
Designing a Privacy-Aware Location
Proof Architecture

by

Wanying Luo

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2010

c© Wanying Luo 2010

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144144075?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Although location-based applications have existed for several years, verifying the correct-
ness of a user’s claimed location is a challenge that has only recently gained attention in
the research community. Existing architectures for the generation and verification of such
location proofs have limited flexibility. For example, they do not support the proactive
gathering of location proofs, where, at the time of acquiring a location proof, a user does
not yet know for which application or service she will use this proof. Supporting proactive
location proofs is challenging because these proofs might enable proof issuers to track a
user or they might violate a user’s location privacy by revealing more information about
a user’s location than strictly necessary to an application. In addition, none of the ex-
isting architectures possesses an effective cheat detection mechanism to spot users who
cheat about their location. We present seven essential design goals that a flexible location
proof architecture should meet. Furthermore, we introduce a lightweight location proof
architecture that realizes a subset of our design goals and that includes user anonymity
and location privacy as key design components, as opposed to previous proposals. We then
present a complete architecture that meets all of the design goals and demonstrate how
some of the design goals can be achieved by adopting proper cryptographic techniques.
Note that the reason of having a lightweight architecture that meets a subset of our design
goals is explained in section 2.4.6. Finally, we provide an implementation, experimental
results and a deployment strategy of our location proof architecture, and present three
real-world location-proof-based applications to further demonstrate the practicality of our
architecture.

iii

Acknowledgements

There are many people to thank, and my family come first. I would like to thank my
mother and my twin brother for their love and support. My mother is the bravest woman
I have ever seen. She gave and continues to give me the strength and courage to fulfill my
dream. My brother is the man I respect and trust the most. He understands and protects
me all along. Without him, I will not be the person who I am today. I love and thank them
from the bottom of my heart. I would also like to thank Lu Zhang, a wonderful woman
with whom I am thrilled to spend the rest of my life. Computer science is a joyous career,
but it is my family that really matter to me.

I would like to thank my supervisor Urs Hengartner. He guided me throughout my
research and studies with great patience. I learnt so much from him. This thesis will not
be possible without his great help.

I would like to thank Dr. Ian Goldberg and Dr. Srinivasan Keshav for reading my
thesis. Their comments are extremely helpful in improving my thesis.

Last but not least, I would like to thank Nabeel Ahmed for providing me with a wireless
testbed for conducting experiments.

iv

Dedication

This is dedicated to my mother and my twin brother.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Location Proofs and Location Proof Architecture 2

2 Lightweight Architecture 5

2.1 Introduction . 5

2.2 Design Goals . 5

2.2.1 No Dedicated Hardware . 5

2.2.2 Scalability . 6

2.2.3 User Anonymity . 6

2.2.4 Application-agnostic Location Proofs 6

2.3 Trust Assumptions and Threat Model . 7

2.3.1 Trust Assumptions . 7

2.3.2 Threats That We Address . 8

2.3.3 Threats That We Do Not Address 9

2.4 Architecture for Obtaining and Verifying Location Proofs 10

2.4.1 Notations . 10

2.4.2 Obtaining a Location Proof . 10

vi

2.4.3 Verifying a Location Proof . 11

2.4.4 Security Analysis . 12

2.4.5 Improvements Over Previous Work 13

2.4.6 Scenarios Where the Lightweight Architecture Applies 15

3 Complete Architecture 16

3.1 Introduction . 16

3.2 Additional Design Goals . 16

3.2.1 Location Granularity . 17

3.2.2 Proactive Location Proof Requests 17

3.2.3 Cheating Detection . 18

3.3 Trust Assumptions and Threat Model . 18

3.3.1 Working Model and Roles of Trusted Third Parties 18

3.3.2 Revised Trust Assumptions and Threat Model 20

3.4 Architecture for Obtaining and Verifying Location Proofs 21

3.4.1 Obtaining an Informal Location Proof 21

3.4.2 Obtaining a Formal Location Proof 23

3.4.3 Verifying a Formal Location Proof 24

3.4.4 Security Analysis . 26

3.5 Observations On the Complete Architecture 28

3.5.1 Scalable TTPU . 28

3.5.2 How to Choose Between Retroactive and Proactive Location Proofs 29

3.5.3 Two Alternatives to Trusted Third Parties 30

3.5.4 Necessity of the CDA . 33

3.5.5 Achieve Extra User Anonymity Through Third Party Tools 33

3.6 Deployment Strategies . 33

vii

4 Implementation and Experiments 36

4.1 Introduction . 36

4.2 Implementation . 36

4.2.1 Wireless Testbed . 38

4.2.2 Implementation of the TTPL . 38

4.2.3 The TTPL Database . 39

4.2.4 Implementation of the TTPU . 41

4.2.5 SOAP Versions of the TTPL and TTPU 42

4.2.6 Implementation of the CDA . 42

4.2.7 Computing Proximity of Two Locations 43

4.2.8 Programming Libraries . 44

4.3 Experiments . 44

4.3.1 Motivation . 44

4.3.2 Measurement of Controller Throughput 44

4.3.3 Micro-Benchmarking Performance Bottleneck 46

4.3.4 Benchmarking PyCrypto and OpenSSL 47

4.4 Real World Applications . 47

4.4.1 Location Proof Daemon . 48

4.4.2 Class Attendance Reporter . 48

4.4.3 Location Signature For Yelp Web Review 49

5 Related Work 54

5.1 Related Work . 54

6 Conclusion and Future Work 59

References 60

viii

List of Tables

3.1 Location granularity . 17

ix

List of Figures

2.1 Request location proofs . 11

3.1 Request an informal location proof . 22

3.3 Verification of location proofs . 26

3.4 Deployment of location proof architecture for an enterprise network 34

4.1 WLAN testbed on the 3rd floor (circles represent clients and squares repre-
sent APs. However, this is just annotation and the actual configuration can
be changed by the person configuring the testbed) 37

4.2 Web interface for the TTPL . 39

4.3 Granularity representation in coordinate system 40

4.4 Web interface for the TTPU . 41

4.5 Controller throughput . 45

4.6 Time contributed by each part of serving a request 46

4.7 Benchmarking of PyCrypto and OpenSSL 48

4.8 Attach a location proof to a Yelp review 51

4.9 Notify the user that location proof has been attached to the review 51

4.10 Yelp page with and without location proof 52

4.11 Yelp server architecture . 52

5.1 Comparison to previous work . 58

x

Chapter 1

Introduction

1.1 Introduction

Mobile devices, such as smartphones and PDAs, are playing an increasingly important role
in people’s lives. Location-based applications take advantage of user location information
and provide mobile users with a unique style of resource and service offerings. Some mobile
application and service providers decide whether to grant people access to the service solely
based on people’s current locations. Many location-based service (LBS) providers grant
access of service only to people present at a certain location. Today, it is typically a user’s
mobile device that determines the device’s location (e.g., using GPS) and that sends the
location to an application or service provider. This approach makes it possible for a user
to cheat by having his device transmit a fake location. This way the user might be granted
access to a resource erroneously. Therefore, an application or a service provider might ask
a device to prove that the device really is or was at the claimed location. For example, a
hospital might limit access to patient information to doctors and nurses who can prove that
they are in (maybe a particular area of) the hospital. Content that is generated by mobile
users might be geotagged, and people who download the content should be able to verify
the location claim associated with the content [21]. A company might want proof from
its repairmen that they really followed a prescribed route during the day. An insurance
company might hand out discounts to drivers who can prove that they take non-accident-
prone routes for their daily commutes. A person accused of committing a crime is very
much interested in being able to prove to the police that he was somewhere other than
the crime scene at the time the crime was committed [26]. The following is a list of more
location proof based applications.

• Store loyal customers: Some stores offer discounts to nearby customer. In or-
der to prove to be a frequent customer of the store, a person can collect location

1

proofs whenever she is nearby the store and present them to the store after having
accumulated enough proofs to get a discount.

• Location-based access control: Role-based access control is not always sufficient
in restricting access to confidential information. Location proof is promising in pro-
viding an industrial solution for data leakage protection (DLP). Companies storing
confidential information and crucial corporate secrets typically forbid their employ-
ees from accessing the company’s database anywhere other than inside the company
building, in fear that employees may deliberately or accidentally leak sensitive in-
formation. The company can set up a few access points (APs) around its premises,
allowing employees to collect location proofs from an AP and submit proofs to the
authentication server of the company in order to prove they are currently present in
the working site.

• Location-based content delivery: Unlike location-based access control, some ap-
plications or service providers may only be concerned about users’ location and not
care about their identities. For example, a stadium owner decides only those inside
the stadium are allowed to receive the live broadcast. Some Canadian location-based
media provider may deliver media programs only to those within Canadian territory.
In this case, a Canadian resident needs a way to prove her location to the provider
and the provider also needs a way to verify the proof.

• Location-based social networking: Online social networks allow users to form
social groups based on their geographical location. Yelp [36], Foursquare [13] and
Gowalla [16] are all online social networks that allow users with mobile devices to
“check-in” and learn their friends’ location. Users could potentially use location
proof technology as an alternative to “checking-in” through online social networks’
portal. The most attractive benefit of this approach is the protection of their location
privacy from online social networks, as demonstrated by an application we developed
in section 4.4.3.

Saroiu et al. [26] and Lenders et al. [21] list more applications based on location proof
in their papers. In a word, we need an architecture to allow legitimate users to prove
their location, and to also enable applications and service providers to verify these location
claims.

1.2 Location Proofs and Location Proof Architecture

Formally, a location proof is an electronic form of document that certifies someone’s pres-
ence at a certain location at some point in time. A location proof architecture is a mech-

2

anism with which users can obtain location proofs from proof issuers and with which
applications can verify validity of the proofs.

In order to be truly useful, a location proof architecture must be flexible in that users
should be able to collect location proofs for both current and future needs, and the same
location proof should be usable for interaction with different applications. For example,
in some cases such as the insurance or police scenarios mentioned above, users might not
know while being at a particular location that they will need a proof for having been at this
location later on. Therefore, it must be flexible enough for users to gather location proofs
proactively. This way, users with foresight are able to obtain and save location proofs before
they even have a target application to interact with. However, the proactive gathering of
location proofs must be done carefully; otherwise, proof issuers can track users and people’s
privacy will be in jeopardy. Besides, proactive location proofs are optional, and users
can always request a proof when it is really needed. Different applications have different
requirements for a location proof, such as the granularity of the location. For example, an
insurance company might want to know only that a client drives around mainly in sedate
Waterloo (as opposed to busy Toronto), but not where exactly in Waterloo. When a user
does not know about the application that a location proof will be used for, she also does
not know about the location granularity that will be required by the application. Users can
always collection a location proof every time they want to interact with an application that
requires a proof, but this is wasteful of users’ time and computing resources, since there
are so many LBSes and applications. Then the question is how to make a single location
proof usable for different applications that have different location requirements. Including
the most fine-grained location information in any location proof would solve this problem.
However, a user might end up revealing more information than necessary to an application,
and her privacy would get violated. Therefore, a useful location proof architecture must
be designed in the way that users could use a small number of location proofs to interact
with a large collection of mobile applications and services, at the same time, their location
privacy is also preserved. Location privacy means the user should disclose her location
information only sufficient enough to interact with mobile applications and she should not
unnecessarily disclose more location information than strictly necessary.

Cheating detection is also a vital requirement of location proof technology in some cases.
Mobile users typically have incentives to lie about their location. Therefore, a location proof
architecture should adopt a cheating detection mechanism to pinpoint dishonest users who
lied about their location information. This is different from the use of cryptography in
location proof systems to prevent dishonest users from manipulating issued proofs. Even
if the integrity of the issued location proofs is protected by careful use of cryptographic
techniques, users may simply get around cryptographic protection by lying about their
identity or location information when trying to obtain proofs from proof issuers.

Previous research has recognized the need for location proof architecture (e.g., [26, 21]).

3

However, none of the existing architectures is flexible enough to support all envisioned use
cases. We make the following contributions:

• We put forward seven design goals for a flexible location proof architecture and in-
troduce a lightweight location proof architecture that realizes a subset of our design
goals. The architecture can be deployed on existing Wi-Fi access points (APs) and is
usable by regular mobile users. Moreover, the architecture demonstrates how cryp-
tography can improve user privacy and system security. After identifying limitations
of the first architecture and drawing lessons from it, we present a more complete
location proof architecture that meets all the design goals.

• We present a complete location proof architecture to address the design goals not
covered by the lightweight architecture in addition to the design goals which are al-
ready met in the lightweight architecture. Different from most existing work that
designs location proofs to be application-specific, retroactive and vulnerable to user
cheating, our complete architecture constructs general location proofs so that they
can be used for a variety of applications. Moreover, our complete architecture pos-
sesses a cheating detection mechanism capable of exposing users who lie about their
location.

• We implement the complete location proof architecture and provide experimental re-
sults regarding the performance of the architecture. Our implementation is deployed
on a WLAN testbed, which consists of 38 APs and spans two floors of the Davis
Centre at the University of Waterloo.

• We build two real-world applications to demonstrate the practical value of our archi-
tecture.

4

Chapter 2

Lightweight Architecture

2.1 Introduction

In this chapter, we elaborate four of our seven design goals that are realized by a lightweight
location proof architecture. This chapter is organized as follows. Four of our design goals
are specified in section 2.2, which is followed by security assumptions and the threat model
in section 2.3. We proceed to elaborate on a lightweight location proof architecture and
security analysis in section 2.4.

2.2 Design Goals

In order for a location proof architecture to be deployable and useful in practice, the design
should meet certain requirements. In this section, we elaborate four of our design goals
which are realized in the first architecture we develop, and bring up another three design
goals as we introduce a more complete architecture.

2.2.1 No Dedicated Hardware

One of the most significant limitations in many previous proposals on location proof ar-
chitecture is reliance on dedicated hardware. A mobile user is often equipped with no
more than a regular cellphone, so any special hardware requirement will prevent her from
adopting location proof technology. Moreover, it is unrealistic to expect operators of exist-
ing APs to purchase and configure probably expensive hardware to provide location proof
services.

5

2.2.2 Scalability

A public AP usually serves many users, so if a location proof protocol executed between
the AP and the user demands heavy computation, the performance will decline dramat-
ically and the architecture will not scale with increasing number of users. Furthermore,
mobile devices in most users’ hands have less processing power and memory than a desktop
computer, and the functioning time is also limited by battery capacity. Even though mo-
bile devices are becoming comparable to normal desktop computers in terms of speed and
memory space, mobile users will be frustrated if requesting location proofs consumes too
much time and interferes with their normal use of mobile devices. Therefore, a location
proof protocol must not require intensive computation in order to be scalable on these
kinds of devices.

