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Abstract

The difficulty of clustering and the variety of clustering methods suggest the need for

a theoretical study of clustering. Using the idea of a standard statistical framework,

we propose a new framework for clustering.

For a well-defined clustering goal we assume that the data to be clustered come

from an underlying distribution and we aim to find a high-density cluster tree. We

regard this tree as a parameter of interest for the underlying distribution. How-

ever, it is not obvious how to determine a connected subset in a discrete distribution

whose support is located in a Euclidean space. Building a cluster tree for such a

distribution is an open problem and presents interesting conceptual and computa-

tional challenges. We solve this problem using graph-based approaches and further

parameterize clustering using the high-density cluster tree and its extension.

Motivated by the connection between clustering outcomes and graphs, we propose

a graph family framework. This framework plays an important role in our clustering

framework. A direct application of the graph family framework is a new cluster-

tree distance measure. This distance measure can be written as an inner product

or kernel. It makes our clustering framework able to perform statistical assessment

of clustering via simulation. Other applications such as a method for integrating

partitions into a cluster tree and methods for cluster tree averaging and bagging are

also derived from the graph family framework.
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Chapter 1

Introduction

The purpose of clustering is to separate data into different groups such that similar

data objects are assigned to the same group and dissimilar objects to different groups

[65].

As in classification (or supervised learning), we must understand how multidi-

mensional measurements contribute to defining the classes. However, in clustering

(or unsupervised learning) the class label of each object is unknown and so we must

come up with the class definition itself from the measurements alone. This is con-

siderably more difficult. The difficulty is compounded when the clusters themselves

can have arbitrary shapes in high dimensions. Sometimes only the similarity (or

dissimilarity) between the objects is known and even then many choices might be

suitable.

Despite these difficulties, clustering methods are a good means for discovering

patterns in data with little prior knowledge. They have been used in various aca-

demic and industrial applications. A brief literature review of clustering and typical

clustering methods is given in Appendix A.

Both the broad range of applications and the difficulties make clustering a hot

research area and many different approaches have been proposed. As reviewed in

Appendix A, different clustering approaches have different motivations. For example,

the motivation of k-means [48] is to discover centre-based clusters; that of DBSCAN
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1. INTRODUCTION

[17] is to assign sample points to the same cluster if they come from the same high-

density region.

Different clustering approaches also have different assumptions. For example, k-

means assumes data from multiple disjoint hyper-spheres. Both mixture-model-based

clustering [21] and some density-based clustering methods such as runt pruning [62]

assume that the data to be clustered come from an underlying mixture of statistical

distributions. However, mixture-model-based clustering assumes that the sample

points from each cluster come from a component of the mixture, whereas runt pruning

assumes that the sample points come from a mode or bump of the density of the

mixture.

Different motivations and assumptions lead to different methodologies for differ-

ent clustering approaches. For example, mixture-model-based clustering often uses

an EM algorithm to maximize the likelihood derived from the mixture of distribu-

tions; k-means minimizes the sum of squares of the distance from each sample point

to its cluster mean; runt pruning applies a pruning process to cut the edges of a

minimum spanning tree.

The different methodologies can lead to different results. For example, runt

pruning produces a cluster tree [62]. K-means produces a partition, which is a set

of disjoint subsets of the sample points to be clustered such that the union of these

subsets is identical to the full set of sample points. K-means with different k, or even

with the same k but different random starts, can produce different partitions.

The differences in the outcomes raise some questions. How to choose a clustering

method? How to evaluate the results? How to deal with different outcomes if none

of them is good enough? Given these questions, it is clear that clustering needs a

framework. Theoretical studies of clustering have received more and more attention

in recent years. Many of them try to build a framework that generalizes some aspect

of clustering. A brief review of some typical approaches is given in Appendix B.

The review indicates that few of these approaches both capture the generality of

clustering and have practical value. The difficulty and variety of clustering together

with the lack of a general and practical framework motivate us to propose a new

clustering framework.

2



Statistics relies on distributions such as the Normal distribution, N(µ, σ2). There

are parameters for each distribution, such as µ and σ2 for the Normal distribution.

If we are interested only in µ then although it can not uniquely determine a Normal

distribution, it is a parameter of interest. We estimate parameters by observed

samples. For example, µ can be estimated by the sample mean or median, or by

a single observation in a sample. Given different estimates, we have measures to

evaluate their performance. For example, we can use bias, mean squared error,

or variation to compare different estimates and choose among them. The above

four components—a distribution, its parameters, estimates of the parameters, and

evaluation measures—form a standard statistical framework. Figure 1.1 shows this

 
 
 
 
 
 
 

 

Distribution  

 Parameter  

 Estimates  

 Evaluation  

Figure 1.1: A standard statistical framework

framework. By borrowing this idea, we construct a new clustering framework, shown

in Fig. 1.2.

We assume that the data to be clustered come from an underlying distribution.

Clusters correspond to modes or bumps in the density for that distribution. A

high-density cluster tree [31, 62] is therefore defined to capture the information on

3



1. INTRODUCTION

 

Underlying distribution  

High density cluster tree  

         Clustering methods  

        Graph family framework 

 A clustering distance measure  

Figure 1.2: A new clustering framework

modes in the density function. It can be regarded as a parameter of the distribution

corresponding to its density function. We further extend the tree to discrete cases

to make it more general.

Basically, the high-density cluster tree can be estimated by a clustering method

that can produce a cluster tree for a sample. For example, a dendrogram from a

single linkage [31] of a sample is an estimate of the high-density cluster tree of the

underlying distribution. The question of how to choose among different estimates is

an interesting issue. Our approach is to use a cluster-tree distance measure to assess

the performance of the estimates. The measure is defined based on a graph family

framework that is derived directly from the clustering outcomes.

These four components—the underlying distribution density function, the high-

4



1.1. BRIEF DESCRIPTION OF THE CLUSTERING FRAMEWORK

density cluster tree and its extension to discrete cases, the clustering methods and

the graph family framework, and the clustering distance measure—tie in together

and form our new clustering framework.

Note that each dashed box in Fig. 1.2 represents a contribution made by this

thesis to the clustering framework. The dashed box surrounding the whole framework

represents our contribution in combining the components to form a new clustering

framework. To get an overview of the framework, we describe each component briefly

in the following section.

1.1 Brief description of the clustering framework

In this section we briefly describe each component of the framework shown in Fig.

1.2. Detailed discussions are given in the following chapters.

1.1.1 Underlying distribution and clustering

From a statistical point of view, observed data come from an underlying distribution.

A well-defined clustering goal is to discover from a sample modes in the density of the

corresponding distribution. The determining factor for clustering is not the observed

sample but rather the underlying distribution and more specifically the corresponding

density function. Samples contain information that enables the clustering to discover

modes of the underlying density. Since density modes can be nested, a high-density

cluster tree is defined to capture the information on the modes of the density function

of a continuous distribution.

1.1.2 High-density cluster tree

A high-density cluster tree [31, 62] is constructed to capture the information on the

modes of a density function. Its construction is based on a high-density level set at

a certain level [31]. A high-density level set at λ ≥ 0 is a subset of the support for

the density such that the density over this subset is greater than λ and it contains

5



1. INTRODUCTION

all the points in the support with density greater than λ. A cluster at level λ is a

maximally connected subset in the level set at λ. It is natural to define connectivity

for points in a continuous distribution.

The example in Fig. 1.3 shows how a high-density cluster tree is constructed.
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(a) P.d.f. of a continuous distribution (b) High-density cluster tree

Figure 1.3: Density level set and cluster tree

Figure 1.3(a) shows a density function. We first set λ = 0, so the high-density level set

contains the whole support which is a continuous set. We therefore construct a root

node corresponding to the current level set. When we increase λ slightly above the

middle dashed line, the current level set splits into two disjoint continuous subsets,

and we therefore add two child nodes to the root such that each node contains a

subset. When we further increase the level slightly above the upper dashed line, the

subset corresponding to the right child node of the root splits and therefore two child

nodes are added to it. The corresponding high-density cluster tree is shown in Fig.

1.3(b).

The density function of a distribution uniquely determines a high-density cluster
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1.1. BRIEF DESCRIPTION OF THE CLUSTERING FRAMEWORK

tree. Although the tree can not uniquely determine a density function, it captures

information on the modes in a density function and therefore can be regarded as

a parameter of interest for the corresponding distribution. The goal of clustering

now becomes finding a good estimate of the high-density cluster tree given a sample.

However, we must address the issue of how to construct such a tree for a probability

mass function of a discrete distribution if its support is located in a Euclidean space.

In the discrete case, we can define a high-probability mass level set at λ to be

a subset of the support for the probability mass function such that the mass over

the subset is not less than λ. A cluster at λ is the maximally connected subset in

the level set at λ. However, there is no natural way to determine connectivity or

contiguity among discrete points in a level set. There is a straightforward way to

determine contiguity for one-dimensional cases: every pair of points in a level set

at λ is contiguous at λ if there is no point outside the level set located in between

them. In Fig. 1.4(b) we can easily construct a high-probability mass cluster tree for
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(a) Mass function of a discrete distribution (b) Cluster tree

Figure 1.4: Mass level set and cluster tree
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Figure 1.5: Scatter plot of a 2-d discrete distribution

the probability mass function shown in Fig. 1.4(a).

Now we must consider higher dimensional spaces. For example, in Fig. 1.5, we

have a level set in a two-dimensional space that contains every point except e and f .

Clearly points a, b, c, and d are contiguous with each other and so are points g, h,

and i. Are points a and g contiguous or not? If they are, we have one cluster in the

level set, and if they are not, we have two clusters. The determination of contiguity

for points a and g changes the clustering in this case. There is no obvious way to

answer this question. A contiguous analogue may be helpful, but we can have at

least two different scenarios as shown in Fig. 1.6. In a contour with a ridge, it is

reasonable to claim that a and g are contiguous. In a contour with a valley, they are

not.

The determination of contiguity is an open problem. To solve this problem, we

first try a four-spring model. This model is natural and easy to explain. However,

it is suitable only for a discrete distribution in two-dimensional space and is compu-

tationally expensive. We therefore propose a coupling graph method. The coupling

8
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(a) P.d.f. contour with ridge (b) P.d.f. contour with valley

Figure 1.6: Determining contiguity by p.d.f. contours

graph approach is simple and easy to implement. To construct a high-probability

mass cluster tree, the coupling graph method requires only the distances between

each pair of points and the probability mass of each point in the support. It is

efficient for high-dimensional cases because it does not depend on the dimensions.

We further discover that in a special case, the tree constructed by Hartigan’s

approach is identical to the high-probability mass cluster tree constructed by the

coupling graph method. Hartigan’s approach works only for a distribution whose

support is located on a regular lattice. His approach connects each pair of points

inside a level set if they share a common gridline [32]. Our approach is more general

and not constrained by the support of a discrete distribution.

Definitions and further exploration of the high-density cluster tree are given in

Chapter 4. The definitions for a high-probability mass cluster tree and the coupling

graph method to construct such a tree are also given in Chapter 4. The four-spring

model is discussed in Appendix D.

9



1. INTRODUCTION

1.1.3 Clustering methods and a graph family framework

The high-density cluster tree is a parameter of the corresponding underlying distri-

bution. We have extended the tree for discrete cases whose support is located in a

Euclidean space. A clustering method that produces a cluster tree is an estimator

of the high-density/mass cluster tree. For example, a hierarchical clustering method

such as single-linkage is an estimator; a dendrogram produced by single-linkage is an

estimate. Even a method that produces a partition of a sample can be regarded as

an estimator if we force a root node containing all the sample points to be the parent

node of each node that contains a cluster in the partition. This is a two-layer tree.

Such a method is not a good estimator for a high-density cluster tree with more than

two layers, but it can still be regarded as an estimator.

There are many clustering methods that can be regarded as estimators. An

immediate issue is how to assess their performance. Our approach is to use a cluster-

tree distance measure that calculates the difference between an estimate (cluster tree)

and its estimand (high-density cluster tree). The distance measure is designed based

on a graph family framework, and this framework is derived directly from clustering

outcomes.

The following example shows how a graph family is constructed from clusterings.

A toy data set is shown in the centre of Fig. 1.7. Figures 1.7(a) to (e) show five

different partitions of this data set. Points in the same colour (except grey) form a

cluster in each partition, and each point in grey forms a trivial cluster. If we connect

each pair of points in a cluster by an undirected edge, we construct a graph for each

partition; Fig. 1.8. shows these graphs. Since they share a common vertex set,

they form a graph family. Since we can not reorder them such that a successor is a

subgraph of its predecessor in the family, the graph family is not monotonic.

A monotonic family of graphs can be constructed from a cluster tree. The above

toy data set with an index on each point is shown in the centre of Fig. 1.9.

10
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A toy data set

(a) Partition 1

(b) Partition 2

(c) Partition 3 

(d) Partition 4 (e) Partition 5 

Figure 1.7: Partitions on a toy data set
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(a) g1 

(b) g2

(c) g3 

(d) g4 (e) g5 

The data 

Figure 1.8: A graph family constructed from clustering partitions
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A cluster tree 
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(a) g1 
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Figure 1.9: A monotonic family of graphs constructed from a cluster tree

13



1. INTRODUCTION

A cluster tree constructed by single-linkage on the data set is shown at the bottom

right of Fig. 1.9. Each horizontal bar in the cluster tree represents a non-leaf node.

There are six leaf nodes representing six points. This is a five-layer tree. We can

construct a graph corresponding to each layer starting from the root. Each graph is

constructed by connecting every pair of points contained in the same node with an

undirected edge. Figures 1.9(a) to (d) show the graphs corresponding to the first four

layers of the tree. These graphs with the order shown in the figure form a monotonic

family of graphs. Since the fifth layer of the tree contains only the leaf nodes, which

have a single point, its corresponding graph contains no edge. We do not include

this trivial graph in the graph family.

By further exploration we construct a graph family framework as shown in Fig.

1.10. In this framework, G represents a graph family that can be monotonic or

G -Tot(G) Gw
-

generated
�
Tot(Gm)

Gm
-

component tree
�
component-generated

Tcom(Gm)

Figure 1.10: The graph family framework

not. Gw represents a weighted graph, which is a graph with a weight on each edge.

A weighted graph can be constructed from a graph family total. Gm represents

a monotonic family of graphs. Tcom(Gm) represents a tree corresponding to Gm.

Applications of clustering can be derived from this graph family framework, and a

cluster-tree distance measure is among them.

Chapter 2 gives the definitions, properties, and construction of such a graph

family framework. Chapter 3 shows how this graph family framework is connected

to clustering.
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1.1. BRIEF DESCRIPTION OF THE CLUSTERING FRAMEWORK

1.1.4 Clustering distance measure

By following the arrows in the graph family framework from Tcom(Gm) to Gw, we

define a new cluster-tree distance measure. Figure 1.11 shows how this measure is
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Figure 1.11: A new cluster tree distance measure

defined.

Given a cluster tree built for a sample, which corresponds to Tcom(Gm) in the

graph family framework, such as the example shown in Fig. 1.9, we can construct a

monotonic family of graphs denoted Gm. By calculating the total of Gm, we obtain

a weighted graph denoted Gw. A weight vector can be constructed from Gw such

that each element in the vector corresponds to each pair of points in the sample. If

an edge connecting a pair of points exists in Gw, the corresponding element in the

vector is the weight on that edge. If no edge exists, the corresponding element in the

vector is zero.

The distance between two cluster trees of a sample is the Euclidean distance

between the two normalized weight vectors constructed from these two cluster trees.

The measure is actually obtained by mapping the space of cluster trees constructed

15



1. INTRODUCTION

for a fixed finite sample into a Euclidean space. This mapping is achieved through

the graph family framework. The measure was originally designed for cluster trees.

Since a tree can also be constructed for a partition, we call the measure a clustering

distance measure. It can be written as a kernel or an inner product, or as an angle

between two weight vectors.

In Chapter 2, we introduce a new tree distance measure. In Chapter 3, we discuss

its application to clustering, which is the clustering distance measure.

1.2 More applications of the graph family frame-

work

Each component of the clustering framework has been briefly introduced. By follow-

ing the arrows from G to Tcom(Gm) in the graph family framework of Fig. 1.10, we

can derive three additional applications.

1.2.1 Partition integration

We can build a single cluster tree for a sample from a set of different partitions

constructed for the same sample. As shown in Fig. 1.12, given a sample, using

different partitioning methods, we can obtain a set of different partitions. The set

can also be obtained by just one method such as k-means if we use different values

of k or fix k but use random starts. As in the example shown in Fig. 1.8, a graph

family can be obtained from these partitions. From the total of the graph family, we

get a weighted graph from which a monotonic family of graphs can be constructed.

A single cluster tree is then constructed based on the monotonic family of graphs.
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Figure 1.12: The method of clustering partition integration
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Figures 1.13 and 1.14 show how a cluster tree is constructed from five partitions
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Figure 1.13: The total of a graph family

of the toy data set from Fig. 1.7. In Fig. 1.13, a weighted graph is constructed as the

total of the graph family corresponding to five partitions. In Fig. 1.14, a monotonic

family of graphs is generated from the total of the graph family. A cluster tree is

then constructed for this monotonic family of graphs. The root of the cluster tree

contains the whole data set. The left child node of the root contains points 5 and 6.

The right child node of the root contains the other four points and each of its two

child nodes contains two points: they are 1, 2 and 3, 4. The index of the points in

the toy data set is shown in Fig. 1.9.
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Figure 1.14: A cluster tree generated from a weighted graph
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1.2.2 Cluster tree averaging

As shown in Fig. 1.15, given a sample, different clustering methods lead to a set
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Figure 1.15: The method of cluster tree averaging

of different cluster trees. For each cluster tree, we construct a monotonic family

of graphs. We obtain a larger graph family by combining these families together.

The larger graph family may not be monotonic. Through total, we have a weighted

graph and a single cluster tree is constructed from the monotonic family of graphs

generated from the weighted graph.
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1.2. MORE APPLICATIONS OF THE GRAPH FAMILY FRAMEWORK

1.2.3 Cluster tree bagging

This method is similar to cluster tree averaging. The difference is that bootstrapping

is used for bagging. Using bootstrapping, we obtain a sequence of bootstrapped

samples. For each such sample, we construct a cluster tree using a single clustering

method. We therefore obtain a set of cluster trees. Using the same strategy used for

the cluster tree averaging, we construct a single cluster tree. Figure 1.16 shows this
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Figure 1.16: The method of cluster tree averaging

method.

In Chapter 2, we introduce methods to integrate a set of graphs into a tree and to

combine different trees into a single tree. These methods are derived from the graph

family framework. In Chapter 3, we consider applications of the methods discussed

in this section to clustering.
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1.3 Experiments and applications

To check the performance of our new clustering framework, we carried out experi-

ments as follows:

Examination of our clustering distance measure Fowlkes and Mallows set up

experiments using sampling techniques to test their clustering similarity mea-

sure [20]. We carry out their experiments using our clustering distance mea-

sure. We use many more clustering methods than they did. Our outcomes

agree with their results and we have results that they did not discover. This

shows the ability of our measure to compare different clusterings.

Comparison of clustering performance These experiments compare cluster trees

constructed using clustering methods (estimators) and the high-density cluster

tree (estimand) on a sample drawn from a distribution. The experiments use

the Monte Carlo method.

Empirical examination of convergence A high-probability mass cluster tree can

be constructed for a discrete distribution; a high-density cluster tree can be

constructed for a continuous distribution. If a sequence of discrete random

variables converges in distribution to a continuous random variable, we exam-

ine the convergence of the corresponding high-probability mass cluster trees to

the corresponding high-density cluster tree. This examination is achieved via

our clustering distance measure and the Monte Carlo method.

Additional applications We have experiments that examine partition integration,

cluster tree averaging, and bagging.

We also apply our clustering distance measure and the additional applications to

two real data sets, Enron email data and olive oil sample data.

The implementation of Fowlkes and Mallows’ experiments are discussed in Chap-

ter 3 when we examine our cluster tree distance measure. Chapter 5 discusses the

Monte Carlo methodologies for evaluating clustering using our distance measure.
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1.4. CONTRIBUTIONS

Chapter 6 presents and analyses the outcomes of the experiments. The applications

to real data sets are discussed in Chapter 7.

1.4 Contributions

The contributions of the thesis include: the extension of a high-density cluster tree

to discrete distributions; the graph family framework and its application including a

new clustering distance measure; the assessment of clustering performance through

this measure; the idea of forming a new clustering framework based on the concept

of a statistical framework; and additional techniques derived from the graph family

framework for generating new clustering methods.

In this new clustering framework, under a well-defined clustering goal, the high-

density cluster tree or its extension can be regarded as a parameter of interest for

the underlying distribution. A clustering method, which can produce a cluster tree,

can be regarded as an estimator. From a graph family framework, which is derived

directly from clustering outcomes, a clustering distance measure is defined to assess

the performance of different estimators. Some further techniques such as the cluster

tree bagging are derived from the graph family framework. These techniques can be

used to generate new estimators. The work in this thesis provides a new and general

view of clustering and has practical value.

1.5 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we propose a new graph family

framework based on a graph view of clustering outcomes. To construct this frame-

work, we first define some terms including graph family, monotonic family of graphs,

and the total of a graph family. We propose methodologies to generate a monotonic

family of graphs from a graph family that is not monotonic and to generate a com-

ponent tree from a monotonic family of graphs. These methodologies are derived

based on the total of a graph family. This chapter also addresses applications of

23



1. INTRODUCTION

the framework such as a tree distance measure, methods to generate a tree from a

sequence of graphs, and methods to produce a single tree from different trees.

Chapter 3 shows the connection of this graph family framework to clustering. The

applications of the framework can also be used for clustering, and Chapter 3 addresses

these applications as well. We implement Fowlkes and Mallows’ experiments to

evaluate our tree distance measure for clustering.

Based on a well-defined clustering goal, Chapter 4 parameterizes clustering using

Hartigan’s definition of a high-density level set [31] and Stuetzle’s definition of a high-

density cluster tree [62] for continuous distributions. We discover some properties of

this parameter. Also in Chapter 4, we define the high-probability mass cluster tree

and propose new methods to determine contiguity for a discrete distribution with a

Euclidean support space. The algorithms developed to construct a high-probability

mass cluster tree are also given in this chapter.

Chapter 5 sets up methodologies for comparing clustering performance and exam-

ining convergence properties. These methodologies are the basis for the experiments

discussed in Chapter 6. The clustering distance measure and the Monte Carlo method

are used in these experiments. The outcomes of these experiments are presented and

analysed in Chapter 6. Chapter 7 presents the application of our methods and the

clustering distance measure to two real data sets: the Enron email data set and the

olive oil sample set. Chapter 8 provides concluding remarks and suggests possible

future research directions.

Appendix A provides a brief review of clustering and typical clustering methods.

Appendix B givess a brief review of some existing approaches to a framework for

clustering. Appendix C presents some standard definitions from graph theory. These

definitions are necessary when we construct a probability mass cluster tree. Appendix

D gives a four-spring model. We propose this model to determine the contiguity of

points in a discrete distribution. The model is natural but has limits. We therefore

use a more general approach, the coupling graph method. Appendix E lists the

clustering methods that we used for the experiments in this thesis.
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Chapter 2

A graph family framework

2.1 Chapter summary

As explained in Chapter 1, a graph family is associated with a sequence of partitions

of a sample; a monotonic family of graphs is associated with a cluster tree; the total

of a graph family is defined as a weighted graph; and a monotonic family of graphs

can be generated from a weighted graph. A graph family framework is constructed

based on the above building blocks.

The idea underlying the graph family framework is motivated by clustering and

the use of this framework in clustering becomes an important part of our clustering

framework shown in Fig. 1.2 of Chapter 1. Since a graph family is defined on a vertex

set, the construction of the graph family framework is independent of clustering.

In this chapter, we first define graph family, monotonic family of graphs, and

graph total, and then describe in detail how a graph family framework is constructed.

Applications of this framework are also given.

2.2 Monotonic family of graphs

Before defining a monotonic family of graphs, we define a graph family.

Definition 2.2.1 A family of graphs is an indexed collection of graphs F = {gk}
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2. A GRAPH FAMILY FRAMEWORK

such that ∀i < j, Vj ⊆ Vi, where Vi and Vj are the vertex sets of gi and gj respectively.

Definition 2.2.2 F = {gk} is a monotonic family of graphs if F is a family

of graphs and ∀i < j, Ej ⊆ Ei, where Ei and Ej are the edge sets of gi and gj

respectively. We further call gi the immediate predecessor of gj in F (or gj the

immediate successor of gi in F) whenever i < j and there exists no gk ∈ F such

that i < k < j. If each graph in F has the same vertex set, F is called a monotonic

partition family of graphs. If there do not exist any pair of graphs in F that

have the same vertices and the same edge sets, F is called a reduced monotonic

family of graphs.

Note that we say gj is a subgraph of gi, denoted gj ⊆ gi, iff Vj ⊆ Vi and Ej ⊆ Ei.

In a family of monotonic graphs, F = {gk}, gj ⊆ gi iff i < j. Figure 2.1 shows an
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Figure 2.1: Example of a monotonic partition family of graphs.

example of a monotonic partition family of graphs with index starting from 0.

For simplicity and convenience, we do not allow a mixture of weighted and un-

weighted graphs in a graph family. Taking this into account, definitions 2.2.1 and

2.2.2 can be extended so that if all members of a family of graphs have weights

assigned to their edges, the family will be called a family of weighted graphs. We

can similarly define a family of unweighted graphs, a monotonic family of weighted

graphs, and a monotonic family of unweighted graphs, etc.

For weighted graphs, graph operators can be defined as follows.
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2.2. MONOTONIC FAMILY OF GRAPHS

Definition 2.2.3 The addition of two weighted graphs g1 =< V1, E1,W1 > and

g2 =< V2, E2,W2 > is denoted by g1 + g2 =< V,E,W >, where V = V1 ∪ V2,

E = E1 ∪ E2, W = {wj = wj,1 + wj,2}, wj,1 is the weight on edge ej from g1 with

wj,1 = 0 if ej does not exist in E1, and wj,2 is defined similarly.

Definition 2.2.4 The total of a family G of weighted graphs, denoted Tot(G), is the

graph ∑
∀g∈G

g.

An unweighted graph gu =< V,E > can be transformed to a weighted graph

gw =< V,E,W > by simply assigning positive weights to the edges in E. The

standard transformation is to assign weight 1 to each edge in E. We can transform a

family of unweighted graphs to be a family of unity-weighted graphs by this standard

transformation. The total of a family of unweighted graphs can be calculated using

the family of transformed unity-weighted graphs.

Consider how we might generate a monotonic family of weighted graphs from a

single weighted graph. A natural way might be to use the edge weights to determine

whether or not an edge appears. To be more specific, let G =< V,E,W > be a

weighted graph, where V is the set of vertices, E is the set of all the edges in G, and

W = {wj = w(ej) : w(ej) is the weight on edge ej ∈ E, w(ej) > 0}. We can always

construct gp =< V,Ep,Wp > where ej ∈ Ep iff ej ∈ E and wj ≥ p. We have gp ⊆ G

and gp ⊆ gq iff p > q. Therefore we can construct a monotonic family of weighted

graphs, G = {gp : p ∈ R+}. However generating a graph family this way may have

some problems which we explain as follows.

The family of weighted graphs, G, generated above has uncountably infinite mem-

bers with the weights on edges of Tot(G) a vector of values that could all be infinite.

(Note that, if we set p ∈ Q+ in the above construction, there are countably infi-

nite members in the generated family.) Since there are uncountably (or countably)

infinite repeats of graphs in G, we further reduce G in the following way.

Let Wl = {l1, l2, · · · , lm} be the set of all the unique levels of weights in W from

the weighted graph G. The reduced version of G, denoted GR, GR = {gp : p ∈ Wl}
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2. A GRAPH FAMILY FRAMEWORK

is a reduced monotonic family of weighted graphs. The number of members in GR

equals the number of unique levels of weights from W in G. We denote W(l) =

{l(1), l(2), · · · , l(m)} to be the ordered set of Wl, then the set of weights on all the

edges of Tot(GR) equals {l(1), 2l(2), 3l(3), · · · ,ml(m)}. Figure 2.2 shows an example of
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Figure 2.2: An example of a naturally generated family of graphs.

a reduced family of weighted graphs generated from a weighted graph G using this

method.

We are interested in the condition Tot(G) = G. The graph family G described

above does not preserve this feature, nor does its reduced version GR unless only one

member exists in GR. The following definition ensures that the condition Tot(G) = G

is preserved.

Definition 2.2.5 Given a weighted graph G =< V,E,W >, let Wl = {l1, l2, · · · , lm}
be the set of all the unique levels of weights in W , and let W(l) = {l(1), l(2), · · · , l(m)} be
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2.2. MONOTONIC FAMILY OF GRAPHS

the ordered set of Wl. The weight-generated family of graphs, denoted Fw(G),

is constructed by a sequence of graphs gi =< V,Ei,Wi >, i = 1, 2, · · · ,m, such that

Ei = {ej : wj = w(ej) ≥ l(i)} and Wi is a vector of dimension |Ei| all of whose

elements equal l(i) − l(i−1).

From the above definition, Fw(G) is a uniquely generated partition family of

graphs. A simple algorithm can be derived to obtain this graph family:

1. Obtain the ordered set W(l) = {l(1), l(2), · · · , l(m)} from W ;

2. For each i from 1 to m, generate gi =< V,Ei,Wi > in Fw(G), where Ei = {ej :

ej ∈ E,wj ≥ l(i)} and Wi = (l(i) − l(i−1)) · 1 where 1 is a vector of 1s with

length |Ei|.

Figure 2.3 shows an example of a weight-generated family of graphs constructed from

the weighted graph G shown in Fig. 2.2.

The following proposition demonstrates the properties of the weight-generated

family of graphs.

Proposition 2.2.1 Let Fw(G) be a weight-generated family of graphs. Then Fw(G)

is a reduced monotonic family of weighted graphs such that Tot(Fw(G)) = G.

Proof: Let Fw(G) = {gi =< V,Ei,Wi >}. We have l(i) < l(j) if 1 ≤ i < j ≤ m,

therefore gj ⊂ gi and gj 6= gi, so by definition, Fw(G) is a reduced monotonic family

of weighted graphs.

Let ai be an element in Wi, then by definition we have a1 = l(1), therefore when

j = 1, we have
∑j

t=1 at = l(j). Suppose that when j = k, where 1 ≤ j < m, we have∑j
t=1 at = l(j). Then for j = k+ 1,

∑j
t=1 at =

∑k
t=1 at + ak+1 = l(k) + (l(k+1)− l(k)) =

l(k+1) = l(j). Thus, by mathematical induction, if 1 ≤ j ≤ m, we have
∑j

t=1 at = l(j).

For all ej ∈ E with weight wj, we have wj ∈ W(l), say wj = l(k). By definition,

ej appears in every graph gi if i ≤ k and does not appear in any graph gi if i > k.

