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Abstract 

There are several advantages to replacing CNC machinery with robotic machine tools and as 

such robotic machining is emerging into the manufacturing and metal cutting industry. There 

remain several disadvantages to using robots over CNC stations primarily due to flexibility in 

robotic manipulators, which severely reduces accuracy when operating under high machining 

forces. This flexibility is dependent on configuration and thus the configuration can be 

optimised through posture selection to minimise deflection. In previous work little has been 

done to account for operating frequency and the additional complications that can arise from 

frequency dependent responses of robotic machine tools. 

A Fanuc S-360 manipulator was used to experimentally investigate the benefits of including 

frequency compensation in posture selection. The robot dynamics first had to be identified and 

experimental modal analysis was selected due the inherent dependency on frequency 

characteristics. Specifically, a circle fit operation identified modal parameters and a least 

squares optimisation generated dynamic parameters for a spatial model. A rigid-link flexible-

joint model was selected and a pseudo-joint was used to create an additional DOF to 

accommodate link flexibility. 

Posture optimisation was performed using a gradient-descent algorithm that used several 

starting points to identify a global minimum. The results showed that a subset of modal data 

that excluded the mode shape vectors could be used to create a model to predict the 

manipulator vibration response. It was also found that the receptance variation of the 

manipulator with configuration was insufficient to verify the optimisation throughout the entire 

selected workspace; however the model was shown to be useful in regions containing multiple 

peaks where the modelled dynamics were dominant over the highly volatile measured data. 

Simulations were performed on a redundant planar manipulator to overcome the lack of 

receptance variation found in the Fanuc manipulator. These simulations showed that there were 

two mechanisms driving the optimisation; overall amplitude reduction and frequency specific 

amplitude reduction. Using a stiffness posture measure for comparison, the results of the 

frequency specific reduction could be separated and were found to be particularly beneficial 

when operating close to resonant frequencies. 
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Chapter 1 Introduction 

1.1 Overview 

While strict definitions for industrial robots and robots in general are still quite vague, they are 

generally considered to be machines as shown in Figure 1.1. The first industrial robot is 

considered to be the Unimate created by George Charles Devol in 1954 [1]. The Unimate was a 

reprogrammable six axis serial manipulator using hydraulic actuators and was first used in 

industry in 1961 for die cast handling by General Motors. Since then, the use of industrial 

robots has expanded to include an extremely wide variety of applications ranging from 

assembly [2] to neurosurgery [3] to laser welding [4] to theme park rides [5]. In manufacturing 

and materials handling this expanding use of industrial robots has allowed the removal of 

humans from hazardous working environments and has allowed the manufacturing industry to 

perform repetitive operations automatically, at high speeds, and with higher precision than 

human operators are capable of. The combination of these factors has resulted in an 

improvement in productivity [6]. The hazardous working environments include dusty working 

conditions and handling dangerous materials as well as tasks that lead to repetitive motion 

injury.  

 

Figure 1.1: ABB IRB 6660 Industrial Manipulator [7] 

 

Robotic systems have also branched out into material removal process applications, such as 

grinding [8], die polishing [9], routing [10], and rapid prototyping and machining systems [11]. 

Though initially limited to softer materials such as wax and foam with poor accuracy of the 
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finished part [12], these systems are beginning to expand into harder materials such as 

aluminium and higher precision parts as the understanding of their limitations and thus the 

ability to compensate for the robot‟s limitations increases [13]. 

As technology advances to satisfy the desire for more accurate machining, full CNC machining 

centres are designed and created with precision that often surpasses the requirements for a 

given part. By using components of this developing technology such as higher order smooth 

trajectory planning [14] or adaptive control laws [15], less precise machines such as robotic 

machining systems can be used in place of traditional CNC machines for less demanding 

applications such as grinding, pre-machining, and machining of high tolerance or low precision 

parts. 

The trend towards machining technology can be seen from the 2005 announcement of a 

partnership between KUKA robotics and Delcam Inc to interface CAD/CAM software and a 

robot controller [16] in order to facilitate implementation of industrial robots for machining 

applications. This is followed by ABB‟s IRB 6660 manipulator, which was released in 2008 

[17] and marketed as a pre-machining robot. Many manufacturing companies already have 

robots on site for changing cutters for conventional CNC machine tools and are, therefore, 

familiar with robots and their capabilities. In these cases, the cost of an additional robot when 

switching from conventional CNC to robotic machining is removed and operator training is 

reduced. 

The use of robots for manufacturing is still a developing field and as such there are many 

restrictions that need to be addressed. One of the primary concerns is the flexibility inherent in 

the machines themselves and the displacements caused when a machining force is applied to 

the end-effector. The problem addressed herein is that of vibrations in robotic machining. The 

dynamic properties of a robotic machining system are configuration dependent, and thus, can 

be adjusted through various optimisation methods to improve the vibration resistance of the 

system. This will enable robotic machining to improve surface finish and tolerances further and 

expand the range of applications for these systems. 

This thesis will address the issue of vibrations resulting from robotic machining by 

investigating the use of posture selection for optimisation of the machining systems dynamic 
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characteristics. The objective is to construct a desirable frequency response function that will 

minimise the vibration response of the system. Literature will be reviewed for robotic 

machining, flexibility modelling, posture selection, and control compensation. 

1.2 Robotic Machining 

Robotic machining began as low cost machining of soft materials as a way to implement and 

verify tool path generation algorithms such as the face sculpting system designed by Ko et al. 

[18]. This system extracted facial features that it could then manipulate to show facial 

expressions before machining them into soft material. Tangelder and Vergeest [11] attempted 

to use robotic systems to improve CNC based prototyping for applications not well suited to 

rapid prototyping machines based on curing polymer resins in layers. Whereas CNC had the 

advantage over alternative technologies in terms of speed, range of materials, and cost among 

others, robotic systems also offered larger workspaces and the potential for increased 

complexity of parts, which were noted as desirable traits in a prototyping system. This gave 

CAD users an additional prototyping tool that could support non-uniform rational B-splines 

(NURBs). In order to meet the dimensional requirements of their system, a serial industrial 

manipulator was mounted next to a turntable, which held the part as it was machined from 

foam stock material. Song and Chen [19] later developed a robotic machining centre comprised 

of a serial manipulator mounted on a track and a stationary workpiece. This gave a very large 

work space of 4𝑚 × 2𝑚 × 2𝑚. The complete system was able to extract surface features from 

a three dimensional model and generate tool paths using polyhedron and quadratic primitives 

as well as NURBS. The tool path planning also considered gouging and collision detection. 

Although developed as platforms for path planning research, these systems further 

demonstrated the value of robotic systems in rapid prototyping and the use of redundancy to 

generate large workspaces. Huang and Lin [12] created a dual robot work cell to overcome 

potential problems with single robot machining systems, namely that the tool may not reach all 

sides of the workpiece and that there may be small areas that cannot be machined since they 

are close to singular points. This system could be configured with a part holding robot and a 

machining robot or with a fixed part and two machining robots working to complete the 

machining tasks. 
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As research into robotic rapid prototyping progresses, some researchers are looking at using 

robotic machining systems for fabrication of final parts and metal cutting realising that the 

advantages of robotic systems over traditional CNC for rapid prototyping are generally 

preserved for final part production. Matsuoka et al. [20] investigated machining aluminium 

with a single articulated robot as opposed to a traditional CNC fluting machine. They found 

that at very high spindle speeds (100,000rpm) the robotic systems exhibited less vibration due 

to their natural frequencies being much lower than the machining speed. Conversely, the 

natural frequency of the CNC machine was closer to the spindle speed and resulted in more 

vibrations. Similarly, Coole et al. [21] developed a method to convert CAM data to multiple 

smaller robot controller language files. They were then able to directly compare the surface 

finish and final dimensions of plaster machined by both a robotic machining system and a 3-

axis CNC machine showing that for plaster machining the robotic system performed slightly 

better over a range of feed speeds and cutter types. This group then went on to identify feed 

rate and manipulator arm extension as key contributors to surface finish and dimensions [22]. 

In metal cutting, researchers at the Stevens Institute of Technology in conjunction with 

researchers from ABB Inc. began investigations into machining and pre-machining aluminium 

parts [23]. They found that while the flexibility of the robotic systems was in some ways 

limiting, it could be compensated for to produce improved results by modelling the deflection 

of the cutting tool and including joint position compensation based on the measured force 

acting on the tool. This group also investigated the chatter mechanism in robotic machining 

[13] and developed stability criterion for robotic end milling. Also in metal working, Dimo et 

al. [24] investigated a stiffness posture measure optimisation to reduce vibrations in a 

redundant grinding robot based on minimising the displacement for a given load. This used a 

minimum norm deflection solution and did not consider the frequency effect of the excitation. 

Robotic machining is desirable in place of traditional CNC machines for applications where the 

dimensional and finish tolerances of the part are less demanding. The advantages of robotic 

machining systems over traditional CNC machines include a larger work envelope for a given 

floor space, lower capital cost, and higher suitability to machine complex shapes [19]. 

However, these advantages come at a price. The primary disadvantage of robotic machining is 

the flexibility inherent in the physical machines. This flexibility results in a greater inaccuracy 

in the finished part due to deflections at the end-effector. The deflections caused by structural 
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flexibility also reduce the finish of the part as they allow vibrations to propagate through the 

structure and create low frequency resonances that are generally less heavily damped than the 

equivalent high frequency resonances associated with CNC machines [25]. Due to this 

restriction, robotic machining systems are limited to softer materials such as foam, wood, wax, 

and plastic [19, 26]. Softer materials require lower machining forces and as such will cause 

smaller deflections and have less impact on the final dimensions of a part. These systems are 

effective for rapid prototyping, but not for full production where harder materials such as 

aluminium and steels are used. It is therefore desirable to expand robotic manufacturing to 

finished products and harder materials thereby reducing the cost associated with high precision 

CNC equipment.  

1.3 Flexibility Modelling and Harmonic Drives 

To compensate for the deflections and vibrations that occur in machining, the behaviour must 

first be modelled. Once this is achieved, corrections can be achieved through controller design 

or posture optimisation of redundant systems. Posture selection can also be applied to non-

redundant manipulators if the end-effector location is not restricted. Robotic machining 

systems are primarily modelled as rigid-link flexible-joint systems as proposed by Spong [27]. 

The flexibility of industrial manipulators has been experimentally shown to exist primarily in 

the joints [23, 28-31]. The flexibility is therefore enhanced by the cantilever structure of serial 

robots and as such is difficult to significantly reduce. This structure potentially amplifies joint 

forces, which exploit any flexibility in the joints. In essence, this means that the greater the 

advantage in workspace when compared to CNC machines, the greater the penalty in 

flexibility. Although CNC machining systems also suffer from decreased accuracy with 

increased degrees of freedom [32], the structural nature of CNC machines decouples the axes 

where possible reducing these effects relative to serial robots. One of the main causes of this 

flexibility is the use of harmonic drives [33], which predominate in industrial manipulators. 

Harmonic drive gear systems are well suited to industrial manipulators since they can give very 

high gear ratios without the space requirements of epicyclic gearing systems and have very 

little backlash [34]. This allows the machines to exert larger forces and manipulate larger 

payloads. 
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Harmonic drives, shown in Figure 1.2, compose of a wave generator, a flex-spline, and a 

circular spline. The wave generator is a non-circular disc that rotates inside the flex-spline and 

causes it to deform. As the flex-spline is deformed, the teeth on the outer edge of the major 

axis contact the teeth on the inside edge of the circular spline. Then as the major axis rotates 

with the wave generator, the contacting teeth move around the circular spline. The flex-spline 

has fewer teeth than the circular spline and as such when the wave generator has performed a 

full rotation, the flex-spline has rotated slightly in the opposite direction to match the number 

of teeth in the circular spline. This is similar to a single planetary gear running around an 

annulus in a conventional epicyclic gearing system. For a high number of teeth, this gives 

extremely large reduction ratios. The flexibility comes from the flex-spline which is, by 

necessity, flexible [35]. The models range from more complex systems such as stiffening 

spring models with a parallel hysteresis element in [36] to the more commonly used linear 

spring element. 

 

Figure 1.2: Harmonic Drive Components [37] 

 

1.4 Redundancy and Posture Selection 

Posture selection is the identification of manipulator joint angles to achieve a desired robot 

configuration. A simple example is position and orientation of the end-effector. In the case of 

an 𝑛 degree of freedom (DOF) manipulator in 𝑛 dimensional space, there is generally only one 

available configuration that meets this requirement. If the desired position is outside the 

dexterous workspace then there are no configurations and a minimum error configuration will 

likely be used. For a redundant robotic system such [19, 24], there may be multiple 
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configurations that meet the position and orientation requirements, thus the system‟s 

redundancy can be used to satisfy other metrics to perform a set task such as optimising 

kinematic or dynamic properties. Often termed “task compatibility”, this field of research was 

pioneered in 1985 by Yoshikawa with the definition of manipulability ellipsoids [38]. This was 

related to robotic tasks by Chiu in 1988 [39] for force or velocity dependent tasks maximising 

either magnitude or accuracy. It was then expanded to multiple armed systems in 1991 [40] for 

cooperative task completion and then to polytopes for redundant manipulators in 1997 [41] by 

Chiacchio et al. Walker [42] developed further dynamic posture measures to provide task 

compatibility where impacts occurred. By adjusting the manipulability, manipulating force, 

dynamic impact, generalised impact, or the dynamic manipulability measures, the impact 

response of the system could be altered. Young et al. [43] also proposed several posture 

measures as the kinematic, dynamic, and energy measures for a peg-in-hole task. The task was 

decomposed into stages and each section considered different optimisation parameters to 

generate more optimal kinematic or dynamic configurations. Owen et al. [44] used posture 

measures to prevent quasi-static deflection in robotic sculpting of a two-armed flexible-joint 

manipulator system. Other optimisations for redundant manipulators include kinetic energy 

reduction [45], obstacle avoidance [46], joint limit avoidance [47], singularity avoidance [48], 

and torque minimisation [49]. Kazerounian and Wang [50] developed a method to compare the 

local optimisation to global optimisation for joint rate optimisation using calculus of variations. 

1.5 Control Methods 

Active control for non-redundant industrial manipulators considering flexibility has been 

investigated by a myriad of authors to improve tracking errors caused by both payload/gravity 

deflections and vibrations. Lim et al. [51] used a partial state feedback controller and an 

observer to reduce tracking errors. The control strategy relies on measurements of both the link 

position and the actuator position to determine error in the observer. Spong developed several 

controllers using a nonlinear coordinate transformation to achieve global feedback linearization 

and corrective control to constrain the manipulator to an integral manifold [27] as well as 

developing adaptive control techniques [52] based on the adaptive sliding mode controllers 

designed by Slotine and Li [15] for rigid systems. In a similar upgrade of previously designed 

controllers, Bridges and Dawson redesigned a saturation based controller to incorporate the 

specific properties of harmonic drives [34]. Lozano and Brogliato developed an adaptive 
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controller that utilised the passive properties of flexible-joint manipulators [53] and compared 

the tracking results of several other families of controllers [54]. They concluded that it is more 

practical to view a flexible manipulator as perturbation of a rigid manipulator and that there 

was a need for globally stable control schemes that incorporated the Coriolis matrices. A 

comparative study of flexible-joint controllers has also been carried out by de Queiroz et al. 

[55] with particular focus on comparing full and reduced order model based controllers. 

Waibel and Kazerooni developed stability conditions for a compliance controller using force 

feedback [56], and Salisbury developed an active control strategy for Cartesian space stiffness 

[57] where the joint torques were used to create a six DOF Cartesian spring at the wrist. 

Though effective, these control systems are all based on command compensation and measured 

or observed feed back and do not use the redundancy of the robot to adjust physical 

parameters. Specifically, the Cartesian mass, stiffness, and damping are not optimised. They 

would therefore benefit from a path planning algorithm that minimised deflection or vibration 

susceptibility allowing increased gains and tighter bounding conditions on disturbances. 

Combining the redundancy optimisation algorithms discussed in the previous section with the 

control algorithms above can potentially increase the capabilities of robotic machining to 

compete with CNC machining systems in a wider range of production and fabrication tasks. 

Deflection compensation and vibration suppression have also been heavily investigated for 

flexible-link rigid-joint and flexible-link flexible-joint robots with the intention of creating 

lighter, faster robots to carry out pick and place tasks more accurately and to generate a better 

payload to weight ratio for applications such as manipulation in outer space. Wang investigated 

several control strategies for controlling several types of manipulators with a single flexible 

link including fuzzy logic [58], input shaping [59], and passive control [60]. Yue has 

investigated actively controlling the system to nullify end-effector vibrations [61] and residual 

vibrations [62] through predictions of the structural dynamics for flexible-link flexible-joint 

robots. The technique used requires very accurate models of the system and assume uniform 

bending in the links. Yue also considered the effects of using posture measures developed for 

rigid-link robots on flexible-link manipulators [63, 64]. Luo [65] used shear force feedback to 

reduce both tracking error and end-effector vibrations. Konno et al. investigated flexible-link 

controllability [66] and vibration suppression control using configuration dependant gains for 

pole placement [67]. Wang and Mills [68] developed a modal controller that looked at the 
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mode shapes excited in a single link with an array for sensors and used multiple actuators to 

create negative interference. Zhang and Yu [69] used the redundancy to control the initial 

configuration and self motions of a flexible-link manipulator to reduce the end-effector 

tracking error. Despite the efforts in controlling vibrations in robotic systems, the majority of 

this work has ignored the case of external excitation in favour of controlling self excited 

vibrations. When dealing with machining systems however, the excitation is primarily derived 

from environment interactions. 

1.6 Objectives 

When machining, there are optimum speeds that are chosen based on the power available in the 

machine [70]. The spindle and feed speeds are generally dictated by the material being cut, the 

type of cutter, and chip thickness (which corresponds to finish). The rates can then be 

maximised by adjusting the tool diameter to utilise as much of the available power in the 

machines as is plausible and thus produce parts quickly and effectively to the standards 

required [71]. In a production environment, particularly for harder materials, tool life and 

material removal rates also need to be considered [72]. When machining softer metals such 

aluminium, higher speeds are normally used [72]. In high speed machining and into very high 

speed and even ultra high speed machining spindle speeds seldom exceed 50,000rpm and are 

often limited by application, such as the auto industry‟s limit of 15,000rpm to reduce downtime 

[72]. This means that the frequency of excitation for vibration is dependent on the material and 

the cutting process variables and needs to be determined for each individual operation. The 

resistance to quasi-static machining forces can be optimised through various redundancy 

optimisation techniques listed earlier, however the problem of maximising stiffness has 

focused on the static case. As such, although vibrations have been investigated in some cases 

for redundant industrial systems, such as the grinding machine in [24], the techniques 

employed to date have all involved a maximisation of static stiffness. No consideration has yet 

been given to optimising posture based on the excitation frequency. 

The first objective of this thesis is to develop a dynamic model of an industrial robotic 

manufacturing system that can be quickly parameterised and is complex enough to contain the 

dominant dynamics of the true mechanical system. This model will be able to predict the 

frequency dependent behaviour of the manipulator in a given configuration. Additional 
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components added to the model will create unnecessary complexity that will likely amplify any 

errors in the experimental data whereas the identification of a simpler model will be more 

robust to such errors. However, if the model is oversimplified, then the model will be 

insufficient to capture the full dynamics of the system.  

 

Once a model has been identified, the second objective is to identify the systems dynamic 

parameters (mass, stiffness, and damping characteristics) using techniques that will not require 

excessive machine down time or invalidate any manufacturer warrantee. As such, any 

disassembly of the robot is to be avoided. This will allow the optimisation algorithm to be used 

with existing machinery that has not been previously parameterised. When producing industrial 

manipulators, manufacturers seldom provide the dynamic properties of the robotic systems 

they produce [73]. Even with an accurate CAD model, which is also seldom available and 

difficult to generate without limited disassembly, it is extremely difficult to accurately predict 

the dynamic response of the robot to a force input. For this reason, it is essential that an 

accurate model can be built from measurements made without prior knowledge of the system. 

This model will not necessarily give physically meaningful parameters due to the assumptions 

and simplifications necessary to keep the complexity of the model low and to compensate for 

nonlinearities. The goal of the model is to accurately predict the dynamic response of the 

system to periodic excitation and as such the identified parameters do not need to be physically 

meaningful. 

