
Local Mixture Models in Hilbert Space

by

Zhiyue Huang

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Mathematics

in

Statistics

Waterloo, Ontario, Canada, 2010

c© Zhiyue Huang 2010



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true

copy of the thesis, including any required final revisions, as accepted by my

examiners.

I understand that my thesis may be made electronically available to the

public.

ii



Abstract

In this thesis, we study local mixture models with a Hilbert space struc-

ture. First, we consider the fibre bundle structure of local mixture models

in a Hilbert space. Next, the spectral decomposition is introduced in or-

der to construct local mixture models. We analyze the approximation error

asymptotically in the Hilbert space. After that, we will discuss the convexity

structure of local mixture models. There are two forms of convexity condi-

tions to consider, first due to positivity in the −1-affine structure and the

second by points having to lie inside the convex hull of a parametric family.

It is shown that the set of mixture densities is located inside the intersection

of the sets defined by these two convexities. Finally, we discuss the impact

of the approximation error in the Hilbert space when the domain of mixing

variable changes.
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Chapter 1

Introduction

Suppose that a random variable X takes values in a sample space S and that

its distribution can be represented by a probability density function of the

form

f(x|θ,Q) =

∫

f(x|η, θ)dQ(η), (1.1)

where we call η the latent random variables from the probability measure Q.

Such distribution Q is called mixing distribution or latent distribution. Mix-

ture distributions are applied widely, for example capture-recapture models

([Cha87], [XM07] and [BDKS05]), measurement error model ([Lin95] and

[Mar03]), cluster analysis ([HT96], [FR02] and [TJP04]).

In this thesis, we introduce a Hilbert space structure to the mixture dis-

tributions, discuss the fibre bundle and convexity structure of local mixture

models in the Hilbert space, and show the effect on inference on the param-

eter θ if the domain of η changes.

Let us get a first taste of mixture distributions by considering measure-

ment error models.

Example 1. (Measurement Error Models [Lin95] (Page 14)) Consider a

simple linear regression model

Y = α+ βX∗ + ǫ,
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which obeys the usual Gauss-Markov conditions, with ǫ ∼ N(0, σ2). However,

suppose that X∗ is measured with error, so that only

X = X∗ + η

is observed, where η considered a latent variable with distribution Q. Fur-

thermore, η is assumed independent of both X∗ and ǫ with mean zero. The

density of observed variables is

f(x|α, β, σ2, Q) =

∫

f(x|η, α, β, σ2)dQ(η)

Mixture distributions, in this case, allow inference on the regression pa-

rameters β in the case where there is measurement error. Local mixture

models, which are introduced later, further allow such inference when all

that is known about the mixing distribution Q is that it has a relatively

small variance. Our task is to make inference about the two population vari-

ables Y and X using measurement error models. There are two different

statistical inferential problems in this example. One is to fit the regression

model, i.e. to estimate the α and β in the model, here comes the first infer-

ential problem of mixture distributions, parameter estimation. The other is

the estimation of the mixing distribution Q. Different geometrical structures

of mixture distribution have been discussed for each purpose.

1.1 Statistics Inference and Geometrical Struc-

ture of Mixture Distributions

1.1.1 Parameter Estimation

For parameter estimation, the geometrical structures such as jet space (See

Appendix A.1.2) and fibre bundle (See Appendix A.1.2) in an affine space

(See Appendix A.1.2) are chosen by Marriott ([Mar02] and [Mar07b]) and

Anaya-Izquirerdo andMarriott [AIM07]. In 2002, Marriott [Mar02] defines
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the sets XMix and VMix for a support set S, by

XMix =

{

f(x)|f ∈ C∞(S,R), f ∈ L2(v),

∫

f(x)dv = 1

}

;

VMix =

{

g(x)|g ∈ C∞(S,R), g ∈ L2(v),

∫

g(x)dv = 0

}

.

It is shown that (VMix,+) is a vector space and (XMix, VMix,+) is an affine

space (See Appendix A.1.1) with the natural addition operation +.

In [Mar02], we consider the vector space

T 2Mθ0
:= span

{

∂

∂θ
f(x|θ0),

∂2

∂θ2
f(x|θ0)

}

⊂ VMix

and attach it to a point f(x|θ0) ∈ XMix. Such structure is described by jet

space. For a higher order jet space,

TKMθ0
:= span

{

∂

∂θ
f(x|θ0),

∂2

∂θ2
f(x|θ0), · · · ,

∂K

∂θK
f(x|θ0)

}

, K = 1, 2, · · ·

the local mixture model is defined

f(x|θ0, α) = f(x|θ0) +

K
∑

i=1

αi
∂i

∂θi
f(x|θ0). (1.2)

The local mixture model can be viewed as a Laplace expansion of the mixture

density function f(x|θ,Q), see for example [Mar02] and [AI06]. Other than

the equation above, we also need two boundaries for approximation, defined

as follows.

Definition 1. The hard boundary is defined by the condition that f(x|θ, α) ≥
0 for all x ∈ S.

Definition 2. The soft boundary is defined by f(x|θ, α) lying in convex hull

of curve f(x|θ) in the mixture affine geometry.

The hard boundary offers us the positivity condition which ensures that

the approximation of mixture distribution is a density function, while the
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Figure 1.1: Jet Space Strucutre of the Mixture Distributions

soft boundary ensures that the resultant approximation can be realized by

an exact mixture model, mentioned in [AIM07] and [Mar07b]. Then, we use

such model to approximate the real distribution f(x|θ,Q).

The definition of a local mixture model as given on the previous page

gives rise to a potential identification problem. There could be different

approaches to approximate the mixture density functions, such as

f(x|θ0, α) = f(x|θ0) +
K
∑

i=1

αi
∂i

∂θi
f(x|θ0)

or

f(x|θ1, α′) = f(x|θ1) +

K
∑

i=1

α′
i

∂i

∂θi
f(x|θ1),

where θ1 6= θ0. Both of the two models can be used to approximate f(x|θ,Q).

Geometrically, the space of f(x|θ,Q) can be represented by a vector space
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span
{

∂i

∂θi f(x|θ0), i = 1, 2, · · ·
}

attached at point f(x|θ0) or span
{

∂i

∂θif(x|θ1), i = 1, 2, · · ·
}

at point f(x|θ1) as shown in Figure 1.1. The identification problem is solved

later in the work of Anaya-Izquierdo and Marriott in [AIM07]. If f(x|θ, η) is

in a regular exponential family, then we may set θ equal the mean parame-

ter and with loss of generality, assume that the first moment of the mixing

distribution is zero. The local mixture model is given by,

f(x|θ, α) = f(x|θ) +

K
∑

i=2

αi
∂i

∂θi
f(x|θ), (1.3)

where αi are coefficients. We can see the main difference between local

mixture model 1.2 and 1.3 is the drop of α1∂f(x|θ)/∂θ. It is shown in

[AI06] and [AIM07] that there is no loss in generality when interpreting local

mixtures in terms of asymptotic expansion of mixture models.

In the later works of Marriott [Mar07b], a definition of the global exten-

sion of the local mixture model can be given as follows.

Definition 3. The global extension of the local mixture model of a regular

family f(x|θ) ∈ XMix is defined as

f(x|θ, α) = f(x|θ) +

K
∑

i=1

αigi(x|θ), (1.4)

where αi are coefficients and gi ∈ VMix.

f(x|θ, α) is an element in XMix, because

∫

S

f(x|θ, α)dx =

∫

S

f(x|θ) +

K
∑

i=1

αigi(x|θ)dx = 1.

Hence, the local mixture model has a structure in the affine space (XMix, VMix,+).

The fibre bundle (Appendix A.1.2) in the affine space (XMix, VMix,+) can

describe the geometrical structure of local mixture model. We consider a

larger parametric family of density functions f(x|θ, η) instead of f(x|θ). Such

structure satisfies the following
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1. f(x|θ, 0) equals f(x|θ) for all θ.

2. For each fixed θ0, the family f(x|θ, η) is Fisher orthogonal (See Ap-

pendix A.2) to f(x|θ) at θ0.

3. For each fixed θ0, the family f(x|θ, η) has zero −1-curvature with re-

spect to η (See Appendix A.1.2) either at (θ0, 0) or over all the support

of η.
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Figure 1.2: Fibre Bundle Structure of the Mixture Distributions

As shown in Figure 1.2, θ ∈ C in the affine space (XMix, VMix,+) forms the

base space of a fibre bundle, while the fibre space spanned by {gi(x|θ), i =

1, 2, · · · } which is Fisher orthogonal to f(x|θ) at θ0. To understand the

Fisher orthogonal condition, we should go back to [Ama85] (Page 253) and

[ABNK+87] (Page 59). Amari suggests how to construct a Fisher orthogonal

parametrization for the models. In other words, the coordinates of param-

eters are Fisher orthogonal to each other. In the fibre bundle of mixture
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models, the base space is the curve f(x|θ), related to θ, the parameters that

we are interested in, while the fibre space spanned by {gi, i = 1, · · · , n} are

the space of nuisance parameters. Note here, with the positivity condition,

the vector space we use for local mixture models is a convex subspace of the

fibre at point f(x|θ0) by [Mar07b]. In Amari’s construction, the parameter

of interest is orthogonal to the nuisance parameters. Amari also shows in

[Ama85] that the dimension of the fibre of the normal bundle can grow with

the sample size without losing the efficiency of inference for the parameters

of interest. Analogous results are discussed in [CR87] by Cox and Reid and

discussion thereto. Again, the two boundaries are necessary here to keep the

positivity condition and dealing with exact mixture distributions.

1.1.2 Estimation of Mixing Distribution

The other main statistical inferential problem relating to mixture distribution

was the estimation the mixing distribution. It was first raised by Robbins

[Rob56] in 1956. Since we do not observe η1, · · · , ηN , but X1, X2, · · · , XN ,

the estimation of mixing distribution are based on the value of Xi. For exam-

ple in measurement error models, we want to estimate the distribution of Q.