The weight of ej in the graph Tot(Fw(G)) equals
∑k

t=1 at which is l(k). Therefore,

Tot(Fw(G)) = G. �
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Figure 2.3: An example of a weight-generated family of graphs.
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2.2. MONOTONIC FAMILY OF GRAPHS

We denote by S the set of all the reduced monotonic partition families of weighted

graphs, and by Se the subset of S such that ∀F ∈ Se, every member of F is a graph

with an identical positive weight on each edge. Note that the weights on two edges

from two members in Se can be different. We can produce a different graph family

G ∈ S by modifying the graph family generated in Fig. 2.3 so that Tot(G) = G.

There are many ways to do so: for example, reassign the weight of the only edge in

g5 to be 0.3 and change the weight of this edge in g4 to be 0.2. This example shows

that Fw(G) such that Tot(Fw(G)) = G is not unique in S. However, Theorem 2.2.1

shows that Fw(G) is unique in Se.

Theorem 2.2.1 Fw(G) such that Tot(Fw(G)) = G is unique in Se.

Proof: Let G = {gi} ∈ Se such that Tot(G) = G. Because Tot(G) = G, any graph

in G can contain only the edges appearing in G. ∀ej ∈ E, suppose the weight on ej

in G equals l(k) with 1 ≤ k ≤ m. Because the weight of ej is the kth level in W(l), ej

must appear in each graph gi with i ≤ k. Therefore, the number of members of G
equals m which is the same as that in Fw(G), and the edge set of gi in G is the same

as the edge set of the ith graph in Fw(G).

Since G is a reduced graph family, at least one edge is removed in gi compared

with gi−1, where 1 < i ≤ m. Because every member of G is a graph with an identical

positive weight on each edge, the edges that appear in gi−1 but not in gi have the

same weight in Tot(G) which is the (i− 1)th level in W(l).

Denote ai to be the identical weight of each edge in gi ∈ G. Let e1 be an edge

appearing only in g1; its weight in G must be l(1), so to have Tot(G) = G, a1 must

be l(1). Suppose ai equals l(i) − l(i−1), where 1 ≤ i < m, l(i) = 0 if i = 0, and let ei+1

be an edge appearing in gi+1 but not in gi+2 (if i+ 1 < m). Then the weight on ei+1

in G must be l(i+1), and therefore ai+1 must be l(i+1) −
∑i

t=1 at = l(i+1) − l(i) (by the

result in the proof of the above proposition).

Because Tot(G) = G and either G or Fw(G) is a partition family of graphs, any

graph from G has the same vertex set as any graph from Fw(G).

From the above discussion, we have G = Fw(G). �
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2. A GRAPH FAMILY FRAMEWORK

Theorem 2.2.1 is important because it implies that for any weighted graph G

there exists and only exists one graph family in Se such that its total is G, and

Fw(G) is that one.

If the weight of each edge in the given weighted graph G is an element of a set

of positive integers, and the maximum common factor of all the weights is 1, we can

generate a family of unity-weighted graphs.

Definition 2.2.6 Given a weighted graph G =< V,E,W > with W a vector of

positive integers, the unity-weight-generated family of graphs, denoted Fu(G),

is constructed by a sequence of graphs gi =< V,Ei,Wi >, with i = 1, 2, · · · ,m, where

m is the maximum weight in G, Ei = {ej : wj = w(ej) ≥ i}, and Wi is a vector of

dimension |Ei| all of whose elements equal 1.

Fu(G) is a partition family of graphs. A simple algorithm can be derived to

obtain this graph family:

1. Set m = max∀ej∈E(wj);

2. For each i from 1 to m, generate gi =< V,Ei,Wi > in Fu(G), where Ei = {ej :

wj = w(ej) ≥ i} and Wi is a vector of 1s with length |Ei|.

Figures 2.4 and 2.5 show two examples of unity-weight-generated families of graphs;
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Figure 2.4: A reduced unity-weight-generated family of graphs.
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the graph family in Fig. 2.4 is reduced, but that in Fig. 2.5 is not.

From the definition, Fu(G) is a monotonic family of graphs, and it is reduced

if the weights on edges of G form a vector of consecutive integers starting from 1.

We denote Su to be the set of all the monotonic partition families of unity-weighted

graphs. Theorem 2.2.2 shows that Fu(G) such that Tot(Fu(G)) = G is unique in Su.

Theorem 2.2.2 Fu(G) such that Tot(Fu(G)) = G is unique in Su.

Proof: Since each edge ej in G with weight say nj by definition appears in the

first nj graphs of Fu(G) with weight 1, and only in those graphs, it follows that the

weight on ej in Tot(Fu(G)) equals nj and then Tot(Fu(G)) = G.

Suppose there exists a graph family G = {gi} ∈ Su such that Tot(G) = G and

G 6= Fu(G). Since G is a partition graph family with Tot(G) = G, the vertex set of

each graph in G is V , and no edge outside E can appear in any graph in G. Let gk

be the first graph in G such that gk is different from the kth graph in Fu(G). Then

there exists at least one edge ej that appears in either the kth graph of G or Fu(G)

but not both. Suppose ej appears in gk of G, then ej does not appear in any graph

of Fu(G) with index no less than k, therefore ej has more weight in Tot(G) than in

Tot(Fu(G)), but this is not possible. A similar conflict can be found if ej appears in

the kth graph of Fu(G) but not in gk of G.

By the above discussion, G and Fu(G) must be the same, so the unity-weight-

generated family of graphs is unique in the space Su. �

Similar to Theorem 2.2.1, Theorem 2.2.2 is important because of the uniqueness

it proves.

Considering the given weighted graph G =< V,E,W >, suppose W is a vector

of real values and if there exists at least one positive real value such that a vector

of positive integers remains when that real value is factored out from each element

in W . Let w be the maximum such positive real value. We can construct a unity-

weight-generated family of graphs by first factoring w out from the weight of each

edge in G, i.e. W = w ·WI and GI =< V,E,WI >, then constructing the unity-

weight-generated family F(GI)u and finally replacing the weight of each edge in each

member of F(GI)u by w.
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In this section, we have discussed generating a monotonic family of graphs from

a weighted graph; on the other hand, a weighted graph can be generated from a

graph family by obtaining the graph total. The following section considers how to

construct a tree structure from a monotonic family of graphs and vice versa.

2.3 The component tree

Every monotonic family of graphs produces a hierarchy of graph components that in

turn can be connected in what we call a component tree. To formalize this idea, the

following proposition is useful.

Proposition 2.3.1 Given two elements, gi and gj with i < j, of a monotonic family

of graphs, for any connected component c(gj), there exists a unique component c∗(gi)

such that c(gj) ⊆ c∗(gi).

Proof: By definition, gj ⊆ gi, so c(gj) ⊆ gj ⊆ gi and c(gj) is a subgraph of

gi. Because c(gj) is a connected component of gj, it is a connected subgraph of gi.

There must exist a connected component c∗(gi) such that c(gj) ⊆ c∗(gi). For any

other connected component c
′
(gi), c

∗(gi) ∩ c
′
(gi) = φ, and therefore c∗(gi) is unique.

�

Proposition 2.3.1 suggests a basis for organizing the connected components of a

monotonic family of graphs into a tree where each node corresponds to a connected

component of a graph in F . If gi is the immediate predecessor of gj in F , then an

arc is drawn from every connected component c(gi) to every connected component

c(gj) that is also a subgraph of the connected component c(gi).

In general, this construction might more appropriately be described as a forest of

trees, in that there might be multiple root nodes, each corresponding to a connected

component in the first graph of the monotonic family. To avoid this situation, we

assume that the first graph has a single connected component; if this is not the case,

then for the purpose of tree construction, we simply push the undirected complete

graph on all vertices into the first position in the family. Similarly, for simplicity and
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2. A GRAPH FAMILY FRAMEWORK

without loss of generality, we can take the first index of the monotonic family to be

0 so that the first graph can be referred to as g0. Such a tree can now be defined

more formally as follows:

Definition 2.3.1 Given a monotonic family of graphs F , with first element g0 hav-

ing a single component, the component tree of F is the tree with nodes Ni,u = cu(gi)

corresponding to the uth component of the graph gi in F , where Nj,v is a child of

Ni,u if, and only if, gi is the immediate predecessor of gj in F and cv(gj) ⊆ cu(gi).

Definition 2.3.2 If F is a monotonic partition family of graphs, the component tree

of F is called a partition tree.

Figure 2.6 shows the component tree constructed for the monotonic graph family

{a, b, c, d, e, f}, g0c
c {a, b, c, d, e, f}, g1

�
�

�

@
@
@c c{a, c, d}, g2 {b, e, f}, g2

�
�

@
@c c c{a, c} {d} {b, e, f}

Figure 2.6: The component tree for the graph family in Fig. 2.1.

in Fig. 2.1. For simplicity every non-leaf node in the tree is represented by the vertex

set of the corresponding component and the graph from which this component comes.

In this example, for the leaf nodes from g3 we show only their corresponding vertex

sets. Since the graph family shown in Fig. 2.1 is a partition family of graphs, the

tree in Fig. 2.6 is also a partition tree.

Some components contain a single vertex that may have little interest. These are

defined formally as follows.

Definition 2.3.3 A connected component that consists entirely of a single vertex

will be called a trivial component. Similarly, connected components having more

than one vertex will be said to be non-trivial.
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2.3. THE COMPONENT TREE

Non-trivial component trees and non-trivial partition trees are component trees

and partition trees whose trivial components have been removed. Figure 2.7 shows

{a, b, c, d, e, f}, g0c
c {a, b, c, d, e, f}, g1

�
�

�

@
@
@c c{a, c, d}, g2 {b, e, f}, g2

c c{a, c}, g3 {b, e, f}, g3

Figure 2.7: Non-trivial component tree for the graph family in Fig. 2.1.

the non-trivial component tree of the monotonic family of graphs shown in Fig. 2.1.

The tree structure defined so far allows nodes to have a single child. Sometimes,

these single child nodes are of no interest and can be removed to produce a reduced

tree as follows. We construct a reduced component tree where each node rep-

resents a component of a graph in the monotonic family of graphs, F . Associated

with each node, N , is a connected component cλ,N and a level λ(N) being the index

level where the component cλ,N of gλ(N) first appears. Descendant branches appear

for the component at the node, N , at the smallest level λ∗ large enough that the

corresponding graph gλ∗ in the family has two or more connected components that

are subgraphs of cλ,N .

This structure is probably more easily understood with the following recursive

description, as in Stuetzle’s paper [62]. The root node represents the entire graph

g0 and it is associated with the index, λ(N) = 0, of the family F . To determine

the descendants of a node N having index level λ and component cλ,N , find the

next lowest index level λ∗ > λ for which gλ∗ has two or more connected components

that are subgraphs of cλ,N . Each of these k (typically k = 2 but it could be larger)

connected components now forms a new branch in the tree from N to a descendant

node Di, for i = 1, 2, . . . , k. Associated with the ith descendant node Di is the

corresponding connected component cλ∗,Di
and level λ∗. The procedure is applied

recursively to each descendant node. If F is a monotonic partition family of graphs,
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2. A GRAPH FAMILY FRAMEWORK

the reduced component tree of F is also called a reduced partition tree. Note that

two different monotonic families of graphs may yield the same reduced component

tree.

Figure 2.8 shows the reduced component tree of the monotonic family of graphs

{a, b, c, d, e, f}, g0c
�

�
�

@
@
@c c{a, c, d}, g2 {b, e, f}, g2

�
�

@
@c c{a, c} {d}

Figure 2.8: The reduced component tree for the graph family in Fig. 2.1.

shown in Fig. 2.1.

Non-trivial reduced component trees and non-trivial reduced partition trees are

reduced component trees and reduced partition trees whose trivial components have

been removed. Figure 2.9 shows the non-trivial reduced component tree of the mono-

{a, b, c, d, e, f}, g0c
�

��

@
@@c c

{a, c, d}, g2 {b, e, f}, g2

Figure 2.9: The non-trivial reduced component tree for the graph family in Fig. 2.1.

tonic family of graphs in Fig. 2.1. Note that component trees are unique by con-

struction. However, the uniqueness of their reduced counterparts may not be so

obvious.

38



2.3. THE COMPONENT TREE

Proposition 2.3.2 The reduced component tree of a monotonic family of graphs is

unique.

Proof: Suppose T1 and T2 are two reduced component trees of the monotonic

family of graphs F = {gk}. Let N (1) be the node in T1 that corresponds to the

component c(gi), and suppose that gj is the first successor of gi in F having more

than one component, say c1(gj), · · · , cp(gj), p ≥ 2, that are also subgraphs of c(gi).

Suppose there exists a node N (2) in T2 that also corresponds to the component c(gi);

its child nodes will also correspond to c1(gj), · · · , cp(gj) by construction.

Now the root nodes of T1 and T2 are identical, corresponding to the graph g0 in

F . Therefore, T1 and T2 are identical by induction. �

In the construction of the reduced component tree of a monotonic family of

graphs, each node of the tree is associated with a component in the family. The

associated component plays an important role in the tree construction, and will be

called a branch component. This is defined formally as follows.

Definition 2.3.4 Let F = {gk} be a monotonic family of graphs. Let gi be the

immediate predecessor of gj in F . Components ct(gj) and cl(gj) will be called branch

components if there exists a component ch(gi) such that ct(gj) ∪ cl(gj) ⊆ ch(gi).

Note that in the above definition there could be more than two branch components

as subsets of ch(gi).

For convenience, we call the component in g0 the root component. Any branch

component including the root component in a monotonic family of graphs F repre-

sents a unique node in the reduced component tree of F . Any node in the reduced

component tree of a monotonic family of graphs F corresponds to a unique branch

component in F .

The discussion so far in this section shows how to construct a tree structure from

a monotonic family of graphs. We are also interested in generating a monotonic

family of graphs from a tree structure.

Definition 2.3.5 An inheritance path of a tree is a sequence of nodes such that

the immediate successor of a node in this path is its direct child node in the tree. A
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2. A GRAPH FAMILY FRAMEWORK

layer of a node N of a tree is the number of nodes in the inheritance path of the

tree with the root being the first node and N being the last node in this path. The

layer of a tree is defined to be the maximum layer of all nodes in the tree.

Figure 2.10 shows a tree with 8 nodes including the root which is node 0. A path
 
 
 
 
 

0

1 2

3 4 5 6 7

 

Figure 2.10: A tree structure

from node 0 to node 7 through node 2 is an inheritance path such that the layer of

node 2 is 2 and the layer of node 7 is 3. Since the maximum layer of all the nodes in

this tree is 3, the layer of the tree is 3.

Definition 2.3.6 Let T be a component tree with layer m, Vij the vertex set in the

jth node with layer i in T , and gij the complete unity-weighted graph with vertex set

Vij. The component-generated family of graphs for the component tree T is

denoted by F(T ) such that F(T ) = {gi}, where i = 1, 2, · · · m and

gi =

ni⋃
j=1

gij

where ni is the number of nodes with layer i in T .
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A unique monotonic family of graphs can be generated by the above definition.

Moreover, if T is a reduced component tree, its component-generated family of graphs

is reduced as well.

2.4 Overview of the framework

In the previous sections of the chapter we have completed all the building blocks to

construct a new framework of graph families. This framework is shown in Fig. 2.11.

In this framework, G denotes any family of graphs including non-monotonic families;

G -Tot(G) Gw
-generated

�
Tot(Gm)

Gm
-component tree

�
component-generated

Tcom(Gm)

Figure 2.11: The framework of a monotonic family of graphs

Gw denotes a weighted graph; Gm denotes a monotonic family of graphs; Tcom(Gm)

denotes a component tree. Each arrow in Fig. 2.11 represents a transformation.

For example, a weighted graph Gw can be derived from a graph family G by the

total; a monotonic graph family Gm can be constructed from a weighted graph Gw; a

component tree Tcom(Gm) can be generated from a monotonic graph family Gm. The

framework can be run in reverse, from a component tree to a monotonic family of

graphs and a weighted graph. All the above conceptions and transformations have

been introduced in the chapter.

Although motivated by clustering, the above framework is independent of cluster-

ing. When associating the framework with clustering, G represents any sequence of

partitions on a finite sample and Gm represents a sequence of nested partitions on a

finite sample. If Tcom(Gm) is a reduced component tree, it represents a single cluster
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2. A GRAPH FAMILY FRAMEWORK

tree. If Tcom(Gm) is not reduced, we can reduce it to produce a cluster tree. Chapter

3 describes in detail the connection of the graph family framework to clustering.

2.5 Applications

From the graph family framework, we derive two methods, graph integration and

tree averaging, as well as a tree distance measure.

2.5.1 Graph integration

If a sequence of graphs can form a graph family, we can construct a component tree

using graph integration. As shown in Fig. 2.12, the method of graph integration

 
 

A sequence 
of graphs 

A graph  
  family 

Component   
tree 

A monotonic 
graph family 

Weighted 
   graph 

Graph  
 total 

Figure 2.12: Method of graph integration

first constructs a weighted graph from the total of the graph family, then generates

a monotonic family of graphs through the methodologies introduced in Section 2.2,

and finally produces a single component tree.
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Figure 2.13 shows a sequence of graphs with a common vertex set. These graphs

 

(a) g1 

(b) g2

(c) g3 

Vertex set 

(e) g5 (d) g4 

Figure 2.13: A sequence of graphs

form a graph family. Note that some of the connected subgraphs in graphs (d) and

(e) in Fig. 2.13 are not complete. This makes the graph family different from that

in Fig. 1.8. The weighted graph GW in Fig. 2.14 is the total of the graph family

shown in Fig. 2.13. The monotonic family of graphs formed by graphs (a) to (d) in

Fig. 2.14 is the unity-weight-generated family of graphs from GW . The tree at the

bottom right of Fig. 2.14 represents the non-trivial component tree generated from

the above monotonic family of graphs.
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(c) g3

(d) g4 (a) g1 

(b) g2 

 1 

 2 
 3  3 

 1 

 1 

Gw 

 4 

Figure 2.14: Example of graph integration
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2.5.2 Tree averaging

If we have a set of component trees such that they have the same root content, as

shown in Fig. 2.15, a set of graph families can be constructed. We construct a

 
 

A set of 
component 

trees 

A set of graph 
families 

Component 
tree 

A monotonic 
graph family 

Weighted 
   graph 

Graph  
 total 

Figure 2.15: Method of tree averaging

weighted graph from the total of each graph family. These weighted graphs form a

new graph family and the total of this graph family is a single weighted graph, say

GW . We can also divide the weight on each edge from GW by the number of graph

families. A single component tree can be constructed from the monotonic family of

graphs generated from GW . Note that the tree averaging may not produce a simpler

tree structure.

Figures 2.16 and 2.17 show two component trees with the same root content. The

roots of both trees contain four points. These four points are shown as a vertex set

in the two figures. The roots of both trees have two child nodes. The two child nodes

in the first tree contain points 1, 2 and 3, 4 respectively. The two child nodes in the

second tree contain points 1, 2, 3, and 4 respectively. Graphs (a) and (b) in each

figure represent a monotonic family of graphs associated with each tree.
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  Tree 1 

1 2 3 4 Vertex set 

1 

2 3 

4 

(a) g1 (b) g2 

Figure 2.16: A tree and generated graph family

Figure 2.18 shows a component tree generated by tree averaging from the two trees

shown in Figs. 2.16 and 2.17. Gw1 and Gw2 represent the total of the monotonic

family of graphs corresponding to each tree. Gw1 and Gw2 also form a new graph

family. Let Gw′ be the total of this new graph family. Gw is constructed from Gw′

by dividing the weight on each edge by 2. From the definition of a weight-generated

family of graphs, a monotonic family of weighted graphs is constructed. This graph

family is shown as graphs (a), (b), and (c) in Fig. 2.18. For simplicity, weights

are omitted from these graphs. A reduced component tree is generated from this

monotonic family of graphs. The first child node of the root in the tree contains two

points; the other two child nodes each contain only one point.

46



2.5. APPLICATIONS

 

  Tree 2 

1 4 2 3 Vertex set 

1 

2 3 

4 

(a) g1 (b) g2 

Figure 2.17: A tree and generated graph family
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Gw1 

1 
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1 1 

1 

Gw2 

2 

2 2 1 
1 

1 

Gw 

1.5 

2 1.5 1 
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1 

(a) g1 

(b) g2 

(c) g3 Tree 

Figure 2.18: Example of tree averaging

48



2.5. APPLICATIONS

2.5.3 A tree distance measure

Based on the graph family framework, a tree distance measure can be defined as

follows. Let T1 and T2 be two component trees such that their roots have the same

content, say D. Their component-generated families of graphs are F1 and F2 respec-

tively. Both F1 and F2 contain g0, which is the complete graph of D. Let W (T1)

and W (T2) be the weight vectors of Tot(F1− g0) and Tot(F2− g0) respectively such

that the ith elements in both W (T1) and W (T2) are the weights on the ith edge in the

complete graph with vertex set D respectively. Let Wnorm(T1) = W (T1)/||W (T1)||
and Wnorm(T2) = W (T2)/||W (T2)||, where ||W (Ti)|| denotes the Euclidean length of

W (Ti) and i = 1, 2. The distance of T1 and T2 can be defined as

d(T1, T2) = ||Wnorm(T1)−Wnorm(T2)||.

For example, Fig. 2.19 (b) and (c) shows two component trees say T1 and T2.

                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 1 

2 3 

5 8 

6 7 

                     
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 - 8 

1 - 4 5 - 8 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

1 - 8 

1 - 4 5 - 8 

5 - 6 7 - 8 

(a) Root content (b) The first tree (c) The second tree

Figure 2.19: Two component trees with the same root content

They have the same root content which is shown in Fig. 2.19 (a). The index value

for each point from the root content is also shown in Fig. 2.19 (a). The content of

each node in both trees is also shown in Fig. 2.19 (“1-8” denotes points 1 to 8, etc).
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Figure 2.20 and Fig. 2.21 shows the component-generated family of graphs for T1 and
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2 3 

5 8 

6 7  
 
 
 
 
 
 
 
 
 
 
 

 
 
 

4 1 

2 3 

5 8 

6 7 

(a) g0 (b) g1

Figure 2.20: The component-generated family of graphs, F1

T2 respectively. We denote these two graph families F1 and F2 respectively. Figure

2.22 shows two weighted graphs Tot(F1−g0) and Tot(F2−g0). We denote the weight

vectors of these two graph families W (T1) and W (T2) respectively. In the example,

both vectors contain
(
8
2

)
elements. Since there are twelve edges in Tot(F1 − g0) all

with weight 1, W (T1) contains twelve 1s and sixteen 0s. Similarly, W (T2) contains

two 2s, ten 1s and sixteen 0s. The only difference between W (T1) and W (T2) in this

example is that the values of the two elements corresponding to points 5,6 and points

7,8 are 2 in W (T2) but 1 in W (T1). It is clear, the distance between W (T1)/||W (T1)||
and W (T2)/||W (T2)|| is 0.308. Therefore, d(T1, T2) = 0.308. Note that the distance

measure does not depend on the coordinates of each point in the root content.
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(a) g0 (b) g1 (c) g2

Figure 2.21: The component-generated family of graphs, F2
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(a) Tot(F1 − g0) (b) Tot(F2 − g0)

Figure 2.22: Two weighted graphs
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In our tree distance measure, we remove g0 so that the common root of trees T1

and T2 does not dominate the difference at higher layer nodes from these two trees.

Our tree distance measure based on two normalized weight vectors depends on

the angle between these two vectors. Let d = d(T1, T2) be the tree distance from

T1 to T2. Let W1 = Wnorm(T1) and W2 = Wnorm(T2) be the normalized vectors of

the weights constructed from T1 and T2 respectively, and α the angle between W1

and W2. We have cos(α) = 1 − d2

2
. It is common in the literature to use such a

cos(α) to remove dependence on vector length. Since cos(α) =
W T

1 W2

||W1||·||W2|| ≥ 0, we

have 0 ≤ α ≤ π
2
. Therefore 0 ≤ d ≤

√
2, so the maximum possible distance between

two trees by our measure is
√

2.

It is clear that, for any trees T1, T2, and T3 with the same finite root content, we

have d(T1, T2) ≥ 0, d(T1, T2) = d(T2, T1), and d(T1, T2) + d(T2, T3) ≥ d(T1, T3). The

following proposition leads to the result that the measure d(·) is metric for the space

of non-trivial trees with the same finite root content.

Proposition 2.5.1 Suppose T1 and T2 are two non-trivial trees with the same root

content. Then d(T1, T2) = 0 if and only if T1 = T2.

Proof: It is clear that if T1 = T2 then d(T1, T2) = 0. If d(T1, T2) = 0, we

have Wnorm(T1) = Wnorm(T2). Therefore W (T1) is proportional to W (T2) or say

W (T1) = k ·W (T2), where k is a positive constant.

As a tree, any node say N2 in T1 except the root has a parent node say N1

such that B = Content(N1) − Content(N2) 6= φ. If the layer of N1 is i, the weight

of every pair of points formed by one point from N2 and the other from B is i in

the weight vector W (T1). Therefore the distinct elements of W (T1) are consecutive

integers starting from 0. This is also true for W (T2). So we have k = 1 and therefore

W (T1) = W (T2).

If every node in T1 appears in T2 and T2 does not have any node not in T1, then

T1 is identical to T2 because the parent node of a node say N in T1 must be the

parent node of N in T2. Assume T1 and T2 are different with W (T1) = W (T2). Let

j be the lowest layer such that a node in T2 at layer j is different from every node

in T1 at layer j. (Note that the layer of the root in a tree is 1 and j must be larger
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than 1 because T1 and T2 have the same root content.) Since every node in T1 and

T2 contains at least two points, there must exist at least a pair of points say (p, q)

such that either (p, q) appears in a node of layer j from T1 but not in any node at

layer j from T2, or (p, q) appears in a node of layer j from T2 but not in that from T1.

Either way makes W (T1) 6= W (T2), and this conflicts with the above assumption.

Therefore, T1 = T2 if W (T1) = W (T2).

Because W (T1) = W (T2) if d(T1, T2) = 0, we have T1 = T2 if d(T1, T2) = 0. �

From Proposition 2.5.1 and its proof, it is clear that the above measure without

normalization is still metric for the space of non-trivial trees with the same finite

root content.

Note that in our tree distance measure, an edge with a large weight means that

the edge is preserved for a long time in the tree structure. The edges with large

weights represent “fine scale structures”. A natural question to ask would be, “have

you thought about basing the measure on the inverse of the weights to pick up large

scale structures?” Since our major purpose of the tree distance measure is to compare

cluster trees, such a “fine scale structure” in a cluster tree represents a possible mode

in the density of the underlying distribution, we use large weights on the “fine scale

structures”.

The methodology for constructing the tree distance measure is illustrated in Fig.

2.23.

An alternative distance between two graphs appears in the literature. It is the

graph edit distance [3], which counts the costs of transforming one graph to another

by a set of edit operations such as insertion, deletion, substitution, splitting, and

merging. Since the sequence of these transformation operations is not unique, the

minimum cost from all possible sequences is defined to be the graph edit distance.

This makes the algorithm complicated and computationally expensive. Moreover, the

strategy that determines the cost of each operation is ad hoc. Note that the graph

edit distance is designed for general graphs but not specifially for a tree structure.
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Figure 2.23: A tree distance measure

2.6 Testing the tree distance measure

We now explore the properties of the new tree distance and get a sense of its mag-

nitude.

2.6.1 Normalization

The following two test cases indicate why normalization is useful in the tree distance

measure.

Case 1

We construct two trees T1 and T2 with the same root. T1 has only the root and

two child nodes with each child node containing half of the content of the root. T2

has the same first two layers as T1 and a third layer that contains two nodes, both

children of a node in T2’s second layer. Each node in T2’s third layer contains half

of the content from its parent node in the second layer. Figure 2.24 shows these two
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(a) Structure of T1 (b) Structure of T2

Figure 2.24: The structure of T1 and T2 for Case 1

trees. We increase the size of their roots and calculate d(T1, T2) with different root

sizes.

Let n = |Content(root)| be the size of the root. Table 2.1 shows the distance

from T2 to T1 with and without normalization, with n increasing in increments of 100

from 100 to 1000. The distance without normalization depends on n. The distance

with normalization does not depend on n; it converges to a constant. The distance

measure with normalization is more reasonable when we compare two distances: one

Distance from T2 to T1 with and without normalization

n 100 200 300 400 500 600 700 800 900 1000

without 24.4 49.4 74.5 99.5 124.5 149.5 174.5 199.5 224.5 249.5

with 0.331 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332 0.332

Table 2.1: Distance from T2 to T1 in case 1
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is calculated for a pair of trees with root size n1 and the other is calculated for a pair

of trees with root size n2, where n1 6= n2. Actually, the scale of the distance measure

with normalization does not depend on the root size in each tree but instead on how

different the two trees are in their structure.

It is straightforward to calculate the distance between T1 and T2 mathematically.

Let m be the size of a child node in T1. Node 2 of T2 has m points and hence has
(

m
2

)
pairs of points. Similarly, node 1 of T2 has m points and so

(
m
2

)
pairs of points. Node

1 is further split into two nodes each contains m/2 points and hence
(

m/2
2

)
pairs. So

there are
(

m
2

)
- 2
(

m/2
2

)
= (m/2)2 pairs in node 1 that do not appear in either nodes

3 or 4. Therefore in T2, there are
(

m
2

)
+ (m/2)2 pairs having weight = 1 and 2

(
m/2

2

)
pairs having weight = 2. Let d = d(T1, T2).

Without normalization,

d2 = 2

(
m
2

2

)
(2− 1)2 =

m2

4
− m

2
.

When m is large, d ≈ m/2. Since m = n/2, d ≈ n/4; d is a linear function of n.

With normalization, let ||W1|| and ||W2|| be the norm of the weight vectors from T1

and T2 respectively. We have

d2 =
((m

2

)
+ (m/2)2

)( 1

||W1||
− 1

||W2||
)2

+ 2

(
m/2

2

)( 1

||W1||
− 2

||W2||
)2
.

When m is large, by simple algebra, d2 ≈ 0.11. We have d ≈ 0.3319, which is a

constant.

Case 2

We construct a tree T1 and a sequence of trees T
(k)
2 , k = 1, 2, · · · , K. T1 and each T

(k)
2

have the same root content. T1 has only two child nodes for its root and each child

node contains half of the content of the root. T
(1)
2 has the same first two layers as T1

and a third layer with four nodes. In the third layer, the first two nodes are formed

from the first node in the second layer: one contains only two elements from its

parent node and the other contains all the remaining elements from its parent node.
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2.6. TESTING THE TREE DISTANCE MEASURE

The other two nodes in the third layer are constructed similarly from the second

node in the second layer. T
(2)
2 has four layers with its first three layers identical to

T
(1)
2 and its fourth layer constructed similarly to the third layer of T

(1)
2 . We construct

T
(3)
2 , T

(4)
2 , T

(5)
2 , and so on by the same method. Figure 2.25 shows the structure of
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(a) Structure of T1 (b) Structure of T
(5)
2

Figure 2.25: The structure of T1 and T2 for Case 2

T1 and T
(5)
2 .

