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Abstract 

In contrast to classical cryptanalysis attacks, which utilize the mathematical weakness of 

cryptographic algorithms, attacks using side channel information focus on the properties of 

the actual circuits and chips implementing these algorithms. Deployment of Dynamic and 

Differential Logics (DDL) appears to be a promising choice for providing resistance against 

leakage of side channel information. However, the security provided by these logics is too 

costly for widespread area-constrained applications. Furthermore, implementation of a secure 

DDL-based countermeasure involves balancing the load at the differential outputs. Thus, a 

complex layout methodology is required which is not available in a standard design 

environment provided by the commercial CAD tools.    

This thesis, unlike previous logic level approaches, presents a novel exploitation of static and 

single-ended logic for designing the side channel resistant logic cells and registers. The 

proposed technique is used in the implementation of a protected crypto core consisting of the 

AES “AddRoundKey” and “SubByte” transformation. The test chip including the protected 

and unprotected crypto cores is fabricated in 180nm CMOS technology. The effectiveness of 

the logic-based countermeasure is assessed by mounting a side channel attack on the test chip 

using real power measurements. A correlation-based analysis on the unprotected core results 

in revealing the keys at two attack points: the output of the combinational networks 

(“SubByte”) and the output of the registers. The quality of the measurements is further 

improved by introducing an enhanced data capturing method that inserts a minimum power 

consuming input as a reference vector. Results obtained from analysis of the unprotected core 

indicate that the reference vector approach increases the correlation coefficients. In 

comparison, a similar analysis of the protected core shows a significant reduction in the 

correlation coefficients, thus no key-related information is leaked even with an order of 

magnitude increase in the number of averaged traces. For the first time, fabricated chip 

results are used to validate a new logic level side channel countermeasure that offers lower 

area and reduced circuit design complexity compared to the DDL-based countermeasures. 
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This thesis also provides insight into the side channel vulnerability of the next generation of 

cryptosystems. The power consumption trends in sub-90nm CMOS technology nodes are 

examined from a side channel perspective using simulation results. In particular, the data 

dependency of leakage power is analyzed. The number of traces to disclose the key is seen to 

decrease by 35% from 90nm to 45nm CMOS technology nodes. Thus technology scaling will 

have a significant impact on increasing the side channel vulnerability of nanoscale 

cryptosystems. Further analysis shows that the temperature dependency of the subthreshold 

leakage mechanism has an important role in increasing the ability to attack future nanoscale 

crypto cores. For the first time, the effectiveness of a circuit-based leakage reduction 

technique is examined for side channel security. This investigation demonstrates that high 

threshold voltage transistor assignment improves resistance against information leakage by 

increasing the number of traces for key disclosure. The analysis initiated in this thesis is 

crucial for rolling out the guidelines of side channel security for the next generation of 

Cryptosystem-on-Chip. 
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Chapter 1 

Introduction 

1.1 Motivation 

Today, devices such as Personal Digital Assistants (PDAs), wireless handsets, and smart 

cards are widely used. The demands for low-end products are increasingly growing; by the 

beginning of 2010, over 6 billion embedded chip smart cards will be used worldwide and 

approximately 3.4 billion will be sold each year [1]. The installed base of credit and debit 

cards issued by banks, cellular phone Subscriber Identity Module (SIM) and identity cards 

issued by governments and other public organizations will grow so that by 2010 each exceed 

1 billion [2].  

With the popularity of embedded systems processing a vast amount of confidential 

information, a new important dimension in design has arisen, that of security. Nearly 52% of 

cell phone users and 47% of PDA users feel that security is the single largest apprehension 

preventing the successful deployment of next generation of mobile services [2]. Increasing 

proliferation of security concerns in recent years has created a compelling case for attaining 

security envisioned in specification of different applications. The ultimate goal of all these 

attempts has been directed towards developing secure on/off chip communication. Hence, 

design and implementation of cryptosystems and in specific Cryptosystem-on-Chip have 

drawn increased attention.   
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Exponential growths of computational power and astounding advances in technology that 

have spurred the development of the secure systems have also ushered in seemingly parallel 

trends in the sophistication of security attacks. It has been seen that exploiting security 

vulnerabilities in hardware implementation provides exclusive opportunities for 

eavesdroppers to invade or weaken the functional security measures [3]. Consequently, the 

theoretical strength of cryptographic algorithm is no longer the only primary concern. 

Security in design and implementation of hardware has been given an equal weighted goal as 

development of enhanced encryption algorithms. Unlike the traditional model assessing 

security solely on the mathematical strength of the encryption algorithms, the modern 

security model includes a new class of cryptanalytic threat known as “implementation 

attacks” [4]. Implementation attacks are also known as side channel attacks. These attacks 

are effectual techniques for extracting critical information (e.g., key of encryption algorithm) 

from the physical properties such as time delay [5], power consumption [6] and 

electromagnetic emanation [7]. Among the known side channels, power consumption has 

attracted the most attention due to its ease of access and its intrinsic data dependency 

characteristic. The feasibility of launching power consumption-based attacks has also been 

examined against different types of Very Large Scale Integration (VLSI) implementation of 

cryptographic modules e.g., Application Specific Integrated Circuits (ASICs) [8], Field 

Programmable Gate Arrays (FPGAs) [9], Digital Signal Processors (DSPs) [10] and Smart 

Cards (SCs) [11]. The severity of the threat posed by power-based attack has already been 

proven [6]. 

To overcome the threat posed by power consumption, various software-based solutions have 

been proposed [12][13][14]. The software security features often overload the processing 

capabilities of embedded systems; therefore, significant overheads are imposed to crypto core 

for keeping up with computational demands [15]. The shortcomings of software 

countermeasures lead to an undesirable trade-off between security and performance. In the 

same context, hardware approaches are also recognized as they significantly increase the 
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resistance against side channel threat such as Differential Power Analysis (DPA). It is shown 

that side channel security can be achieved at the hardware level if the design criteria for 

secure implementation are properly defined and objectively met [6]. Hardware-based 

techniques offer a more flexible trade-off model as they provide resistance at various design 

levels (e.g., system, architectural and logic levels). Therefore, although side channel security 

is a costly feature, hardware techniques are seen to be able to adjust the security cost within 

the limited trade-off budgets. The effectiveness of the hardware countermeasures and their 

adaptable trade-off schemes make them more appealing than the software countermeasures.  

The above discussion implies that design for security is a growing demand. Serious 

consideration should be given to the emerging security threat such as side channel 

information leakage. Efficiency and effectiveness should be dealt as two important aspects in 

design and implementation of side channel countermeasures. Efficient side channel 

protection can be achieved by implementation of hardware countermeasure providing 

sufficient security within the limitation of resource-constrained applications.  

As the technology advances many design methodologies have been influenced and often 

need to be modified. In order to devise new mechanisms or to assess the efficiency of the 

current countermeasures for security of future cryptosystems, it is essential to illustrate the 

impact of technology on leakage of side channel information. It is crucial to investigate 

whether or not side channel security gains a new definition with drastic changes on power 

consumption trends. Conclusive outcomes will lead to introducing more efficient and 

effective security mechanisms for upcoming generation of cryptosystems. 

In the light of great importance to security and in response to the increasing demand for low 

cost side channel protection for area-constrained applications, a novel exploitation of static 

and single-ended (non-differential) logic is presented. Furthermore, this thesis provides 

insight into the side channel vulnerability of next generation of Cryptosystem-on-Chip. 
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1.2 Thesis Organization 

This thesis is organized as follows: an overview of information leakage via power 

consumption is presented in Chapter 2. The common techniques for obtaining and analyzing 

the side channel information are also described in this chapter. Chapter 3 discusses the 

fundamentals of side channel protection. The most effective approaches in tackling the 

security threat posed by power consumption are reviewed. The latest progress in the area of 

side channel security is discussed in this chapter. Chapter 4 presents our proposed side 

channel countermeasure.  Exploitation of the Current Balanced Logic (CBL) for designing 

logic gates and register elements is presented. A comparative analysis is included in this 

chapter to quantify the cost of security provided by our countermeasure. Chapter 5 describes 

the design and implementation of the test chip which includes protected and unprotected 

cores. The pre-test hardware and software preparations, instrumentation selection, and 

experimental setup are described. Assessment procedures including the functionality test and 

side channel attack are discussed. An enhanced data capturing method is also introduced. The 

empirical results obtained from side channel attack on the test chip are presented. A 

comparison between the proposed countermeasure and the previous side channel resistant 

logics is conducted in this chapter. Chapter 6 provides a projection of the future side channel 

threat with regards to CMOS technology trends. Information leakage via leakage power 

consumption is quantified over the technology nodes. The effectiveness of using a leakage 

reduction technique for side channel security is investigated. Chapter 7 presents a summary 

of this research, itemizes the contributions, and draws the direction of future work. 
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Chapter 2 

Side Channel and Analysis Techniques 

2.1 Introduction 

A new class of cryptanalysis has been formed by utilizing the correlations that exist between 

the data processed by a cryptosystem and a side channel such as the power consumption of a 

hardware implementation. Since its discovery, the side channel threat has drawn growing 

attention in adversarial actions. Several analysis techniques have been developed facilitating 

the extraction of information contained in side channels. 

This chapter serves as background for the research presented later in this thesis. The elements 

of power consumption in CMOS logic are described. An overview of the analysis techniques 

which are used in side channel attacks is also presented. 

2.2 Side Channel Effects 

Crypto cores are designed to map the inputs (plaintexts) to the outputs (ciphertexts) based on 

a predefined function using the key values. The security breaches are often reduced to the 

methods that expose the value of the secret keys. In the past, the focus of attackers was on 

exploiting the mathematical weaknesses of cryptographic algorithms for attaining the key or 

related information to the key. Since almost a decade ago the attention has been shifted 

towards extracting the critical data contained in the physical characteristics of hardware 

implementation, which are known as side channels. Side channels are unintentional sources 
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that contain the signature of data transitions which occur in the crypto core. This information 

can lead to disclosure of secret key. The commonly used side channels are time [5], power 

consumption [6], electromagnetic emanations [7], and very recently acoustic [16], among 

which power consumption has drawn the most attention. The power consumption of a 

cryptosystem is seen to be highly correlated with intermediate data being processed. 

Moreover, the ease of access increases the popularity of the power consumption as an 

effective side channel. This section reviews the main sources of power consumption in digital 

circuits. 

2.2.1 Source of Power Consumption 

Complementary Metal Oxide Semiconductor (CMOS) has prevailed as the preferred choice 

for implementation of digital circuits. Today most digital circuits are built using CMOS 

technology [17]. The popularity of this technology has grown because of its low power 

consumption and robustness. Meanwhile, CMOS technology is also advantageous due to its 

low-cost and high-integration compared to bipolar process. The side channel effect in power 

consumption is mainly caused by the use of CMOS logic, which is the main source of 

information leakage. In order to explain why the power consumption of a CMOS logic gate 

can reveal information about the data being processed, the major components of power 

dissipation in CMOS circuits are first reviewed.  

There are three distinct dissipation sources in CMOS logic gates, which are known as 

switching, short circuit and leakage power consumption [17]. The first two components are 

referred to as dynamic power consumption and the last one is known as static power 

consumption. These components are described. The expressions quantifying these elements 

in a typical CMOS inverter are presented. 

Switching power is defined as the power consumed by the logic gate to charge the output 

load from ‘0’ to ‘1’. Switching power of an inverter is expressed as [17]: 

 

Lswingddclkswitching C.V.V.f.αP         =         (2.1) 



Chapter 2. Side Channel Effects and Analysis Techniques  

 

7 

 

where   α is the switching activity factor, clkf  is the operating frequency, ddV  is the supply 

voltage, and  swingV is the logic swing of the digital output. LC  is the net load capacitance, 

which consists of the gate capacitance of subsequent cell(s) input(s), interconnect capacitance 

and the diffusion capacitance of the drain of inverter transistors. 

Short circuit power is a result of the transient current that flows from ddV  to ground when 

both NMOS and PMOS transistors are turned on during logic transitions. The non-zero rise 

and fall times of the input signal generate this direct path. An expression quantifying the 

short circuit power consumption in a CMOS inverter under assumptions of 
nthpthth V  V  V ==  

and k = kp = kn = µp/n Cox (W/L) is given by [17]:  

 

clk
3

thdditshortcircu f.τ.)V2V(
12

k
P    -=                 (2.2) 

 
where Vth is the threshold voltage, k is gain factor,  µp/n is the hole and electron mobilities, Cox 

is the oxide capacitance per unit area, W and L are the width and the length of MOS 

transistor, and τ is the rise/fall time of the input signal. 

Static power is consumed during the steady state when no transitions occur. A conventional 

CMOS gate dissipates no static power since no path exists between Vdd and ground in the 

steady state. However, as Vth is scaled down, the static power consumption caused by the 

leakage effects grows. Due to the increasing importance of leakage power from a side 

channel standpoint the major leakage mechanisms are described. The explanation is 

necessary as it is referred to later in Chapter 6 of this thesis where feasibility of using leakage 

power as an emerging side channel is investigated.  

Several leakage mechanisms have been developed as the short-channel effect becomes more 

pronounced in submicron technology. Figure 2.1 demonstrates the three major leakage 

mechanisms. One of the leakage generation sources is weak inversion current, which is also 
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known as subthreshold conduction current (Isub). When the gate voltage of the transistor is 

below Vth, current (Isub ) flowing between source and drain in a MOS transistor causes the 

carriers to move. Weak inversion typically dominates the modern transistor off-state leakage 

due to the low Vth that is used.  Isub is known as the dominant leakage source and it can be 

best approximated [18]: 

 

)e1(.e.II kT/)V.q(
nkT).VηVγVV/(q

ssub
dsdssb0thgs -

+- - 
 - =      (2.3) 

 
where sI  is the zero bias current and it is expressed as: 

 
8.12

effeffoxox0s e.)q/kT)(L/W)(t/ε(µI  =       (2.4) 

 

Figure 2.1 Short channel MOS leakage mechanisms [18] 

 
µ0 is the zero bias mobility, εox (equals 3.97.εo) is the oxide permittivity, tox is the oxide 

thickness, Weff  and Leff  are the effective width and length of the MOS transistor, respectively. 

k is Boltzmann's constant, T  is the operating temperature, q corresponds to the charge of an 

electron, 
0thV   is the zero biased threshold voltage,  γ is the linearized body-effect 

coefficient, η  is the Drain-Induced Barrier Lowering (DIBL) coefficient, n is the 

n+ n+Isub

DrainSource
Gate

Igate

IBTBT

Well

n+ n+Isub

DrainSource
Gate

Igate

IBTBT

Well
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subthreshold swing coefficient, and Vgs, Vsb and Vds are the gate-source, substrate and drain-

source voltages, respectively. 

The second major leakage generation mechanism is a direct result of technology scaling. As 

the thickness of gate dielectric decreases below 2nm, the low oxide thickness combined with 

the increased electric field across the oxide results in significant electron tunneling from the 

substrate to the gate. Tunneling of electrons (holes) from bulk silicon (Igb), channel (Igc), and 

source/drain overlap region (Igso)/(Igdo) through the gate oxide potential barrier into the gate 

form the total gate leakage current (Ig). Igso, Igdo and Igc are the dominant gate leakage 

mechanisms in both ‘on’ and ‘off’ states of the transistor. The current density for direct gate 

tunneling is given [18]: 

 

BF Eγ).kT/E[(
B

23
tunnel e.]E)2/kT.γ(1[.)kT(h/)q*mπ4(J     + =    (2.5) 

 
where m* (equals 0.19.M0) is the electron transfer mass and M0 is the electron rest mass, h is 

the Plank's constant, EF is the Fermi level at the Si / SiO2 interface, EB is the height of barrier, 

and   γ is defined: 

h

m2tπ4
γ

oxox     
=          (2.6) 

where mox equals 0.32 M0 and denotes the effective electron mass in the oxide. 

Another leakage mechanism caused by tunneling of electrons from n source/drain to p 

substrate is known as Band-To-Band Tunneling (BTBT) leakage current. Tunneling occurs 

due to the reverse biased pn junction from valance band of p region to the conduction band of 

the n region in existence of high field across the junction. An approximation of BTBT 

leakage is as follows [18]: 

]E/)E(B[

ib
g

j

effBTBT

j
2/3

g
e.V.)

E

E
(A.WI        =       (2.7) 
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where Ej is the average electric field on the side and bottom of the junction which are given 

as [18]: 

2/1
Sibisideibside )]NSDNDEP(ε/))VV.(NSD.NDEP.q2[(E ++ =    (2.8) 

2/1
Sibibotibbottom )]NSDNSUB(ε/))VV.(NSD.NSUB.q2[(E ++ =    (2.9) 

 
NDEP, NSUB and NSD are the channel doping concentrations at depletion edge, substrate 

doping and source/drain diffusion doping respectively, Vbiside / bibot are the built-in potential, 

Eg is the band-gap, and Vib is the applied potential on source/drain with respect to bulk. 

The primary discussion on sources of power consumption continues with evaluating the 

power consumption element from side channel perspective. The following discussion will 

assist in understanding of how the information signature remains on the power consumption. 

2.2.2 Power Consumption: An Effective Side Channel 

In order to demonstrate the side channel effect in power consumption, a complete data 

transition in a typical CMOS inverter is reviewed. This analysis is performed in general so 

that it can be applied to all CMOS logic gates. The different elements of dynamic power 

consumption in a CMOS inverter for all possible transitions are shown in Figure 2.2. As 

described in Section 2.2.1 one component of dynamic power consumption associated with 

gate operation is known as switching power. The other element of dynamic power is short 

circuit power which is caused by current flowing with the non-zero rise and fall times of 

input signals. The current is drawn from the supply by a CMOS logic gate when a ‘0’ to ‘1’ 

transition occurs at the output. During a ‘1’ to ‘0’ transition, the energy previously stored in 

CL is dissipated, but aside from a short circuit current no power is drawn from the supply. 

Unlike the short circuit power which is consumed in transitions ‘1’ to ‘0’ and ‘0’ to ‘1’ at the 

output of the typical complementary CMOS gates, the switching power is only consumed in 

‘0’ to ‘1’ transition. The absence of switching power during ‘1’ to ‘0’ transition results in 
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forming asymmetric behavior in power consumption in CMOS gates.  Figure 2.3 simplifies 

this concept by showing that the power consumption values are different in transitions 

resulting in ‘1’ than those resulting in ‘0’. 

 

Figure 2.2 Power consumption in a typical CMOS inverter 

 

 

Figure 2.3 Transition of node value and corresponding power consumption 

 
The variation of power consumption corresponding to different transitions highlights the data 

dependency of dynamic power consumption. The data dependency of switching power can 

also be seen in Equation 2.1, as Pswitching is shown to be a function of α (frequency of ‘0’ to 

‘1’ transition). This asymmetry in switching power consumption of static CMOS logic, in 

fact, has formed the foundation of side channel effect in dynamic power consumption.  

‘1’ → ‘0’ ‘0’ → ‘1’

CL

‘0’ → ‘1’ ‘1’ → ‘0’

CL

‘1’ → ‘1’ ‘0’ → ‘0’

CL

‘0’ → ‘0’ ‘1’ → ‘1’

CL

Short circuit power consumption Switching power cons umption

‘1’ → ‘0’ ‘0’ → ‘1’

CL

‘0’ → ‘1’ ‘1’ → ‘0’

CL

‘1’ → ‘1’ ‘0’ → ‘0’

CL

‘0’ → ‘0’ ‘1’ → ‘1’

CL

Short circuit power consumption Switching power cons umption

Transition of
node value

Power
Consumption

‘0’ → ‘0’

‘0’ → ‘1’

‘1’ → ‘0’

‘1’ → ‘1’

P00

P01

P10

P11

P01 = P10 >> P00≈ P11 P00 + P10 = P01 + P11

Transition of
node value

Power
Consumption

‘0’ → ‘0’

‘0’ → ‘1’

‘1’ → ‘0’

‘1’ → ‘1’

P00

P01

P10

P11

P01 = P10 >> P00≈ P11 P00 + P10 = P01 + P11



Chapter 2. Side Channel Effects and Analysis Techniques  

 

12 

 

Static power consumption can also be included in side channel context. Leakage power as a 

source of static power consumption in CMOS logic gates is drastically increased in advanced 

technology. Equations 2.3, 2.5 and 2.7 in the previous section provide approximations on 

major leakage mechanisms. Parameters such as Vgs, Vds, Vib, in Equations 2.3 and 2.5 show 

the data dependency of subthreshold and BTBT mechanisms. Figure 2.4 shows the leakage 

current in an NMOS transistor with three different input patterns [18]. It is seen that the total 

leakage depends on the voltage values at the transistor terminal. Since voltage represents the 

data at the terminals, it can be concluded that the total leakage power is data dependent. This 

brief discussion shows that static power consumption in CMOS logic is also data dependent. 

An inclusive analysis on viability of using leakage power consumption as an emerging side 

channel will be presented in Chapter 6 where the side channel vulnerability is evaluated with 

regard to the technology trends. 

 

 

 

Figure 2.4 Leakage power for different terminal voltages [18] 
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measurable point on the hardware and an oscilloscope which will capture the samples of the 

instantaneous power (referred to as averaged traces in this thesis). In the next section the 

commonly used analysis methods used in side channel attacks are described. 

2.3.1 Simple Analysis 

Simple analysis involves direct visual examination of a cryptographic device’s side channel, 

e.g. power consumption measurements. Typically only one trace is required for this type of 

analysis. The iterative operations which are executed in an underlying encryption algorithm 

cause a regular pattern of transistor switching [6]. This regularity is often discernible in 

power consumption traces of cryptographic devices. Depending on how a cipher is 

implemented, the information deduced from power traces may reveal the key material. If the 

attacker can determine where certain instructions are being executed, it becomes relatively 

simple to extract the useful information. An example of a simple analysis can be seen in an 

implementation of modular exponentiation which uses the square-and-multiply algorithm. 

The key value determines whether square or multiply operation should be executed. Since the 

conditional branches of square and multiply can be identified from the power traces, an 

implementation of modular exponentiation is known to be susceptible to simple analysis. The 

power trace acquired from the hardware implementation of the RSA algorithm can be 

analyzed as the multiplications require additional register loads. This increases the width of 

the leading spikes. As a result of this the square operation providing a narrow spike can be 

distinguished from the square-and-multiply operation which provides a narrow spike 

followed by a wider spike. In other words, if the key bit is zero the corresponding power 

trace contains a narrow spike, if the key bit is one the corresponding power trace consists of 

one wide spike after a narrow spike. 

Simple analysis is useful in practice if only one or very few traces are available. This can 

make simple analysis attacks quite challenging in practice. Detailed knowledge about the 

implementation of cryptosystem is often required by the attacker. Simple analysis is not 
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effective in revealing key related information if the Signal-to-Noise Ratio (SNR) is reduced. 

