard pair-HMM for alignment by replacing the insertion states
with two insertion states, one for short gaps and one for long gaps. For pairs of sequences,
its alignment algorithm find the optimal accuracy alignment described in section 2.1.4.

DIALIGN [60, 61] constructs alignments by assembling a set of non-conflicting, fixed
length, segment pairs, or diagonals, based on a weighting property for each diagonal. They
define a diagonal as a pair of subsequences, both of length `, from sequences x and y.
While DIALIGN is capable of aligning more than two sequences, we focus only on the
pairwise case. Although DIALIGN is more closely related to a local alignment procedure,
we include it here for its significant departure from hidden Markov model based alignment
techniques.

A diagonal of length ` containing m matches is given a weight that represents the
likelihood of seeing m matches given p, the probability of seeing a match in neutral DNA.
Two diagonals are said to conflict if they share any sequence positions. DIALIGN builds
alignments by using dynamic programming to find the highest weight set of non-conflicting
diagonals. To reduce noise, only diagonals with a weight above threshold T are used as
input to the dynamic programming.

DIALIGN 2 [59] is improved by allowing different match probabilities for different
pairs of bases, as well as modifying the weight of a diagonal to account for the length. The
modified weighting function prevents bias towards aligning many shorter diagonals instead
of one large diagonal. DIALIGN-T [76] introduces two additional heuristics: an extra filter
to prevent bias towards local alignments rather than global alignments, and a diagonal
weight adjustment to take into account matches between multiple sequences when aligning
more than two sequences.

Sigma [74] is an alignment program that follows the general framework of DIALIGN. It
uses a weight function similar to that of DIALIGN 2, but includes a measure of nucleotide
pairs, known as dinucleotides. This allows Sigma to weight commonly occurring simple

25

repeats lower than DIALIGN further reducing false alignments.

Cartwright [23] describes a pair-HMM that models indels according to a power law
by using a zeta distribution for gap lengths instead of the usual geometric distribution.
The downside to this approach is increased run time. The training algorithm presented
by Cartwright takes time O(n3) for two sequences of length n. Despite this, the zeta
distribution models gaps with high accuracy compared to traditional insertion and deletion
models.

2.5 Local pairwise alignment

In this section we focus on heuristics and extension algorithms for local alignment. In-
stead of aligning all of the input sequences, local alignment involves finding alignments
of subsequences of the input sequences. Thus, local alignment indirectly solves the large
scale problem of finding subsequences related by evolution, and also solves the small scale
problem of finding which individual nucleotides share a common ancestor.

2.5.1 BLAST, BLASTZ, and LASTZ

The majority of local alignment algorithms are based on the techniques introduced in
BLAST [5, 6]. In its current form, the BLAST algorithm consists of three distinct steps:
find positions likely to be part of a local alignment, extend these resulting in a set of high
scoring segment pairs (HSPs), and extend HSPs into full gapped alignments.

The original BLAST [5] used simple consecutive seeds to find an initial set of fragments
to extend into HSPs. This was later extended to two-hit consecutive seeds [6], where two
seed hits in close proximity are required for a region to be extended into an HSP. More
recently, BLAST has been updated to use spaced seeds [1].

As a quick initial filter, BLAST uses the number of non-overlapping hits in a window
of size A, ignoring regions with too few hits. For the remaining seed pairs, BLAST extends
each to an HSP by performing an ungapped local extension from both the left and right ends
of the second hit in a pair. To determine when to stop an extension, BLAST introduces the
x-drop heuristic. Given a threshold X, we stop extending when the current local alignment
score drops X below the best score seen so far. In BLAST, only the second seed hit in a
two-hit seed pair is extended.

BLAST filters the HSPs according to the ungapped extension score and another thresh-
old Sg. All HSPs with score above Sg are extended with full gapped extensions. Although a

26

version of BLAST exists to align pairs of sequences, the full BLAST algorithm is designed
to align a query sequence against a database of target sequences. In this context, BLAST
computes an expectation value (e-value) in addition to an alignment score for each local
alignment. The e-value gives the expectation of seeing an alignment with a given score by
chance, given a particular query length and database size. The e-value is used as a final
filter in a BLAST search.

BLASTZ and LASTZ

BLASTZ [73] introduces a few additions to the BLAST framework. Instead of two-hit
consecutive seeds, BLASTZ uses spaced seeds that additionally allow a single transition in
one of the match positions. When scoring ungapped alignments, BLASTZ uses a measure
of the local sequence composition rather than assuming a global background composition.

BLASTZ also introduces recursive searches, a technique that resembles recursive an-
choring in global alignment. Unaligned regions between two alignments that are no more
than 50 kb apart are aligned again, but with a shorter spaced seed. If the flanking align-
ments are within 10 kb, the filtering threshold for ungapped alignments is reduced.

Finally, BLASTZ allows local alignments to be constrained using the global alignment
heuristic. After seed hits are expanded to HSPs, BLASTZ uses the fragment chaining
heuristic to select only those HSPs that are part of the maximum scoring chain. BLASTZ
allows local alignments in the reverse orientation to be included in the chain. Chaining a
reverse orientation local alignment incurs a separate anti-diagonal chaining penalty.

LASTZ [40] is a reimplementation of BLASTZ that expands the options for seeding to
include two-hit seeding as in BLAST, user defined seeds, and spaced seeds with more than
one transition.

2.5.2 WABA

WABA [49] is a local aligner that follows the overall strategy of BLAST, but differs signif-
icantly in several ways. Because WABA uses a much more complicated, and thus slower,
model of alignment (see Section 2.4), it aligns two sequences by splitting up the query
into smaller segments, aligning each segment, then recombining these segments into longer
local alignments.

Specifically, WABA splits up the input sequence into 2000 bp segments that overlap by
1000 bp. WABA then uses seeded ungapped alignments to find a region of 5000 bp in the

27

target that is mostly likely to represent a true homology to the 2000 bp query sequence.
This region is then aligned to the query with the detailed alignment model. When each
segment is aligned with the target, WABA attempts to merge short alignments by looking
for locations that have at least 15 identical alignment positions and joined them at that
point.

To find a target region for a given query sequence, WABA uses a technique similar to
BLAST. First, WABA uses a spaced seed that ignores every third position. This is often
known as the wobble base due to the way in which DNA codes for amino acids. Three
DNA bases encode a single amino acid. However, there is redundancy in this encoding in
that the encoding for particular amino acids often allows more than one base in the third
position. Because of this, every third base in sequence that codes for proteins can often
incur a mutation without affecting the protein. Thus, this base is often said to wobble.

Similar to the BLAST window filter for seed hits, WABA then greedily clumps hits
that are within 48 bp of each other and on the same diagonal. The score of each clump is
the square of the number of hits within it. All clumps with score that is less than 25% of
the maximum-scoring clump are filtered out. Ungapped extensions are then performed on
the remaining clumps. As before, the extensions with score below 25% of the best-scoring
extension are discarded. The centre of the highest-scoring extension is taken to be the
target region for the detailed alignment phase.

2.5.3 GAME

GAME [26] follows the three stage method of BLAST, but adds a global alignment-inspired
anchor-chaining procedure that globally aligns regions between fragments. The GAME
alignment procedure starts by finding all maximal exact matches (MEMs) using a suffix
tree. It filters out all MEMs with length below a threshold Tm, then performs ungapped
extensions on the remaining MEMs, expanding them into HSPs. Rather than using the x-
drop heuristic to decide when to stop extending, GAME stops when the fraction of matches
in the HSP drops below a threshold Tπ. Finally, HSPs with length below Te are discarded.

The remaining HSPs are then used to build local alignment using a greedy approach
that combines global alignment with x-drop based gapped extensions. On each greedy step,
GAME finds a pair of anchors that are within a distance Td, of one another. The region
between them is globally aligned using Viterbi and the classic pair-HMM for evolution.
If the alignment score is above a threshold, the alignment is kept, including the pair of
anchors. When no more anchor pairs are left, the ends of the remaining local alignments
are extended using the x-drop heuristic.

28

In addition to using maximal exact matches, GAME can optionally use translated max-
imal exact matches (tMEMs). Given two DNA input strings, GAME finds all translated
matches by first converting the input sequence into a protein sequence. Since there are
three possible translation frames, three protein sequences are produced for each input se-
quences, one for each frame. A suffix tree finds all the MEMs among these translated
sequences.

2.5.4 YASS

YASS [63, 64] uses the BLAST alignment procedure, but instead of using two-hit seeds, it
uses transition spaced seeds described in section 2.2.3. In addition to positions that must
match and positions that are ignored, YASS allows match or transition positions. As an
initial filter before performing ungapped extensions, YASS groups seed hits based on both
the diagonal distance and the off diagonal distance.

2.5.5 Exonerate

Exonerate [75] introduces a variety of heuristics for producing local alignments from a set
of HSPs. When extending an HSP, exonerate extends from the point on the HSP in which
the score of the regions on either side is equal. The intuition is that this is the point of
highest quality, and thus the most likely to be a correct starting point.

Exonerate’s alignment heuristics automatically modify a set of pair hidden Markov
models depending on the situation to which they are being applied. For example, when
trying to align an area between two close HSPs, exonerate may modify the traditional
model of alignment to produce a global alignment. For HSPs on the edges of alignments,
it may produce a pair-HMM for one sided local alignment, connecting it to the model used
for the adjacent alignment region.

The specific models it uses depends on the task at hand. For example, exonerate comes
with models for aligning arbitrary genomic sequence as well as models that align sequence
that codes for amino acids, to a genomic sequence.

2.6 Parameters and training

Here, we describe techniques for performing parameter training on real biological sequences.
We include parametric alignment, which is a technique that avoids the issue of parameter

29

training by finding alignments under all possible parameters under specific constraints.

2.6.1 Pair-HMM parameter training

Parameters for pair-HMMs are typically trained with an expectation maximization proce-
dure that uses one of two algorithms: Viterbi training [33], or Baum-Welch training [9]. For
both algorithms, training is an iterative procedure where we refine the parameters on each
iterative step, stopping when the change in probability or score is below some threshold.

For Viterbi training, each iterative step consists of finding the optimal Viterbi path with
the current parameters, and computing new parameters from this path. In this case, the
stopping criteria depends on the the change in the probability of the Viterbi path. Viterbi
training is popular in sequence alignment due to both run time and ease of implementation:
one simply finds an alignment and computes statistics from that alignment. For example,
see the study by Chiaromonte, Yap, and Miller [42] described in the next section.

Baum-Welch training uses the forward and backward algorithms to compute the ex-
pected number of times each transition and emission is used. In this case, the stopping
procedure is concerned with Pr(x|T,E), the probability we produce sequence x given tran-
sition matrix T and emission matrix E. Baum-Welch is slightly slower in run time due to
having to compute both the forward values as well as the backwards values, but benefits
from the sensitivity of prior probabilities and is guaranteed to converge. Both Viterbi and
Baum-Welch training take O(mn) time and space for input sequences of length n and m.
Baum-Welch training is a special case of the expectation maximization algorithm [33].

2.6.2 Work of Chiaromonte, Yap, and Miller

Many popular aligners for genomic DNA use alignment parameters trained in 2002 by
Chiaromonte, Yap, and Miller [25]. They use an approach similar to that used to form the
BLOSUM [42] scoring schemes for protein alignment. They point out that highly similar
sequences score well even when model parameters describe alignments with much weaker
similarities.

Their approach is to filter out alignment regions that have similarity above 70% identity,
and use Viterbi training only on the remaining low similarity regions. They train on
human and mouse alignments at three different genome locations: the HOXD region, the
CFTR region, and the hum16pter region. They evaluate each scoring scheme using simple
alignment metrics on ungapped alignments of several genome locations and conclude that

30

the HOXD scoring scheme is the most sensitive. They do not train gap costs. Harris [40]
improves on the procedure by using Viterbi training to train gap parameters.

2.6.3 Work of Arribas-Gil, Metzler, and Plouhinec

Arribas-Gil, Metzler, and Plouhinec [7] present an expectation maximization procedure
that samples a path from a pair-HMM on each iteration. A second procedure also samples
parameters at each iteration, given a prior distribution over possible parameters. This
procedure either accepts the new parameters or keeps the old parameters.

2.6.4 FSA and query specific training

FSA [11] uses Baum-Welch training to train parameters for their alignment pair-HMM.
Rather than training on a specific set of training data, and subsequently using those param-
eters in all alignments for sequences from a given pair of species, FSA trains parameters for
each individual pair of input sequences. If the sequences are too short for reliable training,
FSA uses a default set of parameters.

2.6.5 Parametric alignment

Pachter and Sturmfels [66] take a different approach to choosing parameters for sequence
alignment. They note that the Viterbi algorithm, applied to the standard pair-HMM for
alignment, has a small,finite number of possible alignments, despite the large space of
possible model parameters. They derive formulas for computing each possible alignment
and propose to simply study all possible alignments. The main problem with this approach
is that it does not indicate which of the resulting alignments are likely to be correct.

31

Chapter 3

RDA: alignment by segments

In the first chapter, we described how Viterbi decoding with a particular pair-HMM is
equivalent to score-based alignment. In terms of the underlying model of evolution, the
Viterbi path represents a single evolutionary history maximum probability. However, for
some input sequences there may be many possible histories with high probability. In these
cases, it is more useful to identify pairs of subsequences that are highly likely to be related
by the model in any way, rather than identifying only one of the possible alignments.

In this chapter we describe a new method for decoding the traditional pair-HMM for
alignment that addresses the above scenario. Rather than producing a standard alignment,
our method produces an alignment of segments where each segment captures a set of
alternate evolutionary histories with similar likelihood.

3.1 Right-Down alignments

We now describe our new technique for producing alignments with the standard alignment
pair-HMM. The underlying problem we address is that a single alignment gives only one
possible explanation (in the case of the optimal alignment, the explanation of highest
probability) for the evolution of two sequences. In practice, many distinct explanations
may have essentially the same semantic meaning, and when considered together, these may
give rise to a better mathematical explanation of the homology between two sequences.

For example, one may feel that the optimal alignment in Figure 3.1 contains a surprising
number of mismatches. Even more surprising, we may add an equal number of mismatched
A’s to the top sequence and C’s to the bottom sequence and the optimal alignment for

32

typical parameters never contains a gap. The biological interpretation of this is that each
of the mismatched A’s and C’s represents point mutations. How is it that the optimal
alignment represents such an improbable history?

AAAAAACCC

AAACCCCCC

Figure 3.1: Optimal alignment of two sequences according to global alignment, using typical
parameters.

For this example, the problem comes from the existence of many sub-optimal alignments
representing highly similar alternate histories. For example, Figure 3.2 gives three alternate
alignments of the two sequences from Figure 3.1. While each alignment has a lower score
than the alignment with no gaps, there are many more alignments involving gaps than the
single alignment with no gaps.

AAAAAACCC---

AAA---CCCCCC

AAAAAACCC---

---AAACCCCCC

AAAAAA---CCC

---AAACCCCCC

Figure 3.2: Three possible alignments of two sequences. Each alignment represents an
equally likely evolutionary history, according to the standard model of alignment.

Now consider a different question: do the group of A’s in the first sequence correspond to
the group of A’s in the second sequence, or do some A’s and C’s share a common ancestor?
To answer this, we need a new way to decode the alignment pair-HMM. Traditional Viterbi
decoding finds only the single most likely history, ignoring all other possibilities. Posterior
methods consider all histories, but ignore significant structural properties of alignments
such as gap lengths.

We suggest the use of segmentation of sequences, rather than alignment of sequences,
as a way of joining together alternative histories of sequences, when the story that they
tell about the sequences is similar in its meaning. This approach gives rise to a new
algorithm for exploring sequence homology, which we call the right-down aligner, or RDA.
Our approach is compatible with a dynamic-programming algorithm which has O(n2m2)
runtime on sequences of lengths n and m. We also present a heuristic O(k2nm) algorithm
for a parameter k, which has a quite practical runtime. Our heuristic algorithm produces
similar segmentations to the exact algorithm.

RDA is particularly appropriate for repeat-rich DNA sequences, as there it becomes
unreasonable to assume that a single history is useful in the presence of numerous expla-
nations for the evolution of repeated bases or short sequences.

33

3.1.1 Segmentation

To encapsulate our idea of segmentation, we wish to join several paths through the HMM,
by saying that they represent the same semantic meaning: they give us a blocking of
the sequence into segments inside which we are less concerned about the details of the
homology.

A segment consists of a sequence u of length n and sequence v of length m where either
u or v is distinguished. We call a segment with v distinguished a right segment and require
that m < n. A right segment represent all the ways to align u to v by inserting gap
characters only in v. Similarly, we call a segment with u distinguished a down segment and
require n < m. In this case, we may insert characters only into u. We say a segment is
correct if one of these alignments represents the true history. A segmentation of sequences
x and y is a sequence of segments with three properties.

1. In each segment, the distinguished sequence is a subsequence of x and the other a
subsequence of y.

2. Every base of x and y is contained in exactly one segment.

3. Right and down segments always alternate.

This is, of course, not the only way to do such segmentation, but has the advantage
that we can use dynamic programming for it, once we make some small modifications to
the standard alignment pair-HMM.