Let n = |Content(root)| be the size of the root. We increase n in increments of

100 from 100 to 800 and calculate d(T1, T
(i)
2 ) for each value of n, where i = 1, 2, 3, 4, 5.

Table 2.2 shows the distance from T
(i)
2 to T1 with and without normalization. Sim-

ilarly to the results from Case 1, the distance without normalization depends on n

and i. For each i, the distance with normalization approaches zero as n increases.

For each n, the distance with normalization slightly increases as i increases, but this

trend is decreasing. The distance measure with normalization is more reasonable

than that without normalization if we care more about the common content of nodes

from each tree than the complexity of a tree. This is useful when we apply the tree
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Distance from T
(i)
2 to T1 with and without normalization

T
(i)
2 norm n=100 n=200 n=300 n=400 n=500 n=600 n=700 n=800

i = 1 without 47.51 97.50 147.50 197.50 247.50 297.50 347.50 397.50

i = 1 with 0.138 0.099 0.081 0.070 0.063 0.057 0.053 0.049

i = 2 without 92.05 192.02 292.01 392.01 492.01 592.00 692.00 792.00

i = 2 with 0.205 0.147 0.120 0.104 0.093 0.085 0.079 0.074

i = 3 without 133.95 283.89 433.87 583.86 733.85 883.85 1033.8 1183.8

i = 3 with 0.256 0.184 0.151 0.131 0.117 0.107 0.099 0.093

i = 4 without 173.23 373.11 573.07 773.05 973.04 1173.0 1373.0 1573.0

i = 4 with 0.299 0.215 0.176 0.153 0.137 0.125 0.116 0.109

i = 5 without 209.92 459.69 709.62 959.59 1209.5 1459.5 1709.5 1959.5

i = 5 with 0.335 0.242 0.199 0.173 0.155 0.141 0.131 0.123

Table 2.2: Distance from T
(i)
2 to T1 in Case 2

distance measure in clustering.

Let ||W1|| and ||W (i)
2 || be the norm of the weight vectors from T1 and T

(i)
2 re-

spectively. Let t = ||W1||. Without normalization, when n is large and i << n,

||W (i)
2 || ≈ (i+ 1)t. We have d2 = d(T1, T

(i)
2 )2 ≈ t(i+ 1− 1)2. Since t = (n/2)2− n/2,

we have d ≈ in/2, which is a function of both n and i. With normalization, when n

is large and i << n,

d2 ≈
( i+ 1

||W (i)
2 ||

− 1

||W1||
)2||W1||2

≈
( i+ 1

(i+ 1)t
− 1

t

)2
t2

≈ 0.

So d→ 0 when n→∞ and i << n.
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2.6. TESTING THE TREE DISTANCE MEASURE

2.6.2 Magnitude

To get a sense of the magnitude of our tree distance measure, we design some test

cases.

Case 1

In this case, T1 is a tree with two layers and its root has just two child nodes. If these

two child nodes have the same size, we define the left node to be node A and the

right to be node B. If they do not have the same size, we define the child node with

less content to be A and the other to be B. T2 has the same root as T1 and the same

tree structure as T1: two layers with a root and two children. We define the two child

nodes in T2 to be A′ and B′. A′ and B′ are constructed by randomly assigning each

point contained in Content(A) to A′ and B′. This assignment follows a Bernoulli

distribution with probability p. We then divide points in B into two parts and assign

the first part to A′, the second part to B′ such that |Content(A′)| = |Content(A)|
and |Content(B′)| = |Content(B)|, where |Content(N)| is the size of nodeN . Figure

2.26 shows the structure of these two trees.

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

   A B 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

   A’ B’ 

(a) Structure of T1 (b) Structure of T2

Figure 2.26: The structure of T1 and T2 for Case 1
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Distance to T1

p \ β 0.5 0.4 0.3 0.2 0.1

0.5 1.0010015 0.9616941 0.8516975 0.6864993 0.4688072

0.4 0.9807772 0.9157159 0.7937580 0.6291870 0.4239474

0.3 0.9174330 0.8383855 0.7140340 0.5577147 0.3711185

0.2 0.8008012 0.7196659 0.6039593 0.4656065 0.3062236

0.1 0.6006009 0.5325621 0.4413827 0.3363146 0.2187767

Table 2.3: Distance from T2 to T1 in Case 1

Let m = |Content(A)| + |Content(B)|, then we have m = |Content(A′)| +

|Content(B′)| as well. Let β = |Content(A)|/m, then we have β = |Content(A′)|/m
as well. Let K be the number of points assigned to B′ in the random assignment pro-

cess. K follows a Binomial distribution, Bin(mβ, p). Let d be the distance between

T1 and T2 calculated by our tree distance measure.

By our tree distance measure, we have

d2 =
2(mβ −K)K + 2(m(1− β)−K)K(

mβ
2

)
+
(

m(1−β)
2

)
=

4Q

m2 −m− 2m2β(1− β)

where Q = K(m−2K). When m is large, by simple algebra, we get d ≈ 1 if β = 0.5,

p = 0.5, and K = E(K) = m/4.

Table 2.3 shows the distance between T1 and T2 for different values of p and β

with m = 1000. The distance decreases when p and/or β decrease. This is because

when p and/or β decrease there are fewer changes from T1 to T2.

In Table 2.3, we use the expected value of K to calculate the distance between T1

and T2. This distance is not exactly the expectation of the tree distance. However,

Table 2.4 indicates that each value in Table 2.3 is close to the true expectation of

the tree distance. Table 2.4 shows the quantiles of d when m = 1000, β = 0.5, and

p = 0.5. These quantiles imply that the distribution of d is not symmetric and the
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2.6. TESTING THE TREE DISTANCE MEASURE

0.05 0.10 0.25 0.50 0.75 0.90 0.95

0.9970 0.9982 0.9996 1.0005 1.0009 1.00098 1.00099

Table 2.4: Quantiles of d = d(T2, T1)

variation in d is small compared with its median. We have similar results for other

settings of β and p when m is not too small.

Case 2

In this case, we calculate the distance from T1 to a group of canonical trees. Figure

2.27 shows the tree T1 with its root denoted by M and the two child nodes denoted

��
��
M

�
�

@
@

��
��
L ��

��
R

Figure 2.27: The tree T1

by L and R respectively. Figure 2.28 shows six canonical trees denoted T2 to T7.

Since our distance measure compares trees with the same root content, we assume

that these trees have the same root content.

We define the set M = L + R to be the root content for each tree, where L and

R are the contents of the left and right child nodes of the root in T1. In Fig. 2.28,

T2 can be constructed by taking sets L1 and R1 from the contents of the left and

right child nodes of the root respectively and merging them respectively into the

remaining contents of the right and left child nodes of the root. The other canonical

trees can be constructed similarly.
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Figure 2.28: Six canonical trees
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First, the comparison of T4 and T5 deserves special consideration. Figure 2.29

shows possible underlying densities for T1, T4, and T5 if each of these trees represents
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(a) Density for T1 (b) Density for T4 (c) Density for T5

Figure 2.29: Some underlying densities

a high-density cluster tree. Intuitively speaking, T5 should be closer to T1 than T4.

This is because below the density level, say λ2, at which R1 and R2 separate in T5,

it represents a clustering similar to that of T1. However, T4, above the density level,

say λ1 < λ2, at which three modes are found, represents a different clustering from

T1.

To get the exact distance from T1 to the other trees we need to know the size of

each node in these trees. Table 2.5 shows the distances of the canonical trees to T1

under nine different parameter settings shown in Table 2.6, where |R| denotes the

size of set R. In Table 2.5, T4 and T5 are closer to T1 than the others and T5 is closer

than T4. In most of the cases, T2 has the largest distance because R and L are mixed

well in this tree and no part of R or L has been assigned to an individual node. T3

is also far from T1 because it has three child nodes and no R or L has been correctly

identified. T6 is closer to T1 than T7 because T7 has a more complex structure and T6

has correctly identified R at its third layer. These results agree with our intuition.

From the magnitude tests, we have a sense of the scale of our distance measure.

If d > 1, the two trees are quite different; if d < 1, they are not too far away; if

d < 0.8 they are close; and if d < 0.6 they are very close.
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Distance to T1

From tree: T2 T3 T4 T5 T6 T7

Case 1 0.804 0.907 0.411 0.338 0.603 0.667

Case 2 0.937 0.907 0.411 0.338 0.670 0.782

Case 3 0.917 0.722 0.411 0.338 0.562 0.728

Case 4 0.937 0.907 0.520 0.332 0.603 0.782

Case 5 1.005 0.925 0.520 0.332 0.670 0.863

Case 6 0.937 0.766 0.520 0.332 0.562 0.782

Case 7 0.917 0.722 0.411 0.338 0.603 0.728

Case 8 0.937 0.766 0.411 0.338 0.670 0.782

Case 9 0.804 0.634 0.411 0.338 0.562 0.667

Table 2.5: Distance comparison of trees
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Setting of parameters

Case 1 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.8, |L1|/|L| = 0.8

Case 2 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.8, |L1|/|L| = 0.5

Case 3 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.8, |L1|/|L| = 0.2

Case 4 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.5, |L1|/|L| = 0.8

Case 5 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.5, |L1|/|L| = 0.5

Case 6 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.5, |L1|/|L| = 0.2

Case 7 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.2, |L1|/|L| = 0.8

Case 8 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.2, |L1|/|L| = 0.5

Case 9 |L| = 100, |L|/|R| = 1, |R1|/|R| = 0.2, |L1|/|L| = 0.2

Table 2.6: Parameter settings for Table 2.5
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Chapter 3

Connection of the framework to

clustering

3.1 Chapter summary

In Chapter 2, we constructed a new graph family framework. Although this frame-

work is defined and can work independently of clustering, in this thesis both the

motivation and purpose of the framework are connected to clustering. As explained

in Chapter 1, it plays an important role in our clustering framework. The applica-

tions of the graph family framework can also be used for clustering. In Chapter 1,

we introduced the connection of a graph family to clustering outcomes. We provided

methodologies for and examples of constructing a graph family from a sequence of

partitions and a monotonic family of graphs from a cluster tree.

The connection of a graph family to clustering makes it straightforward to use

the graph family framework for clustering. A cluster-tree distance measure is derived

directly from the tree distance measure introduced in Chapter 2. Applications such

as partition integration, cluster tree averaging, and bagging are also available for

clustering.
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3.2 Partition integration

Section 2.5.1 introduced the method for generating a single component tree from

a graph family. If a sequence of partitions for a sample S is derived by one or

more clustering methods, we can construct a graph family from these partitions and

therefore a single component tree can be constructed. The content of the root of

this tree is the sample S. A cluster tree is just the reduced component tree. In

Chapter 1, Fig. 1.12 shows the mechanism of this method. We provided an example

of partition integration in Chapter 1 using a toy data set. We give more examples

in this section.

3.2.1 Example 1

Figure 3.1 shows a sample generated from an artificial continuous distribution. This
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Figure 3.1: A sample for example 1

distribution is constructed from a mixture of two sub-distributions.

68



3.2. PARTITION INTEGRATION

A partition found by k-means cannot capture the features of this distribution.

The k-means algorithm finds different partitions by varying the value of k; and

in some cases with k fixed, it finds different partitions via different random starts.

Either approach generates a family of unnested graphs G. Using partition integration,

a single cluster tree can be constructed from these partitions.

Figure 3.2 shows the cluster trees generated by the method of partition integra-

tion. The cluster tree shown in (a) is obtained by k-means with k varying from 3 to

8, and (b) is a dendrogram-like plot of this tree. For convenience, we add an index

to each node in Fig. 3.2(b) such that the node id is associated with that in Fig.

3.2(a). A dendrogram-like structure is similar to but not the same as a dendrogram.

In a dendrogram-like plot, a horizontal bar represents a node. If a sample point joins

a horizontal bar by a short vertical bar, it belongs to the node, say N , represented

by that horizontal bar and no longer goes to any child node of N . For example, in

Fig. 3.2(b) points 1 and 10 are contained in node 3 and its parent node (node 0),

and they are not contained in any child node of node 3. Figure 3.2(c) shows another

cluster tree found by k-means with k fixed at 5 and (d) is a dendrogram-like plot of

the tree in (c).

Both cluster trees in Fig. 3.2 tend to group each dense part of the observations

from the rainbow-shaped region into clusters and to group the observations from

the dense centre-based region under the rainbow into another cluster. It is better

than a partition constructed by running k-means just once with a specific value of k

such as k = 2. As shown in Fig. 3.3, the partition from k-means with k = 2 mixes

observations from the two regions into a large cluster and also generates a small

cluster with only five points (points 2, 7, 11, 12, and 14). However, the main point

of this example is to show how a cluster tree is constructed from partitions.

Figure 3.4 shows another cluster tree for the sample in Fig. 3.1. This tree is

generated through the method of partition integration by multiple runs of DBSCAN

withMinpts fixed at 4 and ε varying. As discussed in Appendix A, running DBSCAN

in this way generates a sequence of nested partitions that forms a monotonic family of

graphs. The cluster tree in Fig. 3.4 is just the reduced component tree generated from

this monotonic family of graphs. From Fig. 3.4, we see intuitively that DBSCAN is
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inherently better at discovering patterns in this sample.
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Figure 3.2: Generation of a cluster tree through k-means
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Figure 3.3: Partition using k-means with k=2
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Figure 3.4: A cluster tree from DBSCAN
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3.2.2 Example 2

Figure 3.5 shows a sample generated from another artificial continuous distribution.
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Figure 3.5: A sample for example 2

As in the previous example, this distribution is constructed from a mixture of two

sub-distributions. Figure 3.6 shows a cluster tree generated by k-means with k fixed

at 5 then random starts 6 times; it tends to group the observations from the two

different sub-distributions. This result is better than the partition from k-means

with k = 2 which mixes up points from the two sub-distributions.
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Figure 3.6: Generation of a cluster tree using k-means

74



3.2. PARTITION INTEGRATION

3.2.3 Comparison to existing methods

There exist some approaches to generate cluster trees from non-nested partitions.

The method proposed by Carroll et al. [13] turns a sequence of non-nested partitions

into a tree or multiple trees. The method first generates a graph with each vertex

relating to a cluster from the input partitions and each edge corresponding to the

relation of two clusters in terms of disjoint. A similar graph is generated in terms of

inclusion. The union of the above two graphs is called a nesting graph. A maximal

complete subgraph, i.e. a clique, in the nesting graph represents a cluster tree. The

method then finds an optimal set of cliques in the nesting graph.

Carroll’s method takes partitions as the input. The number of vertices in the

nesting graph depends on the number of different clusters from the input partitions.

If there are too many different clusters, the vertex set is large and the search for

optimal cliques is computationally expensive. If a cluster with a certain point appears

multiple times from the input partitions, there is only one vertex in the graphs

corresponding to this cluster. It makes no difference if a cluster appears just once or

multiple times. Furthermore, the method produces multiple trees if the optimal set

of cliques contains more than one element. This means that in some cases there is

no way to produce a single cluster tree for the whole sample.

The multiple-clustering method proposed by Quan et al. [56] generates a new

partition from a sequence of input partitions calculated using different clustering

methods for a sample of size n. The method first constructs a vector for each sample

point. Each vector has m elements, where m is the number of input partitions. The

ith element of the vector for the sample point j is the cluster number for this point

in the ith input partition. The multiple-clustering method then uses these vectors as

an embedded sample and uses a partitioning method such as k-means to find a new

partition from the embedded sample. This multiple-clustering method is different

from our method of partition integration. Quan’s method relies on an arbitrarily

chosen partitioning method to obtain an integrated partition from the embedded

sample.

Ashlock et al. [5] propose another multiple-clustering method. They calculate
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the number of times that each pair of sample points appears in the same cluster

in the partitions derived from multiple runs of k-means on the sample. They then

construct a graph, say Ga, by adding an edge to connect each pair of points if the

number of times they appear together in a cluster is greater than some threshold

value.

In our graph family framework, we can construct a weighted graph, say GW , from

the graph total of all the graphs constructed from partitions by multiple runs of k-

means. If the weight on each edge of this graph is 1, then by our definitions, both the

weight-generated and the unity-weight-generated family of graphs from GW contain

the graph Ga constructed by Ashlock’s method. This implies that the partition

found by Ashlock’s method is contained in the cluster tree generated by our method.

Furthermore, the outcome from our method is a cluster tree rather than another

partition.

Other approaches accumulate information from multiple runs of k-means. Evi-

dence accumulation clustering [24] is one such approach. The method considers the

number of times that a pair of points appears in the same cluster to be a similarity

between them, and runs a single linkage on the dissimilarity matrix constructed from

the similarities between every pair of points.

All the above approaches focus on employing features from a specific clustering

method whereas our method of partition integration is more general and can take as

input partitions from one or more clustering methods. The graph family framework

makes our method more general.

3.3 Combining cluster trees

The method of partition integration is derived from the method of graph integration,

and similarly we propose cluster tree averaging directly from the method of compo-

nent tree averaging. We also propose a cluster tree bagging using bootstrapped

samples.
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3.3.1 Cluster tree averaging

Model averaging is a common application in model inference; it is often used for

supervised learning. We are interested in such an application for clustering.

Section 2.5.2 introduces a method for generating a single component tree from

multiple component trees. Since a set of component trees can be obtained from a

set of cluster trees if they are constructed for a fixed finite sample, a single cluster

tree can be obtained in the end. Figure 1.15 in Chapter 1 shows the mechanism of

cluster tree averaging.

As a committee method, cluster tree averaging gives an equal weight to each

tree. The usual way to obtain weights for model averaging in supervised learning is

through the control of squared-error loss. However, in clustering, we do not have a

training set with class labels, so there is no obvious way to set up weights for our

averaging.

Figure 3.7 shows an example of cluster tree averaging. Figure 3.7(a) shows the

sample from Fig. 3.1. We index all the points in the sample. Figures 3.7(b) and (c)

show the dendrogram-like cluster trees constructed by single linkage and complete

linkage respectively. Figure 3.7(d) is the cluster tree averaging of these two cluster

trees. The tree averaging in this case reduces the layers. Note that cluster tree

averaging may not always produce a simpler tree structure.
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Figure 3.7: Example of cluster tree averaging
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3.3.2 Cluster tree bagging

Bagging was introduced to reduce the variation of an estimator [11]. Combining

cluster tree averaging with the idea of bagging produces a new method, cluster tree

bagging.

For a fixed finite sample, we use bootstrapping to obtain a sequence of boot-

strapped samples. For each bootstrapped sample, we construct a cluster tree using

a single clustering method. We therefore have a set of cluster trees. Using the same

strategy used for cluster tree averaging, we construct a single cluster tree in the end.

Figure 1.16 of Chapter 1 shows the mechanism of this method. We discuss cluster

tree averaging and bagging in more detail in Chapter 6.

3.4 Cluster-tree distance measure

Since a cluster tree is also a reduced component tree in our graph family framework,

the tree distance introduced in Section 2.5.3 can be used to form a cluster-tree

distance measure. The mechanism of this measure is shown in Fig. 1.11 of Chapter

1.

If a clustering separates the points from the two regions in the sample shown

in Fig. 3.8(a), we can construct a cluster tree with two layers from this clustering

and denote this tree T0. The dendrogram-like cluster tree of T0 is shown in Fig.

3.8(b). We denote the cluster tree shown in Fig. 3.2(b) T1 and the 2-layer cluster

tree corresponding to the partition shown in Fig. 3.3 T2. Both figures are from

Section 3.2.1. Since T0, T1, and T2 are constructed from the same sample, we can

calculate the distances among them using our cluster-tree distance measure. The

distance from T2 to T0 is 0.9024; the distance from T1 to T0 is 0.6761. From our tests

on tree distance magnitude in Section 2.6.2, T1 is much closer to T0 than T2. This

result makes sense intuitively.

The distance measure can be written as an inner product or a kernel between any

two trees TX , TY if they have the same root content. Let FX and FY respectively be
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Figure 3.8: A clustering with two clusters

their component-generated families of graphs. Let

Knorm(TX , TY ) =< ψnorm(TX), ψnorm(TY ) >,

where ψnorm(TX) = ψ(TX)/||ψ(TX)||, ψnorm(TY ) = ψ(TY )/||ψ(TY )||, and ψ(TX) and

ψ(TY ) are the weight vectors of Tot(FX − g0) and Tot(FY − g0) respectively. We

have

d(TX , TY )2 = Knorm(TX , TX) +Knorm(TY , TY )− 2Knorm(TX , TY )

= 2− 2Knorm(TX , TY ).

Note that, the inner product we introduced in this section is constructed based

on the weight vectors corresponding to trees, this does not imply a vector space on

trees.

There are existing methods to measure the distance or similarity between two

trees or two clusterings.
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3.4.1 Comparison to other approaches

As we have already shown, we can write our cluster-tree distance measure using

an inner product or kernel. There exist similar approaches. Taylor and Cristian-

ini [64] show a way to compare trees based on subtree kernels. In their method:

φs(T ) = 1 if s is a subtree of T , φs(T ) = 0 otherwise, and the kernel is k(T1, T2) =<

φs(T1), φs(T2) >=
∑

s∈τ φs(T1)φs(T2), where τ is the set of all trees containing at least

two layers. This subtree kernel is actually the total number of subtrees contained in

both T1 and T2.

This approach is similar to ours as follows:

• Both methods can be written in an inner product or kernel form.

• Both kernels perform an embedding map from the space of all finite trees to a

vector space.

The two approaches are different in that:

• The two kernels are different.

• Their kernel embedding contains all finite subtrees, whereas our embedding is

fixed from a tree to a vector in Rm, where m is n choose 2 and n is the size of

the root.

• In their kernel, a subtree can contribute 1 only if it is contained exactly in

both T1 and T2, which means that if a subtree from T1 is slightly different from

a subtree of T2, the two subtrees can not contribute to the kernel no matter

how similar they are. In our kernel, we count the contribution from the edge

between each pair of data objects, such that two similar nodes in the tree can

make a contribution if they contain many common edges.

From the above comparison, Taylor and Cristianini’s kernel is designed for symbol

strings or sequences of symbols, such that the edges in the tree are normally labelled

by symbols, and each node in the tree represents a string or sequence of symbols.
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Contributions to their kernel rely on identical nodes and therefore identical subtrees

from two different trees.

Our kernel is simpler with a fixed size in the embedding vector space. Moreover,

our kernel looks at the details inside each node and is more suitable for comparing

cluster trees. In many cases, the likelihood of the same node being contained in

two cluster trees constructed by different clustering methods is low, especially when

the node is large. A kernel constructed from common edges rather than common

subtrees is more reasonable in these cases.

The Rand Index measure is an early approach for measuring two partitions [57].

However, it can not measure cluster trees. Ben-Hur et al. [9] proposed a dot prod-

uct or kernel to measure the similarity between two partitions of the same sample.

This kernel is a special case of our kernel. It compares two trees built on just two

partitions. Such a tree can be constructed with a root and several child nodes, each

as a maximally disjoint subset in a partition. Ben-Hur’s approach is a special case of

ours. However, our method is derived from the graph family framework and therefore

can measure cluster trees and not just partitions. Ben-Hur’s approach does not have

such a framework.

Fowlkes and Mallows [20] developed a method to calculate the similarity between

two hierarchical clusterings. Their method cuts a cluster tree into a sequence of

partitions with different numbers of clusters. Two cluster trees are compared using

two sequences of partitions with the same set of values for the number of clusters for

each partition in the sequence. They calculate the similarity between each pair of

partitions from two trees with the same number of clusters in both partitions. The

comparison is done by a plot of the similarity values versus the number of clusters

in each pair of partitions.

Fowlkes and Mallows’s method does not give an outcome for the distance or

similarity measure between two cluster trees. The method gives only a sequence of

similarities between pairs of partitions cut from two cluster trees. This affects the

use of their measure in more general applications.
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3.4. CLUSTER-TREE DISTANCE MEASURE

3.4.2 An examination

To confirm the performance of our tree distance measure, we did Monte Carlo sam-

pling experiments similar to those carried out by Fowlkes and Mallows. They used

only two clustering methods: single linkage and complete linkage. We used more

methods. Our experiments used the configurations described by Fowlkes and Mal-

lows.

Irrelevant sampling

These experiments compare the distance or similarity between two clusterings con-

structed from two irrelevant samples with an index of the sample points. Figure 3.9

shows a pair of irrelevant samples with an index of the sample points. Here “irrele-
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Figure 3.9: Example of two independent samples

vant” indicates that a pair of points with the same index value from two independent

samples is unrelated. In Fig. 3.9(a), the location of point 1 is quite different from
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the location of point 1 in Fig. 3.9(b). The same is true for most of the other points.

If we use a method such as single linkage to construct a cluster tree for each sample

in Fig. 3.9 and use the index value to represent each point in a sample, we can

calculate the distance between the two cluster trees using our clustering distance

measure. Clearly this distance should be large.

[1. One mode case]

We draw 20 pairs of independent random samples of size 100 from a bivariate

Normal F0, with µ = [0, 0]T and covariance matrix

V =

(
1 0.5

0.5 1

)
For each pair of samples, we construct a pair of cluster trees using different clustering

methods. Note that a brief description of every clustering method used for these

experiments is given in Appendix E. We calculate the distance between each pair of

cluster trees using our tree distance measure.

[2. Two modes case]

We draw 20 pairs of independent random samples of size 100 from a mixture of

two bivariate Normal distributions. We denote this mixture F = 1/2F1 + 1/2F2,

where F1 is the same as F0 and F2 is the same as F1 except its mean vector is [3, 3]T .

We calculate the distance between each pair of cluster trees as for the one mode case.

Perturbation sampling

In perturbation sampling, we first draw a random sample, say S, from a distribution

and assign an index value to each point in S, then obtain a sample S ′ such that the

point in S ′ with index value i is obtained by adding a small random deviate to the

point in S whose index value is i. Each pair of points from S and S ′ with the same

index value is similar and the similarity is determined by the scale of the random

deviates. Figure 3.10 shows a pair of two samples with perturbation. The location

of each point in Fig. 3.10(a) is close to the location of the point with the same

index value in Fig. 3.10(b). If we use a clustering method to construct a cluster

tree for each sample in Fig. 3.10 and use the index value to represent each point
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Figure 3.10: Example of two samples with perturbation

in a sample, we can calculate the distance between the two cluster trees using our

clustering distance measure. Clearly this distance should be small. Fowlkes and

Mallows briefly noted that the stability of clustering can be studied by controlling

the scale of the perturbation, i.e. the value of the deviates.

[1. One mode case]

We first draw 20 individual samples from the same bivariate Normal used for

the irrelevant sampling, then perform the following perturbation. For each sample

S1, let (xi, yi) be the ith object in the sample. We draw two sample points from a

Normal with mean zero and standard deviation δε = 0.03, then add these two points

to xi and yi respectively to produce another sample S2. S1 and S2 form one pair

and we construct 20 pairs of such samples. We then calculate the distance between

each pair of cluster trees. We then repeat this perturbation experiment with a larger

perturbation, i.e. δε = 0.09.

[2. Two modes case]
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The experiments are similar to the above one mode case, but the original 20

samples are drawn from the same mixture of two bivariate Normal distributions

used in the irrelevant sampling experiments.

The results

For each clustering method and each experiment setting, we get the distances between

20 pairs of cluster trees constructed from 20 pairs of samples.

For the one mode cases, for each clustering method, we draw 3 boxplots for 3

different experiment settings. Each boxplot is constructed from the 20 distances ob-

tained from the corresponding experiment setting. Figure 3.11 shows these boxplots.

Sampling method “1” is irrelevant sampling; method “2” is perturbation sampling

with δε = 0.09; and method “3” is perturbation sampling with δε = 0.03.

For each method except the Gaussian partition, the median of the distances from

irrelevant sampling is the largest, and the median of the distances from perturbation

sampling with δε = 0.03 is the smallest. This result is reasonable because the pair of

samples from irrelevant sampling is the most different and the pair of samples from

perturbation sampling with smaller δε is the most similar. The Gaussian partition

method finds just one cluster almost every time because the samples are drawn

from a one-mode distribution. The distances from single linkage are small compared

with the others. This is because single linkage can make small clusters joined with

large clusters and therefore the differences between large clusters from the two trees

constructed by each pair of samples are small, no matter how the samples are drawn.

This indicates that single linkage is a stable method. However, single linkage is

not always suitable for forming clusters from samples of mixture Gaussians. We

demonstrate this in our clustering performance comparisons in Chapter 6.

The variations in the distances between trees constructed for each pair of samples

reveal some interesting patterns. For most methods, the distances from the irrele-

vant sampling have the smallest variation. These distances, except those from the

Gaussian partition and single linkage, are all close to or above 1, which indicates “far

away”. Since they are all far away, they have small variations. This is the expected
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result.

For the two-mode cases, we draw similar boxplots for each clustering method.

Figure 3.12 shows these boxplots. The same pattern of three boxplots occurs for

each method including the Gaussian partition. In contrast to the one-mode case, for

most of the methods in the two-mode case, the variation from the larger perturbation

is greater than that from the smaller perturbation. This result is reasonable because

the samples from two-mode cases have a more “clusterable” pattern than those from

just one mode. The methods that are designed for discovering cluster “patterns”

will capture this change in the number of modes in the samples. In the one-mode

case, the small perturbation can make a pair of trees much closer than the large

perturbation does, but the lack of “pattern” can also make the distances for some

of the pairs of trees from the small perturbation not much different from those from

the large perturbation. This makes the variation in the distances larger for some

methods in the one-mode case.

The above experiments show that our cluster-tree distance measure performs well

and makes sense. As mentioned by Fowlkes and Mallows, perturbation sampling

can be used to study the stability of clustering. The above experiments verify the

capability of our measure in this respect.
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Figure 3.11: Stability test on samples from one-mode distribution
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Chapter 4

A cluster tree parameter

4.1 Chapter summary

A high-density cluster tree [31, 62] describes a characteristic of a continuous dis-

tribution. We use this tree as a starting point to develop a meaningful clustering

parameter of interest for the underlying distribution. We define this tree formally in

this chapter.

The high-density cluster tree is a feature of the underlying distribution if it is

continuous. Although it can not determine a distribution, it can be regarded as a

parameter of interest. In this chapter, we give some properties of a high-density

cluster tree.

The high-density cluster tree is a population parameter to be estimated from a

sample. Several recent methods in the literature can be understood and studied as

estimators of this tree. This approach has so far required the underlying distribution

to be continuous. Building a cluster tree for a discrete distribution is an open problem

and presents some interesting conceptual and computational challenges.

We define a high-probability mass cluster tree for a discrete distribution. We

do it only for discrete distributions whose support is a subset of Rd and for which

a distance measure exists. For simplicity, we will not mention this again in the

thesis. The definition of a high-probability mass cluster tree makes our clustering
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parameterization more general.

