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Abstract

We study a new method of generating random d-regular graphs by repeatedly applying
an operation called pegging. The pegging algorithm, which applies the pegging operation
in each step, is a method of generating large random regular graphs beginning with small
ones. We prove that the limiting joint distribution of the numbers of short cycles in the
resulting graph is independent Poisson. We use the coupling method to bound the total
variation distance between the joint distribution of short cycle counts and its limit and
thereby show that O(ε−1) is an upper bound of the ε-mixing time. The coupling involves
two different, though quite similar, Markov chains that are not time-homogeneous. We
also show that the ε-mixing time is not o(ε−1). This demonstrates that the upper bound
is essentially tight. We study also the connectivity of random d-regular graphs generated
by the pegging algorithm. We show that these graphs are asymptotically almost surely
d-connected for any even constant d ≥ 4.

The problem of orientation of random hypergraphs is motivated by the classical load
balancing problem. Let h > w > 0 be two fixed integers. Let H be a hypergraph whose
hyperedges are uniformly of size h. To w-orient a hyperedge, we assign exactly w of its
vertices positive signs with respect to this hyperedge, and the rest negative. A (w, k)-
orientation of H consists of a w-orientation of all hyperedges of H, such that each vertex
receives at most k positive signs from its incident hyperedges. When k is large enough, we
determine the threshold of the existence of a (w, k)-orientation of a random hypergraph.
The (w, k)-orientation of hypergraphs is strongly related to a general version of the off-line
load balancing problem.

The other topic we discuss is computing the probability of induced subgraphs in a
random regular graph. Let 0 < s < n and H be a graph on s vertices. For any S ⊂ [n]
with |S| = s, we compute the probability that the subgraph of Gn,d induced by S is H. The
result holds for any d = o(n1/3) and is further extended to Gn,d, the probability space of
random graphs with given degree sequence d. This result provides a basic tool for studying
properties, for instance the existence or the counts, of certain types of induced subgraphs.
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Chapter 1

Introduction

The general subject of this thesis is the properties and generation of random graphs.
Random graphs (though not called random graphs at the time) became known because
of a few proofs by Erdős around the 40’s ( for instance, the proof showing a lower bound
of the Ramsey number R(n, n)). The approach followed in these proofs is known as the
probabilistic method, which is normally used to prove the existence of graphs with certain
properties. Random graphs were formally defined by Erdős and Rényi [23] in 1959 and
soon afterwards, random graph theory developed as its own area of research. The term
“random graphs” refers to a probability space with a (finite) set of graphs with a certain
distribution. There are in general two ways to define a probability space of random graphs.
The first way is to specifically define the sample space and the probability measure. The
second way is to define a random process which generates a probability space of random
graphs, in which the sample space and the probability measure are sometimes implicit. A
probability space of random graphs is usually called a random graph model.

The earliest and also the most studied random graph models are the Gn,p model and
the Gn,m model. The Gn,p model is often referred to as the binomial random graph model
or the standard random graph model, which consists of all graphs on n vertices with each
edge occurring independently with probability p. The Gn,m model defines a probability
space of graphs with n vertices and m edges, each of which occurs with equal probability.
It is convenient to use these two random graph models since their probability measures
are of simple form, which make it relatively easy to compute the probabilities of events.
Another commonly studied random graph model is Gn,d, the probability space of d-regular
graphs on n vertices with the uniform distribution. Computing the probabilities of events
in Gn,d is usually not easy. In fact, the known methods for counting d-regular graphs on
n vertices are already very technical, especially for large values of d. Random d-regular
graphs with non-uniform distribution [62, Section 6] have been studied as well by various
authors. They are generated by random processes, for which the underlying probability
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measures, determined by the random processes, do not have explicit form. This often
makes the analysis even harder. Some of these probability spaces are believed but not yet
proved to be “close to” Gn,d. Research on Gn,d has also been extended to the probability
spaces of random graphs with given degree sequences. There are also important random
graphs motivated by real applications that have different looks from all of the previously
introduced random graph models, for instance, the web graph interpreting the hyperlinks
of webpages in the Internet, and the underlying topology of some of the social networks.
A degree sequence d1, . . . , dn is said to obey a power law if there is a constant β > 0
such that for any nonnegative integer k, the number of di that equals k is (approximately)
proportional to k−β. These graphs are known to have the scale-free property [5] (the degree
distribution following a power law) and they require new models to define the probability
space. There have been a few models for generating such random graphs, among which
the most popular one is called the preferential attachment model [58, 63], which defines a
random process that generates a random graph whose degree sequence obeys a power law.

For any graph property A, instead of studying whether a given graph has the property
A or not, we study the probability that a random graph has the property A. Commonly
studied graph properties include connectivity, hamiltonicity, diameter and the existence or
counts of certain subgraphs, for instance, trees, cycles, cliques, independent sets, etc.

The methods of studying these graph properties are very different from those in classical
graph theory. Interestingly, a lot of graph properties (for instance, the properties that can
be written as first order logic sentences) obey the 0-1 law in Gn,p, in the sense that the
probability of having property A in Gn,p converges either to 0 or 1 for most p as n → ∞.
We say a graph property A is monotonically increasing if G has property A whenever
G′ ⊂ G has property A. Similarly we say a graph property A is monotonically decreasing
if G has property A whenever G′ ⊃ G has property A. If furthermore the graph property
A is monotonic, then there exists a critical value of p at which the probability of having
property A has a sudden jump (from 0 to 1 or the other way around). We call this critical
value of p, normally a function of n, a threshold function of property A. The thresholds of
graph properties are studied in various random graph models other than Gn,p.

Studying graph properties in random graph models is currently of significant interest.
Given a probability space, if some graph property holds with high probability (i.e. the
probability goes to 1 as the size of the random graph goes to infinity), we expect a graph
picked from that probability space to have that property.

This thesis combines some recent results on three main topics: a new way of generating
random regular graphs, thresholds of orientability of random hypergraphs, and computing
the probabilities of induced subgraphs in random regular graphs.

In Chapter 3, we introduce a new method of generating random d-regular graphs by
repeatedly applying an operation called pegging. The pegging operation is abstracted from
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the basic operation applied in a type of peer-to-peer network called the SWAN network.
The pegging algorithm, which applies the pegging operation in each step, is a method
of generating large random regular graphs beginning with small ones. We prove that
for the resulting graphs, the limiting joint distribution1 of the numbers of short cycles
is independent Poisson. Properties of the short cycles are interesting because they are
the only likely local structures other than trees and forests in a random regular graph
with constant degree. The total variation distance between two distributions, formally
defined in Section 2.1.4, is a two-variable function that measures the difference between two
distributions. The ε-mixing time of the distribution of short cycle counts of these random
regular graphs is the time at which the distribution reaches and maintains total variation
distance at most ε from its limiting distribution. We use coupling, a proof technique
introduced in Section 2.1.4, to bound the rate at which the distribution approaches its
limit and thereby show that O(ε−1) is an upper bound of the ε-mixing time. The coupling
involves two different, though quite similar, Markov chains that are not time-homogeneous.
We also show that the ε-mixing time is not o(ε−1). This demonstrates that the upper bound
is essentially tight. We study also the connectivity of random d-regular graphs generated
by the pegging algorithm. We show that these graphs are asymptotically almost surely
d-connected for any even constant d ≥ 4.

In Chapter 4, we study the thresholds of the orientability of random hypergraphs, which
is motivated by the classical load balancing problem. Let h > w > 0 be two fixed integers.
Let H be a random uniform hypergraph whose hyperedges are of size h. To w-orient a
hyperedge, we assign exactly w of its vertices positive signs with respect to this hyperedge,
and the rest negative. A (w, k)-orientation of H consists of a w-orientation of all hyperedges
of H, such that each vertex receives at most k positive signs from its incident hyperedges.
When k is large enough, we determine the threshold of the existence of a (w, k)-orientation
of a random hypergraph. The graph case, when h = 2 and w = 1, was solved recently by
Cain, Sanders and Wormald and independently by Fernholz and Ramachandran, thereby
settling a conjecture made by Karp and Saks. The (w, k)-orientation of hypergraphs is
strongly related to a general version of the off-line load balancing problem.

In Chapter 5, we compute the probability of induced subgraphs in a random regular
graph. Let 0 < s < n and H be a graph on s vertices. Let [n] denote the set {1, 2, . . . , n}.
For any S ⊂ [n] with |S| = s, we compute the probability that the subgraph of Gn,d

induced by S is H. The result holds for any d = o(n1/3) and is further extended to Gn,d,
the probability space of random graphs with given degree sequence d. This result provides
a basic tool for studying properties, for instance the existence or the counts, of certain
types of induced subgraphs.

Some background of these topics is discussed in Chapter 2. We also discuss in Chapter 2
a few methods used in the proofs in the later chapters, for instance, the coupling method,

1defined in Section 2.1.3
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the differential equation method and the switching method.

The results on short cycle distribution, the upper and lower bounds on ε-mixing time
have appeared in the joint paper [27, 26] with Wormald and the result on thresholds of
orientability of random hypergraphs is also joint work with Wormald [28]. The result on
estimation of the probability of induced subgraphs in random regular graphs is joint work
with Su and Wormald.
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Chapter 2

Background

In this chapter we give a brief description of problems we present in this thesis and explain
the contribution of our work to the related areas. We also give an exposition of some of
the methods we use in our proofs.

2.1 Generation and properties of random regular graphs

In Chapter 1, we defined the probability spaces Gn,p, Gn,m and Gn,d. Given d = (d1, . . . , dn),
Gn,d can be extended to Gn,d, the probability space of graphs on n vertices with degree
sequence d and with the uniform distribution. For any sequence of properties An, we say
An holds asymptotically almost surely (a.a.s.) if P(An) → 1 as n → ∞. The probability
spaces Gn,d and Gn,d have certain advantages over Gn,p and Gn,m when applied to designing
and analysing some networks. For p = O(1/n) and m = O(n), the degree distributions
of Gn,p and Gn,m are far from regular. In particular, there are a.a.s. Θ(n) isolated vertices
(vertices of degree 0). This is usually what researchers try to avoid in network design.
Hence Gn,d and Gn,d are more suitable models since they generate graphs with required
degree sequences.

Computing probabilities of events in Gn,d is usually difficult. To implicitly define the
probability measure of Gn,d, it is required to compute (or estimate) the number of d-regular
graphs. However, the work spread over years for different range of values of d, especially for
large d. The first contribution to this problem was by Bender and Canfield [7], who obtained
the asymptotic formula for the number of d-regular graphs for bounded d. Bollobás [9]
then reproved the result where the constraint of bounded d was relaxed to d <

√
2 log n.

McKay [42] extended the formula to d = o(n1/3) using a technique called switching and
later McKay and Wormald [43] extended the formula to d = o(

√
n) by using an improved

version of the switching operations in [42] which also makes the analysis easier. McKay
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and Wormald also obtained the asymptotic formula for dense regular graphs, where d ≈ cn
for some constant c within certain range. However, the problem remains unresolved for
the case that d is in the range between Θ(n1/2) and cn/ log n for some c > 0.

Properties of random regular graphs in Gn,d have been studied by many authors. In
areas such as Computer Science, researchers especially show interest in generating random
graphs, or random regular graphs, with a given distribution. An interesting question is how
to generate regular graphs from Gn,d. The pairing model, explained in Section 2.1.1, can
be used to generate random d-regular graphs. However, it only works efficiently for small
values of d. Currently there is no known efficient algorithm to generate random d-regular
graphs with uniform distribution when d is Ω(n1/3). There are some alternative algorithms
that efficiently (linear time) generate random regular graphs whose distributions are non-
uniform but are believed to be “close to” uniform. Two of the well known algorithms are
the d-process and the d∗-process. The d-process starts with an empty graph on n vertices
and repeatedly adds a random edge without having the degree of any vertex exceed d. The
d∗-process starts with an empty graph on n vertices and in each step it chooses a random
vertex v whose degree is below d and then repeatedly joins v by an edge to another vertex
chosen uniformly at random (u.a.r.) from those whose degrees are less than d and who are
non-adjacent to v, until the degree of v reaches d. It was shown in [55, 50, 49] that the
d-process and the d∗-process a.a.s. terminate with a graph that is d-regular for bounded d.

Two probability spaces Gn and G ′n are contiguous if and only if for any event An, An

is a.a.s. true in Gn if and only if An is a.a.s. true in G ′n. Proving or disproving that the
probability space generated by the d-process or the d∗-process is contiguous with Gn,d is
still open.

The random d-regular graphs in Gn,d have nice properties. For d ≥ 3, they are
a.a.s. d-connected [62, Theorem 2.10], hamiltonian [62, Theorem 2.26] and with diame-
ter O(log n) [62, Theorem 2.13]. Some of these almost sure properties have been proved
to hold in other random regular graph models, like the random regular graphs generated
by the d-process and the d∗-process. Various types of subgraphs in Gn,d have been investi-
gated, which we discuss more in detail in Section 2.3 and Chapter 5. The distribution of the
number of short cycles, a particular type of subgraphs, have been examined independently
by Bollobás [9] and Wormald [59]. The short cycles caught special attention because they
are the only local structures that are likely to occur in Gn,d besides trees and forests. The
joint distribution of short cycle counts is asymptotically independent Poisson in various
random regular graphs models. The joint distribution of short cycle counts can be used as
part of a proof of contiguity between two random regular graph models in some cases (for
instance, it was used in [35] to prove that the uniform model of random d-regular graphs is
contiguous to the model of random d-regular graphs obtained by adding a uniformly ran-
dom perfect matching to a uniformly random (d−1)-regular graph conditional on that the
resulting graph is simple). The results on the distribution of short cycle counts supports
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the belief of the contiguity between the random regular graph models (the uniform model,
the d-process, the d∗-process) mentioned above. The difficulty of proving the contiguity is
discussed in Chapter 6.

2.1.1 The pairing model

The pairing model (also called the configuration model) was first introduced by Bollobás [9]
to enumerate d-regular graphs on n vertices when dn is an even number. In the pairing
model, let the n vertices be represented as n buckets each containing d points. Take a
random partition of all points into dn/2 pairs. Such a partition is called a pairing. Then
contract each bucket and represent it as a vertex whereas each pair corresponds to an
edge. It can be easily shown that the resulting graph, if it is simple, is a d-regular graph
chosen u.a.r. from all d-regular graphs on n vertices. Let M(n, d) denote the set of pairings
generated by the pairing model. It follows easily that |M(n, d)| = (nd − 1)(nd − 3) · · · 1.
Each simple d-regular graph corresponds to the same number, d!n, of pairings in M(n, d).
Hence enumerating d-regular graphs is equivalent to computing the probability that a
pairing in M(n, d) corresponds to a simple graph. Let P(simple) denote this probability.
Then Bender and Canfield [7] showed that

P(simple) ∼ exp

(
1− d2

4

)
, (2.1.1)

with bounded d ≥ 1. The constraint of bounded d was later relaxed by various authors [9,
42, 43].

The advantage of using the pairing model is that computing probabilities of events
in M(n, d) is easy. In general, let A denote a graph property of d-regular graphs (any
graph property can be considered to be a set of graphs), and let A′ ⊂ M(n, d) denote
the set of pairings, each of which corresponds to a graph in A. Then we can compute
PM(n,d)(A

′), which denotes the probability of A′ in M(n, d). Knowing the asymptotic
formula of P(simple), we can now estimate the asymptotic value of PGn,d

(A), since

PGn,d
(A) = PM(n,d)(A

′)/P(simple).

Instead of computing PM(n,d)(A
′), sometimes it is easier to compute the probability of

A′′ ⊂ M(n, d), where any pairing in A′′ corresponds to a multigraph with property A.
For example, consider A to be the property that a graph (multigraph) is Hamiltonian.
Computing PM(n,d)(A

′′) is easier than PM(n,d)(A
′) because we do not have to restrict

pairings in A′′ to those corresponding to simple graphs. Since A′ ⊂ A′′,

PGn,d
(A) ≤ PM(n,d)(A

′′)/P(simple).
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For any fixed d > 0, P(simple) = Θ(1) by (2.1.1). Thus, PM(n,d)(A
′′) = o(1) implies

PGn,d
(A) = o(1). It follows that to show any graph property that holds a.a.s. in Gn,d it is

enough to show that the corresponding property holds a.a.s. in M(n, d).

2.1.2 SWAN and the pegging algorithm

Random regular graphs have recently arisen in a peer-to-peer ad-hoc network, called the
SWAN (Small-World Wide Area Network), introduced by Bourassa and Holt [14]. The
SWAN consists of a group of peers that connect to each other. It uses a random regular
graph as its underlying topology. In the random regular graph, each vertex represents
a peer and each edge represents a point-to-point connection between peers. Currently
the SWAN is implemented on a random 4-regular graphs although the basic operations
are defined for any even d ≥ 4. In the SWAN, peers arrive and leave randomly. When
a peer joins the network, SWAN randomly chooses d/2 disjoint connections (edges) and
interposes the new peer (vertex) on each of them. This operation that models a peer joining
the network is called “clothespinning”, whereas the reverse operation of “clothespinning”
models a peer leaving the network. Occasionally some adjustment is required to repair the
network if these operations cannot cope, for instance, if the network is too small (with less
than d + 1 peers), or if a peer breaks down without being able to notify his neighbours
first, or a peer departs from the network with all his neighbours mutually linked, etc.
The result is a random graph whose distribution is not fully understood. Bourassa and
Holt found experimentally that it has good connectivity and diameter properties. More
recently, Cooper, Dyer and Greenhill [21] defined a Markov chain on d-regular graphs with
randomised size to model (a simplified version of) the SWAN network. Each move of the
Markov chain is a clothespinning operation or the reverse and no other operations used
in [14] are considered. They showed that, conditional on the graph having certain size,
the stationary distribution is uniform, and they bounded the mixing time of the chain.
However, the Markov chain they defined is restricted such that the sizes of the graphs are
bounded in probability.

In our work, we define an algorithm which generates random d-regular graphs for con-
stant d. The algorithm simply repeats clothespinning (which we call pegging) operations,
without performing the reverse. The definition of the algorithm will be formally defined
in Chapter 3. We will focus mainly on even d, in which case a pegging operation can be
visualised as binding the middles of d/2 nonadjacent edges together using a new vertex.
Thus the size of the graph increases linearly with the number of operations. This gives an
extreme version of the SWAN network, in which no peer ever leaves the network. Since the
analysis of [21] does not apply if the network undergoes net long-term growth, by studying
this extreme case we hope to gain knowledge of which properties of the random SWAN
network are not sensitive to long-term growth.
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2.1.3 Method of moments

Let ` be a fixed positive integer and let Xn,1, . . . , Xn,` be ` discrete random variables.
We say that the joint distribution of Xn,1, . . . , Xn,` asymptotically has the probability
distribution function σ : Z` → R, if for any (x1, . . . , x`) ∈ Z`,

P(Xn,1 = x1, . . . , Xn,` = x`) → σ(x1, . . . , x`), as n →∞.

For any integers X and i ≥ 0, let [X]i denote the i-th falling factorial of X, i.e.
[X]i = X(X − 1) · · · (X − i + 1). By convention, [X]0 = 1 and [X]i = 0 if i > X.

In general, the method of moments in probability theory is a method of proving that
a sequence of random variables (Xi)i≥1 converge in distribution to a random variable X.
It can be described as follows. If the expectation of every moment of X exists and the
distribution of X is completely determined by its moments, then we have that if for any
k ≥ 1, E(Xk

i ) → E(Xk), then Xi converges to X in distribution. For a complete statement
of the result and its history, readers can refer to [48, Section 4.1, Proposition 6].

The following theorem, a simpler form of which is stated in [3, Theorem 8.3.1], is a
special case of the method of moments in general and is often used to prove that a sequence
of vectors of random variables converges in distribution to the independent Poisson.

Theorem 2.1.1 Let l be a fixed positive integer. Given l nonnegative constants µ1, . . . , µl,
let Xn,1, . . . , Xn,l be l nonnegative random variables such that for any j1 ≥ 0, . . . , jl ≥ 0,

lim
n→∞

E

(
l∏

i=1

[Xn,i]ji

)
=

l∏
i=1

µji

i ,

then Xn,1, . . . , Xn,l are asymptotically independent Poisson random variables with means
µ1, . . . , µl.

2.1.4 Markov chain and Coupling

A random process (Xi)i≥0 is called a discrete time Markov chain if the following Markov
property is satisfied. For any t ≥ 0,

P(Xt+1 = xt+1 | Xt = xt, . . . , X0 = x0) = P(Xt+1 = xt+1 | Xt = xt).

The set of possible values of Xi for any i ∈ N is a countable set, which is called the state
space of the Markov chain.
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A Markov chain is called irreducible if for any states i and j, there exists n > 0, such
that

P(Xn = j | X0 = i) > 0.

For any state i, the period of i is defined to be gcd{n : P(Xn = i | X0 = i) > 0}. A
Markov chain is said to be aperiodic if the period of each state in the chain is 1.

A Markov chain is called ergodic if it is irreducible and aperiodic, or equivalently, a
Markov chain is ergodic if for any states i and j, there exists N > 0 such that for all
n > N ,

P(Xn = j | X0 = i) > 0.

A distribution π on the sate space of a Markov chain is called a stationary distribution
if for any t ≥ 0, if the distribution of the Markov chain at step t is π, then its distribution
at step t + 1 is also π.

A well known property of an ergodic finite state Markov chain is that the distribution
of Xt converges to a unique stationary distribution regardless of the initial distribution
of X0. This result can be found in any text book of probability theory, for instance, [19,
Chapter 10].

Let σ and π be probability distributions on the same countable state space S. The
total variation distance between σ and π is defined as

dTV (σ, π) = sup
A⊂S

{σ(A)− π(A)} . (2.1.2)

Equivalently,

dTV (σ, π) =
1

2

∑
x∈S

|σ(x)− π(x)|.

As we discussed before, an ergodic finite state Markov chain converges to a unique
stationary distribution. Let σt denote the distribution of the Markov chain at step t
and let π denote the stationary distribution. For a given small constant ε > 0 (1/4 is
often chosen as the value of ε in engineering or other applied areas), the mixing time of
the Markov chain is defined to be the minimum t such that the total variation distance
between σt and π remains below ε in all following steps. To denote the dependence on ε,
the mixing time t is a function of ε. We call this t the ε-mixing time, though this is not a
standard definition.

The coupling method can be used to bound the mixing time and ε-mixing time of a
Markov chain. In general, a coupling of two random variables X1 and X2 with the same
state space (but not necessarily defined on the same probability space) is a construction
of X1 and X2 simultaneously on the same probability space. With only a slight abuse of
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notation, we write this as a random pair (X1, X2), where the marginal distribution of Xi

as the i-th coordinate is the same as the distribution of the original variable Xi (i = 1
and 2). The coupling method as a proof technique was first introduced by Doeblin in the
1930s. It becomes a popular technique in proving the mixing times of ergodic Markov
chains by various authors [1, 2, 37]. Lindvall [40, pp. 9–12] gave an elaborate definition
of coupling that is equivalent for our purposes, and gave a corresponding general coupling
lemma which we may state as follows.

Lemma 2.1.2 (Coupling Lemma) Let (X1, X2) be a coupling and let σi denote the dis-
tribution of Xi. Then

dTV (σ1, σ2) ≤ P(X1 6= X2).

Proof Since S is countable, there are probability functions p1 and p2 for distributions σ1

and σ2. Define
A = {s ∈ S : p1(s) > p2(x)}.

Then clearly A ⊂ S maximizes the right hand size of (2.1.2) and hence the supremum can
be achieved. Then

dTV (σ1, σ2) = P(X1 ∈ A)−P(X2 ∈ A)

≤ P(X1 ∈ A)−P(X1 = X2 ∧X1 ∈ A)

= P(X1 ∈ A) + P(X1 6= X2 ∨X1 /∈ A)− 1

≤ P(X1 ∈ A) + P(X1 6= X2) + P(X1 /∈ A)− 1

= P(X1 6= X2).

If (Xt)t≥0 and (Yt)t≥0 are two random processes in the same state space, a random
process

(
(Xt, Yt)

)
t≥0

is a coupling of the two processes if (Xt, Yt) is a coupling of Xt and Yt

for all t ≥ 0.

The coupling method, as it is usually applied to bound the mixing time of a Markov
chain, can be described briefly as follows. Assume (Xt)t≥0 is a Markov chain starting
with state X0 = x0. Construct another Markov chain (X ′

t)t≥0 with the same transition
probabilities as (Xt)t≥0 for all t ≥ 0, but starting with X ′

0 as a random variable with the
stationary distribution of the Markov chain. Then X ′

t has the same distribution for all
t ≥ 0. Construct a coupling of the two Markov chains (Xt, X

′
t)t≥0. Then by the coupling

lemma, the total variation distance between the distribution of Xt and X ′
t is bounded by

P(Xt = X ′
t), whilst the distribution of X ′

t remains the stationary distribution. Since the
transition probabilities are the same in (Xt)t≥0 and (X ′

t)t≥0, we can construct the coupling
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in such a way that as long as Xt = X ′
t for some t ≥ 0, Xt and X ′

t take the same transition for
all the following steps. That is to say, P(Xt+1 = X ′

t+1) ≥ P(Xt = X ′
t) for all t ≥ 0. It then

follows that for any ε > 0, if dTV (Xτ , X
′
τ ) < ε for some τ > 0, then dTV (Xt, X

′
t) < ε for any

t ≥ τ . Hence the ε-mixing time is bounded by the minimum t such that P(Xt 6= X ′
t) < ε

and this minimum t can usually be estimated by analysing the process (Xt, X
′
t)t≥0.

The coupling method can be applied to more general settings. For instance, it can
be used to bound the total variation distance of two random processes that converge to
the same limiting distribution. Since the transition probabilities in these two random
processes may be different, we cannot construct a coupling that forces Xt and X ′

t to take
the same transition even if Xt = X ′

t. This can make the analysis more complicated. In
our work of getting an upper bound of the ε-mixing time of the joint distribution of the
short cycle counts in the random regular graphs generated by the pegging algorithm, we
applied the coupling method to bound the ε-mixing time of two slightly different Markov
chains. Because part of the proof is included in my Master’s research paper [25], it is not
presented in this thesis. We only state the main result of the upper bound since we need
it to prove some other results in the thesis. Interested readers can refer to [27].

2.1.5 Small subgraph conditioning method

The small subgraph conditioning method can be used to prove some almost sure graph
property in a random regular graph, or the contiguity between two random regular graph
probability spaces. We assume readers are familiar with the first and second method
methods. Let G be a probability space of random d-regular graphs and let Y = Y (n) be
a non-negative random variable in G. Assume EY (n) → ∞ as n → ∞. If we wish to
show that a.a.s. Y > 0 (by Y > 0 a.a.s. we mean there exists δ > 0 such that P(Y (n) >
δ) → 1 as n →∞), the first try would be to compute the second moment of Y . It comes
immediately from the second moment method that a.a.s. Y > 0 if the second moment of Y
is asymptotically the square of EY . However, the second moment method fails if the second
moment of Y is at least c(EY )2 for some c > 1. The small subgraph conditioning method
can be used to show that Y > 0 a.a.s. in some situation in which the “large” deviation of Y
is caused by the appearance of short cycles and by conditioning on the numbers of cycles
of any finite size, we obtain “small” variance. The method can be described as follows.
Let G(Y ) be the probability space obtained from G by letting PG(Y )(G) = Y (G)PG(G)/EY
for every G ∈ G, where EY is the expectation of Y in G. Recall that two probability
spaces G1 and G2 are contiguous, denoted by G1 ≈ G2, if and only if for any event that
is a.a.s. true in one probability space, it is also a.a.s. true in the other. If we can show
that Y/EY converges in distribution to some random variable W as n → ∞, and W > 0
a.s., it follows that G is contiguous with G(Y ) which immediately implies Y > 0 a.a.s.. (see
Janson, ÃLuczak and Ruciński [36, P. 266] for a discussion of this). The following theorem
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gives the conditions under which Y/EY converges in distribution to some random variable
W .

Theorem 2.1.3 ( [35]) Let λi > 0 and δi ≥ −1, i ∈ Z+ be real numbers and Xi = Xi(n),
Y = Y (n) be random variables on the same probability space G = G(n), where n is an
implicit parameter in these random variables and probability spaces under consideration.
Suppose Xi are non-negative integer valued and Y is non-negative and EY > 0 for suffi-
ciently large n. Suppose furthermore that

(a) for every k ≥ 1, Xi, 1 ≤ i ≤ k are asymptotically independent Poisson random
variables with EXi → λi;

(b) for all non-negative integers j1 ≥ 0, . . . , jk ≥ 0,

E(Y [X1]j1 · · · [Xk]jk
)

EY
→

k∏
i=1

(λi(1 + δi))
ji ;

(c)
∑∞

i=1 λiδ
2
i < ∞;

(d)

EY (n)2

(EY (n))2
≤ exp

( ∞∑
i=1

λiδ
2
i

)
+ o(1), as n →∞.

Then
Y (n)

EY (n)
→ W =

∞∏
i=1

(1 + δi)
Zie−λiδi in distribution, as n →∞,

where the variables Zi are independent Poisson variables with means λi for i ∈ Z+. More-
over, this convergence and the convergence of the Xi to the Zi as in condition (a) all hold
jointly.

The following theorem shows that to prove Y > 0 a.a.s. or G ≈ G(Y ), it is enough to
check that certain conditions hold.

Theorem 2.1.4 ( [35]) If all the conditions of Theorem 2.1.3 are satisfied, then

P(Y (n) > 0) = exp

(
−

∑

i:δi=−1

λi

)
+ o(1),

and, provided
∑

i:δi=−1 λi < ∞, G(Y ) ≈ G, where G denotes the probability space obtained
from G by conditioning on the event

∧
i:δi=1(Xi = 0) (Xi = 0 for all i such that δi = −1).
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These two theorems also explain why the studies of the short cycle distributions in
various random regular graph models are important. Assume G is a probability space of
random d-regular graphs and Y is a random variable defined in G. If we can show that the
numbers of short cycles in G are asymptotically independent Poisson variables with means
λi, i ∈ Z+, these random variables immediately give Xi used in Theorem 2.1.3 (a). If
furthermore, we can show that the numbers of short cycles in G(Y ) are also asymptotically
independent Poisson variables with means λ′i, i ∈ Z+, then condition (b) of the theorem is
satisfied by taking δi = λ′i/λi − 1. Having λi and δi, it is straightforward to check whether
condition (c) is satisfied. However, it is sometimes difficult to verify condition (d), which
requires the computation of the second moment of Y . We will discuss more about the
usage of the small subgraph conditioning method in Chapter 6. Interested readers can
refer to [51] by Robinson and Wormald, where the small subgraph conditioning method

was used to show that Gn,3 ≈ G(Hn)
n,3 , where Hn is a random variable in Gn,3, denoting the

number of Hamilton cycles.

2.2 Orientation of hypergraphs and the load balanc-

ing problem

An h-hypergraph is a hypergraph whose hyperedges are of size uniformly h. Let h > w
be two given positive integers. A hyperedge is said to be w-oriented if exactly w distinct
vertices in it are marked with positive signs with respect to the hyperedge. The indegree
of a vertex is the number of positive signs it receives. Let k be a positive integer. A (w, k)-
orientation of an h-hypergraph is a w-orientation of all hyperedges such that each vertex
has indegree at most k. If such a (w, k)-orientation exists, we say the hypergraph is (w, k)-
orientable. Of course, being able to determine the (w, k)-orientability of an h-hypergraph
H for all k solves the optimisation problem of minimising the maximum indegree of H. If
a graph (h = 2) is (1, k)-oriented, we may orient each edge towards its vertex of positive
sign, and we say the graph is k-oriented.

2.2.1 Application to load balancing

The hypergraph orientation problem is motivated by the classical load balancing problem,
which has appeared in various guises in computer networking. The aim is to spread the
work among a group of computers, hard drives, CPUs, or other resources. The on-line
version of the load balancing problem can be considered as jobs coming sequentially and
being assigned to a group of machines. To save time and storage space, for each job, the
load balancer decides which machine it goes to without knowing the complete information
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of the current load of all machines. The goal is to minimize the heaviest load, ÃL, of the
machines. Mitzenmacher, Richa and Sitaraman [45] have surveyed the history, applications
and techniques related to this area. A simple method that is widely used in load balancing
is known as the two-choice or multi-choice paradigm. It can be explained by the following
problem studied by Azar, Broder, Karlin and Upfal [4]. Consider assigning n sequentially
coming jobs to n machines. For each job that arrives, the multi-choice algorithm randomly
chooses h machines, and then assigns the job to the one with the lightest load. Surprisingly,
ÃL decreases significantly by changing the value of h from 1 to 2. They have shown that when
h = 1, a.a.s. ÃL ∼ log n/ log log n, and when h ≥ 2, a.a.s. ÃL ∼ log log n/ log h. There are also
linear time algorithms that achieve ÃL = O(m/n) [22, 38, 44] or ÃL = m/n+O(log log n) [4, 8]
for m jobs and n machines with h ≥ 2.

Another application of the load balancing mentioned by Cain, Sanders and Wormald [15]
is the disk scheduling problem, in which w out of h pieces of data are required to recon-
struct a logical data block. Each piece of data is initially stored in a randomly chosen disk.
The purpose of such design is to guarantee that the logical data blocks can be successfully
reconstructed even if there is some damage of one or a few disks. It also helps to balance
the load. Whenever a request of logical data block arrives, the scheduler lets it retrieve
data from the w least busy disks among the h disks that store the required information.
Interested readers can refer to [56] for further references.

In the off-line version, jobs or requests are not processed sequentially. The balancer
(scheduler) processes all jobs (requests) received in a time period. Take the disk scheduling
problem as an example, let m denote the number of requests to be scheduled and n the
number of disks. Each request j retrieves data from w out of h disks that are randomly
chosen from the n disks. The goal is to minimize the heaviest load ÃL. When h = 1, the
performance is the same as the on-line version because there is no choice. However, the
off-line version performs better when h ≥ 2. It was shown in the case of h = 2, that if
m < cn requests are to be scheduled for some constant c > 0, then a.a.s. the maximum load
is c′ whose value depends on c. An optimal allocation can be achieved in polynomial time
(O(m2)) by solving a maximum flow problem. As explained in [15], it is desirable to find
fast algorithms (linear time algorithms for instance) that achieve maximum load close to the
optimal. There are linear time algorithms that achieve maximum load O(m/n) [22, 38, 44].

2.2.2 Orientability thresholds

Problems of orientability of graphs have been studied by many authors. Results on ori-
entability of graphs with prescribed in-degree out-degree sequences or with given in-degree
and out-degree bounds have been surveyed in [57, Section 61.1]. Some of these proofs use
the flow technique. Problems of orientability of graphs with other restrictions such as edge
connectivity are also surveyed in [57, Chapter 61].
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As explained by Cain et al. [15], a graph model represents the off-line load balancing
problem for h = 2. Again, we take the disk scheduling problem as an example. The
disks are vertices and a request that can retrieve data from u or v is represented as an
undirected edge {u, v}. Recall that a graph can be k-oriented if there exists an orientation
of all edges such that the maximum in-degree is at most k. Note that the graph can be k-
oriented if and only if there is a scheduling such that each disk receives at most k requests.
In [15], and simultaneously by Fernholz and Ramachandran [24], the sharp threshold m(n)
was found for k-orientability in Gn,m, i.e. the function such that a graph in Gn,m is a.a.s.
k-orientable when m < m(n) − εn, and a.a.s. not when m > m(n) + εn. This is the
first proof of a conjecture of Karp and Saks [38], that this threshold coincides with the
threshold at which the (k + 1)-core has mean degree at most 2k. Note that the k-core of a
graph is the subgraph with maximum number of edges and with minimum vertex degree
at least k. Hakimi’s theorem [32, Theorem 4] implies that a graph can be k-oriented if
and only if there does not exist a subgraph with average degree more than 2k. Hence the
k-orientability thresholds immediately provide the thresholds of appearance of subgraphs
with average degree at least 2k. Both proofs in [15] and [24] analyse a linear time algorithm
that finds a k-orientation a.s.s. when the mean degree of the (k+1)-core is slightly less than
2k. The proof in [24] was significantly simpler, which was made possible chiefly because
they analysed a different algorithm which uses the trick of “splitting vertices” to postpone
decisions.

The above graph model can be generalized to the hypergraph model that represents
the multi-choice allocation problem for h ≥ 2. Let the vertices represent disks and let each
hyperedge have size h and represent the set of disks from which a request would retrieve
the data it needs. The hypergraph can be (w, k)-oriented if and only if there is a scheduling
such that each request is scheduled to retrieve data from w disks and no disk receives more
than k requests.

Let Gn,m,h denote the probability space of random h-hypergraphs on n vertices and m
hyperedges with the uniform distribution. In the thesis, we determine the orientability
thresholds of Gn,m,h. We also generalise Hakimi’s theorem [32, Theorem 4] to hypergraphs
and therefore we determine the threshold of appearance of certain type of subgraphs with
certain density. Note that a trivial upper bound for the k-orientability thresholds is m =
kn/w by counting the positive signs that are to be assigned to all vertices.

In all previous work of determining the orientability thresholds of random graphs, a
central role is played by the k-core of random graphs. The k-orientability of random graphs
has the same threshold as the (k + 1)-core reaching a certain density. In common with
these approaches, we first find what we call the (w, k + 1)-core of a hypergraph, which is a
generalisation of the k-core. We use the differential equation method1 to analyse the size
and density of the (w, k + 1)-core in Gn,m,h. Then we show that the (w, k)-orientability

1The details of the differential equation method are given in Section 2.2.3.
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of Gn,m,h has the same threshold as the (w, k + 1)-core reaching a certain type of density.
However, our approach of determining the threshold is quite different from that in previous
work. The technique in [24] does not seem to apply at all in the hypergraph case, and the
algorithm used by [15] is already very complicated when h = 2 and w = 1. Unlike [15, 24],
the proof is not based on analysing an algorithm which finds an orientation, but instead
uses the natural representation of the problem in terms of flows and uses the max-flow
min-cut theorem. We prove the orientability threshold of random hypergraphs analogous
to the one conjectured by Karp and Saks [38] for the random graph case, for all sufficiently
large k. For its special case h = 1 and w = 1, i.e. the graph case, our method provides a
simpler proof (for sufficiently large k) than the proofs of [15] and [24].

Determining thresholds of orientability of random hypergraphs is useful since we can
predict the maximum load, knowing the density of the hypergraph. Although the algorithm
in [24] does not seem to generalise to the hypergraph case, the one in [15] has many
possible generalisations and we presume that an asymptotically optimal algorithm for
the hypergraph orientation problem can be obtained in this way. However, this seems
formidable to analyse in the general setting. We hope that our method in the proof can
potentially lead to some fast algorithm that a.a.s. finds an optimal orientation.

2.2.3 The differential equation method

Let P = (pt)t≥0 denote a discrete time random process with pt an element in a probability
space Ωt. There is a parameter n implicit in those probability spaces. For instance, consider
some algorithm that is run on a random graph G ∈ Gn,p. The algorithm generates a random
process P with n as a hidden parameter in each step. Let Ht = (p0, . . . , pt), which is the
history of the process up to step t. Let a > 0 be a fixed integer and for every 1 ≤ l ≤ a, let
Y

(l)
t : Ht → R be a random variable defined on the histories of the process. The differential

equation method (DE method) is used to show the concentration of variables Y
(l)
t over

the process if there are only small changes of each random variable in each step and the
expected change of each random variable in each step satisfies certain conditions.

Given a > 0 as a fixed integer, a multivariable function f : Ra → R is said to satisfy
some Lipschitz condition if there exists an absolute constant C > 0 such that for any
(x1, . . . , xa) ∈ Ra and (y1, . . . , ya) ∈ Ra,

|f(x1, . . . , xa)− f(y1, . . . , ya)| ≤ C

a∑
i=1

|xi − yi|.

Theorem 2.2.1 (Wormald [60]) Let P be a random process and Ht the history of P up

to step t. Let a be fixed. For 1 ≤ l ≤ a, let Y
(l)
t be a random variable depending on Ht and
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fl : R(a+1) → R be a multivariable function such that for every l and for some constant C,
Y

(l)
t ≤ Cn always for every t. Suppose for some m = m(n),

(i) there exists a constant C ′ > 0 such that for all 0 ≤ t ≤ m and every Ht, |Yt+1−Yt| < C ′;

(ii) for all 0 ≤ t ≤ m and all 1 ≤ l ≤ a and every Ht,

E(Y
(l)
t+1 − Y

(l)
t | Ht) = fl(t/n, Y

(1)
t /n, . . . , Y

(a)
t /n) + o(1);

(iii) for every 1 ≤ l ≤ a, the function fl is continuous with a Lipschitz condition on a
bounded connected open set D where D contains the intersection of (t, z(1), . . . , z(a) :

t ≥ 0) with some neighbourhood of (0, z(1), . . . , z(a) : P(Y
(l)
0 = z(l)n, 1 ≤ l ≤ a) 6=

0 for some n).

Then

(a) For any (0, ẑ(1), . . . , ẑ(a)) ∈ D, the differential equation system

d zl

d s
= fl(s, z1, . . . , za), l = 1, . . . , a

has a unique solution in D for zl : IR → IR with the initial conditions

zl(0) = ẑ(l), l = 1, . . . , a,

where the solution is extended arbitrarily close to the boundary of D.

(b) A.a.s.

Y
(l)
t = nzl(t/n) + o(n)

uniformly for all 0 ≤ t ≤ m

Numerous examples of using the DE method to analyse random processes can be found
in [61]. In Chapter 4, we will apply Theorem 2.2.1 to analyse a randomized algorithm that
generates a random process, which starts from a probability space of random hypergraphs
and terminates with outputting the (w, k + 1)-core of the input.
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2.3 Probabilities of (induced) subgraphs in random

regular graphs

Properties of subgraphs and induced subgraphs in random graph models have been inves-
tigated by various authors. Ruciński [52, 54] studied the distribution of the count of small
subgraphs in Gn,p and the condition under which the distribution converges to the normal
distribution. He also studied properties of induced subgraphs in [53].

The techniques for proving results in the standard random graph model Gn,p do not
apply in the random regular graph model Gn,d. For any graph G on vertex set [n] and
S ⊂ [n], let GS denote the subgraph of G induced by the vertex set S. Let H be a graph
on the vertex set S. For a random graph G, we study the probability that GS equals H,
denoted by P(GS = H), for any S ⊂ [n] and any H on the vertex set S.

Even though computing P(GS ⊇ H) or P(GS = H) in Gn,p is trivial, computing these
probabilities in Gn,d is not easy, especially when the degree d goes to infinity as n goes
to infinity. McKay [41] estimated lower and upper bounds of P(GS ⊇ H) in Gn,d when
the degree sequence of H and d satisfy certain conditions. These bounds are useful in
estimating the asymptotic value of P(GS ⊇ H) when d is not too large or H is small.
However, the result and the technique in the proof do not apply to the induced subgraph
case. Gao and Wormald [29] proved that the distribution of the number of small subgraphs
with certain restrictions converges to the normal distribution in Gn,d. However, no such
results on induced subgraphs are known. On the other hand, for very dense regular graphs,
Krivelevich, Sudakov and Wormald [39] computed P(GS = H) in Gn,d when n is odd,
d = (n− 1)/2 and |V (H)| = o(

√
n).

An asymptotic formula of the probability that GS = H or GS ⊇ H in a random
bipartite graph with a specified degree sequence has been derived by Bender [6] when the
maximum degree is bounded. The result was extended further by Bollobás and McKay [11]
and by McKay [42] when the maximum degree goes to infinity slowly as n goes to infinity.
Greenhill and Mckay [31] recently derived the asymptotic formula for the case when the
random bipartite graph is sufficiently dense and H is sparse enough.

Let d = (d1, . . . , dn) be a vector of nonnegative integers. Recall that Gn,d denotes the
class of graphs with degree sequence d and the uniform distribution, which generalises Gn,d.

In Chapter 5, we compute the probability that GS = H in Gn,d when dmax = o(M1/4),
where dmax is the maximum degree and M is the degree sum. The power of this result
is that there is no restriction on the size or density of H. Computing this probability is
useful as a basic tool of studying the properties of induced subgraphs. For instance, given
H, we can use this result to compute the expected number of copies of induced subgraphs
in Gn,d that are isomorphic to H. In Section 5.2, as a direct application of our main result,
we compute the probability that a given set of vertices in Gn,d is an independent set.
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2.3.1 Graph enumeration and the switching method

Enumerating combinatorial objects is a broad subject in general, which has its own research
interest and has meanwhile been used in many other areas. We limit our discussion only
to enumerating graphs with given degree sequences in this thesis. We have introduced
in Section 2.1 the result on enumerating d-regular graphs, using the pairing model as
illustrated in Section 2.1.1. The essential idea is to compute P(simple), the probability
that a pairing inM(n, d) corresponds to a simple graph. The estimation of this probability
given by Bollobás using the pairing model holds only for d <

√
2 log n. McKay extended

this result to d = o(n1/3) using the switching method. In general, a switching operation
applied to a graph G refers to replacing a (finite) set of edges in G by another set of edges
not in G such that the degree sequence of G does not change after the operation is applied.
A switching operation applied to a pairing refers to choosing a (finite) set of pairs in the
pairing and rematching the pairs in some certain way.

A pair {u, v} in a pairing is called a loop if u and v are contained in the same vertex.
Two pairs {u1, v1}, {u2, v2} are called a double pair if u1, u2 are in one vertex and v1, v2

are in another vertex. Similarly we can define a triple pair (or a multipair with any given
multiplicity m).

Figure 2.1 and 2.2 illustrate the type of switching operations used by McKay [42] applied
to a pairing. In both figures, the switching operation switches two pairs, turning P1 to
P2. Figure 2.1 shows the switching operation that removes a loop from P1 and Figure 2.2
shows the switching operation that removes a double pair.

P
1

P
2

e
1

e
2

v
1

v
2

Figure 2.1: A switching operation for removing a loop

Next we discuss the usage of switching operations for computing P(simple). First we
can show that a random pairing in M(n, d) for d = o(n1/3) a.a.s. contains no double loops
or triple pairs, using the first moment method. Then it is enough to consider pairings in
M(n, d) containing only loops and double pairs other than simple pairs. Let Cl,d denote
the set of d-regular graphs containing l loops and d double pairs and no double loops or

20



P
1

P
2

Figure 2.2: A switching operation for removing a double pair

triple pairs. The switching method can be summarised as follows. For a given pairing
P1 ∈ Cl,d, we estimate N , the number of ways to apply the switching operation illustrated
in Figure 2.1 such that a loop is removed after the operations are applied without any
other loops or double pairs being created or destroyed simultaneously. We also estimate
N ′, the number of inverse switching operations such that a loop is created after the inverse
operations are applied to P2 ∈ Cl−1,d, without any other loops or double pairs being created
or destroyed. Then both |Cl−1,d|EN and |Cl,d|EN ′ count the number of pairs (P1, P2), where
P1 ∈ Cl,d and P2 ∈ Cl−1,d such that P2 is obtained by applying a switching operation to
P1 (such a pair (P1, P2) is called a closely related pair in McKay’s paper [42]). Then
|Cl,d|/|Cl−1,d| = EN ′/EN . Similarly we can estimate |Cl,d|/|Cl,d−1|. With the estimates of
such ratios, we can estimate P(simple) by using

1

P(simple)
= (1 + o(1))

∞∑

l=0

∞∑

d=0

|Cl,d|
|C0,0| .