Different approaches are proposed for the problem, including Bayesian esti-

mators ([Rob64], [Rol68] and [Mee72]) and maximum likelihood estimators

([Lai78], [Lin81] and [Ler92]). For estimating mixing distributions, Lindsay

([Lin83] and [Lin95]) uses convex (See Appendix A.1.2) geometry to study

statistics in a finite dimensional space and Wood [Woo99] applies the cyclic

polytope (See Appendix A.1.2) structure, especially for mixture of binomial

distributions.

In [Lin83] and [Lin95], for the i.i.d observations X1, X2, · · · , XN , the like-

lihood function is defined as the function from the parameter space C to R.

In the parameter space C, also an affine space defined in Appendix A.1.1,

the image of the curve, {f(x|θ), θ ∈ C}, is the set of all possible fitted val-

ues of the likelihood vector. Then, the mixture model f(x|θ,Q) is located

inside the convex hull of this curve. Therefore, it can be written in the form
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of convex combination of the elements in the image {f(x|θ), θ ∈ C}. With

the above fact and the results in convex geometry, Lindsay shows that the

loglikelihood ℓ(Q) =
∑N

i=1 log f(x|Q) has a unique maximum over the space

of all distribution functions Q. Furthermore, the maximizer Q̂ is a discrete

distribution with no more than D distinct points of support, where D is the

number of distinct points in (x1, x2, · · · , xn).

In 1999, Wood [Woo99] builds on earlier work of Lindsay and elucidates

the geometrical structure of the following question: given a mixture of bino-

mial distributions, how do we estimate the unknown mixing distribution Q?

For binomial distribution Bin(n, p), let n be fixed. As p changes from 0 to

1, we obtain a binomial curve Bn in the simplex,

T =

{

x = (q0, · · · , qn);
∑

i

qi = 1, qi ≥ 0, ∀i
}

where qi stands the probability that random variable is equal to i. Wood used

the fact that the convex set of mixtures of binomial distribution is affinely

isomorphic to the cyclic polytopes. He uses a smoothing estimator Q̂ to pro-

duce a ‘nearest point’ estimator Q̂k in the sense of Kullback-Leibler distance

on a face of the convex hull of Bn(k), the k-segment piecewise linear approx-

imation to binomial curve Bn. The estimator Q̂k has a unique realization as

a convex combination of the set of vertices {q0, q2, · · · , qn} of the face. Such

vertices and their weights offer us an estimator of the mixing distribution,

i.e.

Q̂ =
n
∑

i=0

piqi.

where for all i ∈ [1, n],

n
∑

i=0

pi = 1, pi ≥ 0.

8



1.2 Purpose and Outline

The thesis will follow Marriott’s work more than the approach of Lindsay.

The focus is on estimating parameter of interest θ in a large dimensional

family of mixture distributions

f(x|θ,Q) =

∫

Q

f(x|θ, η)dP (Q).

We have an infinite dimensional nuisance parameter Q ∈ Q. [Mar07b] gives

an infinite dimensional nuisance parameter problem in the Bayesian view.

Given a set of observations, {x1, x2, · · · , xN}, we calculate the marginal pos-

terior of parameter θ as

∫

Q

{

N
∏

i=1

∫

f(xi|η, θ)dQ(η)

}

dP (Q),

for the prior measure dP on Q which will be some subset of the space of

distribution. This results in the problem that we need to integrate over an

infinite dimensional parameter Q ∈ Q. The (global extension) local mix-

ture model avoids such infinite dimensional nuisance parameters. By (global

extension) local mixture model, we can approximate the marginal posterior

by

∫

{

N
∏

i=1

∫

f(xi|θ, α)

}

dP (α),

where α is a vector of α1, α2, · · · , αK . Rather than considering in the in-

finitely (high) dimensional space, we can consider a model in the finite (low)

dimensional space. Furthermore, it is shown that there is little changes in

the inference of θ in [Mar02], [AI06], [AIM07], [Mar07b], [AICMV09] and

this thesis.

Different techniques for low dimensional reduction has been used in mix-

ture models, such as Laplace asymptotic expansion ([Mar02], [Mar03], [AI06]

and [AIM07]) and Principle Component Analysis ([MV04] and [Mar07b]). All

9



previous work are considering the affine space (XMix, VMix,+). The purpose

of this thesis is to consider the geometrical structure of the local mixture

model with a Hilbert structure.

In Chapter 2, we will discuss the spectral decomposition of mixture den-

sity functions. Then, we will talk about the fibre bundle structure and con-

vexity structure of mixture models in the Hilbert space in Definition 4. Then,

we discuss the effect of the approximation error with the choice of compact

region C of the latent random variables η. The part is mainly based on

the previous work of Marriott ([Mar02], [MV04] and [Mar07b]) and K. A.

Anaya-Izquierdo [AIM07].

We conclude in Chapter 3 with a final discussion and directions for future

research.

10



Chapter 2

Linear Structure in Hilbert

Space

In this chapter, the regularity conditions are given firstly. Then, We consider

the space of distributions in the framework introduced in [AICMV09] and

describe the fibre bundle structure introduced by Marriott [Mar07b] in a

Hilbert space.

Definition 4. For a density function f(x) define a Hilbert space with −1-

affine geometry by

H(f(x)) =

{

g(x)|
∫

f(x)−1g(x)2dx <∞
}

with the inner product

〈gi, gj〉H(f) =

∫

S

f−1gigjdx <∞, (2.1)

and the corresponding norm ‖ · ‖H(f). The orthogonal condition in H(f(x)),

∫

S

f−1gigjdx = 0, i 6= j

also indicates that gi and gj are Fisher orthogonal (See Appendix A.2).
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For +1-affine geometry, the inner product of the Hilbert space can be

defined as

〈gi, gj〉H(f) =

∫

S

fgigjdx <∞,

Next, we decompose the mixture density functions in the Hilbert space.

The convexity structure of the mixture distributions and an approximation

error by the extending local mixture model 1.4 are also discussed. In [AIM07],

Anaya-Izquierdo and Marriott explore the phenomena that the spectrum of

the eigenvalues change with the change of the domain of the mixing param-

eter η. We will give the proof of the phenomena in Appendix A.3. The

part is mainly based on the previous work of Marriott ([Mar02], [MV04] and

[Mar07b]) and Anaya-Izquirerdo and Marriott [AIM07].

Before we start, the regularity conditions are given.

2.1 Regularity Conditions

Consider the mixture density function as follows,

f(x|θ,Q) =

∫

C

f(x|θ, η)q(η)dη

where f(x|θ) is a family of probability density or mass functions and the

mixing distribution is given by q(η) with mixing variable η. Denote S be the

sample space of x, C be the domain of η and Ω be the parameter space of θ.

For simplification, we will restrict to models where mixing is of the form

f(x|θ,Q) =

∫

C

f(x|θ + η)q(η)dη.

We give the regularity condition for f(x|θ, η) as follows.

Regularity Condition 1.

f(x|θ, η) is continuously differentiable with respect to η over a compact set

C.

12



Regularity Condition 2.

f(x|θ,Q) and f(x|θ) have common support S in x. For any x ∈ S, f(x|θ,Q)

is strictly positive.

Regularity Condition 3.

If f(x|θ,Q) is probability density function of x, then f(x|θ, η) and ∂f(x|θ, η)/∂θ
are continuous over the region S×C×Ω. By Leibniz’s rule for differentiation

under the integral sign (Appendix A.1.1), we have

∫

S

∂

∂θ
f(x|θ, η)dx =

∂

∂θ

∫

S

f(x|θ, η)dx.

While f(x|θ,Q) is probability mass function of x, we need

∑

xi∈S

∂

∂θ
f(xi|θ, η) =

∂

∂θ

∑

xi∈S

f(xi|θ, η).

Regularity Condition 4.

We assume
∫

S×C

|F(x|θ, η)| d(x, η) <∞.

where F(x|θ, η) is defined as Equation 2.7. By Fubini’s theorem (Appendix

A.1.1),

∫

S

∫

C

F(x|θ, η)dηdx =

∫

C

∫

S

F(x|θ, η)dxdη.

Two more regularity conditions are given in next section in order to in-

troduce the Hilbert structure.

2.2 Fibre Bundles in a Hilbert Space

A manifold structure as the space of distributions with a common support is

well developed in [Ama85], [ABNK+87] and [MR93]. In general however the

13



geometry of a manifold is not a good way to think of spaces of distributions.

For example, consider the space of all distributions on three categories, B0,

B1 and B2. The space of all such distribution is determined by the triple of

probabilities (π0, π1, π2) with the constraints,

πi ≥ 0, and
2
∑

i=0

πi = 1.

In the standard definition of a parameterization of an open subset of a man-

ifold requires a diffeomorphism to an open set of Euclidean space. However,

the distributions we are considering do not have a manifold structure but

that of a simplex.

This idea can be generalised to a much more complex space of distribu-

tions. For example consider approximating any distribution on the real line

by an infinite dimensional extended multinomial based on discretising the

line into bins, whose probability mass function is defined as

f(x1, x2 · · · |n, p1, p2, · · · ) =







n!
x1!x2!···

px1

1 p
x2

2 · · · while
∑∞

i=1 xi = n

0 otherwise
.

We can approximate the continuous sample space S of a continuous dis-

tribution with density function f(x), by an infinite set of bins

{[nǫ, (n + 1)ǫ)|n ∈ Z},

for fixed ǫ > 0. The probability on the bins [nǫ, (n+ 1)ǫ) is defined by

πi := P(B = [iǫ, (i+ 1)ǫ)) =

∫

[iǫ,(i+1)ǫ)

f(x)dx ≥ 0. (2.2)

So we have
∑

i

πi = 1

Furthermore,

∆∞ =

{

π ∈ R
∞|

∞
∑

i=1

πi = 1, πi ≥ 0

}

(2.3)

is called the standard infinite dimensional simplex.
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Example 2. Consider the probability density function of Normal distribution

N (µ, 1) given by

φ(x|µ, 1) =
1√
2π

exp{(x− µ)2/2}, x ∈ (−∞,+∞).

We discretize the sample space into a set of bins with the form

Bi = [(i− 1)ǫ, iǫ), i ∈ Z

where ǫ > 0. The bin probabilities are given by

πi =

∫

Bi

φ(x|µ, 1)dx, i ∈ Z.

