
Topology-Awareness and

Re-optimization Mechanism for

Virtual Network Embedding

by

Nabeel Farooq Butt

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Mathematics

in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Nabeel Farooq Butt 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Nabeel Farooq Butt

ii

Abstract

Embedding of virtual network (VN) requests on top of a shared physical network

poses an intriguing combination of theoretical and practical challenges. Two major

problems with the state-of-the-art VN embedding algorithms are their indifference

to the underlying substrate topology and their lack of re-optimization mechanisms

for already embedded VN requests. We argue that topology-aware embedding

together with re-optimization mechanisms can improve the performance of the pre-

vious VN embedding algorithms in terms of acceptance ratio and load balancing.

The major contributions of this thesis are twofold: (1) we present a mechanism

to differentiate among resources based on their importance in the substrate topol-

ogy, and (2) we propose a set of algorithms for re-optimizing and re-embedding

initially-rejected VN requests after fixing their bottleneck requirements. Through

extensive simulations, we show that not only our techniques improve the acceptance

ratio, but they also provide the added benefit of balancing load better than previ-

ous proposals. The metrics we use to validate our techniques are improvement in

acceptance ratio, revenue-cost ratio, incurred cost, and distribution of utilization.

iii

Acknowledgements

I would like to thank Professor Raouf Boutaba for his guidance and support

during the preparation of this thesis and the research presented in it. I would also

like to acknowledge all other members of the Network Virtualization group with

whom I have a useful discussion.

iv

Dedication

This is dedicated to my family for their constant support and encouragement

during all my studies.

v

Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Problem Statement . 2

1.3 Objectives . 3

1.4 Contributions . 3

1.5 Thesis Organization . 4

2 Background 5

2.1 Network Virtualization Environment 5

2.1.1 History of Network Virtualization 6

2.1.2 Business Model & Roles . 7

2.1.3 Example of an NVE . 9

2.2 VN Embedding Problem . 10

2.2.1 Network Model . 11

2.3 Graph Theory Preliminaries . 14

2.3.1 Cut vertices and Cut edges: 14

2.3.2 Maximum Flow and Minimum Cut: 14

2.3.3 Multi-Commodity Flow Problem: 15

2.4 Terminology . 16

vi

3 Related Work 18

3.1 Static VN Embedding Approaches 18

3.1.1 Two Stage Solutions . 18

3.1.2 Single Stage Solutions . 19

3.1.3 Links Only Embedding . 20

3.2 Dynamic VN Re-optimization Approaches 20

3.2.1 Selective Reconfiguration . 21

3.2.2 Path Splitting & Migration 22

4 Topology Awareness and Re-optimization 24

4.1 Topology-Aware Embedding . 25

4.1.1 Critical Index . 25

4.1.2 Popularity Index . 28

4.1.3 Scaling Factor . 29

4.2 Re-optimizing Bottleneck Embeddings 30

4.2.1 Detecting Bottleneck Nodes and Links 33

4.2.2 Nodes & Links Selection and Placement 35

5 Evaluation 38

5.1 Experimental Setup and Performance Metrics 38

5.2 Evaluation Results . 39

5.2.1 Improvement in Acceptance Ratio 39

5.2.2 Revenue/Cost Ratio . 40

5.2.3 Acceptance Ratio vs Incurred Cost 40

5.2.4 Differentiating Resources . 41

5.2.5 Link and Node Utilization 43

6 Conclusions and Future Work 44

6.1 Contributions . 44

6.2 Limitations and Future Work . 45

vii

6.2.1 Stability Analysis . 45

6.2.2 Graph Isomorphic Re-optimization 45

6.2.3 Multi-Commodity Max-flow Min-cut Techniques 46

6.2.4 Distributed Topology-Aware VN embedding 46

6.3 Concluding Note . 47

APPENDICES 48

A Enumerating all cut nodes 49

B Enumerating all cut edges 51

References 51

viii

List of Tables

2.1 Description of Variables used in the thesis 17

ix

List of Figures

2.1 Virtual Network Environment . 8

2.2 VN Embedding Example: a VN request arrives 10

2.3 VN Embedding Example: VN request is mapped to the substrate

network . 12

4.1 Edge (g,d) is a bridge . 26

4.2 Bridges and cut-nodes introduced when removing (g,d) 26

4.3 Calculating Critical Index for a cut-node u 27

4.4 Calculating Popularity Index for a resource 28

4.5 Differentiation embedding with the help of SF 30

4.6 Unneccessarily refused VN link . 31

4.7 Relocating a virtual node of VN-1 to make room for virtual node U 31

4.8 Unneccessarily refused VN link . 32

4.9 Reassigning links to make room for virtual link 33

4.10 Reassigning virtual link VL-1 to make room for some other virtual

link . 34

5.1 Improvement in Acceptance Ratio for Different Algorithms 39

5.2 Revenue-Cost Ratio for Different Algorithms 40

5.3 Acceptance Ratio vs Incurred Cost 41

5.4 CDF of SFs of all links and nodes 42

5.5 Average link utilization . 42

5.6 Average node utilization . 43

A.1 Enumerating all the cut-nodes . 49

x

Chapter 1

Introduction

1.1 Introduction

Development in the design of the current Internet infrastructure has become stag-

nant over the last several years. Internet has come to a halt, in the sense that it

is almost impossible to introduce new technologies in hardware or software that

better realize the needs of the enormously growing user base. This problem is often

termed as the Internet Ossification problem[8]. Network virtualization is widely

considered a potential candidate to provide the foundation for the future Inter-

net architecture [19]. One major challenge in network virtualization environment

(NVE) is the allocation of substrate network resources to online VN requests. The

problem of allocating substrate resources for the virtual network (VN) is called VN

embedding problem. The VN embedding problem reduces to the multi-way sepa-

rator problem, which has been shown to be NP -hard [5]. From the point of view

of an infrastructure provider (InP), a preferable allocation scheme should increase

long-term revenue while reducing the cost of hosting individual VNs. Consequently,

mechanisms that can increase acceptance ratio are of great interest to InPs, because

acceptance ratio is directly proportional to their revenue.

While embedding a VN request, existing proposals [71, 69, 20, 48, 40] do not

distinguish between different substrate nodes and links. However, in practice, some

substrate nodes and links are more critical than others. For example, resource

depletion in bridges and articulation points in the substrate topology are expected

to have deeper impact on future embeddings than a random resource near the edge

of the network. Choosing amongst feasible VN embeddings, the one that uses fewer

critical resources can be a key to improving acceptance ratio in the long run. The

1

goal of the embedding process should be to minimize the chances of fragmenting

resources by creating bottlenecks and at the same time maximize the chances for

potential future revenue.

In this thesis, we investigate how differentiating between substrate resources can

increase the acceptance ratios of the existing VN embedding algorithms [71, 69, 20,

48, 40]. In order to differentiate resources, we design a mechanism for assigning

weights to substrate nodes and links based on their residual capacities and their

importance in the substrate topology. These weights help us in prioritizing certain

VN embeddings over others. In addition to network partitioning due to link and

node depletion, attributes of the created partitions are also an important factor in

weight assignment. In case of a substrate network partitioning, any virtual link

from a VN request has to be turned down if its two ends can only be mapped in

different partitions. We argue that distinguishing substrate resources is a key for

better load balancing and for improving the acceptance ratio.

Over time, as new VNs are embedded and old ones expire, resources in the

substrate network become fragmented. The obvious consequence is the rejection of

many VN requests lowering the acceptance ratio and revenue. This can be amended

if the fragmented resources are consolidated using re-optimization techniques. We

propose algorithms to identify bottlenecks and techniques to re-embed VNs that

cause VN request rejection. Our re-optimization mechanism consists of two stages:

detection of bottleneck links and nodes, followed by relocation of virtual links and

nodes to free up resources in the bottleneck areas. While consolidating resources

for rejected VN requests, we have to make sure that all previous VN embeddings

remain intact.

1.2 Problem Statement

Infrastructure Providers (InP) would want their embedding process to optimize

their current revenue by effectively embedding VN requests, without adversely af-

fecting the potential future revenue. Existing work on VN embedding falls short of

ways to maximize the revenue for the InPs. Specifically, impartial treatment of sub-

strate resources while allocating them to VNs and lack of thorough re-optimizing

mechanisms for current VN embeddings are two problems that significantly narrow

down the chances for future revenue. If these two problems are ignored critical

resource assignments will need to increase to handle the cascading embeddings.

Consequently, fragmenting the substrate network and hence rejecting a lot of VN

2

requests which could be mapped otherwise. As a result InPs would have to face

lost revenue, decreased acceptance ratio, heavily-utilized clusters of resources, and

increased average embedding cost. We shall prove this hypothesis under various

scenarios using simulations.

1.3 Objectives

Our objective in this thesis, is to present a comprehensive solution for improving

acceptance ratio of existing VN embedding algorithms and distributing load fairly

among the critical resources of the substrate network. Our solution aims at im-

proving the performance of previous VN algorithms while at the same time keeping

the incurred cost to minimum. To this end, our approach consists in: first differen-

tiating the critical resources so that the degree of criticalness of resources can be

considered while embedding VN requests and secondly by providing a mechanism

to re-embed initially-rejected VN requests by re-optimizing already embedded VNs.

It is also our objective to make our techniques easy to incorporate with previous

VN embedding proposals, i.e. with minimal modifications to previous algorithms.

1.4 Contributions

Our contributions are as follows:

• We present a mechanism for distinguishing resources of the substrate network

based on the impact they might have on the substrate network, in case of

resource depletion or failure.

• We presents algorithms for re-optimizing and re-embedding initially-rejected

VN requests after fixing their bottlenecks requirements.

• Our approach improves acceptance ratio for existing VN embedding algo-

rithms while keeping the cost low. It also provides the added benefit of

distributing load fairly on the critical resources of the underlying network.

• Our mechanisms can be incorporated in existing algorithms with minimal

changes.

• We evaluate our approach through extensive simulation and show the ef-

fectiveness of our techniques in terms of performance gain in existing VN

embedding algorithms.

3

1.5 Thesis Organization

The rest of this thesis is organized as follows; Chapter 2 presents required back-

ground regarding VNs and graph theory. Chapter 3 discusses the state of the art in

VN embedding algorithms and discusses the motivations for our work. Our propos-

als for distinguishing and re-optimizing critical resources are discussed in Chapter 4.

Performance metrics, experimental setup, and evaluations are presented in Chapter

5. Finally, we conclude the thesis and present some limitations of our work as well

as possible future work in Chapter 6.

4

Chapter 2

Background

In this chapter, we first provide an introduction of Network Virtualization. Next,

we define the VN embedding problem. After that we provide some preliminaries

from theories used in our algorithms. In particular, we provide some definitions

and theorems from graph theory that we used. Multi-commodity flow problem is

discussed next. In the end, in a tabular form we describe all the different variables

used in this thesis.