More enhanced analysis has been proposed in which the advanced statistical methods are 

used. These techniques interpreting the power traces of a cryptographic device are discussed 

in detail in the next section. 

2.3.2 Statistical Analysis 

Statistical analysis of the side channel is a more sophisticated procedure compared to simple 

analysis [5]. This method is used when the individual bit cannot be seen because of noise and 

countermeasures. The statistics used in this analysis are extremely powerful and they can 

extract keys even if the individual traces contain large amounts of noise. No detailed 

knowledge about the crypto device is necessary in statistical analysis and it is only sufficient 

to know the cryptographic algorithm that is executed by the device. Unlike the simple 

analysis in which the side channel, e.g. power consumption is analyzed along the time axis 

for extraction of a pattern or matching template, in statistical analysis the shape of the side 

channel along the time axis is not crucial. Employing this analysis, the attacker attempts to 

analyze how the side channel at the fixed point of time depends on the processed data. 

Statistical analysis-based attacks focus exclusively on the data dependency of the side 

channel. Therefore, a large number of power traces needs to be collected and further 

analyzed. The general procedure in statistical analysis-based attack is described as follows 

[19]: 

a) Selection function: An intermediate result of the cryptographic algorithm that is executed 

by the attacked device needs to be a function  f (d, k), where d is a known non-constant data 

value and k is a sub-value of the secret key. Intermediate results that fulfill this condition can 

be used to reveal k. In most attack scenarios, d is chosen from either the plaintext or the 

ciphertext. 

b) Side channel measurement: Side channel, e.g. power consumption, needs to be measured 

for D different data blocks. For each of the runs, the attacker needs to know the 
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corresponding data value of d that is involved in calculation of the intermediate result which 

was initially chosen. The data value can be represented by a vector d = (d1, …, dD), where di 

denotes the data value in the i th run. The side channel corresponding to data block di should 

be recorded and referred to as (ti,1, …, ti,T), where T denotes the length of the side channel 

trace. Once the traces are measured for each of D data block, they can be recorded as matrix 

T of size D x T. The value of each column tj of the matrix T needs to be caused by the same 

operation, thus, it is imperative that the measured traces are correctly aligned. The alignment 

task can be done by using an accurate trigger signal that records the traces at exact same 

sequence of operations during each run. An enhanced alignment technique is proposed in 

[20]. 

c) Hypothetical intermediate values calculation: A Hypothetical intermediate value needs 

to be calculated for every possible choice k. The possible choices of k can be represented by 

vector k = (k1, …, kK), where K denotes the total number of possible choices for k. The 

elements of k are known as key hypotheses. Given the data vector d  and the key hypotheses

k , the attacker can calculate the hypothetical intermediate values of f (d, k) for all D runs 

and for all K key hypotheses. The result of the calculation can be represented in a matrix V of 

size D x K. 

 

 D ..., 1,  i ),k,d(fv jij,i == and  , ..., K1j =       (2.10) 

 
Column j of V contains the intermediate results that have been calculated based on the key 

hypothesis kj. Vector k contains all possible choices for k. Hence, the value that is used in the 

device is an element of k. The index of this element is referred to as ck. Thus, kck refers to the 

key of the device. The objective in statistical analysis is to find which column of V has been 

processed during the D run. Once it is known which column of V has executed in the 

attacked device, the kck will be revealed. 
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d) Side channel and intermediate values mapping: The hypothetical intermediate values V 

need to be mapped to a matrix H of the hypothetical side channel values. The hypothetical 

side channel values can be obtained by using different models in a simulation environment. 

The commonly used models for mapping power consumption V to H are the Hamming 

Distance (HD) and the Hamming Weight (HW) models. Using these models, the side channel 

of the device for each hypothetical intermediate value vi,j is simulated in order to obtain a 

hypothetical side channel value hi,j. The more knowledge the attacker has about the crypto 

device, the better power models can be driven. The quality of the power model has a strong 

impact on the effectiveness of an attack. 

e) Hypothetical side channel values and measured side channel values comparison: In 

order to map V to H, the attacker needs to compare each column hi of the matrix H to each 

column tj of the matrix T. This means that the attacker compares the hypothetical side 

channel values of each key hypothesis with the recorded side channels at every position. 

The result of this comparison is a matrix R of size K x T, where each element r i,j contains the 

results of the comparison between columns hi and tj. The key of the attacked device can 

finally be revealed based on the following observation. 

The intermediate result that has been chosen in a) is part of the algorithm. The device needs 

to calculate the intermediate values vck during the different executions of the algorithm. 

Therefore, the recorded side channel traces, in fact, depend on these intermediate values at 

some positions referred to as ct, i.e. the column tct contains the trace value that corresponds to 

the intermediate values vck. 

The hypothetical side channel values hck have been simulated by the attacker based on the 

values vck. Therefore, the column hck and tct are strongly related. These two columns lead to 

the highest value in R. The highest value of the matrixR is value rck, ct. All other values of R 

are low because the other columns of H and T are not strongly correlated. The attacker can 

reveal the index for the correct key ck and the moment of time ct by simply looking for the 

highest value in the matrix R. The indices of this value reveal the positions at which the 
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chosen intermediate result has been processed and the key is used by the device. If all values 

of R are approximately the same, it means that attacker has not measured enough side 

channel traces to estimate the relationship between the columns of H and T. More traces 

provide more elements in the column of H and T which will result in more precise attack 

outcomes. Figure 2.5 illustrates the side channel attack procedure. 

There are several well-established methods available to determine the relationship between 

the columns of H and T. Among them correlation and difference-of-means tests are the two 

powerful statistical methods which accurately express the linear relationship between two 

sets of data. These two methods are described in the following. 

 

 

 

Figure 2.5 The steps in launching a side channel attack 
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Correlation coefficient test: The correlation coefficient test is a common approach to 

determine the linear relationship between sets of data. The correlation test is also known 

suitable for modeling the statistical properties in side channel attacks. In statistics the linear 

relationship can be expressed based on the covariance or the correlation. The definition of the 

covariance is given by [21]: 

Cov (X, Y) = E((X - E(X)).(Y - E(Y))) = E(XY) - E(X). E(Y)    (2.11) 

 

where X and Y are sets of data, E(X) and E(Y) are expected values of X and Y, respectively. 

The covariance quantifies the deviation from the mean. Equation 2.11 shows that the 

covariance is related to the concept of statistical dependence. If X and Y are statistically 

independent then E (XY) = E(X). E(Y); therefore, Cov (X,Y) = 0. The covariance is typically 

not known and needs to be estimated. The estimator c of the covariance is given as [21]: 

 

∑
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=        (2.12) 

where n is the number of data point in the set and  x , y  are the mean values. A more 

commonly used method to measure a linear relationship between two values is the 

correlation coefficient ρ (X, Y). The correlation coefficient is defined as a function of 

covariance [21]: 
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YXCov
YX =ρ        (2.13) 

 
where Var( X ) and Var( Y ) are the variances of data set X and Y. The correlation coefficient 

is a dimensionless quantity and it can only take values between plus and minus one. ρ is also 

not known and needs to be estimated. The estimator r is defined by Equation 2.14 as: 
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In a statistical-based attack, the correlation coefficient is used to determine the linear 

relationship between the columns ih  and jt  for i = 1, …, K and j = 1, …, T. 

This results in a matrix R of estimated correlation coefficient. Each value of j,ir  based on the 

D elements of columns hi and tj are estimated. Equation 2.14 is can now be rewritten as: 

∑ ∑
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The results of a successful attack on a large set of smart card chips show the validity and the 

advantages of the correlation-based power attack [19]. 

Difference-of-Means Test: An alternative technique to determine the relationship between 

the columns of H and T is the difference-of-means. The statistical analysis using this method 

follows similar steps as described earlier in Section 2.3.2. The only difference occurs when 

matrix V is mapped to H. In case of correlation coefficient, there are no special constraints 

for this mapping, while in case of using the difference-of-means only binary side channel 

models are possible. This means that the side channel model needs to be chosen in such a 

way that j,i},1,0{j,i ∀   ∈h . Therefore, direct use of the HW model is not feasible. This 

model should be modified before it is used, e.g. setting hi,j = 1 if HW (vi,j) > 4 and hi,j =0  if 

HW (vi,j) < 4 if   hi,j = 0. However, it is clear that such a binary model describing the power 

consumption of the attacked device is not as accurate as a non-binary model. This causes the 

attack based on difference-of-means to be less effective than the correlation-based attack. 

Besides the different requirements for the side channel modeling, the comparison procedure 
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between the hypothetical values and real side channel values is also different in difference-

of-means. The matrix R has the exact size as in the case of correlation coefficient; however, 

its elements are calculated using other statistical method. The following explanation is given 

to elaborate the method that is used in difference-of-means approach. 

Performing the attack procedure explained in Section 2.3.2, the attacker creates a binary 

matrix H and further makes the assumption that the side channel for certain intermediate 

value is different from the side channel corresponding to other values. The sequence of zeros 

and ones in each column of H is a function of input data (d) and a key hypothesis (ki). In 

order to verify whether ki is correct or not, the attacker splits the matrixT  into sets of rows, 

i.e. two sets of side channel traces, according to hi. The first set contains those rows of T 

whose indices correspond to the indices of the zeros in the vector hi. The second set contains 

all remaining rows of T. Subsequently, the mean of the rows are calculated. The vector i0'm  

denotes the mean of the rows in the first set and i1'm  denotes the mean of the rows in the 

second set. For the number of power traces then: 
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where n denotes the number of rows of H, i.e. the number of power traces that are used in the 

attack, 
i1n  and 

i0n  are expressed by Equations 2.18 and 2.19, respectively: 

∑
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The key hypothesis (ki) is correct, if there is a significant difference between j,i1 m  and j,i0 m  

at some point. The difference indicates that there is a correlation between hck and some 

columns of T. Similar to the correlation coefficient-based analysis, the difference occurs at 

the exact moments of time when the intermediate values that correspond to hck are processed. 

At the other time the difference between the vectors is essentially zero. The result of the 

attack using difference-of-means method is a matrix R, where each row of R corresponds to 

the difference between the mean vectors j,i1m and j,i0m  of one key hypothesis. The original 

side channel attack on implementation of DES reported in [6] is mounted using the 

difference-of-means test. 

2.4 Discussion on Analysis Methods and Evaluation S trategy 

Power-based attacks using statistical analysis are generally known as Differential Power 

Analysis (DPA). The concept of DPA is independent of the statistical tests or the type of 

attacked data [15]. Distinguishing simple analysis from DPA is straightforward. The 

differences can be itemized as; first, the attacker’s knowledge and capabilities, e.g. whether 

the attacker has access to only few power traces or many power traces, and whether the 

attacker is able to characterize the device, second, the type of leakage that is exploited by the 

attackers, e.g. if the information leakage is easily observable by the visual inspection of the 

trace. If information leakage via side channel is not discernable directly in a trace, then DPA 

will be the preferred approach for side channel attack. In general, DPA attacks are more 

powerful. The popularity of the DPA attack is due the fact that no detailed knowledge about 

the attacked device is required. DPA attacks have become common tools for evaluating the 

resistance against side channel information leakage [6].  

DPA-based attack may not always lead to the same results. The effectiveness of DPA is first 

influenced by the model which is enumerated in the attacks. The models used by attackers 

are chosen based on their knowledge. Second consideration which should be taken into 

account is the type of the crypto cores. The attack on a core that has fewer components is 
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more efficient than on a core which executes several instructions at a time. It is important 

that effectiveness of the attacks is compared on the basis of common hardware 

implementations. It is shown in [21] that using the same model and identical hardware, the 

correlation-based DPA provides successful results with less attempts compared to the 

difference-of-means hypothetical test. In other words, correlation-based DPA is a stronger 

evaluation technique for assessing the leakage of side channel information. 

The brief discussion in this section clarifies that the leakage of side channel information is 

best evaluated by employing a powerful attack based on an appropriate model examined by 

an effective analysis technique.  

The following are the conditions that form our strategy for evaluating the leakage of side 

channel information. The assessment will be conducted by: 

• considering an access to plaintext and power consumption measurable point 

• mounting DPA attack 

• analyzing the data using correlation coefficient test 

• mapping the hypothetical and measurements values utilizing the HD model 

• providing a realistic reference model for evaluating side channel information leakage 

by attacking on an unprotected crypto core 

• strengthening the attack by developing an enhanced data capturing method which 

improves the result of correlation coefficients test (the concept of reference vector 

insertion is discussed later in Chapter 5) 

• evaluating the side channel information leakage using  real power measurement from 

test chip 

• delivering the final results by number of averaged traces for key revelation. 
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2.5 Summary and Conclusion 

This chapter provided the background on information leakage via power consumption. The 

elements of power consumption in CMOS circuits were reviewed from a side channel 

perspective. The data dependency of different elements of power consumption in CMOS 

circuits was described. The detailed analysis was also presented on leakage power 

mechanisms which will be referred to later in Chapter 6 (where the trend of side channel 

threat versus technology advancement is evaluated). Attacks for extracting the data carried 

by the power consumption traces were described. Simple and statistical analysis techniques 

were reviewed. DPA using correlation coefficient and difference-of-means were explained. A 

conclusive review on attack methodologies and analysis techniques were presented. 

Furthermore, an assessment strategy used for measuring the side channel security in this 

thesis was established. 
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Chapter 3 

Side Channel Countermeasures 

3.1 Introduction 

Side channels such as power consumption, electromagnetic (EM) emission of the crypto 

devices, and the time of execution of crypto operations are recognized as driving elements of 

modern cryptanalysis. Exploitation of the information leaked by side channels has become 

more popular due to increasing demand for hardware implementation of cryptosystems [4]. 

Thus, special attention has been drawn towards the ongoing issue related to side channel 

information leakage. Significant efforts have been made to define new design constraints for 

reducing the data dependency of power consumption. Therefore, major improvements have 

been achieved in implementation of secure crypto cores. 

This chapter describes two main streams for counteracting leakage of information via power 

consumption: data concealing and data masking. These two approaches are explained and 

their applications in reducing data signature in amplitude and time dimensions of power 

consumption are described. The countermeasures that have been presented so far in the 

literature are reviewed. The operations of these countermeasures are briefly explained. The 

discussion in this chapter illustrates the image of the recent progresses which has been made 

in the area of side channel security. 
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3.2 Side Channel Resistance Methods 

The implementation of side channel countermeasures can be distinguished between software 

and hardware approaches. Software protection methods proposed earlier for side channel 

protection have demonstrated either a limited degree or inefficient protection levels [15]. The 

shortcomings of software protection techniques shifted the attention towards design and 

implementation of side channel countermeasures at the hardware level. Methods that are 

proposed to secure the critical information (e.g., key related) contained in side channels 

typically fall into two main categories: data concealing and data masking. The concept of 

data concealing is, first explained. 

3.2.1 Data Concealing 

Data concealing-based countermeasures have been proposed to make the power consumption 

of crypto devices independent of the intermediate values and also independent of the 

operations executed by crypto devices. Since the power consumption is characterized by its 

time and amplitude, the approaches proposed for data concealing are also categorized by 

those that affect the time and those that affect the amplitude dimension of the power 

consumption. 

Data concealing on time dimension: Revisiting the side channel analysis methodologies 

explained in Section 2.3.2, one can realize that a successful side channel attack requires the 

recorded side channel traces to be correctly aligned. This means that the power consumption 

of each operation should be located at the same position in each power trace. If this condition 

is not fulfilled, analysis of side channel information will be more challenging. This 

observation motivates the designer to randomize the execution of the crypto operation in 

security sensitive applications so that the device performs the operation of the algorithm at 

different time points during each execution. The power consumption appears to be noticeably 

random. The attack procedure becomes more complicated if the randomization increases. 
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Data concealing on amplitude dimension: Changing the amplitude of power consumption 

representing the performed operations or data values is also considered as a side channel 

countermeasure. In order to hide the data in the amplitude dimension both equalization and 

randomization are proposed. Both of these techniques are shown to be effective as they lower 

the SNR associated with the performed operations or processed data. SNR can be expressed 

as follows: 

 

SNR = Pexp / (Pnoise)         (3.1) 

 
where the signal corresponds to Pexp contains relevant information for analysis, and noise 

component is given by Pnoise which is sum of the electrical noise and switching noise. 

Attaining ideal SNR ( SNR = 0 ) is not practical; however, low SNR can be achieved by 

reducing Var ( Pexp ) to zero or by increasing Var (Pnoise) to infinity. These techniques are 

referred to as equalization or randomization, respectively (Var denotes the variance). 

Reducing Var (Pexp ) to zero means that the power consumption should be identical for all 

operations and data values. Increasing Var (Pnoise ) to infinity means that the amplitude of 

noise needs to be infinitely increased. It is shown that lower SNR provides significant side 

channel resistance [6]. 

3.2.2 Data Masking 

Masking data is another alternative for developing side channel resistant architectures. 

Masking provides resistance by randomizing the intermediate values that are processed by 

the crypto device. An advantage of this approach is that masking allows the power 

consumption of the intermediate values to be independent, even if the device has data 

dependent power consumption. In a masked implementation, each intermediate value v  is 

concealed by a random value m that is called mask and it results in: m*vvm = . The mask 

m is generated internally and varies in each execution round of algorithm. Hence, it is not 
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known by the attacker. The operation * is typically Boolean exclusive-or function, the 

modular addition, or the modular multiplication. The masks are directly applied to the 

plaintext or the key. The result of the encryption is also masked. The mask needs to be 

removed at the end of computation. A typical masking scheme specifies how all intermediate 

values are masked and how to apply, remove, and change the masks throughout the 

algorithm. Masking schemes such as Boolean and arithmetic masking are described next. The 

concepts of secret sharing and blinding in masking are also explained. 

a) Boolean and arithmetic masking: Masking is divided into Boolean and arithmetic 

masking. In Boolean masking, the intermediate value is concealed by exclusive-oring with 

the mask, e.g. vm = v    m. In arithmetic masking; however, masking is performed by 

arithmetic operation such as addition or multiplication [22]. Modular addition and modular 

multiplication are also common masking schemes, e.g. vm = v + m and vm = v x m (mod n). 

Masking provides side channel resistance if each masked intermediate value vm is pairwise 

independent of v and m. Hence, every masked intermediate value should induce a distribution 

which is independent of the unmasked intermediate value. Some cryptographic algorithms 

which are based on Boolean and arithmetic operations require both types of masking. Such 

combined masking is often problematic from implementation perspective since switching 

between masking schemes involves significant amount of additional operations [13][23]. 

Efficient algorithms for switching between Boolean and arithmetic masking are presented in 

[24]. The intermediate value v can be computed given vm and m. In other words, intermediate 

value v is represented by two shares: vm and m. Only two given shares will allow to 

determine v. Consequently, masking corresponds to a secret-sharing scheme that uses two 

shares. Similar concept can be extended to secret-sharing with several masks [25]. Masking 

technique for Data Encryption Standard (DES) [26] and Advanced Encryption Standard 

(AES) [27] are discussed in [28] and [12], respectively. Applying several masks to one 

intermediate increases the cost of implementation. In practice secret sharing based on two 

shares is described as an efficient masking scheme. The application of arithmetic masking in 
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asymmetric cryptographic schemes is called blinding. In the blinding approach, 

multiplicative masking is applied to input message (v) in decryption in [29]. This type of 

masking is known as message blinding. Another slightly different masking technique can be 

applied to the exponent [30]. This technique is used for particularly Elliptic Curve 

Cryptography (ECC) [31]. 

3.3 Hardware Implementation of Side Channel Counter measures 

An overview on the hardware implementation of data concealing (time and amplitude 

dimensions) and data masking countermeasures are presented. The discussion distinguishes 

the implementations between two design abstraction levels: architecture and logic. 

3.3.1 Data Concealing at the Architectural Level 

As discussed in the previous section in order to obtain data/operation-independent power 

consumption, randomizing the sequence of operation and randomizing the value of the 

consumed power can be used.  

In practice, several implementations of data concealing countermeasures at the architectural 

level are proposed. Most of these implementations operate based on the data concealing 

either in time or amplitude dimensions. Implementation of data concealing in both time and 

amplitude dimensions is also reported. 

Data concealing in time dimension (architectural level): It is crucial that countermeasures 

affecting the time dimension of power traces remain unidentifiable. This means that attackers 

must not be able to detect the countermeasures. The goal of these countermeasures is to 

randomly insert dummy operation for shuffling the performed operations or randomly 

changing the clock signal to make the alignment of the power traces more difficult. These 

methods are briefly discussed. 

a) Inserting random cycle or dummy operations: The random insertion of dummy 

operations shuffles the sequence of executed crypto algorithms. Similarly dummy clock cycle 
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can be randomly inserted; however, the random operation may take multiple clock cycles. To 

randomly insert dummy cycles, the registers of a protected cryptographic device are usually 

duplicated. The original registers are used to store the intermediate values while other 

registers are used to store the random values. During the execution, a random number 

generated in each clock cycle is used to determine whether the clock cycle is a dummy cycle 

or not. If the dummy cycle enters, the device will perform a computation by using random 

data stored in the duplicated registers. Otherwise, the device continues with execution of the 

algorithm. An example of this approach is the non-deterministic processor which randomly 

changes the sequence of the program during each execution [32]. The countermeasure 

introduced in [32] effectively counteracts power-based attack. The same concept is improved 

and presented in [33] in which additional instructions are randomly inserted.  

b) Randomly skipping clock or changing frequency: This approach adds a filter into the 

clock signal path. The filter randomly skips the clock signal pulses. Random numbers are 

used to determine which clock pulses are skipped. An alternative to skipping of clock pulse is 

to generate a clock signal with a randomly changing frequency, e.g. controlling the frequency 

of an internal oscillator. Multiple clock domains can also be considered as several clock 

signals are randomly applied to the core. A side channel resistant architecture in [34] uses a 

Dynamic Voltage and Frequency Switching for adding randomization to clock frequency and 

supply voltage (Figure 3.1).  

 

 

 

 

 

 

 

Figure 3.1 Dynamic Voltage and Frequency Switching (DVFS) [34] 
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Data concealing in amplitude dimension (architectural level): The power consumption of 

cryptographic devices can be made nearly equal for all operations and all data values by 

using filtering. To counteract the power-based attack noise can also be added to the power 

supply; however, it is important to realize that SNR not only depends on the cryptographic 

device, but also on the measurement setup that is used for the attack. A countermeasure 

which reduces SNR of the measurement setup may not necessarily reduce SNR for all setups. 

