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Abstract

The LYM property of a finite standard graded poset is one of the central notions in
Sperner theory. It is known that the product of two finite standard graded posets satisfying
the LYM properties may not have the LYM property again. In 1974, Harper proved that if
two finite standard graded posets satisfying the LYM properties also satisfy rank logarithmic
concavities, then their product also satisfies these two properties. However, Harper’s proof
is rather non-intuitive. Giving a natural proof of Harper’s theorem is one of the goals of this
thesis.

The main new result of this thesis is a characterization of rank-finite standard graded
LYM posets that satisfy rank logarithmic concavities. With this characterization theorem,
we are able to give a new, natural proof of Harper’s theorem. In fact, we prove a strength-
ened version of Harper’s theorem by weakening the finiteness condition to the rank-finiteness
condition. We present some interesting applications of the main characterization theorem.
We also give a brief history of Sperner theory, and summarize all the ingredients we need
for the main theorem and its applications, including a new equivalent condition for the LYM
property that is a key for proving our main theorem.

iii



Acknowledgements

First, I would like to thank my advisor Professor Dave Wagner for introducing me the
beautiful subject of Sperner theory and the thesis topic, without which this thesis would not
have been possible. I would like to also thank him for giving me his valuable advice on the
structure of this thesis, and for his patience and guidance, both of which are keys of my
success.

I would also like to thank Professors Ian Goulden and Kevin Purbhoo not only for
agreeing to read this thesis, but also for providing constructive feedback. I learned from their
feedback that a good writer should constantly stand in the viewpoint of a reader.

I would like to thank all the people who make me feel Waterloo special. They have given
me wonderful experiences over the past year.

Last but not least, I would like to thank my parents for providing me an environment
where I am free to pursue whatever I enjoy doing, and for their infinite support on whatever
I choose to do.

iv



Contents

1 Introduction 1

2 Preliminaries 4

2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Hall’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Network Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Tensor Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Representations of sl(2,C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 LYM inequality and Sperner’s Theorem . . . . . . . . . . . . . . . . . . . . . 13

3 LYM Posets 17

3.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Characterization of LYM Posets . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Peck Posets 29

4.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Characterization of Finite Peck Posets . . . . . . . . . . . . . . . . . . . . . . 30

5 Main Results 43

5.1 Conjunctions of Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



6 Applications 50

6.1 Harper’s Product Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2 Stable Set Posets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3 Upsets and Downsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

References 60

vi



Chapter 1

Introduction

Sperner theory is a branch of extremal set theory that, roughly speaking, seeks for the
extremal size of certain sets (usually involving antichains and chains) in a partially ordered
set. The motivation of this theory is perhaps the famous theorem proven by Sperner [25] in
1928, which states that for any n-element set S, the maximum cardinality of a collection A

of subsets of S, such that no member of A is contained in any other member of A , is the
binomial coefficient max{

(
n
i

)
: 1 ≤ i ≤ n}. Since the first proof by Sperner, many different

proofs of Sperner’s theorem have been given by different authors, including perhaps the
shortest known proof by Lubell [20], who used the Lubell-Yamamoto-Meshalkin inequality in
his proof. The Lubell-Yamamoto-Meshalkin inequality (also commonly known as the LYM
inequality) was, as its name suggests, discovered and proven independently by Yamamoto
[32], Meshalkin [21], and Lubell [20] in the 1950s and 1960s. More details about the LYM
inequality and its connection with Sperner’s theorem can be found in Section 2.6. The
LYM inequality and Sperner’s theorem were later generalized to the LYM properties and the
(strong) Sperner properties for rank-finite graded partially ordered sets (posets), which are
two central concepts in Sperner theory. For more about the history of Sperner theory and a
rather detailed list of reference, we refer readers to [6].

It is natural to ask whether the product of two standard graded posets satisfying the
LYM properties again has the LYM property. The answer to this question is negative: it is
false in general that the product of two LYM standard graded posets has the LYM property,
as we will see from the simple counterexample given in Chapter 6. However, Harper [14]
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proved in a paper published in 1974 that if two (finite) standard graded posets having the
LYM properties also satisfy rank logarithmic concavities, then their product also has these
two properties. We shall refer to this theorem as Harper’s product theorem (though in this
thesis we will mainly focus on the stronger case with the finiteness condition in the hypothesis
replaced by the weaker rank-finiteness condition). Harper used the notion of flow morphisms
of graphs in his proof, which is not intuitive, and it is not clear from his proof why rank
logarithmic concavity plays a special role in his product theorem. Hsieh and Kleitman [15]
later gave a property such that if two LYM partially ordered sets satisfy this property then
their product also has the LYM property, and used this fact to reprove Harper’s product
theorem. They used the notion of duality from linear programming in their proofs, which
again did not tell much about the combinatorial insight of a LYM poset that satisfies rank
logarithmic concavity.

To seek out what simple properties a standard graded poset satisfying the LYM property
and rank logarithmic concavity (we will call such a poset a LYM and RLC poset for short)
may have, and to provide a natural proof of Harper’s product theorem, is the motivation
of this thesis. As the main new result of this thesis, we prove that the LYM property and
the rank logarithmic concavity of a standard graded poset (P,≤) are equivalent to the Peck
properties of the strands of the conjunction of (P,≤) with its dual. The Peck property of a
graded poset is a well-studied property that has been given different characterizations both
combinatorially and algebraically by Griggs ([10], [11]) , Stanley [28] , and Proctor [23] in
the 1980s. Since the Peck property is a well-studied property, our characterization allows us
to derive more properties of LYM and RLC posets more easily, including giving a natural
proof of Harper’s product theorem. The structure of this thesis can be summarized with the
following outline.

In Chapter 2, we first introduce some basic definitions, combinatorial notions and alge-
braic notions we need throughout the thesis. We then introduce the LYM inequality and
Sperner’s theorem (which are motivations of Sperner theory and some later chapters), and
define the (strong) Sperner property.

In Chapter 3, we prove some basic properties of a LYM poset, and show that the strong
Sperner property is a consequence of the LYM property. We then summarize and prove
several equivalent conditions for the LYM property due to Kleitman [18], and give some of
their applications. We also prove several new equivalent conditions for the LYM property
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that we use to prove our main theorem.

In Chapter 4, we introduce the Peck property and prove some basic properties of Peck
posets. We then summarize and prove several equivalent conditions for the Peck property
due to Griggs [11], Stanley [28], and Proctor [23], and give an application.

In Chapter 5, we define the notion of conjunction, which is a poset constructed from two
posets. We then focus on the conjunctions of standard graded posets with their duals, and
state and prove our main characterization of LYM and RLC posets using conjunctions of this
form.

In Chapter 6, we present some applications and consequences of our main theorem. In
particular, we first give a simple proof of Harper’s product theorem using our main result.
We then present a rank-preserving LYM and RLC extension to the partition lattice, which is
known to be not LYM for sufficiently large order, using our main theorem. Finally, we derive
some identities on the rank sizes of upsets and downsets in a standard graded LYM and RLC
poset.
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Chapter 2

Preliminaries

2.1 Basic Definitions

A partially ordered set (or poset for short) is a pair (P,≤) such that for any a, b, c ∈ P , the
following conditions are satisfied:

(a) a ≤ a (reflexivity);

(b) if a ≤ b and b ≤ a then a = b (antisymmetry);

(c) if a ≤ b and b ≤ c then a ≤ c (transitivity).

Whenever the order relation ≤ is clear from the context, we may simply refer to the
ground set P as the poset. In the remainder of this paragraph, all elements are in P . We
write a < b if a ≤ b and a 6= b. We say that a is covered by b and denote it by a l b, if
a < b and no c satisfies a < c < b. While the covering relation l is clearly determined by the
order relation ≤, we remark that given a covering relation l on P , one can always obtain
a corresponding (partial) order relation ≤ on P by taking the reflexive transitive closure of
l, that is, by letting a ≤ b if and only if a = b or there is a sequence c1, · · · , cn such that
a = c1 l · · ·l cn = b. We say that two elements a, b are comparable if a ≤ b or b ≤ a, and say
that two elements are incomparable if they are not comparable. A chain in P is a set C ⊆ P
in which any two elements are comparable. A chain is said to be maximal if it is not a proper
subset of another chain. An antichain in P is a set A ⊆ P in which any two distinct elements
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are incomparable. A set U is called an upset if y ∈ U and y < x implies that x ∈ U , for all
elements x, y. Dually, a set D is called a downset if y ∈ D and x < y implies that x ∈ D, for
all elements x, y.

For any poset (P,≤), the dual of (P,≤) is the poset (P ∗,�) with P ∗ = P , such that p � q
in P ∗ if and only if q ≤ p in P . An extension of a poset (P,≤) is a poset (Q,�) with Q = P ,
such that if p ≤ q in P then p � q in Q. The Cartesian product of two posets X = (P,≤P )
and Y = (Q,≤Q), denoted by X ×Y , is the poset with underlying set {(p, q) : p ∈ P, q ∈ Q},
with order relation ≤ satisfying (p1, q1) ≤ (p2, q2) in X × Y if and only if p1 ≤P p2 in P

and q1 ≤Q q2 in Q. From time to time, we may write the above product as P × Q instead
of X × Y when there is no chance of confusion with the Cartesian product of sets. Given a
collection {(Pi,≤i)}i∈I of pairwise disjoint posets, their order union is the poset (

⋃
i∈I Pi,≤),

with p ≤ q if and only if p, q ∈ Pj for some j and p ≤j q. Given two posets (P,≤) and
(Q,�), a map f : P → Q is called an (order) isomorphism if the following two conditions are
satisfied:

(a) f is bijective.

(b) f(x) � f(y) if and only if x ≤ y for all x, y ∈ P .

The posets X = (P,≤) and Y = (Q,�) are said to be isomorphic, denoted by X ∼= Y , if
there is an isomorphism from P to Q.

For any positive integer c, a c-grading of a poset (P,≤) is a function r : P → Z such
that for all x, y ∈ P , r(x) ≡ r(y) (mod c), and xl y implies that r(y) = r(x) + c. A poset is
called a c-graded poset if it has a c-grading r, in which case r(x) is called the rank of x. If
the value of c is not important, we simplify the terms above to a grading and a graded poset,
respectively. For any graded poset (P,≤) with grading r, define rmin(P ) := inf{r(p) : p ∈ P}
and rmax(P ) := sup{r(p) : p ∈ P}. Note that these can be infinite. In the future we may
write rmin (resp. rmax) instead of rmin(P ) (resp. rmax(P )) whenever the poset is clear from
the context. A standard grading of (P,≤) is a 1-grading r of (P,≤) satisfying rmin(P ) = 0.
A central grading of (P,≤) is a 2-grading r of P satisfying rmin(P ) = −rmax(P ). A poset
is called a standard graded poset (a centrally graded poset, respectively) if it has a standard
grading (a central grading, respectively).

For any graded poset (P,≤) with grading r and any integer k, we call the set Pk := {p ∈
P : r(p) = k} the k-th rank of (P,≤). In this case we call the number k the rank number of
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Pk. (P,≤) is called rank-finite if all of its ranks are finite. If (P,≤) is rank-finite, we call the
number Wk(P ) := |Pk| the k-th Whitney number. As usual, we write Wk instead of Wk(P )
whenever P is clear from the context. For any graded poset (P,≤) and integers a, b, denote
by P [a, b] the union of all ranks Pk with a ≤ k ≤ b. We can think of P [a, b] as a graded poset
with the inherited order relation and grading from (P,≤). Clearly, if (P,≤) is rank-finite
then P [a, b] is finite. In this thesis, we will focus on rank-finite posets and will make the
rank-finite hypothesis tacitly. Given a subset S of the k-th rank Pk of a graded poset (P,≤),
we define the shade of S to be the set

∇S := {p ∈ P : sl p for some s ∈ S},

so the shade of S is the set of elements that cover some element of S. Note that in a c-graded
poset, the shade of a subset of Pk is a subset of Pk+c.

Let k and c be integers with c > 0, and let {ak+ic}α≤i≤β,i∈Z be a sequence of real
numbers. We do not exclude the case in which α = −∞ or β = ∞, so that the sequence
could be infinite. The sequence {ak+ic}α≤i≤β is said to be unimodal if there exists n ∈ Z
with α ≤ n ≤ β such that if i and j are integers satisfying i ≤ j ≤ n or n ≤ j ≤ i then
ak+ic ≤ ak+jc (so unimodal sequences are precisely those sequences that first weakly increase
and then weakly decrease). The sequence {ak+ic}α≤i≤β is said to be logarithmically concave
if a2

j ≥ aj−caj+c for all k + αc < j < k + βc. The rank sequence of a c-graded poset is the
finite sequence (Wrmin ,Wrmin+c,Wrmin+2c, · · · ,Wrmax) if both rmin and rmax are finite. This
definition extends naturally to the case where at least one of rmin and rmax is infinite, in
which case the rank sequence is an infinite sequence. A c-graded poset (P,≤) is said to
be rank-logarithmically concave (or RLC for short) if its rank sequence is logarithmically
concave, and is said to be rank-unimodal if its rank sequence is unimodal. A centrally graded
poset is called rank-symmetric if W−k = Wk for all k.

For any graded poset (P,≤) with grading r, we associate to its dual (P ∗,�) the dual
grading r∗ = −r. A graded extension (Q,�) of a graded poset (P,≤) is said to be rank
preserving if r = l, where r and l are the gradings of (P,≤) and (Q,�), respectively. If
X = (P,≤) and Y = (Q,�) are c-graded with gradings r1 and r2, respectively, then the
function r : P × Q → Z defined by r(p, q) = r1(p) + r2(q) is a c-grading on X × Y (it is
well-defined indeed since r(p1, q1) = r1(p1) + r2(q1) ≡ r1(p2) + r2(q2) = r(p2, q2) (mod c)
for all (p1, q1), (p2, q2) ∈ P ×Q). If {(Pi,≤i)}i∈I is a collection of pairwise disjoint c-graded
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posets with grading ri for (Pi,≤i), such that ri(p) ≡ rj(q) (mod c) for all i, j ∈ I, p ∈ Pi
and q ∈ Pj , then their order union is a c-graded poset with grading r defined by r(p) = ri(p)
for p ∈ Pi, for all i ∈ I (we call this grading the union grading for

⋃
i∈I Pi with respect to

{ri}i∈I).