To define a high-probability mass cluster tree, we need methodologies to deter-

mine contiguity among points with a positive mass. Without further exploration,

Hartigan proposed a way to determine the connectivity of points in a discrete distri-

bution whose support is the vertex set of a regular lattice [32]. His idea is that two

points with a high-probability mass are connected if they share a common edge in

the lattice. Hartigan’s approach does not work for arbitrary discrete distributions.

To solve the problem of contiguity, we propose two methods. In the first method,

we use a four-spring model to determine the contiguity of two points. This model is

natural and easy to explain. However, it is suitable only for discrete distributions in

a 2-d space and not cheap in computation. In the second method, we use a coupling

graph to determine the contiguity among points. We further discuss some properties

of the coupling graph method via propositions and theorems. We find that Hartigan’s

approach is a special case of our coupling graph method.

The coupling graph method is more general and cheap in computation. It can

construct a cluster tree on a distance matrix. We also discuss some convergence

properties for the coupling graph method in this chapter.

4.2 High-density cluster tree

Given the density function f of a continuous distribution, the density level set defined

by Hartigan [31, Section 11] is a good way to construct a tree structure from f . For

convenience, we repeat Hartigan’s definition:

Definition 4.2.1 Define the level set L(λ; f) of a density f at level λ to be a

subset of the feature space such that the density for each object in this subset exceeds

λ. L(λ; f) = {x|f(x) > λ}.

Based on Hartigan’s definition, we further define a continuously contiguous set:

Definition 4.2.2 Consider any two points p1, p2 in a set S ⊂ Rd and denote by

a1 = p1, a2, · · · , am−1, am = p2 a sequence of m points a1, · · · , am in S. If ∀ε > 0,

92



4.2. HIGH-DENSITY CLUSTER TREE

there exist m > 0 and a sequence a1, · · · , am in S such that ||ai − ai+1|| < ε, where

||ai − ai+1|| is the Euclidean norm of the vector ai − ai+1, the set S will be called a

continuously contiguous set. We further define a set A to be a maximally and

continuously contiguous subset of D ⊂ Rd if A is a continuously contiguous

subset of D and A is not part of any larger continuously contiguous subset in D.

A density level set L(λ; f) can be a single continuously contiguous subset or a

set of disjoint continuously contiguous subsets of the feature space. For example,

let X be a random variable with Gaussian density f(X), then for any 0 < λ <

maxx∈Xf(x), L(λ; f) is a single continuously contiguous set; whereas if f is a density

of a mixture Gaussian, L(λ; f) can be a continuously contiguous set or disjoint

continuously contiguous subsets. Hartigan uses this disjointness to set up high-

density clusters.

Definition 4.2.3 If A is a maximally and continuously contiguous subset in L(λ; f),

then A is a high-density cluster for the distribution with density f at level λ.

Since there are only three possibilities for any two high-density clusters A and B

found by the same or different density levels, A ⊂ B, B ⊂ A, or A ∩ B = φ, it is

easy to derive a hierarchical structure such as a cluster tree when constructing the

high-density clusters.

For the readers’ convenience, we recall the example from Chapter 1. This example

shows how a high-density clustering is constructed. Figure 4.1(a) is the p.d.f. of a

univariate continuous distribution X. If we set λ1 = 0.05, L(λ1; p) ≈ (2, 8.6) is a

continuously contiguous subset. However, if we set λ2 to be slightly larger than 0.05,

the level set splits into two, forming a union of two disjoint continuously contiguous

subsets: L(λ2; p) ≈ (2.2, 3.9) ∪ (4.3, 8.1). Note that L(λ2; p) ⊂ L(λ1; p). Similarly,

at λ3 slightly larger than 0.125, another split makes the level set a union of three

disjoint continuously contiguous subsets. Figure 4.1(b) gives Hartigan and Stuetzle’s

cluster tree for this distribution. The root node of the tree is the set (0, 10), which

is also the total support of this distribution X. The root has two children: the child
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(a) P.d.f. of a continuous distribution (b) Hartigan’s cluster tree

Figure 4.1: Hartigan’s density level set and cluster tree

on the left is the set (2.1, 4); the child on the right is the set (4, 8.4), and its two

children are the sets (4.3, 6) and (6, 8).

Given a continuous density f(x), similarly to Stuetzle’s definition [62], we for-

mally define a high-density cluster tree of f(x).

Definition 4.2.4 First let D(X) = {x|f(x) > 0} denote the support of the random

variable X with density f . Each node N of the high-density cluster tree of f(x)

is determined by a density level, denoted by λ(N), and its content, denoted by C(N)

or Content(N). Every node except the root node has a parent node; all nodes except

the leaf nodes have at least two child nodes. The tree is built recursively. The root is

determined by λ(Nroot) = 0, C(Nroot) = D(X). The child nodes of any node N are

constructed as follows: find the lowest λc > λ(N) such that the set L(λc; p) ∩ C(N)

has at least two disjoint maximally and continuously contiguous subsets, denoted

C1, C2, · · · , Ck, then add k child nodes to N , each having density level λc and content

C1, C2, · · · , Ck respectively. If no such λc exists, then N is a leaf node. This tree will
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be denoted by CT (F ), where F is the c.d.f. of the distribution with density f .

Note that to make the above definition work, we need the maximum value of

f(x) to be finite. Although the high-density cluster tree, CT (F ), does not determine

the continuous distribution F , it does capture its inherent modal structure. This

characteristic of F , CT (F ), represents the true nested clustering of F . It can be

regarded as a parameter of F that we would like to learn.

In practice, we observe samples from unknown distributions. Given a sample

X = {x1, x2, · · · , xn} drawn from F , the cluster tree built by a hierarchical clustering

method such as linkage clustering or runt pruning clustering is an estimate of CT (F ).

We denote such an estimate as ĈT (F ). A clustering method that produces an

estimate of CT (F ) is an estimator of CT (F ).

Partitioning methods such as k-means or DBSCAN thus produce estimates that

have a root and many branches one layer deep from the root. These methods are

not originally good estimators of a high-density cluster tree with more layers.

4.3 Properties of high-density cluster tree

Some properties are derived directly from the definition and we call them the nested

properties.

Let Nroot be the root node, N2 and N3 two sibling nodes of CT (F ), and N1 their

parent node. The high-density cluster tree has the following properties:

1) λ(Nroot) = 0

2) λ(N1) < λ(N2)

3) λ(N2) = λ(N3)

4) C(N2) ⊂ C(N1)

5) C(N3) ⊂ C(N1)

6) C(N2) ∩ C(N3) = φ
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The first three properties are satisfied by definition. Properties 4) and 5) are

obtained because N2 and N3 are child nodes of N1 and their contents are disjoint

subsets of N1’s content. Since the contents of N2 and N3 are disjoint, property 6) is

satisfied.

The one-to-one linear transform of a probability density implies an equivariance

property of a high-density cluster tree.

4.3.1 Equivariance

We are interested in the relation of the high-density cluster tree of X and AX, where

X is a vector of random variables with density function f(X) and A is a full rank

matrix used to define a linear transformation of X. Here AX represents a family

of distributions such that each is a linear transformation of any of the others. The

following propositions are useful.

Proposition 4.3.1 A continuously contiguous set is still continuously contiguous

under any one-to-one linear transformation.

Proof: Let S be the original contiguous set in Rn. Define the linear transformation

by a full rank transformation matrix A. ∀p1, p2 ∈ S, let x1 be the coordinate of p1,

x2 the coordinate of p2, and denote xd = x1 − x2 by the linear transformation with

transformation matrix A. Let y1 = Ax1 and y2 = Ax2 be the coordinates of the

transformed points of p1 and p2 respectively. We have

y1 − y2 = Ax1 − Ax2 = A(x1 − x2) = Axd

||y1 − y2|| = ||Axd||,

where ||Axd|| is the Euclidean norm of the vector Axd. Denote

xd = x1 − x2 = [d1, d2, · · · , dn]T

A = [α1, α2, · · · , αn]T

αi = [αi1 , αi2 , ..., αin ]
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t = max∀i(
n∑

j=1

|αij|)

We know t <∞, because |αij| <∞ and n <∞. Thus,

Axd = [α1xd, α2xd, ..., αnxd]
T

||Axd||2 =
n∑

i=1

(αixd)
2 =

n∑
i=1

(
n∑

j=1

αijdj)
2 ≤

n∑
i=1

(
n∑

j=1

|αij||dj|)2

≤
n∑

i=1

(
n∑

j=1

|αij||xd|)2 = |xd|2
n∑

i=1

(
n∑

j=1

|αij|)2 ≤ |xd|2nt2

Denote b = (n1/2t), b <∞. We have

||y1 − y2|| ≤ b||x1 − x2||.

Let S ′ be the transformed set of S. For any two points p′1, p
′
2 in S ′, ∀ε′ > 0, let

ε = ε′/b. Let p1, p2 be the original points in S corresponding to p′1, p
′
2.

Since S is a continuously contiguous set, by definition there is a positive integer

m < ∞ such that there exists a series of m points in S, a1, a2, · · · , am−1, am, for

which ||ai − ai+1|| < ε, where p1 = a1, p2 = am. By the linear transformation, let a′i

be the transformed point of ai, then

||a′i − a′i+1|| ≤ b||ai − ai+1|| < bε = ε′.

Therefore, S ′ is a continuously contiguous set by definition. �

Proposition 4.3.2 Let S ′1, S
′
2 be the transformed sets of continuously contiguous

sets S1 and S2 respectively by the transformation matrix A. If S1 ∪ S2 is not contin-

uously contiguous, S ′1 ∪ S ′2 is not continuously contiguous either.

Proof: By proposition 4.3.1, S ′1 and S ′2 are continuously contiguous sets. If S ′1∩S ′2 6=
φ, then S ′1 ∪ S ′2 is a continuously contiguous set, therefore S1 ∪ S2 is a continuously

contiguous set as well, but this conflicts with the initial condition that S1 ∪ S2 is
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not continuously contiguous. Therefore S ′1 ∩ S ′2 = φ and S ′1 ∪ S ′2 is not continuously

contiguous. �

Note that if S1 and S2 are continuous but S1 ∪ S2 is not, then S1 ∩ S2 = φ. This

is true for their transformed sets as well.

Proposition 4.3.3 The set generated by a linear transformation of a density level

set L(λ; f(x)) is the density level set determined by L(|A|−1λ; g(y)), where y = Ax,

A is the invertible linear transformation matrix, and g(·) is the density function of

y.

Proof: By the one-to-one transform of a density, we have

g(y) = g(Ax) = f(A−1y)|J |

where J is the Jacobian matrix with determinant |J | = |A|−1. Then

L(λ; f(x)) = {x|f(x) > λ}

and for this set, we have

g(y) = g(Ax) = f(A−1y)|A|−1 = f(x)|A|−1 > λ|A|−1

Now we have a new density level set for Y which is L(|A|−1λ; g(y)). �

Let T (X) and T (Y ) be the high-density cluster trees of the original and the

transformed distribution respectively. From the above propositions, we assert that

for every node N in T (X) there is a unique node N ′ in T (Y ) with C(N ′) = AC(N)

and λ(N ′) = |A|−1λ(N), where A is the transformation matrix. Therefore we say

that the high-density cluster tree of a continuous distribution has the equivariance

property under any linear transformation determined by a full rank transformation

matrix. Note that it is not equivariant to non-linear transformations.

4.3.2 Low-density cluster tree

The high-density cluster tree focuses on finding clusters in higher density regions,

and lower density regions are missed.
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Let L(λ; f(x)) be a density level set and D(X) − L(λ; f(x)) the set of all the

points with density no more than λ. We call this set the low-density level set and

denote it by Llow(λ; f(x)), then L(λ; f(x)) and Llow(λ; f(x)) are complementary sets.

We can build the tree for low-density regions in a similar way to the high-density

cluster tree. The difference is that in a low-density cluster tree, the density level of

the root is max∀x(f(x)), and when searching for child nodes, instead of increasing

the density level we decrease the density level.

Two different distributions can have the same high-density cluster tree structure

yet a different low-density tree structure. Figure 4.2(a) shows a density contour of a
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(a) A contour with low-density regions (b) Illustration of low-density regions

Figure 4.2: An example of low-density regions

distribution F1 with two low-density regions. The first is located in the centre of the

contour; the second is located in the border of the contour. The two dotted areas

shown in Fig. 4.2(b) illustrate these low-density regions.

The high-density cluster tree of F1 has only a root. The low-density cluster tree

has a root with two child nodes. If we have a distribution F2 with a density contour
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similar to that of F1 but without the low-density region in the centre, both the high-

density and the low-density cluster tree will have just a root. This happens because

a lower density hole exists in the contour of the density of F1 but not in F2. The

low-density cluster tree can disclose such information but the high-density cluster

tree does not. Therefore, in certain circumstances, we are interested in both trees to

get more complete information.

There is interest in low-density regions. For example, dense groups of stars are

called “clusters” in astronomy. Astronomers are also interested in large regions with

few stars especially when they are hidden inside a dense area. Some algorithms that

discover interesting holes in the data are proposed in the literature [46].

In this chapter we have defined CT (F ) with F the c.d.f. of a continuous distri-

bution. We further regard CT (F ) as a parameter of F . An immediate question is

how to define a similar cluster tree for a discrete distribution.

4.4 “Contiguity” in a discrete distribution

In a discrete distribution points in its support can have non-zero probability mass

and the contiguity property determined by continuity no longer holds. It is not

obvious how to determine a connected subset in a discrete distribution. In Section

1.1.2 we gave examples of the difficulties in determining “contiguity” for a discrete

distribution.

Perhaps density-based clustering methods such as single linkage can be applied

to a discrete distribution. However, this idea may not work. Consider a discrete

distribution with all the data points located on the vertices of a two-dimensional

grid. The distances of any two points to their closest neighbours are identical. The

minimal spanning tree and the KNN graph do not have a unique solution. Therefore

the density-based clustering methods discussed previously can not be used for this

discrete distribution. If we directly apply these methods, we ignore the information

on the probability mass of each point.

Similarly to Hartigan’s density level set, we now define a mass level set for a
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discrete distribution. Given a multivariate discrete random variable X in Rd, the

probability of X = x, i.e. the probability mass of X at x, will be denoted m(x). The

support of X is denoted DX = {x|m(x) > 0}.

Definition 4.4.1 Define the mass level set L(λ;m) of a discrete distribution at

level λ to be a subset of DX such that the mass for each object in this subset is not

less than λ. L(λ;m) = {x|x ∈ DX,m(x) ≥ λ}.

Given any λ and a discrete distribution with the mass function m(·), to determine

the connected subsets in L(λ;m) we have to find a way to define the “contiguity” of

any two points in L(λ;m).

4.5 Coupling graph method

We say that two points are contiguous at λ only if they are in L(λ;m). Before

we define the contiguity of two discrete points, we can identify the following two

desirable properties that any definition of contiguity should possess.

1. Contiguity is symmetric. If point a is contiguous to point b at λ, then b is

contiguous to a at λ.

2. If two points are contiguous at λ2, they must be contiguous at λ1 if λ1 < λ2.

In addition to the above properties, it is reasonable that whether or not two

points in L(λ;m) are contiguous is influenced by the distance between them and the

distances to other points especially the points outside L(λ;m).

As described in Chapter 1, Hartigan proposed a way to determine contiguity.

However, his approach does not work for arbitrary discrete distributions. We need

a way to determine contiguity for arbitrary distributions. We first propose the four-

spring model discussed in Appendix D. The four-spring model is natural but it is

computationally expensive and suitable only for two-dimensional cases. For a more

general and efficient approach, we develop a coupling graph method. The general
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idea of this method is that for any point p in L(λ;m) its contiguous points are

determined by its nearest neighbour among those points not in L(λ;m).

Consider any directed or mixed graph G, where undirected edges are interpreted

as two directed edges, one in each direction. We are interested in two undirected

graphs derived from such a graph. We introduce the following definitions.

Definition 4.5.1 For any such graph G, the graph that retains only the undirected

edges of G will be called the strong coupling graph of G.

Definition 4.5.2 For any such graph G, the graph that replaces all edges, directed

or undirected, in G by undirected edges will be called the weak coupling graph of

G.

Suppose we have a set D of n points, x1,x2, ...,xn, and a measure of distance

δ(xi,xj) between points xi and xj. Associated with each point xi is a value of a

mass weight function m(xi) ∈ R+. This information will be denoted by the triple

< D, δ,m >.

Definition 4.5.3 Define a subset of S ⊆ D to be the λ level set, denoted by Lλ,S,

if Lλ,S = {x|x ∈ S,m(x) ≥ λ}. For convenience, when S = D, we will write Lλ,D

as Lλ.

Note that, in the above definition the mass function m(x) need not in general

be restricted to be a probability. Here we take m(x) to be any bounded real-valued

function.

Now consider the triple < D, δ,m > and level λ. For each point xi in the λ level

set we draw a “hyper-sphere” with radius being the distance from xi to the closest

point not in the λ level set. This is defined formally as follows.

Definition 4.5.4 Given a triple < D, δ,m >, we take a set of points V ⊆ D and

a subset Lλ,V of V as a vertex set, such that Lλ,V is a λ level set of V . Draw a

directed edge from x to y if x,y ∈ Lλ,V and δ(x,y) ≤ δ(x, z),∀z ∈ V − Lλ,V . We

call the resulting graph the λ similarity coupling graph of Lλ,V , and denote this

by Gλ,sim(V ).
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Figure 4.3 shows an example of how a λ similarity coupling graph is constructed.

In Fig. 4.3 (a), each point represented by a solid circle is inside a λ level set in R2,

each point represented by a hollow circle is outside the level set. For point a, point h

is its nearest neighbour among the points outside the level set. A neighbourhood of

point a can be constructed by a circle centred at a with radius the distance from a

to h. This neighbourhood of a is shown in Fig. 4.3 (b). Since there is no other point

in the level set locating inside the neighbourhood of a, by Definition 4.5.4, no edge

can be drawn to connect a to other points. The similar neighbourhood of b is shown

in Fig. 4.3 (c). Since point c is in the neighbourhood of b, by Definition 4.5.4, we

draw a directed edge from b to c. Similarly in Fig. 4.3 (d), b is in the neighbourhood

of c, we can also draw a directed edge from c to b. Therefore, we use an undirected

edge to connect b and c. Figure 4.3 (e) shows the λ similarity coupling graph for this

λ level set.
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(e) λ similarity coupling graph

Figure 4.3: Example of a λ similarity coupling graph
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The following two definitions show the ways to obtain an undirected graph from

a λ similarity coupling graph.

Definition 4.5.5 The weak coupling graph of a λ similarity coupling graph Gλ,sim(V )

is called a λ weak coupling graph. We denote this graph Gλ,weak(V ).

Definition 4.5.6 The strong coupling graph of a λ similarity coupling graph Gλ,sim(V )

is called a λ strong coupling graph. We denote this graph Gλ,strong(V ).

When the context makes it clear, we will refer to a λ weak coupling graph or a λ

strong coupling graph as a λ-coupling graph and denote this generically as Gλ(V ).

Figure 4.4 shows the λ weak and the λ strong coupling graphs constructed from
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(a) A λ weak coupling graph (b) A λ strong coupling graph

Figure 4.4: Example of λ-coupling graphs

the λ similarity coupling graph shown in Fig. 4.3 (e).

The following two definitions show the ways to construct a maximally connected

subset of a λ-coupling graph.

Definition 4.5.7 A λ weak component of a set V is a connected component in

Gλ,weak(V ). We denote this by cλ,i(Gλ,weak(V )), i = 1, 2, ..., k, where k is the number

of such components.

Definition 4.5.8 A λ strong component of a set V is a connected component

in Gλ,strong(V ). We denote this by cλ,i(Gλ,strong(V )), i = 1, 2, ..., k, where k is the

number of such components.
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Since either a weak coupling graph or a strong coupling graph is an undirected

graph, any connected component in such a graph is a strongly connected component

as well.

When the context makes it clear, we will refer to a λ weak component or a λ

strong component as a λ component and denote this generically as cλ,i(Gλ(V )).

To obtain a connected component and for the convenience of further discussion,

we recall a few standard definitions from graph theory such as a path, a connected

graph, and a component. These definitions are given in Appendix C.

We show an example to construct similarity coupling graphs at different levels.

Consider a triple < D, δ,m >, where D = {a, b, c, d, e, f, g} is shown in Fig. 4.5(a),

δ is the Euclidean distance between points in D, and the mass weight function m is
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(a) a weighted data set (b) λ = 2 (c) λ = 3

Figure 4.5: Example of a triple and its similarity coupling graphs.

defined as follows: m(a) = 2, m(b) = 3, m(c) = 3, m(d) = 3, m(e) = 3, m(f) = 2,

m(g) = 1. The values from m are shown in Fig. 4.5(a). Figures 4.5(b) and (c)

show the similarity coupling graphs of this triple at level 2 and 3 respectively. The

similarity coupling graph at λ = 1 is just the complete graph with vertex set D.

Based on the above definitions, we have several propositions that give properties

of our coupling graphs. These are the basic building blocks of a tree.

Proposition 4.5.1 The λ weak coupling graph Gλ,weak(V ) of the triple < D, δ,m >

is unique.
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Proof: Suppose there exist two λ weak coupling graphs of the triple represented

by their edge sets E1 and E2. Their vertex sets are both V ⊆ D, and they are

derived at the same level λ. Let e ∈ E1 and x,y be the elements of V connected by

e. Then there exists either a directed edge from x to y or from y to x, and therefore

∀z ∈ D − Lλ,V , either δ(x, y) ≤ δ(x, z) or δ(x, y) ≤ δ(y, z). But if either holds, then

e ∈ E2 for E2 to be the edge set of a λ weak coupling graph. Similarly, if e ∈ E2

then e ∈ E1. Therefore, E1 = E2 and the λ weak coupling graph is unique. �

Proposition 4.5.2 The λ strong coupling graph Gλ,strong(V ) of the triple < D, δ,m >

is unique.

Proof: Analogous to proof of Proposition 4.5.1. �

Proposition 4.5.3 A higher λ level set is a subset of a lower λ level set.

Proof: Suppose λ1 < λ2, then by definition Lλ2 = {x : m(x) ≥ λ2,x ∈ D}. Now

m(x) ≥ λ2 > λ1, which implies that if x ∈ Lλ2 then x ∈ Lλ1 . So Lλ2 ⊆ Lλ1 . �

Proposition 4.5.4 Suppose 0 ≤ λ1 < λ2 and let Gλi,weak(V ) be a λi weak coupling

graph of a triple < D, δ,m > with its set of edges denoted by Ei for i = 1, 2. Then

E2 ⊆ E1.

Proof: By definition, every edge e ∈ E2 connects two vertices x and y if and only

if either δ(x, y) ≤ δ(x, z) or δ(x, y) ≤ δ(y, z) ∀z ∈ D − Lλ2 . Suppose that the first

of these holds. By Proposition 4.5.3, Lλ2 ⊆ Lλ1 , so D − Lλ1 ⊆ D − Lλ2 . Thus, if

δ(x, y) ≤ δ(x, z) ∀z ∈ D − Lλ2 , then δ(x, y) ≤ δ(x, z) ∀z ∈ D − Lλ1 , a subset of

D − Lλ2 . Therefore, e ∈ E1. Similarly, if the second of these holds, e ∈ E1. So

E2 ⊆ E1. �

Proposition 4.5.5 Suppose 0 ≤ λ1 < λ2 and let Gλi,strong(V ) be a λi strong coupling

graph of a triple < D, δ,m > with its set of edges denoted by Ei for i = 1, 2. Then

E2 ⊆ E1.
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Proof: Essentially the same as the proof of Proposition 4.5.4, following from

Proposition 4.5.3. �

From Propositions 4.5.1 to 4.5.5 we conclude that Gλ(V ) is unique for each λ and

Gλ2(V ) ⊆ Gλ1(V ) whenever λ1 < λ2. For every λ, Gλ(V ) (weak or strong) provides

either a connected graph or a graph with two or more connected components. For

λ1 < λ2 either Gλ1(V ) = Gλ2(V ) or Gλ2(V ) is a proper subgraph of Gλ1(V ) in that

the edge set E2 of Gλ2(V ) is a proper subset of the edge set E1 of Gλ1(V ). This

property gives our coupling graphs a nice hierarchical feature when increasing λ.

In Chapter 1, we mentioned Hartigan’s approach for discrete distributions [32].

We find that his approach is a special case of our coupling graph method. We prove

this in Theorem 4.10.1 of Section 4.10. Theorem 4.10.1 implies that Hartigan’s

approach is identical to our coupling graph method if the support of the distribution

is the vertex set of a regular square mesh lattice. However, our coupling graph

approach is more general and not limited to the support being a regular lattice.

Theorem 4.10.1 also implies that the vertex sets of the components from both the

weak and the strong coupling graphs at λ are identical to those from the graph

constructed by Hartigan’s approach at the same level. Theorem 4.10.2 of Section

4.10 addresses this result more clearly.

We use the coupling graph method to determine the contiguity among points of

a discrete distribution. To be more specific, for a given level λ, two points from the

support of a discrete distribution are contiguous at λ if there is an edge connecting

them in the λ-coupling graph constructed for the distribution. The next section

shows how to define a cluster tree for a discrete distribution using the coupling

graph method.

4.6 High-probability mass cluster tree

In the previous section, we propose a coupling graph to determine if two points from

the support of a discrete distribution are contiguous or not at some level λ.

To determine a maximally connected subset in a mass level set, we define a
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contiguity graph as follows.

Definition 4.6.1 A contiguity graph at level λ of a discrete distribution with

mass function m(·) is constructed by connecting each pair of points in L(λ;m) with

an undirected edge if they are contiguous at λ.

A contiguity graph is an undirected graph because “contiguity” is symmetric.

Note that a λ-coupling graph is also a contiguity graph.

Similarly to the high-density clusters, for a discrete distribution, we define a

high-mass cluster.

Definition 4.6.2 A high-mass cluster at λ for a discrete distribution is a con-

nected component in the contiguity graph at level λ for this distribution.

Points a and b are contiguous at level λ if and only if there exists an edge

connecting them in the contiguity graph at λ. In this case we say that a and b are

directly connected at λ as well. If there exists a path in the contiguity graph at λ

between points a and b but no edge connects them directly, we say that a and b

are indirectly connected at λ. We say a and b are connected at λ if they are either

directly or indirectly connected.

Similarly to the high-density cluster tree, we define the high-probability mass

cluster tree of a mass function m(X) by simply replacing probability density level

by probability mass level. Note that the meaning of connected set in these two

definitions is also different.

Definition 4.6.3 Each node N of the high-probability mass cluster tree of

m(x) is determined by a probability mass level, denoted λ(N), and its content, de-

noted C(N) or Content(N). Every node except the root node has a parent node; all

nodes except the leaf nodes have at least two child nodes. The tree is built recur-

sively. The root is determined by λ(Nroot) = 0, C(Nroot) = DX . The child nodes

of any node N are constructed as follows: find the lowest λc > λ(N) such that the

set L(λc;m) ∩ C(N) has at least two disjoint maximally connected subsets, denoted

C1, C2, · · · , Ck, then add K child nodes to N each with probability mass level λc and

content C1, C2, · · · , Ck respectively. If there is no such λc, the node N is a leaf node.
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Note that the disjoint maximally connected subsets in the definition are associated

with components in the contiguity graph ofm(x) at level λc respectively. If we use the

coupling graph method to construct the contiguity graph, then since we can construct

both the weak and strong λ components, we can define two high-probability mass

cluster trees for a discrete distribution. We generically call them high-probability

mass cluster trees constructed by the coupling graph method. If the support of the

distribution is a vertex set of a regular lattice, then by Theorem 4.10.2, the high-

probability mass cluster tree constructed by the coupling graph method is unique.
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4.7 Examples

We now generate two discrete distributions and build high-probability mass cluster

trees of them.

Figure 4.6(a) shows an artificial mixture of two 2-d binomials with the labels of all

A distribution of mixture 2−d binomial
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(a) 2-d discrete distribution (b) Labels of positive mass points

Figure 4.6: A distribution of a mixture of two 2-d binomials

the points with positive mass displayed in Fig. 4.6(b). The labels are used to identify

these points when they are assigned to different nodes in a cluster tree. Intuitively

speaking, in this distribution, there are two modes with peaks at locations (2, 5) and

(5, 2) respectively separated by a region with lower probability mass points.

We build a high-probability mass cluster tree for the distribution in Fig. 4.6

using our coupling graph method. The structure of the tree is shown in Fig. 4.7(a).

Figure 4.7(b) shows a dendrogram-like plot of the tree. In this plot, the top layer

with height two represents the root node that contains all the points with positive

mass. The labels of points with lower probability mass levels are shown in the top

layer meaning that they are not assigned to the two modes represented by the two
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Figure 4.7: Example of a high-probability mass cluster tree

child nodes of the root in the bottom layer with height one. This dendrogram-like

plot is different from the usual dendrogram where any point in a non-leaf node would

be forced (typically) to one of its child nodes. In Fig. 4.7(b), some points in the root

are not assigned to either child node, because these points have a relatively lower

probability mass and are outside the level set determined by the probability mass

level of the two child nodes.

Figure 4.8(a) shows another artificial discrete distribution. The positive mass

points in this distribution form five circles. The probability masses of the points

in the inner and outer circles are higher than those of the points in the middle.

Intuitively, there are two modes with two circles in each, separated by the circle in

the middle. For this distribution, the coupling graph method chooses the first two

inner circles and the first two outer circles as two clusters. In other words, the middle

circle separates the other four circles.

The next section gives a detailed algorithm for building a high-probability mass
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A 2−d discrete distribution
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Figure 4.8: An artificial discrete distribution

cluster tree.

4.8 An algorithm

To construct the high-probability mass cluster tree, we have to find:

• the connectivity between two points at a probability mass level λ,

• the maximally connected subsets of L(λ;m).

We find the connectivity via the coupling graph method. For the subsets, we find

connected components in the graph constructed.

We give a general algorithm for constructing a high-probability mass cluster tree.

The data structure of each node N includes a content set Content(N) that is the

set of all the points assigned to this node and a corresponding probability mass level
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λ(N). By definition, for the root node, we have Content(root) = D, where D is the

set of all points in the distribution, and λ(root) = 0.

After building the set Sλ containing all the different probability mass levels in the

distribution, we build the tree recursively using Algorithm 1. Algorithm 2 is invoked

Algorithm 1 Algorithm to build a high-probability mass cluster tree

Require: A node N in the tree.

1: Find Content(N) and set λcurrent = λ(N).

2: Find the next probability mass level: λnext = min∀λi∈Sλ
(λi|λi > λcurrent).

3: Set childNode = 0.

4: while λnext 6= φ and childNode = 0 do

5: With λnext call Algorithm 2 to construct the set of maximally connected subsets

in Content(N) ∩L(λnext,m), denoting this set maxSubsets.