2.1 Network Virtualization Environment

Fundamental technological changes are required to the Internet design to cope

with the needs and demands of the Internet’s user market. The huge success of

the Internet is the main problem that hinders these required modifications and

is continuously ossifying the Internet. Since its inception, Network Virtualization

has gained the confidence of a wider research community to overcome the Inter-

net’s ossification problem. Network Virtualization provides a promising solution

to overcome the Internet’s Impasse and proceed with the Internet diversification

proposal [64, 8]. The first important contribution of Network Virtualization is to

support the coexistence of multiple heterogeneous network architectures onto a

shared physical infrastructure. These coexisting networks are called virtual net-

works (VN). VN is a set of virtual links and virtual nodes used to provides some

service. Different VNs can be entirely different in terms of topologies they have,

the services they offer, the technologies they use, and the consumer market they

focus on. This principal design goal of Network Virtualization broadens the mar-

ket potential of Network Virtualization because it not only provides flexibility but

5

also facilitates testing and incremental deployment of new network technologies.

The other important principal design goal of Network Virtualization is to intro-

duce diversity by separating the role of an Internet Service Provider (ISP) into an

Infrastructure Provider (InP) and a Service Provider (SP)[64, 8, 32].

2.1.1 History of Network Virtualization

The concepts of virtualization in the field of networking have been around for

quite some time for solving different problems, for instance, VLANs, VPNs, active

networks and overlay networks etc. In this section, we will briefly discuss some of

these concepts. Although all of these systems were invented for different purposes,

extending the functionality of the Internet is an important goal they all have in

common.

Virtual Private Network (VPN), not to be confused with Virtual Networks,

is a dedicated network for private communication between multiple geographically

distributed sites and connected through tunnels over the shared Internet [34, 53, 52].

A VPN can be an Intranet, where all sites are owned by the same enterprise, or

an extranet, involving multiple enterprises. In the VPN terminology the manager

who provisions a VPN is called a Provider Provisioned VPN (PPVPN) [9] that is

the service provider for the case of VPN. PPVPN technologies can be classified

in to three different categories based on the layer they operate on i.e. Layer 3

VPN (IP,MPLS) [17, 15], Layer 2 VPN (Ethernet) [10, 12] and Layer 1 VPNs

(SONET/SDH) [14, 59].

Programmable network research [16] attracted the research community because

of its claim of on-demand services on the fly. The important requirement for pro-

grammable networks is a clear separation between the software and the communi-

cation hardware. Two different approaches were pursued to realize this goal. Open

signaling approach [1] from the telecommunication point of view and the active net-

work approach from the IP networks community [62, 61, 68, 50]. The former argues

for modeling the hardware interfaces using open programmable interfaces, while the

latter propounds the idea of customized computation based on the contents of the

packets.

Overlay networks are based on the idea of creating a virtual topology over the

existing physical topology, to provide user customized services. Deployment of over-

lays is not expensive because they are designed to be oblivious to the underlying

network. Overlays are flexible and adaptive to the underlying network conditions.

6

Overlay networks have been used to tackle a plethora of problems faced by the

users of the current Internet. Some of the major problems addressed by the overlay

research community include performance guarantees [54], availability of the Inter-

net routing [6], multicasting [29, 41, 21, 18], QoS guarantees [57], protection from

Denial of Service attacks [43, 7], content distribution [45], file sharing [49], and

storage systems [23]. Anderson et al. [8] argue against the viability of overlay net-

works, since they constitute narrow fixes instead of long term solutions. Indeed,

most overlays are designed in the application layer and are oblivious to the under-

lying protocols and hence do not provide any fundamental change to the Internet

architecture.

2.1.2 Business Model & Roles

To provide an on-demand instantiation of VNs by embedding them onto a collection

of substrate resources (physical links and physical nodes), Network Virtualization

extends current Internet’s business model to include several new role players. In

the Network Virtualization paradigm there are four important actors; they are the

Infrastructure Provider (InP), the Service Provider (SP), the Broker, and the Users

[19]. Decoupling the role of an ISP results in the first two new entities;

Infrastructure Provider

An InP, as its name suggests, is responsible for provisioning and managing the

underlying network resources on which VNs can be created. It is also responsible

for providing interfaces to different SPs to use and lease resources. Other respon-

sibilities include maintenance and operations of the substrate resources. For VN

instantiation, InP decides whether to accept or reject it, depending on the revenue

and the cost of VN, and the availability of resources.

Multiple InPs can have different service level agreements (SLAs) and can col-

laborate to provide better services and wider networks. Such collaborations can

lead to positive effects in capitalizing the revenue for themselves.

Service Provider

Focusing on the customer market, the Service provider creates a VN that will offer

the type of services that users want. SPs achieve this by leasing the network re-

7

a

b

c
d

e

f

InP 1 InP 2

A

B

C

SP 1

A

B

C
d

E

F

SP 2

1 2 3 4 5

A

Users

Virtual Nodes

Physical Nodes

Virtual Links

Physical Links

Broker n

Broker 1

6

Figure 2.1: Virtual Network Environment

sources from InPs and deploying customized protocols on these allocated substrate

resources.

An SP can also perform the role of InP and by leasing other SPs its resources.

Instantiating a VN requires a VN request to be submitted by the SP to the InP.

After SP requests an InP for the creation of a VN, InP can deny the request if an

agreement can not be reached among them or hosting the VN is not feasible for

the InP. A third party may mediates this process to simplify the process for both

the SP and the InP. These are called brokers.

8

User

Services are provided by the SPs to the users. Users in an Network Virtualization

Environment may connect to multiple VNs to access different services but they do

not interact directly with the InP. Terms and conditions might be the other issue

that the NVE Users have to deal differently from the existing Internet users. A

user can interact with a broker to find out the best SP providing the services user

might be looking for. Once a deal is finalized between user and the SP, the user

can continue to use the services provided by the SP until the expiration of the

agreement.

Broker

A Broker is a middle man in almost all of the interaction between the rest of the

three players. Brokers have a vital role to bring all the actors of the Network

Virtualization paradigm together. Brokers help SPs lease resources from InPs and

may eventually help users to purchase services from the SPs. They might also

facilitate the collaboration between InPs to extend their network or to provide

network connectivity in some new area.

2.1.3 Example of an NVE

In Figure 2.1, there are two InPs and there are two SPs. One of the SPs, SP 1,

is entirely mapped to substrate resources from InP 1 and the other SP, SP 2, has

some resources mapped from SP 1 and the rest from SP 2. Brokers are shown at

the right side of the figure. You can see that brokers are in contact with multiple

other players of the NVE. Broker 1 is providing service to user 6 and at the same

time negotiating a deal with SP 2 on behalf of some actor. The networks shown

inside the SPs are the virtual topologies of their respective VNs. The capital letter

denotes a virtual node and also tells which substrate node it is mapped to, the

substrate node with the same letter but in lower case. Note that a virtual node can

only be mapped to a single substrate node whereas a virtual link can be mapped

to multiple substrate paths. The edges shown in the virtual topology correspond

to paths in the substrate topology.

Observe that users 3 and 4 are connected to both the service providers, SP 1 and

SP 2, whereas all the other users are connected to one SP only. In NVE, the user

may subscribe to multiple SPs to access the different services they offer. VNs can

9

a

b

c
d

e

f

InP

A

B

C

VN-request

A

B

C

d
E

F

VN 1

Figure 2.2: VN Embedding Example: a VN request arrives

have different lifetimes depending on the nature of the service provided to customer.

One VN might be providing an email service and would want to live indefinitely

in the system, whereas another might be just broadcasting a particular conference

in some area and would be active only for a few hours. InPs can provide one or a

combination of different types of infrastructure networks; a wired or wireless access

network, and/or an optical backbone network, etc.

2.2 VN Embedding Problem

Provisioning resources for VN creation, known as VN embedding, is one of the

major challenges faced by the research community. Embedding a VN on to the

substrate network is equivalent to finding a mapping, of all the virtual nodes and

the virtual links on to the substrate network. Even the offline version, where all VN

requests are known in advance, can be reduced to the multi-way separator problem

10

[5], which is NP-hard. The objective of the VN embedding problem is to find an

effective and efficient embedding for the VN request.

For a better understanding of this problem, an example is shown in figure 2.3.

A VN, VN 1, is already mapped on to the substrate network. The virtual link

mapping is not shown for VN 1, but there is a substrate path for every virtual

edge. The VN request provides the desired virtual network topology of the VN

it wants to create. Node and link constraints are also an important part of the

VN request that directs the embedding process. As can be seen in figure 2.3, the

nodes of the VN requests are mapped to the substrate nodes (the dotted lines).

The virtual links are also mapped, and the mapping can be seen as the substrate

paths of the same color as that of the corresponding virtual links.

While embedding the VN request, the InP might have a number of different

objectives. It might want to maximize InP’s own revenue and minimize the cost

of hosting the VN. It might want to maintain the level of service up to a certain

standard, and if mapping any more VNs can create problems it might reject any new

VN requests. Ideally, all the current embeddings should be efficient all the time,

to better utilize the resources of the underlying network but the online nature of

VN request arrival makes it hard since embedding a new VN can cause previously

embedded VNs to become inefficient. Optimizing all the VN embeddings, might

be too expensive but on the other hand too many inefficient VNs can fragment

the network and InPs might unnecessarily have to reject a lot of incoming VN

requests resulting in loss of revenue. An InP has to decide whether to improve the

embeddings of certain VNs or leave it to some later time.

Existing works propose different heuristics for VN embedding problem and pro-

vide approximate solutions. We will discuss these proposals in chapter 3. In the

following subsections we provide theoretical formulation of the network model, node

and link stress, and cost and revenue functions used by existing solutions to the

VN embedding problem.

2.2.1 Network Model

Substrate Network

A substrate network is denoted by GS = (NS, ES), where NS is the set of substrate

nodes and associated with each node, n
S
, in this set is a pair of attributes: CPU

capacity, c(nS), and geographic location, loc(nS). The set ES is a set of substrate

11

a

b

c
d

e

f

InP

A

B

C

VN 2

A

B

C

d
E

F

VN 1

Figure 2.3: VN Embedding Example: VN request is mapped to the substrate

network

links and each link, e
S
, has an associated bandwidth capacity, b(eS), and the delay

of that link, d(eS).

Virtual Network Request

A request for creating a virtual network consists of a desired topology and a set

of constraints on that topology. In the literature, the VN request is modeled as

a weighted undirected graph. In this thesis, we denote the virtual network graph

as GV = (NV , EV). NV is a set of virtual nodes and associated with each virtual

node is a set of constraints K(n
V

), that the embedding should satisfy. This set of

constraints can contain geographical location, required CPU capacity, memory etc.

Similarly, EV is a set of virtual links and associated with each virtual node is a set of

constraints K(e
V

). These constraints should be satisfied by any feasible embedding.

These constraints can be required bandwidth capacity, maximum delay, maximum

loss rate etc.

12

Node & Link Stress

Node and link stresses are important factors in quantifying the resource utilization.