This is because
∑∞

d=0 |Cl,d| counts all pairings (except for pairings with double loops or
triple pairs, which are negligible as discussed before) whilst |C0,0| counts the simple graphs.
The error term o(1) in the above formula accounts for neglecting pairings containing double
loops or triple pairs. If the above sum has exponentially small tail, which often happens,
it is enough to sum over the main part and bound the error caused by cutting the tail.

The difficulty in analysing the switching operations in [42] is that N and N ′ depend on
some local structures. For instance, if we count the inverse switchings in Figure 2.1 that
can be applied to a given pairing P , which do not create other loops or double pairs, it is
required to choose two adjacent pairs e1 and e2 in P2 such that there is no pair between
v1 and v2, since otherwise after the switching operation is applied, a double pair will be
created between v1 and v2 other than the created loop. Therefore the number of such
2-paths depends on the number of triangles in P1.

McKay and Wormald [43] improved the switching operations in [42] for which the
number of ways to perform a switching operation does not depend on such local structures.
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Using these improved switching operations makes it easier to get more precise estimation
for larger values of d and allows the constraint on d to be relaxed to d = o(

√
n). For d

in this range, a random pairing in M(n, d) may contain triple pairs, too. The switching
operations used by McKay and Wormald are illustrated in Figure 2.3, removing/creating
loops, double pairs and triple pairs respectively.

Figure 2.3: A switching operation for removing a loop (figure from [43])

Figure 2.4: A switching operation for removing a double pair (figure from [43])

As we will see later in Chapter 5, computing probabilities of induced subgraphs relates
to enumerating a certain type of graphs, called the B-graphs, with a given degree sequence.
The B-graphs with given degree sequences can be enumerated using the pairing model and
we compute P(simple) using different types of switching operations.
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Figure 2.5: A switching operation for removing a triple pair (figure from [43])
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Chapter 3

Random regular graphs and a
peer-to-peer network

3.1 Introduction

We first introduce the pegging algorithm, motivated by the SWAN network, which generates
random d-regular graphs for constant d. In Section 3.2 we study the joint distribution
of short cycle counts in the random d-regular graph generated by pegging, for d = 4.
As mentioned in Chapter 1, in most models of random regular graphs (for instance, the
uniform model, the random d-regular graphs generated by the d-process or the d∗-process),
there are unlikely to be subgraphs with more edges than vertices. The short cycles are the
only small subgraphs that are likely to occur other than the trivial structures such as trees
and forests.

Bollobás [9] and Wormald [59] independently showed that the joint distribution of the
short cycle counts is asymptotically the independent Poisson in the uniform model. In
Section 3.2, we show that the joint distribution of the short cycle counts in random regular
graphs generated by the pegging algorithm also converges to the independent Poisson as
t → ∞ but with different means from the uniform model. We also determine the rate at
which the short cycle distribution converges to its limit in Section 3.3. In Section 3.4, we
study the connectivity of a random d-regular graph generated by the pegging algorithm.
This is indicative of the connectivity properties of the SWAN network under long-term
growth. It is well known [10, 59] that the random d-regular graphs are a.a.s. d-connected
in the uniform model for any fixed constant d ≥ 3. We prove this property holds a.a.s. in
random d-regular graphs generated by the pegging algorithm for d = 4.

There are some preliminary results in this Chapter that have been done for my Master’s
research paper [25]. The expected number of k-cycles in the pegging model, for any fixed
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k ≥ 3 and even d ≥ 4, was computed. For k = 3, there is an attempt of proving a Poisson
limiting distribution of the number of triangles and an upper bound of the ε-mixing time
(which is called the pseudo mixing time in [25]) using the coupling. However, the argument
is not very rigorous there. For instance, Table 1 and Table 2 given in the proof of [25,
Theorem 3.1] that define a coupling of two random variables (Xt, Yt) do not work for all
values of Xt and Yt. Thus, there needs to be a separate argument bounding the probability
that the value of Xt or Yt is too large for the coupling given by Table 1 and Table 2 to
be applied. The proof has been improved and made rigorous during my Ph.D. studies and
the result has been extended to any fixed k ≥ 3 and any d ≥ 3, by coupling two random
vectors. However, the main ideas (including coupling two random vectors for any fixed k)
are the same as what was presented in [25]. Thus, we do not present it here in this thesis.
The improved coupling argument can be found in [27] as a joint work with Wormald. In
the thesis, we approach the limiting distribution using the method of moments, which is
a separate argument of proving an upper bound of the ε-mixing time using the coupling.
There are two reasons of doing this. One is that this is a much simpler proof and also a
more standard way of showing the limiting distribution than using the coupling. The other
is that, as just explained, the tables in the proof of [25, Theorem 3.1] do not work for large
values of Xt and Yt, and we need the higher moments of these random variables instead of
their expectation to bound the probability that their values are too large. There are a few
more points that need to be addressed. Some lemmas and corollaries (e.g. the lemmas and
corollaries numbered from 3.2.4 to 3.2.9) are based on rather loose arguments in the proof
of [25, Theorem 3.1], which bounds the probability of rare events. These lemmas are indeed
interesting since the property of having small probabilities of certain types of subgraphs is
shared in other random regular graph models as well. We generalise and strengthen these
arguments in the thesis and put them into separate lemmas and corollaries. We also use
them to prove the limiting distribution using the method of moments. We improve the
error bounds in [25, Lemmas 3.2 and 3.3] from O(n

−3/4
t ) to O(n−1

t ) in Lemma 3.2.3.

We first define and study the pegging algorithm applied to d-regular graphs when d is
even, in particular for d = 4. We discuss the case of general d ≥ 3 in Chapter 6. We define
the pegging operation on a d-regular graph, where d is even, as follows.

Pegging Operation for Even d
Input: a d-regular graph G, where d is even.

Choose a set E1 of d/2 pairwise non-adjacent edges in E (G) uniformly at random.
Let {u1, u2, . . . , ud} denote the vertices incident with edges in E1.
V (H) := V (G) ∪ {u}, where u is a new vertex.
E(H) := (E(G) \ E1) ∪ {uu1, uu2, uu3, . . . , uud}.

Output: H.

The newly introduced vertex u is called the peg vertex, and we say that the edges deleted
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are pegged. Figure 3.1 illustrates the pegging operation with d = 4.

Figure 3.1: Pegging operation when d = 4

We first verify that the pegging operation is well defined. It is enough to show that
for any d-regular graph, there exists a matching of size d/2. Given any d-regular graph G
on n vertices, n ≥ d + 1. Let M be a maximum matching of G. We show that |M| is
at least d/2. Assume not, then |M| is at most d/2 − 1. Since n ≥ d + 1, there exists a
vertex v ∈ G that is unmatched (a vertex is unmatched if it is not incident to any edge in
M). An alternating path is a path in which the edges belong alternatively to M and not
to M. Let P be a longest alternating path starting from the vertex v. Let u be the other
end vertex of P . Since M is maximum, u is matched (incident to an edge in M). Since
P is a longest alternating path starting from v, all the neighbours of u are in P . Since
|M| ≤ d/2− 1, the number of vertices in P is at most 2(d/2− 1)+1 = d− 1. This implies
that u has at most d− 2 neighbours, contradicting G being d-regular. Hence |M| ≥ d/2.
This shows that there always exists a set of d/2 non-adjacent edges in any d-regular graph,
and so the pegging operation is well defined.

It is immediate that the graph outputted by the pegging operation is also d-regular. The
pegging algorithm starts from a nonempty d-regular graph G0 (d ≥ 4 and even), for example,
Kd+1, and repeatedly applies pegging operations. For t > 0, Gt is defined inductively to
be the graph resulting when the pegging operation is applied to Gt−1. Clearly, Gt contains
nt := n0+t vertices. We denote the resulting random graph process (G0, G1, . . .) by P(G0),
or P(G0, d) if we wish to specify the degree d of the vertices of G0.

The simplest and perhaps most interesting case is for d = 4. Here, the algorithm starts
from a 4-regular graph G0 with n0 vertices. At each step, it randomly chooses two non-
adjacent edges, deletes them, and joins a newly created vertex to the four end vertices of
the deleted edges. Thus Gt contains 2nt edges.
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3.2 The short cycle distribution

In this section, we consider only the case d = 4. Let Yt,k denote the number of k-cycles
in Gt. We show in this section that the limiting joint distribution of Yt,3, . . . , Yt,k for any
fixed k ≥ 3 is the independent Poisson with means defined in 3.2.1. Note that initially,
the number of triangles might be as big as 2n0. (Note that this number is at most 2n0

because each vertex is contained in at most 6 triangles and there are n0 vertices, whereas
each triangle is counted three times by considering the number of vertices it contains, and
so the number of triangles is at most 6n0/3 = 2n0. This upper bound 2n0 is achieved when
n0 is a multiple of 5 and G0 is a union of a set of K5.) However, as we will show later, in
such an extreme case, EYt,3 will decrease quickly in the early stage of the algorithm.

For k ≥ 3 we define

µk =
3k − 9

2k
. (3.2.1)

Theorem 3.2.1 Let G0 and k ≥ 3 be fixed. Then in P(G0, 4),

EYt,k = µk + O
(
n−1

t

)
.

Moreover, the joint distribution of Yt,3, . . . , Yt,k is asymptotically that of independent Pois-
son variables with means µ3, . . . , µk.

We begin with a simple technical lemma that will be used several times in this chapter.
The notations O() occurring in the following lemma and subsequently are defined as follows:
for each occurrence of the notation O(f), where f is a function of t and G0, . . . , Gt, there
exists a constant C, depending only on n0 and k, such that the absolute value of the term
denoted O(f) is at most C|f |. In particular, this is for all n in the following.

Lemma 3.2.2 Let c > 0, p, a and ρ be constants with p < c. If (an)n≥1 is a sequence of
nonnegative real numbers with a1 being an absolute constant (independent of n), such that

an+1 =
(
1− cn−1 + O(n−2)

)
an + ρn−p + γ(n)

for all n ≥ 1, then

an =

{ (
ρ/(c− p + 1)

)
n−p+1 + O(n−p) if γ(n) = O(n−(p+1)),(

ρ/(c− p + 1)
)
n−p+1 + o(n−p+1) if γ(n) = o(n−p).

In particular an = O(n−p+1) for all n ≥ 1.
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Proof When γ(n) = O(n−(p+1)), we have

an+1 = exp
(
− c

n
+ O(n−2)

)
an +

ρ

np
+ O(n−(p+1)). (3.2.2)

Iterating this gives

an = a1 exp

(
−

n−1∑
i=1

c

i
+ O(i−2)

)
+

n−1∑
i=1

exp

(
−

n−1∑
j=i+1

c

j
+ O(j−2)

)( ρ

ip
+ O(i−(p+1))

)

= a1 exp (−c log n + O(1)) +
n−1∑
i=1

exp
(−c log(n/i) + O(i−1)

) ( ρ

ip
+ O(i−(p+1))

)

= O(n−c) +
n−1∑
i=1

ρic−p

nc

(
1 + O(i−1)

)

=
ρ

(c− p + 1)
n−p+1 + O(n−p).

When γ(n) = o(n−p), by simply modifying the above computation we obtain

an = exp
(
− c

n
+ O(n−2)

)
an +

ρ

np
+ o(n−p)

= a1 exp

(
−

n−1∑
i=1

c

i
+ O(i−2)

)
+

n−1∑
i=1

exp

(
−

n−1∑
j=i+1

c

j
+ O(j−2)

)( ρ

ip
+ o(i−p)

)

= O(n−c) +
n−1∑
i=1

ρic−p

nc
(1 + o(1))

= O(n−c) +

(
ρ

(c− p + 1)
n−p+1 + O(n−p)

)
(1 + o(1))

=
ρ

(c− p + 1)
n−p+1 + o(n−p+1).

Lemma 3.2.2 follows.

To show that Yt,3, Yt,4, . . . , Yt,k are asymptotically independent Poisson random vari-
ables, it is enough, by the method of moments (introduced in Section 2.1.3), to check that
their moments are asymptotic to those of independent Poisson random variables with fixed
means.

Lemma 3.2.3 For k ≥ 3,
EYt,k = µk + O

(
n−1

t

)
.
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Proof Our analysis is based on the graph Gt produced in step t. For step t + 1, two
non-adjacent edges e1 and e2 are chosen in the pegging operation. There are 2nt choices
for e1, and then 2nt − 7 choices for e2 to be non-adjacent to e1. So the number of ways to
choose an ordered pair (e1, e2) is 2nt (2nt − 7), and hence the total number of ways to do
a pegging operation in step t + 1 is

Nt =
2nt (2nt − 7)

2
= nt (2nt − 7) . (3.2.3)

We prove by induction on k that, for k fixed, EYt,k = µk + O(n−1
t ) for all t ≥ 0.

Note that in the inductive hypothesis, the notation O() implicitly contains a constant that
depends on k. For the base case, we consider k = 3.

For this and many similar calculations, to estimate the expected change in a variable
counting copies of some subgraph, we consider the number of copies of the subgraph created
in one step, and separately subtract the number destroyed. In particular, if a subgraph
contains either of the pegged edges, it is destroyed.

We need to consider the creation of a new triangle. Given an edge e of Gt not in
a triangle, a new triangle is created containing e if and only if the two pegged edges e1

and e2 are both adjacent to e. Of course, in view of the definition of pegging, they must
be incident with different end-vertices of e. Since Gt is 4-regular, the number of ways to
choose such e1 and e2 is precisely 9. Note also that only one edge of a given new triangle
was already present in Gt. It follows that the expected number of new triangles created is
at least 9 (2nt − 3Yt,3) /Nt, with Nt given above. An obvious upper bound is 9 · 2nt/Nt.

To destroy a triangle, either e1 or e2 must lie in the triangle, and there are of course
2nt − 7 choices for another edge to be pegged. So for each triangle in Gt, the probability
that it is destroyed is 3 (2nt − 7) /Nt. Thus, the expected number of existing triangles
destroyed is 3Yt,3 (2nt − 7) /Nt = 3Yt,3/nt.

It follows that the expected value of Yt+1,3 − Yt,3, given Gt, satisfies

18

2nt − 7
− 3Yt,3

nt

(
1 +

9

2nt − 7

)
≤ E (Yt+1,3 − Yt,3 | Gt) ≤ 18

2nt − 7
− 3Yt,3

nt

.

Thus

E (Yt+1,3 | Gt) =

(
1− 3 + O(n−1

t )

nt

)
Yt,3 +

9

nt

+ O
(
n−2

t

)
. (3.2.4)

Taking expectation of both sides and applying the Tower Property of conditional expecta-
tions, we obtain

EYt+1,3 =

(
1− 3 + O(n−1

t )

nt

)
EYt,3 +

9

nt

+ O
(
n−2

t

)
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where the O() terms are to be read as stated prior to the lemma statement, and in particular
they are independent of G0, . . . , Gt. Putting λt,3 = E(Yt,3 − 3) gives

λt+1,3 =

(
1− 3

nt

)
λt,3 + O

(
1 + λt,3

n2
t

)
.

Applying Lemma 3.2.2, we have λt,3 = O(n−1
t ) and hence EYt,3 = 3 + O(n−1

t ). This
establishes the base case of the induction, i.e. for k = 3.

Now assume the inductive hypothesis is true of all integers smaller than k. There are
two ways that one pegging operation can create a k-cycle. The first way occurs when two
non-adjacent edges are pegged such that some (k − 1)-cycle contains exactly one of them.
The expected number of k-cycles created in this way is

(k − 1)Yt,k−1(2nt − k − 3)

Nt

.

The second way occurs when the two end edges of a k-path are chosen for pegging. The
number of paths of length k in Gt starting from a fixed vertex v is at most 4 · 3k−1, so the
number of k-paths in Gt is at most 2 · 3k−1nt. This counts all walks of length k that do not
immediately retrace a step, so is an over-count due to repeated vertices in the cases that
the walk contains at least one cycle. There are

∑k
i=1 Yt,i cycles of size at most k in Gt. If

we pick an edge in each of those cycles and exclude all walks containing the selected edges,
we have an upper bound on the number of walks counted that are not paths. The number
of selected edges is at most

∑k
i=1 Yt,i, and each edge is contained in at most k3k−1 walks.

So Gt contains at least 2 · 3k−1nt − k3k−1
∑k

i=1 Yt,i different k-paths. Thus the expected
number of k-cycles created in this way, given Gt, is

2 · 3k−1nt + O
(∑k

i=1 Yt,i

)

Nt

.

Note that Nt = 2n2
t (1 + O(n−1

t )) and, by induction, EYt,i = O(1) for i < k. It thus
follows from the two cases above that the expected number of new k-cycles created in going
from Gt to Gt+1 is

3k−1 + (k − 1)EYt,k−1

nt

+ O

(
1 + EYt,k

n2
t

)
.

Similar to the case of k = 3, given Gt, a given k-cycle is destroyed if and only if some
edge contained in the k-cycle is pegged. The probability for that to occur is k(2nt−7)/Nt−
k(k−3)/(2Nt), where k(k−3)/(2Nt) accounts for the over-counting in the first term when
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both pegged edges are in the k-cycle. Hence the expected number of k-cycles destroyed is
kYt,k/nt + O(Yt,k/n

2
t ). Combining the creation and destruction cases, we find that

EYt+1,k − EYt,k =
3k−1 + (k − 1)EYt,k−1 − kEYt,k

nt

+ O

(
1 + EYt,k

n2
t

)
(3.2.5)

By induction, EYt,k−1 = µk−1 + O(n−1
t ), so

EYt+1,k =

(
1− k

nt

+ O(n−2
t )

)
EYt,k +

3k−1

nt

+
(k − 1)EYt,k−1

nt

+ O(n−2
t )

=

(
1− k

nt

+ O(n−2
t )

)
EYt,k +

3k−1

nt

+
k − 1

nt

(
3k−1 − 9

2
+ O(n−1

t )

)
+ O(n−2

t )

=

(
1− k

nt

+ O(n−2
t )

)
EYt,k +

kµk

nt

+ O(n−2
t ).

Letting λt,k = EYt,k − µk gives

λt+1,k =

(
1− k

nt

)
λt,k + O

(
1 + λt,k

n2
t

)
,

and so by Lemma 3.2.2, we have λt,k = O(n−1
t ), and hence EYt,k = µk + O(n−1

t ) for any
constant k ≥ 3. Lemma 3.2.3 follows.

Define Ψ(i, r) to be the set of graphs with i vertices, minimum degree at least 2, and
excess r, where the excess of a graph is the number of edges minus the number of vertices.
Define Wt,i,r to be the number of subgraphs of Gt in Ψ(i, r). In the uniform model, EWt,i,r

is o(1) when r ≥ 1 and is bounded when r = 0 [62, Lemma 2.7]. The following lemma
shows that this property holds also in the pegging model. For the following lemma the
constants implicit in O() depend on i.

Lemma 3.2.4 For fixed i > 0 and r ≥ 0,

EWt,i,r = O(n−r
t ).

We first give a sketch of the proof. The proof is obtained by induction on r and i. Any
graph in Ψ(i, r) contains at least one cycle since it has minimum degree at least 2. Thus
Ψ(i, r) = ∅ for i = 1, 2. The base case is r = 0 and i = 3. So H ∈ Ψ(3, 0) is a triangle.
Hence the base case holds by Lemma 3.2.3. By checking ways of destroying subgraphs in
Ψ(i, 0) or creating subgraphs in Ψ(i, 0) we can inductively prove that EWt,i,0 = O(1). For
any fixed r ≥ 1, the number of ways of destroying or creating subgraphs in Ψ(i, r) depends
on subgraphs in Ψ(i′, r−1) for some i′ ≤ i. Then by induction on both i and r, the lemma
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follows. This lemma will be used frequently in this chapter when we need to bound the
probability of the occurrence of certain subgraphs.

Proof We proceed by induction on r and i. Any graph in Ψ(i, r) contains at least one
cycle since it has minimum degree at least 2. Thus Ψ(i, r) = ∅ for i = 1, 2. The base case is
r = 0 and i = 3. So H ∈ Ψ(3, 0) is a triangle. Hence the base case holds by Lemma 3.2.3.

Assume Wt,i−1,0 = O(1) for any i ≥ 4. Let H be any graph in Ψ(i, 0). Since the excess
of H is 0, every component of H is a cycle.

We bound the expected number of subgraphs in Ψ(i, 0) created when going from Gt

to Gt+1. We omit some simple details that are virtually the same as those in the proof
of Lemma 3.2.3. We also note that for any fixed i, |Ψ(i, 0)| < ∞, namely, there are only
finitely many graphs in Ψ(i, 0).

As in the proof of Lemma 3.2.3, by linearity of expectation we can deal separately
with the expected numbers of subgraphs created and destroyed in a single step. Any new
subgraph, which is a union of cycles, in Ψ(i, 0) can be created either by pegging an edge
of a short cycle with any other edge (to make a cycle with length increased by 1), or by
pegging together the end edges of a short path.

Case 1: One edge in a graph H ′ in Ψ(i − 1, 0) is pegged. (Hence one cycle in H ′ gets
longer.) Since each H ′ ∈ Ψ(i − 1, 0) contains i − 1 vertices, thus i − 1 edges, there are
O(Wt,i−1,0) ways to choose an edge contained in Ψ(i− 1, 0) and at most 2nt choices for the
other edge to be pegged. The expected number of Ψ(i, 0) arising this way is O(Wt,i−1,0/nt).
By the inductive hypothesis that EWt,i−1,0 = O(1), the total expected number of graphs
created in Ψ(i, 0) due to this case is O(1/nt).

Case 2: A new cycle of size at most i is created by pegging two edges within distance i,
which, together with a graph in Ψ(i′, 0) for some i′ < i will form a new graph in Ψ(i, 0).
There are O(nt) paths of length at most i. So the expected number of Ψ(i, 0) created this
way is at most O(Wt,i′,0/nt). The number of choices of i′ < i is bounded. So summing
over all possible value of i′, and again by induction, the total contribution from this case
is O(1/nt).

Since subgraphs are destroyed if they contain a pegged edge, the expected number of
graphs in Ψ(i, 0) destroyed is at least Wt,i,0/nt.

Putting it all together, we have

EWt+1,i,0 ≤
(

1− 1

nt

)
EWt,i,0 + O(n−1

t ).

and hence EWt,i,0 = O(1) by Lemma 3.2.2. By induction, we obtain EWt,i,0 = O(1) for
any i ≥ 3.
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Next we fix any r ≥ 1, and i ≥ 3, and assume that EWt,j,r−1 = O(n
−(r−1)
t ) for any

j ≥ 3 and EWt,j,r = O(n−r
t ) for any j ≤ i.

We use the same procedure to prove EWt,i,r = O(n−r
t ). Consider the expected number

of subgraphs in Ψ(i, r) created in going from Gt to Gt+1, treating separate cases for creation
as above.

Case 1: Similar to the first case above, a subgraph in Ψ(i, r) arises from a subgraph in

Ψ(i−1, r), so by induction, we have the total contribution as O(EWt,i−1,r/nt) = O(n
−(r+1)
t ).

Case 2: One subcase is that the end edges of a path of length at most i are pegged, which
will convert some graph in Ψ(i′, r) to one in Ψ(i, r), where i′ < i. The only other case is
that the edges pegged are both within distance i of some graph in Ψ(j′, r−1), where j′ < i.
For any fixed subgraph of Gt in Ψ(j′, r−1), there are only finite many choices for two such
edges to be pegged. So the expected increase in this case will be a sum of a finite number
of terms of the form O(Wt,i′,r/nt) + O(Wt,j′,r−1/n

2
t ). By induction, EWt,i′,r = O(n−r

t ) and

EWt,j′,r−1 = O(n
−(r−1)
t ), and again the total contribution from this case is O(n

−(r+1)
t ).

Analogous to the case of Ψ(i, 0), the expected number of subgraphs in Ψ(i, r) destroyed
in a single step is at least Wt,i,r/nt. Thus

EWt+1,i,r ≤
(

1− 1

nt

)
EWt,i,r + O(n

−(r+1)
t ).

Hence EWt,i,r = O(n−r
t ) by Lemma 3.2.2.

In later arguments, we especially need to bound the number of subgraphs consisting of
two cycles sharing at least one edge. Of course the number of such subgraphs is bounded
above by

∑2k
i=1 Wt,i,1, where k is length of the longer cycle given. Define W ∗

t,k =
∑2k

i=1 Wt,i,1.

Since EWt,i,1 = O(n−1
t ), and the summation is taken over finitely many values of i, the

following comes immediately from Lemma 3.2.4.

Corollary 3.2.5 EW ∗
t,k = O(n−1

t ).

Gearing up for the proof of Theorem 3.2.1, we next give some simple lemmas bounding
some rare events. Let Y

(l)
t := (Yt,3, Yt,4, . . . , Yt,l). In the following lemmas, the choice of

the norm ‖Y(l)
t ‖ does not change the strength of the statement, and one may for instance

settle on the L∞ norm.

Lemma 3.2.6 Fix the graph Gt. For any fixed k ≥ 3, the probability that more than one
cycle of length at most k + 1 in Gt+1 contains the peg vertex is O(‖Y(2k)

t ‖2/n2
t + W ∗

t,k/nt).
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Proof There are several cases to consider. The first case is that one edge pegged is
contained in more than one cycle of length at most k, so that at least two cycles of length
at most k will pass through the peg vertex. Since the subgraph consisting of two cycles
of length at most k sharing common edges is involved, the probability this happens is at
most O(W ∗

t,k/nt). The second case is that one edge pegged is contained in a cycle of length
at most k, and the other edge pegged is of distance at most k from the first edge. In
this case, a new cycle is created using the path joining the pegged edges. There are at
most O(‖Y(k)

t ‖) ways to choose the first edge, and for each such choice, there are at most
2dk = O(1) ways to choose the second edge. So the probability that this case happens is

O(‖Y(k)
t ‖/n2

t ). The third case is that the two edges pegged are both contained in some

cycle of length at most 2k. The probability this happens is O(‖Y(2k)
t ‖/n2

t ), since there are

at most O(‖Y(2k)
t ‖) ways to choose such two edges. The fourth case is that each of the

two edges pegged is contained in a cycle of length at most k. The probability for this to
happen is O(‖Y(k)

t ‖2/n2
t ). Then Lemma 3.2.6 follows.

We will use Lemma 3.2.6 to show that the only significant things that can happen with
respect to short cycles are (a) an edge of a short cycle is pegged and no other cycles are
created or destroyed, or (b) a short cycle is created by pegging the ends of a short path
and no other short cycles are created or destroyed.

Note that a cycle is destroyed only if at least one of its edges is pegged. So to create or
destroy more than one k-cycle in one step, there must be at least two cycles of length at
most k + 1 containing the peg vertex after the pegging operation has been applied. Hence
the following result comes immediately from Lemma 3.2.6.

Corollary 3.2.7 P(|Yt+1,k − Yt,k| > 1 | Y(2k)
t ,W ∗

t,k) = O
(‖Y(2k)

t ‖2/n2
t + W ∗

t,k/nt

)
.

By taking expectation of both sides of the equation in the above corollary, and by Lemma 3.2.3
and Corollary 3.2.5, we have the following corollary.

Corollary 3.2.8 P(|Yt+1,k − Yt,k| > 1) = O (1/n2
t ).

Similarly, we may bound the simultaneous creation and destruction of cycles, except for
a special case. (The following bounds are sufficient for our purposes and can easily be
improved by examining the cases in the proof of Lemma 3.2.6.)

Corollary 3.2.9 For any fixed integers l1, l2 ≥ 3, such that l1 6= l2 + 1, the probability of
creating a new l1-cycle and simultaneously destroying an existing l2-cycle in the same step
is O(‖Y(k)

t ‖2/n2
t ) + O(W ∗

t,k/nt), where k = max{l1, l2}.

34



Proof The peg vertex is contained in the l1-cycle that is created, and also in at least one of
the edges in the l2-cycle that is destroyed. If only one edge in this l2-cycle is pegged, then a
new (l2 +1)-cycle is created which contains the peg vertex. Since l1 6= l2 +1, the peg vertex
is contained in both the l1-cycle and the (l2 +1)-cycle. By Lemma 3.2.6, this happens with

probability O(‖Y(k)
t ‖2/n2

t ) + O(W ∗
t,k/nt). If two edges in this l2-cycle are pegged, then

two short cycles containing the peg vertex and the rest of the edges of this l2-cycle are
created. By Lemma 3.2.6, this happens with probability O(‖Y(k)

t ‖2/n2
t ) + O(W ∗

t,k/nt).
Thus Corollary 3.2.9 follows.

Next we estimate the moments E[Yt,3]j of Yt,3, for any fixed j ≥ 0. We set Yt,2 = 0 for
any t, since the random graph generated is simple.

Lemma 3.2.10 For any fixed nonnegative integer j,

E([Yt,3]j) = 3j + O(n−1
t ).

Proof The proof is by induction on j. The base case j = 0 is trivial. Assume that j ≥ 1
and E([Yt,3]j−1) → 3j−1.

Instead of calculating [Yt,3]j directly, we will calculate [Yt,3]j/j!, which is the number
of j-sets of distinct i-cycles. We first consider the creation of a new j-set of triangles
in moving from Gt to Gt+1, beginning with the j-sets that use an existing (j − 1)-set of
triangles, together with one newly created triangle.

We know that the expected number of triangles created at step t is 9/nt + O(Yt,3)/n
2
t .

Each such new triangle creates a new j-set with each (j−1)-set of existing triangles except
for those that simultaneously have one of their triangles destroyed. So the expected number
of new j-sets created this way is

(
9 + O(Yt,3/nt)

nt

)
[Yt,3]j−1

(j − 1)!
+ O

(
Y 2

t,3

n2
t

+
W ∗

t,3

nt

)
[Yt,3]j−1

(j − 1)!
.

Here, the first term arises from the assumption that no existing triangles in the (j− 1)-set
are destroyed when the new triangle is created. The second, purely error term bounds the
expected number of j-sets counted in the main term that should be discounted because,
simultaneously with the new triangle being created, one of the triangles in the existing
(j − 1)-set is destroyed. The factor O(Y 2

t,3/n
2
t + W ∗

t,3/nt) comes from Corollary 3.2.9 for
the probability of simultaneously creating and destroying triangles, and is multiplied by
a bound on how many (j − 1)-sets of existing triangles can contain one of the (bounded
number of) triangles destroyed.

There are also j-sets that include more than one newly created triangle. It is straight-
forward to observe that in one step it is possible to create at most four triangles, and
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destroy at most six. By Corollary 3.2.7, the probability of creating more than one triangle
in one step, given Yt,3 and Yt,4, is O(‖Y(4)

t ‖2/n2
t + W ∗

t,3/nt). Hence, the expected number
of new j-sets created this way is at most

O

(
‖Y(4)

t ‖2

n2
t

+
W ∗

t,3

nt

)
6∑

i=2

[Yt,3]j−i

(j − i)!
.

Note that W ∗
t,3[Yt,3]j−i is bounded above by Wt,3(j−i)+4,1 (representing the structures

that come from the union of a structure in Ψ(3(j − i) + 4, 1) ). By Lemma 3.2.4 the
expected number of such complex structures of bounded size is O(n−1

t ). Thus, using also
the first part of Lemma 3.2.4,

E

((
Y 2

t,3

n2
t

+
W ∗

t,3

nt

)
[Yt,3]j−2

)
= O(n−2

t ),

E

(
O

(
‖Y(4)

t ‖2

n2
t

+
W ∗

t,3

nt

)
6∑

i=2

[Yt,3]j−i/(j − i)!

)
= O(n−2

t ).

Now consider destroying an existing j-set. Firstly, assuming the j triangles are disjoint,
then pegging any edge contained in those edges with any other non-adjacent edge will
destroy the j-set. It follows that the expected number of j-sets being destroyed, given Yt,3,
is

3j[Yt,3]j/j!

nt

+
∑

i′≤3j

O(Wt,i′,1)

nt

.

The error term O(Wt,i′,1/nt) accounts for the case that the j-set of triangles share some
common edges. So by Lemma 3.2.4

E

(∑

i′≤3j

O(Wt,i′,1)

nt

)
= O(n−2

t ).

Thus

E([Yt+1,3]j/j!)− E([Yt,3]j/j!) =

(
9 + O(n−1

t )

nt

)
E([Yt,3]j−1/(j − 1)!)

−3jE([Yt,3]j/j!) + O(n−1
t )

nt

+ O(n−2
t ).

By the inductive assumption, we have E([Yt,3]i) = 3i + O(n−1
t ) for any i ≤ j − 1. Then

E([Yt+1,3]j/j!) =

(
1− 3j

nt

)
E([Yt,3]j/j!) +

(
9 · 3j−1

(j − 1)!nt

)
+ O(n−2

t ).
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Applying Lemma 3.2.2 with c = 3j and p = 1 gives E([Yt,3]j) = 3j + O(n−1
t ) as required.

Proof of Theorem 3.2.1. By Theorem 2.1.1, it is enough to show that, for any fixed
constant k ≥ 3, and a given sequence of nonnegative integers (j3, j4, . . . , jk),

lim
t→∞

E([Yt,3]j3 [Yt,4]j4 · · · [Yt,k]jk
) =

k∏
i=3

uji

i .

We prove this by induction on the sequence of (j3, j4, . . . , jk). The base case is (j3, 0, . . . , 0),
for any nonnegative integer j3. Lemma 3.2.3 shows that E(Yt,j3) → µj3

3 .

Let S(j3, j4, . . . , jk) denote the family of all collections (in whatever graph is under
consideration) consisting of a j3-set of distinct 3-cycles, a j4-set of distinct 4-cycles,...,
and a jk-set of distinct k-cycles. Let #(t, j3, j4, . . . , jk) be the number of elements of
S(j3, j4, . . . , jk) in Gt. Note that

#(t, j3, j4, . . . , jk) =
k∏

i=3

[Yt,i]ji

ji!
.

We will estimate

∆ := E

(
k∏

i=3

[Yt+1,i]ji

ji!

)
−E

(
k∏

i=3

[Yt,i]ji

ji!

)
= E#(t + 1, j3, j4, . . . , jk)−E#(t, j3, j4, . . . , jk).

Case 1: Analogous to the creation of new triangles considered in the proof of Lemma 3.2.10,
if a new i-cycle is created by pegging together the end edges of an i-path, then a new
element of S(j3, j4, . . . , jk) can be created from an existing element of S(j3, . . . , ji−1, . . . , jk)
together with the new i-cycle. The argument is similar to the proof of Lemma 3.2.10, and
we omit the precise error terms since they have a similar nature and can be bounded in
the same way. Instead we find that the contribution to ∆ is

k∑
i=3

3i−1

nt

E (#(t, j3, . . . , ji − 1, . . . , jk)) + O(n−2
t ).

Here we use the convention that [x]−1 = 0 for all x.

Case 2: If an edge of an (i − 1)-cycle is pegged, for i ≤ k, then a new element of
S(j3, j4, . . . , jk) can be created in several ways. The typical way is from an element of
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S(j3, . . . , ji−1 +1, ji−1, . . . , jk), for some 4 ≤ i ≤ k, that contains the (i−1)-cycle pegged.
The expected number of elements of S(j3, j4, . . . , jk) created in this way is

k∑
i=4

(i− 1)(ji−1 + 1) + O(n−1
t )

nt

#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk)

+O
( ∑

Wt,i′,0/n
2
t +

∑
Wt,i′,1/nt

)
.

The error term O(n−2) accounts for the approximation for the number of possible peggings
as before. The event that the two edges pegged are both in short cycles is accounted for
by O

( ∑
Wt,i′,0/n

2
t

)
. This also accounts for the case that a new short cycle is created as

in Case 1 at the same time that an edge of a short cycle is pegged. The final error term
accounts for the case that cycles in an element of S(j3, . . . , ji−1 + 1, ji − 1, . . . , jk) share
common edges, one of which is pegged; these cases should be discounted. It also accounts
for other atypical ways to produce an element of S(j3, . . . , jk), where an edge in two or
more short cycles is pegged. These sums are taken over finitely many possible i′. By
Lemma 3.2.4, the expected value of the error terms is O(n−2

t ).

An existing S(j3, j4, . . . , jk) can be destroyed by pegging any of its edges. Arguing as
in the proof of Lemma 3.2.10, the contribution to ∆ from destroying these configurations
is

−
(

k∑
i=3

iji

)
1

nt

E (#(t, j3, j4, . . . , jk)) + O(n−2
t ).

So we get

∆ =
k∑

i=3

3i−1

nt

E (#(t, j3, . . . , ji − 1, . . . , jk))

+
k∑

i=4

(i− 1)(ji−1 + 1)

nt

E (#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk))

−
(

k∑
i=3

iji

)
1

nt

E (#(t, j3, j4, . . . , jk)) + O(n−2
t ).

By induction,

E (#(t, j3, . . . , ji − 1, . . . , jk)) → uj3
3

j3!
· · · uji−1

i

(ji − 1)!
· · · u

jk

k

jk!
for all 3 ≤ i ≤ k.

E (#(t, j3, . . . , ji−1 + 1, ji − 1, . . . , jk)) → uj3
3

j3!
· · · u

ji−1+1
i−1

(ji−1 + 1)!

uji−1
i

(ji − 1)!
· · · u

jk

k

jk!
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for all 4 ≤ i ≤ k. So arguing as in the proof of Lemma 3.2.10, we set ∆ = 0 and obtain

E (#(t, j3, j4, . . . , jk)) →
(

1∑k
i=3 iji

)( k∑
i=3

3i−1uj3
3

j3!
· · · uji−1

i

(ji − 1)!
· · · u

jk

k

jk!

+
k∑

i=4

(i− 1)(ji−1 + 1)
uj3

3

j3!
· · · u

ji−1+1
i−1

(ji−1 + 1)!

uji−1
i

(ji − 1)!
· · · u

jk

k

jk!

)

=
k∏

i=3

uji

i

ji!

(
1∑k

i=3 iji

)(
k∑

i=3

3i−1 ji

µi

+
k∑

i=4

(i− 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi

)
.

We only need to prove that

k∑
i=3

3i−1 ji

µi

+
k∑

i=4

(i− 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi

=
k∑

i=3

iji.

By calculating the left hand side, we get

k∑
i=3

3i−1 ji

µi

+
k∑

i=4

(i− 1)(ji−1 + 1)
µi−1

ji−1 + 1

ji

µi

=
k∑

i=3

2iji

3i − 9
3i−1 +

k∑
i=4

(i− 1)ji
3i−1 − 9

2(i− 1)

2i

3i − 9

=
k∑

i=3

2iji

3i − 9
3i−1 +

k∑
i=4

2iji

3i − 9

3i−1 − 9

2

=
k∑

i=3

iji.

So we have shown that

E

(
k∏

i=3

[Yt,i]ji

ji!

)
→

k∏
i=3

µji

i

ji!
,

and hence

E

(
k∏

i=3

[Yt,i]ji

)
→

k∏
i=3

µji

i .

Theorem 3.2.1 then follows.
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3.3 Rate of convergence

In this section, we study the rate at which the joint distribution of Yt,3, . . . , Yt,k converges
to its limit for any constant k ≥ 3 in the process P(G0, 4). The standard definition of the
mixing time τ(ε) of a Markov chain with state space S is the minimum time t, such that
after t steps, the total variation distance (defined in Section 2.1.4. See (2.1.2)) between
P t

x , the distribution at time t starting from state x, and the stationary distribution π, is
at most pre-specified constant ε, 0 < ε < 1. Formally,

τ(ε) = max
x∈S

min{T : dTV

(
P t

x , π
) ≤ ε for all t ≥ T}.

Recall that Yt,k denotes the number of k-cycles in Gt ∈ P(G0). In practice, for mixing
time results one chooses a fixed value of ε (for instance, ε = 1/4), and obtains results such
as “the mixing time is O(n log n)”, where n refers to the size (the number of states) of
a Markov chain. This makes sense if the mixing time is a logarithmic function of ε, in
which case τ(εk) can be approximately estimated by kτ(ε). This case usually occurs when
the Markov chain is time-homogeneous, i.e. the transition probabilities in every step are
invariant. Hence, given the value of ε, the mixing time, determined by the probability
transition matrix, is only a function of n. However, the random process (Yt,k)t≥0 does not
belong to this category. As we will see later, the transition probabilities of the process
depend on the time t, which makes it unlikely to have the mixing time as a logarithmic
function of ε. Furthermore, the size of Gt is a linearly increasing function of t, making
the size of (Yt,k)t≥0 grow in the whole process. Thus, we cannot define a mixing time as a
function of the size of the process. Indeed, the random process (Yt,k)t≥0, for some constant
k, is not a Markov chain, since the distribution of Yt,k depends not only on Yt−1,k, but also
on the underlying graph Gt−1, and as a result is not independent of Yt−2,k given Yt−1,k.
Instead, we wish to consider the total variation distance between the random variable Yt,k

and the limiting distribution of Yt,k (if it exists). Therefore, we consider ε-mixing time
instead, which is informally defined in Section 2.1.4. We give a formal definition as follows.
Let (σt)t≥0 be a sequence of distributions which converge to the distribution π∗k. The
ε-mixing time of (σt)t≥0 is

τ ∗ε
(
(σt)t≥0

)
= min{T ≥ 0 : dTV (σt, π

∗
k) ≤ ε for all t ≥ T }. (3.3.1)

We now focus on a particular sequence of distributions. For any fixed k, let σt,k denote
the joint distribution of Yt,3, . . . , Yt,k. The next theorem from [27, Theorem 2.2] shows that
the ε-mixing time of (σt,k)t≥0 is O(1/ε). We cite this theorem because it is used a few times
in this chapter to prove other results.
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Theorem 3.3.1 For fixed G0 and k ≥ 3, the ε-mixing time of the sequence of short cycle
joint distributions in P(G0, 4) satisfies

τ ∗ε
(
(σt,k)t≥0

)
= O

(
ε−1

)
.

The proof uses the coupling method introduced in Section 2.1.4. The idea of the
proof is summarized as follows. For any given integer k ≥ 3, they study the random
process (Yt,k)t≥0 = (Yt,3, . . . , Yt,k)t≥0. Note that (Yt,k)t≥0 is not a Markov chain. They
first construct a Markov chain (Zt,k)t≥0 = (Zt,3, . . . , Zt,k)t≥0 such that the distribution
of Yt,k is the same as Zt,k for any t ≥ 0. Then they construct another Markov chain
(Xt,k)t≥0 = (Xt,3, . . . , Xt,k)t≥0 whose transition probabilities are close to those of (Zt,k)t≥0.
Let (Xt,k)t≥0 start from its stationary distribution. Then they construct a coupling of the
two Markov chains (Zt,k)t≥0 and (Xt,k)t≥0, from which they obtain an upper bound of the
ε-mixing time of (Yt,k)t≥0 by applying Lemma 2.1.2, which gives Theorem 3.3.1.

The main goal of this section is to show the tightness of the upper bound in Theo-
rem 3.3.1. The following theorem shows that the upper bound of ε-mixing time given by
Theorem 3.3.1 is eventually tight.

Theorem 3.3.2 For fixed G0 and k ≥ 3, the ε-mixing time of the sequence of short cycle
joint distributions in P(G0, 4) satisfies τ ∗ε

(
(σt,k)t≥0

) 6= o (ε−1).

By considering just the events measurable in the σ-algebra generated by Yt,3, or equiv-
alently, by considering only the events Yt,3 = j, j ≥ 0, and any union of these events, we
see immediately that

dTV (σt,3, π3) ≤ dTV (σt,k, πk)

where πk is the limit of σt,k. Hence, it suffices to show that the ε-mixing time for σt,3,
which is the distribution of Yt,3, is not o(ε−1). For convenience, in the rest of this section
we use the notation Yt to denote Yt,3 as in the proof of Theorem 3.3.1.

Let C∗
4 denote the graph consisting of a 4-cycle plus a chord (i.e. K4 minus an edge),

and let Wt denote the number of subgraphs of Gt that are isomorphic to C∗
4 . Lemma 3.2.4

implies that a.a.s. Wt = 0. That is, a.a.s. all triangles are isolated, where an isolated triangle
is a 3-cycle that shares no edges with any other 3-cycle. In order to prove Theorem 3.3.2,
we also need more information on the distribution of the number of isolated triangles in
the presence of one copy of C∗

4 . In the following lemma, we show that this has the same
asymptotic distribution as Yt. This distribution is to be expected, since the creation of
a copy of C∗

4 will leave an asymptotically Poisson number of isolated triangles. Until the
C∗

4 disappears due to some pegging operation, this Poisson number of isolated triangles
will undergo transitions with similar rules to Yt and will therefore remain asymptotically
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Poisson. Instead of fleshing this argument out into a proof, it seems simpler to provide a
complete argument using the method of moments, although this conceals the coincidence
to a greater extent.

Lemma 3.3.3 Conditional on Wt = 1, the random variable Yt− 2 has a limiting distribu-
tion that is Poisson with mean 3.

Proof Let Ut,j denote [Yt − 2]jI{Wt = 1}, i.e. the product of the j-th falling factorial of
Yt − 2 and the indicator random variable of the event that Wt = 1. Note that if we can
show

E(Ut,j) → 3j P(Wt = 1), (3.3.2)

then E([Yt − 2]j | Wt = 1) → 3j. Lemma 3.3.3 then follows by the method of moments
applied to the probability space obtained by conditioning on Wt = 1. So we only need to
compute P(Wt = 1) and E(Ut,j). We show that P(Wt = 1) = 27/(4nt)+O(n−2

t ), and show
by induction on j that

E(Ut,j) =
27

4nt

3j + O(n−2
t ), (3.3.3)

for any integer j ≥ 0. This gives (3.3.2) as required.