2.2.3 User Anonymity

One important factor that many users are concerned with regarding new technologies is
whether their privacy will be undermined by using the new technology [9, 24]. Therefore,
in order to be widely adopted, location proof architectures must invest every effort to
guarantee users’ location privacy. This problem is somewhat challenging in that it poses a
dilemma to the architecture design: in order to vouch for a person’s presence at a certain
place, a location proof issuer must know who it is vouching for; however, by knowing the
identity of the person it is vouching for, the location proof issuer can track that person
by her location, thus compromising her privacy. Location proof architectures should em-
ploy appropriate cryptographic techniques and design strategies to ensure users remain
anonymous to proof issuers.

2.2.4 Application-agnostic Location Proofs

A number of mobile applications are available nowadays, and each location proof based
application makes use of location proofs submitted by users in different ways. If a sin-
gle location proof can only be used to interact with a specific application, when a user
wants to prove her location to many applications, she has to try to obtain several location
proofs, each of which is intended for a particular application. This approach is adopted
by one previous location proof mechanism [35]. Another option is to have location proof
issuers produce proofs in an application-agnostic manner such that the same proof can be
repeatedly used by users for interaction with a variety of applications. In this case, the
location proof issuer at a particular place only needs to hand out a proof to a user once,
and the user is able to use the same proof for many applications. Our design follows the
second approach, because it is obviously advantageous over the first one in many aspects.

6

First, a general location proof reduces storage space. Second, a general proof format re-
lieves users of having to constantly interact with location proof issuers, and allows them to
spend more battery power and time on other businesses. In order for a location proof to
be application-agnostic, it must not contain application-specific data and has to be issued
by a location proof issuer that applications trust.

2.3 Trust Assumptions and Threat Model

2.3.1 Trust Assumptions

If a mobile service provider writes its own application, the application can easily obtain
users’ location information from the service provider, which defeats our privacy protection
mechanism. In addition, if an application is authorized by the mobile service provider to
access users’ location information, users’ location privacy is also compromised. Therefore,
our architecture targets those applications that are not written by mobile service providers
and not authorized by mobile service providers to access users’ location information.

We assume every mobile user has a public key and the public key is certified by a
Certificate Authority (CA) in a PKI. Moreover, the user and the application she interacts
with agree to trust a common CA which certified the user’s public key. Although obtaining
a public key certificate can be expensive, it is not unbearable. For example, for applications
that only require e-mail addresses as identities, users can obtain a digital ID [18] from
VeriSign for less than $20 per year. Belgium actually has decided to issue an electronic
identity (eID) card [6] to all its citizens aged 12 years or older and the card contains a
chip to be used for digital signatures. In this case, the PKI infrastructure is set up in
the way that the entire nation has a common trusted CA and everyone’s key is certified
by this CA. We further assume no user will give away her private key to anyone else.
This assumption is essential in preventing attacks discussed in section 2.4.4. If a user
has her their public key certified, she not only can use the key for obtaining location
proofs, but can also use the key for other purposes such as signing a document or proving
her identity in a secure communication. If the user gives away her private key to other
people, she essentially grants other people the ability to carry out these tasks on her
behalf, which may result in unexpected consequences. For example, other people could
use the user’s private key to sign an illegal document and get the user into legal trouble.
Furthermore, we assume the device carrier is the actual owner of the device. People
nowadays store valuable personal information on their mobile devices. Such information
includes contact information of friends and family members, private text messaging with
spouses, appointments with doctors or lawyers, etc. With such important and private data
stored on the device, users will be very reluctant to lend their mobile devices to others even

7

for a short period of time. Finally, we assume users have their devices carried with them
when location proofs are requested. Mobile services are becoming essential for people’s
daily communication and businesses. For example, a mobile user can look up a friend’s
phone number conveniently on her device, or receive live weather forecasts, or immediately
call for help in case of emergency. Therefore, people are much better off by carrying their
mobile devices all the time. Moreover, mobile devices are significantly easier for people to
carry than a cumbersome desktop computer. Many university students bring laptops to
class on a daily basis, not to mention carry a BlackBerry or iPhone which fits in a pocket.

We assume that applications are in the possession of the required public keys when
carrying out proof verification. Furthermore, we assume users submit location proofs for
verification when they need to use the application. Finally, we assume communication is
secured against passive and active eavesdroppers with the help of TLS/SSL.

2.3.2 Threats That We Address

The following entities are considered threats in our architecture.

• Dishonest users. A dishonest user is someone who tries to obtain location proofs
that certify her presence at some place at a particular time even if she was not
there. Dishonest users may achieve this goal by colluding with malicious intruders
and defecting APs.

• Malicious intruders. A malicious intruder is somebody who is not interested in
obtaining location proofs for her own use but offers to collude with remote dishonest
users to get location proofs on their behalf in exchange for other benefits like money.
For example, a dishonest user may save the generated session data when interacting
with an AP and give these data to a malicious intruder, who can use these data
to launch replay attacks later on. This type of attack is analyzed in section 2.4.4.
However, we assume malicious intruders will not collude with dishonest users to
launch wormhole attacks, which we discuss in section 2.3.3.

• Defecting APs. A malicious or misconfigured AP may collude with dishonest users
and issue them location proofs with fake information, to assist them in cheating.
For example, a malicious AP in Vancouver, which is only authorized to issue proofs
representing places in Vancouver, may issue location proofs representing places in
Toronto.

• Malicious application providers. A malicious application provider obtains loca-
tion proofs from users of her service and then tries to take advantage of these proofs
to get unauthorized access to other applications.

8

• Active and passive eavesdropper. An eavesdropper records and potentially mod-
ifies communication between users, proof issuers, or applications.

2.3.3 Threats That We Do Not Address

We acknowledge the following threats which exist in real wireless networks. Since current
researches lack effective counter-measures against these threats, we do not aim to provide
complete solutions.

• Wormhole attacks. A wormhole attack [5] takes place when a malicious party
records network traffic in a particular region of the wireless network and replays it in
another region. For example, suppose two wireless devices A and B are invisible to
each other, a malicious device C within the transmission range of device A tunnels
traffic from A to B, which makes device B appear visible to A. This kind of attack
poses severe threat to wireless networks and is extremely hard to detect. In a location
proof architecture, by launching wormhole attacks a user may collude with several
remote malicious intruders to simultaneously obtain location proofs from APs at dif-
ferent places. In this paper, we do not aim to completely solve this problem due to its
notorious challenge, but we provide a partial solution that defends against a special
type of wormhole attacks as discussed in section 3.4.3. In fact, an effective way of
defeating wormhole attacks is to rely on dedicated hardware and distance bounding
techniques suggested by Drimer and Murdoch [11], who proposed and implemented
a defense mechanism using a distance bounding protocol against smart card worm-
hole attacks. However, their mechanism requires alteration to current hardware and
software. Since this kind of approaches violates our first design principle, we do not
consider it here.

• Weak identities. A device carrier is not always the actual owner of the device. For
example, a device may be stolen by a thief or lent to a friend by the owner. Therefore,
our use of users’ public keys as their identities may not be reliable. This form of
user identity is deemed a weak identity. Saroiu and Wolman [26] propose several
alternatives to achieve stronger identities, but none of them is entirely foolproof.

Both wormhole attacks and attacks exploiting weak identities can be instantiated in real
wireless networks. Unfortunately there are no easily deployable solutions against either of
them. Applications that need to protect access to highly valued resources should therefore
not rely on our location proof architecture alone for security. For other applications, these
threats can be ignored since the attacks tend to be expensive to instantiate, and their cost
might be higher than the value of the protected resource.

9

2.4 Architecture for Obtaining and Verifying Loca-

tion Proofs

In order to prove to the application that she was nearby some location at a particular
time, a user must collect location proofs from the APs that are trusted by the application.
Applications can make decisions on which APs to trust on an organizational basis. For
example, applications can choose to trust APs deployed by AT&T which has APs running
all over the US, or applications may trust APs run by other companies according to their
own standards. Different applications have different requirements on APs. Low-valued
applications may accept many APs operated by various companies, whereas high-valued
applications are likely to only accept APs run by high-profile organizations. Since Wi-
Fi signals typically have a short range of transmission, only nearby users are able to
communicate with the APs directly. In addition, to protect users’ privacy, cryptographic
signatures and hashes are used to hide users’ real identities from the APs.

The location proof architecture that we will present in this section is lightweight com-
pared to the one in section 3.4 in that it incurs less communication overhead and involves
fewer parties. It is specifically targeted at scenarios where protection of users’ location
privacy against applications is not crucial, and the benefit of lying about their location is
not significant enough to give users incentives to cheat.

2.4.1 Notations

The following protocol and the one introduced in section 3.4 both extensively use cryp-
tographic signatures. From this point on, we use ST (m) to represent message m signed
with T ’s private key. As usual, we use a hybrid signature scheme, where a message is first
cryptographically hashed and the signature is computed for the hash value.

The architecture in section 3.4 also makes use of cryptographic encryption, so we define
encryption operations as follows:

Enc (K, data)

which represents data is encrypted with some party’s public key K. Moreover, the encryp-
tion scheme we will use here is probabilistic [15], i.e. encrypting the same plaintext several
times generally yield different ciphertexts.

2.4.2 Obtaining a Location Proof

When a user is nearby an AP, she can execute the following protocol to obtain a location
proof from the AP. Note we use the user’s public key as her identity, i.e. IDuser = Puser,
where Puser stands for the user’s public key.

10

Figure 2.1: Request location proofs

1. (Optional) The user sends a location proof request to the AP.

2. The AP generates and sends the user a random nonce nAP.

3. The user generates a random nonce nuser and sends the following hash value to the
AP:

H = hash (Suser (nAP ‖ nuser) ‖ nuser)

Note that instead of computing the hash of an appended nonce, a MAC would
also suffice. In that case, the user generates a MAC key, k, and computes H =
MACk (Suser (nAP)). Later, the user delivers k, instead of nuser, to the application for
proof verification.

4. Finally, the AP sends to the user a location proof of the following format.

location proof = Pr ‖ SAP (Pr)

where Pr = H ‖ location ‖ time ‖ nAP

This process is demonstrated in figure 2.1. Note that the first step is optional. If the AP
does not receive any user request within a certain period of time, it will start to broadcast
random nonces so that users can capture broadcasted nAP and begin to interact with the
AP starting from step three.

2.4.3 Verifying a Location Proof

The user submits nAP, nuser, Suser (nAP ‖ nuser), IDuser and Pr ‖ SAP (Pr) to the application.
The application needs to verify whether the user is in the possession of the private key
corresponding to IDuser, for example, by setting up a SSL/TLS connection with client

11

authentication. The application then makes sure the nAP submitted by the user equals the
nAP contained in the location proof. Then it computes the following hash value:

H ′ = hash (Suser (nAP ‖ nuser) ‖ nuser)

and makes sure H ′ equals the hash value H in the location proof. The application continues
to verify Suser (nAP ‖ nuser) is a valid signature using the user’s public key. Finally, the
application checks the AP’s signature on the location proof. As explained in section 3.6,
our architecture is suitable for public APs, so home APs are not considered here. Only if
all checks succeed, the proof will be accepted.

2.4.4 Security Analysis

By including a hash of the user’s signature, instead of the actual signature, a location
proof does not reveal the user’s identity to the AP. Nevertheless, the proof may still be
abused by a malicious application, which tries to find a public key / nonce combination
that will verify the signature, Suser (nAP ‖ nuser), correctly. This attack is infeasible in our
protocol, however, for the following reason. nAP is not only covered by the signature, but
also included in the proof. Similarly, nuser is covered by both the signature and H. In
other words, nAP ‖ nuser is a message committed in the proof, so the security of the digital
signature will prevent a forgery.

Replay attacks take place when someone records network traffic and replays it later
on. A dishonest user may collude with a malicious intruder to launch replay attacks, in an
attempt to acquire location proofs from a place where the dishonest user is not currently
located. Suppose a dishonest user was at place P1 at time T1. By requesting a location
proof from a nearby access point A1, the user successfully obtained nAP, a random nonce
generated by A1. She then can give nAP and Suser (nAP ‖ nuser) to a malicious intruder in
the same area. Later at time T2 when this dishonest user was at another place P2 which is
far away from P1, she wants to get a location proof from A1 again with time stamp T2. The
malicious intruder then tries to request a location proof on behalf of the user. However,
since the AP generates a new random nonce for each request, it is extremely unlikely for the
new random nonce to be the same as the one in the malicious intruder’s hand. Therefore,
this attack is next to impossible in our architecture. The malicious intruder may keep
trying until she receives a random nonce from the AP matching the random nonce in
her hand so that she could use Suser (nAP ‖ nuser). But this requires generating a huge
amount of requests, and such abnormal behavior will likely be detected and blocked by
the AP. Therefore, our architecture resists collusion between dishonest users and malicious
intruders.

In the above attack, it is also impossible for the malicious intruder to sign a fresh
nonce nAP on behalf of the dishonest user, because under the trust assumptions in section

12

2.3.1, she does not have the private key of the dishonest user. Note that the malicious
intruder may also try to set up a communication channel through which she can send the
new random nonce obtained from the AP to the remote dishonest user to get the signed
random number in real time. But this is a wormhole attack, which we do not aim to solve
in this paper.

Dishonest users may try to collude with defecting APs. An AP colluding with the
user can issue location proofs with fake information. For example, a malicious AP in
Los Angeles may be bribed by a user to include “New York” instead of “Los Angeles”
as the location field in the proof. This kind of cheating may or may not be detected
by applications depending on whether applications have knowledge of this malicious AP’s
geographical location. Since the proof is signed by the AP, if the application knows the
exact location of this AP or takes time to actually investigate, the discrepancy between the
actual location of the AP and the location claimed by the AP in the proof will be detected
by the application. Otherwise, if the application blindly trusts the location information
specified in the proof, cheating will go undetected. This drawback of the architecture will
be rectified in the new architecture presented in section 3.4.

It is possible for several APs to collude and compromise a user’s privacy by tracking her
location. Since a user who contacts an AP must be nearby that AP due to the short-range
transmission of Wi-Fi signals, if several APs learn the user’s identity, they can jointly track
the user’s location. Besides, user devices may also be remotely fingerprinted [20] by the
APs they are connected to without cooperation of these devices. With this technique,
malicious APs can track, with a certain probability, a device as it connects to the Internet
from APs. These threats are hazardous to users’ location privacy, which our architecture
can not defend against and are left as future work. But our architecture prevents malicious
APs from learning users’ identities. Therefore, as long as malicious APs do not learn the
identity of the owners of the tracked devices, users’ location privacy is not completely
compromised.

