
Method-Specific Access Control in Java
via Proxy Objects using Annotations

by

Jeffrey Zarnett

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2010

c⃝ Jeffrey Zarnett 2010



I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Partially restricting access to objects enables system designers to finely control the
security of their systems. We propose a novel approach that allows granting partial
access at method granularity on arbitrary objects to remote clients, using proxy objects.

Our initial approach considers methods to be either safe (may be invoked by any-
one) or unsafe (may be invoked only by trusted users). We next generalize this ap-
proach by supporting Role-Based Access Control (RBAC) for methods in objects. In
our approach, a policy implementer annotates methods, interfaces, and classes with
roles. Our system automatically creates proxy objects for each role, which contain only
methods to which that role is authorized.

This thesis explains the method annotation process, the semantics of annotations,
how we derive proxy objects based on annotations, and how clients invoke methods
via proxy objects. We present the advantages to our approach, and distinguish it
from existing approaches to method-granularity access control. We provide detailed
semantics of our system, in First Order Logic, to describe its operation.

We have implemented our system in the Java programming language and evalu-
ated its performance and usability. Proxy objects have minimal overhead: creation of a
proxy object takes an order of magnitude less time than retrieving a reference to a re-
mote object. Deriving the interface—a one-time cost—is on the same order as retrieval.
We present empirical evidence of the effectiveness of our approach by discussing its
application to software projects that range from thousands to hundreds of thousands
of lines of code; even large software projects can be annotated in less than a day.

iii



Acknowledgements

I wish to acknowledge the guidance and contributions my thesis supervisors, Profes-
sors Patrick Lam and Mahesh Tripunitara, of the University of Waterloo. I would also
like to thank Todd Veldhuizen, formerly of the University. My thanks also go to my
readers, who kindly gave their time to review this document and suggested a number
of improvements.

I would like to acknowledge the assistance of Christian Riege, software develop-
ment manager of Riege Software International GmbH (Germany), for introducing the
problem area and inspiring the use case.

I give thanks to the Springer Science & Business Media, for kindly granting permis-
sion to re-publish some material that appeared in the proceedings of the 5th Interna-
tional Conference on Information Systems Security (2009) in Kolkata, India.

Finally, I would like to acknowledge the contributions of deadlines... because with-
out them, nobody else could get anything done.

iv



Contents

List of Tables vii

List of Figures viii

1 Introduction 1

2 Background 3

2.1 Java Access Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Stack Inspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Dynamic Code Generation and Class Loading . . . . . . . . . . . . . . . . 13

3 Safe and Unsafe Access Control 18

3.1 Motivating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Software-as-a-Service Scenario . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Enterprise Java Bean Container Scenario . . . . . . . . . . . . . . . 20

3.2 Proxy Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Enterprise Java Bean Container Integration . . . . . . . . . . . . . . 24

3.2.2 Semantics of Annotation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 Semantics of Invocation . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



4 Role-Based Access Control via Proxy Objects 31

4.1 Example & Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Compile-Time Component . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2 Run-Time Component . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Empirical Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Performance Analysis 50

6 Future Enhancements 54

6.1 Enhancements to Safe and Unsafe . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 RBAC Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Related Work 56

8 Conclusions 58

Bibliography 59

vi



List of Tables

4.1 Case Study Results for Sample Programs . . . . . . . . . . . . . . . . . . . 47

5.1 Summary of Object Creation Performance . . . . . . . . . . . . . . . . . . 50

5.2 Summary of Interface Build Performance . . . . . . . . . . . . . . . . . . . 52

vii



List of Figures

2.1 Method Invocation with and without Access Control . . . . . . . . . . . . 5

2.2 Stack Inspection Overhead vs Security Passing Overhead . . . . . . . . . . 11

2.3 Sample Call Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Bytecode Rewriting Data Flow Diagram . . . . . . . . . . . . . . . . . . . . 15

2.5 Access Control Execution Times . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Spaces with Bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 ShipItems with Multiple Customized Instances . . . . . . . . . . . . . . . . 20

3.2 Domain Object Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Proxy Object P Guards O from Untrusted Client U . . . . . . . . . . . . . 24

3.4 Proxy Object Application to JBoss Application Server . . . . . . . . . . . . 25

3.5 The Invocation Handler substitutes Proxies for Originals, and Vice-Versa 29

3.6 The Proxy Object Compiler Runs Between the Java and RMI Compilers . 30

3.7 Proxy Object Compiler Processing Example.java . . . . . . . . . . . . . . . 30

4.1 Roles in the Separation of Privilege Scenario . . . . . . . . . . . . . . . . . 32

4.2 Proxy Object Compiler Processing Order . . . . . . . . . . . . . . . . . . . 44

4.3 Communication Flow for a Client Accessing the First Proxy Object . . . . 45

4.4 Role Hierarchies for Sample Applications . . . . . . . . . . . . . . . . . . . 48

5.1 Proxy Creation: Linear Performance . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Interface Derivation: Linear Performance . . . . . . . . . . . . . . . . . . . 53

viii



Chapter 1

Introduction

We address the problem of fine-grained access control for security within the Java
programming language. We target method-specific access controls (i.e., whether or not
a particular method may be invoked on an object by a particular principal).

Java is an object-oriented programming language. A programmer declares and
implements classes; objects are instances of classes. Classes have methods and data. A
good programming practice is to ensure that all accesses to an object are via methods
it exposes, thereby respecting the principles of encapsulation and information hiding.

Access control regulates accesses to resources by principals. It is one of the most
important aspects of the security of a system. A protection state or policy contains all
information needed by a reference monitor to enforce access control. An access control
model describes the policy of the system.

Access control makes up a major building block in safety and security of systems,
both electronically and in the real world. Many programming languages already incor-
porate the concept of access control, using keywords like public and private. Also,
Java includes a Security Manager, which controls access to various external facilities,
like file I/O.

In a larger context, developers have recently devoted much more attention to pro-
gram security than before. In a world where software is at the heart of billions of dol-
lars of transactions every hour, home computers have high-speed internet connections
enabled 24 hours a day, and everyone’s personal information resides in a multitude of
company and governmental databases, security is a concern for many.

We propose a novel mechanism for access control to methods in Java objects. There
are built-in mechanisms for program structuring in Java that resemble access control.
For example, it is possible to specify that only some methods are public, while others

1



are private. Private methods may be invoked only by other methods within the class.
Note that access control based on method visibility is not secure: untrusted principals
may circumvent the method visibility rules using Java reflection.

Method visibility mechanisms are coarse-grained: for instance, any method may in-
voke methods that are denoted as public. Several other proposed approaches augment
the basic access control features in Java. Stack inspection [1], for example, can be used
to provide method-specific access control, but struggles with remote clients.

Since its appearance, Role-Based Access Control (RBAC) [2] has emerged as the
dominant access control model in enterprise settings. In RBAC, principals are called
users. Users get permissions to access resources via membership in roles. We present
a new way to realize RBAC in Java. Java is a widely-used programming language, and
therefore is an important context in which to realize RBAC. We are not the first to make
this observation (see, for example, [3]); however, our approach has several advantages
over previous approaches.

We focus on clients that use Remote Method Invocation (RMI). Our approach works
as follows. We use Java annotations [4] in our approach. Annotations enable develop-
ers to associate arbitrary metadata—in our case, access control metadata—with code.
In particular, developers annotate methods, interfaces, and classes in the Java source
code with roles from the developer-specified RBAC policy. We test for the presence of
annotations after the source code is compiled.

At compile-time, our system builds interfaces according to the specified policy. At
run-time, we create proxies matching these interfaces and give the proxies to clients
instead of granting them access to the original objects.

Our approach provides more fine-grained access control than previous approaches:
a proxy object exposes only those methods to which the client is authorized. Conse-
quently, an RMI client is unaware of the existence of other methods in the class. This
has an additional efficiency side benefit: we preclude the client from even invoking
a method to which it is not authorized, and thus, large arguments need not be sent
over the network. Other approaches, such as bytecode editing [5], check at the server
whether the call is authorized after the client has invoked the method and the argu-
ments have been transmitted.

The remainder of this document is organized as follows. Chapter 2 contains the
background information and related work. In Chapter 3, we present our first technique
for access control, which partitions methods into “safe” and “unsafe” categories based
on simple Java Annotations. In Chapter 4, we generalize our system to allow arbitrary
roles, in a hierarchy, according to the Role-Based Access Control Standard. We present
an overview of the performance analysis in Chapter 5, and some future enhancements
in Chapter 6. Finally, we present related work in Chapter 7, and conclude in Chapter 8.

2



Chapter 2

Background

We define Security in this context as preventing damage to the system or environment
through various methods and mechanisms. In the programmatic sense, it may be
useful to say that a program is secure when it does not allow access not explicitly au-
thorized, and does not leak data. A typical way of controlling access is authentication,
similar to the use of fingerprint scanners to control entry to a facility. Just because
something is secure does not mean it is safe: many dangerous things are secure, such
as nuclear weapons – access controls prevent most people from being able to look at
or manipulate them.

Java Remote Method Invocation (RMI) is the Java language method for creating
distributed applications. This is the equivalent of the remote procedure call (RPC)
mechanism, but in Java. As with the virtual machine concept, RMI allows clients on
different platforms to interoperate without protocol translation. RMI also allows the
passing of complex objects between clients and servers [6].

Enterprise Java Beans (EJB) is a specification for the server-side architecture for Java
Enterprise Edition (Java EE). It is intended as an architecture for component-based
business applications, and offers features as scalability, transactions, persistence, and
concurrent users [7]. Applications run inside an application server (such as JBoss
Application Server), which provides the supporting services, such as data persistence.

This chapter surveys the various ways access controls are used in the Java program-
ming language. The survey touches on access controls, specifying security policy, stack
inspection, and dynamic code generation and loading.

We start the examination of Java security with some basic concepts from access con-
trols and its principles. We continue with a description of how Java allows developers
to use both explicit and implicit access controls. Next, we examine how these controls
might be implemented using stack inspection. This technique often relies on bytecode

3



analysis. Finally, we look at a complication which significantly affects all the preced-
ing techniques: dynamic code generation and loading. We explore how dynamic code
generation works, why it may be disruptive, and how it can even be used to increase
security.

2.1 Java Access Controls

Java provides several levels of access control for its fields and methods as a built in fea-
ture of the language. Fields and methods may be marked public, private, protected,
or package private (no keyword). Sun Microsystems provides a brief overview of the
keywords in [8]. These are effectively only relevant at compile time, and are intended
to help programmers obey the principle of encapsulation.

Java also makes use of policy files to build access matrices that determine autho-
rization. Such files are mostly a set of grant statements, specifying whom receives
which permissions to what resources. Programmers specify policies before program
startup. Security policies can be changed at runtime by loading a new policy, but the
process of refreshing the security policy is implementation-dependent. [9].

Two necessary definitions: A principal is an entity that can take or authorize some
action(s), and target is some entity we wish to protect [10].

Permissions for a method invocation are the intersection of the permissions of all
principals within the call sequence [9]. This enforces the principle of least privilege,
because the effective privileges are those shared by all active principals. In a sim-
ple example, the file management service has read and write access to the directory
files/user1/ directory, and the user wishing to write a file only has read access to
files/user1/. The intersection of these two permissions is read access, since it is the
only one shared between the two principals. The intersection policy prevents privilege
escalation when low-privilege code calls high-privilege code, and prevents privilege
leakage when high-privilege code calls low-privilege code.

Access Control Principles Three basic ways to look at Java security are the identity-
based, multi-level, and role-based approach, none of which have language support.
This naturally introduces risk, because security implementations may themselves be
insecure when the application programmer writes them. Consider the example of
encryption: the Advanced Encryption Standard (AES) is a well-understood method of
encryption, yet it is far better to use a pre-built and tested AES library than to create
your own, because your own implementation does not benefit from the rigourous
testing the pre-built library has received.

4



Providing Fine-Grained Access Control for Java Programs 453

P

f

R

(a) Default method invocation
semantic

B

P

f

R

(b) Security constraints on
method invocations

Fig. 1. Method invocation semantics

Cons t r a i n t s : : = f Ac c e s sCons t r a i n t g
Ac c e s sCons t r a i n t : : = deny ' ( ' [ En t i t y ] Re l a t i onsh i p En t i t y ' ) '

[ when Cond i t i on ]
Re l a t i onsh i p : : = 7! | a
En t i t y : : = C l a s s I den t i f i e r | Me t hod I den t i f i e r
Cond i t i on : : = Boo l e anExp r e s s i on

A site controls accesses to diÞerent resources (Java objects) by deþning a set
of AccessConstraints. We describe the various terms in the grammar informally
below:

{ Ent ity: An entity denotes objects and method invocations of Java programs.
A C lassIdentiþer, thus, identiþes the set of objects to which a given access
relationship applies. Similarly, a MethodIdentiþer denotes a set of invocations
of a method. The current implementation deþnes an entity based on its name.
However, this can be extended to deþne an entity on the basis of its source,
signature, or behavior pattern.

{ Relat ionship: The composition mechanisms of a programming language al-
low one to deþne various relationships (data composition through aggrega-
tion and inheritance, and program composition through method invocations)
among the entities of a program. We are primarily interested in the following
two access relationships here:
1. Instantiate ( a ): A relation E a R exists if an entity E creates an

instance of class R.
2. Invoke ( 7! ): A relation E 7! R exists if an entity E invokes an entity

R.
{ Condition: The term Condition denotes a boolean expression that can be de-

þned in terms of object states, program state (global state), runtime system
state, security state, and parameters of methods.

Semantics: An access constraint of the form

deny ( E ¦ R ) when Cond i t i on

speciþes that entity E cannot access R through relationship ¦ if Condition is
true. E is optional. Hence, there are two kinds of access constraints: al l access

(a) Default method invocation semantics:
a call is always allowed

Providing Fine-Grained Access Control for Java Programs 453

P

f

R

(a) Default method invocation
semantic

B

P

f

R

(b) Security constraints on
method invocations

Fig. 1. Method invocation semantics

Cons t r a i n t s : : = f Ac c e s sCons t r a i n t g
Ac c e s sCons t r a i n t : : = deny ' ( ' [ En t i t y ] Re l a t i onsh i p En t i t y ' ) '

[ when Cond i t i on ]
Re l a t i onsh i p : : = 7! | a
En t i t y : : = C l a s s I den t i f i e r | Me t hod I den t i f i e r
Cond i t i on : : = Boo l e anExp r e s s i on

A site controls accesses to diÞerent resources (Java objects) by deþning a set
of AccessConstraints. We describe the various terms in the grammar informally
below:

{ Ent ity: An entity denotes objects and method invocations of Java programs.
A C lassIdentiþer, thus, identiþes the set of objects to which a given access
relationship applies. Similarly, a MethodIdentiþer denotes a set of invocations
of a method. The current implementation deþnes an entity based on its name.
However, this can be extended to deþne an entity on the basis of its source,
signature, or behavior pattern.