These notions also appear in previous literature [71, 69, 20]. Node stress is defined

as the fraction of all the CPU capacity of the substrate node that is mapped to

some virtual node. We denote node stress by S
N

and n
V

Λn
S

means that the virtual

node n
V

is mapped onto the substrate node n
S

S
N

(n
S
) =

∑
n
V
�n
S

c(n
V

) (2.1)

Similarly, the link stress is defined as the fraction of all the bandwidth capacity

of a substrate link that is mapped to some virtual link. It is denoted by S
E

.

S
E

(e
S
) =

∑
e
V
�e
S

b(e
V

) (2.2)

We define the residual capacity of a link or a node in terms of its stress. For

a node, it is the total CPU capacity minus the node stress of that node and for a

link its the total bandwidth capacity minus the link stress.

Node & Link Assignment

While embedding a virtual node, one more constraint in addition to all the others

in K(n
S
) must be satisfied. This constraint is to map a virtual node to exactly one

substrate node. In the case of a link, there are two cases depending on whether the

flow is splittable or unsplittable. In the former case, the mapping should be a set

of paths from the associated substrate nodes of the virtual link, and in the latter

case, it is just a single path.

Revenue & Cost Functions

For optimizing the embedding, the notion of cost and revenue of a VN request are

very important. In previous research [71, 69, 20] the notions of cost and revenue

have been defined as follows.

Cost of a VN is defined as the total amount of substrate resources allocated to

the VN. This include all the bandwidth capacities on all the substrate links and all

the CPU capacities on all the substrate nodes.

Mathematically, the cost denoted by C(G
V

), is given by.

13

C(G
V

) =
∑

e
V
∈E

V

∑
e
S
∈E

S

f
e
V
e
S

+
∑

n
V
∈N

V

c(n
V

) (2.3)

where c(n
V

) is the allocated CPU capacity for the virtual node n
V

and f
e
V
e
S

is

the allocated bandwidth capacity for the virtual link e
V

on the substrate link e
S
.

Revenue is defined as the total resources requested as part of the VN request.

It is denoted by R(G
V

) and computed as follows:

R(G
V

) =
∑

e
V
∈E

V

b(e
V

) +
∑

n
V
∈N

V

c(n
V

) (2.4)

The set of constraints together with the cost and the revenue associated with

a virtual network dictates the actual embedding of the virtual links and nodes of

this virtual network.

2.3 Graph Theory Preliminaries

To improve the embedding of a VN request, it is important to consider the structure

of the underlying substrate network. This section provides some graph theory back-

ground that we later use in the formulation of the problem, and in the algorithms

proposed in this thesis.

2.3.1 Cut vertices and Cut edges:

A cut vertex is a vertex whose removal disconnects the graph. Similarly, a cut

edge is an edge whose removal makes the graph disconnected. Other names for

cut vertices and cut edges are articulation points and bridges. An important thing

to note is that removal of a cut node can increase the number of components of

the graph up to the degree of that node. While removing an edge can increase

the number of components at most by 1. Efficient algorithms exist for checking

whether an edge or a node is a cut edge or a cut node. Algorithms to enumerate

all cut nodes and cut edges are given in the Appendix.

2.3.2 Maximum Flow and Minimum Cut:

A theorem from graph theory used in this work is the Max-Flow Min-Cut theo-

rem [24]. The maximal flow minimum cut theorem establishes that the maximum

14

amount of flow from source ‘s’ to sink ‘t’ is equal to the minimum capacity of the

s-t cut. A cut is a set of edges that partitions the graph such that source is in one

partition and sink is in the other. The capacity of the cut is the capacity of the

edges in the cut. In other words, this theorem states that the maximum amount

of flow from the source to the sink is equal to the minimum capacity that needs

to be removed from the network so that no flow can pass from the source to the

sink. There exist polynomial time algorithms for computing maximum flow and

minimum cut of a graph [35, 36, 42, 26].

Edmonds and Karp[26] presented an algorithm which is an implementation of

the Ford Fulkerson method [35] for computing the maximum flow in a network.

Dinic[25] also presented algorithms for computing maximum flow. The running

time of this algorithm is O(V E2). A more efficient algorithms for computing max

flow was also proposed and is called the push-relabel algorithm [37]. Its running

time in the general case is O(V 2E) and with the dynamic tree structure of Sleator

and Tarjan [56] it runs in O(V E log(V 2/E)).

2.3.3 Multi-Commodity Flow Problem:

Multi-commodity flow (MCF) problem is a network flow problem in which mul-

tiple commodities need to be transported from some source to some sink. Every

commodity has two nodes associated that will carry traffic. In the case of integer

variables, Muti-Commodity flow is NP -complete even for only two commodities

[30]. In the fractional version of the problem, a solution is found in polynomial

time. Lets assume G(V,E) to be a flow network, c(u, v) to be the capacity of edge

(u, v). There are k commodities, denoted by K and for each commodity ki we have

the source si, the sink ti and the demand di. The flow along the edge (u, v) is

fi(u, v). The constraints and objective function for this problem are given below.

Capacity Constraints:
k∑
i=1

fi(u, v) ≤ c(u, v) (2.5)

The capacity constraints stipulate that the flow on any edge should be less than

or equal to the capacity of that edge.

Flow Conservation:

k∑
w∈V

fi(u, v) = 0 when u 6= si, ti∀v, u, fi(u, v) = −fi(v, u) (2.6)

15

Flow conservation constraints make sure that all the traffic is generated at the

source node and consumed at the sink node. For all the other nodes, the flow into

a node is equal to the flow out of that node.

Demand Satisfaction Constraints:

k∑
w∈V

fi(si, w) =
k∑

w∈V

fi(w, ti) = di (2.7)

Finally, constrains on all edges ensure that all bandwidth requirements are sat-

isfied.

Now, for minimum cost multi-commodity flow, there is a cost associated with

every edge, cost(u, v), and the objective is to minimize it. The solution of the

following linear program gives the minimum cost flow between all the commodities.

Objective: minimize

∑
w∈V

cost(u, v)
k∑

w∈V

fi(si, w) (2.8)

2.4 Terminology

Table 2.1 provides the terminology the terminology used for the substrate and

virtual resources used throughout the remainder of the thesis.

16

Variables Description

c1 Fraction of nodes contained in connected component 1

c2 Fraction of nodes contained in connected component 2

C Set of connected components when a cut-vertex is removed

φ Ratio of introduced to total cut-vertices when a link/node is removed

ψ Ratio of introduced to total cut-edges when a link/node is removed

δ A very very small constant

ζ(x) Critical Index of x

ρ(x) Popularity Index of x

RN(x) Residual or Available capacity of a node x

RE(x) Residual or Available capacity of an edge x

f iuv Denotes flow from u to v for virtual edge i

ℵ(x) Scaling factor for resources x

α A variable to assigning different weights to CI

β A variable to assigning different weights to PI

ω A variable to further scale the SF

Table 2.1: Description of Variables used in the thesis

17

Chapter 3

Related Work

In this chapter, we present an overview of the existing work addressing the VN

embedding problem and the problem of re-optimizing already embedded VNs. We

begin with categorizing previous proposals based on the type of techniques they

use to solve the VN embedding problem. We explain the assumptions they make

and their impact. Finally, we describe the previous work done in the area of re-

optimizing the VN embeddings.

3.1 Static VN Embedding Approaches

The primary incentive for the InP in embedding a VN request on its substrate

network is to increase its revenue while keeping the incurred cost minimum. Other

than that, keeping the load distributed among the substrate resources increases the

chances of provisioning resources later on and hence adds the potential revenue.

We have classified the static VN embedding algorithms from the existing literature

in various categories as described below.

3.1.1 Two Stage Solutions

By two stage solutions, we mean that the nodes and the links are assigned in a

sequential order. Even the offline version of the VN embedding problem is NP-

hard as it can be reduced to multi-way separator problem [5]. The unsplittable

flow version of the problem is still NP-hard even if the nodes are already mapped.

Consequently, existing research [31, 48, 71, 69, 20] has relied on heuristic based

solutions for the edge mapping after they have already determined the mappings

18

of the nodes in a greedy fashion. Mapping the nodes beforehand simplifies the

problem. Subsequently the links can be mapped either using k-shortest paths or

solving the requirement specific LP programs for Multi Commodity Flow (MCF).

Zhu and Ammar [71] and Lu and Turner [48] have focused on the offline version

of the problem. Lu and Turner [48] developed algorithms for specific topologies

such as star and hub-and-spoke topologies. Their experimentation considered a

single VN. Precluding admission control complexity by assuming infinite capacities

of substrate nodes and links characterizes the works in [31, 71, 48]. The authors

in [69] used k-shortest paths [27, 28] and MCF [4] for embedding virtual links once

they have greedily mapped all the nodes. They also support the case of customized

node mapping and they present a customized node mapping algorithm for hub-

and-spoke topology. Although customized node mapping is useful tool, it is not

applicable to arbitrary topologies. One important reason, greedy approaches have

been extensively used for node mapping is that other approaches like simulated

annealing [48] and iterative approaches [44, 31] are more expensive. Chowdhury

et al. [20] recently proposed a solution to the VN embedding problem by coordi-

nating the node and the link mapping phases using a mixed integer programming

formulation [55]. Although, their algorithms coordinate the node and link mapping

phases using the notion of meta nodes, they still fall in the category of two stage

solutions.

3.1.2 Single Stage Solutions

There are few algorithms that map the nodes and the links at the same time. Lis-

chka and Karl [47] introduced a backtracking VN embedding algorithm based on

subgraph isomorphism detection. Their approach is based on the graph matching

techniques of Cordella et al. [22]. The advantage of such algorithms is that when-

ever a bad mapping is discovered they can backtrack to previous feasible embedding

while the two stage algorithms have to calculate all the node and link mappings

again. Through simulation Lischka and Karl [47] show that their algorithms are

faster and better than those of Yu et al. [69]. On the other hand, they did not show

how efficiently they can search for alternate embeddings and the effects of back-

tracking (in terms of network stability and existing VN embeddings disruption).

Distributed algorithms for VN embedding have also been proposed such as [40].

They use distributed algorithms based on the Multi-Agent Systems [63] to embed

the links and the nodes simultaneously. However, to simplify the problem of effi-

ciently embedding the VN request in a distributed manner, they assumed unlimited

19

resources, so that all the VN requests can be accepted. Distributed approaches, as

compared to centralized approaches, have certain benefits like reduced communi-

cation cost, no single point of failure, parallel processing of multiple VN requests,

and decreased time to repair partial mapping failures. On the other hand, they

perform rather poorly as compared to their centralized counterparts [20].

As mentioned by Lu and Turner [48], embedding techniques that try to map

node and links in the same phase are victim of one of the two problems: expensive

re-computation of the current modified network conditions; and a potentially huge

number of local fixes to choose from.