Therefore, the measurement techniques should be carefully considered by one who designs 

the countermeasures. The following explanations are given to describe the filtering and noise 

injection. 

a) Filtering: In order to remove exploitable components of the power consumption, a filter is 

inserted between the power supply pin of the cryptographic device and the circuit that 

computes the crypto algorithm. Power consumption can be filtered by using switched 

capacitors or constant current sources. The effect of an Resistance-Inductance-Capacitor 

(RLC) filter inserted into the power supply line of the cryptographic device is analyzed in 

[35]. Decoupling the power supply of crypto core is also presented in [36]. The basic idea is 

that a capacitor is charged by the power supply while the other capacitor supplies power for 

the core. The capacitors are periodically switched as shown in Figure 3.2 (a). A similar idea 

is proposed in [37] by using a three-phase charge pump to deliver power to the device. Using 

active circuits is also considered in [38][39][40][41] which flatten the power consumption to 

reduce the leakage of data from crypto device. These approaches are shown in Figure 3.2 (b) 

and (c). 
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(a)                                              (b)                                 (c) 

Figure 3.2 a) Decoupling the supply [36] b) Flattening the power consumption [40] c) 

Current Masking Generation (CMG) [41] 

 
b) Noise insertion: An alternative method to filtering is to generate noise in parallel to the 

computation of the crypto algorithm. Noise engines are typically built by using random 

number generators. To provide sufficient entropy on the power consumption, the random 

generators need to be connected to a network of large capacitors. The random charging and 

discharging the capacitor network leads to noise in the power consumption. Other approaches 

introduced in [42][43] integrate different components with same functionality into the crypto 

core. Random numbers are then used to decide which component performs the operations in 

the executed cryptographic algorithm. Supplying noise that is induced by this 

countermeasure depends on the degree of randomness that is applied. 

3.3.2 Data Masking at the Architectural Level 

A significant amount of research has been devoted in applying masking schemes. Recent 

research on masking mostly focuses on the AES algorithm [27]. Implementation of masking 

schemes in hardware requires similar consideration as implementation in software. Boolean 

masking schemes are known as effective side channel protection methods for block ciphers. 
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Nonetheless, significant overhead is imposed on performance and area as a result of using 

masking. The implementation of masking schemes is briefly discussed next. 

a) Masking Multiplier (MM): Adders and multipliers are the basic building blocks in 

cryptographic algorithms. The Substitution Box (SBOX) in AES can be decomposed into a 

sequence of addition and multiplication. In order to realize a Masked Multiplier (MM), a 

circuit has to compute the product of two masked inputs vm mvv   ⊕   = , wm mww   ⊕   = , and 

some masks ( mv, mw, m) such that:  

mwvmmmwvMM wvmm ⊕×= )(),,,,(       (3.2) 

This observation can be used to build a masked multiplier (Figure 3.3). 

 

Figure 3.3 A masked multiplier (four standard multipliers and standard adders) [22] 

 
b) Random precharging: Randomly precharging all the combinational and sequential cells 

of the core is another approach. The typical implementation of random precharging requires 

duplicating the sequential cells [47]. The duplicates of the registers are inserted between the 

original registers and the combinational cells. Random precharging operates such that in the 

first clock cycle, the duplicate of the registers, containing random values, are connected to 

the combinational cells, so that the outputs of all combinational cells are randomly 

precharged. In the second clock cycle, the result of the combinational cell is stored in the 

X X X X

Vm Wm m v m w m

v x w       m

X X X X

Vm Wm m v m w m

v x w       m



Chapter 3. Side Channel Countermeasures   

 

33 

 

original registers that contain the intermediate values of the executed algorithm. At the same 

time, the intermediate values are moved from these registers to the duplicates. This switches 

the role of the registers. Thus, in the second clock cycle the combinational cells are 

connected to registers that contain the intermediate values of the algorithm. The switching 

continues in the third cycle. Random precharging is implemented in a very similar way as the 

random insertion of dummy cycles. A method to implement random precharging is 

discovered in [48] by randomizing the register usage. Hence, the intermediate values of the 

algorithm are stored in different registers with potentially different data during each 

execution. 

c) Masking buses: Buses are particularly vulnerable to power-based attack due to the large 

capacitance associated with them. Data encryption is often used to prevent attacking on the 

buses. A pseudo-random key is generated and used in a simple scrambling algorithm. Hence, 

the simplest version of bus encryption, where a random value is exclusive-ored to the value 

on the bus, corresponds to masking the bus. Bus encryption is presented in [49][50][51]. In 

general, masked implementations involve redundancies since the mask values are frequently 

added at some points in the algorithm and removed or changed at other points. The overhead 

may exceed the overall design limitations. 

3.3.3 Data Concealing at the Logic Level 

The concept of data concealing at the logic level is mainly realized by employing logic style 

whose power consumption is independent of the processed data and performed operations. 

This is achieved by making the power consumption of the logic constant for all the processed 

logic values. A consequence of such behavior is that the logic consumes the maximum 

amount of power at all the time. Logic styles with constant power consumption are typically 

implemented in Dynamic and Differential Logic (DDL) scheme. In addition to power 

consumption overhead in DDL, the total area cost of this logic family is considerably greater 

than single-ended logics. Because of significantly increased area and power consumption, 
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often not all components of cryptographic devices are implemented using these logics. A 

precise side channel leakage evaluation is necessary to ensure no sensitive blocks leave the 

secured component of crypto core. Furthermore, “logic style conversion”, “high-level design 

capture” and “logic synthesis” steps must be integrated into the standard semi-custom design 

flow. These steps provide support for logic synthesizers which are typically use single-ended 

logic style. The logic synthesis of the high-level design can be performed by using an single-

ended cell library. These cell netlist is then converted to a DDL cell netlist. Moreover, side 

channel aware floorplanning, placement and routing are still required for ensuring that the 

capacitance and resistance of complementary wires are pairwaise the same.  

The side channel resistant logic styles can be categorized into two main groups: those which 

require generating new logic cells and those whose logic cells are based on standard library. 

Several DDL styles such as Sense Amplifier-Based Logic (SABL) [52], Wave Dynamic 

Differential Logic (WDDL) [53], Dual-Spacer Dual-Rail (DSDR) [54], Three-Phase (TP) 

Dual-rail precharge logic  [55] and 3-state Dynamic Logic (3sDL) [56] are proposed. The 

most known DDL logic styles for side channel security are reviewed in the following.  

a) Sense Amplifier-Based Logic (SABL): The concept of balancing the power consumption 

at the logic level is first introduced in [52]. Sense Amplifier-Based Logic (SABL) consumes 

a fixed amount of charge for every transition including the degenerated events in which a 

gate does not change state. The combinational SABL cells are designed such that the cells 

only evaluate after all input signals have been set to complementary values. All the SABL 

cells are connected to the clock signal which can be precharged simultaneously. In balanced 

SABL circuits, the propagation delays of the complementary wire should be pairwise 

identical so that the combinational SABL cells can always evaluate at a certain time in each 

clock cycle. SABL implementation requires several times more area compared to 

corresponding CMOS circuits. The maximum clock rates are typically halved. The power 

consumption in SABL is significantly high. Actual increase of the power consumption 

depends on several aspects: the size of the circuits, ratio between the number of 
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combinational and sequential cells which defines the increase of the clock tree, and the 

circuit architecture. A power efficient version of SABL named as Charge Recycling Sense 

Amplifier-Based Logic (CRSABL) [57] is also presented for power-constrained applications. 

The side channel resistance of SABL circuit is typically very high if all the complementary 

wires are sufficiently balanced. A general SABL configuration is shown in Figure 3.4. A 

methodology to route multiple differential wires between secure dynamic differential 

standard cells is proposed in [58]. The library of SABL cells need to be generated since the 

standard cells cannot be used. 

 

Figure 3.4 Generic SABL gate [52] 

 
b) Wave Dynamic Differential Logic (WDDL): Wave Dynamic Differential Logic 

(WDDL) gates introduced in [53] are synthesized based on standard cells that are available in 

existing libraries. WDDL has less complexity in its structure and shows less side channel 

resistance compared to DDL logic family. In WDDL the sequential cells are connected to the 

clock signal, thus, only these cells precharge and evaluate at the same time. Combinational 

WDDL cells precharge when their inputs are set to precharge value. Figure 3.5 shows the 

schematic of a WDDL NAND cells. A combinational WDDL cell consists of two circuits 

that realize the Boolean functions: F1 and F2. The functions must be defined such that: if the 
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input signals zz11 in,in,...,in,in     are set to complementary values, complementary output 

values are calculated according to the intended logic function of the cell. Thus, for the 

complementary input values, F1 and F2 must satisfy )in..., ,in(F)in..., ,in(F z11z11 = .  

The area overhead of WDDL circuits is significantly higher than CMOS circuits with 

equivalent functionality. The power consumption overhead of WDDL is considerably large. 

The maximum clock rates are approximately same between WDDL and corresponding 

CMOS circuits. However, since a WDDL delay flip-flop consists of two stages, in order to 

obtain the same throughput as in CMOS, the clock frequency in WDDL should be increased 

by factor of two. WDDL is suitable for reconfigurable (FPGA) platform implementation. The 

ASIC implementation of WDDL requires a semi-custom design flow which includes 

generating a library of the logic gates and special procedure for differential routing and 

placement. 

 

Figure 3.5 Cell schematic of WDDL NAND cell [53] 

 
c) Current Mode Logic (CML): Current Mode Logic (CML) is suggested to tackle the 

threat of side channel attacks. CML utilizes the current mode scheme in which the output 

value of a logic cell is defined by current that is passing through the cell.  The sum of these 

currents is rather constant and likely independent of the actual output values. Such 

characteristic is advantageous for side channel resistant architecture. MOS Current Mode 

Logic (MCML) is introduced for side channel security [59]. Dynamic Current Mode Logic 

(DyCML) shown in Figure 3.6 is proposed which cancels the static power dissipation 

inherited from its predecessor [60]. Using DDL style, DyCML achieves steady power 
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consumption. The dynamic power consumption of DyCML gates is also small compared to 

other dynamic differential logics because of its low swing output. This logic shows same 

level of side channel resistance as SABL with an improved power-delay product [57]. The 

effect of unbalanced capacitive load at the output is still an ongoing issue in design of 

DyCML for side channel applications [61]. An extra area is imposed by implementation of 

virtual ground element. Deployment of DyCML also involves generating the cell library. 

DyCML’s output is not rail-to-rail; therefore, level shifter is required at the output terminals. 

The impact of adding level shifter on side channel information leakage of DyCML is not 

investigated in [61]. 

 

 

Figure 3.6 Generic DyCML gate [59] 

 
d) Adiabatic Differential Switch Logic (ADSL): Adiabatic Differential Switch Logic 

(ADSL) is explored for side channel security in [62]. ADSL is an efficient energy recovery 

logic style pertaining to ultra-low energy low voltage digital circuits (Figure 3.7). The notion 

of adiabatic energy theorem employed in design of ADSL gates requires a time dependent 

power supply which is known as the power clock. The power consumption in adiabatic logic 

is known to be proportional to the inverse of rise time square of the power clock. ADSL’s 
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slow power clock reduces the peak of the supply current. The characteristic of power traces 

in ADSL provides less variation in power consumption which consequently reduces the side 

channel information leakage. ADSL saves up to 50% power consumption for a typical 

inverter. ADSL requires a four-phase power clock with a very high rise time. In providing 

such a complex clocking network the effect of clock skew cannot be ignored. The clock tree 

of ADSL also imposes a significant area overhead. Application of ADSL is limited to very 

low speed digital systems. 

 

Figure 3.7 Generic ADSL gate [62] 

 
e) Asynchronous circuits: Asynchronous circuits are known as effective side channel 

countermeasures [63][64]. Asynchronous circuits that counteract power-based attack are 

implemented in DDL scheme. Thus, side channel resistance of asynchronous circuits still 

relies on balancing the complementary wires. Further consideration for balancing the power 

consumption in asynchronous circuits is presented in [65]. Design flow for side channel 

resistant asynchronous implementation is described in [66]. Design of an asynchronous 

architecture is complex and time consuming due to lack of EDA tools that support the design 

of such circuits. The general configuration of asynchronous logic is shown in Figure 3.8. 
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Figure 3.8 Asynchronous architecture 

3.3.4 Data Masking at the Logic Level 

Side channel security based on masking notion is often implemented at the architectural 

level. Nonetheless, several logic styles using the masking concept are also introduced which 

are referred to as masked logic styles. Masked logic styles operate on masked values and the 

corresponding masks. Since the masked values are independent of unmasked values, the 

power consumption of the masked cells should also be independent of the unmasked values. 

Consequently, the total power consumption of the cryptographic device becomes 

independent of the processed data and the performed operations. Boolean masking is 

commonly used. Figure 3.9 shows a two-input unmasked cell and a corresponding two-input 

masked cell. The input and output signals of the unmasked cells are carried on signal wires. 

In a masked cell; however, the input and output signals are split into masked values and the 

corresponding masks. Masking is characterized by the number of different masks in a circuit 

or the frequency of changing the mask values. Masking number schemes can be applied by 

using one distinct mask for each signal. All the masked values are pairwise independent of 

each other. The functionality of the logic cell becomes very complex by using this masking 

method. To reduce the number of necessary masks, the circuits can be clustered so the 

 

 

 

Figure 3.9 A 2-input unmasked cell and a corresponding 2-input masked cell [72] 
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same mask can be used for each cluster. For every masked signal that passes over from one 

signal cluster C1 to another cluster C2 an additional interface is required to change the mask 

from mc1 to mc2. Defining the number of clusters with different masks is a non-trivial task. 

Changing the single mask value can typically be detected via power consumption of the mask 

distributing net. The mask net can be implemented in DDL logic to overcome such a 

weakness. The masking frequency scheme determines how often the mask values are 

changed. If the mask is changed in each clock cycle, the rate at which new masks must be 

generated is very high. This would be more complicated when several masks are used. In 

order to reduce the rate of mask generation, the mask values can be used in several clock 

cycles. The approach of masked logic cells are developed by several researchers. Masked 

AND gate is proposed in [67][68]. Secret sharing at the cell level is also discussed in [69]. A 

complete review on implementation of masked logic style is presented in [70] [71]. One of 

the main logic styles proposed for masking the side channel data is introduced as Masked 

Dual-rail Pre-Charge Logic (MDPL) [72]. The operation of MDPL is reviewed. 

a) Masked Dual-rail Pre-Charge Logic (MDPL): Masked Dual-rail Pre-charge Logic 

(MDPL) uses the same mask m for all signals in the circuits [72]. Masked signal md  

corresponds to an unmasked value d = dm     m. MDPL is implemented by using DDL 

circuits. MDPL cells are built based on single-ended cell that are available in existing 

standard-cell libraries. The general architecture of an MDPL is shown in Figure 3.10. As 

seen only the sequential cells are connected to the clock signal, thus, only these cells 

precharge and evaluate at the same time. Combinational MDPL cells precharge when inputs 

have been set to the precharge values and evaluate when their inputs are set to 

complementary values. MDPL flip-flops perform three operations. In the precharge phase, 

they start the precharge wave. In the evaluation phase flip-flops provide the stored 

complementary values that are masked with mask m (t) of the current clock cycle. MDPL 

flip-flops complete the mask changing from m (t) to m ( t+1 ), where m ( t+1 ) is mask value 

of the next clock cycle. The mask nets in MDPL circuits are complementary wires that are 
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precharged. This allows balancing the power consumption of the mask nets to a degree that 

prevents simple analysis (determining the mask value is not feasible by simply monitoring 

the power traces of the crypto core). The structure of combinational MDPL cells is similar to 

combinational WDDL [53] cells. The main difference is that the inputs to the Boolean 

functions, F1 and F2, are masked values and corresponding masks. The side channel 

resistance of MDPL is limited as not all internal nodes of the single-ended cells on which 

MDPL cells are based perfectly masked. Eliminating this limitation increases the size and the 

complexity of MDPL cells. Implementation of MDPL requires larger area than that of 

unmasked CMOS. The maximum clock frequency is typically halved. The power 

consumption of MDPL is significantly increased due to the fact that MDPL are DDL and the 

mask nets must be switched frequently. 

 

 

 

 

 

 

 

 

Figure 3.10 Architecture of an MDPL circuit [72] 
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3.4 Summary and Conclusion 

This chapter presented an overview of methods which have been used for tackling the threat 

of side channel information leakage. The hardware protection methods in two main streams 

of data concealing and data masking were studied. Applications of these two concepts in 

amplitude and time dimensions of power traces were discussed. The hardware 

countermeasures based on concealing and masking were discussed in both architecture and 

logic levels. The most effective side channel countermeasures were seen to be those 

implemented in hardware and particularly at the logic level. The review of the previously 

known countermeasures not only demonstrated the expenditure involved with security but 

also addressed the complexity that designers face in providing side channel security.  
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Chapter 4 

Side Channel Countermeasure: The Proposed 

Approach 

4.1 Introduction 

The previous chapter discussed the root causes of information leakage via power 

consumption. The recent progress in tackling the advanced power-based attacks was 

reviewed. The issues in delivering side channel secure hardware were also highlighted. This 

chapter presents a review on design and evaluation of the proposed side channel 

countermeasure. The objectives and strategy of this thesis for developing resistance against 

side channel information leakage are discussed. The design of logic cells and storage 

elements with novel exploitation of constant power consuming logic is presented. Side 

channel information leakage is evaluated at the simulation level. A comparative analysis with 

standard CMOS logic is also included for quantifying the cost of side channel resistance.  

4.2 The proposed Approach 

Recent research has shown that concealing the data signature in amplitude or time 

dimensions of the power traces forms an effective protection mechanism against leakage of 

information. Furthermore, it is seen that tackling the side channel threat at the logic level is 

the most effective approach [52]. Several DDL-based countermeasures were examined for 

realization of data concealing [52][57][59][60]. As discussed in the previous chapter, the cost 
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associated with design and implementation of these countermeasures is significantly high. 

DDL styles in earlier works demonstrate considerable side channel security with significant 

amount of area overhead in addition to the performance degradation and power consumption. 

The extra cost of clocking at the gate level further increases the total trade-off rate. 

Moreover, the side channel security achieved by DDL requires balancing the load at the 

differential outputs. In practice satisfying such condition appears to be an ongoing challenge 

[58]. To reduce the expenditure of the side channel security several other approaches have 

been proposed.  Applying data concealing in the time dimension of power traces is shown to 

reduce the overhead cost. These techniques are based on introducing misalignment to power 

traces by applying a random frequency [47] or employing delay variant datapath [48]. 

Nevertheless, recent developments show that some of these protection techniques can be 

defeated by enhanced attack methodologies: advanced energy-based partitioning [76] or 

reshaping-based techniques [77].  

Design objectives: In response to the increased demand for side channel security 

mechanisms the primary objectives of: 

• providing a cost effective trade-off scheme for area-constrained cryptosystems 

• proposing a less complex logic-based approach 

are considered in this thesis for the design and implementation of a countermeasure against 

information leakage via power consumption. 

Design strategy: The strategy for achieving the design objectives is adapted to suppress the 

data signature in the amplitude of the power consumption of logic cells and storage elements. 

A novel use of Current Balanced Logic (CBL) is proposed for designing elements of 

combinational and sequential logics. Design objectives are expected to be met as: 

• dynamic and differential properties of the logic style are eliminated (resulting in 

significant area efficiency) 

• single-ended logic is used leading to less design complexity (removing  the balancing 

load requirements).  
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The concept of data hiding by CBL is described. Design procedure of CBL gates for 

combinational networks is reviewed. To provide side channel resistant for sequential 

networks the design of Current Balanced Edge Triggered Registers (CBETRs) is also 

discussed.  

4.3 Data Concealing: Amplitude Dimension 

In order to remove the data signature from the amplitude of power consumption, the logic 

must consume power which is independent of the data processed by the circuit. This 

condition can be satisfied by employing either equalization or randomization of the power 

consumption in each transition. Several proposals are discussed in Chapter 3 applying the 

concepts of equalization and randomization. The characteristic of CBL is investigated as a 

potential equalization-based approach for data hiding in amplitude dimension of power 

consumption. CBL is introduced in [78][79] and recommended for low-noise applications on 

mixed mode (analog/digital) circuits. The operation and design criteria of CBL logic gates 

are described. 

4.3.1 Current Balanced Logic (CBL) for Combinationa l Network 

CBL originated from pseudo-NMOS logic with an extra NMOS transistor which balances the 

current drawn from the supply in each transition. CBL is a static logic which does not require 

a clock signal at the cell structure. CBL operates when the data is available at the input, thus, 

unlike dynamic logic [17], CBL’s power consumption is static. This means that CBL cells 

dissipate power continuously and regardless of presences or absence of the data at the input 

terminal. Figure 4.1 shows the general configuration of the CBL. The CBL gate operates by 

PMOS load (M1) which functions as a constant current source. M1 and M2 are assumed to be 

sized to operate as an identical transistor, so kp = kn = k and Vth p = Vth n = Vth, where kp and 

kn are called gain factors and they equal µp Cox W1 /L1 and µn Cox W2 /L2, (µp and µn are hole 

and electron motilities, W1, W2, L1 and L2 are the widths and lengths of M1 and M2), Vth p and 

Vth n are threshold voltages of M1 and M2 transistors, respectively. The voltage values at the 
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gate-source (Vgs1,2 ) and drain-source (Vds1,2 ) of  M1 and M2 can be extracted from Figure 4.1 

as follows: 

dd2dsout2gsoutdd1dsdd1gs =  V,  V=  V, V-  V=  V,  V=  VV        

where Vdd and Vout  are supply and output voltage, respectively. 

The current of M1 (IM1 ) and M2 (IM2 ) in triode and saturation modes are expressed as: 
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First order analysis: The first order analysis of power consumption of the CBL gate is 

performed with regard to the output voltage (Vout ) [75]. For simplicity, the Pull-Down 

Network (PDN) is modeled by a single NMOS transistor. For different logic functions the 

PDN can be easily defined and sized. If Vout = 0 then M1 operates in saturation and M2 

operates in cut-off mode. The total supply current (IVdd ) which equals sum of the currents of 

M1 (IM1 ) and M2 (IM2 ) is expressed by Equation 4.5: 

2

)VV(
kI

2
thdd

Vdd

-
=          (4.5) 

If Vout = Vdd , then M1 and M2 operate in triode and saturation modes, respectively, thus, IVdd  

is: 

 Figure 4.1 CBL structure 
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         (4.6) 

By simplifying Equation (4.6) for Vout = Vdd, IVdd  equals: 

 

2

)VV(
kI

2
thdd

Vdd

  -
 =          (4.7) 

Equation 4.7 gives the same value for IVdd as it is calculated by Equation 4.5. The total IVdd 

remains the same for both Vout = 0 and Vout = Vdd, hence, IVdd is constant and independent of 

the logic value at Vout . In practice and particularly for short channel, CBL gates do not 

deliver perfect constant IVdd. For more realistic analysis we remove the conditions of Vth p = 

Vth n = Vth and provide a second order analysis with consideration of the short channel effects. 

It is still assumed that kp = kn = k (The proper sizing should satisfy the condition of kp = kn = 

k; however, the impact of process variation does not allow the perfect matching. An 

evaluation of the data hiding characteristic of CBL with consideration of process variation is 

presented later in this chapter). 