Finally, the main objective of this work is to design an optimisation algorithm based on the 

developed model that will increase the end-effectors resistance to a known applied oscillating 

force relative to a machining surface. This will enable the robotic system to produce parts to 

tighter tolerances and to machine harder materials that will exert higher forces on the tool tip. 

By using a redundant system, the optimisation can be superimposed on the relative tool path of 

the tool tip with respect to the workpiece. This can be integrated into existing systems by 

passing a tool trajectory in joint space rather than in Cartesian space and will not necessitate 

the invasive changes required to update a control law. In addition, should a control law or path 

planning update be desirable, the optimisation can be combined with both of these updates 

without losing relevance or validity. It is necessary to verify the results of the optimisation 

through simulation and testing. 
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This thesis describes the modelling and identification of a Fanuc S-360 industrial manipulator 

and the development of a positioning algorithm to increase resistance to machining vibrations 

along a known Cartesian axis at a known frequency.   

1.7 Contributions and Thesis Overview 

1.7.1 Contributions 

The contributions of this thesis outline a configuration optimisation for industrial robotic 

machining systems that will allow them to cut harder materials with increased resistance to 

vibrations. The first contribution is the development of a method of model identification that 

can be applied to a range of manipulator types without requiring invasive signal measurements 

or manipulator disassembly. This removes manipulator down time as the experimental work 

can be done in a comparably short period of time and allows parameter identification without 

needing to understand the signal encoding of the robot being identified. The second, and most 

significant, contribution is an investigation into the benefits of using the frequency dependent 

receptance of the manipulator end effector as a posture measure to reduce vibrations. The 

inclusion of these effects in the optimisation is an improvement over the static load based 

optimisation as the effects of resonances and anti-resonances are included. The final 

contribution is a proposed method to extend the method investigated into multiple axes and for 

an enlarged configuration space. It is expected that this proposed method will increase the 

accuracy and effective range of the identified model used for optimisation. These 

developments will contribute to the continued expansion of robotic machine tools into material 

removal applications. 

1.7.2 Thesis Overview 

Chapter 2 - System Modelling and Parameterisation 

Chapter 2 shows the formulation of the dynamic model used for the system and the 

identification process used to parameterise the model as well as the underlying theory behind 

the practice of modal analysis. A qualitative analysis of the system behaviour is offered to 

verify the assumptions used in the model followed by a detailed modal analysis 

parameterisation using a circle fit technique. The identified modal parameters are then used to 
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generate a set of dynamic parameters able to reconstruct the measured frequency response of 

the end-effector at various configurations. 

Chapter 3 - Optimisation Results and Simulations 

Chapter 3 details the optimisation techniques and objective functions used for the posture and 

frequency selection of the Fanuc S-360 manipulator. The predicted and measured results are 

compared and the values of the optimisations are determined. The extension to a redundant 

manipulator is then explored through simulations and the mechanisms used by the optimisation 

are identified. The effects of including frequency response as opposed to a static stiffness 

optimisation are also investigated. 

Chapter 4 - Summary, Conclusions, and Future Work 

Chapter 4 summarises the results and observations of the previous chapters and explores the 

potential applications of this work to robotic machining drawing conclusions based on the 

value, practicality, and drawbacks of the methods used. It then elaborates on the possibilities 

for industrial applications and suggests directions of study for future work. 
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Chapter 2 System Modelling and Parameterisation 

2.1 Introduction 

Parameter identification of industrial robots has been carried out by various authors using a 

variety of approaches. For determining only stiffness characteristics, static load testing has 

been carried out on a joint by joint basis [28-30], and also through Cartesian space 

measurements [13]. These parameterisations were then used to predict static deflection and 

tracking errors, which in turn were used to improve system performance. However, the 

tracking error predictions tested were consistently conservative indicating that the effects of 

inertial forces need to be considered for improved performance.  

Full dynamic models of robotic manipulators are often parameterized through a linearised 

parameter approach as pioneered in [74, 75] and greatly contributed to by M. Gautier [76-78]. 

There is a large body of literature proposing different schemes to develop the governing 

equations for these techniques as well as identifying the optimal trajectories to use and 

addressing the effects of measurement noise on the results. However, all these approaches have 

a common general approach, which is to reformulate the governing equations such that they are 

linear in the dynamic parameters sought and then have the system follow a given trajectory 

while measuring the input and output variables. These variables are usually the input torque 

and position response, but can also include the velocity, acceleration, and command current 

values depending on the parameters sought and method used. The data is then put through a 

linear least squares optimisation, often after heavy filtering. The governing equations used vary 

through the literature from dynamic equations, which can be analysed sequentially since the 

regressor matrix can be made upper triangular as in [79]; energy equations [76]; or power 

equations [78], which are all linear in the inertial parameters. The issues arising from 

measurement noise have been investigated by [80] among others concluding that periodic 

trajectories are preferable since the average value and the frequency content are known a priori. 

These trajectories can be tuned to include the desired dynamics and remove any unwanted 

dynamic such as resonances. Depending on the type of governing equations used, a single 

trajectory [76] or multiple trajectories are used. Multiple trajectories are desirable when using a 

sequential optimisation scheme [81] or for exciting specific dynamic properties such as 
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damping at constant speeds [82]. Multiple trajectories generally simplify the process at the 

expense of increased error accumulation throughout the parameters as the error in a previously 

identified variable is included in the current optimisation [83]. Single trajectories are also not 

without flaws; additional constraints were added to a single trajectory by [77] to avoid having 

very small singular values of the regressor matrix. 

In addition to controlling the trajectories to minimize the effects of measurement noise, filters 

and decimation are extensively applied to the measured data since the velocity and acceleration 

signals are generally not available and need to be generated by differentiating the position 

signal [83]. Low pass filters have also been implemented at the governing equation level to 

remove the need for acceleration data when using the dynamic models [84] and for removing 

complications due to power integration when using the energy model [85]. 

More recently, flexible robots have also been investigated in both the time [79] and frequency 

[86] domains to find not only the inertial and friction parameters, but also damping and 

stiffness values and also by Hirzinger [87] assuming known inertial parameters. A common 

property of all the linearised parameter approaches is their invasive nature since many 

industrial robots will not export encoder or torque signals. Furthermore, more recent 

approaches tend to include identification of motor control system parameters, which are also 

unknown and are usually assumed to be constant motor gains within a reasonable bandwidth 

[79]. This requires measuring the supplied motor current and torque as well as the kinematic 

response of the system. In this thesis, the manipulator under investigation will not allow 

modifications to the hardware due to safety protocols in the machine software. Therefore, an 

invasive approach to identification is not possible and as such a linearised input-output 

approach is also not possible as it requires signals that are not otherwise available. 

A non-invasive method to identify the full dynamics of a system is modal analysis as used in 

[88, 89]. The system is made to vibrate by exciting it with either an electromagnetic shaker 

[89] or a hammer blow [88] and a frequency response function (FRF) can be obtained by 

measuring the input force and output kinematics. Several FRFs can be found by moving the 

excitation point and measurement point and, from the relationships between the different FRFs, 

the mode shapes and modal parameters can be identified. From this point, a simple coordinate 

transformation is used to recreate the linearised system dynamics and a least squares (LS) fit is 
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used to identify the parameters of the linearised system. Modal analysis is often performed on 

pure mechanical systems and structures that cannot be disassembled and measured. The 

behaviour is modelled as either continuous or lumped parameter depending on the 

characteristics of the system in the region investigated. Where possible, the number of 

elements in a lumped parameter is minimised for simplicity, while being sufficient to capture 

the dynamics observed, such is the case in [88, 89]. However, there are cases where a lumped 

parameter model requires a very large number of elements due to the presence of continuous 

vibration characteristics. In this case, an approximation can be made based on the low 

frequency characteristics shown using additional lumped parameter degrees of freedom [90], 

although to include more frequencies accurately more degrees of freedom need to be added to 

the model. A hybrid dynamic model can also be built as in [91] where a set of flexible finite 

elements are used to develop a model. It is worth noting at this point that the parameterisation 

for such a model is overly complex and that these models are generally used with known 

material parameters such that flexibility and inertia can be accurately estimated and then 

experimentally corrected.  

Since the goal of this work is to reduce vibrations, it follows that the dynamic model should be 

built based on the vibration response of the structure. However, one relevant constraint of 

modal analysis is that it is developed for linear vibration models and thus the dynamic model 

of the manipulator must be linear or linearised. Manipulator dynamics are highly nonlinear due 

to serial rotating kinematic chains. As such the operating point for linearisation is selected as 

the stationary position of the manipulator and the operating point velocity is zero, thus 

removing the nonlinear terms and leaving the remaining terms unaffected. This assumes that 

the Coriolis and centrifugal acceleration terms can be neglected. Although this is a common 

simplification, it has been shown by Corke that it is not always valid [92] and should be 

avoided where possible. In this instance, the system needs to be linearised and therefore this 

assumption is necessary. 
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Figure 2.1: Flow Chart of Parameter Identification Procedure 

Section 2.2 will outline the dynamic model used in this investigation while addressing the 

potential errors and complications caused by linearising a system with highly nonlinear 

dynamics. The effects of friction and servo flexibility will be addressed and any flexibility not 

initially modelled will be compensated for. Section 2.3 will briefly review the linear vibration 

theory relevant to this investigation and develop some of the governing equations to be used 

for parameter identification in following sections. Section 2.4 gives an initial qualitative 

evaluation of the modal response including the effects of nonlinear dynamics, rigidity 

assumptions, and configuration variances. Section 2.5 outlines the selected parameter 

identification techniques and the modal parameters identified, completing the first three steps 

in Figure 2.1, and Section 2.6 shows the relation of the dynamic model to the modal model and 

the indentified dynamic parameters, completing the remaining steps.  
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2.2 Dynamic Model 

2.2.1 Model Formulation 

The dynamic model selected is a rigid-link flexible-joint model developed by Spong [27] and 

verified through static load parameterisation and tracking tests by various authors [23, 26, 28-

30]. The model is modified from its original form to include damping relative to the deflection 

rate as opposed to damping in the link velocity. The flexibility is modelled as a linear spring 

and viscous damper between the motor rotor and the link as shown schematically in Figure 2.2, 

where 𝐽𝑀  is the motor inertia, 𝑞𝑀  is the generalised coordinate for the motor, 𝑞𝐿 is the 

generalised coordinate for the link, 𝐾𝑞  is the joint deflection stiffness, 𝐵𝑞  is the joint deflection 

damping, and 𝑀 and 𝐼 are the mass and inertia of the link respectively. 

 

 

 

 

 

 

 

Figure 2.2: Dynamic Model of a Single Flexible Serial Manipulator Joint  

The equations of motion for an 𝑛 DOF manipulator are given by  

 𝑫𝒒 𝐿 + 𝒒 𝐿
𝑇𝑪𝒒 𝐿 + 𝑩𝑞 𝒒 𝐿 − 𝒒 𝑀 + 𝑲𝑞 𝒒𝐿 − 𝒒𝑀 = 𝑱𝑇𝑭 (2.1) 

 𝑱𝑀𝒒 𝑀 + 𝑲𝑞 𝒒𝑀 − 𝒒𝐿 + 𝑩𝑞 𝒒 𝑀 − 𝒒 𝐿 = 𝝉 (2.2) 

where 𝑫 is the 𝑛 × 𝑛 symmetric positive definite manipulator inertia matrix, 𝑪 is the 𝑛 × 𝑛 × 𝑛 

Christoffel matrix containing the nonlinear Coriolis and centrifugal terms, 𝑩𝑞  is the 𝑛 × 𝑛 

diagonal positive definite matrix of damping values, 𝑲𝑞  is the 𝑛 × 𝑛 diagonal positive definite 

matrix of joint stiffness values, 𝒒𝐿 is a vector of link coordinates, 𝒒𝑀  is a vector of joint 

𝐽𝑀  

𝑀, 𝐼 

𝐾𝑞 , 𝐵𝑞  𝑞𝑀  

𝑞𝐿  
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coordinates, 𝑭 is the Cartesian force and toque vector acting on the end-effector, 𝑱 is the 𝑛 × 𝑛 

manipulator Jacobian, 𝑱𝑀  is the 𝑛 × 𝑛 diagonal matrix of rotor inertias, and 𝝉 is the joint torque 

vector. 

It was found through initial testing that the vibration response for the system did not change 

when the breaks for the system were activated or deactivated. From this, it was determined that 

the controller can be modelled as a rigid system and that all the flexibility is in the structure 

causing 𝒒𝑀  to be zero at all times. This reduces the degrees of freedom so that Figure 2.2 

becomes Figure 2.3 and the anchor symbol represents a rigid connection to the previous link. 

 

 

 

 

 

 

Figure 2.3: Vibration Model of a Single Flexible Serial Manipulator Joint 

The equations of motion, (2.1) and (2.2), also reduce and become a single nonlinear ordinary 

differential equation, 

 𝑫𝒒 𝐷 + 𝒒 𝐷
𝑇𝑪𝒒 𝐷 + 𝑩𝑞𝒒 𝐷 + 𝑲𝑞𝒒𝐷 = 𝑱𝑇𝑭 (2.3) 

where  

 𝒒𝐷 = 𝒒𝐿 − 𝒒𝑀  (2.4) 

is the joint deflection measured as the difference between the link and joint angles and the time 

derivatives are equivalently defined. When linearising about an operating point with no initial 

velocity, the nonlinear terms are removed yielding, 

 𝑫𝒒 𝐷 + 𝑩𝑞𝒒 𝐷 + 𝑲𝑞𝒒𝐷 = 𝑱𝑇𝑭 (2.5) 
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From this point the subscript D will be neglected. 

The end-effector axes are coupled through the nonlinear dynamics of the manipulator and 

cannot be decoupled other than for specific configurations such as singularities. Thus, an 

excitation of one axis will generally cause a response on all other axes. For this investigation, 

only the results for a single axis will be investigated and the effects from the unexcited axes 

will be neglected in the analysis. The possibility to extend the single axis investigation offered 

in this thesis to a general case will be addressed in Chapter 4. 

2.2.2 Servo Flexibility 

The nature of control laws based on error feedback is that there is little or no compensation for 

disturbances until the disturbances have had the opportunity to displace the system. For simple 

control laws, such as proportional control or proportional derivative control without feed 

forward compensation, the mathematical response may take the same form as a mechanical 

system. In the case of proportional position control the characteristics are similar to that of a 

mechanical spring and in the case of proportional-derivative position control the characteristics 

resemble a spring and damper in parallel. This is often referred to as servo flexibility since the 

appearance of flexibility is given by the servo motor control system. 

Generally, the response time for the controller can be expected to be much less than that of the 

manipulator as mentioned in [79], since the resonant frequencies of industrial manipulators 

tend to begin below 50Hz [20, 79, 88]. For the robot in question, the effects of the controller 

were assumed to be negligible and this was confirmed by recording the response of the system 

with the brakes both on and off. The resultant FRFs are shown in Figure 2.4, note that 

inertance is formally defined in Section 2.3.1. No significant change in the response was 

identified and, as such, the servo flexibility was ignored. 
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Figure 2.4: Effects of Manipulator Motors Brakes on End-Effector Frequency Response 

2.2.3 Friction Model 

As mentioned in the previous chapter, harmonic drive gear systems are well suited to industrial 

manipulators since they offer very high gear ratios without the space requirements of epicyclic 

systems and have very little backlash. As such they have become widely used in the industry, 

particularly in large payload manipulators. However, they have also been shown to be highly 

flexible. The manipulator under investigation here uses harmonic drives in the joints modelled 

and thus the dynamic model used needs to reflect the dynamics of harmonic drives where 

possible. 

Harmonic drive systems have been shown to behave as extremely complex systems and several 

researchers have noted difficulty in finding an adequate model for capturing their full dynamics 

[93]. Taghirad and Bélanger [93] considered the primary energy loss to occur in the meshing of 

the flexspline and the circular spline and that there was no stiction in the system, although there 

was rising friction at low speeds. They also found viscous damping to be significant only at 

high speeds of the input shaft. This was expected to be primarily due to the much larger 

velocities in the input bearing. Conversely, Tuttle and Seering [94] found the input bearing 
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viscous friction to be negligible compared to the output bearing friction even after considering 

the gear ratio and showed Coulomb friction to be the most significant at very low speed. 

Although both investigations support the dominance of constant structural damping value, 

Hirzinger [87] later opted to use a frequency dependent viscous damping model to 

parameterize a harmonic drive with a stationary rotor when developing a control system for 

passivity based joint control architecture. 

Due to a lack of literature on the dynamics of harmonic drives with stationary inputs, the 

friction model was developed based on the results of the experimental FRF rather than the 

suspected underlying mechanics. The justification for this stems from the fact that the model is 

to be evaluated in the frequency domain and parameterised from an experimental FRF. 

Wernholt and Gunnarsson [95] recently examined the effects of dynamic nonlinearities on the 

experimental FRFs of serial robots with harmonic drives and made the following relevant 

observations. 

1. For greater excitation amplitude, the effects of nonlinear hardening springs become 

more prevalent. While the effects are embedded all through the FRF, they can be 

observed as anti-resonances become more pronounced with increasing input force. 

  

2. The main contribution of static and Coulomb friction to the FRF is to remove or greatly 

reduce amplitude of the resonance peaks. 

The first point can be used as a restriction on the domain of the identified system. For a given 

excitation amplitude, the identified system may only be valid for an exciting force of that 

approximate amplitude. This is investigated in more detail in Section 2.4.2. Thus, for a 

machining system that will operate over a wide range of inputs, the identification procedure 

may need to be repeated for a number of excitation amplitudes and the model used for 

optimisation and prediction needs to be based on the expected inputs. In addition, the anti-

resonances can be used as an indicator of the linearity of the springs in a given input amplitude 

range. 

The second point can be taken as a justification for neglecting the static friction in the dynamic 

model and replacing the more likely case of structural damping with viscous damping. The loss 
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of amplitude in the peaks will prevent the system from identifying physically meaningful 

dynamic parameters. However, the author wishes to stress at this point that a physically 

meaningful dynamic model is not the purpose of this identification. The goal is to define a 

dynamic model that can be decomposed into composite parts which can then be reassembled 

for new configurations and yield an accurate FRF for vibration response prediction. Given that 

the static friction occurs in the joints, as does viscous damping, and that its effect on the FRF is 

to effectively increase damping thereby reducing the resonance amplitude, it follows that a 

reasonable assumption is to lump the friction and true damping into the damping parameter of 

the linear model. Similarly, the motivation behind the structural damping model is that at 

higher frequencies viscous damping consumes an unrealistic amount of energy [25]. However, 

since the effects of static friction have been seen experimentally to be more pronounced at 

higher frequency, the increased energy consumption at higher frequency is more characteristic 

of viscous damping than of structural damping. Substituting the more likely model of structural 

damping and extremely complex low velocity friction with viscous friction, maintains linearity 

and the model is still able to account for the effects of friction. 

2.2.4 Flexible Link Compensation 

The manipulator under investigation is a Fanuc S-360 industrial manipulator shown in Figure 

2.5 and the skeleton schematic is shown in Figure 2.6, where 𝐽𝑖  denotes the i
th

 actual 

manipulator joint. One of the main assumptions in the dynamic model is that the four bar 

linkage in the manipulator can be modelled as the single link shown in the skeleton schematic. 

In the case of the four bar mechanism, the orientations of the second and third links are 

independent of the first joint angle, while for a serial kinematic chain they are not. For 

positioning and path planning purposes there is a simple transformation for the system 

kinematics; however the dynamic response, particularly to vibrations, cannot be transformed as 

easily and may restrict the region of accuracy for the model. When operating in the plane, the 

first, fourth and sixth actual joints can be neglected since they will see no planar forces. Thus, 

for the set of configurations where the end-effector remains in the plane, the schematic can be 

reduced to Figure 2.7, where 𝑞𝑖  denotes the i
th

 model joint.  
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Figure 2.5: Fanuc S-360 Industrial Manipulator 

                 

 

Further examination of the physical robot identified a bolt pattern at either end of the second 

link as shown in Figure 2.8.  
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Figure 2.7: Planar Skeleton Schematic of a Fanuc S-360 

Industrial Manipulator 
Figure 2.6: Skeleton Schematic of a Fanuc S-360 

Industrial Manipulator 
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Figure 2.8: Fanuc S-360 Industrial Manipulator Second Link and Connecting Bolt Patterns (encircled) 

The bolt patterns are other possible points of flexibility and should be included in the dynamic 

model. The inspection also identified the link itself as a possible point of flexibility due to its 

structure. The link is comprised of concentric drive shafts supported by a cylindrical tube. This 

outer tube is likely flexible due to its relative large length and small thickness. When these 

three additional flexibilities are incorporated into the model as rotary pseudo-joints, the model 

becomes as shown in Figure 2.9.  