To describe segments, we colour the states of the pair-HMM with black and white such
that black sub-paths correspond to alignments in down segments and white sub-paths
correspond to right segments. Since state M can only be of one colour, we modify the
traditional HMM as shown in Figure 3.3. Our new HMM contains two identical match
states, one for each segment type. Additionally, we add silent states, states that emit no
symbols, to allow paths to transition from one segment type to another in a precise way.
When adding these states we take care to avoid creating cycles among silent states as this
prevents accurate decoding. We also add an additional silent starting state, distinguished
by a double circle. We transition from the start state by first choosing a segment type with
equal probability. Then, we pick a coloured emission state within the chosen segment using
the stationary distribution conditioned on having already chosen a segment type. Since the
hidden states TR and TD transition immediately to the gap states, we add the probability
of starting in TR or TD to the respective gap state. To mimic the traditional pair-HMM, we
allow our new pair-HMM to stop only in the match and gap states. Now, each alignment

34

corresponds to a single sequence of colours, except that the first segment might be white or
black. However, if we identify each base as white or black, these correspond to more than
one alignment. In fact, they correspond to a segmentation. The optimal segmentation
corresponds to the most probable labelling of the sequence pair [16].

Figure 3.3: Pair-HMM for segmenting alignment. As before, α corresponds to the gap open
cost and β to the gap extension probability. The small states are silent and the double
circled state is the start state. White states represent right segments (R) which only allow
gaps in sequence y. Black states represent down segments (D) which only allow gaps in
sequence x. States TR and TD are silent transition states between the two segment types.

3.1.2 Computing an optimal segmentation

We can compute the optimal segmentation of the two sequences by dynamic programming:
we note that, if the optimal segmentation of x and y ends with a “down” block, then the
period up to and including the “right” block before that “down” block must be optimal.
Here, we give the details using the modified HMM from the previous section, which give rise
to an O(n2m2) algorithm for computing optimal segmentation and an O(k2mn) heuristic
algorithm (for a small parameter k). There is a connection to the maximum probability
annotation algorithm presented by Brejova, Brown, and Vinar [16], which also looks to
divide sequences into intervals corresponding to states of the same colours, subject to
some constraints on the topology of the HMM.

35

MR(i, j|k, `) = exi,yj ,MR
[tMR,MR

MR(i− 1, j − 1|k, `) + tMR,IxIx(i− 1, j − 1|k, `)]
Ix(i, j|k, `) = exi,Ix [tIx,MR

MR(i− 1, j|k, `) + tIx,IxIx(i− 1, j|k, `)]
TR(i, j|k, `) = MR(i, j|k, `)

MD(i, j|k, `) = exi,yj ,MD
[tMD,MD

MD(i− 1, j − 1|k, `) + tMR,IxIx(i− 1, j − 1|k, `)]
Iy(i, j|k, `) = eyj ,Iy

[
tIy ,MD

MD(i, j − 1|k, `) + tIy ,IyIy(i, j − 1|k, `)
]

TD(i, j|k, `) = MD(i, j|k, `)

Without look-back:

R(k, `) = max
1≤i≤k,1≤j≤`

TR(i, j|k, `) +D(i, j)

D(k, `) = max
1≤i≤k,1≤j≤`

TD(i, j|k, `) +R(i, j)

With look-back:

R(k, `) = max
k−k′≤i≤k,`−k′≤j≤`

k−k′−z≤i≤k−k′,`−f(k−k′−i)≤j≤`−k′

TR(i, j|k, `) +D(i, j)

D(k, `) = max
k−k′≤i≤k,`−k′≤j≤`

k−f(`−k′−j)≤i≤k−k′,`−k′−z≤j≤`−k′

TD(i, j|k, `) +R(i, j)

f(x′) = 2 + (k′ − 2)(z − x′)y′/zy′

z = (y′ + 1)k′
2
/(k′ + 2y′)

Figure 3.4: Dynamic programming to compute the most probable labelling. The look-back
is defined by a k′ by k′ box with a length z tail defined by f(x′).

36

Figure 3.4 shows part of the recurrences we must solve to compute the most probable
labelling. Here, MR(i, j|k, `) is the probability that we end by matching xi and yj having
output xk...i−1 and y`...j−1 while staying in the white states, entering at xk, y`. Similarly,
Ix(i, j|k, `) is the probability that we end by outputting only xi having output xk...i−1 and
y`...j. The probability of ending in state TR after outputting xk...i and y`...j is TR(i, j|k, `).

The optimal segmentation ending in TR for x from 1 to k and y from 1 to ` is R(k, `).
The probability of the optimal segmentation ending in state TD is D(k, `), defined using
a similar recurrence for the black states. We compute the table TR(i, j|k, `) for i ≤ k and
j ≤ ` in a single pass giving a run time of O(m2n2).

Since this is impractical for long sequences, we create a heuristic algorithm where, at
each cell of the matrices R and D, we limit the look-back to a k by k box: this gives a
maximum length to any segment. In practice, however, some segments are very long in
one sequence and quite short in the other, and adding this possibility to the algorithm is
not difficult, by adding to the box a length z tail allowing for long gaps. We define the
tail with the function f(x) = 2 + (k − 2)(z − x)y/zy where z = (y + 1)k2/(k + 2y). Here,
y controls the steepness of the curve, f(0) = k, f(z) = 2, and

∫ z
0
f(x)dx = k2. In our

implementation we set y = 7. Figure 3.5 shows the shape of the tail and look-back area
for k = 40; again, any segment must fall within this shape, in terms of the number of
positions in the segment for each of the two sequences. The overall size of the look-back
area is Θ(k2) giving a heuristic algorithm with run time O(k2nm).

k

k

z+k

box

tail

Figure 3.5: Shape of the look-back area with k = 40 and y = 7. The look-back area
consists of a k by k box with a tail defined by the function f(x) = 2 + (k − 2)(z − x)y/zy

where z = (y + 1)k2/(k + 2y). We shift the tail to the right by k.

37

3.2 Experiments with RDA

We demonstrate the success of our segmentation algorithm, RDA, the Right-Down Aligner,
with experiments on synthetic data. We include comparisons to both the Needleman-
Wunsch algorithm as well as the forward algorithm for pair-HMMs when applicable. First,
we describe our hypotheses. Then, we describe experiments that validate our hypotheses.

3.2.1 Hypotheses

We have four hypotheses about RDA and the forward and Viterbi algorithms for the
standard alignment pair-HMM. First, we expect that RDA is a better discriminator of
related and unrelated sequences than Viterbi, and that the forward algorithm is better
than RDA. This is because both the forward algorithm and RDA consider many alignments
while Viterbi considers only the optimal alignment.

Second, we expect that the difference in discrimination accuracy between the forward
algorithm, RDA, and Viterbi increases as the baseline nucleotide distribution becomes
biased toward producing only two or fewer symbols. As the diversity of nucleotides de-
creases, the number of alignments with similar score increases and more repeats will arise
by chance. The likelihood that the true alignment is the optimal alignment decreases as
the number of high scoring alternate alignments increases.

Third, we hypothesize that the accuracy improvements of RDA and the forward algo-
rithms increase with alignment length. As sequences get longer, the number of possible
segmentations and alignments increases. Since the improvements of RDA and the forward
algorithm come from exploring many alignments, we believe the accuracy should increase
as the number of possible alignments increases.

Fourth, we expect that the segments produced by RDA represent a better overall align-
ment structure than that given by Viterbi. Our motivating example is one case where
alignment of segments produces a better structure than Viterbi alignment. We expect this
to generalize to more complicated cases.

Finally, we expect that on real data, RDA often gives substantially different results than
Viterbi when given correct parameters. We expect this to be especially true in repeat rich
regions due to the large number of different alignments with equivalent semantic meaning.

38

3.2.2 Experiments and results

To test our hypothesis we use two experiments. The first experiment uses alignment score
to detect homologous pairs of sequences. The second experiment explores the accuracy of
alignment structure. Both experiments use synthetic data.

Synthetic data

We generate our synthetic data using the pair Hidden Markov Model (pair-HMM) in Fig-
ure 1.3. In all tests, we vary the number of expected substitutions per site with a fixed
gap open probability of 0.0812 and mean gap length of 3.6 bp. The gap parameters corre-
spond to a gap open cost of −3.6 bits and gap extend cost of −0.5 bits. We choose these
parameters to produce alignments that are qualitatively similar to alignments of intergenic
sequence with evolutionary distance slightly more than that of human and mouse.

Detecting homology

To test the first four hypothesis about RDA and the forward algorithm, we use a sequence
pair rank test. We start with 100 sequence pairs, (A1, B1), (A2, B2), . . . , (A100, B100), taken
from length n alignments generated by our pair-HMM. In this situation, each Ai and
Bi were generated together, and thus are homologous. All other pairs are independently
generated. As the amount of mutation increases, it becomes increasingly likely to see a
high scoring alignment for an independently generated pair. Thus, the test increases in
difficulty.

We analyze the homology between each Ai with B1 through B100 and rank the results
by score. If the homology between Ai and Bi ranks first, we count a success. Otherwise,
we count a failure. Each test has a maximum possible score of 100. When testing RDA,
we use our heuristic version with k = 40. Table 3.1 shows test results for various program
and parameter combinations.

Our experiments verify all three of our hypotheses about RDA and the forward algo-
rithm. In all cases the forward algorithm is a better discriminator than RDA and RDA is
better than Viterbi. The difference between the test results increases with increasing GC
content and sequence length.

39

Expected 50% GC 60% GC 60% GC
substitutions n = 200 n = 200 n = 400

per site FA RDA VT FA RDA VT FA RDA VT
0.2 100 100 100 100 100 100 100 100 100
0.3 94 94 95 99 99 98 100 100 100
0.4 94 88 86 90 90 85 98 98 97
0.5 80 75 69 77 72 69 97 96 93
0.6 66 61 52 64 57 42 80 72 70
0.7 50 34 32 48 42 28 59 48 38
0.8 33 23 18 23 20 9 47 35 25
0.9 26 17 8 23 10 7 26 23 18
1.0 14 7 5 17 13 8 22 14 7
1.1 6 4 3 3 5 5 8 5 5
1.2 7 5 1 4 5 0 9 0 3

Table 3.1: Results of pair rank test for the right-down alignment (RDA), forward algorithm
(FA) and Viterbi algorithm (VT). The approximate sequence length for each set of tests
is denoted by n. We use the heuristic version of the RDA algorithm with k = 40. The
entries in the table are the number of successes out of 100 trials.

40

Alignment structure

It is difficult to directly compare the segments produced by RDA with alignments by
Viterbi. To get a lower bound on the accuracy of a segmentation produced by RDA, we
compare the most probable alignment allowed by the RDA segmentation to the Viterbi
alignment. Note that in this case a segment can still be correct even if the most probable
alignment within the segmentation is wrong. Thus, this comparison only provides a lower
bound on the possible structural improvements of RDA. We use the data generated in
the first experiment but only align the homologous sequences Ai and Bi. To obtain the
most probable alignment for a given segmentation, we run NW within each segment. We
measure alignment accuracy as the percentage of completely correct columns found in the
alignment.

d

50% GC 60% GC
n = 200 n = 200

RDA VT RDA VT
µ s µ s p-value µ s µ s p-value

0.2 67.8 8.7 67.6 9.0 7.4× 10−1 66.8 8.8 66.5 9.6 6.1× 10−1

0.3 59.8 9.1 59.7 11.8 9.6× 10−1 57.4 10.6 57.6 10.7 7.5× 10−1

0.4 48.5 11.1 49.1 12.4 4.0× 10−1 50.4 12.3 48.9 13.3 5.8× 10−2

0.5 44.8 11.3 43.5 12.0 2.4× 10−1 41.3 10.3 43.1 10.9 3.8× 10−2

0.6 38.9 10.9 37.0 12.5 5.7× 10−2 35.0 10.0 34.0 11.3 3.0× 10−1

0.7 29.3 11.9 28.8 13.7 6.4× 10−1 29.9 10.4 27.8 11.0 7.2× 10−3

0.8 25.5 10.2 24.3 10.7 1.9× 10−1 25.2 10.1 23.5 12.5 3.6× 10−2

0.9 21.1 9.5 19.5 10.4 1.1× 10−1 20.7 9.2 17.7 11.8 1.8× 10−3

1.0 18.2 7.8 17.5 10.0 5.2× 10−1 19.7 10.0 16.7 9.7 2.5× 10−3

1.1 17.6 8.6 15.6 9.8 2.7× 10−2 15.9 7.5 14.4 10.0 1.4× 10−1

1.2 16.1 8.0 13.9 8.3 1.1× 10−2 15.7 8.1 12.6 8.5 1.7× 10−3

Table 3.2: Percent of columns correct for various rates of mutation d, measured in expected
substitutions per site. We compare the right-down alignment followed by Viterbi within
the segments (RDA), versus straight Viterbi (VT). The approximate sequence length for
each set of tests is denoted by n. Each data set contains 100 alignments and we give the
mean µ, sample standard deviation s, and p-value for each. We calculate the p-value with
a paired t-test using the false discovery rate correction. For RDA, we use the heuristic
version with k = 40.

The experiment verifies our fourth hypothesis. Using a 5% confidence level, from Ta-
ble 3.2 we see that for sequences with 50% GC content, there is no clear difference in

41

60% GC

d

n = 400
RDA VT
µ s µ s p-value

0.2 67.0 6.3 67.4 6.4 1.8× 10−1

0.3 57.6 7.8 58.4 7.4 1.6× 10−1

0.4 47.9 8.1 48.4 8.8 4.1× 10−1

0.5 41.9 7.5 40.6 8.9 6.6× 10−2

0.6 31.3 8.8 29.6 8.7 1.6× 10−2

0.7 26.0 8.4 24.2 10.2 1.5× 10−2

0.8 23.6 7.8 21.0 8.7 1.4× 10−4

0.9 19.5 7.1 16.2 8.0 2.6× 10−5

1.0 16.0 7.1 13.3 7.2 2.7× 10−4

1.1 14.8 5.7 12.1 7.1 4.6× 10−4

1.2 13.1 5.7 9.8 5.9 1.7× 10−5

Table 3.3: Percent of columns correct for various rates of mutation d, measured in expected
substitutions per site. We compare the right-down alignment followed by Viterbi within
the segments (RDA), versus straight Viterbi (VT). The approximate sequence length for
each set of tests is denoted by n. Each data set contains 100 alignments and we give the
mean µ, sample standard deviation s, and p-value for each. We calculate the p-value with
a paired t-test using the false discovery rate correction. For RDA, we use the heuristic
version with k = 40.

42

accuracy between RDA followed by Viterbi and straight Viterbi until we reach 1.1 ex-
pected substitutions per site. However, for sequences with 60% GC content and 0.7 or
more expected substitutions per site, we observe that RDA with Viterbi within each seg-
ment produces more accurate alignments than Viterbi alone. Table 3.3 shows that the
significance of our results increases with longer sequences. At best, we see an absolute im-
provement in accuracy of 3.3%. If we look at improvement relative to the Viterbi accuracy,
the best RDA plus Viterbi score is 33.7% better than the Viterbi score. This occurs at 1.2
substitutions per site with 60% GC content and n = 400, which is highly distant sequence.

Aligning real data

To test our final hypothesis, we align short human and mouse sequences from the first
ENCODE target [28]. We identify a homologous repeat rich region using a long global
alignment and align it with both the exact RDA algorithm and Needleman-Wunsch. We
use the same set of parameters, inferred from the entire first ENCODE target, for both
the Needleman-Wunsch algorithm and the RDA.

A
CAAA------AGCAACTATTAATATTTTTAGCTCAGTG-GTCAAATATGCCTCTCTCATGTGTGCAC

AAAAATCTTGAGTAACTTATTATCTT----------TGAGGCAAACACACCTCC-------------

B
CAAA------AGCAACTATTAATATTTTTAGCTCAGTGGTCAAATATGCCTCTCTCATGTGTGCACA

AAAAATCTTGAGTAAC--TTATTATCTTTG-------AGGCAAACACACCTC-----------CACA

Figure 3.6: An alignment of human and mouse sequence from human chromosome 7 with
(A) RDA and (B) Viterbi.

Figure 3.6 gives a subset of the resulting alignments. Our hypothesis is correct, RDA
plus Needleman-Wunsch gives substantially different results on real data than Needleman-
Wunsch alone. Unfortunately, we cannot identify a specific use case for these differences
aside from statistical studies. Regardless, we feel RDA provides an interesting alternative
to traditional alignment, specifically for repeat-rich sequences.

3.3 Summary

We present a new algorithm, RDA, that aligns sequences in segments where we consider all
possible evolutionary histories in each segment. This algorithm gives improved homology
detection over Viterbi alignments, but not quite as good as with the forward algorithm. It

43

also gives improved column level alignment accuracy due to an improved overall alignment
structure. Finally, on real sequence, RDA with Needleman-Wunsch gives substantially
different alignments than Needleman-Wunsch alone. We expect differences to be greater
on repeat rich sequences.

On the other hand, it is unclear what practical benefits our alignment of segments give
beyond improved statistical studies of evolution. The main negative aspect of RDA is a
run time of O(n2m2) for sequences of length n and m, compared to O(nm) required for
traditional alignment. Our heuristic version of RDA gives an improved runtime of O(k2nm)
where larger k gives more accurate results. However, in practice even the heuristic version
of the algorithm is significantly slower than traditional alignment. Thus, we conclude that
RDA is an interesting algorithm, but it is not clear if it has practical applications.

44

Chapter 4

Sensitive genomic alignment:
methods

In Chapter 3 we introduced a new technique for aligning sequences in segments. We now
focus on three problems in genomic alignment: aligning genomic sequences with varying
rates of mutation, anchoring long homologous genomic sequences, and discovering local
segments of homology in pairs of genomic sequences. We address these with two new
alignment programs: CAPE, a global aligner for very weakly homologous sequences, and
FEAST, a local aligner with improved homology detection. Both these algorithms perform
a final alignment with a more descriptive model of evolution that describes alignments
comprised of distinct segments, each with its own statistical properties.