{ Relat ionship: The composition mechanisms of a programming language al-
low one to deþne various relationships (data composition through aggrega-
tion and inheritance, and program composition through method invocations)
among the entities of a program. We are primarily interested in the following
two access relationships here:
1. Instantiate ( a ): A relation E a R exists if an entity E creates an

instance of class R.
2. Invoke ( 7! ): A relation E 7! R exists if an entity E invokes an entity

R.
{ Condition: The term Condition denotes a boolean expression that can be de-

þned in terms of object states, program state (global state), runtime system
state, security state, and parameters of methods.

Semantics: An access constraint of the form

deny ( E ¦ R ) when Cond i t i on

speciþes that entity E cannot access R through relationship ¦ if Condition is
true. E is optional. Hence, there are two kinds of access constraints: al l access

(b) Security constraints on method invo-
cations

Figure 2.1: Method Invocation with and without Access Control [5]

In identity-based security, a triplet of (Code Base, Signer, Principals) represents
rights. If the code base belongs to example.com, the signer is alice, and the prinicpal
is bob - /user/bob - rw, code from example.com, signed by Alice, and executed by
Bob has read and write permissions to the directory /user/bob. Identities should be
mapped 1:1 to real-life users of the system.

Multi-level security is based upon the Bell-Lapadula model of security—informally,
“read down, write up" [11]. A principal (like Alice from the preceding paragraph) is
explicitly granted rights for various levels, such as read access to level 1, read and write
access to level 2, and write access to level 3. Unfortunately, this approach requires that
the programmer insert security checks (e.g., assert level 1 access) into the beginning
of every method in the program. This is cumbersome, and requires decompilation to
apply to third party code for which we do not possess the source (such as libraries).

Role-based security associates various roles with principals. Roles are changeable,
unlike identities, but both could be principals in Java. An example of a role would
be a secretary in the sales department. Whoever assumes the secretary role receives
permission to view and edit schedules, add and update contact information, et cetera.
Roles can also have subsumption, such as management subsuming members – contin-
uing the example, the manager has the secretary’s abilities, plus whatever managerial
rights he receives (e.g., publish the schedule). Ultimately, roles are more flexible than
identities as a method of security, since various users may assume various roles as
needed.

Access constraints are not always widely employed in Java. The sole exception is
the Java security manager’s control of access to various external resources. The goal
of fine-grained access control is to allow invocation of particular methods only when
permitted. In Figure 2.1, object P wishes to invoke function f on object R. The call
proceeds if condition B holds; otherwise access is denied.

In a role-based access control system, principals are called users. Users get permis-

5



sions to access resources by being a member of one or more roles.

Sandhu et al [2] described various levels of RBAC, from 0 (simplest) to 3 (most
features). We have chosen to implement RBAC1: the basic model with role inheritance.
We chose this model because we support role hierarchies, but choose not to support
the enforcement of separation of privilege that RBAC2 requires. Sandhu et al describe
the RBAC1 model as having the following components:

• U, R, P, S (Users, Roles, Permissions, Sessions)

• PA ⊆ P× R (A many to many permission to role assignment)

• UA ⊆ U × R (A many-to-many user to role assignment)

• user : S→ U (A function mapping a session s to a single user u)

• RH ⊆ R× R (A partial order on R; the role hierarchy)

• roles : S → 2R (A function mapping each session si to a set of roles roles ⊆
{r | (∃ r′ ≥ r) {(user(si), r) ∈ UA}} (which can change with time) and session
si has the permissions Ur ∈ roles(si)

{p | {(∃ r′′ ≤ r
′
) {(p, r′′) ∈ PA}}

Defining Access Control Rules One option for defining access rules is to collect spe-
cific constraints which a compiler prepares separately from the compilation of the main
code. We can then use a bytecode editor to weave the constraint bytecode into the main
program bytecode as in Pandey and Hashii’s system [5]. This system has global access
constraints and selective access constraints. Selective constraints depend on who the
caller is, while global constraints always apply. Pandey and Hashii acknowledge that a
system with a default permit policy is less secure than one with a default deny policy,
but more efficient for developers, because they need only mark invocations known to
be dangerous. Explicit marking is risky, because missing even one dangerous invo-
cation can invalidate the rest of the program’s security. For this reason, marking is
probably infeasible for large programs.

An abstract example of a global constraint is to deny the instantiation of object O
when condition B is true, and an example of a selective constraint would be to deny the
instantiation of object O by an object P when condition B is true. This could apply to
method invocation as well as object instantiation. These constraints may be used with
either a default permit or default deny policy. A concrete example would be to deny all
writing to the local disk, by specifying the rule deny (invoke File.Write). A boolean
predicate can be much more detailed: to prevent reading of the UNIX /etc/passwd

6



(password) file, use a rule that says to deny (File.Read) when the file name equals
/etc/passwd.

The concepts of allow and deny are fairly flexible. Since we evaluate the conditions
at the time of invocation, they can be used to, for example, cap the number of con-
current instantiations of a class, or limit the total number of times a method may be
invoked. These are more applicable to general security than simple access control and
authentication, because they could be used as a safeguard against a denial of service
attack based upon repeatedly invoking expensive methods to consume all available
processor time, or spawning so many objects that there is no more free memory.

Each object inherits all constraints from its superclasses. To safeguard against by-
passing of security, a subclass may not have weaker access constraints than its su-
perclass. It may, of course, have stronger constraints. Finally, a subclass may not be
instantiated for a class that may not be instantiated, which prevents the trivial by-
pass scenario of simply making a subclass with zero or irrelevant changes in order to
instantiate the initial class.

The major advantage of using access control rules is that we may declare security
components in a fairly intuitive way. Unfortunately, the expressiveness of this system is
limited, as acknowledged by its creators. It requires that the programmer specify either
all permitted or all forbidden instantiations and invocations in advance, depending on
the default.

Type Qualifier Inference We can examine Java code to infer type qualifiers – prop-
erties that augment the expressiveness of a standard type. This is also a system for
fine-grained access control. An example of this approach is a readonly qualifier. A
reference so marked states that the holder has no ability to change the object to which
it refers. The readonly marking is “sticky" - if it applies to a field x, then it also applies
to x.f. Since JQual, the tool used for this task, is not sensitive to context, Greenfield-
boyce and Foster [12] extend it to have field sensitivity in place of “stickiness” – each
instance of an object has its own field types.

A use case of a type qualifier is to use the opaque qualifier to represent integers
which hold C pointer values, and the transparent qualifier for regular integers, so that
transparent integers are never sent to opaque locations. This enhances type checking
for the Java Native Interface (JNI), a tool with which Java programs may invoke C code.
Using JNI, C pointers may need to pass through Java, such as from the windowing
toolkit, through Java, back to the library to manipulate the windows in question. Since
a pointer is really just an integer, it could be inadvertently manipulated, and passed
back to the C library, leading to a crash or memory corruption. The fundamental idea
is that untrusted (transparent) data may not be put into trusted (opaque) positions.

7



Type qualifiers bear some resemblance to a proposed extension to the Java language
is called Javari (Java + Reference Immutability) and the readonly qualifier is much the
same. It is possible to determine the readonly qualifiers at the same time as the final
qualifier, although final is intended for variables and references, and not classes or
methods. However, we note some differences from Javari: type qualifier inference
does apply the read-only behaviour for every instance of a class marked readonly,
and Javari allows generic immutability annotations on classes. Type qualifier inference
also ignores qualifiers when examining overriding and overloading, since the inference
process becomes very difficult [12].

Qualifiers in JQual are effective for tracking the flow of data throughout a program,
from source (producer) to sink (consumer), because they are “sticky". Once applied,
they remain attached to that piece of data throughout its operational lifetime. The
programmer need only add qualifier annotations to the sources and sinks, and the
inference strategy will work out the data flow and place the intermediate qualifiers.
This can also work with program fragments, as long as source/sink information is
given at entry and exit points to the fragment.

Security Passing Style Security Passing Style proposes a model in which designers
use an English-like language structure to model security rules, and is used to generate
specific rules using Abadi, Burrows, Lampson, and Plotkin (ABLP) logic. In addition
to the concepts of principals and targets mentioned earlier, we introduce some new
concepts from the ABLP subset used in [10]:

A Statement is something a principal “says", which can be explicit or implicit (e.g.,
caused by something the principal does). A principal saying a statement means it
is possible to continue as if the principal supports that statement. Principals can,
however, make untrue statements; we can only believe a statement if there are valid
grounds to do so, and the speaker has the authority to make it. An example statement
would be a principal P authorizing access to a target T: P says Ok(T).

It is impossible to have a logical contradiction, because ABLP does not allow nega-
tion. Since there are no contradictions, the analysis avoids the problem of deciding
which source is most credible.

Granting Authority is an operation that allows one principal to speak for another. If
A speaks for B, then any statement that A makes is as if both A and B state it. This
relationship is transitive.

The process of using these rules is relatively simple. A piece of code (at run-time,
a frame) speaks for all parties that have “signed" the code, whether cryptographically,
based on location, or otherwise. Frame credentials are simply the credentials of a

8



principal. For targets, we create a dummy principal with the same name as the target;
this principal makes no statements, but may be spoken for.

In [10], the virtual machine will check if a particular operation is allowed. This
check will return true if so, and false otherwise. A permission check operation cannot
be always decided for statements using the full ABLP grammar; however, the subset
used in Wallach, Appel, and Felten’s implementation is restricted such that we will
certainly be able to decide and find the correct answer. The algorithm’s strategy is a
case analysis: divide the statements into three categories, and evaluate each category
sequentially.

Class one is a direct statement of authorization – a principal explicitly allows access
to a target. These statements are the most trustworthy and take priority. If we find
such a statement, access is granted. A class two statement says one principal speaks for
another, and we use these statements to create a directed graph with an edge between
A and B if there is a statement that indicates that A speaks for B. A class 2 statement
is insufficient on its own; we use class two statements in conjunction with class three
statements. Class three statements have the form of quotations - A says that B says
access is allowed. The evaluation procedure allows access if a quotation statement
exists, and that statement is backed by the existence of a path in the speaks-for graph.

Those who advocate the security passing style implementation acknowledge that
they do not handle dynamic code loading and generation well. Since less information
is available at the time of analysis, security passing gives strictly worse (at best, nearly
equal) performance in a world with classloading and other dynamic code than without
it.

The security passing system for evaluating the security rules is equivalent to stack
inspection, with an inductive proof provided in [10]. Stack inspection is a significant
area in Java, and we will explore it next.

2.2 Stack Inspection

Stack Inspection is an important component of access control, because the stack pro-
vides information about the requester. A stack frame is considered a principal. As
explained earlier, the rules described in section 2.1 use information about principals to
make permit and deny decisions.

We cannot look solely at the direct caller of a given method; access can only be
granted if all entities in the call stack should be granted access [13], as we next explain:
indirection would allow attackers to bypass the security requirement. This is called the
Confused Deputy Problem, and this problem warrants a short explanation:

9



A Confused Deputy is a program that runs with more than one authority; for exam-
ple, a pay-for-usage compiler has both the invoker’s authority to compile the program,
and a higher level of authority to record billing information [14]. Compiler output
could be used to destroy the billing information.

In the context of stack inspection, untrusted or malicious code could manipulate a
trusted component into performing the desired operations (which would be denied if
untrusted code asked directly).

Inspection Algorithms and Trade-offs The following pseudocode represents a basic
stack-inspection algorithm [10]:

BEGIN METHOD CheckPrivilege
FOR EACH stack frame

IF local policy forbids access to target by stack frame
THEN deny access

END IF
IF local policy permits access to target by stack frame

THEN allow access
END IF

END FOR EACH
IF default permit

THEN allow access
END IF
IF default deny

THEN deny access
END IF

END METHOD CheckPrivilege

The worst-case run-time behaviour of this algorithm is obviously O(n); that is,
linear with the depth of the stack. Algorithms implemented in practice are not quite
so simple: they iterate over each stack frame to find its protection domains (groups
of principals), and then look at all the permissions in those domains [9]. Thus, the
algorithmic behaviour is a function of the number of protection domains, the number
of permissions, and the stack depth, but remains O(n), as each element is examined
once.

Checking privileges is rather expensive; implementers minimize checks for the sake
of performance. In fact, the standard I/O library checks permissions only when a file
is opened, and not for every access, presumably due to the expense [10]. To illustrate,

10



SAFKASI: A Security Mechanism for Language-based Systems 23

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12 14 16 18

T
im

e
 (

m
ic

ro
s
e

c
o

n
d

s
)

Average Stack Depth

Stack inspection
Security-passing style

Fig. 5. Cost of CheckPrivilege() microbenchmark.

The times for the SPS check privilege calls are approximately 0.5µsec. This microbenchmark compares Natural-

Bridge’s internal stack inspection system with our security-passing style implementation. The microbenchmark is

an implementation of the recursive solution to the Towers of Hanoi problem. On the benchmark machine, 0.5µsec

is approximately 225 CPU cycles.

7.2.1 Micro benchmarks. We used the measured run times of our microbenchmarks to

calculate the cycle count of each stack-inspection primitive in each of three implementa-

tions: the null implementation (no security passing, no security checking); the BulletTrain

implementation of stack inspection; and our security-passing style. Each microbench-

mark was executed ten million times, allowing Java’s millisecond-accurate timer to resolve

single-cycle differences in execution time. Table 1 shows the results. Figure 5 shows the

variable cost of the CheckPrivilege() primitive when using stack inspection compared to

the constant-time cost of CheckPrivilege() with security-passing style. The performance

difference varies linearly from a factor of 35 to a factor of 88, depending on the stack depth.

7.2.2 Macro benchmarks. Despite the success of security-passing style on microbench-

marks, the per-method overhead is more costly when running real applications. Table 2

compares SPS-converted code, with its cheap security checks, to normal code, performing

expensive stack inspections for its security checks.