Second order analysis: The transition at the output node of CBL gate can be divided into 

three regions. 

a) )V,V(minV0 nthpthout       <  <         

b) )V,V(minVV)V,V(min ndsatpdsatddoutnthpth           -<  <        

c) ddoutndsatpdsatdd VV)V,V(minV <  <    -         

where n,pdsatV    are the velocity saturation voltages of M1 and M2, respectively. The velocity 

saturation currents for M1 and M2 are shown by Equations 4.8 and 4.9 [17]: 
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The total IVdd equals IM1 + IM2 and it is recalculated for the distinct regions: (a) M1 is in 

velocity saturation and 2M  is in cut-off (b) both M1 and M2 are in velocity saturation (c) M1 

is in triode and M2 is in velocity saturation.  

The total supply current (IVdd ) can be expressed by the following equations:   
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CBL gate (XOR) is designed in 180nm CMOS technology. The operation of the gate is 

simulated using HSPICE.  Figure 4.2 shows the transient waveform of supply current (IVdd ) 

of CBL gate once the Vout changes from logic ‘0’ to ‘1’. Considering the short channel 

transistor model, one can observed that the constant current objective is not perfectly 

satisfied. 

 



Chapter 4. Side Channel Countermeasures: The Proposed Approach  

 

49 

 

 

Figure 4.2 Current waveform versus output voltage for CBL XOR gate 

 

The deviations of Ivdd )∆I( vdd  in regions (b) and (c) with regard to the Ivdd value in region (a) 

are extracted from Equations 4.11 and 4.12 and presented as follows: 
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In region (b) the deviation is shown to be equal to velocity saturation current of M2 (Equation 

4.13). Equation 4.14 can determine vdd∆I  for given value of Vout which is 

 <  <-  ddoutpdsatdd VVVV ; therefore, vdd∆I  for region (c) is: 

IM2 (velocity sat.) – IM1 (velocity sat.)  < △Ivdd (c) < IM2 (velocity sat.)   (4.15) 

 

Equations 4.13 depicts the role of M2 in deviation of IVdd in regions (b). Equation 4.15 also 

shows that the maximum deviation in region (c) is determined by M2. It can be concluded 

that the supply current deviation in operation regions (b) and (c) can be reduced if IM2 is 

decreased. In order to identify the influential parameter in reducing IVdd Equation 4.9 is 

revisited. It is seen that by increasing Vth n, saturation current of M2 is reduced and as a result 

the deviations in region (b) and (c) are reduced. If M2 is replaced by a high threshold voltage 

(Vth ) NMOS transistor then vdd∆I  is reduced.  

Figure 4.3 shows the current deviation in regions (b) and (c) for different values of the Vth n.  

 

Figure 4.3 Current waveform versus output voltage for CBL gate (M2 with different Vth) 
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Figure 4.4 shows IVdd in a typical CBL and CMOS XOR gates1. As expected the IVdd 

deviation in CBL is significantly lower than that of CMOS. Further reduction is achieved as a 

result of using high threshold balancing transistor (M2). The deviation of IVdd in CBL XOR 

results in current spike approximately 3µA while the current spike in CMOS XOR reaches 

more than 78µA. Such characteristic can be utilized to reduce the leakage of side channel 

information. The design procedure of CBL gates is reviewed in the next section.  

 

Figure 4.4 Transient waveforms of supply current of CMOS and CBL XOR gates 

 
CBL design procedure: In order to obtain the appropriate values for width (W) and length 

(L) of M1 and M2, the procedure can be followed based on the given static or dynamic design 

criteria. 

a) Static-based design: If the static criterion, e.g. lower-band of output voltage (Vout-L) is 

given, thus in region (a) Vout = Vout-L can be used to determine IVdd from Equation 4.16 [17]: 

 

                                                 
1 XOR configuration for CMOS implementation is shown in Appendix A. 
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sat

Vdd
thddout-L   =        (4.16) 

where Isat is the saturation current. Since M1 is in saturation, then, W1 / L1 is determined by 

the IVdd value. The sizing of Pull-Down Network (PDN) block is also found since  M 2 is cut-

off and PDN1MVdd III == . Considering the matching criteria, W2 / L2 can be set accordingly. 

b) Dynamic-based design: If the propagation delays, rise-time (tPLH) and fall-time (tPHL), for 

a given load capacitance (CL) are specified, the design procedure is similar to sizing of 

conventional pseudo-NMOS gates. Since M1 operates as a Pull-Up Network (PUN) W1 / L1 

can be found by approximation of the rise-time as follows [17]: 

ddpLPLH Vk)C(t /7.1 =         (4.17) 

PDN is modeled by a NMOS transistor, thus, it can be sized by approximation for fall-time 

as given [17]: 

dd
np

nLPHL V)
/ kk

.
(k)C(t  

460
-1  / 7.1 =        (4.18) 

The design procedures described above is helpful for obtaining the initial sizes, the W / L 

values of M1 and M2 transistors can be further adjusted in a CAD environment. The dynamic-

based sizing is used in this research for designing the logic gates. The circuit schematic of 

inverter, NAND and XOR gates are shown in Figure 4.5. All the gates are designed to 

operate comparably with their standard CMOS2 counterparts in 180nm CMOS process. The 

ratio of the NMOS and PMOS transistors in the logic gates are available in Appendix A.  

                                                 
2 Standard CMOS inverter and NAND gates are used for comparison.  
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Figure 4.5 CBL a) Inverter b) NAND c) XOR gates 

 

Evaluation of side channel leakage: As discussed in Chapter 2 leakage of information from 

logic gates is the result of data dependency in the power consumption. The power 

consumption can be represented by the current in the supply node. The amount of current 

variation depends on the present state and the next state the gate will switch to. The current 

variation in the supply branch of a logic gate can be used as an indicator of data leakage. In 

order to quantify the current variation a test bench shown in Figure 4.6 is used.  The fanout 

signal degradation is considered in both the previous and the succeeding stage (Cl =10fF). 

Instantaneous current is simulated at the transistor level using HSPICE. In order to capture 

the current variations, measurements are conducted for 100-cycle-long pseudorandom data 

sequences. Normalized Current Deviation (NCD) [52] is used as a measure of the variation 

on the current consumption.  

 

 
 
 
 
 
 

Figure 4.6 The simulation test bench 
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NCD is defined as: 

 

cle)(power /cyMax 

cycle)(current /Min  -cycle)(current /Max 
=NCD      (4.19) 

 
The value of NCD ranges from 0 to 1. Smaller NCD indicates less leakage, thus, more effort 

needs to extract the side channel information. In general NCD can be used to illustrate the 

degree of susceptibility to side channel attack [52]. The measurement is only related to the 

gate in the gray box. The results are presented in Table 4.1. The area consumptions of the 

gates are also reported (normalized based on CMOS gate). Significant decrease is seen in 

NCD of the CBL gates. However, area consumption depends on the gate type. Inverter and 

XOR are the most and least area consuming gates in CBL design, respectively.  

 

Table 4.1 Comparison of NCD and area between CMOS and CBL gates 

Logic 
NCD Area 

Inverter NAND XOR Inverter NAND XOR 
CMOS 1.00 1.00 1.00 1.00 1.00 1.00 
 CBL 0.058 0.064 0.063 1.79 0.82 0.8 

 

Further observation: CBL operates based on a constant current source. The operation 

principle already suggests that ideally the power is consumed continuously in CBL, 

regardless of the switching activity. Thus, the power consumption is essentially independent 

of the switching frequency. On one hand, this could be advantageous for very high-speed 

operation since the total power consumption may become smaller than the power 

consumption of CMOS gates [80]. On the other hand, significant static power consumed by 

CBL gates is a limiting factor for deployment of this logic in power-constrained applications. 

The potential approach for reducing the power consumption in CBL gate is investigated.  



Chapter 4. Side Channel Countermeasures: The Proposed Approach  

 

55 

 

Unlike other Current Mode Logic (CML) styles such as Current Steering Logic (CSL) [81] or 

MOS Current Mode Logic (MCML) [59] which operate by using Vbias-controlled current 

source, CBL is structured with a current equalizer transistor. Decreasing the supply voltage 

(Vdd ) for power consumption reduction is shown to affect the correct operation of CSL and 

MCML [75]. The current source of CBL is composed of a PMOS saturated transistor which 

tolerates greater variation of the supply current. Lowering Vdd can, thus, be used as a 

potential power saving option. Nonetheless, Equations 4.17 and 4.18 show that performance 

of the CBL gate depends on supply voltage. Therefore, a realistic comparison requires 

considering the effect of supply voltage reduction on both power and performance. The 

product of power and delay known as power-delay is used for comparison. Power-delay 

products of CBL gates for different Vdd values are plotted in Figure 4.7 (a). The variation of 

NCD with supply is illustrated in Figure 4.7 (b). It is evident that lowering Vdd reduces the 

amplitude of variation in Ivdd, subsequently develops more resistance against side channel 

information leakage. Therefore, lowering the supply offers an alternative trade-off scheme 

which gives an option for reduced power consumption and less side channel information 

leakage at the cost of performance degradation3. 

                                                 
3 Note that for smart card applications speed performance is not a prior concern as most smart cards have an 
internal clock frequency ranging from 10 to 20 MHz. Current state-of-art smart cards operate at maximum 50 
MHz [SLE88CX720P Short Product Information, http://www.infenion.com]. 
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  (a)                             (b) 

Figure 4.7 a) Power-delay b) NCD variation with supply voltage for CBL gates 

 

4.3.2  Current Balanced Logic (CBL) for Sequential Network 

Data-dependency of the power consumed by logic cells causes information leakage in 

combinational networks. Similar to logic gates, the power consumption of storage elements is 

also data dependent. Thus, storage elements are susceptible to information leakage. A strong 

side channel aware design strategy requires both logic cells and storage elements to be 

protected against the threat imposed by side channel attack. Architecture of a side channel 

resistant storage element is described. 

a) Current Balanced Edge Triggered Register (CBETR) I: Registers or so called 

memories can be either designed in a dynamic or static style. Dynamic memories store data 

for a short period of time. They are based on the principle of temporary charge storage on 

parasitic capacitors associated with MOS transistors. Storage in the static scheme relies on 

the concept of producing a bistable element. Static memories preserve the state as long as the 

power is turned on. They are built using positive feedback, where the circuit topology 
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consists of intentional connection between the output and input of a combinational circuit. A 

leakage resistant register is designed by integrating CBL gates into a similar structure. The 

current behavior of CBL is utilized to suppress the data signature in power consumption of 

the register. In order to operate as a positive edge triggered register, the register is designed 

based on master-slave concept. Two CBL inverters are connected in two-phase non-

overlapping clock scheme. Figure 4.8 (a) and (b) show the gate and transistor levels of the 

Current Balanced Edge Triggered Register (CBETR). CBETR consists of two identical 

blocks which serve as master and slave stages. Transistors in master and slave stages are 

distinguished by indices of M and S in Figure 4.8 (b). 

 

 

Figure 4.8 Current Balanced Edge Triggered Register a) gate level b) transistor level 

 

Transistors configuring the CBL inverter are (M) 1M  , (M)  2M   and (M) 3M   in master stage and

(S) 1M , (S) 2M   and (S) 3M   in slave stage. One extra inverter is included in each stage for 

closing the feedback loop to preserve the correct value during the holding period. Transistors 
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controlling the clock in the master stage are (M)  Ph_1M  , and (M)  Ph_2M . Transistors (S)  Ph_1M , 

and (S)  Ph_2M  form the clocking network in the slave stage. The clock scheme of  CBETRis 

composed of a two-phase non-overlapping clock signal which controls sampling and holding 

the data in master and slave stages. Employing the non-overlapping clock instead of using 

complementary clock scheme removes the condition of generating ideal CLK and  CLK 

(with zero delay) in design of the register. Non-overlapping clock also avoids occurrence of 

undefined state at the output of register. Figure 4.9shows an implementation of the clock 

circuitry in CBETR for generating a two phase non-overlapping clock.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The operation of CBETR in one clock cycle is explained as follows. When the Ph_1 signal is 

‘1’, transistor (M)  Ph_1M   is turned on; DATA_IN is sampled by the master stage into node 

Figure 4.9 Clock generating a) gate level b) transistor level 
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‘X’. During this period, (S)  Ph_1M  is on and forms the feedback loop at the slave stage. Ph_1 

and Ph_2 are non-overlapped, thus, Ph_2 is ‘0’ so  M (S)  Ph_2 is off and the output is decoupled 

from input. Consequently, the slave stage is in hold mode and DATA_OUT retains its 

previous value.  

When the Ph_1 signal is ‘0’,  M (M)  Ph_1 is turned off, hence, the master stage stops sampling 

the input. (S)  Ph_1M  is also turned off and  the feedback loop at the slave stage becomes open. 

Due to non-overlapping, Ph_2 is ‘1’and it turns on (S)  Ph_2M . The inverse value of DATA_IN  

stored in ‘X’ is inversed and copied to the output. Ph_2 also turns on (M)  Ph_2M . The feedback 

loop at the master stage is formed to hold the state of node ‘X’.  For comparison purposes, 

the inverters are replaced by standard CMOS gates. The test bench in Figure 4.10 is used and 

a similar procedure as the one in Section 4.3.1 is followed for evaluating the leakage of  

side channel information.  

 

 

 

 

 

 
Figure 4.11 shows the transient waveforms of data-in/out, and supply current of the CBETR 

compared to the one designed by using CMOS gates. NCD is measured and results are shown 

in Table 4.2. As expected utilizing the CBL gates provides significant reduction in NCD 

values in CBETR indicating the resistance that CBL style provides against leakage of data 

via power consumption. The area consumed by CBETR follows same trend as seen in 

designed gates in Section 4.3.1. 

Figure 4.10 Test bench 
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Figure 4.11 Transient waveforms of a) input/output b) supply current of CMOS and CBL 

registers 

 

Table 4.2 Comparison results 

Logic NCD Area 
CMOS-ETR 1 1 
 CBETR (I) 0.06 1.61 

 

Further Observation: As shown in Section 4.3.1.2, the power consumption of CBL gates 

can be decreased by lowering the supply. A similar approach is investigated in CBETR. The 

Ph_1 and Ph_2 signals controlling the sampling and hold sequences are applied by an 

NMOS-only switch. NMOS switch passes a degraded high voltage (Vdd - Vth n ) to the input of 

the sampling inverters. Consequently, CBETR operates under the condition of input logic 

equals Vdd  - Vth n. Lowering the supply as an option for reducing the power consumption is 

restricted as it affects the input logic value. In order to effectively reduce the power 

consumption and ensure that the CBETR still reliably operates, the NMOS switches have to 

be removed. A modified version of CBETR is presented in which the NMOS switches are 

0 1 2 3 4 5 6

x 10
-8

0

1

2

(a)

V
ot

la
g

e 
(V

)

 

 

Data-in
Data-out

0 1 2 3 4 5 6

x 10
-8

0

10

20
x 10

-5

(b)

C
ur

re
n

t (
A

)

 

 

I
Vdd

 (CMOS)

I
Vdd

(CBL)

Time (s)



Chapter 4. Side Channel Countermeasures: The Proposed Approach  

 

61 

 

DATA_IN

Ph_1

Ph_2

DATA_OUT

(a)

(b)

DATA_IN

Ph_2 Ph_1

Ph_2

Ph_1

DATA_OUT

DATA_IN

Ph_1

Ph_2

DATA_OUT

(a)

(b)

DATA_IN

Ph_2 Ph_1

Ph_2

Ph_1

DATA_OUT

replaced by gates, so that lowering the supply can be applied with no concerns about 

degrading the input logic values. 

b) Current Balanced Edge Triggered Register (CBETR) II: Architecture of the modified 

CBETR is shown in Figure 4.12. The NMOS-only switches are replaced by combination of 

AND and OR gates. The sampling and hold operations are similar to the first version of 

CBETR. The DATA_IN and Ph_1 signals command the sampling (master stage) through the 

AND gate instead of NMOS-only switch. The feedback loop is also modified by adding an 

AND gate operating between Ph_2 and sampled DATA_IN. The operation of the second 

version of CBETR is reviewed. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.12 Modified CBETR a) gate level b) transistor level 

 

When Ph_1 is ‘1’, the AND operation between Ph_1 and DATA_IN results in completion of 

sampling at the master stage. Ph_1 and Ph_2 are non-overlapped, thus, Ph_2 is ‘0’ which 
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allows the feedback loop to be formed at the slave stage and hold operation is executed. By 

changing the status of the Ph_1 and Ph_2 signals to ‘0’ and ‘1’, respectively, the master stage 

performs hold and the slave stage begins sampling. 

It is evident that area is increased in second version of CBETR; however, since the voltage 

drop caused by NMOS-only switch is no longer an issue it is expected that further lowering 

Vdd can be considered for reducing the power consumption. The comparison is presented in 

the following to quantify the trade-off between the area and power reduction in two versions 

of CBETR.  

Trade-off scheme: Trade-off scheme can be drawn by comparing two versions of CBETR. 

An evaluation is conducted by using same simulation setup (Figure 4.10). The comparison 

results are given as follows.                                                                                                                                                        

a) Performance of registers is often measured by the setup and hold times. The setup time 

and hold time constraints are defined to ensure that the data signal is properly propagated by 

the register and the result remains valid at the output during the sampling period. The setup 

time is the time before the rising edge of the clock that the input data must be valid. For 

CBETR I, the DATA_IN signal has to be propagated through an NMOS and the CBL 

inverter of the master stage. This ensures that input data (DATA_IN) is sampled at the node 

‘X’. The Ph_1 signal which is the actual clock into the master stage requires a setup time that 

is equal to the propagation delay of an NMOS-only switch (tp NMOS) and two CBL inverters 

(tp CBL-inverter). Thus, the setup time with regard to the original clock equals:  tp NMOS + 2 x tp 

CBL-inverter - t p NOR_2. For CBETR II, the time required by the Ph_1 signal equals delay of the 

CBL combined AND/NOR gate (tp CBL-AND/NOR) plus tp CBL-inverter. Hence, the setup time in 

CBETR II equals: tp CBL-AND/NOR + t CBL-inverter - t p NOR_2. The hold time represents the time 

that input must be held stable after the rising edge of the clock. Hold time for CBETR I and 

II equals: t p NOR_1 + t p NOR_2.  The propagation delay is also defined as the time it takes for 

delivering the DATA_IN from the slave stage to the final output. For CBETR I the 

propagation delay equals: tp NMOS + tp CBL-inverter + t p NOR_1 + t p NOR_2.  
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(a)                (b) 

Figure 4.13 a) Power-delay b) NCD variation with supply voltage for CBETR I and II 

 
For CBETR II, the propagation delay is tp CBL- AND/NOR + tp CBL-inverter + t P NOR_1 + t P NOR_2. 

b) Power consumption in CBETR II is slightly greater than in CBETR I; however, CBETR 

II can operate with supply as low as 1V whereas CBETR I may not operate reliably with 

supply lower than 1.5V due to voltage drop on NMOS switch. This means that reducing the 

power consumption in CBETR II can be more effectively attained by lowering the supply 

voltage. Figure 4.13 (a) presents the power-delay products versus the supply voltage in 

CBETR I and II. NCD variation with supply voltage is shown in Figure 4.13 (b).  

c) Area consumed by CBETR I and II is compared. CBETR II is designed by replacing the 

NMOS-only switch and the first CBL inverter in master stage of CBETR I with the CBL 

AND/NOR gates. As shown in Figure 4.12 (dashed boxes) AND/NOR gate can be 

implemented in a combined architecture resulting in less area consumption comparing to 

implementation of individual gates. CBETR II consumes 6.96µm2 compared with CBETR I 

which consumes 6.27µm2. An increase of 11% in area is, thus, seen. 
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d) Comparison Overview: The above review of performance, power and area assists a 

designer to select CBETR I or II for a particular application. For example, the setup time in 

CBETR I is slightly longer than CBETR II (approx. tp NMOS), whereas the propagation delay 

of CBETR II is larger for about tp CBL-AND/NOR - tp NMOS.  

Power consumption in CBETR designs is slightly different; however, the characteristic of 

CBETR II to operate with Vdd as low as 1V provides more power savings at the cost of 

performance. NCD follows a similar trend as it is seen in CBL gates. The reduction of NCD 

with lowering Vdd can be advantageous for CBETR II. CBETR I is more area efficient than 

CBETR II. 

4.4 The Proposed Countermeasure: Architectural Leve l 

A subset of an encryption algorithm is chosen as a test structure for analyzing the data-

dependency of the power consumption of CBL gates at the architectural level. The results are 

compared with an identical architecture that is designed using standard CMOS logic gates. 

The test structure is briefly introduced and detail of the analysis process is discussed. 

4.4.1 Information leakage at the Architectural Leve l 

The test structure is composed of “SubByte” in AES algorithm [27]. “SubByte” consists of 

an affine function and inverse multiplication in GF(28). “SubByte” is executed by a block 

known as Substitution Box (SBOX). Figure 4.14sows the architecture of the SBOX. 

 

 

 

 

 

 

Figure 4.14 Block diagram of “SubByte” operation (SBOX) [27] 
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Figure 4.15 SBOX building blocks [27] 

 

The gate level schematics of the SBOX blocks are shown in Figure 4.15. Further details on 

the architecture of SBOX are given in Appendix B. The SBOX consists of 45 two-input 

NAND gates, and 140 two-input XOR gates [27]. The test structure is designed in 180nm 

CMOS technology. For a comparative analysis, the test structure is designed using CBL and 

standard CMOS logic cells. Variation of the power consumption is measured for a random 

input sequence of 500 clock cycles. Figure 4.16 shows a superposition of the power supply 

current of the transient response. The instantaneous current of the CMOS implementation is 

highly irregular. However, the instantaneous current of CBL SBOX is subjected to minor 

variations since nearly same amount of power is consumed in each cycle.  The instantaneous 

current of the CMOS design at its peak reaches 40mA, while the current fluctuation of CBL 

remains confined to a narrow margin of approximately 2mA, with constant value of 34.6mA.  
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Figure 4.16 Superposition of the simulated instantaneous power supply current for 500 clock 

cycles a) CMOS b) CBL SBOX 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17 Histogram of the simulated peak of the current per cycle for 500 cycles 
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Table 4.3 Comparison results 

 

 

 

 

Figure 4.17 shows the histogram of the peak of supply current. The results show that the peak 

of supply current in CMOS implementation experiences a large variation, whereas the 

deviation of the peak of supply current of CBL remains in a narrow band.  

Table 4.3 presents the NCD for CMOS and CBL SBOX. NCD values also show significant 

reduction in CBL compared to CMOS. This indicates that the power behavior of CBL gates 

is also effective at the architectural level by significantly reducing the variation of power 

consumption. In other words, the data signature in power consumption of test structureis 

drastically reduced. The reduction is obtained by increasing the power consumption. The 

discussions and simulation results demonstrate that the proposed approach effectively 

reduces the current variations caused by the data values. This consequently shows the 

suitability of using CBL for applications that requires the data-independent power.  