First, we describe the anchoring algorithm in CAPE, our new global alignment program.
Then, we describe our model of evolution followed by our new local alignment algorithm
implemented in FEAST. We test all these ideas with experiments on both synthetic and
real DNA in the next chapter.

4.1 CAPE: Anchoring weakly homologous sequence

pairs

The goal for CAPE is to answer two questions. First, what is the theoretical limit on the
amount of mutation, beyond which we can no longer recover a good global alignment? And
second, is it possible to perform accurate anchoring of long homologous sequences when
we do not know the correct model parameters?

45

CAPE’s anchoring strategy follows a recursive GLASS-like approach. Each recursive
anchoring phase has three steps: finding fragments which may serve as anchors, scoring
fragments, and choosing anchors. We find fragments with good random spaced seeds [50,
55, 47, 14] choosing the seed weight to fix the expected number of hits. We introduce a
new algorithm to score fragments and a mixed global/greedy approach to choose anchors.

4.1.1 Fixing the number of seed hits

Given a region (xi...j, yk...l) we wish to anchor, we choose a seed weight w and length u
to fix the number of expected random hits Er. Let the background distribution over the
alphabet Σ = {A, T, C,G} be represented by vector q of length four. The probability of
a match between randomly selected xi and yj is Pr[xi = yj] = q · q. The area of region
(xi...j, yk...l) is A = (j − i+ 1)/(k − `+ 1). To obtain Er random hits, we choose

w = log(Er/A)/ log(Pr[xi = yj]). (4.1)

To ensure we choose a spaced seed with a good amount of don’t-care positions, we set the
length to u = 1.4w. We then choose a good random spaced seed with weight w and length
u [51]. To prevent unsuitable values of w and u in small regions, we enforce w ≥ 3 and
u ≥ 5.

4.1.2 Scoring fragments using local segmentation

Our goal in scoring fragments is to discriminate between decoy fragments, seed hits we find
in unrelated sequence, and fragments in regions of true homology. We base our algorithm
on the pair Hidden Markov Model (pair-HMM) for local alignment in Figure 4.1. The white
states represent homologous sequences, and the black states represent random unrelated
sequences. Given this model, sequence x with length n, and sequence y with length m,
applying Viterbi decoding to the subsequences xi...n and yj...m represents a local alignment
extension starting from symbols xi and yj. In terms of evolution, this path is the most
likely evolutionary history for these two subsequences. The score is a direct measure of the
probability of this history versus the probability that the two subsequences are taken from
a random distribution. Thus the score of the optimal path is often used as a measure of
homology.

However, as we have repeatedly noted, the optimal path only represents one possible
evolutionary history among many. As a result, the optimal path score is limited in its

46

Figure 4.1: Pair-HMM for local segmentation. White states represent homologous sequence
and the black states represent unrelated sequence. Unlabelled states are silent.

representation of the true homology between two sequences. To increase sensitivity, we wish
to evaluate all possible histories. We do this by finding the most probable segmentation of
the sequences into a white, homologous segment, and a black, unrelated segment.

The Markov model imposes one additional complication: a distribution on the lengths
of the segments. We have no reason to prefer a segmentation of one length over another
and thus set τ = αR = βR = 1/2. Because these components amount to a fixed adjustment
to the final computed value, in practice, we simply omitting the contributions of τ , αR,
and βR to our computation.

Due to the simplicity of the black states, we can compute the optimal segmentation
in O(mn) time, given input sequences of length m and n. We start by computing the
forward probabilities for the white states of the pair-HMM using the standard dynamic
programming implementation [33]. This returns three m by n matrices: M(i, j) is the
probability of all paths ending in state M such that xi �yi, Ix(i, j) contains the probability
of all paths ending in state Ix emitting only xi, and Iy(i, j) containing the probability of
all paths ending in state Iy emitting only yj. The probability of the segmentation L(i, j),
where the break between the two segments is at xi and yj is

L(i, j) = S(i, j)R(i, j) (4.2)

47

where
S(i, j) = M(i, j) + Ix(i, j) + Iy(i, j) (4.3)

and
R(i, j) = Rx(i)Ry(j). (4.4)

Here, S(i, j) is the probability that we end in the white switch state after having emitted
x1...i and y1...j, and R(i, j) is the probability that, starting from the white switch state, we
emit xi+1...m and yj+1...n using only black states. We can computeR(i, j) using the backward
algorithm for pair-HMMs in time O(mn). In practice, we express R(i, j) in terms of Rx(i)
and Ry(j), where Rx(i) is the probability of emitting xi+1...m using only state Rx and Ry(j)
is the probability of emitting yj+1...n using only state Ry. We can compute these values in
time O(m+ n). Finally, we iterate over all possible segmentations in time O(mn), keeping
the segmentation with highest probability.

For each fragment, we perform a single local segmentation of the input, starting from the
midpoint of the fragment and extending 200 bp in the forward direction in both sequences.
The size of the extension is user adjustable. A high-scoring fragment is likely to be used
as an anchor in our global alignment.

4.1.3 Segmentation with multiple parameters

One of the primary goals of CAPE is to anchor sequences in which the local conservation
level is unknown. For strongly or moderately-conserved homologies, it is easy enough
to anchor long sequences correctly, even with incorrect parameters. However, given long
sequences containing very weak homology, it is difficult to anchor without knowing the
correct parameters beforehand. At the same time, without correct anchors, it is impossible
to train correct parameters. Worse yet, if parameters of the weak homologies vary, even
if we have a set of correct parameters describing each level of homology, we still do not
know which particular parameter set to use for a given fragment. We solve this problem
by performing segmentations with several sets of parameters for each anchor and choosing
the highest scoring among all parameter sets to discriminate between real and random
sequences. This procedure answers the following question: which model of homologous
sequences fit the data best? If all the scores are negative, then the model of random data
fits the data best.

We define a parameter set to be a triple (d, o, e) where d is the number of substitutions
per site, o is the gap open probability in bits, and e is the gap extension probability in
bits. To use a parameter set (d, o, e) on a particular fragment, we expand d into emission

48

probabilities for state M in Figure 4.1. Our implementation uses the HKY [41] model of
substitutions to do this, although we assume equal numbers of transversions and transi-
tions in our experiments. We use an estimate of the background nucleotide composition
measured from the entire input.

The specific set of parameters that we use in the anchoring procedure is greedily chosen
based on simulations of anchor discovery. We describe these simulations in detail in the
next chapter. We also allow the user to provide a custom set of parameters for a given
pair of input sequences.

4.1.4 Handling repeats in real sequence

Real biological sequences contain repeats that interfere with anchor finding. To address
this problem we allow input sequences to be pre-masked and use this information during
anchoring. We exclude any fragments containing a base annotated as a repeat. Similarly,
our fragment scoring algorithm terminates if it encounters a repeat and returns the result
up until that point.

4.1.5 Complete anchoring strategy

In describing our complete anchoring strategy, we work with two types of fragments: frag-
ments defined by seed hits, and large fragments that describe subsequence pairs from input
sequences x and y that we wish to anchor and align. We use the definition for the area of
a fragment introduced in section 2.3.1 of Chapter 2.

Our anchoring strategy, which depends on our memory and time tolerance, requires
two additional parameters. Let S be the area of the maximum size fragment we can align
without anchors and let t be a score threshold. In our implementation we choose S to be
4×106, the area of two subsequences of size 2000 each, and t to be 70. We arrived at these
values through trial and error and in part due to machine limitations. Additionally, we
define P to be the number of parameter sets we explore and R to be a set of large fragments
over sequences x and y; that is, each element of R is a pair consisting of an interval from
x and an interval from y. We start with a single large fragment in R consisting of all of x
and y and apply the following steps until finished.

1. Choose a fragment a in R with area greater than S. If there are none, return the set
of fragments and finish; we are ready for the next phase.

49

2. Find k small fragments in a by seeding, score them, and choose one or more anchors.

(a) Choose seed parameters to obtain k expected decoy fragments.

(b) Score all discovered seed fragments with our local segmentation algorithm for
each parameter set in P .

(c) For each seed fragment, assign the highest local segmentation score from the set
we obtain by performing segmentations with all parameter sets.

(d) Filter out all seed fragments with score below t.

(e) If any fragments remain, return the maximum weight collinear chain of remain-
ing fragments as anchors. Otherwise, return the highest scoring seed fragment
from all seed fragments as an anchor.

3. Replace fragment a in R with two fragments. The boundary of these two fragments
is defined by the midpoint of the anchor fragment.

On termination of this procedure we have a set of fragments that cover sequences x and
y. Each fragment has area less than or equal to S and the boundaries of each fragment
represent anchor points. We retain the scores for each original anchor fragment used to
form R.. The number of decoy fragments in the above procedure, k, defaults to 500, but
is user adjustable.

We define two types of anchors based on Step 2(e) in the above procedure. We call
anchors chosen by the maximum weight collinear chain regular anchors, and those chosen
because they have the highest score, greedy anchors. We only choose greedy anchors when
all seed fragment scores are below t. Thus, greedy anchors have a higher likelihood of being
incorrect and we want to minimize their number in our final set of anchors.

To do this, we make use of another property of our procedure. During anchoring, we
may often choose several greedy anchors before choosing one that sufficiently divides a
large fragment into sub-fragments small enough to align. Some of these greedy fragments
may not be needed. We use a final greedy strategy to remove any unnecessary anchors.
The procedure iterates over the final anchor set in sequential order. We remove an anchor
if the fragment defined by the flanking anchors has area less than or equal to S. In this
case, we replace the two fragments in R that surround the removed anchor by a single
fragment that is the union of the original two.

After we have anchored our input data, we perform banded alignment using an align-
ment based on a new pair-HMM model of evolution. We describe our new model in the
next section.

50

4.2 A more descriptive model of evolution

Our model of evolution is a pair Hidden Markov Model (pair-HMM) producing sequences
x and y. Figure 4.2 shows our entire model. White states describe sequences related by
evolution, and black states describe unrelated sequence. The white states consist of k
sub-models, S1 through Sk, each of which generate two sequences with a consistent level
of divergence. We allow switches from one sub-model to another through a silent switch
state.

Figure 4.2: Pair-HMM for global alignment with multiple scoring schemes. The left gives
an overview of the entire pair-HMM. The right box gives the structure of each sub-model,
Si. The white states (S) represent sequence related by a model of evolution that switches
between sub-models S1 through Sk. Black states (R) represent unrelated sequence. The
double circled white state is the start and stop state. To prevent a cycle of silent states,
CAPE uses a simplified model of random sequence that forces at least one symbol to be
emitted in each sequence.

We base each sub-model Si on the standard pair-HMM for alignment, with additional
silent start and end states as well as a distribution on the sub-alignment length described by
the parameter τi. States Mi emit pairs of symbols and correspond to match and mismatch
scores in score-based alignment. Parameter αi corresponds to the gap open penalty (GOP)

51

and βi to the gap extension penalty (GEP). States Ix,i and Iy,i emit symbols in only
sequence x or y respectively. These correspond to gaps in an alignment. In terms of
score-based alignment, each sub-model corresponds to a unique alignment scoring scheme.
The probabilities Pr(S1) through Pr(Sk) correspond to a jump cost for changing scoring
schemes [57].

In a seeded alignment framework, we assume the start position is in the alignment and
perform an extension in two directions. We model this by assigning the white model switch
state to be the start state, and including a model of unrelated sequences represented by
black states. The transition with probability Pr(R) represents the end of an extension in
one direction.

For global alignments, we use Viterbi decoding [33] to produce an alignment. The
score of an alignment is the logarithm of the Viterbi path probability minus the logarithm
of the probability according to a simple background model that uniformly samples from
the symbol distribution as measured from the input. Unlike traditional alignments, our
alignments also produce an annotation indicating which sub-model produced each column
of the alignment. Viterbi decoding takes time O(knm) where n and m are the lengths
of the input sequences x and y, and k is the number of sub-models. While this is the
same time complexity as existing local aligners for a constant k, each additional sub-model
incurs a substantial constant-factor increase to the run time.

We use this model for the final alignment stage of CAPE. The number of sub-models and
their parameters is set to be the same as the parameter sets we use to score fragments during
anchoring. Optionally, we allow the alignment to move from the final random state back
to the starting state. This feature is user configured and is intended to eliminate poorly
scoring regions from the final alignment. We do not use this feature in our experiments.

In the next section, we introduce a new local aligner that uses our new pair-HMM
throughout.

4.3 FEAST: local alignment and a new extension al-

gorithm

Local alignment has two distinct goals: find subsequence pairs that represent homology
according to a model, and to find alignments of those subsequence pairs. Traditionally,
local aligners use a seed and extend approach to address both goals simultaneously. The
seeding step uses a fast heuristic to find points likely to be in a local homology. The

52

extension step uses an algorithm based on Viterbi decoding to expand each seed hit into
a local alignment. The score of each local alignment is used to determine if the seed hit
was truly in a local homology, or if it was simply a false positive. Each local alignment
also implies an answer to the first question: the subsequences represented in the alignment
represent a homologous pair.

In our work we answer each question separately. First, we find local homologies ac-
cording to a model, but do not find alignments of those homologies. In a second step we
find alignments of each local homology. In both steps, we use a modified version of the
new pair-HMM for alignment from the previous section.

4.3.1 An extension algorithm for homologies

Extensions that use the Viterbi algorithm find a single path of maximum probability. In
terms of evolution, a path through our pair-HMM represents a set of constraints over the
possible evolutionary histories. In this context, the Viterbi algorithm finds the single most
likely evolutionary history of the two sequences. However, in the extension phase, we
are interested in the probability that two sequences are related by homology in any way.
That is, we wish to include all paths, and thus all possible evolutionary histories, in our
computation. In our pair-HMM, this translates into finding the optimal labelling of the
input. That is, we wish to colour the input with white and black, where black represents
unrelated sequence and white represents related sequence. In a local alignment context,
once we enter the model of random sequence we never leave. This property allows us to
use a model of random sequence that includes the case where we emit no random symbols,
without introducing a cycle of silent states. Figure 4.3 shows our pair-HMM for local
alignment.

We let L(i, j) be the probability of a labelling that divides the input sequences into
related and unrelated segments. Specifically, L(i, j) is the probability that we output x1...i

and y1...j from the white states, and substrings xi+1...m and yj+1...n from the black states.
We define L(i, j) as

L(i, j) = S(i, j)R(i, j) (4.5)

where S(i, j) is the probability that we end in the white switch state after having emitted
x1...i and y1...j, and R(i, j) is the probability that we emit xi+1...m and yj+1...n using only
black states, starting from the white switch state. We compute all S(i, j) in O(kmn) given
k sub-models and input sequences of length m and n by using the forward algorithm for
pair-HMMs [33]. The probabilities R(i, j) can be computed in O(mn) using the backward

53

Figure 4.3: Pair-HMM for local alignment with multiple scoring schemes. The left gives
an overview of the entire pair-HMM. The right box gives the structure of each sub-model,
Si. The white states (S) represent sequence related by a model of evolution that switches
between sub-models S1 through Sk. Black states (R) represent unrelated sequence. The
double circled white state is the start state and the double circled black state is the stop
state.

54

algorithm for pairHMMs. We find i and j that maximizes equation 4.5 using a final pass
over all L(i, j).

In practice, we perform many extensions in a single local alignment. Thus, a run time of
O(kmn) is too slow. We greatly improve the speed of our extension algorithm using several
additional shortcuts and heuristics from BLAST [6, 5]. See section 2.5.1 in Chapter 2 for
details.

First, we express an extension score as

s(i, j) = lg[L(i, j)/Pr[x1...i, y1...j|q]]
the base-2 logarithm of L(i, j) divided by, Pr[x1...i, y1...j|q] the probability that we draw x1...i

and y1...j from a background distribution q over the input alphabet. Since the black states
are nearly identical to our background model, they cancel out in the odds score. Thus
we ignore the black states completely and simply take the maximum forward probability,
S(i, j), as our segmentation probability.

Second, we adopt the x-drop heuristic to constrain the size of the forward algorithm dy-
namic programming matrix during extension. Assume we compute the forward algorithm
recurrence for S(i, j),

S(i, j, k) =
∑
`

S(i− 1, j − 1, `)t`,kexi,yj ,k
S(i− 1, j, `)t`,kexi,ε,k
S(i, j − 1, `)t`,keε,yj ,k

(4.6)

by filling S row by row. For each row i, we limit which j positions we include in the
computation by comparing s(i, j) to smax, the maximum score we have seen to that point.
If smax− s(i, j) falls below a threshold t, we stop computing columns of row i and move to
the next row. We call t the x-drop threshold. The starting j position for i + 1 is the first
j from row i such that smax − s(i, j) ≤ t.

In a BLAST-like seed-and-extend framework we perform two extensions from each seed
hit: one in the forward direction and one in the reverse direction. The score for a complete
two-way extension is the sum of the forward and reverse extension scores. In FEAST,
we discard complete extensions whose score falls below a user defined threshold. Finally,
during the extension phase, FEAST prevents local extensions from overlapping existing
local extensions.

4.3.2 The alignment phase

After we find subsequence pairs that represent homologies according to our pair-HMM,
we find global alignments for each pair. Since extensions can often be long, we need to

55

constrain each global alignment. One option is to perform anchoring as we do in CAPE.
However, to save time, we use a different approach and find anchors during the extension
phase.

The basic idea is to set anchors based on the forward probabilities that we compute
during extension. We set an anchor every 100 bp. Specifically, every time a local extension
moves at least 100 bases in both input sequences since we last set an anchor, or since the
start of the extension, we set another anchor on the cell of maximum probability.

We perform global alignments of each sequence pair with Viterbi decoding using our
new pair-HMM model alignment. We constrain the dynamic programming matrix to pass
within 80 bases of each anchor set during the extension phase. Our Viterbi alignment algo-
rithm also returns an annotation for the alignment indicating which sub-model produced
each alignment column.