A graph is a pair (V,E) where V is a non-empty set and E is a set of 2-subsets of V
(which could be empty). A graph (V,E) is called finite if V is finite. The elements of V are
called the vertices of the graph, and the elements of E are called the edges of the graph. We
refer to the elements of an edge as the ends of that edge. If {u, v} ∈ E then we say that u and
v are adjacent. Given a graph (V,E), the degree of a vertex v is the integer |{e ∈ E : v ∈ e}|.
A path in (V,E) is a non-empty sequence (v1, v2, · · · , vn) of distinct vertices in V such that
vi and vi+1 are adjacent for each i ∈ {1, 2, · · · , n − 1}; the vertices v1 and vn are called the
ends of the path. An induced subgraph G[V ′] (induced by V ′ ⊆ V ) is the graph (V ′, E′)
such that for all u,w ∈ V ′, {u,w} ∈ E′ if and only if {u,w} ∈ E. A graph (V,E) is called
connected if, for any two distinct vertices v, w in V , there is a path with ends v and w. An
induced subgraph G[V ′] of a graph G = (V,E) is called a connected component of G if G[V ′]
is connected, and G[W ] is not connected for any V ′ ( W ⊆ V . A bipartite graph is a graph
(V1 ∪V2, E) with V1 ∩V2 = ∅, such that any edge in E has one end in V1 and the other in V2;
the pair (V1, V2) is called a bipartition of (V1∪V2, E). A directed graph is a pair (N,A) where
N is a set and A is subset of N ×N such that no element of A has two coordinates being the
same. The elements of N are called the nodes of the directed graph, and the elements of A
are called the arcs of the directed graph. If a = (u, v) is an arc then v is called the head of
a and u is called the tail of a. The underlying graph of a directed graph (N,A) is the graph
(N,E) such that {u, v} ∈ E if and only if (u, v) ∈ A or (v, u) ∈ A. Given a graph G = (V,E),
the line graph L(G) of G is the graph having E as the vertex set, with two vertices of L(G)
being adjacent if and only if they have exactly one common end in V . A matching for a
graph G = (V,E) is a subset M ⊆ E such that the intersection of any two distinct elements
in M is empty. The set of all matchings for a graph G is denoted by M(G). A matching
M for a graph is called a perfect matching if every vertex of the graph is contained in some
element of M .

Given a poset (P,≤), the Hasse diagram H(P ) of P is the directed graph (P,A) with
(p, q) ∈ A if and only if plq in P . From time to time, we may consider H(P ) as its underlying
graph instead if the direction of the covering relation is not important.
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We end this section with two remarks. First, and once again, for brevity in the later
sections we may frequently refer to the underlying set as the poset; for example, we will
refer to P ∗ as the dual of the poset P (instead of saying that (P ∗,�) is the dual of (P,≤)).
Secondly, when we discuss graded posets and related notions like Whitney numbers, we will
usually fix a grading without explicitly mentioning it when the particular choice of the grading
is not important or is obvious.

2.2 Hall’s Theorem

Hall’s theorem, also known Hall’s marriage theorem, is a fundamental theorem in combi-
natorics proven by Philip Hall in 1935. The original proof by Hall can be found in [12].
There are different formulations of Hall’s theorem. The main version of the theorem we state
and prove in this section will be based on [2], which uses the notion of systems of distinct
representatives. We then derive a graph-theoretic version of Hall’s theorem as a corollary.

Given a ground set X and a nonempty collection S = {S1, S2, ..., Sn} of subsets of X, a
system of distinct representatives (or SDR for short) for S is an injective function f : S → X

that satisfies f(Si) ∈ Si for i = 1, 2, ..., n. For simplicity, if a SDR f for S exists, we will
sometimes represent f as a finite sequence {xi}ni=1, where xi = f(Si).

Proposition 2.1. (Hall’s Theorem) Let S = {S1, S2, ..., Sn} be a nonempty collection of
subsets of a set X. Then S possesses a system of distinct representatives if and only if, for
any T ⊆ S, we have

|T | ≤ |
⋃
T |,

where
⋃
T :=

⋃
T∈T T .

Proof. Suppose that some T ⊆ S is such that |T | > |
⋃
T |. If f : S → X is a function

satisfying f(Si) ∈ Si for all i, then the restriction of f to T has its images lying in
⋃
T . Such

a restriction f |T : T →
⋃
T cannot be injective since |T | > |

⋃
T |. Consequently, f is not

injective and thus S does not have a SDR.

To show the converse, we proceed by induction on n := |S|. The base case (in which
n = 1) is obvious. Suppose that our result is true for n = 1, 2, ..., k. Assume that n = k + 1
(so that S = {S1, S2, ..., Sk+1}) and that |T | ≤ |

⋃
T | for every T ⊆ S (so that each Si is

nonempty). There are two possibilities.
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(i) Suppose that for all r ≤ k, the union of any r sets of the collection S contains at
least r + 1 elements of X. Pick x1 to be any element in S1. Then by assumption the union
of any r sets of {S2, ..., Sk+1} contains at least r elements of X \ {x1}. By the induction
hypothesis, {S2, ..., Sk+1} has a SDR (with ground set X \ {x1}) , say {x2, ..., xk+1}. The
sequence {x1, x2, ..., xk+1} is then a SDR for S.

(ii) Suppose that for some r ≤ k, the union of the sets in some r-subcollection of S
contains at most r elements of X. This union then contains precisely r elements of X, by
assumption. Without loss of generality, we can label these r sets as S1, S2, ..., Sr. By the
induction hypothesis, {S1, S2, ..., Sr} has a SDR, say x1, x2, ..., xr. Now note that the union
of any t sets in {Sr+1, ..., Sk+1} contains at least t elements of X \ {x1, ..., xr}. Indeed,
if {Si1 , ..., Sit} is a t-subcollection of {Sr+1, ..., Sk+1} whose union contains at most t − 1
elements of X \ {x1, ..., xr}, then the union of S1, ..., Sr, Si1 , ..., Sit contains at most r+ t− 1
elements of X, a contradiction. Hence by the induction hypothesis, Sr+1, ..., Sk+1 has a SDR
{xr+1, ..., xk+1} with ground set X \{x1, ..., xr}. We can then conclude that {x1, x2, ..., xk+1}
is a SDR of S. The proposition then follows by induction. �

As mentioned at the beginning of the section, Hall’s theorem can be translated using
graph theoretic terms. It provides a necessary and sufficient condition for a bipartite graph
with equal-sized bipartition to have a perfect matching:

Corollary 2.2. (Hall’s Theorem for Graph Theory) Let G = (V,E) be a finite bipartite graph
with bipartition (V1, V2) satisfying |V1| = |V2|. Then G has a perfect matching if and only if
for every S ⊆ V1, we have

|S| ≤ |NG(S)|

where NG(S) = {v ∈ V2 : {u, v} ∈ E for some u ∈ S}.

Proof. Write V1 as {v1, v2, · · · , vn}, and let Si := NG({vi}). For W ⊆ V , we call a matching
M of G a W -saturating matching if every w ∈W is the end of some edge in M . Since |V1| =
|V2|, M is a perfect matching of G if and only if M is a V1-saturating matching of G. The
latter is just equivalent to saying that with ground set V2, the collection {S1, S2, · · · , Sn} has
a system of distinct representatives, which happens to be the case if and only if |S| ≤ |NG(S)|
for every S ⊆ V1, by Proposition 2.1. �

Other formulations and more applications of Hall’s theorem can be found in [29].
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2.3 Network Flows

A network is a pair (N , c), where N = (N,A) is a directed graph with two special nodes
s, t ∈ N called the source and sink, respectively, such that N contains no arc that has s
as its head and no arc that has t as its tail, and c : A → R≥ is a nonnegative real-valued
function that represents the capacities of the arcs of N . A flow on a network ((N,A), c) is
a function f : A→ R≥ satisfying the following two conditions:

(a) f(u, v) ≤ c(u, v), for all (u, v) ∈ A.

(b)
∑

u∈N :(u,v)∈A f(u, v) =
∑

w∈N :(v,w)∈A f(v, w), for all v ∈ N \ {s, t}.

The value of a flow f is defined to be
∑

v∈N :(s,v)∈A f(s, v). A flow is called a maximum flow
if its value is the largest possible. A cut is a set S ⊆ N such that s ∈ S and t /∈ S. The
cut-set of a cut S ⊆ N is the set δ(S) := {(u, v) ∈ A : u ∈ S, v /∈ S}. The capacity of a
cut-set δ(S) is defined to be c(δ(S)) :=

∑
a∈δ(S) c(a). The capacity of a cut S is defined to

be c(δ(S)). A cut is called a minimum cut if its capacity is the smallest possible. A powerful
and fundamental theorem in the theory of network flow is the following max-flow min-cut
theorem.

Theorem 2.3. (Max-Flow Min-Cut Theorem) For any network, the value of a maximum
flow is equal to the capacity of a minimum cut.

Probably the most famous proof of the max-flow min-cut theorem uses the idea of aug-
menting paths; we will omit the details here. Readers that are interested in the theory of
network flow may find [5] (Chapter 3) and [19] (Chapter 8) useful. The following theorems
can be proven using essentially the same idea of augmenting paths.

Theorem 2.4. (Integrity Theorem) If a network has integer-valued arc capacities, then it
has an integer-valued maximum flow.

Theorem 2.5. If S is a cut of the network ((N,A), c) with source s and sink t, then every
flow of the network ((N,A \ δ(S)), c) with source s and sink t has value 0.
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2.4 Tensor Products

Let V,W be finite dimensional vector spaces over a field F . Choose a basis B(V ) :=
{v1, v2, ..., vm} for V and a basis B(W ) := {w1, w2, ..., wn} for W , so that we can uniquely
write the elements of V and W as

∑m
i=1 aivi and

∑n
j=1 bjwj , respectively. Denote by V ⊗W

the F -vector space whose basis is {ev,w : (v, w) ∈ B(V )×B(W )}, which is called the tensor
product of V and W . Define a mapping ⊗ : V ×W → V ⊗W by

⊗(
m∑
i=1

aivi,
n∑
j=1

bjwj) =
∑
i,j

aibjei,j ,

where ei,j is the basis element of V ⊗W indexed by (vi, wj). We will write v⊗w for ⊗(v, w)
and will refer to this as the outer product of v and w. It follows immediately from the
definition that the outer product satisfies the following conditions:

(a) (v + v′)⊗ w = v ⊗ w + v′ ⊗ w for all v, v′ ∈ V and w ∈W .

(b) v ⊗ (w + w′) = v ⊗ w + v ⊗ w′ for all v ∈ V and w,w′ ∈W .

(c) (αv)⊗ w = v ⊗ (αw) = α(v ⊗ w) for all v ∈ V , w ∈W , and α ∈ F .

That is, the outer product is bilinear.

Note that the basis of V ⊗W can now be rewritten as {v⊗w : (v, w) ∈ B(V )×B(W )}.
If X : V → V and Y : W →W are linear transformations, the tensor product of X and Y is
the linear transformation X ⊗ Y : V ⊗W → V ⊗W defined by

X ⊗ Y (v ⊗ w) = X(v)⊗ Y (w)

for every basis element v⊗w. Note that once we define the function on the basis of V ⊗W , it
follows from the linearity that X ⊗Y (x⊗ y) = X(x)⊗Y (y) still holds for arbitrary elements
x ∈ V and y ∈W . With this in mind, the following proposition follows immediately.

Proposition 2.6. If X1, X2 are linear transformations on V and Y1, Y2 are linear transfor-
mations on W , then

(X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2).
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Proof. For any basis element v ⊗ w, we have

(X1 ⊗ Y1)(X2 ⊗ Y2)(v ⊗ w) = X1 ⊗ Y1(X2(v)⊗ Y2(w))

= X1X2(v)⊗ Y1Y2(w)

= X1X2 ⊗ Y1Y2(v ⊗ w).

Therefore (X1 ⊗ Y1)(X2 ⊗ Y2) = (X1X2)⊗ (Y1Y2) as they agree on the basis. �

2.5 Representations of sl(2, C)

In this section, we briefly introduce some notions of representations of Lie algebras we need
for Chapter 4. For more detailed treatment on theory of Lie algebras and representations,
readers can check out [7] and [16], for example.

A Lie algebra over a field F is a finite dimensional vector space L over F , together with
a binary operation [·, ·] (usually called the bracket operation) on L that has the following
properties:

(a) [·, ·] is bilinear.

(b) [x, y] = −[y, x] for all x, y ∈ L. (skew symmetry)

(c) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all x, y, z ∈ L. (Jacobi identity)

Denote by sl(n,C) the set of all n × n trace-zero complex matrices equipped with the
bracket operation defined by [x, y] = xy−yx. Straightforward verification shows that sl(n,C)
is a Lie algebra over C. The Lie algebra sl(2,C) has dimension 3 as a vector space, and has
a basis {x, y, h} where

x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
.

From now on, we will take {x, y, h} as the default basis for sl(2,C). In fact, the relation

[x, y] = h, [h, x] = 2x, [h, y] = −2y
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completely determines the bracket operation of sl(2,C) by the bilinearity and skew symmetry.

A representation of a Lie algebra L (over F ) is a pair (V, T ), where V is a nonzero
finite dimensional F -vector space and T : L → End(V ) is a linear transformation satisfying
T ([x, y]) = T (x)T (y)−T (y)T (x) for all x, y ∈ L. Here End(V ) is the set of endomorphisms of
V (that is, the set of linear transformations from V to itself), which is also a F -vector space.
For brevity, instead of the pair (V, T ), sometimes we may refer to V as a representation of L
when the linear transformation T is understood or is not important.

Given a c-graded poset P , we associate to it an abstract complex vector space whose
basis is {[p] : p ∈ P}, and denote this vector space by CP . Similarly, we denote by CPk
the subspace of CP that is spanned by {[p] : p ∈ Pk}. Note that CP ∼=

⊕
j∈Z CPj if we

define CPj to be the zero vector space whenever Pj = ∅. If P is 2-graded and X, Y , and
H := XY − Y X are linear operators from CP to CP satisfying

(a) X(CPj) ⊆ CPj+2 for each j ∈ Z;

(b) Y (CPj) ⊆ CPj−2 for each j ∈ Z;

(c) CPj is the eigenspace for H with eigenvalue j for each j ∈ Z with Pj 6= ∅,

then straightforward calculations show that

H = XY − Y X, 2X = HX −XH, −2Y = HY − Y H.

That is, CP , together with the linear transformation T : sl(2,C)→ End(CP ) defined by

T (x) = X, T (y) = Y, T (h) = H,

form a representation of sl(2,C). In this thesis, for any 2-graded poset P , we say that the
operators X, Y , and H span a representation of sl(2,C) acting on CP if X, Y and H satisfy
the three conditions above.

2.6 LYM inequality and Sperner’s Theorem

In this section, we introduce Sperner’s theorem, the starting point of Sperner theory. We
also introduce the Lubell-Yamamoto-Meshalkin inequality, which we will use to give a short
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proof of Sperner’s theorem. A collection A of subsets of a set S such that no member of A

is contained in any other member of A is called a Sperner family of S.

Theorem 2.7. Let A be a Sperner family of an n-element set S, and let ai be the number
of i-element sets in A . Then

n∑
i=0

ai(
n
i

) ≤ 1. (2.1)

Proof. For simplicity, we may assume that S = {1, 2, · · · , n}. For X ∈ A , let π(X) be the
set {σ ∈ Sn : σ({1, 2, · · · , |X|}) = X}, where Sn is the symmetric group of order n. Note
that |π(X)| = |X|!(n− |X|)! for any X ∈ A . Clearly,

⋃
X∈A π(X) ⊆ Sn. On the other hand,

the fact that A is a Sperner family implies that π(X)∩π(Y ) = ∅ for X 6= Y . Of course, this
is because if π(X) ∩ π(Y ) 6= ∅ then either X ⊆ Y or Y ⊆ X, which is impossible as A is a
Sperner family. It follows that if Ai denotes the collection of all i-element sets in A then we
have ∑

X∈A

|π(X)| = |
⋃
X∈A

π(X)| ≤ |Sn| = n!,

so that

n! ≥
∑
X∈A

|π(X)| =
n∑
i=0

∑
X∈Ai

|X|!(n− |X|)! =
n∑
i=0

aii!(n− i)!.