Consider P(Wt = 1) first. Our way of estimating this quantity is by computing sepa-
rately the expected numbers of copies of C∗

4 that are created, or destroyed, in each step.
There are two ways to create a C∗

4 . One way is through the creation of a new triangle
which shares an edge with an existing triangle, which we will call C. This requires two
edges adjacent to different vertices of C (but not being edges of C) to be pegged. This is
illustrated in Figure 3.2, where v is the peg vertex, and the two dashed edges e1 and e2

are pegged. Given C, if C is an isolated triangle, there are exactly 12 ways to choose such
two edges. Otherwise, C is part of an existing C∗

4 and the number of pegging operations
using such a type of C is O(Wt). Overall, the expected number of C∗

4 created in this way is
therefore

(
12Ŷt +O(Wt)

)
/Nt, where Ŷt is the number of isolated triangles in Gt. The other

way of creating a C∗
4 from a triangle C is as illustrated in Figure 3.3, where e1 is an edge

in C, and e2 is incident with some vertex of C, but not adjacent to e1. Given C, there are
3 ways to choose e1, and for each chosen e1, there are 2 ways to choose e2. Hence, there
are 6 ways to choose the pair (e1, e2), and the expected number of C∗

4 created in this way
is 6Yt/Nt.

Clearly Yt = Ŷt + O(Wt). So the expected number of C∗
4 created in each step is

18Ŷt/Nt + O(Wt/Nt) = 9Yt/n
2
t + O(n−3

t ) + O(Wtn
−2
t ).

The expected number of C∗
4 destroyed in each step is easily seen to be 5Wt(2nt−7)/Nt =

5Wt/nt. Thus
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Figure 3.2: pegging operation to create a C∗
4 , first case

v

e e ee 2

1
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1

Figure 3.3: pegging operation to create a C∗
4 , second case

E(Wt+1 −Wt | Wt) =
9Yt

n2
t

− 5Wt

nt

+ O(Wtn
−2
t + n−3

t ).

Taking expected values and using the tower property of conditional expectation, this gives

EWt+1 − EWt =
9EYt

n2
t

− 5EWt

nt

+ O(EWtn
−2
t + n−3

t ).

Since EYt = 3 + O(n−1
t ), and EWt = O(n−1

t ), this yields

EWt+1 =

(
1− 5

nt

)
EWt +

27

n2
t

+ O(n−3
t ).

Applying Lemma 3.2.10 and Lemma 3.2.2 with c = 5, p = 2 and ρ = 27, we obtain that
EWt = 27/(4nt) + O(n−2

t ). Since P(Wt = i) ≤ E([Wt]i) = O(n−i
t ) by Lemma 3.2.4,

P(Wt = 1) = 27/(4nt) + O(n−2
t ). (3.3.4)

Next we compute E(Ut,j) by induction on j ≥ 0. The base case is j = 0, for which
we begin by noting that E(Ut,0) = P(Wt = 1) = 27/(4nt) + O(n−2

t ) as shown above. Now
assume that j ≥ 1 and that (3.3.3) holds for all smaller values of j. Given the graph Gt,

43



the expected change in Ut,j/j! when t changes to t + 1 is, as explained below,

E

(
Ut+1,j

j!
− Ut,j

j!

∣∣∣∣ Gt

)
=

((
9 + O((1 + Yt + Yt,4)/nt)

nt

)
[Yt − 2]j−1

(j − 1)!

)
I{Wt = 1}

+

(
9

n2
t

+ O
(
n−3

t

)) (j + 1)[Yt]j+1

(j + 1)!
I{Wt = 0}

+f(j, Gt)

−
(

(3j + 5)[Yt − 2]j/j!

nt

+ O(n−2
t )

)
I{Wt = 1}, (3.3.5)

where f(j, Gt) denotes some assorted “error” terms described below. Note that, given
Wt = 1, [Ut,1]j/j! is simply the number of subgraphs of Gt containing precisely j isolated
triangles, so we may just compute the change in the number of such subgraphs in those
cases where no copies of C∗

4 are created or destroyed. The first term on the right in (3.3.5)
is the positive contribution when Wt = 1 and the pegging step creates one new isolated
triangle. Any set of j−1 isolated triangles, together with the new triangle, can potentially
form a new set of j isolated triangles. A new triangle is created from pegging the two
end-edges of a 3-path, the number of which in Gt is 4 · 3 · 3 · nt/2 + O(Yt) = 18nt + O(Yt).
Dividing this by Nt gives rise to the main term. The error term O(1 + Yt + Yt,4) accounts
for choices of such edges which, when pegged, create two or more triangles (when both
edges pegged are contained in a 4-cycle) or cause some existing triangle, including possibly
the C∗

4 , to be destroyed, or cause the new triangle or an existing one not to be isolated.

The second term on the right in (3.3.5) accounts for the contribution when Wt = 0
due to the creation of a C∗

4 , when the set of j isolated triangles are all pre-existing. We
have noted above that a new C∗

4 can be created only from a triangle. So, when Wt = 0, a
positive contribution to Ut+1,j−Ut,j can arise from each set of j +1 isolated triangles, such
that a new C∗

4 comes from pegging near one of these triangles as in Figure 3.2 and 3.3.
There are [Yt]j+1/(j + 1)! different (j + 1)-sets of triangles, and for each (j + 1)-set, there
are j + 1 ways to choose one particular triangle. There are 18 ways to peg two edges to
create a C∗

4 from any given triangle. This, together with Nt = 2n2
t (1 + O(n−1

t )), explains
the significant part of this term and the first error term. There is also a correction required
when the pegging that creates a C∗

4 also “accidentally” destroys one or more of the other
triangles in the (j + 1)-set. This occurs only if the two triangles destroyed are near each
other, so they create a small subgraph with more edges than vertices. This correction term
is a sum of terms of the form [Yt]j′Wt,i′,1/n

2
t for a few different values of i′ and j′, whose

expected value is O(n−3
t ).

The third term, f(j, Gt), is a function that accounts for all other positive contributions,
i.e. counts all other cases of newly created sets of j isolated triangles together with a copy
of C∗

4 . The situations included here are those in which
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(a) Wt = 1 and j′ ≥ 2 new triangles are created, which only happens if both edges pegged
are contained in a 4-cycle, contributing O(I{Wt = 1}[Yt]j−j′Yt,4/n

2
t ), or

(b) Wt = 1, the copy of C∗
4 is destroyed (leaving behind a new isolated triangle) and

simultaneously another is created, contributing O(I{Wt = 1}[Yt]j−1/n
2
t ) or

(c) Wt ≥ 2, and all but one of the copies of C∗
4 are destroyed, possibly creating a number

of isolated triangles and possibly destroying one. This contributes terms of the form
O(I{Wt ≥ 2}[Yt]j′/nt) for various j′ ≤ j + 1, or

(d) Wt = 0, a C∗
4 is created along with an isolated triangle, which is contained in the

set of j isolated triangles. When this happens, there must be a triangle sharing a
common edge with a 4-cycle, so that the triangle turns into C∗

4 when two edges of
the 4-cycle are pegged, whilst the other edge of the 4-cycle together with two new
edges forms an isolated triangle. Figure 3.4 illustrates how this works. This case
contributes O(I{Wt = 0}[Yt]j−1Wt,5,1/n

2
t ).

eee

e e1

2

1

2

Figure 3.4: pegging operation to create a C∗
4 and a new triangle.

We note here for later use that each of these cases involves a subgraph with excess at
least 1, and at least 2 in the case (c). For instance I{Wt = 1}[Yt]j−j′Yt,4 ≤ Wt[Yt]j−j′Yt,4

counts subgraphs with j− j′ distinct triangles, a 4-cycle and a copy of C∗
4 . Such subgraphs

have at most 3(j − j′) + 8 vertices and excess at least 1. By Lemma 3.2.4, the expected
number of such subgraphs is O(n−1

t ). Using this argument, we find that E(f(j, Gt)) =
O(n−3

t ).

The last term in (3.3.5) accounts for the negative contribution to Ut+1,j − Ut,j. Let Fi

be the class of subgraphs consisting of i isolated triangles, for some fixed i. Then Ut,j/j!
counts the number of copies of subgraphs of Gt that are contained in Fj if Wt = 1, and is
counted as 0 if Wt 6= 1. The negative contribution comes when an edge contained in some
copy of a member of Fj is destroyed, or an edge contained in the C∗

4 is destroyed. In the
first case, each copy of an f ∈ Fj in Gt+1 that is destroyed contributes −1. The number of
subgraphs of Gt that are in Fj is [Yt−2]j/j!, and for each copy there are 3j ways to choose
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an edge. Hence the expected contribution of this case is −3j[Yt− 2]j/(j!nt). In the second
case, the destruction of C∗

4 kills the contribution of any copy of f ∈ Fj to Ut+1,j, since
Wt+1 becomes 0. Hence the negative contribution is −[Yt − 2]j/j!, the number subgraphs
in Fj. There are 5 edges in C∗

4 , hence the probability that the C∗
4 is destroyed is 5/nt. So

the expected negative contribution by destroying the C∗
4 is −5[Yt − 2]j/(j!nt).

Taking expectation of both sides of (3.3.5) and using the tower property of conditional
expectation, we have

E

(
Ut+1,j

j!

)
− E

(
Ut,j

j!

)
=

9

nt

E

(
Ut,j−1

(j − 1)!

)
+

9(j + 1)

n2
t

E

(
[Yt]j+1I{Wt = 0}

(j + 1)!

)

−3j + 5

nt

E

(
Ut,j

j!

)
+ O(n−3

t ).

Note the error term O(n−3
t ) includes E(f(j, Gt)) (as estimated above), as well as E((1+Yt+

Yt,4)[Yt − 2]j−2I{Wt = 1}/(j − 2)!n2
t ), E([Yt]j+1I{Wt = 0}/(j!n3

t )) and E(I{Wt = 1}/n2
t ).

This bound holds because Yt[Yt − 2]j−2I{Wt = 1}/(j − 2)! counts subgraphs with j − 1
triangles and a copy of C∗

4 , Yt,4[Yt− 2]j−2I{Wt = 1}/(j − 2)! counts subgraphs with one 4-
cycle, j−1 triangles and a copy of C∗

4 , and [Yt]j+1I{Wt = 0}/j! counts subgraphs with j+1
triangles, and hence by Lemma 3.2.4 E((1+Yt+Yt,4)[Yt−2]j−2I{Wt = 1}/(j−2)!) = O(n−1

t ),
E([Yt]j+1I{Wt = 0}/j!) = O(1), and E(I{Wt = 1}) = P(Wt = 1) = O(n−1

t ).

Clearly for all fixed j ≥ 0,

E([Yt]jI{Wt = 0}) = E([Yt]j + O([Yt]jI{Wt ≥ 1})) = E([Yt]j) + O(E([Yt]jWt)). (3.3.6)

Hence by Lemma 3.2.10 we have E([Yt]jI{Wt = 0}) = 3j + O(n−1
t ). Together with

E(Ut,j−1) = 27/(4nt)3
j−1 + O(n−2

t ) by the induction hypothesis, we obtain

E(Ut+1,j/j!) =

(
1− 3j + 5

nt

)
E(Ut,j/j!) +

9

nt

· 27

4nt

· 3j−1

(j − 1)!
+

9

n2
t

· 3j+1

j!
+ O(n−3

t ).

By Lemma 3.2.2 we obtain (3.3.3) as required.

Proof of Theorem 3.3.2: As mentioned above, it is enough to show that the ε-mixing
time for σt,3, i.e. the distribution of Yt, is not o(ε−1).

A random walk (Xt)t≥0 was defined in the proof of Theorem 3.3.1 as follows, and was
used to obtain the upper bound of the ε-mixing time (in the special case k = 3) by the
coupling method. In our proof, we use the same random walk (Xt)t≥0 to study the lower
bound of the ε-mixing time. However, we do not construct a coupling of (Xt)t≥0 and (Yt)t≥0

in our case. Instead, we let (Xt)t≥0 and (Yt)t≥0 walk independently and we only compare
the total variation distance between Xt and Yt.
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Define Bt,3 := {i ∈ Z+ : (9 + 3i)/nt ≤ 1}, and the boundary of Bt,3 to be ∂Bt,3 := {i ∈
Bt,3 : i + 1 /∈ Bt,3}. The notation w.p. denotes “with probability.”

For Xt ∈ Bt,3 \ ∂Bt,3,

Xt+1 =





Xt − 1 w.p. 3Xt/nt

Xt w.p. 1− 3Xt/nt − 9/nt

Xt + 1 w.p. 9/nt.

For Xt ∈ ∂Bt,3,

Xt+1 =

{
Xt − 1 w.p. 3Xt/nt

Xt w.p. 1− 3Xt/nt.

For Xt /∈ Bt,3,
Xt+1 = Xt w.p. 1.

It was shown in the proof of Theorem 3.3.1 that that the Poisson distribution with mean
3, Po(3), is a stationary distribution of the Markov chain (Xt)t≥0. For the completeness,
we reproduce the proof as follows.

Assuming Xt has distribution Po(3), we have

P(Xt = i) = e−3 3i

i!
for all i ∈ Z+

where Z+ denotes the set of nonnegative integers. Let Pij = P(Xt+1 = j | Xt = i). For
j ∈ Bt \ ∂Bt, we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij

= e−3 3j−1

(j − 1)!

9

nt

+ e−3 3j

j!

(
1− 9

nt

− 3j

nt

)
+ e−3 3j+1

(j + 1)!

3 (j + 1)

nt

= e−3 3j

j!
.

For j ∈ Z+, such that j ∈ ∂Bt, we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij

= e−3 3j−1

(j − 1)!

9

nt

+ e−3 3j

j!

(
1− 3j

nt

)

= e−3 3j

j!
.
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For j ∈ Z+, such that j /∈ Bt, we have

P(Xt+1 = j) =
∑

i∈Z+

P(Xt = i)Pij = e−3 3j

j!
.

Thus Po(3) is invariant, and so by definition it is a stationary distribution.

Let the random walk Xt starts with the stationary distribution Po(3), so Xt has the
same distribution for all t ≥ 0. Let (Xt)t≥0 walk independently of (Yt)t≥0 as generated by
the graph process (Gt)t≥0. We aim to estimate the total variation distance between Yt and
Xt. By the definition of the total variation distance (2.1.2),

dTV (Xt, Yt) =
1

2

∞∑
i=0

|P(Xt = i)−P(Yt = i)| .

Define δt = P(Xt = 0)−P(Yt = 0). Then

dTV (Xt, Yt) ≥ |δt|.
From the definition of δt, we have

δt+1 = P(Xt = 0)P(Xt+1 = 0 | Xt = 0)−P(Yt = 0)P(Yt+1 = 0 | Yt = 0)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0)−P(Yt 6= 0)P(Yt+1 = 0 | Yt 6= 0).(3.3.7)

Without loss of generality, we may assume that n0 ≥ 9. Then from the transition proba-
bility of Xt we have

P(Xt+1 6= 0 | Xt = 0) =
9

nt

for all t ≥ 0. (3.3.8)

Now we estimate P(Yt+1 6= 0 | Yt = 0). We consider the creation of a new triangle.
Given an edge e of Gt, a new triangle is created containing e if and only if the two pegged
edges e1 and e2 are both adjacent to e. Of course, in a view of the definition of pegging,
they must be incident with different end-vertices of e. Since Gt is 4-regular, the number
of ways to choose such e1 and e2 is precisely 9 conditional on Yt = 0. It follows that the
expected number of new triangles created is 9 · 2nt/Nt. By (3.2.3),

E(Yt+1 | Yt = 0) =
9 · 2nt

nt(2nt − 7)
=

9

nt

+
63

2n2
t

+ O(n−3
t ).

Conditional on Yt = 0, there is no chord in any 4-cycle. Then it is impossible to create
more than two triangles in a single step. Hence P(Yt+1 ≥ 3 | Yt = 0) = 0. Hence we obtain

P(Yt+1 = 1 | Yt = 0) + 2P(Yt+1 = 2 | Yt = 0) =
9

nt

+
63

2n2
t

+ O(n−3
t ). (3.3.9)
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To create two triangles in a single step, it is required to peg two non-adjacent edges
both contained in a 4-cycle. For any 4-cycle, there are precisely two ways to choose two
nonadjacent edges, so

P(Yt+1 = 2 | Yt = 0, Yt,4 = j) =
2j

Nt

=
j(1 + o(1))

n2
t

,

and thus

P(Yt+1 = 2 | Yt = 0) =
∞∑

j=0

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0). (3.3.10)

By Theorem 3.2.1 and 3.3.1, Yt and Yt,4 are asymptotically independent Poisson, with
means 3 and 9 respectively, and the total variation distance between the joint distribution
of (Yt, Yt,4) and its limit is at most O(n−1

t ). So P(Yt,4 = j | Yt = 0) = e−99j/j! + O(n−1
t ).

Hence

∑

j≤log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) =
9

n2
t

+ o(n−2
t ). (3.3.11)

It was shown in the proof of Theorem 3.2.1 that EY 3
t,4 = O(1). By Theorem 3.3.1, the

total variation distance between the distribution of Yt and its limit Po(3) is O(n−1
t ). So

P(Yt = 0) = e−3 + O(n−1
t ). Then by the Markov inequality,

P(Yt,4 ≥ j | Yt = 0) = P(Y 3
t,4 ≥ j3 | Yt = 0) ≤ 1

j3
E(Y 3

t,4 | Yt = 0) = O(1/j3).

Thus

∑

j>log nt

j(1 + o(1))

n2
t

P(Yt,4 = j | Yt = 0) = o(n−2
t ). (3.3.12)

By (3.3.9)–(3.3.12),

P(Yt+1 = 2 | Yt = 0) =
9

n2
t

+ o(n−2
t ), (3.3.13)

P(Yt+1 = 1 | Yt = 0) =
9

nt

+
27

2n2
t

+ o(n−2
t ), (3.3.14)

P(Yt+1 6= 0 | Yt = 0) =
9

nt

+
45

2n2
t

+ o(n−2
t ). (3.3.15)
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From (3.3.7), (3.3.8) and (3.3.15),

δt+1 = P(Xt = 0)

(
1− 9

nt

)
− (P(Xt = 0)− δt)

(
1− 9

nt

− 45

2n2
t

+ o(n−2
t )

)

+P(Xt 6= 0)P(Xt+1 = 0 | Xt 6= 0)− (P(Xt 6= 0) + δt)P(Yt+1 = 0 | Yt 6= 0)

= δt

(
1− 9

nt

+ O(n−2
t )−P(Yt+1 = 0 | Yt 6= 0)

)

+P(Xt 6= 0) (P(Xt+1 = 0 | Xt 6= 0)−P(Yt+1 = 0 | Yt 6= 0))

+P(Xt = 0)

(
45

2n2
t

+ o(n−2
t )

)
. (3.3.16)

It only remains to estimate P(Xt+1 = 0 | Xt 6= 0) and P(Yt+1 = 0 | Yt 6= 0). From the
definition of the random walk of (Xt)t≥0,

P(Xt+1 = 0 | Xt 6= 0) =
P(Xt = 1)P(Xt+1 = 0 | Xt = 1)

P(Xt 6= 0)

=
3

nt

P(Xt = 1)

P(Xt 6= 0)
. (3.3.17)

The calculation of P(Yt+1 = 0 | Yt 6= 0) is not so straightforward. Given any two distinct
edges ei and ej, we can define a walk ei, el1 , el2 , . . . , elk , ej, such that every two consecutive
edges appearing in the walk are adjacent. The distance of ei and ej is defined to be the
length of the shortest walk between ei and ej. For instance, if ei and ej are adjacent, then
their distance is 1. Conditional on Yt = 1, i.e. the number of triangles in Gt being 1, if this
triangle is destroyed without creating any new triangles, then one of the edges contained
in the triangle must be pegged. Call it e1. The other edge e2 being pegged must be chosen
from those whose distance from e1 is at least 3. Let R be the rare event that at least one
4-cycle shares a common edge with this triangle, and R be the complement of R. There
are 3 ways to choose e1 and 21 edges within distance 2 from e1, including e1 itself, if R
occurs. Otherwise, there are in any case O(1) edges within distance 2 from e1. Hence

P(Yt+1 = 0 | Yt = 1) =
3(2nt − 21)

Nt

P(R | Yt = 1) +
3(2nt −O(1))

Nt

P(R | Yt = 1).

Note that the occurrence of R implies that Wt,5,1 ≥ 1. So by Lemma 3.2.4,

P(R | Yt = 1) ≤ P(R)

P(Yt = 1)
= O(n−1

t ).

Noting that (3.2.3) implies 1/Nt = 1/(2n2
t )(1 + 7/2nt + O(n−2

t )),

P(Yt+1 = 0 | Yt = 1) =
3

nt

− 21

n2
t

+ O(n−3
t ). (3.3.18)
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Given Yt = j for any j ≥ 3, to destroy all j triangles in a single step, it is required either
to peg an edge contained in j triangles, and hence a small subgraph with excess at least 2,
or to peg two edges such that one edge is contained in at least one triangle, and the other
edge contained in at least two triangles. The latter is a small subgraph with excess at least
1. Both cases imply that for j ≥ 3,

P(Yt+1 = 0 | Yt = j) = O(n−3
t ). (3.3.19)

Now we only need to compute P(Yt+1 = 0 | Yt = 2). To destroy two triangles in a single
step, either the two triangles are isolated and the algorithm pegs two edges which are
contained in two triangles, or the two triangles share a common edge and the algorithm
pegs the common edge, i.e. the chord of a C∗

4 . Conditional on Yt = 2, the number of C∗
4

can be either 0 or 1. Let Wt denote the number of C∗
4 as before. If Wt = 0, the two

triangles are isolated, and then two edges contained in different triangles are pegged, so
P(Yt+1 = 0 | Yt = 2,Wt = 0) = 9/Nt. If Wt = 1, then the algorithm pegs the chord of the
C∗

4 . So P(Yt+1 = 0 | Yt = 2,Wt = 1) = (2nt − 7)/Nt. Thus

P(Yt+1 = 0 | Yt = 2)

=
9

Nt

(1−P(Wt = 1 | Yt = 2)) +
2nt − 7

Nt

P(Wt = 1 | Yt = 2)

=
9

Nt

+
2nt − 16

Nt

P(Wt = 1 | Yt = 2). (3.3.20)

By Lemma 3.3.3, P(Yt = 2 | Wt = 1) = e−3 + o(1) and therefore using (3.3.4),

P(Wt = 1 | Yt = 2) =
P(Yt = 2 | Wt = 1)P(Wt = 1)

P(Yt = 2)
=

3 + o(1)

2nt

+ O(n−2
t ).

Combining this with (3.3.20) and (3.2.3), we have

P(Yt+1 = 0 | Yt = 2) =
6 + o(1)

n2
t

+ O(n−3
t ). (3.3.21)

From (3.3.18), (3.3.19) and (3.3.21) we have

P(Yt+1 = 0 | Yt 6= 0) =

(
3

nt

− 21

n2
t

+ O(n−3
t )

)
P(Yt = 1)

P(Yt 6= 0)
+

6 + o(1)

n2
t

P(Yt = 2)

P(Yt 6= 0)

+O(n−3
t ). (3.3.22)

By Theorem 3.3.1, dTV (Xt, Yt) = O(n−1
t ), and so (3.3.17) gives

P(Xt+1 = 0 | Xt 6= 0)−P(Yt+1 = 0 | Yt 6= 0)

=
3

nt

(
P(Xt = 1)

P(Xt 6= 0)
− P(Yt = 1)

P(Yt 6= 0)

)
+

21

n2
t

P(Xt = 1)

P(Xt 6= 0)
− 6 + o(1)

n2
t

P(Xt = 2)

P(Xt 6= 0)
+ O(n−3

t )

=
3

nt

O(dTV (Xt, Yt)) +
36e−3

(1− e−3)n2
t

+ o(n−2
t ).
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Combining this with (3.3.16) and (3.3.22) gives

δt+1 ≥ δt(1− γ(t)) +
3(1− e−3)

nt

O(dTV (Xt, Yt)) +
117e−3

2n2
t

+ o(n−2
t ), (3.3.23)

where γ(t) = 9/nt + P(Yt+1 = 0 | Yt 6= 0) + O(n−2
t ) ≥ 9/nt + O(n−2

t ). For a contradiction,
assume that dTV (Xt, Yt) = o(n−1

t ). Then (3.3.23) gives

δt+1 ≥ δt(1− γ(t)) +
117e−3

2n2
t

+ w(nt),

for some function w(nt) such that w(nt) = o(n−2
t ).

Let (at)t≥0 be defined as a0 = δ0 and for all t ≥ 0,

at+1 = at(1− γ(t)) +
117e−3

2n2
t

+ w(nt).

Clearly δ0 ≥ a0. Assume δt ≥ at for some t ≥ 0. Then

δt+1 ≥ δt(1− γ(t)) +
117e−3

2n2
t

+ w(nt) ≥ at(1− γ(t)) +
117e−3

2n2
t

+ w(nt) = at+1.

Hence δt ≥ at for all t ≥ 0. By Lemma 3.2.2, at = Θ(n−1
t ). Hence δt = Ω(n−1

t ), which
contradicts the assumption that dTV (Xt, Yt) = o(n−1

t ). So dTV (Yt,Po(3)) is not o(n−1
t ).

Clearly
dTV (Yt,k,Po(µ3, . . . , µk)) ≥ dTV (Yt,Po(3)),

where Po(µ3, . . . , µk) is the joint independent Poisson distribution with means µ3, . . . , µk,
and µi is as stated in Theorem 3.2.1, for all 3 ≤ i ≤ k. So dTV (Yt,k,Po(µ3, . . . , µk)) is not
o(n−1

t ).

3.4 Connectivity

In this section, we study the connectivity of graphs generated from the pegging algorithm.
The simulations in [34] indicate that the SWAN network has nice connectivity properties
whereas our results indicate the connectivity properties of the SWAN network under long-
term growth. It is well known [10, 59] that the random d-regular graphs are a.a.s. d-
connected in the uniform model for any fixed constant d ≥ 3. We show that the random
d-regular graphs generated by the pegging algorithm, for any arbitrary even integer d ≥ 4,
are a.a.s. d-connected.
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We call a vertex cut of size k a k-cut, and an edge cut of size k a k-edge-cut. The vertex
cuts in Gt are closely related to the edge cuts. We say an edge cut A is generated by a
vertex cut S in a graph G if for some component S ′ of G − S, A is the set of edges with
one end vertex in S and the other end vertex in S ′. Figure 3.5 is an example for the simple
case of a 3-cut when d = 4. These are edge cuts of size 6, 5 and 7 generated by the 3-cuts
in Figure 3.5. If S is a k-cut, then there are at least two components of G− S and hence
S generates at least two edge cuts. The number of edges with exactly one end vertex in S
is at most dk. Hence there exists an edge cut generated by S with size at most dk/2. In
particular, when d = 4, a 3-cut generates at least one edge cut of size at most 6. Similarly,
a 2-cut generates some edge cut of size at most 4, and a 1-cut generates some edge cut of
size at most 2. So the study of edge cuts of size at most 6 will be helpful for the discussion
of vertex cuts of size at most 3 in the case d = 4.

Figure 3.5: a 3-cut which generates an edge-cut of size 6 or smaller

We call an edge cut A proper if no proper subset of A is an edge cut of G. Unless
otherwise specified, all edge cuts discussed in this section are proper edge cuts. The graph
G − A has two components if A is a proper edge cut. In this section, we call these two
components the side-components of the edge cut A.

Definition 3.4.1 We call an edge cut A of a graph G trivial if it is of the form A = E(S, S)
for some S that induces a tree in G, where S = V (G)− S. The notation E(S, S) denotes
the set of edges with one end in S and the other end in S.

For any S and A specified as in the above definition, there are |S| − 1 edges between
vertices in S. Since Gt is d-regular, |A| = d|S| − 2(|S| − 1), and hence a trivial edge cut
is always of size dl − 2(l − 1) for some integer l ≥ 1. Next we show that given an integer
l ≥ 1, the number of trivial edge cuts in Gt with size dl − 2(l − 1) is a.a.s. Θ(nt). Any
trivial edge cut of this size has a side-component whose size is l. For any vertex v ∈ Gt,
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there are at most
(

d(d−1)l−2

l−1

)
= O(1) trees of size l that contain v. So the number of induced

trees of size l is at most O(nt), which gives an upper bound on the number of trivial edge
cuts with size dl − 2(l − 1). The expected number of cycles of length at most l is O(1)
by Theorem 3.2.1, and so there are a.a.s. Θ(nt) induced (l − 1)-paths. Since each induced
(l − 1)-path forms a trivial edge cut, this gives a lower bound on the number of trivial
edge cuts with size dl − 2(l − 1). Thus, a.a.s. there are Θ(nt) trivial edge cuts with size
dl − 2(l − 1).

Among all edge cuts other than trivial ones, we define the semi-trivial edge cut, which
acts as a transition from trivial edge cuts to the rest.

Definition 3.4.2 An edge cut is called semi-trivial if it is of the form A = E(S, S) for
some S that induces a connected unicyclic subgraph. Edge cuts that are neither trivial nor
semi-trivial are called non-trivial.

By definition, one of the side-components of a semi-trivial edge cut is connected and
contains one cycle. If that side-component is of size l, then it contains l edges, and therefore
the semi-trivial edge cut is of size dl−2l. By Theorem 3.2.1, the expected number of semi-
trivial edge cuts of any given size is O(1).

By examining the neighbours of a trivial or semi-trivial edge cut, we prove the following
lemma, indicating that, to determine the vertex connectivity, it is sufficient to study the
non-trivial edge cuts.

Lemma 3.4.3 For any graph in P(G0, d) with d ≥ 3, the probability that Gt contains an
edge cut that is trivial or semi-trivial and is generated by some vertex cut of size at most
d− 1 is O(n−1

t ).

Proof Assume that S is a vertex cut of size at most d − 1, and S generates a trivial or
semi-trivial edge cut A. Let S1 denote the smaller side-component of A and let l denote
|S1|. Then |A| ≥ dl − 2l since S1 contains at most one cycle. We also have |A| < d(d− 1)
since A is generated by S with |S| ≤ d − 1. This implies l < d2. If A is a trivial edge
cut, then |A| = dl − 2(l − 1) and the subgraph of Gt induced by S1 ∪ S contains at most
l + d − 1 vertices, and at least (l − 1) + |A| = dl − l + 1 edges. Then the excess of this
subgraph is at least dl− l + 1− (l + d− 1) = (d− 2)(l− 1). Since d ≥ 3, the excess can be
0 only if l = 1, which means that the vertex cut is the set of neighbours of some vertex,
which is of size d. This contradicts |S| ≤ d − 1. Hence the subgraph has excess at least
1. Similarly, if A is semi-trivial, then |A| = dl − 2l and the subgraph induced by S ∪ S1

contains at most l + d − 1 vertices, and at least l + |A| = dl − l edges. So the excess is
at least dl − l − (l + d − 1) = (d − 2)(l − 1)− 1. Since S1 contains a cycle, l ≥ 3. So the
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excess of the subgraph is at least 1. We have shown that if A is generated by a vertex cut
of size at most d− 1 and A is trivial or semi-trivial, there exists a subgraph of Gt with size
at most d2 and excess at least 1. By Lemma 3.2.4, this occurs with probability O(n−1

t ).
Thus, a.a.s. there exists no trivial or semi-trivial edge cuts generated by vertex cuts of size
at most d− 1.

We first study the connectivity of random d-regular graphs generated by the pegging
algorithm when d is even. In this way we prove Theorem 3.4.5 for even degrees.

The graph Gt ∈ P(G0, d) contains nt = n0 + t vertices and mt = dnt/2 edges for any
even d ≥ 4. Let Nt be the number of ways to choose d/2 non-adjacent edges. Then Nt

is the number of ways to perform a pegging operation at step t, and Nt is asymptotically(
mt

d/2

)
, since the number of ways to choose d/2 edges that are not pairwise non-adjacent is

O
(
m

d/2−1
t

)
. Let Yt,k be the number of non-trivial edge cuts of size k in Gt. Correspondingly,

let Y ∗
t,k, Ỹt,k be the number of trivial and semi-trivial edge cuts of size k. So Y ∗

t,k = Θ(nt) if
k = dl−2(l−1) for some integer l ≥ 1, and Y ∗

t,k = 0 for other values of k. By Theorem 3.2.1
the expected number of semi-trivial edge cuts of size dl− 2l for any fixed integer l is O(1),

i.e. EỸt,k = O(1) for any fixed k. By Lemma 3.4.3 we know that the study of the behavior

of Yt,k is enough, but in some sense it relates to Ỹt,k as we will see later.

We study the random process (Yt,k)t≥0 for any fixed k, or more precisely, we estimate
the expected changes of the value of Yt,k in a single step. Let A be a k-edge-cut in Gt. We
say that A is destroyed if either some edge in A is pegged or A is no longer an edge cut in
Gt+1. Therefore to destroy A simply requires that either at least one edge in A is pegged,
or two edges from different side-components of A are pegged. We say that an edge cut A′

in Gt+1 is a new edge cut created from A if A is destroyed and A′ contains at least one
new edge created at step t. Note that whenever A is destroyed, there are always new edge
cuts being created at the same time. The number and the size of new edge cuts depend
on the way that the former edge cut is destroyed. For any given k-edge-cut A, there are
three ways to destroy it, according to the relative positions of the edges that are pegged.
Let e1, . . . , ed/2 be the d/2 pegged edges, and v the peg vertex. Of course the d new edges
added form a trivial d-edge-cut themselves, but we do not count this case since Yt,k counts
only the non-trivial edge cuts.

Type 1(i): A contains e1 and another k − 1 edges as shown in Figure 3.6. The other
d/2− 1 edges pegged other than e1 are all in the same side-component of A. Figure 3.6 is
an example of d = 4. In this case, a new k-edge-cut and a new (k + d − 2)-edge cut are
created.

Type 1(ii): A contains only one edge that is pegged, and the other d/2− 1 edges pegged
are not contained in the same side-component of A. In this case, a new (k + i)-edge-cut
and a new (k + d− 2− i)-edge-cut are created for some 2 ≤ i ≤ d− 4.
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e1 v

e2

k-1 edges

Figure 3.6: only e1 contained in the edge cut

Type 2: A contains e1, e2 and another k − 2 edges. Figure 3.7 is an example with d = 4.
The probability that A is destroyed this way is O(n−2

t ).

e2
ve1

k-2 edges

Figure 3.7: e1 and e2 are both contained in the edge-cut

Type 3(i): None of the edges in A are pegged, and one of the pegged edges lies in one
side-component of A, while the rest lie on the other side-component. See Figure 3.9 as
an example with d = 4. In this case, at most one new (k + 2)-edge-cut and one new
(k + d− 2)-edge-cut are created. A slight difference from Type 1 and 2 is that there might
be other edge-cuts created besides the above two new edge-cuts, when the edge pegged
is a bridge of some side-component. For example, let’s consider d = 4. Let S1 and S2

be the two side-components. If e1 is contained in a cycle of S1 and e2 is contained in a
cycle of S2, then two new (k + 2)-edge cuts are created. This is illustrated in Figure 3.9.
Otherwise, assume e1 is a bridge of S1. Then we have created a new (i + 1)-edge cut and
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a new (j + 1)-edge cut and a (k + 2)-edge cut, where i + j = k. This is shown in the right
hand side of Figure 3.8. Note that this implies the existence of an (i + 1)-edge cut and a
(j +1)-edge cut in Gt, and we will count the new (i+1)-edge cut and (j +1)-edge cut when
the existing (i+1)-edge cut and (j +1)-edge cut are destroyed with Type 1. Without over
counting, we only count the creation of the new (k + 2)-edge cuts for the destruction of A.
For the same reason, if both e1 and e2 are bridges in S1 and S2, then no creation of new
edge-cuts is counted for the destruction of A. In conclusion, at most two (k + 2)-edge-cuts
are created for the Type 3(i) destruction of A.

k-i edgesi edgesk edges

Figure 3.8: neither e1 nor e2 is contained in the edge-cut

v

e2

e1

k edges

Figure 3.9: neither e1 nor e2 is contained in the edge-cut

Type 3(ii): A contains none of the edges being pegged, and both side-components of
A contain at least two pegged edges. In this case, a new (k + i)-edge cut and a new
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(k + d− i)-edge cut are created, for some 4 ≤ i ≤ d− 4.

Given any constant integer M > 0, define Ĉ(M, t) to be the set of all non-trivial edge

cuts with size at most M in graph Gt, and for any t ≥ 0. Hence |Ĉ(M, t)| =
∑

i≤M Yt,i.

We can partition all edge cuts in Ĉ(M, t) into three types.

• Edge cuts which are created from destruction of some edge cut in Ĉ(M, t− 1).

• Edge cuts that are in Ĉ(M, t− 1) and remain from Gt−1 to Gt.

• Edge cuts created from some semi-trivial edge cut in Gt−1.

The following lemma shows that Ĉ(M, t) is essentially empty.

Lemma 3.4.4 Let Gt ∈ P(G0, d), M > 0 be any given integer, then as t →∞,

E(|Ĉ(M, t)|) = o(1).

To prove this lemma we estimate the expected changes of |Ĉ(M, t)| going from Gt to
Gt+1. The contribution to changes comes from edge cuts of the first and the third types.
The truth of this lemma is that the sizes of the edge cuts created are always at least
that of the destroyed one, and the expected number of non-trivial edge cuts coming from
semi-trivial edge cuts is very small. The outline of the proof is as follows.

S1. In each step, the destruction of any edge cut does not create any edge cut smaller
than the one destroyed, and the number of new edge cuts created is bounded.

S2. In each step, the destruction of any edge cut creates at most one new edge cut that
is of the same size of the one destroyed.

S3. There is a significant probability (Θ(n−1
t )), that all new edge cuts created are of

strictly larger size than that of the destroyed one.
S4. The probability of creating a non-trivial edge cut of size at most M from some semi-

trivial edge cut is O(n−2
t ).

We are going to prove the statements S1-S4, and then show how these statements lead
to the lemma.

Proof of Lemma 3.4.4. Note that Yt,k is the number of k-edge-cuts in Ĉ(M, t). Define

the weight of a k-edge-cut to be 1/k!. Hence the weight of Ĉ(M, t) is

Wt =
M∑

k=1

1

k!
Ŷt,k.
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We estimate the expected value of the one step change Wt+1 − Wt by first estimating
the expected change Wt+1−Wt conditional on the value of Ĉ(M, t). We first estimate the

change caused by destruction of edge cuts in Ĉ(M, t). For a given k-edge cut A, we analyse
the different ways that it is destroyed.

Type 1(i): A new k-edge cut and a new (k + d − 2)-edge cut are created, so the weight
change is 1/k! + 1/(k + d − 2)! − 1/k! ≤ 1/(k + 2)!. There are k ways to choose an edge
in A, and at most

(
mt

d/2−1

)
ways to choose the rest d/2 − 1 edges, which lie in the same

side-component of A. So the probability for this to occur is at most

k
(

mt

d/2−1

)

Nt

∼ k

nt

.

The expected increase of weight is at most

1

(k + 2)!

kYt,k

nt

.

Type 1(ii): A new (k + i)-edge cut and a new (k + d− 2− i)-edge cut are created. The
weight change is 1/(k + i)! + 1/(k + d− 2− i)!− 1/k! ≤ 2/(k + 2)!− 1/k! < 0.

Type 2: Two new edge cuts are created, with size at least k, and thus the contribution to
the weight change is at most O(1/k!). The probability of this to occur is O(n−2

t ) as shown
before. So the expected increase of weight is bounded by

O

(
1

k!

Yt,k

n2
t

)
.

Type 3(i): A new (k + 2)-edge cut and a new (k + d − 2)-edge cut are created, and the
weight change is 1/(k + 2)! + 1/(k + d− 2)!− 1/k! ≤ 2/(k + 2)!− 1/k!. Let p denote the
probability of this occurrence. Then p depends on the size of each side-component. Let
S1 denote the side-component containing less edges. If S1 contains at least log mt edges,
then the number of ways of choosing an edge in S1 is at least log mt and the number of
ways of choosing another non-adjacent d/2− 1 edges in Gt \ S1 is at least asymptotically(

mt/2
d/2−1

)
= Θ(m

d/2−1
t ). So p ≥ Θ((log mt)m

d/2−1
t /Nt) = Θ(log mt/nt). If S1 contains less

than log mt edges, there is at least one edge in S1 that can be pegged and the number of ways
to choose d/2−1 non-adjacent edges from Gt\S1 is asymptotically

(
mt−O(log mt)

d/2−1

) ∼ (
mt

d/2−1

)
.

Hence p ≥ n−1
t in this case. Combining with the previous case, the probability for this

event to occur is at least n−1
t . Thus, the expected decrease of the weight is at least

(
1

k!
− 2

(k + 2)!

)
Yt,k

nt

.
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Type 3(ii): A new (k + i)-edge cut and a new (k + d − i)-edge cut are created, and the
weight change is 1/(k + i)! + 1/(k + d− i)!− 1/k! ≤ 2/(k + 2)!− 1/k! < 0.

Another contribution to the change of Wt comes from the non-trivial edge cuts newly
created from semi-trivial edge cuts. Recall that the expected number of semi-trivial edge
cuts of any given size in Gt is O(1). Let A be a semi-trivial edge cut of size k. All the
ways of creating a non-trivial edge cut from A are listed as follows.

(1) Destroy A of Type 1, with two of the edges e1, e2 being pegged such that they are
adjacent to some common edge. Hence the common edge together with two of the new
added edges will form a new triangle, which creates a non-trivial edge cut. There are only
O(1) ways to choose e1 and e2. So the probability of this to occur is O(n−2

t ).

(2) Peg at least two edges in A, i.e. destroy A of Type 2, which occurs with probability
O(n−2

t ).

(3) Destroy A of Type 3, with e1 and e2 both adjacent to some edge in A, hence that
edge together with two of the new edges form a new triangle and a new non-trivial edge
cut appears. The number of choices of e1 and e2 is bounded and hence the probability for
this to occur is O(n−2

t ).

Thus we have

E(Wt+1 −Wt | Ĉ(M, t)) ≤
M−2∑

k=1

1

(k + 2)!

kYt,k

nt

+
M∑

k=1

O

(
Yt,k

n2
t

)
+

M−2∑

k=1

(
2

(k + 2)!
− 1

k!

)
Yt,k

nt

−
M∑

k=M−1

1

k!

Yt,k

nt

+
M∑

k=1

O(Ỹt,kn
−2
t ).

The first term comes from Type 1(i), second term comes from Type 2, and the third and
fourth terms from Type 3(i). The contributions from Type 1(ii) and Type 3(ii) are ignored
since they are negative. The fifth term comes from non-trivial edge cuts created from
semi-trivial ones. So we have

E(Wt+1 −Wt | Ĉ(M, t))

≤
M−2∑

k=1

−
(

1

k!
− 2

(k + 2)!
− k

(k + 2)!

)
Yt,k

nt

−
M∑

k=M−1

1

k!

Yt,k

nt

+
M∑

k=1

O

(
1 + Yt,k + Ỹt,k

n2
t

)

≤
M−2∑

k=1

− 1

(k + 1)!

Yt,k

nt

−
M∑

k=M−1

1

k!

Yt,k

nt

+
M∑

k=1

O

(
1 + Yt,k + Ỹt,k

n2
t

)

≤
(
−1/(M + 1)

nt

+ O(n−2
t )

)
Wt +

M∑

k=1

O(Ỹt,kn
−2
t ).
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Taking the expectation of both side of the above inequality gives

E (Wt+1) ≤
(

1− 1/(M + 1)

nt

+ O(n−2
t )

)
E(Wt) + ω(nt),

where ω(nt) is some function of nt such that ω(nt) = O(n−2
t ). Define (at)t≥0 to be a0 = W0,

and

at+1 =

(
1− 1/(M + 1)

nt

)
at + ω(nt), for all t ≥ 0.

Assume E(Wt) ≤ at for some t ≥ 0, then

E (Wt+1) ≤
(

1− 1/(M + 1)

nt

)
E(Wt) + ω(nt) ≤

(
1− 1/(M + 1)

nt

)
at + ω(nt) = at+1.

Hence E(Wt) ≤ at for all t ≥ 0. By Lemma 3.2.2 at = O
(
n
−1/(M+1)
t

)
, and therefore

E(Wt) = O
(
n
−1/(M+1)
t

)
. Hence Lemma 3.4.4 follows.

Theorem 3.4.5 Let Gt ∈ P(G0, d) for any even d ≥ 4, then Gt is a.a.s. d-connected.

Proof Clearly any vertex cut of size at most d− 1 generates an edge cut of size at most
d(d − 1)/2. By putting M = d(d − 1)/2, the theorem follows directly from Lemma 3.4.3
and Lemma 3.4.4. More precisely, by Markov inequality, we have

P(Gt is not d-connected) = P(Wt ≥ 1) + O(n−1
t ) = O

(
n
−1/(M+1)
t

)
.

The pegging algorithm for odd d ≥ 3 is defined in Chapter 6. We can follow the same
routine to prove the connectivity result when d ≥ 3 is odd. In each step, two new vertices
and d − 1 new edges are added. The only difference from the even degree case is that,
for any given k-edge cut that is destroyed, there can be up to four new edge cuts created
instead of two. So there are more complicate transitions to obtaining a new k-edge cut
for any k. It is straightforward but tedious to check the statements S1-S4 stated before
the proof of Lemma 3.4.4. We checked the case d = 3 and believe that Gt ∈ P(G0, d) are
d-connected for any arbitrary integer d ≥ 3.
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Chapter 4

Orientability thresholds of random
hypergraphs and the load balancing
problem

4.1 Introduction

In this chapter we study the orientation of random hypergraphs. Recall that a hyperedge is
said to be w-oriented if exactly w distinct vertices in it are marked with positive signs with
respect to the hyperedge and a (w, k)-orientation of an h-hypergraph is a w-orientation
of all hyperedges such that each vertex has indegree at most k. Note that a sufficiently
sparse hypergraph is easily (w, k)-orientable. On the other hand, a trivial requirement for
(w, k)-orientability is m ≤ kn/w, since any w-oriented h-hypergraph with m edges has
average indegree mw/n. In our work, we show the existence and determine the value of
the sharp threshold at which the random h-uniform hypergraph Gn,m,h fails to be (w, k)-
orientable, provided k is a sufficiently large constant. To be precise, this threshold is a
number ch,w,k such that Gn,m,h is a.a.s. (w, k)-orientable for m < (ch,w,k − ε)n, and a.a.s.
not (w, k)-orientable for m > (ch,w,k + ε)n, for any fixed ε > 0. We show that the threshold
is the same as the threshold at which a certain type of subhypergraph achieves a critical
density.

We give precise statements of our results, including definition of the (w, k + 1)-core,
in Section 4.2. In Section 4.3 we study the (w, k + 1)-core. In Section 4.4, we formulate
the appropriate network flow problem, determine a canonical minimum cut for a network
corresponding to a non-(w, k)-orientable hypergraph, and give conditions under which such
a minimum cut can exist. Finally, in Section 4.5, we show that for k is sufficiently large,
such a cut a.a.s. does not exist when the density of the core is below a certain threshold.
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4.2 Main results

Let h > w > 0 and k ≥ 2 be given constants. For any h-hypergraph H, we examine
whether a (w, k)-orientation exists. We call a vertex light if the degree of the vertex is at
most k. For any light vertex v, we can give v the positive sign respect to any hyperedge
x that is incident to v (we call this partially orienting x towards to v), without violating
the condition that each vertex has indegree at most k. Remove v from H, and for each
hyperedge x incident to v, simply update x by removing v. Then the size of x decreases by 1,
and it has one less vertex that needs to be given the positive signs. If a hyperedge becomes
of size h− w, we can simply remove that hyperedge from the hypergraph. Repeating this
until no light vertex exists, we call the remaining hypergraph Ĥ the (w, k + 1)-core of H.