4.3.3 A data structure for detecting overlaps

An important part of our local alignment algorithm is preventing local extensions from
covering the same subsequence pairs more than once. For input sequences x and y with
lengths n and m, we view local extensions as constrained computations in an n by m
matrix, where rows correspond to positions in x and columns to positions in y. Our goal
is to prevent computing values for a particular position more than once. In this section
we describe a data structure that allows us to quickly detect and prevent any overlapping
extensions.

We have several requirements that we need to meet. First, we need to be able to quickly
determine if a seed hit is within an existing extension. Second, for seed hits that are in
an unexplored region of our matrix, we need to be able to quickly find the nearest column
to the left and right that has already been explored. And finally, we need to be able to
update these boundaries in near constant time as we step from one row to another during
extension. We meet these requirements in two ways. First, we break up extensions into
segments that meet certain properties. And second, we store these segments in a tree-based
data structure. We now describe the details of this structure, and how and when we break
up an extension into segments.

Our data structure stores a collection of segments. Every previously computed exten-
sion is represented by one or more linked segments. A segment is a sequence of pairs, (i, j),
and a starting row r. Each pair, (i, j), represents the left and right boundaries of columns
explored by previous extensions. Each pair corresponds to a matrix row according to its
position in the sequence. For example, the first pair in the sequence corresponds to row

56

r, the second to row r + 1, and so on. Our data structure ensures that for every segment,
all overlapping segments start at the same row, r, and have the same number of column
pairs in the sequence. To maintain this property, whenever we add a new segment to
the data structure, we break both the newly added segment, and existing segments, into
smaller segments linked by pointers. To insert a new extension, we represent it as a single
large segment and let the data structure modify it to maintain our overlapping segment
property.

The root of our data structure is a balanced tree where each tree node holds a row
number, r, and pointer to a secondary balanced tree. We order the primary balanced tree
by row number. Each secondary tree stores a collection of overlapping segments that share
starting row r. We order the segments in each secondary tree by the right-most column in
the segment: the j value from the last pair in the sequence. This basic structure allows
us to find out if a point is within an existing extension in O(log n logm) time. For points
not within an existing extension, we can find any flanking extensions at the same time.
Figure 4.4 gives an example of two extensions represented by three segments.

extension 1
with three segments

extension 2
with a single segment

y

x
rows correspond to sequence x
columns correspond to sequence y
extension segment
balanced binary tree

Figure 4.4: Layout of tree based data structure for quickly detecting extension overlaps.
We represent extensions as a collection of linked segments. A primary balanced tree indexes
collections of overlapping segments by their starting row. Inserting a new segment causes
it, and existing segments, to break into smaller segments such that starting and ending
row of all overlapping segments are the same. We store overlapping segments in their own
balanced tree by the rightmost column of their lower extremity.

To enable near-constant time updates as we change rows during our forward extension
algorithm, we use several more tricks. Assume that we are computing values on the row
that corresponds to the symbol xr. If no existing segment flanks this position on either
side, then we simply store the number of rows until the next segment in the data structure.
Thus we need only increment a counter until we reach the next segment. At that point,
we spend O(logm) time to find the new flanking segments. Assume we do have a flanking

57

segment on the left. In this case, we can iterate through the sequence of pairs in the stored
segment as we change rows. Each time we obtain new column boundaries in constant
time. Once we reach the end of the segment, we must again perform an O(logm) lookup
to find updated segment boundaries. We also perform an additional optimization in this
case. If two segments are part of the same local extension, and we run off the end of the
first segment, then we use the pointer to the second segment as the starting point for our
binary search.

4.3.4 Seeding local extensions

To find a set of fragments to extend, we use a two step process. First, we use multiple
spaced seeds to find starting positions. Specifically, we use a collection of six spaced
seeds from Sun and Buhler [77], three of which target alignments of intergenic sequences
and three which target alignments of exonic sequences. Second, we follow the technique
BLASTZ and use a fast ungapped alignment algorithm to filter seed hits.

Our ungapped alignment algorithm follows our gapped extension algorithm, but disal-
lows transitions to the insertion states of our pair-HMM. As before, we use the forward
algorithm instead of the Viterbi algorithm, although the difference in this case is mini-
mal since without gap states, the number of possible paths through is greatly reduced.
None-the-less, using the forward algorithm allows ungapped extensions to switch scoring
schemes. As in our gapped extensions, we use the x-drop heuristic to terminate extensions.
The ungapped score of a seed is the sum of the extensions in two directions. We discard
any seed hit that has an ungapped score below a user-defined threshold. For most cases,
we find that a threshold of 20 is appropriate. See section 5.2 of the next chapter for details
on how we arrive at this value.

4.4 Parameter training

We use FEAST, our local aligner, in a new approach to training alignment parameters.
Our goal is to find a good systematic method for training alignment parameters for two
species. When training general-purpose alignment parameters for two large genomes, sev-
eral problems arise.

First, different regions of each genome may have different statistical properties. For ex-
ample, the background distribution of nucleotides often varies, as does the level of homology

58

when compared to a second genome. Functional sequence is also often much more con-
served than non-functional sequence, and different genome regions have different amounts
of functional sequence.

The methodology of Chiaromonte, Yap, and Miller [25], which they apply to training
parameters for human and mouse genomic sequence, address these issues in two ways. To
address large-scale variability, they train parameters on three manually-selected regions of
the human and mouse genomes. From the resulting three parameter sets, they select a best
parameter set by evaluating ungapped alignment performance on nine manually selected
genome regions. Their performance metric considers off-diagonal alignments, those not part
of the optimal chain, to be false positives. To address variability between conserved and
non-conserved genomic sequence regions, they note that highly similar sequence regions are
easy to align regardless of model parameters. On the other hand, to correctly align weakly
similar sequence, good parameters are needed. Based on this, Chiaromonte et al. train only
on weakly similar sequence by filtering out strong alignments from their training data.

Although useful, their training method suffers from several shortcomings. First, three
regions may not be enough to properly sample a large genome. Additionally, manual se-
lection of genome regions may unintentionally introduce bias into the training data. The
second problem is the use of only ungapped alignments to train match and mismatch prob-
abilities. Ungapped alignments have great difficulty detecting very weakly similar sequence
and thus biases training towards stronger similarities. Related to this, the methodology
of Chiaromonte et al. does not address training of gap parameters, an important part of
sequence alignment. Third, their performance metric considers alignments off the main
diagonal to be false positives. Genomic rearrangements may often result in correct align-
ments being off the main diagonal. Thus, considering all off-diagonal alignments to be
false may not be a good idea. Finally, their procedure requires the user to manually se-
lect a similarity threshold above which alignments are discarded. It is not clear what this
threshold should be.

We address all these concerns in our own training methodology. Our procedure starts
by randomly sampling homologous regions from the two target genomes. Initial homologies
may be roughly identified by incorrect alignment parameters, or by parameters for a related
species pair. In our own study, which we describe in detail in the next chapter, we use
pre-identified homologies. After a set of training regions is identified, we train parameters
for each region using a new expectation maximization (EM) training algorithm based on
FEAST.

Our EM algorithm takes one target sequence and any number of query sequences, as well
as a set of initial parameters for our new more descriptive alignment model. We expect

59

to see highly conserved functional sequence and more weakly conserved non-functional
sequence. We model this by initializing two sub-models, one for strongly sequence with
little mutation and one for sequence with a lot of mutation. Given a mutation rate in
terms of substitutions per site, FEAST automatically creates a match-mismatch matrix
using the background distribution of the input.

Given appropriate input and initialization of our model, we use the following iterative
procedure:

1. Find all forward extensions with a score above a threshold.

2. We sum the extension scores and compare the resulting value with that of the previous
iteration, if there is one. If the difference is less than 5 bits, we stop and return the
current parameters.

3. Otherwise, we perform training on the set of extensions using either Baum-Welch
or Viterbi training [33]. We constrain the dynamic programming space of these
algorithms using the anchors set during extension.

4. Adjust the learned parameters according to our model constraints.

5. Go to step 1.

Repeats are of particular concern for our training procedure. Repetitive sequence causes
an explosion of local extensions that can dominate the trained alignment parameters.
We address this by masking known repeats and disallowing seed hits and extensions into
masked regions.

We expect that many of our randomly selected genome regions will result in similar
parameters. To save time in selecting an best final parameter set, we identify similar
parameter sets and select only one parameter set from each group of similar sets. We
do this by clustering the parameter sets using a reasonable clustering algorithm. See
section 5.1 of the next chapter for details on the clustering method we use in applying this
method to the human and mouse genomes. After clustering, we select a small number of
parameter sets to test based on the results. These parameter sets should be significantly
different from each other. In our study of the human and mouse genomes in the next
chapter, we choose just three parameter sets.

To evaluate the performance of a given parameter set, we use a simple metric: the
number of bases of the first species that are aligned to the second. This metric does not
distinguish true alignments from false alignments, instead both types of alignments are

60

included. By choosing the parameter set that aligns the most sequence, we attempt to
optimize for sensitivity in detecting homologies, rather than specificity. An additional
positive property of this metric is that it requires no prior knowledge of the genomes being
studied. This is important for new genomes. However, prior knowledge, if it exists, may
also be incorporated into the evaluation step. For example, in our study of human and
mouse sequence in the next chapter, we make use of known exons in addition to global
alignment statistics.

Our procedure as a whole addresses all the problems we identified with the method-
ology of Chiaromonte et al. We eliminate bias in selecting training data by using random
sampling. Our EM training algorithm uses our new pair-HMM for alignment to natu-
rally find a boundary between weakly similar and strongly similar sequence regions. It
also incorporates training of gaps for each sub-model, as well as parameters unique to our
model such as sub-model length. By incorporating gaps, we also achieve higher sensitiv-
ity to weakly homologous sequence. Finally, our simple performance metric for choosing
a final parameter set allows for rearrangements and makes no assumptions about which
alignments are correct or incorrect.

4.5 Summary

In this chapter we presented two new pair-wise aligners: CAPE, a global aligner, and
FEAST, a local aligner. Both algorithms share two common improvements, the use of the
forward algorithm for homology detection rather than the Viterbi algorithm, and a new
more descriptive model of alignment.

CAPE is a global aligner that scores fragments with a local homology detection algo-
rithm that uses the forward algorithm to evaluate the nearest 200 bp. Specifically, our
algorithm produces a local segmentation, dividing sequence into a related and unrelated
part. If we use Viterbi instead of the forward algorithm, our local segmentation becomes
a short local alignment. We address sequence variation by allowing each fragment to be
scored with more than one set of alignment parameters. We find fragments using a re-
cursive GLASS like procedure. For each recursive step, we use random spaced seeds and
filter the set of hits by the score of an ungapped alignment of the length of the seed.
We choose the seed weight and threshold to minimize the number of false hits given the
length and background distribution of the region being anchored. CAPE also uses a mixed
global/greedy approach to choosing alignments. If there are many high-scoring seed hits,
we use use the optimal chain of fragments as anchors. However, if we are in a region with

61

no high score hits, than we use a greedy approach to choose the single best fragment as an
anchor.

FEAST is a local aligner that replaces Viterbi extensions, after seeding, with forward
extensions. Forward extensions use the x-drop heuristic to constrain the dynamic pro-
gramming matrix, but instead of finding the optimal path through the constrained space,
we sum all possible paths. Since the forward algorithm returns no alignment, our forward
extensions drop approximate anchors every 100 bases. These anchors do not necessarily
lay on the optimal path but can be used to roughly constrain a final alignment step. We
note that while our implementation currently uses Viterbi to produce a final alignment,
the framework in FEAST allows one to use any alignment algorithm in the final step. One
may even skip the final step altogether in cases where an alignment is not needed. For
example, in situations where local alignments are used as anchors in a multiple alignment
procedure, or when only large scale homologies are needed. We seed our local extensions
using a set of six spaced seeds. Three of these are optimized for coding regions and three for
intergenic sequence. We filter hits with ungapped alignments in a traditional BLAST-like
framework.

Both CAPE and FEAST use a new pair-HMM model of alignment. This model de-
scribes a fixed number of sub-models, each of which represents traditional alignment under
a specific scoring scheme. The alignment is allowed to jump between sub-models, but in-
curs a probabilistic penalty to do so. In CAPE, this algorithm is used as the final alignment
step. In FEAST, it is used as the model of alignment throughout, for ungapped exten-
sions, gapped extensions, and the final alignment. In addition to giving more accurate
alignments, when we use this model with the Viterbi alignment we obtain an additional
annotation describing which sub-model produced each column of the alignment.

Finally, we describe a method for training alignment parameters for two genomes using
FEAST. This method includes an expectation maximization procedure that infers param-
eters for our new pair-HMM. In the next chapter, we apply this method to the human
and mouse genomes. Afterwards, we describe several hypotheses and experiments on both
FEAST and CAPE.

62

Chapter 5

Sensitive genomic alignment:
experiments

In this chapter we make several hypotheses about the methods described in Chapter 4 and
test them with experiments on real and synthetic genomic DNA sequences. In the first
section we infer new alignment parameters for aligning human and mouse sequences that
describe regions of weak homology and regions of strong homology. In the second section,
we explore the sensitivity and specificity of our new local extension algorithm using both
synthetic data and real biological data. Finally, in the last section we explore the limits
of alignment. Using synthetic sequences, we explore how much mutation we can tolerate
before simulated sequences become unalignable. We also evaluate our anchoring technique
in the situation where the underlying alignment parameters are unknown.

5.1 Inferring parameters for human and mouse local

alignments

In order to use our new model of alignment on real data, we must first train parameters. We
focus on aligning human and mouse genomic data. Human and mouse alignments have been
studied by many researchers, and the default parameters for popular alignment programs
such as BLASTZ, and LAGAN target these two species [25]. Alignments between human
and mouse are also important to biologists; they are often used to identify new functional
sequence in humans. Thus, these species are a good target for our study as we can compare
our results against previous work.

63

Before we start training, we must decide on the number of sub-models we wish to use
in our new model of alignment. Human and mouse sequences contain strongly conserved,
functional, sections and weakly conserved, non-functional sections. This observation is the
basis for comparative genomics, a widely used technique for finding functional sections of a
target genome. As such, choosing two sub-models, one that targets highly similar regions,
and one that targets weakly similar regions is justified. It is not clear if using more than two
sub-models is appropriate, although there are many possible scenarios that one can think
of. For example, sub-models could target different background nucleotide distributions,
regions of various simple repeat structures, or even regions of moderate conservation such
as those that contain promoters that are more tolerant of mutation.

Despite these possibilities, we limit our current study to the most obvious and justified
extension, using only two sub-models: one for strongly similar regions and one for weakly
similar regions. We also train a traditional model of alignment on the same data so that we
may better contrast our new model of alignment with the standard model. We hypothesize
that by using a more realistic model of evolution describing strongly and weakly conserved
sequence, we can obtain alignment parameters that allow for better detection of homology.

5.1.1 Selecting training regions

We select positions uniformly from UCSC’s 2009 hg19 release of the human genome. Thus,
longer chromosomes are more likely to be selected than shorter chromosomes. We include
only the main chromosome sequence from UCSC, discarding mitochondria and unassembled
DNA. We expand each selected position to a 500 kb region centred on the selected point.
For points near chromosome ends, we shift the region such that our selected point is as
close to centred as possible while our region is still within the chromosome boundaries.

Since the hg19 genome was not mapped to the mouse genome at the time of this study,
we obtain homologous mouse co-ordinates for each hg19 region by using UCSC’s liftOver
tool. We map to the 2007 mm9 version of the mouse genome. For each region, we first find
the corresponding human co-ordinates in release hg18. Since hg18 is mapped to mm9, we
find the homologous region in the mm9 release of the mouse genome. We discard any hg19

region that does not map cleanly to a single mm9 region. It is possible for mm9 regions
that map to more than one hg19 region to be included, although the opposite situation is
prevented.

Table 5.1 shows our final set of training regions. To compare our training methods with
that of Chiaromonte, Yap, and Miller [25], we include the HOXD region and the CFTR region

64

Human (hg19) Mouse (mm9)
Location Size Location Size

Name Chr. (bp) (kb) Chr. (bp) (kb)
R1 21 23,595,894 500 6 82,173,962 270
R2 13 32,486,650 500 5 150,972,003 411
R3 1 72,510,494 500 3 156,056,509 368
R4 6 110,764,533 500 10 39,987,554 317
R5 5 163,928 500 13 74,169,974 332
R6 10 93,246,124 500 19 36,674,643 384
R7 3 192,789,712 500 16 29,050,609 510
R8 6 12,749,983 500 13 42,805,180 401
R9 13 69,114,337 500 14 95,580,184 371
R10 13 93,438,259 500 14 116,816,297 553
CFTR 7 117,072,842 283 6 18,066,103 257
HOXD 2 176,937,507 139 2 74,486,575 134

Table 5.1: Homologous regions of the human and mouse genomes. Regions R1 through
R10 are randomly selected, and the CFTR and HOXD regions are manually selected.

in addition to our ten randomly selected regions. Table 5.2 gives a description of known
genes in each training region.

5.1.2 Heuristic parameters for training

Our local aligner FEAST contains several heuristic parameters beyond those of our new
alignment pair-HMM. These parameters are our choice of seeds, our ungapped alignment
x-drop and score filter, and our gapped alignment x-drop and score filter. These parameters
are very difficult to formally train, and thus we set them manually by performing numerous
test alignments, and test parameter training, on our training data.