Dividing both sides by n! yields

1 ≥
n∑
i=0

ai
i!(n− i)!

n!
=

n∑
i=0

ai(
n
i

) ,
as desired. �

Inequality (2.1) is called the LYM inequality. Three of the earliest proofs of the LYM
inequality can be found in [20], [21] and [32]. The proof given above is due to Lubell [20]
in 1966. The LYM inequality gives perhaps the shortest known proof of Sperner’s theorem,
which is now commonly stated as follows:

Theorem 2.8. (Sperner’s theorem) Let S be an n-element set. Then

max{|A | : A is a Sperner family of S} = max{
(
n

i

)
: 0 ≤ i ≤ n}.
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Proof. Clearly, max{
(
n
i

)
: 0 ≤ i ≤ n} =

(
n
m

)
, where m = bn/2c. Since the collection of

m-element subsets of S is a Sperner family of S, we have

max{|A | : A is a Sperner family of S} ≥
(
n

m

)
.

On the other hand, given any Sperner family A of S, if ai denotes the number of i-element
sets in A then the LYM inequality implies that

1 ≥
n∑
i=0

ai(
n
i

) ≥ 1(
n
m

) n∑
i=0

ai =
|A |(
n
m

)
or equivalently, |A | ≤

(
n
m

)
, proving the desired equality. �

Sperner’s theorem was first proven by Sperner in [25]. In fact, he proved a stronger
result in the same paper, namely that any Sperner family of an n-element set S having the
maximum cardinality must be the collection of all m-element subsets of S, where

(
n
m

)
is a

largest binomial coefficient. Another proof using symmetric chain partitions due to Greene
and Kleitman can be found in [9]. We next see that the notion of Sperner family and Sperner’s
theorem can be generalized using the language of partially ordered sets.

Let (P,≤) be a graded poset, and let k be a positive integer. A set B ⊆ P is called a
k-family of (P,≤) if B does not contain any (k + 1)-element chain in (P,≤). Note that the
1-families of (P,≤) are precisely the antichains in (P,≤). If P is finite, we say that (P,≤) is
k-Sperner if the cardinality of any maximum-sized k-family of (P,≤) equals the sum of any k
largest Whitney numbers of (P,≤). Note that any k largest ranks of (P,≤) form a k-family.
For this reason, to show that (P,≤) is k-Sperner, it is always sufficient to only show that any
k-family of (P,≤) has cardinality no larger than the sum of any k largest Whitney numbers of
(P,≤). If (P,≤) is 1-Sperner then we simply say that (P,≤) is Sperner. If (P,≤) is k-Sperner
for every positive integer k then we say that (P,≤) is strongly Sperner (or that (P,≤) has the
strong Sperner property). If P is infinite but rank-finite then we say that (P,≤) is k-Sperner
(respectively, strongly Sperner) if P [a, b] is k-Sperner (respectively, strongly Sperner) for all
integers a and b with rmin ≤ a ≤ b ≤ rmax. The Boolean lattice Bn of order n is the set
of all subsets of the set {1, 2, · · · , n} partially ordered by set inclusion. By associating the
standard grading x 7→ |x| to Bn, one can always think of Boolean lattices as being standard
graded posets. With these definitions, Sperner’s theorem is equivalent to saying that Bn is
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Sperner. In Chapter 3 we will see that Boolean lattices are in fact strongly Sperner. Other
posets that have the strong Sperner properties include subspace lattices (posets of subspaces
of finite dimensional vector spaces over finite fields) and finite products of chains; we will
see these in Chapter 3 and Chapter 6. A more detailed treatment on Sperner theory can be
found in [6].

We end this chapter by making one useful remark. If a c-graded poset (P,≤) with grading
r is Sperner then Wi is nonempty for each i with rmin ≤ i ≤ rmax and i ≡ rmax (mod c).
The idea of this is that if some intermediate rank is empty then it is easy to see (by the
definition of a grading) that all elements of any maximum-sized rank are incomparable with
some element outside this maximum-sized rank, creating an antichain that has size greater
than the maximum rank size and thus contradicting the Sperner property of (P,≤). Since
we will almost exclusively work on Sperner posets, it is useful to keep this remark in mind.
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Chapter 3

LYM Posets

3.1 Basic Properties

A rank-finite graded poset P is said to be LYM (or to have the LYM property) if, for every
antichain A in P , we have the inequality∑

p∈A

1
Wr(p)

≤ 1.

Note that if P is infinite (but rank-finite), then the above sum could have infinitely many
terms. Also notice that the LYM inequality can be rewritten as

∑
k

|A ∩ Pk|
Wk

≤ 1,

where k runs over all the numbers for which Wk is nonzero. With this generalized LYM
inequality, Theorem 2.7 is equivalent to saying that Boolean lattices are LYM. We see that
the LYM property is preserved by rank-preserving extensions.

Proposition 3.1. Let P be a graded poset, and let Q be a rank-preserving extension of P .
If P is LYM then Q is LYM.

Proof. Let r be the grading of P and Q. Since Q is an extension of P , any antichain in
Q is also an antichain in P . Moreover, since P and Q have the same grading, we have
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Wk(P ) = Wk(Q) for all k. Therefore, if A is an antichain in Q, we have

∑
k

|A ∩Qk|
Wk

=
∑
k

|A ∩ Pk|
Wk

≤ 1.

as P is LYM. This implies that Q is LYM. �

Recall that for a graded poset (P,≤) and a positive integer k, a set B ⊆ P is called a
k-family of (P,≤) if B does not contain any (k + 1)-element chain in (P,≤). In fact, we can
visualize a k-family of (P,≤) as the union of antichains, as the following proposition states.

Proposition 3.2. A set B ⊆ P is a k-family of a graded poset (P,≤) if and only if B can
be expressed as the union of at most k antichains in (P,≤).

Proof. If B can be expressed as the union of at most k antichains in P , then clearly any chain
contained in B has length at most k since the intersection of a chain with an antichain has
at most one element, proving that B is a k-family.

Conversely, we show by induction on k that any k-family of P can be written as the
union of at most k antichains in P . By definition, any 1-family of P is an antichain in P .
Suppose that for some n > 1, any (n− 1)-family of P can be written as the union of at most
n− 1 antichains in P . Let B be an n-family of P . Let A be the set

{p ∈ B : there does not exist q ∈ B such that q < p}.

Clearly A is an antichain in P . The set B′ := B \ A is then an (n− 1)-family. Indeed, if B′

contains an n-element chain {p1, p2, · · · , pn} with p1 < p2 < · · · < pn then since p1 /∈ A, there
is some element p0 ∈ B such that p0 < p1, implying that {p0, p1, · · · , pn} is an (n+1)-element
chain in B, contradicting that B is an n-family of P . So B′ is an (n − 1)-family of P . By
the induction hypothesis, B′ can be written as the union of at most n − 1 antichains in P ,
so B = B′ ∪A can be written as the union of at most n antichains in P , proving the desired
statement by induction. �

Although a LYM poset may not be finite in general, it turns out that the LYM property
of an infinite poset is equivalent to those of its finite restrictions. The following proposition
makes this more precise.
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Proposition 3.3. A rank-finite graded poset P is LYM if and only if P [a, b] is LYM for all
integers a and b with rmin ≤ a ≤ b ≤ rmax.

Proof. Suppose that P is LYM. Let a and b be integers satisfying rmin ≤ a ≤ b ≤ rmax, and
let A be an antichain in P [a, b]. Clearly, A is also an antichain in P . By definition, W ′k = Wk

for every k with a ≤ k ≤ b, where W ′k represents the k-th Whitney number of P [a, b]. Hence
we have ∑

p∈A

1
W ′r(p)

=
∑
p∈A

1
Wr(p)

≤ 1,

implying that P [a, b] is LYM.

Conversely, suppose that P [a, b] is LYM for all integers a and b with rmin ≤ a ≤ b ≤ rmax.
Let A be an antichain in P . If A is finite, there exist integers a and b with rmin ≤ a ≤ b ≤ rmax

such that ∑
p∈A

1
Wr(p)

=
∑

p∈A∩P [a,b]

1
Wr(p)

≤ 1,

where the last inequality follows from the fact that A ∩ P [a, b] is an antichain in P [a, b]. If
A is infinite, let Ai := A ∩ P [k − ic, k + ic] for i ∈ N, where k ∈ Z is such that A ∩ Pk 6= ∅.
Consider the sequence {ai}i∈N, where

ai =
∑
p∈Ai

1
Wr(p)

.

This sequence is clearly nondecreasing, with each ai being at most 1 by assumption, so must
be convergent as a bounded monotonic sequence of real numbers, say limi→∞ ai = L. Clearly
L ≤ 1. On the other hand, we have∑

p∈A

1
Wr(p)

= lim
i→∞

∑
p∈Ai

1
Wr(p)

= lim
i→∞

ai = L,

and so ∑
p∈A

1
Wr(p)

≤ 1,

implying that P is LYM. �

Now we see that the strong Sperner property is just a consequence of the LYM property.
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Proposition 3.4. Let P be a rank-finite graded poset. If P is LYM then P is strongly
Sperner.

Proof. In view of Proposition 3.3 and the definition of the strong Sperner property, it suffices
to show the desired statement for the the case in which P is finite. Suppose that P is a finite
graded LYM poset with grading r, with Wi1 ,Wi2 ,...,Wik being the k largest Whitney numbers
of P (the choice of the indices ij may not be unique but is not important). Let

F := Pi1 ∪ Pi2 ∪ ... ∪ Pik

and let

n := |F | =
k∑
j=1

Wij .

The proof proceeds by showing the following two claims:

(a) If B is a k-family then ν(B) ≤ k, where ν(S) :=
∑
p∈S

1
Wr(p)

;

(b) If S ⊆ P and |S| > n then ν(S) > k.

These two facts together imply that any subset of P having more than n elements cannot
be a k-family. In other words, any k-family has at most n elements, which implies that P is
strongly Sperner, as desired. Now we show (a) and (b).

(a) Let B be a k-family. Then, by Proposition 3.2, there exist pairwise disjoint antichains
A1, A2, · · · , Ak in P such that B = A1 ∪ ... ∪Ak, so that we have

ν(B) = ν(
k⋃
j=1

Aj) ≤
k∑
j=1

ν(Aj) ≤ k,

where the last inequality follows from the fact P is LYM.

(b) Let T := {T ⊆ P : |T | > n}. Then the collection

S := {S ∈ T : ν(S) ≤ ν(T ) for all T ∈ T }

is nonempty by the finiteness of T . Let S′ be an element of S having the largest intersection
with F . I will show that S′ is a superset of F . Suppose that S′ is not a superset of F . Then
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there exists an element a in F \ S′. On the other hand, since |S′| > n = |F |, there exists an
element b in S′ \ F . Since a ∈ F and b /∈ F , we have Wr(a) ≥Wr(b), so that

1
Wr(a)

≤ 1
Wr(b)

.

Let S∗ := (S′ ∪ {a}) \ {b}. Then

ν(S∗) = ν(S′) +
1

Wr(a)
− 1
Wr(b)

≤ ν(S′),

meaning that S∗ ∈ S. But by construction, the intersection of S∗ with F has one more
element than the intersection of S′ with F , contradicting the choice of S′. It follows that S′

is a superset of F . Moreover, S′ contains F properly since |S′| > |F |. Therefore

ν(S′) > ν(F ) = ν(
k⋃
j=1

Pij ) =
k∑
j=1

ν(Pij ) = k.

Thus, (a) and (b) are proven and the proof is completed. �

The proof of Proposition 3.4 above is due to Wagner, who learned the idea from Kleitman
via personal communication. Since we have already seen in Section 2.6 that Boolean lattices
are LYM, Proposition 3.4 immediately implies that Boolean lattices are strongly Sperner.

We have just seen that the LYM property implies the strong Sperner property. In fact,
the LYM property is a strictly stronger property. Indeed, consider the poset (P = {1, 2, 3},≤)
having 1 < 3 and the other pairs of distinct elements being incomparable. The Hasse diagram
of this poset is shown in Figure 3.1. If we consider the standard grading r on P with
r(1) = r(2) = 0 and r(3) = 1 then it is easy to check that (P,≤) is strongly Sperner (all
antichains have size at most 2 and all k-families have size at most 3 for k ≥ 2). (P,≤) is not
LYM, however, since {2, 3} is an antichain with

∑
p∈{2,3}

1
Wr(p)

= 1 +
1
2
> 1.
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Figure 3.1: The Hasse diagram of a poset that is strongly Sperner but not LYM.

3.2 Characterization of LYM Posets

A rank-finite c-graded poset P is said to have the normalized matching property if, for any
S ⊆ Pk with rmin ≤ k < rmax and k ≡ rmax (mod c), the following inequality holds:

|S|
Wk
≤ |∇S|
Wk+c

For a c-graded poset P and rmin < k ≤ rmax with k ≡ rmax (mod c), let Gk(P ) be the
bipartite graph with bipartition (Pk×Pk−c, Pk−c×Pk), with {(p, p′), (q, q′)} an edge in Gk(P )
if and only if q l p in P or pl q in P . The following proposition gives a characterization of
LYM posets.

Proposition 3.5. Let P be a c-graded poset. The following are equivalent:

(a) P is LYM.

(b) P has the normalized matching property.

(c) For every rmin < k ≤ rmax, the graph Gk(P ) has a perfect matching.

(d) P ∗ has the normalized matching property.

(e) P ∗ is LYM.

Proof. We first show that (a) and (e) are equivalent. Suppose that P is LYM, and let A be an
antichain in P ∗. Since two elements are comparable in P if and only if they are comparable
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in P ∗, it follows that A is also an antichain in P . Let P ∗k and W ∗k denote the k-th rank and
the k-th Whitney number of P ∗, respectively. Then

∑
j

|A ∩ P ∗j |
W ∗j

=
∑
i

|A ∩ P ∗−i|
W ∗−i

=
∑
i

|A ∩ Pi|
Wi

≤ 1,

where the last inequality follows from the fact that P is LYM (here the index j in the first
sum runs over all the integers from −rmax to −rmin for which W ∗j is nonzero, and the index i
in the second sum runs over all the numbers from rmin to rmax for which Wi is nonzero). So
P ∗ is LYM. Dually, if P ∗ is LYM then P is LYM. So (a) and (e) are equivalent.

To complete the proof, it suffices to show that (a), (b), and (c) are equivalent, in which
case the equivalence between (d) and (e) would follow from the equivalence between (a) and
(b).

(a) ⇒ (b): Let rmin ≤ k < rmax with Pk nonempty, and let S be a subset of Pk. Since
each rank of P forms an antichain in P , it is easy to see that the set S ∪ (Pk+c \ ∇S) is also
an antichain in P ; let us denote this antichain by A. Now we have

1 ≥
∑
i

|A ∩ Pi|
Wi

=
|S|
Wk

+
Wk+c − |∇S|

Wk+c
=
|S|
Wk
− |∇S|
Wk+c

+ 1,

where the inequality holds since P is LYM. Rearranging the inequality above yields

|S|
Wk
≤ |∇S|
Wk+c

.

That is, P has the normalized matching property.

(b) ⇒ (c): Assume that P has the normalized matching property. In view of Hall’s
theorem (Corollary 2.2), to show that Gk(P ) has a perfect matching, it suffices to show that
the neighbourhood of any set of m vertices in Pk−c × Pk has size at least m. Let S be an
m-subset of Pk−c×Pk. Then the projection of S onto Pk−c has at least m/Wk elements, that
is,

|S′| := |{x ∈ Pk−c : (x, y) ∈ S for some y ∈ Pk}| ≥
m

Wk
.
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Since P has the normalized matching property, we have

|∇(S′)|
Wk

≥ |S′|
Wk−c

.