Every vertex in Ĥ has degree at least k+1, and every hyperedge in Ĥ of size h−j requires
a (w − j)-orientation in order to obtain a w-orientation of the original hyperedge in H.

In order to simplify the notation, we use n̄, m̄ and µ̄ to denote the number of vertices,
the number of hyperedges and the average degree of H ∈ Gn̄,m̄,h. Correspondingly we use
n, mh−j and µ to denote the number of vertices, the number of hyperedges of size h − j

and the average degree of Ĥ. Define

fk(µ) =
∑

i≥k

e−µ · µi

i!
= 1−

k−1∑
i=0

e−µ · µi

i!
, (4.2.1)

for any integer k ≥ 0. By convention, define fk(µ) = 1 for any k < 0. The following

theorem shows that the size and the number of hyperedges of Ĥ are highly concentrated
around the solution of a system of differential equations. The theorem covers the cases for
any arbitrary h > w ≥ 2 and holds for all sufficiently large k. The special case w = 1
has been studied by various authors and the concentration results can be found in [15,
Theorem 3] which hold for all k ≥ 0.

Theorem 4.2.1 Let h > w ≥ 2 be two given constant integers. Let H be a random
h-hypergraph with n̄ vertices and m̄ hyperedges and let Ĥ be its (w, k + 1)-core. Let n

be the number of vertices and mh−j the number of hyperedges of size h − j of Ĥ. Let µ̄
be the average degree of H. Assume µ̄ ≥ ck for some constant c > 1. Then, provided
k is sufficiently large, a.s.s. n ∼ αn̄ and mh−i ∼ βh−in̄ for 0 ≤ i ≤ w − 1, for some
constants α > 0 and βh−i > 0, which are determined by the solution of the differential
equation system (4.3.5)–(4.3.18) that depends only on µ̄, k, w and h. Furthermore, Ĥ is
uniformly random conditional on its number of vertices and hyperedges of size h − j for
any j = 0, . . . , w − 1.

We note that our proof actually produces a lot of information on the random (w, k+1)-

core Ĥ such as on degree distribution (similar to that obtained for k-cores of hypergraphs
in [16] for example).
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Let P be a hypergraph property and let Gm,n,h ∈ P denote the event that a random
hypergraph from Gm,n,h has the property P .

Definition 4.2.2 A hypergraph property P has a sharp threshold function f(n) if for any
constant ε > 0,

P(Gm,n,h ∈ P) → 1, when m ≤ (1− ε)f(n)

P(Gm,n,h ∈ P) → 0, when m ≥ (1 + ε)f(n).

Recall that n denotes the number of vertices and mh−j denotes the number of hyper-

edges of size h−j of Ĥ. Let κ(Ĥ) denote
∑w−1

j=0 (w−j)mh−j/n. Then κ(Ĥ) defines a certain

type of density of Ĥ. We say that a hypergraph H has property T if its (w, k + 1)-core

Ĥ satisfies the condition that κ(Ĥ) is at most k. (Since w and k are fixed, we often drop
them from the notation.) The following theorem shows that there is a sharp threshold
function of the property T .

Theorem 4.2.3 There exists a sharp threshold function f(n) for the graph property T
provided k is sufficiently large.

Note that the threshold function is determined by the solution of the differential equa-
tion system (4.3.5)–(4.3.18) as referred to in Thm 2.1. Theorem 4.2.3 is approached by
analysing this differential equation system.

By counting the positive signs in orientations, we see that if property T fails, there is
no (w, k)-orientation of Ĥ and hence there is no (w, k)-orientation of H.

We say that there exists a (w, k)-orientation of Ĥ if there is an (w − j)-orientation of
each hyperedge of size h − j such that every vertex has indegree at most k. By counting
the positive signs in orientations, we see that if property T fails, Ĥ cannot have any
(w, k)-orientation and hence there is no (w, k)-orientation of H.

Let m := (mh−w+1, . . . , mh) be a nonnegative integer vector. Let H(n,m, k + 1) be de-
fined as the probability space of all hypergraphs on n vertices with the following constraints
and with the uniform distribution:

(a) each vertex has degree at least k + 1;

(b) the size of each hyperedge is between h−w + 1 and h, and the number of hyperedges
of size h− j for 0 ≤ j ≤ w − 1, is mh−j.

64



By Theorem 4.2.1, H(n,m, k + 1) is a uniformly random (w, k + 1)-core conditioned on
the number of vertices and the number of hyperedges of each size.

Given a vertex set S, we say a hyperedge x is partially contained in S if |x ∩ S| ≥ 2.

Definition 4.2.4 Let 0 < γ < 1. We say that a hypergraph G has property A(γ) if for
all S ⊂ V (G) with |S| < γ|V (G)| the number of hyperedges partially contained in S is less
than k|S|/2w.

In the following theorem, m = m(n) denotes an integer vector for each n.

Theorem 4.2.5 Let γ be any constant between 0 and 1. Then there exists a constant
N > 0 depending only on γ, such that for all k > N and any ε > 0, if m(n) satisfies∑w−1

j=0 (w − j)mh−j(n) ≤ kn− εn for all n, then G ∈ H(n,m(n), k + 1) a.a.s. either has a
(w, k)-orientation or does not have property A(γ).

Let f(n̄) be the threshold of property T given in Theorem 4.2.3. We show in Corol-

lary 4.4.3 that a.a.s. Ĥ has property A(γ) for a certain γ if the average degree of H is at
most hk/w. Combining Theorem 4.2.3 with Theorem 4.2.5, we obtain that f(n̄) is a sharp
threshold for the existence of a (w, k)-orientation of H, when k is large enough.

Corollary 4.2.6 Let h > w > 0 be two given integers and k be a sufficiently large constant.
Let f(n̄) be the threshold function of property T given in Theorem 4.2.3. Then f(n̄) is the
sharp threshold for the (w, k)-orientability in Gn̄,m̄,h.

For any vertex set S ⊂ V (H), define the subgraph induced by S with parameter w to
be the subgraph of G on vertex set S with the set of hyperedges {x′ = x ∩ S : x ∈
H, s.t. |x′| ≥ h − w + 1}. Call this hypergraph HS. Let d(HS) denote the degree sum of
vertices in the hypergraph HS and let e(HS) denote the number of hyperedges in HS.

Corollary 4.2.7 The following three graph properties of H ∈ Gn̄,m̄,h have the same sharp
threshold.

(i) H is (w, k)-orientable.

(i) H has property T .

(i) There exists no H ′ ⊂ H as an induced subgraph with parameter w such that d(H ′) −
(h− w)e(H ′) > ks.
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4.3 Analysing the size and density of the (w, k+1)-core

A model of generating random graphs via multigraphs, used by Bollobás and Frieze [13] and
Chvatál [18], is described as follows. Let Pn̄,m̄ be the probability space of functions g : [m̄]×
[2] → [n̄] with the uniform distribution. Then a probability space of random multigraphs
can be obtained by taking {g(i, 1), g(i, 2)} as an edge for each i. Let m = (m2, . . . , mh).
This model can easily be extended to generate non-uniformly random multihypergraphs
by taking Pn̄,m = {g : ∪h

i=2[mi] × [i] → [n̄]}. Let Mn̄,m be the probability space of
random multihypergraphs obtained by taking each {g(j, 1), . . . , g(j, i)} as a hyperedge,
where j ∈ [mi] and 2 ≤ i ≤ h. (Loops and multiple edges are possible.) It was shown in [18]
that Gn̄,m̄,2 is equal toMn̄,m, where m = (0, . . . , 0, m̄), conditioned on the multihypergraph
being simple, and that the probability of a multihypergraph in Mn̄,m being simple is Ω(1)
if m̄ = O(n̄). This result is easily extended to the general case for any fixed h ≥ 2 and
vector m, using the same method of proof.

Cain and Wormald [16] recently introduced a new model to analyse the k-core of a ran-
dom (multi)graph or (multi)hypergraph, including its size and degree distribution. This
model is called the pairing-allocation model. The partition-allocation model, as defined be-
low, is a refinement of the pairing-allocation model, and analyses cores of multihypergraphs
with given numbers of hyperedges of various sizes. We will use this model to prove The-
orem 4.2.5 and to analyse a randomized algorithm called the RanCore algorithm, defined
later in this section, which outputs the (w, k + 1)-core of an input h-hypergraph.

Given h ≥ 2, n, m = (m2, . . . , mh), L = (l2, . . . , lh) and a nonnegative integer k such
that D − ` ≥ kn, where D =

∑h
i=2 imi and ` =

∑h
i=2 li, let V be a set of size n, and M a

collection of pairwise disjoint sets {M1, . . . , Mh}, each disjoint from V , where Mi contains
imi elements partitioned into parts, each of size i, for all 2 ≤ i ≤ h. The partition-allocation
model defines a probability space P(V,M,L, k) as the set of mappings

{
g :

h⋃
i=2

Mi → {L} ∪ V
}

(4.3.1)

such that |g−1(L)| = `, |g−1(j)| ≥ k for all j ∈ V , and for all 2 ≤ i ≤ h,

∣∣{j ∈ Mi : g(j) = L}
∣∣ = li,

and each mapping has equal probability.

The probability space P(V,M,L, k) can equivalently be defined by way of the following
algorithm. Let C = {c2, . . . , ch} be a set of colours. Represent V as a set of n bins and
represent each element in Mi as a ball. Colour balls in Mi with ci. (The function of the
colours is only to denote the size of the part a ball lies in.) Let L be a bin such that {L}
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is disjoint from V . Then allocate the D balls uniformly at random (u.a.r.) into the bins
in V ∪ {L} , such that the following constraints are satisfied:

(i) L contains exactly ` balls;

(ii) each bin in V contains at least k balls;

(iii) for any 2 ≤ i ≤ h, the number of balls with colour ci that are contained in L is li.

Note that the mappings (4.3.1) correspond to the ways of partitioning and allocating
the balls into the bins.

We call L a light bin and all bins in V heavy. As we will see later, the probability space
P(V,M,L, k) corresponds to the probability space Mn̄,m conditional on the event that the
number of heavy vertices is n and the contribution to the sum of degrees of light vertices
(vertices with degree at most k − 1) from hyperedges of size i is li.

To make the explanation easier, the probability space Pn̄,m can be described using the
bins and balls model similarly. We may consider each element in ∪h

i=2[mi] as a ball and
each element in [n̄] as a bin and say a ball u is dropped into a bin v if u is mapped to v by
g.

The following alternative algorithm generates the same probability space. First, allocate
D balls randomly into bins {L} ∪ V with the restriction that L contains exactly ` balls
and each bin in V contains at least k balls. Then colour the balls u.a.r. with the following
constraints:

(i) exactly imi balls are coloured with ci;

(ii) for any i = 2, . . . , h, the number of balls with colour ci contained in L is exactly li.

Then take u.a.r. a partition of the balls such that for any i = 2, . . . , h, all balls with colour
ci are partitioned into parts of size i. We call this alternative algorithm the allocation-
partition algorithm since it allocates before partitioning the balls. This algorithm assists
with analysis in some situations.

Given n̄, L, V , M, k and g ∈ P(V,M,L, k), define H(g) to be the probability space of
multihypergraphs g′ such that g′ is obtained from g by reallocating balls in L into the set
of bins V ′ = [n̄] \ V such that no bin in V ′ receives more than k− 1 balls. Moreover, all g′

in H(g) occur with equal probability. This immediately leads to the following proposition.

Proposition 4.3.1 For any n̄, n, m, L, k such that D − ` ≥ kn and ` ≤ (k − 1)(n̄− n),
where D =

∑h
i=2 imi and ` =

∑h
i=2 li as defined before, the distribution of H(g) where
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g ∈ P(V,M,L, k) is identical to g′ ∈ Pn̄,m conditional on the event that the set of heavy
vertices is V , and the contribution to the sum of degrees of light vertices from hyperedges
of size i is li for every 2 ≤ i ≤ h.

Given the values of n, m = (mh−w+1,...,mh
), let M = (Mh−w+1, . . . , Mh), where Mi =

[mi] × [i]. We consider M(n,m,0, k), the probability space of random multihypergraphs
with minimum degree at least k + 1 generated by P([n],M,0, k). For convenience, we
denote it by M(n,m, k). We will show in the proof of Theorem 4.2.1 that conditional on
the event that the number of vertices is n and the numbers of hyperedges of size i are mi

for h−w + 1 ≤ i ≤ h in Ĥ, the (w, k + 1)-core of H ∈Mn̄,(0,...,m̄), the distribution of Ĥ is
identical to M(n,m, k+1). We will use P([n],M,0, k+1) in Section 4.5 to prove that the
result of Theorem 4.2.5 holds also for the probability space M(n,m, k + 1). The following
lemma shows the relation between M(n,m, k + 1) and H(n,m, k + 1).

Lemma 4.3.2 The probability space H(n,m, k + 1) is equal to M(n,m, k + 1) restricted
to simple hypergraphs.

Proof Let G be a hypergraph from H(n,m, k + 1). Let d = (d1, . . . , dn) be its degree
sequence. Consider the allocation-partition algorithm which generates P([n],M,0, k + 1).
The number of ways to allocate balls into bins such that the degree sequence is d is

(
D

d1, d2, . . . , dn

)
=

D!

d1! · · · dn!
.

For every such allocation, the number of partitions resulting in G after contracting bins
into vertices is

∏n
i=1 di!. Hence the number of g ∈ P([n],M,0, k + 1) that correspond to

any simple hypergraph G is
D!

d1! · · · dn!
·

n∏
i=1

di! = D!.

Since this does not depend on G and also due to the relation between P([n],M,0, k + 1)
and M(n,m, k + 1), the simple hypergraphs in M(n,m, k + 1) are uniformly distributed.
Then Lemma 4.3.2 follows.

A deletion algorithm producing the k-core of a random multigraph was analysed in [16].
The differential equation method [60] was used to analyse the size and the number of
hyperedges of the final k-core. The degree distribution of the k-core was shown to be a
truncated multinomial. We extend the deletion algorithm to analyse the (w, k + 1)-core of
H ∈ Gn̄,m̄,h using the partition-allocation model, but the analysis is more complicated. It
is clear that the degree distribution of the (w, k + 1)-core, conditional on the number of
hyperedges of each size, is truncated multinomial by considering the allocation-partition
algorithm which generates P([n],M,0, k + 1).
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We apply the following randomized algorithm to find the (w, k + 1)-core of an input
hypergraph H. Recalling the setting of representing multihypergraphs using bins and balls,
for any hyperedge x, let h(x) denote the set of |x| balls in x. Initially let LV be the set
of all light vertices, and let LV = V (H) \ LV be the set of heavy vertices. Let the balls
contained in LV be called light balls.

RanCore Algorithm to obtain the (w, k + 1)-core
Input: an h-hypergraph H. Set t := 0.

While neither LV nor LV is empty,
t := t + 1;
Remove all empty bins;
U.a.r. choose a light ball u. Let x be the hyperedge that contains u and let v be
the vertex that contains u;
If |x| ≥ h− w + 2, update x with x \ {u},

otherwise, remove this hyperedge x from the current hypergraph. If any vertex
v′ ∈ LV becomes light, move v′ to LV together with all balls in it;

If LV is empty, ouput the remaining hypergraph, otherwise, output the empty graph.

Let the function fk(x) be defined as in (4.2.1). Let Z(≥k) be a truncated Poisson random
variable with the parameter λ defined as follows.

P(Z(≥k) = j) =
e−λ

fk(λ)
· λj

j!
, for any j ≥ k. (4.3.2)

Note that it follows that P(Z(≥k) = j) = 0 whenever j < k. The following proposition will
be used in the proof of Theorem 4.2.1 and in Section 4.5.

Proposition 4.3.3 Given any integer k ≥ −1, let λ be a positive real number satisfying
λfk(λ) = µfk+1(λ), where µ ≥ ck for some c > 1. Then µ ≥ λ, and µ− λ → 0, fk(λ) → 1
as k →∞.

Proof Since fk(λ) ≥ fk+1(λ) for all k ≥ −1 by the definition of the function fk(x)
in (4.2.1), it follows directly that µ ≥ λ. There is a unique λ satisfying µ = λfk(λ)/fk+1(λ)
since λfk(λ)/fk+1(λ) is an increasing function of λ (see a short proof of the monotonicity
in [47, Lemma 1]). Let pj(λ) = e−λλj/j!. Then

µ− λ = λ

(
fk(λ)

fk+1(λ)
− 1

)
=

λpk(λ)

fk+1(λ)
. (4.3.3)
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We first show that λ > µ−1 provided k is sufficiently large by showing that λ+ λpk(λ)
fk+1(λ)

< µ

by taking λ = µ− 1. Since

(µ− 1) · pk(µ− 1) = (µ− 1)e−µ+1 (µ− 1)k

k!
≤ µe−µ+1

(eµ

k

)k

≤ exp
(
1− µ + k(1 + ln(µ/k)) + ln µ

)
(4.3.4)

and (4.3.4) is a decreasing function of µ, we have

(µ− 1) · pk(µ− 1) ≤ exp
(
1− ck + k(1 + ln c) + ln(ck)

)
.

Since c > 1, we have (µ− 1) · pk(µ− 1) → 0, and fk+1(µ− 1) → 1 as k →∞. Hence

(µ− 1) +
(µ− 1) · pk(µ− 1)

fk+1(µ− 1)
< (µ− 1) + 1/2 < µ

provided k is sufficiently large. Thus, λ > µ− 1. Then fk+1(λ) → 1 as k →∞, and

µ− λ = 2λpk(λ) ≤ 2λe−λ

(
eλ

k

)k

≤ µe−µ+1
(eµ

k

)k

,

which goes to 0 as k →∞ as proved before.

Lemma 4.3.4 Let c > 0, δ be constants. Let (Yt)t≥1 be independent random variables such
that |Yt| ≤ c always and EYt ≤ δ for all t ≥ 1. Let X0 = 0 and Xt =

∑
i≤t Yi for all t ≥ 1.

Then for any ε > 0, a.a.s. Xn ≤ δn+ε|δ|n. Moreover, P(Xn ≥ δn+ε|δ|n) ≤ exp(−Θ(ε2n)).

Proof Clearly (Xt − δt)t≥0 is a supermartingle. Let n →∞. Then the Azuma-Hoeffding
inequality, originally given in [33, Theorem 3] in a form of a martingale inequality and also
introduced in many textbooks (see [3]), gives

P(Xn − δn ≥ ε|δ|n) ≤ exp

(
−ε2δ2n2

cn

)
= exp(−Θ(ε2n)) = o(1).

Thus, a.a.s. Xn ≤ δn + ε|δ|n.

Lemma 4.3.5 Let c > 0, δ be constants. Let (Yt)t≥1 be independent random variables such
that |Yt| ≤ c always and EYt ≥ δ for all t ≥ 1. Let X0 = 0 and Xt =

∑
i≤t Yi for all t ≥ 1.

Then for any ε > 0, a.a.s. Xn ≥ δn−ε|δ|n. Moreover, P(Xn ≤ δn−ε|δ|n) ≤ exp(−Θ(ε2n)).
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Proof This follows by applying Lemma 4.3.4, taking Yt as −Yt and Xt as −Xt.

The following proof of Theorem 4.2.1 is rather long and complicated. To assist the
reading, we first briefly explain the structure of the proof. We first prove the uniformity
of the (w, k + 1)-core Ĥ. That is to say, we show that conditional on the number of

vertices and hyperedges of each size in Ĥ, Ĥ is distributed as M(n,m, k + 1) restricted
to the simple hypergraphs. This part of the proof proceeds by first adapting the RanCore
algorithm to be run on the partition-allocation model, and then proving uniformity of the
partition-allocations in each step by induction.

After the proof of this part, we use the DE method to analyse asymptotic values of
random variables under consideration in the random process generated by the RanCore
algorithm. The difficulty in this part of the proof is caused by the fact that it is not possible
to define an open domain for which we can apply the DE method from the beginning of
the process. Thus, we define a domain that does not contain the origin and we need to
show that the random variables under consideration “enter” the domain not too long after
the start of the algorithm. Lastly we can enlarge the domain gradually so that it gets
arbitrarily close to the origin and the end of the process.

Once it is shown that the asymptotic values inside the domain are approximated by
a system of differential equations, we analyse the random variables when they leave the
domain. We show that provided k is sufficiently large, the algorithm terminates quickly
and then we estimate the size and density of Ĥ.

Proof of Theorem 4.2.1. Given the values of HV0 ≥ 0 and L0 ≥ 0 satisfying hm̄ ≥
L0 + (k + 1)HV0, L0 ≤ k(n̄ − HV0), and V0, M0 such that |V0| = HV0 and |Mi| = 0
for i ≤ h − 1 and |Mh| = hm̄, the random multigraph H ∈ Mn̄,(0,...,0,m̄) conditional on
the event that the heavy vertex set is V0 and the degree sum of light vertices is L0, is
distributed identically to H(g) with g ∈ P(V0,M0,L0, k + 1), where L0 = (0, . . . , 0, L0),
by Proposition 4.3.1. The RanCore algorithm can be adapted in an obvious way, which
we explain next, to be run on P(V0,M0,L0, k + 1). Let g0 ∈ P(V0,M0,L0, k + 1) and let
gt denote the partition-allocation obtained after t steps of the RanCore algorithm. In each
step t, the algorithm removes a ball, denoted by u, u.a.r. chosen from all balls in L. If the
colour of u is ch−i for i < w − 1, the algorithm recolours the balls in the same part as u
with the new colour ch−i−1. If the colour of u is ch−w+1, the algorithm removes all balls
contained in the same part as u, and if any heavy bin becomes light (i.e. the number of
balls contained in it becomes at most k) because of the removal of balls, the bin is removed
and the balls remaining in it are put into L.

Let Vt denote the set of heavy bins after step t and let Mt denote the class of sets
{Mt,h−w+1, . . . , Mt,h} such that Mt,h−j denotes the set of partitioned balls with colour
ch−j after step t for 0 ≤ j ≤ w − 1. Let HVt = |Vt|, mt,h−j = |Mt,h−j|/(h − j) and
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m = (mt,h−w+1, . . . , mt,h). Let Lt,h−j denote the number of balls with colour ch−j in L and
let L = (Lt,h−w+1, . . . , Lt,h). Let Lt =

∑w−1
j=0 Lt,h−j.

We first show, by induction on t, that the partition-allocation gt, conditional on Vt,
Mt and Lt, is distributed as P(Vt,Mt,Lt, k + 1). We have already shown that g0 ∈
P(V0,M0,L0, k + 1), conditional on V0 and L0, by Proposition 4.3.1. For the inductive
step, it suffices to show that for any t ≥ 0, conditional on Vt,Mt,Lt and Vt+1,Mt+1,Lt+1,
gt+1 is distributed as P(Vt+1,Mt+1,Lt+1, k + 1). The operation of the algorithm in step
t + 1 is determined by the values of HVt,mt,Lt and HVt+1,mt+1,Lt+1. For instance, if∑w−1

j=0 mt,h−j =
∑w−1

j=0 mt+1,h−j, it implies that the algorithm removes a ball u with colour
ch−j from L for some j 6= w−1, and then recolours h−j−1 balls that are in the same part
as u with the new colour ch−j−1. This corresponds to updating a hyperedge x incident with
a light vertex v by x \ {v}. The value j is determined by the difference between Lt and
Lt+1. The difference of Mt,h−j and Mt,h−j determines the balls that are in the same part
as u. Hence there is a unique gt that can lead to gt+1 by applying the RanCore algorithm.
Since gt ∈ P(Vt,Mt,Lt, k + 1) by the inductive hypothesis, it then follows that gt+1 is
distributed as P(Vt+1,Mt+1,Lt+1, k + 1) in this case.

Similarly we analyse the other two cases. If
∑w−1

j=0 mt+1,h−j <
∑w−1

j=0 mt,h−j and HVt+1 =
HVt, then this implies that the algorithm removes a ball u with colour ch−w+1 from L
together with all balls in the same part as u, and no heavy bins become light because of
the removal of balls. For any gt+1, we count gt that can lead to gt+1 by one step of the
algorithm. The difference of Mt,h−w+1 and Mt+1,h−w+1 determines the set of h−w+1 balls
being removed. The difference of Lt,h−w+1 and Lt+1,h−w+1 determines how many balls from
L are removed at step t+1. Hence the number of gt that can lead to gt+1 equals the number
of ways to choose Lt,h−w+1−Lt+1,h−w+1 from h−w + 1 balls and drop the remaining balls
into HVt bins. This number depends only on Lt,h−w+1, Lt+1,h−w+1, h−w + 1 and HVt and
so is independent of the choice of gt+1. So gt+1 is distributed as P(Vt+1,Mt+1,Lt+1, k+1) in
this case. The last and most complicated case involves

∑w−1
j=0 mt+1,h−j <

∑w−1
j=0 mt,h−j and

HVt+1 < HVt, which implies that the algorithm removes a ball u with colour ch−w+1 from
L together with all balls in the same part as u and the removal of balls causes some heavy
bins in gt to become light. First, the difference of Mt,h−w+1 and Mt+1,h−w+1 determines the
set of h−w + 1 balls that are removed. Let i denote the number of balls removed from L.
Then 1 ≤ i ≤ h− w. Let V ′ denote the set of bins that become light after the removal of
balls. Then the difference of Vt and Vt+1 determines V ′. The difference between Lt and Lt+1

then determines the number of balls remain in V ′ before the bins in V ′ are removed by the
algorithm. Then for any given i, the number of gt that can lead to gt+1 equals the number
of ways to choose the right set of balls determined by the difference between Lt and Lt+1,
and reallocate them to bins in V ′ such that none of bins in V ′ receives more then k balls,
and reallocate h−w + 1 balls of colour ch−w+1 such that i of them are dropped into L and
the rest are dropped into V ′∪Vt+1 such that all bins in V ′ contain at least k+1 balls. This
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number, denoted by φ(i), depends only on i, h − w + 1, Lt, Lt+1, Mt,h−w+1, Mt+1,h−w+1,
Vt and Vt+1. Then the total number of gt that can lead to a given gt+1 by one step of
the algorithm is

∑h−w
i=1 φ(i), which is independent of the choice of gt+1. Thus, we have

shown that in all cases, conditional on Vt, Mt, Lt and Vt+1, Mt+1, Lt+1, there are a fixed
number of partition-allocations gt that lead to any given gt+1. The inductive hypothesis
gives that gt ∈ P(Vt,Mt,Lt, k + 1). Thus, gt+1 is distributed as P(Vt+1,Mt+1,Lt+1, k + 1).
Therefore, by induction, gt ∈ P(Vt,Mt,Lt, k + 1), conditional on Vt, Mt, Lt, for all t ≥ 0.
In particular, let τ be the stopping time of the RanCore algorithm. If the (w, k + 1)-core
is not empty, then conditional on Vτ , Mτ , gτ ∈ P(Vτ ,Mτ ,0, k + 1).

Now we analyse the size of the (w, k + 1)-core. After step t of the algorithm, let Bt

denote the total number of balls remaining and let Bt,h−j denote the number of balls
coloured ch−j. Let Ht,h−j denote the number of balls contained in heavy bins that are
coloured ch−j, and let At,i be the number of bins containing exactly i balls. We have just
shown that gt is distributed as P(Vt,Mt,Lt, k + 1) conditional on Vt, Mt and Lt. Recall
that n and mh−j denote the number of vertices and the number of hyperedges of size

h − j in Ĥ, the (w, k + 1)-core of H and µ̄ denotes the average degree of H. We show,
using the DE method introduced in Section 2.2.3, that if µ̄ ≥ ck for some c > 1 and k is
sufficiently large, a.a.s. n ∼ αn̄ and mh−j ∼ βh−jn̄ for some constants α > 0, βh−j > 0
which are determined by the solution of the following differential equation system. We
will show that α = HV (x∗) and βh−j = Hh−j(x

∗)/(h− j) where x∗ is the smallest root of
L(x) = 0. We use the same symbols for random variables and the real valued functions
that are associated to the random variables by scaling (explained below). For instance, the
real function Lh−j(x) is associated to the random variable Lt,h−j .
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For x > 0,

L′h−i(x) =
Lh−i(x)

L(x)

(
−1− (h− i− 1)Lh−i(x)

Bh−i(x)

)

+
Lh−w+1(x)

L(x)

(
(h− w)Hh−w+1(x)

Bh−w+1(x)
· (k + 1)A(x)

B(x)− L(x)
· k · Hh−i(x)

B(x)− L(x)

)

+
Lh−i+1(x)

L(x)

(h− i)Lh−i+1(x)

Bh−i+1(x)
, i = 1, . . . , w − 1, (4.3.5)

H ′
h−i(x) =

Lh−i(x)

L(x)

(
−(h− i− 1)Hh−i(x)

Bh−i(x)

)

−Lh−w+1(x)

L(x)

(
(h− w)Hh−w+1(x)

Bh−w+1(x)
· (k + 1)A(x)

B(x)− L(x)
· k · Hh−i(x)

B(x)− L(x)

)

+
Lh−i+1(x)

L(x)

(h− i)Hh−i+1(x)

Bh−i+1(x)
, i = 1, . . . , w − 1, (4.3.6)

L′(x) = −1 +
Lh−w+1(x)

L(x)

(
− (h− w)Lh−w+1(x)

Bh−w+1(x)

+(h− w)k · Hh−w+1(x)

Bh−w+1(x)
· (k + 1)A(x)

B(x)− L(x)

)
, (4.3.7)

B′(x) = −1− (h− w)Lh−w+1(x)

L(x)
, (4.3.8)

HV ′(x) = −Lh−w+1(x)

L(x)

(h− w)Hh−w+1(x)

Bh−w+1(x)
· (k + 1)A(x)

B(x)− L(x)
, (4.3.9)

λ′(x) =
((B′(x)− L′(x))HV (x)− (B(x)− L(x))HV ′(x))fk+1(λ(x))

HV (x)2(fk(λ(x)) + λ(x)e−λ(x) · λ(x)k−1

(k−1)!
− B(x)−L(x)

HV (x)
· e−λ(x) · λ(x)k

k!
)
,(4.3.10)

and

L′h−i(0) = 0, H ′
h−i(0) = 0, i = 2, . . . , w − 1, (4.3.11)

L′h−1(0) =
(h− 1)Lh(0)

Lh(0) + Hh(0)
, H ′

h−1(0) =
(h− 1)Hh(0)

Lh(0) + Hh(0)
, (4.3.12)

L′(0) = −1, B′(0) = −1, HV ′(0) = 0, λ′(0) = 0, (4.3.13)
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and for all x ≥ 0,

Lh(x) = L(x)−
w−1∑
i=1

Lh−i(x), Hh(x) = B(x)− L(x)−
w−1∑
i=1

Hh−i(x), (4.3.14)

Bh−i(x) = Lh−i(x) + Hh−i(x), for every 0 ≤ i ≤ w − 1, (4.3.15)

A(x) =
λ(x)k+1

eλ(x)(k + 1)!fk+1(λ(x))
HV (x). (4.3.16)

The initial conditions are

B(0) = µ̄, Lh−i(0) = 0, Hh−i(0) = 0, for all 1 ≤ i ≤ w − 1, (4.3.17)

L(0) = µ̄(1− fk(µ̄)), HV (0) = 1− exp(−µ̄)
k∑

i=0

µ̄i/i!, λ(0) = µ̄. (4.3.18)

Let x = t/n̄ and let Lh−j(x) = Lt,h−j/n̄. We call this the scaling of the variable Lt,h−j.
Do the same scaling on all the other variables Bt, Lt, Ht,h−j, etc. We will apply the DE
method to analyse the asymptotic values of these random variables in the process generated
by the RanCore algorithm. First we fix some small constant ε > 0, and define D(ε) to
be a connected open set depending on the value of ε, in which we apply the DE method.
Let Γ(t) denote the vector (t, zL,h−w+1, . . . , zL,h−1, zB,h−w+1, . . . , zB,h−1, zL, zB, zHV ). The
subscript of z indicates which scaled random variable z is associated to. For instance,
zL,h−j is a real number that is associated to Lt,h−j/n̄, etc. Hence the right hand side of
the differential equations (4.3.5)–(4.3.13) are multi-variable functions of z, where z denotes
the set of variables zL,h−j, etc. The domain D(ε) is defined by the set {Γ(t), t ≥ 0} such
that zL > ε, 0 < zL,h−j < zB,h−j, zL,h−j < zL for all j ≥ 1 and zB − zL > ε. The proof is
sketched as follows. We first show that the scaled random variables under consideration
a.a.s. enter the domain D(ε) before t0 = ε′n̄ steps from the beginning of the process.
From this point onwards, we analyse the asymptotic values of these variables using the DE
method. In order to apply the DE method, we need to check that the three hypotheses in
Theorem 2.2.1 hold. The first hypothesis clearly holds. To verify the second hypothesis,
we need to show that the expected one step change of Lt,h−i can be approximated within
an error of o(1) as some function f , such that f is a continuous multi-variable function of
t/n̄, Lt,h−i/n̄, and other random variables under consideration at step t, also divided by n̄,
then do the same to the other random variables under consideration. We need to show that
these f correspond to the multi-variable functions at the right hand side of (4.3.5)–(4.3.13).
Lastly, to verify the third hypothesis, we first shift the process by letting t := t− ε′n̄ and
choose the open set D in Theorem 2.2.1 (iii) to be the domian D(ε) in which t0 = ε′n̄ is
shifted to 0. Then we show that these f are continuous and Lipschitz inside the shifted
domain D(ε). After we apply the DE method to analyse the random variables from step
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t0 up to the step when the scaled variables reach the boundary of the domain D(ε), we
continue the analysis of the process after the scaled random variables leave the domain.

We will use a separate argument to analyse the initial segment of the process since
the real functions f under consideration are not Lipschitz at Γ(0). For instance, let fL,h−j

denote the multi-variable function on the right hand side of (4.3.5). Clearly, fL,h−j is dis-
continuous and non-Lipschitz at zB,h−j = 0. However, as we will show later, the continuity
and Lipschitz condition hold inside the domain D(ε) for any given ε > 0. We will also show
that for any ε′ > 0, a.a.s. Γ(ε′n̄) is in D(ε). We also show that Γ(t) remains in D(ε) until
Lt/n̄ reaches ε. We postpone these details of justification and first estimate the expected
one step change of each variable which leads to the continuous functions f . We show that
these changes lead to (4.3.5)–(4.3.18).

Let τ = min{t : HVt = 0 or Lt = 0} and consider any 0 ≤ t < τ . At step t + 1, a
partition-allocation gt+1 is to be obtained by applying the RanCore algorithm to gt. Let v
be the ball randomly chosen by the algorithm from L. Let C(v) = ch−j be the colour of v.
If j < w− 1, the algorithm removes another h− j − 1 balls that are uniformly distributed
among all balls with colour ch−j since gt ∈ P(Vt,Mt,Lt, k + 1) as proved. If j = w − 1,
then the algorithm removes v together with another h − w balls which are chosen u.a.r.
from all balls of colour ch−w+1. If the removal of the h−w balls results in some heavy bins
turning into light bins, these bins are removed and the balls remaining in these bins are
put into L.

Now we estimate the expected value of Lt+1,h−j − Lt,h−j for any 1 ≤ j ≤ w − 1 and
for any 0 ≤ t < τ conditional on Vt, Mt, Lt and the event gt ∈ P(Vt,Mt,Lt, k + 1). The
probability that C(v) = ch−j is Lt,h−j/Lt. If C(v) = ch−j, one ball of colour ch−j contained
in L is removed by the algorithm, and another h− j− 1 balls of colour ch−j are recoloured
with ch−j−1 (or removed if j = w − 1). The expected number of those balls that are
contained in L is

(h− j − 1)Lt,h−i

Bt,h−j

,

if Bt,h−j > 0, or 0 otherwise. By convention, let

(h− j − 1)Lt,h−j

Bt,h−j

= 0

if Bt,h−j = 0. Hence
Lt,h−j

Lt

(
−1− (h− j − 1)Lt,h−j

Bt,h−j

)

is the negative contribution to E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k + 1)).
The positive contribution to E(Lt+1,h−j−Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k+1)) comes
from the following two cases.
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Case 1: C(v) = ch−w+1. Then the algorithm removes v and another h−w balls of colour
ch−w+1. P(C(v) = h−w +1) = Lt,h−w+1/Lt. We first show that the contribution from the
case that i of the h− w removed balls lie in a bin containing at most k + i balls for some
2 ≤ i ≤ h− w is negligible. For any i balls, the probability that they are in the same bin
containing at most k + i balls is

(
Ht,h−w+1

Bt,h−w+1

)i

O

((
(k + i)

Bt − Lt

)i i∑
j=1

At,k+j

)
= O(n̄−i+1) = o(1),

since for any particular ball removed by the algorithm among the h−w balls, the probability
that it is contained in a heavy bin is Ht,h−w+1/Bt,h−w+1, and ((k + i)/(Bt − Lt))

i is the
probability that i balls are in a particular bin containing at most k + i balls conditional
on that it is contained in a heavy bin l, whereas

∑i
j=1 At,k+j is the total number of heavy

bins with at most k + i balls.

It only remains to consider the contribution from the case that some ball removed by
the algorithm is contained in a bin containing exactly k + 1 balls. For any of these balls
that the algorithm removes, the probability that it is in a bin containing exactly k+1 balls
is

Ht,h−w+1

Bt,h−w+1

· (k + 1)At,k+1

Bt − Lt

.

The removal of a ball from a bin l containing k + 1 balls causes l to become light. Since
the balls of each colour are uniformly distributed among all balls in the heavy bins because
gt ∈ P(Vt,Mt,Lt, k + 1), the expected number of balls of colour ch−j, for 0 ≤ j ≤ w − 1,
among the remaining k balls in the bin l is

k · Ht,h−j

Bt − Lt

.

There are in total h − w balls of colour ch−w+1 other than v that are removed by the
algorithm. Hence the expected contribution to E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈
P(Vt,Mt,Lt, k + 1)) is

(h− w) · Lt,h−w+1

Lt

· Ht,h−w+1

Bt,h−w+1

· (k + 1)At,k+1

Bt − Lt

· k · Ht,h−j

Bt − Lt

.

Case 2: C(v) = ch−j+1. The algorithm then removes v and chooses another h − j
balls u.a.r. from those of colour ch−j+1, and recolours them with ch−j. Since P(C(v) =
ch−j+1) = Lt,h−j+1/Lt, and conditional on C(v) = ch−j+1, the expected number of balls of
colour ch−j+1 that are in the light bins and are recoloured by the algorithm is

(h− j) · Lt,h−j+1

Bt,h−j+1

.
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Hence the positive contribution to E(Lt+1,h−j−Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k+1))
is

Lt,h−j+1

Lt

· (h− j) · Lt,h−j+1

Bt,h−j+1

.

Therefore

E(Lt+1,h−j − Lt,h−j | Vt,Mt,Lt, gt ∈ P(Vt,Mt,Lt, k + 1))

=
Lt,h−j

Lt

(
−1− (h− j − 1)Lt,h−j

Bt,h−j

)
+

Lt,h−j+1

Lt

· (h− j)Lt,h−j+1

Bt,h−j+1

+
Lt,h−w+1

Lt

(
(h− w)Ht,h−w+1

Bt,h−w+1

· (k + 1)At,k+1

Bt − Lt

· k · Ht,h−j

Bt − Lt

)
+ o(1),(4.3.19)

for j = 1, . . . , w−1. Then the right hand side of (4.3.19) gives the continuous multi-variable
function f in D(ε) which leads to (4.3.5). Similarly, by computing the expected changes
of Ht,h−i, Bt, Dt, HVt, conditional on Vt, Mt, Lt and the event gt ∈ P(Vt,Mt,Lt, k + 1),
and doing the same scaling of these variables, we obtain (4.3.6)–(4.3.9).

The following obvious equations

Lt,h = Lt −
w−1∑
i=1

Lt,h−i, Ht,h = Bt − Lt −
w−1∑
i=1

Ht,h−i, (4.3.20)

Bt,h−i = Lt,h−i + Ht,h−i, for every h− w + 1 ≤ i ≤ h (4.3.21)

lead to (4.3.14) and (4.3.15). Since gt ∈ P(Vt,Mt,Lt, k + 1) for every t, by considering
the allocation-partition algorithm that generates P(Vt,Mt,Lt, k + 1), the degree sequence
of the heavy vertices obeys the truncated multinomial distribution, which asymptotically
converges in distribution to the truncated Poisson distribution as HVt →∞ by [16, Lemma
1]. Let λt be the parameter of the truncated Poisson distribution. Then the average number
of balls in heavy bins is λtfk(λt)/fk+1(λt). So λt is the root of

λtfk(λt)

fk+1(λt)
− Bt − Lt

HVt

= 0, for all t = 0, 1, 2, . . . , τ.

Note that the uniqueness of the root follows by the monotonicity of λtfk(λt)/fk+1(λt)
discussed in the proof of Proposition 4.3.3. Thus,

At,k+1 ∼ e−λtλk+1
t

(k + 1)!fk+1(λt)
HVt, (4.3.22)

which gives (4.3.18). Let x = t/n̄, and let B(x) = Bt/n̄, Lh−i(x) = Lt,h−i/n̄, Hh−i(x) =
Ht,h−i/n̄, L(x) = Lt/n̄, A(x) = At,k+1/n̄ and HV (x) = HVt/n̄. Let µ(x) denote (B(x) −
L(x))/HV (x). Then λ(x) is an implicit function of x satisfying

λ(x)fk(λ(x)) = µ(x)fk+1(λ(x)), for all valid x. (4.3.23)
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So (4.3.10) follows by first taking the derivative of both sides of (4.3.23),

λ′(x)·fk(λ(x))+λ(x)·d fk(λ)

dλ

∣∣∣∣
λ=λ(x)

·λ′(x) = µ′(x)·fk+1(λ(x))+µ(x)·d fk+1(λ)

dλ

∣∣∣∣
λ=λ(x)

·λ′(x),

together with

d fk(λ)

dλ
= e−λ · λk−1

(k − 1)!
and µ′(x) =

(B′(x)− L′(x))HV (x)− (B(x)− L(x))HV ′(x)

HV (x)2
.

Now we justify the third hypothesis in Theorem 2.2.1 for the shifted process. Recall that
the domain D(ε) in which the DE method is applied is defined by the set of {Γ(t) : t ≥ 0}
such that zL > ε, 0 < zL,h−j < zB,h−j, zL,h−j < zL for all j ≥ 1, and zB − zL > ε. Let
fL,h−j denote the multi-variable function on the right hand side of (4.3.5). Clearly fL,h−j

(and other real functions under consideration) is continuous in D(ε) since zL > 0 and
zB,h−j > 0. Next we show that these functions are Lipschitz in D(ε). It is easy to see
that all these continuous functions (e.g. fL,h−j) are expressed as sums of products of ratios
of real numbers such as zL, etc. We only need to prove that each summand is Lipschitz.
Note that the Lipschitz condition of this type of summand can only be violated if the
denominator is not bounded away from 0. Hence we only need to check summands of the
following form

f(zL,h−j, zL, zB,h−j) =
zL,h−j

zL

· zL,h−j

zB,h−j

,

where zL > ε, zB,h−j > 0, 0 < zL,h−j < zB,h−j, zL,h−j < zL by the definition of D(ε). Thus,

∣∣∣ ∂ f

∂ zL,h−j

(zL,h−j, zL, zB,h−j)
∣∣∣ =

2zL,h−j

zLzB,h−j

<
2

zL

<
2

ε
, (4.3.24)

∣∣∣ ∂ f

∂ zL

(zL,h−j, zL, zB,h−j)
∣∣∣ =

z2
L,h−j

z2
LzB,h−j

<
1

ε
, (4.3.25)

∣∣∣ ∂ f

∂ zB,h−j

(zL,h−j, zL, zB,h−j)
∣∣∣ =

z2
L,h−j

zLz2
B,h−j

<
1

ε
. (4.3.26)

Therefore, the Lipschitz condition is satisfied.

We first show that for any small enough ε′ > 0, a.a.s. Γ(ε′n̄) ∈ D(ε) by taking zL =
Lε′n̄/n̄, etc.

In order to show that for any small enough ε′ > 0, a.a.s. Γ(ε′n̄) ∈ D(ε), it is enough to
show that for any given small enough ε′ > 0, a.a.s. Lε′n̄,h−j/n̄ > α1 and Hε′n̄,h−j/n̄ > α2 for
some α1, α2 > 0, for any 0 ≤ j ≤ w − 1. Initially, all balls are coloured with ch. A special
case of [16, Lemma 1] shows that there exists a constant β′ = e−Θ(k) > 0 depending only
on k and µ̄ such that the proportion of balls that are initially light is a.a.s. at least β′.
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The number of light balls removed in each step is O(1), so there exists a constant ρ > 0,
depending only on k and µ̄, such that Lt ≥ L0/2 a.a.s. and the proportion of balls coloured
with ch at step t among all light balls is at least 1/2 a.a.s. for all t ≤ ρn̄. The function of
ρ is to restrict the choice of ε′ so that it is not too large.

In the process, if a ball coloured with ch−j is recoloured by the algorithm with ch−j−1,
we say that a ball of colour ch−j is destroyed and a ball of colour ch−j−1 is created. First
we know that initially the proportion of balls that are light is a.a.s. at least β′ > 0. Since
Lt ≥ L0/2 for all t ≤ ρ, there exists β > 0, such that a.a.s. in all steps up to ρ, the
proportion of balls that are light is at least β. Now we show that for any 0 < ε′ < ρ, and
any j ≥ 0, there exist some α1, α2 > 0 such that a.a.s. Lt,h−j > α1n̄ and Ht,h−j > α2n̄ for
all ε′n̄ ≤ t ≤ ρn̄, by induction on j. For j = 0 this is trivially true. Now assume this holds
for some 0 ≤ j < w − 1.