Four benchmark programs were used to test the performance of SPS-converted code to

normal code using traditional stack inspection. These benchmarks are SAFKASI, RecRead,

Javac, and Jess.

SAFKASI The program which implements the SPS conversion. SAFKASI is benchmarked

converting a large Java program (actually, it’s converting itself). It is reading in 1172

Figure 2.2: Stack Inspection Overhead vs Security Passing Overhead: Stack Inspection
Overhead is Linear with Stack Depth; Security Passing Overhead is Unaffected by Stack
Depth [10]

Figure 2.2 shows just how large the penalty for stack inspection is compared to the
security-passing style.

Bartolleti, Degano, and Ferrari seek to lessen the burden of run-time stack inspec-
tion by performing a Control Flow Analysis - “a static technique for predicting safe and
computable approximations to the set of values that the objects of a program may as-
sume during its execution" [13]. We compose the stack information based on a series of
contexts. Without running the program, we assemble a simulated stack “backwards"
by looking at a call graph. Figure 2.3 presents a sample call graph.

The sample call graph enables an analysis on the callers of the read() method by
following the call arrows backwards. Thus, one possible stack trace for read() in Fig-
ure 2.3 is:

11



Bartoletti, Degano, Ferrari

n17: return

n16: check(Pread)

read()

n19: return

n18: check(Pwrite)

write()

n6: call

n7: call

clyde()

n9: call

n10: return

n8: check(Pcanpay)

canpay()
n13: call

n14: call

n11: check(Pdebit)

n15: return

n12: call

debit()

n1: call

n2: call

main()

n3: call

n4: call

spender()

n5: call

Fig. 1. A call graph.

which the called method belongs. As soon as a frame is found whose protec-
tion domain has not the required permission, an AccessControlException
is raised. The algorithm succeeds when a privileged frame is found that car-
ries the required permission, or when all frames have been visited. A formal
specification of this algorithm is given in Fig. 4, that defines JDK.

We stress an important point here. In the JDK 1.2 security architecture,
a permission P may be granted to a piece of code, lying inside a protection
domain D, even if P does not belong to the permissions explicitly associated

Protection Domain Methods Permissions

Client spender() {Pdebit , Pcanpay}

Unknown clyde() ∅

Provider canpay(), debit() {Pdebit , Pcanpay , Pread , Pwrite}

System main(), read(), write() Permission

Fig. 2. Protection domains.

4

Figure 2.3: Sample Call Graph [13]

12



read()
canpay()
spender()
main()

There are more possible stacks leading to read() in the figure, but we omit them
for brevity. We can make the approximations shown immediately above from the full
set of these stacks, and then use these approximations to analyze the program. A test
that holds true in static analysis will also hold true at run-time, but the reverse is not
necessarily so. On this account, the analysis is likely to deny certain invocations which
it should allow [13]. If we are interested in highest security, this may be preferable to
allowing things that should be denied. We compute two subsets of the permissions -
the allow and deny sets - for use at run-time. When checking permissions dynamically,
it is only necessary to reach some point at which the access is explicitly allowed or de-
nied, and that allow or deny statement is our final answer [13]. Cutting off subsequent
checks is a significant savings (given a large stack and/or a large number of checks)
over checking every level for every invocation. However, precomputing answers pro-
vides limited benefit when dynamic class loading is involved, because no preparatory
work is done on the loaded classes.

Just like it is difficult or impossible to debug an optimized program, stack inspec-
tion constrains transformations on the programs it is used upon: it precludes inlining
[1, 10]. Furthermore, we cannot be entirely sure that stack inspection is providing rea-
sonable guarantees of carrying out its objectives. For instance, stack inspection does
not do much to account for interactions outside of the call stack, such as results re-
turned by untrusted code, mutable state, inheritance, side effects, concurrency, and
dynamic loading [1], which we cannot simply ignore.

Stack inspection is not the only thing we can do with bytecode. We can also generate
bytecode and load it into the application at run-time.

2.3 Dynamic Code Generation and Class Loading

Results from static analysis may be invalidated by dynamic code generation. Java
programs can generate classes at run time, and then load them via dynamic class
loading. Generated classes may supplement or replace parts of the program. Before
continuing, we will examine how classes are generated and loaded. This is important
because our proxy object system relies on code generation and loading.

13



Class Loading A class loader simply loads class files and makes them available to
the program. A class file may be thought of as a “blueprint" for an instance of such a
class. A program may have multiple class loaders and always has at least the default
virtual machine-supplied class loader [15]. Classes belong to a class loader, and the
removal of an owner results in the removal of its owned classes. Every class loader has
the system types included automatically.

Different classloaders may be thought of as different domains for different classes.
A potential source of issues in dynamic class loading is that two types may have the
same name, as long as they do not share the same class loader [15]. Therefore, a class
may be uniquely identified dynamically at any point in time by specifying a name and
a classloader. Java programs often load classes behind-the-scenes – to instantiate any
object, the virtual machine must first locate its class file, and then instantiation may
proceed.

Dynamic class loading may be used to bypass security policies. A run-time class
is determined by both name and classloader (at a given point in time), and the Java
type-safety system relies on name-based static typing. Knowing this, an attacker could
replace a class with his own version. Therefore, we must ensure that the class in ques-
tion is the one we meant to load, and not simply another sharing its name. Liang and
Bracha’s proposed solution to the security problem is simply to prevent the redefinition
by never allowing a classloader to load the same class name twice.

Likewise, dynamic class loading may invalidate the results of a static analysis. If we
replace a class with a new version, as in the previous example, the analysis conducted
on the old version of the class will be out of date. If a function’s new version has side
effects, but the old did not, then a check referencing the old version will indicate the
method has no side effect, even though the new method has some. When new classes
are loaded, the analysis has no information about them; a default-permit policy will
let all methods run, even the impure ones, while a default-deny policy will forbid all
methods, even the pure ones.

Class loading does not necessarily mean the run-time loading of pre-prepared class
files; programs can generate code at run-time, and then classload these new or modi-
fied classes.

Run-Time Code Generation The standard approach to using run-time code gener-
ation for security is modification of the original objects to include security resources,
as in [5]. Their implementation of access rules (as discussed in Section 2.1) involves a
substitution within the bytecode. The abstract example of deny access to R when B in
pseudocode is: IF B THEN error ELSE access R END IF. A bytecode editor rewrites

14



458 R. Pandey, B. Hashii

3 Access Constraint Enforcement

An enforcement of ac-

ei

migrate
Ac

Bytecode Editor

P ′

Ac: Access constraint
R: Resources
l: library
s: Generated code
ei: Generated instruction

P

s

Compiler
Access Constraint

Rl

lP

Site S

Class Loader

Runtime System

Fig. 3. Security policy enforcement of mobile programs

cess constraints on a re-
source involves placing
interposition code be-
tween the resource ac-
cess code and resource
definition code. The in-
terposition code checks
if a specific resource ac-
cess is allowed. It can
be inserted manually by
site managers, generated
by the compiler, or de-
fined by the runtime sys-
tems or operating sys-
tems through special sys-
tem calls. For instance,
in the Java runtime sys-
tem [12, 13], resource
developers manually in-
sert calls to a reference
monitor in the resources they want to protect. The reference monitor consults
access control policies to check if a specific resource access is allowed.

We use an alternate approach for generating interposition code. In this ap-
proach, a set of tools generates the interposition code and integrates them within
mobile programs and resources before they are loaded in the JVM. In this ap-
proach, there are no reference monitors. In essence, the approach generates refer-
ence monitors on the fly and integrates them within the relevant Java programs
and resources. The approach, thus, eliminates the need to manually include calls
to reference monitors in resource definitions.

In Fig. 3, we describe our implementation for enforcing access control policies
on Java programs. We show a Java program P that migrates to a site S. R
denotes resources that the site makes available to mobile programs; and l denotes
local libraries linked into P .

During class name resolution and dynamic linking, the Java class loader [24]
retrieves R and l and passes them to a tool, called the access constraint com-
piler . The access constraint compiler examines P , R, and l to determine the
resource access relationships that must be constrained in order to implement
the access constraint Ac. It then generates interposition code s that implement
the specific access constraints. It also generates a set of editing instructions ei

for the bytecode editor. The bytecode editor uses ei to integrate s within P , R
and l. The transformed programs and resources are then loaded into the JVM
and executed.

Figure 2.4: Bytecode Rewriting Data Flow Diagram [5]

the program bytecode as needed. Figure 2.4 shows a data flow diagram depicting
assembly of the run-time objects.

Modification does not have a large performance penalty. Pandey and Hashii find
that they spend minimal time editing code. The overall speed of execution is better
than using the security manager, because inlining the security check is faster than re-
trieving the security manager and then using it. Figure 2.5 shows clearly that in the
long run (above 100 000 method invocations), modification proves more efficient than
the security manager. The one-time penalty of modification is clear at the far left of
the graph, when binary editing is more time-consuming. As the number of invoca-
tions increases, at approximately 100 000 invocations, the time taken is equal. As the
number of invocations increases, the cost of loading the security manager dominates
the modification penalty.

One uncommon application of dynamic loading is the run-time insertion of inter-
mediary objects for access control. In such a system, the term guarded object refers
to an access-restricted object. A sentinel object controls access to the guarded object.
Sentinel objects may be dynamically generated and inserted between objects. In Bryce
and Razafimahefa’s approach [16], Bridge Classes guard targets; they are intermediate
objects generated as needed that span protection domains (spaces), a subclass of the
original. Bridge classes (denoted B1, B2...) are necessary for the interaction of Objects

15



466 R. Pandey, B. Hashii

class SecState {
public SecState() {count = 0;}
public int check()

{ count++; return count; }
private int count;

}

(a) Security object

add SecState SecurityState to R
deny !→ R.f()V when

#1.SecurityState.check() > 1000000

(b) Control access constraints

Fig. 6. The binary editing approach

class newSecMan
extends SecurityManager {
public newSecMan() {count = 0;}
public void checkf()

throws SecurityException {
count++;
if (count > 1000000)
throw new SecurityException();

}
int count;

}

(a) Security Manager

class R {
public void f() {
newSecMan security;
security =
System.getSecurityManager();

if (security != null)
security.checkf();

}
}

(b) Resource definition

Fig. 7. The Java Runtime System-based approach

0

0.5

1

1.5

2

2.5

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

tim
e 

in
 s

ec

number of function calls

binary editing
security manager

Fig. 8. Comparison of execution times with a policy
Figure 2.5: Access Control Execution Times [5]

(denoted O1, O2...) across space boundaries, as illustrated in Figure 2.6.

The simpler of the two cases is on the left of Figure 2.6. If object 2 (O2) wishes to
communicate with object 3 (O3), it may do so directly, because they share the same
space. As soon as object 2 attempts to communicate with object 1 (O1) across a bound-
ary, then a bridge object (B2) is dynamically created and inserted between O2 and O1.
B2 mediates all accesses between these objects. If O1 attempts to communicate with
O2, a different bridge object (B1) is created and inserted between O1 and O2. The
right side of Figure 2.6 expands on this example, introducing object 4 (O4) and a third
space .

The main advantage of this approach is the dynamic insertion of intermediary ob-
jects. This approach requires no foreknowledge of the objects in various spaces. This
is a serious advantage in light of dynamic class loading. The authors further find that
the performance impact of their method is a net positive; it is more efficient than the
copy-by-value (object duplication) that normal object sharing takes.

There are limitations to this approach. Classes marked final cannot be subclassed,
preventing bridge object generation for such classes; Bryce and Razafimahefa sug-
gest the solution to dealing with this problem is to use the classloader to ignore the
final modifier and allow subclassing. Furthermore, the bridges do not control ac-

16



Space 1
O3

B1

B2

Space 2

Space 3

B4 B3

Space 1
O3

B1

B2

Space 2

O2O1

O2

O4

O1

374

Figure 2.6: Spaces with Bridges [16]

cess to fields. Lastly, the authors discuss the possible handling of the Java Language
(java.lang.*) objects, as those are shared between all spaces by default. They create
special wrapper objects (e.g., IOString for String) for system classes.

17



Chapter 3

Safe and Unsafe Access Control

We present a method for providing security through proxy objects. In our technique,
developers specify which methods to allow and deny; we use this information to auto-
matically construct proxy objects. As they only expose a permitted subset of functions,
proxies are safe by construction and may be passed to untrusted clients. We partition
methods into two categories: safe (may be invoked by anyone) and unsafe (may only
be invoked by trusted clients); we consider a more expressive system in Chapter 4. Our
system is designed to work with Java RMI or in an EJB context.

3.1 Motivating Examples

Our technique is designed to handle cases where a heterogeneous software system
needs to share objects with subsystems that are not fully trusted. In particular, our
technique enables a system to expose parts of an object’s functionality to a client; it
may be undesirable or even dangerous to grant the client unrestricted access to the
object. Consider the following domain object D, which stores data, and an untrusted
client C:

class D {
String getID() { ... };
void setID(int i) { ... };

}
class C { // untrusted client

boolean modify (D d) () { ... // C wants to manipulate d }
}

}

18



One could avoid security concerns by ensuring that D objects are never made avail-
able to clients. Such a solution is unacceptable when clients require partial access to D
objects. Allowing full access to D objects might be problematic: a simple programming
error (or malicious intent) could result in data loss or corruption; we wish to limit
the potential for error. Furthermore, full access might result in the client gaining un-
intended privileges, particularly by navigating the object graph and accessing objects
that he or she is unauthorized to access.

In our example, D resides on the server, while the client code runs remotely, in a
separate JVM. As C is untrusted, we do not wish to allow C access to all methods in
D. The setID method will modify the id field—the index of this object. Note that the
setID method is necessary so that the object can be restored from storage. We would
like to deny access to that method, yet allow the accessor method getID. In many
applications, we might consider only methods that do not make any writes safe to
invoke, and allow access.

We could also write a restrictive interface and provide this interface to the client,
with the data objects implementing the interface. Deriving this interface manually
is time-consuming and error-prone, and it must be kept up to date when the original
object changes. Our system supports the automatic generation of such interfaces, based
on light-weight annotations.