Combining the two inequalities above yields

|∇(S′)| ≥ |S′|
Wk−c

Wk ≥
m

Wk

Wk

Wk−c
=

m

Wk−c
.

Since the adjacency relation in Gk(P ) depends only on the covering relation of the first
coordinates of the vertices (in P ), the number of vertices in Pk × Pk−c adjacent to at least
one vertex in S is

|∇(S′)||Pk−c| ≥
m

Wk−c
Wk−c = m.

Therefore Gk(P ) has a perfect matching, by Hall’s theorem (Corollary 2.2).

(c) ⇒ (b): Suppose that Gk(P ) has a perfect matching for all rmin < k ≤ rmax. Let
S be a subset of Pk−c. Since Gk(P ) has a perfect matching, S × Pk can be matched into
∇S × Pk−c. More precisely, there is an injective function M : S × Pk → ∇S × Pk−c such
{M(x, y), (x, y)} is an edge in Gk(P ). Therefore

|S| ·Wk ≤ |∇S| ·Wk−c

or equivalently,
|S|
Wk−c

≤ |∇S|
Wk

.

That is, P has the normalized matching property.

(b)⇒ (a): Suppose that P has the normalized matching property. In view of Proposition
3.3, we may assume without loss of generality that P is finite. For any antichain A in P ,
define n(A) := minp∈A r(p). We show that

∑
p∈A

1
Wr(p)

≤ 1 (3.1)

for every antichain A in P , by induction on n(A) (from rmax down to rmin). If n(A) = rmax,
then A ⊆ Prmax and the result is obvious. Suppose that for some k ≤ rmax, Inequality (3.1)
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holds for any antichain A in P with n(A) = k. We want to show that Inequality (3.1) holds for
any antichain A in P with n(A) = k−c; let A′ be such an antichain, and let Ak−c := A′∩Pk−c.
Clearly A∗ := (A′∪∇Ak−c)\Ak−c is also an antichain in P , with n(A∗) = minp∈A∗ r(P ) = k.
Now we have ∑

p∈A′

1
Wr(p)

=
|Ak−c|
Wk−c

+
∑

p∈A′\Ak−c

1
Wr(p)

≤ |∇Ak−c|
Wk

+
∑

p∈A′\Ak−c

1
Wr(p)

=
∑
p∈A∗

1
Wr(p)

≤ 1,

where the first inequality follows from the normalized matching property of P , and the second
inequality follows from the induction hypothesis. Inequality (3.1) thus holds for any antichain
A in P , implying that P is LYM. This completes the proof of the equivalence of (a), (b), and
(c). �

The notion of normalized matching property was first introduced by Graham and Harper
in [8]. The equivalence between condition (a) and condition (b) is due to Kleitman [18]. The
equivalence between condition (b) and condition (c) is observed and kindly pointed out to
me by Wagner, with proofs independently done by me. This latter equivalence is an essential
tool we use to prove our main theorem in Chapter 5. The equivalence between condition (a)
and condition (e) is proved mainly as a lemma for our main theorem.

We now show one application of Kleitman’s characterization in Proposition 3.5. Let T (b)
be the set of all finite strings from the set {1, 2, · · · , b}. Consider the poset (T (b),≤) such
that α ≤ β if and only if there exists γ ∈ T (b) such that β = αγ (that is, β can be obtained
by concatenating γ to the right of α). It is straightforward to check that the function that
maps each string to its string length is a standard grading on (T (b),≤), in which case the i-th
rank of (T (b),≤) consists of all the strings of length i. Clearly, Wi = bi for any nonnegative
integer i. In fact, it is very easy to show that the poset (T (b),≤) is LYM since verifying the
normalized matching property in this case is almost immediate.

Proposition 3.6. The poset (T (b),≤) is LYM.

Proof. Let i be a non-negative integer, and let S be a subset of Wi. Since |∇({α})| = b for
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each α ∈ S and ∇({α}) ∩∇({β}) = ∅ for α 6= β in S, we have |∇(S)| = b · |S|, so that

|∇(S)|
Wi+1

=
b · |S|
bi+1

=
|S|
bi

=
|S|
Wi

,

verifying the normalized matching property of (T (b),≤). By Proposition 3.5, (T (b),≤) is
LYM. �

For finite posets, Kleitman [18] proved another equivalent condition for the LYM prop-
erties using regular chain covers. For clarity, we only consider standard graded posets here;
the proof is essentially the same for any finite c-graded poset. A maximal chain in a graded
poset P is a chain that intersects all the non-empty ranks of P . A regular chain cover of a
finite standard graded poset P with grading r is a non-empty collection C of (not necessarily
distinct) maximal chains in P such that, for each k with 0 ≤ k ≤ rmax, every element of Pk
is in the same number of chains in C .

Proposition 3.7. For a finite standard graded poset P with grading r, the following are
equivalent:

(a) P is LYM.

(b) There is a regular chain cover of P .

Proof. Assume that P is LYM. Then P has the normalized matching property by Proposition
3.5. For each p ∈ P , we define Qp to be

P0 × P1 × · · · × Pk−1 × Pk+1 × · · · × Prmax−1 × Prmax

where k = r(p). Let P ′ be the set
⋃
p∈P {p} ×Qp with covering relation l such that (p, q) l

(p′, q′) in P ′ if and only if p is covered by p′ in P . Informally speaking, for each k with Pk 6= ∅,
we make

∏
i 6=k,Wi 6=0Wi copies of each element of Pk in P ′, and say that a copy of p is covered

by a copy of p′ in P ′ if and only if p is covered by p′ in P . We will show that for each k with
0 ≤ k < rmax, there is a perfect matching between Pk ×Qk and Pk+1 ×Qk+1 (both of which
have size

∏
0≤i≤rmax

Wi) in the Hasse diagram of P ′, where Qk = Qx for some x ∈ P with
r(x) = k. Let us fix k and let S be an m-subset of Pk ×Qk. Then

|S′| := |{x ∈ Pk : (x, y) ∈ S for some y ∈ Qk}| ≥
m

|Qk|
≥ m∏

i 6=kWi
.
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By the normalized matching property, we have

|∇(S′)| ≥ Wk+1

Wk
|S′| ≥ Wk+1

Wk

m∏
i 6=kWi

=
m∏

i 6=k+1Wi
,

so
|∇(S′)×Qk+1| = |∇(S′)| · |Qk+1| ≥

m∏
i 6=k+1Wi

∏
i 6=k+1

Wi = m.

Since every element of ∇(S′) × Qk+1 is comparable with every element of S in P (because
the order relation of P ′ depends only on the first coordinates of elements), by Hall’s theorem
(Corollary 2.2) there is a perfect matching between Pk × Qk and Pk+1 × Qk+1 in the Hasse
diagram of P ′. Putting all the matchings betweens ranks together yields a collection of chains
from P0×Q0 to Prmax×Qrmax in P ′. By restricting to the first coordinate, we have a collection
of maximal chains in P such that each element of Pk is contained in

∏
i 6=kWi chains, which

is a regular chain cover of P .

Conversely, let C be a regular chain cover of P . Since every maximal chain must contain
exactly one element from each non-empty rank of P , if p ∈ P is such that r(p) = k then
|Cp| = |C |/Wk, where Cp is the subcollection {C ∈ C : p ∈ C} of C . For S ⊆ P , let CS be
the collection of chains in C that contain at least one element of S. Let A be an antichain in
P . Then

CA =
⋃
a∈A

Ca =
⋃

k:0≤k≤rmax

⋃
a∈A∩Pk

Ca.

Since A is an antichain, Ca ∩ Cb = ∅ if a and b are distinct elements of A. Hence

|CA| =
∑
k

∑
a∈A∩Pk

|Ca|

=
∑
k

∑
a∈A∩Pk

|C |
Wk

=
∑
k

|A ∩ Pk|
|C |
Wk

= |C |
∑
k

|A ∩ Pk|
Wk

.

Clearly |CA| ≤ |C |, so

|C |
∑
k

|A ∩ Pk|
Wk

≤ |C |,

implying that ∑
k

|A ∩ Pk|
Wk

≤ 1.
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That is, P has the LYM property. �

As an application of Proposition 3.7, we show that subspace lattices are LYM, hence
strongly Sperner. Given a non-negative integer n and a finite field GF (q) of q elements, the
subspace lattice Vn(q) is the set of all subspaces of the n-dimensional vector space over GF (q)
partially ordered by inclusion. Clearly, the function that sends each element of Vn(q) to its
dimension is a standard grading on Vn(q), so we can think of Vn(q) as a standard graded poset
whose i-th rank consists of all i-dimensional subspaces. It is well-known that the number
of i-dimensional subspaces of the m-dimensional vector space over GF (q) is given by the
Gaussian binomial coefficient

[
m
i

]
q

(for example, see [26, §1.3]). This is a key fact we need to
derive the LYM property of Vn(q).

Proposition 3.8. The subspace lattice Vn(q) is LYM.

Proof. Let C be the collection of all distinct maximal chains in Vn(q). We show that C is
a regular chain cover of Vn(q). From linear algebra, we have for any i-dimensional subspace
W of the maximal vector space V with 0 ≤ i ≤ n, the number of (i + 1)-dimensional
subspaces of V containing W is

[
n−i
1

]
q
, and the number of (i−1)-dimensional subspaces of V

containing W is
[
i
i−1

]
q
. In other words, for any i-th rank element W of Vn(q), the number of

elements covering W and the number of elements W covers depend only on i. Note that this
implies that the number of distinct maximal chains in Vn(q) containing an i-th rank element
depends only on i (if ui and di denote the number of elements covering an i-th rank element
and the number of elements an i-th rank element covers, respectively, then the number of
distinct maximal chains in Vn(q) containing an i-th rank element is given by the number∏n−1
j=i uj ·

∏i
j=1 dj), so C is indeed a regular chain cover of Vn(q). By Proposition 3.7, Vn(q)

is LYM. �

Immediately, we can conclude that subspace lattices are strongly Sperner, as we men-
tioned in Section 2.6.

Corollary 3.9. The subspace lattice Vn(q) is strongly Sperner.

Proof. The statement follows immediately from Proposition 3.4 and Proposition 3.8. �

28



Chapter 4

Peck Posets

4.1 Basic Properties

A finite centrally graded poset is Peck if it is rank-symmetric, rank-unimodal, and strongly
Sperner. The Peck property is a natural property in the sense that it is preserved under
many common poset operations. Some of the special cases are formalized below.

Proposition 4.1. Let P be a centrally graded poset, and let Q be a rank-preserving extension
of P . If P is Peck then Q is Peck.

Proof. Suppose that P is a Peck poset. Since any rank-preserving extension of a poset
preserves ranks and thus Whitney numbers, Q is also rank-symmetric and rank-unimodal
by the same properties of P . Let k be a positive integer. Since Q is an extension of P ,
any k-family of Q is also a k-family of P , hence has size no larger than the cardinality of a
largest k-family of P , which is the sum of the k largest Whitney numbers as P is k-Sperner.
Therefore Q is k-Sperner for any positive integer k, i.e., Q is strongly Sperner and hence is
Peck. �

A Peck poset P is called even if the nonempty ranks of P all have even rank numbers,
and is called odd if the nonempty ranks of P all have odd rank numbers. This property of
being even or odd for a Peck poset P is called the parity of P .

Proposition 4.2. If {Pi}i∈I is a finite collection of disjoint Peck posets having the same
parity then their order union

⋃
i∈I Pi is Peck.
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Proof. Let ri be the grading of Pi for each i ∈ I. Since all the Pi have the same parity, the
union grading r for

⋃
i∈I Pi with respect to {ri}i∈I is well-defined. Furthermore it is a central

grading because each ri is. With the gradings above, let Wj be the j-th Whitney number of⋃
i∈I Pi, and let Wi,j be the j-th Whitney number of Pi. Then we have

Wj =
∑
i∈I

Wi,j (4.1)

for all j ∈ Z. The rank symmetry and the rank unimodality of all the Pi then immediately
implies that

⋃
i∈I Pi is rank-symmetric and rank-unimodal with respect to the union grading.

If B is a k-family in
⋃
i∈I Pi, then the restriction Bi of B to Pi is a k-family in Pi, for each

i ∈ I. Each Bi has size no bigger than the sum of the k largest Whitney numbers for Pi by
the strong Sperner property of Pi, so the sum of the size of all the Bi, being the size of B, is
no larger than the the sum of the k largest Whitney numbers for

⋃
i∈I Pi by equation (4.1),

proving that
⋃
i∈I Pi is strongly Sperner. Therefore

⋃
i∈I Pi is Peck. �

We end this section by remarking that the term Peck poset was first defined in reference
to the author G.W. Peck, whose name was derived from the initials of six authors, Graham,
West, Purdy, Erdös, Chung, and Kleitman.

4.2 Characterization of Finite Peck Posets

Before proceeding to the characterization, we first define some concepts that are important
in this section. Let (P,≤) be a c-graded poset, and let m, n be integers such that rmin ≤
m ≤ n ≤ rmax and rmin ≡ m ≡ n (mod c). A symmetric chain matching from Pm to Pn is a
collection C of pairwise disjoint chains in P that satisfies:

(a) every element in Pm is in exactly one chain in C;

(b) every element in Pn is in exactly one chain in C;

(c) every chain in C contains exactly one element of each Pk for m ≤ k ≤ n with k ≡ m

(mod c), and does not contain any elements of Pk for k > n or k < m.

It follows immediately from the definition that a necessary condition for the existence of such
a matching is that Wm = Wn and P [m,n] is rank-unimodal.
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Recall that we denote by CP the abstract complex vector space whose basis is {[p] : p ∈
P}, and we denote by CPk the subspace of CP that is spanned by {[p] : p ∈ Pk}. If P is
c-graded then a linear map X : CP → CP is called a raising operator on P if

X(CPk) ⊆ CPk+c, for all k ∈ Z,

and is called a lowering operator on P if

X(CPk) ⊆ CPk−c, for all k ∈ Z.

A linear map X : CP → CP is called an order raising operator on P if for every p ∈ P , we
have

X([p]) =
∑
plq

x(p, q)[q],

where x(p, q) is a complex scalar depending on p and q. Here we define the empty sum to be
the zero vector. Clearly, every order raising operator on P is a raising operator on P .

As we mentioned in the introduction chapter, several authors have given different equiv-
alent conditions for the Peck property. They are unified in the following proposition.

Proposition 4.3. For a centrally graded poset P with rmax = r (where r ∈ Z), the following
are equivalent:

(a) P is Peck.

(b) For each 0 ≤ i ≤ r with i ≡ r (mod 2), there is a symmetric chain matching from P−i

to Pi.

(c) There exists an order raising operator R : CP → CP on P such that for each 0 ≤ i ≤ r
with i ≡ r (mod 2), the map Ri|CP−i : CP−i → CPi is invertible.

(d) There exists an order raising operator R and a lowering operator L on P such that R,
L, and H := RL− LR span a representation of sl(2,C) acting on CP .