By the inductive hypothesis, there exists α1, α2 > 0 such that a.a.s. Lt,h−j ≥ α1n̄
Ht,h−j ≥ α2n̄ for any ε′n̄/2 ≤ t ≤ ρn̄. We also have that a.a.s. the proportion of light
balls in each step up to ρ is at least β. Define the stopping time T to be the minimum
t ≥ ε′n̄/2 such that either Lt,h−j < α1n̄ or Ht,h−j < α2n̄ or the proportion of balls that
are light becomes less than β. Then a.a.s. T ≥ ρn̄. Let t ∧ T denote min{t, T}. Next we
show that there exists γ > 0 such that Lt,h−j/Lt ≥ γ for all t ∈ [ε′n̄/2, ρn̄ ∧ T ]. This is
trivially true if j = 0, since Lt,h/Lt ≥ 1/2 for any ε′n̄/2 ≤ t ≤ ρn̄. Assume j ≥ 1. Since
Lt,h−j ≥ α1n̄ for all ε′n̄/2 ≤ t ≤ ρn̄ ∧ T , there exists γ > 0 such that Lt,h−j/Lt ≥ γ for all
ε′n̄/2 ≤ t ≤ ρn̄ ∧ T . Thus, the probability that the light ball chosen by the algorithm is
coloured with ch−j is at least γ in every step from ε′n̄/2 to ρn̄∧T . Conditional on T ≥ ρn̄,
for any t with ε′n̄ ≤ t ≤ ρn̄, the probability that the number of balls with colour ch−j−1

created from step ε′n̄/2 to t is less than γ(h − j − 1)ε′n̄/4 is at most exp(−Θ(ε′2n̄)) by
Lemma 4.3.5. A proportion of those balls would be destroyed or not counted by Ht,h−j−1.
These include:

(a) those that are light balls at the time they were created;

(b) those that were heavy when they were created but are turned into light by the
algorithm;

(c) those that are removed or recoloured because a light ball with colour ch−j−1 was
chosen and removed by the algorithm.

It is easy to check that the proportion from case (a) and (b) is a.a.s. O(1/k), since
the proportion of balls that are light is β = O(β′) = O(e−Θ(k)) = O(1/k) in each step,
and the proportion from case (c) is a.a.s. at most 1/2, since the proportion of balls with
colour ch among all light light balls is at least 1/2. So for sufficiently large k, conditional
on T ≥ ρ, the probability that Ht,h−j−1/n̄ < γ(h− j − 1)ε′n̄/12 is at most exp(−Θ(ε′2n̄))
for all ε′n̄ ≤ t ≤ ρ. Since a.a.s. T ≥ ρ, we have that the probability that T < ρ or that
there exists some t with ε′n̄ ≤ t ≤ ρn̄ such that Ht,h−j−1/n̄ < γ(h− j− 1)ε′n̄/12 is at most
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o(1) + ρn̄ exp(−Θ(ε′2n̄)) = o(1). This proves that there exists α′2 > 0 such that a.a.s. for
all ε′n̄ ≤ t ≤ ρn̄, Ht,h−j−1/n̄ > α′2. Similarly, we can show that there exists α′1 > 0 such
that a.a.s. for all ε′n̄ ≤ t ≤ ρn̄, Lt,h−j−1/n̄ > α′1. Hence by induction, for any sufficiently
small ε′ > 0, there exists α1 > 0 and α2 > 0 such that Lε′n̄,h−j/n̄ > α1 and Hε′n̄,h−j/n̄ > α2

for all 0 ≤ j ≤ w − 1.

Now we have shown that for any ε′ > 0, a.a.s. Lε′n̄/n̄ > α1 and Hε′n̄/n̄ > α2 for some
constants α1, α2 > 0. Recall that zL,h−j corresponds to the scaled variable Lε′n̄,h−j/n̄.
Thus we have for some α > 0, α < zL,h−j < zB,h−j and zL,h−j < zL for all j ≥ 1. The
constraints zL > ε and zB − zL > ε are clearly satisfied when ε′ is sufficiently small. Hence
a.a.s. the shifted domain D(ε) contains some open set D such that there is no z that are
on the boundaries of both D and D(ε), and a.a.s. every Γ(0) (shifted from Γ(ε′n̄)) for
which P(L0 = zLn̄, zL ∈ Γ(0)) 6= 0, etc. is contained in D. Thus we are ready to apply
Theorem 2.2.1 to analyse the time-shifted process from step 0, or equivalently, to analyse
the original process (gt)t≥ε′n̄. Note that Theorem 2.2.1 (iii) requires the shifted D(ε) to
contain some neighbourhood of such Γ(0) deterministically instead of asymptotically almost
surely. However, this does not cause any problem since we can restrict our discussion to
those gε′n̄ so that the shifted Γ(0) is in D, and apply the DE method only to these gε′n̄,
whereas the probability that gε′n̄ is not in this category converges to 0 as n̄ → ∞. Hence
the a.a.s. properties obtained by applying the DE method hold in our case, too.

Let t1(ε) denote the first time the scaled random variables reaches the boundary of the
domain D(ε) after they entered the domain. Our proof will be almost complete after we
show the following statements.

(S1) The initial derivatives (4.3.11)–(4.3.13) approximate the changes of the random vari-
ables at the beginning of the process.

(S2) There is a unique solution to the differential equation system (4.3.5)–(4.3.18) and
the solution is in the domain D(ε) for all 0 < x ≤ x(ε), where x(ε) is the point at
which the solution reaches the boundary of D(ε) for the first time after it entered
D(ε).

(S3) In all steps 0 ≤ t ≤ t1(ε), the deviation of each random variable from what is given
by the solution to the differential equation system is a.a.s. bounded by o(n̄).

(S4) The time t1(ε) coincides with the time at which L(x) or B(x)−L(x) decreases to ε,
where L(x) and B(x) are solution functions of the differential equation system.

Note that (S3) is proved later by applying Theorem 2.2.1 and the uniform convergence
for any ε′ > 0; (S4) shows in which way the solution functions to the differential equation
system leave the domain D(ε).
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We need the following two theorems in our proof. The first theorem gives sufficient con-
ditions under which a solution to a given differential equation system with initial conditions
exists.

Theorem (Peano’s Existence Theorem [46]) Let n ≥ 1 be a fixed integer and D an
open subset of Rn+1. Assume ϕi : D 7→ R for i = 1, . . . , n are continuous functions on D.
Consider the initial value problem

d xi

d t
= ϕi(t, x1, . . . , xn), for all i = 1, . . . , n,

with xi(b) = ai for i = 1, . . . , n, where (b, a1, . . . , an) ∈ D. Then there exists δ > 0 and n
functions x1, . . . , xn such that for every i = 1, . . . , n, xi : (b− δ, b + δ) 7→ R is a continuous
function that satisfies x′i(t) = ϕi(t, x1(t), . . . , xn(t)) for all t ∈ (b− δ, b + δ).

The next theorem gives sufficiently conditions under which there is a unique solution
to a given differential equation system with initial conditions.

Theorem (Picard-Lindelöf Theorem) Assume the differential equation system with
initial conditions is defined as in the Peano’s Existence Theorem. Assume further that
ϕi for i = 1, . . . , n are continuous in t and Lipschitz continuous in xi for all i = 1, . . . , n.
Then for some δ > 0 and for every i = 1, . . . , n, there exists a unique function xi such that
xi : (b − δ, b + δ) 7→ R is a continuous function that satisfies x′i(t) = ϕi(t, x1(t), . . . , xn(t))
for all t ∈ (b− δ, b + δ).

A well-known proof of the Picard-Lindelöf Theorem uses the Picard iteration. By the
method of Picard iteration, it immediately gives the following lemma.

Lemma (Stability of ODE systems) Assume all the hypotheses in Picard-Lindelöf

Theorem are satisfied. Let x
(1)
i be the unique solutions extended in a Lipschitz continuous

domain containing (b, a
(1)
1 , . . . , a

(1)
n ) and x

(2)
i be the unique solutions extended in a Lipschitz

continuous domain containing (b, a
(2)
1 , . . . , a

(2)
n ). Let I be any bounded connected open

subset of R containing b such that for any i = 1, . . . , n, both solutions x
(1)
i (t) and x

(2)
i (t)

can be uniquely extended to any t ∈ I. Let a(i) = (a
(i)
1 , . . . , a

(i)
n ) for i = 1, 2. Then if for

some ε > 0, ||a(1) − a(2)|| ≤ ε, then there exists C > 0 such that for any t ∈ I and any

i = 1, . . . , n, |x(1)
i (t)− x

(2)
i (t)| ≤ Cε.

We first prove (S3), assuming (S1) and (S2). Recall that µ̄ = hm̄/n̄. By [16, Lemma
1], the number of vertices with degree d is a.a.s. asymptotically (e−µ̄µ̄d/d!)n̄. So a.a.s.
L0 ∼ (1−fk(µ̄))µ̄n̄, B0 ∼ µ̄n̄ and HV0 ∼ fk+1(µ̄)n̄. We also have Lh−i,0 = 0, Hh−i,0 = 0 for
all 1 ≤ i ≤ w− 1, Lh,0 = L0 and Hh,0 = B0−L0. By scaling these variables we obtain that
the initial deviation of each variable from the initial conditions (4.3.17) and (4.3.18) of the
differential equation system is a.a.s. o(n̄). For any random variable under consideration,
its one step change is bounded by some absolute constant, for instance, the one step
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change of Lt is bounded by h, etc. We have already shown that the initial deviation of
each variable at t = 0 is a.a.s. bounded by o(n̄). Hence the (accumulative) deviation of
Lε′n̄ (and the other random variables) is O(ε′n̄), where O() is independent of ε′ and n̄.
Let y(x) = (Lh−w+1(x), . . . , Lh−1(x), Bh−w+1(x), . . . , Bh−1(x), L(x), B(x), HV (x)) be the
solution to the differential equations (4.3.5)–(4.3.18). (Note that the other functions, e.g.
Lh(x), λ(x), can be determined by L(x), HV (x), etc.). By Theorem 2.2.1 (b), we deduce
that the values of sequences (Lt,h−i)ε′n̄≤t≤t1(ε), (Ht,h−i)ε′n̄≤t≤t1(ε), etc., are approximated by
y(x), in the sense that a.a.s. Lt,h−i = n̄Lh−i(t/n̄) + o(n̄) + O(ε′n̄), etc., for all ε′n̄ ≤ t ≤
t1(ε). The error term o(n̄) follows by Theorem 2.2.1 (b) and O(ε′n̄) is obtained by the
following three facts. Firstly, as we have shown, the deviation of each random variable
from what is given by the initial conditions (4.3.17) and (4.3.18) is a.a.s. o(n̄). Secondly,
the accumulative changes of each variable from step 0 to step ε′n̄ is O(ε′n̄). Lastly, the
difference of values of each solution function (e.g. L(x), etc.) to the differential equations
system at x = 0 and x = ε′ is at most O(ε′) since |fL|, |fL,h−j|, etc. are bounded for
all sufficiently small x ≥ 0. Note that the boundedness follows because the solution
functions to the differential equation system are in the domain D(ε) for every x > 0 by
(S2). By the above three facts, the error O(ε′n̄) follows by the Lemma of the stability
of ordinary differential equation systems. Since the error O(ε′n̄) holds uniformly for any
small enough ε′ > 0, we have the uniform convergence by letting ε′ → 0. Hence we have
Lbxn̄c,h−i = n̄Lh−i(x) + o(n̄), etc., for all 0 < x < t1(ε)/n̄, whereas L0 = n̄L(0) + o(n̄). This
proves (S3). Theorem 2.2.1 also tells that t1(ε) coincides with the time at which y(t/n̄)
leaves the domain D(ε).

Now we prove (S1). Let the RanCore algorithm run for t = ε′n̄ steps from the initial
partition-allocation. Then obviously Lt,h−j = O(ε′n̄) for all j ≥ 1. Thus the probability
that the algorithm chooses any light ball with colour ch−j for j ≥ 1 is O(ε′) at each step
up to step t and hence for any j ≥ 2, the total number of balls with colour ch−j that have
ever been created up to step t is a.a.s. O(ε′t). Hence Lt,h−j = O(ε′t) and Ht,h−j = O(ε′t)
for all j ≥ 2. Recall that Lh−j(x) is the function scaled from Lt,h−j by taking x = t/n̄ and
Lh−j(x) = Lt,h−j/n̄. Hence for all j ≥ 2,

L′h−j(0) = lim
ε′→0

Lh−j(ε
′)− Lh−j(0)

ε′
= lim

ε′→0

Lε′n̄,h−j/n̄

ε′
= lim

ε′→0

O(ε′2)
ε′

= 0,

H ′
h−j(0) = lim

ε′→0

Hε′n̄,h−j/n̄

ε′
= 0.

This verifies (4.3.11). The total number of light balls with colour ch chosen by the algorithm
is then a.a.s. (1 − O(ε′))t up to step t. Every such choice results in removing one light
ball coloured ch and choosing a set V ′ of h − 1 balls u.a.r. from those with colour ch and
recolouring them with ch−1. The number of light and heavy balls coloured ch in each
step up to step t is L0,h − O(ε′n̄) and H0,h − O(ε′n̄) respectively. Hence in each step,
the probability that a particular ball in V ′ lies in L is L0,h/B0,h + O(ε′). Then a.a.s.
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Lt,h−1 = tL0,h/B0,h + O(ε′t). Similarly, we can show that Ht,h−1 = tH0,h/B0,h + O(ε′t).
This verifies (4.3.12). The verification of the first three derivatives of (4.3.13) follows
immediately from the above argument that verifies (4.3.12). The third derivative follows
by noticing that (4.3.10) holds for x = 0 as well by the argument below (4.3.21). This
proves (S1).

Next we show (S2). Intuitively this must be true since the functions fL,h−j, etc.
are continuous and uniformly Lipschitz inside the domain D(ε), and the initial deriva-
tives (4.3.11)–(4.3.13) “force” the solution to enter the domain. Then the solution will be
extended uniquely to the boundary of D(ε). In our proof, we will first extend the function
fL,h−j into a larger domain and then prove the existence of solutions to the “extended”
differential equation system. Then we show that all these solutions enter the domain D(ε)
for sufficiently small x > 0 because of the initial derivatives. Eventually this leads to prove
the uniqueness of a solution before the solution leaves the domain D(ε).

We have already shown that the functions fL,h−j, etc. are continuous and Lipschitz in
the domain D(ε) for any ε > 0. We first extend the functions fL,h−j, etc. to continuous
functions in the domain D := {(zL,h−w+1, . . . , zL,h−1, zB,h−w+1, . . . , zB,h−1, zL, zB, zHV ) :
zL > ε, zB − zL > ε}. Let z0 denote the vector in D with zL = µ̄(1 − fk(µ̄)), zB = µ̄,
zHV = 1− exp(−µ̄)

∑k
i=0 µ̄i/i!, zL,h−j = zB,h−j = 0 for all 1 ≤ j ≤ w − 1. Clearly z0 is an

interior point in D but is on the boundary of D(ε). The reason that we extend f to the
domain D is because we can prove the existence of solutions to the extended differential
equation system using the Peano’s Existence Theorem. However, as we will show later, for
growing x, all the solutions enter the domain D(ε) right away and hence all these solutions
are solutions to the original differential equation system.

To extended the functions such as fL,h−j to continuous functions in D, it is enough to
extend the function

f(zL,h−j, zB,h−j, zL) =
z2

L,h−j

zLzB,h−j

to the domain D, for the same reason as the argument above (4.3.24). Define

f(zL,h−j, zB,h−j, zL) =





z2
L,h−j/zLzB,h−j if 0 ≤ zL,h−j ≤ zB,h−j, zB,h−j > 0

zB,h−j/zL if zL,h−j > zB,h−j ≥ 0
|zL,h−j|2/zL|zB,h−j| otherwise.

(4.3.27)

Clearly, f is continuous inside the boundary 0 ≤ zL,h−j ≤ zB,h−j. By symmetry and the fact
that f takes same values for points outside |zL,h−j| ≤ |zB,h−j| as those on the boundary, f is
a continuous function in D. We extend the differential equation system (4.3.5)–(4.3.18) by
extending the functions on the right hand side of (4.3.5)–(4.3.9) as (4.3.27). We take (4.3.5)
as an example, and the other functions are extended similarly. Let

z = (zL,h−w+1, . . . , zL,h, zH,h−w+1, . . . , zH,h, zB,h−w+1, . . . , zB,h, zA, zB, zL, zHV , zλ)
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denote a point in R3w+2 and let z0 denote the point z with zL,h−j = 0, zH,h−j = 0 and
zB,h−j = 0 for all j ≥ 1 and zL,h = zL = µ̄(1 − fk(µ̄)), zH,h = zB − zL = µ̄fk(µ̄),
zHV = fk+1(µ̄), zλ = µ̄ and zA = e−µ̄µ̄k+1/(k + 1)!. Note that the definition of z0 is
actually equivalent to the z0 defined above (4.3.27), because the other components of z0,
e.g. zH,h−j, zλ and zA are restricted in the (extended and original) differential equation
system by the constraints (4.3.14)–(4.3.16).

Let f(zL,h−j, zB,h−j, zL) be defined as in (4.3.27). Then for any i = 1, . . . , w− 1, define
the extension of fL,h−i as follows.

fL,h−i(z) = = −zL,h−i

zL

− (h− i− 1)f(zL,h−i, zB,h−i, zL)

+

(
(h− w)

(k + 1)zA

zB − zL

· k · zH,h−i

zB − zL

)(
zL,h−w+1

zL

− f(zL,h−w+1, zB,h−w+1, zL)

)

+(h− i)f(zL,h−i+1, zB,h−i+1, zL).

Extend (4.3.5) to L′h−i(x) =

fL,h−i(Lh−w+1(x), . . . , Lh(x), Hh−w+1(x), . . . , Hh(x), Bh−w+1(x), . . . , Bh(x), A(x), B(x), L(x)),

and extend (4.3.6)–(4.3.9) analogously. Call the resulting differential equation system the
extended differential equation system. We have shown that the extended functions fL,h−i,
etc. are continuous at a small neighbourhood of z0. By the Peano’s Existence Theorem,
there exists a solution to the extended differential equation system in a small neighbourhood
of z0.

Next we show that there is a unique solution to the original differential equation system.
Given y(x) = (Lh−w+1(x), . . . , Lh−1(x), Bh−w+1(x), . . . , Bh−1(x), L(x), B(x), HV (x)) as a
solution to the extended differential equation system, let Γy(x) denote the vector

(bxn̄c, Lh−w+1(x), . . . , Lh−1(x), Bh−w+1(x), . . . , Bh−1(x), L(x), B(x), HV (x)).

We show that for any solution y(x), for any sufficiently small x > 0, Γy(x) ∈ D(ε).

The partial derivatives (4.3.24)–(4.3.26) imply that there is a uniform Lipschitz constant
at a small neighbourhood of z0 (by neighbourhood of z0 we mean B(z0, δ) \ {z0} for some
sufficiently small δ > 0). Hence for any x1 > 0, and any

(bx1n̄c, zL,h−w+1, . . . , zL,h−1, zB,h−w+1, . . . , zB,h−1, zL, zB, zHV ) ∈ D(ε),

there is a unique solution to the differential equation system with initial conditions Lh−j(x1) =
zL,h−j, etc., and the solution can be extended arbitrarily close to the boundary of D(ε).

For all sufficiently small x > 0, we have L(x) > 0, A(x) > 0, B(x) − L(x) > 0, and
L′h−1(x) > 0, H ′

h−1(x) > 0 since L′h−1(0) > 0, H ′
h−1(0) > 0 by (4.3.12). Hence Lh−1(x) > 0
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and Hh−1(x) > 0 for all sufficiently small x > 0. We show by induction that Lh−j(x) > 0
and Hh−j(x) > 0 for all j ≥ 1 and all sufficiently small x > 0. We have shown this is true
for j = 1. Assume it is true for some 1 ≤ j ≤ w − 2. Then the derivative (4.3.6) implies
that for any sufficiently small x > 0,

H ′
h−j−1(x) ≥ Lh−j−1(x)

L(x)

(
−(h− j − 2)Hh−j−1(x)

Bh−j−1(x)

)

−Lh−w+1(x)

L(x)

(
(h− w)Hh−w+1(x)

Bh−w+1(x)
· (k + 1)A(x)

B(x)− L(x)
· k · Hh−j−1(x)

B(x)− L(x)

)
+ c,

for some constant c > 0, since Lh−j(x) > 0 and Hh−j(x) > 0. We call a function c(x)
bounded if |c(x)| < M for some constant M > 0. Thus, the derivative of Hh−j−1(x) is at
least c + c(x)Hh−j−1(x) for some c > 0 and bounded c(x). We also have Hh−j−1(0) = 0.
Thus, Hh−j−1(x) > 0 for all sufficiently small x > 0.

Since Lh−j(x) > 0 for all sufficiently small x > 0, then by (4.3.5), L′h−j−1(x) > 0 for all
sufficiently small x > 0. This is because Lh−w+1(x) and Hh−w+1(x) can only turn negative
if Lh−w+2(x) become negative, which never happens as long as Lh−w+1(x) ≥ 0 by (4.3.5).
Since Lh−j(0) ≥ 0 for any j ≥ 0, we have Lh−w+1(x) ≥ 0 for all sufficiently small x > 0.
Then (4.3.5) shows that the derivative of Lh−j−1(x) is at least c + c(x)Lh−j−1(x) for some
c > 0 and bounded c(x). We also have Lh−j−1(0) = 0. These imply that Lh−j−1(x) > 0 for
all sufficiently small x > 0.

Now we have shown that for all sufficiently small x > 0, for any j ≥ 1, Lh−j(x) > 0
and Hh−j(x) > 0. Thus, Lh−j(x) < Bh−j(x) and Lh−j(x) < L(x) by (4.3.14). Hence for
any sufficiently small x > 0, Γy(x) ∈ D(ε).

Next we show that there is a unique solution to the extended differential equation
system. Assume not. Let y(i) for i = 1, 2 be two distinct solutions to the extended
differential equation system. Then there exists x1 > 0 such that y(1)(x1) 6= y(2)(x1). If
both Γy(1)(x1) and Γy(2)(x1) are in D(ε), then there must exists 0 < x2 < x1, such that

both Γy(1)(x2) and Γy(2)(x2) are in D(ε) and y(1)(x2) 6= y(2)(x2), since otherwise, there is

unique solution to the differential equations with initial conditions y(1)(x2) at x = x2,
which contradicts y(1)(x1) 6= y(2)(x1). Thus, we can assume that Γy(1)(x) /∈ D(ε) for all
0 ≤ x ≤ x1. However, this contradicts that for any solution y(x) to the extended differential
equation system, Γy(x) ∈ D(ε) for all sufficiently small x > 0. Thus, we cannot find any
solution y(x) for which there exists x1 > 0 such that Γy(x) /∈ D(ε) for all 0 ≤ x ≤ x1.
This shows that there is a unique solution y(x), for all 0 ≤ x ≤ x(ε), to the extended
differential equation system, where y(x) ∈ D(ε) for all 0 < x ≤ x(ε). By the definition of
the extension of f(zL, zL,h−j, zB,h−j) in (4.3.27), for any x > 0, the continuous functions
fL,h−j, etc. are the same as their extention whenever y(x) is in the domain D(ε). It is also
clear that these functions are the same as their extention at x = 0, by (4.3.11)–(4.3.12)
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and (4.3.27). Hence y(x) for 0 ≤ x ≤ x(ε) is the unique solution to the original differential
equation system.

It only remains to prove (S4). The proof uses a similar argument as part of the proof of
(S2) that shows the uniqueness of the solution. Let U(ε) = {x ≥ 0 : L(x) > ε and B(x)−
L(x) > ε}. For all x ∈ U(ε), the derivative of Hh(x) equals c(x)Hh(x), for some bounded
c(x). (Note that there is an upper bound of |c(x)| that depends only on ε.) We also have
Hh(0) > 0. Thus, Hh(x) > 0 for all x ∈ U(ε). Then the derivative of Lh(x) is at least c plus
c(x)Lh(x) for some c > 0 and bounded c(x). This implies that Lh(x) > 0 for all x ∈ U(ε).
Then following the same argument in the proof of (S2), we can show that for each j ≥ 1,
the derivative of Lh−j(x) is at least c + c(x)Lh−j(x) and the derivative of Hh−j(x) is at
least c + c(x)Hh−j(x) for some c > 0 and bounded c(x). It follows then that Lh−j(x) > 0
and Hh−j(x) > 0 for all x ∈ U(ε). It then follows that Γy(x) ∈ D(ε) for all x ∈ U(ε). This
finishes the proof of (S4).

By the Picard-Lindelöf theorem, the solution to the differential equation system (4.3.5)–
(4.3.18) can be extended arbitrarily close to the boundary inside which some Lipschitz
condition is satisfied for the continuous functions fL, etc. We have shown that for any
ε > 0, some Lipschitz condition is satisfied in D(ε). Together with (S4), we have that
the solution to the differential equations can be extended uniquely to all x > 0 such that
L(x) > 0 and B(x)−L(x) > 0. Let x∗ denote the real number at which L(x) or B(x)−L(x)
reaches 0. Then there is a unique solution to the differential equation for all 0 ≤ x < x∗.
For notational convenience, let Yt denote the set of random variables under consideration in
step t and let y(x) denote the set of solution functions to the differential equation system.
By (S2) and (S3), Ybxn̄c = n̄y(x) + o(n̄), for all 0 ≤ x ≤ x(ε) and by Ybxn̄c = n̄y(x) + o(n̄)
we mean Lbxn̄c = n̄L(x) + o(n̄), and the same to all the other random variables under
consideration. We also have |Ybxn̄c − Ybx(ε)n̄c| = O((x− x(ε))n̄) for all x(ε) ≤ x ≤ x∗ since
for each variable the one step change is bounded by O(1). On the other hand, we have
|y(x) − y(x(ε))| = O(x − x(ε)) since the right hand side of (4.3.5)–(4.3.9) are uniformly
bounded for all 0 ≤ x < x∗. Hence for all x(ε) ≤ x < x∗, a.a.s.

|Ybxn̄c − n̄y(x)| ≤ |Ybxn̄c − Ybx(ε)n̄c|+ |Ybx(ε)n̄c − n̄y(x(ε))|+ |n̄y(x(ε))− n̄y(x)|
= O((x∗ − x(ε))n̄) + o(n̄),

where O() is independent of ε and x∗. It then follows that for all 0 ≤ x < x∗, a.a.s.
Ybxn̄c = n̄y(x) + O((x∗ − x(ε))n̄) + o(n̄). Since x(ε) → x∗ as ε → 0 by the definition of
x∗, we have Ybxn̄c = n̄y(x) + o(n̄) uniformly for all 0 ≤ x < x∗ by letting ε → 0. Thus we
have that the solution y(x) to the differential equations (4.3.5)–(4.3.10) approximates the
asymptotic values of all random variables under consideration for all t = bxn̄c, 0 ≤ x < x∗,
where x∗ is the smallest real number such that L(x∗) = 0 or B(x∗)− L(x∗) = 0.

Now we show that if µ̄ ≥ ck for some c > 1, then for sufficiently large k (depending on
the value of c), the function L(x) reaches 0 before B(x)− L(x) reaches 0 and we estimate

87



an upper bound of the value of x∗. Let H(x) = B(x)−L(x). Clearly L(x) =
∑w−1

i=0 Lh−i(x)
and H(x) =

∑w−1
i=0 Hh−i(x). Then (4.3.7) and (4.3.8) immediately lead to

L′(x) ≤ −1 +
(h− 1)k(k + 1)A(x)

H(x)
, H ′(x) ≥ −(h− 1)− (h− 1)k(k + 1)A(x)

H(x)
.(4.3.28)

Let δ = (1 − fk(µ̄))µ̄. Then the initial conditions give L(0) = δ and H(0) = µ̄ − δ.
Since µ̄ ≥ ck for some c > 1, δ = exp(−Θc(k)). Let λ(x) be defined as in (4.3.23). By the
argument in the proof of Proposition 4.3.3, we may assume |µ(x)−λ(x)| ≤ 1 as k sufficiently
large. Then A(x)/H(x) = exp(−Θc′(k)) as long as µ(x) ≥ c′k for some c′ > 1. Choose k
sufficiently large (depending only on the value of c) such that δ ≤ 1, and |λ(x)−µ(x)| ≤ 1
and hk(k+1)A(x)/H(x) ≤ 1/2 as long as µ(x) ≥ µ̄−3h. Since HV (x) ≤ 1 for any x < x∗,
µ(x) = H(x)/HV (x) ≥ H(x). Then L′(x) ≤ −1/2 and H ′(x) ≥ −(h − 1) − 1/2 for all x
smaller than the value at which H(x) reaches µ̄− 3h. Then it is easy to check that for any
0 ≤ x < min{x∗, 3δ},

H(x) ≥ µ̄− δ + 3δ

(
−(h− 1)− 1

2

)
≥ µ̄− 3h,

L(x) ≤ δ − x

2
. (4.3.29)

Thus we have x∗ < 3δ since otherwise 3δ ≤ x∗ and L(3δ) ≤ δ−3δ/2 < 0, contradicting the
definition of x∗. This shows that L(x) reaches 0 before H(x) reaches 0. We also have that
L′(x) ≤ −1/2 for all x < x∗ since x∗ < 3δ. Let t∗ = bx∗n̄c. We have shown that for any x <
x∗, a.a.s. Hbxn̄c,h−j = n̄Hh−j(x)+o(n̄). We also have |Hbx∗n̄c,h−j−Hbxn̄c,h−j| = O((x∗−x)n̄)
since the one step change of Ht,h−j is O(1). Hence Ht∗,h−j = n̄ limx→x∗ Hh−j(x)+o(n̄), where
the limit is taking by letting x approach to x∗ from x < x∗. For notational convenience,
let Hh−j(x

∗) := limx→x∗ Hh−j(x) and HV (x∗) := limx→x∗ HV (x).

Let δ1 denote the number of light balls remaining at step t∗ = x∗n̄. Then δ1 = o(n̄)
since L(x∗) reaches 0. Let ∆ = max{4δ1, log n̄}. Then ∆ = o(n̄) and ∆ → ∞ as n → ∞.
Applying Lemma 4.3.4 with X0 = Lt∗ , Xn = Lt∗+∆, n = ∆, δ = −1/2 and c = h, we
have a.a.s. Lt∗+∆ ≤ δ1 −∆/4 ≤ 0. Hence, a.a.s. the RanCore algorithm terminates before
step t∗ + ∆. Recall the the algorithm terminates at step τ . So τ ≤ t∗ + ∆. In addition,
|Hτ,h−j−Ht∗,h−j| ≤ h∆ = o(n̄). Thus, we have that a.a.s. H has a non-empty (w, k+1)-core

Ĥ. Recall that n and mh−j denote the number of vertices and hyperedges of size h−j in Ĥ.

Then a.a.s. the number of vertices in Ĥ is n̄HV (x∗) + o(n̄), and the number of hyperedges

of size h − j in Ĥ is n̄Hh−j(x
∗)/(h − j) + o(n̄). Since HV (x∗) > 0 and Hh−j(x

∗) > 0, we
have a.a.s. n ∼ αn̄ and mh−j ∼ βh−jn̄, where α = HV (x∗) and βh−j = Hh−j(x

∗)/(h − j),
which are determined by the solution to (4.3.5)–(4.3.18).
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We have shown that the partition-allocation gτ output by the RanCore algorithm, if it
is nonempty, is distributed as P(Vτ ,Mτ ,0, k + 1) conditional on Vτ and Mτ . Let n denote
|Vτ | and mh−j denote |Mτ,h−j|/(h− j) for all 0 ≤ j ≤ w− 1. Then we can relabel elements
in V by [n] and Mh−j by ∪w−1

j=0 [mh−j] × [h − j] in a canonical way. Then we can simplify
the notation of the partition-allocation model and write P(n,m,0, k + 1) by convenience.

Lemma 4.3.6 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let H be a
random multihypergraph in Mn̄,m̄,h. Then a.a.s. H has a nonempty (w, k + 1)-core with
average degree O(k) provided k is sufficiently large.

Proof Let µ̄ = hm̄/n̄. Since µ̄ > c1k for some c1 > 1, the existence of a non-empty
(w, k +1)-core follows directly by the argument below (4.3.28). Let x∗ be as defined in the
statement of Theorem 4.2.1 and let δ be the proportion of vertices in H with degree at most
k. We have shown that δ = O(e−Θ(k)) below (4.3.28) and x∗ ≤ 3δ below (4.3.29). Let B(x)
and HV (x) be defined the same as those functions in (4.3.5)–(4.3.18) for 0 ≤ x ≤ x∗. Then
clearly B(x∗) ≤ B(0) since B′(x) ≤ −1 for all 0 ≤ x ≤ x∗. We also have HV ′(x) ≥ −1 for
all 0 ≤ x ≤ x∗ when k is large enough, by following the similar argument as deriving L′(x) ≤
−1/2 for sufficiently large k below (4.3.28). So HV (x∗) ≥ HV (0) − x∗ for sufficiently
large k. Since HV (0) = fk+1(µ̄) = 1− O(e−Θ(k)) and x∗ = O(e−Θ(k)), we have HV (x∗) =
1−O(e−Θ(k)). Let µ(x) = B(x)/HV (x). Then clearly, µ(0) = (1+O(e−Θ(k)))hm̄/n̄ = O(k)
since hm̄/n̄ < c2k, and

µ(x∗) ≤ B(0)

HV (x∗)
=

B(0)

HV (0)
(1 + O(e−Θ(k))) = O(k).

By Theorem 4.2.1, the average degree of the (w, k + 1)-core of H is asymptotically µ(x∗),
which is bounded by O(k).

The following lemma gives a lower bound on the size of the (w, k +1)-core of a random
h-multihypergraph.

Lemma 4.3.7 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let H be a
random multihypergraph inMn̄,m̄,h. Then a.a.s. the number of vertices in the (w, k+1)-core
of H is (1−O(e−Θ(k)))n̄.

Proof Let n denote the number of vertices in the (w, k + 1)-core of H. We have shown,
by the argument below (4.3.29), that RanCore algorithm terminates within O(e−Θ(k)n̄)
steps when applied to H, and in each step at most h heavy bins can disappear. So a.a.s.
n = (1−O(e−Θ(k)))n̄.

We need the following lemma before proving Theorem 4.2.3, the existence of a sharp
threshold of property T .
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Lemma 4.3.8 Assume c1k < hm̄/n̄ < c2k for some constants c2 > c1 > 1. Let ε > 0 be
fixed. Let H1 be a random multihypergraph in Mn̄,m̄,h and H2 ∈Mn̄,m̄+εn̄,h. Let n1 and n2

be the number of vertices in the (w, k + 1)-core of H1 and H2 respectively. Then a.a.s. we
have |n1 − n2| = O(e−Θ(k)εn̄).

Proof Since c1k < hm̄/n̄ < c2k, by Lemma 4.3.6, the (w, k + 1)-core Ĥ1 of H1 exists and

the average degree of Ĥ1 is O(k). Let H2 be a random uniform multihypergraph obtained
from H1 ∪ E , where E is a set of εn̄ hyperedges, each of which is a multiset of h vertices,
each of which u.a.r. chosen from [n̄]. Then H2 ∈ Mn̄,m̄+εn̄,h. We say that the hyperedges
in E are marked, and the other hyperedges in H2 are unmarked. Define a random process
(H

(1)
t , H

(2)
t )t≥0 as follows.

(i) The process starts with (H
(1)
0 , H

(2)
0 ) = (H1, H2).

(ii) The RanCore algorithm is applied to H
(2)
t for every t ≥ 0. The process (H

(1)
t , H

(2)
t )t≥0

stops when the RanCore algorithm running on (H
(2)
t )t≥0 terminates.

(iii) For every t ≥ 0, if a marked hyperedge x in H
(2)
t−1 is updated to x′, then x′ remains

marked in H
(2)
t and H

(1)
t is defined as H

(1)
t−1; if a marked hyperedge x is removed, let

H
(1)
t = H

(1)
t−1.

(iv) For every t ≥ 0, if an unmarked hyperedge x in H
(2)
t−1 is updated or removed, do the

same operation to x in H
(1)
t−1 and define H

(1)
t to be the resulting hypergraph.

We call the random process (H
(i)
t )t≥0 for i = 1, 2 generated by (H

(1)
t , H

(2)
t )t≥0 the Hi-

process. Note that the H1-process is not equivalent to running the RanCore algorithm on
H1, since the light balls are not chosen u.a.r. in each step.

Instead of analysing (H
(1)
t , H

(2)
t )t≥0 directly, we consider (g

(1)
t , g

(2)
t )t≥0, the correspond-

ing process obtained by considering the pairing-allocation model. Recall that H1 can be
represented as dropping hm̄ unmarked balls u.a.r. into n̄ bins with balls evenly partitioned
into m̄ groups randomly and H2 can be represented as dropping hεn̄ partitioned marked
balls into H1. The partition-allocations g

(1)
0 and g

(2)
0 are obtained by splitting all balls

contained in light bins of H1 and H2 respectively into bins containing exactly one ball.
Conditional on L

(i)
0 , V

(i)
0 , M

(i)
0 and L

(i)
0 , g

(i)
0 is distributed as P(V

(i)
0 ,M

(i)
0 ,L

(i)
0 , k + 1) for

i = 1, 2 and all balls in g
(1)
0 are unmarked.

Let µ̄ denote the average degree of H1. Define L
(i)
t , HV

(i)
t , m

(i)
t and L

(i)
t , etc., for i = 1, 2,

the same way as in the proof of Theorem 4.2.1, for the Hi-process. Let τ be the time the H2-
process terminates. It is easy to show that g

(1)
τ is distributed as P(HV

(1)
τ ,m

(1)
τ , l

(1)
τ , k + 1)
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conditional on the values of HV
(1)
τ , m

(1)
τ and l

(1)
τ , since whenever a light ball is chosen,

even not uniformly at random, it results in recolouring or removal of heavy balls that are
uniformly chosen at random. We will later let the RanCore algorithm be run on g

(1)
τ in

the following steps and apply the DE method to analyse the asymptotic behavior of this
process.

First we show that τ = O(e−kn̄). The solution of the differential equation system (4.3.5)–

(4.3.18) tells the asymptotic value of L
(2)
t in every step t. Let x∗(2) be the smallest root

of L(2)(x) = 0. Since L(2)(0) = O(e−Θ(k)) and L′(2)(x) < −1/2 for all 0 ≤ x < x∗(2), pro-

vided k sufficiently large, by the argument below (4.3.28), we have x∗(2) = O(e−Θ(k)) and so

τ = O(e−Θ(k)n̄).

Next we show that n2 − n1 = O(e−Θ(k)εn̄), assuming the following three statements.

(S1) The number of balls that are unmarked and light in g
(1)
0 but not in g

(2)
0 is bounded

by O(e−Θ(k)εn̄).

(S2) The number of bins that begin heavy in the H1-process and become light in that
process but remain heavy in the H2-process up to step τ is O(e−Θ(k)εn̄).

(S3) L
(1)
τ = O(e−Θ(k)εn̄).

Run the Rancore algorithm on g
(1)
τ . The differential equation system (4.3.5)–(4.3.18)

tells the asymptotic values of the various random variables in g
(1)
t for all t ≥ τ . Let x∗(1) be

the smallest root of L(1)(x) = 0. Since L(1)(τ/n̄) = O(e−kε) by (S3) and L′(1)(x) ≤ −1/2
for all τ/n̄ ≤ x < x∗(1), provided k sufficiently large by the argument below (4.3.28),

we have x∗(1) − τ/n̄ = O(e−kε). We also have HV ′(x) ≥ −1 for sufficiently large k for

all τ/n̄ ≤ x < x∗(1) as explained in Lemma 4.3.6. So HV
(1)
τ − n1 = O(e−kεn̄). Since

n2−HV
(1)
τ counts the number of bins that are, or become light in the H1-process but stay

heavy in the H2-process, it follows from (S1) and (S2) that n2 − HV
(1)
τ = O(e−kεn̄). So

n1 − n2 = O(e−kεn̄).

It only remains to prove (S1)–(S3). We first show that (S3) follows directly from (S1)

and (S2). L
(1)
τ counts two types of light balls. The first type comes from balls that are

unmarked and light in g
(1)
0 but not in g

(2)
0 . By (S1), the number of these balls is a.a.s.

O(e−Θ(k)εn̄). The second type comes from balls that begin heavy and become light in the
H1-process but stay heavy in the H2-process. By (S2), the number of these balls is a.a.s.
k ·O(e−Θ(k)εn̄) = O(e−Θ(k)εn̄). Thereby (S3) follows.

Next we show (S1). At step 0, clearly the set of unmarked light balls in g
(2)
0 is a subset

of those in g
(1)
0 . The number of light balls in g

(1)
0 is a.a.s. (1 − fk(µ̄))µ̄n̄ = O(e−Θ(k)n̄) as
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shown in the proof of Theorem 4.2.1 and hence the number of light vertices of H1 is a.a.s.
O(e−Θ(k)n̄). Since each multihyperedges in E is a random multihyperedges, the expected
number of those which contains a light vertex in H1 is O(e−Θ(k)εn̄), hence the number of
light vertex in H1 that become heavy after the hyperedges in E being dropped is a.a.s.
O(e−Θ(k)εn̄) and each of these vertex/bin contains at most k unmarked balls. Thus (S1)
follows.

Now we show (S2). Recall that H1 is represented as dropping hm̄ unmarked balls u.a.r.
into n̄ bins and H2 is obtained by dropping hεn̄ extra marked balls u.a.r. into the n̄ bins
in H1. Let Ĥ1 be the (w, k + 1)-core of H1. Then the number of bins that begin heavy in
the H1-process and become light in that process but remain heavy in the H2-process up to
step τ is at most the number of bins/vertices not in Ĥ1 which receive at least one marked
balls after dropping hεn̄ marked balls u.a.r. into the n̄ bins. By Lemma 4.3.7, the number
of vertices/bins in Ĥ1 is a.a.s. (1−O(e−Θ(k)))n̄. Then for each marked ball, the probability

that it is dropped into a bin not in Ĥ1 is O(e−Θ(k)). By Lemma 4.3.4, the number of

marked balls dropped into bins not in Ĥ1 is a.a.s. O(e−Θ(k)εn̄). Hence the number of bins

that are not in Ĥ1 and receive at least one marked balls is a.a.s. O(e−Θ(k)εn̄).

Proof of Theorem 4.2.3. Let H1 be a random uniform multihypergraph with average
degree µ̄ and let H2 be a random uniform multihypergraph obtained from H1 ∪ E , where
E is a set of εn̄ hyperedges, each of which is a multiset of h vertices, each of which is
uniformly chosen from [n̄].

Let m
(i)
h−j, i = 1, 2, be the number of hyperedges in the (w, k + 1)-core of Hi. We first

show that
w−1∑
j=0

(w − j)m
(2)
h−j −

w−1∑
j=0

(w − j)m
(1)
h−j ≥ wεn̄/2.

Clearly the (w, k+1)-core of H1 is a subgraph of the (w, k+1)-core of H2. Let [n1] denote
the set of vertices in the (w, k+1)-core of H1. By Lemma 4.3.7, a.a.s. n1 = (1−O(e−Θ(k)))n̄.
Then for any hyperedge x ∈ E , the probability that all vertices in x are contained in [n1]
is 1 − O(e−Θ(k)). So the expected number of hyperedges in E lying completely in [n1] is
(1 − O(e−Θ(k)))εn̄. By the Chernoff bound, orginally given in [17, Theorem 1], we have
a.a.s. the number of hyperedges in E lying completely in [n1] is at least εn̄/2 for sufficiently
large k. So it follows immediately that

w−1∑
j=0

(w − j)m
(2)
h−j −

w−1∑
j=0

(w − j)m
(1)
h−j ≥ wεn̄/2.

For simplicity, let S(i) denote
∑w−1

j=0 (w − j)m
(i)
h−j for i = 1, 2. Then a.a.s.

S(2)

n2

− S(1)

n1

≥ (S(1) + wεn̄/2)− S(1) · n2/n1

n2

.
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By Lemma 4.3.8, a.a.s. n2 − n1 = O(e−Θ(k))εn̄, i.e. n2/n1 = 1 + f(k)ε for some function
f(k) = O(e−Θ(k)). Then a.a.s.

S(2)

n2

− S(1)

n1

≥ wεn̄/2−O(f(k)εS(1))

n2

≥ wε/4 > 0, (4.3.30)

for sufficiently large k and for every ε > 0, since S(1) = O(k)n̄ and n2 = (1−O(e−Θ(k)))n̄.

Recall that κ(Hi) denotes
∑w−1

j=0 (w − j)m
(i)
h−j/ni for i = 1, 2. By Theorem 4.2.1, for

given h > w > 0 and sufficiently large k, a.a.s. κ(Ĥ) = c(µ̄)+o(1), where c(µ̄) is a constant
depending only on µ̄. The inequality (4.3.30) implies that c(µ̄) is an increasing function

of µ̄. So there exists a unique critical value of µ̄ such that a.a.s. κ(Ĥ) = k + o(1) and so
there exists a threshold function m̄ = f(n̄) of Mn̄,m̄,h for the graph property T . Then this
holds as well in Gn̄,m̄,h since the probability of a multihypergraph in Mn̄,m̄,h being simple
is Ω(1) as explained in the beginning of Section 4.3, and so any event a.a.s. true in Mn̄,m̄,h

is a.a.s. true in Gn̄,m̄,h.

The differential equations in Theorem 4.2.1 are only used in a theoretical way to show
properties of the (w, k + 1)-core, and we do not have an analytic solution. However, they
can be numerically solved when the values of h, w, k and µ are given. Thus, we can
numerically find the critical value of µ̃, such that

∑w−1
j=0 (w− j)mh−j ∼ kn. Table 4.3 gives

the results of some computations, where h, w and k are given, µ̃ is the critical value and
µ̂ is the corresponding average degree of Ĥ. Note that µ̂ must be at least hk/w. It follows
from the trivial upper bound of the orientability threshold given in the introduction part
that µ̃ is at most hk/w.

h w k µ̃ µ̂
3 2 4 5.485 6.65086
3 2 10 14.766 15.5872
3 2 40 59.991 60.0773
10 2 4 19.99999 20.0003

Table 4.1: Some numerical computation results

4.4 The (w, k)-orientability of the (w, k + 1)-core

In this section we prove Corollary 4.2.7 assuming Theorem 4.2.5, and study the basic
network flow formulation of the problem that is used in the next section to prove Theo-
rem 4.2.5.
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For the rest of the chapter, let ε > 0 and k ≥ 2 be fixed. Without loss of generality, we
may assume that ε < 1

2
. By the hypothesis of Theorem 4.2.5, we consider only m such that∑w−1

j=0 (w−j)mh−j ≤ kn−εn. We may also assume that
∑w−1

j=0 (w−j)mh−j ≥ kn−2εn since
otherwise, by Theorem 4.2.3, we can simply add random hyperedges so that the assumption
holds. (Note that we can add random hyperedges because the (w, k)-orientability is a
decreasing property. Recall that a property is called decreasing if the property holds in all
subgraphs of a (hyper)graph G whenever G has the property.) Let

D =
w−1∑
j=0

(h− j)mh−j, m =
w−1∑
j=0

mh−j, µ =
D

n
. (4.4.1)

Since

D · 1

h− w + 1
≤

w−1∑
j=0

(w − j)mh−j ≤ D · w

h
, m ≤

w−1∑
j=0

(w − j)mh−j ≤ wm,

and

kn− 2εn ≤
w−1∑
j=0

(w − j)mh−j ≤ kn− εn, (4.4.2)

we have

h(k − 1)/w ≤ µ = D/n ≤ (h− w + 1)k,
(k − 1)n

w
≤ m ≤

(
k − 1

2

)
n. (4.4.3)

Let f(n̄) be the threshold function of property T . Let H be a random h-hypergraph
on n̄ vertices and m ≤ f(n̄)(1− δ) hyperedges for some absolute constant δ > 0. Therefore

there exists ε > 0 such that a.a.s.
∑w−1

j=0 (w − j)mh−j ≤ kn − εn in the (w, k + 1)-core Ĥ.
Without loss of generality we may assume that (4.4.3) is satisfied with the same argument
as that above (4.4.1). Let µ̄ be the average degree of H. We recall at this point the trivial
upper bound

µ̄ ≤ hk/w (4.4.4)

mentioned in the introduction as a requirement for (w, k)-orientability.