2.4.5 Improvements Over Previous Work

Saroiu et al. [26] proposed a location proof mechanism that shares many commonalities
with ours and is the most recent and relevant work. We compare their mechanism with
our architecture in this section.

In Saroiu et al.’s mechanism, APs broadcast beacon frames periodically. A user who
wants to request location proofs from an AP must first capture a frame and extract the
sequence number from it, then she returns the signed sequence number along with her
public key (which is used as the user’s identity) to the AP. After checking the validity of
the signature, the AP issues a location proof to the user. We identify two advantages that
our architecture has over this mechanism, with the first one being a major improvement.

13

First, Saroiu et al. claimed in order to reduce the chance of being tracked, users are free
to choose when to request location proofs and when to present them to an application. But
requiring a user to keep an eye on her own privacy is not only unrealistic but also error-
prone. This is a major drawback of Saroiu et al.’s approach. Most mobile users are simply
regular people from a variety of backgrounds other than computer security. These users
are unlikely to have even bare amount of knowledge or experience in privacy protection,
not to mention making appropriate privacy-oriented decisions. Even people with computer
science background and security technicians sometimes make incorrect judgments about
what privacy-protection measures to take. In comparison, our architecture incorporates
privacy protection as a built-in component. By exploiting cryptographic signatures and
hashes, we disguise user identities from APs, thus making user identities untrackable. The
burden of ensuring user privacy is entirely rested with the protocol, so users do not have
to be wise about when to request location proofs and when to not.

Second, our architecture keeps workload distributed among applications and APs more
evenly than Saroiu et al.’s mechanism. In their mechanism, a user’s signature is verified at
the AP from which the user is requesting a location proofs. However, in our architecture a
user’s signature is hashed to conceal the user’s identity from the AP, thus it is not verified
by the AP. Instead, applications are entities responsible for verifying signatures; moreover,
only when the user presents her location proof to the application is her signature verified.
There are two advantages of shifting this workload from the AP to the application. For
one thing, APs are weaker devices compared to applications in terms of computing power.
Verifying cryptographic signatures is an expensive operation, so performance of APs will
decline drastically if this operation is executed very often. But application servers are typ-
ically more powerful devices and capable of handling a large volume of costly operations.
For another, signature verification is sometimes unnecessary. For instance, if a user collects
location proofs precautionarily as evidence for future police investigations that she may get
involved in, those location proofs may not get used during the user’s lifetime. Therefore,
it will be misallocation of resources for APs to verify user signatures when issuing these
unlikely-to-be-used location proofs. But when it is time for users to present location proofs
to interact with applications, validity of the signatures does need to be checked without
any doubt; in other words, verification at this stage is necessary and more appropriate. In
our architecture, by shifting workload of user signature verification from APs to applica-
tions, we ensure this expensive operation is carried out by appropriate parties with enough
computing power and is executed only when it is necessary.

In the example of police investigation mentioned above, it may appear desirable for
users to always request location proofs proactively, so that when they are involved in legal
issues related to proving or disproving their location, they will be able to do so by revealing
their proofs. But location proofs are obtained under the assumption that users are carrying
their devices when proofs are requested (see section 2.3.1). Although this assumption is

14

very likely to hold in practice, people that intend to commit crime are likely to break
this assumption deliberately by leaving their devices at a place different from the crime
scene and collecting location proofs which could help prove their innocence. Location
proofs provide additional security and evidence when it comes to proving or disproving
people’s location, but they are unsuitable to serve as hard evidence for people’s locations.
Therefore, having people always request proofs proactively does not help here. In fact, this
could even damage user privacy in some circumstances such as users being forced to reveal
their proactively requested proofs.

2.4.6 Scenarios Where the Lightweight Architecture Applies

The architecture introduced in this section is a lightweight architecture in that the protocol
requires relatively few round-trip communications and only three parties are involved:
user, AP, application. In contrast, the complete architecture that will be presented in
section 3.4 not only possesses all the functionalities of this lightweight architecture, but is
also more feature-rich at the cost of more computational overhead and more complicated
working model with more parties involved. Although the complete architecture proves
more powerful than this simple one, the lightweight architecture still has its value and
is a better option in some scenarios. For example, Saroiu et al. provide an interesting
application of location proof: green commuting. Microsoft gives rewards to its employees
who use other ways of commuting, such as taking buses, than driving their own cars. This
green commuting program requests a location proof architecture to allow employees to
collect location proofs issued by APs near bus lines. However, the reward is not significant
enough to give employees initiatives to bother the inconvenience of cheating. This is an
ideal scenario where the lightweight architecture outshines the more complicated one due
to its low computational overhead and cost of setup. However, in some other scenarios
such as presenting location proofs in police investigation, it is critical to detect cheating
and protect user privacy, which requires the more heavyweight architecture in spite of
its overhead and cost. Therefore, we next introduce a more powerful architecture that
addresses more stringent location proof requirements.

15

Chapter 3

Complete Architecture

3.1 Introduction

In this chapter, we present the last three of our seven design goals and present a complete
location proof architecture that meets all the design goals. The chapter is organized as
follows. We state the last three of our seven design goals in section 3.2, which is followed
by the trust assumption in section 3.3 and the presentation of a complete architecture in
section 3.4 that incorporates these three goals. In section 3.5, we provide several obser-
vations of the complete architecture. Finally, we discuss deployment strategies in section
3.6.

3.2 Additional Design Goals

The architecture introduced in section 2.4 has three missing features that could be beneficial
in practice. We formalize these three features as additional design goals below.

Before diving into the details, we must point out the necessity of splitting our seven
design goals (with the first four in section 2.2 and the last three in this section). As argued
in section 2.4.6, a full-blown architecture with a complete set of features is not necessarily
suitable for all scenarios and can actually prove cumbersome. Therefore, we identify the
four design goals in section 2.2 as the most crucial requirements for both lightweight and
heavyweight architectures, and present a lightweight architecture that realizes those design
goals. In this section, we will present three additional design goals that will be realized by
a more heavyweight and powerful location proof architecture.

16

Granularity level 1 2 3 4 5 * (wildcard)
Location information country province city street building all

Table 3.1: Location granularity

3.2.1 Location Granularity

Although a location proof generated by the protocol in section 2.4.2 contains location infor-
mation, the application can learn more location information by investigating the location
of the issuing AP. For example, if a certain service is offered to residents in Canada, users
presenting a location proof issued by an AP in Montreal not only proves their qualification,
but also reveals overly detailed location information, thus allowing for applications to track
their location.

As the first step of providing location granularity control, we define 6 location gran-
ularity levels as shown in table 3.1. Next, we make changes to the architecture and the
protocol to allow users to specify desired location granularities in the proof. Last but not
least, we hide the issuing APs from the application, because otherwise the application can
find out the detailed location of the issuing AP, which makes location granularity control
evaporate.

3.2.2 Proactive Location Proof Requests

In the architecture introduced in section 2.4, users are aware of which APs the application
trusts as well as the desirable location granularity before requesting a proof. But more often
than not, users may just want to collect location proofs for future purposes. For example, if
a user would like to be able to provide evidence for her presence at some location in possible
police investigation, she may tend to collect location proofs whenever she is nearby APs.
Another example is that users foresee upcoming LBSes and applications may require proofs
of their location, thus, they will have incentives to collect location proofs before hand.

We define two terms to be used in later discussion.

• Retroactive location proof is a location proof that is requested by a user to
interact with a target application.

• Proactive location proof is a location proof that is collected by a user for future
purposes, without having a target application in mind at the time of request.

To allow for proactive location proofs, we must make sure location proofs do not contain
application-specific data; in other words, they should be crafted to follow a general format.

17

3.2.3 Cheating Detection

The architecture in section 2.4 allows applications to verify a location proof is legitimate
in the sense that the application can check whether the proof has been tampered with by
the user, and whether it is issued by a valid AP. However, if a dishonest user manages
to obtain location proofs from multiple far-apart APs simultaneously by colluding with
multiple parties, cheating can not be detected. For example, a dishonest user may launch
wormhole attacks by colluding with two malicious intruders in Los Angeles and New York
respectively, to obtain two location proofs that certify this user’s presence in both places
at the same time. Later on, the user can present the proof obtained in Los Angeles to
application A, and present the other proof to another application B to prove her location
in both places. Since application A and B are probably run by different service providers,
they have no share knowledge of the dishonest user’s location and thus will both believe
the user’s proof is legitimate. Note that this is a special type of wormhole attack in that
it involves a dishonest user launching the attack with multiple remote parties at different
places. We will elaborate on how the complete architecture can detect this attack in section
3.4.3, but we do not aim to solve general form of wormhole attacks.

Users are not the only entities that may lie. As stated in section 2.3.2, a malicious or
misconfigured AP may also generate location proofs with fake information. For example,
the operator of an AP in Los Angeles may be bribed by a local user to configure the AP
in such a way that it generates location proofs representing places in New York.

These examples suggest we need a mechanism to detect cheating.

3.3 Trust Assumptions and Threat Model

3.3.1 Working Model and Roles of Trusted Third Parties

The basic working model of the revised architecture is that we let an AP issue an informal
location proof that certifies the user’s presence near the AP. Later when the user wants to
provide the application with a formal proof, she must first presents her informal proof to
one of the TTPLs (introduced next) that the application trusts to obtain a formal location
proof.

In order to achieve these goals, we need three types of trusted entities and they need
to be run by different parties.

• TTPLs (Trusted Third Party for managing Location information) are responsible for
issuing formal location proofs by creating a new proof that includes all the infor-
mation contained in informal location proofs, with some information transformed to

18

another representation. In particular, A TTPL should replace the AP identity (i.e.
IDAP) in an informal proof with the actual location information and an encrypted
IDAP when copying it to a formal proof. Furthermore, A TTPL should make its
mapping from AP identities to geographical locations publicly available. A TTPL
can create the mapping from APs to geographical locations in two ways: (1) a TTPL
can use war-driving to collect AP information, or (2) a TTPL can receive reports
of APs’ location from companies that operate the APs and verify the correctness
of that information. The disclosure of AP-to-location mapping serves two purposes:
(1) Applications can verify the accuracy of these mappings and decide which TTPLs
to trust. (2) The CDA (introduced later in this section) can directly use TTPLs’
mappings in its cheating detection procedure, thus dispensing with the overhead of
maintaining an AP-to-location database itself. Several TTPLs exist in our archi-
tecture, each of which is trusted by different applications. For example, TTPLs in
charge of issuing proofs for all Starbucks APs are trusted by Starbucks stores but
probably not by Tim Hortons.

• TTPU (Trusted Third Party for managing User information) is in charge of storing
encrypted location information associated with users. More specifically, the TTPU
stores triples of the form (IDuser, T, E), where T represents the time when the user
(with identity IDuser) requested a proof and E represents encrypted identity of the AP
that issued the proof to the user. In a word, each record shows when and where (to be
more precise, encrypted “where”) a particular user requested a location proof. When
verifying the formal location proof submitted by the user, the application submits
IDuser and T to the TTPU, which searches in its database for any record matching
the same IDuser and roughly the same T value. The TTPU extracts corresponding E
values and submits them to the CDA (introduced next) for cheating detection. Note
that location information is encrypted with the CDA’s public key.

• CDA (Cheating Detection Authority) is the entity that carries out the actual cheating
detection action. After receiving encrypted location information from the TTPU, the
CDA decrypts them and checks whether any two locations are far apart, which is
a sign of cheating (because the same user can not request location proofs at two
far-apart places simultaneously). The CDA notifies the TTPU in case cheating is
detected. As mentioned above, the CDA does not manage its own AP-to-location
database; instead, it makes use of the mapping published by the TTPL that issued
the formal location proof.

19

3.3.2 Revised Trust Assumptions and Threat Model

Like the lightweight architecture, our complete architecture targets those applications that
are not written by mobile service providers and not authorized by mobile service providers
to access users’ location information.

Neither users nor APs are trusted by applications, because users have incentives to lie
about their location and APs may defect to collude with users. We list trust assumptions
on three kinds of trusted third parties (TTPs) as follows.

• TTPLs are trusted by applications to replace AP identity in informal location proofs
with correct location information when producing formal proofs. In addition, TTPLs
are trusted to encrypt the correct AP identity from an informal location proof and
include the resulting ciphertext in the formal proof. A particular TTPL may be
trusted by some applications and distrusted by the others. Therefore, when a user
wants to convert her informal location proofs into formal proofs, she should consult
the application first to get a list of TTPLs trusted by that application. TTPLs are
trusted by users not to collude with applications. Otherwise TTPLs and applications
can collectively track users’ location. Last but not least, TTPLs are trusted not to
collude with users or APs to provide fake location information in formal location
proofs, because otherwise the cheating detection mechanism in our architecture will
fail.

• TTPU is trusted by applications to assist in cheating detection. More specifically,
when an application submits a user’s ID and time T to the TTPU, the TTPU should
retrieve from its database all the records of the target user with time value close to T ,
and submit corresponding E value to the CDA for cheating detection. Furthermore,
the TTPU is trusted by applications to forward cheating detection results from the
CDA to applications without altering the results. The TTPU is also trusted by users
to not disclose their identities to the CDA, because otherwise users may be tracked
by the CDA. If the TTPU defects, it may collude with users to make their cheating
undetected by returning fake cheating detection results to applications. For example,
when receiving IDuser from an application, the TTPU only extracts a subset of all
the records of the user such that the CDA does not have sufficient information to
detect cheating. Even simpler, the TTPU can skip the step of contacting the CDA
and simply notify the application that no cheating behavior was detected. Therefore,
if the TTPU violates these trust assumptions, cheating detection mechanism in our
architecture will fail.

• CDA is trusted by applications to conduct cheating detection and report results
honestly. The CDA is also trusted by users to keep their location information con-
cealed from the TTPU. If the CDA becomes malicious, it may be bribed by users to

20

not report cheating. Moreover, a malicious CDA may also collude with the TTPU to
track users’ location, since the TTPU knows users’ identities and associated E which
can be decrypted by the CDA.

Finally, we assume all the TTPs are run by different organizations. This is an approach that
has also been taken by other researchers [7, 17]. However, we did study approaches without
such TTPs in section 3.5.3, but they are not as effective as our TTP-based approach (see
section 3.5.3 for explanation). Overall, TTPs play essential roles in the complete architec-
ture. How much the TTP-based infrastructure can be addressed by using cryptography is
discussed in section 3.5.3.

Finally, we assume communication is secured against passive and active eavesdroppers
with the help of TLS/SSL.

3.4 Architecture for Obtaining and Verifying Loca-

tion Proofs

In this section, we design a more heavyweight architecture to fulfill the additional design
goals discussed in section 3.2.