Proof. (a) ⇒ (b): Suppose that P is Peck. Fix an i such that 0 ≤ i ≤ r with i ≡ r (mod
2). We want to show that there exist Wi disjoint chains such that each chain passes through
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every Pj with −i ≤ j ≤ i and j ≡ r (mod 2). Let

P ′ := P−i ∪ P−i+2 ∪ ... ∪ Pi−2 ∪ Pi,

and consider the network ((N,A), c) defined as follows:

Nodes N
s source
t sink
ux (for all x ∈ P ′)
vx (for all x ∈ P ′)

Arcs A Capacities c
(s, ux) (for all x ∈ P−i) L

(vx, t) (for all x ∈ Pi) L

(ux, vx) (for all x ∈ P ′) 1
(vx, uy) (for all x, y ∈ P ′ such that xl y) L

where L is a large integer whose choice will be explained below.

By design, if we let S := {s} ∪ {ux : x ∈ P−i} then δ(S) = {(ux, vx) : x ∈ P−i} is a
cut-set with capacity Wi (= W−i). By the max-flow min-cut theorem (Theorem 2.3), the
maximum value of a flow is at most Wi. On the other hand, if we set the value of L in the
definition above sufficiently large, say L = Wi + 1, then any cut-set with minimum capacity
must be a subset of {(ux, vx) : x ∈ P ′} (otherwise the cut-set would have capacity at least
L = Wi + 1 which is not minimum). Let C be a cut-set with minimum capacity, and let
C ′ := {x ∈ P ′ : (ux, vx) ∈ C}. The fact that C is a cut-set implies that no chain in P ′ \ C ′

intersects all ranks P−i, P−i+2, ..., Pi−2, Pi. Indeed, if this is not true, let {x−i, x−i+2, · · · , xi}
be such a chain with xj ∈ Pj . This chain yields the set of arcs

{(s, ux,−i), (ux,−i, vx,−i), (vx,−i, ux,−i+2), · · · , (vx,i−2, ux,i), (ux,i, vx,i), (vx,i, t)}

in the network. The function that has value 1 on all the arcs in the above set and has
value 0 on every other arc in A \ C is a flow of value 1 on the network ((N,A \ C), c). But
this contradicts Theorem 2.5 since C is a cut-set. So no chain in P ′ \ C ′ intersects all ranks
P−i, P−i+2, ..., Pi−2, Pi. Hence P ′\C ′ is an i-family of P . Since P is strongly Sperner, |P ′\C ′|
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is at most the sum of the i largest Whitney numbers, which equals |P ′| −Wi by the rank
unimodality and rank symmetry of P . Consequently, |C ′| ≥Wi. Since |C| = |C ′|, by the max
flow-min cut theorem again, the maximum value of a flow is at least Wi, and hence precisely
Wi.

Since the arcs in A have integral capacities, by Theorem 2.4, there is an integer-valued
maximum flow f on ((N,A), c). By the fact that c(ux, vx) = 1 for all x ∈ P ′, there are Wi

sets of arcs of the forms

{(s, ux,−i), (ux,−i, vx,−i), (vx,−i, ux,−i+2), · · · , (vx,i−2, ux,i), (ux,i, vx,i), (vx,i, t)}

in which every arc has f -value 1 (here ux,j is some ux with x ∈ Pj , and vx,j is some vx

with x ∈ Pj). Furthermore, any two of these sets of arcs are disjoint since each (ux, vx) has
capacity only 1. Therefore, these sets of arcs correspond naturally to Wi disjoint chains from
P−i to Pi that satisfy the desired condition.

(b) ⇒ (a): The rank-symmetry and rank-unimodality of P follow immediately from the
existence of a symmetric chain matching from P−i to Pi for each i by definition. It thus
suffices to show that P is strongly Sperner to conclude what we want. If r is even, then by
the rank-symmetry and rank-unimodality of P we have

W0 ≥W−2 = W2 ≥W−4 = W4 ≥ ...

Similarly, if r is odd, we have

W−1 = W1 ≥W−3 = W3 ≥W−5 = W5 ≥ ...

By the m largest ranks of P , we mean the ranks of P corresponding to the first m Whitney
numbers in the orders given above . Intuitively, this means that whenever there is a tie, we
always take the rank with negative index first. More precisely, we take them largest ranks of P
as {Pan : 1 ≤ n ≤ m}, where an = (−1)n+12b(1/2)nc if r is even and an = (−1)n2d(1/2)ne−1
if r is odd. Let A be any k-family of maximum size, and let −l be the smallest index j such
that Pj is one of the k largest ranks. If A is the union of the k largest ranks of P then we are
done, so we may assume that some a ∈ A is not in any of the k largest ranks. This means
that A∩Pi is nonempty for some i < −l or i ≥ −l+ 2k. We first assume that A∩Pi 6= ∅ for
some i < −l.
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Let i′ be min{i : A ∩ Pi 6= ∅}, and let Mi′ be a symmetric chain matching from Pi′ to
P−i′ . For each element a ∈ A ∩ Pi′ , there is a chain Ca ∈ Mi′ that contains a. Let U(a) be
the element in Ca \A that has the smallest rank. Note that U(a) exists for each a ∈ A ∩ Pi′
since Ca has at least k + 2 elements and A is a k-family. Consider the set A′ obtained by
replacing A ∩ Pi′ with {U(a) : a ∈ A ∩ Pi′} in A. That is,

A′ = (A \ Pi′) ∪ {U(a) : a ∈ A ∩ Pi′}.

Clearly |A′| = |A|. In fact, A′ is also a k-family. To see this, we show that any subset of
A′ that is a chain in P has size at most k. Let C ⊆ A′ be a chain in P . If C ⊆ A then
what we want to show is obvious since A is a k-family. Assume that C is not a subset of A.
Then C \ A 6= ∅. Let x be an element in C \ A with maximum rank, say r(x) = M . Since
x ∈ A′ \ A, there exists a ∈ Pi′ such that x = U(a). By the choice of U(a), Ca (the chain in
Mi′ containing a) contains x and intersects A at each rank i′, i′ + 2, · · · ,M − 2, so that

|{p ∈ Ca ∩A : p < x}| = M − i′

2
,

from which we can conclude

|{p ∈ C ∩A : p > x}| ≤ k − M − i′

2
,

since otherwise the union of the above two sets, as a subset of the k-family A, is a chain in
P of size at least k+ 1, which is impossible. Since x was chosen in such a way that it has the
maximum rank in C \A, we have

|{p ∈ C : p > x}| = |{p ∈ C ∩A : p > x}| ≤ k − M − i′

2
.

Since any element of A′ has rank strictly greater than i′ by construction, and C is a subset
of A′, we can conclude that

|{p ∈ C : p ≤ x}| ≤ M − i′

2
.

Adding up the above two inequalities yields |C| ≤ k, which is what we want. Therefore A′ is
a k-family.

The above shows that whenever A has some element whose rank is less than −l, we
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can always construct a k-family of the same size whose minimum rank is 2 larger than the
minimum rank of A. Applying this procedure finitely many times, one can eventually obtain
a k-family that has the same size as A and has no element whose rank is less than −l.

Now suppose that A ∩ Pi 6= ∅ for some i ≥ −l + 2k. Let i′ be max{i : A ∩ Pi 6= ∅}
and consider a symmetric chain matching Mi′ from P−i′ to Pi′ again. For each element
a ∈ A ∩ Pi′ , define Ca to be the chain in Mi′ that contains a. Let D(a) be the element in
Ca\A that has the biggest rank. Now Ca may have fewer elements than it did in the previous
case, but still has at least k + 1 elements, so the existence of D(a) is still guaranteed. Now
applying the procedure we used in the first case in its dual form, one can once again obtain
a k-family of the same size that has no element whose rank is at least −l + 2k.

By applying both procedures above if necessary, any k-family of P that is not a subset of
the union of the k largest ranks can always be transformed into a k-family of P of the same
size that is a subset of the union of the k largest ranks. That is, P is strongly Sperner and
hence is Peck.

(c) ⇒ (b): For convenience, we can visualize the vector space CP as Cn where n = |P |.
That is, we can view the elements of CP as n-dimensional vectors indexed by P , such that
any basis vector [p] is just the standard basis vector whose only nonzero entry is at the
index corresponding to p. In this way, any linear transformation from CPj to CPk can be
visualized as a linear transformation from CL to CN where L = |Pj | and N = |Pk|, and thus
can be represented by an N ×L matrix (whose rows and columns are indexed by Pk and Pj ,
respectively) with complex entries.

Let R : CP → CP be an order raising operator satisfying the condition in (c). We
want to construct for each i a symmetric chain matching from P−i to Pi. Let i be such that
0 ≤ i ≤ r with i ≡ r (mod 2). Note that

Ri|CP−i = R|CPi−2 ·R|CPi−4 · ... ·R|CP−i+2 ·R|CP−i ,

where the multiplication here represents the function composition. Let M be the matrix
representing the map Ri|CP−i , and let Mj be the matrix representing R|CPj . Then we have
from the previous equation

M = Mi−2Mi−4...M−i+2M−i.
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Given any matrix A whose rows and columns are indexed by S and T , respectively, and for
any S′ ⊆ S and T ′ ⊆ T , we define A[S′, T ′] to be the submatrix of A whose rows and columns
are indexed by S′ and T ′, respectively. Then by the Cauchy-Binet formula (see [1, §36]) we
have

detM =
∑

det(Mi−2[Qi, Qi−2]) det(Mi−4[Qi−2, Qi−4])...det(M−i[Q−i+2, Q−i]),

where the sum is taken over all the Qj satisfying Qj ⊆ Pj with |Qj | = |Pi| for all j. Note that
this sum is always nonempty. Indeed, the fact that M is invertible implies that |P−i| = |Pi|.
Furthermore, since the dimension of the range can never be greater than the dimension of
the domain under a linear map, we can further conclude that

|P−i| = |Pi| ≤ |P−i+2| = |Pi−2| ≤ |P−i+4| = |Pi−4| ≤ · · · ,

so that the sum always has at least one term. Since M is invertible, detM is nonzero, so
that some term in the sum is nonzero. This term is the product of the determinants of some
|Pi| × |Pi| matrices, all of which must be invertible as the term is nonzero.

Consider a nonzero term in the sum, and assume that it is defined by Q′−i, Q
′
−i+2, ..., Q

′
i.

For any Q′j and Q′j+2, notice that Hall’s condition is satisfied, that is, for any Q ⊆ Q′j , we
have

|{p ∈ Q′j+2 : q l p for some q ∈ Q}| ≥ |Q|. (4.2)

Indeed, if this were not the case then it would mean that the dimension of the subspace of
Pj spanned by the vectors indexed by Q is greater than the dimension of its image under
the map R|CQ (since R is an order raising operator), which is impossible as Mj [Q′j+2, Q

′
j ] is

invertible. Since Hall’s condition (4.2) is satisfied, by Hall’s theorem (Corollary 2.2) there is a
perfect matching from Q′j to Q′j+2 in the Hasse diagram H(P ). In other words, there is a one-
to-one correspondence between Q′j and Q′j+2 such that any pair of corresponding elements
are comparable in P . Given an element x of P−i = Q′−i, using this correspondence we can
construct a chain Cx containing x and elements from each rank P−i+2, P−i+4, · · · , Pi = Q′i.
Putting together the chains Cx constructed in this way for all x ∈ P−i yields a symmetric
chain matching from P−i to Pi.

(b) ⇒ (c): Suppose that there is a symmetric chain matching Mi from P−i to Pi.
Consider a linear map Si : CP → CP satisfying the following: for any element [p] in the basis
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of CP , if there is some q ∈ P such that p l q and {p, q} is a subset of a chain in Mi, then
Si([p]) = [q]; otherwise, Si([p]) = 0. Clearly, Si is an order raising operator. Moreover, the
existence of a symmetric chain matching from P−i to Pi guarantees that Sii |CP−i : CP−i → CPi
is invertible by the construction of Si.

Now we construct an order raising operator satisfying the desired requirement. If X is
an order raising operator on CP , what does the matrix M(X) representing the map X look
like? By definition M(X) must be an n × n matrix (where n = |P |) whose (p, q)-entry is
zero if q is not covered by p in P . Let us think of the (p, q)-entries of M(X) for which q l p

in P as indeterminants xp,q. Our claim is that if we obtain an order raising operator R by
setting all these xp,q to be complex numbers that are algebraically independent over Q then
R satisfies the desired requirement. First of all, it is possible to obtain R this way since the
transcendence degree of C over Q is infinite (or more precisely, equals the cardinality of R).
In particular, there is always a set of algebraically independent complex numbers (over Q) of
size N for any positive integer N . Readers can find out more about algebraic independence
and transcendence degree in Chapter 5 of [22] and Chapter 6 of [17]. Now to see the claim,
we know from elementary linear algebra that the determinant of a matrix is a polynomial
in its entries with integer coefficients. In particular, if Mi(X) is the matrix representing the
map Xi|CP−i : CP−i → CPi, then just as in the previous part we can write det(Mi(X)) as
the sum of determinants of some submatrices of M(X) using the Cauchy-Binet formula, so
that det(Mi(X)) is a polynomial in xp,q with integer coefficients. By the first paragraph
of this part, for an arbitrary fixed i, there exists an order raising operator Si on CP such
that Sii |CP−i : CP−i → CPi is invertible, so det(Mi(Si)) 6= 0. This means that det(Mi(X))
cannot be the zero polynomial. Consequently, by the way we set the values for xp,q in R,
det(Mi(R)) 6= 0, so that Ri|CP−i : CP−i → CPi is invertible. This works for all 0 ≤ i ≤ r

with i ≡ r (mod 2), so the desired statement is proven.

(c) ⇒ (d): Let R : CP → CP be an order raising operator satisfying the condition
in (c). We first construct a new basis of CP . Let v1 be any nonzero vector in CP−r,
and let V0 := ∅. Then v1, Rv1, · · · , Rrv1 are nonzero and linearly independent (here we
write Rv instead of R(v)). Let V1 := {v1, Rv1, · · · , Rrv1}. Let −s be the smallest integer
such that CP−s is not contained in span(V1), and let v2 be a vector in CP−s \ span(V1).
Note that v2, Rv2, · · · , Rsv2 are linearly independent and outside of span(V1). To see this,
we first simplify the notation by letting w−r+2m be Rmv1 for m ∈ {0, 1, · · · , r} (so that
now V1 can be rewritten as {w−r, w−r+2, · · · , wr−2, wr}) and letting u−s+2n be Rnv2 for
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n ∈ {0, 1, · · · , s}. Then by design w−r+2m ∈ CP−r+2m and u−s+2n ∈ CP−s+2n. Now suppose
that u−s+2a := Rav2 ∈ span(V1) for some a ∈ {0, 1, · · · , s}, and consider such an a with
the smallest value possible. Then a ≥ 1 since v2 /∈ span(V1) by the choice of v2. There is
exactly one element in CP−s+2a ∩ V1, namely w−s+2a, so span({u−s+2a}) = span({w−s+2a}).
Evidently span({u−s+2n}) = span({w−s+2n}) for all n ≥ a. If −s+ 2a ≤ 0 then u−s+2(a−1) /∈
span({w−s+2(a−1)}) by design, so that u−s+2(a−1) and w−s+2(a−1) are linearly independent;
but span({R2(a−1)−su−s+2(a−1)}) = span({R2(a−1)−sw−s+2(a−1)}), contradicting the assump-
tion that the map R2(a−1)−s is invertible. Similarly, if −s + 2a > 0 then us−2a and ws−2a

are linearly independent, with span({R−s+2aus−2a}) = span({R−s+2aws−2a}), which again
contradicts the assumption that the map R−s+2a is invertible. So v2, Rv2, · · · , Rsv2 are
not in span(V1). Let V2 := V1 ∪ {v2, Rv2, ..., Rsv2}. In general, if span(Vj) 6= CP then
we pick the smallest integer −t such that CP−t is not contained in span(Vj), and pick
vj+1 ∈ CP−t \ span(Vj). Then vj+1, Rvj+1, · · · , Rtvj+1 are linearly independent and outside
of span(Vj) by the invertibility condition in (c). Let Vj+1 := Vj ∪ {vj+1, Rvj+1, · · · , Rtvj+1}.
Notice that the way we choose −t guarantees that −t is always non-positive due to the rank
symmetry implied by (c). Repeat this procedure until span(Vj′) = CP . Vj′ is then a new
basis for CP .