4.4.2 Information Leakage: Technology Impact 

The most governing technology variations are seen in sizing of the transistors and the 

assigning the threshold voltages. As discussed in Section 4.3.1, the effect of the process 

variation should be considered in evaluation of the data hiding characteristic of CBL. 

Analysis of power behavior of CBL-based architecture under process variation is presented.  

Monte Carlo is a commonly used method for analyzing the impact of process variation on 

design parameters. The deviation from the nominal value can be computed for design 

parameters by running the simulation for n iteration rounds. The Monte Carlo simulation is 

an available feature in Cadence design environment which computes the impact of both 

mismatch and process variation on a defined parameter. We use NCD as a parameter which 

Design Style NCD Area 

CMOS 1 1 
CBL 0.06 0.8027 
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shows the variation on the current consumption. Monte Carlo simulation is run for 2000 

iteration rounds. Thus, in total 2000 values are obtained for NCD. The distribution of these 

values in Figure 4.18 shows that the variation of NCD is between 0.053 and 0.088. In worst 

case NCD reaches to 0.088. The NCD value of the CMOS architecture in Section 4.4.1 is 1. 

It is seen in worst case, NCD of the CBL architecture is only 8% compared to that of the 

CMOS architecture. Therefore, NCD is still significantly smaller even with consideration of 

the process variation. This implies that CBL can be considered as an option for further 

investigation. The next chapter presents an implementation of a crypto core on a fabricated 

chip and investigates the side channel resistance of CBL in a real attack scenario. 

 

 

Figure 4.18 Histogram of NCD distribution of the CBL SBOX in 2000 iterations 
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4.5 Summary and Conclusion 

This chapter defined our objectives and strategy for designing a side channel countermeasure 

at the logic level. Area efficiency and reduced complexity were given priority in our 

proposed design. A novel exploitation of Current Balance Logic (CBL) was proposed for 

designing side channel resistant logic cells. Current Balanced Edge Triggered Register 

(CBETR) was also introduced to provide side channel resistance for sequential network. The 

major trade-off element for obtaining side channel resistance was the power consumption. It 

was seen that power savings can be achieved as a result of reduced supply voltage. The result 

of this supply reduction also improved the side channel resistance. A subset of the AES 

algorithm was used as a test bench for assessing the proposed countermeasure at the 

architectural level. The supply current variation in CBL was seen as low as 6%. The results 

showed that side channel resistance of CBL was achieved by 20% area saving compared to 

CMOS. Furthermore, the impact of process variation was investigated on power consumption 

behavior of CBL-based architecture. Measure of Normalized Current Deviation (NCD) was 

computed over 2000 iteration rounds in Monte Carlo simulation. The worst case deviation in 

NCD being 8% was significantly lower than that of the CMOS architecture. The simulation-

based results in this chapter showed that CBL has potential warranting further investigation. 
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Chapter 5 

The Empirical Results 

5.1 Introduction 

In order to validate the results from the earlier studies on the proposed countermeasure, a 

realistic security assessment should be performed. A test chip is designed and fabricated. A 

side channel attack is mounted on the test chip using real power measurements. This chapter 

first reviews the implementation of the test chip which includes two separate cores: the 

proposed side channel resistant logic core (protected core) and standard CMOS logic core 

with no countermeasure (unprotected core). The functional test and attack procedure 

including data capturing and data analyzing are explained. The empirical results of the attack 

on the test chip are presented. Furthermore, a comparative analysis is included in this chapter 

to highlight the characteristics of the proposed countermeasure. 

5.2 Test Chip: Design and Implementation 

The proposed countermeasure in Chapter 4 employs non-standard cells at the logic level; 

therefore, a full custom approach is required for design synthesis, floorplanning, placement, 

routing, verification and finally tape-out. A brief overview of the design procedure is given. 
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5.2.1 Implementation of the Test Chip 

Basic logic functions including inverter, NAND and XOR are designed using Current 

Balanced Logic (CBL). The cell library including the CBETR I is implemented in 180nm 

CMOS technology. The design procedure is performed in Cadence [82], layout and post 

layout simulations are executed by HSPICE. Layout to netlist is done in Analog Artist of 

Cadence. Layout is created with Layout Plus of Cadence [82].  

The test structure is composed of the “AddRoundKey” and “SubByte” transformation of 

AES algorithm [27]. “AddRoundKey” is an XOR operation between the plaintext and the 

key. “SubByte” operation is executed by SBOX. The SBOX blocks (See Section 4.4.1) are 

recognized by their Boolean equations which are presented in Appendix B. Figure 5.1 depicts 

the architecture of the test chip. 

 

 

Figure 5.1 The architecture of the test chip 
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To allow for comparison the test chip includes protected and unprotected cores which are 

designed using CBL and standard CMOS logic, respectively. The test chip is fabricated in 

180nm CMOS TSMC 6M technology. The total number of pins in the test chip is 47. In total 

five test chips are fabricated. Three test chips are tested for functionality and one is used in 

the side channel attack. The die photo of the chip is shown in Figure 5.2 (a). The photograph 

of the final packaged (PGA 68) test ship is presented in Figure 5.2 (b).  

 

 

 

 

 

(a)    (b) 

Figure 5.2 a) The photograph of the die b) The packaged fabricated-chip (PGA 68) 

 

5.3 Testing and Verification 

Pre-test hardware and software setup are performed. The hardware setup involves designing 

a platform which enables sending and receiving the data between the tester and the chip. The 

software setup involves defining the test flow, characterizing the Device-Under-Test (DUT) 

and setting up the parameters for the testing procedure. Functional test is explained after 

describing the pre-test setup. Detailed explanation of functional test is useful as some of the 

tester features are introduced which are also utilized in side channel attack.4 

                                                 
4 Testing took place at the Advanced Digital Systems Laboratory (ADSL) at the University of Toronto (Figure 
5.3). The access to the ADSLab was provided by Canadian Microelectronic Corporation (CMC).  
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Figure 5.3 Experimental setup in the Advanced Digital Systems Laboratory (ADSL) 

5.3.1 Pre-test Setup 

In order to evaluate the performance of the test chip, the testing equipment at the Advanced 

Digital Systems Laboratory (ADSL) including the Agilent 93000 SOC tester is used. The 

specifications of the tester are available in Appendix C. Some of the pre-test hardware and 

software setup are performed remotely via the Virtual Network Computing (VNC) 

connection. A summary of the preparation is discussed. 

a) Pre-test hardware setup: As mentioned earlier for comparative analysis the identical 

core is designed using standard CMOS cells and it is included in the test chip. Separate Vdd 

and GND pins are assigned for each core’s logic and output registers (CBL and CMOS). 

Buffers and pads are supplied with separate Vdd pins. The power consumption of the 

additional circuits is, thus, excluded from the measurements.  

Design of a Printed Circuit Board (PCB) is required so that the chip and the tester can 

communicate through the PCB and test fixture. Figure 5.4 (a) shows the schematic of the 

PCB top layer. Figure 5.4 (b) depicts the fabricated PCB, test chip and the mounted probe. 
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ICNWTSBX_V.1 ICNWTSBX_V.1

The tester provides reliable channels for data flow to the test chip and also reduces the impact 

of environmental noise. The tester is controlled with a PC terminal using Linux-based smart 

test software provided by Verigy [83]. This feature facilitates the functional test and provides 

an automated platform for mounting a side channel attack. A brief explanation of pre-test 

software setup is given. 

 

 

 

 

 

 
 

Figure 5.4 a) Schematic of the top layer of PCB b) Fabricated PCB, test chip and mounted 

probe for measuring the voltage variation in supply branch 

 
b) Pre-test software setup:  

The pre-test software setup involves generating several files to characterize the test chip and 

tune the tester parameters. The following files should be created. 

Pin configuration needs to be defined. This step determines the paths between the chip and 

the tester for receiving the DATA_IN (plaintext), KEY (key), CLK (CLK_IN), Vdd, GND and 

sending DATA_OUT (SBOX output) signals. Defining the pins involves assigning the tester 

channels to the pins, characterizing the power supply operating range and setting the pin 

groups. Pin numbers (extracted from the bonding diagram and the packaging data sheet) are 

assigned to the tester channels. The pin identification numbers are also set. Defining the 

levels for the pins is included in this step. The pins are characterized as I/O or supply with 
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the assigned communication voltages and low and high termination currents. Appendix D 

provides the detail of the pin configuration. 

Timing setup is the next step of the pre-test preparation. Timing setup defines the duration 

of the input signals, clocking event and output sampling.  

Vector file is the last pre-test procedure which provides the testing pattern. The test pattern is 

first generated for verifying the functionality of the test chip. The patters are modified later 

for using in the side channel attack. The general format for the vector patterns in the Agilent 

93000 SOC tester is shown in Figure 5.5. In the first column, clock signal (CLK_IN) is 

introduced to the test chip. The DATA_IN, KEY and corresponding DATA_OUT vectors are 

represented in 8-bit binary format in each clock cycle. The DATA_OUT vectors are 

“SubByte” results of DATA_IN which is XORed with the KEY prior to entering to the 

SBOX. Note that the output data corresponding to the input and key values arrives with one 

clock cycle delay; therefore, the output values at the first line of the test vector are considered 

as “don’t care” (xxxxxxxxxxx). In the first row in Figure 5.5 the “0xff” is XORed with 

“0x88” and final result (after “SubByte” operation) appears at the DATA_OUT column of 

the second row. The SBOX table and complete test vector for a given key is available in 

Appendix E. The vectors are created in an ASCII file and converted to the format (binL) that 

is readable by the tester. In the remainder of the thesis DATA_IN, KEY and DATA_OUT 

signals are referred to as plaintext, key and SBOX output. Pre-test setup is completed once 

all pin configuration, level, timing and vector files are appropriately created. 

 
CLK_IN    DATA_IN       KEY   DATA_OUT 

 
1  11111111(0xff)  10001000(0x88) xxxxxxxx(0x00) 
1  11111110(0xfe)  10001000(0x88) 11110101(0xf5) 
1  11111101(0xfd)  10001000(0x88) 00111000(0x38) 
.   .   .   . 
.   .   .   . 
1  00000001(0x01)  10001000(0x88) 10001011(0x83) 
 

Figure 5.5 Test vectors 
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5.3.2 Test Execution 

In order to reduce the possible debug time, it is highly recommended to run a continuity test.  

Continuity test is a DC test function that checks the connectivity of the pins to the tester 

channels. It is likely that pins of the DUT are not properly contacted by the sockets. This 

causes failure in the testing. The continuity test verifies all the contacts from the channel to 

the pads (internal connection of the test chip). Failure in the continuity test is reported by the 

pin number. By physically locating the pin and inspecting the device, one can make sure that 

pins are properly connected and secured within the socket holes.  

Functional test: Once all the above steps are completed, the functional test can be executed 

by applying the vector patterns to the test chip. The Agilent 93000 SOC tester provides 

several options for functional test. For general functionality purpose the DC characterization 

test is used. Three options are available in the test control window. The vector patterns can be 

applied “only one time”, “endlessly” or “run until fails”. Depending on the sequence and 

purpose of testing, one of these options can be used. The “only one time” is used at the 

beginning of the testing procedure. If the test result fails, “only one time” test identifies the 

error via error map function. This shows whether or not the failure is caused by a particular 

vector or the failure occurs as a result of the incorrect timing setup (e.g. clock event or 

sampling time). For evaluating the performance and reliability, the “endless” and “run until 

fails” options can also be used.  

The test results are reported in several format, e.g. per pin and per vector. There are several 

debugging tools available in Verigy showing the error map and the timing diagram. These 

options report the failures with the details and possible root causes. Further information on 

test options can be found in [80]. Figure 5.6 and Figure 5.7 are the snapshots of the test 

results windows of the CMOS and CBL cores, respectively. The red window is the data 

manager consul, where the pre-test preparations steps are defined. The blue window 

represents the timing diagram showing the DATA_IN, KEY and corresponding output 

DATA_OUT. The yellow window is the test control, where the testing option is selected. 
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The result of the functional test is reported per pin and appears in the gray window. Test 

result on each output pin is identified by ‘P’ and ‘F’ indicating “Passed” or “Failed”, 

respectively. When the functionality of the cores is verified it is time to evaluate the leakage 

of side channel information. The procedure of security assessment is explained in the next 

section. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 Test report of the CMOS core 
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Figure 5.7 Test report of the CBL core 

 

5.4 Evaluation of Side Channel Information Leakage 

In order to evaluate the resistance provided by the proposed countermeasure, a side channel 

attack using real power consumption is launched on the test chip. This requires that first the 

traces corresponding to the power consumption are extracted. The collected traces are then 

analyzed using the method previously described in Chapter 2. These two steps are referred to 

as data capturing and data analysis. Data capturing is described. 

5.4.1 Data Capturing 

Performing a side channel analysis, one should apply a series of input data to the test chip. 

The input includes 8-bit plaintext and key and the output is 8-bit ciphertext. The plaintext and 
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corresponding ciphertext are changed every clock cycle whereas the key remains constant in 

an entire experiment. In each clock cycle one complete operation shown in Figure 5.8 is 

executed. The power traces are recorded in every clock cycle. The data capturing procedure 

has a direct influence on the accuracy and efficiency of the attack, thus, it is imperative to 

select the proper tools and employ appropriate measurement techniques.   

 

 

 

 

Figure 5.8 Operation of the test chip in one clock cycle 

 
Data capturing tools: The measurement tools and experimental setup are shown in Figure 

5.9. The current variation of supply in each core is measured in the form of voltage variation 

across a resistor which is between the Vdd pins of the test chip (VDD_CMOS/CBL and 

VDD_CMOS/CBL_REG in Figure 5.1) and the supply to the PCB. The measurements are 

performed separately on each core. The amount of supply voltage to the test chip is 1.8V.  

The measurement setup includes a 20Ω series resistor, high-frequency probes, and a digital 

sampling oscilloscope.  

 

 
 

 

 

 

Figure 5.9 Experimental setup for launching a side channel attack  
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a) High-frequency Differential Probe: Voltage variation across the measurement resistor is 

sensed and captured by a PS7506 differential probe from Tektronix. The high performance 

solder tip with a long reach is used for the measurements. The specification of PS7506 

differential probe is available in Appendix F. 

b) Digital Oscilloscope: The traces obtained in this experiment are captured by the Tektronix 

TDS7704B oscilloscope [84] (Appendix G). The “FastFrame” feature is used for capturing 

the traces. “FastFrame” operates as follow. 

Every time the clock triggers, a new plaintext enters into the chip and one frame is captured. 

Thus, for n clock cycles, the oscilloscope captures n frames. Each frame contains a waveform 

corresponding to the power variation of the core for one clock cycle. “Scale” and 

“Resolution” buttons of the scope are used for adjusting the time duration of the frame. 

Resolution is sacrificed if a long frame is captured. Therefore, in order to increase the 

accuracy only a portion of the waveform which carries the useful information is selected and 

captured. The number of data points in each frame is specified by the record length. Once the 

acquisition completes the captured frames are aligned and displayed in superposition format. 

Figure 5.10 shows the “FastFrame” screen. The light shadow (the top signal) shows the 

frames corresponding to the operation of 256 input plaintexts. The Ph_2 signal (the bottom 

signal) corresponding to 256 clock cycles is also captured. The last trace (256th) is shown in 

dark color superimposed on top of all the frames at the top and bottom of the scope plots. 

The acquired frames are recorded by the oscilloscope in the form of one data file (.dat). The 

data file is accompanied by a header file (hdr.) which can be used for splitting the frames to n 

traces during the data analysis.  

Further details on setting up the “FastFrame” data acquisition can be found in [81]. The 

duration of each frame is 25ns. There are 250 sample points in each frame (10GS/s sampling 

rate). The oscilloscope specification and the setup of the data acquisition are available in 

Appendix G. 
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Figure 5.10 “FastFrame” feature for signal acquisition 

 
Data capturing setup: In addition to employing measurement tools, some important issues 

with regards to setup for data capturing are explained. 

a) Trigger setup: a trigger signal is needed for notifying the oscilloscope to begin sampling. 

In our experiment the clock signal to the chip (channel 11513) is used as a trigger to the 

oscilloscope. Dummy elements are added to delay the Ph_1 and Ph_2 signals (See Section 

4.3.2) by approximately 2 ± 0.5ns. This intentional delay ensures that the sampling starts 

sufficiently earlier than the actual operation; hence, no data is lost during the sampling. 

Details on designing the delay element are given in Appendix H.  

b) Signal acquisition: Noise is an influential factor causing error in data analysis. Thus, 

noise reduction should be considered during data capturing. Assigning separate supply pins 

to the cores, registers, output buffers and pads reduces the impact of noise. Furthermore, 

averaging is used as a practical technique for reducing the noise. A brief explanation is given 

on how averaging is performed.  
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A string of data consisting of p different plaintexts is formed. The string is applied m times 

resulting p*m frames (Figure 5.11). The frames are averaged so that p averaged traces 

correspond to the p plaintexts are acquired. In our experimental setup 50 times is seen to be 

sufficient for averaging (m = 50). 

 

 CLK_IN      DATA_IN   KEY   DATA_OUT 
 

 1  11111111(0xff)  10001000(0x88) xxxxxxxxxxxxx 
 1  11111110(0xfe)  10001000(0x88) 11110101(0xf5) 
 1  11111101(0xfd)  10001000(0x88) 00111000(0x38) 
 .   .   .   . 
 .   .   .   . 
 1  00000010(0x02)  10001000(0x88)  01111100(0x7c) 
 1  00000001(0x01)  10001000(0x88) 10001011(0x83) 
 1  00000000(0x00)  10001000(0x88) 10100111(0xa7) 

 
 .   .   .   . 
 .   .   .   . 
 .   .   .   . 
 .   .   .   . 
 

 
 1  11111111(0xff)  10001000(0x88) xxxxxxxxxxxxx 
 1  11111110(0xfe)  10001000(0x88) 11110101(0xf5) 
 1  11111101(0xfd)  10001000(0x88) 00111000(0x38) 
 .   .   .   . 
 .   .   .   . 
 1  00000010(0x02)  10001000(0x88)  01111100(0x7c) 
 1  00000001(0x01)  10001000(0x88) 10001011(0x83) 
 1  00000000(0x00)  10001000(0x88) 10100111(0xa7) 

 

Figure 5.11 Test vector for averaging m times 

5.4.2 Data Analysis 

In order to analyze the data contained in the captured frames attacker needs to know where in 

the power traces the useful information is hidden. It is also important that attacker relate the 

power consumption to some characteristics of the useful information. The attack points and 

the proposed technique for enhancing the quality of data capturing are reviewed. 

a)  Attack points: As discussed in Section 4.3.2 data dependency of power consumption in 

both logic gates and registers can be exploited for extracting the key related information. If 

String 

containing 

p plaintext  

cycle 1 

String 

containing 

p plaintext 

cycle m 
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attackers distinguish the power consumption of the SBOX and the registers, they will be able 

to launch two separate side channel attacks. Each attack requires analysis and extraction of 

the power consumed by the combinational networks (SBOX) and the power consumed at the 

moment of time the SBOX output is sampled by the registers. The structure of the test chip 

allows analyzing the side channel information leaked by the SBOX as well as the registers. 

During one clock cycle the operation of the SBOX and registers can be tracked by the Ph_2 

and Ph_1 signals which are generated by the external clock. We use these two signals as 

references for setting up the capturing windows in “FastFrame” data acquisition. 

Attack to the SBOX (combinational logic): When Ph_2 is ‘1’; the plaintext sampled by 

input registers (slave stage) enters into the chip. “AddRoundKey” and “SubByte” operations 

are executed. The power variation during this time depends on the intermediate values 

processed by the logic gates of the SBOX. Thus, the extracted traces from the Vdd pins 

(VDD_CMOS/CBL in Figure 5.1) during this time (Ph_2 is ‘1’) can be exploited for 

attacking the SBOX.  

Attack to the registers (sequential logic): When Ph_1 is ‘1’ the results of the core operation 

are sampled by output registers (master stage). This means that the power trace extracted 

from the Vdd pins (VDD_CMOS/CBL_REG in Figure 5.1) for duration of this time (Ph_1 is 

‘1’) contain useful information that can be used for attacking the registers. Extra pins are 

assigned to monitor the Ph_1 and Ph_2 signals. Figure 5.12 shows the sampling duration for 

attacking the core and the registers. 

Figure 5.13 (a) is a snapshot from the oscilloscope screen which shows the operation of the 

CMOS SBOX for two clock cycles. The top yellow waveform (Channel 1) is a power trace 

of the CMOS SBOX. The light blue waveform is the Ph_2 signal (Channel 2). The dark blue 

waveform is the original clock signal. The power trace exhibits two significant peaks. 
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Figure 5.12 Sampling duration for attacking the SBOX and the registers 

 

These peaks occur when the input registers (slave stage) apply a plaintext into the CMOS 

SBOX. As mentioned earlier the trace is captured by the “FastFrame” in each clock cycle 

only for duration of the time that the Ph_2 signal is ‘1’ (the light blue waveform). The two 

minor peaks occur as a result of switching the Ph_1 signal (Ph_1 is absent in the snapshot). 

This portion of waveform is not sampled since the attack is being mounted on the SBOX. 

Figure 5.13 (b) shows the trace, the corresponding Ph_2 and the clock signals in the CBL 

SBOX. Similar setup is used for capturing the waveforms for attacking the CBL SBOX. 

Figure 5.14 (a) is a snapshot showing the trace corresponding to operation of the output 

registers in the CMOS core. The power trace is the yellow waveform at the top. The Ph_1 

signal is shown by light blue waveform. Two significant peaks occurring during Ph_1 is ‘1’ 

should be captured as they correspond to sampling of the SBOX output. “FastFrame” 

window is setup to capture the waveform for this duration. The other two peaks correspond 

to switching of Ph_2. These peaks are out of the sampling duration. Figure 5.14 (b) shows 

the same procedure for attacking CBL register (CBETR).  
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(a) 

(b) 

5.13 Traces of the SBOX a) CMOS b) CBL 
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Figure 5.14 Traces 
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(a) 

 

(b) 

Traces of the registers a) CMOS b) CBL 
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b) Enhanced data capturing method: According to the evaluation strategy discussed earlier 

in Section 2.4 the Hamming Distance (HD) model is chosen in this thesis for launching an 

attack. Using the HD model, the attacker should be able to compute the hamming weight 

differences between two consecutive SBOX outputs. This is a reasonable assumption in 

known and chosen plaintext attacks [21]. In order to obtain more precise values of power 

variation corresponding to the HD model an enhanced data capturing method using reference 

vector is introduced. The concept of a reference vector is explained. 