 

 

 

 

 

Figure 2.9: Planar Skeleton Schematic of Fanuc S-360 Industrial Manipulator including Pseudo-Joints 

The dashed circles in this figure represent rotational pseudo-joints included to compensate for 

the expected additional flexibility. If these assumptions are false and the locations are actually 

rigid, then the stiffness of the pseudo-joints will be identified as very large or infinite and will 

be removed from the model. Similarly, if these additional pseudo-joints are insufficient to 

capture the dynamics of the system, either by providing an insufficient number of resonant 

peaks or by not offering enough degrees of freedom to capture the observed mode shape, 

additional pseudo-joints may be added. It is worth noting here that these pseudo-joints cannot 
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be controlled during optimisation and are included only to increase the DOF of the dynamic 

model and thereby improve the accuracy of the predicted dynamics. 

2.3 Modal Theory 

2.3.1 Single Degree of Freedom Systems 

For all dynamic systems, an FRF can be found through experimental force and response 

measurements. In this case, the system was excited with a hammer blow and the acceleration 

was measured with an accelerometer. The time domain force, 𝐹(𝑡), and acceleration, 𝑎(𝑡), 

signals are recorded and transformed into frequency domain using a discrete Fourier transform 

(DFT). The two frequency domain signals are next normalized to get an FRF. For the 

acceleration response to a force input, the FRF is known as inertance and denoted 𝐴(𝑖𝜔), 

where 𝑖 is the square root of -1 and 𝜔 is frequency in radians per second. 

 𝐴 𝑖𝑤 =
𝑎(𝑖𝜔)

𝐹(𝑖𝜔)
 (2.6) 

Other commonly used and useful FRFs are mobility, which is the velocity equivalent of 

inertance, denoted by 𝑌(𝑖𝜔), and receptance, which is the position equivalent of inertance and 

is denoted by 𝛼(𝑖𝜔). 

For linear vibrating systems, the inertance can also be defined through the mechanical 

properties of the system. For a single DOF resonant peak with viscous damping, the inertance 

is given by 

 𝐴(𝑖𝜔) =
−𝜔2

−𝑚𝜔2+𝑏𝑖𝜔 +𝑘
 (2.7) 

where 𝑘 is the spring constant, 𝑚 is the mass, and 𝑏 is the damping value. This can be obtained 

by transforming the equations of motion of a single axis mass-spring-damper system with 

deflection 𝑥, velocity 𝑥 , acceleration 𝑥 , and axial excitation force 𝑓, 

 𝑚𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑓 (2.8) 

into the Laplace domain 

  𝑚𝑠2 + 𝑏𝑠 + 𝑘 𝑥 = 𝑓 (2.9) 
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and then substituting (𝑖𝜔) for the derivative operator. 

The mobility and receptance FRFs can be determined from the inertance FRF using an 

equivalent substitution for the integral operator in the Laplace domain such that 

 𝑌 𝑖𝜔 =
𝐴 𝑖𝜔  

𝑖𝜔
=

𝑖𝜔

−𝑚𝜔2+𝑏𝑖𝜔 +𝑘
 (2.10) 

and 

 𝛼 𝑖𝜔 =
𝐴 𝑖𝜔  

 𝑖𝜔  2
=

1

−𝑚𝜔2+𝑏𝑖𝜔 +𝑘
 (2.11) 

A more general way of expressing (2.7) is to substitute the physical parameters of the 

mechanical system (𝑚, 𝑏, and 𝑘) with modal parameters 𝐴 , 𝜁, and 𝜔𝑛 , representing the 

amplitude multiplier, damping ratio, and natural frequency of the peak so that 

 𝐴(𝑖𝜔) =
−𝐴 𝜔2

−𝜔2+2𝜁𝜔𝑛𝜔𝑖+𝜔𝑛
2  (2.12) 

The modal parameters for a single DOF system can be defined through the eigenvalue solution 

to the characteristic equation
1
 of (2.7) [96]. 

  𝑚𝜆 + 𝑏 𝜆 + 𝑘 𝑥 = 0 (2.13) 

In the un-damped case, this reduces to 

  𝑚𝜆 + 𝑘 𝑥 = 0 (2.14) 

 𝐴 =
1

𝑚
 (2.15) 

 𝜔𝑛 =  𝜆 =  
𝑘

𝑚
 (2.16) 

and the damping ratio is zero. When damping is included, the solution for the system poles, 

given by 𝜆, becomes complex. 

 𝜁 =
𝑏

2 𝑚𝑘
 (2.17) 

                                                 
1
 Recall that the characteristic equation of a transfer function is its denominator. In vibrations, it is the 

denominator of the FRF in question and is the same for the inertance, mobility, and receptance of a system. 
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 𝜆 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛 1 − 𝜁2 (2.18) 

2.3.2 Multiple Degree of Freedom Systems 

Multiple DOF resonances can be simplified through partial fraction expansion and modelled as 

a sum of 𝑃 single DOF resonances. The full response can be expressed as a sum of independent 

peaks 

 𝐴𝑢,𝑣(𝑖𝜔) =  
−𝐴 

𝑢 ,𝑣
𝑝

𝜔2

−𝜔2+2𝜁𝑝𝜔𝑛
𝑝
𝜔𝑖+𝜔𝑛

𝑝 2
𝑃
𝑝=1  (2.19) 

where 𝐴 
𝑢,𝑣
𝑝

 is an amplitude multiplier as before, 𝑢 is the DOF where the excitation is applied, 

and 𝑣 is the DOF measured for a response. Note that there is symmetry in the FRF such 

that 𝐴𝑢,𝑣(𝑖𝑤) = 𝐴𝑣,𝑢(𝑖𝑤). Here the superscript 
p
 denotes the membership of a parameter to the 

specific peak 𝑝. Expressing (2.19) with mass, stiffness and damping as in (2.7) introduces the 

modal mass, modal stiffness, and modal damping parameters. These are different from the 

physical properties as they are simply another way of expressing modal information. For this 

reason, the modal parameters 𝐴 , 𝜁, and 𝜔𝑛  are generally used for modal analysis. 

When investigating the FRF of a system we often wish to narrow our search to a finite number 

of peaks or a particular frequency range. As such the sum will be incomplete and there will be 

errors in the response. To account for effects of other peaks outside the domain of interest, 

residual terms are added to (2.19), 

 𝐴𝑢,𝑣 𝑖𝜔 =
1

𝑀𝑅
+  

−𝐴 
𝑢 ,𝑣
𝑝

𝜔2

−𝜔2+2𝜁𝑝𝜔𝑛
𝑝
𝜔𝑖+𝜔𝑛

𝑝 2
𝑃
𝑝=1 −

𝜔2

𝐾𝑅
 (2.20) 

These additional terms represent the effects of a single peak to either side of the domain of 

interest acting on the domain of interest as either a mass, 
1

𝑀𝑅
, or stiffness, 

𝜔2

𝐾𝑅
, characteristic at 

lower and higher frequencies respectively. There is an assumption that there is no additional 

resonance peak close to the domain of interest and that the mass or stiffness effects are 

therefore constant. This is generally a safe assumption when the region for investigation is 

chosen carefully. 
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The amplitude scalars 𝐴 
𝑢,𝑣
𝑝

 for the general case of viscous damping are determined by the 

mode shape vectors, which are found along with the natural frequencies from the characteristic  

eigenproblem seen for a single DOF in (2.13) [96]. 

  𝑴𝜆 + 𝑩 𝜆 + 𝑲 𝒙 = 𝟎 (2.21) 

where 𝑴, 𝑩, and 𝑲 are the mass, damping, and stiffness matrices corresponding to the DOF 

in 𝒙. Unfortunately, this cannot be solved analytically since it contains twice as many 

unknowns as equations. There are generally 𝑛 eigenvalues to be found from 𝑛 equations in an 

eigenvalue problem, however in this case both 𝜆 and  𝜆 need to be found independently 

requiring 2𝑛 equations. As such, there are special cases to be considered. The first is the un-

damped case, whereby (2.21) is reduced to  

  𝑴𝜆 + 𝑲 𝒙 = 0, (2.22) 

and the second is proportional damping whereby the damping matrix is restricted to be of the 

form 

 𝑩 = 𝛽𝑴 + 𝛾𝑲 (2.23) 

where 𝛽 and 𝛾 are arbitrary scalars. In the first case, the problem can be solved easily through 

row reduction methods as with general eigenvalue problems. In the second case, the 

eigenvalues () can be corrected and the damped eigenvalue 𝜆𝐷
𝑝

 can be expressed in terms of the 

damping ratio 𝜁𝑝  corresponding to the vibration mode 𝑝 and the un-damped eigenvalue (𝜆𝑈
𝑝

) as 

in (2.24, 2.25). The eigenvectors are unchanged from the un-damped case [95]. 

 𝜁𝑝 =
𝛽𝜆𝑈

𝑝

2
+

𝛾

2𝜆𝑈
𝑝  (2.24) 

 𝜆𝐷
𝑝 = −𝜁𝑝𝜆𝑈

𝑝 ± 𝑖𝜆𝑈
𝑝   1 − 𝜁𝑝2  (2.25) 

In the general case, when these special properties cannot be applied, an additional identity 

equation can be added to the governing dynamic equations for non-proportional damping and 

the derivative of the DOF can be incorporated. For example, the Laplace domain dynamic 

equations corresponding to a linear mass-spring-damper system are given by 
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  𝑴𝑠2 + 𝑩𝑠 + 𝑲 𝒙 = 𝒇 (2.26) 

where 𝒇 is a vector of forces acting on the axes defines by 𝒙. Adding an additional identity 

equation, such as 

  𝑴𝑠 − 𝑴𝑠 𝒙 = 0 (2.27) 

and combining it with (2.26) yields 

   
𝑩 𝑴
𝑴 𝟎

 𝑠 +  
𝑲 𝟎
𝟎 −𝑴

  𝒗 =  
𝒇
𝟎
  (2.28) 

where 

 𝒗 =  
𝒙
𝒙 
  (2.29) 

The characteristic equation yields an eigenvalue problem that can be solved as before. 

The solution will now yield 𝑛 conjugate pairs of eigenvalues to match the 𝑛 conjugate pairs of 

eigenvectors of length 2𝑛. The receptance and mobility are then combined into a single 

expression of the form 

  
𝜶 𝑖𝑤 

𝒀 𝑖𝑤 
 =  

−𝜔2𝑨 𝑝

−𝜔2+2𝜁𝑝𝜔𝑛
𝑝
𝜔𝑖+𝜔𝑛

𝑝 2
2𝑃
𝑝=1 , (2.30) 

which can be rewritten as 

  
𝜶 𝑖𝑤 

𝒀 𝑖𝑤 
 =  

−𝜔2𝑨 𝑝

(𝑖𝜔−𝜆𝑝 )
+

−𝜔2𝑨 𝑝∗

(𝑖𝜔−𝜆𝑝∗)
𝑃
𝑝=1  (2.31) 

where the superscript 
*
 denotes a complex conjugate value and 𝑨 𝑝  is the vector of all 𝐴 

𝑢,𝑣
𝑝

 at 

frequency 𝑝. 

With the eigenproblem solved, the eigenvectors can be concatenated into a mode shape matrix 

defining the proportional motions of each DOF for a given excitation frequency. Equation 

(2.32) is an example mode shape matrix for a three DOF system with proportional damping.  
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 𝝓 =  

𝜙1
1 𝜙1

2 𝜙1
3

𝜙2
1 𝜙2

2 𝜙2
3

𝜙3
1 𝜙3

2 𝜙3
3

  (2.32) 

The superscripts denote the eigenvalue or natural frequency associated with the entry and the 

subscripts denote the DOF. For the general case of viscous damping, there would be six 

columns indicating three pairs of complex conjugate vectors and six rows to include the 

derivative information as in (2.33), where 𝜙 1
1 represents an eigenvector element corresponding 

to the velocity of a DOF. 

 𝝓 =

 
 
 
 
 
 
 
𝜙1

1 𝜙1
1∗ 𝜙1

2

𝜙2
1 𝜙2

1∗ 𝜙2
2

𝜙3
1 𝜙3

1∗ 𝜙3
2

𝜙1
2∗ 𝜙1

3 𝜙1
3∗

𝜙2
2∗ 𝜙2

3 𝜙2
3∗

𝜙3
2∗ 𝜙3

3 𝜙3
3∗

𝜙 1
1 𝜙 1

1∗ 𝜙 1
2

𝜙 2
1 𝜙 2

1∗ 𝜙 2
2

𝜙 3
1 𝜙 3

1∗ 𝜙 3
2

𝜙 1
2∗ 𝜙 1

3 𝜙 1
3∗

𝜙 2
2∗ 𝜙 2

3 𝜙 2
3∗

𝜙 3
2∗ 𝜙 3

3 𝜙 3
3∗ 
 
 
 
 
 
 

 (2.33) 

Mode shapes form a basis
2
 for a solution space, but since they have no fixed amplitude they are 

not unique. As such, when identifying mode shapes, it is necessary to know the modal masses 

corresponding to the mode shapes identified. Though this may sound trivial, modal parameter 

identification generally focuses on identification of natural frequency and damping ratios as 

opposed to modal mass, stiffness, and damping. Similar to the mode shapes, the damping ratio 

and natural frequency do not offer unique solutions for modal mass, stiffness, and damping. It 

is therefore often impossible to know which modal parameters correspond to which mode 

shape matrix elements.  Restricting the values of mass or stiffness requires a priori knowledge 

of a given system, which is not often the case, or a measurement of steady state values either in 

the mass- or stiffness-dominated regions that is guaranteed not to be affected by residuals or 

other peaks, which is equally uncommon. For the un-damped case, there is one mode shape 

matrix that removes this ambiguity; this is the mass normalising mode shape matrix. In 

addition to being a solution to the eigenvalue problem defining the vibration response, it also 

has the following properties 

 𝝍𝑇𝑴𝝍 = 𝑰 (2.34) 

                                                 
2
 Basis: a set of linearly independent vectors that span a space 
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 𝝍𝑇𝑲𝝍 = 𝝀 (2.35) 

where 𝑰 is the identity matrix, 𝝀 is the diagonal matrix of squared natural frequencies, and 𝝍 is 

the mass normalising mode shape matrix. It should be noted that all properties that are true for 

the general mode shape vectors 𝝓 are also true for the mass normalised mode shape vectors 𝝍 

and that the opposite is not necessarily true. 

Having made this distinction, the modal masses are all reduced to unity and are no longer 

relevant to the mathematics when fitting curves to identify the modal parameters 

experimentally. For general damping, an equivalent set of vectors are found by comparing 

(2.22) and (2.28) such that 

  𝑺 =   
𝑩 𝑴
𝑴 𝟎

  (2.36) 

 𝑻 =   
𝑲 𝟎
𝟎 −𝑴

  (2.37) 

 𝝍𝑇𝑺𝝍 = 𝑰 (2.38) 

 𝝍𝑇𝑻𝝍 = 𝝀 (2.39) 

where 𝑺 is the augmented mass matrix and 𝑻 is the augmented stiffness matrix. We can now 

define the amplitude multiplier as a function of the augmented mass normalising eigenvalue 

matrix. 

 𝐴 
𝑢,𝑣
𝑝 = 𝜓𝑢

𝑝𝜓𝑣
𝑝

 (2.40) 

where 𝜓𝑢
𝑝
 and 𝜓𝑣

𝑝
 refer to the mass normalised mode shape vector elements for frequency 𝑝 at 

DOF 𝑢 and 𝑣 respectively similarly to the generic mode shapes in (2.33). In essence, the 

amplitude of the transfer function at a given resonance is amplified by the product of the mode 

shape value at the input location and the mode shape value at the output location for that 

frequency. This definition also holds for the general viscous damping case, where the 

eigenvectors are twice as long due to the occurrence of conjugate pairs. It becomes apparent at 

this point that if either of the mode shape values is zero or near zero, the peak will disappear 

from the FRF. When this occurs, the response location is said to be a „node‟ in the mode shape. 
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Identification of this peak then becomes impossible and the mode shapes need to be identified 

from other FRFs. Furthermore, the symmetry of FRF‟s becomes apparent. For the FRF of the 

same two locations, but with the impact and measurement locations transposed, the amplitude 

value is the same. Also the modal parameters are unchanged and thus the FRF is the same. For 

the special case of u and v being the same, the system is measured directly at the excitation 

point. This is known as a drive point FRF. 

2.4 Modal Testing 

2.4.1 Measurement Technique 

The idealised goal of a hammer strike is to create an input force signal resembling an impulse 

as closely as possible. When the DFT of a true impulse is taken it will give a constant 

amplitude response for all frequencies. However, an impulse is an idealised signal and is not 

practically achievable. Instead, the practical goal of a hammer strike is to excite the system 

within the frequency domain of interest with sufficiently large amplitude that a response can be 

accurately measured. The slight attenuation of the hammer force excitation signal over the 

frequency domain investigated is accounted for in the normalisation in (2.6) since a smaller 

input force at high frequency will result in a smaller output acceleration at the same frequency. 

When exciting a large heavy system, such as an industrial manipulator, a large amount of 

energy needs to be added to the system. The amount of energy transferred is dependent on 

several properties of the impact equipment. The first of these is the weight of the hammer head. 

A heavier hammer head is capable of transferring more energy into the structure being 

investigated; however, there is a cost associated with this. The heavier head will not rebound as 

quickly from impact as a lighter head and, if the system responds too quickly, will interfere 

with the vibration response of the structure as an obstacle. Thus it is necessary to use a lighter 

hammer head that will bounce quickly away from the impact point for a smaller structure with 

high frequency characteristics. Also, operator skill becomes more relevant when striking a 

faster structure, particularly when the higher frequency dynamics are being investigated. 

Developing the skill to excite the structure and quickly remove the hammer head with 

repeatable force is necessary in modal analysis and can require significant practice. Modal 

analysis software packages tend to display the measured DFT of each impact while the data is 

collected so that the force profile generated by the hammer can be seen and the individual 
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hammer strikes can be accepted, rejected, or repeated as necessary. This gives the operator 

some feedback regarding impact repeatability and enables poor strikes to be identified and 

removed. In addition to the weight of the hammer head, there are practical limitations to the 

amount of force that can be applied to any structure or mechanism without damaging it. By 

controlling the coefficient of restitution in a qualitative manner, the energy and force exerted 

on a structure can be balanced so as to be non-damaging. This is done by adding plastic or 

metal tips to the hammer head during impact. A softer head allows lower peak forces for 

equivalent energy transfers, whereas a harder hammer tip necessitates higher peak forces. The 

inevitable trade-off comes from the duration of the impact and thus the DFT of the force signal. 

For the softer tip with lower peak force and higher impact duration, the DFT of the input signal 

will attenuate much earlier than that of the harder hammer tip. As such, the weight and 

structural integrity of the structure and the frequency range of interest determine whether 

modal analysis is a plausible identification procedure or not. For a heavy, fragile system, it 

may not be possible to excite the system with sufficient energy and low enough peak force to 

see the higher frequency responses without destroying the structure. 

In order to transfer as much energy as possible without damaging the manipulator with high 

force impacts, a soft hammer tip was attached to a 3lb short handled 5802A sledge hammer 

from Dytran. Initial tests with a much lighter 5850B hammer were insufficient to excite the 

system without risking damage to the hammer. Several Dytran 3035BG accelerometers were 

initially distributed throughout the structure, labelled 1 through 8 in Figure 2.10, and data was 

recorded through MAL CutPro and LMS Test.lab as well as through National Instruments‟ 

Signal Express. 
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Figure 2.10: Modal Analysis Measurement Point Locations on the Fanuc S-360 Industrial Manipulator 

The desired FRF is ultimately the drive point FRF at Location 1 since this is where machining 

forces will be exerted and also where the tool deflection occurs. However, striking at Location 

1 requires a very low amplitude input to avoid overloading the accelerometer at that location. 

As explained above, this is undesirable since insufficient energy is transferred to the system. 