Then, we have an infinite number of finite width bins. π is in the infinite

dimensional simplex defined in Equation 2.3.

Let the infinite dimensional simplex ∆∞ be equipped with −1-affine struc-

ture introduced in [AICMV09]. In the infinite dimensional simplex ∆∞ ,we

can construct the affine space, 〈XMix, VMix,+〉, where

XMix =

{

x ∈ R
∞|

∞
∑

i=1

xi = 1

}

, VMix =

{

v ∈ R
∞|

∞
∑

i=1

vi = 0

}

.

The operator + is the normal addition operator. For generality, we consider

the continuous case in the thesis, in which the affine space can be written as

XMix =

{

f |
∫

S

f(x)dx = 1

}

, VMix =

{

g|
∫

S

g(x)dx = 0

}

.

With the positivity conditions, i.e. ∀xi ∈ S, f(xi|θ,Q) > 0, the elements

in XMix are densities, while VMix forms a vector space. For all element

f ∈ XMix, Π(f) is a subspace of VMix defined as

Π−(f) := {g|∃α > 0, such thatf ± αg > 0, f ∈ XMix, g ∈ VMix} . (2.4)

Note that there is no guarantee that the Fisher information of g ∈ Π−(f)

always exists. Let us look an example of infinite Fisher information given in

[LCM09].
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Example 3. Let X1, · · · , XN be a random sample from the mixture expo-

nential (1 − α)Exp(1) + αExp(θ), where Exp(θ) denotes the exponential

distribution with mean θ. The score value for α at α = 0 and given θ is

S(θ) =

N
∑

i=1

{

θ−1 exp(−θ−1Xi)

exp(−Xi)
− 1

}

.

However, under the homogeneous model where α = 0, we find

E[S2(θ)] =







{n(1 − θ)2/[θ(2 − θ)]} θ < 2

∞ θ ≥ 2

Hence, for θ ≥ 2, we have an infinite Fisher information.

The fibre bundle structure of mixture model is introduced by Marriott in

[Mar07b], following the idea of Amari [Ama85]. A distribution f(x|θ) with

different values of θ forms a curve c(C) in the infinite dimensional simplex

∆∞. The infinite-dimensional simplex ∆∞ has countable basis. Therefore,

it is separable and the convex hull K of the set of distribution f(x|θ) can be

introduced by Proposition 6. It forms a set for mixture distribution f(x|θ,Q).

According to [AICMV09], we need the space of mixture distribution be a

subspace of ∆∞, in which all elements share same moment structure and

support.

The following two regularity conditions are necessary.

Regularity Condition 5. For all η ∈ C, f(x|θ, η) share the same moment

structure. In other words, for any η1, η2 ∈ C ln f(x|θ, η1)− ln f(x|θ, η2) is an

element of the set Π+(f(x|θ,Q))

Π+(f(x|θ,Q)) :=

{

g(x)|∃α > 0, such that

∫

f(x|θ,Q) exp(±αg(x))dx <∞
}

.

(2.5)

Regularity Condition 6. For any η1, η2 ∈ C, f(x|θ, η1) − f(x|θ, η2) is an

element of Π−(f(x|θ,Q)).
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Denote D be the subset of ∆∞ which satisfies Regular Condition 5 and

6. By the result in [AICMV09], D will form the Hilbert space defined in

Definition 4. We denote the Hilbert space by Π.

Recall the mixture distribution can be given as

f(x|θ,Q) = f(x|θ0) +
∞
∑

j=1

αjgj,

where gj ∈ Π and j = 1, 2, · · · . Let gj, j = 1, 2, · · · be orthogonal to the

score vector at f(x|θ0). Second, the family f(x|θ, η) has zero −1 curvature

either at θ0 or globally. The base space is the set of f(x|θ) with different

value of θ, while gj , i = 1, 2, · · · span the fibre. We have a fibre bundle with

Hilbert structure in its fibre.

2.3 Spectral Expansion of Mixture Density

Functions

In the local mixture model with basis ∂if(x|θ0)/∂θi in Equation 1.2, a large

number of basis vectors is needed while the domain C of η is large. To solve

this problem, Marriott introduce the Principle Component Analysis to find

the basis span VMix. It is shown that Principle Component Analysis can

keep the number of components low without great change of inference, even

when η has a large domain C. It is also applied to the likelihood function in

[MV04].

Let (C, Q) be a measurable space, η is a random variable in the space

with distribution Q over the compact set C by Regularity Condition 1. We

have a Hilbert space Θ on it as follows

Θ = {f(η)|f ∈ C(C,R)} ,

The inner product is defined as

〈g, h〉Θ =

∫

C

g(η)h(η)dη. (2.6)
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The inner product of Θ exist because of the compactness of C. Let θ0 be a

point in C. To expand the vector f(x|θ, η) − f(x|θ0) in the subspace which

is orthogonal to the term ∂f(x|θ)/∂θ|θ0
in Θ. For any f(x|θ, η), f(x|θ0) ∈ D,

we choose F(x|θ, η) ∈ Θ as follows,

F(x|θ, η) := f(x|θ, η) − f(x|θ0) − 〈f(x|θ, η) − f(x|θ0), s0(x)〉Π s0(x), (2.7)

where

s0(x) =
1

‖ ∂
∂θ
f(x|θ0)‖Π

∂

∂θ
f(x|θ0),

where
∥

∥

∥

∥

∂

∂θ
f(x|θ0)

∥

∥

∥

∥

2

Π

=

∫

S

f(x|θ,Q)−1

[

∂

∂θ
f(x|θ0)

]2

dx.

A kernel function k(η1, η2) can be introduced as

k(η1, η2) =

∫

S

f(x|θ,Q)−1F(x|θ, η1)F(x|θ, η2)dx. (2.8)

Note here, the kernel depends on both θ and Q. By Regularity Condition 6,

the kernel k(η, η) < ∞ for all η ∈ C. For all η1, η2 ∈ C, the kernel k(η1, η2)

is in L2(C × C). It is given as Lemma 2 in Appendix A.3. As mentioned in

Appendix A.1.1, each kernel is associated with a reproducing kernel Hilbert

space. So we have a reproducing kernel Hilbert space (Θ, k(·, ·)). Consider

an integral operator A(·) on Θ, for g ∈ Θ,

(Ag)(η2) =

∫

C

g(η1)k(η1, η2)dη1

=

∫

C

g(η1)

∫

S

f(x|θ,Q)−1F(x|θ, η1)F(x|θ, η2)dxdη1. (2.9)

It has good properties which are proved in Appendix A.3.

Lemma 1. The integral operator A(·) on C × C is compact, self-adjoint and

positive. Furthermore, the operator A(·) is trace-class, i.e. the sum of all

eigenvalues is finite.
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According to the book of L.Debnath, P.Minkusinski (Page 188 - 190

[DM05]), we know

Proposition 1. (Spectral Theorem for Self-Adjoint Compact Operators)

Let A(·) be a self-adjoint, compact operator on an infinite dimensional Hilbert

space H. Then, there exists in H a complete orthonormal system {φ1, φ2, · · · }
consisting of eigenvectors of A(·). Moreover, for every g ∈ H,

g =

∞
∑

i=1

〈g, φi〉φi,

where λn is the eigenvalue corresponding to φi. Furthermore, if A has in-

finitely many distinct eigenvalues λ1, λ2, · · · , then λn → 0 as n→ ∞.

Consider the eigenfunction equation,
∫

C

ei(η1)

∫

S

f(y|θ,Q)−1F(y|θ, η1)F(y|θ, η2)dydη1 = λei(η2). (2.10)

Applying Proposition 1 to the expansion of F(x|θ, η), we have the expansion

F(x|θ, η) =

∞
∑

i=1

si(x)ei(η),

where

si(x) = 〈F(x|θ, η), ei(η)〉Θ
=

∫

C

F(x|θ, η)ei(η)dη. (2.11)

Then the spaced spanned by the vectors si(x) has the following properties.

The proofs are given in Appendix A.3.

Theorem 1. The space spanned by si(x), i = 1, 2, · · · is a subset of the

vector space VMix. The set of si(x), i = 1, 2, · · · is a complete orthogonal

system of the Hilbert space Π, and the norm of si is λi.

Theorem 2 is given as follows and the proof can be found in Appendix

A.3.
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Theorem 2. The mixture density function f(x|θ,Q) can be expanded as

∫

f(x|θ, η)dQ(η) = f(x|θ0) +

∞
∑

i=0

αisi(x),

where

α0 = −
∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dx.

and

αi =

∫

C

ei(η)q(η)dη, i = 1, 2, · · · .

In [Mar07b], Marriott suggests using a form of PCA to approximate the

mixture density function. In other words, the eigenfunctions corresponding

to the K-largest eigenvalues will be kept. The mixture density function is

approximated by

f(x|θ,Q) ≈ f(x|θ, α)

= f(x|θ) +
K
∑

i=0

αisi(x).

One critical note is that we are approximating the probability density func-

tion. Therefore, the positivity condition should be added

f(x|θ, α) > 0, ∀x ∈ S.

Definition 5. Consider all subspaces Π̃ ⊆ Π, such that

K
∑

i=1

λ(i) ≥ α
∞
∑

i=1

λ(i), 0 ≤ α ≤ 1,

where λ(i) are eigenvalues ordered in descent. Among these affine spaces

Π̃, the one with smallest K is called best α-space, denoted by Πα, which is

spanned by the {si(x), i = 1, 2, · · · , K}. si(x), i = 1, 2, · · · , K correspond to

the first K largest eigenvalues.
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Note that here
∑∞

i=1 λi is finite because A(·) is a trace class operator as

proved in Lemma 1.

Definition 6. Consider a K-dimensional subspaces of Π spanned by the set

of vectors {si(x), i = 0, 1, · · · , K}, where si(x), i = 1, 2, · · · , K correspond to

the K largest eigenvalues. Then, we call such subspace best K-space, denoted

by ΠK .