3.4.1 Obtaining an Informal Location Proof

Before the user can request a formal location proof from a TTPL, she must request an
informal proof from an AP by executing the following protocol. As usual, we use the user’s
and APs’ public keys as their identities, i.e. IDuser = Puser and IDAP = PAP, where Puser

and PAP stand for public keys of the user and the AP respectively.

1. The user sends IDuser and e1 ‖ Suser (e1) to the TTPU, where e1 = Enc (keyCDA, IDAP)
is the encrypted IDAP with the CDA’s public key and IDAP is the identity of the AP
from which the user attempts to request an informal location proof.

2. The TTPU sends the user a random nonce nTTPU.

3. The user sends
nuser ‖ Suser (nTTPU ‖ nuser)

to the TTPU, where nuser is a random nonce generated by the user.

21

Figure 3.1: Request an informal location proof

4. The TTPU verifies the user’s signature Suser (nTTPU ‖ nuser) (the scalability issue of
the TTPU is discussed in section 3.5.1). The TTPU then stores (IDuser, TTTPU, e1)
in its database, where TTTPU is the time when the TTPU receives the request from
the user. A new record of the user is added to the TTPU’s database every time the
user registers with the TTPU before requesting a location proof. Finally, the TTPU
sends the following token to the user.

TokenTTPU = Tk ‖ STTPU (Tk)

where

Tk = hash (Suser (nTTPU ‖ nuser)) ‖ TTTPU ‖ hash (Suser (e1)) ‖ e1 ‖ nTTPU

5. The user sends TokenTTPU to the AP.

6. The AP sends to the user an informal location proof of the following format.

Pr ‖ SAP (Pr)

where
Pr = TokenTTPU ‖ TAP ‖ IDAP

and TAP is the time when the AP receives the request.

This procedure is demonstrated in figure 3.1.

22

3.4.2 Obtaining a Formal Location Proof

The user executes the following protocol to obtain a formal location proof.

1. The user sends the informal location proof obtained from an AP and the desired
location granularity g to the TTPL, where g = 1, . . . , 5.

2. The TTPL examines whether the proof contains a TTPU token. If it does not, the
request is rejected. Otherwise, the TTPL replaces IDAP field with Lg which is actual
location information of granularity level g. Moreover, the TTPL includes encrypted
IDAP with the CDA’s public key in the proof for applications to check whether the
user has cheated when registering with the TTPU. Finally, the TTPL sends to the
user a formal location proof of the following format.

Pr′ ‖ STTPL (Pr′)

where
Pr′ = TokenTTPU ‖ TAP ‖ e2 ‖ Lg

and e2 = Enc (keyCDA, IDAP)

This procedure is demonstrated in figure 3.2a. Note that although Enc (keyCDA, IDAP)
is already included in TokenTTPU, APs may cheat. Therefore, the TTPL must include it
again in the proof for the CDA to check for cheating later.

The above protocol applies to the case where the user has a desired location granularity
in mind. But as we discussed in section 3.2.2, the user is unlikely to know what granularity
to ask for when she requests in a proactive manner. The strategy to deal with this case is
to include in the proof encrypted location information of every granularity level and allow
the user to selectively reveal location information of the desired granularity. The modified
protocol is as follows.

1. The user sends the informal proof obtained from an AP and the wildcard location
granularity g = ∗ to the TTPL.

2. The TTPL generates a root key key5, which is used to encrypt the most granular
location information, that is, L5 = Enc (key5 , location of granularity level 5). For
granularity level g = 4, . . . , 1, the TTPL computes

keyg = hash
(
keyg+1

)
Lg = Enc

(
keyg , location of granularity level g

)

23

(a) Request a formal location proof retroactively(b) Request a formal location proof proac-
tively

Figure 3.2:

The TTPL sends to the user the root key key5 and a formal location proof of the
following format.

Pr′ ‖ STTPL (Pr′)

where
Pr′ = TokenTTPU ‖ TAP ‖ e2 ‖ key1 ‖ L1 ‖ . . . ‖ L5

and e2 = Enc (keyCDA, IDAP)

This procedure is shown in figure 3.2b.

Direct communication with the TTPL reveals the user’s identity such as her MAC
address, so communication should be anonymous. Users can use tools such as Tor to
achieve anonymity, which is discussed in section 3.5.5.

3.4.3 Verifying a Formal Location Proof

The user submits nTTPU, nuser, Suser (nTTPU ‖ nuser), Suser (e1), IDuser and Pr′ ‖ STTPL (Pr′)
to the application. In order to verify the location proof, the application carries out the
following procedure:

1. The application first verifies Suser (e1) submitted by the user is a valid signature
and its hash value equals the second hash value contained in the TTPU token.
Furthermore the application verifies Suser (nTTPU ‖ nuser) submitted by the user is
a valid signature and the nTTPU submitted by the user matches the nTTPU in the
TTPU token. The application then computes the hash value of this signature, i.e.
hash (Suser (nTTPU ‖ nuser)), to make sure it equals the first hash value in the TTPU
token.

24

2. If the above step is passed, the application verifies whether TAP (extracted from the
location proof) and TTTPU (extracted from the TTPU token) represent approximately
the same time. The meaning of “approximately” varies depending on the specific
application which is discussed in section 4.2.7.

3. If the above step is passed, the application sends IDuser, TTTPU, e1 and e2 to the
TTPU for cheating detection. Moreover, the application notifies the TTPU which
TTPL issued the formal location proof.

4. With TTTPU and IDuser, the TTPU is able to pull out all the records of the user with
approximate TTTPU value from its database. The TTPU then extracts from all these
records the encrypted identities of APs which issued the user location proofs around
time TTTPU, and send the ciphertexts to the CDA. Moreover, the TTPU also sends
e1 and e2 to the CDA and informs the CDA which TTPL issued the formal location
proof.

5. The CDA decrypts all the ciphertexts to reveal AP identities. If any decrypted ci-
phertext does not reveal a valid AP identity, the CDA aborts the checking procedure
and reports to the TTPU that the user has cheated. If all the ciphertexts are de-
crypted to valid AP identities, the CDA compares whether IDAP1 = IDAP2 , where
IDAP1 is decrypted from e1 and IDAP2 is decrypted from e2. If these two decrypted
AP identities are not identical, the CDA aborts the checking procedure and informs
the TTPU that the user has cheated. Otherwise, the CDA proceeds with the rest
of the procedure by examining whether any two IDAP’s are far apart, which is an
indicator of cheating, since it is impossible for the same user to simultaneously ob-
tain multiple location proofs from different places at roughly the same time unless
the user cheats by launching wormhole attacks. Note that when executing this step,
the CDA should obtain and use the AP-to-location mapping published by the TTPL
that issued the formal proof. Finally, the CDA reports to the TTPU whether the
user has cheated, which is forwarded to the application by the TTPU.

If all the steps above are passed successfully and no cheating is detected, the application
accepts the proof. If the proof is a “retroactive” location proof, the application can use the
Lg part in the proof directly. However, in the case the user requested the proof proactively,
the user needs to decide a desired granularity g and to send the application the appropriate
decryption key keyg for decrypting Lg. For instance, if the user intends to reveal location
information of granularity level 3, she should first compute key4 = hash (key5) and key3 =
hash (key4), and then send key3 to the application. On receiving the decryption key,
the application must make sure the user submitted a proper key by doing the following
computation: for i = g, . . . , 1, keyi = hash

(
keyi+1

)
. If the computed key1 matches the

key1 in the location proof, the application can be certain the decryption key submitted by
the user is valid.

25

Figure 3.3: Verification of location proofs

This procedure is sketched in figure 3.3.

3.4.4 Security Analysis

The architecture presented above defeats collusion between users and APs. Assuming in-
formation in the TTPU token is correct, if users and APs collude to produce informal
location proofs with fake information, it will be detected during the verification phase, be-
cause the information that an AP places in an informal proof can be verified by comparing
corresponding fields in the TTPU token. For example, an incorrect TAP or IDAP will be
detected in step 2 and 5 of the verification phase respectively.

However, the TTPU token may contain incorrect information, since the user may cheat
by submitting a wrong IDAP when registering with the TTPU. For example, a dishonest
user may submit Suser (Enc (keyCDA, IDAP1)) to the TTPU to obtain a TTPU token, while
she is actually attempting to request a location proof from another AP with identity IDAP2 .
No matter whether she further colludes with AP2, her cheating will not succeed. Assume
AP2 behaves honestly and places its real identity IDAP2 in the informal proof. In this case,
the dishonest user has no way of preventing the TTPL from copying the correct IDAP2

committed by AP2 to the formal location proof, which allows the application to detect the
cheating in step 5 of the verification phase. If AP2 does collude with the user and puts the
incorrect identity IDAP1 in the informal proof, it is not able to sign the proof with AP1’s
private key. Therefore, the user’s attempt to cheat by submitting incorrect information to
the TTPU fails regardless of whether the AP colludes with her.

A TTPU token is valuable to the user, since a valid location proof must contain a valid
TTPU token. Therefore, attackers have incentives to steal legitimate users’ TTPU tokens
by eavesdropping on their communication with the TTPU. Once the attacker succeeds
in obtaining a TTPU token, she will use it to request informal location proofs from APs
without having to register with the TTPU first. Moreover, the attacker may also try to

26

sell it to other users who also intend to cheat by using other people’s TTPU tokens. But
since each TTPU token contains a signature of its intended recipient, nobody can exploit
other people’s TTPU tokens.

Replay attacks take place when a user reuses the same TTPU token she previously
obtained for requesting more than one location proof. However, this type of attack is also
defeated in our architecture. A TTPU token produced by the TTPU contains 5 fields as
illustrated in section 3.4.1. The second field (the time when the user is about to send
a location proof request to the AP) and the fourth field (the AP from which the user
attempts to request a proof) specify when and where the user tries to request an informal
location proof. The AP that issues an informal location proof to the user has to provide
the “when” and “where” information once again in the informal proof, and include the
TTPU token as the first field of the proof, which is required by TTPLs. Therefore, if the
user reuses the same TTPU token with the same AP, the AP has no choice but to enter
correct “when” and “where” information in order to produce a valid proof. On the other
hand, if the AP colludes with the user and provides incorrect information in the proof,
inconsistency will be resulted from comparing the incorrect information with the valid
information in the TTPU token, thus the verification procedure will fail and the proof will
be rejected. If the user reuses the same TTPU token with a different AP, that AP has no
way of proving itself to be the AP indicated in the TTPU token, since it does not possess
the private key of the AP in the token and thus unable to produce informal proofs with
correct signature. Therefore, even if the user manages to collude with another AP to reuse
previously obtained TTPU token, informal location proofs produced by the colluding AP
can never be used to obtain a formal location proof from TTPLs because they lack valid
signature.

Another form of replay attack also exists. An attacker eavesdrops on communication
between the user and the TTPU to intercept data E in the first step of TTPU registration
(see section 3.4.1). Then the attacker stands down. Note that E contains the encrypted
identity of the AP from which the user plans to request a location proof. Later when the
same user tries to register with the TTPU again but in order to request location proofs
from different APs, the attacker eavesdrops on the user’s communication again and replaces
the E in the first step with the E intercepted early on. This way, the user unintentionally
commits to a wrong AP and will be accused of cheating while totally unaware of being
framed by the attacker. This attack is defeated by communicating over TLS/SSL. As
stated in section 3.4.1, communication between the user and the TTPU should always be
protected by TLS/SSL.

Applications and the TTPU should be prevented from knowing IDAP, i.e. the identity
of the AP that issued location proofs to the user, since the knowledge of IDAP will allow
them to deduce the user’s accurate location by investigating the AP’s geographical location.
Instead, both the application and the TTPU are given the encrypted IDAP when the user

27

presents her formal location proof. Applications and the TTPU may use brute-force attack
to try to break the protection of encryption: they encrypt identities of all the APs in the
world using the CDA’s public key and compare ciphertexts to the ciphertext of encrypted
IDAP in the user’s proof. If two ciphertexts are identical, they will learn which AP issued
the proof. However, we use probabilistic encryption as specified in section 2.4.1, which
produces different ciphertexts each time the same message gets encrypted. Therefore,
using brute-force attack to break the security of our architecture is not possible.

Even though we state in section 3.3.2 that a TTPL is trusted to encrypt the correct
IDAP from an informal proof and include the resulting ciphertext in the formal proof,
this assumption is not required for the application to detect and reject invalid location
proofs. If a TTPL encrypts an incorrect IDAP in the formal proof, the CDA will capture
this anomaly during cheating detection phase, so the proof will not be accepted by the
application. However, the user will be wrongly accused of cheating whereas the TTPL is
the real culprit to blame in this case. Therefore, this trust assumption is still required in
our architecture to ensure honest users are not framed by TTPLs.

3.5 Observations On the Complete Architecture

3.5.1 Scalable TTPU

The TTPU is shown as a single server in figure 3.1, but this is unrealistic in real-world
deployment due to the high performance demand of the TTPU. Because the TTPU must
act as a global entity that stores user information for the purpose of cheating detection,
there cannot be multiple independent TTPUs as in the case of TTPLs, since independent
TTPUs will each have a subset of global user information, which is insufficient for cheating
detection. A high performance data center is a suitable choice for the TTPU. Moreover,
servers of the data center should use a centralized database to store user information for the
purpose of cheating detection. Since whenever a user tries to request an informal location
proof from an AP the TTPU must be contacted first to get a TTPU token, this raises
substantial scalability requirement of the TTPU.

A memcached system [22], which is widely used by many websites such as Wikipedia
and Facebook that serve an enormous amount of users, is a viable option for making the
TTPU data center scalable. A memcached system is a distributed and high performance
memory caching system that reduces the number of database access by caching data on
several machines. Memcached servers cache data locally. When a program on a memcached
client inserts a chunk of data to the database or updates the database, it also caches the
data on a memcached server. Later on, when the program on the memcached client needs
to read the data, before it queries the database, it queries all the memcached servers and

28

uses data from the cache if available. Since the memcached client sends the query to all the
memcached servers in parallel, and the communication protocol used by memcached system
is very efficient, performance can be boosted dramatically. To benefit from memcached, the
TTPU data center needs to spare several machines to run as memcached servers. The rest
of the data center are run as memcached clients and rely on memcached servers to cache
user data during TTPU registration, so that the need of database access to retrieve user
data to complete the second step of TTPU registration could be eliminated. If the data
center fails to scale up as the number of user requests increases above a certain threshold,
we can split the data center into several data centers, each of which handles a particular
range of users. For example, based on the value of the first byte of users’ IDs, user requests
can be routed to different data centers.

3.5.2 How to Choose Between Retroactive and Proactive Loca-
tion Proofs

A user can request formal location proofs from TTPLs in either a retroactive or a proactive
manner as discussed in section 3.2.2. There are good reasons to use either approach, so
which option to choose depends on users’ preferences and various considerations.