3.1.1 Software-as-a-Service Scenario

As a second example, consider a software-as-a-service case with three parties: a soft-
ware developer (the service provider), a store owner (service client), and store cus-
tomers (who buy from the online store). The developer has created a customizable
application, ShipItems, for online commerce. The clients (store owners) purchase an
account and then customize their instance of ShipItems according to their needs. They
use the application to organize and track product shipments to their customers. Cus-
tomers place orders. In this example, the store owner owns a scuba diving shop, and
she fills electronic orders from customers. Figure 3.1 shows relations between these
entities.

As the software developer cannot foresee all the business rules of store owners
(service clients), he can either guess at the rules the store owner wants (possibly pro-
viding rule templates for typical cases), or give out (full access to) the Java objects
themselves. If the store owner cannot implement her business logic using the given
rules or templates, then a human must verify every order before it goes out (costly and
error-prone), or the owner must access the Java objects directly.

19



!"#$%&'()

!*+,-./000.

%1)&-1*'

234).

25'*&671#*).

%1)&-1*'

!"7'.8-5-*'.

%1)&-1*'

9+)&7('6 9+)&7('6 9+)&7('6 9+)&7('6 9+)&7('6

Figure 3.1: ShipItems with Multiple Customized Instances

Suppose ShipItems validates that the Postal/ZIP Code field is not empty. The store
owner is willing to ship only within Canada. She tries to add a rule that the postal
code must conform to the Canadian format (e.g., A1B 2C3). If the developer did not
grant the owner the ability to define the formatting for this box, then the owner must
verify her rule manually.

Alternatively, if given the address object, the store owner might change the name of
the object representing Canada. A modification to the Canada object could negatively
affect every user. Worse yet, by navigating the object graph, the store owner could see
or alter confidential data of other stores.

This usage scenario is an instance of applying specific knowledge to a general sys-
tem. The developer writes the general system (ShipItems) and sells it to the store
owner, who applies her specific business rules to the system. We propose a way to
allow the store owner to programmatically apply her business rules in general, while
limiting her access to the Java objects.

3.1.2 Enterprise Java Bean Container Scenario

Our technique also applies in conjunction with the JBoss Application Server and the
Hibernate persistence layer. Figure 3.2 presents an overview of the life cycle of a
persistent domain object. Persistent objects are stored in the database and continue
to exist through application restarts. A domain object d exists within a persistence

20



!"#$%&'$(

)'"%&%('$(

*'(#+,'-

."'#('

*'%("/0

Figure 3.2: Domain Object Life Cycle [17]

context (in this scenario, the JBoss environment). If d is emitted to a remote caller,
it is “detached”. If the remote client modifies and returns d, then we must commit
these changes to the database; if the caller never returns the object, then there are no
commits.

Suppose an Enterprise Java Bean emits a persistent domain object. When the callers
returns the detached object for storage, the server must verify its state. As the client
cannot be trusted, the server is responsible for checking the validity of the object.
Verification might be computationally expensive and the server’s checks will fall out
of date when the domain object’s code is changed.

We propose a solution in which we can hand out instances of objects, like D from
the first example, while preventing changes to key attributes. Since we are targetting
production environments, we want to minimize overhead. Therefore, the security must
minimize the ability of the users to do damage to the running system, but must allow
the system to operate normally.

21



3.2 Proxy Objects

Our solution enables servers to give out Java objects such that recipients cannot ad-
versely change the state of the system. We build custom proxy objects from the orig-
inal Java objects, and give those to clients in place of the originals. Proxy objects are
stand-ins generated from the originals that expose a subset of the original’s functions.
Normally, we require a pre-processing step between the Java Compiler and the RMI
Compiler, except when used in conjunction with an EJB context, as described in sec-
tion 3.3.

We support both default-permit and default-deny configurations. In a default-deny
configuration, each callable function is specifically annotated as safe, and only anno-
tated methods are available on the proxy objects. In a default-permit configuration,
functions that should be unavailable to invoke are specifically annotated as unsafe, all
remaining functions are available on the proxy objects. An object can have one or more
proxies. Proxies contain no executable code; they delegate method execution to the
original. Our solution enables object integrity preservation and provides fine grained
access control.

There are three levels where we apply policy: global, class, and method. The global
policy applies everywhere, but may be overridden. We support two global policies:
default permit and default deny. Each class can be marked as default permit (safe)
or default deny (unsafe), and the class annotation overrides the global policy for all
instances of that class. Method-level annotations take precedence over class and global
policy.

The developer sets global policy at compile time using a configuration flag. Most of
the time, the developer will use a global default-permit policy, because it allows access
to various methods on Java built-in classes, such as Integer or DateTime. Applications
needing high security should allow only a limited subset of methods, so the developer
will choose a default-deny global policy.

The developer annotates a method or class by adding @Safe or @UnSafe above it.
These annotations impose no requirements upon the functions or classes they accom-
pany; the annotation only restricts who may call the method, and has no implications
on the method’s behaviour. Below is the @Safe annotation; @UnSafe is identical except
“Safe” is replaced with “UnSafe”.

@Retention(RetentionPolicy.RUNTIME)
public @interface Safe { }

If a method is annotated safe, then untrusted clients can invoke that method with
their choice of arguments. Clients can (indirectly) invoke methods that are annotated

22



unsafe as well, but only via other methods. Our rationale for this design choice is that
clients then do not have direct control over the arguments with which these unsafe
methods are invoked.

Consider a system with a global default permit policy; all methods may be invoked
unless marked as unsafe. A class S is marked as default deny, and its getID() method
is marked as safe to invoke. Because precedence goes from most specific to least
specific, all methods are permitted globally, except for those in S (because S has a
policy of default deny). The class-level policy of S is overridden by the annotation of
getID(), which is the only callable method in S.

// Global Policy: Default Permit
@UnSafe // Class Policy: Default Deny
public class S {

@Safe
public int getID() { ... } // Permitted method

public void setName(String newName) { ... } // Denied method
}

Any class C induces a derived interface, defined by its declared and inherited meth-
ods. So that proxy objects may be used in place of their corresponding real objects, a
proxy object P implements the derived interface of the original class C. Our interface
builder creates an interface I based on C’s derived interface. Furthermore, a method
appears in I only if allowed under the local policy.

Our solution is impervious to attacks using Java reflection. Consider a proxy object
accessed remotely using RMI. Although the proxy object keeps a reference to the orig-
inal, the original remains inaccessible, because reflection cannot be used on a remote
object [18]. RMI semantics hide all fields of the implementation class from remote
clients; fields do not appear on the client-side stub. We also require that arbitrary ac-
cess to memory on the server side is not permitted; we require no assumptions about
the client side virtual machine, as it is untrusted.

Example Consider object O with methods a and b. We have declared a safe and b
unsafe. This system has trusted clients (T) and untrusted clients (U). Figure 3.3 shows
the placement of the proxy object P in the system.

As a is safe, U can invoke a on the proxy, and the proxy invokes the corresponding
method on the original object O. Method b is unsafe, so b cannot be invoked on the

23



!

"

#

$ %

$

%&

$
'

()*+)*,-.*/0$1,2$34.5) 61.)5/,-.*/0$1,2$34.5)

Figure 3.3: Proxy Object P Guards O from Untrusted Client U

proxy object because it does not exist. Conversely, because trusted client T can access
O directly, it is free to invoke b.

If we were to use an automatic analysis to infer whether a method is safe, then we
might conclude that any method that calls an unsafe method is itself unsafe. Suppose,
however, even though b is unsafe in general, it is safe when invoked with specific pa-
rameters. In this scenario, it is meaningful and appropriate for a safe method to invoke
an unsafe one, under controlled circumstances. The developer applies domain knowl-
edge to enable more nuanced behaviour than an automatic analysis would provide.

3.2.1 Enterprise Java Bean Container Integration

Our security model also complements the EJB specification model. In an EJB scenario,
a bean is a class encapsulating some functionality, that obeys certain properties (e.g.,
no-arguments constructor and getter/setter methods) such that it can be deployed us-
ing an application server. Where EJB allows for method-specific access controls on
the beans themselves, our solution protects the domain objects returned through the
interfaces. An example is a shopping cart (an EJB), which can be protected using EJB
specification security model. The cart contains a number of books and proxy objects
protect the books. Although we could make each book a bean, that is unreasonable;
making a class a bean imposes certain requirements, such as the no-arguments con-
structor and getter and setter methods, which might not make sense for all objects.
When proxy objects are employed in conjunction with an EJB container, there is no
need for a pre-processing step between the Java compiler and the RMI compiler, be-
cause of the dynamic deployment system of the application server. As compared to
making every single object a bean, our solution is light-weight, and does not impose

24



!"#$$%&''()*+,)#-%./01/0

23$,#4/0 23$,#4/0 23$,#4/0

5+,+6+$/

23$,#4/07+-+8/0 9/(/4+0:/,/0

;!"

!"#$%&'()*+*,'(

!"#$%&'(-,'$!"#$%&'(./0123+$-3456

7%34-#*7'!"#$%&'(2!"#$%&'(-856

999

!"#$%&'(

3+$-,'$04256

:$(3+,-,'$;*&'256

7%34-#'$;*&'256

1*$'-,'$<*#$!*==>3&'256

7%34-#'$<*#$!*==>3&'21*$'-456

999

Figure 3.4: Proxy Object Application to JBoss Application Server

requirements on the classes to be protected.

We further explain the EJB scenario using a second example, shown in Figure 3.4.
We are interested in the transitions between Persistent and Detached (as depicted in
Figure 3.2). In this scenario, the client is the Telemarketer, who interacts with the
CustomerManager EJB. A telemarketer is one of many untrusted clients.

The EJB Security model permits specification of method level restrictions on the
beans. If a telemarketer is not permitted to make any changes to the object, then
we may simply choose to deny telemarketers access to the saveCustomer method of
CustomerManager. The telemarketer can modify the Customer object emitted through
the EJB interface, and because it is never returned to the server to save, only his local
copy is affected. Note that the telemarketer has arbitrary access to Customer, and that
EJB does not protect Customer objects.

Suppose, however, that telemarketers are permitted to update the date and time
that the customer was last contacted regarding purchases. If we allow the telemarketer
access to the Customer object, he can make arbitrary changes and then return it to
be saved via the saveCustomer method. We could instead make the returned objects
of methods of the remote and local interfaces proxy objects, and therefore substitute

25



a proxy when the object is about to become detached. Standing in for the originals,
the proxy objects are detached and modified by the client. When returned for storage
and converted back to the original, we can be assured that the original’s state is valid
without needing to run validity checks, because we know that the only changes that
took place were the ones we explicitly allowed. In a normal EJB context, we would
have to verify all the rules upon return of the object to the server, or disallow changes
entirely.

3.2.2 Semantics of Annotation

We use First Order Logic [19] to express the semantics of our approach precisely.

To express that a method m has annotation a in its definition in class c, we adopt the
predicate annotatedMethod (m, c, a). The counterpart corresponding to annotatedMethod
for a class is annotatedClass (c, a). To express the global annotation, we adopt the con-
stant globalAnnotation. To model the inheritance and method-definition aspects of
Java, we adopt the predicates inherits (c2, c1) to express that class c2 directly inherits c1,
and definedIn (c, m) to express that method m is defined in the class c.

annotatedClass (c, a)←−
(globalAnnotation = a) ∧

(
a ̸= a′

)
∧ ¬annotatedClass

(
c, a′

)
(3.1)

annotatedMethod (m, c, a)←− definedIn (c, m)

∧ annotatedClass (c, a) ∧
(
a ̸= a′

)
∧ ¬annotatedMethod

(
m, c, a′

)
(3.2)

annotatedMethod (m, c2, a)←−
¬definedIn (c2, m) ∧ annotatedMethod (m, c1, a) ∧ inherits (c2, c1) (3.3)

Rule 3.1 says that a class that has no explicit annotation of its own receives the global
annotation. Rule 3.2 indicates that a method without an explicit annotation receives the
annotation of the class, as long as it is explicitly defined in that class. Finally, Rule 3.3
says that if a method is not defined in a class c, but rather in a superclass of c, the
annotation the method receives in c is exactly the annotation it receives in its defining
class.

For a semantics, we specify a model M and an environment l [19]. The set of
concrete values, A, that we associate with M is A = Ac ∪ Am ∪ Aa, where Ac is
the set of classes, Am is the set of methods and Aa = {safe, unsafe}. We asso-
ciate one of the values from Aa with the constant globalAnnotation. We consider
only environments in which our variables have the following mappings for our five

26



predicatesannotatedMethod (m, c, a), annotatedClass (c, a), definedIn (c, m), inherits (c2, c1),
and a ̸= a′: the variables c, c1 and c2 must map to elements of Ac, m to an element of
Am, and a and a′ to elements of Aa.

To compute M, we begin with a model M0, with A as its universe of concrete
values. InM0, we populate the relations that make our predicates concrete with those
values that we glean from the Java code. For example, inheritsM0 contains every pair
⟨c2, c1⟩ for which class c2 extends c1. Similarly, we instantiate annotatedMethodM0 to
those ⟨m, c, a⟩ tuples such that the method m has the annotation a in its definition in
class c. We point out that an annotation can exist for a method in a class in the code
only if the method is defined in that class. Also, there is at most one annotation in the
code for each method in a class. There is also at most one annotation for a class.

We define M to be the least fixed point from applying the inference rules. Our
algorithm α for computing M from M0 is as follows. We first apply Rule 3.1, which
grows annotatedClassM0 , repeatedly until no new entries are added. We then apply
Rule 3.2 to grow annotatedMethodM0 until no new entries are added. Finally, we apply
Rule 3.3, once again growing annotatedClassM0 with the same stopping condition. The
result isM. Note that α indeed computes the least fixed point, because it respects the
topological ordering of the inference rules. The algorithm α runs in worst-case time
that is quadratic in the number of classes, |Ac|.

To construct a proxy object for a particular class c, we can instead use a “bottom-up”
algorithm that is linear in |Ac|+ |Am|. We first identify all methods that are defined in
c by a breadth- or depth-first search of the inheritance graph in reverse, starting at c.
We can then identify the annotation of each method in c in constant time.

Correctness M is sound and complete. What we mean by sound is that a method
has at most one annotation inM; we never infer any contradictions. What we mean by
complete is that a method that is defined in a class has at least one annotation in M.
Soundness follows directly from inference Rules 3.2 and 3.3. We make the following
assertion with regards to completeness.

Proposition 1 For every method m ∈ Am and class c ∈ Ac, there exists a ∈ Aa such that
M |=l (c, m) ∈ definedInM −→ (m, c, a) ∈ annotatedMethodM.