Aside from our seeds, which we take from Sun and Buhler [77], we started with con-
servative values for each heuristic parameter chosen so that we see little noise in several
initial test alignments. We use an ungapped x-drop of 10 bits, and an ungapped filter
threshold of 10 bits. For gapped alignments, we use an x-drop of 25 bits and a score filter
of 50 bits. As we see in later experiments, our choice of gapped score threshold and x-drop
are extremely conservative. This is appropriate for training, as we do not want to train
using incorrect data.

65

Name Chr. Full Genes Partial Genes
R1 21 None None
R2 13 FRY, ZAR1L, BRCA2 EEF1DP3,

N4BP2L1
R3 1 None NEGR1
R4 6 CDC2L6, AMD1 SLC22A16
R5 5 LOC389257, CCDC127, PLEKHG4B,

SDHA, PDCD6, AHRR, TPP
C5orf55, EXOC3, LOC25845,
SLC9A3, CEP72

R6 10 PPP1R3C, TNKS2, FGFBP3 LOC100188947,
HECTD2, BTAF1

R7 3 HRASLS, MGC2889, None
ATP13A5, ATP13A4

R8 6 None PHACTR1
R9 13 None None
R10 13 None GPC5, GPC6
CFTR 7 CFTR CTTNBP2
HOXD 2 EVX2, HOXD13, HOXD12, None

HOXD11, HOXD10, HOXD9,
HOXD8, HOXD4, HOXD3,
HOXD1

Table 5.2: Training regions for human and mouse alignments. Regions R1 through R10
are random selections that each span 500 kb of human sequence. Regions R1 and R9 have
a few EST hits, but are otherwise gene deserts.

5.1.3 Training a single conservation level

Chiaromonte, et al. [25], use a BLOSUM like approach to training a traditional model of
alignment. That is, they exclude any alignment regions that are more similar than a given
threshold and train on the remaining weakly similar regions. This technique is based on
the idea that the traditional model of alignment does not accurately model real genomic
alignments, a problem that we specifically address in our work. In contrast to the training
of Chiaromonte, our intent in training a traditional model of alignment is to demonstrate
how the model performs if treated as though it is correct. We do not exclude any training
data in our training procedure, and optimize our single sub-model parameters in the same

66

way as we optimize our two sub-model pair-HMM describing highly similar and weakly
similar alignment regions.

Before training each region, we initialize our new alignment model with a single sub-
model corresponding to alignments with 0.4 substitutions per site. We then train param-
eters using our expectation maximization algorithm with Baum-Welch estimation on each
iteration. Table 5.3 summarizes the results. We omit the sub-model selection probability
and sub-model length parameters as they have little affect on produced alignments.

Name %ID TTR GC GOP GEP MGL
R1 71 0.85 31 6.04 0.54 3.22
R2 72 0.61 38 5.85 0.38 4.32
R3 69 0.75 33 5.69 0.58 3.04
R4 74 0.60 40 5.52 0.40 4.14
R5∗ 78 0.45 54 6.93 0.58 3.00
R6 75 0.60 40 5.44 0.58 3.00
R7 69 0.64 40 5.94 0.42 3.97
R8 69 0.64 40 5.73 0.41 4.08
R9 70 0.83 32 5.95 0.50 3.42
R10 70 0.76 34 5.86 0.44 3.82
CFTR 70 0.68 35 5.68 0.41 4.04
HOXD 79 0.65 50 6.15 0.42 3.95

Table 5.3: Training results for a traditional model of alignment describing a single mu-
tation rate. We summarize the match/mismatch matrix with percent identity (%PID),
the transversion-transition ratio (TTR), and background percent GC (GC). We express
parameter αi in terms of a gap open penalty (GOP) and βi in terms of the gap exten-
sion penalty (GEP) and mean gap length (MGL). In region R5, we use DUST [4] with
parameter v = 10 due to excessive repeats.

From the results, we see that some of the trained parameter sets appear similar. To
better understand the results of our training, we compare the parameter sets by using
hierarchical clustering. For each region, we represent the trained parameters as a vector
of model probabilities and use Euclidean distance to represent the distance between two
vectors. We cluster the parameters with the hclust command from GNU R [68] using
the complete linkage method. At each step, the hclust algorithm recomputes distances
between clusters with the Lance-Williams dissimilarity update formula. In this process all
model probabilities are weighted equally and in the range (0, 1). The resulting dendrogram

67

in Figure 5.1 shows at least three clear groups.

0.15 0.10 0.05 0.00

R5
HOXD
R10
CFTR
R4
R2
R7
R8
R6
R3
R1
R9

0.25 0.15 0.05

R5
HOXD
R1
R9
R3
R10
CFTR
R2
R6
R4
R7
R8

Figure 5.1: Left: dendrogram of trained parameters for the traditional alignment model.
Right: dendrogram of trained parameters for a model of alignment describing regions of
strong and weak homology. Most pairings remain the same in both trees, but there are
some changes in the top three groups. The two model parameters have a wider distribution
of distances.

5.1.4 Training two conservation levels

We now expand our alignment model to describe alignments with regions of two types:
weakly similar sequences and strongly similar sequences. We initialize our two sub-models
to match our goal: one corresponds to alignments with 0.2 substitutions per site, and the
other to alignments with 0.4 substitutions per site. As long as our initialization roughly
separates the two types of alignment regions, we expect our EM training procedure to
converge to the correct local maxima.

In this case, we use Viterbi training instead of Baum-Welch as the last step of each
EM iteration. Initially we attempted to train with the Baum-Welch algorithm as we did
for our traditional model of alignment. However, we found that the parameters τ1 and τ2

became unrealistically small, causing training to fail. We hypothesize that the reason for
this is due to the fact that our pair-HMM allows an alignment to jump from a sub-model

68

Si back to itself. There are a very large number of valid paths that do this, far more than
the number of paths that never jump from a sub-model back to the same sub-model. Since
Baum-Welch training evaluates all possible paths, it incorrectly favours extremely small
values of τi.

Viterbi training avoids the problem because jumping from Si to Si incurs an extra
probability cost and is thus always worse than simply staying in Si. A better solution
would be to prevent jumps from a sub-model Si to itself by changing the pair-HMM.
However, since our current alignment implementation is hand optimized for performance,
modifying the model requires much work. While we settle for Viterbi training in the final
alignment step, we still use the forward algorithm for discovering local homologies. Thus
we maintain sensitivity in choosing appropriate training pairs.

Table 5.4 summarizes our trained parameter for the strongly similar sub-model and
the weakly similar sub-model. While region lengths described by τi vary, the gap and
conservation rates have many similarities across regions. As before, we cluster our results
in order to group similar parameter sets. We follow the techniques we used for the single
sub-model. We represent each parameter set as a vector of model probabilities, but exclude
the values Pr[Si] and τi due to their high variability and relatively low impact on output. As
with the single sub-model results, the resulting dendrogram on the right side of Figure 5.1
shows at least three main groups.

5.1.5 Selecting good general purpose parameters

Training parameters for every pair of sequences one wants to align is very time intensive.
Although it is done in FSA [11], it is much more common to select a single set of parameters
that has good performance over a variety of sequence content. In this sub-section our goal
is to select a single parameter set for the pair-HMM from the twelve training regions that
has good performance over all twelve training regions.

Choosing a performance metric for real alignments, especially ones in which there may
be new, not yet known, homologies, is very difficult. While the human and mouse genomes
are well studied, current annotations are based on existing techniques and model parame-
ters. Since our goal is the derivation of new parameters, and possibly the identification of
new homologies, we desire a metric that is not based on existing results.

For these reasons, we choose to use the amount of human sequence aligned as our
performance metric. This metric has a danger of preferring sensitivity over specificity, and
thus we continue to use very conservative settings for our heuristics in an attempt to control

69

Strongly similar sub-model
Name Pr. Len. %ID TTR GOP MGL %GC
R1 0.61 334 74 0.75 6.68 4.44 32
R2 0.27 193 85 0.49 7.77 7.13 45
R3 0.40 340 77 0.71 6.41 3.94 34
R4∗ 0.53 136 87 0.48 6.96 3.66 40
R5∗ 0.57 128 84 0.41 9.40 3.18 57
R6∗ 0.41 151 88 0.43 7.48 5.63 38
R7 0.21 185 84 0.48 7.75 3.73 42
R8∗ 0.31 168 80 0.55 6.87 3.99 39
R9 0.22 330 84 0.71 7.24 3.26 33
R10 0.22 280 83 0.69 7.15 4.41 39
CFTR 0.19 207 84 0.55 7.34 3.95 39
HOXD 0.37 244 92 0.52 7.98 3.78 49

Weakly similar sub-model
Name Pr. Len. %ID TTR GOP MGL %GC
R1 0.39 426 59 1.02 7.13 39.59 29
R2 0.73 355 68 0.63 6.35 10.45 36
R3 0.60 466 62 0.79 6.48 11.88 31
R4∗ 0.47 266 69 0.70 6.29 9.24 42
R5∗ 0.43 342 65 0.54 6.76 35.20 53
R6∗ 0.59 233 70 0.61 6.37 6.82 44
R7 0.79 378 66 0.67 6.46 7.94 39
R8∗ 0.69 293 67 0.62 6.47 7.62 42
R9 0.78 463 65 0.86 6.43 8.02 31
R10 0.78 429 66 0.78 6.46 8.79 33
CFTR 0.81 434 68 0.70 6.30 8.78 35
HOXD 0.63 375 71 0.72 6.42 9.23 50

Table 5.4: Trained parameters for the strongly similar and weakly similar sub-models. We
summarize the match/mismatch matrix with percent identity (%ID) and the transversion-
transition ratio (TTR). We express parameter αi in terms of the gap open penalty (GOP)
and βi in terms of the mean gap length (MGL). In regions R4, R5, R6, and R8, we use
DUST with parameter v = 10 due to excessive repeats.

70

false alignments. We also make use of known information by looking at the percentage of
known exons that are aligned, in addition to global statistics.

Since many of our trained parameter sets are similar to one another, we save time by
using our clustering results to select out three parameters that are significantly different
from one another. We do this for both single sub-model parameters and two sub-model
parameters.

Based on our clustering results, we select regions R9, R8, and HOXD for further anal-
ysis. These cover all three major groups in both dendrograms and represent three distinct
region types: R9 is a gene desert, HOXD is gene-dense, and R8 contains the majority of
a large gene. We name our parameter sets as k-name, where k represents the number
of sub-models and name the region we trained it from; thus, parameter set 2-R8 gives
parameters for 2 sub-models trained from region R8.

All Human Positions Human Exon Positions
Name Aligned Name Aligned
1-R8 1,425,363 1-R8 111,127
1-R9 1,300,453 1-HOXD 109,993
1-HOXD 958,122 1-R9 107,704

2-R8 1,480,120 2-HOXD 113,173
2-R9 1,475,191 2-R8 112,034
2-HOXD 1,285,032 2-R9 108,137

Table 5.5: Number of aligned positions over all training regions for different parameter
sets. There are a total of 5,422,010 human positions and 131,992 known exon positions.
Parameter sets in each category are ordered by positions aligned. The 2-R8 parameter set
is a good compromise between the overall aligned positions and the aligned exon positions.

Table 5.5 gives the number of aligned human positions and the number of aligned
exon positions for our selected parameter sets. Overall, parameter sets trained on R8
find the most aligned positions. For known exons, the parameter sets trained from the
HOXD region performed best. Given that the HOXD region is gene-dense, this result
is not surprising. However, parameter sets trained from HOXD aligned the fewest bases
overall. The parameters trained from R8 appear to provide the best compromise between
sensitivity to exons and overall sensitivity. We also observe that overall, parameter sets
trained with two sub-models performed better than their counterparts trained with only a
single sub-model.

71

A better single-model parameter set

Chiaromonte, et al. [25], point out that strongly conserved sequence aligns well regardless
of parameter choice. This hypothesis motivates the BLOSUM approach they use, where
they exclude highly similar regions from their training data. We explore this hypothesis
with our own training data. While [25] manually select a similarity threshold for filtering
training data, our two sub-model pair-HMM naturally finds such a threshold by classifying
data into each sub-model.

According to the above hypothesis, we expect that a single model parameter set formed
from only the weak sub-model will align nearly the same amount of sequence as our com-
plete two sub-model parameter set. We test this by building 1/2-R8, a single model
parameter set consisting of the weakly similar sub-model of 2-R8.

Overall, 1/2-R8 aligns 1,469,228 human bases, compared to 2-R8’s 1,480,120 bases. On
exons, 1/2-R8 aligns 112,034 bases and 2-R8 aligns 111,987. The two sub-model parameter
set performs slightly better overall and nearly identical to the one sub-model parameter
set on exons. However, compared to the single sub-model parameter sets in Table 5.5,
the 1/2-R8 parameter set performs substantially better than than all of them. Over all
human positions, 1/2-R8 aligns an additional 44 kb of positions over the best single model
parameter set.

Our technique of training with two sub-models allows us to produce good traditional
alignment parameters in addition to parameters for our new richer model of alignment.

5.2 Accuracy of FEAST

In this section we explore how the x-drop and score filters affect the sensitivity and speci-
ficity of FEAST alignments. Additionally, we compare our new forward extension algo-
rithm with traditional viterbi extensions. Finally, we compare FEAST as a whole with
lastz [40] using its default settings. Our purpose is to give an idea how our methods
compare with a popular current local aligner in a typical usage scenario.

5.2.1 Simulated human and mouse sequences

To measure the impact of different values for the x-drop and score filters in FEAST, as well
as to compare forward extensions to Viterbi extensions, we use synthetic test data. Unlike
real sequences, synthetic data allows us to precisely measure sensitivity and specificity of

72

alignments. We use simulated human and mouse sequence pairs produced by the methods
of Blanchette et al. [10].

Their procedure simulates the sequences of several species using a phylogenetic tree.
The simulation includes the insertion of real repeat elements as well as large scale rear-
rangement events. While its intended use is to benchmark multiple alignment programs,
we use it to benchmark pair-wise alignments by using only human and mouse sequences
from each simulated data set. For each of the following experiments, we use 50 simulated
sequence pairs, where each sequence is about 20 kb in length. We use the 2-R8 and 1/2-R8
parameter sets from the previous section to compute alignments with FEAST. To compare
Viterbi extensions to forward extensions we create a special version of FEAST that uses
Viterbi extensions but is otherwise identical.

We measure the sensitivity, or true positive rate (TPR), as the fraction of alignable
bases correctly aligned. We express specificity as the false positive rate (FPR), defined as
1− specificity, where specificity is the fraction of aligned bases that are correct.

We examine the effect of our gapped score filter, described in Section 4.3.4 of Chapter 4,
by fixing the x-drop at 25 and disabling our ungapped extension filter by setting it to zero.
Figure 5.2 gives ROC curves for the 2-R8 and 1/2-R8 parameter sets with both forward
extensions and Viterbi extensions. Both Viterbi extensions and forward extensions behave
the same. For filter values from 0 bits to 10 bit, we improve specificity with little impact
on sensitivity. Above 10 bits we lose sensitivity with no effect on specificity. Thus, for
synthetic sequences it seems that 10 bits is the optimal gapped filter threshold.

Next, we fix the gapped score filter to 10 bits and vary the x-drop. The ROC curves
in Figure 5.3 show that our initial choice of 25 for the x-drop is extremely conservative.
Lowering the x-drop to 15 causes only very short, insignificant alignments to be produced.
Thus, our training setting was the most conservative settings we could reasonably use. For
forward extensions, the sensitivity peaks at an x-drop of about 75. Higher x-drop values
cause more false base pairings to be included in alignments.

Forward extensions versus Viterbi extensions

Figure 5.3 also includes ROC curves for FEAST with Viterbi extensions. We see that for
a fixed false positive rate, forward extensions provide much greater sensitivity. Similarly,
for a fixed sensitivity rate, forward extensions give a better specificity. Finally, we see that
no matter what x-drop we use with Viterbi extension, we cannot match the sensitivity of
forward extensions with an x-drop of 35 or higher. On the other hand, at small x-drop

73

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.35

0.40

0.45

0.50

0.55
15
20

25

30

10 0,5

10

15

20

25

30

05

15
20
25
30

10 0,5

10

15

20

25

30

0,5

0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

Algorithm
forward

Viterbi

Parameters
2-R8

1/2-R8

Figure 5.2: ROC curve for the gapped score filter with an x-drop of 25. The filter reduces
false positives until it reaches 10 bits. Above 10 bits, we lose sensitivity with no change in
specificity. For synthetic sequences, 10 bits is the optimal filter setting.

74

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0.35

0.40

0.45

0.50

0.55

0.60

0.65

25

35

45
55

65 75 85 95

25

35

45

55
65

75

85
95
105
115

125
135

0.10 0.15 0.20 0.25 0.30

Algorithm
forward

Viterbi

lastz

Parameters
2-R8

1/2-R8

HOXD70

Figure 5.3: ROC curve for the gapped x-drop with score filter of 10. We also plots points
corresponding to lastz with default parameters, and lastz using the 1/2-R8 parameter set.

75

value, Viterbi is less prone to false positives than even the forward algorithm with even
the most conservative x-drop.

FEAST compared to lastz

To get a feel for how the techniques in FEAST compare to existing work, we compare
sensitivity and specificity to that of lastz. The lastz local aligner is a replacement for
BLASTZ [73], a very popular local alignment program that uses a scoring scheme similar
to that of Chiaromonte et al. [25]. In addition to using Viterbi extensions and a different
scoring scheme, lastz also differs from FEAST in its seeding techniques, filter values, and
overlap prevention. Our goal in this comparison is not to fully critique all these differences,
but rather to give a reasonable idea of how our results compare to alignments by a popular
program with typical parameters. Thus, we use lastz with its default settings. Since
parameter training is significant contribution of our work, we also test lastz with the 1/2-
R8 single model parameter set and an x-drop setting that corresponds to 65 bits.