After an initial set of testing conducted by moving the impact hammer to various locations, it 

was determined that the wrist (Location 2) was not a node for any of the other input locations 

and, due to the symmetry of FRFs, it could be used as an impact point. This allowed larger 

forces to be exerted and more energy transferred to excite the low frequency dynamics without 

overloading the accelerometers. It has been noted in the literature that an industrial 

manipulators natural frequencies generally occur well below 300 Hz [20, 79, 88], so this was 

the region of interest. The soft hammer tip offered an acceptable force response up to 

approximately 400Hz and was therefore deemed suitable. 

2.4.2 Nonlinear Effects 

In order to gauge the effects of nonlinearities several tests were conducted with impact force, 

hammer weight, and hammer tip maintained. The experiment was repeated for three trials with 

the manipulator in a retracted configuration with the second link horizontal and the first link 

pointing away from the end-effector to gauge the operator repeatability. Three further trials 

were then conducted with a harder hammer tip. Figure 2.11 shows the end-effector response 

8 
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Hammer 

Strike 
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(Location 1) for four of the experiment trials. Only one of the harder tip FRFs (Trial 4) is 

shown for clarity. The repeatability of the FRFs produced with the harder tip in the latter three 

trials is equivalent to that of the FRFs produced with the softer tip in the first three trials and as 

such the single FRF shown for Trial 4 is representative of all three harder tip FRFs.  

 

Figure 2.11: Location 1 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 

The energy transferred into the system for a given excitation force is increased for a softer 

hammer tip due to the increased duration of the impact. Therefore the harder hammer tip was, 

by necessity, swung harder to excite the lower frequency dynamics. Both tips are expected to 

generate the same response at low frequency although the response from the softer hammer tip 

will attenuate earlier as frequency increases. For this reason, the low frequency discrepancies 

in the fourth trial are attributed to the nonlinearities in the system revealed by the changing 

force. The major discrepancies are the first anti-resonance at approximately 15Hz and the 

section of the response immediately after the second anti-resonance at approximately 23Hz as 

highlighted by the inset. The first anti-resonance was more pronounced in the fourth trial, 

which indicates the presence of hardening springs. The second anti-resonance is less 

pronounced indicating the presence of softening springs somewhere in the system. Given these 
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two characteristics, it‟s not surprising that following section of the FRF, until approximately 

29Hz, is different for the different force levels. The dominant peaks however, are not affected 

to the same degree. This indicates that the spring nonlinearities have a very small effect on the 

eigenvalues of the vibrating system. The same correlation characteristics can be seen in most 

points along the system with the curves beginning to diverge in the 100-120Hz region as the 

expected attenuation appears. Plots for these experiments are given in 0. Although the region 

of interest was initially expressed as below 300Hz, there are no modal characteristics between 

200 and 300Hz and so the region of interest was reduced. 

2.4.3 First Link Rigidity 

The initial model in Figure 2.9 makes assumptions about the locations and relevance of the 

various robot flexibilities. In particular, the first link is assumed rigid due to the four bar 

parallel mechanism and the second link is assumed to be flexible with further potential 

flexibility at the bolt patterns at either end of the link. The additional accelerometer readings 

(Locations 3, 4, 5, 7, and 8) allow data to be captured to support or deny these assumptions. If 

the first link is flexible, Locations 7 and 8 will not appear in phase at all the resonance 

frequencies. Figure 2.12, shows the phase for Locations 7 and 8 when the system is excited at 

Location 2.  
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Figure 2.12: Inertance Phase Response for Locations 7 and 8 on the First Link Excited at Location 2 on the Second 

Link 

Although the phase suffers from experimental noise, it can be clearly seen at frequencies above 

50Hz in the above figure that the two points move in phase for all the mode shapes in the 

region of interest. The same is true for the lower frequencies, although the phase function is 

much more turbulent. Furthermore, there are no recognisable deflection shapes that can be 

obtained from peak picking that affect the deflection of Location 6. For example, the deflection 

at 8Hz shown in Figure 2.13 shows that Location 7 is deflecting more than Location 6, but also 

shows that this is not increasing the deflection at Location 6. This is due to the four bar linkage 

that increases the rigidity of the first link in the dynamic model. The deflection of the first link 

is not being carried through to the end-effector, which is the location that ultimately needs to 

be controlled, and so the first link can be assumed rigid. The following observations and 

inferences are made under the assumption that the first link is rigid. 
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Figure 2.13: First Resonant Peak Inertance Amplitudes for Locations 1-8 Excited at Location 2 

 

2.4.4 Second Link Flexibility 

The mode shapes formed by the second link at any given frequency will not necessarily reflect 

the mode shape of a fixed-free beam since the end conditions of a fixed-free beam are not met 

due to the potentially varying mass and stiffness along the link. However, it is expected that the 

mode shape will contain a dominant fixed-free or fixed-fixed beam shape that can be seen. 

Identifying these frequencies and the shapes they form within the frequency region of interest 

will offer further insight into the number of DOF required to accurately model the dynamics of 

the vibrating system. Additional measurement locations were added along the link as shown in 

Figure 2.14. Locations 3, 4, and 5 were maintained as before and Locations 9, 10, 11, and 12 

are introduced for this experiment. 
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Figure 2.14: Additional Modal Analysis Measurement Point Locations for the Fanuc S-360 Industrial Manipulator for 

Investigating Second Link Flexibility 

A first look at the FRFs for three trials can be used to further identify rigid and flexible 

elements in the manipulator. The experiment was conducted in an extended configuration with 

the first link extended toward alignment with the horizontal and the second link horizontal. The 

experiment was repeated for three trials to ensure that the operator and measurement error were 

negligible. The correlation between the trials is illustrated by the drive point FRFs in Figure 

2.15 and shows repeatable results with minimal variances. The same correlation is observed for 

all FRFs. Plots for these experiments are given in Appendix B: .  
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Figure 2.15: Multiple Trials of Location 3 Drive Point Inertance Amplitude 

The full set of FRFs for excitation at Location 3 in the region of interest is given for the first 

trial in Figure 2.16. This figure shows how each of the locations is affected differently. For 

example the large peak around 94Hz seems to affect the locations proportionally based on 

distance from the shoulder joint, but following the peak the responses are very different. 

Location 3 appears to converge to a mass characteristic quickly as frequency increases as 

demonstrated by the steady amplitude value. Location 12 however, exhibits an anti-resonance 

characteristic before it begins to reach steady amplitude. It then takes on a stiffness 

characteristic as indicated by an increasing slope at approximately 160Hz. In the first case 

there is no indication of an upcoming resonant frequency at 180Hz, while in the latter the 

higher frequency peak begins to dominate the characteristics earlier at approximately 160Hz. 
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Figure 2.16: Inertance Amplitudes of Second Link Flexibility Experiment Locations Excited at Location 3 

If the link has a resonant frequency in the domain of interest, we can see from Figure 2.16 that 

it will occur at one of 8, 58, 94, or 180 Hz. By investigating the mode shapes formed by the 

manipulator at these frequencies, we can gain a qualitative understanding of how the link is 

deforming. Figure 2.17, Figure 2.19, and Figure 2.22 show the frequency response for 8 Hz, 58 

Hz, and 94 Hz respectively, at the different measurement locations along the second link for all 

three trials. The shapes formed by the vibrating system are found by peak picking the inertance 

FRF. Although the acceleration values are not accurate for deflection, the relationship between 

acceleration and deflection is proportional for all curves at the same frequency as shown earlier 

by (2.11). Therefore the proportional difference from location to location at a given frequency 

is the same for inertance, mobility, and receptance. A peak picking approach, whereby the FRF 

amplitudes at the peaks are taken as the amplitude multipliers and the phase is considered to be 

either 0
0
 or 180

0
 depending on the FRF phase, was used to approximate the amplitudes at 

resonance. Though considered a coarse and inaccurate approach to modal analysis, peak 

picking can often give a good initial insight into the nature of a vibrating system before 

rigorous numerical identification begins. The results from the peak picking identification are 
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listed in Table 2.1, Table 2.2, and Table 2.3 and the deflection shapes are shown in Figure 

2.18, Figure 2.20, and Figure 2.23 where the measurement locations are denoted by L1-12. 

 

Figure 2.17: Inertance Amplitudes of the Second Link Flexibility Experiment Locations Excited at Location 3 around 8 

Hz 

 

Figure 2.18: Normalised Deformation Shape of the Second Link Excited at Location 3 at 8 Hz 
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From Figure 2.18 it can be seen that the 8Hz resonant peak is dominated by the deflection in 

the second joint. This low frequency can be manually excited and the mode shape from the 

data can be observed visually. As such there is little to be learned from this peak regarding the 

flexibility of the link except that it is significantly stiffer than the second joint. 

Table 2.1: Inertance Peak Values of Second Link Flexibility Experiment Locations Excited at Location 3 at 8Hz 

Location Frequency [Hz] Amplitude – Trial 1 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 2 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 3 

[(𝑚  𝑠^2 )/𝑁] 
3 8 7.49 × 10−3 7.76 × 10−3 7.70 × 10−3 

7 8 5.85 × 10−3 6.13 × 10−3 6.16 × 10−3 

4 8 5.47 × 10−3 5.67 × 10−3 5.64 × 10−3 

8 8 4.17 × 10−3 4.32 × 10−3 4.32 × 10−3 

5 8 3.06 × 10−3 3.16 × 10−3 3.15 × 10−3 

9 8 1.99 × 10−3 2.07 × 10−3 2.05 × 10−3 

10 8 9.86 × 10−4 1.02 × 10−3 1.02 × 10−3 

 

In Figure 2.20, the 58 Hz peak shows a deformation in the link corresponding to the first 

resonance shape of a fixed-fixed cantilever beam. Although the beam would ideally be a fixed-

free cantilever, the mass of the manipulator wrist is sufficient to appear immovable at this 

frequency. The mode shape is not exactly that of a fixed-fixed beam as can be seen in the non-

zero deflection of Locations 3 and 12 indicating that there are other dynamics affecting this 

mode shape. Frequency harmonics occur at approximate integer multiples of the fundamental 

frequency, where the first mode shape appears. Therefore, a second fixed-fixed beam mode 

shape can be expected at approximately 116 Hz corresponding to the second natural frequency. 

Referring back to Figure 2.16, there is a minor phenomenon occurring at approximately 

102Hz, which is most easily seen for the Location 10 response and is the only peak in the 

expected region around 116Hz that could represent the second mode shape. Figure 2.11 shows 

that the end-effector (Location 1) does not exhibit a peak at 102Hz that is significant compared 

to the 94Hz peak. Similarly, the inertance for Location 2 also fails to show a significant 

response at this frequency. This peak was therefore neglected from the model since it doesn‟t 

affect the end-effector. A similar characteristic occurs at the 180 Hz peak identified earlier and 

again the effect on the end-effector is negligible, thus the higher order dynamics of the second 

link can be ignored. 
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Figure 2.19: Inertance Amplitudes of the Second Link Flexibility Experiment Locations Excited at Location 3 around 

58 Hz 

 

Figure 2.20: Normalised Deformation Shape of the Second Link Excited at Location 3 at 58 Hz 
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Table 2.2: Inertance Peak Values of Second Link Flexibility Experiment Locations Excited at Location 3 at 58Hz 

Location Frequency [Hz] Amplitude – Trial 1 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 2 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 3 

[(𝑚  𝑠^2 )/𝑁] 
3 58 4.90 × 10−4 4.83 × 10−4 4.78 × 10−4 

7 58 6.88 × 10−4 5.95 × 10−4 6.12 × 10−4 

4 58 9.66 × 10−4 8.99 × 10−4 8.90 × 10−4 

8 58 1.16 × 10−3 1.08 × 10−3 1.06 × 10−3 

5 58 1.23 × 10−3 1.14 × 10−3 1.12 × 10−3 

9 58 1.11 × 10−3 1.02 × 10−3 1.01 × 10−3 

10 58 6.43 × 10−4 5.92 × 10−4 5.79 × 10−4 

 

In order for the beam flexibility to be relevant to the model, the deflection of the beam needs to 

be significant when compared to the deflection of the joints. At the 58 Hz peak, the deflection 

of Locations 1-6 measured by peak picking gives the mode shape in Figure 2.21 for the full 

manipulator structure.  

 

Figure 2.21: Normalised Deflection Shape of Locations 1-6 Excited Location 2 at 58Hz 
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following decrease from Location 5 to Location 3. All these locations are on the second link 

and so any rigid body effects would cause a proportional increase or decrease along the link. 

Furthermore, the change in phase from Location 5 to Location 3 would not be possible if the 

link was rigid since only the lever arm from the joints would be changing and this would not 

affect the phase of the response. In this overall mode shape, the beam deflection is significant 

and necessary to change the sign of the deflection angle from positive at Location 6 to negative 

at Location 3 and, as such, cannot be neglected. A single pseudo-joint is sufficient to 

compensate for the link flexibility at this frequency since the flexibilities at Locations 4 and 5 

can be combined. 

The amplitude response in Figure 2.22 shows several peaks clustered together and a change in 

dominance with location. Each of the clustered peaks offers a very similar mode shape and so 

the peak at 94 Hz was selected to represent the region as it dominates the majority of locations. 

The mode shape can be approximated using the joints and pseudo-joint already identified and 

so no further pseudo-joints are necessary. 

 

Figure 2.22: Frequency Response of the Second Link Flexibility Experiment Locations Excited at Location 3 at 94 Hz 
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Figure 2.23: Normalised Deformation Shape of the Second Link Excited at Location 3 at 94 Hz 

Table 2.3: Inertance Peak Values of Second Link Flexibility Experiment Locations Excited at Location 3 at 94Hz 

Location Frequency [Hz] Amplitude – Trial 1 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 2 

[(𝑚  𝑠^2 )/𝑁] 
Amplitude – Trial 3 

[(𝑚  𝑠^2 )/𝑁] 
3 94 1.52 × 10−2 1.55 × 10−2 1.53 × 10−2 

7 94 1.21 × 10−2 1.25 × 10−2 1.23 × 10−2 

4 94 9.66 × 10−3 9.77 × 10−3 9.62 × 10−3 

8 94 5.37 × 10−3 5.48 × 10−3 5.42 × 10−3 

5 94 2.43 × 10−3 2.49 × 10−3 2.49 × 10−3 

9 94 9.80 × 10−4 1.12 × 10−3 1.11 × 10−3 

10 94 8.40 × 10−4 9.50 × 10−4 9.10 × 10−4 

 

2.4.5 Variance with Configuration 

Manipulator dynamics are not only nonlinear for a given position; they are also nonlinear in 

joint space. Thus, the linearised dynamics are still joint dependent and will be different for all 

configurations. Taking the limits of the manipulator reach shows the effects of configuration 

on both the frequencies of interest and the mode shapes at those frequencies. Figure 2.24 shows 

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
lis

e
d
 D

e
fl
e
c
ti
o
n
 A

m
p
lit

u
d
e
 w

rt
 M

a
x
im

u
m

 D
e
fl
e
c
ti
o
n

Distance from the Second Joint [cm]

 

 

Trial 1

Trial 2

Trial 3

L1 

L3 

L9 

L11 L12 

L4 

L10 

L5 



48 

 

the end-effector response (Location 1) excited at Location 2 in fully extended and fully 

retracted configurations. 

 

Figure 2.24: Effects of Configuration on Location 1 Inertance Amplitude Excited at Location 2 

When the manipulator is retracted, it appears that the entire FRF is shifted almost uniformly. 

This is most easily seen by taking the two anti-resonances in the inset as reference points. In 

both cases, the anti-resonances occur between two and three hertz higher when the manipulator 

arm is retracted.  

The amplitudes of the resonant peaks can be seen as configuration dependent, particularly 

when looking at the relative amplitudes of the 51 and 58 Hz peaks. In the extended 

configuration both peaks are of comparable amplitude, while in the retracted configuration the 

51Hz peak is much less significant than the 58Hz peak.  Though the 8 Hz peak has not been 

significantly affected, supporting the observation earlier that it is dominated by the second joint 

flexibility, the 94 Hz peak is noticeably reduced and shifted to a slightly higher frequency. The 

variance in amplitude of the 51, 58, and 94 Hz peaks as the first joint angle changes shows that 

the first joint flexibility is relevant to the manipulator deformation. By adjusting the first link 
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angle, the moment arm about the first joint changes affecting the amplitude and placement of 

these higher frequency resonances. 

A very lightly damped peak occurs at 33Hz and the amplitude substantially increases in the 

retracted configuration. The peak is so narrow that an accurate reconstruction is not 

realistically attainable. Furthermore, the peak does not appear to affect the region around it and 

as such the response will only be affected in the immediate locality of the peak. For these 

reasons the peak is neglected from the parameterisation. A similar peak occurs at 88Hz and is 

again much more pronounced in the retracted configuration. As with the 33Hz peak, the effect 

of the 88Hz peak on the overall curve is minimal and the likelihood of an accurate fit is very 

low. Therefore this peak is also neglected from the parameterisation. 

2.4.6 Further Observations 

Figure 2.25 outlines a curiosity in the first link response. Though the first link was found to be 

rigid by investigating the phase of the response at various frequencies and the mode shapes 

formed, a curious property occurs at 51Hz whereby the amplitudes of Locations 7 and 8 are 

equal and in phase. The accelerometers are not placed at symmetric locations along the length 

of the link and so this does not match any expected mode shape that would correspond to a 

fixed-fixed beam mode shape, which would be expected for a beam that isn‟t behaving as a 

fixed-free beam. This characteristic cannot be immediately explained, although the author 

speculates that due to the variations in the link, specifically a hole that that been cut in the link, 

that the mode shapes of the beam are deformed and that the shape is a deformed fixed-fixed 

beam shape. 
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Figure 2.25: Inertance Amplitudes of Locations 7 and 8 Excited at Location 2 

Additionally, a torsional mode was discovered about the second link axis at approximately 

76Hz. At this frequency, one of the shoulder connections vibrates significantly more than the 

other as shown in Figure 2.26. There is no significant corresponding peak at this frequency in 

any of the other locations and thus it doesn‟t contribute to the end-effector vibrations. This 

torsional resonance was omitted from the results by ignoring the 76Hz peak and using the 

response of the left shoulder, which is less affected. 
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Figure 2.26: Inertance Amplitude for Location 6 measured on the Left and Right Shoulders Excited at Location 2 

Referring back to Figure 2.13 the frequencies at which the first peak appears show a distinct 

shift across the second joint. Locations 1-5 give a resonant frequency at around 7.7Hz, while 

Locations 6-8 show a resonance at approximately 8.4Hz. Furthermore this behaviour was not 

seen for the measured FRFs in extended configurations; this is unexpected and difficult to 

explain. 

2.5 Modal Parameter Identification 

2.5.1 Modal Analysis Method 

There are a number of curve fitting techniques that can be used for identifying single or 

multiple peak FRFs. For single peaks, there are no residual effects from higher order dynamics 

or neighbouring peaks and as such the FRF is fully controlled by a single set of modal 

parameters. For multiple peaks, a common assumption is that very near the peak of interest the 

behaviour is dominated by that peak alone. As such, single peak methods and extended single 

peak methods such as the peak-picking method can be used for few well spaced peaks. 

While often good enough for initial identification, peak picking is an overly simplified 

approach that neglects the phase information captured in the FRF other than to define a data 
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point as in or out of phase. For an un-damped system this is accurate since the phase will be of 

this nature, however for a damped system the phase will be more complex in nature. Another 

approach that uses the same assumption of peak independence is the circle fit method [25]. In 

this method, the Nyquist plot of the FRF is considered around the peak and the effects of 

neighbouring peaks can be removed without being identified. The shape of the FRF is 

considered rather than the exact amplitude and phase thereby removing phase and amplitude 

offsets and allowing residual terms to be identified for a given peak. More robust fits require 

fitting the entire curve to (2.20). While not very efficient computationally, this also has the 

effect of removing the user, and therefore the users judgement, from the operations. Depending 

on the complexity of the system, this can be time saving or problematic. 