3.1.3 Links Only Embedding

Some existing works focused on VN embedding which considers only the link con-

straints. Allocating resources for Virtual Private Networks [38, 51] is the earliest,

but simpler, incarnation of the VN embedding problem. The fact that they con-

sider only the bandwidth constraints on virtual links makes it easier that the VN

embedding problem. Since constraints on virtual nodes are ignored, this problem

often simplifies to selecting paths that satisfy the given constraints. In [51], the only

restriction on nodes assumed by the authors was that no two VNs can be mapped

to the same node. They have used simulated annealing to map VNs. Szeto et

al. [58] have presented algorithms for embedding only the virtual links, with an

assumption that the virtual nodes have already been mapped.

3.2 Dynamic VN Re-optimization Approaches

Haider et al. [39] categorized the approaches for resource assignment in two cat-

egories: static and dynamic. In static approaches, the VN embeddings do not

change during their lifetime, while in the dynamic approaches, the VN embed-

dings are reconfigured based on some notion of current performance and resources

stress. Static approaches typically result in under utilization of the physical re-

sources. Arriving and departing VNs also affect the utilization of the underlying

network infrastructure, since some previously and mapped VNs might not be re-

source efficient anymore. This may cause fragmentation among substrate resources

and considerably lowers the chances of supporting future VN requests. To over-

come this problem, different proposals have been made in the literature. Zhu and

20

Ammar[71] argue that selective reconfiguration should be done periodically to op-

timize the overloaded segments of the substrate network. Yu et al. [69] present a

case for path splitting and migration to periodically rebalance the mappings of VNs

so as to make efficient use of the substrate network and consequently increase the

chance of accepting future VN requests. We will discuss these proposals in more

detail below.

3.2.1 Selective Reconfiguration

Based on prior work on rerouting in circuit-switched networks [66], Zhu and Ammar

[71] studied the problem of dynamic resource assignment. Since the reconfigura-

tion of VN embedding can cause a significant amount of relocation of resources, its

impact can be worse than that of the flow re-routing problem. Zhu and Ammar

[71] used the weighted sum of reconfiguration rate, node switching rate and link

switching rate to quantify the cost of reconfiguration. Their selective reconfigura-

tion mechanism first identifies the nodes and links whose stress ratios are above a

given threshold and then marks all the VNs containing these over stressed resources

for reconfiguration. Reconfiguration only takes place in the next reconfiguration in-

terval. If a VN finds itself marked, during a reconfiguration interval, it reallocates

substrate resources. They call this step per VN reconfiguration.

Our work differs from that of Zhu and Ammar [71], in that we quantify the cost

of reconfiguration as the difference between the initial cost and the final cost after

reconfiguring. Zhu and Ammar [71] define node stress ratio and link stress ratio as

the average node and link stress to maximum node and link stress, where stress is

the number of virtual nodes or links mapped to a substrate node or link. They used

these notions for periodic reconfiguration of selected critical VNs. They control the

cost of reconfiguration by controlling the periodic interval. To the contrary, we

use a reactive reconfiguration rather than a periodic one by reconfiguring only

when a VN request gets rejected. Another drawback of selective reconfiguration

is that it selects over stressed resources and reconfigures all the VNs containing

these resources. We argue that the reconfiguration of all these nodes to reduce

the stress is not necessary and an improvement over this would be to reconfigure

only as many low priority VNs as required to reduce the stress of these resources.

Finally, another shortcoming of the selective reconfiguration approach is that the

location of the resource is really important since a highly stressed resource at the

edge of the network might not be as problematic as an average stressed resource in

the core of the network because of potential network partitioning.

21

3.2.2 Path Splitting & Migration

Contrary to Haider et al. [39], we classify the work of Yu et al. [69] on path splitting

and migration as a dynamic approach to VN embedding. The reason being that

the embedding of the VNs change during their lifetime. Classification of this work

as static or dynamic also depends on whether path splitting and migration are

implemented at the substrate level and embedding process is oblivious to that or

not. Yu et al. [69] propose greedy node mapping algorithms. The objective of

their algorithms is to maximize revenue. For embedding the virtual links they use

the k-shortest path algorithm [27, 28] and an MCF based LP formulation. They

also use path splitting and path migration for optimizing the resource utilization

at periodic intervals. One benefit of using a periodic interval is that it allows them

to consider the online VN embedding problem as if it was offline. Again, the cost

associated with periodic optimization might still be too expensive. Path migration

can be implemented in terms of path splitting, by adding new paths to old ones and

slightly changing the splitting ratio. Substrate routers can implement consistent

hashing to realize path migration [13]. Node migration can also be achieved using

the work of Wood et al. [67]. To avoid out-of-order packet delivery they use hash-

based splitting. Hash-based schemes have been used in IP networks to evenly split

traffic between paths of the same costs [11, 33].

The algorithms presented by Yu et al. [69] use path migration of already em-

bedded virtual links, keeping the node mappings fixed. VN requests can also be

rejected if a virtual node mapping fails, in that case path splitting and migration

would not be of any use. In our re-optimization mechanism, we also consider node

migration. While migrating node, however we also have to migrate all the virtual

links connected to them.

Previous approaches strive to improve VN embedding at various degrees, none of

them foresee the possibility of narrowing down the chances for accepting future VN

requests, while embedding. They treat all the substrate nodes and links equally,

which is not the case in practice. Their indifference to the underlying topology

may lead to non optimal decisions while mapping resources on ‘critical’ substrate

links and nodes that can negatively affect the acceptance ratio in the future. A

complementary approach for improving the acceptance ratio, is the effective use of

re-optimization mechanisms. By detecting and relocating bottleneck link and node

embeddings to better alternates, we can achieve improvements. Ideally, we want to

keep all the VNs optimized at all times (e.g., through periodic updating [71]). But

this may result in the relocation of a lot of virtual links and virtual nodes and hence

22

incur significant overhead. A better way to deal with this problem is to take action

only when it becomes inevitable [69]. However, unlike [69] which only considers

link migrations, our algorithms takes into account relocation of both virtual links

and nodes.

23

Chapter 4

Topology Awareness and

Re-optimization

Indifference to the attributes of the substrate network resources and lack of re-

optimization mechanisms are the two major candidates for improvement in the

existing VN embedding algorithms [20, 69, 71, 48, 47]. Significant performance

improvement can be achieved, once these problems have been effectively resolved.

Impartial treatment of all the links and nodes of the substrate network, not only

narrows down the chances of accepting future VN requests, load balancing is also

affected by it. In this work, we treat each node and link differently by assigning

each of them different weight functions. The weight function reflects how severe the

impact if this resource was reserved. Embedding of certain VNs can drift toward

in-efficiency with the arrival and departure of other VNs. Previous literature on

VN embedding other than Zhu and Ammar [71] and Yu et al. [69], did not study

the performance gain that can be achieved by re-optimizing and re-embedding of

the VNs. In the same time and as discussed in chapter 3, the studies in [71, 69]

are limited in several ways. Zhu and Ammar [71] proposed a periodic reconfigu-

ration of selected critical VNs, while the selection is based on the notion of link

and node stress, and where stress is the number of virtual nodes or links mapped

to a substrate node or link. Since the resources required to satisfy a VN request

are not known in advance, we cannot correlate the selection process (for periodic

reconfiguration) with the impact it might have in the future. Yu et al. [69] use path

migration for migrating already embedded virtual links, keeping the node mappings

fixed. However, it is possible that path migration can still leave the problem unre-

solved. In our work, we use reactive re-optimization, which is performed whenever

a VN request gets rejected, and we consider both node and link re-optimization.

24

Our approach also differs in the way we select potential VNs to relocate. In the fol-

lowing sections, we present our techniques to incorporate topology-awareness and

re-optimization of VN embeddings.

4.1 Topology-Aware Embedding

We differentiate between substrate network resources by introducing scaling factors

to their costs. The scaling factor (SF) of a resource refers to its likelihood of

becoming a bottleneck. It is calculated as a combination of two weight factors that

are explained later in this section.

We aim to incorporate topology-awareness in existing algorithms with minimal

changes. In our solution, proposals using MCF only need to update their objective

functions (constraints require no change) and proposals using shortest path algo-

rithms should select paths with minimum total scaled costs to upgrade themselves.

By scaling the cost of all the resources by SF, we prioritize the embeddings that

affect the substrate network the least.

4.1.1 Critical Index

The first weight function we define is the critical index (CI) of a substrate resource.

The CI of a resource measures the likelihood of a residual substrate network par-

tition1 due to its unavailability. To understand the impact of such partitioning,

consider the following scenario: suppose that a substrate network is partitioned

into two, almost equal-sized, components. The probability of both the end nodes

of any new virtual link to be embedded in different partitions is 0.5. In this case,

we might have to reject almost 50% of the VN requests.

We denote CI by ζ (ζ : x→ [0, 1)), where x is either a substrate link or a node.

Higher value of ζ(x) means its highly likely that unavailability of x will partition

the substrate graph and vice versa. The mathematical definition of CI is given in

equations 4.1 and 4.2 for links and nodes respectively.

1We refer to residual substrate network while discussing partitioning. A residual substrate
network is composed of residual capacities of substrate resources.

25

a

g

b

c1 = 42% c2 = 58%

d
g

e
f

Figure 4.1: Edge (g,d) is a bridge

b

g

a d

g

ei

f

c

b

g

a d

g

ei

f

c

Figure 4.2: Bridges and cut-nodes introduced when removing (g,d)

ζ(e
S
) =

(
1− |c1 − c2|

2

)
+

1

2
e
S
∈ cut-edges

φ+ ψ

4
e
S
/∈ cut-edges

(4.1)

ζ(n
S
) =

1

2

(∏
c∈C

P{c}
) 1
|C|

+
1

2
n
S
∈ cut-vertices

φ+ ψ

4
n
S
/∈ cut-vertices

(4.2)

In equation 4.1, if e
S

is a bridge (cut-edge) then removing it partitions the

graph. c1 and c2 are the fractions of substrate nodes in each of these partitions.

In Fig. 4.1, the edge (g,d) is a bridge and removing it disconnects the underlying

network. The first and the second component have 42% and 58% of the nodes

respectively. So, while solving equation 4.1 for edge (g,d), values for c1 = 0.42 and

c2 = 0.52 respectively. When e
S

is not a bridge, then after removing it we get φ and

ψ, where φ (ψ) is the fractions of new cut-nodes (cut-edges) to the total cut-nodes

(cut-edges) respectively. For example, in Fig. 4.2, for calculating the CI for the edge

(c,f), values of φ and ψ are 0.25 and 0.75 respectively. To understand this, have a

look at Fig. 4.2, initially yellow nodes (i.e. node b, f, and g) are cut-nodes and the

26

edge (f,g) is the only cut-edge. After removing (f,g), three new cut-edges (i.e. (i,f),

(b,i), and (b,c)) are introduced and only one new node becomes a cut-node (node

i). The values of φ and ψ are then 0.25 and 0.75 respectively and ζ(e
S
) = 0.25.