Figure 5.3 contains points for both lastz and lastz with the 1/2-R8 parameter set. We
see that with the default parameter set, lastz has far lower sensitivity than FEAST with
any x-drop setting. When we replace the default scoring scheme, trained from the HOXD
region, with our new 1/2-R8 scoring scheme, the sensitivity increases substantially. This
further supports the results of our parameter training, where we found that parameter sets
trained from HOXD had the lowest overall number of alignment bases.

We notice that lastz has a higher number of false positives than FEAST with Viterbi
extensions, regardless of parameter set choice. Interestingly, it also has higher sensitivity
when using the 1/2-R8 parameter set. We hypothesize that the differences are due to other
areas such as seeding or overlap extensions. However, we leave comparisons to future work.

Overall FEAST compares favourably to lastz on synthetic human and mouse align-
ments, and our 1/2-R8 parameter set improves the sensitivity of lastz substantially on
synthetic data.

5.2.2 Performance on real alignments

We now re-align our test regions with new, less conservative settings inspired by our tests
on synthetic data. Our goal is to evaluate the techniques in FEAST on real data. We study
our alignments in several ways: the number of bases aligned, the number of exons aligned,
and alignment dot plots. We align sequences with FEAST using forward extensions and

76

Viterbi extensions, as well as with lastz using its default settings. We include lastz as a
reference point for existing work.

We increase our gapped x-drop value to 65, matching the false positive rate of lastz with
default settings in Figure 5.3. Although our synthetic tests show that a gapped extension
score threshold of 10 bits is sufficient to filter false alignments, on real sequences, with the
2-R8 parameter set, we find that 10 bits still allows some noise through. Thus we use a
gapped extension score threshold of 20 bits instead. For the same reason, we use a score
threshold of 15 bits on the ungapped extension around the seed. With these thresholds,
dot plots have little noise.

As we note in section 5.1, the main problem with the amount of sequence aligned
metric is that it does not distinguish between correct and incorrect aligned data. To better
appreciate how this metric behaves with different settings and data, we review performance
on our synthetic data with the same parameters we apply to real sequence alignments.
Table 5.6 shows that for all setting combinations, FEAST is much more sensitive and has
fewer false alignments than lastz with default settings. The added columns in lastz are
almost all noise.

According to Figure 5.3 one expects FEAST to have higher sensitivity, than lastz with
the 1/2-R8 parameter set and an x-drop equivalent to 65 bits. However, because of the
increased gapped and ungapped score filters we find that FEAST with forward extensions
and the 2-R8 parameter set only matches the sensitivity of lastz in this case. However,
lastz still produced more false alignments. This results in a higher number of overall human
bases aligned with the extra aligned bases being false positives. Thus, we see the main
limitation of this performance metric.

Program Parameters PPA FPR TPR
FEAST forward 2-R8 49.7 0.26 0.59
FEAST Viterbi 2-R8 37.0 0.19 0.51
FEAST forward 1/2-R8 48.9 0.26 0.58
FEAST Viterbi 1/2-R8 36.4 0.19 0.50
lastz defaults HOXD70 28.6 0.26 0.35
lastz 1/2-R8 1/2-R8 52.1 0.29 0.59

Table 5.6: Percent of human positions aligned (PPA), false positive rate (FPR), and true
positive rate (TPR), over 50 synthetic human/mouse alignments using tuned FEAST pa-
rameters. There are a total of 1,216,219 human positions. The PPA metric is a good
indicator of sensitivity.

Despite this, we have no other appropriate measure for real data at this time. One

77

option is to compare to multiple alignments which, according to synthetic results, have a
much higher overall accuracy. However, the current UCSC procedure for producing these
starts with pairwise alignments to detect initial candidates regions for multiple alignment.
Thus, it is still an ultimately unsatisfying method for measuring performance. For sim-
plicity, we continue to use the number of bases aligned as our performance metric in this
section.

Table 5.7 gives the performance with this metric over all our training regions, using
the same programs and settings as in Table 5.6. We see the same pattern as we do for our
synthetic data, although in this case we cannot produce sensitivity and specificity values
as we do not know the true alignment. When we limit our study to known exons, all
programs align the majority of positions. Although we cannot claim definitively that these
results match our synthetic results, the fact that we see the same pattern in the number
of bases aligned metric is promising.

Program Parameters PPA All PPA Exons
FEAST forward 2-R8 35.3 88.3
FEAST Viterbi 2-R8 28.7 87.5
FEAST forward 1/2-R8 34.8 88.2
FEAST Viterbi 1/2-R8 28.6 87.3
lastz defaults HOXD70 28.3 90.0
lastz 1/2-R8 1/2-R8 39.4 91.6

Table 5.7: Percent of all positions aligned (PPA All) and percent of exon position aligned
(PPA Exons), over all training regions . There are a total of 5,422,010 human positions and
131,992 known exon positions. FEAST parameters are tuned with results from synthetic
tests. Percentages are relative to the total bases for each category.

From Table 5.7 we see that forward extensions align more bases, and if results on syn-
thetic sequences translate to real sequence alignments, we expect many of the newly aligned
bases to represent real homology. To further understand the differences in alignments, we
examine dot plots for our test data. A dot plot shows a dot for every aligned base and
thus alignments appear as roughly diagonal lines. We note that most of the newly aligned
bases occur on the main diagonal of the dot plot. This does not prove these positions
represent real homologies, but it is consistent with what we expect real homologies to look
like. Figure 5.4 shows a representative example from training region 8. The vertical blue
bars indicate aligned human bases found with FEAST using forward extensions, but miss-
ing when using FEAST with Viterbi extensions. We see that in some cases, completely
new local alignments are found, while in others, alignments extend further or connect two

78

alignments based on Viterbi extensions.

new
alignment

bridged
alignment

extended
alignment

Figure 5.4: Example dot plot for a subset of our alignment of R8. Blue highlighted sections
are unique to our forward extension alignments. All other dots are also found with Viterbi
extensions.

5.2.3 FEAST’s annotation

FEAST provides an annotation for each local alignment that indicates which sub-model
the Viterbi path uses for each alignment column. For our two sub-model parameter set,
2-R8, this annotation translates to predictions of weak and strong homology. One possible
use for our annotation is to bring immediate attention to alignment sections that may be
interesting to researchers. A common use for cross species alignment is to find subsequences
that have biological function. This technique, called comparative genomics [78], relies on
the fact that functional sections of the genome are less tolerant of change, and thus mutate
much slower than the rest of the genome. As a result, if a functional element is shared
between two species it is typically more strongly conserved than the surrounding DNA.

We test our annotation with with an experiment based on this idea. We expect that
known exons, many of which are shared between human and mouse, have a higher likelihood

79

of being strongly conserved. Thus, if our annotation is useful, it should often annotate
known exons as being strongly conserved.

To test this hypothesis we looked at the number of human exon bases that are aligned
and annotated as strongly conserved in FEAST alignments of our training regions. We also
look at this same metric for the NSCAN [38] predicted exons in our training regions. We
obtain these predictions from UCSC. NSCAN uses a pair-HMM to look for new genes in a
target region, given a multiple alignment of that region and one more other species. Thus
we expect our annotation to be similarly enriched in human regions predicted by NSCAN
to be exons. Finally, we look at the total number of human bases aligned and annotated
as strongly conserved. We expect this to be much lower than our other two metrics.

Program Parameters PPA All PPA Exons PPA NSCAN
FEAST forward 2-R8 5.2 35.7 31.7
FEAST Viterbi 2-R8 5.6 43.0 44.7

Table 5.8: Percent of aligned human positions (PPA) annotated as strongly similar in
three categories, over all training regions. There are a total of 5,422,010 human positions,
131,992 known exon positions, and 190,568 NSCAN positions. FEAST parameters are
tuned with results from synthetic tests. Percentages are relative to the total bases for each
category.

Table 5.8 confirms our hypothesis. Both known exons and NSCAN predicted exons are
much more likely to be aligned and annotated as strongly conserved than a randomly chosen
human position. Even though FEAST is not designed to find exons or other conserved
elements, the annotation it provides may still be useful to researchers.

Table 5.8 also includes values for FEAST with more traditional Viterbi extensions.
Unexpectedly, more regions are annotated as highly conserved than when we use forward
extensions. A manual inspection of our alignments shows that the additional strongly
conserved regions found by Viterbi extensions are also found by forward alignments, but
annotated as weakly conserved. This usually occurs in cases where the strongly conserved
region ends at the end of a Viterbi extension, but where the corresponding forward ex-
tension continues further into weakly conserved sequence. We hypothesize that the extra
jump cost required to switch back to the weak sub-model prevents these regions being
annotated as strongly conserved in the longer forward extensions. This aspect of FEAST
is not a focus of our current study, thus we leave a systematic verification to future work.

80

5.2.4 Spurious alignment flanks

In 2008, Frith et al. [36] point out that local alignments often produce spurious alignment
flanks, extra unrelated sequence at the end of an alignment. Because forward extensions
are more sensitive than Viterbi extensions, we hypothesize that forward extensions are even
more likely to produce spurious alignment flanks. In this section we test our hypothesis by
reproducing two experiments of Frith et al. using FEAST.

Specifically, we measure spurious alignment flanks by performing local extensions on
both synthetic and real sequence. Following the work of Frith et al., we test several typical
score based parameter sets by converting them to an equivalent single sub-model pair-
HMM parameter set. We describe score based parameter sets in terms of a match and
mismatch score, gap open penalty (GOP) and gap extension penalty (GEP). We include
three score based schemes: +1/-1 with GOP = 2 and GEP = 1, +2/-3 with GOP = 5 and
GEP = 2, and +5/-4 with GOP = 12 and GEP = 4. We also include our new 2-R8 and
1/2-R8 parameter sets. We use a special version of FEAST that assumes a single anchor
at the start of each sequence. We disable the ungapped alignment filter and set the x-drop
to be so large that the entire dynamic programming space is explored.

Synthetic data

ATCCAT···TTGGCC GATCCGATTATA···TTGATCCCGGCC
ATCCAT···TTGGCC CGATTACCTATA···GGGACCACGAAA

100 identical
bases

200 random
bases

Seq. 1:
Seq. 2:

Figure 5.5: A test instance for our synthetic flank test. The first 100 bp in each sequence
are identical and the following 200 bp are random. The correct boundary is at the position
at 100 bp and we consider any bases beyond the first 100 to be part an over-extension.

Our synthetic test measures an upper bound on the amount of over-extension produced
by FEAST with a given parameter set. A test instance consists of a pair 300 bp sequences
with a 60% AT background distribution. The first 100 bp of both strings are identical,
while the remaining 200 bp are generated independently and randomly. See Figure 5.5 for
an example test instance. We consider the first 100 bp to be the homologous section, and
the following 200 bp to be the unrelated section. Any extension past the initial 100 bp is
thus considered to be spurious. Because the homologous prefix is identical, we never see
under-alignment in this test and the flank results represent an upper bound on the true
error rate.

81

Forward Viterbi
Scheme No over-extension µ s No over-extension µ s
+1/-1 0.52 4.15 9.90 0.65 1.00 2.24
+2/-3 0.65 1.18 2.89 0.67 0.86 1.95
+5/-4 0.51 5.19 12.44 0.64 0.97 2.21
2-R8 0.61 1.44 3.73 0.62 1.21 2.83

1/2-R8 0.55 2.67 7.43 0.55 1.96 4.38

Table 5.9: Results of over-extension tests on various scoring schemes for synthetic data.
Let x be the number of unrelated bases included in the extension. We list the mean µ, and
sample standard deviation s, for the distribution of x, as well as the frequency of seeing
no over-extension.

For each parameter set, we perform 10,000 test instances and record the number of
unrelated bases from the first sequence included in the extension. We list the mean and
sample standard deviation of our data in Table 5.9. The results verify our hypothesis, the
forward algorithm is more prone to over-extension than the Viterbi algorithm. However,
for most parameter sets, including 2-R8 and 1/2-R8, the increase in over-alignment is
relatively small.

Real data

To measure over-extension on real data, Frith et al. [36] aligns human nuclear mitochon-
drial insertions (NUMTs) to mouse, chicken, and fugu mitochondrial DNA. A NUMT is
a section of human mitochondrial DNA that is inserted into a position in the normal ge-
nomic sequence. Thus, we can be reasonably sure that in an alignment of the genomic
sequence to mitochondrial sequence, the NUMT represents truly homologous sequence.
Since mitochondrial DNA changes very slowly, human NUMTs will also align against the
mitochondria from even distantly related species.

We repeat the experiment here using the same data set. According to the work of
Frith et al., their set of NUMTs are derived by aligning human mitochondrial DNA against
human genomic sequence with BLAST. For each NUMT, they include 1000 human genomic
bases on each side of the NUMT. Alignment into these flanking bases are considered over-
extensions. We follow their work and assume that the annotated boundaries of each NUMT
are accurate to within 5 bp. In our test, we discard any alignments that include only
genomic sequence. Additionally, we omit the large NUMT in chromosome 5 from our test

82

as it dominates the under-alignment distribution. For this test we use the same version of
FEAST and corresponding settings as in our analysis of human mouse alignments.

All |x| ≤ 5 x > 5 x < −5
Name Alg. n n n µ n µ
+1/-1 F 86 41 19 26.2 26 -40.5
+1/-1 V 78 38 5 12.0 35 -55.8
+2/-3 F 124 70 9 10.6 45 -42.3
+2/-3 V 130 64 5 9.6 61 -80.2
+5/-4 F 82 32 27 60.1 23 -43.0
+5/-4 V 64 39 5 12.0 20 -39.1
2-R8 F 134 82 14 29.7 38 -36.7
2-R8 V 140 85 9 10.8 46 -65.2

1/2-R8 F 128 77 17 51.3 34 -37.2
1/2-R8 V 130 80 11 16.1 39 -44.3

Table 5.10: Boundary distributions for alignments of human NUMTs against fugu, mouse,
and chicken mitochondrial sequence. The alignment deviation x is the number of human
bases over (positive) or under (negative) the known boundary. Each alignment has a left
and right boundary, n is the number of boundaries in each category, and µ is the mean of
x. We compare forward extensions (F) and Viterbi extensions (V) over several parameter
sets.

We summarize our boundary statistics in Table 5.10. As with our synthetic test, we
observe that forward extensions are more likely to over-extend than Viterbi extensions.
However, we also see that forward extension are less likely to under-extend. The 2-R8
parameter set is more likely to get a precise boundary than the 1/2-R8 parameter set. It
also finds the most alignments out of all parameter sets. Despite this small trade-off, this
experiment shows that forward extensions are not especially more prone to finding false
over-alignments than Viterbi extensions. The significant amounts of newly aligned bases
in our alignments of human and mouse sequences cannot be attributed to false alignment
flanks.

5.3 The limits of alignment

In this section we explore how much mutation we can tolerate before we can no longer align
long DNA sequences. Specifically, we are interested in the problem of aligning sequences

83

that are too long to align without either anchoring or banded alignment.

In the previous chapter, we described a technique for anchoring long genomic sequences
that uses the forward algorithm to score potential anchors. We implemented this tech-
nique, along with a mixed global greedy anchoring approach, in CAPE, our prototype
global aligner. We use this implementation as our example of a sensitive global alignment
program.

Local extension as implemented in FEAST may be thought of as a form of banded
alignment where the band is allowed to move off the main diagonal as appropriate. In the
cases where global alignments are highly similar, local alignment with the x-drop heuristic is
capable of finding the correct global alignment. We hypothesize that our forward extensions
allow local alignment to be usable even for very weakly similar global alignments.

We explore this idea with tests on synthetic sequences. First, we observe the behaviour
of our programs on long synthetic sequences with the correct alignment parameters. Fol-
lowing that we describe experiments which test the limits of alignment when we do not
know the correct alignment parameters.

5.3.1 Aligning long synthetic sequences with known parameters

In this experiment, we focus on point mutations. In a realistic scenario, we expect both
insertions and deletions to increase in addition to point mutations as sequences diverge.
However, the exact relationship between the rates of point mutations versus the rates and
lengths of indels is not known. Thus, we perform a simpler test and fix the gap open
cost to -5 bits and the gap extend cost to -2 bits, the defaults for the “weakly similar
sequences” setting at NCBI’s BLASTN server [2]. We vary the point mutation rate from
0.5 substitutions per site to 1.2 substitutions per site.

For each rate of mutation, we generate 20 pairs of aligned sequences from the traditional
alignment pair-HMM using a 60% G/C background distribution. For each pair, we remove
the gaps and align the resulting sequences with FEAST and CAPE. We also include Viterbi
versions of both programs. Since we are performing global alignments, we use a special
version of FEAST that assumes a single seed hit at the start of the sequence pair. We
disable the ungapped alignment filter and use an x-drop of 65 bits and an extension score
filter of 20 bits as we did in our tests on human and mouse sequences.

We measure the accuracy of our alignments as the fraction of true homologous bases
in our alignment, according to the reference alignment. Because global aligners like CAPE
align the entire input, regardless of correct anchoring, specificity is linearly related to
sensitivity. Thus, we do not report specificity values.

84

Subs/Site 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
FEAST 0.81 0.77 0.70 0.62 0.56 0.48 0.39 0.31
CAPE 0.82 0.77 0.70 0.63 0.54 0.28 0.07 0.03
Viterbi FEAST 0.81 0.68 0.07 0.00 0.00 0.00 0.00 0.00
Viterbi CAPE 0.82 0.77 0.70 0.51 0.15 0.07 0.02 0.01

Table 5.11: Sensitivity of CAPE and FEAST on approximately 20 kb long synthetic se-
quences using correct alignment parameters.