Proof By contradiction. Consider the algorithm α that we discuss above that we use
to construct M and the inference rules. We assume that M |=l (c, m) ∈ definedM

and M |=l (m, c, safe) ̸∈ annotatedMethodM ∧ (m, c, unsafe) ̸∈ annotatedMethodM. By
Rule 3.2, M |=l (c, safe) ̸∈ annotatedClassM ∧ (c, unsafe) ̸∈ annotatedClassM. Then, by
Rule 3.1, @ a such that globalAnnotationM = a, a contradiction. �

27



3.2.3 Semantics of Invocation

To express that a method m in class c may be safely invoked, we adopt the predicate
canSafelyInvoke (m, c). We use the predicate invokes (m1, m2) to indicate that method m1
invokes method m2. We introduce a constant, safe, to indicate the safe annotation (that
is, a method may be invoked by untrusted clients). We now present our inference rules.
Our semantics are specified as in the previous section. In our modelM, safeM = safe.

invokes (m1, m3)←− invokes (m1, m2) ∧ invokes (m2, m3) (3.4)
canSafelyInvoke (m, c)←− annotatedMethod (m, c, safe) (3.5)
canSafelyInvoke (m2, c)←− canSafelyInvoke (m1, c) ∧ invokes (m1, m2) (3.6)

Rule 3.4 merely indicates the transitive nature of the invokes relation. Rule 3.5 indi-
cates that a safe method may be safely invoked. Rule 3.6 expresses that safe methods
can invoke unsafe methods.

3.3 Implementation

We have also created an implementation of our system consistent with the formal se-
mantics. Bytecode generation and modification lie at the heart of our implementation.
We modify RMI-enabled classes and generate interface class files. As we are not pro-
ducing executable code, we can make the changes without resorting to a full-featured
code generation library. Our code generation routine is based on interface generating
code published by Eamonn McManus [20].

The crux of our implementation is modifying the interface’s set of methods. We
leave unmodified all methods that return a simple type (e.g., int) or a String. Other-
wise, we replace the return type with a proxy object.

Our Interface Builder examines any class C and returns its modified derived inter-
face. The Interface Builder is provided only the set of methods which are allowed.

A proxy object is an instance of the ProxyObject class. This class handles all method
invocations on the proxy object. If the method exists in the modified derived interface I,
then the proxy will pass the invocation on to O; O executes the method as requested. If
proxy objects are found in the parameters, they are replaced with their corresponding
originals. If a method was not permitted, it did not appear in I and hence is not
available for invocation on the proxy P. Therefore, only the methods that we consider
safe may be invoked.

28



!"#$%&'($")
*&"+,-.

/.01

/.02

/.03

4.(0("&,
456-%'

7-'8.")9&,8-

:-';$+
<=-%8'($"

!"#$%&'($")
*&"+,-.

/.01

/.02

/.03

/.01
4.(0("&,

/.02
4.(0("&,

/.03

4.(0("&,
456-%'

7-'8.")9&,8-7-'8.")9&,8-

Figure 3.5: The Invocation Handler substitutes Proxies for Originals, and Vice-Versa

The ProxyObject class is also responsible for intercepting the return of a non-proxy
object and performing the appropriate substitution. This class is registered as the
invocation handler for all methods on the proxy class. Invocation handlers execute
before the actual method is called and after the method returns some value.

Consider Figure 3.5; an example of the invocation handler’s functioning. Argu-
ments 1 and 2, shaded in the figure, are proxy objects, so the invocation handler re-
places them in the arguments set with their corresponding original objects. Argument
N is not a proxy, so it is unaltered. Arguments 1 through N are passed to the original
object on which the call was to take place, and execution there proceeds as normal.
There is a return value, and the invocation handler examines it, and it is not a simple
type. Thus, the invocation handler returns a proxy object in place of that return value.
This proxy object is dynamically generated, and the interface for it may need to be
dynamically generated if an object of this type has not had a proxy before.

When using our technique in an EJB context, the system runs without a compile-
time component, because the application server does dynamic deployment of our code.
Interface generation, as described above, takes place at run-time, and the interfaces are
dynamically class loaded. We make no modifications to the original object’s source
code. Otherwise, our technique also uses a compile-time preparation step that takes
place between compiling the source files and running the RMI Compiler (rmic). See
Figure 3.6 for a step-by-step overview of the process.

Our pre-processor searches the code base and finds RMI-accessible objects, exam-
ines each of these objects and derives its remote interface. This derived interface en-
forces the @Safe and @UnSafe rules. The pre-processor saves the interface as a class file,
and modifies the original object’s class file to indicate that it implements the derived
interface. At run-time, the server simply enters a dynamically-created proxy object of
the correct type into the RMI server. No modifications to the Java compiler or rmic are

29



!"#"$

%&'()*+,

-!"#"$.

/,&01$

234+56$

%&'()*+,

-%&$.

789$

%&'()*+,

-'()$.

:&;,5+$

<)*+=

%*"==$

<)*+$

2;6(;6

Figure 3.6: The Proxy Object Compiler Runs Between the Java and RMI Compilers

!"#"$

%&'()*+,

-!"#"$.

/,&01$

234+56$

%&'()*+,

-%&$.

70"'(*+84"#" 70"'(*+85*"99

70"'(*+85*"99$

-:&;)<)+;.

=70"'(*+85*"99$

->+?+,"6+;$

=?6+,<"5+.

@:=$

%&'()*+,

-'()$.

70"'(*+85*"99$

-:&;)<)+;.

=70"'(*+85*"99$

->+?+,"6+;$

=?6+,<"5+.

70"'(*+AB6C385*"99$

-@:=$B6C3.

Figure 3.7: Proxy Object Compiler Processing Example.java

necessary. Figure 3.7 depicts this process on class Example.

A developer has written the Example.java file, and compiled it into a class file
using javac. We identify Example as being a remote-accessible object (it extends
UnicastRemoteObject), and give it to the proxy object compiler (poc). The poc exam-
ines Example and derives interface IExample, which contains only safe methods. The
poc modifies Example.class so it implements IExample. Once our modifications are
complete, we invoke rmic on the resultant class files, and the RMI compiler produces
Example_Stub.class.

30



Chapter 4

Role-Based Access Control via Proxy
Objects

We generalize our system from the binary access trusted and untrusted roles of the
previous chapter to consider different levels of permission and role-based access con-
trols (RBAC). The previous chapter supported only two roles: trusted and untrusted.
With a multiple-role system, we could annotate methods with the roles allowed to ac-
cess them; for example, we could annotate createSalaryReport with @Accounting and
@HumanResources. In that respect, the methods in the salary report would be accessible
to different roles. Moving to role-based access controls greatly increases the flexibility
of the security rules.

We bind clients to roles, and clients have access to only certain methods, based on
the roles to which a client is authorized. This is a significant improvement over our
work in chapter 3, which only supported coarse-grained “accessible” or “not accessi-
ble” annotations for methods, interfaces and classes.

4.1 Example & Approach

We next present an example, and discuss our approach to realizing RBAC in Java. We
discuss the specification of RBAC policies in our approach and how annotations denote
roles. We discuss also the security benefits from using our approach. In Section 4.1.2,
we present precise semantics of our approach in first-order logic.

In our approach, we build proxy objects from the real objects, and allow partially-
trusted users to directly access the proxies only; fully trusted system components may
access the original objects. For each role, we derive a proxy object. A client may

31



!""#$%&'%( )*+,-./#0112

)*+34%4(1-1%&

5$-4%+
612#$7"12

,8170#%1

Figure 4.1: Roles in the Separation of Privilege Scenario. Arrows indicate a subsump-
tion relationship.

be bound to more than one role, and may successfully request the proxies that are
associated with every role to which the client is bound. A proxy implements only
those methods to which the role with which it is associated is authorized. Whether a
role is authorized to a method or not is inferred from annotations in the source code.

Annotations in Java are metadata regarding the code they accompany. In the context
of this paper, an annotation indicates a set of roles. Annotations may be associated
with an interface, a class, or a method (within an interface or a class). We first discuss
how we derive the effective annotation on a method informally, and more precisely
in Section 4.1.2. The only clients to which a method is authorized are those that are
members of roles in the method’s effective annotation.

We also provide a mechanism for specifying the roles to be used in annotations.
Developers may associate roles with one another in a role hierarchy [2]. A role hierar-
chy, denoted as RH, is a partial ordering of the roles. If ⟨r1, r2⟩ ∈ RH, then we say that
r1 subsumes r2. The consequence is that if r2 is in the effective annotation of a method
m, and a client is authorized to r1, then the client is authorized to m.

Example We present an example of an RBAC policy, and a discussion of its use in a
snippet of Java code. In this scenario, we wish to assign some rights to one set of users,
and different rights to another set of users. Figure 4.1 presents a role hierarchy, for use
in the example.

We have five roles, IT Management, Accounting, IT Employees, Human Resources
and Everyone. The arrows indicate role subsumption. That is, everyone in IT Manage-
ment is an IT Employee (and therefore in IT Employees), and every member of Ac-
counting, IT Employees and Human Resources is a member of Everyone. (We use the

32



term “subsumption” rather than “inheritance” as is customary in RBAC. We reserve
the term “inheritance” for Java’s notion of inheritance.)

The Java code we intend to protect follows.

struct Item {
String name;
double quantity;
String unit;
double price;

}
class Order {
// Constructor

Order(List<Items> items) { ... }

void approve() { ... }
}

The code includes a class Order, which has two methods, Order() and approve().
The method Order() is called a constructor, and executes upon creation of objects of
class Order. Clients call approve() to approve an order that exists.

We require that only members of ITEmployees may create orders, and only mem-
bers of the role Accounting may approve orders. We assume that an object of type
Order on which all clients operate resides on a server, and all clients invoke methods
on it via RMI.

The earlier system, with only the trusted and untrusted roles, is unable to express
this policy. Suppose IT Employees were considered untrusted, and Accounting users
were trusted, and the approve() method were annotated unsafe. In that case, although
IT Employees would have the appropriate rights, users of Accounting would be able
to invoke both the constructor and the approve() method.

We next discuss how our system supports and enforces this policy.

Effective annotation As we mention above, we allow developers to annotate meth-
ods, interfaces, and classes. We infer the effective annotation on a method as follows.
We have adopted the approach of “most specific annotation applies” in how we infer
the effective annotation on a method. We present these rules precisely in Section 4.1.2.

If a method has an explicit annotation when it is defined in a class, then that explicit
annotation is the effective annotation of the method. If a method is inherited from a

33



superclass, but is not explicitly defined in the subclass, then the annotation in the
superclass is its effective annotation. The reason is that in Java, when a method that is
defined only in the superclass is invoked on an object of the subclass, it is the method
from the superclass that is invoked.

If a method is defined in a class but has no annotation on it, and the class has an
annotation, then the effective annotation on the method is the annotation on the class.
We point out that a class may have no annotation. In this case, we do not infer its
annotation from a superclass, if that class indeed inherits another class. The reason is
that, as a design choice, we have chosen to disassociate the semantics of security from
the intended semantics of class inheritance.

We allow interfaces to be annotated as well. An interface as a whole may be an-
notated, as may individual methods that are declared within it. If the interface is
annotated, then that annotation affects methods declared within the interface only if a
method does not have an annotation of its own within the interface. Annotations on an
interface do not carry over to subinterfaces. If a method is re-declared in a subinterface,
then its annotation in the subinterface affects classes that implement the subinterface.

Annotations on interfaces have different semantics than annotations on classes and
methods within classes. Because Java interfaces constrain the contents of classes which
choose to implement them, we decided to interpret annotations on interfaces as con-
straints on the classes implementing those interfaces.

Suppose we infer an effective annotation of the set of roles R on a method m that is
defined in class c. Suppose also that we infer an annotation R′ on all interfaces that c
implements that declare m. Then, we require that every role in R′ subsumes some role
in R. Consequently, a client that is authorized to a role in R′ has access to the method.
R may include other roles, and consequently authorize other clients as well; R′ is a
lower bound on the clients that may access the method. We impose this constraint at
compile-time—if some role in R′ does not subsume any role in R, then we declare a
compile-time error.

Security As we mention in this chapter’s introduction, we target our access control
approach to RMI-accessible objects only. There exist some design approaches that
allow granularity at the level of instances of the class, but in our design, all instances
of a class are treated equally. Our threat agents are remote clients. We assume that
the potential attacker is a client in a different Java Virtual Machine (JVM) [18] whose
only way of accessing objects is via RMI. It is possible to adapt our approach to local
clients to provide more limited access control. However, other approaches such as stack
inspection [1] combined with resistance to code-modification may be more effective in
thwarting local attackers.

34



By default, our policy is “deny all.” Annotations can be seen as selective “allow”
rules. As only the methods to which a client is authorized are implemented in the
proxy’s interface (see the next section for details), our approach hides even the exis-
tence of other methods in an object. We see this as a performance benefit. From the
standpoint of security, we have some measure of confidentiality in addition to access
control. From the standpoint of performance, the server needs no run-time check to
verify whether a client’s method invocation is authorized.

We point out also that our solution remains impervious to attacks that use Java
reflection. Consider a proxy object that is accessed remotely using RMI. As we stated
earlier, reflection cannot be used on remote objects, and RMI hides all fields of the
object at the server from remote clients; fields do not appear on the client-side stub.
Thus, reflection cannot be used to access methods to which a user is not authorized.

4.1.1 Annotations

In this section, we discuss how the developer defines roles and the role hierarchy, and
how developers insert annotations into the program’s code.

Roles and role hierarchy We declare a role using what we call a meta-annotation.
The following code illustrates how to declare the role ITEmployees from Figure 4.1.

@Role
@Retention(RetentionPolicy.RUNTIME)
public @interface ITEmployees { }

This code segment is an example of a basic role annotation. @Role is a standard
Java annotation, used as metadata. Annotations are syntactically denoted by the @
symbol, and thus the first line applies the Role annotation to the current class. The
second line is an annotation we add for the compiler that specifies that the ITEmployees
annotation’s presence should be observable at run-time. The compiler will therefore
propagate that annotation to the output class file, and the virtual machine will load
the annotation with the class. Thus, when executing, the program can check if this
annotation is present on a method or class. Finally, the syntax for declaring an empty
annotation appears on line three. Empty annotations serve solely as markers attached
to a method, interface, or class.