In order to compute CI for nodes, we might have to deal with more than two

components, as removing a cut-node can partition the network in more than two

components whereas a cut-edge can only increase the total number of components

by just one. In equation 4.2, C is the set of components we get when we remove

n
S
. P{c} here is the fraction of the total nodes present in component c. If n

S
is

not a cut-node, the CI is calculated similar to the case when e
S

is not a cut-edge.

For understanding the other case, consider Figure. 4.3 where the node u is a cut-

node and removing it partitions the graph into three components. P{c} is shown

in the figure and |C| = 3 and hence ζ(n
S
) = 0.64. To distingish between a cut-

resource and normal ones, we make sure that a cut-resource has its CI value ≥ 0.5.

Computing ζ is required only once in the beginning and it is updated whenever a

substrate network is extended. Efficient algorithms exist for computing articulation

points [60] and for computing the connected components and are used in calculating

ζ. The time complexity for the bi-connected components and articulation points

algorithms is O(V + E). Computing ζ is not computationally intensive and the

algorithm we used for calclating ζ is given in the Appendix.

c1 = 15% c2 = 60%

c3 = 25%

U

Figure 4.3: Calculating Critical Index for a cut-node u

27

75%

25%

40%

60%

4 6

(a) (b)

Figure 4.4: Calculating Popularity Index for a resource

4.1.2 Popularity Index

Resource saturation is the other major factor that can cause substrate network

partition. We call this weight function Popularity Index (PI), denoted by ρ and

ρ : x → [0, 1). PI measures “how severe an impact a resource’s unavailability can

have on the underlying network?”. To be more specific, PI is the time weighted

average of used resources on a particular link or a node. PI also depends on the

number of VNs that are mapped onto that resource. In equation 4.3, REi−1
is the

percent of reserved bandwidth on link x, where the index i− 1 means the previous

value of RE; similarly, RNi−1
is the percent of reserved CPU capacity at the node

x. The variables a and b (a+ b = 1) are used to assign different weights to current

and previous values. In equation 4.3, ν is the number of VNs mapped on top of x.

The higher the value of ρ the higher the probability that mapping onto this link or

node will saturate it and create a bottleneck.

ρ(x) =

(
aREi−1

+ bREi

) 1
ν

x ∈ E
S

(
aRNi−1

+ bRNi

) 1
ν

x ∈ N
S

(4.3)

For illustration see Fig. 4.4. For any resource, (whether a link or a node) lets

assume that at some time i its used capacity (bandwidth capacity for links and CPU

28

capacity for nodes) is 60% and the numbers of VNs mapped onto it are 6. Calculate

PI involves calculating the weighted average, which depends on two different weight

values a and b, of the fraction of resources currently in use and then the fraction of

resources previously used. To account for the number of VNs that can be affected,

we raise that value by the reciprocal of the number of VNs currently mapped on

that resource.

The purpose of PI is to prioritize resources that are not depleted. Not only

does PI provide a way to fend off underlying network partitioning due to resource

depletion, it also provides load balancing as a byproduct. Load balancing is achieved

by favoring resources based on the degree of criticialness associated with them. The

reason is that utilization is an important factor in calculating the PI.

4.1.3 Scaling Factor

CI and PI values are both crucial when mapping a particular link or node. Al-

though, both measure the chances of partitioning the substrate network either be-

cause of resources outage or resource depletion, they are quite different in nature.

The former focuses more on the topological attributes of the underlying network

and the latter aims at utilized resources and their impacts on the substrate net-

work. We unify them in a single parameter, called Scaling Factor (SF) and denote

it by ℵ. In equation 4.4, we have multiplied both CI and PI by weights α and

β respectively. We also use a parameter ω to further scale the cost. It would be

interesting to see what are the effects of different settings of α, β, and ω. SF is

used to scale the cost of resources while embedding a VN request.

ℵ(x) = 1 + ω
(
αζ(x) + βρ(x)

)
(4.4)

minimize:
∑

e
V
∈E

V

∑
e
S

ℵ(e
S
)f

e
S
e
V

(4.5)

The objective functions of the LP formulations of previous proposals [20, 69]

can be updated by scaling the cost of resources by ℵ. Objective function of a basic

LP-formulation for the MCF problem with topology-aware feature added would

look something like the equation 4.5.

To illustrate the concept of differentiating by scaling the cost, have a look at

Fig. 4.5. We are given a VN request that has two virtual nodes and a virtual

29

d

g

e

h

i
f

.15

.25

.24

.31

.37

.45

.6
.4

c
a

b

.9.46

.28 .1

U V

Figure 4.5: Differentiation embedding with the help of SF

link between them. Virtual node U can be mapped to substrate nodes a or d,

where as virtual node V can only be mapped onto substrate node i. Given this

node mapping, for the virtual link (U,V), lets say, there are only three possible

embeddings (actually path here), which are shown in different colors. It can be

seen that the green path (d-g-h-i) has the lowest SFs along the path, which makes

it a preferred candidate for embedding (U,V).

We use a slightly different cost function than that of the previous literature.

In the modified formula, we are scaling up the cost by the scaling factor to avoid

embedding onto critical resources whenever possible. In the formula below, n
S

is

the substrate node on which a virtual node n
V

is mapped.

C(G
V

) =
∑

e
V
∈E

V

∑
e
S
∈E

S

ℵ(e
S
)f

e
V
e
S

+
∑

n
V
∈N

V

ℵ(n
S
)c(n

V
) (4.6)

4.2 Re-optimizing Bottleneck Embeddings

In this section, we describe our re-optimizaton mechanism. Once embedded, a

virtual network remains operational for its lifetime, which can be arbitrary and

can only be known at the time of VN request arrival. Expiration of a VN can

change the network condition and as a result, some of the previously mapped VN

embeddings can become inefficient or non-optimal. Embedding is inefficient or

non-optimal in the sense that there exists another embedding that is better, in

30

a

W

b

c

V

U V20

W

15

U

43%

43%

Figure 4.6: Unneccessarily refused VN link

VN-1
20%

VN-2
55%

a

VN-3
15%

VN-4
45%

b

VN-2
35%

VN-5
30%

c

25% 40% 35%

VN-2
55%

a

VN-3
15%

VN-4
45%

b

VN-2
35%

VN-5
30%

c

45% 40% 15%

VN-1
20%

Figure 4.7: Relocating a virtual node of VN-1 to make room for virtual node U

terms of some specific objective. The objective in our case is to reduce the number

of bottlenecks. Inefficient embedding may still satisfy all the constraints of the

VN, but it might limit the resources at critical nodes and links. Such embeddings

can be reoptimized by relocating virtual nodes and reassigning virtual links to

better alternate embeddings. Although efficient algorithms exist for embedding of

VNs onto a substrate network, but they cannot forsee the VN embeddings drifting

toward inefficiency. The goal of most of the previous work is on efficient first

time embedding [20, 48, 40]. Only Zhu and Ammar [71] and Yu et al. [69], did

somework on improving the inefficient embeddings. Zhu and Ammar [71] have

proposed reconfiguration at periodic intervals based on their notion of node and

link stress. Yu et al. [69], uses path migration and only take action when it is

inevitable.

From a practical point of view, it has been shown how to migrate virtual nodes

(virtual routers) from one physical node to another [65]. Virtual router migration

is achieved by migrating the control plane to the new location. It supports asyn-

31

U

x y

V

U V20

12/15

8/11

9/12

7/10

8/9

5/5

12/20

8/8

8/10

Figure 4.8: Unneccessarily refused VN link

chrounous migration of links by cloning the data plane at the new location during

migration and temporarily forwarding packets in both data planes. Link migration

can also be achieved by dynamically setting up and tearing down physical links; it

has been already achieved using programmable transport networks [2].

Our re-optimization mechanism is a two-stage reactive solution. In the first

stage, we detect the bottleneck virtual links and nodes that caused the rejection

of a VN request. Next stage deals with relocating/reassigning these nodes/links to

less critical regions of the substrate network so that the rejected VN request may be

accepted. As compared to the periodic reconfiguration of Zhu and Ammar [71], our

reactive re-optimization mechanism is much less costly and has a little overhead.

Periodic reconfiguration marks the highly stressed nodes and links and in the next

periodic interval some of the VNs containing these nodes re-embeds themselves.

An argument against this strategy is that, an average utilized resource in the core

(backbone) might be more crucial a bottleneck than a higly stressed node/link at

the edge of the network. On the other hand, we take a more rigorous mathematical

approach to detect bottleneck links and nodes rather than selective reconfiguration

based on nodes and links stresses. The incurred cost, the cost of re-embedding plus

the cost of relocation of resources, is also much lesser in the reactive approach as

compared to the periodic one.

We illustrate the basic idea behind our relocation and reassignment mechanism

using the example in Fig. 4.6, 4.7, 4.8, 4.9, and 4.10. In Fig. 4.6, a VN request

is being rejected because one of its virtual nodes cannot be mapped, i.e., node U

which requires 43% of CPU capacity. There are three possible embeddings for this

32

VN-1w z
a

b

x

y

VN-1
VN-2w z

a

b

x

y

s t

Figure 4.9: Reassigning links to make room for virtual link

node i.e. substrate nodes a, b, and c (shown inside a cloud), but none have the

required capacity to accomodate virtual node U. Fig. 4.7 shows the currently em-

bedded virtual nodes on the substrate nodes a, b, and c. We can see in Fig. 4.7,

that relocating the VN-1 node from node a to node c makes enough room to ac-

commodate U. Note that all the associated virtual links of VN-1 should also be

reassigned accordingly.

Now, suppose that a VN request has just one virtual link i.e. (U,V). This

virtual link is turned down because of the bottleneck substrate link (w,z), as shown

in Fig. 4.8. Our technique to find the bottleneck nodes and links will be discussed

later. As can be seen in Fig. 4.9, VN-2 can be reassigned to free up some bandwidth

on link (w,z) and finally virtual link (U,V) can be embedded. Bottleneck links are

selected from the minimum cut of the virtual link (U,V), as shown in Fig. 4.10.

4.2.1 Detecting Bottleneck Nodes and Links

For bottleneck detection, we deal with VN requests that cannot be embedded due

to lack of residual capacities in substrate resources. Contrary to the periodic recon-

figuration scheme presented in [71], we have taken a reactive approach in detecting

33

U

x

w

y

V

z

U V20

VL-1

25%
75%

(w,z)

U

x

w

y

V

z

U V20

100%

(w,z)

Figure 4.10: Reassigning virtual link VL-1 to make room for some other virtual

link

Algorithm 1 Detecting V-Nodes that cannot be mapped

1: N
bad
← v-nodes that cannot be mapped

2: for all vn ∈ Nbad do

3: C
N
S

(vn)← candidate nodes

4: for all n ∈ C
N
S

(vn) do

5: L
low

= {x : x has low priority than V N
rej
}

6: if capacity(L
low

) > required capacity then

7: Save (n, L
low

), for relocating later

8: end if

9: end for

10: fails if vn cannot be fixed

11: end for

bottlenecks – we reoptimize whenever a VN request gets rejected.