6: if at least two components are found in maxSubsets then

7: Let c be the total number of components in maxSubsets.

8: For each component Ci, construct a new node Ni, where i = 1, 2, · · · , c, add

Ni to the tree as the child node of N and recursively run Algorithm 1 on

node Ni to build a subtree from Ni.

9: Set childNode = 1.

10: else

11: Set λcurrent = λnext and find the new λnext.

12: end if

13: end while

14: Return the tree whose root is N .

from Algorithm 1, and the detailed algorithm is as follows. (Note: we demonstrate

this algorithm using the coupling graph method to determine contiguity; if another

method such as the four-spring model is used, relevant changes are necessary).
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Algorithm 2 Algorithm to obtain maximally connected subsets for the content of

a node
Require: The content of a node, denoted nodeD; A mass level, denoted λ.

1: Set up a two-dimensional set maxSubsets to store all the maximally connected

subsets found in the algorithm.

2: Set up a 1-dimensional set currentMaxSubset.

3: Set up a set of seeds seedSet for storing seeds, used to find a maximally connected

subset.

4: while not all the points in the set SD = nodeD ∩ L(λ,m) have been processed

do

5: Initialize seedSet to be empty.

6: Take a point say p from SD that is not processed and add p to seedSet;

initialize the set currentMaxSubset to be empty; set the status of p to be

processed.

7: while seedSet is not empty do

8: Remove the first point say p from seedSet, add p to currentMaxSubset.

9: For each point say q in the set SD, if q is not processed and there exists

an edge connecting p and q in the λ-coupling graph Gλ(nodeD), add q to

seedSet and set the status of q to be processed.

10: end while

11: Store currentMaxSubset in maxSubsets.

12: end while

13: Return maxSubsets.

The computation complexity of Algorithm 1 is O(nlogn). The algorithm builds a

high-probability mass cluster tree that is a parameter for a discrete distribution. We

denote this parameter by CT (F ) as well but note that this F is the c.d.f. of a discrete

distribution. Since different methods can be applied to determine contiguity among

points, this parameter is not unique; we write CTi(F ) to indicate that this parameter

comes from the ith method. This is a major difference from the high-density cluster

tree for a continuous distribution.
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If we are given a sample from a discrete distribution, applying the above algorithm

to that sample using the ith method to determine contiguity gives us an estimator of

CTi(F ).

4.9 A convergence discussion

We explore the convergence properties of a high-density/mass cluster tree.

4.9.1 Some general results

As described early in this chapter, a high-density cluster tree is uniquely determined

by a density function of a continuous distribution; a high-probability mass cluster

tree can be uniquely constructed from a discrete distribution by our coupling graph

method if its support is located on a regular lattice.

Given a sequence of random variables {Xn} and a random variable X, let Fn be

the c.d.f. of Xn and F be the c.d.f. of X. Suppose limn→∞Fn(x) = F (x) for all x.

Let T (Fn) and T (F ) be the corresponding high-density/mass cluster tree on Fn and

F respectively. Let dist(T1, T2) be any measure of distance between two trees T1 and

T2. To understand the property of convergence between a sequence of trees {T (Fn)}
and a tree T (F ), we define that {Tn} converges to T with respect to a tree distance

measure dist(·) if limn→∞dist(Tn, T ) = 0.

We are interested in whether or not {T (Fn)} converges to T (F ) with respect to

our tree distance measure. As described in Section 2.5.3, our measure of distance

between two trees T1 and T2 is denoted d(T1, T2). Since this measure calculates

the distance between two trees whose root content is finite and identical, we con-

sider the case that {Xn} and X have the same finite support. Note that {T (Fn)}
converging to T (F ) with respect to our tree distance measure d(·) does not imply

that limn→∞Fn(x) = F (x) for all x. We are interested in the reverse. We formally

demonstrate that in the following proposition.

Proposition 4.9.1 Given that {Xn} and X have the same finite support, limn→∞Fn(x) =
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F (x) for all x does not imply that {T (Fn)} converges to T (F ) with respect to the tree

distance measure d(·) defined in Section 2.5.3.

Proof: We prove Proposition 4.9.1 by a counter-example as follows.

Figure 4.9(a) shows a discrete distribution with c.d.f. F and probability mass

function P (X = i) = 1/6, for i = 1, 2, · · · , 6. Figure 4.9(b) shows a discrete distri-
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Figure 4.9: The probability mass functions of two distributions

bution with c.d.f. Fn and probability mass function

P (Xn = i) =

1/6 + 1/(2n) if i = 1, 2, 5, 6

1/6− 1/n if i = 3, 4.

Clearly limn→∞Fn(x) = F (x) for all x. However the high-probability mass cluster

trees for Fn and F as constructed by our coupling graph method are different no

matter what the value of n < ∞. T (F ) is a tree with only a root whereas for any

n < ∞ T (Fn) is a tree with a root and two child nodes such that one child node
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contains points 1 and 2 and the other contains points 5 and 6. By our tree distance

measure, d(T (Fn), T (F )) = 1, which is a constant for all n <∞. Therefore, for any

ε > 0, we cannot find an integer N such that when n > N , we have d(T (Fn), T (F )) <

ε. T (Fn) does not converge to T (F ) in terms of our tree distance measure. �

Actually, in the above example, the tree structure of T (Fn) remains the same and

never becomes similar to the tree structure of T (F ) as n increases. The content in

each node of T (Fn) also remains unchanged as n increases. Therefore, our distance

measure d(T (Fn), T (F )) cannot get smaller as n increases.

Since our distance measure cannot calculate the distance between two trees with

infinite points in their nodes, we cannot study the convergence of {T (Fn)} to T (F )

by d(T (Fn), T (F )) if either Fn or F is a c.d.f. for a continuous distribution. However,

we have the following proposition.

Proposition 4.9.2 Let both Fn and F be c.d.f.s for continuous distributions. Then

limn→∞ Fn(x) = F (x) for all x does not imply that {T (Fn)} and T (F ) have the

same tree structure.

Proof: We prove Proposition 4.9.2 by a counter-example as follows.

Figure 4.10(a) shows a continuous distribution with c.d.f. F and density function

f(X = x) = 1/6, for 0 < x < 6. Figure 4.10(b) shows a continuous distribution with

c.d.f. Fn and density function fn(Xn = x) = 1/6 + (1/(6n))sin(xπ), where n ≥ 1

and 0 < x < 6. We have F (x) = x/6 and Fn(x) = x/6 + 1/(6nπ)(1− cos(xπ))) for

0 < x < 6. Clearly limn→∞Fn(x) = F (x) for all x. The high-density cluster tree for

F , T (F ), is a tree with only a root. The high-density cluster tree for Fn, T (Fn), is a

2-layer tree such that its root has 4 child nodes. The two trees are different not only

in their structure but also in their node content. This difference remains the same

as n increases. �

From the above two propositions, we realize that in some cases we cannot discover

the high-density/mass cluster tree of F by studying the cluster trees constructed for

Fn even if limn→∞Fn(x) = F (x) for all x.
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Figure 4.10: The probability density functions of two distributions

4.9.2 A further exploration based on coupling graphs

Proposition 4.9.1 demonstrated, loosely speaking, that Fn → F does not imply

T (Fn) → T (F ). This convergence could be formalized because all distributions

were discrete and had common finite support. This was not available in Proposition

4.9.2 where the continuous case was considered. There it was shown that the tree

structures could never agree in the number of branches (i.e. in the number of separate

components of the level set) for any finite n, even though the level sets converge.

In this section, we explore a more complex example in R2 where a discrete dis-

tribution converges to some absolutely continuous distribution. The sequence of

discrete distributions each has support on a regular square mesh lattice. Each lat-

tice in the sequence includes all lattices earlier in the sequence. Unfortunately, the

support is different for each element in the sequence so our tree distance function is

not available. It can however be shown that the area of the lattice formed by the

coupling graph components converges to the area of the corresponding continuous
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density components. Though this does not imply that the tree from the coupling

graph on the discrete distribution converges to that of the continuous distribution

(N.B. our distance measure is not defined), it is encouraging that the component

areas agree in the limit.

We anticipate, for example, that the same will hold for discrete distributions

whose support is not so nicely nested along the sequence of discrete distributions.

In Chapters 5 and 6, we explore examples where this is the case. In particular,

Sections 5.3.1 and 6.3.1 consider the case of mixtures of “bivariate binomials” (each

formed from the product of independent binomials) converging to the corresponding

mixture of bivariate normal distributions. In these cases, a distance measure can be

introduced and is empirically observed to decrease significantly as n increases.

Before we construct the above discrete distributions, some notation is necessary.

Let L(λ; f) be a density level set of an absolutely continuous distribution with density

function f . Let the c.d.f. of this distribution be F . For simplicity, we consider the

support of the distribution to be located in R2. By the definition of a density level

set, we have f(x) > λ if and only if x ∈ L(λ; f).

Suppose there are c disjoint maximally and continuously contiguous subsets in

L(λ; f) and denote the ith such subset by S
(i)
λ . We have L(λ; f) = ∪c

i=1S
(i)
λ with

S
(i)
λ ∩ S

(j)
λ = φ for i 6= j. We define B(S

(i)
λ ) to be the boundary of S

(i)
λ . For

simplicity, we assume that S
(i)
λ contains no holes. B(S

(i)
λ ) is a single closed curve

and is surrounded by a continuously contiguous region, say A, such that f(x) < λ if

x ∈ A. By “surrounded” we mean that for any a ∈ B(S
(i)
λ ) there exists δ > 0 such

that for all x /∈ B(S
(i)
λ ) ∪ S(i)

λ with ||x− a|| < δ we have f(x) < λ.

For example, Fig. 4.11(a) shows a contour of a distribution density f in R2.

Figure 4.11(b) shows a sketch of L(λ; f) at λ = 0.03. In Fig. 4.11(b), S
(i)
λ and S

(j)
λ

are two disjoint maximally and continuously contiguous subsets in L(λ; f). B(S
(i)
λ )

and B(S
(j)
λ ) are their respective boundaries. The surrounding region is A.

We now construct a discrete distribution on a lattice corresponding to an abso-

lutely continuous distribution. Let F be the c.d.f. for the continuous distribution

and let its density function be f . We can put a regular square lattice, say Lα, on

the support space of the distribution, where α is the length of each gridline segment.

120



4.9. A CONVERGENCE DISCUSSION

−2 −1 0 1 2 3 4 5

−
2

0
2

4
6

A mix of 2 Gaussians
( )( )iB Sλ

 

A 

( )( )iB Sλ  

( )( )jB Sλ  

( )iSλ  

( )jSλ  

(a) Contour of a density function (b) Level set at λ = 0.03

Figure 4.11: A distribution density and its level set

A gridline segment is a line segment between neighbouring vertices in the lattice.

Let V be the vertex set from Lα and assign f(v) to each vertex v in V . We can

construct a discrete distribution by the vertex set V and a probability mass hαf(v)

on each element in V , where
∑

v∈V hαf(v) = 1. We denote this discrete distribution

Fα and its probability mass function mα(·). We have mα(v) = hαf(v) if v ∈ V and

mα(u) = 0 if u 6∈ V . We have mα(v) > hαλ if v ∈ S
(i)
λ . This implies that all the

vertices from Lα located in S
(i)
λ have probability mass greater than hαλ from the

discrete distribution Fα.

The following is a property for the trees constructed by coupling graphs for Fα.

Since Fα has support located on a regular square lattice, the high-probability mass

cluster tree of Fα constructed by weak coupling graphs can be shown to be identical to

that constructed by strong coupling graphs (see Theorem 4.10.2 in Section 4.10). The

high-probability mass cluster tree of Fα constructed by the coupling graph method

can be shown to be identical to Hartigan’s approach, which was briefly introduced in

Section 1.1.2 (see Theorem 4.10.1 in Section 4.10). We are interested in the relation

of the tree constructed for Fα using our coupling graph method to the high-density
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cluster tree constructed for F .

To make the discussion simple, for density level λ, we focus on one of the subsets

in L(λ; f), say S
(i)
λ . Our discussion in the rest of this section is based on S

(i)
λ . We

denote a square mesh in a lattice as a square formed by four gridline segments each

connecting two neighbouring vertices in the lattice. If the area of each square mesh in

the lattice Lα is not small enough, the coupling graph constructed for Fα at level hαλ

might separate vertices from Lα that are located in S
(i)
λ into different components.

For example, Figure 4.12(a) shows a sketch of S
(i)
λ with its boundary and the

region A with lower density. Figure 4.12(b) shows a lattice Lα on S
(i)
λ and region A.

In Fig. 4.12(b), v1 and v2 are vertices located in S
(i)
λ . We have v1, v2 ∈ L(hαλ;mα).

Since v0 is a vertex outside L(hαλ;mα) and its distance to v1 is smaller than the

distance between v1 and v2, by the definition of our coupling graph, v1 and v2 are

not connected in the coupling graph constructed for Fα at level hαλ. Let V be the

vertex set from the lattice Lα. We have V ∩S(i)
λ as the subset from V such that each

vertex in this subset is located in S
(i)
λ . As Figure 4.12(b) shows, if the mesh of Lα is

not small enough, V ∩ S(i)
λ may not be a vertex set of a component in the coupling

graph of Fα at level hαλ.

We construct a sequence of lattices and a corresponding sequence of discrete

distributions as follows. We add a new horizontal line halfway between the existing

horizontal lines in Lα and a new vertical line halfway between the existing vertical

lines in Lα. In this way, we construct a new lattice Lα/2 with each gridline segment

having length α/2. If we continue, we can construct a sequence of lattices, Lα, Lα/2,

Lα/22 , · · · , Lα/2k , · · · . Note that a vertex in Lα/2i is still a vertex in Lα/2i+1 and the

length of each gridline segment in Lα/2i+1 is half of that in Lα/2i . We denote the

c.d.f. and mass function of the discrete distribution corresponding to a lattice Lα/2i

by Fα/2i and mα/2i respectively.
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For example, Figure 4.12(c) shows a lattice Lα/2 constructed from the lattice Lα

shown in Fig. 4.12(b). Let V be the vertex set from the lattice Lα/2. By our coupling

graph method, in the example shown in Fig. 4.12(c), V ∩ S(i)
λ is a vertex set from a

component in the coupling graph of Fα/2 at level hα/2λ.

Before giving a convergence discussion of the relation between components from

coupling graphs and the corresponding component, say S
(i)
λ , from the level set of

the continuous distribution at level λ, we prove a convergence property of square

meshes in a lattice if they are located in S
(i)
λ . This property is given in the following

Proposition 4.9.3. Some notation is necessary. Let I(j) be the largest set of square

meshes from the lattice Lα/2j contained in S
(i)
λ . Let U(j) be the smallest set of square

meshes from the lattice Lα/2j such that U(j) contains S
(i)
λ . Let a(I(j)) and a(S

(i)
λ ) be

the areas of I(j) and S
(i)
λ respectively.

Proposition 4.9.3 Suppose B(S
(i)
λ ) is closed, bounded, of measure zero, and has

non-empty interior. We have {a(I(j))} to be a monotonic increasing and upper-

bounded sequence. It converges to a(S
(i)
λ ), i.e. limj→∞a(I(j)) = a(S

(i)
λ ).

Proof: Each square mesh in Lα/2j is divided into four smaller square meshes in

Lα/2j+1 such that the length of each edge for each square mesh in Lα/2j+1 is half of

that in Lα/2j . All four square meshes from Lα/2j+1 that are inside a square mesh

in Lα/2j are contained in I(j+1) if that mesh in Lα/2j is contained in I(j). One or

more square meshes from Lα/2j+1 that are inside a square mesh in U(j) − I(j) may

be assigned into I(j+1). Therefore, we have I(0) ⊆ I(1) ⊆ I(2) ⊆ · · · ⊆ S
(i)
λ and

a(I(0)) ≤ a(I(1)) ≤ a(I(2)) ≤ · · · ≤ a(S
(i)
λ ). For example, Fig. 4.13(a) shows a

sketch of S
(i)
λ and a lattice Lα/2j . Figure 4.13(b) shows the corresponding mesh set

I(j). Figures 4.13(c) and (d) show Lα/2j+1 and I(j+1) respectively. It is clear that

a(I(j)) < a(I(j+1)) < a(S
(i)
λ ) in this example.

Since the sequence {a(I(j))} is monotonic increasing and has an upper bound, we

have limj→∞a(I(j)) = a0 say. We need to show that for any point x in S
(i)
λ and for

any ε > 0 that no matter how small it is, we can find an integer N such that for all

n > N the point x is contained in I(n), where I(n) is the largest set of square meshes

from the lattice Lα/2n . Then we will have that limj→∞a(I(j)) = a(S
(i)
λ ).
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Take any existing point x ∈ (S
(i)
λ − I(j)), since S

(i)
λ is an open set, there exists an

open square, say s, of width ε > 0 and centred at x, such that s ⊂ (S
(i)
λ − I(j)).

Let N be an integer such that α/2N < ε/2 and let Lα/2n be any lattice with

mesh size α/2n where n > N . There will always be a horizontal gridline of Lα/2n

intersecting s but above its centre x. To see this, assume there is no such gridline line.

Then, because x is the centre of s, the distance between two neighbouring horizontal

gridlines of Lα/2n is at least ε/2, which is not true whenever α/2n < α/2N < ε/2.

Similarly, there must be a horizontal gridline line of Lα/2n that intersects s and is

located below x. So x must be located between two horizontal gridlines of Lα/2n

intersecting s. Similarly, we have x must be located between two vertical gridlines of

Lα/2n intersecting s. We denote by Rx the rectangle formed by these two horizontal

and two vertical gridlines. We have x ∈ Rx and Rx ⊂ s ⊂ S
(i)
λ . Since Rx is either a

square mesh or the union of more than one square mesh of Lα/2n , we have Rx ⊂ I(n).

Therefore no matter what the size ε > 0 is, we can always find an integer N such

that for any n > N , x ∈ I(n). This proves limj→∞a(I(j)) = a(S
(i)
λ ). �

We have proved that the area of the union of all the square meshes in S
(i)
λ con-

verges to the area of S
(i)
λ . However, such a union of square meshes is not a coupling

graph component. Moreover, not all the vertices from the mesh set I(j) can be con-

tained in a coupling graph component constructed for Fα/2j at level hα/2jλ, and the

component may contain vertices outside S
(i)
λ .

Let C(k) be a component of the coupling graph constructed for Fα/2k at level

hα/2kλ (Recall hα is the normalizing constant for meshes of width α as defined early

in this section). Let M(k) be the set of all square meshes in the lattice Lα/2k whose

four vertices are in the component C(k). We are interested in the area of M(k) as k

increases. To study this area, it is necessary to explore the connectivity by coupling

graph for any two vertices from a lattice if they are located inside S
(i)
λ .

We want to show that any two vertices inside S
(i)
λ on a lattice Lα can be connected

by a coupling graph constructed for the discrete distribution corresponding to a

lattice with smaller mesh width. We have the following proposition.

Proposition 4.9.4 Suppose Lα is a square mesh lattice of mesh width α > 0 and
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let v1 and v2 be any two vertices from Lα in S
(i)
λ for some λ > 0. Then there exists

an integer N > 0 such that for all n > N , v1 and v2 are connected by coupling graph

at level hα/2nλ for the discrete distribution Fα/2n.

To prove Proposition 4.9.4, we need the following lemma.
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(a) S
(i)
λ and Lα/2j (b) Mesh set I(j)

 

 

 

 

(c) S
(i)
λ and Lα/2j+1 (d) Mesh set I(j+1)

Figure 4.13: S
(i)
λ and the mesh set
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Lemma 4.9.1 Let v1 and v2 be any two vertices from the lattice Lα in S
(i)
λ . Suppose

there exist two rectangles R1 and R2 with sides parallel to the gridline directions of

the lattice such that v1 ∈ R1, v2 ∈ R2, R1 ∪ R2 ⊂ S
(i)
λ , and R2 is attached to R1 on

one of its vertical edges with the length of the shared edge segment to be non-zero.

Then ∃N1 > 0 such that ∀n > N1, there is a path in S
(i)
λ formed by gridline segments

of the lattice Lα/2n that connects v1 and v2.

Proof: We denote the shared part of the edge from R1 and R2 by es. Let ε =

min(||es||, d1, d2), where d1 and d2 are the widths of R1 and R2 respectively. There

exists an integer N1 such that α/2N1 < ε. For any integer n such that n ≥ N1, we can

construct a lattice Lα/2n . Since the length of each mesh width in the lattice Lα/2n is

less than ε and the rectangle R1 has gridline directions, any two vertices from Lα/2n

in R1 are connected by gridline segments of Lα/2n in S
(i)
λ . Similarly, any two vertices

from Lα/2n in R2 are connected by gridline segments of Lα/2n in S
(i)
λ .

There is at least a horizontal line say ls from the lattice Lα/2n intersecting es and

there are at least two vertices from the lattice located on ls such that one is inside

Rj and one is inside Rj+1. These two vertices are connected by gridline segments

of Lα/2n in S
(i)
λ . Therefore, for the pair of vertices v1 and v2, there is a path in S

(i)
λ

formed by gridline segments of Lα/2n such that the two vertices are connected by the

path. �

Lemma 4.9.1 leads to Lemma 4.9.2 as follows.

Lemma 4.9.2 Let v1 and v2 be any two vertices from Lα in S
(i)
λ . There exists an

integer N > 0 such that for all n > N , v1 and v2 are connected by gridline segments

of the lattice Lα/2n in S
(i)
λ .

Proof: We construct a rectangle say R1 in S
(i)
λ with sides parallel to the gridline

directions such that R1 contains v1. Let lv1,v2 be the shortest continuous path in S
(i)
λ

that connects v1 and v2. We construct a rectangle R2 in S
(i)
λ with sides parallel to

the gridline directions such that R2 is attached to R1 on one of its vertical edges and

R2 intersects with lv1,v2 . Let p1 be any point on lv1,v2 located in R1. We choose the

edge to be such that for any p2 ∈ R2 on lv1,v2 , p2 lies between p1 and v2 along lv1,v2 .
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We continue, constructing rectangle Rj+1 from Rj as we construct R2 from R1, until

we construct Rk such that Rk contains v2. We denote the shared part of the edge

from Rj and Rj+1 by ej. We further require that ||ej|| > 0, where ||ej|| is the length

of ej.

 

v2 

 

 

v1 

lv1, v2 

 

R5 

v2 

 

 

v1 

R1 

R2 
R3 

R4 

(a) Path connecting v1 and v2 inside B(S
(i)
λ ) (b) Sequence of rectangles

Figure 4.14: Path connecting two vertices and constructed rectangles

Figure 4.14(a) shows an example of the path lv1,v2 connecting v1 and v2 in S
(i)
λ .

Figure 4.14(b) shows a sequence of rectangles constructed for v1 and v2 by the above

method.

By Lemma 4.9.1, there exists an integer Nj such that ∀n > Nj, any two vertices

from the lattice Lα/2n are connected by a path in S
(i)
λ formed by gridline segments

of Lα/2n if the two vertices are located in Rj ∪ Rj+1 with j = 1, 2, · · · , k − 1. Let

N = max(N1, N2, · · · , Nk−1), then ∀n > N , there is a path in S
(i)
λ formed by gridline

segments of the lattice Lα/2n such that any two vertices including v1 and v2 from the

lattice are connected by the path if they are located in S
(i)
λ . �

We are now in a position to prove Proposition 4.9.4.

Proof: If a gridline segment of a lattice Lα/2n is located in S
(i)
λ , it connects two

vertices with probability mass greater than hα/2nλ in the discrete distribution Fα/2n ,
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and it can be shown that this gridline segment appears in the coupling graph con-

structed for Fα/2n at level hα/2nλ (see Lemma 4.10.1 in Section 4.10.1). Therefore

Proposition 4.9.4 is proved by Lemma 4.9.2. �

We are now ready to show that the area of the lattice formed by the coupling

graph components converges to the area of the corresponding continuous density

components. To be more specific, recall that M(k) is defined to be the set of all

square meshes in the lattice Lα/2k whose four vertices are in C(k), where C(k) is

a component of the coupling graph constructed for Fα/2k at level hα/2kλ. We are

interested in the area of M(k). Proposition 4.9.5 follows from Proposition 4.9.4.

Proposition 4.9.5 Let I(j) be the largest set of square meshes from the lattice Lα/2j

that is contained in S
(i)
λ . Then there exists an integer Naj

such that ∀kj > Naj
,

a(M(kj)) ≥ a(I(j)), where a(M(kj)) is the area of M(kj).

Proof: By Proposition 4.9.4, there exists an integer say Naj
such that ∀kj > Naj

,

all the vertices from I(j) are connected by the coupling graph say gkj
constructed for

Fα/2kj at level hα/2kjλ. It is clear that kj ≥ j. By the coupling graph, each square

mesh say m of the lattice Lα/2kj is contained in M(kj) if m is located in a mesh of

I(j). We have a(M(kj)) ≥ a(I(j)). �

In Proposition 4.9.5, M(kj) may contain some meshes not in S
(i)
λ . It is necessary to

find some integer say n such that no vertex outside S
(i)
λ is contained in any component

of gn if the component contains at least a vertex in S
(i)
λ , where gn is the coupling

graph constructed for Fα/2n at level hα/2nλ. We have the following proposition.

Proposition 4.9.6 Let S = B(S
(i)
λ ) ∪ S(i)

λ . Suppose ∀x ∈ S and ∀y /∈ S, ∃ε > 0

such that d(x, y) > ε if f(y) ≥ λ, where d(x, y) is the distance between x and y.

Then there exists an integer N ′ such that ∀n > N ′, any two points v0 and v1 are not

connected in gn if v0 and v1 are vertices from the lattice Lα/2n, v0 ∈ S and v1 /∈ S,

where gn is the coupling graph constructed for Fα/2n at level hα/2nλ.

Proposition 4.9.6 can be proved directly similarly to the proof of Proposition

4.9.3.
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From Proposition 4.9.5, we have a(M(kj)) ≥ a(I(j)). (Note that M(kj) and I(j) are

denoted in Proposition 4.9.5 and its proof.) By Propositions 4.9.5 and 4.9.6, there ex-

ists an integer N = max(Naj
, N ′) (note that Naj

and N ′ are denoted in Propositions

4.9.5 and 4.9.6 respectively) such that ∀k′j > N , we have a(S
(i)
λ ) ≥ a(M(k′

j)
) ≥ a(I(j)).

It is easy to make {k′j} a sequence of monotonically increasing integers since {j} is

a sequence of monotonically increasing integers. We have {a(M(k′
j)
)} to be a mono-

tonically increasing sequence as well. By Proposition 4.9.3, the sequence {a(M(k′
j)
)}

converges to a(S
(i)
λ ). This implies that the area of the lattice formed by the coupling

graph components converges to the area of the corresponding continuous density

components.

In many real cases, since it is hard to know the true density on each vertex on

a lattice, the discrete distribution constructed from the lattice is hard to obtain.

However, the Monte Carlo method together with our clustering distance measure is

a good means for examining the convergence of cluster trees empirically in some real

cases. This is discussed in Chapters 5 and 6.

4.10 Some proofs

We prove Theorem 4.10.1 and Theorem 4.10.2 in this section. The following notation

is necessary. Given a multivariate discrete random variable X with distribution

function FX , suppose the support of FX isD which is the vertex set of a regular square

mesh lattice. Let a gridline segment be a line segment between two neighbouring

vertices from the lattice. Let P (X) be the probability function of X. We have X

located on a lattice. Note that we use Gλ(X) as generic notation for both the weak

and strong coupling graph of FX at level λ.

Theorem 4.10.1 The vertex sets of the components from the graph constructed by

Hartigan’s approach at level λ for FX are identical to those from Gλ(X).

The following two lemmas lead to the above theorem and reveal further properties

of the coupling graph method.
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Lemma 4.10.1 For any two vertices sharing a gridline segment, if both vertices are

inside a level set L(λ;P (X)), then their gridline segment appears in Gλ(X).

Proof: Let x1 and x2 be any pair of vertices sharing a gridline segment e in the

lattice. We have P (x1) ≥ λ and P (x2) ≥ λ. Because the length of a gridline segment

in a lattice is the shortest possible distance among any pair of vertices, we have

∀z ∈ D − L(λ;P ), ||x1 − x2|| = ||e|| ≤ ||x1 − z|| and ||x1 − x2|| ≤ ||x2 − z||. By

Definitions 4.5.4, 4.5.5, and 4.5.6, e must appear in both the weak and the strong

coupling graph of FX at level λ. �

Lemma 4.10.2 If there exists a non-gridline edge in Gλ(X) between x1 and x2, then

there must exist a gridline segment path in Gλ(X) between x1 and x2.

Proof: Suppose e is a non-gridline edge in Gλ(X) between x1 and x2. We can

always construct a smallest hyper-box made by gridlines in the lattice with e as a

diagonal of the hyper-box. Let B = {x|x ∈ D and x is inside or on a face of the

hyper-box}. By the Pythagorean theorem, we have ∀x ∈ B, ||e|| ≥ ||x − x1|| and

||e|| ≥ ||x− x2||. Therefore, by Definition 4.5.4, we have P (x ∈ B) ≥ λ.

We can always find a path in the hyper-box connecting x1 and x2 such that this

path is made by gridline segments. Let e1 be any gridline segment in the path that

connects two vertices say xa and xb. Since P (xa) ≥ λ and P (xb) ≥ λ, by Lemma

4.10.1, e1 must be an edge in Gλ(X). Therefore, the above path must appear in

Gλ(X) between x1 and x2. �

According to Hartigan’s approach, a graph can be constructed at a mass level λ

in the following way: for any two points in L(λ;P (X)), add an edge to connect them

if they share a gridline segment [32].

Based on the above two lemmas, Theorem 4.10.1 is proved as follows.

Proof: By Lemma 4.10.1, if two points from the support of X are connected by

an edge according to Hartigan’s approach at a certain mass level λ, they are also

connected in the coupling graph Gλ(X). By Lemma 4.10.2, if two points from the

support of X are connected by an edge in the coupling graph Gλ(X), there exists a

gridline segment path to connect these two points and they are also connected by this
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path in the graph constructed by Hartigan’s approach at the same level. Therefore,

the vertex sets of the components from the graph constructed by Hartigan’s approach

at level λ for FX are identical to those from Gλ(X). �

Note that early in this section, we supposed the support of FX to be D, the vertex

set of a regular square mesh lattice. We have the following theorem.

Theorem 4.10.2 Given a multivariate discrete random variable X with distribution

function FX , suppose the support of FX is the vertex set of a regular square mesh

lattice, the high-probability mass cluster tree built by weak coupling graphs of FX is

identical to that built by strong coupling graphs.

To prove Theorem 4.10.2, the following lemmas are necessary.

Lemma 4.10.3 A gridline segment is an edge in the λ strong coupling graph of FX

if and only if it is an edge in the λ weak coupling graph of FX .