There are two advantages of using proactive approach. First, since location proofs
obtained using proactive approach can also be used in the retroactive case, a proactive
proof is more general. Second, even if the user knows the desired location granularity for
the time being, she might have to change it when encountering new applications in future.
For example, suppose Alice obtains a location proof of granularity level 3 and uses it to
interact with application A. Some time later, she needs to interact with another application
B which requires location proofs for the same location but with granularity level 4. In this
case, Alice has to request a new proof from TTPLs again. It might have been wiser for her
to obtain a proactive proof in the first place. In addition, TTPLs may go down temporarily
for maintenance. With a proactive proof, the user does not need to constantly go back
to TTPLs whenever she wants to change the location granularity, thus suffering less from
unavailability of TTPLs. According to our measurements, a proactive proof is about 22%
larger in size than a corresponding retroactive proof (but both are smaller than 4 KB), and
it takes a TTPL roughly 127% more time to produce a proactive proof (but both cost less
than 0.3 millisecond). Therefore, proactive proofs do not have a significant disadvantage in
contrast to retroactive proofs in terms of storage and processing time required, especially
when storage is getting cheaper and mobile devices are getting faster. How often a user
should request proactive proofs depends on the user’s behavior pattern. The more frequent
the user travels, the more frequent she should request proactive proofs.

There are valid justifications of using a retroactive approach as well. For example, a
formal location proof obtained in a retroactive manner is smaller in size than a proactive

29

proof which contains location information in every granularity level. Thus, for devices with
small space, retroactive approach is more storage-friendly. Users can typically carry infor-
mal proofs most of the time and convert them to formal proofs of appropriate granularities
right before they need formal proofs to interact with applications.

3.5.3 Two Alternatives to Trusted Third Parties

One of the major motivations of introducing trusted third parties to our location proof
architecture is to hide AP identities from applications. This step is essential for protecting
users’ location privacy and supporting proactive location proofs. However, during the
development of the architecture, we were inspired by another two approaches that could
potentially allow us to achieve the same goal. We elaborate on these two alternatives below
and explain why they are abandoned in favor of our current approach.

Group Signature Schemes

A group signature scheme [4] is a cryptographic mechanism for allowing members of a
group to anonymously sign a message on behalf of the group. The central element in
a group is the group manager who is in charge of group management such as adding a
new group member and revoking a group member’s ability to sign. Anyone can verify
the correctness of the group signature but is unable to learn which member in the group
produced it. By leveraging a group signature scheme, a number of APs can form a group
to issue location proofs without revealing their identities, and the only thing learnt by
the proof verifier is the group identity instead of the identity of individual APs. Despite
the elegance of this approach and lower overhead (since trusted third parties can now be
eliminated), group signature schemes are not appropriate for three reasons. Firstly, there
are no sensible means to elect a group manager in the setting of an AP environment. APs
in a particular region are run by different organizations, and those APs that belong to
a certain organization function independently of those operated by another organization.
Hence, there lack plausible motivation and mechanism for all these organizations to elect
a group manager trusted by all other organizations. Secondly, it is difficult to set up
a group such that location privacy and manageability are achieved at the same time.
Large companies such as AT&T may choose to deploy group signature schemes on their
APs. However, this kind of setup leaks user location information. For example, if an
organization deploys APs only in a specific city or province, a location proof issued by
any AP belonging to this organization reveals that the user was/is in that particular city
or province, regardless of group signature schemes being used. Some small organizations
may form an alliance and deploy group signature schemes to allow users to achieve better
location privacy; however, the management of such a group will become troublesome if

30

the size of the group is too large, whereas trying to keep the group size small does not
provide satisfactory location privacy. Thirdly, an AP can be a member of only one group
in a group signature scheme. If it were a member of multiple groups, it would have to sign
a proof multiple times, once for each group, which is expensive. But if the AP belongs to
only one group, it could result in problematic situation where applications do not trust the
group manager but might trust some of the APs that are in the group. In this case, it is
hard for the application to decide whether to continue its trust in those APs. Therefore,
this approach has several problems in practice and not adopted in our architecture. Our
architecture does not suffer from these problems, because in our architecture APs do not
need to be managed by a central group manager; instead, companies and organizations set
up and manage their own APs.

Delegatable Credential Schemes

Belenkiy et al.[2] proposed a delegatable credential system where users can obtain creden-
tials from an authority and in turn delegate credentials to others. With such a system,
we can build a hierarchical architecture for delegating location proofs. More specifically,
a trusted root delegator is first established to issue location proofs representing the most
coarse-grained location. Lower delegators obtain proofs from higher delegators and delegate
new proofs, which are concatenation of proofs from higher delegators and more granular
information at the current level, to other delegators or end users. An end user with a
location proof can choose to reveal a prefix of the delegation path as her location proof.
For instance, the root delegator for Canada delegates to provincial-level delegators location
proofs labeled “Canada”. Provincial-level delegators extend the proof with the location
of the province name. For instance, delegators of Ontario create location proofs labeled
“Canada, Ontario” based on the proof issued by the delegator for Canada. Similarly, del-
egators of Waterloo extends location proofs issued by delegators of Ontario with location
“Waterloo”, and again these proofs can be further extended by the delegator of the Uni-
versity of Waterloo with location “University of Waterloo”. More granular location proofs
can be produced in this fashion. An end user in the possession of such a location proof
can choose to reveal a prefix, like “Canada”, “Canada, Ontario”, or “Canada, Ontario,
Waterloo”, etc, of the delegation path to an application that requires location proofs.

Two key features of Belenkiy et al.’s credential delegation system are non-malleablility
of the delegation path and anonymity of delegators, which are crucial to the location proof
architecture. The property of non-malleablility states that a particular delegator is unable
to change the delegation path accumulated so far. Delegators may cheat, but they may
cheat only in the sense that they are able to extend higher delegators’ credentials with an
incorrect credential, instead of replacing the delegation path with a fake path entirely. For
example, malicious delegators of Waterloo may extend the proof “Canada, Ontario” with

31

city name “Toronto” instead of “Waterloo”, but they are not capable of producing location
proofs like “Canada, Alberta, Edmonton” or “USA, Maryland, Annapolis”. This property
prevents malicious delegators and users from forging fake location proofs on their own.
The second property protects users’ location privacy by hiding identities of delegators. An
end user should not reveal the signature of the location proof since that will disclose the
identity of delegators, which in turn will enable applications to obtain the most granular
location information by looking up the location of the delegators. Instead, the user should
execute a zero-knowledge proof protocol with the application to prove her possession of a
location proof with a valid signature, instead of having to present the proof along with the
signature.

Although the hierarchical structure of this credential delegation system neatly mimics
the hierarchical relationship of geographical location, the system is impractical. A ma-
jor hurdle of adopting a credential delegation system in practice is that it is difficult to
design a mechanism where the location hierarchy formed by the location credentials can
efficiently interact with organizational hierarchies. For example, a company may have sev-
eral branches all over Canada, but the delegator of Waterloo should delegate only to APs
of that company that are located in Waterloo region, which makes credential management
more difficult.

Advantages and Disadvantages of Our Approach

Our approach relies on two trusted entities, the TTPU and TTPLs, to prevent the situation
where a single entity simultaneously learns user identity and location information. In our
approach, a user and an application need to trust a TTPL; but since there can be multiple
TTPLs, the user and the application can try to find a TTPL that is trusted by both of
them. Each TTPL has its own rules of deciding whether an AP should be trusted. For
instance, a TTPL may choose to trust APs belonging to some high profile organizations
or companies with outstanding public reputation, or it could place trust in APs whose
user population is above a certain threshold, or it can decide to trust those APs that have
their public keys certified by a certain CA, etc. Many more options for TTPLs to filter
out untrusted APs are possible. Therefore, there is more flexibility in our approach than
in the schemes mentioned above.

Nonetheless, our approach is not without shortcomings. Obviously, overhead associated
with setting up and maintaining trusted third parties is inevitable. This is especially true
for the TTPU; as already elaborated in section 3.5.1, a memcached data center is the most
suitable choice for a scalable TTPU. Building a trusted third party of this scale is rather
expensive.

32

3.5.4 Necessity of the CDA

We have investigated possibilities of replacing the CDA in the location proof architec-
ture with appropriate algorithmic or cryptographic techniques. However, the fundamental
difficulty in achieving this goal lies in the fact that whether two APs are nearby is not
determined at proof issuing time but at proof verification time. Therefore, it is extremely
difficult to find an appropriate encoding of APs’ locations that will allow us to determine
whether two APs are nearby at the verification time without revealing geographical location
of the APs. More specifically, if we dispense with the CDA, then we must record location
information of the APs in some form at proof issuing time, so that applications can inves-
tigate whether two far apart APs issued location proofs to the same user at roughly the
same time. Since applications must not know the identities and exact location of the APs,
the recorded information must not leak AP information but still enables the application
to compute the closeness of the two APs. This task is rather challenging, if not entirely
impossible, because it is decided by the application that how close is deemed “nearby” at
proof verification time, but encoding of the APs’ location is conducted by the APs or other
parties at proof issuing time.

3.5.5 Achieve Extra User Anonymity Through Third Party Tools

Even though user privacy is an essential design consideration, privacy leakage is still pos-
sible in the our architecture. When a user communicates with a TTPL to obtain formal
location proofs, although the TTPL is unable to learn the real identity of the user, nothing
prevents it from tracking the user’s IP addresses. Users can take advantage of anonymity
tools such as Tor [32] or proxies to protect their privacy. The reason why we do not incor-
porate these components in the architecture is that users typically have different privacy
requirements depending on their needs and preferences. For example, if the user demands
high performance but cares less about her privacy, using Tor or proxies would be an overkill.
Therefore, our architecture does not force users to make such strong privacy commitment,
but users should adopt additional anonymity tools whenever appropriate.

3.6 Deployment Strategies

Our location proof architecture is suitable for enterprise networks where public APs are
run by organizations or companies. For example, AT&T, which runs public APs all over
the US, could deploy our architecture.

It is common for a large enterprise to run dozens of APs at the same time. For instance,
chain stores may deploy an AP around each branch to allow customers to collect location

33

Figure 3.4: Deployment of location proof architecture for an enterprise network

proofs from these APs in order to participate in the stores’ loyal customer program. If
every AP belonging to the same company is locally installed with a location proof issuing
system, any upgrade or patch on the location proof system will require changes on all
the APs. This working model not only is error-prone, but also creates huge maintenance
overhead for companies that operator these APs. For the sake of flexible management, a
centralized controller provides a viable solution.

Figure 3.4 displays our proposed deployment configuration of the location proof archi-
tecture for an enterprise network. A central controller, which all the APs are connected to,
is responsible for interacting with users and issuing location proofs. A user can associate
with one of the APs and send a location proof request to the central controller through
the AP. The AP, which the user associates with, sends to the central controller an asso-
ciation message informing the controller of the IP address of the user. Subsequently, the
controller adds an entry to its association table to record the user’s IP address along with
that particular AP’s ID, and the location proof issued to this user will be signed using that
AP’s private key. In some cases, the controller might have a specific IP address allocation
method that allows it to automatically learn which AP the user is associated with based
on the user’s IP address. For instance, the controller might configure AP1 to allocate IP
addresses of range 192.168.1.1 to 192.168.1.100 and AP2 to allocate IP addresses of range
192.168.1.101 to 192.168.1.200. Thus, if the request comes from a user with IP address
192.168.1.3, then the controller will know the user must be associated with AP1. In this
case, there is no need of managing an association table on the controller. In order to issue
a location proof on behalf of APs, the controller must have the private keys of all the APs.
Therefore, the private keys of the APs under the control of the controller are all stored on
the controller.

34

This enterprise-level deployment strategy is used in our implementation and actual
deployment of the complete architecture, which is detailed in section 4.2.

35

Chapter 4

Implementation and Experiments

4.1 Introduction

This chapter presents the implementation and evaluation of the complete location proof
architecture. In section 4.2, we provide implementation details of the TTPL, the TTPU
and the CDA, as well as the testbed where we deployed our architecture. In section 4.3,
we summarize experimental results regarding the performance of our architecture. Finally,
we present three real world applications that we developed that are based on our location
proof architecture in section 4.4.

4.2 Implementation

In this section, we elaborate on our wireless testbed and implementation of three trusted
third parties, as well as experimental results of the performance of the complete architec-
ture. In our implementation, RSA (with key size 2048 bits) and AES [8] (with key size
256 bits) are chosen as the algorithms for all public-key and symmetric-key encryption
respectively. In addition, SHA-256 is the hash function used for all the hashing operations.
Since the current implementation is only meant for internal testing and experiments, we
created self-signed certificates using OpenSSL [23] for the user, APs and the three trusted
third parties, instead of trying to obtain real certificates from CAs. All these certificates
are self-signed, and they are not signed by a common CA. Real-world applications should
certainly rely on a formal PKI, however.

36

Figure 4.1: WLAN testbed on the 3rd floor (circles represent clients and squares represent
APs. However, this is just annotation and the actual configuration can be changed by the
person configuring the testbed)

37

4.2.1 Wireless Testbed

In order to deploy and test our location proof architecture, we adopt the WLAN testbed
developed by Ahmed et al. [1]. A total of 38 AP nodes, all connected to and managed by
a central controller, are deployed on the second and third floors of the David Center (DC)
building at the University of Waterloo. The layout of these nodes on the third floor is
shown in figure 4.1. This testbed consists of two major components which we detail next.

Central controller: The central controller is a desktop computer with a dual core 2.66
GHz and Gigabit connection with APs. It manages the system settings and configuration
of all the APs. The controller is installed with Ubuntu 7.04 and runs the 2.6.20-15 Linux
kernel. In addition, it supports NFS which allows the AP nodes to mount and share the
same file system. The controller also stores the MAC to IP address mapping of each AP.

APs: APs are wireless nodes connected to the central controller. Each AP consists of a
VIA EPIA EN12000EG mainboard with 1.2 GHz C7 nanoBGA2 processor. Each AP node
also has two network interfaces, a Gigabit Ethernet interface whose IP address is drawn
from the subnet 192.168.1.0/24 and a wireless interface whose IP address is drawn from
the subnet 192.168.2.0/24 by the controller. Each AP is a NFS client which mounts the
file system served by the central controller after booting from the network.

A user who wants to request a location proof from the central controller must first
associate with one of the APs. After the association step is finished, the AP sends an
association message to the central controller to inform it of the user’s MAC address so
that the controller can add an User-MAC-to-AP entry to its association table. The user
can then interact with the controller through the AP. The AP will route the user’s traffic
to the central controller through its Ethernet interface. After the controller constructs a
location proof, it signs the proof on behalf of the AP that the user is associated with.