 𝐴𝑢,𝑣 𝑖𝜔 =
1

𝑀𝑅
+  

−𝐴 
𝑢 ,𝑣
𝑝

𝜔2

−𝜔2+2𝜁𝑝𝜔𝑛
𝑝
𝜔𝑖+𝜔𝑛

𝑝 2
𝑃
𝑝=1 −

𝜔2

𝐾𝑅
 (2.20) 

Modal identification can also be carried out in the time domain. One way to do this is through 

the complex exponential method. This method requires an Inverse Fourier Transform (IFT) to 

be taken of the theoretical model given in (2.20). It is much more difficult to gain an intuitive 

understanding of the system when viewed in the time domain, and as such the user is again 

removed from the identification process. Furthermore, additional modes are generally required 

to absorb the imperfections of the technique. These modes then need to be identified and 

removed from the final results. The Ibrahim time domain method [96] extends the previous 

method from a single FRF analysis to a complete analysis of the system in a single step thus 

further removing the user and increasing the number of additional modes. It is worth noting 

however that time domain systems are much simpler to implement for viscously damped 

systems due to complications that arise for the general case of structural damping. 

LMS Test.Lab [97] was initially used to identify the natural frequencies and damping ratios 

from a modal indicator function (MIF) and mode shapes from a least squares frequency 

domain (LSFD) optimisation that fitted all FRFs to (2.20) simultaneously. However, the 

frequencies and damping ratios were inconsistently identified for multiple test trials when the 

test trials showed highly repeatable behaviour. In addition, the fitted curves were not consistent 

and did not accurately reflect the mode shapes. Similarly, MAL CutPro was unable to produce 

consistent or reasonable values of modal mass, stiffness, or damping values, often producing 
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negative mass and damping ratios, and assumed an amplitude scalar of unity for all peaks. The 

failure of these software products indicated that the data was not optimal for linear 

identification and as such operator input was necessary at several steps throughout the 

identification procedure. A frequency domain circle fit approach was chosen to allow user 

input to compensate for the errors and approximations in the identification process. These were 

unavoidable to prevent the poor results produced by the software packages. The peaks 

identified through hammer testing were not initially assumed to be well spaced and so the 

circle fit algorithm was only applicable to certain well spaced peaks. For these peaks, a circle 

fit method was used to identify natural frequency, damping ratio, and amplitude multipliers. 

The remaining peaks were identified in groups such that cumulative effects such as anti-

resonances were not falsely attributed to a single mode. This identification initially used a LS 

fit to (2.20) for each peak separately from the rest of the FRF and the other FRFs in the set. It 

was later determined that the circle fit algorithm was robust enough to peak spacing that it 

could be used over a small region for the closely spaced peaks provided there was sufficient 

amplitude at that peak. 

2.5.2 Data Pre-Processing Filtering 

The DFT for each FRF was performed using the fft() function in MATLAB [98]. Due to the 

noise in the DFT results, it was necessary to filter the mobility FRF with a band-pass filter 

before attempting to analyse it with a circle fit technique. The data was filtered differently for 

each peak at each location with the lightest filtering tending to be on the lowest peaks. The 

filtering was different for each peak to minimise the amount of data manipulation before 

analysis in all cases. Figure 2.27 and Figure 2.28 show the Nyquist plot and amplitude 

response of a section of the end-effector (Location 1) drive point FRF before and after filtering. 

These are typical of the filtering effects at all locations. 
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Figure 2.27: Results of Mobility Filtering in Nyquist Domain 

 

Figure 2.28: Results of Mobility Filtering on Amplitude 
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2.5.3 Circle Fit Algorithm 

Viscously damped systems have mobility FRFs that produce a circle in the imaginary plane in 

the vicinity of a resonant peak [96]. This can be used to identify whether the selected range of 

data is within the region dominated by a given peak. Once this is confirmed, the traverse rate, 

defined as 
𝑑𝜃

𝑑𝜔2, can be determined from a symmetric difference quotient 

 
𝑑𝜃

𝑑𝜔2 =
𝜃 𝜔+𝛥 −𝜃 𝜔−𝛥 

2  𝜔+𝛥 2− 𝜔−𝛥 2 
 (2.41) 

where Δ is a small change in frequency and 𝜃 is the angle from the centre of the circle to the 

data point anticlockwise from the real axis. The maximum traverse rate occurs at 𝜔𝑛 [25] and 

evaluating the traverse rate at this frequency yields 

 
𝑑𝜃

𝑑𝜔2 |𝜔=𝜔𝑛
=

1

2𝜁𝜔𝑛
2  (2.42) 

From here the natural frequency and damping ratio of the peak can be identified by finding the 

maximum traverse rate frequency and then solving (2.42) for 𝜁. From the diameter of the circle 

given by 

 𝑑 =
 𝐴 

𝑢 ,𝑣
𝑝

 

2𝜁𝜔𝑛
, (2.43) 

the magnitude of the amplitude multiplier can be found by solving (2.43) for  𝐴 
𝑢,𝑣
𝑝  . The angle 

of the amplitude multiplier is given by 𝜃 and so the complete value can be found from 

 𝐴 
𝑢,𝑣
𝑝 =  𝐴 

𝑢,𝑣
𝑝  (cos 𝜃 + sin 𝜃 𝑖) (2.44) 
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2.5.4 Comparison of Circle Fit to Least Squares Fit 

When compared to the reconstructed peaks identified through the LS fit to (2.20), the circle fit 

results were more consistent for mode shapes and system poles and therefore the circle fit 

parameters were used in the dynamic model parameterisation. However, there was still a lack 

of consistency for the circle fit method at several peaks; specifically, the resonant frequencies 

were inconsistent across the second joint as seen in Figure 2.13. To compensate for this 

systematic error, when the identified frequency did not match the majority of identified 

frequencies for that peak, the identified frequency was replaced with the average frequency 

found from other FRFs and used for the circle fit identification. The selected average frequency 

was chosen from the other circle fit results or the LS fit results depending on which were 

perceived as more accurate. The damping ratio and amplitude multiplier were then identified 

based on the new natural frequency. In the few cases where the damping was also inaccurately 

identified, the damping ratio was also replaced in the circle fit method by more accurately 

identified data, again from either other circle fit results or LS results, and only the amplitude 

multiplier was calculated for that peak in that FRF. The same approach was taken for the LS fit 

when it failed to produce reasonable values if confidence in the circle fit data was low and 

verification was deemed necessary. 

Despite forcing certain parameters to match previously identified values that are known with 

more confidence, the reconstructed peaks often appeared to be too wide since the 

reconstruction failed to capture the anti-resonance behaviour either before or after the peak. 

When the anti-resonances occurred close to the peak of interest, the amplitude dropped off 

quickly on the side closest to the anti-resonance. In these cases, a second peak was added to the 

LS fit to compensate and also to verify the parameters found from the circle fit. Initially, 

residual terms were used for this, but it was quickly determined that the sensitivity of the 

algorithm to the residual terms was too low and the optimisation returned the initial conditions 

more often than not. The additional peaks compensated for the lack of residuals and also 

exhibited a better sensitivity to the input variables. The LS fit to (2.20) was therefore adjusted 

to neglect the residual terms and became a fit to (2.19) for all parameter identification 

including the single peak fit outlined in the above paragraph. Figure 2.29 and Figure 2.30 show 

the results for the circle fit identification of one peak and the results of using a LS fit to (2.19) 
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with the amplitudes adjusted so that the maximum amplitudes are equal and the curves are 

superimposed. The identified values for each type of fit are given in Table 2.4. 

 

Figure 2.29: Location 1 Drive Point Mobility Amplitude Reconstructions for Modal Parameter Identification with LS 

and Circle Fit Methods 

 

Figure 2.30: Location 1 Drive Point Mobility Phase Reconstructions for Modal Parameter Identification with LS and 

Circle Fit Methods 
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Table 2.4: Identified Modal Parameters for Location 1 Drive Point Mobility using a Circle Fit Method and a LS 

Method at 8Hz 

Parameter Circle Fit LS Fit 

Damping Ratio [-] 0.11 0.13 

Natural Frequency [Hz] 7.86 7.92 

Amplitude Multiplier [-] 0.034-0.026i 0.328+2.52i 

Amplitude Correction 1.26 62.06 

 

The results show a further advantage of the circle fit technique as opposed to a general LS 

approach other than the repeatability of the results. In this case, and in many other cases, the 

LS fit to (2.19) was unable to accurately capture the phase data. The results from the circle fit 

were used for the dynamic model parameterisation and the identified values for the 

configurations used in the identification are tabulated in Appendix C: . 

2.6 Dynamic Parameter Identification 

2.6.1 Inertial Parameters 

The manipulator dynamic model is generated based on the Denavit-Hartenberg convention and 

does not assume that inertia is a known function of mass. The assumption that the parallel 

mechanism can be modelled as a single link requires the additional mass and inertia to be 

accounted for by the first and second links for different vibration shapes. This will not appear 

as a simple addition to mass that can be included in geometric inertia calculations and thus 

there needs to be a correction variable to account for this difference. For example, when the 

first mode is dominant the response is dominated by the deflection in the second joint and the 

parallel mechanism will deform adding some of its weight to the apparent weight of the second 

link. However, it will contribute to the apparent inertia of the second link as a point mass at a 

given radius on the second link and not as a distributed mass along the length of the second 

link. In addition, the locations and masses of the motors are not considered in the model and so 

the additional masses and inertias they contribute will again appear as point masses. 

Furthermore, the masses for each link were assumed to be in the centre of that link and any 

error in this assumption is partially compensated for in independent link inertia parameters. 
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2.6.2 Selected Degrees of Freedom 

The dominant resonant peaks in the region of interest occur at approximately 8, 38, 51, 58, and 

94 Hz. Identification of the 38Hz peak was not possible since the peak is not present in 

sufficient configurations and thus the mode shapes cannot be identified for the corresponding 

FRFs. This leaves four dominant peaks to be identified at 8, 51, 58, and 94Hz requiring four 

degrees of freedom in the spatial model. At the bolt pattern (Location 3) the 51 and 58Hz peaks 

could not be accurately parameterised in the fully extended configuration and as such that 

degree of freedom was removed. Similarly, the reconstruction of Location 4, while acceptable, 

was inferior to that of Location 5 and so Location 5 was selected to represent the flexibility in 

the second link. The final model now includes the three joints and a single pseudo-joint to 

represent the second link flexibility. For clarity, the joint variables will be referred to as 𝑞1, 𝑞2, 

and 𝑞3, and the angle of the pseudo-joint will be referred to as 𝜌. 

 

 

 

 

 

Figure 2.31: Final Planar Skeleton Schematic of a Fanuc S-360 Industrial Manipulator including Pseudo-Joints 

 

2.6.3 Model Updating 

In the field of finite element analysis, experimental model updating is used to improve the 

accuracy of models which would otherwise not be accurate enough to provide a useful 

simulation or prediction of a systems behaviour [99, 100]. The corrections made to the model 

are often thought of as fine tuning, although it is not uncommon for additional degrees of 

freedom to be added to a model at this stage. As a developed field of engineering, there are 

several approaches and algorithms that use modal data for updating physical parameters of a 

mechanical system. Mottershead and Friswell [99] identified three common forms of model 

error 

𝑞1 

𝑞2 𝑞3 𝜌 

Link 1 

Link 3 Link 2.2 Link 2.1 
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1. Model Structure Errors 

2. Model Parameters Errors 

3. Model Order Errors 

The first of these refers to simplifications such as linearization. In the current model, a linear 

system is required for parameterisation and so the linearization is necessary and cannot be 

removed. In addition, the nonlinear spring elements identified in Section 2.4.2 show that even 

if the ideal dynamics were fully modelled there would still be un-modelled nonlinearities in the 

system. The third type of error refers to the number of degrees of freedom in a model. The 

DOF in the selected model is purposefully kept low to match the number of dominant peaks in 

the frequency response and the apparent DOF of the system. Thus, of the three types of errors, 

structural and order errors are deemed necessary and only parameters errors are to be reduced. 

In the techniques reviewed by [99, 100], the mathematics driving the model updating 

techniques rely on the linearity of the system, specifically the orthogonality property given 

earlier in (2.37). Rearranging (2.37) and solving for the augmented mass matrix yields 

 𝑺 = 𝝓−𝑇𝑰𝝓−𝟏 (2.45) 

The elements of S are all physical parameters corresponding to mass and damping values, 

which must be real, and must also match the form of (2.36) 

  𝑺 =   
𝑩 𝑴
𝑴 𝟎

  (2.36) 

However, when testing the identified mode shapes, (2.45) did not yield real values nor did it 

produce an 𝑛 × 𝑛 zero matrix in the lower right entries. It is clear at this point that the 

mathematical techniques for model updating in the literature are designed to generate an 

accurate model in terms of all three error types defined by [99] and so an unwillingness to 

correct the model in terms of one type of error will hamper any techniques ability to reduce 

other types of error. An alternate and more general approach is therefore needed to identify the 

dynamic parameters from the modal parameters developed in the following section. 
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2.6.4 Dynamic Parameter Identification 

The experimental data is recorded for each of the measurement locations in the vertical 

direction corresponding to the 4DOF linear system in Figure 2.32. 

 

 

 

 

 

 

 

Figure 2.32: Measurement Space Dynamic Model for the 4DOF Manipulator Model 

The measurement space is therefore a set of vertical axes at each of these locations and we can 

define the vector 𝒁 as the deflection along each of these axes. 

 𝒁 =  

𝑍1

𝑍2

𝑍3

𝑍4

  (2.46) 

In order to identify the manipulators physical parameters, the vibration model must be 

transformed from the measurement space into joint space. The configuration dependent 

transformation Jacobian [TR] is the matrix that satisfies  

 𝒁 = [𝑇𝑅]  

𝑞1 
𝑞2 
𝜌 
𝑞3 

  (2.47)  

where 𝒁  is a vector of measured deflection rates at the different measurement locations. The 

relationship [TR] can be identified from the dimensions given by Figure 2.33. 
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Figure 2.33: 4DOF Manipulator Joint and Measurement Space Axes 

The measurement space mass (𝑴𝑧), stiffness (𝑲𝑧), and damping (𝑩𝑧) matrices can be 

approximated as functions of the manipulator joint space inertia (𝑫), stiffness (𝑲𝑞), and 

damping (𝑩𝑞 ) parameters defined in Section 2.2.1 and the transformation Jacobian [88]. 

 𝑴𝑍 = [𝑇𝑅]−𝑇𝑫[𝑇𝑅]−1 (2.48) 

 𝑲𝑍 = [𝑇𝑅]−𝑇𝑲𝑞[𝑇𝑅]−1 (2.49) 

 𝑩𝑍 = [𝑇𝑅]−𝑇𝑩𝑞 [𝑇𝑅]−1 (2.50) 

Now the eigenvalue problem in (2.28) can be solved using the transformed dynamic model and 

a LS optimisation can be used to fit the parameters. The approach taken did not rely on the 

linearity of the dynamics in the parameters. Instead the inertia matrix was reassembled from 

the mass and inertia values of each link using a configuration dependent inertia mapping 

matrix [ML]. For the vector of masses and inertias arranged as 

 𝒎 =

 
 
 
 
 
 
 
𝑚1

𝐼1

𝑚2

𝐼2

⋮
𝑚𝑛

𝐼𝑛  
 
 
 
 
 
 

, (2.51) 

the inertia mapping matrix is defined as the matrix that satisfies 
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𝑫 1,1 

𝑫 1,2 
⋮

𝑫 2,1 
⋮

𝑫(𝑛, 𝑛) 
 
 
 
 
 

= [𝑀𝐿]𝒎 (2.52) 

The optimisation was performed using data from several different configurations to ensure that 

the determined parameters produced an accurate measurement space FRF for different 

configurations in the workspace. The error was defined as  

 𝑬 =   
𝝀𝑀 − 𝝀𝐶

𝝍𝑀 − 𝝍𝐶
  (2.53) 

where 𝝀𝑀  denotes a column vector of the eigenvalues identified with the circle fit, 𝝀𝐶  denotes a 

column vector of the eigenvalues of the fitted dynamic model, 𝝍𝑀  denotes the column vector 

of concatenated mode shape column vectors identified by the circle fit, and 𝝍𝐶  denotes the 

same vector for the fitted dynamic model. It was found that, as with the residual terms of 

(2.20), the sensitivity of the mode shape vectors was insufficient for the optimisation to fit 

them accurately. The optimisation was frequently affected to the point that the initial 

conditions were returned. Removing the eigenvectors from the error such that  

 𝑬 =  𝝀𝑀 − 𝝀𝐶  (2.54) 

produces much better results for the overall fit and also for the eigenvalues. 

The algorithm for the identification of the dynamic parameters can be summarised as: 

1. Assemble the joint space mass (𝑫), damping (𝑩𝑞 ), and stiffness (𝑲𝑞) matrices from the 

initial conditions of each joint stiffness and damping value and each link mass and inertia 

using [𝑀𝐿] and (2.52) and rearranging to generate 𝑫. 

 

2. Use the transformations in (2.48), (2.49), and (2.50) to determine the measurement space 

dynamic parameters 𝑴𝑧 , 𝑩𝑍 , and 𝑲𝑧 . 
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3. Generate the measurement space dynamic model given by substituting 𝑴𝑧 , 𝑩𝑍 , 𝑲𝑧 , 𝒁, 𝒁 , 

and 𝑭𝑧  into (2.28), where 𝑭𝑧  is a vector of forces acting on each of the measurement space 

axes. 

    
𝑩𝑧 𝑴𝑧

𝑴𝑧 𝟎
 𝑠 +  

𝑲𝑧 𝟎
𝟎 −𝑴𝑧

   
𝒁
𝒁 
 =  

𝑭𝑧

𝟎
  (2.55) 

4. Find the solution to the eigenvalue problem given by the characteristic equation of 

measurement space dynamic model (2.55). 

 

5. Evaluate the squared error using the error value defined by (2.53) or (2.54). 

 

6. Adjust the joint and link parameters based on the change in error and repeat until 

convergence to a minimum error value. 

When fitting to multiple manipulator configurations simultaneously, steps 1-4 are repeated for 

all configurations and the error vectors generated in step 5 are simply concatenated for step 6. 

Figure 2.34 shows the results of identifying the dynamic parameters with and without 

including the eigenvectors, thus showing the benefits of using (2.54) in place of (2.53).  
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Figure 2.34: Reconstructed Mobility Amplitudes for Location 1 Excited at Location 2 using Parameters Identified by 

the Circle Fit Method with and without including Eigenvectors in the Parameterisation 

Both reconstructed FRFs in Figure 2.34 are defined by 

 𝐴𝑢,𝑣(𝑖𝜔) =  
−𝐴 

𝑢 ,𝑣
𝑝

𝜔2

−𝜔2+2𝜁𝑝𝜔𝑛
𝑝
𝜔𝑖+𝜔𝑛

𝑝 2
𝑃
𝑝=1  (2.19) 

where the modal parameters are all defined as described in Section 2.3.2 using the 

transformations in (2.48), (2.49), and (2.50). The amplitude of the curves has been adjusted in 

this figure so that the curves are superimposed in the region shown. Looking at the regions 

around 58 and 94Hz, the resonant peaks are missing from the reconstructed FRF that included 

the eigenvectors for parameterisation. This is due to the increased error in the model 

eigenvalues that causes the calculated peaks to be much more damped than their identified 

counterparts. As such it is desirable to ignore the eigenvalues in the parameterisation and focus 

instead on reducing the eigenvalue error by minimising the error given by (2.54) rather than by 

(2.53). 

Although the fit was much better with the eigenvectors neglected from the parameterisation 

algorithm, the calculated eigenvectors, whatever they may be, are still necessary to generate 
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the amplitude multipliers for an accurate for reconstruction of the Mobility FRFs. Figure 2.35 

shows the effects of including and neglecting the amplitude multipliers on the FRF 

reconstruction using the dynamic parameters identified using (2.54). In the case where the 

calculated eigenvectors are neglected, the amplitude multipliers (𝐴 
𝑢,𝑣
𝑝

) in (2.19) are reduced to 

unity. 

 

Figure 2.35: Reconstructed Mobility Amplitudes at Location 1 Excited at Location 2 using Parameters Identified by the 

Circle Fit Method without including Measured Eigenvectors and Reconstructed with and without Calculated 

Eigenvectors  

Although the general shape of the curve is preserved, when the amplitude multipliers are 

neglected, the amplitude of the 8Hz peak is drastically reduced. With the amplitude multipliers 

included, the amplitude of the first peak is corrected. Therefore, although the identified 

eigenvectors are not used in the identification, it is necessary for the amplitude multipliers from 

the identified parameters to be included in the reconstruction of the Mobility FRFs to 

reproduce the amplitude of the first peak accurately. 