If a fixed plaintext is inserted between every of successive plaintexts, in every other clock 

cycle the power consumption will become almost equal. This provides a more precise 

reference point for power consumption. The following discussion explains how a reference 

vector can be chosen. 

A fixed plaintext can be chosen as a reference vector based on the SBOX property. In 

composite field implementation, SBOX will consume significantly less power for input 

“0x00” than all other input values [27]. This is due to the fact that input “0x00” causes 

multiplications by zero. Since the multipliers are the major sources of power consumption in 

SBOX, the total power consumption essentially is reduced. In order to provide “0x00” at the 

SBOX input, a plaintext equals the key should be applied to the core. The XOR result of 

plaintext and key applies “0x00” at the input, therefore, SBOX consumes minimum power. 

Since the output of SBOX corresponding to “0x00” is “0x63”, the hamming distance of the 

switching between successive traces is equal to the hamming weight of the XOR of “0x63” 

and upcoming SBOX output.  

Figure 5.15 shows the modified patterns which hold the minimum power consumption 

reference vector “0x88”. The reference vector is underlined. In a real scenario attackers may 

not have sufficient knowledge to apply the reference vectors. However, playing the designer 

role we are able to assign the reference vector by knowing the key.  
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The results in Section 5.5 show that the CMOS core is successfully attacked without 

applying the reference vectors. However, significant increases in correlation coefficients are 

seen as a result of applying minimum power consumption input signal as a reference vector. 

 
 

CLK_IN      DATA_IN   KEY   DATA_OUT 
 

  1  10001000(0x88)   10001000(0x88) xxxxxxxxxxxx 
1  11111111(0xff)  10001000(0x88) 01100011(0x63)  
1  10001000(0x88)   10001000(0x88) 11110101(0xf 5)                                                                                                                           
1  11111110(0xfe)  10001000(0x88) 01100011(0x63)  
1  10001000(0x88)   10001000(0x88) 00111000(0x38) 

  .   .   .   . 
  .   .   .   . 
 .   .   .   . 

   

Figure 5.15 Vector pattern composed of plaintext with reference “0x88” 

 
c) Correlation-based attack: The attack procedure is now reviewed. Test structure carries 

out the operation of “AddRoundKey” and “SubByte”. The intermediate result which is a 

function of the plaintext ( d ) and key ( K ) is defined as:  

 

f(d, k) = (SBOX (di XOR K))         (5.1) 

 
The maximum value of the averaged traces is used for representing the power variation of 

SBOX and registers corresponding to each plaintext [22]. These values form a N x 1 matrix 

which is referred to as the measurement matrix, where N is the number of averaged traces. 

The values representing the power consumption of the reference vectors are excluded from 

the measurements matrix since they will be removed from the traces. 

In order to calculate the hypothetical model of the intermediate values, the HD of two 

successive values of the SBOX output is exploited. The HD model maps the transitions that 

occur at the output as a result of operation f (di, k). Matrix V of size N x 256 is generated 

which is referred to as estimation matrix. Matrix V represents HD of the SBOX outputs for N 

n cycles 
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plaintexts. This model is generated for all the possible keys (28). The final step is to compare 

the estimation (V) and the measurements (T) matrixes. The correlation coefficient shown by 

Equation 2.14 is calculated between the elements of the V and T matrixes. The correct key 

guess is the one that results in the highest correlation coefficient between the vector of the 

model and the vector of measurements. Figure 5.16 illustrates the execution of the attacks 

including the data capturing, processing and analyzing. 

 
 

Inputs  
Plaintext (PT i ), i = (1, …, N) 

PTi  = (pt i8 , pt i7 , … pt i1 )  

KEY ( Kj ) , j ∈(0, …, 255) 
    Kj  = (k j8 , k j7 , … k j1 )  

Reference Vector (RV), for given K j ; 
   RVj  = (rv 8, rv 7, …, rv 1)  
DATA_IN String (D n)for given K j ,  

Dn = (RV j , PT 1, RV j , ..., RV j , PT n);  n = (1, …, N)  
Outputs 
Power of SBOX corresponding to Kj  and PTi ;  P SBOXij   
Power of Registers corresponding to Kj  and  PT i ; PReg.ij  

 
Apply  D n for a given Kj  using RVj ;  

 
Acquire  traces corresponding for PTi  & given Kj ; PSBOXij & P Reg.ij    

Run for M times, (M times of averaging) 
Average pointwise   
Remove traces of of RV j , PTRVj  
Extract  traces corresponding to all PTi  & given Kj ;  PSBOXij & P Reg.ij  

 
Find  PSBOXij  =  Max.of PSBOXij  for duration of [Ph_2]; 
Find  PREG.ij  =  Max. of  P Reg.ij for duration of  [Ph_1]; 

 
Create Power model  P Mi[0, 255]  = HamDis (SBOX(PT i  XOR K [0, 255] )),  

for all i = (1, …, n) 
Compute  Correlation (P Mi[0, 255] , P SBOXij ) for all i; Func. cost  SBOXi  
Compute  Correlation (P Mi[0, 255] , P REG.ij ) for all i; Func. cost  REG.i   

If  Func. Cost  SBOXi is max. for given K j , 
then Kj  to be verified as correct key, 
if  “not” increase N and go to Acquire  

If  Func. Cost  REG.i  is max. for given K j ; 
then Kj  to be verified as correct key,  
if  “not” increase N and go to Acquire 

 
 

Figure 5.16 The procedure of correlation-based attack 
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5.5 Side Channel Leakage Assessment: Result Review 

The resistance against side channel information leakage is quantified with the number of 

averaged traces (corresponding to number of the plaintext) to disclose the key. This measure 

is defined as “the cross-over point between the correlation coefficient of the correct key and 

the maximum correlation coefficient of all the wrong keys guesses [52]. For further 

clarification the term “averaged trace” is defined as: the minimum number of plaintexts that 

reveals the correct key, e.g. for a key which requires 100 plaintexts to be revealed, 100 

averaged traces are used with 50 times averaging over a fixed plaintext, thus, in total 5000 

frames need to be captured. The results of the attack on the CMOS core will be presented 

next. 

5.5.1  Result Review: CMOS Core 

The correlation-based side channel attack on CMOS core was successful at two points: the 

output of the SBOX and the output of the registers. Figure 5.17 (a) and (b) depict the number 

of the averaged traces required for revealing 256 key from the SBOX and registers, 

respectively.  

 

 

 

 

 

 

 

 

(a)              (b) 

Figure 5.17 Number of averaged traces for all the keys extracted from the CMOS a) SBOX 

b) registers 
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In our experimental setup maximum 497 averaged traces are required to reveal key “0xda” 

from the CMOS SBOX. In attacking the registers, maximum 258 averaged traces are needed 

for extracting key “0x93”. The result of the attack on CMOS block is shown in Figure 5.18 

(a). The point where the black line crosses the gray line depicts the number of averaged 

traces required for revealing the key “0xda”. The correlation values for all keys are also 

shown in Figure 5.18 (b).  

 

 

 

 

 

 

 

 

 
(a) (b) 

 

 

 

Similar results are presented in Figure 5.19 (a) and (b) for the CMOS registers. The result 

shows that key “0x93” is revealed by averaged 258 traces. 

The correlation coefficients corresponding to the correct keys are ranged from 0.0175 to 

0.0336. This range changes from 0.0299 to 0.0535 when the reference vector is applied. 

Although the increasing scaling is not same for all the keys, correlation coefficients are seen 

to increase at least by 1.5 times. This shows the effectiveness of the proposed enhanced data 

capturing method. The values of correlation coefficient are shown in Figure 5.20 (a) and (b). 

Figure 5.18 Correlation a) vs number of averaged traces b) for all key in the CMOS SBOX 

(key “0xda”) 
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Nearly similar trend is observed in correlation corresponding to the correct key from the 

CMOS registers.  

 

 

 

 

 

 

 

 
 

(a) (b) 

 

 

 

 

 

 

 

 

 

(a) (b) 

 

 

 

Figure 5.19 Correlation a) vs number of averaged traces b) for all key in the CMOS 

registers (key “0x93”) 

Figure 5.20 Correlations for all the keys extracted from the CMOS SBOX a) without b) 

with applying reference vector 
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Figure 5.21 (a) and (b) show the correlation for key extracted from the CMOS registers. The 

increase in correlation coefficient in registers is about 1.35 times. The large resolution in 

correlation values caused by the reference vector facilitates distinguishing the correct key 

with more certainty. Unlike the improved correlation coefficients, only slight changes are 

observed in the number of averaged traces for key disclosure. 

 

5.5.2 Result Review: CBL Core 

The attack is launched on CBL core using the reference vector. Correlation coefficients are 

reduced drastically and no significant correlation is observed for any of the correct key in the 

CBL SBOX and the registers. The number of averaged traces is increased from 500 to 5000. 

There is still no significant correlation seen leading to the correct key. Figure 5.22 (a) plots 

the correlation for the correct key in the CBL SBOX. The correlation values for all the 

possible keys are also shown in Figure 5.22 (b). No significant result is obtained from the 

attack on CBL register (CBETR). The results of attack on CBL registers are shown in Figure 

5.23 (a) and (b).  

Figure 5.21 Correlations for all the keys extracted from the CMOS registers a) without b) 

with applying reference vector  
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Figure 5.22 Correlation a) vs number of averaged traces b) for all key in the CBL SBOX (key 

“0xda”) 

Figure 5.23 Correlation a) vs number of averaged traces b) for all key in the CBL registers (key 

“0x93”) 
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(a)        (b) 

 
 
 

The correlation coefficients for all the keys are acquired for the CBL SBOX and the registers. 

The results in Figure 5.24 (a) and (b) illustrate significant reduction in amplitude of 

correlation coefficients. Nonetheless, none of the coefficients led to significant differences 

between the correct and incorrect keys. The result of the attack on the CBL core 

demonstrates that the proposed method develops as a resistance against power attacks. Table 

5.1 summarizes the implementation results. 

 

 

 

 

 

 

 

 

 

Figure 5.24 Correlations for all the keys in CBL a) SBOX b) register 
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Table 5.1 Comparison results between CMOS and CBL core 

Characteristic Standard CMOS Proposed design 

Area (mm2) 0.0987 0.0861 
Maximum Frequency* (MHz) 150 120 
Power Consumption (mW) 0.156§ 72.56† 
No. of averaged traces for keys extraction ‡ SBOX Register SBOX Register 
Min 120 90 - - 
Mean 310 170 - - 
Max 500 258 - - 

 

** Duty factor of clock = 50% (1.8V) 
§ Dynamic power consumption (at 1.8V, 20MHz) 
† Static power consumption 
‡ The number of averaged traces to disclose the key varies for each correct key. This is also observed that same 
key may be obtained with slightly different number of traces if the experiment is repeated. 
 

Figure 5.25 shows the area estimation of the CMOS and CBL cores on the actual die. It is 

seen that area consumption of the protected core is 15% less than that of the unprotected 

core. A comparative analysis with the previous side channel resistant logics will be 

presented. 

 

Figure 5.25 The photograph of die shows the CBL and CMOS core 
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5.5.3 Comparison: The Proposed Countermeasure and i ts Counterparts 

The proposed approach in this thesis is compared with other logic level countermeasures. 

Table 5.2 shows a list of side channel resistant logic styles: SABL [52], WDDL [53], MCML 

[59], DyCML [60], and RSL [86]. The power and area are reported based on different 

hardware architectures, simulation conditions and in two cases in different implementation 

technology. An assessment based on these figures may not project a proper quantitative 

scheme for highlighting the advantages and drawbacks of the different logics. Therefore, in 

addition to considering the data in Table 5.2 a qualitative analysis is also delivered. 

 

Table 5.2 Characteristics of the side channel resistant logics 

Logic* Design**  
Tech 
(nm) 

Power (mW)***  Area (mm2) Scheme‡ 

SABL [52] DES 180 2.81 - DDL 
WDDL [53] AES† 180 200 2.45 COM. 
MCML [59] Kasumi 180 20.7 - DL 
DyCML [60] Khazad 130 0.027 - DDL 

RSL [86] AES 130 - 30K§ RSL 
Proposed  AES 180 72.56 0.0861 SSL 

 
* Results reported for SABL, MCML and DyCML are simulation-based whereas the result of WDDL, RSL and 
the proposed countermeasure are based on the fabrication results. 
**  Subset of different encryption algorithms are implemented, [52]: 92 XOR + 86 NAND, [59] MCML: 77 XOR 
+ 105 NAND, and [60] (DyCML 754 transistors). 
***  Power in dynamic architectures is reported at different frequencies. 
‡ DDL, COM., DL and SSL are referred to as Dynamic Differential Logic, Combinational, Dynamic Logic and 
Static Single-ended Logic, respectively. 
† An entire AES with no detail of an individual SBOX is reported in [53]. 
§ Area in [86] is reported by gate counts. The results in [86] show that RSL requires two times more gates than 
standard CMOS. 
 

Performance: The side channel resistant logics listed in Table 5.2 are dynamic (except for 

MCML and RSL) whereas the proposed countermeasure is static; as a result, the performance 

comparison mainly highlights the characteristics between the dynamic and static logics. The 

operation of the dynamic logic gates is executed in precharge and evaluation cycles which 
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are controlled by the clock signal. The maximum clock rates in dynamic-based structures are 

typically halved due to their two-phase operation. This is a common property among the  

dynamic logics particularly those are proposed for side channel security e.g. SABL, WDDL, 

and DyCML. 

MCML, RSL and CBL are static logics which operate on one-phase cycle. The maximum 

operation frequency in static-based architecture is determined by delay of the critical path. 

Thus, the circuit structure of the gates should be compared for performance evaluation. 

MCML is low swing logic with average 20% less delay compared to CBL [59]. RSL gates 

experience approximately 50% performance degradation comparing to the standard CMOS 

gates [86]. Analysis in Section 4.3.2 shows the performance is also degraded by 10%-15% in 

CBL gates compared to standard CMOS. It can been seen that performance penalty is 

expected between 20% and 50%, once standard CMOS logic is replaced by static-based side 

channel resistant logics. The performance overhead can be reduced by using MCML; 

however, noise margin is decreased as a result of low swing outputs. 

Power Consumption: Dynamic logics such as SABL, DyCML, and RSL do not consume 

static power. The major source of the power consumption in these logics is switching activity 

which is determined by the clock frequency. In order to lower the power consumption in 

dynamic logic, a common approach is to reduce the swing at the output of the logic gates 

[17]. DyCML [60] is an example of side channel resistant logic with low swing output. 

DyCML consumes significantly low power; however, in practice a level-shifter should be 

added to the output to preserve the logic level in an acceptable swing for the cascaded blocks. 

The impact of adding a buffer at the output of low swing logic such as DyCML needs to be 

investigated from both the power consumption and the side channel perspectives. This issue 

has not been addressed in [60]. 

The proposed countermeasure operates with no clock signal at the gate level. Despite 

elimination of the clocking networks, the total power consumption of CBL is significantly 

high. The characteristic featuring the suitability of CBL for side channel security also limits 
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the use of this logic family for power-constrained applications. A potential approach for 

reducing the power consumption in CBL was introduced in Section 4.3.2. An alternative 

trade-off scheme was presented for less power consumption. The functionality of CBL under 

low supply voltage is examined. The CBL SBOX operates with supply voltage as low as 

1.2V at the cost of 40% performance degradation. 

Area: Since different hardware architectures are compared in Table 5.2, the area comparison 

based on those figures may not be fair. For more realistic area evaluation SABL, DyCML, 

MCML and RSL gates are used in design of a same SBOX architecture. Table 5.3 presents 

the total transistor counts and total area consumption by the transistors. The results are 

normalized based on the area consumption of CBL gates. The area of the clocking networks 

and routing are excluded in this comparison and minimum transistor size is used in the 

design of the gates. The results in Table 5.3 show the superiority of CBL in both transistor 

counts and area consumption. MCML also consumes significantly less area compared to 

DyCML and SABL. Between dynamic logic DyCML uses less area than SABL. RSL also 

involves with several times area consuming.  

 

Table 5.3 Area comparisons of side channel resistant logics in 180nm CMOS technology 

(normalized based on CBL) 

 SABL DyCML MCML RSL 
 No. of Trans.* Area No. of Trans. Area No. of Trans. Area No. of Trans. Area 

SBOX 1.9 6.74 1.8 6.30 1.2 4.26 4.3 15.2 
 

* Transistors  

 

Information Leakage: We use the number of averaged traces for quantifying the side 

channel resistant (Sections 5.5.1 and 5.5.2). The comparison presented in those sections is 

believed to be fair since the empirical results are attained from the same architecture using 

similar data capturing and analysis methods. However, not all the logics in Table 5.2 use the 

same measure for assessing side channel resistance. The effectiveness of WDDL is examined 
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in complete AES implementation and results are presented by one million measurements. 

The side channel resistant of RSL is also quantified by number of measurements for key 

disclosure. The results in [86] show that significant resistance is achieved by RSL. Over one 

million measurements are performed in [86] for attacking 16-bit key. In comparison, we 

attack on an 8-bit key on a similar architecture which is fabricated in 180nm CMOS 

technology. In total approximately 260,000 (maximum number of traces x number of 

averaging) measurements are performed. The results of the attacks can be interpreted for 

comparison between CBL and RSL. The attack in [86] is launched on a longer key in 130nm 

CMOS process. This attack without doubt requires more effort due to the reduced signal-to-

noise ratio of the power traces which is caused by the technology scaling. 

Complexity-driven Constraint: Although, the design complexity is not always simple to 

measure, a brief discussion is presented to qualitatively compare the side channel resistant 

logics. As described in Section 3.4.2 if differential logic style is used for protection against 

side channel information leakage, balancing the loads at the differential outputs is a condition 

that must be met. A complex layout methodology is required in order to satisfy this 

condition. Balancing the load adds more complexity to design and implementation of SABL 

and DyCML. The proposed countermeasure is a single-ended logic, thus, it is free from such 

constraint.  In same context, MCML and CBL can also be compared. Unlike MCML 

requiring Vbias for operation, CBL does not require any extra circuitry for supplying the 

current at the cell level, thus, CBL can be designed and implemented with less complexity. 

Unlike the CBL which is custom-designed logic, RSL can be implemented using standard 

CMOS cells. From a design effort perspective RSL is the most efficient approach.  
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5.6 Summary and Conclusion 

Implementation of the proposed countermeasure is reviewed in this chapter. The test chip 

architecture, including protected and unprotected cores, was detailed in addition to discussion 

of pre-test hardware and software preparations. The experimental setup and measurement 

tools were also introduced.  The testing procedures were described in two parts: functionality 

and side channel assessment. Utilizing the tester features, both cores were verified to be 

100% functional. Power consumptions of the CMOS SBOX and registers were exploited for 

mounting correlation-based attacks on the unprotected core. The vulnerability of the CMOS 

core was quantified by the number of averaged traces for key disclosure. It was seen that 

CMOS SBOX and registers revealed the keys within a maximum of 497 and 258 averaged 

traces, respectively. Increasing the number of averaged traces to over 5000 still did not result 

in key revelation from the protected core. Comparative analysis was presented to rank the 

side channel resistant logics based on: performance, power, area, information leakage and 

complexity. The superiority of the proposed countermeasure in transistor count and total area 

was evident. Therefore, a cost effective approach for side channel security of area-

constrained crypto core was provided. The condition of balancing the load at the differential 

outputs was not required by the proposed countermeasure, thus, side channel resistance is 

achieved with less complexity compared to previous approaches.  
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Chapter 6 

Side Channel Information and Technology 

6.1 Introduction 

In order to fulfill standards such as FIPS 140-3 [87] the security issues associated with 

deployment of advanced technology must be investigated. Side channel attack is known as 

one of the most severe breaches threatening the security of cryptosystems. Thus, it becomes 

crucial to explore the impact of technology on side channel vulnerability of cryptosystems.  

This chapter reviews the trends of power consumption in CMOS technology from a side 

channel perspective. The simulation-based results are used to quantify the leakage of 

information via leakage power consumption. The trend of side channel threat posed by 

leakage power consumption is drawn over several technology nodes. The role of different 

leakage generating mechanisms is considered in this investigation. The effectiveness of 

leakage control technique is examined for side channel security.  

6.2 Power Consumption: Technology Trends 

Over the past 25 years, the transistor minimum features size has scaled down from 6µm to 

the present sub-90nm. As indicated in Figure 6.1 the number of transistors per chip has been 

quadrupling every three to four years, while the speed of microprocessors has been more than 

doubling, increasing 2MHz for the Intel 8080 in the mid-1970’s to well over 10GHz for 

present leading-edge chips [88]. Meanwhile the supply voltage (Vdd ) must also continue to 
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scale down at the historic rate of 30% per technology generation in order to minimize power 

dissipation and power delivery costs in future high-performance microprocessor designs. To 

maintain the speed enhancement per technology generation, the transistor threshold voltage 

(Vth) and the gate oxide thickness (tox) of the transistor must be scaled with the supply 

voltage. However, reducing Vth causes transistor leakage current (I leakage) to increase 

exponentially (Equation 2.3). The leakage mechanisms were already discussed in detail in 

Section 2.2.1. A brief review of the root causes of the dominant leakage mechanisms is 

given. 

 

 

 

 

 

 

Figure 6.1 Historical trend of LSI’s [89] 

6.2.1 Leakage Power Elements 

Contribution of the major leakage mechanisms in NMOS transistor with the technology 

advances is shown in Figure 6.2. Subthreshold, gate and Band-to-Band Tunneling (BTBT) 

are identified as the dominant leakage power mechanisms and they increase significantly as 

feature size decreases. 

As discussed Vth reduction (scaling) results in exponential increase in subthreshold current 

due to the Short Channel effects (SCEs) such as Drain-Induced Barrier Lowering (DIBL). To 

control SCE and to increase the transistor drive strength, oxide thickness must also become 

thinner in each technology. Aggressive scaling of tox results in a high direct-tunneling current 

through the transistor’s gate insulator.  
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Figure 6.2 Major leakage mechanisms at different technology nodes in an NMOS 

transistor [18] 

 
The scaled transistors require higher substrate doping densities to reduce the width of the 

depletion region for the source- and drain-substrate junctions. A narrower depletion region 

width helps to control the short-channel effect. The high doping density near the source- and 

drain-substrate junctions causes a significantly large BTBT current through these junctions 

under high reveres bias. It is evident that increasing the total leakage power consumption is 

due to the increase of all these three leakage mechanisms [18]. 

6.3 Leakage Power:  An Emerging Side Channel 

As the technology scales down the leakage current becomes a more effective element of 

static power consumption [89]. The data dependency characteristic of leakage power is also 

increased [90]. This increasing trend has drawn attention to leakage power which will likely 

offer a new power related side channel threat. By far only a handful of researchers 

investigated the side channel role of leakage power consumption [91][92].  