Now consider the lowering operator L : CP → CP defined on the new basis by

L(Rjvk) =

{
−j(r(vk) + j − 1)Rj−1vk, if j ≥ 1
0, if j = 0,

where r(x) denotes the rank of x. Now we show that R, L, and H := RL − LR span a
representation of sl(2,C) acting on CP . By the definition in Section 2.5, it suffices to show
that CPi is the eigenspace for H with eigenvalue i, for each −r ≤ i ≤ r with i ≡ r (mod 2).
Assume that Rjvk is an element in the new basis we constructed above. If j 6= 0 and Rj+1vk

is a new basis element then

(RL− LR)(Rjvk) = RL(Rjvk)− LRj+1vk

= R(−j(r(vk) + j − 1)Rj−1vk) + (j + 1)(r(vk) + j)Rjvk

= (−jr(vk)− j2 + j)Rjvk + (jr(vk) + j2 + r(vk) + j)Rjvk

= (r(vk) + 2j)Rjvk

= r(Rjvk)Rjvk.
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If j = 0 then the term RL(Rjvk) vanishes and we have

(RL− LR)(Rjvk) = −L(Rvk) = r(vk)R0vk = r(vk)vk.

If Rj+1vk is not a new basis element then Rj+1vk = 0 and j = r(Rjvk) = −r(vk). In this
case, we have

(RL− LR)(Rjvk) = RL(Rjvk) = (−jr(vk)− j2 + j)Rjvk = r(Rjvk)Rjvk.

This shows that CPi is the eigenspace for H with eigenvalue i, for each −r ≤ i ≤ r with i ≡ r
(mod 2), so that the operators R, L and H indeed span a representation of sl(2,C) acting on
CP .

(d)⇒ (c): Suppose that R, L, and H are operators spanning a representation of sl(2,C)
acting on CP that also satisfy the assumption in (d). By Weyl’s theorem ([16], p. 28), CP
can be written as a direct sum of irreducible representations. Furthermore, since CP can be
decomposed as a direct sum of eigenspaces of H, each of these irreducible representations
has a basis consisting of eigenvectors of H. For any of these irreducible representations (of
dimension d + 1), say W , if we pick v0 ∈ W to be one of the eigenvectors of H with the
smallest eigenvalue (say −λ) and define vi := Riv0, then we have

Hvi = (−λ+ 2i)vi, for i ≥ 0;
Rvi = vi+1, for i ≥ 0;
Lvi = i(λ− i+ 1)vi−1, for i ≥ 1.

Indeed, Rvi = vi+1 follows directly from the definition of vi and Hvi = (−λ + 2i)vi follows
from the second equality and the fact R(CPj) ⊆ CPj+2. To show the third equality, we use
induction on i. If i = 1 then since Lv0 = 0,

Lv1 = L(Rv0) = RLv0 −Hv0 = 0− (−λv0) = λv0,

so the base case holds. If i > 1 then by the induction hypothesis and the other two equalities,
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we have

Lvi = L(Rvi−1) = RLvi−1 −Hvi−1

= R((i− 1)(λ− i+ 2)vi−2) + (λ− 2(i− 1))vi−1

= (i− 1)(λ− i+ 2)vi−1 + (λ− 2(i− 1))vi−1

= i(λ− i+ 1)vi−1.

Thus the third equality follows by induction.

A consequence of the irreducibility of W is that vi 6= 0 for 0 ≤ i ≤ d and vi = 0 for
all i > d (more details in [16], p. 32), so v0, v1, · · · , vd form a basis for W because they are
linearly independent. Moreover, since vd+1 = 0, Lvd+1 must be zero and by the third equality
above we must have 0 = (d+ 1)(λ− d)vd, implying that λ = d since vd 6= 0. This means that
W has a basis {v0, v1, · · · , vd} satisfying

Hvi = (−d+ 2i)vi, for 0 ≤ i ≤ d;
Rvi = vi+1, for 0 ≤ i ≤ d− 1;
Lvi = i(d− i+ 1)vi−1, for 1 ≤ i ≤ d.

For each of the irreducible representations in the direct sum of CP , we can obtain a basis
satisfying the above conditions. These bases collectively form a new basis of CP . Moreover,
if an irreducible representation has dimension d+1 then the elements of the basis constructed
in the above manner correspond naturally to the middle d + 1 ranks of P (because Hvi =
(−d+2i)vi), so that the set of all new basis vectors corresponding to a rank Pi form a new basis
for CPi. Since any irreducible representation has a basis vector corresponding to Pi if and
only if it has a basis vector corresponding to P−i, and since vi := Riv0, Ri|CP−i : CP−i → CPi
is invertible. �

The equivalence between conditions (a) and (b) is due to Griggs; he gave two proofs in
[10] and [11]. The equivalence between conditions (b) and (c) is due to Stanley [28]. The
equivalence between conditions (c) and (d) is due to Proctor [23].

The Peck property is again preserved by taking products. Proposition 4.3 can be used
to give a relatively straightforward proof of this statement.

Proposition 4.4. If P and Q are Peck then P ×Q is Peck.
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Proof. Let R′, L′ and H ′ := R′L′ − L′R′ span a representation of sl(2,C) acting on CP , and
let R′′, L′′ and H ′′ := R′′L′′−L′′R′′ span a representation of sl(2,C) acting on CQ, with R′, R′′

order raising operators and L′, L′′ lowering operators. Such operators exist by Proposition
4.3. Define

R := R′ ⊗ I ′′ + I ′ ⊗R′′ and L := L′ ⊗ I ′′ + I ′ ⊗ L′′,

where I ′ and I ′′ are the identity maps on CP and CQ, respectively. Let H := RL− LR. By
Proposition 2.6, we have

LR = L′R′ ⊗ I ′′ + L′ ⊗R′′ +R′ ⊗ L′′ + I ′ ⊗ L′′R′′

and

RL = R′L′ ⊗ I ′′ +R′ ⊗ L′′ + L′ ⊗R′′ + I ′ ⊗R′′L′′,

so that

H = RL− LR

= (R′L′ − L′R′)⊗ I ′′ + I ′ ⊗ (R′′L′′ − L′′R′′)

= H ′ ⊗ I ′′ + I ′ ⊗H ′′.

If r, l are the gradings on P and Q, respectively, then for any (p, q) ∈ P ×Q,

H([p]⊗ [q]) = H ′ ⊗ I ′′([p]⊗ [q]) + I ′ ⊗H ′′([p]⊗ [q])

= H ′([p])⊗ [q] + [p]⊗H ′′([q])

= r(p)[p]⊗ [q] + [p]⊗ l(q)[q]

= (r(p) + l(q))([p]⊗ [q])

= λ(p, q)([p]⊗ [q]).

Thus R,L, and H span a representation of sl(2,C) acting on CP⊗CQ = C(P×Q). Moreover,
R is an order raising operator on C(P ×Q). Indeed, for any (p′, q′) ∈ P ×Q,

R([p′], [q′]) = R′ ⊗ I ′′([p′], [q′]) + I ′ ⊗R′′([p′], [q′])

= R′([p′])⊗ [q′] + [p′]⊗R′′([q′]),
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so the (p, q)-entry of R([p′], [q′]) is nonzero only if the (p, q)-entry of R′([p′])⊗ [q′] is nonzero
or the (p, q)-entry of [p′]⊗R′′([q′]) is nonzero. The former is true only if p′lp in P and q′ = q,
while the latter is true only if q′ l q in Q and p′ = p (since R′, R′′ are raising operators). In
either case, (p′, q′)l(p, q) in P×Q, implying that R is an order raising operator on C(P×Q).
Similarly, L is a lowering operator on C(P ×Q). By Proposition 4.3 again, P ×Q is Peck. �

The proof of Proposition 4.4 above is due to Proctor [23].

We close this chapter by remarking on two important classes of Peck posets. The Peck
property can be defined more standardly for a finite standard graded poset (P,≤) with
maximum rank n having rank sequence {Wi}ni=0 as follows: (P,≤) is Peck if it is strongly
Sperner and its rank sequence is unimodal and symmetric (that is, Wi = Wn−i for all i with
0 ≤ i ≤ n). Given a non-negative integer n, it is well-known that the sequence of binomial
coefficients {

(
n
i

)
}ni=0 is symmetric (that is,

(
n
i

)
=
(
n
n−i
)

for all i with 0 ≤ i ≤ n) and unimodal.
A less obvious fact is that the sequence of Gaussian binomial coefficients is also symmetric
and unimodal (see [27], for example). These sequences are respectively the rank sequences of
the Boolean lattice Bn and the subspace lattice Vn(q), which are strongly Sperner as we have
seen. This means that Boolean lattices and subspace lattices are Peck with the definition of
Peck property above for finite standard graded posets.
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Chapter 5

Main Results

5.1 Conjunctions of Posets

Given posets (P,≤P ) and (Q,≤Q), we define a new poset P &Q as follows:

(a) the underlying set of P &Q is {(p, q) : p ∈ P, q ∈ Q};

(b) (p, q) is covered by (p′, q′) in P &Q if and only if p is covered by p′ in P and q is covered
by q′ in Q.

We then associate to P & Q the reflexive transitive closure of the covering relation defined
above as its (partial) order relation. We refer to the poset P&Q as the conjunction of (P,≤P )
and (Q,≤Q) (or simply the conjunction of P and Q). Again, sometimes we may informally
use for simplicity the symbol P&Q to mean the underlying set {(p, q) : p ∈ P, q ∈ Q} instead.

If both (P,≤P ) and (Q,≤Q) are rank-finite 1-graded posets with gradings r and l, re-
spectively, we define the function σ : P & Q → Z by σ(p, q) = l(q) − r(p), and call the
set

Sn := {(p, q) ∈ P &Q : σ(p, q) = n}

the n-th strand of P & Q for any integer n. Note that the function σ is constant on each
connected component of the Hasse diagram of P &Q. If P &Q is non-empty then the strand
Sn is non-empty precisely when lmin(Q) − rmax(P ) ≤ n ≤ lmax(Q) − rmin(P ) (note that we
do not require either of P and Q to have a maximum or a minimum rank, in which case n
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is unbounded). Consider the function λ : P & Q → Z defined by λ(p, q) = r(p) + l(q). Note
that although λ may not be a 2-grading on P &Q (since the λ-values of different elements of
P &Q may have different parity), λ does restrict to a 2-grading on each strand.

Proposition 5.1. Let (Sn,≤) be a strand of P &Q with the inherited order relation. Then
λ|Sn is a 2-grading on (Sn,≤).

Proof. Let r and l be the 1-gradings of P and Q, respectively. Clearly, if (p, q) l (p′, q′) then
λ(p′, q′) = r(p′) + l(q′) = r(p) + 1 + l(q) + 1 = λ(p, q) + 2. If (p, q) ∈ Sn with λ(p, q) = k then
we have l(q)− r(p) = n and l(q) + r(p) = k or equivalently,

r(p) =
k − n

2
and l(q) =

k + n

2
, (5.1)

so that k must always have the same parity as n. In other words, λ(p, q) ≡ λ(p′, q′) (mod 2)
for any elements (p, q) and (p′, q′) of Sn, so λ|Sn is a 2-grading on (Sn,≤). �

Proposition 5.1 allows us to view each strand of P & Q as a 2-graded poset. In fact,
Proposition 5.1 shows more, namely that each strand (Sn,≤) is rank-finite with the grading
λ|Sn . Indeed, if Sn,k denotes the (non-empty) k-th rank of the strand (Sn,≤) then the proof
of Proposition 5.1 shows that

Sn,k = {(p, q) ∈ P &Q : r(p) =
k − n

2
and l(q) =

k + n

2
}

= P(k−n)/2 ×Q(k+n)/2.

Since both P(k−n)/2 and Q(k+n)/2 are finite by the rank-finiteness of P and Q, Sn,k is finite.
In the rest of the thesis, whenever we view a strand (Sn,≤) as a 2-graded poset, the function
λ|Sn defined above will be the equipped grading.

One of the key properties of the conjunction operation is that the LYM properties are
preserved (on the strands) under this operation, as the next theorem states.

Theorem 5.2. Let P and Q be rank-finite 1-graded posets with gradings r and l, respectively.
If P and Q are LYM then every strand of P &Q is LYM.

Proof. Let Sn be the (non-empty) n-th strand of P & Q. The ranks of Sn are Pj × Qj+n
where j is an integer. Assume that Pi × Qi+n is not the lowest rank of Sn. Since P and Q
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are LYM, by Proposition 3.5 the graphs Gi(P ) and Gi+n(Q) have perfect matchings (since
i > rmin and i+ n > lmin by the choice of i). That is, there exist bijections

ϕ : Pi × Pi−1 → Pi−1 × Pi

and
ψ : Qi+n ×Qi+n−1 → Qi+n−1 ×Qi+n

such that if ϕ(p, p′) = (x, x′) then x l p in P and if ψ(q, q′) = (y, y′) then y l q in Q. Now
consider the function

θ : (Pi ×Qi+n)× (Pi−1 ×Qi+n−1)→ (Pi−1 ×Qi+n−1)× (Pi ×Qi+n)

defined by
((p, q), (p′, q′)) 7→ ((x, y), (x′, y′)),

where (x, x′) = ϕ(p, p′) and (y, y′) = ψ(q, q′). Then (x, y) l (p, q) in P & Q by the choice of
ϕ and ψ. Moreover, the bijectivity of θ follows directly from the bijectivity of ϕ and ψ. But
this is just another way of saying that the graph Gi(Sn) has a perfect matching for each i for
which Gi(Sn) is defined. By Proposition 3.5 again, Sn is LYM. �

In the next proposition and the main theorem, we will make several statements about
rank unimodality. However, the rank unimodality is not a property of a poset that can be
easily shown. Fortunately, the rank unimodality is a consequence of the rank logarithmic
concavity, and rank logarithmic concavity can be dealt with much more easily. We make this
statement as a lemma for the later results.

Lemma 5.3. Any logarithmically concave sequence of positive real numbers is unimodal.

Proof. We prove this for infinite sequences: the proof for the finite case is essentially the
same. Let {ak+ic}i∈Z be a logarithmically concave sequence of positive real numbers. Then
for all j ≡ k (mod c), we have a2

j ≥ aj−caj+c. Rewriting this inequality yields

aj
aj−c

≥ aj+c
aj

.

Since the entries are positive reals, the above implies that if aj < aj−c then aj+c < aj . If

45



{ak+ic}i is non-increasing or non-decreasing then we are done. Otherwise, from the above
observation, there exist integers m ≡ k (mod c) and n (which may be zeros) such that

am−c < am = am+c = · · · = am+nc > am+(n+1)c.