4.2.2 Implementation of the TTPL

The TTPL web interface is hosted at https://olten.cs.uwaterloo.ca/ttpl/index.py,
allowing users to use a web browser to interact with the TTPL and obtain formal location
proofs. The TTPL web interface uses SSL to secure the communication with users. As
mentioned before, the TTPL uses a self-signed certificate.

As shown in the figure 4.2, a dropdown menu lists available location granularities from 1
to 5, with 1 being the most coarse granularity and 5 being the most fine-grained granularity.
* means a wildcard granularity. A user must choose a desired granularity from the menu
and upload her informal location proof, based on which the TTPL will create a formal
location proof. A formal location proof is returned to the user in a zipped archive. Behind

38

https://olten.cs.uwaterloo.ca/ttpl/index.py

Figure 4.2: Web interface for the TTPL

the scene, the TTPL runs a MySQL database to manage AP information. The TTPL
database contains location information of the recognized APs and their public keys.

When preparing a proactive location proof, the TTPU uses AES as the encryption
algorithm for encrypting location information. The key size used is 256 bits and encryption
executes in cipher-block chaining (CBC) mode.

4.2.3 The TTPL Database

In section 3.2.1 we introduced the idea of location granularity. The illustrative example
in that section adopts a semantic form of location representation (for example, “Waterloo,
ON, Canada”) as opposed to GPS form of location representation (for example, 43◦30’N
80◦32’W, which is the GPS coordinate of “Waterloo, ON, Canada”). Semantic form of
location is intuitive for human users, but in terms of facilitating cheating detection, it is
not as useful and convenient as the GPS form representation. For example, it is difficult
for the CDA to figure out whether the two locations “50 Columbia Street West, Waterloo,
ON, Canada” and “43 University Avenue, Waterloo, ON, Canada” are close to each other.
Therefore, we use the Universal Transverse Mercator (UTM) coordinate system [34] to
convert each AP’s location to the form of (x, y), and the TTPL stores (x, y) in the database
as the location of the AP. However, in our implementation we hardcode the coordinates for
simplicity and leave it as future work to implement conversion between semantic location
and UTM coordinates.

However, this coordinate form of location representation gives rise to the issue of repre-
senting location granularity. With semantic, we can decrease the granularity of a particular
location, say “43 University Avenue, Waterloo, ON, Canada”, by simply stripping off its
prefix. Fore example, we can remove “43 University Avenue” from the string “43 University
Avenue, Waterloo, ON, Canada” if we want to decrease the granularity level by 1, and we
strip off “43 University Avenue, Waterloo” if lower granularity is desired. With coordinate
form of location information, we use the following idea to achieve location granularity.

We store the coordinate (x, y) of an AP as its most granular location. When a user
specifies g = 5 in the formal location proof request, the TTPL simply returns (x, y). But

39

(a) (b)

Figure 4.3: Granularity representation in coordinate system

for requests with lower granularity, say g = 4, we select a nearby point of (x, y), say (x1, y1),
as the center of a circle and r1 = distance ((x, y) , (x1, y1)) + 4r to be the radius of the
circle, where 4r is a small value randomly generated by the TTPL. Then, the location
with granularity g = 4 is represented by this circle. Note that we should not simply use
(x, y) as the center of the circle, because that knowledge will enable the attacker to obtain
the precise location of the AP fairly easily. Similarly, if we need to decrease the granularity
level to g = 3, we select a random point, (x2, y2), in the circle represented by g = 4.
Then, we compute r2 = distance ((x1, y1) , (x2, y2)) + r1. (Note that 4r is not needed
here, because the center of the old circle is already disguised by choosing the center of the
new circle randomly. However, in computing r1, if we eliminate 4r, then the user’s most
granular location is not disguised, because it is simply the center of the new circle. 4r
serves as a “start-up” disguising factor.) As a consequence, the new center (x2, y2) and the
new radius r2 now represent the location with granularity level g = 3. Similarly, g = 1 or
2 can be achieved in the same way. Figure 4.3 illustrates this idea.

The above algorithm for adjusting location granularity does not apply to semantic
location, i.e. textual location information. For example, if a user stands on the Canadian
side of Niagara Falls, then to decrease location granularity we may create a circle that
covers both Canadian and US territory; in other words, the user is no longer able to prove
she is in Canada. Since we are solely dealing with the coordinate form of location here,
the algorithm still applies. We leave it as a future work to design an algorithm suitable for
semantic location.

40

(a) User’s view

(b) Application’s view

Figure 4.4: Web interface for the TTPU

4.2.4 Implementation of the TTPU

The TTPU web interface for users and applications is displayed in figure 4.4a and 4.4b
respectively. The TTPU server is hosted at https://olten.cs.uwaterloo.ca/ttpu/

index.py. As mentioned before, the TTPU uses a self-signed certificate. In addition,
the TTPU manages a MySQL database to store user registration information following
the protocol specification in section 3.4.1.

A user needs to accomplish two steps before she is issued a TTPU token. When the
user first clicks the “For Users” tab, she is presented two forms that correspond to the two
steps of registration with the TTPU, and the second form is initially greyed out. The user
needs to upload a file containing items required by the location proof protocol (in section
3.4.1) to the TTPU server. After checking the validity of the user’s signature, the TTPU
server inserts a temporary record about the user to the database and marks a special field
of the record to indicate the registration is incomplete. The TTPU then returns the same
page but with the second form enabled, so that the user can proceed to the second step of
the registration. A generated random number is display on the top of the second form and
highlighted in red. To complete the second step, the user must upload another file which
contains her signature on this random number. Moreover, to limit wormhole attacks, the
user must complete this step within 5 minutes after finishing the first step. Otherwise,
the TTPU removes the temporary record of the user from its database and the user has
to restart the registration again. If the second step is completed successfully, the user is
returned a zipped archive that contains a TTPU token file. The TTPU then updates the
user record in the database by changing the value of the special marker field to indicate

41

https://olten.cs.uwaterloo.ca/ttpu/index.py
https://olten.cs.uwaterloo.ca/ttpu/index.py

the registration process is now complete.

An application can use the “For Applications” tab to upload a file that contains related
information of the user who the application wants to conduct cheating detection against.
Based on IDuser and TTTPU, the TTPU extracts a list of related encrypted IDAP from the
database, and utilizes the web service provided by the CDA to investigate whether the user
has cheated. The result of investigation is displayed on the page return to the application.

4.2.5 SOAP Versions of the TTPL and TTPU

For better script automation and facilitating the experiments, we also implement the
SOAP [29] server version of the TTPL and TTPU. The TTPU exposes two public func-
tions, register step one and register step two, under the name space https://olten.
cs.uwaterloo.ca/TTPU_Service, and these two functions correspond to the two TTPU
registration steps. The TTPL SOAP server offers a public function, issue proof, under
the name space https://olten.cs.uwaterloo.ca/TTPL_Service, through which users
can use a SOAP client to request formal location proofs.

4.2.6 Implementation of the CDA

The only role that the CDA plays is to offer cheating detection service to the TTPU, and it
does not interact with users or applications directly. Therefore, we provide no user interface
for the CDA, since there is no such need. Instead, we implement the CDA as a SOAP
server that offers cheating detection web service using SOAP protocol. The SOAP server
handles requests arriving on port 4543. Moreover, it uses SSL to secure communication
with the TTPU server. The same as the TTPU and TTPL server, our CDA server is
currently using a self-signed certificate.

The CDA SOAP server offers a public function called detect cheating under the name
space https://olten.cs.uwaterloo.ca/CDA_Service. This function accepts a list of
IDAP encrypted with the CDA’s public key and returns a 3-tuple, whose first field indicates
the exit code of the function, the second field indicates the result of cheating detection and
third field provides optional extra information. The exit code has two possible values, 0
being success and −1 being failure. If the exit code is −1, the second field is the error
message that provides detailed information about anomaly. The third field is an empty
string in this case. On the other hand, the exit code 0 indicates successful execution of
the function. In this case, the second filed is a Boolean value, indicating whether any two
APs in the list are geographically far apart. If the second field is “true”, the third field
further specifies the two adjacent APs. Otherwise, the third field is an empty string. It is

42

https://olten.cs.uwaterloo.ca/TTPU_Service
https://olten.cs.uwaterloo.ca/TTPU_Service
https://olten.cs.uwaterloo.ca/TTPL_Service
https://olten.cs.uwaterloo.ca/CDA_Service

worth mentioning once again that the CDA does not maintain an AP database on its own;
instead, it makes use of the AP databases published by TTPLs.

In addition, the TTPU uses a SOAP client to leverage the service provided by the
CDA server in order to conduct cheating detection. Typically, the TTPU assembles a list
of IDAP and invokes the detect cheating function with this list as the parameter using
SOAP protocol.

4.2.7 Computing Proximity of Two Locations

When the CDA receives a list of encrypted AP IDs from the TTPU, the CDA carries out
cheating detection by examining whether any two APs in this list are far apart. Since
TTPLs make their AP location databases publicly available, the CDA first consults the
appropriate TTPL database and converts the list of AP IDs into a list of corresponding
coordinates. The CDA then computes the distance of every two coordinate points and
checks whether the result falls within a threshold D. If the distance between any two
points is greater than D, those two APs are considered too far apart. Moreover, since this
list of APs are contacted by the user within a short period of time, any two APs in the
list should be relatively close to each other. Therefore, existence of two far apart APs in
the list allows the CDA to conclude the user has cheated. How far is considered far apart
depends on the user’s moving condition, but does not depend on the location granularity
at which the proof was revealed. The cheating detection procedure concerns whether a
user can obtain proofs from two different APs without violating basic facts. For example,
if a user obtains a proof in the city of Toronto at time t1 and another proof in the city of
Ottawa at time t2, and the difference between t1 and t2 is only 5 minutes, then the user
definitely has cheated (such as by launching a wormhole attack).

The CDA has a default value for the threshold D, which assumes the user moves at
the speed of an airplane. More specifically, D = 4t ∗ V , where V is the speed of a
regular commercial airplane and 4t is specified by the application. Thus, this threshold
value should cover almost all possible moving conditions of the user, unless the user is
an astronaut and frequently travels by space shuttle. However, the application can also
provide a more appropriate threshold value for the CDA to use. As a matter of fact,
the application is encouraged to do so, since it is more likely to have knowledge of user’s
condition, i.e. whether the user frequently drives in a car or walks on foot while requesting
location proofs. Accordingly, the application can submit a more reasonable threshold value
for computing whether two locations are considered far apart. For example, passing two
APs that are 5000 meters away from each other within 5 minutes is quite normal for a
person driving in a car, but is entirely impossible for a person walking on foot.

43

4.2.8 Programming Libraries

All three trusted third parties are hosted on the olten server at the University of Waterloo.
The olten server has Ubuntu 8.04 with Linux kernel 2.6.24-24-server installed and runs on
two 2.40GHz Intel Xeon(R) CPUs with 3.9 GB memory. Moreover, all three trusted third
parties are implemented in Python programming language. We use SOAPpy library [30]
to implement SOAP service offered by the TTPU, TTPL and CDA. This python library
has SSL support for SOAP server and client. As to all the cryptography algorithms used in
our programs, we adopt a popular cryptography toolkit called PyCrypto [25]. This library
supports various symmetric key (including AES) and public key (including RSA) schemes.
Furthermore, it provides various popular hashing algorithms (including SHA-256, which is
extensively used in our location proof protocols).

4.3 Experiments

4.3.1 Motivation

In practice, APs often have to interact with users on a regular basis and typically are weak
devices that could potentially throttle the performance of the location proof architecture.
Therefore, we provide experimental results of performance measurement and analysis in
this section. We first measure the throughput of the controller and pinpoint the perfor-
mance bottleneck. Then, we compare our implementation with popular OpenSSL imple-
mentation of cryptographic functions to evaluate the quality of the programming library
we rely on.

However, we do not conduct TTPL and TTPU-related performance measurement, be-
cause results of such measurement will not be informative based on our current setup. In
practice, neither the TTPU nor the TTPL will be run on a single server. As we discussed
in section 3.5.1, the TTPU will typically be deployed on a memcached data center to en-
sure scalability. Moreover, there will also be multiple TTPLs to allow applications and
users to choose the one they both trust. Despite lack of measurement of TTPLs and the
TTPU, performance of these two entities is less of a concern, since they are more powerful
compared to APs in practice. We leave it as a future work to investigate how large of a
server farm we would need for the TTPU and TTPLs.

4.3.2 Measurement of Controller Throughput

The controller is the master of all the APs and responsible for issuing location proofs.
Therefore, it is the potential performance bottleneck of the architecture. We conduct

44

Figure 4.5: Controller throughput

a series of experiments to measure the throughput of the controller and determine the
scalability of the controller as the number of location proof requests increases. We first
need to eliminate the step of user registration with the TTPU since it has no impact on the
controller throughput. We manually prepare TTPU tokens and save them to files for the
user-side program to read locally instead of having to obtain from the TTPU in real time.
Another factor that could potentially skew the result is the delay between APs and users.
We eliminate this delay by running the user-side program on the APs, so that location
proof requests are directly issued from APs. The delay between the APs and the users
does exist but vary depending on the signal strength, power, noise, connectivity of the
users’ network cards, and so on. Therefore, including this delay in the measurement will
make the result unreliable and less useful. We intend to investigate the controller’s full
capability of issuing proofs when the delay between the APs and the users is 0. In practice
the real throughput will be below this value because of delay, so the result obtained here
serves as an upper bound.

We conduct six rounds of experiments with increasing number of APs. For every round
of the experiment, we run the controller for 15 minutes, during which we instruct a certain
number of APs to send location proof requests persistently and as fast as possible. At the
same time the controller keeps track of the number of processed requests so far. We repeat
each round 10 times to compute the average number of requests that the controller is able
to handle per second. The experimental results are displayed in figure 4.5. As shown in
the figure, the performance of the controller reaches its peak after we run three APs and
more. Moreover, during the experiment we monitored the CPU usage which was kept at
100%. Therefore, we can be certain that network latency is not the bottleneck here.

45

Figure 4.6: Time contributed by each part of serving a request

4.3.3 Micro-Benchmarking Performance Bottleneck

Now that we have determined it is our program on the controller, instead of network latency,
that is the bottleneck, we need to find out which part of the program significantly affects
the performance. Generally speaking, creating cryptographic signatures is an expensive
operation and is the most likely culprit. In order to determine whether it is the performance
bottleneck of the architecture, we conduct the following experiment.