In the rest of the chapter, whenever we refer to the probability space H(n,m, k + 1) or
M(n,m, k + 1), we assume m satisfies (4.4.3).

Lemma 4.4.1 Let c1 > 1 be a constant that can be dependent on k. Then there exists
a constant 0 < γ = ϕ(k, c1) depending only on k and c1, such that a.a.s. there exists no
S ⊂ V (H), with |S| < γn̄ and at least c1|S| hyperedges partially contained in S. More
specifically, when c1 ≥ 2 and c1 < h2e2µ̄, we may choose γ = ϕ(k, c1) = (c1/h

2e2µ̄)
2
.
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Proof Let s be any integer such that 0 < s < n and let r = s/n. Let Y denote the number
of S with |S| = s and at least c1s hyperedges partially contained in S. The probability for
a given hyperedge to be partially contained in S is at most

(
h
2

)
(s/n̄)2 < h2r2. Then the

probability that there are at least c1s such hyperedges is at most
(

m̄

c1s

)
(hr)2c1s.

Since there are
(

n̄
s

)
ways to choose S,

E(Y ) =
∑
s≤γn̄

(
n̄

s

)(
m̄

c1s

)
(hr)2c1s

≤
∑

ln n̄≤s≤γn̄

(en̄

s

)s
(

em̄

c1s

)c1s

(hr)2c1s +
∑

1≤s≤ln n̄

n̄sm̄c1s

(
hs

n̄

)2c1s

=
∑

ln n̄≤s≤γn̄

(
h2c1e1+c1rc1−1

(
µ̄

c1

)c1)s

+
∑

1≤s≤ln n̄

(
(µ̄h2s2)c1

n̄c1−1

)s

≤
∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
+ ln n̄ · (µ̄h2 ln2 n̄)c1

n̄c1−1

=
∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
+ o(1),

for some constant 0 < C̄ = C̄(c1) ≤ (h2/c1)
c1 ec1+1. Choose

γ <

(
c1

h2eµ̄

) c1
c1−1

e
− 1

c1−1 .

Then C̄γc1−1µ̄c1 < 1. So there exist 0 < β < 1, such that C̄γc1−1µ̄c1 < β, for all r ≤ γ.
When c1 ≥ 2 and c1/h

2e2µ̄ < 1,

(
c1

h2eµ̄

) c1
c1−1

e
− 1

c1−1 >

(
c1

h2e2µ̄

)c1/(c1−1)

>

(
c1

h2e2µ̄

)2

.

Hence we may simply choose γ = (c1/h
2e2µ̄)2. Then

∑

ln n̄≤s≤γn̄

(
C̄rc1−1µ̄c1

)s
<

∑

ln n̄≤s≤γn̄

βs = O(βln n̄) = o(1).

Hence we have E(Y ) = o(1).

The following corollary shows that the same property is shared by Ĥ.
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Corollary 4.4.2 Let c1 be a constant that can be dependent on k with the constraint that
2 ≤ c1 < h2e2µ̄. Let 0 < γ = ϕ(k, c1) = (c1/h

2e2µ̄)
2
. Then a.a.s. for all S ⊂ V (Ĥ) with

|S| < γn, the number of hyperedges partially contained in S is less than c1|S|.

Proof Let n be the number of vertices in Ĥ and D the sum of degrees of vertices in
Ĥ. For any hyperedge x ∈ Ĥ, let x+ denote its corresponding hyperedge in H. Obviously
n ≤ n̄. Combining with Lemma 4.4.1 and the fact that for any S ⊂ V (Ĥ), a hyperedge x is
partially contained in S only if x+ is partially contained S in H, Corollary 4.4.2 follows.

The following corollary shows that Ĥ a.a.s. has property A(γ), defined in Defini-
tion 4.2.4, for some certain 0 < γ < 1.

Corollary 4.4.3 Let γ = e−4h−6/4. Then a.a.s. Ĥ has property A(γ) provided k ≥ 4w.

Proof The average degree µ̄ of H satisfies that µ̄ ≤ hk/w by (4.4.4). Apply Corollary 4.4.2
with c1 = k/2w. Clearly c1 < ch2e2k, and c1 ≥ 2 provided k ≥ 4w. Then γ ≤ φ(k, c1)

by (4.4.4). By Definition 4.2.4, Ĥ a.a.s. has property A(γ).

Proof of Corollary 4.2.7 Let Ĥ be the (k+1)-core of the random hypergraph H ∈ Gn̄,m̄,h.
Let ε > 0 be any constant. By Theorem 4.2.3, there exists a constant δ > 0, such that
a.a.s. if m̄ ≤ f(m̄) − εn̄, then

∑w−1
j=0 (w − j)mh−j ≤ kn − δn. By Theorem 4.2.5 and

Corollary 4.4.3, there exists a constant N depending only on h and w such that provided
k > N , Ĥ a.a.s. has a (w, k)-orientation. On the other hand, if m̄ ≥ f(m̄)+ εn̄, then a.a.s.∑w−1

j=0 (w− j)mh−j ≥ kn+ δn, and hence clearly Ĥ is not (w, k)-orientable. Therefore f(n̄)
is a sharp threshold function for the (w, k)-orientation of random hypergraphs.

Note that in any multihypergraph G ∈ M(n,m, k + 1), the size of hyperedges varies
between h−w +1 to h. In the rest of the chapter, we will use the following notations. Let
Eh−j := {x ∈ E(G) : |x| = h − j}. For any given S ⊂ [n], let mh−j,i(S) := |{x ∈ Eh−j :
|x ∩ S| = i}| for any 0 ≤ i ≤ h − j. When the context is clear of which set S is referred
to, we may drop S from the notation. Let S denote the set [n] \S and let d(S) denote the
sum of degrees of vertices in S.

Recall the definition of induced subgraph with parameter w above the statement of
Corollary 4.2.7 in Section 4.2. The proof of the following lemma uses network flow and
the max-flow min-cut theorem. The techniques of converting numerous combinatorial
problems into a network flow problem have been discussed in [20, 57]. The following
Lemma generalises Hakimi’s theorem [32, Theorem 4] for graphs.

Lemma 4.4.4 Any multihypergraph G ∈ M(n,m, 0) has a (w, k)-orientation if and only
if

d(HS)− (h− w)e(HS) ≤ k|S|, for all S ⊂ V (G).
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Proof Formulate a network flow problem on a network G∗ as follows. Let L be a set of
vertices, each of which represents a hyperedge of G, and R be a set of n vertices, each of
which represents a vertex in G. For any u ∈ L, and v ∈ R, uv is an edge in G∗ if and
only if v ∈ u in G. Add vertices a and b to G∗, such that a is linked to every vertex in L,
and b is linked to every vertex in R. Let c : E(G∗) → N+ be defined as c(au) = w − j for
every u ∈ L such that the degree of u is h − j, c(vb) = k for every v ∈ R, and c(uv) = 1
for every uv ∈ E(G∗). Then G has a (w, k)-orientation if and only if G∗ has a flow of size∑w−1

j=0 (w − j)mh−j from a to b. By the max-flow min-cut Theorem, G∗ has a flow with all
edges incident with a saturated if and only if

c(δ(C)) ≥
w−1∑
j=0

(w − j)mh−j, for all (a,b)-cuts C. (4.4.5)

C
a

L R

S

A

b

Figure 4.1: A cut C in the graph G∗

As an example in Figure 4.1, A ⊂ L is a set of hyperedges in G, and S ⊂ R is a set of
vertices in G. Let C = {a} ∪ A ∪ S define a cut of G∗. Then the condition in (4.4.5) is
equivalent to

∀C, c(δ(C)) = k|S|+
w−1∑
j=0


 ∑

x∈A∩Eh−j

(w − j) +
∑

x∈Eh−j\A
|x ∩ S|


 ≥

w−1∑
j=0

(w − j)mh−j,

(4.4.6)
Let A∗ := {x ∈ Eh−j : |x ∩ S| ≤ h − w}. Clearly A∗ minimizes c(δ(C)) for a given S.
Therefore we only need to check (4.4.6) when A = A∗. The condition in (4.4.6) is then
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equivalent to

w−1∑
j=0


 ∑

x∈Eh−j\A
(w − j)−

∑

x∈Eh−j\A
|x ∩ S|


 ≤ k|S|.

Since

w−1∑
j=0


 ∑

x∈Eh−j\A
(w − j)−

∑

x∈Eh−j\A
|x ∩ S|


 =

w−1∑
j=0

∑

x∈Eh−j\A
(w − j)− (h− j − |x ∩ S|)

=
∑

x/∈A

|x ∩ S| −
∑

x/∈A

(h− w) = d(HS)− (h− w)e(Hs), (4.4.7)

Lemma 4.4.4 follows.

The next corollary follows immediately.

Corollary 4.4.5 Any hypergraph H in Gn̄,m̄,h has a (w, k)-orientation if and only if for
any S ⊂ V (H),

d(HS)− (h− w)e(HS) ≤ k|S|.

Proof of Corollary 4.2.7. This follows directly from Corollary 4.2.7 and Corollary 4.4.5.

For any vertex set S, define

∂∗(S) = d(S)−
w−1∑
j=0

h−j∑
i=w−j+1

(i− (w − j))mh−j,i, (4.4.8)

For each hyperedge x of size h − j which intersects S with i vertices, its contribution to
∂∗(S) is w − j ≥ 0 if i ≥ w − j + 1 and i ≥ 0 otherwise. Therefore ∂∗(S) ≥ 0 for any
S. Recall that in a graph, the expansion rate of a vertex set is defined as ∂(S)/|S|, where
∂(S) is the number of edges with exactly one end in S. It can be easily seen that ∂∗(S)
is closely related to ∂(S). For instance, given the sum of degrees of vertices in S, both
∂∗(S) and ∂(S) are maximized when S is an independent set and minimized when S is
a component of the graph. The following lemma shows that the (w, k)-orientation of G
exists if and only if G satisfies some expansion property.

Lemma 4.4.6 The following two graph properties of a multihypergraph G ∈M(n,m, k+1)
are equivalent.

(i) d(HS)− (h− w)e(HS) ≤ k|S|, for all S ⊂ V (G);

(ii) ∂∗(S) ≥ k|S|+
(

w−1∑
j=0

(w − j)mh−j

)
− kn, for all S ⊂ V (G).
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Proof We show that for any S ⊂ V (G), d(HS) − (h − w)e(HS) ≤ k|S| if and only if

∂∗(S) ≥ k|S|+
(

∑w−1
j=0 (w− j)mh−j

)
− kn. Then Lemma 4.4.6 follows immediately. Note

from the definition of A∗, we have for any x ∈ Eh−j \ A∗, |x ∩ S| ≥ h − w + 1 and hence
|x ∩ S| ≤ (h− j)− (h− w + 1) = w − j − 1. By (4.4.7), for any S ⊂ V (G),

d(HS)− (h− w)e(HS) ≤ k|S|

⇐⇒
w−1∑
j=0


 ∑

x∈Eh−j\A∗
(w − j)−

∑

x∈Eh−j\A∗
|x ∩ S|


 ≤ kn− k|S|

⇐⇒
w−1∑
j=0

w−j−1∑
i=0

(w − j − i)mh−j,i(S) ≤ kn− k|S|

⇐⇒
w−1∑
j=0

(w − j)mh−j −
w−1∑
j=0

(
h−j∑

i=w−j

(w − j)mh−j,i(S) +

w−j−1∑
i=0

imh−j,i(S)

)
≤ kn− k|S|

⇐⇒ ∂∗(S) ≥ k|S|+
(

w−1∑
j=0

(w − j)mh−j

)
− kn.

It follows from Lemma 4.4.4 and Lemma 4.4.6 that any multihypergraph G ∈M(n,m, k+
1) is (w, k)-orientable if and only if Lemma 4.4.6 (ii) holds.

Without loss of generality, we assume
∑w−1

j=0 (w − j)mh−j − kn ≤ 0. Otherwise, con-
dition (4.4.5) is violated by taking C = {a} ∪ L ∪ R. The following lemma shows that,
instead of checking conditions in Lemma 4.4.6 (ii), we can check that certain other events
do not occur.

For any S ⊂ V (G), let

qh−j(S) =

h−j∑
i=1

imh−j,i, η(S) =
w−1∑
j=0

h−j−1∑
i=1

mh−j,i. (4.4.9)

In other words, qh−j(S) denotes the contribution to d(S) from hyperedges of size h− j and
η(S) denotes the number of hyperedges which intersect both S and S. When the context
is clear, we may use qh−j and η instead to simplify the notation.

Recall that given a vertex set S, a hyperedge x is partially contained in S if |x∩S| ≥ 2.
Let ρ(S) denote the number of hyperedges partially contained in S and let ν(S) denote
the number of hyperedges intersecting S.
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Lemma 4.4.7 Suppose that for some S ⊂ V (G),

∂∗(S) < k|S|+
(

w−1∑
j=0

(w − j)mh−j

)
− kn. (4.4.10)

Then all of the following hold:

(i) ρ(S) > k|S|/w;

(ii) ν(S) < k|S|;
(iii) (h− w)ρ(S) > d(S)− k|S|;

(iv) If, in addition,
w−1∑
j=0

w − j

h− j
qh−j(S) ≥ (1− δ)k|S| for some δ > 0, then η(S) < h2δk|S|.

Proof Let s and s̄ denote |S| and |S| respectively. If (4.4.10) is satisfied, then

d(S)−
w−1∑
j=0

h−j∑
i=w−j+1

(i−(w−j))mh−j,i < ks−
(

kn−
w−1∑
j=0

(w − j)mh−j

)
=

w−1∑
j=0

(w−j)mh−j−ks̄.

Hence

ks̄ <
w−1∑
j=0

(w − j)mh−j −
w−1∑
j=0

h−j∑
i=1

imh−j,i +
w−1∑
j=0

h−j∑
i=w−j+1

(i− (w − j))mh−j,i

=
w−1∑
j=0

(w − j)mh−j,0 +
w−1∑
j=0

w−1−j∑
i=1

(w − j − i)mh−j,i

≤ w

w−1∑
j=0

(
mh−j,0 +

w−1−j∑
i=1

mh−j,i

)
.

Since
mh−j,0 = |{x ∈ Eh−j : |x ∩ S| = h− j}|,

and
w−1−j∑

i=1

mh−j,i ≤ w|{x ∈ Eh−j : 2 ≤ |x ∩ S| ≤ h− j − 1}|,

(this is because 1 ≤ i ≤ w−1−j and so h−j−i ≤ h−j−1 and h−j−i ≥ h−(w−1) ≥ 2),
we have

ks̄ < w|{x ∈ E(G) : |x ∩ S| ≥ 2}|.
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This proves part (i). Again, if (4.4.10) is satisfied, then

w−1∑
j=0

h−j∑
i=w−j+1

(i− (w − j))mh−j,i > d(S)− ks +

(
kn−

w−1∑
j=0

(w − j)mh−j

)
.

Since
w−1∑
j=0

h−j∑
i=w−j+1

(i− (w − j))mh−j,i ≤
h∑

i=2

(i− 1)|{x : |x ∩ S| = i}| = d(S)− ν(S),

we have

d(S)− ν(S) > d(S)− ks +

(
kn−

w−1∑
j=0

(w − j)mh−j

)
.

Since kn−∑w−1
j=0 (w − j)mh−j > 0, this directly leads to part (ii). Since

w−1∑
j=0

h−j∑
i=w−j+1

(i− (w − j))mh−j,i ≤ (h− w)|{x : |x ∩ S| ≥ 2}|,

we have

|{x : |x ∩ S| ≥ 2}| > d(S)− ks +

(
kn−

w−1∑
j=0

(w − j)mh−j

)
.

Since kn − ∑w−1
j=0 (w − j)mh−j > 0, this proves part (iii). Now we prove part (iv). Let

th−j = 1 − (h − j)mh−j,h−j/qh−j. Note that d(S) =
∑w−1

j=0 qh−j and qh−j =
∑h−j

i=1 imh−j,i.
For each hyperedge x of size h − j which intersects S with i vertices, its contribution to
qh−j (and thus to ∂∗(S)) is

• i · (w − j)/(h− j), if i = h− j;

• i · (w − j)/i ≥ i · (w − j)/(h− j − 1), if w − j + 1 ≤ i ≤ h− j − 1;

• i ≥ i · (w − j)/(h− j − 1), if 1 ≤ i ≤ w − j;

Then

∂∗(S) ≥
w−1∑
j=0

(
w − j

h− j
qh−j(1− th−j) +

w − j

h− j − 1
qh−jth−j

)

=
w−1∑
j=0

w − j

h− j
qh−j +

w−1∑
j=0

w − j

(h− j)(h− j − 1)
qh−jth−j

≥
w−1∑
j=0

w − j

h− j
qh−j +

1

h2

w−1∑
j=0

(w − j)qh−jth−j.
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If
∑w−1

j=0
w−j
h−j

qh−j ≥ (1− δ)ks for some δ > 0, then (4.4.10) implies that

1

h2

w−1∑
j=0

(w − j)qh−jth−j < δks.

Therefore η(S) ≤ ∑w−1
j=0 qh−jth−j < h2δks. This proves part (iv).

4.5 Proof of Theorem 4.2.5

Recall that ε > 0 and k ≥ 2 are fixed. Let m be an integer vector with the constraint (4.4.2).
Given m, let D, µ be as defined in (4.4.1). Let G be a random multihypergraph from the
probability space M(n,m, k + 1).

Since h and w are given, we consider them as absolute constants. Therefore, whenever
we refer to g = O(f), it means that there exists a constant C such that g ≤ Cf , where C
can depend on h and w. We also use notation g = Oγ(f), which means that there exists a
constant C depending on γ only such that g ≤ Cf . The same convention applies to o(f),
Ω(f), Θ(f) and oγ(f), Ωγ(f) and Θγ(f).

In this section we prove Theorem 4.2.5. To start, we explain our use of the probability
spaces in this section. By Lemma 4.3.2, H(n,m, k + 1) is the same as M(n,m, k + 1)
restricted to simple multihypergraphs. The next lemma shows that any event that holds
a.a.s. in M(n,m, k+1) holds a.a.s. in H(n,m, k+1). In view of this, we only need to prove
the orientability in M(n,m, k+1). Since M(n,m, k+1) is equivalent to P(n,m,0, k+1),
defined in Section 4.3, the partition-allocation model will often be considered in this section.

Lemma 4.5.1 For any sequence of events An, if PM(n,m,k+1)(An) = o(1), then
PH(n,m,k+1)(An) = o(1).

Proof The degree sequence of multihypergraphs resulting from M(n,m, k + 1) is asymp-
totically that of truncated Poisson (see [16, Lemma 1] for a short proof). Since D =∑w−1

j=0 (h − j)mh−j = Θ(k)n, we have a.a.s.
∑n

i=1 di(di − 1) = Θ(k2)n. The proof of [43,
Theorem 5.2] now trivially adapts to show that the probability that a multihypergraph in
M(n,m, k + 1) is simple is Θ(1). Thus, for any event An, if PM(n,m,k+1)(An) = o(1), then
by Lemma 4.3.2, PH(n,m,k+1)(An) ≤ PM(n,m,k+1)(An)/Θ(1) = o(1).

We next sketch the proof of Theorem 4.2.5. Let qh−j(S) and η(S) be defined as
in (4.4.9). Note that the partition-allocation model gives a good foundation for prov-
ing that certain events hold concerning the distribution of vertex degrees and intersections
of hyperedge sets with vertex sets. Using this and various probabilistic tools, we show that
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(a) every hypergraph G with property A(γ) contains no sets S with |S| > (1 − γ)n for
which Lemma 4.4.7 (i) holds;

(b) the probability that G has property A(γ) and contains some set S with |S| < γn for
which both Lemma 4.4.7 (ii) and (iii) holds is o(1);

(c) there exists δ > 0, such that when k is large enough, a.a.s.
∑w−1

j=0
w−j
h−j

qh−j ≥ (1−δ)k|S|,
and the probability of G containing some set S with γn ≤ |S| ≤ (1 − γ)n and
η(S) < h2δk|S| is o(1).

It follows that the probability that G has property A(γ) and contains some set S for which
all parts (i)-(iv) of Lemma 4.4.7 hold is o(1). Then by Lemma 4.4.6,

P(G ∈ A(γ) ∧G is not (w, k)-orientable) = o(1).

We start with a few concentration properties. As discussed in Section 4.3, the degree
sequence of G ∈M(n,m, k + 1) obeys the multinomial distribution. The following lemma
bounds the probability of rare degree (sub)sequences where the degree distribution is inde-
pendent truncated Poisson. We will use this result to bound the probability of rare degree
sequences in M(n,m, k + 1).

Lemma 4.5.2 Let s ≥ w(n) for some w(n) → ∞ as n → ∞ and let Y1, . . . , Ys be inde-
pendent copies of Z defined in (4.3.2) with λ satisfying λfk(λ) = µfk+1(λ). Let 0 < δ < 1
be any constant. Then there exist N > 0 and 0 < α < 1 both depending only on δ, such
that provided k > N ,

P

(∣∣∣
s∑

i=1

Yi − µs
∣∣∣ ≥ δµs

)
≤ αµs.

Proof Let G(x) be the probability generating function of Yi. Then

G(x) =
∑

j≥k+1

P(Z = j)xj =
e−λ

fk+1(λ)

(
eλx −

k∑
j=0

(λx)j

j!

)
≤ eλx−λ

fk+1(λ)
,

for all x ≥ 0. For any nonnegative integer `,

P

(
s∑

i=0

Yi = l

)
≤ G(x)s

x`
, ∀x ≥ 0.

Putting x = `/sλ gives

P

(
s∑

i=0

Yi = `

)
≤ e`−λs

(`/(λs))`fk+1(λ)s
=

(
esλ

`

)` (
e−λ

fk+1(λ)

)s

. (4.5.1)
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It is easy to check that the right hand side of (4.5.1) is an increasing function of l when
l ≤ λs and decreasing function of l when l ≥ λs. By Proposition 4.3.3, there exists a
constant N0 depending only on δ such that provided k > N0, (1− δ)µ < λ. Thus, for any
` ≤ (1− δ)µs,

P

(
s∑

i=0

Yi = `

)
≤

(
esλ

(1− δ)µs

)(1−δ)µs (
e−λ

fk+1(λ)

)s

,

and so

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ µs

(
eλ

(1− δ)µ

)(1−δ)µs (
e−λ

fk+1(λ)

)s

.

The expectation of Y1 is λfk(λ)/fk+1(λ) = µ. By Proposition 4.3.3, we have µ ≥ λ and
µ− λ → 0 as k →∞. Therefore

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ µs

(
exp(µ− λ− δµ)

(1− δ)(1−δ)µfk+1(λ)

)s

= µs

(
exp(µ− λ)

fk+1(λ)
·
(

exp(−δ)

(1− δ)(1−δ)

)µ)s

.

Since 0 < δ < 1,

0 <
exp(−δ)

(1− δ)(1−δ)
< 1.

Since
exp(µ− λ) → 1, fk+1(λ) → 1, as k →∞

by Proposition 4.3.3, there exists N1 > 0 and 0 < α1 < 1, both depending only on δ, such
that provided k > N1,

P

(
s∑

i=1

Yi ≤ (1− δ)µs

)
≤ αµs

1 .

Now we bound the upper tail of
∑s

i=1 Yi. Let j = 1, 2, . . .. For any ` satisfying (1+ j)µs ≤
` < (2 + j)µs, as with the lower tail bound,

P

(
s∑

i=0

Yi = `

)
≤

(
esλ

(1 + j)µs

)(1+j)µs (
e−λ

fk+1(λ)

)s

=

(
exp(µ− λ)

fk+1(λ)
·
(

ej

(1 + j)(1+j)

)µ)s

,

and so

P

(
(1 + j)µs ≤

s∑
i=1

Yi < (2 + j)µs

)
≤ µs

(
exp(µ− λ)

fk+1(λ)
·
(

ej

(1 + j)(1+j)

)µ)s

. (4.5.2)
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Similarly we have

P

(
(1 + δ)µs ≤

s∑
i=1

Yi < 2µs

)
≤ µs

(
exp(µ− λ)

fk+1(λ)
·
(

eδ

(1 + δ)(1+δ)

)µ)s

. (4.5.3)

Since 0 < eδ/(1 + δ)(1+δ) < 1 for any δ > 0, we may bound the right side of (4.5.2)
and (4.5.3) by αµs

2 where 0 < α2 < 1 is some constant depending only on δ. Also, since
e/(1 + j) < 1 for all j ≥ 2, the right side of (4.5.2) is at most exp(−Θ(µ)js) for j ≥ 2
provided k is large enough. Hence there exists N2 > 0 and 0 < α3 < 1 depending only on
δ, such that provided k > N2,

P

(
s∑

i=1

Yi ≥ (1 + δ)µs

)
≤ αµs

3 .

The lemma follows by choosing α = max{α1, α3} and N = max{N1, N2}.

Lemma 4.5.3 Let k ≥ −1 be an integer. Drop D balls independently at random into n
bins. Let µ = D/n and let λ be defined as λfk(λ) = µfk+1(λ). Assume D− (k + 1)n →∞
as n →∞. Then the probability that each bin contains at least k + 1 balls is Ω(fk+1(λ)n).

Proof Let d denote (d1, . . . , dn). Let D = {d : di ≥ k + 1 ∀i ∈ [n],
∑n

i=1 di = D}. Let
P(B) denote the probability that each bin contains at least k + 1 balls. Then

P(B) =
∑

d∈D

(
D

d1, . . . , dn

)/
nD =

D!

nD

∑

d∈D

n∏
i=1

1

di!
.

Let Y1, . . . , Yn be n independent truncated Poisson variables which are copies of Z(≥k+1) as
defined in (4.3.2) with parameter λ satisfying λfk(λ) = µfk+1(λ). Then

P

(
n∑

i=1

Yi = D

)
=

∑

d∈D

n∏
i=1

e−λλdi

fk+1(λ)di!
=

e−λnλD

fk+1(λ)n

∑

d∈D

n∏
i=1

1

di!
.

Since D− (k + 1)n →∞ as n →∞, P (
∑n

i=1 Yi = D) = Ω(D−1/2) (see [47, Theorem 4(a)]
for a short proof),

∑

d∈D

n∏
i=1

1

di!
= Ω

(
eλnfk+1(λ)n

λDD1/2

)
.

So, using Stirling’s formula,

P(B) = Ω

(
D!

nD
· eλnfk+1(λ)n

λDD1/2

)
= Ω

(√
D

(
D

en

)D

· eλnfk+1(λ)n

λDD1/2

)
(4.5.4)

= Ω
((µ

λ
eλ/µ−1

)µn

fk+1(λ)n
)

.
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Since (µ/λ) · eλ/µ−1 ≥ 1, P(B) = Ω(fk+1(λ)n).

Corollary 4.5.4 Let k ≥ −1 be an integer. Let D = {d : di ≥ k + 1,∀i ∈ [n],
∑n

i=1 di =
D} and let An be any subset of D . Let µ = D/n. Let P(An) denote the probability that the
degree sequence d of G ∈M(n,m, k + 1) is in An and let PTP (An) be the probability that
(Y1, . . . , Yn) ∈ An where Yi are independent copies of the random variable Z(≥k+1) as defined
in (4.3.2) with the parameter λ satisfying λfk(λ) = µfk+1(λ). Assume D− (k + 1)n →∞
as n →∞. Then

P(An) = O
(√

D
)

PTP (An).

Proof Let An be any subset of D and let P(B) denote the probability that each bin
contains at least k + 1 balls by dropping D balls independently and randomly into n bins.
Consider the partition-allocation model that generates M(n,m, k+1), which allocates the
partitioned D balls randomly into n bins with the restriction that each bin contains at
least k + 1 balls. Then

P(An) =
∑

d∈An

1

P(B)
·
(

D

d1, . . . , dn

)/
nD =

D!

nDP(B)

∑

d∈An

n∏
i=1

1

di!
,

and

PTP (An) =
∑

d∈An

n∏
i=1

e−λλdi

fk+1(λ)di!
=

e−λnλD

fk+1(λ)n

∑

d∈An

n∏
i=1

1

di!
.

Therefore

P(An) =
D!eλnfn

k+1

nDP(B)λD
PTP (An) = O

(√
D

)
PTP (An),

since P(B) = Ω
((

µ
λ
eλ/µ−1

)µn
fk+1(λ)n

)
by Lemma 4.5.3 (4.5.4).

A significant difficulty in this work is to ensure that various constants do not depend
on the choice of ε. In particular, we emphasize that the constants such as α and N in the
following results do not depend on ε.

The next is a corollary of Lemma 4.5.2 and Corollary 4.5.4.

Corollary 4.5.5 Let 0 < δ < 1 be any constant. Then there exist two constants N > 0
and 0 < α < 1 both depending only on δ, such that provided k > N , for any vertex set
S ⊂ V (G) with |S| ≥ log2 n,

P(|d(S)− µ|S|| ≥ δµ|S|) ≤ αµ|S|.
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Proof Let Y1, . . . , Yn be independent copies of the truncated Poisson random variable Z
as defined in (4.3.2). Let S ⊂ V (G) and let s = |S|. Then by Lemma 4.5.2, there exist
N > 0 and 0 < α̂ < 1, both depending only on δ, such that provided k > N ,

P

(∣∣∣
∑
i∈S

Yi − µs
∣∣∣ ≥ δµs

)
≤ α̂µs,

By Corollary 4.5.4,

P(|d(S)− µs| ≥ δµs) ≤ O(D1/2)α̂µs =

(
exp

(
ln Θ(

√
µn)

µs

)
α̂

)µs

.

Since s ≥ log2 n and so
ln Θ(

√
µn)

µs
→ 0, as n →∞.

Let α = 1/2 + α̂/2. Then 0 < α̂ < α < 1 and α depends only on δ. Then provided k > N ,
P(|d(S)− µs| ≥ δµs) ≤ αµs.

The following corollary shows that d(S) is very concentrated when S is not too small.

Corollary 4.5.6 Let δ > 0 and 0 < γ < 1 be arbitrary constants. Then there exists a
constant N depending only on δ and γ, such that provided k > N ,

P(∃S ⊂ V (G), s ≥ γn, |d(S)− µs| ≥ δµs) = o(1).

Proof For any S ⊂ V (G), let s = |S|. By Corollary 4.5.5, there exists N1 > 0 and
0 < α < 1, both depending only on δ, such that provided k > N1, for any S ⊂ V (G),

P(|d(S)− µs| ≥ δµs) ≤ αµs.

Let N2 be the smallest integer such that eαN2/γ < 1/2. Let N = max{N1, N2}. Then N
depends only on δ and γ. For all µ > N ,

P(∃S ⊂ [n], s ≥ γn, |d(S)− µs| ≥ δµs) ≤
∑

γn≤s≤n

(
n

s

)
αµs ≤

∑
γn≤s≤n

(en

s
· αµ

)s

≤
∑

γn≤s≤n

(
e

γ
· αµ

)s

= O
(
2−γn

)
= o(1).

The following lemma will be used later to prove that a.a.s.
∑w−1

j=0 (w− j)qh−j/(h− j) ≥
(1− δ)ks provided k is large enough.
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Lemma 4.5.7 Let 0 < δ < 1 be any given constant. Let C = {c0, . . . , cw−1} be a set of
colours and let there be D balls coloured with some colour in C. For any 0 ≤ j ≤ w− 1, let
pj denote the proportion of balls that are coloured cj. Randomly choose q balls among all.
Let qj be the number of balls chosen that are coloured with cj. Then for any 0 ≤ j ≤ w−1,

P(|qj − pjq| ≥ δpjq) ≤ exp(−Θ(δ2pjq)).

Proof For any 0 ≤ j ≤ w − 1 any ` > 0,

P(qj = `) =

(
pjD

`

)(
D − pjD

q − `

)/(
D

q

)
.

Let p` denote P(qj = `). Put `0 = pjq, `1 = (1 − δ/2)pjq and `2 = (1 − δ)pjq. Then for
any ` ≤ `1,

p`−1

p`

=
`(D(1− pj)− q + `)

(pjD − ` + 1)(q − ` + 1)
≤ `1(D(1− pj)− q + `0)

(pjD − `0)(q − `0)
= 1− δ

2
.

Then

p`2 ≤ (1− δ/2)δpjq/2p`1 ≤ exp

(
δpjq

2
ln

(
1− δ

2

))
≤ exp(−δ2pjq/4).

So

P(qj ≤ (1− δ)pjq) =
∑

`≤`2

p` ≤ 1

δ
p`2 ≤ exp(−Θ(δ2pjq)).

Similarly we can bound the upper tail and then Lemma 4.5.7 follows.

Lemma 4.5.8 Let 0 < δ < 1 and 0 < γ < 1 be two arbitrary constants. Given S ⊂ V (G),
let qh−j = qh−j(S) be as defined in (4.4.9). Then there exists N > 0 depending only on δ
and γ such that for all k > N ,

P

(
∃S ⊂ V (G), |S| ≥ γn,

w−1∑
j=0

w − j

h− j
qh−j < (1− δ)k|S|

)
= o(1).

Proof For any 0 ≤ j ≤ w − 1, let pj denoted (h− j)mh−j/D. Let J := {j : pj > δ/8w}.
We first show that given S ⊂ V (G) with |S| ≥ γn, if

w−1∑
j=0

w − j

h− j
qh−j < (1− δ)k|S|, (4.5.5)
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then there exists j ∈ J such that qh−j(S) ≤ (1− δ/8)pjd(S). Assume there is no such j by
contradiction. Then

w−1∑
j=0

w − j

h− j
qh−j(S) ≥

∑
j∈J

w − j

h− j
qh−j(S) > (1− δ/8)d(S)

∑
j∈J

w − j

h− j
pj

= (1− δ/8)d(S)




w−1∑
j=0

w − j

h− j
pj −

∑

j /∈J

w − j

h− j
pj


 ≥ (1− δ/8)d(S)

(
w−1∑
j=0

w − j

h− j
pj − w

h

δ

8w

)

≥ (1− δ/8)d(S)
w−1∑
j=0

w − j

h− j
pj(1− δ/8) ≥ (1− δ/4)d(S)

w−1∑
j=0

w − j

h− j
pj. (4.5.6)

Let s = |S| and let r = s/n. Then by Corollary 4.5.6, there exists N2 > 0 depending on δ
and γ only, such that a.a.s. d(S) ≥ (1− δ/4)Dr whenever k > N2. Therefore, combining
with (4.5.6), we get a.a.s. provided k > max{N1, N2},
w−1∑
j=0

w − j

h− j
qh−j(S) > (1− δ/2)Dr

w−1∑
j=0

w − j

h− j
pj ≥ (1− δ/2)r(kn− 2εn) = (1− δ/2)(k − 2ε)s.

For any k > 2/δ ≥ 4ε/δ, we have (1−δ/2)(k−2ε)s > (1−δ)ks. Take N = max{N1, N2, 2/δ}.
Then for any k > N , we have a.a.s.

w−1∑
j=0

w − j

h− j
qh−j(S) > (1− δ)ks,

which contradicts (4.5.5). It follows that there exists j ∈ J such that qh−j(S) ≤ (1 −
δ/8)pjd(S).

Consider the partition-allocation model that generates M(n,m,0, k + 1). Let C =
{c0, . . . , cw−1} be a set of colours. For balls partitioned into parts that are of size h− j for
some 0 ≤ j ≤ w− 1, colour them with cj. Then the w colours are distributed u.a.r. among
the D balls. By Lemma 4.5.7, for any S ⊂ V (G),

P
(
qh−j(S) ≤ (1− δ/8)pjd(S)

) ≤ exp
(−Θ(δ2pjd(S))

)
.

Then there exists a constant N1 depending only on δ and γ such that,

P
(∃S, j ∈ J, s ≥ γn, qh−j(S) ≤ (1− δ/8)pjd(S)

)

≤ w2n exp
(−Θ(δ3d(S))

) ≤ w
(
2 exp(−Θ(δ3γk))

)n
= o(1).

Note that the inequality holds because |J | ≤ w, the number of sets S with |S| ≥ γn
is at most 2n, δ/8w ≤ pj < 1 for all j ∈ J and d(S) ≥ (k + 1)|S| > kγn. It follows
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that a.a.s. there exists no set S with |S| ≥ γn for which there exists j ∈ J such that
qh−j(S) ≤ (1− δ/8)pjd(S). Lemma 4.5.8 then follows.

Recall that ρ(S) is the number of hyperedges partially contained in S and ν(S) is the
number of hyperedges intersecting S by the definition above Lemma 4.4.7.

Lemma 4.5.9 Let δ > 0 be any constant and let µ = µ(G) = D/n as defined in (4.4.1).
Then there exists a constant N > 0 depending only on δ such that provided k > N , a.a.s.
there exists no S ⊂ V (G), for which log2 n ≤ |S| ≤ n, d(S) < (1−δ)µ|S|, and ν(S) < k|S|.

This lemma will be proved after the proof of Theorem 4.2.5.

Proof of Theorem 4.2.5. By Lemma 4.4.6 and 4.4.7, it is enough to show that the
expected number of sets S contained in a hypergraph G ∈ M(n,m, k + 1) with property
A(γ) for which all of Lemma 4.4.7 (i)–(iv) are satisfied is o(1). We call a set S ⊂ V (G)
is interesting if it lies in a hypergraph G with property A(γ). Let X be the number of
interesting sets S ⊂ V (G) such that (4.4.10) holds. Similarly, let X<a (or X>b or X[a,b])
for any 0 < a < b < n denote the number of interesting S ⊂ [n] such that (4.4.10) holds
and |S| < a (or |S| > b or a ≤ |S| ≤ b) respectively. For any set S under discussion, let s
denote |S| and s̄ denote |S|.

Case 1: s < εn/k. By theorem’s hypothesis

(
w−1∑
j=0

(w − j)mh−j

)
− kn < −εn,

any S satisfying (4.4.10) must satisfy

∂∗(S) < ks− εn. (4.5.7)

When s < εn/k, ks− εn < 0. However ∂∗(S) ≥ 0 as observed below (4.4.8). Hence (4.5.7)
cannot hold. Thus X<εn/k = 0.

Case 2: s > (1−γ)n. part (i) of Lemma 4.4.7 says that (4.4.10) holds only if the number
of hyperedges partially contained in S is at least ks̄/w. But X counts only interesting sets,
i.e. sets that lie in a hypergraph with property A(γ). By the definition of property A(γ),
there are no such interesting sets and so X≥(1−γ)n = 0.

Case 3: εn/k ≤ s < γn. Let δ1 = (h − w)/2h. By Lemma 4.5.9, there exists
N1 > 0 such that provided k > N1, the expected number of S with d(S) < (1 − δ1)µs
for which Lemma 4.4.7 (ii) is satisfied and εn/k ≤ s ≤ n is o(1). We now show that
there exists no interesting sets S ⊂ V (G) with |S| < γn for which Lemma 4.4.7 (iii) holds
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and d(S) ≥ (1 − δ1)µs. If d(S) ≥ (1 − δ1)µs, d(S) ≥ h+w
2w

ks provided k ≥ h + w since
µ ≥ h(k − 1)/w by (4.4.3). Then it follows that

d(S)− ks

h− w
≥ ks

2w
.

Lemma 4.4.7 (iii) implies that (4.4.10) holds only if the number of hyperedges partially
contained in S is at least ks/2w. By the definition of property A(γ), there is no such
interesting sets S when s < γn. So provided k > max{N1, h + w}, a.a.s. there exists
no interesting sets S, with s < γn for which both Lemma 4.4.7 (ii) and (iii) hold. Then
E(X<γn) = o(1).

Note that k|S|/2w in the definition of propertyA(γ) can be modified to be Ck|S| for any
positive constant C, and it can be checked straightforwardly that there exists a constant
γ depending on C only, such that Corollary 4.4.3 holds. Therefore, any 0 < δ1 < 1− w/h
would work here by choosing some appropriate C to modify the definition of property
A(γ).

Case 4: γn ≤ s ≤ (1 − γ)n. Let 0 < δ2 < 1 be chosen later. By Lemma 4.5.8, there
exists N2 > 0 depending only on δ2 such that provided k ≥ N2, a.a.s.

w−1∑
j=0

w − j

h− j
qh−j ≥ (1− δ2)ks for all S with γn ≤ |S| ≤ (1− γ)n.

For any S ⊂ V (G), let η = η(S) be as defined in (4.4.9). Then by Lemma 4.4.7, to
show E(X[γn,(1−γ)n]) = o(1), it is enough to show that the expected number of sets S with
γn ≤ s ≤ (1−γ)n for which η(S) is at most h2δ2ks, is o(1). Consider the probability space
M(n,m,0, 0), which is generated by placing each hyperedge uniformly and randomly on
the n vertices. Let B be the event that all bins contain at least k + 1 balls. Then
M(n,m, k+1) equals M(n,m,0, 0) conditioned on the event B. By Lemma 4.5.3 P(B) =
Ω(fk+1(λ)n) where λfk(λ) = µfk+1(λ). Given any set S, let r = s/n. For any hyperedge
of size h− j, the probability for it to intersect both S and S is pj,r = 1− rh−j − (1− r)h−j.
Then pj,r ≥ 1 − γh−j − (1 − γ)h−j ≥ 1 − γh−w+1 − (1 − γ)h−w+1 for any set S and any
0 ≤ j ≤ w − 1. Recall from (4.4.1) that m is the total number of hyperedges in G.
Then Eη(S) =

∑w−1
j=0 pj,rmh−j ≥ m(1 − γh−w+1 − (1 − γ)h−w+1) for any given S. Since

m ≥ (k − 1)n/w by (4.4.3),

Eη(S) ≥ (1−γh−w+1−(1−γ)h−w+1)(k−1)n/w = Θγ(k)n, for any S with γn ≤ |S| ≤ (1−γ)n.

Choose

δ2 =
1− γh−w+1 − (1− γ)h−w+1

4wh2(1− γ)
.
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Then δ2 depends only on γ and so N2 also depends only on γ. By the Chernoff bound [17],

P(η(S) < h2δ2ks) ≤ P(η(S) < h2δ2k(1− γ)n) ≤ P

(
η(S) <

1

2
Eη(S)

)
≤ exp(−Eη(S)/16).

Note that the second inequality holds because of the choice of δ2. So there exists some
constant C > 0 s.t.

P(η(S) < h2δ2ks | B) ≤ C exp (−Eη(S)/16) fk+1(λ)−n = C

(
exp

(
−Eη(S)

16n
− ln fk+1(λ)

))n

.

The number of sets S with γn ≤ |S| ≤ (1− γ)n is at most 2n. So the expected number of
sets S with γn ≤ s ≤ (1− γ)n and η(S) < h2δ2ks in M(n,m, k + 1) is at most

C

(
2 exp

(
−Eη(S)

16n
− ln fk+1(λ)

))n

.

Clearly fk+1(λ) → 1 as k →∞ and Eη(S) = Θγ(k)n as observed before. Then there exists
a constant N3 > 0 depending only on γ such that provided k > N3,

2 exp

(
−Eη(S)

16n
− ln fk+1(λ)

)
< 1.

Then provided k ≥ max{N2, N3},

E(X[γn,(1−γ)n]) = o(1).

Combining all cases, let N = max{N1, N2, N3, h + w}. Then N depends only on γ. We
have shown that provided k > N , EX = o(1). Theorem 4.2.5 holds for the probability
space M(n,m, k + 1). Then Theorem 4.2.5 follows by Lemma 4.5.1.

Proof of Lemma 4.5.9. The idea of the proof is as follows. When S is big, by Corol-
lary 4.5.6 there are no such sets with d(S) < (1−δ)µ|S|. We will see later that ν(S) < k|S|
requires a lot of hyperedges partially contained in S, which is unlikely to happen when S
is small enough.

Let G ∈M(n,m, k+1). Let D =
∑w−1

j=0 (h−j)mh−j and µ = D/n as defined in (4.4.1).
For any S, let ρ(S, i) denotes the number of hyperedges with exactly i vertices contained
in S. Then ν(S) < ks if and only if

∑h
i=2(i − 1)ρ(S, i) > d(S) − ks. By Corollary 4.5.6,

there exists N1 > 0 depending only on δ such that provided k > N1, a.a.s. there is no
S such that s > n/h and d(S) < (1 − δ)µs. So we only need to consider sets S with
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|S| ≤ n/h. We call a vertex set S ∈ G bad if log2 n ≤ |S| ≤ n/h, d(S) < (1 − δ)µ|S| and∑h
i=2(i− 1)ρ(S, i) > d(S)− k|S|. Let s denote |S|.
For any given S, let p(S) denote the probability of S being bad. By Corollary 4.5.5,

there exists N2 > 0 and 0 < α < 1, both depending only on δ, such that provided k > N2,
the probability that d(S) < (1 − δ)µs is at most αµs. Let p(q, t) be the probability that
that

∑h
i=2(i− 1)ρ(S, i) is at least t conditional on d(S) = q. Then

p(S) =
∑

(k+1)s≤q≤(1−δ)µs

p(q, q − ks)P(d(S) = q). (4.5.8)

For the small value of q (or s), we need the following claim, to be proved later.

Claim 4.5.10 If q < D/h, then

p(q, t) ≤
(

exp

(
h ln t

t

)
eh(h− 1)2q2

4tD

)t

.

In particular, if t →∞ as n →∞, then

p(q, t) ≤
(

eh3q2

4tD

)t

.

Case 1: s < 2n/eh3(k + 1). Since (k + 1)s ≤ q ≤ (1− δ)µs < D/h, we have

q

q − ks
≤ (k + 1)s

(k + 1)s− ks
= k + 1,

q

D
≤ (1− δ)µs

µn
<

s

n
, q − ks ≥ s ≥ log2 n.