We choose to annotate a role declaration with the roles it subsumes as our method
of declaring the subsumption relationships. This method is simple and concise, and

35



at compile-time, we can automatically compute the role hierarchy based on the sub-
sumption annotations. The following snippet of code expresses how we declare the
role subsumption relationship; ITManagement subsumes ITEmployees. This means a
user in IT management has all of the rights of a user in IT employees. Note that the
following annotation declares a new role and re-uses an existing role in a subsumption
relationship.

@Role
@ITEmployees
public @interface ITManagement { }

To declare that two roles r1 and r2 subsume r3, we annotate the declarations of r1
and r2 with r3—we write “@r3” above “public @interface r1 { }” and above “public
@interface r2 { }”. To declare that r4 subsumes r5 and r6, we write @r5 @r6” above
“public @interface r4 { }”. Subsumption is transitive, so in a system where r7 subsumes
r8 and r9, and a role r10 is introduced which should subsume roles r7, r8, and r9, it
suffices to declare that r10 subsumes r7.

Annotations on classes, methods and interfaces The following snippet of code illus-
trates how we annotate the class Order and its method approve(). Order is annotated
with the role ITEmployees and approve() is annotated with the role Accounting.

@ITEmployees
public class Order {
// Constructor

Order(List<Items> items) { ... }

@Accounting
void approve() { ... }

}

We allow the developer to annotate a class or method with more than one role, by
simply applying multiple role annotations to that class or method.

As we mention above under “Effective annotation,” we may annotate interfaces and
method declarations within interfaces as well. The following snippets show an exam-
ple of a method, getSalary(), that is declared within an interface IHiringRequest,
annotated with the role HumanResources. We show also a class, HiringRequest, that
implements IHiringRequest. As we clarify in our earlier discussions under “Effective

36



annotation,” and more precisely in the following section, we require, at compile-time,
the effective annotation on getSalary() to include HumanResources. In this example,
we meet this requirement by explicitly annotating getSalary() in its definition in the
class HiringRequest with HumanResources.

public interface IHiringRequest {
@HumanResources
public Money getSalary();
...

}

public class HiringRequest implements IHiringRequest {
@HumanResources
public Money getSalary() { ... }
...

}

The expected annotation on HiringRequest.getSalary() is @HumanResources; that
is, users who are members of the human resources group must be able to invoke
getSalary(). The annotation’s presence on the interface’s method definition implies
all implementations of getSalary() must also be annotated with @HumanResources or
any role subsumed by @HumanResources; if any implementation is not so annotated,
that is a compile-time error.

4.1.2 Semantics

We expand our First Order Logic semantics from the previous chapter to express the
semantics of our Role-Based Acceess Control approach precisely.

Annotations in class and interface definitions Our annotation inference rules use the
following predicates: (1) effectiveAnnotation(m, c, r) is used to express that the role r is
in the effective annotation of method m in class c; (2) subsumes(r1, r2) is used to express
that the role r1 subsumes r2. We note that the subsumption predicate is reflexive,
so subsumes(r1, r1) is always true. (3) annotatedCorI(ci, r) is used to express that the
class or interface ci is annotated with r—the annotation may be explicit or inferred; (4)
annotatedMethod(m, ci, r) is used to express that the method m is explicitly annotated
with the role r in the class or interface ci; (5) definedIn(ci, m) is used to express that
the method m is defined or declared in the class or interface ci respectively; and, (6)

37



extends(ci2, ci1) is used to express that the class or interface ci2 extends (or inherits) the
class or interface ci1.

Note that our predicate definedInci, m is true for at most one ci per m. For example,
consider a scenario where c3 extends c2 and c2 in turn extends c1; both c1 and c2 define
method m. We say that definedInc3, m is false because m is not explicitly defined in c3.
definedInc2, c3.m is true, as there is an explicit definition for m in that class; however,
definedInc1, c3.m is false. This follows the Java language semantics; a call to c3.m()
results in an effective invocation of the method c2.m() and not c1.m().

Having defined the predicates, we next use them to state the rules defining effective
annotations.

subsumes(r3, r1)← subsumes(r3, r2) ∧ subsumes(r2, r1) (4.1)

annotatedCorI(ci, r)← annotatedCorI(ci, r′) ∧ subsumes(r, r′) (4.2)
effectiveAnnotation(m, ci, r)← annotatedMethod(m, ci, r) (4.3)

effectiveAnnotation(m, ci, r)← effectiveAnnotation(m, ci, r′) ∧ subsumes(r, r′) (4.4)
[effectiveAnnotation(m, ci, r)← annotatedCorI(ci, r)]←

definedIn(ci, m) ∧ ∀r¬annotatedMethod(m, ci, r) (4.5)
effectiveAnnotation(m, ci2, r)←−

¬definedIn(ci2, m) ∧ effectiveAnnotation(m, ci1, r) ∧ extends(ci2, ci1) (4.6)

Rule (4.1) expresses that role subsumption is transitive. Rule (4.2) implements the
role subsumption relation on class and interface annotations: if r subsumes r′ and a
class or interface ci is annotated with r′, then we infer that ci is annotated with r as
well. Rule (4.3) ensures that explicit annotations are also effective annotations: role r is
in the effective annotation of method m in class c if it is an explicit annotation on m’s
definition in c. Rule (4.4) implements role subsumption for effective annotations: if r
subsumes r′ and r′ is in the effective annotation of m in c, then so is r. Rule (4.5) causes
class annotations to affect unannotated contained methods: if a method m, defined in
class c, has no annotations, then the annotations on c are the effective annotation on
m. Finally, Rule (4.6) computes effective annotations for inherited methods: if method
m is not defined in class or interface ci2, but has an effective annotation in a class
or interface ci1 that ci2 extends (or inherits), then that effective annotation is also an
effective annotation for m in ci2.

Constraints from interfaces As we mentioned earlier, annotations on interfaces and
method declarations in interfaces are “at least” constraints on the effective annotations

38



on their implementing methods in classes. We specify the rule pertaining to anno-
tations on interfaces below. We introduce the predicate expectedAnnotation(c, m, r) to
express the constraint that r is required to be in the effective annotation of m in c. We
adopt the predicate implements(c, i) to express that class c implements interface i.

expectedAnnotation(c, m, r)← implements(c, i) ∧ effectiveAnnotation(m, i, r) (4.7)

Rule 4.7 expresses that if r is in the effective annotation of method m in interface
i, and class c implements i, then r is required to be in the effective annotation of m
in c. Note that m has an effective annotation in i only if (1) m is defined in i, or (2) i
extends an interface that defines m. Also, because c implements i and m is defined in
i, Java ensures that m must exist in c as a method, either by inheritance or by explicit
definition.

Model Rules (4.1) – (4.7) have a well-founded semantics [21]. We use negation;
however, the negation is stratified.

For a semantics, we specify a model, M, and an environment or look-up table, l.
The set of concrete values, A, that we associate with M is A = Ai ∪ Ac ∪ Am ∪ Ar,
where Ai is the set of interfaces, Ac is the set of classes, Am is the set of methods
and Ar is the set of roles. We assume that the sets Ai, Ac, Am and Ar are disjoint. We
consider only those environments in which our variables have the following mappings:
the variables r, r′, r1, r2 and r3 map to elements of Ar, ci, ci1 and ci2 map to elements
of Ac ∪ Ai, c maps to an element of Ac, i maps to an element of Ai and m maps to an
element of Am.

To computeM, we begin with a bare modelM0, with A as its universe of concrete
values. We populate the bare model M0 with relations that make our predicates con-
crete, by extracting values directly from the Java code. For example, when the class or
interface ci2 extends (in the Java code) ci1, we add ⟨ci2, ci1⟩ to extendsM0 . Similarly, we
instantiate annotatedMethodM0 to those ⟨m, ci, r⟩ tuples such that the method m has the
annotation r in its definition in the class or interface ci.

We defineM to be the least fixed point from applying the Rules (4.1) - (4.7) starting
at M0. The following algorithm α computes M. First, populate the sets definedInM0 ,
subsumesM0 , annotatedMethodM0 , annotatedCorIM0 and extendsM0 from the Java code.
Observe that definedInM0 = definedInM and annotatedMethodM0 = annotatedMethodM.

Apply Rule (4.1) repeatedly to compute the transitive closure of subsumesM0 , which
gives subsumesM. Then, repeatedly apply Rule (4.2) to get annotatedCorIM. Next, re-
peatedly apply Rules (4.3) and (4.5), followed by Rule (4.6). In the final step, compute

39



effectiveAnnotationM by repeatedly applying Rule (4.4) and expectedAnnotationM by re-
peatedly applying Rule (4.7).

We assert that α indeed computes the least fixed point. This is because it exploits
a topological ordering of the inference rules. The algorithm α runs in worst-case time
quadratic in the input size, which is the number of classes, interfaces, methods and
roles.

Consistency and correctness The next definition states the consistency property that
we enforce at compile-time.

Definition 1 Our system is consistent if

expectedAnnotationM ⊆ effectiveAnnotationM.

As we discuss in Section 4.1.1, annotations on interfaces impose constraints on the
effective annotations on methods defined in classes. If the effective set of annotations
on a method in an interface i is Ei, and the effective set of annotations on the corre-
sponding method in a class c that implements i is Ec, the consistency property requires
that Ei is a lower bound for Ec, that is, Ei ⊆ Ec.

We assert via the following proposition thatM is correct. Correctness is character-
ized relative toM0;M0 expresses exactly what is specified in the Java code. A method
in a class has in its effective annotation every role that it should (completeness) and no
roles that it should not (soundness). We write our assertion somewhat informally for
clarity.

Proposition 2 (m, c, r) ∈ effectiveAnnotationM if and only if exactly one of the following
cases is true. Furthermore, if (m, c, r1) and (m, c, r2) are two elements of effectiveAnnotationM,
then the same case from below is true for both elements.

1. If m is defined in c, then:

(a) m is not annotated with r in its definition in c, but is annotated with r′ where r
subsumes r′, perhaps transitively.

(b) m has no annotations in its definition in c, and c is annotated with r′, where r
subsumes r′, perhaps transitively.

2. Otherwise let c1, c2, . . . cn be the inheritance hierarchy of c, and let ci be the first class in
the hierarchy (starting at c) that defines m. Then m is annotated with r in its definition
in ci via one the above cases.

40



Proof (⇐): If exactly one of the three cases is true, then (m, c, r) appears in the set
effectiveAnnotationM:

Case 1(a): If method m is defined in class c, and has explicit annotations, then by
Rule 4.3 (explicit annotation), along with Rules 4.1 and 4.4 (on subsumption), for each
annotation r, we place (m, c, r) into effectiveAnnotationM.

Case 1(b): If method m is defined in class c and has no explicit annotations, then by
Rules 3.1 (class annotations) and 4.1 (subsumption), for each annotation r, we add
(m, c, r) to effectiveAnnotationM.

Case 2: If m is not defined in c, then by Rule 4.6 we search superclasses until we
find the class ci defining m. If m in ci has explicit annotations, then by Rules 4.1, 4.3,
and 4.4, for each annotation r, we place (m, c, r) into effectiveAnnotationM. If m in ci has
no explicit annotations, then by Rules 4.1, 4.2, and 3.1, for each r, we add (m, c, r) to
effectiveAnnotationM.

Exclusivity, the fact that no two tuples (m, c, r1) and (m, c, r2) can be added to
effectiveAnnotationM by different cases, holds since a method cannot be both defined in
a class and not defined in that class, and since a method cannot have both zero and
non-zero explicit annotations. Thus, no two annotations on m can come from differ-
ent sources, so if (m, c, r1) and (m, c, r2) are elements of effectiveAnnotationM, then both
were added by the same case.

(⇒) If (m, c, r) appears in effectiveAnnotationM, exactly one of the three cases of the
proposition is true:

The only valid combinations of rules, based on the predicates contained therein,
are {1,3,4} (Case 1(a)), {1,2,5} (Case 1(b)) and [{6,1,3,4},{6,1,2,5}] (Case 2). The initial set
effectiveAnnotationM0 is empty. Given case exclusivity and the fact that in our system,
the only method for growing the size of effectiveAnnotationM is application of the set
of rules, this implies that if (m, c, r) appears in effectiveAnnotationM then it must have
been added by one of the three cases of the proposition, and therefore exactly one of
them must be true. �

Semantics of Invocation We next express formally the rules that govern who may
invoke which methods, via the following rules. The predicate invokes(m1, c1, m2, c2) in-

41



dicates that method m1 in class c1 invokes method m2 in c2. The predicate member(u, r)
indicates that u is a member of the role r, and canInvoke(m, c, u) indicates that the user
u is able to invoke method m in class c.

The predicate canInvoke is not restricted to the methods that a user is directly au-
thorized to invoke; it includes methods invoked transitively. Thus, canInvoke includes
all methods the user can effectively run. Consider a scenario where role r is not autho-
rized to invoke b(), but may invoke a(), and a() invokes b(). Users who are members
of r can invoke a(), but our semantics also reflect that members of r can, in effect,
invoke b().

invokes(m1, c1, m3, c3)← invokes(m1, c1, m2, c2) ∧ invokes(m2, c2, m3, c3) (4.8)
canInvoke(m, c, u)← effectiveAnnotation(m, c, r) ∧member(u, r) (4.9)
canInvoke(m2, c2, u)← canInvoke(m1, c1, u) ∧ invokes(m1, c1, m2, c2) (4.10)

Rule (4.8) indicates that invokes is transitive: if m1 invokes m2 and m2 invokes m3,
then m1 invokes m3. Rule (4.9) indicates that a user is allowed to invoke a method to
which he is authorized via his role memberships. When we say “user,” we mean the
customary RBAC meaning of a user [22]; in our context, an RMI client maps to a user.

Finally, Rule (4.10) indicates that if a user may invoke a method m1, and m1 invokes
m2, then the user can invoke m2 as well. For a semantics, we specify a model as we do
for the semantics of annotation.

As the rules above express, a client may of course invoke a method to which it
is authorized. In addition, a client may invoke other methods, but only via methods
to which he is authorized. That is, if a client is authorized to invoke m1, and in its
execution, m1 invokes m2, then this is allowed even if the client is not authorized to m2
via annotations. The reason we allow this is that we assume that m1’s invocation of
m2 is controlled — the client cannot directly control the parameters and the manner in
which m2 is invoked.