Proof: Let e be a gridline segment that connects two vertices x1 and x2 in the

lattice of the support of X. If e appears as an edge in the λ weak coupling graph

of FX , by definition, we have P (x1) ≥ λ and P (x2) ≥ λ. By Lemma 4.10.1, e must

appear in the strong coupling graph of FX at level λ as well. If e appears as an edge

in the λ strong coupling graph of FX , by definition of coupling graph, e is an edge

in the λ weak coupling graph of FX as well. �

Lemma 4.10.4 A path consisting only of gridline segments in the lattice is a path

in the λ strong coupling graph of FX if and only if it is a path in the λ weak coupling

graph of FX .

Proof: If a path appears in the λ weak coupling graph of FX and any edge say e

in this path is a gridline segment, then by Lemma 4.10.3, e is an edge in the strong

coupling graph of FX . Thus, all the edges in a path in the λ weak coupling graph

form a path in the λ strong coupling graph of FX . By definition of coupling graph,

if a path appears in the λ strong coupling graph of FX , it must be a path in the λ

weak coupling graph of FX . �
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Lemma 4.10.3 addresses a property for a gridline segment edge in the coupling

graph of X that has its support on a lattice. There is no such property if the edge

is not a gridline segment. Suppose the support of X is a lattice with only the six

vertices shown in Fig. 4.15. Then any point with a solid circle say x has P (x) ≥ λ
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�
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(a) Level set at λ (b) λ weak coupling graph (c) λ strong coupling graph

Figure 4.15: An example of coupling graphs on a lattice support.

and any point with a hollow circle say x0 has P (x0) < λ. Thus, the edge e appears

in the λ weak coupling graph of FX but is not in the λ strong coupling graph of FX .

This example also shows that, for a given λ, the weak coupling graph may not be

identical to the strong coupling graph even if all the vertices are located on a lattice.

However, we can prove that, under the condition of a lattice support, given a λ, the

vertex set of a weak component is identical to that of a strong component. For that

proof, the following lemma is necessary.

Lemma 4.10.5 If points x1 and x2 are connected in the coupling graph Gλ(X) of

FX , there must exist a path between these two points in Gλ(X) such that every edge in

this path is a gridline segment in the lattice with the set of vertices being the support

of FX .

Proof: If x1 and x2 are connected in Gλ(X), there must exist a path between

them in Gλ(X). For any non-gridline edge say e in this path, suppose e connects two

vertices xa and xb. By Lemma 4.10.2, there always exists a path in Gλ(X) connecting

xa and xb such that this path is made by gridline segments. We can always replace e
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by this gridline segment path. After every non-gridline edge is replaced by a gridline

segment path, we obtain a path made by gridline segments such that it connects x1

and x2 in Gλ(X). �

Lemma 4.10.5 also implies that, for any two points in a component of Gλ(X),

there exists a gridline segment path between them.

Lemma 4.10.6 The vertex set of a λ weak component of FX is identical to the vertex

set of a λ strong component of FX .

Proof: Given λ, let C1 be the vertex set of the λ weak component of FX . If C1

contains only one point say x0, ∃z ∈ D − L(λ;P (X)) such that ∀y ∈ L(λ;P (X)), if

y 6= x0, ||x0 − y|| > ||x0 − z||. Thus, by Definitions 4.5.4, 4.5.5, and 4.5.6, C1 is a

vertex set of the λ strong component of FX as well.

If C1 contains at least two points, let x1 and x2 be any pair of points in C1. Since

x1 and x2 are connected in the λ weak coupling graph of FX , by Lemma 4.10.5 there

must exist a gridline segment path in this λ weak coupling graph that connects x1

and x2. By Lemma 4.10.4, this path must exist in the λ strong coupling graph of

FX as well. Therefore, there must exist a strong component with vertex set say C2

such that x1, x2 ∈ C2. This implies that C1 ⊆ C2.

By definition of coupling graph, we also have C2 ⊆ C1. Therefore C1 = C2 and

the lemma is proved. �

We can use the coupling graphs of FX at different levels as contiguity graphs

to build a high-probability mass cluster tree. Theorem 4.10.2 follows directly from

Lemma 4.10.6 and is proved as follows.

Proof: By Lemma 4.10.6, for every λ, the vertex sets of components in the λ weak

coupling graph of FX are identical to those in the λ strong coupling graph of FX . If

we use coupling graphs as contiguity graphs to build a high-probability mass cluster

tree, the tree built by the weak coupling graphs of FX is identical to that built by

the strong coupling graphs. �

Note that the two theorems proved in this section may not hold if the support of

the distribution is not the vertex set of a regular square mesh lattice.
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Chapter 5

Assess clustering via Monte Carlo

5.1 Chapter summary

The cluster-tree distance measure provides a way to compare estimates of a high-

density or high-probability mass cluster tree. In many real cases, we do not know the

underlying distribution and therefore can not compare the estimates to the true tree.

The distance measure can be used to compare different clustering methods. However,

the Monte Carlo method makes it possible to calculate the difference between a

cluster tree estimate and its estimand and provides a direct way to assess clustering.

Our distance measure is designed for cluster trees constructed for a fixed finite

sample. A high-density cluster tree is constructed on a continuous support. To

make our distance measure work, we first define a high-density cluster tree for a set

S. This definition makes our distance measure feasible for calculating the difference

between a cluster tree estimate and its estimand. We further develop an algorithm

to numerically construct a high-density cluster tree for a sample.

The main purpose of this chapter is to set up methodologies to assess clustering

via Monte Carlo and our distance measure. The methodologies include the compari-

son of clustering performance via the difference between an estimate and its estimand

and an empirical examination of convergence for cluster trees.
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5.2 Performance comparison

By Monte Carlo, we can generate samples from a known distribution and find esti-

mates of the true tree using different clustering methods. These estimates are cluster

trees built for a sample. Let S be a sample drawn from a continuous distribution F .

Let CT (F ) be the high-density cluster tree of F . To compare the estimates built for

S, we need to construct a high-density cluster tree for the set S.

Definition 5.2.1 A high-density cluster tree for a set S drawn from a contin-

uous distribution F , denoted CTS(F ), is a tree constructed in the following way: for

each node N in CT (F ), construct a node NS in CTS(F ) such that Content(NS) =

Content(N)∩S. If Content(NS) = φ, do not construct this node. If N1 is the parent

node of N2 in T (F ), let N1,S and N2,S be the nodes in CTS(F ) that are constructed

corresponding to N1 and N2 respectively, then N1,S is a parent node of N2,S.

Similarly, if F is a discrete distribution, we can define a high-probability mass

cluster tree for a set S. For convenience, the following notation is necessary.

Notation 5.2.1 We denote an estimate of CT (F ) by ĈT (F ). If there are m differ-

ent estimates of CT (F ), we denote them ĈT1(F ), ĈT2(F ), · · · , ĈTm(F ). If these

estimates are built for a sample S, we further denote them ĈT1,S(F ), ĈT2,S(F ),

· · · , ĈTm,S(F ).

Using our distance measure, d(ĈTS(F ), CTS(F )) shows how close the estimate

built for S is to the true cluster tree for S. We use this distance to assess the

performance of a clustering method.

For a distribution, we can construct its high-probability density/mass cluster tree.

For a sample drawn from a distribution, we can construct the high-probability den-

sity/mass cluster tree for this sample. For any clustering obtained for this sample,

if the clustering result already has a tree structure, such as that produced by single

linkage, we can use this tree directly as an estimate of the high-probability den-

sity/mass cluster tree. If the clustering result is a partition, such as that produced
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by k-means, we can construct a two-layer cluster tree with the root containing all the

sample points and each of the child nodes containing a cluster from the partition.

For the clustering methods that produce different partitions via different param-

eter settings or different random starts, we can construct a cluster tree using our

method of partition integration.

For any clustering method, we can always construct a cluster tree for the sample

as an estimate of the high-probability density/mass cluster tree for the underlying

distribution. We can compare the performance of clustering methods using our

distance measure to calculate the distance from any estimate generated by a method

to the true cluster tree for the sample.

The methodology for comparing clustering performance is as follows.

1. Construct a mixture of several continuous distributions and let its c.d.f. be F .

2. Draw a sample of sample size n, say Sn, from F .

3. Construct the true high-density cluster tree of F on Sn and denote this tree

CTSn(F ).

4. For each clustering method Mi, build a cluster tree for Sn and denote this tree

ĈTi,Sn(F ).

5. For each tree ĈTi,Sn(F ), calculate d(ĈTi,Sn(F ), CTSn(F )) using our cluster-tree

distance measure.

6. Repeat step 2 to step 5 several times such that each time we have a different

independent sample Sn drawn from F with n fixed.

7. Repeat the above steps several times with increasing values of n.

The above methodology is also suitable if the distribution is discrete.

Let ĈTj,Sn(F ) be the cluster tree built by a method say Mj for a sample say

Sn from the distribution F . It is an estimate of CT (F ) as well. The bias of this

estimate can be estimated by 1
p

∑p
i=1 d(ĈTj,S

(i)
n

(F ), CT (F )); here we draw the sample
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with size n from F p times. To use our cluster-tree distance measure, we use the true

cluster tree for each sample S
(i)
n , denoted CT

S
(i)
n

(F ), to replace CT (F ). The bias can

be further estimated by 1
p

∑p
i=1 d(ĈTj,S

(i)
n

(F ), CT
S

(i)
n

(F )).

5.3 An empirical examination of convergence

Under a certain transformation, a discrete distribution may converge in distribution

to a continuous distribution. For example, a Binomial can converge in distribution to

a Normal under a normalized transform. A high-probability mass cluster tree can be

constructed for such a discrete distribution using our coupling graph method. We are

interested in the convergence of the high-probability mass cluster tree constructed

for such a discrete distribution. We use our distance measure and the Monte Carlo

method to check whether or not this tree converges to the high-density cluster tree

of the corresponding continuous distribution.

The purpose of the above convergence examination is not only to discover a

property of our clustering parameter but also to set up a mechanism to reveal the

behaviour of a sequence of different cluster trees. We can also use this mechanism

to assess the performance of different clustering methods that construct a sequence

of partitions or cluster trees for samples of increasing size.

Let F1, F2, · · · , Fn be a sequence of discrete distributions. Let CT (Fn) be the

high-probability mass cluster tree constructed by our coupling graph method for Fn.

If there exists a continuous distribution F such that limn→∞Fn(x) = F (x) for all x

we define CT (F ) to be the high-density cluster tree of F . We are interested in the

convergence from CT (Fn) to CT (F ).

In preparation for the experiments conducted in Section 6.3, we need to answer

the following two questions. The first is, how to set up a common grid as the support

of a mixture of transformed Binomials. We address this question in Section 5.3.1.

The second is, how to estimate the density on each vertex of a grid by a given sample.

We address this qustion in Section 5.3.2. Both Section 5.3.1 and 5.3.2 also explain

how to calculate the distance of cluster trees.
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5.3.1 Binomial and Normal

We start our exploration by considering the Binomial case. Let X1 ∼ Bin(1, p), X2 ∼
Bin(2, p), · · · , Xn ∼ Bin(n, p), where 0 < p < 1. Let Yi = Xi−ip√

ip(1−p)
where i =

1, 2, . . . , n. Let F1, F2, · · · , Fn be the c.d.f.s of Y1, Y2, · · · , Yn. Let Z ∼ N(0, 1) and

F be its c.d.f. We have limn→∞Fn(x) = F (x) for all x. We use the Monte Carlo

method together with our distance measure to simulate the convergence from CT (Fn)

to CT (F ).

We set up the examination in 2-d. If we put a mixture of two Binomials with the

same support in one dimension and a third Binomial with the same support in the

second dimension, then we can try to apply the transform that makes a Binomial

converge in distribution to a Normal. The goal is to make the mixture of Binomials

converge in distribution to a mixture of two bivariate Normals. However, this does

not work directly for the mixture of Binomials. The following example shows why.

Let Xn,1 ∼ Bin(n, p1), Xn,2 ∼ Bin(n, p2), and p1(1 − p1) 6= p2(1 − p2). Using the

standard transform, we have Yn,1 = Xn,1−np1√
np1(1−p1)

∼ N(0, 1) and Yn,2 = Xn,2−np2√
np2(1−p2)

∼
N(0, 1), but Yn,1 and Yn,2 appear on different grids.

We consider the following method to make a transformed mixture of Binomials

converge to a mixture of Normal distributions. For simplicity, we let each Binomial in

the mixture have the same support. Let X ∼
∑k

i=1 πiBi be the mixture of Binomials

where
∑k

i=1 πi = 1, πi > 0, Bi = Bin(n, pi). Let p be any constant such that

0 < p < 1. We define a new common support set for the transformed mixture of

Binomials by SY = { 1−np√
np(1−p)

, 2−np√
np(1−p)

, · · · , n−np√
np(1−p)

}. We further define the ith

element in this set to be yj = j−np√
np(1−p)

, j = 1, 2, · · · , n.

For each Xi ∼ Bi, let k be the value for Xi that is the closest to E(Xi). Let µi

be the mean of the Normal to which we want Xi to converge in distribution after the

transform. If ym ∈ SY is the closest value to µi, we therefore transform Xi ∼ Bi to

be Yi ∼ Fi such that the support set of Yi is SY and P (Yi = yj) = P (Xi = j+k−m).

This leads to the following algorithm:

1. Transform Y
(1)
i = Xi−npi√

npi(1−pi)
. (Conduct the standard transformation)
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2. Transform Y
(2)
i =

√
npi(1−pi)√
np(1−p)

Y
(1)
i =

√
pi(1−pi)√
p(1−p)

Y
(1)
i = Xi−npi√

np(1−p)
. (Move the support

of Y
(1)
i )

3. Transform Y
(3)
i = Y

(2)
i − np−npi√

np(1−p)
= Xi−np√

np(1−p)
. (Make the support to be SY )

4. Transform Y
(4)
i = Y

(3)
i + np−npi√

np(1−p)
+ µ̃i, where µ̃i is the closest value to µi in SY .

(Change the location)

5. Let the support of Y
(4)
i be S ′Y . We construct Yi by setting its support to be SY ,

and P (Yi) = P (Y
(4)
i ) for SY ∩ S ′Y , P (Yi) = 0 otherwise. (Make the support to

be SY after the relocation in Step 4)

In the above algorithm, Y
(3)
i replaces the support of Y

(1)
i by SY . The construction

of Y
(4)
i together with step 5 corresponds to setting P (Yi = yj) = P (Xi = j+k−m) in

the above transform. This Yi is not quite a discrete distribution because
∑

∀yi
P (yi) <

1, but the summation approaches 1 as the size of Yi’s support increases. Since

Y
(4)
i = Y

(2)
i + µ̃i, Yi will converge to N(µi, σi) in distribution with n → ∞, where

σi =
√

pi(1−pi)
p(1−p)

.

Although the above transform method can not produce an arbitrary mixture of

Normal distribution, we can still control the values of p with each pi, µi, and πi to

obtain different mixtures of Normal distributions. This is adequate for our purposes.

Based on the above transform, our examination is as follows.

1. Let X(1) ∼
∑k1

i=1 π
(1)
i B

(1)
i and X(2) ∼

∑k2

i=1 π
(2)
i B

(2)
i be the mixture of Binomials

for the first and second dimensions respectively.

2. With the setting of µ for each Binomial, use the above transform method to

transform X(1) and X(2) to Y (1) and Y (2) respectively using the same values

of p and n. Y (1) and Y (2) therefore form a mixture of k1 times k2 discrete

distributions in the 2-d space.

3. Let Y = (Y (1), Y (2))T . We define the c.d.f. of Y to be Fn. Using the coupling

graph method, we build the high-probability mass cluster tree of Fn and define

this tree to be CT (Fn).
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4. Let Z = (Z(1), Z(2))T , where Y (1) → Z(1) and Y (2) → Z(2) in distribution. We

define the c.d.f. of Z to be F .

5. Construct the high-density cluster tree for F on the support of Y . We denote

this tree CTY (F ).

6. Use our distance measure to calculate d(CT (Fn), CTY (F )), which is the distance

between CT (Fn) and CTY (F ).

7. Repeat the above steps to obtain d(CT (Fn), CTY (F )) for increased n.

In the above setup, the support of Y forms a regular lattice. As n becomes larger,

each mesh in the lattice becomes smaller.

5.3.2 KNN density estimation

Given a sample drawn from a continuous distribution with c.d.f. F , we can estimate

F by the K Nearest Neighbour (KNN) density estimation method. Let x be a point

in the support space of F . Let s be a sample of F with size n. By KNN, we have

p̂(x) = K
nV

, where V is the minimum volumn surrounding x that encompass K points

in the sample s.

Let Fn,k be the estimator of F (X) by KNN. We have limn→∞,k→∞,k/n→0Fn,k(x) =

F (x) for all x. During the process of this convergence as n and k increase, we can

keep constructing a discrete distribution with the sample points and their estimated

densities. We can also put a regular lattice in the feature space of the original

continuous distribution and estimate the density on each vertex of the lattice using

KNN on the sample. This setup is similar to our Binomial case. The difference is

that in the Binomial case, we have to control only the size of the support of the

mixture of Binomials, i.e. the size of the set of vertices in the lattice formed by the

support of Binomials. In KNN, we must control the size of the sample as well.

The purpose of the KNN examination is to simulate the convergence of the clus-

ter trees constructed by our coupling graph method under density estimations for

samples from a continuous distribution. This has a practical value. For simplicity,
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we first consider the 2-d cases. Given a continuous distribution in the 2-d space with

c.d.f. F , we set up the KNN examination as follows.

1. Draw a sample with size m from F and denote this sample Sm.

2. Put a regular lattice in the feature space with n vertices at each dimension. We

define the entire vertex set of the lattice to be Vn.

3. Let F̂n,m be the c.d.f. formed by estimating the density of each element in Vn

using the KNN method.

4. Let CT (F̂n,m) be the high-probability mass cluster tree built by our coupling

graph method for F̂n,m.

5. Let CTVn(F ) be the high-density cluster tree of F constructed for the set Vn.

6. Use our distance measure to calculate d(CT (F̂n,m), CTVn(F )), the distance be-

tween CT (F̂n,m) and CTVn(F ).

7. Repeat the above steps to obtain d(CT (F̂n,m), CTVn(F )) for a sequence of pairs

with increasing values of n and m.

We are interested in the trend of d(CT (F̂n,m), CTVn(F )) as n and m increase.

5.4 An algorithm

Sometimes it is not easy to construct a high density cluster tree for a sample. We now

develop an algorithm to numerically construct such a tree. As we explained in Section

4.9, if we put a regular lattice in the support space of a continuous distribution F

and assign each vertex say v a mass f(v), where f(·) is the density function of F ,

we can construct a discrete distribution. Therefore we can construct a probability

mass cluster tree using our coupling graph method on the discrete distribution. This

leads to the following algorithm.

1. Put a lattice in the support space of F .
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50 100 150 200 250 300 350 400 450 500

0 0 0 0 0 0 0.1429 0.1283 0 0

Table 5.1: Distance from the tree generated by our algorithm to the true tree

2. Find the vertex set V of the lattice and f(V ).

3. Apply the coupling graph method to V and f(V ) to construct a cluster tree.

4. For each layer L of the tree and for each point p in the sample S, assign p to a

node N in layer L if its nearest neighbour in V , say vp, is in N . If vp is not a

vertex in any node of layer L, do not assign p to a node in L.

5. Find the cluster tree for the sample by removing all the vertices from the tree.

To check if the outcome from our algorithm is an approximation of the true

high-density cluster tree for a sample, we use the following test cases.

Let F be the c.d.f. of a mixture of two Normal distributions where each has the

proportion 0.5 in the mixture. Because of the symmetry of this mixture, we can

easily construct the true high-density cluster tree for a sample. We then compare

the tree generated from our algorithm to the true tree using our distance measure.

Figure 5.1(a) shows the contour of this mixture. Figure 5.1(b) illustrates a lattice in

the feature space of this mixture. Figure 5.1(c) gives the coupling graph clustering

result on the vertex set from the lattice with their true densities. In Figure 5.1(c),

the vertices from the regions of the two different modes are separated exactly.
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(a) Mixture of 2 Bivariate Normals (b) Lattice in the feature space of (a)
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(c) Clustering result for the lattice of (b)

Figure 5.1: Test of the algorithm (Case 1)
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5.4. AN ALGORITHM

50 100 150 200 250 300 350 400 450 500

0 0.2245 0.0649 0 0 0.0335 0 0.1318 0 0

Table 5.2: Distance from the tree generated by our algorithm to the true tree

Table 5.1 shows the distance from the tree generated by our algorithm for random

samples to the true tree. The first row in this table shows the size of the random sam-

ples and the second row shows the distance. The generated tree is exactly identical

to the true tree in most cases. Moreover, the differences are very small.

Let F2 be the c.d.f. of a mixture of three Normal distributions where each has

the proportion 1/3 in the mixture. The true high-density cluster tree built for a

sample can be obtained by searching the local minimum of the density and the trend

of density change in the regions that separate two modes. Figure 5.2 shows how our

algorithm works on F2. The results in Table 5.2 are similar to those in Table 5.1.

From the above two test cases, the difference between the tree generated by our

algorithm and the true tree is so small that it can be ignored. Our algorithm provides

a way to numerically construct the high-density cluster tree for a sample.
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5. ASSESS CLUSTERING VIA MONTE CARLO
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(a) Mixture of three Normals (b) High-density cluster tree
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(c) Lattice in the feature space (d) Clustering for the lattice

Figure 5.2: Test of the algorithm (Case 2)
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Chapter 6

Experiments

6.1 Chapter summary

The previous chapter describes the methodologies for assessing clustering. Using

Monte Carlo, the difference between a cluster tree estimate and its estimand can

be calculated by our distance measure. Since we obtain cluster tree estimates from

clustering methods, our distance measure can be used to evaluate clustering perfor-

mance. We have discussed methodologies to empirically examine the convergence of

cluster trees. In this chapter, we implement these methodologies.

We also present experiments for applications of the graph family framework,

such as cluster tree averaging and bagging. The clustering methods used are listed

in Appendix E.

6.2 Performance comparison

Based on the methodologies described in Section 5.2, we run the first two experiments

in which random samples of different sizes are drawn from a continuous distribution

with multiple modes. In the second two experiments, we draw samples from discrete

distributions. Cluster tree estimates are constructed and the difference between

each estimate and the corresponding high-density or probability mass cluster tree is
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calculated.

6.2.1 Experiment 1

Figure 6.1 shows the distribution used in this experiment. The distribution is a
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(a) Contour of a mixture (b) Sample from (a)

Figure 6.1: Contour and sample of a distribution

mixture containing three centre-based Gaussians. Figures 6.2 and 6.3 show the

experimental results. Note that the clustering methods we used for the experiments

in this section are listed in Appendix E. Appendix E also lists the parameter settings

for these methods.

Figure 6.2 shows the average of the distances from the tree constructed by each

method to the high-density cluster tree for samples drawn from the mixture shown

in Fig. 6.1 with sizes from 100 to 800. In this figure, the average from DBSCAN

shows a quadratic shape. DBSCAN performs best with middle-sized samples. When

the sample size is small, there is not enough information for DBSCAN to capture the

patterns of the density and many of the sample points are considered noise. When
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6.2. PERFORMANCE COMPARISON

the sample size is large, with Minpts fixed at 4 as suggested by the original DBSCAN

researchers, too many points are regarded as high-density points and this misleads

the patterns of the density. This result implies that the Minpts of DBSCAN should

be adjusted for relatively large samples.

In Fig. 6.2, runt pruning and the KNN coupling graph method have the overall

best performance. The KNN coupling graph is the only method showing a decreasing

trend in its distance to the true tree. The Gaussian methods, k-means partition, and

linkage clusterings (except for single linkage) demonstrate a stable distance to the

true tree as sample size varies. Single linkage tends to have an increasing distance as

sample size increases. A cluster with 10 points is not trivial for samples of size 100,

but it is trivial for samples of size more than 500. The tendency to find trivial clusters

affects the performance of single linkage, especially in larger samples. Because it

applies a pruning process to ensure that the clusters have reasonable sizes, runt

pruning performs much better than single linkage.

K-means is good for finding centre-based clusters. However, it shows an average

performance for the samples from a mixture of three Gaussians. K-varying and k-

fixed are the estimators generated from partitions of k-means using our method of

partition integration. They have better performance than k-means in most of the

samples.

Figure 6.3 shows the boxplots of the distances for each method and each sample

size. Here size = 1 indicates that the sample size is 100 and so on. Some methods

including Gaussian partition, Gaussian tree, k-means, KNN coupling graph, and runt

pruning demonstrate a clear trend of reduction in the variation of the estimation error

as sample size increases. In the other methods the variation in the estimation error

does not depend on the sample size. A decrease in variation does not imply a better

performance of the estimator.
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Figure 6.2: Mean of distances versus sample size for each method
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Figure 6.3: Boxplot of distances for each sample size and each method

153



6. EXPERIMENTS

6.2.2 Experiment 2

Figure 6.4 shows the distribution used in this experiment. The distribution is a
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Figure 6.4: Contour and sample of a distribution

mixture containing a Gaussian and a bow-shaped distribution that does not look

like a Gaussian. Figures 6.5 and 6.6 show the results of the experiment with the

mixture as shown in Fig. 6.4.

Figure 6.5 shows the average of the distances from the tree constructed by each

method to the high-density cluster tree for samples drawn from the mixture shown

in Fig. 6.4 with sizes from 100 to 800. In this figure, runt pruning has the best

performance. The estimators from two methods, runt pruning and KNN coupling

graph, show a convergence trend to the true high-density cluster tree. DBSCAN

shows a convergence trend for smaller sample sizes and then remains stable for larger

sample sizes. All the other methods generate estimators that do not depend on the

sample size and remain around some distance value. K-means with k = 2 is the worst

method; its estimators have distance around 1, indicating “far away”. K-varying and
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k-fixed perform better than k-means. The Gaussian partition performance is similar

to that of the average linkage. The single linkage performs much worse than runt

pruning, which applies a pruning process to single linkage.

Figure 6.6 shows the boxplots of the distances for each method and each sample

size. Here size = 1 indicates that the sample size is 100 and so on. Some methods

including Gaussian partition, k-means, spectral partition, and single linkage, demon-

strate a clear trend of reduction in the variation of the estimation error as sample

size increases. In some methods, such as DBSCAN and K-varying, the variation in

the estimation error does not depend on the sample size. A decrease in variation

does not imply a better performance of the estimator.

155



6. EXPERIMENTS

size

di
st

an
ce

0.6
0.7
0.8
0.9
1.0
1.1

200 400 600 800

Average Complete

200 400 600 800

Single Runt−pruning

K−means K_fixed K_varying

0.6
0.7
0.8
0.9
1.0
1.1

Spectral

0.6
0.7
0.8
0.9
1.0
1.1

DBSCAN

200 400 600 800

Gaussian Gaussian_tree

200 400 600 800

KNN_Coup

Figure 6.5: Mean of distances versus sample size for each method
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Figure 6.6: Boxplot of distances for each sample size and each method
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6.2.3 Experiment 3

This experiment is similar to the first two except that samples used in this experiment

are drawn from a discrete distribution shown in Fig. 6.7. This discrete distribution

A discrete distribution
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Figure 6.7: A discrete distribution

is exactly the same as the distribution shown in Fig. 4.6 (see Section 4.7). The high-

probability mass cluster tree constructed by the coupling graph method is given in

Fig 4.7 (see Section 4.7). To make our discussion simple, we denote a tied location

in a sample as a location where at least two sample points are located. Note that a

sample drawn from a discrete distribution may have tied locations.

Figure 6.8 shows the average of the distances from the tree constructed by each

method to the high-probability mass cluster tree for samples with sizes from 100

to 800. Different from the method “KNN-Coup” that is listed in Appendix E, the

method denoted by “EMP-Coup” uses the proportion of sample points that are

located in a location as the estimated probability mass for that location. The method
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denoted by “DBSCAN2” uses the maximum number of sample points from a tied

location in a sample as Minpts that is a parameter of DBSCAN. The two methods

“EMP-Coup” and “DBSCAN2” are only used in this and the following experiments

that have samples drawn from a discrete distribution; we do not list them in Appendix

E.

In Fig. 6.8, the average of distances from “EMP-Coup” shows a clear decreasing

trend as sample size increases. This result is reasonable as the estimation error of

the probability mass for each point in the distribution is getting smaller when the

sample size is getting larger. The method denoted by “DBSCAN” (using Minpts = 4

as suggested by the researchers of DBSCAN) performs the worst among all the

methods used in the experiment. Since there are tied locations in each sample and

many such locations have more than 4 sample points, using Minpts = 4 makes too

many sample points to be a core-point (a core-point is a point used to construct a

cluster in DBSCAN) and makes DBSCAN find too many small clusters. By adjusting

Minpts, “DBSCAN2” performs much better in this case. Some methods such as the

spectral clustering, k-means, complete and average linkages perform very well in this

case. The two methods, k-varying and k-fixed, worsen the performance of k-means

because we set k = 2 (this is the correct information of number of clusters in this

case) for k-means. As we have seen from the previous experiments, by a pruning

process, the runt pruning method also improves the performance of single linkage in

this experiment. However in this case, samples with larger sizes have more sample

points located in tied locations than samples with smaller sizes. This makes the runt

pruning method on larger sized samples perform slightly worse than that on smaller

sized samples.

Figure 6.9 shows the boxplots of the distances for each method and each sample

size. Here size = 1 indicates that the sample size is 100 and so on. The variation

from “DBSCAN” is very small because the distances from this method are all around

1.2. The variation of distances from some methods such as “DBSCAN2” and runt

pruning is relatively large. Some methods including k-means, the spectral clustering,

single and complete and average linkages have small variation in their distances. In

this figure, there is no other obvious pattern.
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Figure 6.8: Mean of distances versus sample size for each method
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6.2.4 Experiment 4

The discrete distribution we used for this experiment is shown in Fig. 6.10. This
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Figure 6.10: A discrete distribution

distribution is similar to that shown in Fig. 4.8 (see Section 4.7). Unlike the distribu-

tion used in the previous experiment, the support of this distribution is not a vertex

set from a regular lattice. The high-probability mass cluster tree of this distribution

constructed by the coupling graph method is a two-layer tree with two child nodes

of its root such that one child node contains points from the first two inner circles

and the other contains points from the first two outer circles.

Figures 6.11 shows the average of the distances from the tree constructed by each

method to the high-probability mass cluster tree for samples drawn from the discrete

distribution with sizes from 100 to 800. Similar to the previous experiment, the

average of distances from “EMP-Coup” shows a clear decreasing trend as sample size

increases. More than half of the methods have their average of distances around 1 (i.e.
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“far away”) no matter what the sample sizes are. The ability to discover chain-shaped

clusters makes single linkage a better method than complete and average linkages.

The pruning process also helps the runt pruning method perform better than single

linkage in this case. K-means is not good at discover chain-shaped clusters. Based on

our method of partition integration, k-varying and k-fixed improve the performance

of k-means in this experiment.