From the same observation, we can further conclude that

· · · < am−2c < am−c < am = am+c = · · · = am+nc > am+(n+1)c > am+(n+2)c > · · · ,

so that {ak+ic}i is unimodal. �

Let P be a rank-finite standard graded poset, and let Sn be a strand of the poset P ∗&P .
Then (p′, p) ∈ Sn if and only if r(p) + r(p′) = r(p)− r∗(p′) = n. This means that each strand
of P ∗ & P is finite since P is rank-finite and standard graded. The poset P ∗ & P is a central
object in the characterization theorem in the next section, and we shall see that there are
some nice connections between the strands of P ∗ & P and the poset P .

Proposition 5.4. Let P be a rank-finite standard graded poset. Then the following statements
hold:

(a) Every strand of P ∗ & P is rank-symmetric and hence centrally graded.

(b) P is rank logarithmically concave if and only if every strand of P ∗&P is rank-unimodal.

Proof. (a) Let (Sn,≤) be a strand of P ∗ & P with the inherited order relation. Again we
denote by Sn,k the k-th rank of Sn. By using Equation (5.1) obtained in Proposition 5.1, we
have (p′, p) ∈ Sn,k if and only if

r(p) =
n+ k

2
and r(p′) =

n− k
2

,

so that we have Sn,k = P(n−k)/2 × P(n+k)/2 for any integer k (here we define Pi to be the
empty set if i is not an integer). But this also means that Sn,−k = P(n+k)/2 × P(n−k)/2, from
which we can conclude |Sn,k| = |P(n−k)/2| · |P(n+k)/2| = |Sn,−k|, proving the rank symmetry
for (Sn,≤). This means that (Sn,≤) is centrally graded since it is 2-graded.

(b) Suppose that P is RLC. In view of Lemma 5.3, it suffices to show the rank logarithmic
concavity of a strand of P ∗ & P to conclude the rank unimodality of the strand. Let (Sn,≤)
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be a nonempty strand of P ∗ & P . If we denote the cardinality of Sn,k by Wn,k then we have
from part (a) that

Wn,k = W(n−k)/2W(n+k)/2, (5.2)

where Wi = |Pi|. Now we want to show that W 2
n,k ≥Wn,k−2Wn,k+2. Indeed,

W 2
n,k = W 2

(n−k)/2W
2
(n+k)/2

≥W((n−k)/2)−1W((n−k)/2)+1W((n+k)/2)−1W((n+k)/2)+1

= W(n−k−2)/2W(n−k+2)/2W(n+k−2)/2W(n+k+2)/2

= (W(n−(k−2))/2W(n+(k−2))/2)(W(n−(k+2))/2W(n+(k+2))/2)

= Wn,k−2Wn,k+2.

The inequality above follows from the rank logarithmic concavity of P . Thus every strand of
P ∗ & P is RLC and hence rank-unimodal.

Conversely, suppose that P is not RLC. Then there exists some i with 0 < i < rmax(P )
such that

W 2
i < Wi−1Wi+1. (5.3)

On the other hand, by equation (5.2) we have

W2i,0 = W(2i−0)/2W(2i+0)/2 = W 2
i

and
W2i,−2 = W2i,2 = W(2i−2)/2W(2i+2)/2 = Wi−1Wi+1,

which in conjunction with inequality (5.3) implies that

W2i,0 < W2i,−2 and W2i,0 < W2i,2,

so that the strand (S2i,≤) is not rank-unimodal. Therefore, if every strand of P ∗ & P is
rank-unimodal then P is RLC. �
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5.2 Main Theorem

For a standard graded poset P , we have just seen from the last section that the rank logarith-
mic concavity of P is equivalent to two of the three conditions of the Peck property, namely
the rank unimodalities and the rank symmetries of the strands of P ∗ & P . In fact, the LYM
property and the rank logarithmic concavity of P are equivalent to the Peck properties of
the strands of P ∗ & P , as our main theorem states:

Theorem 5.5. Let P be a rank-finite standard graded poset. The following are equivalent:

(a) P is LYM and rank logarithmically concave.

(b) Every strand of P ∗ & P is rank-unimodal and LYM.

(c) Every strand of P ∗ & P is Peck.

Proof. (a) ⇒ (b): Suppose that P is LYM and rank logarithmically concave. Then P ∗ is
also LYM by Proposition 3.5. It then follows from Theorem 5.2 and Proposition 5.4 that
every strand of P ∗ & P is LYM and rank-unimodal.

(b) ⇒ (c): Suppose that every strand of P ∗ & P is rank-unimodal and LYM. To show
that every strand of P ∗ & P is Peck, it remains to show that every strand of P ∗ & P is rank-
symmetric and strongly Sperner. But the rank-symmetry is guaranteed by Proposition 5.4
(a) and the strong Sperner property is just a consequence of the LYM property by Proposition
3.4, so the desired statement follows.

(c) ⇒ (a): Suppose that every strand of P ∗ & P is Peck. Then the rank logarithmic
concavity of P follows from the rank-unimodality of the strands of P ∗ & P by Proposition
5.4 (b). It thus suffices to show that P is LYM. Let 0 < k ≤ rmax(P ) and consider the graph
Gk(P ). The vertices of Gk(P ) are precisely the elements of the set

(Pk × Pk−1) ∪ (Pk−1 × Pk),

and thus can be viewed as elements of the poset P ∗ & P . Clearly, σ(x) = 2k − 1 for all
vertices x in Gk(P ), with Pk × Pk−1 and Pk−1 × Pk lying in the (−1)-st rank and the 1-st
rank of P ∗&P , respectively. Moreover, any element in the strand S2k−1 that is in the (−1)-st
rank (the 1-st rank, respectively) of P ∗ & P must be an element of Pk × Pk−1 (an element of
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Pk−1×Pk, respectively), so that if we view the strand S2k−1 as a poset, it has Pk×Pk−1 and
Pk−1×Pk as its (−1)-st rank and 1-st rank, respectively. Since every strand of P ∗&P is Peck,
by Proposition 4.3, there is a symmetric chain matching from Pk × Pk−1 to Pk−1 × Pk. This
symmetric chain matching is also a perfect matching for the graph Gk(P ). By Proposition
3.5, P is LYM. �

Theorem 5.5 has some interesting applications, which we will see in the next chapter.
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Chapter 6

Applications

6.1 Harper’s Product Theorem

As we mentioned in the introduction, it is false in general that the product of two standard
graded LYM posets also has the LYM property, which can be shown by the following coun-
terexample. Let P be the two-element chain with 0 < 1, and let Q be the set {x, y, z, w, v}
with covering relations given by xlz, ylz, zlw and zlv. Associate to P and Q the standard
gradings. Hasse diagrams of P and Q are shown in Figures 6.1. By verifying the normalized
matching properties, it is easy to check that P and Q are both LYM. However, the poset
P ×Q, whose Hasse diagram is also shown in Figure 6.1, does not satisfy the LYM property.
Of course, the largest Whitney number of the poset P×Q is 3, but {(0, w), (0, v), (1, x), (1, y)}
is a 4-element antichain in P × Q, so P × Q is not Sperner, and hence cannot be LYM by
Proposition 3.4. Notice that the poset Q in this example is not rank logarithmically concave
(and is not even rank-unimodal). However, if two standard graded LYM posets are both rank
logarithmically concave, then their product also has these two properties. This result, which
we will call Harper’s product theorem, was first proven by Harper ([14]) and then by Hsieh
and Kleitman ([15]) as mentioned in the introduction. In this section we give another proof
of Harper’s product theorem, and we will see that Harper’s product theorem is a natural
consequence of Theorem 5.5.

Let (P,≤P ) and (Q,≤Q) be standard graded posets (so their order product P ×Q is also
standard graded), and let (S,≤) be a strand of (P ∗×Q∗) & (P ×Q) with the inherited order
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Figure 6.1: Two LYM posets P , Q and their product P ×Q which is not LYM.

relation and the usual 2-grading for a strand. Define (S,�) to be the 2-graded poset whose
underlying set S is {(p′, p, q′, q) : (p′, q′, p, q) ∈ S}, such that (p′, p, q′, q) � (x′, x, y′, y) in S if
and only if (p′, q′, p, q) ≤ (x′, y′, x, y) in S, with the rank of an element being again the sum
of the ranks of all the components. We call � the canonical order of S. Intuitively speaking,
we define a new poset by interchanging the middle two coordinates of the elements of the
strand while keeping the ordering and grading. It follows immediately that if (S,≤) is Peck
then (S,�) is also Peck. If (S,≤) is a strand of (P ∗ × Q∗) & (P × Q) then S is a subset of
the underlying set of (P ∗ & P )× (Q∗ &Q). In fact, if �0 is the order relation on S inherited
from (P ∗ & P )× (Q∗ &Q), then (S,�) is an order extension of (S,�0).

Lemma 6.1. Using the above notations, if (P,≤P ) and (Q,≤Q) are standard graded posets
and (S,≤) is a strand of (P ∗×Q∗) & (P ×Q) with inherited order relation ≤, then (S,�) is
a rank-preserving order extension of (S,�0).

Proof. If (p′, p, q′, q)l(x′, x, y′, y) in (S,�0) then one of the following two cases must be true:

(1) (p′, p) l (x′, x) in P ∗ & P and (q′, q) = (y′, y).

(2) (q′, q) l (y′, y) in Q∗ &Q and (p′, p) = (x′, x).

If (1) is true then p′ l x′ in P ∗, p l x in P , q′ = y′, and q = y, which means that (p′, q′) l
(x′, y′) in P ∗ × Q∗ and (p, q) l (x, y) in P × Q, implying that (p′, q′, p, q) l (x′, y′, x, y) in
(P ∗ × Q∗) & (P × Q) (and hence in (S,≤)). This holds similarly if (2) is the case. Hence
(p′, p, q′, q) l (x′, x, y′, y) in (S,�), implying that (S,�) is an extension of (S,�0). This
extension is clearly rank-preserving. �
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Lemma 6.1 says that (P ∗×Q∗)&(P×Q) corresponds to a rank-preserving order extension
of (P ∗ & P )× (Q∗ &Q) in a natural way.

Theorem 6.2. (Harper’s Product Theorem) Let P and Q be rank-finite standard graded
posets. If P and Q are LYM and RLC then so is P ×Q.

Proof. Since P × Q is also standard graded, by Theorem 5.5, it suffices to show that every
strand of (P ×Q)∗ & (P ×Q) = (P ∗ ×Q∗) & (P ×Q) is Peck. Let r, l be the gradings of P
and Q, respectively, and let (Sn,≤) be a strand of (P ×Q)∗ & (P ×Q). Then

Sn = {(p′, p, q′, q) : r(p) + l(q)− r∗(p′)− l∗(q′) = n}

= {(p′, p, q′, q) : r(p′) + r(p) + l(q′) + l(q) = n}

=
⋃

a+b=n

SPa × S
Q
b ,

where SPa is the a-th strand of P ∗ & P and SQb is the b-th strand of Q∗ & Q. Here we view
the strands as sets without any order relations. If we associate to Sn =

⋃
a+b=n S

P
a × S

Q
b

the order �0 inherited from (P ∗ & P ) × (Q∗ & Q) then since P and Q are both LYM and
RLC, each SPa and SQb is Peck by Theorem 5.5. By Proposition 4.4, each SPa × S

Q
b is Peck.

Furthermore, with the constraint that a+b = n, it is easy to check that the ranks of SPa ×S
Q
b

have the same parity for different values of a and b (which must be the same as the parity
of n), so that the order union

⋃
a+b=n S

P
a × S

Q
b is Peck by Proposition 4.2. Since (Sn,�0) is

a rank-preserving extension of this order union, (Sn,�0) is Peck by Proposition 4.1. Since
(Sn,�) with the canonical order relation is a rank-preserving order extension of (Sn,�0) by
Lemma 6.1, the set (Sn,�) is Peck by Proposition 4.1 again, implying that (Sn,≤) is Peck.
Since Sn is a strand of (P ×Q)∗ & (P ×Q), it follows from Theorem 5.5 that P ×Q is LYM
and RLC. �

6.2 Stable Set Posets

Let G = (V,E) be a finite graph. A stable set in G is a subset A ⊆ V of vertices such that
no edge of G has both ends in A. Let S := S(G) be the set of all stable sets in G. Note that
(S,⊆) is a downset which contains every singleton set in the set of all subsets of V partially
ordered by inclusion (which is called the Boolean lattice of V ).
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Consider the covering relation on S defined by AlB if and only if A4B induces a path
in G with both ends in B, where A4B denotes the symmetric difference of A and B (which
is defined to be the set (A∪B) \ (A∩B)), and let ≤ be the reflexive transitive closure of l.
Note that if A is covered by B in (S,⊆) then AlB in (S,≤), so the latter is an extension of
the former. Furthermore, if A4B induces a path with both ends in B, then the fact that both
A and B are stable sets implies that |B| = |A|+ 1, so that this extension is rank-preserving.

The claw K1,3 is the graph (V,E) with |V | = 4 and |E| = 3 such that one vertex has
degree 3 and all other vertices have degree 1. A graph is called claw-free if it does not contain
K1,3 as an induced subgraph. For a graph G = (V,E), let ai be the number of i-element
stable sets in G, and let m be the maximum cardinality of a stable set in G. Hamidoune
([13]) showed that if G is a claw-free graph then the sequence {ai}0≤i≤m is logarithmically
concave. Wagner ([30]) gave another proof by observing the relation between logarithmically
concave finite sequences and representations of sl(2,C). In fact, with the representations
Wagner constructed, Theorem 5.5 shows the following stronger result.

Theorem 6.3. If G is a claw-free graph then the poset (S(G),≤) is LYM and rank
-logarithmically concave.

Proof. Let G be a claw-free graph. For A,B ∈ S = S(G), let M(A,B) be the set of connected
components of the graph G[A∪B] induced by A∪B that are paths with both ends in A \B,
and let W (A,B) be the set of connected components of the graph G[A∪B] induced by A∪B
that are paths with both ends in B \A. Wagner ([30]) shows that the linear operators R, L
and H : C(S∗ & S)→ C(S∗ & S) defined by

R([A]⊗ [B]) :=
∑

P∈M(A,B)

[A4V (P )]⊗ [B4V (P )]

and
L([A]⊗ [B]) :=

∑
P∈W (A,B)

[A4V (P )]⊗ [B4V (P )],

with H := RL − LR span a representation of sl(2,C) acting on C(S∗ & S), such that R is
a raising operator and L is a lowering operator. In fact, R is an order raising operator. Of
course, if (A,B) ∈ S∗ & S and P ∈ M(A,B) then (A4V (P ))4A = V (P ), which induces
the path P whose ends are both in A by the definition of M(A,B), meaning that A l
A4V (P ) in S∗ (since A4V (P ) is a stable set by the definition of M(A,B)). Similarly,
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B4(B4V (P )) = V (P ), which induces the path P whose ends are both in (B4V (P )),
meaning that B l (B4V (P )) in S (again, B4V (P ) is a stable set). Therefore R is an
order raising operator. By restricting the representation spanned by R, L and H to strands,
Proposition 4.3 implies that every strand of S∗ & S is Peck. By Theorem 5.5, (S(G),≤) is
LYM and RLC. �

Since (S(G),≤) is a rank-preserving extension of (S(G),⊆), the logarithmic concavity of
the sequence {ai}0≤i≤m follows immediately.

Corollary 6.4. If G is a claw-free graph then the sequence {ai}0≤i≤m is logarithmically
concave. �

If a line graph L(G) has a vertex v with degree at least 3 then for any three distinct
vertices adjacent to v, two of these vertices must be adjacent. In other words, all line graphs
are claw-free. We will see that this observation along with Theorem 6.3 in fact gives us a way
to construct a rank-preserving LYM extension to the partition lattice, which is known to be
not LYM for large order.