In fact, f(x|θ, α) is the projection of f(x|θ,Q) onto theK-dimension space

ΠK . It is obvious that the distance from f(x|θ,Q) ∈ Π to its projection on

ΠK is
∑∞

i=K+1 λi. We use the notation UΠK
to describe the projection from

Π to ΠK . Projection from Π to Πα is similar.

Example 4. Suppose X follows a a Binomial distribution B(10, 0.5 + η),

while the η has a uniform distribution U(−0.4, 0.4). We know the probability

density function of X is given by, for x = 0, 1, 2, · · · , 10,

f(x) =

(

10
x

)

0.8

∫ 0.4

−0.4

(0.5 + η)x(0.5 − η)10−xdη

=

(

10
x

)

0.8

∫ 0.9

0.1

ηx(1 − η)10−xdη

=

(

10
x

)

0.8
(B(0.9; x+ 1, 11 − x) − B(0.1; x+ 1, 11 − x)) ,

where B(x; a, b) is the incomplete beta function defined as

B(x; a, b) =

∫ x

0

ta−1(1 − t)b−1dt.

The density function is shown in Figure 2.1.

Let us expand f(x|η) at point f(x|η = 0). We obtain

F(x|η) = f(x|η) − f(x|η = 0)

=

(

10

x

)

(0.5 + η)x(0.5 − η)10−x −
(

10

x

)

0.510.
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Figure 2.1: Probability Mass Function of f(x)

Since we know the value of θ, therefore the last term of F in Equation 2.7 is

0. The kernel k(η1, η2) is given by

k(η1, η2) =

10
∑

x=0

f(xi)
−1F(xi|η1)F(xi|η2).

The eigenfunction equation can be written as
∫ 0.4

−0.4

ei(η1)k(η1, η2)dη1 = λiei(η2).

We select a uniform grid of 1000 points from [−0.4, 0.4]. Then we can have a

eigenvector equation to approximate the eigenfunction equation. The behavior

of such approximation is discussed in Appendix A.5. Hence, we have

Jei = λiei, (2.12)
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where J is a 1000 × 1000 matrix and ei is a 1000 × 1 vector. The eigen-

values and vectors are shown in Figure 2.2. According to the left panel of

Figure 2.2, we seethe eigenvalues λi converge to zero quickly. Numerically,

the seven largest nonzero eigenvalues are λ1 = 911.7859, λ2 = 737.0085,

λ3 = 131.9741, λ4 = 53.4189, λ5 = 7.5543, λ6 = 1.6140 and λ7 = 0.1496.

Their eigenvectors are plotted in the right panel of Figure 2.2.
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Figure 2.2: Eigenvalues and Vectors of Eigenvector Equation 2.12

Since s(x) = 〈f(x|η), e(η)〉Θ, and denote f(x) = (f(x|η1), f(x|η2), · · · , f(x|η1000))
T ,

we have si(x) = f(x)T ei. They are shown in Figure 2.3. We use si(x),

i = 1, 2, 3, 4 to approximate the mixture density functions. We calculate the

values of αi using

αi =
1

0.4

∫ 0.2

−0.2

ei(η)dη.
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We obtain α1 = 0.0247, α2 = 0.0000, α3 = 0.0000 and α4 = 0.0109.
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Figure 2.3: si(x) for i = 1, 2, 3, 4 for f(x|θ, α)

Therefore, we approximate the mixture density function by

f1(xj) =

(

10

x

)

0.510 + 0.0247s1(xj) + 0.0109s4(xj), xj = 0, 1, 2, · · · , 10.

(2.13)

The relative error, defined for each xj, j = 0, 1, 2, · · · , 10,

RE = f(xj)
−1(f1(xj) − f(xj))

2,

is shown in Figure 2.4.
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Figure 2.4: Relative Error for Model f1(x|α)

2.4 Convexity Structure of Mixture Model

The Hilbert space Π, whose inner product defined by Equation 2.1, with

basis {λ−1/2
i si(x), i = 0, 1, · · · } is separable by Proposition 6. The dimension

of Π could be an infinite or finite over the field R of real numbers. Here let

us treat it as infinite space for generality.

Consider the subspace ΠF of Π defined by, for fixed θ,

ΠF := {F(x|θ, ηi)|ηi ∈ C,F(x|θ, ηi) ∈ Π} .

The convex hull coΠF of ΠF is located inside the Hilbert space Π.

coΠF =

{

g =
n
∑

i=1

βiFi|βi ≥ 0,
n
∑

i=1

βi = 1,Fi ∈ ΠF , n ∈ N

}

.
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Define three sets,

K̃
F =

{

g =
∞
∑

j=0

αjsj(x)|f(xi|θ0) + g(xi) > 0, ∀xi ∈ S, f(xi|θ) ∈ XMix, αj ∈ R

}

,

K
F =

{

g =
∞
∑

j=0

γjsj(x)|γj ∈
[

min
η∈C

ej(η),max
η∈C

ej(η)

]

}

,

K̂
F =

{

g =

∞
∑

j=0

βjsj(x)|βj ∈
[

min
η∈C

ej(η),max
η∈C

ej(η)

]

, g(xi) + f(xi|θ0) > 0, xi ∈ S
}

.

We can show the following theorem and the proof is given in Appendix

A.4.

Theorem 3. The closed convex hull coΠF of ΠF is compact and closed in

the closure of K̂
F .

Let the images of K
F , K̃

F and K̂
F from Π to ΠK are

K̃
F
K =

{

g =

K
∑

j=0

αjsj(x)|g(xi) + f(xi|θ0) > 0, ∀xi ∈ S
}

,

K
F
K =

{

g =

K
∑

j=0

γjsj(x)|γj ∈
[

min
η∈C

ej(η),max
η∈C

ej(η)

]

}

,

K̂
F
K =

{

g =
K
∑

j=0

βjsj(x)|βj ∈
[

min
η∈C

ej(η),max
η∈C

ej(η)

]

, g(xi) + f(xi|θ0) > 0, xi ∈ S
}

.

When we use f(x|θ0)+g, g ∈ K̃
F
K as the local mixture model, then f(x|θ0)+g

is a density function. However, it is possible that the coefficient αj is not in

the range of [minη∈C ej(η),maxη∈C ej(η)]. When we use f(x|θ0) + g, g ∈ K
F
K ,

every coefficient f(x|θ0)+g is in the range, but may not be a density function.

The best approximation will be that f(x|θ0) + g, g ∈ K̂
F
K , such that the

approximation is a density function while all coefficients are in their own

range.

Example 4. (continued)
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The mixture model is given by

f2(xj |α) =

(

10

xj

)

0.510 +
4
∑

i=1

αisi(xj), xj = 0, 1, 2, · · · , 10.

In matrix form, the linear equation system can be written as

f = ~αX,

where f = (f2(x0|α)−
(

10
x0

)

0.510, f2(x1|α)−
(

10
x1

)

0.510, · · · , f2(x10|α)−
(

10
x10

)

0.510)T ,

~α = (α1, α2, α3, α4)
T , and X is a 4×11 matrix, whose element is Xij = si(xj).

We want to solve the optimization problem

min(f − ~αX)TA(f − ~αX),

where A is a diagonal matrix and Aii = f(xi)
−1. We estimate the coefficients

by linear regression

~α = (XAXT )−1XA~f,

and have α̂1 = 0.0247, α̂2 = 0, α̂3 = 0 and α̂4 = 0.0110. The relative error

is shown in Figure 2.5

For all xj = 0, 1, 2, · · · , 10, we have f2(xj |α̂) > 0. Therefore, we know

f2(xj|α) − f(x|η = 0) is located in K̃4. On the other hand, 9.5418 × 108 ≤
e1(η) ≤ 0.0618, −0.0516 ≤ e2(η) ≤ 0.0516, −0.0779 ≤ e3(η) ≤ 0.0779 and

−0.0923 ≤ e4(η) ≤ 0.0410 for η ∈ [−0.4, 0.4]. For each i, αi lies in the range

of ei(η) over η ∈ [−0.4, 0.4]. Hence, we know f2(x|α̂) − f(x|η = 0) also are

in K4. Therefore, f2(x|α̂) − f(x|η = 0) is an element in K̂4.

Example 5. Consider the X from a Binomial distribution B(10, 0.0001+η),

where the η has a uniform distribution U(−0.00009, 0.0001). We expand the

distribution at point f(x|η = 0). The eigenvalues and eigenvectors are given

in Figure 2.6.

We use the eigenvectors corresponding to ten largest eigenvalues to ap-

proximate the mixture density functions.

f3(xj|α) =

(

10

xj

)

(0.0001)xj(0.9999)10−xj +
7
∑

i=1

αisi(xj), xj = 0, 1, 2, · · · , 10.
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Figure 2.5: Relative Errors of f2(x|α̂)

By linear regression mentioned in last example, we have α̂1 = 0.0029, α̂2 =

0.0233, α̂3 = −0.0029, α̂4 = 0.0124, α̂5 = −0.4070, α̂6 = 0.3210 and α̂7 =

1.2060.

For all xj = 0, 1, 2, · · · , 10, we have f3(x|α̂) > 0. Therefore, we know

f3(x|α̂)−f(x|η = 0) is located in K̃7. On the other hand, −0.2759 ≤ e7(η) ≤
0.3412 for η ∈ [−0.00009, 0.0001], while f3(x|α̂) − f(x|η = 0) are not in K7,

because α7 = 1.2060 > 0.3421. In summary, f3(x|α̂) is not in K7 but K̃7.
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Figure 2.6: Eigenvalues and Eigenvectors for Example 5

If UΠK
F(x|θ,Q) ∈ K̂

F
K , the norm from F(x|θ,Q) to UΠK

F(x|θ,Q) is

‖F(x|θ,Q) − UΠK
F(x|θ,Q)‖2

Π =

∥

∥

∥

∥

∥

∞
∑

i=K+1

α2
i s

2
i (x)

∥

∥

∥

∥

∥

2

Π

≤
∑

i=K+1

∫

S

f(x|θ,Q)−1s2
i (x)dx

=

∞
∑

i=K+1

λi.

To describe the error in approximation, some information on the decay of

the eigenvalues is needed. Some work has been already done in the area.