Figure 6.12 shows the boxplots of the distances for each method and each sample

size. Here size = 1 indicates that the sample size is 100 and so on. The variation

from k-means, the spectral clustering, complete and average linkages is very small

because the distances from these methods are all around 1. There is no obvious

pattern from other methods.

Our experiments use different mixtures of distributions. The purpose of these

experiments is not to determine which clustering method is the best, since there is

no “universally best” method: each method performs well in particular cases. Our

purpose is to set up the mechanism for comparing clustering methods for samples

drawn from distributions. The experimental results can give us information about

the performance of different methods in situations similar to our experiments.

By analyzing the results from all the four experiments in this section, we have the

following general conclusions for the clustering methods we used in the experiments.

1) Increasing sample size does not imply the decreasing of estimation error.

2) Increasing sample size does not imply the decreasing of the variation from the

estimation error.

3) A small variation of estimation error does not imply a small estimation error.

4) A clustering method is nice if its estimation error is decreasing as sample size

increasing.

5) The methods, k-varying and k-fixed, can reduce the estimation error from the

original k-means with k to be the correct number of clusters in the sample.

6) Runt-pruning is a good method in terms of the small estimation error.
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Figure 6.11: Mean of distances versus sample size for each method
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6.3 An empirical examination of convergence

As described in Section 5.3, we set up experiments to study the convergence of cluster

trees.

6.3.1 Binomial and Normal

The following experiment is constructed according to the methodology introduced

in Section 5.3.1. Let X(1) =
∑3

i=1 π
(1)
i B

(1)
i , where B

(1)
1 = Bin(n, 0.3), B

(1)
2 =

Bin(n, 0.7), B
(1)
3 = Bin(n, 0.3), and π

(1)
1 = π

(1)
2 = π

(1)
3 = 1/3. Let X(2) = B

(2)
1 ,

where B
(2)
1 = Bin(n, 0.7). Let µ

(1)
1 = 0, µ

(1)
2 = 4, µ

(1)
3 = 7 be the means of the

three different Normal distributions to which B
(1)
1 , B

(1)
2 , and B

(1)
3 will converge in

distribution after our transform. Similarly, we set µ
(2)
1 = 0 for B

(2)
1 .

If we transform X to Y based on the method described in Section 5.3.1, we will

have Y converge to Z in distribution, where Z is a mixture of three Bivariate Normal

distributions with the same covariate matrix

Σ =

(
1 0

0 1

)

and mean vectors (0, 0)T , (4, 0)T , (7, 0)T respectively. The proportion of each Bi-

variate Normal in Z is identical. Figure 6.13 shows a mixture of 2-d Binomials

X = (X(1), X(2))T with n = 25, and a contour plot for Z.

We calculate the distance from CT (Fn) to CTY (F ), denoted by d = d(CT (Fn),

CTY (F )), for each n, with n increasing in increments of 1 from 5 to 204. The

construction of CT (Fn) and CTY (F ) were introduced in Section 5.3.1.

Figure 6.14 shows a scatter plot of these 200 distances with the Loess smoothing

curve. From the Loess curve, we can see a trend of decreasing distance with increasing

n. We can also observe that the distance goes up and down locally with increasing

n. This is because, when n is not large enough, the shape of the Binomial mass

function is not close to the density function of the Normal, and the support set of Y

changes as n increases. Therefore, if there are points in the current support set with

locations in the region with lower density separating the two modes, these points may
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be assigned to incorrect clusters. Actually, as n increases, the points of the support

set jump in and out of the critical regions that have lower densities and separate the

different modes.

To check the significance of the decreasing trend, we fit a simple linear model,

d = α+ βn+ ε. The fitted model is d̂ = 0.389− 0.0011n, with the p-values for both

α and β less than 2(10−16). The fitting of this model testifies to the significance of

the trend. The decreasing trend is much more dramatic with small n than larger

n. To reduce this effect from small n, we further fit the same model with n starting

from 50. The result is the same.

The above Monte Carlo experiment gives us an explicit sense of the convergence

we are interested in.
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Figure 6.13: Binomial and its corresponding Normal
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Figure 6.14: Tree distance for the convergence of Binomial to Normal
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6.3.2 KNN density estimation

In this experiment, we use the mixture of Bivariate Normal distributions shown in

Fig. 6.13(b) as the continuous distribution F . With the setup described in Section

5.3.2, we increase the size of the vertices on the lattice from 5 by 5 to 70 by 70. Note

that, we say a lattice size instead of a size of the vertices on the lattice for simplicity.

In our experiment, a larger lattice size implies a smaller mesh size of the lattice. For

each lattice size, we draw samples from F with sample sizes from 300 to 6000. The

distance of CT (F̂n,m) to CTVn(F ) is calculated for each pair of n and m, where n is

the square root of the total number of vertices in the lattice and m is the sample

size. The construction of CT (F̂n,m) and CTVn(F ) were introduced in Section 5.3.2.

We denote the distance between these two trees by d = d(CT (F̂n,m), CTVn(F )).

In this experiment, n is increased in increments of 5 from 5 to 70, and m is

increased in increments of 300 from 300 to 6000. Figure 6.15 shows the contour of

F and estimated densities on a lattice of size 25 by 25, from a sample of F of size

3000.

Figure 6.16 (a) shows the surface formed by the distances on m as sample size

and n as lattice size. From this plot, we can observe the trend of decreasing distance

with increasing m and n. We also observe that the surface is not smooth. This is

caused by the sample error and the density estimation error. Figure 6.16 (b) and (c)

show the trend of decreasing distance with an increasing lattice size and an increasing

sample size respectively.

To check the significance of this trend, we fit a simple linear model: d = α +

β1m + β2n + ε. The fitted model is d̂ = 0.85 − 1.45(10−5)m − 2.99(10−3)n with

the p-values for both α and β2 less than 2(10−16) and the p-value for β1 equal to

0.000192. By further exploration, we find that there is no cross-effect from m and

n. The results from the model show the significance of the trend of the convergence

from CT (F̂n,m) to CTVn(F ).
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Figure 6.15: A mixture of Bivariate Normals and densities estimated by KNN
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Figure 6.16: Tree distance for the convergence of the KNN method to Normal
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6.4 Cluster tree averaging and bagging

We introduced cluster tree averaging and bagging in Section 3.3. We now set up

experiments to see how they work in clustering and to get a sense of their properties.

6.4.1 Cluster tree averaging

Let ĈTi,Sn(F ) be a cluster tree constructed by a clustering method, say Mi, for

a sample of size n drawn from F . We can write the cluster tree averaging as
1
p

∑p
i=1 ĈTi,Sn(F ), where p is the total number of cluster trees in this averaging.

We regard this cluster tree average as a new method for estimating CT (F ).

To be more specific, let Gi be the weighted graph constructed from ĈTi,Sn(F ).

Let Wi be the vector of edge weights from Gi. Let Wave = 1
p

∑p
i=1Wi, and Gave be

the weighted graph with the vector of edge weights being Wave. The cluster tree

constructed from Gave is our cluster tree average.

In the first experiment, we draw thirty independent random sample sets from

the mixture shown in Fig. 6.1 with size 100 for each set. We use five different

clustering methods to construct a cluster tree for each sample. For each cluster tree

for each sample S, we calculate its distance to the high-density cluster tree for S. We

further plot a boxplot from all thirty distances for each method. The five clustering

methods are: single linkage, complete linkage, averaging linkage, DBSCAN, and

Gaussian-based partition.

We also construct four cluster tree averages with different combinations of the

five methods. In Fig. 6.17, above the boxplots of the five clustering methods, tree-

ave1 is the average of single and complete linkage. The average is constructed for

each pair of cluster trees obtained by single linkage and complete linkage for the

same sample set. We therefore have thirty such averages for tree-ave1. Since each

average is a cluster tree, we calculate its distance to the high-density cluster tree

for the corresponding sample and draw the boxplot of these distances. Tree-ave2 is

the average of the three linkage methods; tree-ave3 is the average of DBSCAN and

Gaussian-based partition; tree-ave4 is the average of all five methods.
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By comparing the boxplots, we find that the average of single linkage and com-

plete linkage has a smaller variation and its median is close to that of single linkage,

which has a better performance than complete linkage. The average of the three

linkages has a symmetric distribution of distances; its variation is also small but

slightly larger than that of tree-ave1. The average of DBSCAN and Gaussian-based

partition has a better performance than these two methods individually. The average

also has a much smaller variation than DBSCAN. The average of the five methods

also has a symmetric distribution of distances. Its variation is larger than that of

tree-ave2. The median of tree-ave4 is the lowest among all the averages and close to

that of single linkage, which has the best performance among the five methods.

From these boxplots, we find that the cluster tree average tends to reduce the

variation of each estimator inside the average. The performance of the average tends

to be close to or even better than the best estimator inside the average. However, if

the average contains too many different methods, the variation will increase because

the variety of these methods tends to be large.

Figure 6.18 shows a similar experiment using the mixture of Fig. 6.4, which is

not a mixture of Gaussians. The boxplots lead to the same conclusion for the cluster

tree average.
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Figure 6.17: Experiment 1 on cluster tree averaging
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Figure 6.18: Experiment 2 on cluster tree averaging
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6.4.2 Cluster tree bagging

The cluster tree bagging can be written as 1
B

∑B
i=1 ĈTj,S∗(i)(F ), where B is the num-

ber of bootstrapped samples drawn from the original sample Sn, which is drawn

from a distribution F , and ĈTj,S∗(i)(F ) is the cluster tree constructed by a clustering

method Mj on the ith bootstrapped sample S∗(i).

Again, the Monte Carlo method helps us to understand the performance of cluster

tree bagging. Figure 6.19 illustrates an experiment based on samples drawn from

the mixture shown in Fig. 6.1. In this experiment, we draw 25 independent random

sample sets of size 100 from the mixture. The clustering methods used for this

experiment are listed in Appendix E. For each method we construct a cluster tree

for each sample set, and calculate their distances to the corresponding high-density

cluster tree for each sample set. The boxplot labeled “sample” for each method in

Fig. 6.19 is constructed from 25 such distances for 25 sample sets.

For each sample set, say Sn, we found 30 bootstrapped sample sets. Using one set,

Sn, for each method, we constructed 30 cluster trees for these bootstrapped sample

sets. The cluster tree bagging constructs the average of these 30 trees. Since this

average is a cluster tree as well, we calculate the distance from this average to the

high-density cluster tree for Sn. In this way, for each method we get 25 distances from

the cluster tree bagging for the original sample sets. The boxplot labeled “bagging”

for each method in Fig. 6.19 is obtained from these 25 distances. Comparing the

distances from the cluster trees constructed for the original samples to the high-

density cluster tree shows that the cluster tree bagging reduces the distances for

every method except single linkage and hierarchical Gaussian-based clustering.

Figure 6.20 illustrates a similar experiment but using the mixture shown in Fig.

6.4. In this case, the distance reduction by the clustering bagging is still obvious for

some methods such as DBSCAN, complete linkage, and the coupling graph method.

However, other methods have no such effect.

The variation in the estimation errors as an estimator of the high-density clus-

ter tree is reduced for most of the methods for both mixtures. This reduction is

remarkable for DBSCAN in Fig. 6.19.
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Figure 6.19: Experiment 1 on cluster tree bagging
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Figure 6.20: Experiment 2 on cluster tree bagging
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These two experiments show that cluster tree bagging can reduce the variation

in the estimation error in many cases.
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Chapter 7

Applications to real data sets

7.1 Chapter summary

We have discussed methodologies for statistical assessment using the Monte Carlo

method based on our clustering framework. We have also proposed new methods,

such as cluster tree averaging and bagging, as the estimators of the high-probability

density/mass cluster tree of a distribution. In many real cases, we observe a sample

without knowing the true underlying distribution. In this chapter, we demonstrate

possible applications of our framework to real data sets.

7.2 Enron email data

The Enron email data contains email messages exchanged among 184 email addresses

over 1316 days. We obtain a 184 by 184 matrix with each element fij being the

number of email messages sent from email address i to j. This is an asymmetric

matrix and we call it the frequency matrix Mf . We further get a 184 by 184 distance

matrix Md with each element dij = 1316
1+fij+fji

. Md is a symmetric matrix and can be

used as a distance or a dissimilarity matrix for the email addresses 1. We use Md as

1Matrices Mf and Md were originally constructed by Dr. Hugh Chipman, Department of Math-
ematics and Statistics at Acadia University.
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our source data.

We first apply linkage clusterings, such as single linkage, complete linkage, and

average linkage, to Md. We then use DBSCAN with different parameter settings

(Minpts is fixed at 4, and ε varies). DBSCAN with each set of parameters can

produce a partition of the email addresses. (Actually, the union of all the disjoint

subsets in the partition from DBSCAN is a subset of the 184 email addresses; this

is because DBSCAN classifies some sample points as noise.) We can build a cluster

tree from this sequence of partitions through our method of partition integration.

To illustrate the clustering results, we derive a new type of plot, called a cluster-

ordering plot. To draw this plot, we first order the email addresses as follows:

1. Set up an ordering list for all 184 email addresses, and initialize the order as the

sample index.

2. Let L be the largest layer in a cluster tree. For layers 2 to L perform the following

steps (the root is in layer 1).

3. Find the union of all the content in every node of the current layer, say layer i.

If there are m nodes in layer i, the union is written as Ui = ∪m
j=1Content(Nij),

where Nij is the jth node in layer i and Content(Nij) is the email addresses

contained in Nij.

4. Order all the elements (email addresses) in Ui by their associated node id in layer

i.

5. Find all the locations for every element of Ui in the ordering list, and reorder

these locations by the order obtained in step 4. Update the ordering list by

assigning the index of every element in Ui according to its ordered location.

After obtaining the ordering list of the email addresses via the above algorithm,

we reorder the matrix Md to M ′
d with the order of both rows and columns being

identical to the ordering list. We then display M ′
d as a lattice with the brightness of

the colour of the ijth square in the lattice determined by the value of the ijth element

in M ′
d, such that the square is brighter if the associated value is larger.
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Any cluster-ordering plot for the Enron email data will have some general patterns

as follows. A light-coloured square implies few emails have been sent between the

two corresponding employees. A dark-coloured square implies many emails were sent

between the two corresponding employees. Since the matrix Md is symmetric, after

the reordering by the above five steps, we have a matrix M ′
d that is also symmetric.

Therefore the colour of squares in a cluster-ordering plot is symmetric. The colour

of the diagonal in a cluster-ordering plot is associated with the frequency of email

senders have sent themselves. Since many of the Enron employees copied emails to

themselves while sending emails to others, the obvious diagonal line reflects these

copies. If there are frequent emails sent among a group of employees and these

employees are neighbours in the ordered matrix M ′
d, a block of dark-coloured squares

will appear on the diagonal of the corresponding cluster-ordering plot at the locations

associated with these employees. An off-diagonal block of dark-coloured squares

implies frequent emails have been sent between two groups of “neighbour employees”.

(Note that, “neighbour employees” means these employees associate with neighbour

columns and rows in the ordered matrix M ′
d.)

From the above general patterns, a good clustering method for the Enron email

data should make blocks of dark-coloured squares appear on or close to the diagonal

of the cluster-ordering plot.

Our cluster-ordering plot is similar to Hurley’s method [35] for clustering visual-

ization. The difference is that Hurley uses mij to determine the similarity of sample

objects, where mij is called the index of merit between object i and j, and can be

calculated by a similarity measure. Hurley also uses clustering methods such as sin-

gle linkage on the matrix with mij as the ijth element. The purpose of this clustering

is to find pairs of similar variables to be co-displayed in plots such as scatter plots.

In our cluster-ordering plot for the Enron email data, we apply clustering to Md

with dij as its ijth element, and we treat dij to be just like mij in Hurley’s method.

Without displaying email addresses pairwisely, we find the global ordering list of all

the email addresses from a cluster tree and display the reordered Md as a lattice to

obtain a general view of the clustering result.

We also apply our method for cluster tree averaging to the cluster trees con-
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structed by single linkage, complete linkage, and DBSCAN.

Figure 7.1 shows the cluster-ordering plot using the original order of the email

addresses without reordering by clustering. The dark-coloured squares in the plot

are roughly uniformly located. With clustering, it is reasonable to see that the

frequency of emails sent within each cluster should be higher than that between

different clusters. Reordering these email addresses by clustering, we should observe

more blocks of dark-coloured squares along the diagonal than by the original order.

Figure 7.2 shows the cluster-ordering plot with the order of the email addresses

determined by single linkage on the distance matrix Md. The dark-coloured squares

are located towards the top right corner of the diagonal. We also see several blocks of

dark-coloured squares on the diagonal. Compared to the original plot, this plot shows

an obvious pattern of clusters. Figure 7.3 gives the dendrogram for this single-linkage

clustering. The clusters at the bottom left corner of the dendrogram are formed by

the smallest single-linkage distances, and they represent a close relationship between

people inside the same cluster. The cluster tree is quite unbalanced with many small

clusters, as is usual for single linkage. From the single linkage dendrogram, for most

of the layers, there is a single point joining a big group, these single points form the

first part of the ordered email addresses and there is lower frequency of emails among

employees in this part. Therefore we see an almost empty region around the bottom

left corner and blocks of dark-coloured squares appear at the top right corner in the

cluster-ordering plot.

Figures 7.4 and 7.5 show the cluster-ordering plot and the dendrogram con-

structed using complete linkage on the distance matrix Md. The complete-linkage

dendrogram is still an unbalanced tree. In contrast to single linkage, the blocks of

dark-coloured squares are spread out along the diagonal in the cluster-ordering plot.

The dendrogram also illustrates this pattern. The difference between the complete

linkage dendrogram and that of single linkage is that, a small group instead of just

a single point keeps joining a big group in most of the layers. This makes some

blocks of dark-coloured squares appear at the bottom left corner of the diagonal of

the cluster-ordering plot.

Figure 7.6 shows the cluster-ordering plot of the cluster tree averaging of single
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Figure 7.1: The cluster-ordering plot using the original order
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Figure 7.2: The cluster-ordering plot using single linkage
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Figure 7.3: The dendrogram of the single-linkage clustering
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Figure 7.4: The cluster-ordering plot using complete linkage
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Figure 7.5: The dendrogram of the complete-linkage clustering
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Figure 7.6: The cluster-ordering plot using the average of two linkages
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and complete linkage. We see an obvious change in the clustering patterns. The

blocks of dark-coloured squares are now located closer to the top right corner, and

they are more concentrated. The dendrogram shown in Fig. 7.7 illustrates this

change more clearly. The cluster tree is more balanced with larger clusters and fewer

layers. In each layer of the dendrogram constructed by cluster tree averaging, a small

number of points remain at each layer. Since there are fewer emails sent between

employees corresponding to these points, we see an almost empty region around the

bottom left corner in the cluster-ordering plot. The blocks of dark-coloured squares

in the plot are associated with those clusters appearing in the deepest layers of the

dendrogram.

It is interesting to discover which employees are grouped together, i.e. they com-

municated frequently, and the difference in groups from different clustering meth-

ods. We check the ids of employees corresponding to some interesting blocks of

dark-coloured squares in each cluster-ordering plot.

In the plot derived by single linkage (see Fig. 7.2), the first block on the diagonal

at the top right corner corresponds with a cluster with ids 111, 115, 156, 163, 166 and

170. There is little information about the employees in this group. A small block to

the left of the first one on the diagonal contains ids 28, 83 and 108. They were two

CEOs and the president of Enron. The third block on the diagonal to the left of the

second has ids 59 (VP, government affairs), 64 (government relation executive), 147

(VP, regulatory affairs), and 164 (VP, chief of staff). We also see some communication

between the second and the third group from the cluster-ordering plot.

In the plot derived by complete linkage (see Fig. 7.4), ID 108 is not in the cluster

with 28 and 83, and is instead assigned to a cluster with 154, which is the ID of a

chief operating officer. These two small groups appear slightly to the right of the

middle of the diagonal of the plot. The group with ids 111, 115, 156, 163, 166 and

170 has also been identified by complete linkage, it appears as the first block on the

diagonal at the bottom left corner in the plot. The group with ids 59, 64, 147, and

164 appears as the second block on the diagonal at the bottom left corner.

In the plot derived by the averaging of single and complete linkages (see Fig. 7.6),

the group with IDs 59, 64, 147, and 164 and the group with ids 111, 115, 156, 163,
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Figure 7.7: The dendrogram of the average of two linkages
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166 and 170 are still appearing as two blocks of dark-coloured meshes. Unlike the

clustering results by single and complete linkages, IDs 28 and 83 join IDs 108 and

154 to form a new cluster by the averaging.

We find a similar pattern of change when averaging DBSCAN with single linkage.

In this Enron email application, cluster tree averaging shows an obvious ability to

preserve the clustering results from each method in the average and also to discover

new patterns.
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7. APPLICATIONS TO REAL DATA SETS

7.3 Olive oil data set

The olive oil data set contains 572 olive oil samples from Italy. Each sample has

10 variables. The first variable is the geographic region of Italy: North, South, or

Sardinia. The second variable shows the area within each region. There are 3 areas

in the North, 4 in the South, and 2 in Sardinia. The remaining variables are the

percentages of 8 different fatty acids in the sample.

A major objective of data analysis for this data set is to determine the geographic

locations of the samples from the eight acid contents. Although this is a typical

classification problem, we can use clustering analysis to group the oil samples and to

check the clustering result against the sample geographic locations.

Stuetzle [62] uses this data set to build a cluster tree using his runt pruning

method. With our method of partition integration, we can build different cluster

trees from different partitioning methods and compare their performance on the

olive oil data set using our distance measure. We can further apply cluster tree

averaging and bagging to different cluster trees constructed for this data set. This

can give us a sense of how our distance measure and methods such as bagging would

work on this data.

The first two variables can be used to construct the true cluster tree of the

unknown underlying distribution of these samples. Figure 7.8(a) shows the true

cluster tree structure of the olive oil data. The second layer of the tree contains 3

nodes corresponding to the 3 areas. The third layer has 9 nodes for the 9 regions.

The performance of a clustering method as an estimator of this true tree is measured

by our distance measure.

The clustering methods are denoted as in Appendix E. Table 7.1 shows the dis-

tance from the cluster tree constructed by each method to the true tree. Runt-

pruning is a good estimator with the second smallest distance from the true tree; its

cluster tree structure is shown in Fig. 7.8(b). Runt-pruning finds two areas instead

of three at the second layer of the tree, and this contributes to the distance. However,

the leaf nodes of the runt-pruning tree do a good job of grouping the samples into

different regions. This makes the method a good estimator in this case.
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(a) True tree structure (b) Tree structure from runt-pruning

Figure 7.8: Tree structures of the olive oil data

Distance to the true tree

Method K-varying K-fixed Single Complete Average DBSCAN

Distance 0.6919 0.7535 0.9139 0.8078 0.6558 0.8960

Distance to the true tree

Method Spec-tree KNN-coup Runt-pruning K-means Spectral Gaussian

Distance 0.9225 0.9868 0.5426 0.8580 0.7765 0.5162

Table 7.1: Estimate error of clustering methods for the olive data
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 Figure 7.9: Tree structure using partitions from two methods

The smallest distance comes from the Gaussian partition. The Gaussian partition

method finds three clusters in the data set. This partition almost finds the three

areas in the data and therefore makes the first split of the root almost correctly.

This makes the distance smaller. However, if we are interested in finding the regions

rather than the areas, the Gaussian partition is not a good estimator.

Our method of partition integration provides a flexible platform for combining

different partitions. We can combine the Gaussian partition with the partition from

the leaf nodes of the runt-pruning tree. This gives us a better cluster tree for esti-

mating both the area and the region. This tree has distance 0.4655, smaller than any

distance in Table 7.1. The structure of this tree is illustrated in Fig. 7.9. The purpose

of showing this tree is to demonstrate the flexibility of our framework. This flexibility

is more useful when we use our experience to find cluster patterns in particular data

sets.

Table 7.2 shows the results of bagging. Clustering bagging improves the perfor-

mance of most of the estimators, especially the spectral tree method. For the best
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7.3. OLIVE OIL DATA SET

Distance to the true tree

Method K-varying K-fixed Single Complete Average DBSCAN

Method d 0.6919 0.7535 0.9139 0.8078 0.6558 0.8960

Bagging d 0.6537 0.7371 0.9040 0.7523 0.6188 0.8172

Distance to the true tree

Method Spec-tree KNN-coup Runt-pruning K-means Spectral Gaussian

Method d 0.9225 0.9868 0.5426 0.8580 0.7765 0.5162

Bagging d 0.6191 0.9088 0.6575 0.7855 0.7810 0.6009

Table 7.2: Estimate error of clustering methods for the olive data

estimators such as runt-pruning and the Gaussian partition, bagging slightly worsens

the performance. It gives us an overall stable estimator for this data set.

Boosting is a method for obtaining a better model from weak models through

a weighted averaging [25]. Although the weights can not be obtained directly for

clustering, we can still use the idea of boosting to obtain a better estimator from the

weak estimators. To use this idea, we set up an experiment as follows:

1. For each fatty acid variable i, construct a 1-d data set with the values from this

variable for all the samples. Denote this data set Si, i = 1, 2, · · · , 8.

2. For each Si, obtain each partition C
(j)
i by k-means with k = j on Si, j =

3, 4, · · · , 12.

3. Construct a cluster tree T̂
(j)
i for each C

(j)
i by assigning each cluster of C

(j)
i to a

child node of a root that contains all the samples. In most cases, T̂
(j)
i is a weak

estimate of the true cluster tree.

4. Using our cluster averaging method, obtain T̂ (j) = 1
8

∑8
i=1 T̂

(j)
i for each j.

5. Check the performance of each T̂ (j) by calculating the distance from T̂ (j) to the

true cluster tree for the 572 samples.
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Distance to the true tree

K var 1 var 2 var 3 var 4 var 5 var 6 var 7 var 8 Boosting

3 0.959 0.992 1.072 0.871 1.005 0.989 0.964 0.825 0.870

4 0.983 0.991 1.111 0.950 1.028 1.001 1.02 0.915 0.827

5 0.996 1.00 1.154 1.019 1.043 1.073 1.068 0.975 0.826

6 1.019 1.057 1.180 1.028 1.062 1.083 1.089 0.978 0.887

7 1.043 1.068 1.197 1.035 1.087 1.122 1.072 1.005 0.847

8 1.083 1.112 1.204 1.052 1.101 1.104 1.105 1.018 0.833

9 1.083 1.076 1.227 1.070 1.124 1.145 1.145 1.037 0.675

10 1.131 1.082 1.238 1.079 1.137 1.153 1.104 1.058 0.803

11 1.136 1.138 1.238 1.112 1.123 1.156 1.139 1.042 0.961

12 1.150 1.158 1.253 1.121 1.149 1.161 1.137 1.125 1.000

Table 7.3: An example of cluster tree boosting

Table 7.3 shows the result of the above experiment. For most j, T̂ (j) performs

better than each T̂
(j)
i . For some j, e.g. j = 9, T̂ (j) even becomes a good estimate of

the true cluster tree. When j = 3, the first 7 estimates are bad but the 8th estimate

is relatively good, and this makes the boosting result slightly worse than the 8th

estimate.

The above applications to real data sets indicate that our framework can be a

common tool for the clustering analysis of a real data set. It can combine different

partitions; it can compare the performance of clustering methods; and it can reveal

interesting patterns and stable clustering results through cluster tree averaging or

bagging.
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Chapter 8

Conclusion and discussion

Density-based clustering methods find clusters for a sample from an underlying con-

tinuous distribution. Hartigan defines a high-density level set [31, Section 11] and

Stuetzle further defines a high-density cluster tree for a continuous distribution [62].

We regard this tree as a parameter of interest for a continuous distribution, which

determines a cluster tree for a sample from this distribution. We further extend it to

a discrete distribution whose support is located in a Euclidean space. The extension

makes the parameter more general.

Any clustering method can be used to produce a partition of the data into disjoint

groups from which a graph with disjoint connected subgraphs can be derived. This

motivates us to propose a graph family framework.

Based on the graph family framework, we further propose a cluster-tree distance

measure, which can be written as an inner product or kernel. This distance measure

is simple, easy to understand, and easy to implement. Comparisions with related

measures show that our measure is particularly suitable for both partitions and tree

structures. Further testing verifies that our measure is good at comparing clustering

performance.

More methods are obtained from the graph family framework. The method of

partition integration combines different partitions; the method of cluster tree aver-

aging combines different cluster trees; the method of cluster tree bagging is derived
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8. CONCLUSION AND DISCUSSION

using bootstrapping. These methods produce a single cluster tree as a new estimate

of the corresponding high-density cluster tree. Experiments and examples in the the-

sis show that the new estimate can have a better performance than the clusterings

to be integrated.

The parameterization of clustering and the graph family framework and its ap-

plications are the major components of our clustering framework. This framework is

an open platform that is able to take different clusterings as an input and to gener-

ate cluster trees as new estimates of high-density or -probability mass cluster trees.

Statistical assessment of clustering via Monte Carlo simulation is another direct ap-

plication of our clustering framework. The experiments and examples in the thesis

show that the framework is also suitable for this purpose.

Our research and experiments have demonstrated the flexibility of our framework.

An immediate research issue is how to further extend its use. One possible direction

is to derive an algorithm that automatically searches the space of cluster trees using

our framework. Interactive clustering methods, such as reducing, reassigning, and

refining [53] could be considered in this search algorithm. Another possible direction

is to develop methodologies that make our clustering distance measure more suitable

for clustering stability.

200



Appendix A

Brief review of clustering methods

From 1960 to 1980, clustering was a widely used approach in numerical taxonomy

[60]. The use of clustering in this area included applications in astronomy [2], fi-

nancial markets [41], medicine [7], marketing [22], archaeology [33, 34], economics

[19], business [27], phytosociology [45], microbiology [14, 26], psychiatry [18],

and agriculture [63]. At that time, k-means [48] and linkage hierarchical cluster-

ing methods [31], including single linkage, complete linkage, and average linkage,

were available. In the 1980s, with the development of information retrieval systems

[59], document clustering [67, 71] attracted much attention. Hierarchical clustering

methods were commonly used for document clustering [51, 29, 66, 69]. Motivated

by the efficiency requirement for document clustering from large databases, reducing

the computational expense became a hot issue [58, 12]. Testing and measuring the

performance of a cluster also received attention [68, 1]. Internet technologies grew

dramatically in the 1990s. Information retrieval is still a common application of clus-

tering. Document and text clustering were applied to retrieving information from the

internet [43, 61, 73]. To meet the increasing performance demands, new methods

were introduced, including mix model methods [21], wavelet-based methods [72],

principal component clustering [50], graph-theory-based clustering [44, 13, 39], and

density-based clustering [17, 4].