A partition of a nonempty set A is a collection of nonempty disjoint subsets of A (called
blocks) whose union equals A. The partition lattice (Πn,�) of order n is a poset whose
elements are the partitions of the set {0, 1, · · · , n − 1}, with two partitions π � σ if and
only if each block in π is contained in some block in σ (for example, {{0}, {1}, {2}} �
{{0, 1}, {2}} � {{0, 1, 2}} in the partition lattice of order 3). Our convention of representing
a partition is to write each block as an increasing sequence. For example, we represent the
partition {{2, 1}, {0, 4}, {3}} ∈ Π5 as (0, 4)(1, 2)(3) (we usually also arrange the blocks so
that the smallest numbers of the blocks are in increasing order, but this is not important).
Because of this convention, we call a number a right-most number in π if it is the largest
number in its block in π. Given a partition lattice (Πn,�), it is easy to check that the function
that maps each partition π ∈ Πn to n−|π|, where |π| is the number of blocks π contains, is a
standard grading on (Πn,�). In this case, the rank sequence of (Πn,�) consists of the famous
Stirling numbers of the second kind, which is known to be logarithmically concave (see [31,
p.138]). However, Spencer ([24]) has shown that for sufficiently large n, the partition lattice
(Πn,�) is not LYM (in fact, Canfield [4] showed that the partition lattice of order n is not
even Sperner for sufficiently large n). We will use Theorem 6.3 to construct a rank-preserving
LYM extension to a given partition lattice.
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a0 a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 b6

Figure 6.2: The graph isomorphic to (V (G7), ϕ(π)) where π = (0, 4)(1, 3)(2, 5, 6), with ai, bj
representing (0, i) and (1, j), respectively.

For each positive integer n, let Gn be the graph having vertex set [2] × [n] (where [i] =
{0, 1, · · · , i− 1}), with (u1, u2) and (v1, v2) being adjacent if and only if u1 < v1 and u2 < v2,
or v1 < u1 and v2 < u2.

Proposition 6.5. There is a one-to-one correspondence between Πn and M(Gn).

Proof. Consider the function ϕ : Πn → M(Gn) defined by the following rule. Given a
partition π of {0, 1, · · · , n − 1}, we first represent it using our convention. ϕ(π) is then
defined to be the set of edges of Gn satisfying the following: if a number λ is not a right-most
number in π then the edge {(0, λ), (1, ~λ)} is in ϕ(π), where ~λ is the number immediately to
the right of λ in its block; no edges of other forms are contained in ϕ(π). For example, if
π = (0, 4)(1, 3)(2, 5, 6) ∈ Π7 then Figure 6.2 shows the graph (V (G7), ϕ(π)). Since all the
blocks in a partition must be disjoint, and each number has a unique number on its left and
a unique number on its right (if any), ϕ(π) is indeed a matching for Gn so that the function
ϕ is well-defined. Now consider the function ψ :M(Gn)→ Πn defined by the following rule.
For a given matching M ∈ M(Gn), we consider the smallest number λ such that (0, λ) is
an end of some edge in M , and consider the set {λ} as a block; if (1, µ) is the other end of
this edge then we put µ in the block containing λ. Now, if {(0, µ), (1, ν)} is an edge in M

then we put ν in the block containing µ, and then continue this procedure on ν; if no edge
in M has this form then we “close” the block and start a new block containing the smallest
number κ not contained in any previous block such that (0, κ) is an end of some edge in M .
We then build this block in the way described previously. Continue creating and building
blocks in the above manner until we have considered all the edges in M . If all the edges in
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M have been considered and there is still some number in {0, 1, · · · , n − 1} that is not in
any block, we consider each of these numbers itself as a one-element block. We then define
ψ(M) to be the collection of all the blocks defined above. The union of the blocks in ψ(M)
is clearly {0, 1, · · · , n− 1} by construction, and the blocks are disjoint by the fact that M is
a matching, which means that ψ is well-defined.

We then show that ϕ and ψ are mutual inverses. Given any partition π ∈ Πn, two
numbers a and b with a < b are in the same block of π if and only if ϕ(π) has a subset of the
form {

{(0, a), (1, c1)}, {(0, c1), (1, c2)}, · · · , {(0, ct), (1, b)}
}

by the definition of ϕ. By the way we define the function ψ, a matching M has a subset of
this form if and only if a and b are in the same block of ψ(M). That is, two numbers are in
the same block of π if and only if they are in the same block of ψ(ϕ(π)), which is equivalent
to saying that ψ(ϕ(π)) = π. Similarly, ϕ(ψ(M)) = M for all M ∈ M(Gn). Therefore ϕ and
ψ are mutual inverses, which give the desired one-to-one correspondence. �

By definition, for any graph G, the set of edges of G is the set of vertices of the line graph
L(G). Furthermore, a set of edges of G is a matching for G if and only if it is a stable set for
L(G), so the set of matchings for G coincides with the set S(L(G)) of stable sets in L(G).
With this in mind, Proposition 6.5 says that there is a one-to-one correspondence between
the set Πn of all partitions of {0, 1, · · · , n−1} and the set S(L(Gn)). In terms of posets, π1 is
covered by π2 in (Πn,�) if and only if every block in π1 is contained in some block in π2, with
π1 having exactly one more block than π2. This is equivalent to saying that every right-most
number in π2 is a right-most number in π1, and exactly one non-right-most number in π2 is a
right-most number in π1. Using the function ϕ defined in Proposition 6.5, this is equivalent
to saying that ϕ(π1) ⊆ ϕ(π2) with |ϕ(π1)| = |ϕ(π2)|−1 or in other words, ϕ(π1) is covered by
ϕ(π2) in (S(L(Gn)),⊆). Since any line graph is claw-free, (S(L(Gn)),≤) is a rank-preserving
extension to (S(L(Gn)),⊆) that is both LYM and RLC by Theorem 6.3, which corresponds
naturally to a rank-preserving extension to (Πn,�) that is both LYM and RLC. Note that
the existence of such a LYM and RLC rank-preserving extension to the partition lattice of
order n reproves the logarithmic concavity of the sequence of Stirling numbers of the second
kind of order n.
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6.3 Upsets and Downsets

In this section, we first prove an inequality using Theorem 5.5, and then derive some results
about downsets and upsets in a standard graded LYM and RLC poset from this inequality.

Theorem 6.6. Let P be a standard graded LYM and RLC poset with grading r. Let ∆ be a
downset in P , and let U be an upset in P . For each 0 ≤ i ≤ rmax, let fi := |∆i| = |∆ ∩ Pi|
and let ui := |Ui| = |U ∩ Pi|. Then for all 0 ≤ j < k ≤ rmax,

fkuj ≤ fk−1uj+1.

Proof. Let 0 ≤ j < k ≤ rmax. If fk = 0 or uj = 0 then the result is obvious, so we may
assume that fk 6= 0 and uj 6= 0, so that ∆k and Uj are both non-empty. Since P is a
standard graded LYM and RLC poset, the strand (Sj+k,≤) of P ∗ & P is Peck by Theorem
5.5, so there exists a symmetric chain matching from the (j − k)-th rank to the (k − j)-th
rank in this strand by Proposition 4.3. Restricting this symmetric chain matching to the
(j − k)-th rank and the (j − k + 2)-th rank of the strand gives an injective function ϕ from
Pk × Pj to Pk−1 × Pj+1 such that xl ϕ(x) in the strand Sj+k for every x ∈ Pk × Pj , which
implies that ϕ(∆k × Uj) ⊆ ∆k−1 × Uj+1. Since ϕ is injective, we have

fkuj = |∆k × Uj | ≤ |∆k−1 × Uj+1| = fk−1uj+1,

as desired. �

More properties of upsets and downsets in a standard graded LYM and RLC poset can
be derived from Theorem 6.6. We show them as a sequence of corollaries.

Corollary 6.7. Let P be a standard graded LYM and RLC poset with grading r. Let ∆ be a
downset in P , and let U be an upset in P . For each 0 ≤ i ≤ rmax, let fi := |∆ ∩ Pi| and let
ui := |U ∩ Pi|. Then the sequence {pi} := {fi/Wi}rmax

i=0 is non-increasing, and the sequence
{qi} := {ui/Wi}rmax

i=0 is non-decreasing.

Proof. Since P is LYM (hence Sperner), by the remark we made at the end of Chapter 2
Wl 6= 0 for all l with 0 ≤ l ≤ rmax, so the sequences {pi} and {qi} are well-defined. Let
i be such that 0 ≤ i < rmax. By considering the downset ∆ and the whole poset P as an

57



upset, and by setting j = i and k = i + 1, Theorem 6.6 implies that fi+1Wi ≤ fiWi+1 or
equivalently,

fi+1

Wi+1
≤ fi
Wi

, (6.1)

so that the sequence {pi} is non-increasing. Similarly, by considering an upset and the whole
poset P as a downset, the same argument shows that

ui+1

Wi+1
≥ ui
Wi

, (6.2)

so that the sequence {qi} is non-decreasing. �

Note that Corollary 6.7 implies that if di 6= 0 then dj 6= 0 for all j with 0 ≤ j ≤ i, and if
ui 6= 0 then uj 6= 0 for all j with i ≤ j ≤ rmax, although this is in fact a consequence of the
normalized matching property of P independent of its rank logarithmic concavity.

Corollary 6.8. Let P be a standard graded LYM and RLC poset with grading r. Let ∆ be a
downset in P , and let U be an upset in P . For each 0 ≤ i ≤ rmax, let fi := |∆ ∩ Pi| and let
ui := |U ∩ Pi|. Then for all 0 ≤ j < k ≤ rmax such that fk−1 > 0 and uj > 0, we have

fk
fk−1

≤ Wk

Wk−1
≤ Wk−1

Wk−2
≤ · · · ≤ Wj+1

Wj
≤ uj+1

uj
.

Proof. Let j and k be such that 0 ≤ j < k ≤ rmax with fk−1 > 0 and uj > 0. Rearranging
inequalities (6.1) and (6.2) yields

fk
fk−1

≤ Wk

Wk−1
and

Wj+1

Wj
≤ uj+1

uj
.

Furthermore, it follows from the rank logarithmic concavity of P that

Wk

Wk−1
≤ Wk−1

Wk−2
≤ · · · ≤ Wj+1

Wj
,

from which the desired inequality follows by transitivity. �

In addition to the properties of upsets and downsets in a general standard graded LYM
and RLC poset above, Theorem 6.6 also provides us some information about downsets in a
product of chains. For any positive integer n, let us denote by [n] (and [∞], respectively)
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the graded poset {0, 1, ..., n − 1} (and N = {0, 1, · · · }, respectively) with the usual order of
integers, such that the rank of each integer s is just s itself. We use the notation [∞]m for the
order product [∞]× · · · × [∞] of m copies of [∞]. It follows immediately from the definitions
that [n] and [∞] are both rank-finite standard graded LYM and RLC posets. By Harper’s
product theorem (Theorem 6.2) and induction, the product of finitely many such chains is
again LYM and RLC (so any finite product of chains is in particular strongly Sperner, as
mentioned in Section 2.6).

Corollary 6.9. Let P := [n1]× · · · × [nt] be the graded poset with the usual product grading
ρ. Let ∆ be a downset in P , and let fi := |∆ ∩ Pi| for all 0 ≤ i ≤ ρmax. If k + j > ρmax with
1 ≤ k ≤ ρmax and 1 ≤ j ≤ ρmax then fkfj ≤ fk−1fj−1. Furthermore, the sequence {fi} is
non-increasing for i ≥ ρmax/2.

Proof. For each 1 ≤ l ≤ t, consider the function ψl : [nl] → [nl] defined by x 7→ nl − 1 − x,
and let ψ : P → P be the function defined by (x1, · · · , xt) → (ψ1(x1), · · · , ψt(xt)). Note
that ψ is bijective. Let U := ψ(∆) and let ui := |U ∩ Pi|. If (ψ1(x1), · · · , ψt(xt)) ∈ U and
(ψ1(x1), · · · , ψt(xt)) ≤ (ψ1(y1), · · · , ψt(yt)) in P then (x1, · · · , xt) ∈ ∆ and (y1, · · · , yt) ≤
(x1, · · · , xt) in P , so (y1, · · · , yt) ∈ ∆ since ∆ is a downset, meaning that (ψ1(y1), · · · , ψt(yt))
∈ U . So U is an upset. Furthermore, if we let n := ρmax = n1 + · · ·+nt−t then x1 + · · ·+xt =
n− i if and only if

ψ1(x1) + · · ·+ ψt(xt) = n1 − 1− x1 + · · ·+ nt − 1− xt
= n1 + · · ·+ nt − t− (x1 + · · ·+ xt) = n− (n− i) = i,

so that ρ(x) = n− i if and only if ρ(ψ(x)) = i. Since x ∈ ∆ if and only if ψ(x) ∈ U , we have
for all i with 0 ≤ i ≤ n, x ∈ ∆ ∩ Pn−i if and only if ψ(x) ∈ U ∩ Pi, so that ui = fn−i by the
bijectivity of ψ.

For fixed k, j ∈ {1, 2, · · · , n} with k + j > ρmax = n, we let i := n − j. Then i ∈
{0, 1, · · · , n− 1}. Since k + j > n, it follows that 0 ≤ i = n− j < k ≤ n, so that

fkfj = fkfn−i = fkui ≤ fk−1ui+1 = fk−1fn−i−1 = fk−1fj−1

by Theorem 6.6. If i > ρmax/2, applying the inequality above with k = j = i yields f2
i ≤ f2

i−1,
so that fi ≤ fi−1 as they are non-negative integers, proving that {fi} is non-increasing for
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i ≥ ρmax/2. �

Corollary 6.10. Let P := [n1]× · · · × [nt]× [∞]m be the graded poset with the usual product
grading ρ. Let ∆ be a downset in P , and let fi := |∆ ∩ Pi| for all i ≥ 0. Then for any
non-negative integer i, we have

f2
i+1 − fifi+2 ≤ fi+1Wi+1 − fi+2Wj .

Proof. Let U := P \ ∆, and let ui := |U ∩ Pi| for each i ≥ 0. Evidently ui = Wi − fi.
Clearly U is an upset in P , for otherwise there exist p, q ∈ P with p ≤ q such that p ∈ U and
q /∈ U , implying that q ∈ ∆ and p /∈ ∆, which is impossible as ∆ a downset in P . For any
non-negative integer i, the inequality we want to prove is equivalent to the inequality

fi+2(fi −Wi) ≥ fi+1(fi+1 −Wi+1),

which is equivalent to
fi+2(Wi − fi) ≤ fi+1(Wi+1 − fi+1).

But this is true since

fi+2(Wi − fi) = fi+2ui ≤ fi+1ui+1 = fi+1(Wi+1 − fi+1),

where the inequality follows from Theorem 6.6 with j := i and k := i + 2. This proves the
desired inequality. �

Note that the right-hand side of the inequality in Corollary 6.10 is non-negative by
Theorem 6.6. Unfortunately, we are not able to conclude whether the sequence {fi} is
logarithmically concave from Corollary 6.10 since it provides an upper bound instead. Of
course, any attempts of showing that {fi} is logarithmically concave will not succeed, as
Björner [3] showed that the sequence need not be even unimodal in general.
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