Algorithm 1, finds a list of virtual nodes that cannot be mapped, and for each

one of them it stores corresponding bottleneck substrate nodes. After detecting the

34

Algorithm 2 Detecting V-Links that cannot be mapped

1: L
bad

= { v : MaxFlow(v) < ReqCap(v) }
2: for all v ∈ Lbad do

3: repeat

4: for all e ∈MinCut(v) do

5: Llow = {x : x has low priority than V N
rej
}

6: Save (e, L
low

)

7: end for

8: until Capacity(MinCut(v)) < ReqCapacity(v)

9: fails if v cannot be fixed

10: end for

candidate substrate nodes for an unmapped virtual node, it determines whether

enough capacity can be salvaged on any of the candidate nodes or actually on L
low

.

L
low

is the set of virtual nodes of other VN requests with less priority than the

rejected VN request. If a single virtual node cannot be mapped we do not proceed

any further. Finally L
low

and associated substrate node n are stored for later use

in the relocation phase. The worst case running time of algorithm 1 is O(n2), but

on the average it would be much faster than that.

Next, we use algorithm 2 to determine the unmapped virtual links, L
bad

, and

corresponding bottleneck links. A virtual link is rejected if there is not enough

capacity between its two end nodes. The maximum flow from the source to the

sink2 and the minimum s-t cut can be computed in O(V 3) using the Edmond-Karp

maximum flow algorithm [24]. Algorithm 2 iterates through L
bad

and for every

virtual link it finds the minimum cut3. Re-assigning some virtual links on the

minimum cut can increase the maximum flow between source and sink. Note that

even if we made enough room in the first minimum cut it might still not guarantee

the required flow between the source and the sink. Since the minimum cut can

change over time, we have to iteratively compute the minimum cut. To keep the

running time of algorithm 2 small, we repeat this only a constant number of times.

Next we re-assign links in L
low

to free up some capacity on these links. If we fail

to map only a single virtual link; we can just reject this request immediately.

4.2.2 Nodes & Links Selection and Placement

2Source and Sink are the end nodes of the rejected virtual link
3for information on Max-Flow Min-Cut theorem, readers are referred to [24]

35

Algorithm 3 Relocating a Virtual Node

1: Qvn = v-nodes that are adjacent to vn

2: Cvn = candidate s-nodes for vn

3: status = false

4: for all n ∈ Csn do

5: status = true

6: for all v ∈ Qvn do

7: Map-Link(Substrate(v), vn)

8: if map fails then

9: status = false

10: break

11: end if

12: end for

13: if status then

14: Relocate vn to n

15: end if

16: end for

Algorithm 4 Reassigning a Virtual Link

1: R
E

(eS) = 0

2: (u, v) be the virtual nodes of eV

3: c = MaxFlow(u, v)

4: if c = 0 then

5: return false

6: end if

7: if ReqCap(eV) <= c then

8: Re-embed virtual link eV

9: else

10: Free c amount of flow from eS

11: Augment c amount of flow elsewhere

12: end if

13: Restore and Adjust RE(eS)

14: return true

Algorithm 3, relocates a virtual node vn which is currently mapped on a sub-

strate node sn to some other substrate node, provided all the virtual links incident

on vn can also be reassigned. Qvn is a set of virtual nodes adjacent to vn and

Cvn is a list of substrate nodes which are potential hosts for vn. Note that Cvn is

36

sorted according to the overhead cost. The algorithm iterates on Cvn and for every

substrate node n in Cvn , it checks whether it can map all the virtual links after

vn is relocated to n. If it can map all these links then vn can be relocated to the

substrate node used to map these links; finally, it relocates vn.

For reassigning a virtual link, algorithm 4 takes the virtual link e
V

which is

mapped to substrate link e
S
. First it sets the available bandwidth on e

S
to zero, so

that the freed capacity on e
S

is not allocated to e
V

, when e
V

is reassigned. It then

finds the maximum flow between the end nodes of e
V

and if it is zero than nothing

can be done. If the maximum flow is greater than the required bandwidth capacity

of the link e
V

then it just frees the old mapping of e
V

and remaps it again. If

the maximum flow is less than the required capacity then we can free c amounts of

capacity from e
S

and map c units of capacity elsewhere by using the computed flow.

Finally, we restore and adjust the freed bandwidth capacity on e
S

(which was set to

zero at the beginning). These link mappings should be done using topology-aware

LP formulation to keep the overhead cost of reassigning e
V

to a minimum.

37

Chapter 5

Evaluation

Our evaluation focuses primarily on quantifying the effectiveness of our techniques

when applied to the VN embedding algorithms in the existing literature. We classify

the previous VN embedding algorithms into several categories based on how they

map nodes and links, as done in [20]. We consider the following four algorithms in

our evaluation: D-ViNE and R-ViNE presented in [20] map nodes deterministically

and randomly, respectively; in both the algorithms, links are embedded using a

modified MCF. Zhu and Ammar [71] and Yu et al. [69] both use greedy node

mapping; for link embedding, the former uses shortest path algorithm, whereas the

latter uses multi-commodity flow. Hence, we use the term G-SP for algorithms of

Zhu and Ammar [71] and S-MCF for algorithms of Yu et al. [69], where G stands

for geedy, SP stands for shortest path, and MCF stands for multi-commodity flow.

5.1 Experimental Setup and Performance Met-

rics

We have extended the simulator of [20] to include our proposed techniques and

algorithms. We have used GT-ITM [70] for generating topologies for the underlying

substrate networks. Substrate networks in our experiments have 100 nodes and

around 400 links, on average. Node CPU capacities and link bandwidth capacities

are randomly chosen between 50 to 100. For VN requests, we used a similar setup as

previously used in [20, 71, 69]. VN requests arrive in a Poisson process with an inter-

arrival time of 20 time units. Lifetimes of the VN requests follow an exponential

distribution with mean 1000 time units. Virtual nodes for VN requests are chosen

uniformly between 5 to 10. CPU and bandwidth requirements are distributed

38

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pe
rc

en
t I

nc
re

as
e

in
 A

cc
ep

ta
nc

e
ra

tio

Duration of Experiments

R-ViNE
D-ViNE
G-MFC

G-SP

Figure 5.1: Improvement in Acceptance Ratio for Different Algorithms

uniformly between 0 to 20 and 0 to 50 respectively. The metrics we use to measure

performance in these experiments are increase in acceptance ratio, revenue-cost

ratio, incurred cost, and distribution of utilization of resources.

5.2 Evaluation Results

5.2.1 Improvement in Acceptance Ratio

In our first set of experiments, we compare the increase in acceptance ratios of all

the algorithms. As shown in Fig. 5.1, in steady state, our mechanisms improve

acceptance ratios by almost 40% for G-MCF and just below 35% for G-SP. For

D-ViNE and R-ViNE, the improvements are smaller but still a sizeable 17%. We

believe that the lower increase for D-ViNE and R-ViNE is due to the fact that they

already have much higher acceptance ratio than G-SP and G-MCF without the

proposed improvements [20].

39

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7

Fr
ac

tio
n

of
 A

cc
ep

te
d

V
N

-r
eq

ue
st

s

Revenue/Cost Ratio

R-ViNE
D-ViNE
G-MFC

G-SP

Figure 5.2: Revenue-Cost Ratio for Different Algorithms

5.2.2 Revenue/Cost Ratio

Next, in Fig. 5.2, we present the per request revenue/cost ratio for the compared

algorithms. We see here that quite a few observations are close to zero which is an

indication that those VN requests are being mapped to one or more very critical

links or nodes. On the average, the revenue/cost ratio of D-ViNE and R-ViNE is

slightly above 2 for 90% of the accepted VN requests, which is significantly higher

than that of G-SP and G-MCF. This shows that our techniques not only improve

the acceptance ratios (Fig. 5.1), but they also keep the revenue/cost ratio within

acceptable range (specially for D-ViNE and R-ViNE).

5.2.3 Acceptance Ratio vs Incurred Cost

An important factor in evaluating the effectiveness of our techniques is the cost

incurred by increasing the acceptance ratio. In Fig. 5.3, we have plotted the per-

centage increase in acceptance ratio against the percentage increase in cost for

making room for these VN requests. Here the incurred cost is the sum of the cost

of moving already embedded VN requests and accepting VN requests rejected ear-

lier. As shown in Fig. 5.3, the maximum increase in cost is close to 250%, but the

40

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

Pe
rc

en
t I

nc
re

as
e

in
 O

ve
rh

ea
d

C
os

t

Percent Increase in Acceptance Ratio

R-ViNE
D-ViNE
G-MFC

G-SP

Figure 5.3: Acceptance Ratio vs Incurred Cost

range of acceptance ratio improvement varies from 7− 77% for various algorithms.

For all the algorithms there are quite a lot of observations, where the incurred cost

is very low or even zero. This is because the VNs required to move to make room

for rejected VN requests have a lot of alternative embeddings of equal cost, and

hence incurred no additional cost.

5.2.4 Differentiating Resources

In Fig. 5.4, we have drawn the CDF of the scaling factors of all links and nodes for

R-ViNE [20] and R-ViNE incorporated with topology-aware embedding (hereinafter

referred to as “TA-R-ViNE”). The other algorithms, compared with their extended

versions, also show similar characteristics. SF is a good measure because it gives

an indication of potential bottlenecks; an SF value close to 1 means that a resource

is more likely to become a bottleneck. We can see here that TA-R-ViNE has

significantly fewer resources being indicated as bottlenecks than R-ViNE. With

TA-R-ViNE, only 15% resources have SF values above 0.4; whereas with R-ViNE,

it is almost 35%. This graph shows that topology-awareness plays a significant role

in identifying bottlenecks.

41

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

Fr
ac

tio
n

of
 R

es
ou

rc
es

Scaling Factor

TA R-ViNE
R-ViNE

Figure 5.4: CDF of SFs of all links and nodes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fr
ac

tio
n

of
 S

ub
st

ra
te

 L
in

ks

Average Link Utilization

TA-RViNE
RViNE

Figure 5.5: Average link utilization

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Fr
ac

tio
n

of
 S

ub
st

ra
te

 N
od

es

Average Node Utilization

TA-RViNE
RViNE

Figure 5.6: Average node utilization

5.2.5 Link and Node Utilization

A comparison between link utilization of TA-R-ViNE and R-ViNE is shown in

Fig. 5.5. It presents an average of multiple runs of carefully designed experiments

that ensured that both techniques could map the same VN requests. We can see

that for R-ViNE, almost 90% of the links are utilizing less than 25% of bandwidth,

whereas for TA-R-ViNE it is almost 80%. An explanation would be that these links

are alternative links to bottlenecks; hence they are used more often. We can also see

that TA-R-ViNE used almost 8% fewer substrate links than R-ViNE. In Fig. 5.6,

almost 50% of the nodes have less utilization than 50% of the nodes mapped by

TA-R-ViNE, but the other 50% have much higher utilization. This figure shows

that to avoid bottlenecks TA-R-ViNE has distributed load among nodes.