Considering the operators on a bounded interval, in Weyl’s work [Wey12],

for a general kernel k(x, y) ∈ L2(C × C), which is continuously differentiable
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in C × C, then λK = o(K−3/2). In the case that k(x, y) is a positive definite

kernel, as shown by Reade [Rea83] and [Rea84], λK = o(K−2). As described

by Reade [Rea83] and [Rea84], λK = o(K−2). It is also mentioned that

∞
∑

K+1

λi = o(K−1),

as K → ∞. Therefore, we can give following theorem. Its proof is in

Appendix A.4.

Theorem 4. In the Hilbert space Π, if UΠK
F(x;Q) ∈ K̂

F
K, the norm of

the vector from the mixture density f(x|θ,Q) with a compact C and mixture

models f(x|θ, α) by PCA has the order o(K−1).

2.5 Dependence on Choice of Compact Re-

gion

The dependence on the choice of compact region of mixture models has been

discussed by Anaya-Izquierdo and Marriott [AIM07]. Assume that we want

keep the α-percentage of the sum of all eigenvalues of the eigenfunction Equa-

tion 2.10, we will find that the number of eigenfunctions needed to reconstruct

the mixture density function changes, while the domain of η changes. In ge-

ometric view, it can be thought that the dimension of the parameter space

changes. Such phenomena also indicates that a manifold can not describe

the structure precisely. Furthermore, according to Lemma 4, we can see that

the eigenvalues depends on the domain of η closely.

Lemma 3. Let

vi(x) = f(x|θ,Q)−1/2si(x),

then
∫

C

ei(η1)

∫

S

f(y|θ,Q)−1F(y|θ, η1)F(y|θ, η2)dydη1 = λei(η2)
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is equivalent to,
∫

S

vi(x)

∫

C

F(x|θ, η)
√

f(x|θ,Q)

F(y|θ, η)
√

f(y|θ,Q)
dηdx = λvi(y). (2.14)

The proof is given in Appendix A.5. We approximate the mixture density

function with

f(x|θ,Q) = f(x|θ) +

K
∑

i=0

αisi(x).

With the expansion of C, the space Π should be expanded to contain the

convex hull of curve c(C). Such expansion of Π can be described in following

two theorems. Both of the proofs are shown in Appendix A.5. To prove

Theorem 6, discretization of the eigenvalue equation 2.14 is needed. See

more detail in Appendix A.5.

Theorem 5. With the expansion of region C, the eigenvalues λi, i ≥ 1 for

the expansion increase.

Theorem 6. The larger the domain of η is, the more number of si(x) are

needed to contribute Πα.

Example 4. (continued)

Assume that the η has a uniform distribution η ∼ U(−0.2, 0.2). Numerically,

the nonzero eigenvalues are λ1 = 365.1704, λ2 = 131.0270, λ3 = 5.5456,

λ4 = 0.5690, λ5 = 0.0175, λ6 = 0.0008 and λ7 = 0. Comparing them with the

case that U(−0.3, 0.3), whose λ′1 = 586.3474, λ′2 = 438.4387, λ′3 = 38.3676,

λ′4 = 8.6468, λ′5 = 0.6241, λ′6 = 0.0684 and λ′7 = 0.0031. We see for all

i = 1, 2, · · · , λ′i ≥ λi.

Let α = 98%, in the case of U(−0.2, 0.2), we need two si(x) for approx-

imation. On the other hand, in the case of U(−0.3, 0.3), we only need three

si(x) for approximation to reach the same rate of α.

We also consider the case of U(−0.4, 0.4). In Figure 2.7, we can see it

clearly, that with the region of η expansion, the eigenvalues λi, i ≥ 1 for the

expansion increase. Furthermore, when η ∼ U(−0.4, 0.4), we need four si(x)

to contribute Π0.98.
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32



Chapter 3

Conclusions and Future Work

Our contribution in this thesis have mainly included: thinking about the set

of mixture distributions with a single Hilbert structure, whose inner product

is the −1-expectation of the product of two vectors, introducing the fibre

bundle structure to the set of mixture distributions, decomposing the mixture

density functions spectrally in the Hilbert space, discussing the convexity

structure of extending local mixture models in the Hilbert structure, showing

the asymptotic behaviors of relative error in the approximation of mixture

models and giving the proof of the effect of domain C to the relative errors

in the approximation.

There are some possible future directions for this research.

Relaxation of the Regularity Conditions

One of the future work in mixture models is to relax the regularity conditions.

For Regularity Condition 1, we can relax the condition that η has a

compact support C to (−∞,+∞). In [Bue04], [BP06] and [BP07], integral

operators with unbounded intervals are considered. In this work, the authors

discuss the asymptotic behavior of eigenvalues of the integral operators with

unbounded intervals. We can obtain a more general result in analyzing the

asymptotic behavior of the relative errors of the approximation.
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One of the challenges in the future is the case when the Fisher information

is infinite. According to [AICMV09], the infinite dimensional simplex can be

decomposed into a bunch of Hilbert spaces. How can we analyze two models

in different Hilbert space? It is an interesting question for future work.

Nonlinear Approximation of Mixture Model

There is one concern in the PCA approximation when considering the Kol-

mogrov n-width (Appendix A.1.2) of the approximation,

dn = inf
ΠK

sup
x∈S

inf
F(x|θ,α)∈ΠK

(f(x|θ,Q) − f(x|θ, α))2

f(x|θ,Q)
,

where F(x|θ, α) = f(x|θ, α)− f(x|θ0). Unlike the norm we considered in the

spectral decomposition, the Kolmogrov n-width considers the supremum of

the error over all x ∈ S. It approximates locally, while the norm defined

in a Hilbert space Π global approximation. When we achieve a good ap-

proximation globally, this does not guarantee that we have as good a local

approximation. This is one of the challenges in the PCA approach.

Example 6. Consider the X from a Binomial distribution B(10, 0.06 + η),

while the η has a uniform distribution U(−0.053, 0.1).

f5(x|α) =

(

10

x

)

0.06x0.9410−x +

1000
∑

i=1

αisi(x), xj = 0, 1, 2, · · · , 10,

where

αi =
1

0.153

∫ 0.1

−0.053

ei(η)dη.

and si(x) is obtained by spectral decomposition.

For all x = 0, 1, 2 · · · , 10, f5(x|α) ≥ 0. However, the relative error of

such approximation is given by Figure 3.1.

According to the Figure 3.1, we see the relative error at point x = 1, 2, 3, 4

are really big comparing the others. The Kolmogrov n-width is 5.5233× 10−9
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at xj = 1, while the other relative errors are below 3 × 10−9. The relative

errors of approximation are not in same level. In such sense, it is not a good

approximation.

One way to solve the problem is using nonlinear approximation, such

as the sparse model. Let K still be the number of terms we want in the

approximation. For all xj ∈ S, an approximation operator AK on Π is

(AKF) (xj |θ,Q) =
∑

i∈IK

αisi(xj),

where IK := IK(xj) represents the set of indices corresponding to the K

largest si(xj). Note here, for different xj ∈ S, we have different approxi-

mation (AKF) (xj |θ,Q). Such approximation is called best K-term approx-
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imation. Because the vector of coefficients in f(xj|θ, α) is sparse, it is also

called a sparse model. The correlation between sparse model and Kolmogrov

n-width has been discussed in [CDD09]. It is shown that sparse model can

offer an approximation with bounded Komogrov n-width.

There is a big challenge in the sparse model. The computing cost is high,

because finding the K largest coefficients for each is an NP hard problem.

A recent development in approximation is the compressed sensing algorithm

[Don06] and [CDD09], which changes the NP hard problem into a convex

optimization problem.

Furthermore, the basis from spectral decomposition are the optimal basis

for linear approximation techniques. In [CD97], Cohen and D’ales show that

the optimality is lost in nonlinear approximation. Therefore, the basis should

be changed in wavelets or trigonometric system in nonlinear approximation

of mixture models.
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[DM05] L. Debnath and P. Mikusiński. Hilbert spaces with applications.

Academic Press, 2005.

[Don06] D.L. Donoho. Compressed sensing. IEEE Transactions on In-

formation Theory, 52(4):1289–1306, 2006.

[FHHP01] M.J. Fabian, P. Habala, P. Hájek, and J. Pelant. Functional
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Appendix A

A.1 Mathematical Preliminaries

A.1.1 Background of Functional Analysis

The mathematical preliminaries of this part mainly serve the spectral de-

composition. More details can be found in [DM05] and [HB04].

Leibniz’s Rule and Fubini Theorem (Page 46, 111 [Bar95])

Proposition 2. (Leibniz’s Rule) Suppose that for some t0 ∈ [a, b], the func-

tion x → f(x, t0) is integrable on X, that ∂f/∂t exists on X× [a, b], and that

there exist an integrable function on X such that

∣

∣

∣

∣

∂

∂t
f(x, t)

∣

∣

∣

∣

≤ g(x).

Then, we have

∂

∂t

∫

f(x, t)dµ(x) =

∫

∂

∂t
f(x, t)dµ(x).

Proposition 3. (Fubini Theorem) Suppose A and B are complete measure

spaces. Suppose f(x, y) is A× B measurable. If

∫

A×B

|f(x, y)|d(x, y) <∞,
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where the integral is taken with respect to a product measure on the space

over A×B, then

∫

A

∫

B

f(x, y)dydx =

∫

B

∫

A

f(x, y)dxdy =

∫

A×B

f(x, y)d(x, y).

ℓp Norm and Lp Norm

For a vector x ∈ R
N , the ℓp norm is defined as

‖x‖ℓp
=

(

N
∑

i

|xi|p
)1/p

.

For 1 ≤ p < ∞ and a measure space (S,Σ, µ), consider the set of all

measurable functions from S to R, the Lp norm is defined as

‖f‖Lp
=

(
∫

S

|f |pdµ
)1/p

.

Affine Space [AI06]

Definition 7. An affine space is either the empty set or a triplet (X, V,+)

consisting of a nonempty set X of points, a real vector space V of translations

and a action + : X ⊗ V → X satisfying the following conditions:

• Let ~0 be the zero vector in V . For all x ∈ X

x⊕~0 = x.