We divide the time that the controller spends serving a single location proof request
into three parts: (1) receiving the request and sending the proof. This part measures the
cost associated with network activities. “Receiving the request” refers to the time between
accepting the user connection and receiving the last bit of the request message. “Sending
the proof” refers to the time between transmitting the first and the last bit of the location
proof along with the signature. (2) constructing the location proof and (3) signing the
proof. We control an AP to send 100 location proof requests to the controller and measure
the time contributed by each part. Since all the APs use the same NFS provided by the
controller and are configured with the exact same hardware and network connectivity, the
choice of AP is irrelevant. Figure 4.6 summarizes the results. It is clear from the figure
that the most time-consuming part is proof signature creation, which is 23 times more
expensive than the other two parts combined. In terms of the numerical value of the cost,
the following table summarizes the results.

Part 1 Part 2 Part 3
time (in ms) 0.317± 0.003 0.387± 0.004 15.02± 0.09

Part 1 stands for receiving the request and sending the proof, part 2 stands for con-
structing the proof and part 3 stands for signing the proof.

46

4.3.4 Benchmarking PyCrypto and OpenSSL

Now that we have pinpointed the exact spot of performance bottleneck, we further inves-
tigate whether our programming choice is inappropriate, given that interpreted languages
like Python are considered significantly slower than compiled languages such as C. Since
we rely on PyCrypto library’s implementation of RSA for creating cryptographic signa-
tures, we compare it to the popular OpenSSL implementation of RSA. OpenSSL already
provides an easy-to-use command to benchmark its implementation of RSA signing, so we
simply invoke it and record statistics reported by OpenSSL. To benchmark PyCrypto’s
implementation of RSA signing, we use the standard Python benchmarking module cPro-
file and timeit. We conduct benchmarking tests on two computers, one of which is the
controller and the other of which is the olten server. Both computers are installed with
PyCrypto 2.0.1, and OpenSSL 0.9.8k. The default OpenSSL engine, i.e. the BIGNUM en-
gine, is slower than the GMP [14] engine due to a number of countermeasures implemented
against various PKI vulnerabilities. Thus, we run our benchmark tests using the GMP en-
gine as well after the default BIGNUM engine is benchmarked. By measuring the speed of
creating RSA signature using a 2048-bit key, we find that PyCrypto outperforms OpenSSL
on both machines according to figure 4.7. More specifically, PyCrypto runs faster than
OpenSSL on the controller by 36.75% when the default BIGNUM engine is used and by
31.25% when the GMP engine is enabled. However, on the more powerful olten server, Py-
Crypto performs the same as OpenSSL. This result is somewhat unexpected since Python
is believe to be slower than C programming language which is used to implement OpenSSL.
In fact, PyCrypto library implements its speed-critical operations in C and relies on the
high performance GMP library for fast arbitrary precision arithmetic. Therefore, the per-
formance disadvantage of the python library compared to C implementations diminishes in
this particular case. In summary, our choice of PyCrypto library is no worse than the pop-
ular OpenSSL implementation. To improve performance of the implementation, we could
choose other faster signature schemes such as ECDSA [19]. However, the crypto library
our implementation relies on does not yet support ECDSA, so we leave it as future work
to measure how the performance improves after switching to a faster signature scheme.

4.4 Real World Applications

Our architecture is suitable for two kinds of applications: (1) applications that are low-
value and where executing a wormhole attack or borrowing-a-device attack would be more
expensive, and (2) applications that already have some sort of location check and where
our architecture gives better security.

In the rest of this section, we present two real world applications we built using the
complete location proof architecture. Note that the location proof daemon below is not a

47

(a) Benchmarking on the Controller (b) Benchmarking on the olten server

Figure 4.7: Benchmarking of PyCrypto and OpenSSL

location proof based application; instead, it is a client-side program on users’ computers
that automates the task of requesting location proofs.

4.4.1 Location Proof Daemon

We implemented a client-side daemon program that automates the procedure of requesting
location proofs. More specifically, the daemon reads a local configuration file on startup,
where a few parameters such as the address of the TTPL and TTPU SOAP servers, desired
location granularity, how often to request a location proof, etc., are specified. The daemon
runs in the background after initialization. It sends location proof requests periodically
and saves location proofs to the user’s computer. Moreover, the daemon allows the user to
dynamically change these settings through a frontend command shell. The user is also able
to instruct the daemon to send a location proof request at once instead of waiting until
the next scheduled request. With the help of this daemon program, we are able to develop
three real world applications that make use of our location proof architecture. Since the
next three applications rely on this daemon program to request location proofs, we assume
this daemon program is installed on the client’s computer.

4.4.2 Class Attendance Reporter

School teachers often take students’ class attendance into account when assigning final
grades. However, managing attendance records could be annoying and troublesome, espe-

48

cially for a large class with hundreds of students. Traditional procedures for teachers to
take class attendance include calling out loud students’ names at the beginning of the class
and marking the name after hearing a response, or passing around an attendance sheet for
students to sign and collect the sheet at the end of the class. These traditional methods
are not reliable since students could answer the teacher’s calling or sign attendance sheet
for their friends and it is hard for teachers to notice. Some schools try to use the Clicker
system as a new way of taking class attendance. At a school where the Clicker system is
used, students who have registered for a course are also required to register their clickers.
Students must bring and use their clickers when taking a quiz, signaling attempt to answer
a question in class, etc. When a student uses her clicker in class, the system will automat-
ically record her attendance. Students typically have to buy and register a clicker in this
case. Instead, our location proof architecture provides an alternative where students can
conveniently use their mobile devices in hand to prove their attendance.

We developed a class attendance reporter program that allows students to prove their
attendance to the teacher conveniently. The program has two components: a student
module that is installed on the student’s laptop or mobile devices. When the student brings
her laptop or mobile devices (such as a blackberry) to the class, the program instructs the
location proof daemon to request a location proof during the class period and sends the
proof to the teacher module of the program, which is installed on the teacher’s computer.
In addition, the teacher module generates formatted web pages for the teacher to browse
which students have reported their attendance. Students can always choose to leave the
class after having proved their locations, and our application does not aim to solve this
problem.

4.4.3 Location Signature For Yelp Web Review

Yelp [36] is a social networking and user review website with over 25 million visits per
month. Users can provide rating and reviews for various places on the Yelp website. In
early 2010, Yelp released a collection of location features for its iPhone application that
allows users’ reviews to be supported by their location at the time of composing the review.
More specifically, a Yelp user can “check-in” through Yelp’s iPhone application before
leaving a review on the Yelp website, then after submitting the review the user’s current
location will be shown alongside with her review. This feature dramatically increases the
creditability of reviews, since the users who can prove they actually made several visits
to the reviewed place are more likely to provide insightful comments regarding the place.
This feature is currently only available to iPhone users.

Our architecture is a good fit for enabling this feature for all the users that access Yelp’s
website, not only because we can integrate location proof to the Yelp website with the help
of a browser plug-in, but also because our architecture improves security. By jailbreaking an

49

iPhone, an attacker could tamper with Yelp. In contrast, our architecture does not learn
users’ locations simply based on GPS, which is used by Yelp; instead, the architecture
requires users to prove their physical presence at the location using sophisticated protocols
to guard against various attacks and cheating.

We developed a Firefox extension that lets users to attach a location proof to their
review on the Yelp website. Any user that wants to use this feature must download our
extension. A user composes a review on the Yelp website as usual. Before submitting the
review, she attaches a location proof to her review using the extension as shown in figures
4.8 and 4.9. The extension generates a review identifier which is used to locate this specific
review in the page later on. The extension then submits the name of the place under the
review, the location proof and the review identifier to a remote server, which is currently
hosted at the University of Waterloo. The remote server is responsible for storing location
information associated with Yelp reviews. Upon receiving the location proof, the server
first verifies it. If the proof is invalid, the server rejects the request. Otherwise, the server
extracts location information from the proof and investigates the location of the reviewed
place using the Google map service. If the location represented by the location proof is
indeed near the location of the reviewed place, the server stores the extracted location
information along with the corresponding review identifier. Otherwise, the server stores
the extracted location information with an appended string which warns that the location
proof represents a non-nearby location to the reviewed place (therefore, the user’s review
is questionable). Once this process is complete, the server notifies the extension. The
user now submits her review and the review identifier to the Yelp website. Note that the
review identifier is automatically added to the user’s review by the extension. Later when
a user tries to view the page, assuming she has the extension installed, the extension will
automatically retrieve from the server location information associated with each review on
the page and display it along with the review, as shown in figure 4.10.

The Yelp review-location server consists of three parts: a web server component, a
SOAP server component and a database, as shown in figure 4.11. The SOAP server
component is responsible for receiving users’ requests of associating a location proof with
a review. Typically, the SOAP server component verifies the uploaded location proof and
stores verified location information in the database. The duty of the web server component
is to retrieve from the database location information corresponding to review identifiers
submitted by users. The Yelp DB component stores location information associated with
Yelp review identifiers. The motivation of having two separate components, instead of
one, to serve user requests of upload and download is to improve performance. Location
proof verification requires massive computation and thus is CPU-bound, but downloading
location information mainly involves database access which is IO-bound. Therefore, we
build two separate components to serve upload and download requests.

Finally, the functionality of using Google map service to convert the name of the re-

50

Figure 4.8: Attach a location proof to a Yelp review

Figure 4.9: Notify the user that location proof has been attached to the review

51

(a) (b)

Figure 4.10: Yelp page with and without location proof

Figure 4.11: Yelp server architecture

52

viewed place to its GPS coordinates is in fact undone and left as a future work. For the
time being, we hardcode the coordinates of the city of Waterloo in the server and only
experiment with places in Waterloo.

53

Chapter 5

Related Work

5.1 Related Work

Denning and MacDoran [10] present a location-based authentication system where a loca-
tion signature sensor (LSS) creates location signatures from satellite signals that describe
the physical location of the LSS at a particular time. A user carrying an LSS can hand
a location signature to an application, which compares it to the signature that the ap-
plication derived from the satellite signals. This system lacks a strong binding between
the location signature and the identity of the user. Therefore, a user can abuse location
signatures by selling them to anyone. Moreover, the system relies on dedicated hardware
and supports only retroactive location proofs. In comparison, our architecture ties location
proofs to specific users, does not require dedicated hardware, and also supports proactive
location proofs.

Brands and Chaum [3] elaborate a distance bounding protocol in which a verifier V
computes an upper bound on the distance to a prover P by measuring the round-trip delay
of a challenge-response protocol. The high level idea of the protocol is that V and P both
generate k bits randomly at the beginning of the protocol. V sends her bits to P one at a
time, to which P responds with her bits one by one as well. V measures and records the
round-trip delay for each round of bit exchange. After having received all k bits from V, P
sends V a message encrypted with a secret key which is concatenation of V’s and P’s bits. If
the message is valid, V computes the upper-bound on the distance to P using the measured
k delays. However, the protocol does not let P and V exchange identity information. In
other words, a malicious prover can claim whoever she wants to be, which is problematic
for many applications that require user identity information. In contrast, our architecture
requires users to sign and submit a random nonce generated by the location proof issuer
and this signed nonce will be verified by the application when the user presents the location

54

proof to the application. Based on the assumption that no user will share her private key,
it is impossible for a user to impersonate others. Thus, our architecture ensures users must
be physically present at the target location when requesting location proofs.

Walters and Felten [35] present a system that allows a device to obtain location proofs
from a location manager (LM) and to submit proofs to a verifier. A device starts to
request location proofs by sending out a message containing its device ID encrypted with
the public key of the verifier. Upon receiving the request, the LM sends the device a
nonce, and measures the round-trip delay between sending the nonce and getting the
response from the device. It then encloses the measured delay and the encrypted device ID
into a location proof and delivers the proof to the device. Finally, the device presents the
proof to a verifier. The use of device IDs as identities of the recipients of location proofs
in this system is problematic, because a malicious user can craft fake device IDs such that
she will be able to impersonate anyone else. In comparison, our architecture mandates
the recipient of the proof to commit to some value that can be verified by the application
later on. Therefore, no one can impersonate others or be impersonated. Another drawback
of this system requires the device to know target verifiers in advance in order to encrypt
device IDs with appropriate public keys. Location proof issuers in our architecture send
out location proofs which are designed to follow a general format, so that they can be used
for various applications and users do not have to know target verifiers before hand.

Sastry et al. [27] develop a secure location verification protocol, named Echo, which is
used in location-based access control. The authors concentrated on the in-region verifica-
tion problem where a verifier V tries to verify a prover P is in a region R near V . The
basic idea of the protocol is that: (1) a prover P sends its claimed location L to a verifier
V using radio frequency (RF), (2) V sends a nonce to P using RF as well, (3) P imme-
diately echoes the nonce back using ultrasound. By timing this process, V either accepts
or rejects the location claim based on the computed upper-bound of the round-trip delay.
By exploiting the property of speed of light and sound, the protocol avoids relying on
complicated cryptography. However, the identity of the prover is not known by V , so the
system can only be used by applications that take user location as the sole consideration.
As argued above, our architecture provides much stronger guarantee on the identity of
the recipients of location proofs. Furthermore, for this system to work, P has to have the
capability of using RF and ultrasound, which rules out many regular users whose devices
are only equipped with basic wireless cards. By contrast, our architecture does not require
any dedicated hardware and is usable by users with simple mobile devices.

Faria and Cheriton [12] design a location-based authentication architecture for wireless
LANs. A centralized wireless appliance (WA) controls a group of APs to provide location-
based access control for a LAN. In order for a client to authenticate to the LAN, the client
must prove its proximity to one of the APs by executing a handshake protocol with the WA.
More specifically, the WA generates a set of random nonces and broadcasts them through

55

one of the APs. To prove its closeness, a client must send all the received nonces back
to the WA. A far-away attacker has a much greater chance of receiving corrupted nonces,
so she is more likely to send incorrect nonces thus unable to prove her proximity. Since
no identity information of the client is transmitted during the process of handshake, this
architecture does not guarantee the identities of clients. In addition, the architecture de-
pends on the property of wireless LANs: the further away the user, the greater the chances
of receiving corrupted packets, which is not a reliable approach of proving location. In
comparison, our architecture takes both user identities and location into account. Besides,
we use cryptographic techniques to make the protocol more reliable instead of succeeding
by chance.