Seven configurations were measured with high frequency resolution in order to provide large 

amounts of data for identification and to be robust to filtering. The location of the inertia, 

stiffness, and damping elements is such that changing the second joint angle with respect the 
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first joint angle is equivalent to simply changing the base frame since for practical reasons the 

vibrations can only be measured normal to the second link. Similarly, changing the 

configuration of the third joint was undesirable as the response of the end-effector could only 

be measured normal to the third link. Changing the orientation therefore changed the nature of 

the signal being measured and was undesirable. The configurations measured and used for 

identification are shown in Table 2.5 and the definitions of the joint angles are given by Figure 

2.36. Figure 2.37 and Figure 2.38 show the extended and retracted configurations respectively. 

 

Figure 2.36: Manipulator Extended Configuration for Modal Analysis and Joint Angle Definitions 

Table 2.5: Manipulator Configurations used for Experimental Parameter Identification and Verification 

Configuration First Joint 

Angle 

Second Joint 

Angle 

Pseudo-Joint 

Angle 

Third Joint 

Angle 

1 50
0
 -50

0
 0

0
 0

0
 

2 70
0
 -70

0
 0

0
 0

0
 

3 80
0
 -80

0
 0

0
 0

0
 

4 90
0
 -90

0
 0

0
 0

0
 

5 100
0
 -100

0
 0

0
 0

0
 

6 110
0
 -110

0
 0

0
 0

0
 

7 123
0
 -123

0
 0

0
 0

0
 

 

𝜃2 

𝜃1 

𝜌 𝜃3 
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Figure 2.37: Skeleton Schematic of Extended Manipulator and Joint Limit Configurations 

 

Figure 2.38: Skeleton Schematic of Retracted Manipulator and Joint Limit Configurations 
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Configurations 1 and 7, representing the largest and smallest first joint values, were fitted 

individually to find the dynamic parameters corresponding to each configuration and then 

fitted together to get a model that would span the configuration space. The identified 

parameters are given in Table 2.6, Table 2.7, and Table 2.8. The boundary and initial 

conditions used for the fit are given in Appendix D: . 

Table 2.6: Identified Dynamic Parameters using the Modal Parameters Identified from the Location 1 Mobility Excited 

at Location 2 in Configuration 1 

Link / Joint Link Mass 

[kg] 

Link Inertia 

[kgm
2
] 

Joint Stiffness 

[N/rad] 

Joint Damping 

[Ns/rad] 

1     /1 1.00 1.00 4.79 × 105 200.00 

2.1  /2 1.00 20.33 8.88 × 105 200.00 

2.2  /Pseudo 45.74 2.70 6.24 × 105 200.00 

3     /3 1.00 1.60 3.94 × 105 17.79 

 

Table 2.7: Identified Dynamic Parameters using the Modal Parameters Identified from the Location 1 Mobility Excited 

at Location 2 in Configuration 7 

Link / Joint Link Mass 

[kg] 

Link Inertia 

[kgm
2
] 

Joint Stiffness 

[N/rad] 

Joint Damping 

[Ns/rad] 

1     /1 1.11 1.18 1.98 × 105 200.00 

2.1  /2 1.19 3.49 6.03 × 105 200.00 

2.2  /Pseudo 1.60 42.92 7.08 × 105 97.40 

3     /3 2.23 4.70 5.56 × 105 124.21 

 

Table 2.8: Identified Dynamic Parameters using the Modal Parameters Identified from the Location 1 Mobility Excited 

at Location 2 in both Configurations 1 and 7 

Link / Joint Link Mass 

[kg] 

Link Inertia 

[kgm
2
] 

Joint Stiffness 

[N/rad] 

Joint Damping 

[Ns/rad] 

1     /1 1.48 1.59 5.03 × 105 1.00 

2.1  /2 1.00 3. 84 2.63 × 104 104.07 

2.2  /Pseudo 1.00 2.12 3.57 × 105 149.42 

3     /3 1.00 2.10 3.36 × 105 1.00 

 

The identified values for Table 2.6 and Table 2.7 do not show a strong correlation, indicating 

that these configurations will not share a common set of physical parameters and that the 

parameters in Table 2.8 will not provide an accurate fit to either configuration. However, when 

the eigenvectors are not restricted, as in this case, the solution found to satisfy the eigenvalue 

optimisation is not unique and finding a solution that meets the requirements of both 
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configurations is possible. Figure 2.39 and Figure 2.40 show the reconstructed end-effector 

(Location 1) FRFs for Configurations 1 and 7 scaled to match the amplitudes of the measured 

FRFs at 126Hz with and without the amplitude multipliers included in the reconstruction. This 

frequency was selected since the effects of the resonant peaks are sufficiently reduced and the 

FRF sensitivity to frequency is much lower than in the earlier regions. The predictions and 

measured responses of the remaining configurations are given by Figure 2.41, Figure 2.42, 

Figure 2.43, Figure 2.44, and Figure 2.45. All reconstructions and predictions use the 

parameters found from both configurations combined given in Table 2.8. 

 

Figure 2.39: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 1 using a Parameterised 

Dynamic Model Reconstructed with and without Calculated Mode Shape Vectors 
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Figure 2.40: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 7 using a Parameterised 

Dynamic Model Reconstructed with and without Calculated Mode Shape Vectors 

 

Figure 2.41: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 2 using a Parameterised 

Dynamic Model Predicted with and without Calculated Mode Shape Vectors 
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Figure 2.42: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 3 using a Parameterised 

Dynamic Model Predicted with and without Calculated Mode Shape Vectors 

 

Figure 2.43: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 4 using a Parameterised 

Dynamic Model Predicted with and without Calculated Mode Shape Vectors 
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Figure 2.44: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 5 using a Parameterised 

Dynamic Model Predicted with and without Calculated Mode Shape Vectors 

 

Figure 2.45: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 6 using a Parameterised 

Dynamic Model Predicted with and without Calculated Mode Shape Vectors 
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The amplitude multipliers necessary to accurately reproduce the first peak can be seen to have 

an adverse effect on the 51 and 58Hz peaks in all configurations. A piecewise model is 

therefore necessary to reconstruct the required amplitude of the first peak without negatively 

impacting the shape of the higher frequency peaks. For each configuration, excluding 

Configuration 4, the curves intersect at or close to the local minimum at approximately 46Hz. 

This is therefore an ideal place to concatenate the two models for any configuration since 

frequency domain identification for any configuration will identify an artificial local minimum 

at or very close to an actual local minimum. The identified parameters give accurate 

predictions for the measured data when considering a piecewise model that uses the amplitude 

multipliers for the region around the first peak and neglects them for the remainder of the FRF. 

The exception to this is configuration 4, which performs poorly in both cases. The cause of this 

is the loss of rank in the transformation Jacobian caused by the first link being aligned with the 

measurement axes. The resulting numerical error is sufficient to render the model ineffective in 

this region. Furthermore, the near-singular condition of the transformation Jacobian prevents 

this configuration from being parameterised individually. When optimising, a linear 

interpolation of amplitude will be necessary in this region in order to generate a more accurate 

reconstruction of the model. 

In an attempt to generate a more accurate model of the system, Configurations 2 and 6 were 

added to the parameterisation. The parameters identified with all four configurations are given 

in Table 2.9. 

Table 2.9: Identified Dynamic Parameters using the Modal Parameters Identified from the Location 1 Mobility Excited 

at Location 2 in Configurations 1, 2 ,6, and 7 

Link/Joint Link Mass 

[kg] 

Link Inertia 

[kgm
2
] 

Joint Stiffness 

[N/rad] 

Joint Damping 

[Ns/rad] 

1     /1 1.19 2.00 5.59 × 105 1.00 

2.1  /2 1.00 3.12 0.20 × 105 94.03 

2.2  / Pseudo 1.00 1.16 1.99 × 105 107.58 

3     /3 1.37 1.37 2.02 × 105 1.00 

 

Comparing Table 2.9 to Table 2.8, there appears to be a strong correlation in the parameter 

trends and values, thus the reconstructions and predictions are likely to be very similar. Figure 

2.46 shows the FRF prediction for Location 1 in Configuration 3, which was not used in either 
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of the parameterisations, for both sets of identified parameters reconstructed with amplitude 

multipliers included and reduced to unity. 

 

Figure 2.46: Mobility Amplitude for Location 1 Excited at Location 2 in Configuration 3 using a Dynamic Model 

Parameterised in both 2 and 4 Configurations Predicted with and without Calculated Mode Shape Vectors 

It can be seen that the change in the FRF prediction is minimal when using the parameters 

identified using additional points. This is taken as further verification that the dynamic 

parameters in Table 2.8, while not physically meaningful, will provide an accurate prediction 

of the system response when entered into the linearised model given by (2.5) and transformed 

into the measurement model coordinate frame. 

 𝑫𝒒 𝐷 + 𝑩𝑞𝒒 𝐷 + 𝑲𝑞𝒒𝐷 = 𝑱𝑇𝑭 (2.5) 

2.7 Summary 

In the preceding chapter a dynamic model has been developed based on the trends and 

characteristics found in the literature for modelling the dynamics of industrial manipulators. 

The model assumes flexible joints and rigid links since the majority of flexibility in industrial 

manipulators has been shown to be caused by the harmonic drives in the joints. The deflection 



76 

 

characteristics of harmonic drives have been found to be extremely complex by a number of 

authors. However, there is little agreement on how these characteristics should be modelled. 

Linear springs were therefore selected to allow the linearization of the model and the model 

was linearised about a zero velocity operating point, which removed the nonlinear dynamic 

terms entirely and left the remaining terms unaffected. The linearization was necessary to 

allow for parameterisation by modal analysis since other potentially viable identification 

techniques could not be implemented. For simplicity, and to maintain the linearity of the 

model, viscous friction was deemed sufficient to capture the dynamics of the system. 

Another potential error in the model is the rigid link assumption. In order to compensate for 

potential flexibility in the links, the linearised model was expanded through the addition of a 

pseudo-joint so that any flexibility in the links could be approximated while maintaining the 

rigid-link flexible-joint assumption and a low DOF model. Following the development of the 

model, a qualitative evaluation of the data was made to determine the effects of nonlinear 

dynamics and components, identify the link flexibilities, and gain an intuitive understanding of 

the systems dependence on configuration. The effects of nonlinear stiffness elements could be 

seen from the change in the response with different force input amplitudes. The changes in the 

anti-resonance amplitudes at low frequencies indicated the presence of both hardening and 

softening springs. The flexibility of the links was investigated for the first two links using an 

approximated peak picking method. It was determined that the first link could be assumed rigid 

due to the parallel mechanism of the physical robot despite the obvious deformation occurring 

along the length of the beam. The second link flexibility could not be neglected due to its 

significant contribution to the overall manipulator mode shape. However, only a single 

frequency was found to be affected by these characteristics and the deformation shape was a 

simple bending deflection. Therefore the flexibility was modelled by a single pseudo-joint on 

the link. 

With the qualitative investigation completed, the manipulator was again struck with an impact 

hammer in several configurations and the modal parameters were identified using a circle fit 

technique. A least squares parameterisation was then used to identify the dynamic parameters 

of the manipulator by matching the eigenvalues of the measurement space system with the 

identified modal parameters. The identification was repeated with data from additional 
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configurations and showed correlation in both the absolute and relative values. Further 

verification was seen by using the identified parameters to reconstruct the FRFs used in the 

identification and to predict those not used. The reconstructed and predicted FRFs were found 

to be accurate over different frequency ranges depending on the inclusion or exclusion of the 

amplitude multipliers in the generated FRF. It was therefore determined that a piecewise model 

could be used with a boundary located so that the artificial minimum created by switching 

model sections would coincide with an actual local minimum in the frequency domain.  
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Chapter 3 Optimisation Results and Simulations 

3.1 Introduction 

There are several optimisation strategies for finding solutions to nonlinear multi-input 

problems [101, 102]. The simplest solution is to use hill-climbing methods. These are methods 

that look at minimising an objective function by following the gradient to a minimum. 

Examples of this are the Cauchy method of steepest descent, the downhill simplex method, and 

Powell‟s direction set method [102]. The simplest of these, the Cauchy method, is also the one 

which requires the most information. In this case the gradient function needs to be known for 

the method to be implemented. Tuning of hill-climbing optimisations is done with a gain to 

determine the rate of traverse along the gradient. In order to descend to a minimum, this gain 

must be negative. Increasing the gain amplitude and therefore the step size too much may 

cause the solution to skip over one minimum and approach another if the solution space has a 

relatively steep gradient. This can be avoided by adjusting the optimisation gain based on the 

step size or the iteration number, or by limiting the step size to a value considered to be safe. 

There are several drawbacks to hill-climbing techniques. Firstly, the results for a multi-modal 

system are dependent on the initial conditions since there is no way for the solution to 

recognise or escape from a local minimum when correctly implemented with the appropriate 

gains and without additional guidance from a higher level optimisation algorithm. When 

dealing with tightly spaced local minima, it is difficult to find initial values to correctly identify 

a global minimum without prior knowledge of the system even when using a higher level 

guiding algorithm such as genetic algorithms or simulated annealing is used. These are known 

as directed random searches since they randomly search the workspace for solutions, but also 

incorporate a form of memory and volatility control to narrow the available solution space as 

they progress. The problem of identifying only local minima is further amplified when using an 

unguided random search algorithm, such as simply using multiple arbitrary starting solutions, 

since there is no guarantee that any of the initial conditions will eventually lead to the global 

minimum. Secondly, for a discontinuous function, the gradient is only piecewise defined 

requiring the optimisation to be repeated for all sections and then compared to identify the 

global optimisation. This again does not guarantee a global solution unless each section of the 
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function is convex
3
. Thus, for a global optimisation, hill-climbing methods, while quick and 

easy to implement, will not necessarily find the best solution. 

Although there are powerful optimisation tools available for finding solutions to optimisation 

problems, such as genetic algorithms, simulated annealing, and neural networks, they require 

substantial effort to implement and time to execute. The problem of posture optimisation for 

the Fanuc S-360 manipulator has only a single DOF when restricted to move in a single axis, 

as was the case in the parameter identification. Thus global search algorithms are excessive and 

unlikely to improve the results. The likelihood of multiple extrema is high, but the number of 

local extrema will also likely be very low so the global minimum can be found from a gradient-

descent hill-climbing method using an undirected random search as a higher level algorithm. 

The random search algorithm is simply to repeat the gradient-descent at several points in the 

workspace in order to identify a small set of local minima which can be quickly compared to 

find a global minimum. 

3.2 Configuration Optimisation 

3.2.1 Configuration Optimisation Procedure 

When excited at a known frequency, the configuration of an industrial manipulator can be 

optimised such that the receptance is minimised at the end-effector. This corresponds to 

Location 1 for the measurement space points on the manipulator. A gradient-descent algorithm 

was developed in the subset of the workspace defined by maintaining horizontal second and 

third links and keeping the first joint within the physical joint limits. Restricting the 

movements of the manipulator this way produced configurations that fell within the expected 

accurate range of the parameterised model. 

The optimisation uses the symmetric difference quotient 

 
𝜕𝛼𝑞(𝑖𝜔)

𝜕𝑞1
=

𝛼𝑞  𝑖𝜔  |𝑞1=𝑞 1+𝑑𝑞

𝑞2=𝑞 2−𝑑𝑞

−𝛼𝑞 𝑖𝜔  |𝑞1=𝑞 1−𝑑𝑞

𝑞2=𝑞 2+𝑑𝑞

2𝑑𝑞
 (3.2) 

where 𝑞 1 and 𝑞 2  are the current first and second joint angles, 𝑑𝑞 is a small change in 𝑞1 and 𝑞2, 

and 𝛼𝑞(𝑖𝜔) is the predicted Location 1 drive point receptance. The second link is held 

                                                 
3
 A function is said to convex if it contains only a single extremum that is a minimum 
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horizontal by adjusting  𝑞2 such that it changes an equal amount to 𝑞1 in the opposite direction. 

Therefore the derivative is found by considering the effects of the second joint rotation as well 

as the first joint rotation. The third joint does not need to be adjusted to maintain the horizontal 

condition and so it is maintained at zero throughout the optimisation. The Location 1 

receptance is used as the objective function and is approximated by the absolute value of 

 𝛼𝑞 𝑖𝜔 =   
𝐴 

1,1
𝑝

(𝑖𝜔−𝜆𝑝 )
+

𝐴 
1,1
𝑝∗

(𝑖𝜔−𝜆𝑝
∗ )

4
𝑝=1  (3.3) 

This uses only a subset of the eigenvectors corresponding to the receptance of the end-effector 

(Location 1) at each frequency, with the eigenvectors and eigenvalues calculated as outlined in 

Section 2.3.2 in Chapter 2. When the excitation frequency is above 46Hz, the amplitude 

multiplier is reduced to unity for improved model performance as determined in Section 2.6.4. 

The configuration is updated using the derivative of the objective function to generate a 

velocity command and position update scheme 

 𝒒 = 𝑘𝑣

 
 
 
 

𝜕𝛼𝑞 (𝑖𝜔)

𝜕𝑞1

−𝜕𝛼𝑞(𝑖𝜔)

𝜕𝑞1

0  
 
 
 

 (3.4) 

 𝒒 = 𝒒 + 𝒒 𝑑𝑡 (3.5) 

where 𝒒  is the vector of current joint angles, 𝒒  is the vector of joint velocities, 𝑘𝑣 is a velocity 

gain, and 𝑑𝑡 is a time increment. 

3.2.2 Configuration Optimisation Results 

A joint angle sweep of the first joint was performed on the objective function at an operating 

frequency of 8Hz. As was noted in Section 2.6.4, a piecewise model is needed to capture the 

amplitude of the peaks relative to each other with the lower frequency section of the model 

using the calculated mode shape vectors and the higher frequency section neglecting them. At 

8Hz the calculated mode shape vectors are included in the model. The range of the first joint is 

from 45 to 135 degrees corresponding to fully extended and fully retracted respectively. It was 

found that the function had a single minimum at this frequency as shown in Figure 3.1 where 

Configurations 1-7 are labelled as 𝐶1−7. 
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Figure 3.1: Location 1 Drive Point Receptance Amplitude Prediction as a Function of First Joint Angle at 8Hz 

The optimisation was then performed beginning at each of the configurations used for 

identification and verification of the dynamic model in the previous chapter listed in Table 2.5. 

Table 3.1 shows the results for the optimisation at the first resonant peak verifying the 

gradient-descent optimisation. 

Table 3.1: Configuration Optimisation Results for Location 1 Drive Point Receptance at 8Hz at Various Initial 

Conditions 

Configuration q1 Start Point [
0
] q1 End Point [

0
] 

1 123 135 

2 110 135 

3 100 135 

- 92
4 

135 

- 88 135 

5 80 135 

6 70 135 

7 50 135 

 

                                                 
4
 The model cannot be evaluated at 90

0
 since the transformation Jacobian [TR] is singular at that configuration 

and therefore an interpolation between 88
0
 and 92

0
 is used when generating a single objective function value in 

that range 
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From Figure 3.1 it can be seen that the manipulator is retracting as far as possible at the first 

resonance and meeting the maximum joint limit at 135
0
. This resonance was previously 

identified as being heavily dominated by the deflection in the second joint, which is a property 

of the joint and therefore not configuration dependent. However, there is also a contribution 

from the first joint deflection that can be minimised through configuration optimisation. When 

fully extended, the entire mechanism deforms in the same direction and therefore the amplitude 

of the first link is added to that of the second link. In the retracted configuration, the rotation of 

the first link reduces the overall deflection by rotating the second link. The results can 

therefore be said to match the expected dynamics of a manipulator of the form used in the 

model. However, when compared to the experimental results in Table 3.2 it can be seen that 

the prediction results using the identified model are not accurate and that the trend cannot be 

verified. The experimental values were determined by integrating the measured inertance in the 

frequency domain as in (2.11) in Section 2.3.1. 