Table 5.11 shows that FEAST with forward extensions is the most sensitive overall.
FEAST with Viterbi extensions is the least sensitive, failing sharply after we pass 0.6 sub-
stitutions per site. Both versions of CAPE are much more sensitive than Viterbi FEAST.
This supports the traditional view that global alignment is much more sensitive than lo-
cal alignment. However, our new forward extensions are more sensitive even than CAPE,
which also uses the forward algorithm to score fragments.

5.3.2 Aligning long synthetic sequences with unknown parame-
ters

We now relax our experiment assumptions. In a realistic setting, the first time we align
new sequence data, we do not know the correct alignment parameters. In order to be
able to train parameters, we need at least roughly correct initial alignments. Although
our previous test shows that FEAST can align sequences with a great amount of mutation
when we know the parameters, it may be that it is not possible to obtain reasonable initial
alignments to train those parameters.

In this section we answer two questions: what is the best parameter set, or collection
of parameter sets, to use for an initial alignment, and how do the results of the previous
sub-section change when we use incorrect parameters.

Choose an initial parameter set

When performing an initial alignment, we must guess at suitable parameters. Since both
CAPE and FEAST can support multiple sub-models, we may also consider using a small
fixed set of parameter sets for our initial alignment. In a global alignment setting, the
overall sensitivity depends mostly on correct anchoring. Without correct anchors, our final
alignment cannot possibly be correct. Thus, we answer our first two questions with an

85

experiment that simulates anchor choosing over a wide range of parameters. We vary the
parameters of both the sequence data and the anchor scoring algorithm.

We simplify the anchoring procedure by making the following assumptions. First, we
assume that we are producing a global alignment, or in other words, that we are anchoring
a pair of completely homologous sequences. Second, given a set of potential anchors, we
assume at least one of these is a correct anchor. And finally, while the model parameters
for the homologous sequence pair are unknown, we assume they are within a realistic range.
Specifically, we define a set of 160 model parameters that cover the parameter space we
are interested in. Let this set be

Q = {(d, o, e)|d ∈ D, o ∈ O, e ∈ E}

where D is a set of distances, in substitutions per site,

D = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} ,

O is a set of gap open scores, in bits,

O = {−5,−4,−3,−2} ,

and E is a set of gap extension scores, in bits,

E = {−2,−1,−0.5,−0.25} .

Our first goal is to find an ordering P of good parameter sets, such that if we only use
k parameter sets during fragment scoring in CAPE, the first k items from P will maximize
our sensitivity to alignments over the entire range of possible parameters. We form P using
a greedy algorithm and the following rank test.

Rank test. Let the inputs to our test be parameter sets k = (d1, o1, e1), ` = (d2, o2, e2),
and a fragment scoring algorithm A. We generate 200 bp homologous sequence pairs
(x1, y1), (x2, y2), . . . , (x100, y100) from 400 column long synthetic alignments generated
from parameter set `. To generate a sequence pair given an alignment, we simply take the
first 200 non-gap symbols from each sequence in the alignment. We compare each xi with
y1 through y100 using algorithm A with parameter set k and rank the results by score. If
the homologous pair (xi, yi) ranks first, we count a success. Let R(k, `) be the number of
successes out of 100 trails.

To greedily form the set P , we define a performance metric based on the above rank
test. Given P ′, a subset of Q, we let S(P ′) be

S(P ′) =

∑
j∈Q maxi∈P ′ R(i, j)

16000
, (5.1)

86

the sensitivity when using the set P ′ as our set of testing parameters. Here, 16000 is the
maximum possible rank test score.

Our greedy approach builds sequence P ′ by adding a parameter set from Q to P such
that we maximize S(P ′). We note that this algorithm only approximates the anchoring
procedure in CAPE. To fully simulate CAPE’s anchoring, we would need to merge the
scores for all parameter sets in P ′ and then perform a rank test on the combined results.
The amount of time this would take is not practical, thus our greedy procedure makes
the assumption that scores of false pairs with any parameter set rarely be higher than the
scores of true pairs with a parameter set close to the true values.

After we choose a P ′, we run a modified rank test that fully simulates our anchoring
procedure. Specifically, we merge all the scores for all parameter sets in P ′, then rank
the results. We produce a set P ′ for both our local segmentation algorithm based on the
forward algorithm, as well as a version that uses the Viterbi algorithm. See Table 5.12 for
a listing of these sets.

From Figure 5.6 we see that using the forward algorithm for fragment scoring greatly
increases sensitivity. The best single parameter set for the forward version of our fragment
scoring algorithm is more sensitive than the Viterbi version of our scoring algorithm, no
matter how many parameter sets we use.

However, our hypothesis that the results of our rank test with different parameter sets
are independent, is wrong. The true sensitivity when we use more than one parameter set
is less than the predicted sensitivity assuming that parameter sets do not interfere with
one another. This is especially true for the forward algorithm.

From Figure 5.6 we see that when using the Viterbi algorithm, using more parameter
sets increases the sensitivity as we hypothesized. After we reach nine parameter sets,
however, we see no increase in sensitivity. In fact, we even observe occasional decreases.
For the forward algorithm, using more parameter sets can increase sensitivity, but not
by a large amount. The results are also much more inconsistent than with the Viterbi
algorithm, decreases in sensitivity are more frequent.

Given these results, we conclude that using multiple parameter sets for data exhibiting
a constant rate of mutation is useful for the Viterbi algorithm, but not useful for the
forward algorithm. The sensitivity of the forward algorithm is very high, even with a
single parameter set.

87

P ′ forward P ′ Viterbi
Position Subs/site GOP GEP Subs/site GOP GEP

1 0.7 -3 -1 0.5 -5 -0.5
2 0.8 -5 -0.5 0.2 -4 -0.25
3 0.5 -3 -0.5 0.7 -5 -1
4 1.0 -4 -2 0.4 -5 -0.25
5 0.3 -2 -1 0.5 -5 -1
6 0.6 -4 -0.25 0.1 -2 -2
7 0.5 -2 -2 0.8 -5 -2
8 0.3 -3 -0.25 0.2 -4 -0.5
9 0.9 -4 -1 0.5 -5 -0.25

10 0.9 -3 -2 0.3 -5 -1
11 0.8 -5 -0.25 0.1 -4 -0.25
12 0.2 -2 -0.5 0.2 -3 -2
13 0.6 -2 -1 0.6 -5 -0.5
14 0.7 -4 -0.5 0.5 -5 -2
15 1.0 -5 -2 0.9 -2 -1
16 0.5 -3 -1 0.1 -3 -1
17 0.8 -2 -2 0.3 -4 -2
18 0.9 -5 -0.5 0.6 -5 -1
19 0.9 -5 -1 0.7 -5 -2
20 1.0 -4 -0.5 0.9 -5 -2
21 1.0 -2 -2 0.1 -2 -1
22 0.1 -2 -0.5 0.2 -4 -1
23 0.2 -3 -0.25 0.3 -5 -0.5
24 0.9 -2 -1 0.3 -5 -0.25
25 0.5 -4 -0.5 0.4 -4 -1
26 0.6 -3 -1 0.5 -4 -0.25
27 0.6 -2 -2 0.6 -5 -0.25
28 0.7 -4 -1 0.7 -5 -0.5
29 0.7 -4 -0.25 0.7 -5 -0.25
30 0.8 -4 -2 0.1 -3 -2

Table 5.12: Ordered sets of parameter sets for aligning sequences with unknown parameters.
The first column indicates the position within the set.

88

Number of parameter sets

S
en
si
tiv
ity

0.40

0.45

0.50

0.55

5 10 15 20 25 30

Algorithm
forward

Viterbi

Metric
Heuristic sensitivity

True sensitivity

Figure 5.6: Sensitivity of our forward based and Viterbi based local segmentation algo-
rithm. The heuristic sensitivity gives the sensitivity predicted by our greedy parameter
set selection algorithm. The true sensitivity is actual sensitivity when using the greedily
selected parameter sets together.

89

Alignments with the best guessed parameter set

We now return to our previous experiment aligning long synthetic sequences. However,
instead of using the correct parameter set we now assume that we do not know the un-
derlying parameters. Following the results from our simulation of the anchoring choosing
procedure, we use the single parameter set, (0.7,−3,−1) for the forward algorithm and
(0.5,−5,−0.5), for Viterbi, which maximized the sensitivity. We hypothesize that we can
tolerate less mutation than if we know the correct parameters.

Subs/Site 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2
FEAST 0.82 0.77 0.71 0.64 0.56 0.44 0.02 0.00
CAPE 0.82 0.77 0.71 0.61 0.48 0.11 0.03 0.01
Viterbi FEAST 0.79 0.41 0.00 0.00 0.00 0.00 0.00 0.00
Viterbi CAPE 0.79 0.74 0.68 0.46 0.12 0.03 0.02 0.01

Table 5.13: Sensitivity of CAPE and FEAST on approximately 20 kb long synthetic se-
quences using incorrect alignment parameters.

From Table 5.13 we see that our hypothesis is correct, although we can still align
sequences with a surprising amount of mutation. Despite the fact that our guess parameters
are fairly close to the true parameters in this case, the difference is enough to cause FEAST
to fail after 1.0 substitutions per site. In contrast, with correct parameters FEAST still
achieves a sensitivity of 0.31 even for 1.2 substitutions per site. As before, the forward
algorithm continues to provide much better sensitivity than the Viterbi algorithm.

5.4 Summary

In the previous chapter we described two new pair-wise aligners: CAPE, a global aligner,
and FEAST, a local aligner. Both algorithms use of the forward algorithm for homology
detection rather than the Viterbi algorithm, and use a new more descriptive model of
alignment. We also described an expectation maximization (EM) procedure based on
FEAST to infer parameters for our new pair-HMM.

In this chapter, we describe a methodology for training alignment parameters for two
genomes that makes use of FEAST and our EM parameter inference algorithm. In contrast
to previous methods for inferring parameters, our training procedure does not depend on
expert knowledge of the input genomes. For example, we do not require a set of pre-
annotated genes, nor a set of hand selected training regions. Existing work on parameter

90

training often uses a heuristic that excludes highly similar, easy to align, regions from
training data. In contrast, our approach uses our new model of alignment to naturally find
a separation between highly similar regions and weakly similar regions. We apply our pro-
cedure to the human and mouse genomes, making only limited use of existing knowledge
of these genomes, and arrive at a new set of alignment parameters, 2-R8, that describes
highly similar and weakly similar regions. By using only the portion describing weakly
similar alignments, we also obtain an new parameter set suitable for existing alignment
algorithms. Our experiments show that for detecting truly homologous bases, the param-
eter set 2-R8 is much more sensitive than the parameter set of Chiaromonte, Yap, and
Miller [25] (HOXD70) in alignments of intergenic sequence. The HOXD70 parameter set is
widely used, and thus our training results represent a contribution with wide applicability.

In tests on synthetic human and mouse data with FEAST, we find that forward ex-
tensions are much more accurate than Viterbi extensions. For a fixed specificity, forward
extensions have much better sensitivity. Similarly, for a fixed sensitivity, forward extensions
have much better specificity. The maximum attainable sensitivity for forward extensions is
much more than that of Viterbi extensions. Depending on the settings, forward extensions
can be both more specific and more sensitive than Viterbi extensions. On this same syn-
thetic data, our new 2-R8 parameter set is much more sensitive than the popular HOXD70
parameter set. Combining 2-R8 with forward extensions, we achieve a sensitivity of 0.59
compared to 0.35 achieved by lastz, a popular local aligner, using default settings and the
HOXD70 parameter set.

Our alignments of real data show similar trends to our synthetic results using the simple
percent sequence aligned metric. If the synthetic results translate to real data, we expect
that many of our newly aligned positions represent new homologies. We also find that the
sections of our alignments that are annotated as being strongly similar are much more likely
to contain known exons or predicted exons than regions annotated as being weakly similar.
Although there are much better programs designed specifically for this task, it shows that
the annotation returned by FEAST may highlight interesting sections of alignments and
thus be an aid to researchers.

Finally, we explore the limits of alignability using FEAST and CAPE on long syn-
thetic sequences. We find that FEAST can tolerate much more mutation than CAPE
before it is unable to recover any alignment. On the other hand, when using Viterbi ex-
tensions, FEAST performs extremely poorly compared to CAPE, regardless of whether
we score fragments in CAPE using the forward or Viterbi algorithms. This verifies the
commonly-held assumption that global alignment is more sensitive than local alignment.
However, with the introduction of forward extensions, global alignment no longer provides
any advantage to sensitivity, and is much more likely to produce false alignments. For

91

these reasons, despite being a seemingly small change, forward extensions represent an
important advance in pairwise alignment.

92

Chapter 6

Conclusions

We have presented three new algorithms for the pair-wise sequence alignment problem.
In Chapter 3 we present, RDA, an algorithm that aligns sequences in segments where
we consider all possible evolutionary histories in each segment. Although this algorithm
provides interesting and different results than traditional alignment, it is unclear if there
are domains where such results are more useful than a traditional alignment. The RDA
algorithm is also very slow with a run time of O(n2m2) for sequences of length n and m,
compared to O(nm) required for traditional alignment. Our heuristic version of RDA gives
an improved runtime of O(k2nm) where larger k gives more accurate results. However,
in practice even this version of the algorithm is slow. Thus, we conclude that RDA is an
interesting algorithm, but it is not clear if it has a practical value in sequence alignment.

In Chapter 4 we present two algorithms for pair-wise alignment: CAPE, a global align-
ment program, and FEAST, a local alignment program. Both CAPE and FEAST share
a common improvement, the use of the forward algorithm for homology detection rather
than the Viterbi algorithm. We also present a new expectation maximization algorithm
based on FEAST for inferring parameters from training sequences.

CAPE is a global aligner that scores fragments with a local homology detection algo-
rithm that uses the forward algorithm to evaluate the nearest 200 bp. Specifically, our
algorithm produces a local segmentation, dividing a sequence into a related and unrelated
part. If we use Viterbi instead of the forward algorithm, our local segmentation becomes
a short local alignment. We address sequence variation by allowing each fragment to be
scored with more than one set of alignment parameters. We find fragments using a re-
cursive GLASS-like procedure. For each recursive step, we use random spaced seeds and
filter the set of hits by the score of an ungapped alignment of the length of the seed.

93

We choose the seed weight and threshold to minimize the number of false hits given the
length and background distribution of the region being anchored. CAPE also uses a mixed
global/greedy approach to choosing alignments. If there are many high scoring seed hits,
we use use the optimal chain of fragments as anchors. However, if we are in a region with
no high scoring hits, we use a greedy approach to choose the single best fragment as an
anchor.

FEAST is a local aligner that replaces Viterbi extensions with forward extensions.
Forward extensions use the x-drop heuristic to constrain the dynamic programming matrix,
but instead of finding the optimal path through the constrained space, we sum all possible
paths. Since the forward algorithm returns no alignment, our forward extensions drop
approximate anchors every 100 bases. These anchors do not necessarily lay on the optimal
path but can be used to roughly constrain a final alignment step. We note that while
our implementation currently uses Viterbi to produce a final alignment, the framework in
FEAST allows one to use any alignment algorithm in the final step. One may even skip the
final step altogether in cases where an alignment is not needed. For example, in situations
where local alignments are used as anchors in a multiple alignment procedure, or when only
large scale homologies are needed. We seed our local extensions using a set of six spaced
seeds. Three of these are optimized for coding regions and three for intergenic sequence.
We filter hits with ungapped alignments in a traditional BLAST-like framework.

Both CAPE and FEAST use a new pair-HMM for alignment. This model describes a
fixed number of sub-models, each of which represents traditional alignment under a specific
scoring scheme. The alignment is allowed to jump between sub-models, but incurs a prob-
abilistic penalty to do so. In CAPE, this algorithm is used as the final alignment step. In
FEAST, it is used as the model of alignment throughout, for ungapped extensions, gapped
extensions, and the final alignment. In addition to giving more accurate alignments, when
we use this model with Viterbi decoding, we obtain an additional annotation describing
which sub-model produced each column of the alignment.

In Chapter 5, we first train new parameters for aligning human and mouse sequences.
Then, we propose several hypotheses about FEAST and explore them with experiments
on synthetic and real sequence data. Finally, we explore the limits of alignability using
FEAST and CAPE. To train parameters for human and mouse, we describe a new training
methodology that uses FEAST and our EM procedure for parameter inference. In contrast
to previous methods for inferring parameters, our training procedure does not depend on
expert knowledge of the input genomes. For example, we do not require a set of pre-
annotated genes, nor a set of hand-selected training regions. Existing work on parameter
training often uses a heuristic that excludes highly similar, easy to align, regions from
training data. In contrast, our approach uses our new model of alignment to naturally

94

find a separation between highly similar regions and weakly similar regions. We apply
our procedure to the human and mouse genomes, making only limited use of existing
knowledge of these genomes, and arrive at a new set of alignment parameters, 2-R8, that
describes highly similar and weakly similar regions. By using only the portion describing
weakly-similar alignments, we also obtain an new parameter set, which we call 1/2-R8,
suitable for existing alignment algorithms. Our experiments show that 2-R8 is significantly
more sensitive than the parameter set of Chiaromonte, Yap, and Miller [25] (HOXD70) in
alignments of intergenic sequence. The HOXD70 parameter set is widely used, and thus
our training results represent a contribution wide applicability.