43

Chapter 6

Conclusions and Future Work

6.1 Contributions

While still in its infancy, Network Virtualization offers a lot of exciting challenges

that spread across multiple research areas. One of the major challenges, is to design

effective and efficient online VN embedding algorithms for network virtualization

environment. In this thesis, we have presented mechanisms for differentiating vari-

ous resources (links and nodes) according to their impact on the connectivity of the

substrate network, and their utilization coupled with the number of VNs utilizing

them. We have also proposed algorithms for re-optimizing the already embedded

VN requests in order to improve the overall acceptance ratio. Our techniques can

be easily integrated with existing VN embedding algorithms to improve their per-

formance.

Through simulation we have shown that our techniques significantly improve the

performance of existing algorithms in terms of increased acceptance ratio, revenue-

cost ratio, cost incurred by these techniques and load balancing based on critical-

ness of resources. From a practical as well as theoretical point of view, we show

that our techniques are sound, practical, and effective. Experimental results en-

dorse the fact that our techniques have enough potential to be seriously considered

as an integral part of any future VN embedding algorithm design. The performance

metrics we used to evaluate our techniques include improvement in acceptance ra-

tio, revenue-cost ratio, incurred cost, and distribution of utilization. Some exper-

imental results when our proposed techniques are incorporated are: (1) 17 − 40%

improvement in acceptance ratio for various VN embedding algorithms, (2) Rev-

enue/Cost ratio of 90% of accommodated VN requests is slightly above 2, and (3)

44

the maximum cost for accommodation is 250%.

Despite our efforts there are still some challenges that need to be addressed

before these techniques can be deployed in real world scenario. The following

section present some issues open for future research.

6.2 Limitations and Future Work

6.2.1 Stability Analysis

We currently assume that whenever a bottleneck node or a bottleneck link is fixed by

relocation, it will not result in a need for further relocations, since we are relocating

greedily. Before choosing the target virtual resources to relocate we calculate the

relocation cost of all candidate targets and we chose the one with the lowest cost.

To address this problem a threshold can be used to decide whether to proceed with

the relocation or just drop the request.

Furthermore, a more comprehensive approach to this problem would be to design

a relocation strategy which can ensure that equilibrium is reached with minimum

disruption. In this perspective a game theoretic approach can be used to model the

VNs currently as players whose objective is to optimize their respective embedding

by relocating their virtual resources to under utilized parts of the substrate network.

This however requires further investigation.

6.2.2 Graph Isomorphic Re-optimization

The idea of graph isomorphism and re-optimization of VNs seem to be naturally

related. Achieving optimization using graph isomorphism, for the sake of optimizing

the overall embedding of the VNs on a substrate network, is obviously an idea

worthy of a thorough analysis and comprehensive evaluation. On top of that,

if all the bottleneck VN collaborate and make as less disruption (relocation) as

possible then a scheme like this can ameliorate the performance and utilization

of the substrate network significantly. The major problem in pursuing this idea

would be the NP-hardness of the graph isomorphism problem. We can address

this problem using approximate algorithms. We can also rely on heuristics to limit

the search space of the problem and then try to solve it. However, decreasing the

search space might involve introducing more constraints on the virtual nodes and

45

virtual links. An obvious problem with introducing more constraints is that quite

a number of VN requests will get rejected resulting in a decrease in revenue.

6.2.3 Multi-Commodity Max-flow Min-cut Techniques

Bottleneck link detection was performed in our work using the seminal work of Ford

and Fulkerson [35]. They showed that for 1-commodity flow problems, the max-

flow and the min-cut are always equal. Leighton and Rao [46] present approximate

max-flow min-cut theorem for uniform multi-commodity flow problem. In a uniform

multi-commodity flow problem, every pair of nodes is a commodity and all the com-

modities have the same demand. They showed that in uniform multi-commodity

flow problems the max-flow is within a Θ(log n)-factor of the min-cut. They also

presented applications of the flow results regarding various network problems such

as path routing problem, network reconfiguration, and communication cost in dis-

tributed networks. These ideas can be helpful in the context of VN embedding. As

a future work, we would like to design more sophisticated bottleneck detection and

re-optimization techniques based on the theoretical results of Leighton and Rao

[46].

6.2.4 Distributed Topology-Aware VN embedding

An important direction for future research is to study how topology-awareness can

be incorporated in the distributed design of the VN embedding problem. Dis-

tributed approaches with their obvious benefits (i.e., reduced communication cost,

no single point of failure, parallel processing of multiple VN requests etc.) as com-

pared to centralized approaches are potential candidates for reconfiguration and re-

optimization of existing VN embeddings. A major obstacle in this regard, would be

the dynamic identification of bridges (cut edges) and articulation nodes (cut nodes)

in the substrate network. Ahuja and Zhu [3] presented an efficient algorithm for cut

nodes, cut edges, and biconnected components in asynchronous networks. In the

context of topology-awareness, what complicates the problem is the calculation of

scaling factors for all these nodes and edges. Recall that calculating scaling factor

(SF) also require a fraction of nodes in all created components. This may require

a distributed algorithm to keep track of the cut resources and all the components

they can form and the fraction of nodes these components can have. Unlike the

centralized version we studied in this thesis, this may add to the complexity of the

problem.

46

Another area of interest would be to study topology-awareness in wireless or ad

hoc settings. An important factor that SF should also depend on, in this setting,

would be the rate at which a particular resource goes down. It might be the

case that a highly critical resource might go down, over burdening a lot of other

critical resources. To prevent this scenario, the formulation of SF should be updated

accordingly and the SF should be directly proportional to the rate at which a

resources connects/disconnects.

6.3 Concluding Note

We have presented in this thesis a comprehensive approach to improve the per-

formance of the existing virtual network embedding algorithms by differentiating

substrate network resources and incorporating re-optimization mechanism. Our

mechanisms of topology-awareness and re-optimizing requires little modification to

previous virtual network embedding algorithms. Although there are still several

issues that need to be addressed, to the best of our knowledge we present a first

comprehensive approach to improving virtual network embedding by capitalizing

on topology-aware embedding and re-optimization mechanism. We envisage our

approach being implemented as an integral part of the virtual network embedding

design principals. In such a scenario, this will help Infrastructure providers to

increase their revenue while keeping the cost of embedding low.

47

APPENDICES

48

Appendix A

Enumerating all cut nodes

A

E

C

I

B

F

H

GE

J

Figure A.1: Enumerating all the cut-nodes

Let Gπ be any depth-first search tree (DFST) of the given graph G. When a

DFS is done on a graph, a DFS tree is obtained with the starting node as the root

of the tree. Every node can be labeled as the depth first number (DFN), which is

the order in which the DFS first visited this node. All the edges that are also in

the DFST are called tree edges and all the rest of the edges are called back edges.

Every root node of the sub-DFST, which is formed by a biconnected component

will be called the root of that component.

Some of the basic facts required to understand the algorithm are as follow.

• The root of Gπ is an articulation point of G iff it has more than one child.

• A non-root vertex v in Gπ is an articulation point of G iff v has a child w in

Gπ such that no vertex in subtree(w)1 is connected to a proper ancestor of v

1subtree(w) denotes the subtree rooted at w in Gπ

49

Algorithm 5 Enumerating all articulation nodes

Art-Node(v,u)

1: low[v]← DFN [v]← time← time+ 1

2: for all w 6= u s.t. (v, w) ∈ E do

3: if DFN [w] = 0 then

4: call Art-Node(w,v)

5: low[v]← min{low[v], low[w]}
6: if DFN [v] = 1 and DFN [v] 6= 2 then

7: print v is an articulation point

8: end if

9: if DFN [v] 6= 1 and low[w] ≥ DFN [v] then

10: print v is an articulation point

11: end if

12: else

13: low[v]← min{low[v], DFN [w]}
14: end if

15: end for

by a back edge.

• low[w] = min
{
DFN [w], DFN [w]

}
, where x has a back edge to some n s.t.

n in subtree(w)

• A non-root vertex v in Gπ is an articulation point of G iff v has a child w

such that low[w] ≥ DFN [v]

50

Appendix B

Enumerating all cut edges

A bridge is defined as an edge whose removal separates the graph into two discon-

nected components. This problem can be solved using the algorithm presented by

Tarjan [60]. Main observation is that an edge cannot be a bridge if it is contained

in a cycle. Its converse is also true, i.e. an edge that is not a part of a cycle is a

bridge. Bridges can be detected by the presence of the back edges. An edge, (u, v),

is a bridge iff neither v nor any of its children has a back edge to either u or any

of u’s ancestors. This problem can be solved in a single depth first traversal of the

graph. The running time of the algorithm given below is O(V E + V 2).

Algorithm 6 Enumerating all bridges

Detect-Bridges(u)

1: num← 0

2: low[u]← DFN [u]← time← num+ 1

3: for all u ∈ N do

4: if (u, v) ∈ E and DFN [u] == −1 then

5: call Detect-Bridges(v)

6: low[v]← min{low[v], low[w]}
7: if low[v] > DFN [u] then

8: print (u, v) is a bridge

9: end if

10: low[u]← min{low[u], low[v]}
11: else

12: low[u]← min{low[u], DFN [v]}
13: end if

14: end for

51

References

[1] Open signaling working group. 6

[2] M. Agrawal, S. R. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Seshan,

K. van der Merwe, and J. Yates. Routerfarm: towards a dynamic, manageable

network edge. In ACM SIGCOMM INM Workshop, pages 5–10, 2006. 32

[3] M. Ahuja and Y. Zhu. An efficient distributed algorithm for finding articulation

points, bridges, and biconnected components in asynchronous networks. In

Proceedings of the Ninth Conference on Foundations of Software Technology

and Theoretical Computer Science, pages 99–108, London, UK, 1989. Springer-

Verlag. 46

[4] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-

rithms, and Applications. Prentice Hall, February 1993. 19

[5] D. Andersen. Theoretical approaches to node assignment. 1, 11, 18

[6] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay

networks. In SOSP ’01: Proceedings of the eighteenth ACM symposium on

Operating systems principles, pages 131–145, New York, NY, USA, 2001. ACM.