Table 3.2: Predicted and Measured Location 1 Drive Point Receptance at 8Hz at Various Configurations 

Configuration q1 [
0
] Prediction [m/N] Measurements [m/N] 

- 45 5.31 × 10−4 - 

1 50 5.29 × 10−4 7.03 × 10−6 

2 70 5.20 × 10−4 8.59 × 10−6 

3 80 5.16 × 10−4 5.99 × 10−6 

4 90 5.11 × 10−4 1.33 × 10−5 

5 100 5.06 × 10−4 1.04 × 10−5 

6 110 5.01 × 10−4 1.204 × 10−5 

7 123 4.96 × 10−4 1.62 × 10−5 

- 135 4.92 × 10−4 - 

 

The majority of this error comes from the slight differences in the resonant frequencies 

between the configurations. This has a large impact on the measured data for the 8Hz peak 

since the peak is lightly damped and the amplitude is very sensitive to frequency in the 

immediate region. The small shifts in the frequency were not captured by the circle fit 

parameterisation, but can be seen from the peak frequency discrepancy between Configurations 

1 and 6 in Figure 3.2. These configurations were selected as they display the characteristic 

occurring at this frequency. 
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Figure 3.2: Measured Location 1 Drive Point Receptance Amplitude for Configurations 1 and 6 around 8Hz 

It can be seen from Figure 3.2 that at 7.58Hz the amplitude of the Configuration 1 FRF is 

sufficiently reduced to suggest that the peak value is less than that of the Configuration 6 FRF. 

However, when each is observed at its own local maximum, the Configuration 1 FRF is clearly 

of greater amplitude. In addition, at 8Hz an un-modelled anti-resonance is further reducing the 

amplitude of the Configuration 1 FRF making the numerical response much lower than the 

model will predict. The opposite phenomenon occurs at 9.5Hz, where the Configuration 6 FRF 

shows a noisy anti-resonance characteristic that will not be captured by the prediction and the 

Configuration 1 FRF shows a slight resonance. 

The frequency inconsistency is further compounded by varying damping ratios and the 

presence of smaller anti-resonances that cause the FRFs to become highly volatile. 

Investigating the frequency up to 46Hz, at which point the effects of the following peaks begin 

to show on the FRFs of some configurations, shows a response that is still dominated by the 

8Hz peak and is therefore still predicted with the amplitude multipliers included. The 

sensitivity of the FRF to frequency is now much lower due to the distance from the resonant 

peak and therefore the relevance of signal volatility is greatly increased. Verification of 

optimisation in this frequency range encounters a similar problem to that of the 8Hz 
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optimisation in that the separation between the curves is insufficient to produce a clear optimal 

configuration due to the smaller resonances and anti-resonances in the measured data. This can 

best be seen from the measured and predicted mobility for Configurations 1 and 5 in the range 

of the first peak as shown by Figure 3.3. 

 

Figure 3.3: Volatility of Measured Location 1 Drive Point Receptance Amplitude for Configurations 1 and 5 up to 45Hz 

The measured data shows that a direct comparison over the frequency range of the amplitude 

multiplier model is not plausible due to the volatility of the frequency response in this region. 

The model is not detailed enough to capture the full dynamics of the manipulator and so when 

the amplitudes are very similar, these additional dynamics become dominant for configuration 

selection. A configuration optimisation based on a low DOF dynamic model in this region is 

therefore unfeasible given the volatility of the response and modelling such turbulent 

behaviour present a formidable task. Thus, any accurate prediction in this region will be based 

on measured data rather than a linearised and transformed dynamic model. 

At higher frequency, the shape of the FRF becomes more relevant. Looking at the 50-60Hz 

region, the amplitude is more strongly dependent on configuration and less volatile at the 
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peaks. The configuration optimisations for 53 and 58Hz are shown in Figure 3.4 and Figure 

3.6, and the measured receptance curves are shown in Figure 3.5 and Figure 3.7.  

  

Figure 3.4: Location 1 Drive Point Receptance Amplitude Prediction as a Function of First Joint Angle at 53Hz 

  

Figure 3.5: Location 1 Drive Point Receptance Amplitude Measurements at Various First Joint Angle Values at 53Hz 
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Figure 3.6: Location 1 Drive Point Receptance Amplitude Prediction as a Function of First Joint Angle at 58Hz 

  

Figure 3.7: Location 1 Drive Point Receptance Amplitude Measurements at Various First Joint Angle Values at 58Hz 
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The predictions perform much better in this frequency range than previously, although the 

amplitudes are several orders of magnitude higher for the predicted receptance curves. This is 

expected given that the true amplitude data is contained in the true eigenvectors, which could 

not be identified experimentally. Disregarding the numerical values, the trends are very similar. 

At 53Hz, Figure 3.4 shows that the optimisation will try to avoid the upright configuration 

(Configuration 4) and attempts to move away from this configuration toward either one of the 

joint limits. This is supported by the experimental data in Figure 3.5, with the exception of the 

most retracted configuration (Configuration 7) which shows a slight increase in receptance. At 

58Hz, Figure 3.6 shows that the predicted receptance optimises to the fully extended 

configuration as a global minimum. The FRF shows a minimum gradient at around 85
0
, but 

there is no local minimum present. The measurements in Figure 3.7 show a similar trend with 

the exception that the minimum gradient becomes a shallow local minimum. Although the 

prediction does not accurately identify the local minimum at approximately 85Hz it 

successfully identifies the retracted configuration as significantly more responsive than the 

majority of the curve. The predicted and measured receptance values are given in Table 3.3. 

Table 3.3: Predicted and Measured Location 1 Drive Point Receptance Amplitude Values at 53 and 58Hz at Various 

Configurations 

 

 

 

 

Configuration 𝑞1 [
0
] 53Hz Prediction 

[m/N] 

53Hz 

Measurements 

[m/N] 

58Hz Prediction 

[m/N] 

58Hz 

Measurements 

[m/N] 

- 45 5.98 × 10−2 - 5.92 × 10−2 - 

1 50 6.14 × 10−2 9.49 × 10−8 6.04 × 10−2 2.84 × 10−8 

2 70 6.88 × 10−2 1.13 × 10−7 6.40 × 10−2 1.20 × 10−8 

3 80 7.22 × 10−2 1.33 × 10−7 6.54 × 10−2 7.43 × 10−9 

4 90 7.41 × 10−2 1.38 × 10−7 6.71 × 10−2 8.37 × 10−9 

5 100 7.36 × 10−2 1.07 × 10−7 6.98 × 10−2 3.24 × 10−8 

6 110 7.01 × 10−2 9.25 × 10−8 7.38 × 10−2 8.06 × 10−8 

7 123 6.25 × 10−2 9.32 × 10−8 8.19 × 10−2 1.57 × 10−7 

- 135 5.52 × 10−2 - 9.31 × 10−2 - 
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It is desirable to extend the model outside of the identification range toward and into 

machining frequencies, which begin at around 18,000rpm (300Hz) for softer metals such as 

aluminium [71]. High speed fluting performed by Matsuoka et al. [20] used a spindle speed of 

100,000rpm, which corresponds to approximately 1700Hz. It should be noted here that the 

spindle speeds of machine tools do not directly convert to excitation frequency and need to be 

multiplied by the number of teeth on the cutting tool. For a four tooth cutting tool with spindle 

speed of 300Hz, the excitation frequency of the cutting forces would therefore be 1200Hz. 

Table 3.4 shows the predicted receptance values for higher frequency operation. 

Table 3.4: Predicted Location 1 Drive Point Receptance Amplitude at Higher Frequencies at Various Configurations 

 

The receptance predictions converge to a single value for all configurations at each frequency 

suggesting that the effects of configuration are insignificant to the model at higher frequencies. 

As expected for a grounded dynamic system, a decreasing trend in receptance with increasing 

frequency can be also seen from the predicted receptance values in the table. This corresponds 

to a constant mass characteristic in the receptance FRF. Table 3.5 shows the receptance values 

recorded at each of three trials for Configurations 1, 2, 5, and 7. 

 

 

Configuration 𝑞1 [
0
] 500Hz Prediction 

[m/N] 

1000Hz Prediction 

[m/N] 

1500Hz Prediction 

[m/N] 

- 45 2.29 × 10−3 1.28 × 10−3 8.50 × 10−4 

1 50 2.29 × 10−3 1.28 × 10−3 8.50 × 10−4 

2 70 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

3 80 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

4 90 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

5 100 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

6 110 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

7 123 2.28 × 10−3 1.28 × 10−3 8.50 × 10−4 

- 135 2.29 × 10−3 1.28 × 10−3 8.50 × 10−4 
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Table 3.5: Measured Location 1 Drive Point Receptance Amplitude at High Frequency for Multiple Trials at Various 

Configurations 

Configuration 𝑞1[
0
] Trial 500Hz 

Measurement 

[m/N] 

1000Hz 

Measurement
5
 

[m/N] 

1500Hz 

Measurement 

[m/N] 

1 50 1 2.87 × 10−12 2.58 × 10−13 4.57 × 10−12 

1 50 2 2.38 × 10−12 5.67 × 10−13 3.28 × 10−12 

1 50 3 3.27 × 10−12 5.89 × 10−13 2.56 × 10−12 

2 70 1 2.52 × 10−12 8.95 × 10−13 4.03 × 10−12 

2 70 2 2.11 × 10−12 1.15 × 10−12 4.02 × 10−12 

2 70 3 2.17 × 10−12 1.39 × 10−12 3.39 × 10−12 

5 100 1 2.97 × 10−12 5.86 × 10−13 3.22 × 10−12 

5 100 2 2.74 × 10−12 6.54 × 10−13 3.75 × 10−12 

5 100 3 2.71 × 10−12 4.40 × 10−13 3.42 × 10−12 

7 123 1 2.28 × 10−12 8.72 × 10−13 2.32 × 10−12 

7 123 2 2.66 × 10−12 1.46 × 10−13 3.39 × 10−12 

7 123 3 2.69 × 10−12 5.54 × 10−13 1.93 × 10−12 

 Mean  2.61 × 10−12 6.75 × 10−13 3.32 × 10−12 

 

The necessity for multiple trials becomes clear from the variation in the measured receptance 

values for different trials in the same configuration shown in the table. At higher frequency the 

repeatability of the data decreases and the data cannot be used for verification of the selected 

configurations; however, it can be used to verify of refute trends identified by the receptance 

prediction. The receptance values in Table 3.5 show that the trend of decreasing receptance 

with frequency identified from the model data in Table 3.4 is inaccurate when compared to the 

measured response. Excluding the third trial at Configuration 1, all FRF measurement trials 

increased in amplitude from 500 to 1500Hz and are significantly lower at 1000Hz than at both 

500 and 1500Hz. 

Though the predicted frequency trend has been shown false, the configuration optimisation at 

higher frequency can be neither confirmed nor refuted. The measurements for receptance at 

these frequencies cannot be accurately measured due to variance in the measured response. 

Whereas the repeatability of the measurements was extremely high for the mid-range 

frequency responses as shown in Figure 3.8 and also the low frequency responses as seen in 

                                                 
5
 An anti-resonance is present at 1000Hz reducing the receptance amplitude relative to the surrounding 

frequencies 



90 

 

Appendix B, the repeatability at higher frequency was insufficient when compared to the small 

difference between the responses at the different configurations as shown in Figure 3.9.  

 

Figure 3.8: Location 1 Drive Point Inertance Amplitude Repeatability at Various Configurations in the 50-70Hz Range 

  

Figure 3.9: Location 1 Drive Point Inertance Amplitude Repeatability at Various Configurations in the 700-1050Hz 
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The different configurations show greatly reduced repeatability at higher frequencies 

preventing the selection of a preferable or optimal operating configuration. For example, 

investigating the Configuration 1 FRFs in Figure 3.9, a large variance can be seen, particularly 

at around 840Hz. When comparing this variance within a single configuration to the variance 

across configurations at this frequency it can be seen that these are comparable in amplitude 

and that it is therefore impossible to identify which configurations are preferable. Similarly, at 

975Hz, even though the variance of Configuration 7 becomes less relevant as the amplitudes of 

the other configurations are substantially reduced, the variances of the other FRFs including 

Configuration 5 are now too large for configuration dependent amplitudes to be separated. For 

practical purposes, it can be said that the receptance convergence is accurate at higher 

frequency since there is no distinguishable pattern. However, this is not to say that the model 

can be used in this range since it fails to accurately predict the receptance as shown by 

comparing the order of magnitude for the values in Table 3.4 and Table 3.5. 

A bode plot of measured receptance magnitude in Figure 3.10 shows that the amplitude does 

not continue to decrease with frequency as would be expected for a linear system. Instead, as is 

often the case with mechanical systems, the system response becomes erratic at frequencies 

much higher than the dominant dynamic resonances. 
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Figure 3.10: Logarithmic Manipulator Receptance Amplitude Plots for Multiple Trials in Various Configurations 

It becomes clear that a configuration optimisation is only useful within the 0-200Hz range for 

which the model was developed. In the case of highly volatile data, the model is only useful 

when the modelled dynamics are dominant over the un-modelled dynamics. This was seen by 

comparing the results in the 0-45Hz region with those of the 50-60Hz region. When the 

modelled dynamics were smooth and non-volatile in the 0-45Hz range, the predictions were 

poor and failed to capture the main differences between the true manipulator FRFs. However, 

in the higher 50-60Hz range the effects of the two resonant peaks had a large overall effect on 

the manipulator dynamics and the receptance trends were successfully modelled at 53 and 

58Hz. 
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3.3 Frequency Optimisation 

3.3.1 Frequency Optimisation Procedure 

Given a known configuration, the operating frequency can be optimised to reduce vibrations in 

the end-effector. A gradient-descent algorithm was developed using a symmetric difference 

quotient similar to the configuration optimisation. 

 
𝜕𝛼𝑞(𝑖𝜔)

𝜕𝜔
=

𝛼𝑞  𝑖𝜔  |𝜔=𝜔 +𝛥−𝛼𝑞 𝑖𝜔  |𝜔=𝜔 −𝛥

2𝛥
 (3.6) 

where 𝜔  is the current frequency, Δ is a small change in 𝜔, and 𝛼(𝑖𝜔) is the predicted Location 

1 receptance used as the objective function and approximated by the absolute value of (3.3) as 

with the configuration optimisation. The operating frequency is updated equivalently to the 

joint angle  

 𝜔 = 𝜔 +  𝑘𝑜 𝑠𝑖𝑔𝑛  
𝜕𝛼𝑞 (𝑖𝜔)

𝜕𝜔
  (3.7) 

where 𝑘𝑜  is a single gain to control the step size of the optimisation. The sign function was 

introduced to counter the low receptance derivative and thus very low objective function 

derivative values in certain regions of the predicted FRFs. This way the step size can be 

controlled and the optimisation can be discouraged from leaving the vicinity of a local 

minimum. 

Unlike the configuration optimisation where little was initially known about the objective 

function characteristics, several local minima are expected for a frequency optimisation with 

one occurring before the first resonance, between each set of neighbouring peaks, and 

following the final resonance. The maximum number of resonance is known through the 

degrees of freedom and so the initial conditions for the optimisation (initial frequencies) can be 

automatically selected to ensure that all these minima are identified. The initial frequencies are 

selected as a function of the resonant frequencies at the configuration on interest 

 𝝎′ =  
𝜔𝑛1

2
,
𝜔𝑛1+𝜔𝑛2

2
,
𝜔𝑛2+𝜔𝑛3

2
,
𝜔𝑛3+𝜔𝑛4

2
, 1.2𝜔𝑛4  (3.8) 

As mentioned briefly for the configuration optimisation, the model is piecewise and the switch 

between the two pieces occurs at 46Hz. In the frequency optimisation, the gradient decent will 
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likely need to switch from one piece of the model to another and so, to account for differing 

amplitudes in the two sections of the piecewise models, the amplitude correction factor (σ) is 

introduced as  

 𝜍 =
𝐻 𝑖𝜔 |𝜔=2𝜋(46)

𝐺 𝑖𝜔  |𝜔=2𝜋(46)
 (3.9) 

where 𝐺(𝑖𝜔) and 𝐻(𝑖𝜔) denote the predicted receptance with and without the amplitude 

multipliers respectively. The receptance prediction before 46Hz is then modified as 

 𝛼𝑞 𝑖𝜔 |𝜔<2𝜋(46) = 𝜍𝐻(𝑖𝜔) (3.10) 

3.3.2 Frequency Optimisation Results 

A frequency sweep was performed on the objective function defined in Section 3.3.1in each of 

the 7 configurations. The results for Configurations 1, 2, and 7 are shown in Figure 3.11 with 

the model switch point at 46Hz marked. The effects of the configuration on the relative peak 

amplitudes can be seen easily in the inset and only three configurations are shown for clarity. 

Table 3.6 shows the frequency optimisation results for each of the three configurations. 

 

Figure 3.11: Location 1 Drive Point Receptance Amplitude Predictions for Various Configurations using a Piecewise 

Modal Model  
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Table 3.6: Location 1 Operating Frequency Optimisation Results for Various Configurations with Various Initial 

Conditions 

Configuration 𝑞1 𝜔 = 4Hz 𝜔 = 30Hz 𝜔 = 54Hz 𝜔 = 76Hz 𝜔 = 113Hz 

1 50 0Hz 46Hz 54Hz 83.5Hz Increases Unbounded 

2 70 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

3 80 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

 88 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

 92 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

5 100 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

6 110 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

7 123 0Hz 46Hz 46Hz 83.5Hz Increases Unbounded 

 

From Figure 3.11and the results in Table 3.6, the operating point is selected as either 83.5Hz or 

the maximum practical spindle speed of the tool since the receptance at 83.5Hz clearly gives a 

lower receptance value than the other local minima. In general, it appears desirable to operate 

at the highest available frequency. Since the spindle speed when machining is multiplied by the 

number of teeth on the cutter, it appears that a cutting tool with more teeth is desirable to 

increase the excitation frequency artificially and take advantage of the decreased receptance at 

higher frequency. 

The measured data doesn‟t support the exact frequencies selected by the optimisations due to 

the volatility of the signals with respect to frequency as explored in the previous section. 

However, a more general verification can be done of the frequency optimisation. The measured 

responses all show a local minimum at extremely low frequency. This frequency is typically 

around 1Hz and below this the repeatability of the measured data quickly degrades. This 

supports the optimisation to zero of the first initial frequency 𝜔  1 =
𝜔𝑛1

2
. For the second 

initial frequency, the results are also intuitively accurate. As discussed in the previous chapter, 

the 46Hz model section switching frequency was selected to produce a modelled local 

minimum at a measured local minimum. Thus, when optimising between peaks in this vicinity, 

46Hz gives an optimal or near-optimal frequency for machining. The next initial frequency is 

only relevant for Configuration 1. The optimal measured value in this range is 54.30Hz, 

although a gradient-descent from this region would likely have found another local minimum 

in the measured data due to the signal noise. The model successfully captured the dominant 

dynamics and produced an optimal frequency of 54.28Hz. In the remaining configurations, 

there is no peak seen for 51Hz and the algorithm accurately identifies the 46Hz minimum as 
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the optimal frequency. The next minimum was identified at 83.5Hz by the optimisation, 

whereas the measured data places the minimum at approximately 77Hz. This discrepancy 

comes from neglecting the eigenvectors of the system in the model. The anti-resonance in the 

model can be adjusted through the phase of the amplitude multiplier, however these were not 

accurately determined as was shown in the previous chapter and as such their inclusion into the 

model will not improve the accuracy of the results. Finally, the optimisation identified infinite 

frequency as the desired machining point when operating at a frequency above all the modelled 

peaks. This is an accurate optimisation up to 300Hz as shown in Figure 3.10. After this point, 

the increase in frequency up to 1600Hz offers no advantage in response amplitude. The un-

modelled high frequency dynamics become dominant and the nature of the measurements 

becomes highly volatile with no general trends to be observed. This makes a frequency 

optimisation ineffective in this region. 

When operating in a given configuration, there appears to be a limiting frequency after which 

the response is no longer controlled by the governing dynamics of the machinery. This 

phenomenon is also seen in machine tools as shown in Figure 3.12.  

  

Figure 3.12: Open Loop Transfer Function for a High Precision Machine Tool Axis [103] 
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After reaching the frequency of constant returns, there appears to be little or no benefit in 

increasing the operating frequency for reducing vibrations. This frequency of constant returns, 

once identified, can be used as a lower bound for machining frequencies in a given 

configuration. In essence if the machining frequency is maintained above this frequency, the 

receptance of the end-effector is at a minimum and below this frequency the model needs to be 

used to avoid machining at resonant or other high receptance frequencies. It is worth noting 

that for the high precision machine tool the frequency at which the dynamics are no longer 

dominant is much higher than for the manipulator under investigation here. The CNC tool rigid 

body characteristics lose dominance at approximately 3000Hz compared to the 300Hz 

identified for the manipulator. This is due to the higher stiffness and natural frequencies 

typically found in the more rigid machine tools. 