In order to provide insight into security of next generation of cryptosystems we present a 

series of simulation-based analysis to:  

• quantify the vulnerability of nanoscale cryptosystems to leakage of information via 

leakage power consumption 
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• highlight the role of leakage generation mechanisms in leakage of information 

• examine the effectiveness of the circuit-based leakage power reduction technique for 

side channel security. 

The detail of the simulation setup and review of the results are presented next. 

6.3.1 Side Channel Trends of Leakage Power Consumpt ion 

The test bench previously introduced in Section 5.2.1 is used for evaluating the side channel 

information leakage via leakage power. The test bench is designed using gates from standard 

CMOS libraries in 180, 90 and 45nm technology nodes5. The simulation-based side channel 

attack exploiting leakage power consumption is launched. The number of traces to reveal the 

key from the test bench is used for comparison. In order to extract the leakage power 

corresponding to data processed by the core, a plaintext is applied to the test bench and the 

supply current is sampled after an intentional delay. The intentional delay is slightly longer 

than the propagation delay of the core. This means that switching is complete and data at the 

output is stable. By maintaining the clock signal “on” and holding same data at the input no 

more switching occurs; however, the power is still consumed by the core. The current drawn 

from the supply after switching represents the leakage power corresponding to the present 

input vector. DC value of the supply current after switching represents the leakage power 

consumption. The simulation environment in HSPICE is setup to record the value of the 

leakage current for every plaintext. The procedure described in Section 2.3.3 is followed for 

mounting a side channel attack on the SBOX output. The correlation analysis is performed. 

By changing the plaintext (N times) and maintaining the key a matrix of 1N ×  is generated 

containing the values of the leakage power for  N plaintexts and the key. This matrix plays a 

role of the measurement in a real side channel attack, thus, it is denoted measurement matrix. 

A hypothetical model required for the attack is formed based on the HD of the SBOX 

                                                 
5 CMOS Technologies are used in this thesis including 180nm which is provided by TSMC, 90nm and 45nm 
are made available by STMicroelectronics. In design of the test structure standard cells with minimum transistor 
size are used. 
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outputs. The hypothetical model is obtained for all the possible keys (28). The result is an N x 

256 matrix which is referred to as the estimation matrix. The final step is to compare the one-

column measurement matrix with the 256-column estimation matrix for  N numbers of 

inputs. Applying the correlation coefficient test, one expects to see the highest correlation 

only for the correct key. As the number of inputs increases the correlation coefficient which 

is calculated between the hypothetical model and the measurement reduces. Only for the 

correct key the correlation coefficient should remain high. Side channel information leakage 

is quantified using the number of traces (corresponding to the number of plaintexts) for 

disclosing the key. The results of simulation-based attack using leakage power consumption 

will be discussed next. 

6.3.2 Result Review 

The results of the attack on test bench designed in 180nm CMOS process are shown. Figure 

6.3 (a) and (b) illustrate the correlation versus the number of traces and correlation for all the 

key guesses, respectively.  

 

 

 

 

 

 

 

 
 

(a)         (b) 

Figure 6.3 Result of the simulated attack on the test bench in 180nm CMOS process 

a) correlation vs number of traces b) correlations corresponding to all keys 
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No significant correlation is seen for the test bench in 180nm CMOS technology. The results 

appear the same for all the key values and no keys can be extracted from the leakage power. 

Hence, exploiting leakage power consumption did not lead to leakage of useful information. 

This is due to the fact that in 180nm CMOS process the leakage power consumption is 

significantly low. A similar attack is launched on the test bench which is designed in 90nm 

CMOS process. Unlike the previous attack, exploiting leakage power consumption provides 

sufficient information for extracting the keys. Some keys are revealed with less number of 

traces; however, some keys require more traces. Figure 6.4 shows the number of traces for 

extracting different keys. Keys are extracted by minimum 290 and maximum 400 traces. In 

particular, key “0x1c” requires 365 traces to be revealed. This key is used as a benchmark 

since its number of traces is almost in the mid range of total number of trace. 

 

 

 

 

 

 

 

 

 
Figure 6.4  Number of traces for extracting different keys in 90nm CMOS process 
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(a)        (b) 

Figure 6.5 Result of the simulated attack on the test bench in 90nm CMOS process a) number 

of traces for extracting the correct key “0x1c” b) correlations corresponding to all keys 

 
Figure 6.5 (a) shows the results of correlation analysis for key equals “0x1c”. Correlation 

coefficients for all keys are also shown in Figure 6.5 (b). Attack on the test bench designed in 

45nm CMOS process is also successful. All keys are extracted. The number of traces for 

extracting different keys varies between 200 and 250 (Figure 6.6).  

 

 

 

 

 

 

 

Figure 6.6 Number of traces for extracting different keys in 45nm CMOS process 
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(a)        (b) 

Figure 6.7 Result of the simulated attack on the test bench in 45nm CMOS process a) number 

of traces for extracting the correct key “0xb5” b) correlations corresponding to all keys 

 
The results of the correlation analysis in Figure 6.7 (a) show that 225 traces are sufficient for 

revealing the correct key “0xb5”. The correlation coefficients of all the keys are shown in 

Figure 6.7 (b). Although the number of traces is not scaled with same rate, it was seen that 

the overall number of traces for key revelation reduces approximately 35% when the 

technology node changes from 90 to 45nm CMOS process. According to the number of 

traces, one can conclude that the resistance of crypto core to side channel information 

leakage reduces as the transistor feature size scales down. Hence, the increasing trend of 

leakage power is also highly correlated with security vulnerability of cryptosystems. 

Further Observation: The results from the previous simulations are obtained at the 

temperature of 25C (Figure 6.4 and Figure 6.6). In reality, the attack is performed when the 

temperature is expected higher than 25C (during the core operation). For further analysis we 

repeat our previous simulation at 125C. The test benches are attacked using the same set of 

plaintexts and the results are reviewed. 
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(a)      (b) 

Figure 6.8 Number of traces for all the keys in a) 90nm b) 45nm CMOS process at 125C 

 

 

 

 

 

 

 

 
(a)                       (b) 

Figure 6.9 Result of the simulated attack on the test bench at 125C for extracting a) “0x1c” in 

90nm and b) “0xb5” in 45nm CMOS process 

 
No significant results are obtained from the attack on the test bench in 180nm CMOS 

process. The attacks on test benches in 90 and 45nm are successful. The results illustrated in  

Figure 6.8 (a) and (b) show that the number of traces for revealing the keys is reduced. The 

keys are revealed by 260-310 traces in 90nm CMOS process. The number of traces for 
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extracting the key from the test bench designed in 45nm CMOS process is changed to 115-

220. Figure 6.9 (a) shows that key “0x1c” can be extracted by 280 traces. Figure 6.9 (b) 

depicts that in 45nm CMOS process key “0xb5” is revealed by 155 traces. Approximately 

20% reduction is seen in the number of traces in 90nm CMOS process as a result of 100C 

increase in temperature. The reduction is seen 5% more in 45nm CMOS process. It is evident 

that temperature rising causes more reduction in number of traces. Therefore, the second 

simulation-based attack led to the two following results: 

• the core becomes more vulnerable at higher temperature 

• impact of temperature on side channel vulnerability is more pronounced for advanced 

technology.  

The first outcome can be explained by revisiting the mechanisms involved in generating 

leakage power. It is shown in [18] that the different leakage components have different 

temperature dependence. Subthreshold current is governed by the carrier diffusion that 

increases with temperature. Tunneling probability of an electron through potential barrier 

does not directly depend on temperature; however, increasing temperature reduces silicon’s 

band gap, which is the barrier height for tunneling in BTBT leakage current. In general, the 

gate and the junction BTBT leakage are less sensitive to temperature variations. Figure 6.10 

shows the effect of temperature variation on leakage component of 25nm NMOS transistor 

[18]. 

 

 

 
 
 

 

 

Figure 6.10 Leakage mechanisms and temperature dependency in an NMOS transistor [18] 
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It is seen that subthreshold leakage increases exponentially with temperature, the junction 

BTBT increases slowly and the gate leakage are almost independent of temperature variation. 

From the brief review of leakage mechanisms and the simulation-based results of the attack 

at higher temperature, one can conclude that the increased vulnerability to leakage of side 

channel information is due to temperature dependency of the subthreshold leakage 

mechanism. This is an important observation as it highlights the role of subthreshold leakage 

in a real attack.  

The second outcome can also be explained by reviewing the trend of leakage power versus 

the technology nodes (Figure 6.2). The total leakage power consumption increases with 

technology scaling e.g. total leakage power in 45nm is greater than 90nm CMOS process. 

The upward trend also applies directly to the portion of the leakage that is generated by 

subthreshold mechanism [18]. This means that subthreshold leakage in 45nm becomes 

greater than in 90nm CMOS process. By taking the temperature dependency of the 

subthreshold leakage into consideration, it can be understood why the core becomes more 

vulnerable to information leakage at a higher temperature when the implementation 

technology is scaled down. 

The above discussion addresses the increasing role of leakage power from a side channel 

perspective. Further analysis also highlights the importance of subthreshold leakage in side 

channel information leakage. In order to explore the potential methods for increasing the 

resistance against information leakage via leakage power consumption, the effectiveness of 

leakage reduction technique will be examined next. 

6.4 Side Channel Aware Leakage Control 

The feasibility of exploiting leakage power consumption in a side channel attack was 

discussed in the previous section. The reduced number of traces for key revelation shows that 

the threat posed by leakage power consumption increases in the advanced technologies. 

Previous research proposals have presented several techniques for controlling the 
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mechanisms generating the leakage power [18]. The issue raised now is whether or not these 

techniques are suitable for developing side channel security. In response to this question, we 

analyze the side channel resistance of the test bench in the presence of a popular leakage 

power reduction technique. The quantifiable results are then compared to the simulation 

results in Section 6.3.2, where no leakage reduction techniques are employed.  

6.4.1 Leakage Power Control and Side Channel Effect  

The importance of subthreshold leakage in real attack scenario is shown in Section 6.3.2. 

Therefore, we focus on subthreshold leakage reduction technique. The main approach for 

reducing the subthreshold leakage is based on increasing the transistor threshold voltage (Vth) 

(Equation 2.3). In practice, the threshold voltage is determined during the fabrication process. 

Transistors can be designed to operate with dual or multiple threshold voltages. The 

threshold voltage can also be increased at the circuit level by using forced stack effect or 

reverse body bias. Studies in [18] showed that increasing Vth during the fabrication of 

transistor is the most efficient technique for lowering leakage power. Thus, instead of using 

extra circuitry for increasing Vth, e.g. stacking effect and reverse body bias we assign Vth by 

using the low Vth and high Vth transistor models available. Transistors are then divided to 

operate either at low or high Vth. The effectiveness of leakage power control technique on 

developing resistances against side channel attack is evaluated as follows. 

The test structure in Section 6.3.1 was designed using low Vth transistors. All low Vth NMOS 

and PMOS transistors in the test bench are now replaced with high Vth transistors6 and the 

test bench is redesigned in 90nm and 45nm CMOS processes. All the other characteristics of 

the test structure remain the same. A similar procedure was followed as described in Section 

6.3.1 for obtaining the number of trace to disclose the key. The results are presented as 

follows.  
                                                 
6 The HSPICE models are available for high threshold and low threshold voltage. The high and low threshold 
voltages are -0.55, -0.48, -0.46, -0.42, and 0.55, 0.48, 0.45, 0.42V are recorded for PMOS and NMOS 
transistors at 90 and 45nm CMOS processes. 
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Figure 6.11 (a) shows the results of simulation-based attack on test bench in 90nm CMOS 

process. It is seen that retrieving the keys requires between 950 and 1300 traces.  

 

 

 

 

 

 

 

 

(a)          (b) 

Figure 6.11 Number of traces for all the keys in a) 90nm b) 45nm CMOS process 

 

 

 

 

 

 

 

 

 
 

   (a)        (b) 

Figure 6.12 Result of the simulated attack on the test bench for extracting a) “0x1c” in 90nm 

and b) “0xb5” in 45nm CMOS process 
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Figure 6.11 (b) shows that in 45nm design between 550 and 710 traces can reveal the keys. 

The number of traces versus correlation coefficient of the particular keys (“0x1c” and “0xb5” 

in 90nm and 45nm CMOS processes) are illustrated in Figure 6.12 (a) and (b). 

Approximately, 1150 and 655 traces can reveal the same key from the high Vth test bench 

designed in 90nm and 45nm CMOS processes. The results are compared with those in Figure 

6.5 (a) and Figure 6.7 (a) of the previous test benches which were designed using only low 

Vth transistors. Increases of 3.2 and 2.9 times are observed in number of traces in 90nm and 

45nm CMOS processes, respectively. Although the keys are still revealed, the increased 

number of traces shows that deployment of high Vth transistors provides resistance against 

side channel information leakage in both technology nodes. 

Further Observation: To investigate the impact of temperature variation, the above 

simulation-based attack is repeated at 125C. The number of traces for extracting the key is 

determined and shown in Figure 6.13 (a) and (b). Revealing the keys requires 710-1100 and 

450-600 traces in 90nm and 45nm CMOS processes, respectively. Keys “0x1c” and “0xb5” 

are retrieved using 980 and 510 traces (Figure 6.14). A comparison between the results of the 

simulations in 25C and 125C shows that 20% and 17% reduction can be seen in the number of 

traces in test bench in 90nm and 45nm CMOS processes. This equals approximately to the 

reduction caused by the temperature increase in our attack in Section 6.3.2, where low Vth 

transistors are used.  
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(a)      (b) 

Figure 6.13 Number of traces for all the keys in a) 90nm b) 45nm CMOS process at 125C 

 
 

 

                 

             

  

 
                 

 
 

(a)      (b) 

Figure 6.14 Result of the simulated attack on the test bench at 125C for extracting a) “0x1c” 

in 90nm and b) “0xb5” in 45nm CMOS process 
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6.5 Summary and Conclusion 

This chapter investigated the evolution of the side channel threat with technology. The 

number of traces for key extraction is seen to reduce by 35% from 90nm to 45nm CMOS 

technology nodes. It was shown that leakage power plays an increasingly important role from 

side channel perspective as we venture into the nanoscale technology era. It was also 

observed an increase of 100C in temperature reduces the number of traces (for key extraction) 

by 20% and 25% in 90nm and 45nm CMOS processes, respectively. This result highlighted 

the importance of subthreshold leakage mechanism in side channel information leakage. For 

the first time, the effectiveness of a circuit-based leakage reduction technique was examined 

for the side channel application. Security analysis of a crypto core showed that assigning 

high Vth transistor increased the resistance against information leakage. Although not 

completely removing the side channel threat, high Vth transistor assignment can be employed 

as a part of a hybrid solution in design of a side channel resistant crypto core. This analysis 

provided insight into design and implementation of side channel aware cryptosystem in 

nanoscale technologies where the role of leakage power is expected to be significantly 

important.  
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Chapter 7 

Discussions and Conclusions 

7.1 Summary of Work 

This thesis studies the leakage of side channel information and introduces a new logic level 

countermeasure. The novel use of a constant power consuming single-ended logic style is 

proposed for designing side channel resistant logic gates. A similar concept is employed in 

the design and implementation of an edge triggered register. The proposed approach provides 

resistance against leakage of side channel information for both combinational and sequential 

logic networks. A test chip is fabricated in 180nm CMOS technology for validation of the 

results. The test chip includes a protected crypto core which is designed using the proposed 

countermeasure and an unprotected core (CMOS) with no countermeasure. An attack 

mounted on the CMOS core leads to revelation of the key. The attack of the core protected 

by the proposed countermeasure did not reveal the keys even with the enhanced analysis 

technique. The results show that the proposed countermeasure provides a cost effective 

security mechanism for area-constrained applications. Single-ended (non-differential) output 

logic cells and registers also reduce the overall design complexity. 

Furthermore, this thesis analyzes the impact of technology scaling on the side channel 

vulnerability of cryptosystems. The role of leakage power consumption from a side channel 

perspective is investigated. The leakage of information via leakage power consumption is 

quantified by the number of traces for key extraction. It is shown that the upward trend of the 
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leakage power correlates with leakage of information. The impact of temperature is included 

in this investigation identifying the important role of subthreshold leakage. In response to 

growing concerns about the potential security threat posed by leakage power, the 

effectiveness of a circuit-based leakage reduction technique is examined. To the best of our 

knowledge, this investigation for the first time provides an analysis of information leakage in 

the presence of high Vth transistor. Although, the attack is successful, some resistance 

provided by the high threshold voltage (Vth) is evident. These results can be used for 

developing a side channel aware leakage strategy for future resistant Cryptosystem-on-Chip. 

7.2 Comparison to Previous Research 

The major differences between the countermeasure proposed in this thesis and the previous 

research are discussed in this section.  

• The countermeasures presented in [52][53][54][55][56][57][60] are based on dynamic 

logic. Thus, a significant area overhead associated with the clocking network at the 

gate level is seen. The static logics for side channel security are introduced in 

[59][86]. The logic discussed in [59] needs differential outputs. The overhead of 

having double the number of transistors still exists in the logic introduced in [59]. The 

technique discussed in [86] uses a random logic scheme. A considerable amount of 

area is also required for implementation of the random switching circuitry. The 

proposed countermeasure is the lowest area consuming logic among both dynamic 

and static side channel resistant logics (See Table 5.3).  

• The threat of side channel leakage at the logic level in 

[52][53][54][55][56][57][59][60] is tackled by using a differential logic style. Unlike 

differential logic, the proposed approach suggests employing a single-ended logic 

style, thus, no specific layout methodology is required (See Section 5.5.3). 

• Research in [59][86] provides side channel resistance only for combinational 

networks using a static logic scheme; however, the proposed approach presents a side 
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channel resistance register element in addition to resistant logic cells. Thus, side 

channel resistance is provided for both elements of combinational and sequential 

networks (See Section 4.3.2).  

• Previous research in [59] uses a current mode logic which requires a bias voltage 

(Vbias ) at the gate level. This thesis proposes a countermeasure which is also current 

mode logic, but it uses a PMOS load as a current source. Therefore, it does not 

require an extra circuitry for Vbias. This reduces the design complexity as well as the 

area consumption (See Section 5.5.3). 

• The impact of process variation on side channel analysis is lacking in previous 

research. Unlike [52][53][54][55][56][57][60][86], this research includes the effect of 

process variation  on analysis of the proposed countermeasure (See Section 4.4.2).  

• Evaluation of the side channel resistance in [52][59][60] is based on simulation 

results. Unlike those, this research provides analysis based on empirical results. Using 

the real power traces validates the concept of the reference vector insertion which is 

also introduced in this research (See Section 5.5).  

• This research, unlike [91][92], considers the impact of temperature on information 

leakage via leakage power. Thus, for the first time, the role of subthreshold leakage 

mechanism in leakage of side channel information is highlighted (See Section 6.3). 

• To the best of our knowledge, the proposed research is the first to explore the 

effectiveness of high threshold voltage transistors for developing side channel 

resistance (See Section 6.4). 
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7.3 Summary of Contributions 

This section outlines the contributions of this thesis to the field of side channel security.  

 
a) Contribution to developing resistance against information leakage via power 

consumption (silicon-based result) 

 
• Achieving resistance against power-based side channel attacks for combinational 

networks by the novel use of Current Balanced Logic (CBL) in the design and 

implementation of basic logic cells. 

• Providing side channel resistance for sequential networks by designing Current 

Balanced Edge Triggered Registers (CBETRs). 

• Proposing a cost effective approach which provides side channel resistance for area-

constrained applications. 

• Introducing a logic level side channel countermeasure with reduced complexity. 

• Investigating the impact of process variation on side channel information leakage of 

the proposed countermeasure. 

• Validating the effectiveness of the proposed countermeasure using empirical results. 

 
b) Contribution to evaluating information leakage (designer perspective) 

 
• Introducing an enhanced evaluation technique, a known-value reference vector, for 

analyzing the side channel information. 

• Verifying the effectiveness of using the minimum power consuming vector as a 

reference (using real power measurement). 

 
c) Contribution to future technology trends in side channel analysis (simulation-based 

results) 
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• Examining the impact of technology scaling on information leakage via leakage 

power consumption and quantifying the vulnerability of the next generation of 

cryptosystems to side channel information leakage. 

• Emulating the real attack scenario by considering the impact of temperature variation 

and addressing the increasing role of subthreshold leakage mechanism. 

• Investigating the effectiveness of the high threshold transistor assignment in 

providing side channel resistance. 

7.4 Future Direction and Solution Extensions 

Important future research directions emerging from this thesis can be divided into two areas: 

the analysis of side channel information and the synthesis of side channel countermeasures. 

 
Analysis of side channel information and potential strategies  

 
• Enhanced model for side channel information leakage: Leakage of side channel 

information has been modeled based on signal-to-noise ratio. The effects of parasitics 

and crosstalk noise associated with pads and packaging can also be added to the 

current model. The enhanced model will not only provide a realistic evaluation of the 

side channel threat but also assist to characterize the leakage of information via a 

more complex side channel such as electromagnetic emission. 

• Advanced Electrical Design Automation (EDA) tools for side channel evaluation: 

New metrics can be defined and added to the current simulation tool. The predefined 

metrics will be used to evaluate the side channel vulnerability at the design time. 

Design optimization for side channel resistance will also be feasible if such metrics 

are available. Thus, the side channel evaluation will be integrated into advanced EDA 

tools. 

• Empirical analysis on side channel vulnerability of nanoscale cryptosystems: The 

viability of exploiting leakage power consumption in a side channel attack needs to 
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be empirically proven. Providing a detailed analysis of side channel leakage will also 

address the practical issues involved in data capturing and data analysis. This will 

provide a realistic image of the future side channel threat. 

 

Synthesis of side channel countermeasure and potential strategies 

• Power/area efficient side channel countermeasure: More effort is still needed for 

developing power efficient side channel countermeasures for area-constrained 

application. Providing a side channel resistant methodology for sensitive applications 

with a limited source of power consumption such as hand held devices is still an open 

issue. The challenge increases more when extra constrains such as performance and 

area are added to the trade-off model. 

• Effective countermeasure for cryptosystems in nanoscale: Design and 

implementation of countermeasures for thwarting the threat of leakage-based side 

channel attack are necessary. Techniques can range from circuit level 

countermeasures to architectural level countermeasures. 
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Appendix A 

 

Basic Logic Cells 

The library of basic logics is shown in Figure A.1 (CMOS) and Figure A.2 (CBL). Table A.1 shows 

the transistor dimensions and total area. The high threshold transistor (M2) is used in design of CBL 

gates (Vth = 0.6). 