• For all ~u,~v ∈ V and all x ∈ X,

(x⊕ ~u) ⊕ ~v = x⊕ (~u+ ~v).

• For any two points x, y ∈ X, there is a unique ~u ∈ V such that

x⊕ ~u = y.
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Hilbert Space (Page 87, 126 in [DM05])

Let H be a vector space. A mapping 〈·, ·〉 : H × H → R is called an inner

product in H if for any x, y, z ∈ H, and α, β ∈ R, the following conditions

are satisfied:

• 〈x, y〉 = 〈y, x〉 (the bar denotes the complex conjugate);

• 〈αx+ βy, z〉 = α 〈x, z〉 + β 〈y, z〉;

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 implies x = 0.

Such vector space with an inner product is called a inner product space.

Definition 8. A complete inner product space is called a Hilbert space.

One of important theorems in Hilbert space is Riesz representation the-

orem given by following on page 126 in [DM05].

Proposition 4. (Riesz Representation Theorem) Let f be a bounded linear

functional on a Hilbert space H. There exists exactly one x0 ∈ H such that

f(x) = 〈x, x0〉 for all x ∈ H. Moreover, we have ‖f‖ = ‖x0‖.

Trace Class and Mercer’s Theorem [Mer09]

Definition 9. A bounded linear operator A over a separable Hilbert space H
is said to be in the trace class if for some orthonormal bases {φi}i of H the

sum of positive terms

∞
∑

i=1

〈Aφi, φi〉 <∞.

Proposition 5. Let A be a positive, integral operator on L2[a, b] with con-

tinuous kernel K(s, t) = K(t, s) on [a, b]2 (|a|, |b|) < ∞. Then the kernel

K(s, t) can be represented by the bilinear series

K(s, t) =

∞
∑

i=1

λiφi(s)φi(t)
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absolutely and uniformly convergent on [a, b]2, where λi ≥ 0, i = 1, 2, · · ·
are the eigenvalues of operator A and φi, i = 1, 2, 3, · · · are corresponding

orthonormal eigenfunctions.

Reproducing Kernel Hilbert Space [GBSS05]

Let S be the sample space of the random variables X and H a Hilbert space

of real-valued functions on S. We say H is a reproducing kernel Hilbert space

(RKHS) if every linear map of the form

Lx : f 7→ f(x)

from S to R is continuous for any x ∈ S. The Riesz representation theorem

states that for every x ∈ S there exists a unique element k(x, ·) of H with

the property that:

f(x) = 〈f, k(x, ·)〉 , ∀f ∈ H, ∀x ∈ S,

and

〈k(x, ·), k(y, ·)〉 = k(x, y), ∀x, y ∈ S.

The space S can be mapped into H via the feature mapping x ∈ S 7→ Φ(x) =

k(x, ·) ∈ H. Therefore, 〈Φ(x),Φ(y)〉 = k(x, y).

Separable Hilbert Space (Page 127 in [DM05])

Definition 10. A Hilbert space is called separable if it contains a complete

orthonormal sequence.

We also have a important theorem related to the separable Hilbert space.

Proposition 6. A Hilbert space is separable if and only if it has a countable

orthonormal basis.
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Hilbert-Schmidt Norm and Operators [BBZ07]

A linear operator L from H to H is called Hilbert-Schmidt operator, if
∑

i≥1 ‖Lei‖2
H < ∞, where {ei, i = 1, 2, · · · } is the orthonormal basis of H.

The set of all Hilbert-Schmidt operators on Π∗ is denoted by HS(H) with

the inner product

〈A,B〉HS(H) =
∑

i≥1

〈Aei, Bei〉 .

Orthogonal Projectors [BBZ07]

An orthogonal projector in H is a linear operator U such that

U2 = U = UT .

A.1.2 Background of Geometry

The geometry background includes differential geometry and convex geome-

try. Structure such as convexities and jet space, are used to describe mixture

models structure.

Convex Body (Page 45 in [GWZ93])

Definition 11. A subset K is convex if (1−λ)x+λy ∈ K for all x, y ∈ K and

0 < λ < 1. If the convex subset K is compact and with nonempty interior,

they are called convex bodies.

Convex Hull and Polytope (Page 7 in [GM95] and Page 487 in [GWZ93])

The convex hull of a set K is the smallest convex set containing it. The

following theorem is given to define a polytope in [GWZ93].

Proposition 7. P ⊂ R
n is a polytope if and only if it is the convex hull of

a finite set of points in R
n.
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Generalization of Milman’s Theorem [Wei76]

Proposition 8. Let K be a convex locally compact subset of a Hilbert space

H. Then for any compact subset L of K the closed convex hull c̄oL of L in

H is compact and contained in K.

This proposition also hold in a locally convex linear space. The fact is

that every Banach space is a locally convex linear space. So, therefore, is a

Hilbert space. See Page 107 in [FHHP01] for details.

Cyclic Polytope (Page 493 in [GWZ93])

Given integer n ≥ 2 and k ≥ n + 1, take the convex hull of any n distinct

points on the moment curve (x, x2, · · · , xn). The combinatorial structure

of the resulting simplicial n-polytope is independent of the actual choice of

points, and such polytope is called cyclic n-polytope with k vertices.

Infinite Dimensional Simplex [AICMV09]

A distribution on R∞ is a point on the infinite-dimensional simplex

∆∞ =
{

f(xi) ∈ R
∞|
∑

f(xi) = 1, f(xi) ≥ 0
}

.

Manifold (Page 4 in [KSM99])

A topological manifold is a separable Hausdorff space M which is locally

homeomorphic to R
n.

Fibre and Bundle (Page 6 in [Sau89])

Definition 12. A fibred manifold is a triple (E , π,M) where E and M are

manifolds and π : E → M is a surjective submersion. E is the total space, π

the projection, and M the base space.

Definition 13. If (E , π,M) is a fibred manifold and p ∈ M then a local

trivialisation of π around p is a triple (Wp, Fp, tp) where Wp is a neighborhood
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of p, Fp is a manifold and tp : π−1(Wp) → Wp × Fp is a diffeomorphism

satisfying the condition

pr1 ◦ tp = π|π−1(Wp).

A fibred manifold which has at least one local trivialistation around each point

of its base space is known as a bundle.

Amari use such structure in [Ama85] for statistical inference. The struc-

ture is explained explicitly by Marriott in [MV04].

Jet Space (Page 161 in [Sau89])

Definition 14. Let (E, π,M) be a bundle, and let p ∈ M. Define the local

section φ, ψ ∈ Γp(π) to be 2− equivalent at p if φ(p) = ψ(p) and if, in some

adapted coordinate system (xi, µα) around φ(p),

∂φα

∂xi

∣

∣

∣

∣

p

=
∂ψα

∂xi

∣

∣

∣

∣

p

and
∂2φα

∂xi∂xj

∣

∣

∣

∣

p

=
∂2ψα

∂xi∂xj

∣

∣

∣

∣

p

for 1 ≤ i, j ≤ m and 1 ≤ α ≤ n. The equivalence class containing φ is called

the 2 − ject of φ at p.

Such structure applied for general statistical propose can be found in Page

243 in [MR93] and [BNBC+92].

Gel’fand n-width and Kolmogorov n-width [Pin86]

Definition 15. The Gel’fand n-width of X with respect to the ℓm2 norm is

defined as

dn(X; ℓm2 ) = inf
Vn

sup{‖x‖ℓ2 : x ∈ V ⊥
n ∩X},

where the infimum is over n-dimensional linear subspace of R
m, and V ⊥

n de-

notes the orthogonal complement of Vn with respect to the standard Eucildean

inner product.
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Definition 16. Let X ⊂ R
m be a bounded set. The Kolmogorov n-width of

X with respect the ℓm2 norm is defined as

dn(X; ℓm2 ) = inf
Vn

sup
x∈X

inf
y∈Vn

‖x− y‖ℓ2,

where the infimum is over n-dimensional linear subspaces of R
m.

These two width are equivalent. Comparing with Gel’fand n-width, Kolo-

mogrov n-width is more widely used to evaluate the approximation.
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A.2 Fisher Orthogonal and −1 Representa-

tion

In Armari’s book [Ama85], the α-representation of density functions has been

discussed in detail. Let ℓα(x|θ) be a one parameter family of functions defined

by

ℓα(x|θ) =







2
1−α

f(x|θ)(1−α)/2 α 6= 1

log f(x|θ) α = 1
.

The −1-representation of f(x|θ) is given by

ℓ−1(x, θ) = f(x|θ).

Furthermore, the α-expectation is also introduced in [Ama85],

Eα [g(x)] =

∫

g(x)f(x)αdx.

The Fisher information can be expressed as

i(θ) = Eα

[

∂

∂θ
ℓα(x|θ)2

]

= E−1

[

∂

∂θ
ℓ−1(x|θ)2

]

=

∫

S

f(x|θ)−1

[

∂

∂θ
f(x|θ)

]2

dx.

Correspondingly, we define two vectors gi, gj to be Fisher orthogonal in −1

representation if

∫

S

f(x|θ)−1gigjdx = 0, i 6= j.
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A.3 Proof for Properties Spectral Decompo-

sition

Proposition 9. A continuous image of a compact space is compact.

Lemma 1. The integral operator A(·) on C × C is compact, self-adjoint and

positive. Furthermore, the operator A(·) is trace-class, i.e. the sum of all

eigenvalues is finite.

Proof. For any f, g ∈ Θ, we have

〈f, Ag〉 =

∫

C

∫

C

g(η1)k(η1, η2)dη1f(η2)dη2

=

∫

C

∫

C

f(η2)k(η1, η2)dη2g(η1)dη1

= 〈Af, g〉 .

It is self-adjoint.

Furthermore,

〈Ag, g〉 =

∫

C

g(η1)

∫

C

∫

S

f(x|θ,Q)−1F(x|θ, η1)F(x|θ, η2)dη1dxg(η2)dη2

=

∫

S

f(x|θ,Q)−1

∫

C

F(x|θ, η1)g(η1)dη1

∫

C

F(x|θ, η2)g(η2)dη2dx

=

∫

S

f(x|θ,Q)−1

(
∫

C

F(x|θ, η1)g(η1)dη1

)2

dx

≥ 0

Hence, A is a positive operator.