7

[7] D. G. Andersen. Mayday: Distributed Filtering for Internet Services. In 4th

Usenix Symposium on Internet Technologies and Systems, Seattle, WA, March

2003. 7

[8] T. Anderson, L. Peterson, S. Shenker, and J. Turner. Overcoming the internet

impasse through virtualization. Computer, 38(4):34–41, April 2005. 1, 5, 6, 7

[9] L. Andersson and T. Madsen. Provider provisioned virtual private network

(vpn) terminology. RFC 4026, 2005. 6

52

[10] L. Andersson and E. Rosen. Framework for Layer 2 Virtual Private Networks

(L2VPNs). RFC 4664, 2006. 6

[11] B. Augustin, X. Cuvellier, B. Orgogozo, F. Viger, T. Friedman, M. Latapy,

C. Magnien, and R. Teixeira. Avoiding traceroute anomalies with paris tracer-

oute. In Internet Measurement Conference, pages 153–158, 2006. 22

[12] W. Augustyn and Y. Serbest. Service requirements for layer 2 provider-

provisioned virtual private networks. RFC 4665, 2006. 6

[13] I. Avramopoulos, D. Syrivelis, J. Rexford, and Spyros L. Secure availabil-

ity monitoring using stealth probes. Technical report, Princeton University

Technical Report TR-769-06, 2006. 22

[14] D. Benhaddou and W. Alanqar. Layer 1 virtual private networks in multido-

main next-generation networks. Communications Magazine, IEEE, 45(4):52–

58, April 2007. 6

[15] R. Callon and M. Suzuki. A framework for layer 3 provider-provisioned virtual

private networks (ppvpns). RFC 4110, 2005. 6

[16] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente,

and D. Villela. A survey of programmable networks. SIGCOMM Comput.

Commun. Rev., 29(2):7–23, 1999. 6

[17] M. Carugi and D. McDysan. Service requirements for layer 3 provider-

provisioned virtual private networks (ppvpns). RFC 4031, 2005. 6

[18] Y. Chawathe, S. McCanne, and E. A. Brewer. Rmx: Reliable multicast for

heterogeneous networks. In IN PROC. IEEE INFOCOM, pages 795–804, 2000.

7

[19] N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network

virtualization. Computer Networks (In press), 2010. 1, 7

[20] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, and Raouf

Boutaba. Virtual network embedding with coordinated node and link map-

ping. In IEEE INFOCOM, 2009. 1, 2, 13, 18, 19, 20, 24, 29, 31, 38, 39,

41

[21] Y. Chu, S. G. Rao, S. Seshan, and H. Zhang. A case for end system multicast.

In in Proceedings of ACM Sigmetrics, pages 1–12, 2000. 7

53

[22] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm

for matching large graphs. In In: 3rd IAPR-TC15 Workshop on Graph-based

Representations in Pattern Recognition, Cuen, pages 149–159, 2001. 19

[23] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area

cooperative storage with CFS. In Proceedings of the 18th ACM Symposium

on Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff,

Canada, October 2001. 7

[24] R. Diestel. Graph theory. Springer-Verlag, New York, 1997. 14, 35

[25] E. A. Dinic. Algorithm for solution of a problem of maximum flow in a network

with power estimation. Soviet Math. Doklady, 11(1277-1280), 1970. 15

[26] J. Edmonds and R. M. Karp. Theoretical improvements in the algorithmic

efficiency for network flow problems. Journal of the ACM, 19:248–264, 1972.

15

[27] D. Eppstein. Finding the k shortest paths. In Proc. 35th Symp. Foundations

of Computer Science, pages 154–165. IEEE, November 1994. 19, 22

[28] D. Eppstein. Finding the k shortest paths. SIAM J. Computing, 28(2):652–673,

1998. 19, 22

[29] H. Eriksson. Mbone: the multicast backbone. Commun. ACM, 37(8):54–60,

1994. 7

[30] S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multi-

commodity flow problems. SIAM Journal on Computing, 5(4):691–703, 1976.

15

[31] J. Fan and M. Ammar. Dynamic topology configuration in service overlay

networks: A study of reconfiguration policies. In IEEE INFOCOM, 2006. 18,

19

[32] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in your spare

time. ACM SIGCOMM Computer Communication Review, 37(1):61–64, 2007.

6

[33] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford. Netscope:

traffic engineering for ip networks. Network, IEEE, 14(2):11–19, Mar/Apr

2000. 22

54

[34] P. Ferguson and G. Huston. What is a vpn? Technical report, Cisco Inc.,

1999. 6

[35] L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956. 15, 46

[36] A. V. Goldberg. A new max-flow algorithm. Technical report, MIT Tehnical

report MIT/LCS/TM-291, 1985. 15

[37] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow

problem. Journal of the ACM, 35:921–940, 1988. 15

[38] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener. Provisioning a

virtual private network: A network design problem for multicommodity flow.

In ACM STOC, pages 389–398, 2001. 20

[39] A. Haider, R. Potter, and A. Nakao. Challenges in resource allocation in

network virtualization. 20th ITC Specialist Seminar, 2009. 20, 22

[40] I. Houidi, W. Louati, and D. Zeghlache. A distributed virtual network mapping

algorithm. In IEEE ICC, pages 5634–5640, 2008. 1, 2, 19, 31

[41] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek, J. W. O’Toole,

Jr., M. Frans, and K. James. Overcast: Reliable multicasting with an overlay

network. pages 197–212, 2000. 7

[42] A. V. Karzanov. Determining the maximal flow in a network by the method

of preflows. Sov. Math. Dokl, 1974. 15

[43] A. D. Keromytis, V. Misra, and D. Rubenstein. Sos: Secure overlay services.

In In Proceedings of ACM SIGCOMM, pages 61–72, 2002. 7

[44] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, Number 4598, 13 May 1983, 220, 4598:671–680, 1983. 19

[45] B. Krishnamurthy, C. Wills, and Y. Zhang. On the use and performance

of content distribution networks. In IMW ’01: Proceedings of the 1st ACM

SIGCOMM Workshop on Internet Measurement, pages 169–182, New York,

NY, USA, 2001. ACM. 7

[46] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and

their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.

46

55

[47] J. Lischka and H. Karl. A virtual network mapping algorithm based on sub-

graph isomorphism detection. In ACM SIGCOMM VISA Workshop, pages

81–88, 2009. 19, 24

[48] J. Lu and J. Turner. Efficient mapping of virtual networks onto a shared

substrate. Technical Report WUCSE-2006-35, Washington University, 2006.

1, 2, 18, 19, 20, 24, 31

[49] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and

comparison of peer-to-peer overlay network schemes. Communications Surveys

& Tutorials, IEEE, 7(2):72–93, March 2006. 7

[50] D. Niculescu. Survey of active network research. 6

[51] R. Ricci, C. Alfeld, and J. Lepreau. A solver for the network testbed mapping

problem. ACM SIGCOMM CCR, 33(2):65–81, April 2003. 20

[52] E. Rosen. BGP/MPLS IP Virtual Private Networks (VPNs). RFC 4365, 2006.

6

[53] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. RFC 2547, 1999. 6

[54] S. Savage, A. Aggarawl T. Anderson, T. Anderson, A. Aggarwal, D. Becker,

N. Cardwell, A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and

J. Zahorjan. Detour: a case for informed internet routing and transport. IEEE

Micro, 19:50–59, 1999. 7

[55] A. Schrijver. Theory of Linear and Integer Programming. John Wiley Sons,

Inc. New York, NY, USA., 1998. 19

[56] D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. In

STOC ’81: Proceedings of the thirteenth annual ACM symposium on Theory

of computing, pages 114–122, New York, NY, USA, 1981. ACM. 15

[57] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz. Overqos: offering

internet qos using overlays. SIGCOMM Comput. Commun. Rev., 33(1):11–16,

2003. 7

[58] W. Szeto, Y. Iraqi, and R. Boutaba. A multi-commodity flow based approach

to virtual network resource allocation. In IEEE GLOBECOM, pages 3004–

3008, 2003. 20

56

[59] T. Takeda. Framework and requirements for layer 1 virtual private networks.

RFC 4847, 2007. 6

[60] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160, 1972. 27, 51

[61] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J.

Minden. A survey of active network research. IEEE Communications Maga-

zine, 35:80–86, 1997. 6

[62] D. L. Tennenhouse and D. J. Wetherall. Towards an active network architec-

ture. Computer Communication Review, 26:5–18, 1996. 6

[63] Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal,

Ian Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent sys-

tems approach to autonomic computing. Autonomous Agents and Multiagent

Systems, International Joint Conference on, 1:464–471, 2004. 19

[64] J.S. Turner and D.E. Taylor. Diversifying the Internet. In IEEE GLOBECOM,

volume 2, 2005. 5, 6

[65] Y. Wang et al. Virtual routers on the move: Live router migration as a

network-management primitive. ACM SIGCOMM, (231–242), 2008. 31

[66] E.W.M. Wong, A.K.M. Chan, and T.-S.P. Yum. A taxonomy of rerouting in

circuit-switched networks. Communications Magazine, IEEE, 37(11):116–122,

Nov 1999. 21

[67] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Black-box and gray-

box strategies for virtual machine migration. In USENIX NSDI, 2007. 22

[68] A. A. Youssef. A survey of active networks. Technical report, University of

Maryland, Computer Science Department; CS-TR-4422, 2002. 6

[69] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual network embed-

ding: substrate support for path splitting and migration. SIGCOMM CCR,

38(2):17–29, 2008. 1, 2, 13, 18, 19, 21, 22, 23, 24, 29, 31, 38

[70] E. Zegura. How to model an Internet. In IEEE INFOCOM, pages 594–602,

1996. 38

57

[71] Y. Zhu and M. Ammar. Algorithms for assigning substrate network resources

to virtual network components. In IEEE INFOCOM, pages 1–12, April 2006.

1, 2, 13, 18, 19, 21, 22, 24, 31, 32, 33, 38

58

	List of Tables
	List of Figures
	Introduction
	Introduction
	Problem Statement
	Objectives
	Contributions
	Thesis Organization

	Background
	Network Virtualization Environment
	History of Network Virtualization
	Business Model & Roles
	Example of an NVE

	VN Embedding Problem
	Network Model

	Graph Theory Preliminaries
	Cut vertices and Cut edges:
	Maximum Flow and Minimum Cut:
	Multi-Commodity Flow Problem:

	Terminology

	Related Work
	Static VN Embedding Approaches
	Two Stage Solutions
	Single Stage Solutions
	Links Only Embedding

	Dynamic VN Re-optimization Approaches
	Selective Reconfiguration
	Path Splitting & Migration

	Topology Awareness and Re-optimization
	Topology-Aware Embedding
	Critical Index
	Popularity Index
	Scaling Factor

	Re-optimizing Bottleneck Embeddings
	Detecting Bottleneck Nodes and Links
	Nodes & Links Selection and Placement

	Evaluation
	Experimental Setup and Performance Metrics
	Evaluation Results
	Improvement in Acceptance Ratio
	Revenue/Cost Ratio
	Acceptance Ratio vs Incurred Cost
	Differentiating Resources
	Link and Node Utilization

	Conclusions and Future Work
	Contributions
	Limitations and Future Work
	Stability Analysis
	Graph Isomorphic Re-optimization
	Multi-Commodity Max-flow Min-cut Techniques
	Distributed Topology-Aware VN embedding

	Concluding Note

	APPENDICES
	Enumerating all cut nodes
	Enumerating all cut edges
	References