 

 

 

 

 

Figure A.1 CMOS) inverter b) NAND c) XOR gate  

 

 

 

 

 

Figure A.2 CBL) inverter b) NAND c) XOR gate  

 

Table A.1 Transistor dimensions and total area of logic gates 

 Inverter NAND XOR 

 CMOS CBL CMOS CBL CMOS CBL 

M1 (W/L) 8 3 8 3.5 8 3.5 

M2 (W/L) 3 0.5 8 0.7 8 0.7 

M3 (W/L) - 2.5 6 5 8 2.5 

M4 (W/L) - - 6 5 8 2.5 

M5 (W/L) - - - - 6 2.5 

M6 (W/L) - - - - 6 2.5 

M7 (W/L) - - - - 6 - 

M8 (W/L) - - - - 6 - 

Total Area (μm
2
) 14.28 25.56 53.2 43.62 96.56 77.24 
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Appendix B 

 

Substitution Box (SBOX) 

The SubByte transformation is computed by taking the multiplicative inverse in )F(2G 8 followed 

by an affine transformation. The Affine Transformation can be represented in matrix form and it is 

shown below [27]. 

  )b(AT is an Affine Transformation while the vector bis the multiplicative inverse of the input byte 

from the state array (Figure B.1). It is observed that “SubByte” involves a multiplicative inversion 

operation. Multiplicative inverse module can be implemented by using look-up table or 

computational-based circuits. A common side channel aware strategy is to design and implement 

computational-based circuits by using secure logic style. The multiplicative inverse computation is 

described and then affine transformation will follow to complete the review of the test structure.  
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Figure B.1 Affine Function 

 

The individual bits in a byte representing a )F(2G 8 element can be viewed as coefficient to each 

power term in the )F(2G 8 polynomial, e.g.  2} 10001011{ is representing the polynomial 

1ppp 37 +++ in )F(2G 8 . Any arbitrary polynomial can be represented as b ax + , given an 

irreducible polynomial of BAxx2 ++ . Thus, elements in )F(2G 8  may be represented as   ax+ b

where  a is the most significant nibble while b is the least significant nibble. Therefore, the 

multiplicative inverse can be computed using the equation below.  
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122221 )babABa)(aAb(x)babABa(a)bax -1-- ++++++=+(    (B.1) 

The irreducible polynomial that is selected is λxx 2 ++ . Since  1A = and  λB = , then the 

Equation 4.23 is simplified to the form as shown below: 

12121 ))cb(cλb)(ab(x))ba(bλa(a)bax --- ++++++=+(    (B.2) 

Equation (A.2) indicates that there are multiply, addition, squaring and multiplication inversion in 

)F(2G 4 operations in Galois Field. Each of these operators can be transformed into individual 

blocks when constructing the circuit for computing the multiplicative inverse.  

a) Isomorphic Mapping  

The multiplicative inverse computation can be performed by decomposing the more complex 

)F(2G 8 to lower order fields of )F(2G 1 , )F(2G 2  and ))F(2G 22 . In order to accomplish the 

above, the following irreducible polynomials are used: 

λxx :))F(2G)))F(2G 

φxx :)F(2G))F(2G 

1xx :F(2)G)F(2G 

222222

2222

22

++→
++→

++→
 

where 2}10{φ = and 2}1100{λ = . 

Computation of the multiplicative inverse in composite fields cannot be directly applied to an element 

which is based on )F(2G 8 . The element has to be mapped to its composite field representation via 

an isomorphic function,δ . Likewise, after performing the multiplicative inversion, the result will 

also have to be mapped back from its composite field representation to its equivalent in  )2 GF( 8

via inverse isomorphic function 1-δ . Both δ and 1-δ can be represented as an 88×  matrix. Let abe 

the elements in )F(2G 8 , then the isomorphic mappings and its inverse can be written as  × aδ and 

aδ 1- × , which is a case of matrix multiplication as shown in Figure A. 2 where 7a is the most 

significant bit and 0a is the least significant bit. 
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Figure B.2 Isomorphic functions 

 

The matrix multiplication can be translated to logical XOR operation.  
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Figure B. 3 Xor representation of isomorphic functions 

 

b) Composite Field Arithmetic Operations 

As previously mentioned any arbitrary polynomial can be represented by   ax+ b where a is upper 

half term andb is the lower half term. Therefore, a binary number in Galois Field a can be split to

La +  xaH , e.g. if 2}1010{a = , it can be represented as 22 {10} x10}{ + , where  a H is 210}{  and

 a L is 210}{ .  a H and  a L can be further decomposed to  }0x+ {}1 { 22 and  }0x+ {}1 { 22 , 
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respectively. The decomposing is executed by using irreducible polynomial introduced earlier. The 

logical equations for addition, squaring, multiplication and inversion can be derived.  

Addition  in )F(2G 4 can be translated to simple XOR operation. 

Squaring in  )F(2G 4 for a , an element in )F(2G 4  represented by binary number

}a ,a ,a ,a{ 0123 , is 2ak =  with representation of }k ,k ,k ,k{ 0123  

013012123233 a  a  ak  ,a  ak  ,a  ak  ,ak ⊕⊕=⊕=⊕==  

Multiplication  with constant  }1100{λ 2= in  )F(2G 4 for a , an element in )F(2G 4  represented 

by binary number }a ,a ,a ,a{ 0123 , is λak =  with representation of }k ,k ,k ,k{ 0123  

203101232023 ak  ,ak  ,a  a  a  ak  ,a  ak ==⊕⊕⊕=⊕=  

Multiplication in  )F(2G 4  for a and b , two elements in )F(2G 4  represented by binary number

  }, aa, , aa{

LH a

01

a

23 321321
and }, bb, , bb{

LH b

01

b

23 321321
  , is abk =  with representation of }k ,k ,k ,k{ 

LH k

01

k

23 321321
 

LLHHHLLHHHLH3 baλbax)bababa(kxkk ++++=+=  

Multiplication in  )F(2G 2  for a and b , two elements in )F(2G 2  represented by binary number

}a ,a { 01 and }b ,b{ 01  , is abk =  with representation of }k ,k { 01  

001100110111 ba  bak  ,baba  bak ⊕=⊕⊕=  

Multiplication  with constant 2}10{φ =  in  )F(2G 2 for a , an element in )F(2G 2  represented by 

binary number }a ,a{ 01 , is φak =  with representation of }k ,k { 01  

10011 ak  ,a  ak =⊕=  

Multiplication inverse  in  )F(2G 4 for a , an element in )F(2G 4  represented by binary number

}a ,a ,a ,a{ 0123 , is -1a  with representation of }a ,a ,a ,a{ -1
0

-1
1

-1
2

-1
3
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Appendix C 

Agilent SOC 93000 Tester 

 

Digital Specification  

No. of Digital Channel 480 

Max. Serial Data Rate 500 Mbits/s @ 3Vpp 

64 Channel – Data rate    1GHz clock@ 3 Vpp 

416 Channel – Data rate    330 Mbits/s@ 3 Vpp 

 

AC Performance  

Min. Pulse width 

 

1ns@ 3Vpp 

0.8ns@ 3Vpp 

 

DC Performance  

Level Range 

Level Resolution 

Level Accuracy 

 

Impedance 

Source Impedance 

 

Programmable Load 

Current (Ioh, Iol) 

Current Resolution 

Current Accuracy 

Max. Vector Memory 

Edge Placement Accuracy 

 

Device Power Supplies 

2DPS board with 4 channel each 

Max. Current per Channel 

 

-2 V to 6.5 V 

2.5mV 

+-10mV 

 

 

50 Ohm +- 2.5 Ohm 

 

 

0 to 35 mA 

12.5uA 

75 uA 1% of max (Ioh, Iol) 

16 Million vectors/pin 

+-100 ps 
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Appendix D 

 

Pin Configuration (ICFWSBX) 

Bonding Diagram Pin # (PGA69A) Tester Channel Pin ID 

1-4 C1 10310 DATA_OUT_4_CMOS 

2-5 D2 10311 DATA_OUT_3_CMOS 

3-6 D1 10312 DATA_OUT_2_CMOS 

4-7 E2 10313 DATA_OUT_1_CMOS 

5-8 E1 10314 DATA_OUT_8_CBL 

6-9 F2 10315 DATA_OUT_7_CBL 

7-10 F1 10702 DATA_OUT_6_CBL 

8-11 G2 10704 DATA_OUT_5_CBL 

9-12 G1 10703 DATA_OUT_4_CBL 

10-13 H2 10706 DATA_OUT_3_CBL 

11-14 H1 10705 DATA_OUT_2_CBL 

12-15 J2 10708 DATA_OUT_1_CBL 

13-16 J1 10707 VDD_CMOS_REG_OUT 

14-22 K4 10713 VSS_CBL 

15-31 L8 11103 VDD_CBL 

16-32 K9 11107 VDD_BUFFER 

17-33 L9 11105 VDD_PAD 

18-34 L10 11106 VSS_CMOS_REG_OUT 

19-35 K10 10909 KEY_1 

20-36 K11 11108 KEY_2 

21-37 J10 11109 KEY_3 

22-38 J11 11110 KEY_4 

23-39 H10 11111 KEY_5 

24-40 H11 11112 KEY_6 

25-41 G10 11113 KEY_7 

26-42 G11 11114 KEY_8 

27-43 F10 11502 DATA_IN_1 

28-44 F11 11115 DATA_IN_2 

29-45 E10 11504 DATA_IN_3 

30-46 E11 11503 DATA_IN_4 

31-47 D10 11506 DATA_IN_5 
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32-53 A10 11510 DATA_IN_6 

33-54 B9 11511 DATA_IN_7 

34-55 A9 11512 DATA_IN_8 

35-56 B8 11513 CLK_IN 

36-57 A8 11514 VSS_BUFFER 

37-59 A7 11516 VSS_CMOS 

38-60 B6 11316 VDD_CMOS 

39-61 A6 10101 VDD_CBL_REG 

40-62 B5 10302 DATA_OUT_8_CMOS 

41-63 A5 10301 DATA_OUT_7_CMOS 

42-64 B4 10304 DATA_OUT_6_CMOS 

43-65 A4 10303 DATA_OUT_5_CMOS 

44-66 C3 11517 SEL CORE 

45-67 D4 11518 VSS_CBL_REG 



 

 

141 

 

Appendix E 

SubByte Transformation 

 

The SBOX used in the SubByte transformation in AES. Figure A. 4 shows the Substitution 

values for the byte xy (in hexadecimal format). 

 

 

 

 

 

 

 

 

 

 

Figure E. 1 AES SBOX Table 

 

Functional Test Pattern 

Clock  Data_In Key  Data_Out 

1  11111111 10001000 00000000 
1  11111110 10001000 00010100 
1  11111101 10001000 11111001 
1  11111100 10001000 00100111 
1  11111011 10001000 10001100 
1  11111010 10001000 11010001 
1  11111001 10001000 11110100 
1  11111000 10001000 10011000 
1  11110111 10001000 11010101 
1  11110110 10001000 11011101 
1  11110101 10001000 11001111 
1  11110100 10001000 01110101 
1  11110011 10001000 01001101 
1  11110010 10001000 10111000 
1  11110001 10001000 00011010 
1  11110000 10001000 11010000 
1  11101111 10001000 01001110 
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1  11101110 10001000 01110001 
1  11101101 10001000 11001100 
1  11101100 10001000 00100100 
1  11101011 10001000 11101111 
1  11101010 10001000 00101101 
1  11101001 10001000 01011010 
1  11101000 10001000 00100010 
1  11100111 10001000 11110110 
1  11100110 10001000 01000010 
1  11100101 10001000 00011100 
1  11100100 10001000 01110010 
1  11100011 10001000 10100000 
1  11100010 10001000 01101111 
1  11100001 10001000 10001101 
1  11100000 10001000 00001001 
1  11011111 10001000 11100010 
1  11011110 10001000 11100001 
1  11011101 10001000 01000000 
1  11011100 10001000 00110101 
1  11011011 10001000 10100111 
1  11011010 10001000 00101110 
1  11011001 10001000 01101011 
1  11011000 10001000 01111110 
1  11010111 10001000 11100110 
1  11010110 10001000 10110100 
1  11010101 10001000 01011011 
1  11010100 10001000 00101111 
1  11010011 10001000 00000001 
1  11010010 10001000 11101010 
1  11010001 10001000 01111101 
1  11010000 10001000 00011101 
1  11001111 10001000 01000101 
1  11001110 10001000 00011001 
1  11001101 10001000 01010101 
1  11001100 10001000 01011100 
1  11001011 10001000 11001001 
1  11001010 10001000 10100100 
1  11001001 10001000 00110100 
1  11001000 10001000 11001000 
1  11000111 10001000 11101110 
1  11000110 10001000 10010001 
1  11000101 10001000 00000010 
1  11000100 10001000 11101100 
1  11000011 10001000 11000100 
1  11000010 10001000 10101101 
1  11000001 10001000 00000000 
1  11000000 10001000 11110010 
1  10111111 10001000 10010011 
1  10111110 10001000 01110011 
1  10111101 10001000 00001010 
1  10111100 10001000 10001001 
1  10111011 10001000 10001110 
1  10111010 10001000 11010010 
1  10111001 10001000 10010100 
1  10111000 10001000 00100110 
1  10110111 10001000 01111111 
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1  10110110 10001000 00001101 
1  10110101 10001000 00001000 
1  10110100 10001000 10100110 
1  10110011 10001000 11010111 
1  10110010 10001000 01100001 
1  10110001 10001000 01010010 
1  10110000 10001000 01111011 
1  10101111 10001000 00111001 
1  10101110 10001000 10010110 
1  10101101 10001000 11000010 
1  10101100 10001000 10010010 
1  10101011 10001000 01101100 
1  10101010 10001000 00111000 
1  10101001 10001000 11011000 
1  10101000 10001000 11111010 
1  10100111 10001000 01001111 
1  10100110 10001000 11111101 
1  10100101 10001000 01001001 
1  10100100 10001000 10110001 
1  10100011 10001000 00011000 
1  10100010 10001000 00010010 
1  10100001 10001000 00000100 
1  10100000 10001000 01000100 
1  10011111 10001000 01011111 
1  10011110 10001000 11011001 
1  10011101 10001000 10100010 
1  10011100 10001000 01000011 
1  10011011 10001000 00101100 
1  10011010 10001000 00010111 
1  10011001 10001000 01001010 
1  10011000 10001000 00100011 
1  10010111 10001000 00001100 
1  10010110 10001000 10000010 
1  10010101 10001000 00111101 
1  10010100 10001000 00110110 
1  10010011 10001000 11100000 
1  10010010 10001000 10000110 
1  10010001 10001000 01010110 
1  10010000 10001000 01100010 
1  10001111 10001000 10110101 
1  10001110 10001000 10000111 
1  10001101 10001000 00001011 
1  10001100 10001000 00000111 
1  10001011 10001000 11101101 
1  10001010 10001000 01011101 
1  10001001 10001000 10010000 
1  10001000 10001000 10110011 
1  10000111 10001000 11000110 
1  10000110 10001000 00110001 
1  10000101 10001000 10001010 
1  10000100 10001000 11100111 
1  10000011 10001000 00100000 
1  10000010 10001000 00001110 
1  10000001 10001000 11001010 
1  10000000 10001000 00000110 
1  01111111 10001000 01010011 
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1  01111110 10001000 11111011 
1  01111101 10001000 00010101 
1  01111100 10001000 10011110 
1  01111011 10001000 10101000 
1  01111010 10001000 01010001 
1  01111001 10001000 00100001 
1  01111000 10001000 11001110 
1  01110111 10001000 01101110 
1  01110110 10001000 01101000 
1  01110101 10001000 01001011 
1  01110100 10001000 00010000 
1  01110011 10001000 10101110 
1  01110010 10001000 01111001 
1  01110001 10001000 11110011 
1  01110000 10001000 11011011 
1  01101111 10001000 00000011 
1  01101110 10001000 00101001 
1  01101101 10001000 10100001 
1  01101100 10001000 00111010 
1  01101011 10001000 00110011 
1  01101010 10001000 01100011 
1  01101001 10001000 00000101 
1  01101000 10001000 11101000 
1  01100111 10001000 10100011 
1  01100110 10001000 00010110 
1  01100101 10001000 10101111 
1  01100100 10001000 10010101 
1  01100011 10001000 01011001 
1  01100010 10001000 01110000 
1  01100001 10001000 11011010 
1  01100000 10001000 00010001 
1  01011111 10001000 00001111 
1  01011110 10001000 10010111 
1  01011101 10001000 11111110 
1  01011100 10001000 01000110 
1  01011011 10001000 10001111 
1  01011010 10001000 11111000 
1  01011001 10001000 11001101 
1  01011000 10001000 10111100 
1  01010111 10001000 11010100 
1  01010110 10001000 11110000 
1  01010101 10001000 10000100 
1  01010100 10001000 01010111 
1  01010011 10001000 01000111 
1  01010010 10001000 10011101 
1  01010001 10001000 10011100 
1  01010000 10001000 00101000 
1  01001111 10001000 11110101 
1  01001110 10001000 10001000 
1  01001101 10001000 11011111 
1  01001100 10001000 01010000 
1  01001011 10001000 01100100 
1  01001010 10001000 01110100 
1  01001001 10001000 01011000 
1  01001000 10001000 00110111 
1  01000111 10001000 11011110 
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1  01000110 10001000 10110000 
1  01000101 10001000 11110001 
1  01000100 10001000 10110110 
1  01000011 10001000 11000011 
1  01000010 10001000 01100110 
1  01000001 10001000 10110111 
1  01000000 10001000 00111011 
1  00111111 10001000 10111110 
1  00111110 10001000 10101010 
1  00111101 10001000 00111100 
1  00111100 10001000 10101001 
1  00111011 10001000 00011011 
1  00111010 10001000 10111101 
1  00111001 10001000 11000111 
1  00111000 10001000 10111010 
1  00110111 10001000 11101011 
1  00110110 10001000 00101010 
1  00110101 10001000 11111111 
1  00110100 10001000 01011110 
1  00110011 10001000 11100100 
1  00110010 10001000 10000011 
1  00110001 10001000 00110010 
1  00110000 10001000 01111010 
1  00101111 10001000 00100101 
1  00101110 10001000 10011011 
1  00101101 10001000 10110010 
1  00101100 10001000 01100000 
1  00101011 10001000 11111100 
1  00101010 10001000 01100101 
1  00101001 10001000 01110110 
1  00101000 10001000 11101001 
1  00100111 10001000 11010110 
1  00100110 10001000 01100111 
1  00100101 10001000 10111001 
1  00100100 10001000 10101011 
1  00100011 10001000 01101001 
1  00100010 10001000 11000000 
1  00100001 10001000 00111111 
1  00100000 10001000 01010100 
1  00011111 10001000 10011010 
1  00011110 10001000 01111000 
1  00011101 10001000 10011111 
1  00011100 10001000 11001011 
1  00011011 10001000 10100101 
1  00011010 10001000 10111011 
1  00011001 10001000 11011100 
1  00011000 10001000 11100101 
1  00010111 10001000 10000000 
1  00010110 10001000 10011001 
1  00010101 10001000 01101101 
1  00010100 10001000 01101010 
1  00010011 10001000 01001000 
1  00010010 10001000 10101100 
1  00010001 10001000 11010011 
1  00010000 10001000 01110111 
1  00001111 10001000 00101011 
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1  00001110 10001000 00011111 
1  00001101 10001000 11110111 
1  00001100 10001000 01001100 
1  00001011 10001000 10111111 
1  00001010 10001000 00011110 
1  00001001 10001000 11000001 
1  00001000 10001000 00110000 
1  00000111 10001000 00111110 
1  00000110 10001000 10000101 
1  00000101 10001000 11000101 
1  00000100 10001000 00010011 
1  00000011 10001000 11100011 
1  00000010 10001000 01111100 
1  00000001 10001000 10001011 
1  00000000 10001000 10000001 
1  00000000 10001000 01000001
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Appendix F 

 

High Frequency Differential Probe 

Tektronix P7506  
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Appendix G 

 Digital Oscilloscope   

 

Tektronix  

TDS 7704B Oscilloscope  

7 GHz with 20 GS/s

Oscilloscope Setup  

Acquisition Mode HiRes/FastFrame 

Trigger Mode Positive Edge 

Record Length 250 

Duration of One Frame 25ns 

Frequency Span 5GHz 

Sampling Rate 10GSample/s 
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Appendix H 

 

Design and Implementation of Dummy Delay Chain 

A delay element is a circuit that produces an output waveform similar to its input waveform which is 

only delayed by a certain amount of time. Constant-delay element can be designed by using 

transmission gate or cascaded m series-connected PMOS and NMOS (when m = 1 the delay element 

is a typical CMOS inverter). Each delay element is suitable for different range of delays. 

Transmission gate-based is highly recommended for its area efficiency; however, the cascaded-based 

delay element is recognized for its high yield. Yield is defined as the percentage of total delay 

elements whose propagation delay falls within a certain delay cut-off. In the presence of parameter 

variations, delays are distributed over certain range. The distribution of delay can be evaluated by 

normalized variability, 3σ/µ, where σand µ  are the standard deviation and mean of measured delay 

respectively. The cut-off delay is defined between % 5±  and % 10± of the mean delay.  

In order to design an area efficient and robustness delay chain, the delay chains are designed and 

implemented by cascaded-based delay element. The design process of cascaded inverter-based delay 

elements is reviewed in the following. 

Cascaded inverter-based delay element: Design of inverter-based delay element depends on the 

time taken to (dis)charge the load capacitance. A reasonable delay approximation can be derived by 

using a typical inverter model. If average value of the charging current equals to the saturation current 

of a PMOS (Equation H.1): 

2

)VV(
k)PMOS(I

2

pthgs

pav

-
=        (H.1) 

 

where  = L/WCµk oxpp is gain factor ( pµ , oxC ,W and L are mobility, capacitance per unit and 

width and length of the PMOS device),gsV , pthV   are gate-source voltage and threshold voltage, 

respectively. Since thnthpdd V,VV         >  then )PMOS(I av can be approximated as: 
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Vin VoutVin VoutVin VoutVin Vout
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Using the )PMOS(I av , the propagation delay is expressed as [17]: 
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where pLHt  is propagation delays for low to high, pHLt  is propagation delay for high to low output 

transition, and  LC is the load capacitance. The above expression can be modified when the effect of 

a nonzero input rise pHLr tt >  on propagation delay is considered: 
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2
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Equation H.4 shows that the delay is proportional to gain factor )k( n,p and subsequently to 

 p)L/W( and n)L/W( . Therefore, by sizing the PMOS and NMOS devices approximate delay can 

be obtained. In order to obtain more delay per unit area and subsequently higher delay values each 

inverter can be replaced by multiple series-connected PMOS and NMOS devices in pull-down and 

pull-up networks, respectively. Figure H.1 shows the multiple-transistor cascaded inverter-based 

delay elements. Similar steps taken for sizing single inverter-based delay element can be followed for 

sizing the devices in multiple-transistor cascade inverters. 

 

 

 

 

 

 

 

 

Figure H.1 Delay element 