If η2 have a compact support C and
∫

C
g(η1)k(η1, η2)dη1 is continuous with

respect to η2, therefore A(·) is a compact operator by Proposition 9.

Now, we want show operator A is trace class. Since the integral operator

A(·) is positive on a compact support C with a continuous k(η1, η2) on C × C
(proved later in Lemma 2), apply Proposition 5 to it, we have the trace of
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the operator is absolutely and uniformly convergent, i.e.

k(η1, η2) =

∞
∑

i=1

λiφi(η1)φi(η2) <∞.

Set η1 = η2, we have

∫

C

k(η, η)dη =

∫

C

∞
∑

i=1

λiφi(η)φi(η)dη

=
∞
∑

i=1

λi.

Because k(η, η) <∞ and continuous in compact C,
∫

C
k(η, η)dη =

∑∞
i=1 λi <

∞.

On the other hand, by Regularity Condition 4, we have

∞
∑

i=1

〈Aφi, φi〉 =

∞
∑

i=1

∫

C

∫

C

φi(η2)k(η1, η2)dη2φi(η1)dη1

=

∞
∑

i=1

∫

C

∫

C

φi(η2)

{

∞
∑

j=1

λjφj(η1)φj(η2)

}

dη2φi(η1)dη1

=
∞
∑

i=1

∞
∑

j=1

λi

∫

C

φj(η2)φi(η2)dη2

∫

C

φj(η1)φi(η1)dη1

=

∞
∑

i=1

∞
∑

j=1

λiδij

=
∞
∑

i=1

λi

where φi are the eigenfunctions and δij is the Delta function. According to

Definition 9,
∑∞

i=1 〈Aφi, φi〉 <∞, A(·) is trace operator.

Theorem 1. The space spanned by si(x), i = 1, 2, · · · is a subset of the

vector space VMix. The set of si(x), i = 1, 2, · · · is a complete orthogonal

system of the Hilbert space Π, and the norm of si is λi.
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Proof. First, we want show that the L1 integral of si(x) defined in Equation

2.11 is equal to zero over the sample space S.

∫

S

si(x)dx =

∫

S

∫

C

F(x|θ, η)ei(η)dηdx

=

∫

C

∫

S

F(x|θ, η)dxei(η)dη

= 0.

Next, for any vector v(x) ∈ span{si(x), i = 1, 2, · · · }, we can write in the

form v =
∑

i αisi(x), where αi are coefficients.

∫

S

v(x)dx =
∑

i

αi

∫

S

si(x)dx = 0.

Hence, we know v(x) ∈ VMix. Hence, the space spanned by si(x), i = 1, 2, · · ·
is a subset of the vector space VMix.

For the Hilbert space Θ, we have a complete orthogonal basis {ei(η)}, by

which, for all f(x|θ, η) − f(x|θ0) ∈ Θ,

f(x|θ, η) − f(x|θ0) = 〈f(x|θ, η) − f(x|θ0), s0(x)〉Π s0(x) +
∞
∑

i=1

si(x)ei(η).

On the other hand, for all f(x|θ, η)−f(x|θ0) also locates in the Hilbert space

Π, then si(x), i = 0, 1, 2, · · · , become a complete basis of Π.

For si(x) and sj(x) in the Hilbert space Π, we have

〈si(x), sj(x)〉Π =

∫

S

si(x)sj(x)f(x|θ,Q)−1dx

=

∫

S

∫

C

ei(η1)F(x|θ, η1)dη1

∫

C

ej(η2)F(x|θ, η2)dη2f(x|θ,Q)−1dx

=

∫

C

ei(η1)

∫

C

ej(η2)

∫

S

F(x|θ, η1)F(x|θ, η2)f(x|θ,Q)−1dxdη2dη1

=

∫

C

ei(η1)λjej(η1)dη1

= λiδij,
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where δij is the Delta function.

Theorem 2. The mixture density function f(x|θ,Q) can be expanded as

∫

f(x|θ, η)dQ(η) = f(x|θ0) +

∞
∑

i=0

αisi(x),

where

α0 = −
∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dx.

and

αi =

∫

C

ei(η)q(η)dη, i = 1, 2, · · · .

Proof. By spectral decomposition, we have the expansion

f(x|θ,Q) = f(x|θ0) +

∞
∑

i=0

αisi(x),

where

α0 =

∫

〈f(x|θ, η) − f(x|θ0), s0(x)〉Π dQ(η)

=

∫

C

∫

S

f(x|θ,Q)−1f(x|θ, η)s0(x)dxq(η)dη −
∫

C

∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dxq(η)dη

=

∫

S

f(x|θ,Q)−1

∫

C

f(x|θ, η)q(η)dηs0(x)dx−
∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dx

=

∫

S

s0(x)dx−
∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dx

= −
∫

S

f(x|θ,Q)−1f(x|θ0)s0(x)dx

For αi, i = 1, 2, · · · , according to Cauchy-Schwarz inequality, we have
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that

α2
i =

(
∫

C

ei(η)q(η)dη

)2

≤
∫

C

ei(η)
2dη

∫

C

q(η)2dη

≤ 1.

Lemma 2. The kernel k(η1, η2) is in L2(C × C).

Proof.
∫

C

∫

C

k(η1, η2)
2dη1dη2 =

∫

C

∫

C

[
∫

S

f(x|θ,Q)−1F(x|θ, η1)F(x|θ, η2)dx

]2

dη1dη2

≤
∫

C

∫

C

∫

S

F(x|θ, η1)
2

f(x|θ,Q)
dx

∫

S

F(x|θ, η2)
2

f(x|θ,Q)
dxdη1dη2

=

[
∫

C

∫

S

F(x|θ, η)2

f(x|θ,Q)
dxdη

]2

.

The inequality holds because of Cauchy-Schwarz inequality. According to

spectral decomposition, we have

F(x|θ, η)2 =

[

∞
∑

i=1

si(x)ei(η)

]2

=

∞
∑

i=1

∞
∑

j=1

si(x)sj(x)ei(η)ej(η),

where ei(η) and ej(η) are orthogonal to each other, i.e.
∫

C
ei(η)ej(η)dη = 0.

Furthermore, ‖ei(η)‖2
Θ = 1 Therefore, we have

∫

C

∫

C

k(η1, η2)
2dη1dη2 ≤

[
∫

S

si(x)
2

f(x|θ,Q)
dx

]2

By Theorem 1, we obtain

∫

C

∫

C

k(η1, η2)
2dη1dη2 ≤

[

∞
∑

i=1

λi

]2

<∞.

Therefore, we have k(η1, η2) ∈ L2(C × C).
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A.4 Proof for Convexity Structure of Mix-

ture Models

Lemma 3. The convex hull coΠF of ΠF is a subset of K̂
F .

Proof. Since for any g ∈ coΠF , we have

n
∑

i=1

βif(x|θ, ηi) = f(x|θ0) +

n
∑

i=1

βiFi

= f(x|θ0) + g,

where βi ≥ 0,
∑n

i=1 βi = 1 and n ∈ N. Therefore, f(x|θ0) + g is the mixture

of the set of distribution f(x|θ, η). For all xi ∈ S, f(xi|θ, η) > 0. Therefore,

we can have a set coΠF ⊆ K̃
F .

On the other hand, since for any Fi ∈ Π can be expanded as

Fi =

∞
∑

j=0

ej(ηi)sj(x),

the convex hull coΠF also has the form

coΠF =

{

g =
∞
∑

j=0

γjsj(x)|γj =
n
∑

i=1

βiej(ηi), βi ≥ 0,
n
∑

i=1

βi = 1, ηi ∈ C, n ∈ N

}

.

Because C is compact and ei(η) is a continuous real function of η, we

know that ei(η) is bounded. It means

inf
η∈C

ej(η)

n
∑

j=1

βj ≤
n
∑

j=1

βjej(η) ≤ sup
η∈C

ej(η)

n
∑

j=1

βj

i.e.

γj ∈
[

inf
η∈C

ej(η), sup
η∈C

ej(η)

]

. (A-1)

Therefore, we know coΠF ⊆ K
F . We know that K̂

F = K
F ∩ K̃

F , therefore

coΠF ⊆ K̂
F .
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Theorem 3. The closed convex hull coΠF of ΠF is compact and closed in

the closure of K̂
F .

Proof. The closure of K̂
F is given by

coK̂F =

{

g =

∞
∑

j=0

βjsj(x)|βj ∈
[

min
η∈C

ej(η),max
η∈C

ej(η)

]

, g(xi) + f(xi|θ0) ≥ 0, xi ∈ S
}

.

The map from C to coK̂F is continuous, by Proposition 9, we have coK̂F is

compact. It is a convex locally compact subset of a Hilbert space.

On the other hand, coΠF is the closed convex hull of ΠF ⊆ coK̂F , then

by Proposition 8, we have that the closed convex hull coΠF of ΠF is compact

and closed in the closure of K̂
F .

Theorem 4. In the Hilbert space Π, if UΠK
F(x;Q) ∈ K̂

F
K, the norm of

the vector from the mixture density f(x|θ,Q) with a compact C and mixture

models f(x|θ, α) by PCA has the order o(K−1).

Proof. First, by Lemma 2, we know that the kernel k(η1, η2) is in L2(C × C).

Next, we want show that k(η1, η2) is continuously differentiable. We know

that

F(x|θ, η) = f(x|θ, η) − f(x|θ0) −
∂

∂θ
f(x|θ).

It is continuously differentiable with respect to η because of Regularity Con-

dition 1. Take derivative of k(η1, η2) with respect to η1

∂

∂η1
k(η1, η2) =

∂

∂η1

∫

S

f(x|θ,Q)−1F(x|θ, η1)F(x|θ, η2)dx

=

∫

S

f(x|θ,Q)−1F(x|θ, η2)
∂

∂η1

F(x|θ, η1)dx.