In recent years, the explosive growth in data and databases has dramatically
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A. BRIEF REVIEW OF CLUSTERING METHODS

increased the demand for data mining [38]. Data mining requires efficient techniques

and tools to discover useful information and knowledge from data. In this application,

cluster analysis is growing rapidly in importance.

A well-accepted categorization of existing clustering methods is: partitioning

methods, hierarchical methods, graph-theory-based methods, and statistical-model-

generated methods (including mixture-model-based methods and density-based meth-

ods).

A.1 Partitioning methods

Partitioning methods appeared early in the history of clustering, long before the

emergence of data mining. A common idea of partitioning is as follows: Separate

objects into a fixed number of clusters such that the total deviation of each object

from its cluster centre is minimized; then objects in the same cluster are close to

each other, whereas those in different clusters are far away.

K-means [48] is a typical partitioning clustering method. In k-means each cluster

is represented by its mean, the average of the data vectors in a cluster. K-means tries

to minimize a cost function E , which is the average dissimilarity from any object in

the data set to the centre of the cluster to which it belongs. The k-means algorithm

uses k, the number of clusters, as a parameter and applies greedy searching to find

a local optimum. Different local optima can be found using k-means with different

initial values. The computational complexity of k-means is O(nkt), where n is the

number of objects in the data set, k is the number of clusters, and t is the number

of iterations for the algorithm to converge. It is efficient if k << n and t << n.

K-means works well when the objects within each cluster are close to each other

while the objects from different clusters are far away. Since k-means uses the mean

of all the data objects in a cluster to represent that cluster, the result can easily be

affected by outliers in the data set, and the method does not work well when the

clusters are not sphere-shaped.

Similarly to k-means, k-medoids constructs clusters by using a single object—
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A.2. HIERARCHICAL METHODS

a medoid—to represent a cluster [40]. Given a cluster C, we define d(Op, Oc) to

be the distance between an object Op in C and the cluster centre Oc, which is the

centre of all the objects in C. The object Op is a medoid of C only if d(Op, Oc) =

min∀Oq∈Cd(Oq, Oc). The cost function in k-medoids is the same as that in k-means

but uses the medoid as the centre of a cluster.

The major difference between k-medoids and k-means is that the medoid of a

cluster is an existing object whereas the mean of a cluster does not usually exist in

the data set. These two algorithms also differ in how they recalculate the cluster rep-

resentatives and how they reconstruct the clusters when the cluster representatives

are changed.

K-medoids is not efficient for large data sets. The complexity of one iteration is

O(k(n− k)2t). Sampling techniques have been used to improve the efficiency of the

algorithm. CLARA [40] is a typical such approach and CLARANS [52] is a method

that is motivated by improving the effectiveness of CLARA.

A.2 Hierarchical methods

These methods construct a hierarchical decomposition of the data set. Two typical

approaches are used. One is bottom-up or agglomerative and the other is top-down

or divisive. In the initial step of bottom-up methods, each object forms a cluster.

If the number of objects in the data set is n, there are n clusters at the initial

state of the algorithm. The algorithm seeks the two closest clusters according to

some distance measurement and merges these two clusters to form one. This is then

repeated until only one cluster is left. In top-down methods, the algorithm starts

with only one cluster in which all the objects are contained, and coninues splitting

until each distinct object forms its own cluster.

Early hierarchical methods employ simple metric functions to measure the dis-

similarities between any two clusters, say Ci and Cj. Three common measurements

are [31]:
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A. BRIEF REVIEW OF CLUSTERING METHODS

• Single linkage:

dmin(Ci, Cj) = min∀p∈Ci,∀q∈Cj
‖p− q‖

• Complete linkage:

dmax(Ci, Cj) = max∀p∈Ci,∀q∈Cj
‖p− q‖

• Average linkage:

davg(Ci, Cj) =
1

|ci||cj|
∑

p∈Ci,q∈Cj

‖p− q‖

A dendrogram (a tree structure) is used to record the merging or splitting of the

clusters and to indicate the distance between two joined clusters. The dendrogram

is a cluster tree that displays a nested sequence of clusters and can be used to choose

the number of clusters. Figure A.1(a) shows a data set generated from a mixture of
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Figure A.1: An example of a data dendrogram
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two Gaussians. Figure A.1(b) shows the dendrogram of the single-linkage clustering

of this data set. In this dendrogram, points or groups of points close to each other

were merged first by the single-linkage distance measure, and after two large groups

were formed, they were merged into one group. The height of a horizontal bar in the

dendrogram is the distance between two groups that have been joined by the bar.

To obtain better hierarchical clustering, many approaches have been published,

such as BIRCH [74] and CURE [30]. BIRCH creates a hierarchical structure of

not only the data objects but also some general statistical information, such as the

sample medians and sample variations. This information can be used to refine the

clustering result and to reduce the computational requirement. CURE uses multiple

points to represent a cluster and can find non-centre-based clusters.

A.3 Statistical-model-generated methods

Many clustering methods are based on the assumption that the data objects are

generated from an underlying probability distribution that is unknown. In statistics,

we often parameterize this distribution and then estimate the unknown parameters

from the observed data.

A.3.1 Mixture-model-based clustering

The typical mixture-model-based clustering assumes that the observed data come

from a mixture of distributions [21, 54]. The purpose of clustering is to estimate the

unknown parameters of the mixture density function and the set of labels to assign

each object to a subdistribution. The formulation is as follows:

Let the population f be a mixture of G subpopulations fk(θk), where k =

1, 2, · · · , G. Let the set of parameters for the subpopulation be θ = {θ1, θ2, · · · , θG}.
Given a data set X = {x1, x2, · · · , xn} drawn from f , we have

f(xi|θ) =
G∑

k=1

πkfk(xi|θk),
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where πk is the probability that an observation comes from subpopulation fk and∑G
k=1 πk = 1. Let π = {π1, π2, · · · , πG}, then the likelihood for this mixture model

is

L(θ; π|X) =
n∏

i=1

G∑
k=1

πkfk(xi|θk).

There is no closed form solution to maximize the likelihood. It is a nonlinear opti-

mization problem, and is commonly solved by an EM algorithm.

The observed data set X is regarded as incomplete with missing values: γ =

{γ1, γ2, · · · , γn}, where γi = {γi1, γi2, · · · , γiG}. We have γik = 1 if xi comes from

fk and
∑G

k=1 γik = 1. Now the complete data become Y = {y1, y2, · · · , yn} with

yi = (xi, γi). With this complete data, the log likelihood becomes

l(θ; π; γ|Y ) =
n∑

i=1

G∑
k=1

γiklog[πkfk(xi|θk)]

The E-step of the EM algorithm is

E(γik|X; π∗; θ∗) =
π∗kfk(xi|θ∗k)∑G

k=1 π
∗
kfk(xi|θ∗k)

where π∗ and θ∗ are the current estimates of π and θ. The M-step maximizes the

above log likelihood in terms of π and θ with γ fixed as the value calculated at the

E-step.

The EM solutions for a mixture of Gaussians or a mixture of other distributions

have been discussed in the literature [21]. We do not discuss such techniques here.

The above mixture likelihood and EM algorithm has a drawback. It requires

knowledge of the underlying distribution that we may not have. For example, the

EM process requires G, the number of subdistributions, to be fixed a priori. Some

recent approaches try to solve this problem by for example using a hybrid hierarchical

clustering on the mixture model algorithm with a large G or introducing stochastic

search process to find local optima in the space of all possible partitions of the data

[10]. Furthermore, the use of specific distribution densities should be questioned. For

example, it is reasonable to use a mixture of Gaussians only if we have information

that the data come from Gaussians.
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In most cases, we do not have enough information to estimate the parameters

to determine the mixture of density functions. Note also that in the “population”

clusters can overlap. However, we may have enough information to estimate some of

the parameters that determine a clustering.

A.3.2 Density-based methods

Density-based clustering assumes that multiple modes or disjoint high-density regions

exist in the underlying distributions. The purpose of the clustering is to assign data

objects from the same high-density region to the same cluster and objects from

different high-density regions to different clusters. Clusters are found by obtaining

the maximally connected subset of the data objects from high-density regions. Such

connected subsets can be arbitrarily shaped.

DBSCAN [17] and OPTICS [4] use the empirical density estimation such that

the density of a data object p is proportional to the number of data objects in the

hypersphere centered at p with a predefined radius ε. If the number of points exceeds

a predefined threshold Minpts, p becomes a core-point and a connected subset is

formed by connecting every pair of points within the hypersphere. This connected

subset can be extended when another core-point is found in the subset and all the

points within its ε hypersphere region are added to the connected subset. When no

more points can be added, the subset becomes a maximally connected subset of the

data set and then this subset is a cluster. In DBSCAN and OPTICS, the algorithm

for finding clusters involves a process of constructing a graph with disjoint connected

subgraphs. The average run time complexity of DBSCAN is O(nlogn).

The original DBSCAN finds a partition of the data using a global density level

without considering nested high-density regions that would require different local

density levels. These local density levels are easily defined from the building blocks

in DBSCAN. We can get different density levels by fixing Minpts and varying the

value of ε. A sequence of nested partitions can be constructed by running DBSCAN

several times with different density levels. OPTICS adds a complex structure to

DBSCAN to efficiently discover nested density regions.
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Based on Hartigan’s definition, runt pruning clustering [62] is a way to build

a high-density cluster tree that reveals natural clustering in many real data sets in

which multiple modes exist with different density levels.

Runt pruning clustering estimates a high-density cluster tree using a nearest-

neighbour density estimate via cutting the edges in the minimal spanning tree (MST)

of the data set. It can therefore estimate density level sets at different levels. The

MST of a data set is a graph used to connect all the vertices (objects in the data

set) with a minimal edge length sum. Moreover, a pruning process is used in the

algorithm to trim off insignificant clusters. Without the pruning process, the cluster

tree constructed by runt pruning clustering is identical to a single-linkage dendrogram

[28].

A.4 Graph-theory-based methods

A typical graph-based method is spectral clustering [16, 49]. Spectral clustering

first constructs similarity graphs of the data set. The similarity graphs commonly

used include: the ε-neighbourhood graph that connects all pairs of points if their

distance does not exceed ε; the k-nearest neighbour graph; and the fully connected

graph, a weighted graph constructed by connecting two points with a certain weight

calculated from a similarity measure such as the Gaussian similarity function [47].

The next step of spectral clustering is to obtain a new data set using the graph

Laplacians [15] of the similarity graph. This step involves the calculation of the

graph Laplacian matrix L of the similarity graph and the eigen-decomposition of L.

The new data set is constructed from the eigenvectors corresponding to the k largest

eigenvalues of L, where k is the number of clusters to discover. The last step of

spectral clustering applies a partition clustering method such as k-means to the new

data set to get the result.

In contrast to spectral clustering, other graph-based approaches apply clustering

algorithms directly to particular graphs such as the k-nearest neighbour graph [23].
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Appendix B

Brief review of some clustering

frameworks

By reviewing typical clustering approaches and theoretical studies of clustering from

a statistical view, we discuss possible clustering frameworks.

B.1 General description of clustering

Clustering is normally regarded as an unsupervised learning algorithm that extracts

“patterns” in the form of clusters from data. Although this description is satisfied

by every clustering method, it is ambiguous. The patterns of interest might be

high-density regions, groups of similar points with various definitions of similarity,

or unusual regions or objects in the sample with different definitions of “unusual”.

It is necessary to find an unambiguous general description of clustering.

B.2 Underlying structure of clustering

All the approaches in this category assume that the data to be clustered come from

unknown underlying distributions. However, they have different definitions of a

cluster.
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B.2.1 Density-based clustering

Some density-based clustering algorithms such as DBSCAN [17] assume that clusters

come from high-density regions of the underlying distribution. They therefore find

partitions of the data with some “noise” being rejected.

B.2.2 Mixture-model-based clustering

Mixture-model-based clustering assumes that the sample points in each cluster come

from a component of an underlying mixture of distributions [21]. This framework

has some good statistical features in that

1. Every distribution can be expressed as a mixture.

2. It has a close relation to classification models.

The second point is because the parameters, say C, that define the mixture

can also define a clustering. Let X be a sample from the mixture. We can write

the likelihood, prior, and posterior probabilities as P (X|C), P (C), and P (C|X)

respectively. The framework of mixture-model-based clustering is natural for these

expressions.

However, the framework has some shortcomings. It relies on the assumption of

a mixture of specific distributions. If we assume the data come from a mixture of

Normals but they are actually drawn from a mixture of Exponentials, the clustering

will be incorrect. Another problem of this framework is that if we look at the density

function of the mixture, a bump or a mode need not correspond to a component

distribution in the mixture. Figure B.1 shows the density function of a mixture with

three component distributions. The solid curve shows the density function of the

mixture and the dashed curves show the density functions of the three components

in the mixture. Should there be just one cluster in a sample of this mixture, or three?
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Figure B.1: A mixture of three Gaussians

B.2.3 High-density cluster tree

Hartigan and Stuetzle both assume that the goal of clustering is to discover bumps

or modes in the density of the underlying distribution. Hartigan defined a high-

density level set [31, Section 11]; Stuetzle further defined a high-density cluster tree

[62] based on Hartigan’s definition. This tree is a characteristic of the underlying

distribution. It is reviewed in detail in Chapter 4 of the thesis.

B.3 Methodologies for combining clustering out-

comes

Some existing approaches generate an integrated result from different clustering out-

comes. For example, multiple-clustering generates a new partition from different

partitions found by existing clustering methods, such as k-means with different val-

ues of k. There are different multiple-clustering approaches. Quan [56] proposes a

211
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method for constructing a vector for each sample point according to the input par-

titions and then applying a clustering method to the set of vectors derived. Ashlock

[5] proposes a method that constructs a new partition by running k-means multiple

times. Another approach constructs a tree or multiple trees using graph theory to

find an optimal set of cliques from the graphs derived from a sequence of unnested

partitions [13]. A clique is a complete subgraph.

A discussion of the above approaches is given in Chapter 3 for comparison with

our method of partition integration.

B.4 Evaluation of clustering

B.4.1 Axiomatic approaches

In 1973, Wright proposed eleven axioms to capture five aspects of partitioning [70].

The aspects are:

1. The nature of the elements to be partitioned;

2. The similarity or distance measure for the elements to be partitioned;

3. The nature of the partitionings;

4. The nature of the partitioning results;

5. The clustering function.

Wright’s axioms capture the general nature of clustering. Most of these axioms

are obvious, for example changing the order of the elements should not change the

partitioning result.

In some axiomatic approaches, a clustering function is defined as a function f

that takes a distance function d on a set S and returns a partition τ of S. Axioms

are proposed for this clustering function f . For example, Kleinberg proposes the

following three axioms for f [42]:
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Scale-invariance: Let α · d be the distance function in which the distance between

i and j is α · d(i, j). For any distance function d and any α > 0, we have

f(d) = f(α · d).

Richness: Let Range(f) denote the set of all partitions τ such that f(d) = τ for

some distance function d, then Range(f) is equal to the set of all partition of

S.

Consistency: When shrinking the distance between points inside a cluster and ex-

panding the distance between points in different clusters, we get the same

partition of S.

Kleinberg further proves an impossibility theorem that follows from these axioms.

The theorem says that for each n ≥ 2, where n is the size of S, no clustering function

satisfies all three axioms. This theorem makes Kleinberg’s three-axiom approach

questionable. Indeed, the third axiom is less obvious. The shape of a cluster can be

changed by the shrinking and expanding.

There exist other axiomatic approaches for a clustering function by Kalai, Pa-

padimitriou, et al. [37], for hierarchical clustering results by Jardine and Sibson

[36], and for cost functions for clustering by Puzicha, Hofmann et al. [55].

B.4.2 Clustering stability

The stability of a clustering method has been proposed as a measure of its perfor-

mance [8]. For example, clustering stability is defined by Ben-David [8] as

β(A, P,m) = Ep(d(C(Sm), C(S ′m))

where Sm and S ′m are two independent samples of size m drawn from an underly-

ing distribution P , C(Sm) and C(S ′m) are two clusterings constructed on the corre-

sponding samples by an algorithm A, and d is a distance measure for clusterings.

The clustering algorithm A is stable if β(A, P,m) is small. The distance measure is

crucial for clustering stability.
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Appendix C

Some standard definitions from

graph theory

Definition C.0.1 A path of a graph is a sequence of edges and vertices that con-

nects two vertices in the graph. More specifically, v1, e1, v2, e2, . . . , ek−1, vk is a path

from v1 to vk if each vi is a vertex in the graph, each ei is an edge in the graph, and

each ei is an edge between vertices vi and vi+1 in the graph (regardless of direction).

Definition C.0.2 A directed path of a graph is a sequence of directed edges from

one vertex to another in the graph. More specifically, v1, e1, v2, e2, . . . , ek−1, vk is a

directed path from v1 to vk if each vi is a vertex in the graph, each ei is an edge in

the graph, and each ei is an edge from vertex vi to vi+1 in the graph.

In Fig. C.1(b), there exist paths from c to e but no directed path from c to e.

Definition C.0.3 A weakly connected graph is a graph in which there exists a

path between every pair of vertices in the graph.

Definition C.0.4 A strongly connected graph is a directed or mixed graph in

which there exists a directed path from every vertex in the graph to every other vertex

in the graph.
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Note that in a strongly connected graph there is a directed path between every

pair of vertices, meaning that for every pair vi and vj, there is a directed path both

from vi to vj and from vj to vi.

Figure C.1 shows simple examples of connected graphs. Graphs (a) and (b) are
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(a) weakly connected (b) weakly connected (c) strongly connected

Figure C.1: Examples of connected graphs.

both weakly connected but not strongly connected. There exist paths but no directed

paths between a and d in graphs (a) and (b). Graph (c) is strongly connected.

Using these definitions, a graph can be decomposed into separate components,

defined as follows.

Definition C.0.5 A weakly connected component of a graph is a weakly con-

nected subgraph that is not part of any larger weakly connected subgraph. Such a

weakly connected graph is also called a maximum weakly connected subgraph.

Essentially, a path joins any two vertices in the same component and there is no

path between vertices from different components. For example, the entire graph of

Fig. C.1(b) is a weakly connected component.

Definition C.0.6 A strongly connected component of a directed (or mixed)

graph is a strongly connected subgraph that is not part of any larger strongly connected

subgraph.
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Essentially, for any two vertices vi and vj in a strongly connected component,

there is a directed path from vi to vj and from vj to vi. Note that there can be paths

from vertices in one strongly connected component to vertices in another.

For example, in Fig. C.1(b), there are four strongly connected components:

{b, e, f}, {a}, {c}, and {d}.
For convenience, we refer to a weakly connected component or a strongly con-

nected component generically as a connected component.

It is helpful to have notation that defines the components of a graph. Let cj(G)

denote the jth connected component of a graph G. We have ci(G) ∩ cj(G) = φ for

i 6= j.
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Appendix D

A four-spring model

In a two-dimensional discrete distribution, to determine whether two points from

L(λ;m) are contiguous or not, we consider an elastic system. For example, in Fig.

1.5 from Chapter 1, the contiguity of points a and g is reasonably determined by

themselves and by points e and f . Here is a natural way to build an elastic system.

We take a piece of balloon and place it on the four points a, g, e, and f located

on a horizontal plane. We mark their locations on the balloon and pull the balloon

vertically at each of the four marked locations to a height proportional to the prob-

ability mass of the corresponding original point. To be more specific, suppose the

probability mass of the point g is mg, the height of the location on the balloon that

is marked by g is αmg with α > 0. Let Hλ = αλ. We next find the point p on the

balloon whose projection on the 2-d plane (determined by the original four points)

is exactly at m, the middle point of the line segment joining points a and g. Finally

we check the height of point p, and if this height is not less than Hλ, a and g are

contiguous; otherwise they are not. Note that m can be any point (not necessarily

the middle point) on the line segment connecting a and g; we use the middle point

for simplicity.

Mathematically, the above elastic system is simply approximated by a four-spring

model. Suppose we have four points in two-dimensional space p
(2)
i =< xi1, xi2 >,

i = 1, 2, 3, 4. We add a third-dimension coordinate xi3 to these points to get p
(3)
i =<
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Figure D.1: The initial state of the four-spring model

xi1, xi2, xi3 >, where xi3 is the probability mass of the point pi. If the line segment

connecting p
(2)
2 and p

(2)
4 intersects the line segment connecting points p

(2)
1 and p

(2)
3 ,

a convex hull can be constructed whose vertices are these four points. Let p
(2)
0 =<

x01, x02 > be an arbitrary point located inside the convex hull. For simplicity, we

consider p
(2)
0 to be the middle point of the line segment connecting p

(2)
2 and p

(2)
4 .

We can build a four-spring model for these points as follows. Let p
(2)
init =< y1, y2 >

be an unknown point in two-dimensional space. We place spring Si to connect points

p
(2)
i to p

(2)
init with length |p(2)

i − p
(2)
init| such that these four springs are at rest. Figure

D.1 shows the four-spring model in its initial state. Now we move the outer end

of Si to p
(3)
i and keep all the inner ends of these springs connected together. Let

p(3) be the point at which these four springs connect when the combination of forces

from the four springs is again (now in R3) at zero, and whose projection of p(3)

onto the original two-dimensional space is exactly p
(2)
0 =< x01, x02 >. We denote

p(3) =< x01, x02, y3 >. We are interested in finding the values of y1, y2, and y3.

Figure D.2 shows the four-spring model in 3-d space.
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Figure D.2: The four-spring model in the 3-d space

If we project the force of each spring onto the three standard coordinates, the

combination of the four projected forces is at zero as well on each coordinate. Hooke’s

law says

F = −kX

where X is the displacement by which the spring is elongated, F is the restoring force

exerted by the spring, and k is the spring constant or force constant of the spring.

Let l
(2)
i = |p(2)

i − p
(2)
init| be the original length at rest of the ith spring denoted by Si.

The current length of Si is l
(3)
i = |p(3)

i − p(3)|. Note that l
(2)
i is a function of y1 and

y2 and l
(3)
i is a function of y3.

We assert that the spring constant ki of Si in this model is inversely proportional

to the original length of Si, which is l
(2)
i . For generality we set ki =

(
l
(2)
i

)−β
where

β > 0. The extension of Si on the jth (j = 1, 2, 3) coordinate is

l
(3)
i − l

(2)
i

l
(3)
i

(
p(3)[j]− xij

)
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where p(3)[j] is the jth coordinate of p(3). By Hooke’s law, the force from Si on the

jth coordinate is

− 1(
l
(2)
i

)β l(3)i − l
(2)
i

l
(3)
i

(
p(3)[j]− xij

)
=
((
l
(2)
i

)−β − 1

l
(3)
i

(
l
(2)
i

)1−β)(
xij − p(3)[j]

)
The above model is defined mathematically as follows. Define wi =

(
l
(2)
i

)−β −
1

l
(3)
i

(
l
(2)
i

)1−β
; note that when β = 1, wi = 1/l

(2)
i − 1/l

(3)
i . With β fixed, we have the

following system of three equations with unknowns y = (y1, y2, y3):
f1(y) =

∑4
i=1wi(xi1 − p(3)[1]) = 0

f2(y) =
∑4

i=1wi(xi2 − p(3)[2]) = 0

f3(y) =
∑4

i=1wi(xi3 − p(3)[3]) = 0

This is equivalent to

F (y) =
4∑

i=1

wi(p
(3)
i − p(3)) = 0

Because F (y) is not a linear system, we solve it numerically. Using Newton’s method,

the problem can be solved by the following iterative function:

ynew = yold − J−1
old F (yold)

where

J =


∂f1

∂y1

∂f1

∂y2

∂f1

∂y3

∂f2

∂y1

∂f2

∂y2

∂f2

∂y3

∂f3

∂y1

∂f3

∂y2

∂f3

∂y3


and

∂fj

∂yk

=


∑4

i=1

(
Ai(xij − p(3)[j])(xik − yk)

)
if j = 1, 2, 3; k = 1, 2∑4

i=1

(
Bi(xij − p(3)[j])(xik − yk)

)
if j = 1, 2; k = 3∑4

i=1

(
Bi(xik − yk)

2 + wi

)
if j = 3; k = 3

where Ai = β
(
l
(2)
i

)−β−2 − β−1

l
(3)
i

(
l
(2)
i

)−β−1
, Bi =

(
l
(2)
i

)1−β(
l−3
i

)
.

The above four-spring model is a building block for determining contiguity among

points in a discrete distribution. A straightforward guideline would determine the
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contiguity of any pair of points in the distribution. However, from our previous

assertion, it is not necessary to check the contiguity of two points far away from each

other, and the influence from other points far away can be ignored. For example,

in Fig. 1.5, it is more reasonable to discuss the contiguity of points a and c than

a and i, and for the contiguity of a and c, points b and d play a more important

role than h and f . This implies that we are more interested in finding contiguity

of points locally than globally. To be more specific, we apply the Voronoi diagram

[6] to determine the neighbourhood of a point and search for its contiguous points

within this neighbourhood.

The four-spring model is built on two pairs of points: there are two points whose

contiguity is being determined, called the main points, and two other points that

help determine the contiguity, called the side points. To be more natural, we further

require that the two main points and two side points should form a four-vertex convex

hull with each edge connecting a main point and a side point. The model determines

the contiguity of the two main points using both their configuration and the effect

of the two side points.

The choice of the two side points can be arbitrary. We can choose all possible pairs

of side points in the distribution. For each pair, we form a four-spring model together

with the two main points. However, there are two problems with this approach:

• Determining the contiguity of all these models might be difficult;

• It is not efficient to define contiguity for a distribution with a large number of

points.

We do not have to build so many models to determine the contiguity of a pair of

points. We assert that points close to each other have more mutual effect than points

far away. Thus, it suffices to search for side points in a common neighbourhood of the

two main points and we use the Voronoi diagram to determine this neighbourhood.

In a Voronoi diagram, each point (or site) has a face around it and we say that

two points share an edge if their faces have a common edge. We call a set of points

the direct neighbourhood of a point p in a Voronoi diagram if any point in this set
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Figure D.3: The Voronoi diagram of a data set

shares at least one edge with p. The extended neighbourhood of a pair of points p

and q, if p and q are located in the direct neighbourhood of each other, is the set

such that any point in the set shares at least two edges with the points in the union

of the direct neighbourhoods of p and q. If two points p and q are direct neighbours

to each other, the neighbourhood of these two points is the union of three sets: the

direct neighbourhoods of both p and q and the extended neighbourhood of p and

q. For example, Fig. D.3 gives the Voronoi diagram of the data set shown in Fig.

1.5. The direct neighbourhood of point a is the set {b, c, d, e, g, i} and the direct

neighbourhood of point g is the set {a, e, h, i}. Points a and g are located in the

direct neighbourhood of each other. The extended neighbourhood of a and g is the

set including all nine points.

Using the Voronoi diagram, we can easily decide how to set up a pair of main

points and a pair of side points to form a four-spring model. More precisely, we

determine the contiguity of two points only if they are located in each other’s direct

neighbourhood; the two side points of a pair of main points must be located in the
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neighbourhood of these two main points. For simplicity, we pick up two side points

only if they have the minimum sum of distances to the middle of the line segment

connecting the two main points.

We use the Voronoi diagram rather than its dual graph, a Delaunay triangula-

tion. The reason is that data points from a discrete distribution may not satisfy

the assumption of a general position. For example, when the points are located on

the vertices of a regular grid, the vertices of the voronoi diagram have degree four,

and the dual graph has faces of convex quadrilaterals. To make the dual graph a

Delaunay triangulation graph we have to add an additional edge to change the quadri-

lateral into two triangles. This makes the algorithm of searching for neighbourhoods

complex because there is no unique way to add such an edge.

Before solving the nonlinear system of the four-spring model, we have to fix the

value of β, say β = 1. For better performance, we optimize β. Using the four-

spring model, we can estimate the probability mass of any point inside the convex

hull formed by the two pairs of points from the model. This allows us to estimate

the mass of any point in the distribution if there exist four points in its direct

neighbourhood that satisfy the condition for forming a four-spring model. Therefore,

we can optimize β by minimizing the sum of squares of the estimate error for the

mass of each predictable point in the distribution. A point is not predictable if there

do not exist four points in its neighbourhood such that a four-spring model can be

constructed or if it has higher or lower mass than all the four points that can form

the four-spring model.

To determine contiguity among points in a discrete distribution, the four-spring

model approach is natural and easy to explain, but it has limits. The model is good

for two-dimensional distributions, but it is not straightforward to build and explain

such a model in a higher dimensional space. If we want to build the four-spring

model in a higher dimensional space, the problems are:

• We use four points to build a model in two-dimensional space, but how many

points are necessary in a higher dimensional space?

• In two-dimensional space we require the pair of main points and the pair of
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side points to form a convex hull as described in this section, but this condition

is difficult to satisfy and check in higher dimensional spaces.

• When handling data in a high dimensional space, the computational cost is a

concern.

An alternative would be to use a weighted surface fitting such as weighted least

squares to replace the four-spring model to determine contiguity locally. This ap-

proach is less natural but is not restricted to two-dimensional space. However, it still

has the problem of finding a reasonable local region for the surface fitting especially

in high dimensional spaces.

Both the four-spring model and the weighted surface fitting method require a local

search of points for the model fitting which requires significant computational time.

Furthermore, solving the four-spring nonlinear system or fitting the weighted least

squares is not cheap computationally, and we have to build such models repeatedly

to determine the contiguity among all the points in a distribution.

Actually, both methods more or less apply a density estimation method to deter-

mine contiguity. This makes the algorithm computationally expensive.
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Appendix E

Clustering methods used for

experiments

The clustering methods we used for the experiments in this thesis are as follows.

• K-varying: Cluster tree constructed by k-means with k from 2 to 8.

• K-fixed: Cluster tree constructed by k-means with fixed k = 8 but different

random starts.

• Single: Single linkage.

• Complete: Complete linkage.

• Average: Average linkage.

• DBSCAN: Cluster tree constructed by DBSCAN with different parameter set-

tings (fix Minpts at 4, with ε varying).

• Spec-tree: Cluster tree constructed by Spectral clustering with the number of

clusters 2 and 3 respectively.

• Gaussian-tree: Hierarchical Gaussian-model-based clustering.

• Runt-pruning: The runt pruning method.
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• KNN-Coup: Coupling graph method on the estimated densities obtained by

KNN (K = int(log(n)), where n is the sample size, int(r) is a function to

return the integer part of a real number r).

• K-means: K-means partition with k the number of modes in the distribution.

• Spectral: Spectral partition with the number of clusters being the number of

modes in the distribution.

• Gaussian: Partition from the Gaussian-model-based clustering.

In the above methods, the cluster trees from K-varying, K-fixed, DBSCAN, and

Spec-tree are constructed by our method of partition integration. The cluster trees

from partitioning methods such as K-means, Spectral, and Gaussian are constructed

by adding a common root node to different clusters in the partition found.

Note that the method of partition integration is proposed in Section 3.2; the

coupling graph method is proposed in Section 4.5; and the other clustering methods

in the above list are briefly reviewed in Appendix A.
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