So q − ks →∞ as n →∞. By (4.5.8) and the particular case of Claim 4.5.10, we have

p(S) ≤
∑

(k+1)s≤q≤(1−δ)µs

(
eh3(k + 1)s

4n

)q−ks

P(d(S) = q)

≤
(

eh3(k + 1)s

4n

)s

P
(
(k + 1)s ≤ d(S) ≤ (1− δ)µs

)
≤

(
eh3(k + 1)s

4n

)s

αµs.

Note that the second inequality above holds because q−ks ≥ s and 0 < eh3(k+1)s/4n < 1
since s < 2n/eh3(k + 1).

Then the expected number of bad sets S with |S| = s, for any fixed log2 n ≤ s <
2n/eh3(k + 1), is at most

(
n

s

)(
eh3(k + 1)s

4n

)s

αµs ≤
(

en

s
· αµ · eh3(k + 1)s

4n

)s

=
(
e2h3(k + 1)αµ/4

)s
.
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Since µ ≥ h(k− 1)/w by (4.4.3), this is at most exp(−s) provided k ≥ N3 for some N3 > 0
depending only on α.

Case 2: s ≥ 2n/eh3(k +1). Take p(q, q−ks) ≤ 1 since p(q, q−ks) is a probability. So
the expected number of bad sets S with |S| = s, for any fixed 2n/eh3(k+1) ≤ s ≤ (1−δ)µs,
is at most (

n

s

)
· αµs =

(en

s
αµ

)s

≤ (
e2h3(k + 1)αµ/2

)s ≤ exp(−s),

whenever k > N4 for some N4 > 0 depending only on α. Since α depends only on δ, N3

and N4 also depend only on δ. Let N = max{N1, N2, N3, N4}. Then N depends only on δ
and provided k > N , the expected number of bad S is at most

∑

log2 n≤s≤n/h

exp(−s) = o(1).

Lemma 4.5.9 follows thereby.

It only remains to prove Claim 4.5.10.

Proof of Claim 4.5.10. To illustrate the method of computing p(q, t), we show in detail
the case h = 2 first. Conditional on that d(S) = q, we want to estimate the probability
that there are at least t edges in S. Consider the alternative algorithm that generates the
probability space of the partition-allocation model P(n,m2, 0, k + 1). Fix any allocation
which allocates q balls into bins representing vertices in S with each bin containing at least
k + 1 balls. There are at most (

q

2t

)
(2t)!

2tt!

partial partitions that contain t parts within S. The probability of every such partial
partition to occur is

t−1∏
i=0

1

D − 1− 2i
.

So

p(q, t) ≤
(

q

2t

)
(2t)!

2tt!
·

t−1∏
i=0

1

D − 1− 2i
,

which is at most

[q]t
2tt!

t−1∏
i=0

q − t− i

D − 1− 2i
≤

(eq

2t

)t
(

q − t

D − 1

)t

≤
(eq

2t
· q

D

)t

Note that the second inequality holds since q < D/2 and so q − t < (D − 1)/2.
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Now we estimate p(q, t) in the general case h ≥ 2. Consider the alternative algorithm
that generates the probability space of the partition-allocation model P(n,m,0, k + 1),
defined in Section 4.3. Fix any allocation that allocates exactly q balls into S with each
bin containing at least k + 1 balls. The algorithm uniformly randomly partitions balls
into parts such that there are exactly mh−j parts with size h − j for j = 0, . . . , w − 1.

Let U = {(u2, . . . , uh) ∈ IN (h−1) :
∑h

i=2(i − 1)ui = t}. Let u = (u2, . . . , uh) be an
arbitrary vector from U . We over estimate the probability that ρ(S, i) is at least ui for all
i = 2, . . . , h, conditional on d(S) = q. Let p(q,u) denote this probability. Then clearly
p(q, t) ≤ ∑

u∈U p(q,u). The number of partial partitions that contain ui partial parts of
size i within S is (

q

u1, 2u2, 3u3, . . . , huh

)
(2u2)!

2!u2u2!
· · · (huh)!

h!uhuh!
, (4.5.9)

where u1 = q−∑h
i=2 iui. For any such partial partition we compute the probability that it

occurs. The algorithm starts from picking a ball v unpartitioned in S and then it chooses
at most h− 1 balls that are u.a.r. chosen from all the unpartitioned balls to be partitioned
into the part containing v.

The probability of the occurrence of a given u2 partial parts of size 2 within S is at
most

u2∏
i=0

(h− 1)
1

D − 1− hi
= (h− 1)u2

1

D − 1
· 1

D − h− 1
· · · 1

D − 1− h(u2 − 1)
.

The probability of the occurrence of a given u3 partial parts of size 3 within S is at most

u3−1∏
i=0

(
h− 1

2

)
1

D − hu2 − hi− 1
· 1

D − hu2 − hi− 2
≤ (h− 1)2u3

u3−1∏
i=0

1

(D − hu2 − hi− 1)2
.

Note that the above inequality holds because h
∑h

i=2 ui ≤ hq/2 < D/2. Keeping the
analysis in this procedure, we obtain that the probability of a particular partial partition
with ui partial parts of size i within S is at most

(h− 1)u2+2u3+···+(h−1)uh ×
u2−1∏
i=0

1

D − hi− 1

u3−1∏
i=0

1

(D − hu2 − hi− 1)2

× · · · ×
uh−1−1∏

i=0

1

(D − h
∑h−2

j=2 uj − hi− 1)h−1

uh−1−1∏
i=0

1

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.

The product of this and (4.5.9) gives an upper bound of p(q,u), which is at most

[q]Ph
i=2 iui

(h− 1)t

u2!u3! · · ·uh!2!u2 · · ·h!uh !

u2−1∏
i=0

1

D − hi− 1
· · ·

uh−1∏
i=0

1

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.

115



Since 2!u2 · · ·h!uh ! ≥ 2t, this is at most

[q]t(h− 1)t

u2!u3! · · ·uh!2t

u2−1∏
i=0

q − t− i

D − hi− 1
× · · · ×

uh−1∏
i=0

q − t−∑h−1
j=2 uj − i

(D − h
∑h−1

j=2 uj − hi− 1)h−1
.

Since q < D/h and so q − t ≤ (D − 1)/h, this is at most

(eq(h− 1)/2)t

uu2
2 · · ·uuh

h

(
q − t

D − 1

)u2
(

q − t− u2

(D − hu2 − 1)2

)u3

· · ·
(

q − t−∑h−1
j=2 uj

(D − h
∑h−1

j=2 uj − 1)h−1

)uh

=
(eq(h− 1)/2)t

uu2
2 · · ·uuh

h (q − t− u2)u3 · · · (q − t−∑h−1
j=2 uj)(h−2)uh

×
(

q − t

D − 1

)u2
(

q − t− u2

D − hu2 − 1

)2u3

· · ·
(

q − t−∑h−1
j=2 uj

D − h
∑h−1

j=2 uj − 1

)(h−1)uh

≤ (eq(h− 1)/2)t

uu2
2 (u3(q − t− u2))u3 · · · (uh(q − t−∑h−1

j=2 uj)h−2)uh

(
q − t

D − 1

)t

≤ (eq(h− 1)/2)t

uu2
2 (u3(q − t− u2))u3 · · · (uh(q − t−∑h−1

j=2 uj)h−2)uh

( q

D

)t

.

Since q ≥ ∑h
i=2 iui and t =

∑h
i=2(i − 1)ui, q − t − ∑i

j=2 uj ≥
∑h

j=i+1 uj ≥ ui+1 for all
2 ≤ i ≤ h− 1, and so

uu2
2 (u3(q − t− u2))

u3 · · ·
(
uh

(
q − t−

h−1∑
j=2

uj

)h−2)uh ≥ uu2
2 u2u3

3 · · ·u(h−1)uh

h .

We prove the following claim later.

Claim 4.5.11 Let t =
∑h

j=2(j − 1)uj. Then

uu2
2 u2u3

3 · · ·u(h−1)uh

h ≥
(

2t

h(h− 1)

)t

.

By Claim 4.5.11, for any h ≥ 2,

p(q,u) ≤
(

eqh(h− 1)2

4t
· q

D

)t

, ∀u ∈ U .

Since |U| < th, we have

p(q, t) ≤ th
(

eh(h− 1)2q2

4tD

)t

=

(
exp

(
h ln t

t

)
eh(h− 1)2q2

4tD

)t

.
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In particular, if t → ∞ as n → ∞, then h ln t/t → 0 and so exp(h ln t/t) ≤ (h/(h − 1))2

provided n is large enough. So

p(q, t) ≤
(

eh3q2

4tD

)t

.

Proof of Claim 4.5.11. We solve the following optimization problem

(P1) min mm2
2 m2m3

3 · · ·m(h−1)mh

h

s.t. m2 + 2m3 + · · ·+ (h− 1)mh = t

m2,m3, . . . , mh ≥ 0

Letting xi = (i−1)mi for 2 ≤ i ≤ h, and taking the logarithm of the objective function,
(P1) is equivalent to the following optimization problem.

(P2) min x2 ln x2 + x3 ln(x3/2) + · · ·+ xh ln(xh/(h− 1))

s.t. x2 + x3 + · · ·+ xh = t

x2, x3, . . . , xh ≥ 0

For convention, let x ln x = 0 if x = 0. Applying the Lagrange multiplier yields x∗ =
(x∗2, x

∗
3, . . . , x

∗
h) with xi = 2t(i− 1)/h(h− 1), which is a feasible solution of (P2). In order

to show that this is an optimal solution, we need to show that the optimal solution does
not appear on the boundary.

Let x be any solution on the boundary of (P2). Then there exists 2 ≤ i ≤ h such
that xi = 0. There also exists j with xj > 0. Consider x′ with x′i = (i − 1)xj/h,
x′j = xj−(i−1)xj/h and x′l = xl for any l 6= i, j. Then x′ is feasible and it is straightforward
to check that

x′i ln(x′i/(i− 1)) + x′j ln(x′j/(j − 1)) < xi ln(xi/(i− 1)) + xj ln(xj/(j − 1)).

Hence x′ cannot be an optimal solution. This proves that x∗ is the minimizer and so the
optimal value of (P1) is exp(t ln(2t/(h(h− 1)))) = (2t/(h(h− 1)))t.

4.6 Discussion of a more general setting

In a more general setting, let H be a hypergraph on n vertices and M(n) hyperedges. Each
hyperedge xi is associated with a parameter wi. Call w = (wi)

M
i=1 the parameter vector.

Let hi be the length of the hyperedge xi. Then h = (hi)
M
i=1 is called the length vector.
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We say that H is (w, k)-orientable if there exists a wi-orientation for each hyperedge xi

such that the maximum indegree is at most k. Define Gn,M,h to be the probability space
of hypergraphs on n vertices, M hyperedges with the length vector of hyperedges h. We
can define the (w, k)-core in a similar way as the (w, k)-core. Let Ĥ denote the (w, k)-core
of H ∈ Gn,M,h. Let n′, M ′ denote the number of vertices and the number of hyperedges

in Ĥ. Let h′ = (h′i)
M ′
i=1 and w′ = (w′

i)
M ′
i=1 be the length vector and the parameter vector

of Ĥ. Then clearly if h′i = hi − j for some j, then w′
i = wi − j. Define the density of Ĥ

to be
∑M ′

i=1 w′
i/n

′. If there exists a constant h > 0 such that hi ≤ h for any i ≤ M , then

in principle, we can analyse the properties of Ĥ using the differential equation method
and we believe the density of Ĥ is a.a.s. determined by some differential equation system.
However, it is hard to determine the threshold when the density of Ĥ is at most k. It
may be possible to adapt proofs in this chapter to prove the following conjecture, but we
haven’t checked this.

Conjecture 4.6.1 A random hypergraph H in Gn,M,h is a.a.s. (w, k)-orientable if for some
constant ε > 0, the density of the (w, k)-core of H is at most k − ε.
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Chapter 5

Probabilities of induced subgraphs in
random regular graphs

5.1 Introduction

A graph G is called a B-graph with vertex bipartition L and R if V (G) = L∪R, and L is an
independent set of G. A graph G is called a B-pseudograph with vertex bipartition L and
R if G is a multi-graph, namely, loops and multiple edges are allowed, and V (G) = L ∪R
with L being an independent set of G. An edge in a B-graph or B-pseudograph is called
a crossing edge if its end vertices are in L and R respectively. An edge is called an
embedding edge if its end vertices are both in R. Given d as a nonnegative integer vector,
let G(L,R,d) be the set of B-graphs with bipartition L and R and the degree sequence d
and let g(L,R,d) = |G(L,R,d)|. By convention, let g(L,R,d) = 0 if d is not nonnegative.

Counting B-graphs directly leads to the study of induced subgraphs. Let S be a vertex
subset of [n] and let s denote |S|. Without loss of generality, we can assume S = [s] by
simply relabelling the vertices in [n]. Let H be a graph on the vertex set S with degree
sequence (ki)1≤i≤s. Let d′ be the integer vector defined by d′i = d− ki for i ∈ S and d′i = d
for i ∈ [n] \ S. Then the number of d-regular graphs with GS = H is g(S, [n] \ S,d′).
Therefore, the probability that GS = H in Gn,d is equal to g(S, [n] \ S,d′) divided by the
number of d-regular graphs.

The asymptotic formula for P(GS = H) in Gn,d is given in Section 5.2 together with
some direct applications of the result. Proofs are given in Section 5.3 together with the
introduction of switching operations that are used in our proofs.
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5.2 Main results

For any positive integer m, let [m] denote the set {1, 2, . . . , m}. Given the degree se-
quence d = (d1, . . . , dn), let dmax = max{di, i ∈ [n]}. Let M(d) =

∑n
i=1 di and M2(d) =∑n

i=1 di(di − 1). Define µ(d) to be M2(d)/2M(d).

The following theorem gives the asymptotic formula of the number of graphs with given
degree sequences when dmax is not too large. Note that the restriction of dmax was relaxed
further by McKay and Wormald [43] as introduced in Section 2.3.1, but it requires a few
extra terms in the exponential factor of the asymptotic formula. However, the result we
cited as follows is enough for the purpose of this chapter.

Theorem 5.2.1 (McKay [42]) For any degree sequence d = (d1, . . . , dn) with dmax =
o(M(d)1/4), the number of graphs with degree sequence d is uniformly

M(d)!

2M(d)/2(M(d)/2)!
∏n

i=1 di!
· exp

(−µ(d)− µ(d)2 + O(d4
max/M(d))

)
.

Note that by uniform in the above theorem we mean O(.) is uniform over all d, i.e.
g(d) = O(f(d)) implies there exists an absolute constant C > 0 such that |g(d)| < Cf(d)
for all d.

A special case of Theorem 5.2.1 gives that the number of d-regular graphs on n vertices
is asymptotically

(dn)!

2dn/2(dn/2)!(d!)n
· exp

(
−d2 − 1

4

)
,

when d = o(n1/3).

Next we estimate g(L,R,d). Let M(d) =
∑n

i=1 di. For any S ⊂ L ∪ R, define
M1(d, S) =

∑
i∈S di and M2(d, S) =

∑
i∈S di(di − 1). Define

µ0(d, L, R) =
(M1(d, R)−M1(d, L))M2(d, R)

2M1(d, R)2
, (5.2.1)

µ1(d, L, R) =
M2(d, R)M2(d, L)

2M1(d, R)2
, (5.2.2)

µ2(d, L, R) = µ0(d, L, R)2. (5.2.3)

Note that we drop the notations L and R from µi(d, L, R) for i = 1, 2 when the context
is clear. Note also that if M1(d, R) < M1(d, L), then g(L,R,d) is trivially 0. So we may
assume that

M1(d, R) ≥ M1(d, L). (5.2.4)

The following theorem gives the asymptotic formula of g(L,R,d).
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Theorem 5.2.2 For any degree sequence d such that dmax = o(M(d)1/4) and M1(d, R) ≥
M1(d, L), we have uniformly,

g(L,R,d) =

(
1 + O

(
d2

max + ln M(d)√
M(d)

))

M1(d, R)! exp(−µ0(d)− µ1(d)− µ2(d))

2(M1(d,R)−M1(d,L))/2((M1(d, R)−M1(d, L))/2)!
∏n

i=1 di!
.

Let S = [s] be a subset of the vertex set [n] and let H be a graph on the vertex set S.
Let PGn,d

(S, H) denote the probability that GS = H in Gn,d. Applying Theorem 5.2.2 and
Theorem 5.2.1 we directly get the following theorem.

Theorem 5.2.3 For any degree sequence d with dmax = o(M(d)1/4) and 0 < s < n,
let S = [s] ⊂ [n] and let H be a graph on the vertex set S with the degree sequence
k = (k1, . . . , ks). Let h =

∑h
i=1 ki and let d′ = (d′1, . . . , d

′
n) with d′i = di − ki for i ∈ S

and d′i = di for i /∈ S. If d′i < 0 for some i ∈ [n] or M1(d
′, [n] − S) < M1(d

′, S), then
PGn,d

(S, H) = 0. Otherwise, if d′max = o(M(d′)1/4), then uniformly,

PGn,d
(S, H) = exp

(−µ0(d
′)− µ1(d

′)− µ2(d
′) + µ(d) + µ(d)2

) s∏
i=1

[d]ki

M1(d
′, [n]− S)!2M1(d′,S)+h/2(M(d)/2)!

((M1(d′, [n]− S)−M1(d′, S))/2)!M(d)!

(
1 + O

(
d′max

2 + ln M(d′)√
M(d′)

+
d4

max

M(d)

))
.

Proof

PGn,d
(S, H) =

g(S, [n]− S,d′)
#graphs with degree sequence d

.

The value of g(S, [n]−S,d′) is given by Theorem 5.2.2 and the number of d-regular graphs
is given by Theorem 5.2.1. Theorem 5.2.3 then follows.

Let PGn,d
(S, H) denote the probability that GS = H in the probability space of random

d-regular graphs. Then the following corollary follows from Theorem 5.2.3 and by applying
the Stirling’s formula.

Corollary 5.2.4 Given 0 < s < n, let S = [s] ⊂ [n] and let H be a graph on the vertex
set S with the degree sequence k = (k1, . . . , ks). Let h =

∑h
i=1 ki. Assume d = o((n−s)1/3)

and dn− 2ds + h →∞,

PGn,d
(S, H) =

(
1 + O

(
d2 + ln(dn− h)√

dn− h

))
exp

(
−µ0(d

′)− µ1(d
′)− µ2(d

′) +
d2 − 1

4

)

eh/2

s∏
i=1

[d]ki

√
dn− ds

dn− 2ds + h
· (dn− ds)dn−ds

(dn− 2ds + h)(dn−2ds+h)/2(dn)dn/2
,
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where d′i = d− ki for i ∈ S and d′i = d for i /∈ S.

Proof By the definition of µ(d), we immediately get that µ(d)+µ(d)2 = (d2−1)/4 when
d is a constant sequence with each term d. We also have that M(d′) in Theorem 5.2.3
equals to dn− h in this special case and d′max ≤ d. By Theorem 5.2.3,

PGn,d
(S, H) =

(
1 + O

(
d2 + ln(dn− h)√

dn− h

))
exp

(
−µ0(d

′)− µ1(d
′)− µ2(d

′) +
d2 − 1

4

)

s∏
i=1

[d]ki

M1(d
′, [n]− S)!2M1(d′,S)+h/2(M(d)/2)!

((M1(d′, [n]− S)−M1(d′, S))/2)!M(d)!

Since M(d) = dn, M1(d
′, [n] − S) = dn − ds, M1(d

′, S) = ds − h, and n! ∼ √
2πn(n/e)n

by the Stirling’s formula, we have

M1(d
′, [n]− S)!2M1(d′,S)+h/2(M(d)/2)!

((M1(d′, [n]− S)−M1(d′, S))/2)!M(d)!

∼ eh/2

√
dn− ds

dn− 2ds + h
· (dn− ds)dn−ds

(dn− 2ds + h)(dn−2ds+h)/2(dn)dn/2
,

and the Corollary 5.2.4 follows.

The formula in Corollary 5.2.4 can be simplified as follows if the size of H is not too
large.

Corollary 5.2.5 Let S, H, k and h be defined as in Corollary 5.2.4. If d = o(n1/3),
s2d = o(n) and d2s = o(n), then

PGn,d
(S, H) =

(
1 + O((d3/2 + ln n)/

√
n + s2d/n + d2s/n)

)
(dn)−h/2

s∏
i=1

[d]ki
.

The proofs of Theorem 5.2.3 and Corollary 5.2.5 are provided in Section 5.3.

The following corollary is a special case of Corollary 5.2.4 where H is an empty graph.

Corollary 5.2.6 Assume d = o(n1/3). Then for any S ⊂ [n], if 0 ≤ |S|/n < 1/2,

P(S is an independent set) =

(
1 + O((d3/2 + ln n)/

√
n)

)√ 1− δ

1− 2δ

(
(1− δ)1−δ

(1− 2δ)(1−2δ)/2

)dn

exp (f(d, δ)) ,

where δ = δ(n) = |S|/n, and

f(d, δ) = − δ2

4(1− δ)2
d2 +

δ

2(1− δ)2
d +

δ2 − 2δ

4(1− δ)2
.

Proof Apply Corollary 5.2.4 with h = 0.
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5.3 Proofs

We can use the pairing model to generate B-graphs with the vertex partition L ∪ R and
the degree sequence d = {d1, . . . , dn}. Consider n buckets representing the n vertices.
Let each bucket i contain di points. Take a random pairing over these points. We say a
pairing is restricted if no pair has both ends in the buckets representing vertices in L. Let
M(L,R,d) be the class of all restricted pairings. A pair in a pairing is called a mixed
(pure) pair if it corresponds to a mixed (pure) edge in the corresponding B-pseudograph.

Every restricted pairing corresponds to a B-pseudograph by contracting all points in
each bucket to form a vertex. On the other hand, any simple B-graph corresponds to∏

i=1n di! restricted pairing in M(L,R,d). Then all simple B-graphs occur with the same
probability in the pairing model.

The main goal of this section is to compute the probability that a B-pseudograph
generated by the pairing model is simple. Recall that {{u1, u

′
1}, {u2, u

′
2}, {u3, u

′
3}} is a

triple pair if u1, u2, u3 are in one bucket and u′1, u′2, u′3 are in another bucket. We call the
two buckets the end vertices of the triple pair. If the buckets represent vertices in L and
R respectively, then the triple pair is called a mixed triple pair. If both buckets represent
vertices in R, then the triple pair is called a pure triple pair. Given a random restricted
pairing, let T1 and T2 be the number of mixed and pure triple pairs respectively. In this
section, there is only one degree sequence d that is referred to. So we drop the notation
d from M(d) and Mi(d, L), Mi(d, R), µi(d) for simplicity. Since M1(R) ≥ M1(L) by the
assumption (5.2.4), we have M1(R) ≥ M/2.

Lemma 5.3.1 Assume dmax = o(M1/4). Then E(T1) = o(1) and E(T2) = o(1).

Proof For any two vertices i ∈ L and j ∈ R, we compute the probability that there is
a triple pair with end vertices i and j. There are

(
di

3

)
ways to choose three points from

the bucket i and
(

dj

3

)
ways to choose three points from the bucket j. There are 6 ways to

match the six chosen points to form a triple pair. Let U(m) for any positive even integer
m denote the number of perfect matchings over m points. Then

U(m) =

m/2−1∏
i=0

(m− 2i− 1) =
m!

2m/2(m/2)!
.

The probability for the three particular pairs to occur is

[M1(R)− 3]M1(L)−3U(M1(R)−M1(L))

[M1(R)]M1(L)U(M1(R)−M1(L))
∼ M1(R)−3.
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This is because the number of ways to match the remaining M1(R)−3 points in L to points
in R, except for the three chosen points in the vertex j, is [M1(R) − 3]M1(L)−3, and the
number of matchings over the remaining M1(R)−M1(L) points in R is U(M1(R)−M1(L)),
whilst the total number of matchings over all M points with all points in L matched to
ones in R is [M1(R)]M1(L)U(M1(R)−M1(L)). Hence we have

E(T1) ∼
∑
i∈L

∑
j∈R

6

(
di

3

)(
dj

3

)
M1(R)−3 = O

((∑
i∈L

d3
i

)(∑
j∈R

d3
j

))
M−3

= O

(
d4

maxM1(L)M1(R)

M3

)
= O

(
d4

max

M

)
= o(1),

where the second equality uses M/2 ≤ M1(R) ≤ M .

Similarly we can compute E(T2). We first compute the probability that a triple pair
with ends i, j ∈ R occurs. There are

(
di

3

)(
dj

3

)
ways to choose three points from each bucket

and six ways to match them up. The probability for any such particular three pairs to
occur is

[M1(R)− 6]M1(L)U(M1(R)−M1(L)− 6)

[M1(R)]M1(L)U(M1(R)−M1(L))
,

because the number of ways to match all points in L to points in R, except the six chosen
points, three from bucket i and j each, is [M1(R)− 6]M1(L), and the number of matchings
over all remaining points in R is U(M1(R)−M1(L)− 6). Since

[M1(R)− 6]M1(L)

[M1(R)]M1(L)

∼ (M1(R)−M1(L))6

M1(R)6
, and

U(M1(R)−M1(L)− 6)

U(M1(R)−M1(L))
∼ (M1(R)−M1(L))−3,

this probability is asymptotically

(M1(R)−M1(L))3

M1(R)6
= O(M1(R)−3).

Therefore,

E(T2) ∼
∑
i∈R

∑
j∈R

6

(
di

3

)(
dj

3

)
M1(R)−3 = O

((∑
i∈R

d3
i

)(∑
j∈R

d3
j

))
M−3

= O

(
d4

maxM1(R)2

M3

)
= O

(
d4

max

M

)
= o(1).

Let two loops that start from a common vertex be called a double loop and let I be
the number of double loops.
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Lemma 5.3.2 Assume d4
max = o(M). Then E(I) = o(1).

Proof We first compute the probability that a double loop starting at i occurs. There are(
di

4

)
ways to choose 4 distinct points from the i-th bucket and there are 3 ways to match

up the four points to form a double loop. The probability that any such particular two
pairs occur is

[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))
∼ (M1(R)−M1(L))2

M1(R)4
= O(M1(R)−2),

because the number of ways to match all points in L to points in R, except the four chosen
points in i, is [M1(R)− 4]M1(L), and the number of matchings over all remaining points in
R is U(M1(R)−M1(L)− 4). Therefore,

E(I) ∼
∑
i∈R

3

(
di

4

)
M1(R)−2 = O

(
d3

max/M1(R)
)

= O

(
d3

max

M

)
= o(1).

Lemmas 5.3.1 and 5.3.2 show that a.a.s. there are no triple pairs or double loops in a
random restricted pairing. So we only need to consider the loops and the double pairs.
Recall that a pair {u, u′} in a pairing is called a loop if u and u′ are contained in the same
bucket and two pairs {u1, u

′
1}, {u2, u

′
2} are called a double pair if u1, u2 are in one bucket

and u′1, u′2 are in another bucket. In a restricted pairing, there are two types of double
pairs. One is that u1, u2 are contained in a bucket in L and u′1, u′2 are contained in a
bucket in R. The other is that all of u1, u2, u′1 and u′2 are contained in buckets in R. We
call the former type 1 and the latter type 2.

Let B0, B1 and B2 be the numbers of loops and double pairs of types 1 and 2 respectively.
We first compute the expected value of Bi for i = 0, 1, 2. Recall from (5.2.1)–(5.2.3) that

µ0 =
(M1(R)−M1(L))M2(R)

2M1(R)2
, µ1 =

M2(R)M2(L)

2M1(R)2
, µ2 = µ2

0.

Lemma 5.3.3 For i = 0, 1, EBi ∼ µi and EB2 = O(µ2). More specifically, if dmax =
o(M1/3), then EB2 = (1 + o(1))µ2 + o(1).

Proof Using the same patten of proofs as for Lemma 5.3.1 and Lemma 5.3.2, we get
immediately
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EB0 =
∑
i∈R

(
di

2

)
[M1(R)− 2]M1(L)U(M1(R)−M1(L)− 2)

[M1(R)]M1(L)U(M1(R)−M1(L))

∼
∑
i∈R

[di]2
2

M1(R)−M1(L)

M1(R)2
= µ0;

EB1 =
∑
i∈L

∑
j∈R

2

(
di

2

)(
dj

2

)
[M1(R)− 2]M1(L)−2U(M1(R)−M1(L))

[M1(R)]M1(L)U(M1(R)−M1(L))

∼ M2(L)M2(R)

2
M1(R)−2 = µ1;

EB2 =
∑

i,j∈R,i<j

2

(
di

2

)(
dj

2

)
[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))

=
1

2

∑
i∈R

∑
j∈R

2

(
di

2

)(
dj

2

)
[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))

−1

2

∑
i∈R

2

(
di

2

)(
di

2

)
[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))
(5.3.1)

= (1 + o(1))
M2(R)2

4

(M1(R)−M1(L))2

M1(R)4
−O(d3

max/M) = (1 + o(1))µ2 −O(d3
max/M).

Note that the fraction 1/2 appears in (5.3.1) because of the double counting of each pair
i < j and the term subtracted accounts for the case i = j, which, following the argument
in the proof of Lemma 5.3.2, is bounded by O(d3

max/M). Hence the lemma follows.

The following two corollaries follow directly from Lemma 5.3.3 by the first moment
method.

Corollary 5.3.4 Let w(n) =
√

M/d2
max. Then P

(
Bi > w(n)µi

)
= O(w(n)−1) = O(d2

max/
√

M)
for i = 0, 1, 2.

Corollary 5.3.5 Assume d4
max = o(M). Let w(n) =

√
M/d2

max. If M2(R) ≤ d3
maxw(n),

then the probability that there exists a loop or a double pair is O(dmax/
√

M + d4
max/M).

Proof If d4
max = o(M) and M2(R) ≤ d3

maxw(n), then EB0 = O(M2(R)/M1(R)) =
O(d3

maxw(n)/M) = O(dmax/
√

M); EB1 = O(M2(L)d3
max/M

2) = O(d4
max/M);

EB2 = O(d6
maxw(n)2/M2) = O(d2

max/M).

Given P as a restricted pairing, we say the ordered pair of pairs ((u1, u
′
1), (u2, u

′
2))

form a directed 2-path in P if u′1 and u2 lie in the same bucket and the three buckets
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where u1, u′1 and u′2 lie in respectively are all distinct. We then say that the two pairs
(u1, u

′
1) and (u2, u

′
2) are adjacent. For instance, the ordered pair of pairs ((1, 2), (3, 4))

form a directed 2-path in the four examples in Figure 5.1. Note that a directed 2-path
in a pairing corresponds to a directed 2-path in the corresponding B-pseudograph. Let v
denote the bucket where u′1 and u2 lie in. We say the directed 2-path ((u1, u

′
1), (u2, u

′
2)) in

P is simple if neither of {u1, u
′
1} and {u2, u

′
2} is contained in a double pair and there is no

loop at v.

We study the four types of directed 2-paths as illustrated in Figure 5.1. The first
type refers to those with vertices lying in R; the second type refers to directed 2-paths
((1, 2), (3, 4)) with 1 lying in a bucket in L, 2 and 3 both lie in one bucket in R and 4 lies
in another bucket in R; the third type refers to directed 2-paths ((1, 2), (3, 4)) with 1 and
4 each lying in a bucket in L and 2 and 3 both lying in one bucket in R; the fourth type
refers to directed 2-paths ((1, 2), (3, 4)) with 1 and 4 each lying in a bucket in R and 2 and
3 both lying in one bucket in L. Let these four types of directed 2-paths be called type 1,
2, 3 and 4 respectively.

Given P , let t be the number of pure pairs in P . Then t = (M1(R) −M1(L))/2. Let
Ai(P) denote the number of simple directed 2-paths of type i for i = 1, 2, 3, 4 and let
ai(l0, l1, l2) = E(Ai(P) | P ∈ Cl0,l1,l2). Clearly A4(P) =

∑
i∈L d(i)(d(i) − 1) − O(l1dmax) =

M2(L) − O(l1dmax) for any P ∈ Cl0,l1,l2 since the number of non-simple directed 2-path of
type 4 is bounded by O(l1dmax).

Let Cl0,l1,l2 be the class of restricted pairings in M(L,R,d) that contains l0 loops, l1
double pairs of types 1, l2 double pairs of type 2 and no double loop or triple pairs. We use
some switching operations to estimate the ratios of |Cl0,l1,l2|/|Cl0−1,l1,l2|, etc. The switching
operations we are going to use are ideologically similar to, although look different from, the
switching operations used by McKay and Wormald [43]. The switching operations used
in [43] do not apply here because the resulting pairing does not remain restricted after
they are applied to a given pairing. However, they can be easily adjusted and adapted to
our case.

The following two switching operations are used to prove Lemma 5.3.6.

L1-switching: take a loop {2, 3} and two pure pairs {1, 5}, {4, 6} such that the six points
are located in the five distinct buckets as drawn in Figure 5.2. Replace the three pairs
{2, 3}, {1, 5}, {4, 6} by {1, 2}, {3, 4}, {5, 6}.
L2-switching: take a loop {2, 3} and two mixed pairs {1, 5}, {4, 6} such that the six points
are located in the five distinct buckets as drawn in Figure 5.3. Replace the three pairs
{2, 3}, {1, 5}, {4, 6} by {1, 2}, {3, 4}, {5, 6}.

For any switching operation that converts a pairing P1 to another pairing P2, we define
the operation that converts P2 to P1 the inverse of the switching operation under discussion.
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Figure 5.1: four different types of 2-paths

Thus, the inverse L1-switching operation can be defined as follows. Take a 2-directed path
(not necessarily simple) ((1, 2), (3, 4)) of type 1 and a pure pair {5, 6} such that the points
1, 2, 4, 5 and 6 lie in five distinct buckets. Replace {1, 2}, {3, 4} and {5, 6} by {2, 3}, {1, 5}
and {4, 6}. The inverse L2-switching can be defined in the same way.

Recall that ai(l0, l1, l2) = E(Ai(P) | P ∈ Cl0,l1,l2) for 1 ≤ i ≤ 4. The following lemma
gives the estimation of the ratio |Cl0,l1,l2|/|Cl0−1,l1,l2|, which is approached by counting ways
to perform certain L1-switchings and the inverse L1-switchings. Counting these switching
operations involves the estimation of ai(l0, l1, l2). Since the computation of ai(l0, l1, l2) for
i = 1, 2, 3 is not easy, we postpone their calculation and express the result in Lemma 5.3.6
(and also in Lemmas 5.3.7 and 5.3.8) in terms of ai(l0, l1, l2).

Lemma 5.3.6 Let a1 = a1(l0 − 1, l1, l2) and a3 = a3(l0 − 1, l1, l2). Assume l0 ≥ 1. Then

(i) : If t ≥ 1,

|Cl0,l1,l2 |
|Cl0−1,l1,l2|

=
a1

4l0t
(1 + O(d2

max/t + (l0 + l2)/t)),

(ii) : If M1(L) ≥ 1 and a3 ≥ 1,

|Cl0,l1,l2 |
|Cl0−1,l1,l2|

=
ta3

l0M1(L)2
(1 + O(d2

max/M1(L) + d3
max/a3 + l1/M1(L) + (l0 + l2)/t)).
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Figure 5.2: L1-switching
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Figure 5.3: L2-switching

Proof Let P ∈ Cl0,l1,l2 and we consider the number of L1-switching operations that convert
P to some P ′ ∈ Cl0−1,l1,l2 . For the purpose of counting, we label the points in the pairs
that are under consideration as shown in Figure 5.2. So for any pair under consideration,
for instance, a given loop or a given double pair, we count how many ways we can label
the points in the pair. Let N denote the number of ways to choose the pairs and label
the points in them so that an L1-switching can be applied to these pairs, which converts
P to some P ′ ∈ Cl0−1,l1,l2 without any simultaneously created loops or double pairs. This
implies that the switching operations counted by N destroy only one loop and there is no
simultaneous creation or destruction of other loops or double pairs.

We first give a rough count of N , that includes some forbidden cases (due to creating
double pairs, etc) and then estimate the error. There are l0 ways to choose a loop e0 and
t(t− 1) ways to choose (e1, e2), an ordered pair of two distinct pure pairs. For any chosen
loop e0, there are two ways to distinguish the two end points to label the points 2 and
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3 as shown in Figure 5.2. For each of the other pairs, there are two ways to label its
two endpoints, as 1 and 5, or 4 and 6, as the case may be. Hence a rough estimation of
N is 8l0t(t − 1), including the count of some forbidden choices of e0, e1 and e2, which we
estimate next. Let the vertices that contain points 2, 1, 5, 6, 4 be denoted by v0, v1, v2, v3, v4

respectively as shown in Figure 5.2. The only possible exclusions caused by invalid choices
in the above are the following:

(a) the loop e0 is adjacent to e1 or e2, or e1 is adjacent to e2, in which case, the L1-
switching is not applicable since the definition of the L1-switching excludes cases
where the edges are adjacent because it requires the end vertices to be distinct;

(b) there exists a pair between {v0, v1}, or {v0, v4}, or {v2, v3} in P , in which case there
will be more double pairs created after the L1-switching is applied;

(c) the pair e1 or e2 is a loop or is contained in a double pair, in which case there is a
simultaneously destroyed loop or double pair.

First we show that the number of exclusions from case (a) is O(l0tdmax). The number of
pairs of (e0, e1) is at most l0t. For any given e0 and e1, the number of ways to choose a pair
e2 such that e2 is adjacent to e0 or e1 is at most 2dmax since both e0 and e2 are adjacent
to at most dmax pairs. Hence the number of triples of (e0, e1, e2) such that e2 is adjacent
to either e0 or e1 is at most 2l0tdmax. By symmetry, the number of triples of (e0, e1, e2)
such that e1 is adjacent to either e0 or e2 is also at most 2l0tdmax. Hence the number of
exclusions from case (a) is O(l0tdmax).

Next we show that the number of exclusions from case (b) is O(l0td
2
max). As just

explained, the number of pairs of (e0, e1) is at most l0t. For any given e0 and e1, the
number of ways to choose a pair e2 such that v3 is adjacent to v2 or v4 is adjacent to v0 is
at most 2d2

max, since both e0 and e1 have at most d2
max edges that are of distance 2 away.

Hence the number of triples (e0, e1, e2) such that v3 is adjacent to v2 or v4 is adjacent to v0

is O(l0td
2
max). Again symmetry, the number of triples (e0, e1, e2) such that v3 is adjacent

to v2 or v0 is adjacent to v1 is O(l0td
2
max). Hence the number of exclusions from case (b) is

O(l0td
2
max).

Now we show that the number of exclusions from case (c) is O(l20t+ l0tl2). The number
of ways to choose e0, e1, e2 such that e1 or e2 is a loop is at most 2l20t and the number of
ways to choose these three pairs such that e1 or e2 is contained in a double pair at most
2 · l0t · 2l2 = O(l0tl2). Hence the number of exclusions from case (c) is O(l20t + l0tl2).

Thus, the number of exclusions in the calculation of N is O(l0td
2
max + l20t+ l0tl2). Hence

N = 8l0t
2(1 + O(d2

max/t + (l0 + l2)/t)).

Now choose an arbitrary pairing P ′ ∈ Cl0−1,l1,l2 . Let N ′ be the number of ways to choose
the pairs and label points in them so that an inverse L1-switching operation can be applied
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to these pairs such that P ′ is converted to some P ∈ Cl0,t1,t2 without any simultaneously
destroyed loops or double pairs. To apply this operation we need to choose e′0, e

′
1, e

′
2, such

that (e′0, e
′
1) is a simple directed 2-path of type 1 and e′2 is a pure pair. We consider

the directed 2-path (e′0, e
′
1) because it automatically gives a unique way of distinguishing

vertices v1, v0 and v4 and labelling points as 1, 2, 3 and 4 in Figure 5.2. There are A1(P ′)
simple directed 2-paths of type 1, and hence A1(P ′) ways to choose the points as 1, 2, 3
and 4. The number of ways to choose a pure pair e′2 is t and so there are 2t ways to fix
the vertices v2, v3 and the points {5, 6}. The only possible exclusions to the above choices
are listed the following cases.

(a) There exists a pair between {v1, v2} or {v3, v4} in P ′, since then more double pairs
will be created if the inverse L1-switching is applied.

(b) The pair e′2 is a loop, in which case the inverse L1-switching is not applicable, or
e′2 is contained in a double pair, in which case a double pair is destroyed after the
application of the inverse L1-switching.

(c) The pair e′2 is adjacent to the 2-path or is contained in the 2-path, in which case the
inverse L1-switching operation is not applicable.

The number of exclusions from case (a) is O(A1(P ′)d2
max) and the numbers of exclusions

from case (b) and (c) are O(A1(P ′)l0 + A1(P ′)l2) and O(A1(P ′)dmax) respectively.

Thus, the number of exclusions from case (a)–(d) is O(A1(P ′)d2
max+A1(P ′)l0+A1(P ′)l2).

So

E(N ′) = E
(
2A1t(1+O(d2

max/t+(l0+l2)/t)) | P ′ ∈ Cl0−1,l1,l2

)
= 2a1t(1+O(d2

max/t+(l0+l2)/t)).

We count the pairs of (P ,P ′) such that P ∈ Cl0,t1,t2 , P ′ ∈ Cl0−1,l1,l2 , and P ′ is obtained by
applying an L1-switching to P , which destroys only one loop without any simultaneously
created loops or double pairs. Then the number of such pairs of pairings equals to both
|Cl0,l1,l2|E(N) and |Cl0−1,l1,l2|E(N ′). Thus,

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
a1

4l0t
(1 + O(d2

max/t + (l0 + l2)/t)).

This proves part (i) of Lemma 5.3.6. Analogously we can deduce the following by analysing
the L2-switching and its inverse.

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
2ta3 + O(d3

maxt) + O(l0a3 + l2a3)

2l0M1(L)2 + O(d2
maxM1(L)l0 + l0M1(L)l1)

=
ta3

l0M1(L)2
(1 + O(d2

max/M1(L) + d3
max/c + (l0 + l2)/t + l1/M1(L))).
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Then we obtain part (ii) of Lemma 5.3.6.

We use the following two switching operations to prove Lemma 5.3.7.

D1-switching: take a double pair {{3, 4}, {5, 6}} that are of type 1 and also two pure pairs
{1, 2} and {7, 8} such that the eight points are located in the six distinct buckets as shown
in Figure 5.4. Replace the four pairs by {1, 3}, {5, 7}, {2, 4}, {6, 8}.

1

2

3 4
5 6

7

8

L R L R

3

5

1
2

4
6

7
8

v

v

v

v v

5

1 2

3

4

v
6

v

v

v

v

v

5

1 2

3

4

v
6

Figure 5.4: D1-switching

D2-switching: take a double pair {{3, 4}, {5, 6}} that are of type 1 and also two mixed
pairs {1, 2} and {7, 8} such that the eight points are located in the six distinct buckets as
shown in Figure 5.5. Replace the four pairs by {1, 4}, {6, 7}, {2, 3}, {5, 8}.
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Figure 5.5: D2-switching

The inverse Di-switching for i = 1, 2 can be defined in the same way as the inverse
L1-switching. Take i = 1 as an example. The inverse D1-switching is defined as follows.
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Take a directed 2-path ((1, 3), (5, 7)) of type 4 and a directed 2-path ((2, 4), (6, 8)) of type
1 such that the eight points are located in six distinct buckets as shown in Figure 5.4.
Replace these four pairs by {1, 2}, {3, 4}, {5, 6} and {7, 8}.

Lemma 5.3.7 Let a1 = a1(0, l1 − 1, l2) and a3 = a3(0, l1 − 1, l2). Assume l1 ≥ 1. Then

(i) : If t ≥ 1 and a1 ≥ 1,

|C0,l1,l2|
|C0,l1−1,l2|

=
M2(L)a1

8l1t2
(1 + O(d3

max/a1 + d2
max/t + l2/t + l1dmax/M2(L)));

(ii) : If M1(L) ≥ 1 and a3 ≥ 1,

|C0,l1,l2|
|C0,l1−1,l2|

=
a3M2(L)

2l1M1(L)2
(1 + O(d2

max/M1(L) + d3
max/a3 + l1/M1(L) + l1dmax/M2(L))).

Proof For a given pairing P ∈ C0,l1,l2 , let N be the number of ways to choose the pairs
and label the points in them so that a D1-switching can be applied to these pairs such
that P is converted to some P ′ ∈ C0,l1−1,l2 without simultaneously creating any loops and
double pairs. In order to apply a D1-switching operation, we need to choose a double
pair {e1, e2} of type 1 and an ordered pair of distinct pure pairs (e3, e4). The number of
ways to choose {e1, e2} of type 1 is l1 in C0,l1,l2 and hence the number of ways to label
the points as 3, 4, 5, 6 is 2l1. The number of ways to choose the ordered pair of pure pairs
(e3, e4) is t(t− 1). For any chosen (e3, e4), there are 4 ways to label points as 1, 2, 7, 8. Let
the vertices that contain points 3, 4, 1, 2, 7, 8 be v1, v2, v3, v4, v5, v6 as shown in Figure 5.4.
Hence a rough count of N is 8l1t(t − 1) including the count of a few forbidden choices of
e1, e2, e3, e4, which are listed as follows.

(a) The pair e1 is adjacent to e3 or e4, or e3 is adjacent to e4, in which case the D1-switching
is not applicable.

(b) There exists a pair between {v1, v3}, or {v2, v4}, or {v2, v6}, or {v1, v5} in P , since
another double pair will be created after the D1-switching is applied.

(c) The pair e3 or e4 is contained in a double pair, since another double pair is destroyed
after the D1-switching is applied.

The numbers of forbidden choices of e1, e2, e3, e4 coming from case (a), (b) and (c) are
O(l1tdmax), O(l1td

2
max) and O(l1tl2) respectively. So N = 8l1t

2(1 + O(d2
max/t + l2/t)).

For a given pairing P ′ ∈ C0,l1−1,l2 , let N ′ be the number of ways to choose the pairs and
label the points in them so that an inverse D1-switching operation can be applied to these
pairs which converts P ′ to some P ∈ C0,l1,l2 without destroying any loops or double pairs
simultaneously. In order to apply such an operation, we need to choose two simple directed
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2-paths, one of type 1 and the other of type 4. There are A1(P ′) simple directed 2-paths
of type 1, each of which gives a way of labelling points as 2, 4, 6, 8, and there are A4(P ′)
simple directed 2-paths of type 4, each of which gives a way of labelling points as 1, 3, 5, 7.
Hence a rough count of N ′ is A1(P ′)A4(P ′) including the counts of a few forbidden choices
of such two 2-paths which are listed in the following two cases.

(a) If we have vi = vj, for i ∈ {3, 5} and j ∈ {2, 4, 6}, then the operation is not applicable.

(b) If there already exists a pair between {v1, v2}, or {v3, v4}, or {v5, v6} in P ′, then more
than one double pair will be created in this case if the inverse D1-switching is applied.