Because ∂
∂η1

F(x|θ, η1) is continuous, ∂
∂η1

k(η1, η2) is continuous with respect

to η1. Similarly, we know ∂
∂η2

k(η1, η2) is continuous with respect to η2.
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Then we know k(η1, η2) ∈ L2(C × C) is continuously differentiable. Fur-

thermore, it is also a positive definite kernel. Then by [Rea83],

∞
∑

i=K+1

λi = o(K−1).
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A.5 Proof for Properties of Dependence on

Choice of Compact Region

Lemma 4. Let

vi(x) = f(x|θ,Q)−1/2si(x),

then
∫

C

ei(η1)

∫

S

f(y|θ,Q)−1F(y|θ, η1)F(y|θ, η2)dydη1 = λei(η2)

is equivalent to,
∫

S

vi(x)

∫

C

F(x|θ, η)
√

f(x|θ,Q)

F(y|θ, η)
√

f(y|θ,Q)
dηdx = λvi(y).

Proof. Rewrite Equation (2.10)

∫

C

ei(η1)

∫

S

F(y|θ, η1)
√

f(y|θ,Q)

F(y|θ, η2)
√

f(y|θ,Q)
dydη1 = λei(η2)

By Regularity Condition 4, we can change the order of integration, and get
∫

S

F(y|θ, η2)
√

f(y|θ,Q)

∫

C

ei(η1)
F(y|θ, η1)
√

f(y|θ,Q)
dη1dy = λei(η2)

Note that

vi(y) =

∫

C

ei(η1)
F(y|θ, η1)
√

f(y|θ,Q)
dη1,

so,
∫

S

F(y|θ, η2)
√

f(y|θ,Q)
vi(y)dy = λei(η2).

Combine two equations above, we obtain
∫

C

∫

S

F(x|θ, η1)
√

f(x|θ,Q)
vi(x)dx

F(y|θ, η1)
√

f(y|θ,Q)
dη1 = λvi(y),
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Based on Regularity Condition 4, it can be simplified as
∫

S

vi(x)

∫

C

F(x|θ, η1)
√

f(x|θ,Q)

F(y|θ, η1)
√

f(y|θ,Q)
dη1dx = λvi(y).

Proposition 10. Weyl’s inequality: Define λ
(C)
n to be the nth eigenvalue of

the operator C(·) ordered from lowest to highest. Let Sn be an n-dimensional

subspace of a Hilbert space H and Ln be a subspace of dimension less than

or equal to n. Assume that operator C(·) is the sum of operators A(·) and

B(·). we have

λ
(C)
a+b−1 ≥ λ(A)

a + λ
(B)
b .

Details of the proof can be found in [Mar07a]. Proposition A-4 is needed

to prove Theorem 5. In [DM05], it is known that

Proposition 11. All eigenvalues of a positive operator are non-negative.

Consider the integral operator C(·) on Θ associated with the kernel

k∗(x, y) is defined by

(Cf)(x) =

∫

S

f(y)k∗(x, y)dy.

where

k∗(x, y) =

∫

C

F(y|θ, η)
√

f(y|θ)
F(x|θ, η)
√

f(x|θ)
dη.

Now, we can prove Theorem 1.

Theorem 5. With the region of η expansion, the eigenvalues λi, i ≥ 1 for

the expansion increase.

Proof. Assume that the regions of η is C, and ∆C is the part of expansion.

To the positive, compact operator

(C + ∆C)g =

∫

S

g

∫

C+∆C

F(y|θ, η)
√

f(y|θ)
F(x|θ, η)
√

f(x|θ)
dηdy

= Cg + ∆Cg,
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where

Cg =

∫

S

g

∫

C

F(y|θ, η)
√

f(y|θ)
F(x|θ, η)
√

f(x|θ)
dηdy

∆Cg =

∫

S

g

∫

∆C

F(y|θ, η)
√

f(y|θ)
F(x|θ, η)
√

f(x|θ)
dηdy.

It is easy to show that ∆C is positive operator. According to Proposition 6,

all eigenvalues of B is non-negative, i.e. λ
(∆C)
1 ≥ 0. Apply Weyl’s inequality,

we show that to any i ≥ 1,

λ
(C+∆C)
i ≥ λ

(C)
i .

All we have done above are theoretical, things are much harder in practi-

cal. The main reason is that we can not always obtain a closed form for the

eigenfunction equation Equation 2.10. In such case, we need to approximate

the eigenfunction equation by a eigenvector equation. The discretization of

the operators and the behavior of approximated eigenvalues is discussed in

[SZ08]. Assume that X = (x1, x2, · · · , xm)T is a sample independently drawn

according to an uniform distribution over the support C. We introduce a

sampling operator RX : (Π, k∗(·, ·)) → ℓ2 such that

RX(g) = (g(x1), g(x2), · · · , g(xm))T .

The adjoint of the sampling operator, RT
X : ℓ2 → (Π, k∗(·, ·)) is given by

RT
Xv =

m
∑

i=1

vik
∗(xi, ·), v ∈ ℓ2.

In [SZ08], it is pointed out that the operator 1
m
RT

XRX , denoted by J ,

converges to the integral operator C(·), when the the number of pieces m

tends to infinity.
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Proposition 12. Assume

κ :=
√

sup
x∈S

k(x, x) <∞.

Let X be a sample independently drawn from a f(x|θ,Q) distribution of S.

With confidence 1 − δ, we have

‖J −A‖HS ≤ 4κ2 log(2/δ)√
m

,

where ‖ · ‖HS is the Hilbert-Schmidt norm defined in Appendix A.

Furthermore, it is also give a proposition for approximation of the eigen-

values and eigenvectors from two operators.

Proposition 13. Let A(·) and Â(·) be two compact positive definite operators

on a Hilbert space H, with nondecreasing eigenvalues {λi} and {λ̂i} with

multiplicity. Then, there holds

max
j≥1

‖λj − λ̂j‖ ≤ ‖A− Â‖HS.

According to these propositions, we can replace the eigenfunction equa-

tion

(Cf)(x) = λf(x)

by

JS = λS,

where

S = (s(x1), s(x2), · · · , s(xm))T ,

while m is large enough. Denote the sum of m largest eigenvalues of matrix

J by σm,

σm =

m
∑

i=1

λi,
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where λi are ordered by descent.

In [HB04], let Mn,m stands for the set of n × m real matrices. It is

mentioned that

Proposition 14. Let J be a n× n real symmetric matrix,

σm(J) = max{tr(JY ) : Y ∈ Rm},

with

Rm := {XXT : X ∈ Mn,m(R), XTX = Im};

and the convex hull of Rm, Ωm is

Ωm := co{XXT : X ∈ Mn,m(R), XTX = Im}
= {C ≥ 0 : trC = m,λ1(C) ≤ 1}.

By the proposition, we can prove Lemma 5, which is used in the proof of

Theorem 6.

Lemma 5. Whenever k ≤ l, we have

σl

l
≤ σk

k
.

Proof. The convex hull Ωm is

Ωm = {C ≥ 0 : trC = m,λ1(C) ≤ 1}.

Then, we have

Ωm

m
=

{

C ≥ 0 : trC = 1, λ1(C) ≤ 1

m

}

.

By the form above, we know, for any k ≤ l,

Ωl

l
≤ Ωk

k
. (A-2)
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On the other hand, let J is the n× n real symmetric matrix,

Rm(J) := {tr(JY ) : Y ∈ Rm}, 1 ≤ m ≤ n,

are m-numerical ranges of J . Geometrically they represent the shadow of

Rm along the line directed by J . Clearly, the bounds of Rm(A) and those of

Ωm(J) = {tr(JC) : C ∈ Ωm}

are the same. In other words,

maxRm(A) = max Ωm(A), minRm(A) = min Ωm(A).

Combine the fact with equation (A-2), we have

σl

l
≤ σk

k
.

Theorem 6. The larger the domain of η is, the more number of si(x) are

needed to contribute Πα.

Proof. In other words, we want to prove that

f(J(C)) =
σm(J(C))

σN (J(C))
, (A-3)

where J(C) is a symmetric matrix and C is the domain of η, decreases while

C is enlarged with direction H , which is a positive-definite symmetric matrix.

Differential (A-3) with respect to matrix J ,

df

dJ
=
σ′

m(J,H)σN(J) − σ′
N(J,H)σm(J)

σ2
N (J)

.

Since σN(J,H) > 0, our aim is to show

α ≤ σ′
m(J,H)

σm(J)
≤ σ′

N(J,H)

σN (J)
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In [HB04], we know that

σ′
m(J,H) = max{tr(CH), C ∈ ∂σm(J)}

where

∂m(J) = {C ≥ 0, tr(C) = m,λ1(C) ≤ 1, tr(JC) = σm(J)},

and
σ′

m(J,H)

σm(J)
= max(tr(DH)), D ∈ Ω1,

where

Ω1 =
1

σm
∂σm(J)

= {D1 ≥ 0, tr(D1) =
m

σm(J)
, λ1(D1) ≤

1

σm(J)
, tr(JD1) = 1}.

Similarly, we have

σ′
m+1(J,H)

σm+1(J)
= max(tr(DH)), D ∈ Ω2,

where

Ω2 =
1

σm+1
∂σm+1(J)

= {D2 ≥ 0, tr(D2) =
m+ 1

σm+1(J)
, λ1(D2) ≤

1

σm+1(J)
, tr(JD2) = 1}.

∃D1 ∈ Ω1,
σ′

m(J,H)

σm
= tr(D1H);

∃D2 ∈ Ω2,
σ′

m+1(J,H)

σm+1
= tr(D2H).
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The inequality could be proved as follows:

σ′
m(J,H)

σm(J)
− σ′

m+1(J,H)

σm+1(J)
= tr(D1H) − tr(D2H)

= tr (D1H −D2H)

= tr ((D1 −D2)H)

≤ tr (D1 −D2) tr (H)

= (tr(D1) − tr(D2))tr(H)

=

(

m

σm
− m+ 1

σm+1

)

tr(H) (A-4)

≤ 0 (A-5)

(A-4) to (A-5) is because of Lemma 5.
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