4.2 Implementation

In this section, we discuss the implementation aspects of our approach. We separate
our discussions into a compile-time (Section 4.2.1) and a run-time component (Sec-
tion 4.2.2).

We modify RMI-enabled classes at compile-time and generate class files (compiled
output) for interfaces we derive. Our routine for building interfaces is based on our

42



work in Chapter 3. We use a compile-time preparation step that takes place between
compiling the source files and running the RMI Compiler (rmic). In this step, we em-
ploy an interface builder (see Section 4.2.1), which examines classes, derives an interface,
and modifies that interface according to the RBAC policy the developer has specified.

4.2.1 Compile-Time Component

Our program, the Proxy Object RBAC Compiler (porc) automatically performs all the
compile-time work. It first builds the role hierarchy, based on the role annotations (see
Section 4.1 under “Roles and role hierarchy”). It then expands annotations accord-
ing to the inference rules (e.g., associates class annotations with contained methods).
Next, it examines the classes that implement the interfaces. It reports an error if an
implementation lacks an annotation that an interface implies it should have. Finally, it
infers the annotations on method implementations from the annotations on the classes
in which they are defined.

Once the information about roles and annotations is computed, porc searches the
code base and finds RMI-accessible objects, examines each of these objects and de-
rives its remote interface. This derived interface enforces the rules described by the
annotations (by hiding inaccessible methods). porc outputs the bytecode version the
generated interface to a new class file, and modifies the original object’s class file to
implement the derived interface. At run-time, the server simply enters a dynamically-
created proxy object of the correct type into the RMI server. No modifications to the
Java compiler or the RMI compiler (rmic) are necessary.

Figure 4.2 depicts this process on a sample class Order, in a version of our example
from Section 4.1. We show selected roles from Figure 4.1 in Figure 4.2. In the figure,
javac, porc and rmic are the three stages of compilation. The files Accounting.java,
Accounting.class, ITEmployees.java, and ITEmployees.class are the roles, before
and after compilation. All other boxes are files that contain source code or an interme-
diate representation. In the figure, we show only new output files and modified input
files; unchanged input files do not appear as output of the processing steps.

We next describe how our system produces its various output files. In Figure 4.2,
we assume that a developer has written the Order.java file, and compiled it and the
roles into a class file using javac. The porc examines all the roles in our system and
defines the role hierarchy. Next, porc identifies Order as being a remotely-accessible
object, and processes it further by deriving interfaces corresponding to each role. In
the figure, we show processing of the Order class for the roles of ITEmployees and
Accounting only.

43



!"#"$
%&'()*+,
-!"#"$.

/,&01$
234+56$
789%$
%&'()*+,
-%&'$.

2,:+,;4"#" 2,:+,;5*"<<

2,:+,;5*"<<$
-=&:)>)+:.

?2,:+,@955&AB6)BC;5*"<<$
-D+B+,"6+:$?B6+,>"5+.

7=?$
%&'()*+,
-'()$.

2,:+,@955&AB6)BC@?B6+,'+:)",1@E6A3;5*"<<$
-7=?$E6A3.

?FG'(*&1++<;4"#"

955&AB6)BC;4"#"

?FG'(*&1++<;5*"<<

955&AB6)BC;5*"<<

?2,:+,@?FG'(*&1++<;5*"<<$
-D+B+,"6+:$?B6+,>"5+.

2,:+,@?FG'(*&1++<@?B6+,'+:)",1@E6A3;5*"<<$
-7=?$E6A3. 2,:+,@955&AB6)BC@?B6+,'+:)",1;5*"<<$

-D+B+,"6+:$?B6+,'+:)",1.

2,:+,@?FG'(*&1++<@?B6+,'+:)",1;5*"<<$
-D+B+,"6+:$?B6+,'+:)",1.

7&*+<;606

?B6+,'+:)",1;5*"<<$
-?B6+,'+:)",1$?B6+,>"5+.

Figure 4.2: Proxy Object Compiler Processing Order

Each of the generated interfaces (e.g., IOrder_Accounting) contains only the meth-
ods authorized to its role. The porc modifies Order.class to implement each gener-
ated interface. It also outputs to roles.txt a summary of the role hierarchy from in
the given application. In addition, if there are any RMI-accessible classes without any
annotations, the porc produces a warning to help the developer ensure that he or she
has applied the security policy to all classes.

Once our modifications are complete, we invoke rmic on the resultant class files
using the our provided common intermediary interface Intermediary.class, and the
RMI compiler produces the two intermediary stub classes appropriate to the IT Em-
ployees and Accounting roles: Order_ITEmployees_Intermediary_Stub.class and
Order_Accounting_Intermediary_Stub.class.

4.2.2 Run-Time Component

Our mechanism uses the Java Authentication and Authorization Service. JAAS enables
developers to specify their own methods for authentication, such as password-based
authentication. Upon successful authentication, we issue credentials to the client that
describe the client’s role(s) in the system. These credentials will be used later when the

44



!"#$

%$&'$&

()"$*+

,-./,$0"1+&2

34

5 6

7 8

9 :

Figure 4.3: Communication Flow for a Client Accessing the First Proxy Object. Arrows
correspond to messages and time proceeds from left to right.

client attempts to access a proxy. We note that we are not interested in the mapping
of clients to roles, as there are many administrative models for doing so. The actual
method of authentication is not relevant; we are interested only in the list of roles that
the client may access.

Authorization relies on the credentials the server has issued to the client. To request
a proxy object, the client presents the credentials to the server. Once the server verifies
these credentials, it grants access to the proxy object.

To access the proxy, the client performs an RMI lookup of an intermediary object.
Intermediary objects are accessible to everyone using RMI; they guard the proxy objects
that correspond to roles, by only making proxies available upon receipt of credentials.
Intermediaries are necessary because it is not possible to require authentication for
access to RMI objects. RMI predates JAAS and has not been updated to enforce the
JAAS capabilities [23].

public interface Order_Accounting_Intermediary extends java.rmi.Remote {
public Order_Accounting login (Credentials credentials)

throws LoginException, java.rmi.RemoteException;
}

Consider a simple example of a client that connects to a server. The server has an
object that can be used to verify its identity [24]. The server’s signed identity object is
available via RMI. Figure 4.3 shows the sequence of events starting from when a client
wishes to use the first object.

45



A directed edge in Figure 4.3 depicts an interaction between two elements of the
system, and these edges are numbered from left to right. Before client-server commu-
nication begins, the server instantiates the authentication object as well as any proxy
objects, and registers these objects so that they are available via RMI (not shown).
When a client wishes to access a proxy object, the steps are:

1. The client requests the server’s authentication object from the RMI registry.

2. The RMI registry returns to the client a reference to the server’s authentication
object.

3. The client may verify the authentication object using the server’s public key. If the
verification of the server’s identity succeeds, the client sends login information
(using JAAS) to the server.

4. If the server accepts the client’s attempt to log in, it returns to the client the set of
credentials to which the client is entitled (according to the user-to-role mappings
of the system).

5. When the client wants to access an object, it asks the RMI server for the location
of the intermediary.

6. The RMI server returns that location to the client.

7. The client presents the server-issued credentials to the intermediary.

8. If the credentials are valid, the intermediary returns to the client a reference to
the proxy object appropriate to the request.

A proxy object is an instance of the Proxy class. This class handles (in the sense of
a Java Invocation Handler) all method invocations on the proxy object. If the method
exists in the interface associated with a specific role, then the proxy passes the invoca-
tion on to the original object. The original object executes the method as requested. If
a method is not permitted for that role, it does not appear in the interface, and hence
is not available for invocation over RMI. Therefore, only the methods that are allowed
for a given role may be invoked by users with that role.

4.3 Empirical Assessment

We have applied our technique to three sample programs that range from almost 9 000
to nearly 300 000 lines of code (LoC). Our approach is applicable to programs that

46



Program Lines of Code Roles Relations Annotations Inserted
JBoss-Messaging 294 388 5 6 144

jGnash2 69 555 2 1 149
HospitalRMS 8 965 6 5 20

Table 4.1: Case Study Results for Sample Programs

allow clients to use RMI to invoke methods on objects. Many software systems are
suitable, possibly after some restructuring. Any Model-Value-Controller (MVC) sys-
tem is a candidate, if the communication between the model and view/controller are
made to use RMI. When the program is structured around persistent domain objects
(objects representing program entities), the domain objects can be server-side objects
and accessed remotely by the client. A more general scenario is remote administration.
In remote administration, the management objects (objects exposing administrative
functions) are published via RMI.

There is a performance penalty when developers convert a program from entirely
local execution to involving RMI. However, the benchmarks in Chapter 5 indicate that
our technique adds no significant additional cost over the base penalty for using Java
RMI. If the intent is to convert the application to use RMI, then a performance penalty
is expected. Our approach allows the application to operate via RMI where it may not
have been feasible before, because we offer security.

Our three sample programs are: JBoss-Messaging, a Java Message Service (JMS)
implementation that ships with the JBoss application server; jGnash2, a personal fi-
nance application; and Hospital RMS, a multi-role hospital record management sys-
tem that was a course project in database systems. For each program, we developed
a role hierarchy intended to represent a possible real-world security policy. Figure 4.4
shows the roles in the case studies and the subsumption relationships between these
roles.

We applied these role hierarchies to their respective programs and examined the
process of annotation to evaluate the applicability of our approach to real-world soft-
ware. We summarize our results in Table 4.1.

JBoss-Messaging has many software components; we focus on the server manage-
ment components. The server management objects are used for administrative func-
tions in JMS, such as creation of topics and queues, setting the dead letter queue, and
monitoring the system. The management interface is a relatively small subset of the
program, but controlling access to it is vital to maintaining program security. Consider
the following example of an annotation we apply in JBoss-Messaging.

47



!"##$
%&&'((

)'*+,
-.#/

0'12'1
%+34.

5'6$
%+34.

7894&$
%+34.

:"'"'$
%+34.

;8.4681

%+34.

<8&681

06*==

>*64'.6

?'@*#

!4.*.&'

AB8((,;'((*@4.@ CD.*(EF G8(946*#$);0

Figure 4.4: Role Hierarchies for Sample Applications. Boxes denote roles and arrows
indicate subsumption relationships.

@QueueAdministrator
public void setDeadLetterAddress

(final String deadLetterAddress)
throws Exception { ... }

The Queue Administrator and the Server Administrator, by subsumption, now have
rights to invoke this method when published via RMI. If the queue control object were
published without protection, anyone in the system could set the dead letter address
(the place where undeliverable messages end up). In that case, an attacker could then
receive messages intended for other users.

In the case of jGnash2, we apply our policy to the domain objects (e.g., Transaction)
and can therefore implement our policy with a relatively small number of annotations,
when compared to the size of the code base. Controlling access to the domain objects
prevents an unauthorized user from making changes to the data stored in the system.
We may then publish the domain objects via RMI. There are only two roles in this
system (read-only and full access) and only a few domain objects, so the number of
annotations to implement the security policy is small.

The Hospital RMS application uses a strict model-view-controller (MVC) architec-
ture; we apply our security policy by enforcing access control on the models. Ac-
cordingly, using role subsumption, we need only 20 annotations to enforce the basic

48



security policy of the system. This is because each model (e.g., patient record model)
is wholly accessible (all methods available) or inaccessible (no methods available) to
various roles.

Overall, we can see that the number of lines of code in the program do not neces-
sarily indicate the number of annotations required to implement the security policy,
nor do more roles mean more annotations to insert. Instead, what matters most is
the design pattern of the application (e.g., MVC) and the security policy to be imple-
mented. The security policy can often be succinctly stated, so that few annotations are
needed to implement the policy. Finally, a program typically has only a small number
of objects that are intended to be accessible via RMI. Consequently, the total number of
classes to annotate is small. As the proxy object compiler issues a warning if there are
RMI objects without any annotation, it is easy to ensure all classes that should have a
security policy have annotations.

Modifying the code to insert the annotations is easy and requires minimal time. We
were able to annotate each of the sample applications in less than a day. As properly
applying the security policy to all RMI-accessible objects ensures the enforcement of
that policy, a developer need only locate all RMI-accessible objects, which is easy to
do. He or she can then apply annotations to specify the desired security policy. Our
system enables developers to succinctly and rapidly encode RBAC security policies
without having to enforce them manually.

49



Chapter 5

Performance Analysis

We wanted to see if our system could have acceptable performance. Although there
is always overhead in a security system, a system with excessive overhead is not very
useful in practice. Some micro-benchmarks reveal the basic performance of our system.

Proxy Creation To create an proxy of an object with no defined methods, except
those inherited from Object, takes 0.56 ms, on average. Thereafter each method to be
processed adds a small penalty. The penalty is roughly constant, so we observe linear
behaviour with the number of methods. Our sample data points are for sample objects
with 0, 25, 50, 75, and 100 methods. Table 5.1 summarizes the data, including the mean
and standard deviation. See Figures 5.1 for a graph of the data.

Interface Derivation In addition to the proxy object creation cost, the first time a
proxy object of a particular class is created, there is an additional, one-time, server-side
cost to derive the interface.

This step when using the RBAC proxy object system is all handled at compile-time;
that is, all interfaces are generated by the Proxy RBAC compiler step. Accordingly, the
cost at run-time for interface derivation is zero.

Methods 0 25 50 75 100
Mean (ms) 0.563 1.856 3.207 4.487 5.834

Standard Deviation 0.022 0.010 0.017 0.024 0.056

Table 5.1: Summary of Object Creation Performance

50



0

1

2

3

4

5

6

7

0 25 50 75 100

Number of Methods

P
r
o

x
y
 O

b
je

c
t 

C
r
e
a
ti

o
n

 T
im

e
 (

m
s
)

Figure 5.1: Proxy Creation: Linear Performance with the Number of Methods in the
Object

51



Methods 0 25 50 75 100
Mean (ms) 21.51 30.43 34.67 38.85 42.15

Standard Deviation 0.560 0.640 0.753 0.730 1.07

Table 5.2: Summary of Interface Build Performance

In the safe and unsafe system, interfaces are generated both at compile-time and
at run-time. After an interface is created and loaded, it is cached, so thereafter the
cost of creating the interface is negligible. Furthermore, testing reveals that when
the interface is created multiple times, the virtual machine optimizes or caches the
derivation of the interface after the first time it is created. However, we conducted
our analysis by restarting the Java virtual machine each time, to get consistent results.
Table 5.2 summarizes the data, including the mean and standard deviation for each
test set. See the right side of Figure 5.1 for a graph of the data.