The numbers of forbidden choices of the two directed 2-paths from case (a) and (b) are
respectively O(A4(P ′)d2

max) = O(M2(L)d2
max) and O(A4(P ′)d3

max) = O(M2(L)d3
max). So

E(N ′) = E
(
A1(P ′)A4(P ′) | P ′ ∈ C0,l1−1,l2

)
+ O(M2(L)d3

max) = a1(M2(L)− O(l1dmax))(1 +
O(d3

max/a1)). Since l1 ≥ 1, we have M2(L) ≥ 1. Hence

|C0,l1,l2|
|C0,l1−1,l2|

=
a1M2(L)(1 + O(d3

max/a1) + O(l1dmax/M2(L)))

8l1t2(1 + O(d2
max/t) + O(l2/t))

=
a1M2(L)

8l1t2
(1 + O(d3

max/a1 + d2
max/t + l2/t + l1dmax/M2(L))),

and this shows part (i) of Lemma 5.3.7. Similarly we can obtain part (ii) by analysing the
D2-switching and its inverse.

The following two switching operations are used to prove Lemma 5.3.8.

D3-switching: take a double pair {{1, 2}, {3, 4}} that are of type 2 and also two pure pairs
{5, 6} and {7, 8} such that the eight points are located in the six distinct buckets as shown
in Figure 5.6. Replace the four pairs by {1, 5}, {2, 6}, {3, 7}, {4, 8}.
D4-switching: take a double pair {{1, 2}, {3, 4}} that are of type 2 and also four mixed pairs
{5, 6}, {7, 8}, {9, 10}, {11, 12} such that the twelve points are located in the ten distinct
buckets as shown in Figure 5.7. Replace the six pairs by {6, 10}, {8, 12}, {1, 5}, {3, 9},{2, 11},
{4, 7}.

The inverse D3-switching is be defined as follows whereas the inverse D4-switching
can be defined in a similar way. Take two directed paths of type 1 ((5, 1), (3, 7)) and
((6, 2), (4, 8)) such that the eight points are located in six distinct buckets as shown in
Figure 5.6. Replace these four pairs by {5, 6}, {1, 2}, {3, 4}, {7, 8}.
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Figure 5.6: D3-switching
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Figure 5.7: D4-switching

Lemma 5.3.8 Let b1 = E(A1(P)2 | P ∈ C0,0,l2−1) and b3 = E(A3(P)2 | P ∈ C0,0,l2−1).
Assume l2 ≥ 1. Then

(i) : If t ≥ 1 and b1 ≥ 1,

|C0,0,l2|
|C0,0,l2−1| =

b1

16l2t2
(1 + O(d2

max/t + d3
maxa1/b1 + l2/t)).

(ii) : If M1(L) ≥ 1 and b3 ≥ 1,

|C0,0,l2|
|C0,0,l2−1| =

t2b3

l2M1(L)4
(1 + O(d3

maxa3/b3 + d2
max/M1(L) + l2/t)).

Proof For a given pairing P ∈ C0,0,l2 , let N be the number of ways to choose the pairs and
label the points in them so that a D3-switching operation can be applied, which converts

135



P to some P ′ ∈ C0,0,l2−1 without creating any loops and double pairs simultaneously. In
order to apply a D3-switching operation, we need to choose a double pair {e1, e2} of type
2 and an ordered pair of distinct pure pairs (e3, e4). The number of ways to choose {e1, e2}
is l2 in C0,0,l2 and there are four ways to label the points as 1, 2, 3, 4 for any chosen double
pair. The number of ways to choose an ordered pair of two pure pairs (e3, e4) is t(t − 1)
and hence the number of ways to label the points as 5, 6, 7, 8 is 4t(t − 1). Hence a rough
count of N is 16l2t(t−1) including the counts of forbidden choices of pairs e1, . . . , e4 which
we estimate next. Let the vertices that contain points 1, 2, 5, 6, 7, 8 be v1, v2, v3, v4, v5, v6 as
shown in Figure 5.6. The forbidden choices of the pairs e1, . . . , e4 are listed in the following
three cases.

(a) When e1 is adjacent to e3 or e4 or when e3 is adjacent to e4, then the D3-switching is
not applicable.

(b) If there exists a pair between {v1, v3}, or {v2, v4}, or {v1, v5}, or {v2, v6} in P , then
more double pairs will be created after the application of the switching operation.

(c) If e3 or e4 is contained in a double pair, then another double pair would be destroyed
after the application of the switching operation.

The numbers of forbidden choices of e1, . . . , e4 coming from (a),(b) and (c) are O(l2tdmax),
O(l2td

2
max) and O(l22t). So N = 16l2t

2(1 + O(d2
max/t + l2/t)).

For any pairing P ′ ∈ C0,0,l2−1, let N ′ be the number of ways to choose the pairs and label
the points in them so that an inverse D3-switching can be applied to these pairs, which
converts P ′ to some P ∈ C0,0,l2 without simultaneously destroying any loops or double
pairs. In order to apply such an operation, we need to choose an ordered pair of distinct
simple directed 2-paths of type 1. The number of ways to do that is A1(P ′)(A1(P ′) − 1).
So the number of ways to label the points 1, 2, . . . , 8 is A1(P ′)(A1(P ′)− 1), which gives a
rough count of N ′. The forbidden choices of the two paths whose counts should be excluded
from N ′ are listed in the following cases.

(a) The two paths shares some common vertex or common pair. In this case the inverse
D3-switching is not applicable.

(b) There exists a pair between {v1, v2} or {v3, v4} or {v5, v6} in P ′. In this case, more
double pairs will be created after the inverse D3-switching operation is applied.

The numbers of ways to choose the ordered pair of 2-paths in case (a) and (b) are
O(A1(P ′)d2

max) and O(A1(P ′)d3
max) respectively. Thus, E(N ′) = b1(1 + O(d3

maxa1/b1)).

Hence |C0,0,l2|
|C0,0,l2−1| =

b1

16l2t2
(1 + O(d2

max/t + d3
maxa1/b1 + (l0 + l2)/t)).
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Similarly by analysing the D4-switching and its inverse, we obtain Lemma 5.3.8 (ii).

Next we estimate ai(l0, l1, l2) and bi(l0, l1, l2) for i = 1, 3, which appeared in the results
of Lemmas 5.3.6–5.3.8. The following two switchings are used to estimates ai(l0, l1, l2) for
i = 1, 2, 3.

S1-switching. Take a mixed pair and label the points in it by {1, 2} as shown in Figure 5.8.
Take a simple directed 2-path that is vertex disjoint from the chosen mixed pair. Label
the points by 3, 4, 5, 6. Replace these three pairs by {2, 3}, {1, 4} and {5, 6}. The inverse
S1-switching is defined as follows. Take a pure pair {2, 3} and a simple directed 2-path
((1, 4), (5, 6)) such that the six points are located in five distinct buckets shown as in
Figure 5.8. Replace these three pairs by {1, 2}, {3, 4} and {5, 6}.
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4
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4
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1

6

5
5

6

R LL R

Figure 5.8: S1-switching

S2-switching. Take a pure pair {5, 6} and a simple directed 2-path ((1, 2), (3, 4)) such that
the six points are located in five distinct buckets shown as in Figure 5.9. Replace these
three pairs by {1, 2}, {3, 5} and {4, 6}. The inverse S2-switching is defined as follows. Take
a mixed pair {4, 6} and a simple directed 2-path ((1, 2), (3, 5)) such that the six points are
located in five distinct buckets shown as in Figure 5.8. Replace these three pairs by {1, 2},
{3, 4} and {5, 6}.

Lemma 5.3.9 Given l0, l1 and l2, let ` = l0 + l1 + l2. Then

(i) : if M1(L) ≤ M/4,

a1(l0, l1, l2) =
(M1(R)−M1(L))2M2(R)

M1(R)2
(1 + O(d2

max/t + `/t + (`dmax + l0d
2
max)/M2(R)));

(ii) : if M1(L) > M/4,

a3(l0, l1, l2) =
M1(L)2M2(R)

M1(R)2
(1 + O(d2

max/M1(L) + `/M1(L) + (`dmax + l0d
2
max)/M2(R))).
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Figure 5.9: S2-switching

Proof Let ai = ai(l0, l1, l2) for i = 1, 2, 3. We use the S1-switching to compute the ratio
a1/a2 and the S2-switching to compute the ratio a3/a2. We count the ordered pairs of
pairings (P ,P ′) such that both P and P ′ are from Cl0,l1,l2 , and P ′ is obtained from P by
applying an S1-switching to P without any creation or destruction of loops or double pairs.
Let N1 denote the number of such ordered pairs of pairings.

We first prove part (i). Assume M1(L) ≤ M/4. For any directed 2-path of type 1 in
Cl0,l1,l2 , the number of S1-switching operations that can be applied to it is

A1M1(L) + O(A1d
2
max + A1l1) = A1M1(L)

(
1 + O(d2

max/M1(L) + l1/M1(L))
)
, (5.3.2)

For any directed 2-path of type 2 in Cl0,l1,l2 , the number of inverse S1-switching operations
that can be applied to it is

A2 · 2t + O(A2d
2
max + A2(l0 + l2)) = A2 · 2t

(
1 + O(d2

max/t + (l0 + l2)/t)
)
. (5.3.3)

The total number of S1-switching operations that can be applied to pairings in Cl0,l1,l2 is

∑
P∈Cl0,l1,l2

A1(P)M1(L)
(
1+O((d2

max+l1)/M1(L))
)

= a1M1(L)
(
1+O((d2

max+`)/M1(L))
)
|Cl0,l1,l2 |,

and the total number of inverse S1-switching operations that can be applied to pairings in
Cl0,l1,l2 is

∑
P∈Cl0,l1,l2

A2(P) · 2t
(
1 + O(d2

max/t + (l0 + l2)/t)
)

= a2 · 2t
(
1 + O(d2

max/t + `/t)
)
|Cl0,l1,l2|.

These two numbers are both equal to N1. Hence
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a2

a1

=
M1(L)

2t
(1 + O(d2

max/t + d2
max/M1(L) + `/M1(L) + `/t)). (5.3.4)

Similarly, by the S2-switching and its inverse we get

a3

a2

=
M1(L)

2t
(1 + O(d2

max/t + d2
max/M1(L) + `/M1(L) + `/t)). (5.3.5)

Then (5.3.4) gives

a2

a1

=
M1(L)

2t

(
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t),

and (5.3.5) gives

a3

a2

=
M1(L)

2t

(
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t).

Hence

a2 = a1

(
M1(L)

2t

(
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t)

)

a3 = a1

(
M1(L)

2t

(
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t)

)2

.

Since M1(L) ≤ M/4, we have M1(L)/t ≤ 1 and so

a3 = a1

((
M1(L)

2t

)2 (
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t)

)
.

Hence

a1 + 2a2 + a3 = a1

(
1 +

(
2
M1(L)

2t
+

(
M1(L)

2t

)2
)(

1 + O((d2
max + `)/t)

)
+ O((d2

max + `)/t)

)

= a1

((
1 +

M1(L)

2t

)2 (
1 + O((d2

max + `)/t)
)

+ O((d2
max + `)/t)

)

= a1

(
1 +

M1(L)

2t

)2

(1 + O((d2
max + `)/t)). (5.3.6)

For any pairing P ∈ Cl0,l1,l2 , the number of simple directed 2-paths in P is
∑

v∈L∪R d(v)(d(v)−
1) − O(`dmax + l0d

2
max), since the number of non-simple directed 2-path is bounded by

139



O(l0d
2
max + l1dmax + l2dmax) = O(`dmax + l0d

2
max). On the other hand, the number of simple

directed 2-paths in P is A1 + 2A2 + A3 + A4, since 2A2 counts the number of directed
2-paths of type 2 and the opposite direction. Then

a1 + 2a2 + a3 + M2(L)−O(l1dmax) =
∑

v∈L∪R

d(v)(d(v)− 1)−O(`dmax + l0d
2
max).

Thus, a1 +2a2 +a3 = M2(R)+O(`dmax + l0d
2
max) = M2(R)(1+O((`dmax + l0d

2
max)/M2(R))).

Combining this with the equation (5.3.6), we have

a1 =
(M1(R)−M1(L))2M2(R)

M1(R)2
(1 + O(d2

max/t + `/t + (`dmax + l0d
2
max)/M2(R))),

which proves part (i).

Next we show part (ii). Assume M1(L) > M/4. We observe that (5.3.4) also gives

a1

a2

=
2t

M1(L)

(
1 + O((d2

max + `)/M1(L))
)

+ O((d2
max + `)/M1(L)),

and (5.3.5) gives

a2

a3

=
2t

M1(L)

(
1 + O((d2

max + `)/M1(L))
)

+ O((d2
max + `)/M1(L)).

Thus,

a2 = a3

(
2t

M1(L)

(
1 + O((d2

max + `)/M1(L))
)

+ O((d2
max + `)/M1(L))

)

a1 = a3

(
2t

M1(L)

(
1 + O((d2

max + `)/M1(L))
)

+ O((d2
max + `)/M1(L))

)
.

Since M1(L) ≥ 1/4, we have t/M1(L) < 1 and so

a1 + 2a2 + a3 = a3

(
1 +

2t

M1(L)

)2 (
1 + O((d2

max + `)/M1(L))
)

= M2(R)(1 + O((`dmax + l0d
2
max)/M2(R))).

Hence

a3 =
M1(L)2M2(R)

M1(R)2
(1 + O(d2

max/M1(L) + `/M1(L) + (`dmax + l0d
2
max)/M2(R))).

This proves part (ii) of the lemma.

In the next lemma we estimate bi(l0, l1, l2) using some switching operations that are
simple modifications of the Si-switchings for i = 1, 3.
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Lemma 5.3.10 Let b1 = E(A1(P)2 | P ∈ Cl0,l1,l2), b3 = E(A3(P)2 | P ∈ Cl0,l1,l2), a1 =
a1(l0, l1, l2) and a3 = a3(l0, l1, l2). Let ` = l0 + l1 + l2. Then

(i) : if M1(L) ≤ M/4, b1 = a2
1(1 + O(d2

max/t + `/t + (`dmax + l0d
2
max + d3

max)/M2(R)));

(ii) : if M1(L) > M/4,

b3 = a2
3(1 + O(d2

max/M1(L) + `/M1(L) + (`dmax + l0d
2
max + d3

max)/M2(R))).

Proof Let X1(P) denote the number of ordered pairs of vertex disjoint simple 2-paths of
type 1 in P , X2(P) the number of ordered pairs of vertex disjoint simple 2-paths of type
3 in P , X3(P) the number of pairs of vertex disjoint simple 2-paths of type 1 and type
2 respectively, X4(P) the number of pairs of vertex disjoint simple 2-paths of type 1 and
type 3 respectively, and X5(P) the number of pairs of vertex disjoint simple 2-paths of
type 2 and type 3 respectively.

The S3-switching and its inverse, as illustrated in Figure 5.10, is a slight modification
of the S1-switching and its inverse. To apply the s3-switching operation, we need to choose
a mixed pair and two simple 2-paths of type 1 such that they are pairwise disjoint. To
apply its inverse, we need to choose a pure pair and two simple 2-paths of type 2 and
1 respectively such that they are pairwise disjoint. Compared with the S1-switching, it
is required to take an extra simple directed 2-path of type 1 in order to apply an S3-
switching. However, the pairs in the extra 2-path remain after the S3-switching is applied.
Actually, the only extra restriction to the S3-switching compared with the S1-switching is
that the mixed pair and the other simple directed 2-path under consideration are vertex
disjoint from the extra directed 2-path so that the extra 2-path is not “affected” after the
application of the switching. Similarly, the S4-switching and its inverse, as illustrated in
Figure 5.11, is a modification of the S2-switching and its inverse.

We will first estimate E(Xi(P) | P ∈ Cl0,l1,l2) for i ∈ [5] and then using this to estimate
b1 and b3. Following the analogous argument as in Lemma 5.3.9, we can estimate the ratio
E(X3(P) | P ∈ Cl0,l1,l2)/E(X1(P) | P ∈ Cl0,l1,l2) by counting the ordered pairs of pairings
(P ,P ′) such that P ,P ′ ∈ Cl0,l1,l2 and P ′ is obtained by applying an S3-operation to P
without any creation or destruction of loops or double pairs. The the number of such S3-
switching operations that can be applied to P is X1M1(L)+O(X1d

2
max+X1l1). The number

of such inverse S3-operations that can be applied to P is 2tX3 + O(X3d
2
max + X3(l0 + l2)).

So the ratio E(X3(P) | P ∈ Cl0,l1,l2)/E(X1(P) | P ∈ Cl0,l1,l2) equals exactly the right hand
side of (5.3.4) and the ratio E(X4(P) | P ∈ Cl0,l1,l2)/E(X3(P) | P ∈ Cl0,l1,l2) equals exactly
the right hand side of (5.3.5).
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Figure 5.10: S3-switching
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Figure 5.11: S4-switching

On the other hand,

E(A2
1 | P ∈ Cl0,l1,l2) + 2E(A1A2 | P ∈ Cl0,l1,l2) + E(A1A3 | P ∈ Cl0,l1,l2)

= E(A1(A1 + 2A2 + A3) | P ∈ Cl0,l1,l2) = E(A | P ∈ Cl0,l1,l2)M2(R)(1 + O(`d2
max/M2(R)))

= a1(l0, l1, l2)M2(R)(1 + O((`dmax + l0d
2
max)/M2(R))),

and

X1 = A2
1 + O(A1d

3
max), X3 = A1A2 + O(A1d

3
max), X4 = A1A3 + O(A1d

3
max). (5.3.7)
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Let a1 = a1(l0, l1, l2). Then

E(X1 | P ∈ Cl0,l1,l2) = E(A2
1 | P ∈ Cl0,l1,l2) + O(a1d

3
max),

E(X3 | P ∈ Cl0,l1,l2) = E(A1A2 | P ∈ Cl0,l1,l2) + O(a1d
3
max),

E(X4 | P ∈ Cl0,l1,l2) = E(A1A3 | P ∈ Cl0,l1,l2) + O(a1d
3
max).

Thus,

E(X1 | P ∈ Cl0,l1,l2) + 2E(X3 | P ∈ Cl0,l1,l2) + E(X4 | P ∈ Cl0,l1,l2)

= a1M2(R)(1 + O((`dmax + l0d
2
max + d3

max)/M2(R))).

Then part (i) follows from the similar argument of Lemma 5.3.9 and (5.3.7). Similarly, by
analysing two switching operations similar to those of S3-switching and S4-switching, ex-
cept that the extra 2-path is of type 3, we can estimate the ratio E(X5 | P ∈ Cl0,l1,l2)/E(X4 |
P ∈ Cl0,l1,l2) and E(X2 | P ∈ Cl0,l1,l2)/E(X4 | P ∈ Cl0,l1,l2). By the fact that

X5 = A2A3 + O(A3d
3
max), X4 = A1A3 + O(A3d

3
max), X2 = A2

3 + O(A3d
3
max),

and

E(X2 | P ∈ Cl0,l1,l2) + 2E(X5 | P ∈ Cl0,l1,l2) + E(X4 | P ∈ Cl0,l1,l2)

= a3(l0, l1, l2)M2(R)(1 + O((`dmax + l0d
2
max + d3

max)/M2(R))),

together with Lemma 5.3.9 (ii), part (ii) follows from the similar argument as in part (i)
and the proof of Lemma 5.3.9 (ii).

The following lemma deals with some error terms that appeared in the previous lemmas.

Lemma 5.3.11 Assume d3
max = o(M2(R)), d4

max = o(M). Let w(n) =
√

M/d2
max. Then

for any li ≤ w(n)µi, we have

`/M = O(d2
maxw(n)/M) = o(1), (`dmax + l0d

2
max)/M2(R) = O(d2

maxw(n)/M) = o(1),

(l0 + l2)/t = O(d2
maxw(n)/M) = o(1), l1dmax/M2(L) = O(d2

maxw(n)/M) = o(1).

Proof Since M2(R) = O(dmaxM), M2(L) = O(dmaxM) and M1(R) = Θ(M), by the
definition of µi, we have

µi = O(dmaxM2(R)/M) = O(d2
max), for 1 ≤ i ≤ 3. (5.3.8)
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It follows from (5.3.8) that `/M = O(d2
max)w(n)/M = O(d2

max ln n/M). By (5.2.1)–(5.2.3),
we have

`dmax + l0d
2
max

M2(R)
= O

(
d2

maxtw(n)

M2
+

dmaxM2(L)w(n)

M2
+

dmaxt
2M2(R)w(n)

M4

)
= O(d2

maxw(n)/M),

l0 + l2
t

= O

(
M2(R)w(n)

M2
+

tM2(R)2w(n)

M4

)
= O(d2

maxw(n)/M),

l1dmax

M2(L)
= O

(
dmaxM2(R)w(n)

M2

)
= O(d2

maxw(n)/M).

The following corollary follows from Lemma 5.3.8 and Lemma 5.3.10.

Corollary 5.3.12 Assume d3
max = o(M2(R)), d4

max = o(M). Let a1 = a1(0, 0, l2 − 1) and
a3 = a3(0, 0, l2 − 1). Let w(n) =

√
M/d2

max. Then for any li ≤ w(n)µi, we have

(i) : if M1(L) ≤ M/4,

|C0,0,l2|
|C0,0,l2−1| =

a2
1

16l2t2
(1 + O((d2

max + l2)/t + d3
max/M2(R) + l2dmax/M2(R))),

(ii) : if M1(L) > M/4,

|C0,0,l2|
|C0,0,l2−1| =

t2a2
3

l2M1(L)4
(1 + O(d3

max/M2(R) + (d2
max + l2)/M1(L) + l2dmax/M2(R))).

Proof If M1(L) < M/4, then b1 = a2
1(1 + O(d2

max/t + l2/t + (l2dmax + d3
max)/M2(R))) by

Lemma 5.3.10 (i). By Lemma 5.3.9 (i) and Lemma 5.3.11, a1 = Θ(M2(R))(1+O(d2
max/t+

l2/t + l2dmax/M2(R))) = Θ(M2(R)). Since d3
max = o(M2(R)), b1 = Ω(1). Then the error

term d3
maxa1/b1 in Lemma 5.3.8 (i) can be bounded by

d3
max

a
(1 + O(d2

max/t + `/t + (l2dmax + d3
max)/M2(R)))

= O(d3
max/M2(R)) + O(d3

max/M2(R)) ·O(d2
max/t + l2/t + (l2dmax + d3

max)/M2(R))

= O(d3
max/M2(R)) + o(d2

max/t + l2/t + (l2dmax + d3
max)/M2(R)).

Then part (i) follows by combining this with Lemma 5.3.8 (i) and Lemma 5.3.10 (i).
Similarly we can show part (ii) from Lemma 5.3.8 (ii), Lemma 5.3.10 (ii) and Lemma 5.3.11,
following the same routine.

Lemma 5.3.13 Assume d3
max = o(M2(R)), d4

max = o(M). Let w(n) =
√

M/d2
max. Then

for any li ≤ w(n)µi, we have
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|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
µ0

l0
(1 + O(d3

max/M2(R) + d2
maxw(n)/M)), l0 ≥ 1;

|C0,l1,l2|
|C0,l1−1,l2 |

=
µ1

l1
(1 + O(d3

max/M2(R) + d2
maxw(n)/M)), l1 ≥ 1;

|C0,0,l2|
|C0,0,l2−1| =

µ2

l2
(1 + O(d3

max/M2(R) + d2
maxw(n)/M)), l2 ≥ 1.

Proof Let δ = M1(L)/M . Then 0 ≤ δ ≤ 1/2 by the assumption that M1(R) ≥ M1(L). If
0 ≤ δ ≤ 1/4, then t = Θ(M). By Lemma 5.3.9 (i) and Lemma 5.3.11, a1 = Θ(M2(R)). So
the error term d3

max/a1 is bounded by O(d3
max/M2(R)). By Lemma 5.3.6 (i), Lemma 5.3.7

(i), Corollary 5.3.12 (i) and Lemma 5.3.11,

|Cl0,l1,l2 |
|Cl0−1,l1,l2|

=
a1

4l0t
(1 + O(d2

max/t + (l0 + l2)/t))

=
µ0

l0
(1 + O(d3

max/M2(R) + d2
maxw(n)/M2(R))),

|C0,l1,l2 |
|C0,l1−1,l2|

=
µ1

l1
(1 + O(d3

max/M2(R) + d2
maxw(n)/M2(R))),

|C0,0,l2 |
|C0,0,l2−1| =

µ2

l2
(1 + O(d3

max/M2(R) + d2
maxw(n)/M2(R))).

If 1/4 < δ ≤ 1/2, which implies that M1(L) = Θ(M), then by Lemma 5.3.9 (ii),
a3 = Θ(M2(R)). So d3

max/a3 = O(d3
max/M2(R)). By Lemma 5.3.6 (ii), Lemma 5.3.7 (ii),

Corollary 5.3.12 (ii) and Lemma 5.3.11,

|Cl0,l1,l2 |
|Cl0−1,l1,l2|

=
ta3

l0M1(L)2
(1 + O(d2

max/M1(L) + d3
max/c + l1/M1(L) + (l0 + l2)/t))

=
µ0

l0
(1 + O(d3

max/M2(R)) + d2
maxw(n)/M),

|C0,l1,l2 |
|C0,l1−1,l2|

=
µ1

l1
(1 + O(d3

max/M2(R)) + d2
maxw(n)/M),

|C0,0,l2 |
|C0,0,l2−1| =

µ2

l2
(1 + O(d3

max/M2(R)) + d2
maxw(n)/M).

Let P(d) be the probability that P ∈ M(L,R,d) does not contain loops or double
pairs. For any i = 0, 1, 2, define

ki = bmin{w(n)µi, max{8µi, ln M}}c. (5.3.9)
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Lemma 5.3.14 Assume d3
max = o(M2(R)) and d4

max = o(M). Let w(n) =
√

M/d2
max.

Then

1

P(d)
=

(
1 + O(d2/

√
M)

) k0∑

l0=0

k1∑

l1=0

k2∑

l2=0

|Cl0,l1,l2|
|C0,0,0| ,

and µki+1
i /(ki + 1)! = O(d2

max/
√

M) for all i = 0, 1, 2.

Proof of Lemma 5.3.14. It follows immediately from Lemma 5.3.1, Lemma 5.3.2 and
Corollary 5.3.4 that

1

P(d)
= (1 + O(d2

max/
√

M))

bw(n)µ0c∑

l0=0

bw(n)µ1c∑

l1=0

bw(n)µ2c∑

l2=0

|Cl0,l1,l2|
|C0,0,0| . (5.3.10)

We first show that given any l1 ≤ w(n)µ1 and l2 ≤ w(n)µ2,

w(n)µ0∑

l0=0

|Cl0,l1,l2| = (1 + O(M−1))

k0∑

l0=0

|Cl0,l1,l2|, (5.3.11)

and µk0+1
0 /(k0 + 1)!. Note that the ki are integers. However, in the following analysis we

omit the floor functions if the result of the analysis is not affected by changing the values
of the ki by at most 1. The equality (5.3.11) is trivially true if k0 = w(n)µ0 and it this
case

µk0+1
0

(k0 + 1)!
≤

(
eµ0

k0 + 1

)k0+1

≤ (e/w(n))k0+1 ≤ e/w(n) = O(d2
max/

√
M).

So we assume k0 < w(n)µ0. Then k0 = max{8µ0, ln M}. Since k0 < w(n)µ0 and k0 ≥ 8µ0,
by Lemma 5.3.13,

|Cl0,l1,l2|
|Cl0−1,l1,l2|

∼ µ0

l0
<

1

2
, for all k0 ≤ l0 ≤ w(n)µ0.

Thus,

∞∑

l0=0

|Cl0,l1,l2 | =
k0∑

l0=0

|Cl0,l1,l2|+
∞∑

l0=k0+1

|Cl0,l1,l2| =
k0∑

l0=0

|Cl0,l1,l2|+ O (|Ck0+1,l1,l2|) (5.3.12)

By Lemma 5.3.13, we have

|Ck0+1,l1,l2|
|C0,l1,l2|

=
µk0+1

0

(k0 + 1)!

(
1 + O(k0d

3
max/M2(R) + k0d

2
maxw(n)/M)

)
.
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Clearly

µk0+1
0

(k0 + 1)!
≤

(
eµ0

k0 + 1

)k0+1

≤
(e

8

)k0+1

≤
(e

8

)ln M

≤ M−1 = O(d2
max/

√
M). (5.3.13)

If k0 = 8µ0, then by (5.3.8),

k0d
3
max/M2(R) = O(dmaxM2(R)/M) · d3

max/M2(R) = O(d4
max/M) = o(1),

k0d
2
maxw(n)/M = O(d2

max) · d2
maxw(n)/M = O(d4

max/M ·
√

M/d4) = O(d2
max/

√
M) = o(1).

Otherwise, k0 = ln M . Since ln M < µ0w(n), we have M2(R) = Ω(M2 ln M/tw(n)). Then

k0d
3
max/M2(R) = (ln M)d3

max ·O(tw(n)/M2 ln M) = O(d3
maxw(n)/M) = o(1),

k0d
2
maxw(n)/M = (ln M)d2

maxw(n)/M = o(1).

Therefore, |Ck0+1,l1,l2| = O(M−1)|C0,l1,l2|. Together with (5.3.12) we have shown that∑bw(n)µ0c
l0=0 |Cl0,l1,l2| = (1 + O(M−1))

∑k0

l0=0 |Cl0,l1,l2|. Similarly we can show that µki+1
i /(ki +

1)! = O(d2
max/

√
M) for i = 1, 2 and

bw(n)µ1c∑

l1=0

|C0,l1,l2| = (1 + O(M−1))

k1∑

l1=0

|C0,l1,l2|, for any 0 ≤ l2 ≤ w(n)µ2,

bw(n)µ2c∑

l2=0

|C0,0,l2| = (1 + O(M−1))

k2∑

l2=0

|C0,0,l2 |,

and the lemma follows thereby.

Proof of Theorem 5.2.2. Recall that U(m) is the number of perfect matchings on m
points. Then the total number of pairings in M(L,R,d) is equal to

[M1(R)]M1(L)U(M1(R)−M1(L)) =
M1(R)!

2(M1(R)−M1(L))/2((M1(R)−M1(L))/2)!
.

Hence the number of restricted pairings corresponds to simple B-graphs is asymptotically

M1(R)!P(d)

2(M1(R)−M1(L))/2((M1(R)−M1(L))/2)!
.

Since each simple B-graph corresponds to
∏n

i=1 di pairings in M(L,R,d), we have

g(L,R,d) =
M1(R)!P(d)

2(M1(R)−M1(L))/2((M1(R)−M1(L))/2)!
∏n

i=1 di!
.
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It only remains to show that

P(d) = (1 + O((d2
max + ln M)/

√
M))e−µ0−µ1−µ2 . (5.3.14)

If M2(R) ≤ d3
maxw(n), by Corollary 5.3.5, P(d) = 1 − O(d4

max/M + dmax/
√

M) = 1 −
O(d2

max/
√

M). So (5.3.14) is true in this case. Now assume M2(R) > d3
maxw(n), which

implies d3
max = o(M2(R)). Then by Lemma 5.3.14, it is enough to evaluate

k2∑

l2=0

k1∑

l1=0

k0∑

l0=0

|Cl0,l1,l2 |
|C0,0,0| .

Let α = d3
max/M2(R) + d2

maxw(n)/M . By Lemma 5.3.13,

k2∑

l2=0

k1∑

l1=0

k0∑

l0=0

|Cl0,l1,l2| =
k2∑

l2=0

k1∑

l1=0

|C0,l1,l2|
(

k0∑

l0=0

µl0
0 /l0!

)(
1 + O(k0α)

)

Since µ0/k ≤ 1/8 for all k ≥ k0 +1, and µk0+1
0 /(k0 +1)! = O(d2

max/
√

M) by Lemma 5.3.14,
we have

k0∑

l0=0

µl0
0 /l0! =

∞∑

l0=0

µl0
0 /l0! + O(µk0+1

0 /(k0 + 1)!) = eµ0 + O(d2
max/

√
M).

So

k2∑

l2=0

k1∑

l1=0

k0∑

l0=0

|Cl0,l1,l2| =
k2∑

l2=0

k1∑

l1=0

|C0,l1,l2|
(
eµ0 + O(d2

max/
√

M)
)(

1 + O(k0α)
)

Similarly we can show that

k1∑

l1=0

|C0,l1,l2| = |C0,0,l2 |(eµ1 + O(d2
max/

√
M))(1 + O(k1α)), for all 0 ≤ l2 ≤ k2,

k2∑

l2=0

|C0,0,l2| = |C0,0,0|(eµ2 + O(d2
max/

√
M))(1 + O(k2α)).

Thus,

k2∑

l2=0

k1∑

l1=0

k0∑

l0=0

|Cl0,l1,l2| = |C0,0,0|eµ0+µ1+µ2

(
1 + O(d2

max/
√

M + (k0 + k1 + k2)α)
)
.
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Then we obtain, in this case, that

P(d) = e−µ1−µ2−µ3

(
1 + O(d2

max/
√

M + (k0 + k1 + k2)α)
)
.

The argument below (5.3.13) shows that for any i = 0, 1, 2, kiα = O(d2
max/

√
M) if

ki = bmax{8µi, ln M}c. Next we show that for any i = 0, 1, 2, kiα = O(d2
max/

√
M) if

ki = bw(n)µic. Then ki ≤ ln M by the definition of ki in (5.3.9). By (5.3.8), µi =
O(dmaxM2(R)/M). Hence

kid
3
max/M2(R) = O(w(n)dmaxM2(R)/M)d3

max/M2(R) = O(d4
maxw(n)/M) = O(d2

max/
√

M),

kid
2
maxw(n)/M = O(ln M · d2

maxw(n)/M) = O(ln M/
√

M).

Hence P(d) = (1 + O((d2
max + ln M)/

√
M))e−µ1−µ2−µ3 . Theorem 5.2.2 follows.

Proof of Corollary 5.2.4. First we observe that ln x/
√

x is a decreasing function for
sufficiently large x. Since d2s = o(n), we have s = o(n). Hence we have that for sufficiently
large n,

d2 + ln(dn− h)√
dn− h

=
d2

√
dn− h

+
ln(dn− h)√

dn− h
≤ d2

√
dn− ds

+ O

(
ln n√

n

)
.

The last inequality holds because h ≤ ds and dn− h ≥ dn− ds ≥ n− s = n(1 + o(1)) and
so

ln(dn− h)√
dn− h

= O

(
ln(n(1 + o(1))√

n(1 + o(1))

)
= O

(
ln n + o(1)√

n
(1 + o(1))

)
= O(ln n/

√
n).

We also have that

d2

√
dn− ds

= d3/2/
√

n− s = d3/2/
√

n(1 + o(1)) = O(d3/2/
√

n).

Hence
d2 + ln(dn− h)√

dn− h
= O

(
d3/2 + ln n√

n

)
. (5.3.15)

Next we estimate µi(d
′) for i = 0, 1, 2. By the definition of µi in (5.2.1)–(5.2.3), we
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have

µ0(d
′) =

(d(n− s)− (ds− h))d(d− 1)(n− s)

2d2(n− s)2
=

(dn− 2ds + h)(d− 1)

2d(n− s)

=
d− 1

2
(1 + O(s/n + h/dn)) =

d− 1

2
(1 + O(s/n)) =

d− 1

2
+ O(ds/n)

µ1(d
′) =

d(d− 1)(n− s)
∑s

i=1[d− ki]2
2d2(n− s)2

≤ (d− 1)d2s

2d(n− s)

=
(d− 1)d2

2d

s

n− s
= O

(
d2s/n

)

µ2(d
′) = µ0(d

′)2 =
(d− 1)2

4
(1 + O(s/n)) =

(d− 1)2

4
+ O(d2s/n).

Thus,

exp

(
−µ0(d

′)− µ1(d
′)− µ2(d

′) +
d2 − 1

4

)

= exp

(
−d− 1

2
− (d− 1)2

4
+

d2 − 1

4
+ O(d2s/n)

)
= 1 + O(d2s/n). (5.3.16)

Next we estimate
√

dn− ds

dn− 2ds + h
and

(dn− ds)dn−ds

(dn− 2ds + h)(dn−2ds+h)/2(dn)dn/2
.

It follows easily that

√
dn− ds

dn− 2ds + h
=

√
dn(1 + O(s/n))

dn(1 + O(s/n + h/dn))
= 1 + O(s/n), (5.3.17)

and

(dn− ds)dn−ds

(dn− 2ds + h)(dn−2ds+h)/2(dn)dn/2

= exp

(
(dn− ds) ln(dn− ds)− dn− 2ds + h

2
ln(dn− 2ds + h)− dn

2
ln(dn)

)

= exp

(
(dn− ds)

(
ln(dn) + ln

(
1− s

n

))
− dn− 2ds + h

2

(
ln(dn) + ln

(
1− 2ds− h

dn

))
− dn

2
ln(dn)

)
.

Since

ln
(
1− s

n

)
= − s

n
+ O

(
s2

n2

)
,

150



and

ln
(
1−2ds− h

dn

)
= −2ds− h

dn
+O

(
(2ds− h)2

(dn)2

)
= −2ds− h

dn
+O

(
d2s2

(dn)2

)
= −2ds− h

dn
+O

(
s2

n2

)
,

the above expression equals to

exp

(
−h

2
ln(dn)− h

2
+ O(s2d/n)

)
. (5.3.18)

Therefore, by (5.3.15)–(5.3.18), the probability PGn,d
(S, H) in Corollary 5.2.4 can be sim-

plified to

(
1 + O

(
d3/2 + ln n√

n

))
(1 + O(d2s/n))eh/2

s∏
i=1

[d]ki
exp

(
−h

2
ln(dn)− h

2
+ O(s2d/n)

)

=

(
1 + O

(
d3/2 + ln n√

n

)
+ O(d2s/n + s2d/n)

)
(dn)−h/2

s∏
i=1

[d]ki

as required.
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Chapter 6

Conclusion

6.1 Pegging algorithm for odd d ≥ 3

The pegging operation for d-regular graphs was only defined for d even in Chapter 3. We
extend it to the case of d odd and discuss the properties of the random regular graphs
generated by the pegging model in the general case d ≥ 3. The pegging operation for odd
d ≥ 3 is as follows, illustrated in Figure 6.1 for d = 3.

Pegging Operation for Odd d
Input: a d-regular graph G, where d is odd.

1. Let c := bd/2c and choose a set E1 = {u1u2, u3u4, . . . , u2c−1u2c}
of c pariwise non-adjacent edges in E(G) u.a.r., and another set
E2 = {u2c+1u2c+2, . . . , u4c−1u4c} of c pairwise non-adjacent edges
in E(G) \ E1 u.a.r.

2. G := (G \ (E1 ∪ E2)) ∪ {u, v} ∪ E3 ∪ {uv}, where u and v are new vertices
added to V (G), and E3 = {uu1, . . . , uu2c, vu2c+1, . . . , vu4c}.

3. Output: G.

The following theorem shows that all results in Section 3.2 and the upper bound in
Theorem 3.3.1 can be extended to the case of general d ≥ 3. Moreover, the lower bound
in Theorem 3.3.2 was extended to the general case of all even d ≥ 4 in [26], though the
authors believe that it can be extended to the general case of all d ≥ 3 by analogous
arguments. Interested readers can refer to [27, 26] for sketches of the proofs.

Theorem 6.1.1 ( [27], Theorem 2.3) For fixed k ≥ 3, any integer d ≥ 3, and fixed
initial d-regular graph G0,

EYt,d,k =
(d− 1)k − (d− 1)2

2k
+ O

(
n−1

t

)
.
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Figure 6.1: Pegging operation when d = 3

Moreover,

(i) Yt,d,3, Yt,d,4, . . . , Yt,d,k have a limiting joint distribution equal to that of independent
Poisson variables with means µd,3, µd,4, . . . , µd,k, where µd,i = ((d−1)i−(d−1)2)/(2i)
for any fixed integer i ≥ 3,

(ii) the ε-mixing time satisfies τ ∗ε
(
(σt,d,k)t≥0

)
= O (ε−1).

(iii) if d is even, then the ε-mixing time satisfies τ ∗ε
(
(σt,d,k)t≥0

) 6= o (ε−1).

6.2 More discussion of contiguity

Theorem 3.2.1 implies that the random d-regular graphs generated by the pegging al-
gorithm are not uniformly distributed, since, in the uniform distribution, the expected
number of k-cycles is asymptotic to (d − 1)k/2k. Nonetheless, the theorem indicates the
possibility that the pegging model and the uniform model might be close in the sense
of contiguity. Let PG(G0, t, d) be the probability space of all random d-regular graphs
generated by the pegging algorithm at time t, starting with graph G0. Recall that Gn,d

denotes the probability space of all random d-regular graphs with uniform distribution.
Let n = n0 + t, and Ĝ be an arbitrary d-regular graph from Gn,d. Let Yt(Ĝ) be the number

of ways that Ĝ could be obtained in the pegging algorithm, i.e. Yt(Ĝ) is the total number

of all sequences (G0, G1, . . . , Gt) ∈ P(G0, d) such that Gt = Ĝ. If we can show that Yt/EYt

converges in distribution to some random variable W as t → ∞, and W > 0 a.s., it fol-
lows that PG(G0, t, d) is contiguous with Gn,d, where n = n0 + t. If true, this means that
properties a.a.s. true in one model are also true in the other model.

The small subgraph conditioning method introduced in Section 2.1.5 gives a way
of proving the convergence of Yt/EYt. It is well known that for any integer m ≥ 3,
X3, X4, . . . , Xm are independent Poisson random variables with means λi = (d− 1)i/(2i),
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where Xi is the number of i-cycles in a graph G ∈ Gn,d. Theorem 6.1.1 shows that
for any integer d ≥ 3, the numbers of short cycles in random d-regular graphs gener-
ated by pegging are asymptotically independent Poisson random variables with means
µi = ((d − 1)i − (d − 1)2)/(2i). To use the small subgraph conditioning method, one
computes

δi =
µi

λi

− 1 = −(d− 1)2

(d− 1)i
,

and then it is easy to check that
k∑

i=3

λiδ
2
i < ∞.

It then becomes conceivable that the variation in probabilities in the pegging model is
strongly associated with the varying numbers of short cycles (see [59] and [36]). According

to the method, this would be proved if we could show that EY 2
t /(EYt)

2 ≤ exp
(∑k

i=3 λiδ
2
i

)
+

o(1). However, the estimation of EY 2
t seems to be out of reach at present. Thus, we make

the following conjecture.

Conjecture 6.2.1 For all fixed d ≥ 3 and every fixed d-regular graph G0, PG(G0, t, d) ≈
Gn,d, where t = n− n0.

For any fixed d ≥ 3, it is well known that the random d-regular graphs with the uniform
distribution are d-connected and have diameter at most 1 + dlogd−1((2 + ε)dn log n)e a.a.s.
(See [62] for facts not referenced here.) These properties are of central interest where
the graphs are used as communication networks. We have determined the connectivity of
random regular graphs in P(G0, d) in the previous section, which supports Conjecture 6.2.1.
If the conjecture holds, it implies that the random regular graphs in PG(G0, t, d) are a.a.s.
d-connected with diameter O(log n), where n = n0+t. In any case, the logarithmic diameter
is common among random networks with average degree above 1. In the Erdős-Rényi model
of random graphs, the components of the random graph a.a.s. all have diameter O(log n)
if the edge probability p is at least c/n for some c > 1. Ferholz and Ramachandran [24]
showed that the diameter of random sparse graphs with given degree sequences is a.a.s.
c(1 + o(1)) log n, when the degree sequences satisfy some natural convergence conditions,
and they determined the value of c. Bollobás and Riordan [12] proved that the random
graphs generated by the preferential attachment model a.a.s. have diameter asymptotically
log n/ log log n. Gerke et al. [30] recently showed that the diameter of random regular
graphs in PG(G0, t, d) is a.a.s. O(log n). The proof uses the result that G ∈ PG(G0, t, d)
is a.a.s. d-connected.
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6.3 More about future work

In Section 4.6, we discussed a more general setting of the hypergraph orientation problem.
However, more interesting future work is to extend our result to smaller values of k or to
find linear time algorithms that a.a.s. find an optimal solution. Extending the results in
Section 4.2 to any k ≥ 1 could be quite difficult since studies of the problem for all values
of k require more knowledge of the solution to the differential equations in Section 4.3. For
instance, we need to know the existence of thresholds of the appearance of the (w, k)-core,
and if a threshold exists, where it occurs. Currently we are not able to cope with this
without an analytical solution to the differential equations. However, it might be possible
to improve our results for the case w = 1 and general h ≥ 2, for which the k-core of a
random uniform hypergraph has been well studied.

As discussed in Section 2.2.1, there are a few natural ways of generalising the algorithm
used in [15], but the analysis would become even more complicated than the random graph
case. It is desirable to find some “clever” algorithm which is easier to analyse.

Lastly we discuss some application of the results in Chapter 5. Consider the following
problem.

Let G be a random graph from G(n, p) and let GO be the subgraph of G induced by
vertices of G whose degrees are odd. What is the probability space generated by GO?

This problem is interesting because it helps to study the famous Chinese postman
problem. Given any connected graph G, the Chinese postman problem asks for its shortest
closed trail which travels each edge at least once. It is well known that if the subgraph of
G induced by the odd degree vertices has a perfect matching M , then the set of edges of
the shortest closed trail that travels each edge at least once is E(G)∪M , and a linear time
algorithm outputs the required trail. Therefore, studies of the properties of the subgraph
induced by the odd degree vertices are of particular interest. We plan to apply the results in
Section 5.2 to study GO in G(n, p). When log n/n ≤ p ¿ n−2/3, intuitively, the probability
space GO should be equivalent or close to G(n/2, p), because around half of the vertices
would be of odd degree and the odd degree vertices are distributed almost randomly since
each vertex has approximately the same chance to be of odd degree. Then the probability
of an edge to occur between any pair of vertices in GO should be around p and almost
independently of other edges. Studying GO for p = O(1/n) can also be interesting.
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(French) Math. Ann., 37(2):182–228, 1890.

[47] B. Pittel and N. Wormald. Asymptotic enumeration of sparse graphs with a minimum
degree constraint. J. Combin. Theory Ser. A, 101(2):249–263, 2003.

[48] M. M. Rao and R. J. Swift. Probability theory with applications. Mathematics and Its
Applications (Springer) 582. Springer, New York, 2006. xviii+527 pp., second edition,
2006.

[49] H. Robalewska. Random graphs generated by the star 2-process. Random Structures
and Algorithms, 11:125–149, 1997.

[50] H. Robalewska and N.C. Wormald. Random star d-processes. Combinatorics, Proba-
bility and Computing, 9:33–43, 2000.

[51] R.W. Robinson and N.C. Wormald. Almost all cubic graphs are hamiltonian. Random
Structures Algorithms, 3:117–125, 1992.
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