Traynor et al. [33] design a two-phase localization protocol which allows a system to
determine a user’s location in both coarse and fine granularity. During the first phase,
the regionalization phase, multiple APs broadcast a set of unique tokens. A user close
to an AP can capture the token and send it back to the AP controller (APC), which is
able to determine which AP the user is in the proximity of based on the unique location
“fingerprint” of the token. If finer-grained location information is demanded, the protocol
enters the second phase, the localization phase, during which the system uses multiple
Bluetooth devices to transmit a new set of tokens. Similarly, by capturing a token and
sending it back to the APC, the user can prove her location of a higher granularity. The
primary drawback of this protocol is lack of user authentication and time stamp recording,
that is, the protocol does not associate a particular proof with appropriate user identity
and time information. This shortcoming allows a malicious user to lie about her location
by capturing a token when residing around a certain AP but submitting it to the APC
after moving to a different location, or she may also give away the token to a remote user
who is not entitled to the proof. Our location proof protocol eliminates these problems
by including both user identity and a time stamp in location proofs. Moreover, not all
devices have Bluetooth, which means their approach may not always apply. In contrast,
our architecture does not rely on Bluetooth, although devices with Bluetooth can also
benefit.

Lenders et al. [21] describe a geotagging service that allows the publisher of mobile user-
generated content to obtain a location-and-time-stamp certificate for the content. Such a
certificate proves where and when the content was generated. Consequently, those who
downloaded the content along with the certificate can verify the source location and time
stamp associated with the content. There is a drawback of this system compared to ours.
The location/time certificates in their system do not bind the content and the certificate to
the content originator; in other words, anyone can claim or disclaim her ownership of the
content and its certificate. In contrast, our architecture achieves stronger binding between
the location proof and its owner, while still keeping the anonymity of the owner to the
proof issuer.

56

Saroiu and Wolman [26] propose a mechanism for mobile devices to acquire location
proofs from APs and to use them for interaction with location-based applications. In their
mechanism, Wi-Fi APs broadcast beacons to announce their presence. A client wishing to
obtain location proofs must enclose its own identity and the sequence number extracted
from the beacon in a signed request and send it to the AP. After checking the validity of
the client’s signature, the AP sends to the client a location proof containing the identities
of the client and the AP itself, a time stamp, and the location of the AP. A drawback
of this mechanism is that APs get to decide what granularity of location information to
include in the proof. When the user only needs a proof for proving her rough location, a
fine-grained location proof reveals more information than necessary, and is thus harmful to
the user’s location privacy. Another problem is the lack of privacy protection for users who
directly expose their IDs to the AP, which may track clients by their location. Our design
effectively addresses these two problems. In our architecture, a user can request a proof
that includes encrypted location information of different granularities. When presenting the
proof to the application, the user can selectively reveal location information of appropriate
granularities. Moreover, in our complete architecture the identity of the user is disguised
from the AP, so the location privacy is not compromised while the usability of location
proofs is preserved. Our lightweight architecture suffers from the same problem of disclosing
user identity directly to APs.

Sheth et al. [28] present geo-fencing, a technique to confine Wi-Fi coverage to a certain
physical boundary. To make Wi-Fi usable only inside the geo-fenced region, packets are
coded across all the APs in the region. Users outside the region are unlikely to receive
signals from all the APs, thus unable to re-construct valid packets, while users inside the
region are able to receive valid packets. This technique is aimed to ensure the availability
of some service is not leaked to outside a certain geographical region, instead of providing
a location proof mechanism. The guarantee on users’ presence within the geographical
confinement is achieved by exploiting the limitation of the range of Wi-Fi signal trans-
mission. Our architecture facilitates a user to obtain location proofs at one location and
use them at another place which might be far away from the place where the proof was
issued. Therefore, location proofs do not necessarily have to be used only within the issuing
location in our architecture.

Ole Tippenhauer et al. [31] analyze the security of a public WLAN positioning system.
In particular, they demonstrated how location spoofing can be leveraged to impersonate a
legitimate AP and convince a device of a fake location where it is not currently located.
Furthermore, the authors proposed approaches to detect this kind of attacks to acquire
localization signals of the APs securely. Although this work is not about inventing new
location proof systems, it provides indispensable insights and suggestions for achieving
security of location proof architectures.

Figure 5.1 shows the comparison of our location proof architectures with previous work.

57

Figure 5.1: Comparison to previous work

The first seven columns list our design goals formalized in section 2.2, and the last column
is an important feature that we believe a useful location proof architecture should also
strive to support.

58

Chapter 6

Conclusion and Future Work

We have formalized seven design goals that should govern the construction of a location
proof architecture. We elaborate on the importance of these design goals with regard to
their roles in system functionality and their implications on user privacy. Among these de-
sign goals we formally explore user privacy protection, location granularity control, proac-
tive location proof and cheating detection, which lack sufficient attention in previous work.
We provide our insights on how these design goals can be realized by putting forward a
location proof architecture that meets a partial list of the goals and another one that meets
all of the design goals. In both architectures, we illustrate how cryptographic techniques
can aid in location proof architecture design.

Our work leaves several directions for future work. First, wormhole attacks are not fully
defended against. Our architecture addresses defense against a special case of wormhole
attacks but does not provide a general solution to the threat. As mentioned in previous
sections, the only effective technique against wormhole attack so far relies on dedicated
hardware. Therefore, further research of exploring solutions that do not rely on dedicated
hardware is demanded. Second, conversion between semantic location and UTM coor-
dinates needs to be implemented. For the time being, we hardcode the coordinates in
the implementation for simplicity. Third, as mentioned in section 4.2.3, an algorithm for
adjusting granularity of semantic location is needed, since our research here deals with loca-
tion information in the form of coordinates. Lastly, the RSA signature scheme used in our
implementation should be replaced by other faster signature schemes to obtain improved
performance.

59

References

[1] Nabeel Ahmed and Usman Ismail. Designing a high performance WLAN testbed
for centralized control. Testbeds and Research Infrastructures for the Development of
Networks & Communities, International Conference on, 0:1–6, 2009. 38

[2] Mira Belenkiy, Jan Camenisch, Melissa Chase, Markulf Kohlweiss, Anna Lysyanskaya,
and Hovav Shacham. Randomizable Proofs and Delegatable Anonymous Credentials.
In CRYPTO ’09: Proceedings of the 29th Annual International Cryptology Conference
on Advances in Cryptology, pages 108–125, Berlin, Heidelberg, 2009. Springer-Verlag.
31

[3] Stefan Brands and David Chaum. Distance-bounding protocols. In EUROCRYPT
’93: Workshop on the theory and application of cryptographic techniques on Advances
in cryptology, pages 344–359, Secaucus, NJ, USA, 1994. Springer-Verlag New York,
Inc. 54

[4] D. Chaum and E. van Heyst. Group Signatures. In EUROCRYPT ’91: Workshop
on the theory and application of cryptographic techniques on Advances in cryptology,
pages 257–265, April 1991. 30

[5] Yih chun Hu, Adrian Perrig, and David B. Johnson. Packet Leashes: A Defense against
Wormhole Attacks in Wireless Networks. In INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications Societies. IEEE, 2001.
9

[6] Danny De Cock, Christopher Wolf, and Bart Preneel. The Belgian Electronic Identity
Card (Overview). In Sicherheit, pages 298–301, 2006. 7

[7] Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, and Nikos
Triandopoulos. Anonysense: privacy-aware people-centric sensing. In MobiSys ’08:
Proceeding of the 6th international conference on Mobile systems, applications, and
services, pages 211–224, New York, NY, USA, 2008. ACM. 21

[8] J. Daemen and V. Rijmen. AES Proposal: Rijndael. 1999. 36

60

[9] George Danezis, Stephen Lewis, and Ross Anderson. How Much is Location Privacy
Worth? In Online Proceedings of the Workshop on the Economics of Information
Security Series (WEIS 2005), 2005. 6

[10] Dorothy E. Denning and Peter F. MacDoran. Location-based authentication: ground-
ing cyberspace for better security. pages 167–174, 1998. 54

[11] Saar Drimer and Steven J. Murdoch. Keep your enemies close: distance bounding
against smartcard relay attacks. In SS’07: Proceedings of 16th USENIX Security
Symposium on USENIX Security Symposium, pages 1–16, Berkeley, CA, USA, 2007.
USENIX Association. 9

[12] Daniel Faria and David Cheriton. No Long term Secrets: Location Based Security
in Over Provisioned Wireless LANs. In HotNets-III: Proceedings of the Third ACM
Workshop on Hot Topics in Networks, November 2004. 55

[13] Foursquare. http://foursquare.com/. 2

[14] GMP. http://gmplib.org/. 47

[15] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption. J. Comput. Syst. Sci.,
28(2):270–299, 1984. 10

[16] Gowalla. http://gowalla.com/. 2

[17] Baik Hoh, Marco Gruteser, Ryan Herring, Jeff Ban, Daniel Work, Juan-Carlos Her-
rera, Alexandre M. Bayen, Murali Annavaram, and Quinn Jacobson. Virtual trip lines
for distributed privacy-preserving traffic monitoring. In MobiSys ’08: Proceeding of
the 6th international conference on Mobile systems, applications, and services, pages
15–28, New York, NY, USA, 2008. ACM. 21

[18] VeriSign Digital ID. http://www.verisign.com/authentication/

individual-authentication/digital-id/. 7

[19] Don Johnson and Alfred Menezes. The Elliptic Curve Digital Signature Algorithm
(ECDSA). Technical report, 1999. 47

[20] Tadayoshi Kohno, Andre Broido, and K. C. Claffy. Remote Physical Device Finger-
printing. IEEE Trans. Dependable Secur. Comput., 2(2):93–108, 2005. 13

[21] Vincent Lenders, Emmanouil Koukoumidis, Pei Zhang, and Margaret Martonosi.
Location-based trust for mobile user-generated content: applications, challenges and
implementations. In HotMobile ’08: Proceedings of the 9th workshop on Mobile com-
puting systems and applications, pages 60–64, New York, NY, USA, 2008. ACM. 1, 2,
3, 56

61

http://foursquare.com/
http://gmplib.org/
http://gowalla.com/
http://www.verisign.com/authentication/individual-authentication/digital-id/
http://www.verisign.com/authentication/individual-authentication/digital-id/

[22] Memcached. http://www.danga.com/memcached/. 28

[23] OpenSSL. http://www.openssl.org/. 36

[24] Survey Information: Americans Care Deeply About Their Privacy. http://www.cdt.
org/privacy/guide/surveyinfo.php. 6

[25] PyCrypto. http://www.dlitz.net/software/pycrypto/. 44

[26] Stefan Saroiu and Alec Wolman. Enabling new mobile applications with location
proofs. In HotMobile ’09: Proceedings of the 10th workshop on Mobile Computing
Systems and Applications, pages 1–6, New York, NY, USA, 2009. ACM. 1, 2, 3, 9, 13,
57

[27] Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification of location
claims. In WiSe ’03: Proceedings of the 2nd ACM workshop on Wireless security,
pages 1–10, New York, NY, USA, 2003. ACM. 55

[28] Anmol Sheth, Srinivasan Seshan, and David Wetherall. Geo-fencing: Confining Wi-Fi
Coverage to Physical Boundaries. In Hideyuki Tokuda, Michael Beigl, Adrian Friday,
A. J. Bernheim Brush, and Yoshito Tobe, editors, Pervasive, volume 5538 of Lecture
Notes in Computer Science, pages 274–290. Springer, 2009. 57

[29] SOAP. http://www.w3.org/TR/soap/. 42

[30] SOAPpy. http://pywebsvcs.sourceforge.net/. 44

[31] Nils Ole Tippenhauer, Kasper Bonne Rasmussen, Christina Pöpper, and Srdjan
Čapkun. Attacks on Public WLAN-based Positioning. In Proceedings of the
ACM/Usenix International Conference on Mobile Systems, Applications and Services
(MobiSys), 2009. 57

[32] Tor. http://www.torproject.org/. 33

[33] Patrick Traynor, Joshua Schiffman, Thomas La Porta, Patrick McDaniel, Abhrajit
Ghosh, and Farooq Anjum. Constructing Secure Localization Systems with Adjustable
Granularity. Technical Report NAS-TR-0084-2007, Network and Security Research
Center, Department of Computer Science and Engineering, Pennsylvania State Uni-
versity, University Park, PA, USA, 2007. 56

[34] UTM. http://geology.isu.edu/geostac/Field_Exercise/topomaps/utm.htm. 39

[35] Brent Waters and Edward Felten. Secure, Private Proofs of Location. Technical
Report TR-667-03, Department of Computer Science, Princeton University, January
2003. 6, 55

62

http://www.danga.com/memcached/
http://www.openssl.org/
http://www.cdt.org/privacy/guide/surveyinfo.php
http://www.cdt.org/privacy/guide/surveyinfo.php
http://www.dlitz.net/software/pycrypto/
http://www.w3.org/TR/soap/
http://pywebsvcs.sourceforge.net/
http://www.torproject.org/
http://geology.isu.edu/geostac/Field_Exercise/topomaps/utm.htm

[36] Yelp. http://www.yelp.com/. 2, 49

63

http://www.yelp.com/

	List of Tables
	List of Figures
	Introduction
	Introduction
	Location Proofs and Location Proof Architecture

	Lightweight Architecture
	Introduction
	Design Goals
	No Dedicated Hardware
	Scalability
	User Anonymity
	Application-agnostic Location Proofs

	Trust Assumptions and Threat Model
	Trust Assumptions
	Threats That We Address
	Threats That We Do Not Address

	Architecture for Obtaining and Verifying Location Proofs
	Notations
	Obtaining a Location Proof
	Verifying a Location Proof
	Security Analysis
	Improvements Over Previous Work
	Scenarios Where the Lightweight Architecture Applies

	Complete Architecture
	Introduction
	Additional Design Goals
	Location Granularity
	Proactive Location Proof Requests
	Cheating Detection

	Trust Assumptions and Threat Model
	Working Model and Roles of Trusted Third Parties
	Revised Trust Assumptions and Threat Model

	Architecture for Obtaining and Verifying Location Proofs
	Obtaining an Informal Location Proof
	Obtaining a Formal Location Proof
	Verifying a Formal Location Proof
	Security Analysis

	Observations On the Complete Architecture
	Scalable TTPU
	How to Choose Between Retroactive and Proactive Location Proofs
	Two Alternatives to Trusted Third Parties
	Necessity of the CDA
	Achieve Extra User Anonymity Through Third Party Tools

	Deployment Strategies

	Implementation and Experiments
	Introduction
	Implementation
	Wireless Testbed
	Implementation of the TTPL
	The TTPL Database
	Implementation of the TTPU
	SOAP Versions of the TTPL and TTPU
	Implementation of the CDA
	Computing Proximity of Two Locations
	Programming Libraries

	Experiments
	Motivation
	Measurement of Controller Throughput
	Micro-Benchmarking Performance Bottleneck
	Benchmarking PyCrypto and OpenSSL

	Real World Applications
	Location Proof Daemon
	Class Attendance Reporter
	Location Signature For Yelp Web Review

	Related Work
	Related Work

	Conclusion and Future Work
	References