Deriving the object’s interface is linear in the number of methods in the object.
Although the initial interface creation may be costly, we reiterate that it is a one-time
cost; once derived, the interface is cached and is never re-created.

Testing Summary To provide some perspective, we conducted a comparison to how
long it takes to do a Java RMI lookup of a simple example object (not a proxy). The
server, RMI registry, and client ran on the same machine and used the same network
interface. These tests reveal that over 1 000 tests, a lookup takes 89.2 ms on average
(with a standard deviation of 8.52 ms). Creation of a proxy object, even one with 100
methods, takes an order of magnitude less time than the RMI lookup. Even deriving
the interface is on the same order as the RMI lookup. Thus, our system’s overhead is
small in practice.

We conducted this performance analysis using a MacBook Pro (2.4 GHz Core 2
Duo and 4 GB RAM), using Java 1.6.0. We ran the creation test 1 000 000 times, and
the interface building test 100 times. In both cases, we averaged over all executions to
produce the final result.

Overall, the performance results are positive. Our tests reveal that locally invoking
a proxy in place of the original takes almost no time. Over 1 000 000 tests, invoking
the proxy took, on average, 0.002 ms longer than invoking the original, which is below
the noise threshold for such a test. Therefore, the overhead of invoking a proxy is
negligible.

52



0

5

10

15

20

25

30

35

40

45

50

0 25 50 75 100

Number of Methods

I
n

te
r
fa

c
e
 D

e
r
iv

a
ti

o
n

 T
im

e
 (

m
s
)

Figure 5.2: Interface Derivation: Linear Performance with the Number of Methods in
the Object

53



Chapter 6

Future Enhancements

Both the basic system and the RBAC system present several areas of possible future
expansion, alteration, or enhancement. Some of the enhancements listed below would
be beneficial in a corporate situation, and others are suitable as research problems to
be investigated in the future.

6.1 Enhancements to Safe and Unsafe

We discuss two enhancements to the Safe and Unsafe system: automatic inference
annotation, and local client security.

Automatic Inference Annotation The Safe/Unsafe solution is effectively a white or
blacklist. Given a large legacy code base, it will be difficult to identify all methods
that should be allowed/denied, so we might deny some invocations that should be
allowed, or vice-versa.

To determine which methods to mark as safe or unsafe, we could decide based upon
whether or not methods write to the heap; this is a purity analysis [25]. If a method
only reads from the heap, then it cannot change the system state, and it is presumably
safe to use: methods without side effects would be automatically marked as safe to
invoke, and will therefore appear on the proxy objects. The programmer may override
these defaults by manually granting and revoking permissions at compile-time using
the @Safe and @UnSafe annotations.

Local Client Security Java reflection could give untrusted clients unauthorized ac-
cess, if they are running on the same virtual machine as the server (i.e., locally).

54



Because a proxy object references the original to pass along method invocations, an
attacker could use reflection to access the private data of the proxy and retrieve the
original object. Per Richmond and Noble [18], remote reflection does not exist, so this
vulnerability is limited only to local clients. We consider it reasonable to require that
any client running locally be trusted (like trusted client T in Figure 3.3).

6.2 RBAC Enhancements

We suggest two enhancements to the Role-Based Access Control version of our system:
audit trails and improved role administration.

Audit Trails To complement the concept of role-based security, we may wish to in-
troduce meaningful audit trails to our system, to track invocations. If implemented,
we could output a log indicating the role that invoked a certain method at a particular
time. Such an audit log could be used to catch instances of a System Administrator
user performing an Order.create() and an Order.approve() on the same Order, in
violation of separation of privilege principles. Such information could also be used for
other purposes, such as gathering usage statistics.

Role Administration Role Administration is a related area that has received much
attention in conjunction with role-based access control systems. Our administration
procedure, described in the implementation, is configured only at compile time. Al-
though configuration (addition and removal of annotations) is simple enough that a
security administrator who is not a programmer could do it, code manipulation is still
required. In the future, we could improve role administration to be outside of the code
base of the system being protected. Specifically, we would support roles as data for the
system (i.e., in a configuration file) instead of being tied directly into the code. This
would also present opportunities to have better management of the role hierarchy in
general; managing roles as a part of the code and without any visualization may suf-
fice for the small examples, but may not work for a real-world system with a complex
hierarchy.

55



Chapter 7

Related Work

Our solution is related to, but significantly different from, numerous areas in Java
security. We discuss bytecode editing, stack inspection, interface derivation, proxy
object generation, and, of course, role-based access controls.

While type safety obviates many security concerns, access control remains a key
issue. Pandey and Hashii [5] investigate bytecode editing to enforce access controls, but
do not discuss RMI. Wallach et al [10] enforce access controls using Abadi, Burrows,
Lampson, and Plotkin (ABLP) Logic, where authorization is granted or denied on
the basis of a statement from a principal allowing or denying access. However, their
approach does not work with RMI, and, as acknowledged by the authors, does not
handle a dynamic system with classloading well. Although Li, Mitchell, and Tong [24]
provide a technique for securing a Java RMI application, their work does not use roles.

Giuri began with a basic overview of Role-Based Access Control [3] and extended
this work to a Web context [26]. This work is foundational in Java Role-Based Ac-
cess Control, and we build upon it by involving RMI and dynamic object generation
from proxy objects. Ahn and Hu [27] implement a system for generating code from
language-independent security models; their approach enables separate consistency
verification for the model. Like many code generation approaches, however, their
system does not support round-tripping and therefore cannot smoothly support con-
current changes to code and model, unlike our system, which includes the security
policy directly in the code, helping ensure that the code and the policy both remain
up-to-date.

Stack inspection can provide effective access control, but in an RMI context, the
client call stack is unavailable to the server; even if it were available, it would be
untrustworthy. A stack inspection scheme would therefore have to consider all remote
accesses untrusted, whereas proxies can differentiate between trusted and untrusted

56



RMI calls. Furthermore, the time to perform a stack inspection increases linearly with
the depth of the stack [10], while the proxy object overhead is constant. Stack inspection
suffers from difficulties with results returned by untrusted code, inheritance, and side
effects [1]. Proxy objects are more resistant to these difficulties, because they do not
trust any results from untrusted code, are designed with inheritance in mind, and are
intended as a tool to avoid harmful side effects. Proxy objects and stack inspection
have different principles of trust. In proxies, a caller is trusted if it receives a reference
to the original object. In stack inspection, the callee verifies its caller and all transitive
callers.

Interface derivation is already in use in practice. For instance, Bryce and Razafima-
hefa [16] generate dynamic proxies to go between objects, and restrict access to meth-
ods. Guard objects, like proxies, are used as substitutes for the originals to control
access. These bridges do not restrict access to fields; our solution allows only appro-
priate method invocations. Furthermore, we also permit role-based access controls
rather than partitioning into trusted and untrusted clients.

Myers et al created JIF (Java Information Flow) [28] to restrict the leakage of infor-
mation between objects within a Java program. We focus on method invocation by
various roles, and do not assign ownership of data to particular principals. Finally, our
system makes no changes to the Java language, meaning all semantics of the language
remain consistent with the Java language specification.

57



Chapter 8

Conclusions

We have presented two techniques for method-level role-based access control for RMI-
using Java programs.

Our first technique relies on computing whether a method is safe or unsafe based
on program annotations. To clearly capture the semantics of our system, we have
described them using First Order Logic. We implemented our system and obtained
some basic performance metrics. Proxy objects can be employed statically, with Java
Remote Method Invocation, or as a complement to the security model of the Enterprise
Java Bean specification.

Our second technique computes the access rights to a given method based on pro-
gram annotations. We have also described the semantics of our role-based system
using First Order Logic. To investigate the behaviour of our system, we implemented
a proxy object RBAC compiler. Using this compiler, we conducted a case study, which
demonstrated the viability of our system in real software applications of various sizes.

Proxy objects have very little overhead in practice. We showed that creation of a
proxy object takes an order of magnitude less time than the RMI lookup. Deriving the
interface—a one-time cost—is on the same order as the RMI lookup.

58



Bibliography

[1] Fournet, C. and Gordon, A., “Stack Inspection: Theory and Variants,” ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 25, pp. 360–399, May
2003. 2, 13, 34, 57

[2] Sandhu, R., Coyne, E., Feinstein H., and Youman, C., “Role-Based Access Control
Models,” Computer, vol. 29, pp. 38–47, Feb 1996. 2, 6, 32

[3] Giuri, L., “Role-Based Access Control in Java,” Proceedings of the third ACM work-
shop on Role-based access control, pp. 91–100, 1998. 2, 56

[4] Gosling, J., Joy, B., Steele, G., and Bracha, G., Java Language Specification, 3rd Edition.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2005. 2

[5] Pandey, R. and Hashii, B., “Providing Fine-Grained Access Control for Java Pro-
grams,” Proceedings of the 13th European Conference on Object-Oriented Programming,
vol. LNCS 1628, pp. 449–473, 1999. 2, 5, 6, 14, 15, 16, 56

[6] Sun Microsystems, Inc., “Java Remote Method Invocation - Distributed Comput-
ing for Java,” 2010.
http://java.sun.com/javase/technologies/core/basic/rmi/whitepaper/
(Accessed on 2010-03-10). 3

[7] DeMichiel, L. and Keith, M., “JSR 220: Enterprise JavaBeans, Version 3.0: EJB Core
Contracts and Requirements,” May 2006.
Available: http://java.sun.com/products/ejb/docs.html
(Accessed on 2010-03-10). 3

[8] Sun Microsystems Inc., “Controlling access to members of a class,” 1995-2008.
http://java.sun.com/docs/books/tutorial/java/javaOO/accesscontrol.html
(Accessed on 2008-11-14). 4

[9] Karjoth, G., “An Operational Semantics of Java 2 Access Control,” Proceedings of
the 13th IEEE workshop on Computer Security Foundations, pp. 224–232, 2000. 4, 10

59



[10] Wallach, D., Appel, A., and Felten, E., “SAFKASI: A Security Mechanism for
Language-based Systems,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 9, pp. 341–378, 2000. 4, 8, 9, 10, 11, 13, 56, 57

[11] Manocha, H., “Protection: Bell-Lapadula Model,” 1999.
http://courses.cs.vt.edu/˜cs5204/fall99/protection/harsh/
(Accessed on 2008-11-25). 5

[12] Greenfieldboyce, D. and Foster, J., “Type Qualifier Inference for Java,” Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems and Applications, pp. 321–336, 2007. 7, 8

[13] Bartolleti, M., Degano, P., and Ferrari, G., “Static Analysis for Stack Inspection,”
Electronic Notes in Theoretical Computer Science, vol. 54, pp. 69–80, August 2001. 9,
11, 12, 13

[14] Hardy, N., “The Confused Deputy: (or why capabilities might have been in-
vented),” ACM SIGOPS Operating Systems Review, vol. 22, pp. 36–38, 1988. 10

[15] Liang, S. and Bracha, G., “Dynamic Class Loading in the Java Virtual Machine,”
ACM SIGPLAN Notices, vol. 33, pp. 36–44, October 1998. 14

[16] Bryce, C. and Razafimahefa, C., “An Approach to Safe Object Sharing,” Proceed-
ings of the 15th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 367–381, 2000. 15, 17, 57

[17] Rajshekhar, A.P., “Hibernate: Understanding Associations,” 12 2005.
http://www.devarticles.com/c/a/Java/Hibernate-Understanding-Associations/1/
(Accessed on 2009-05-14). 21

[18] Richmond, M. and Noble, J., “Reflections on Remote Reflection,” Proceedings of the
24th Australasian Conference on Computer Science, vol. 11, pp. 163–170, 2001. 23, 34,
55

[19] Hugh, M. and Ryan, M., Logic in Computer Science. Cambridge, UK: Cambridge
University Press, 2nd ed., 2004. 26

[20] McManus, E., “Build your own interface - dynamic code generation,” 10 2006.
http://weblogs.java.net/blog/emcmanus/archive/2006/10/build_your_own.html
(Accessed on 2009-05-22). 28

[21] A. V. Gelder, K. A. Ross, and J. S. Schlipf, “The well-founded semantics for general
logic programs,” Journal of the ACM, vol. 38, pp. 620–650, July 1991. 39

60



[22] Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R., Role-Based Access Control. Nor-
wood, MA, USA: Artech House, 2007. 42

[23] Kumar, P., J2EE Security for Servlets, EJBs and Web Services: Applying Theory and
Standards to Practice. Upper Saddle River, NJ, USA: Prentice Hall, 2003. 45

[24] Li, N., Mitchell, J. C., and Tong, D., “Securing Java RMI-Based Distributed Appli-
cations,” Proceedings of the 20th Annual Computer Security Applications Conference,
pp. 262–271, 2004. 45, 56

[25] Salcianu, A. and Rinard, M., “Purity and Side-Effect Analysis for Java Programs,”
Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, pp. 75–82, 2007. 54

[26] Giuri, L., “Role-based access control on the Web using Java,” Proceedings of the
fourth ACM workshop on Role-based access control, pp. 11–18, 1999. 56

[27] Ahn, G-J and Hu, H., “Towards realizing a formal RBAC model in real systems,”
Proceedings of the 12th ACM Symposium on Access Control Models and Technologies
(SACMAT), pp. 215–224, 2007. 56

[28] Myers, A. C., Nystrom, N., Zheng, L., and Zdancewic, S., “Jif: Java information
flow,” July 2001. Software release. http://www.cs.cornell.edu/jif. 57

61


	List of Tables
	List of Figures
	Introduction
	Background
	Java Access Controls
	Stack Inspection
	Dynamic Code Generation and Class Loading

	Safe and Unsafe Access Control
	Motivating Examples
	Software-as-a-Service Scenario
	Enterprise Java Bean Container Scenario

	Proxy Objects
	Enterprise Java Bean Container Integration
	Semantics of Annotation
	Semantics of Invocation

	Implementation

	Role-Based Access Control via Proxy Objects
	Example & Approach
	Annotations
	Semantics

	Implementation
	Compile-Time Component
	Run-Time Component

	Empirical Assessment

	Performance Analysis
	Future Enhancements
	Enhancements to Safe and Unsafe
	RBAC Enhancements

	Related Work
	Conclusions
	Bibliography