In tests on synthetic human and mouse data with FEAST, we find that forward ex-
tensions are much more accurate than Viterbi extensions. For a fixed specificity, forward
extensions have much better sensitivity. Similarly, for a fixed sensitivity, forward extensions
have much better specificity. The maximum attainable sensitivity for forward extensions is
much more than that of Viterbi extensions. Depending on the settings, forward extensions
can be both more specific and more sensitive than Viterbi extensions. On this same syn-
thetic data, our new 2-R8 parameter set is much more sensitive than the popular HOXD70
parameter set. Combining 2-R8 with forward extensions, we achieve a sensitivity of 0.59
compared to 0.35 achieved by lastz, a popular local aligner, using default settings and the
HOXD70 parameter set.

Our alignments of real data show similar trends to our synthetic results using the simple
percent sequence aligned metric. If the synthetic results translate to real data, we expect
that many of our newly aligned positions represent new homologies. We also find that the
sections of our alignments that are annotated as being strongly similar are much more likely
to contain known exons or predicted exons than regions annotated as being weakly similar.
Although there are much better programs designed specifically for this task, it shows that
the annotation returned by FEAST may highlight interesting sections of alignments and
thus be an aid to researchers.

Finally, we explore the limits of alignability using FEAST and CAPE on long synthetic
sequences. We find that FEAST can tolerate much more mutation than CAPE before it
is unable to recover any alignment. On the other hand, when using Viterbi extensions,
FEAST performs extremely poorly compared to CAPE, regardless of whether we score
fragments in CAPE using the forward or Viterbi algorithms. This verifies the commonly
held assumption that global alignment is more sensitive than local alignment. However,
with the introduction of forward extensions, global alignment no longer provides any advan-
tage to sensitivity, and is much more likely to produce false alignments. For these reasons,
despite being a seemingly small change, forward extensions represent an important advance
in pair-wise alignment.

95

References

[1] Searching the trace archive with discontiguous MegaBlast. http://www.ncbi.nlm.

nih.gov/Web/Newsltr/FallWinter02/blastlab.html, 2002. 26

[2] BLAST: Basic Local Alignment Search Tool. http://blast.ncbi.nlm.nih.gov/

Blast.cgi, September, 2009. 84

[3] National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov/,
January 2010. 1

[4] The NCBI C++ Toolkit. http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/,
January 2010. xi, 67

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990. 16, 26, 55

[6] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Nucleic Acids Research, 25(17):3389–3402, 1997. 16, 26, 55

[7] A. Arribas-Gil, D. Metzler, and J. Plouhinec. Statistical alignment with a sequence
evolution model allowing rate heterogeneity along the sequence. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics, 6(2):281–95, 2009. 24, 31

[8] S. Batzoglou, L. Pachter, J. P. Mesirov, B. Berger, and E. S. Lander. Human
and mouse gene structure: comparative analysis and application to exon prediction.
Genome Research, 10(7):950–958, 2000. 21

[9] L. E. Baum. An inequality and associated maximization technique in statistical es-
timatino for probabilistic functions of markov processes. Inequalities, 3(1–8), 1972.
30

96

http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html
http://www.ncbi.nlm.nih.gov/Web/Newsltr/FallWinter02/blastlab.html
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/

[10] M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. A. Smit, K. M. Roskin,
R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, D. Haussler, and W. Miller.
Aligning multiple genomic sequences with the threaded blockset aligner. Genome
Research, 14(4):708–715, 2004. 73

[11] R. K. Bradley, A. Roberts, M. Smoot, S. Juvekar, J. Do, C. Dewey, I. Holmes, and
L. Pachter. Fast statistical alignment. PLoS Computational Biology, 5(5):e1000392,
May 2009. 15, 23, 25, 31, 69

[12] N. Bray, I. Dubchak, and L. Pachter. AVID: A global alignment program. Genome
Research, 13(1):97–102, 2003. 17, 22

[13] N. Bray and L. Pachter. MAVID: Constrained ancestral alignment of multiple se-
quences. Genome Research, 14:693–699, 2004. 17

[14] B. Brejova, D. G. Brown, and T. Vinar. Optimal spaced seeds for homologous coding
regions. Journal of Bioinformatics and Computational Biology, 1(4):595–610, 2004.
18, 46

[15] B. Brejova, D. G. Brown, and T. Vinar. Vector seeds: an extension to spaced seeds.
Journal of Computer and System Sciences, 70(3):364—-380, 2005. 18

[16] B. Brejova, D. G. Brown, and T. Vinar. The most probable annotation problem
in HMMs and its application to bioinformatics. Journal of Computer and System
Sciences, 73(7):1060–1077, 2007. 35

[17] D. G. Brown. Optimizing multiple seeds for protein homology search. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2(1):29–38, 2005. 18

[18] D. G. Brown and A. K. Hudek. New algorithms for multiple DNA sequence alignment.
In Proceedings of WABI 2003 LNCS, volume 3240, pages 314–324, 2004. 23

[19] M. Brudno, M. Chapman, B. Gottgens, S. Batzoglou, and B. Morgenstern. Fast and
sensitive multiple alignment of large genomic sequences. BMC Bioinformatics, 4:66,
2003. 18, 22

[20] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, NISC Comparative Se-
quencing Program, E. D. Green, A. Sidow, and S. Batzoglou. LAGAN and Multi-
LAGAN: Efficient tools for large-scale multiple alignment of genomic DNA. Genome
Research, 13:721–731, 2003. 22

97

[21] J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in genomic
DNA. Journal of Computer and System Sciences, 70(3):342–363, 2005. 18

[22] A. Califano and I. Rigoutsos. Flash: a fast look-up algorithm for string homology.
Proc Int Conf Intell Syst Mol Biol, 1:56–64, 1993. 17

[23] R. A. Cartwright. Problems and solutions for estimating indel rates and length dis-
tributions. Molecular Biology and Evolution, 26(2):473–80, Feb 2009. 5, 26

[24] W. Chen and W. Sung. On half gapped seed. Genome Informatics, 14:176–185, 2003.
18

[25] F. Chiaromonte, V. B. Yap, and W. Miller. Scoring pairwise genomic sequence align-
ments. Pacific Symposium on Biocomputing, pages 115–126, 2002. 30, 59, 63, 64, 66,
72, 76, 91, 95

[26] J. Choi, H. Cho, and S. Kim. GAME: a simple and efficient whole genome alignment
method using maximal exact match filtering. Computational Biology and Chemistry,
29(3):244–253, 2005. 17, 28

[27] K. P. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search. Bioin-
formatics, 20(7):1053–1059, 2004. 18

[28] The ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Ele-
ments) Project. Science, 306(5696):636–640, 2004. 43

[29] C. Darwin. On the Origin of Species by Means of Natural Selection. John Murray,
London, 1859. 1

[30] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucleic Acids Research, 27(11):2369–2376, 1999. 17, 21

[31] A. L. Delcher, A. Phillippy, J. Carlton, and S. L. Salzberg. Fast algorithms for large-
scale genome alignment and comparison. Nucleic Acids Research, 30(11):2478–2483,
2002. 17, 21

[32] C. B. Do, M. S. P. Mahabhashyam, M. Brudno, and S. Batzoglou. ProbCons: Proba-
bilistic consistency-based multiple sequence alignment. Genome Research, 15:330–340,
2006. 24

[33] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis. Cam-
bridge University Press, 1998. 6, 7, 10, 12, 30, 47, 52, 53, 60

98

[34] D. Eppstein, Z. Galil, R. Giancarlo, and G. F. Italiano. Sparse dynamic prgramming
II: Convex and concave cost functions. Journal of the Association for Computing
Machinery, 39(3):546–567, 1992. 21

[35] P. Fariselli, P. L. Martelli, and R. Casadio. A new decoding algorithm for hidden
Markov models improves the prediction of the topology of all-beta membrane proteins.
BMC Bioinformatics, 6 Suppl 4:S12, Dec 2005. 14

[36] M. C. Frith, Y. Park, S. L. Sheetlin, and J. L. Spouge. The whole alignment and
nothing but the alignment: the problem of spurious alignment flanks. Nucleic Acids
Research, 36(18):5863–71, Oct 2008. 81, 82

[37] O. Gotoh. An improved algorithm for matching biological sequences. Journal of
Molecular Biology, 162:705–708, 1982. 4

[38] S. S Gross and M. R. Brent. Using multiple alignments to improve gene prediction.
Journal of Computational Biology, 13(2):379–93, Mar 2006. 80

[39] D. Gusfield. Algorithms on strings, trees, and sequences: computer science and com-
putational biology. Cambridge University Press, 1997. 17

[40] R. S. Harris. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsyl-
vania State University, 2007. 27, 31, 72

[41] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape splitting by a
molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2):160–
174, 1985. 49

[42] S. Henikoff and J. Henikoff. Amino acid substitution matrices from protein blocks.
Proc Natl Acad Sci U S A, 89(22):10915–9, Nov 1992. 30

[43] I. Holmes and R. Durbin. Dynamic programming alignment accuracy. Journal of
Computational Biology, 5(3):493–504, 1998. 14

[44] W. Huang, D. M. Umbach, and L. Li. Accurate anchoring alignment of divergent
sequences. Bioinformatics, 2005. 23

[45] A. K. Hudek. New anchoring techniques for global multiple alignment of genomic
sequences. Master’s thesis, University of Waterloo, September 2004. 23

[46] L. Ilie and S. Ilie. Multiple spaced seeds for homology search. Bioinformatics,
23(22):2969–2977, 2007. 18

99

[47] U. Keich, M. Li, B. Ma, and J. Tromp. On spaced seeds for similarity search. Discrete
Applied Mathematics, 138:253–263, 2004. 18, 46

[48] W. J. Kent. BLAT–the BLAST-like alignment tool. Genome Research, 12(4):656–664,
2002. 18

[49] W. J. Kent and A. M. Zahler. Conservation, regulation, synteny, and introns in a
large-scale C. briggsae-C. elegans genomic alignment. Genome Research, 10(8):1115–
25, Aug 2000. 17, 24, 27

[50] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: highly sensitive and fast
homology search. Journal of Bioinformatics and Computational Biology, 2(3):417–439,
2004. 46

[51] M. Li, B. Ma, and L. Zhang. Superiority and complexity of the spaced seeds. In
Proceedings of the seventeenth annual ACM-SIAM symposium on discrete algorithms,
pages 444–453, Miami, Florida, 2006. ACM Press. 46

[52] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches.
Science, 227(4693):1435–41, Mar 1985. 16

[53] R. A. Lippert, X. Zhao, L. Florea, C. Mobarry, and S. Istrail. Finding anchors for ge-
nomic sequence comparison. Journal of Computational Biology, 12(6):762–776, 2005.
17

[54] G. Lunter, A. Rocco, N. Mimouni, A. Heger, A. Caldeira, and J. Hein. Uncertainty in
homology inferences: assessing and improving genomic sequence alignment. Genome
Research, 18(2):298–309, Feb 2008. 15, 24

[55] B. Ma, J. Tromp, and M. Li. PatternHunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440–445, 2002. 17, 46

[56] D. Mak, Y. Gelfand, and G. Benson. Indel seeds for homology search. Bioinformatics,
22(14):e341–e349, 2006. 19

[57] M. Michael, C. Dieterich, and J. Stoye. Suboptimal local alignments across multiple
scoring schemes. In Inge Jonassen and Junhyong Kim, editors, WABI, volume 3240
of Lecture Notes in Computer Science, pages 99–110. Springer, 2004. 24, 52

[58] S. Miyazawa. A reliable sequence alignment method based on probabilities of residue
correspondences. Protein Engineering, 8(10):999–1009, Oct 1995. 14

100

[59] B. Morgenstern. DIALIGN 2: improvement of the segment-to-segment approach to
multiple sequence alignment. Bioinformatics, 15(3):211–218, 1999. 25

[60] B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence align-
ment based on segment-to-segment comparison. Proceedings of the National Acadamy
of Sciences USA, 93:12098–12103, 1996. 25

[61] B. Morgenstern, K. Frech, A. Dress, and T. Werner. DIALIGN: finding local similar-
ities by multiple sequence alignment. Bioinformatics, 14(3):290–294, 1998. 25

[62] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970. 4

[63] L. Noe and G. Kucherov. Improved hit criteria for DNA local alignment. BMC
Bioinformatics, 5:149, Oct 2004. 29

[64] L. Noe and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search.
Nucleic Acids Research, 33(Web Server issue):W540–3, Jul 2005. 18, 29

[65] A. Y. Ogurtsov, M. A. Roytberg, S. A. Shabalina, and A. S. Kondrashov. OWEN:
aligning long collinear regions of genomes. Bioinformatics, 18(12):1703–1704, 2002.
21

[66] L. Pachter and B. Sturmfels. Parametric inference for biological sequence analysis.
Proceedings of the National Academy of Sciences of the USA, 101(46):16138–16143,
2004. 31

[67] B. Paten, J. Herrero, K. Beal, S. Fitzgerald, and E. Birney. Enredo and
Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs.
Genome Research, 18(11):1814–1828, 2008. 23, 24

[68] R Development Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, Vienna, Austria, 2009. ISBN 3-900051-
07-0. 67

[69] M. A. Roytberg, A. Y. Ogurtsov, S. A. Shabalina, and A. S. Kondrashov. A hierarchi-
cal approach to aligning collinear regions of genomes. Bioinformatics, 18(12):1673–80,
Dec 2002. 21

101

[70] A. Schultz, M. Zhang, T. Leitner, C. Kuiken, B. Korber, B. Morgenstern, and
M. Stanke. A jumping profile Hidden Markov Model and applications to recombi-
nation sites in HIV and HCV genomes. BMC Bioinformatics, 7:265, 2006. 24

[71] A. S. Schwartz. Posterior Decoding Methods for Optimization and Accuracy Control
of Multiple Alignments. PhD thesis, University of California, Berkeley, 2007. 15

[72] A. S. Schwartz and L. Pachter. Multiple alignment by sequence annealing. Bioinfor-
matics, 23(2):e24–9, Jan 2007. 15

[73] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haus-
sler, and W. Miller. Human-mouse alignments with BLASTZ. Genome Research,
13(1):103–107, 2003. 24, 27, 76

[74] R. Siddharthan. Sigma: multiple alignment of weakly-conserved non-coding DNA
sequence. BMC Bioinformatics, 7:143, 2006. 25

[75] G. S. Slater and E. Birney. Automated generation of heuristics for biological sequence
comparison. BMC Bioinformatics, 6:31, 2005. 23, 29

[76] A. R. Subramanian, J. Weyer-Menkhoff, M. Kaufmann, and B. Morgenstern.
DIALIGN-T: an improved algorithm for segment-based multiple sequence alignment.
BMC Bioinformatics, 6:66, 2005. 25

[77] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA similarity
search. Journal of Computational Biology, 12(6):847–861, 2005. 18, 58, 65

[78] A. Ureta-Vidal, L. Ettwiller, and E. Birney. Comparative genomics: genome-wide
analysis in metazoan eukaryotes. Nat Rev Genet, 4(4):251–62, Apr 2003. 79

[79] J. Wang, P. D. Keightley, and T. Johnson. MCALIGN2: Faster, accurate global
pairwise alignment of non-coding DNA sequences based on explicit models of indel
evolution. BMC Bioinformatics, 7:292, 2006. 24

[80] J. Xu, D. Brown, M. Li, and B. Ma. Optimizing multiple spaced seeds for homology
search. Journal of Computational Biology, 13(7):1355–1368, 2006. 18

102

	List of Tables
	List of Figures
	Introduction
	Sequence alignment: definitions and interpretation
	Score-based alignment
	Hidden Markov models and alignment
	The Viterbi algorithm
	Pair hidden Markov models
	The alignment pair-HMM

	Summary

	Related Work
	HMM decoding
	State posterior decoding
	State posterior decoding for pair-HMMs
	State posterior-Viterbi decoding
	Optimal accuracy alignment
	AMAP alignments and marginalized posterior decoding
	Summary

	Seeding
	Suffix trees and maximal matching
	Spaced seeds
	Other seeding strategies

	Anchoring alignments of long sequences
	Notation and definitions
	Fragment chaining heuristic
	MUMMER and MUMMER2
	GLASS
	OWEN
	LAGAN and CHAOS
	AVID
	ACANA
	Work of Brown and Hudek
	Other anchoring techniques

	Models of pairwise alignment
	Local pairwise alignment
	BLAST, BLASTZ, and LASTZ
	WABA
	GAME
	YASS
	Exonerate

	Parameters and training
	Pair-HMM parameter training
	Work of Chiaromonte, Yap, and Miller
	Work of Arribas-Gil, Metzler, and Plouhinec
	FSA and query specific training
	Parametric alignment

	RDA: alignment by segments
	Right-Down alignments
	Segmentation
	Computing an optimal segmentation

	Experiments with RDA
	Hypotheses
	Experiments and results

	Summary

	Sensitive genomic alignment: methods
	CAPE: Anchoring weakly homologous sequence pairs
	Fixing the number of seed hits
	Scoring fragments using local segmentation
	Segmentation with multiple parameters
	Handling repeats in real sequence
	Complete anchoring strategy

	A more descriptive model of evolution
	FEAST: local alignment and a new extension algorithm
	An extension algorithm for homologies
	The alignment phase
	A data structure for detecting overlaps
	Seeding local extensions

	Parameter training
	Summary

	Sensitive genomic alignment: experiments
	Inferring parameters for human and mouse local alignments
	Selecting training regions
	Heuristic parameters for training
	Training a single conservation level
	Training two conservation levels
	Selecting good general purpose parameters

	Accuracy of FEAST
	Simulated human and mouse sequences
	Performance on real alignments
	FEAST's annotation
	Spurious alignment flanks

	The limits of alignment
	Aligning long synthetic sequences with known parameters
	Aligning long synthetic sequences with unknown parameters

	Summary

	Conclusions
	References