  

3.4 Redundant Manipulator Optimisation 

3.4.1 Modelling and Optimisation of a Redundant Manipulator 

One of the issues facing the optimisation of the Fanuc S-360 manipulator is the lack of 

variance in the response with configuration. Ideally, the optimisations carried out on the 

manipulator would be used for a redundant system, thus offering a highly versatile system with 

large variances in the dynamic properties with configuration. Such a system was not available 

for experimental testing; however simulations were carried out with the configuration 

optimisation algorithm used for the Fanuc manipulator and a dynamic model was developed 

for the six link manipulator shown in Figure 3.13 using the same procedure and assumptions as 

for the Fanuc manipulator. 
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Figure 3.13: Skeleton Schematic of the Planar Six Link Manipulator 

The dynamic parameters for the simulated manipulator are given in Table 3.7. 

Table 3.7: Planar Six Link Manipulator Dynamic Parameters 

Link / Joint Mass [kg] Inertia [kgm
2
] Stiffness [Nm/rad] Damping [Nms/rad] 

1 10.00 0.83 3000.00 500.00 

2 10.00 0.83 2000.00 500.00 

3 10.00 0.83 1500.00 500.00 

4 10.00 0.83 1500.00 500.00 

5 10.00 0.83 1000.00 500.00 

6 10.00 0.83 1000.00 500.00 

 

In the case of a planar manipulator the full kinematic Jacobian is rank deficient and so the 

6 × 𝑛 Jacobian is reduced to a 3 × 𝑛 Jacobian representing the planar axes and orientation. The 

out of plane axis and remaining rotations are removed. For a planar manipulator with 𝑛 > 3 the 

Jacobian is redundant and said to be short since it has more columns than rows and is no longer 

invertible. In this case, the Moore-Penrose pseudo inverse (J+) [104] is the unique solution that 

satisfies 

 𝑱𝑱+ = 𝑰 (3.11) 
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and is calculated as 

 𝑱+ = 𝑱𝑇 𝑱𝑱𝑇 −1 (3.12) 

where I is the 𝑛 × 𝑛 identity matrix and thus J+ can be used in place of J-1 for several situations. 

The projection of an arbitrary vector onto the null space of the manipulator is identified using 

the pseudo inverse [105]. 

 𝑽𝑁𝑢𝑙𝑙 = (𝑰 − 𝑱+𝑱)𝑽 (3.13) 

where V is an arbitrary vector and VNull is the vector projection in the null space. Using this 

projection on the objective function derivative allows the formation of a gradient-descent 

optimisation in the velocity command. 

 𝒒  𝑡 = 𝒌𝑜 𝑰 − 𝑱+𝑱 
𝜕𝜉

𝜕𝒒
+ 𝒌𝑝𝑱

+𝒆 (3.14) 

where 𝒌𝑜  is a vector of gains for the optimisations of the various joints, 𝜉 is the objective 

function, kp is a vector of joint error gains, and e is a vector of Cartesian space position errors. 

The addition of Cartesian space errors allows a main task to be performed by the manipulator 

such as a machining or pre-machining operation with accurate tracking. In this case, the end-

effector will simply be held stationary in a desired location. As before, to minimise an 

objective function, 𝒌𝑜  must be negative. In the implementation of the optimisation the joint 

error gains were increased by a factor of ten for the last one hundred iterations in order to 

correct for the position errors caused by the optimisation. This was necessary as the starting 

configurations often produced large motions that were not fully contained in the null space. 

3.4.2 Receptance Optimisation Results 

An initial optimisation was done without error correction or null space projection using the 

equivalent of (3.2) for each joint. These resultant values were concatenated as the objective 

function derivative vector, 
𝜕𝜉

𝜕𝒒
, as in (3.15). The modal multipliers were included for all 

frequencies since they are known exactly. 

 𝒒 = 𝒌𝑜
𝜕𝜉

𝜕𝒒
 (3.15) 
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This was carried out to give an intuitive understanding of the optimal configuration for the 

redundant manipulator. Three starting locations were chosen at (-3.5, 1), (-2, 2), and (0, 1.5) in 

an attempt to recognise local and global minima. The natural frequencies of the manipulator 

typically fell between 0.5 and 30Hz at each of the starting locations and so the initial 

optimisations were carried out at 0 and 100Hz using each of the starting location joint 

coordinate as initial conditions for the optimisation. This was done to gain an intuitive 

understanding of the manipulator optimisation mechanism. The applied force axis is vertical 

and defined as acting at the end-effector by using the end-effector drive point receptance as the 

objective function. This is again a parallel to the configuration optimisation performed on the 

industrial manipulator. The manipulator generally converged to a singularity similar to that 

shown in Figure 3.14 such that there was a loss or severe reduction of manipulability along the 

applied force axis. This trend was observed for both frequencies at all end-effector locations. 

 

Figure 3.14: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 0Hz 

Initially Positioned at Location (0, 1.5) 

In the cases where the manipulator did not converge toward a singularity, it approached an 

aligned configuration and was limited by the optimisation gains, which were in turn limited by 

the initial values of the objective function derivatives. Increasing these gains too much, caused 
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some joints to oscillate about the optimal value without converging, while reducing these gains 

too much caused the solution traverse to slow significantly and the manipulator never arrived 

at the optimum configuration. The greatest improvement in the receptance value was found at 

100Hz starting from position (0, 1.5) and ending in approximately the same configuration as 

the 0Hz optimisation. Table 3.8 shows the joint angles, natural frequencies, and receptance 

amplitudes before and after the optimisation. The full set of optimisation results is given in 

Appendix E: . 

Table 3.8: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 100Hz Starting at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies
6
 [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.7854 10.9518 1: 1.4707 40.2364 

2: -0.6283 9.3648 2: 0.0458 11.0669 

3: 1.0472 5.1605 3: 0.0168 7.8127 

4: 0.7854 4.4986 4: 0.0312 6.4884 

5: 1.6535 3.3036 5: 3.1111 5.5875 

6: 0.3927 1.6958 6: 0.0295 4.4489 

 1.1914  2.4299 

   1.2463 

Initial Receptance 

Amplitude [m/N] 1.286 × 10−7 

Final Receptance 

Amplitude [m/N] 2.926 × 10−10 

 

The range of natural frequencies of the system is being increased with manipulator alignment 

and the receptance amplitude near the singularity is significantly decreased. This trend 

indicates that a pole placement algorithm could be used for the unrestricted case investigated 

here where the end-effector is free to move in the workspace. This pole placement algorithm 

would maximise the deviation between the maximum and minimum natural frequencies, which 

would correspond to a vertical singularity similar to the one shown in Figure 3.14. Possible 

implementation of this algorithm would be a LS maximisation of the ratio of the largest 

eigenvalue to the smallest eigenvalue. 

Once the unrestricted optimal configuration was identified, the end-effector position error was 

reintroduced and the optimisation was relegated back to the manipulator null space. This meant 

that, although the links could realign to improve the receptance at the operating frequency, the 

                                                 
6
 Repeated Frequency Values are Omitted 
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end-effector could not move. The same three end-effector locations were selected as before. 

These were selected since they are of varying distance from the manipulator base, while still 

offering sufficient kinematic redundancy to make the optimisation significant. In addition, 

these configurations avoided postures with high condition numbers early in the optimisation by 

avoiding aligning any two neighbouring links and prevented any links from being initially 

aligned with the excitation axis. The initial configurations are shown in Figure 3.15.  

 

Figure 3.15: The Three Initial Configurations for the Simulated Manipulator End-Effector Drive Point Receptance 

Optimisation 

The optimisation was carried out for 1, 5, and 20Hz based on the natural frequencies observed 

in the initial unrestricted optimisation. A general observation is that at all frequencies and in all 

machining positions the manipulator moved to a configuration more aligned with the vertical 

axis. This is most predominant in the results for the 5Hz optimisation at (-2, 2) shown in Figure 

3.16. The full set of plots is given in Appendix G: .  
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Figure 3.16: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator 5Hz at 

Location (-2, 2) 

Table 3.9 shows the results of the 5Hz optimisation at (-2, 2). It can be seen that the largest 

natural frequency was increased substantially from 9.9 to 48Hz while the smallest was slightly 

reduced from 0.81 to 0.75Hz. This combination increases the condition number of the 

eigenvalue problem, as before, as the manipulator moves toward a singular configuration. In 

addition, the three natural frequencies closest to the operating frequency have been changed 

from 5.8, 4.8, and 4.6Hz to 7.0, 5.8, and 4.2Hz. The resonances associated with each of these 

frequencies are moving away from the 5Hz operating point.  

Table 3.9: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 5Hz at Location (-2, 2) 

Initial Joint 

Values [rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.5708 9.8557 1: 3.8681 48.0462 

2: 0.2618 5.7912 2: -1.6855 6.9557 

3: 0.2618 4.7526 3: -0.1226 5.7486 

4: 0.2094 4.6377 4: -0.4073 4.2074 

5: 1.4280 3.0509 5: 0.2442 3.4311 

6: 1.0472 1.4478 6: 3.0108 2.5526 

 0.8135  0.7496 

Initial Receptance 

Amplitude [m/N] 2.948 × 10−5 

Final Receptance 

Amplitude [m/N] 1.127 × 10−5 
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In addition to shifting the resonant peaks, the amplitude of the peaks is also reduced. Figure 

3.17 shows the FRF for the manipulator before and after optimisation. 

  

Figure 3.17: Simulated Manipulator End-Effector Drive Point Receptance Optimisation Results at 5Hz at Location (-2, 

2) 

It can be seen that the amplitude of the peaks close to the operating point have been reduced 

significantly and that the overall amplitude is also reduced by decreasing the DC receptance. 

The DC gain of a mechanical structure is controlled by the rigid body stiffness for a grounded 

system; that is, a system with one fixed end condition. The DC gain for such systems is given 

by  

 𝑘𝐷𝐶 =
1

𝐾𝑅𝐵
 (3.16) 

where 𝐾𝑅𝐵  is the rigid body stiffness and 𝑘𝐷𝐶  is the zero frequency gain. From this 

observation, the mechanisms of the optimisation can be stated as 

1. Pole Placement: The poles are being adjusted in order to reduce resonance and increase 

anti-resonances in the region around the operating point. 

2. DC Gain Control: The DC gain is being reduced where possible corresponding to a 

maximisation of rigid body stiffness. 
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The receptance function can be seen to operate with the two different mechanisms, however it 

is difficult to exactly measure or compare the effects of each since they are occurring together 

since the purpose of this research is to include the effects of frequency on the posture selection 

optimisation, it is desirable to identify the relevance of the pole placement component 

compared to the DC gain control component. 

3.4.3 Stiffness Optimisation Results 

For a single arbitrary response axis defined by the vector 𝒖, an objective function, known as 

the stiffness measure, can be built to describe the Cartesian rigid body stiffness along that axis 

[44]. 

 𝜉𝐾 = 𝒖𝑇𝑱+𝑇𝑲𝑞𝑱
+𝒖 (3.17) 

 

Given that the joint axis stiffness matrix is diagonal, as is the case for the dynamic model used 

in this work, this measure is effectively a weighted inverse of the mobility performance 

measure identified by Yoshikawa [38] using the joint stiffness as a weighting on each DOF. 

 𝜉𝑀 = 𝒖𝑇𝑱𝑱𝑇𝒖 (3.18) 

 

Intuitively, minimising the mobility performance measure will lead the manipulator to a 

singularity on the projection axis. By extension, maximising the inverse will also lead the 

manipulator to a singularity on this axis. Using the joint stiffness values as a weighting 

function will therefore also eventually lead the manipulator to a singularity along the projection 

axis. This general concept has been used for several configuration optimisations as outlined in 

Section 1.4. We are now in a position to separate the frequency effects of the simulated results 

from the stiffness effects of the simulated results by optimising the six link manipulator 

according to (3.17) and comparing the results to those obtained previously. This will highlight 

the effects of the pole placement in the receptance optimisation. The results of the stiffness 

optimisation are shown with the receptance optimisation and initial curve in Figure 3.18. 
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Figure 3.18: Simulated Manipulator End-Effector Drive Point Receptance at 5Hz and Rigid Body Stiffness 

Optimisation Results at Location (-2, 2) 

The stiffness optimisation gave the same approximate configuration as the receptance 

optimisation in Figure 3.16 and thus the effects of frequency configuration can be more easily 

seen. Below 2Hz, the two optimisation algorithms give a similar FRF, however the stiffness 

optimisation does not account for the amplitude increase caused by natural frequencies in the 

2-4Hz region. By adjusting the damping, resonant frequencies, and amplitude multipliers, the 

receptance optimisation is able to further reduce the amplitude sensitivity at the operating 

point. Although the DC response is not identical in this case, the advantage of a frequency 

dependent optimisation over stiffness optimisation can be seen from Figure 3.18 by looking at 

the greater improvement in receptance at 5Hz (a factor of 2.15) compared to the lesser 

improvement at 0Hz (a factor of 1.34). 

 

The first resonant peak occurs slightly before 1Hz and is comparable for the two optimisations. 

Comparing the stiffness optimisation to the 1Hz receptance optimised configuration in Figure 

3.19 shows how the receptance optimisation can place anti-resonances to reduce the sensitivity 

of the system. 
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Figure 3.19: Simulated Manipulator End-Effector Drive Point Receptance at 1Hz and Rigid Body Stiffness 

Optimisation Results at Location (-2, 2) 

The manipulator is moved to a configuration with less vertical alignment in this case. The 

benefit is far less intuitive since the anti-resonance cannot be inferred from the configuration. 

The alignment to a singularity previously identified as a desirable configuration in order to 

reduced the general amplitude of the curve has been ignored and instead a more obscure 

configuration was selected which places the anti-resonance at 1Hz. The benefit of the pole 

placement aspect of the receptance optimisation is now clear. Whereas the general resistance to 

vibrations is increased by the stiffness optimisation, the operating frequency considerations 

offer a vast improvement close to resonant frequencies. By changing the configuration, the 

system poles are being adjusted, which in turn affects the natural frequencies and damping 

ratios if the resonant peaks. Therefore the receptance optimisation indirectly affects the natural 

frequencies and damping ratios of the resonant peaks in order to reduce the receptance at the 

operating frequency. The configurations for the receptance optimisations at 1 and 5Hz, the 

stiffness optimisation, and the initial configuration are shown in Figure 3.20. 
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Figure 3.20: Simulated Manipulator Configurations for End-Effector Drive Point Receptance Optimisation at 1 and 

5Hz and Rigid Body Stiffness Optimisation at Location (-2, 2) 

As mentioned previously, the optimisation gains can cause the system to „hop‟ over a local 

maximum from the vicinity of one local minimum to that of another. An example of this occurs 

during the 20Hz optimisation at (-3.5, 1). The direct gradient-descent solution yields a 

configuration similar to the expected alignment found in the 5Hz optimisation at (-2, 2) (see 

Figure 3.16), but when the optimisation gain is increased too far, the manipulator shifts to a 

configuration in the locality of another local minimum. The final configurations are shown in 

Figure 3.21. 
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Figure 3.21: Simulated Manipulator Configurations for End-Effector Drive Point Receptance Optimisation and 

“Maximum Hopped” Configuration at 20Hz and Rigid Body Stiffness Optimisation at Location (-3.5, 1) 

Surprisingly, the best configuration for receptance at 20Hz was given by the stiffness 

optimisation given by the velocity update scheme in (3.14) and the objective function (3.17). 

The final receptance value of 2.305 × 10−6 was less than 2.390 × 10−6 given by the 
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ten to ensure that the final end-effector position is accurate. The sharp increase in the error 

command at 0.9 seconds is caused by this change in gain as is the disappearance of the 

objective function command at the same time. The scale of the objective function command 

has been adjusted to make the correlation to the objective function and the error command 

more visible, however it should be noted that the initial values of some joint velocity 

commands approach 1.5 × 107 for the first three steps. It can be seen that the initial 

improvement in the objective function is caused by an extremely large objective function 

command that cannot be contained in the null space of the manipulator thus causing the error 

command to grow and increase the objective function value through position correction. The 

error command eventually reduces allowing the cost function command to dominate and move 

to a new configuration with a lower objective function value. This is approximately the final 

configuration seen in Figure 3.21, and is adjusted very slightly at 0.9 seconds when the gains 

are adjusted. The transition from the region of one minimum to the other occurs at 

approximately 0.07 seconds when the error command increases in an attempt to recover from 

the high objective function command values at 0.05 seconds. This error correction causes the 

joints to begin moving under the end-effector as in Figure 3.23 and when the error command 

decreases, the optimisation now begins to traverse to a new local minimum. 
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Figure 3.22: Command and Objective Function Values for 'Maximum Hopping' During End-Effector Drive Point 

Receptance Optimisation at 20Hz at Location (-3.5, 1) 
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Figure 3.23: Intermediate Configurations for the „Minimum Hop‟ at 20Hz at Location (-3.5, 1) 

In order to find a globally optimal solution, several joint configurations are used as a starting 

point for the same end-effector location. The resultant configurations can then be compared to 

identify a globally optimal solution. In this case, the two local minima are essentially mirrored 

in the line that passes through the manipulator base and end-effector as shown in Figure 3.21. 
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configuration. Thus, for this particular manipulator, it is only productive to use a configuration 

optimisation in the 50-60Hz range where there are two neighbouring peaks whose relative 

amplitude is highly configuration dependent and the effects of higher order dynamics are 

negligible in comparison. 

A frequency optimisation effectively avoided the resonant peaks, but was unable to find the 

true optimum configurations due to inaccurate placement of the anti-resonances. This shows 

the necessity of accurately identified mode shapes and suggests that while a heavily simplified 

model can be used to improve the performance, the model used needs to be fully identified 

before the true optimal configuration can be found. Furthermore, at frequencies above 300Hz, 

the modelled rigid body dynamics no longer dominated the response and thus the model is no 

longer relevant due to un-modelled high frequency dynamics. Beyond this frequency the 

response is fairly constant with low magnitude, although it is highly volatile. It was therefore 

determined that the optimum machining frequency would be above 300Hz and dependent on 

cutting parameters such as feed speed and chip thickness. Unlike the configuration 

optimisation, it is possible to identify a globally optimal operating frequency with absolute 

certainty below 300Hz with an accurate model since the location of all the local minima are 

known and thus it can be guaranteed that they will all be investigated. 

A redundant manipulator with no joint restrictions was simulated in order to further investigate 

the results of posture optimisation and overcome the lack of variance in the Fanuc S-360 

manipulator. The redundant manipulator tended toward a singularity that prevented motion in 

the measured axis. With this established, the optimisation was repeated with the optimisation 

restricted to the null space of the manipulator and the error from implementation was 

accounted for with an error correction term. This showed that while the manipulator still 

tended toward a low manipulability configuration, it also accounted for the shape of the FRF 

curve produced when reducing the receptance at a given frequency. The system was then 

optimised using a weighted mobility measure that considered the flexibility in each joint. The 

general trend of moving to a low manipulability configuration was retained, but the indirect 

placement of poles by the optimisation to further reduce the amplitude was absent. By 

comparing the two sets of results, the frequency consideration was found to be manifested in 

both the reduction of neighbouring peaks and the placement of anti-resonances at or around the 



114 

 

operating point. Thus, the improvement in system receptance gained by compensating for 

operating frequency can be seen and quantified on a case by case basis. With the exception of a 

single case where the gains had to be reduced to prevent the solution from escaping to a 

neighbouring minimum, the frequency optimisation was seen to improve the performance of 

the simulated manipulator. 

  



115 

 

Chapter 4 Summary, Conclusions, and Future Work 

4.1 Summary of Previous Chapters 

4.1.1 Motivation 

Industrial robotic manipulators are well established in many areas of life from entertainment to 

welding to materials handling. The current state of the art is predominantly in low force 

applications; however robots are becoming increasingly used for more demanding tasks such 

as material removal fabrication. To date, the applications in material removal have been 

predominantly limited to low precision tasks such as pre-machining stock material and 

finishing cast parts, and machining soft materials such as wax, plastic, or wood. The increasing 

capabilities of CNC machine tools often exceed the requirements to produce a given part and 

manufacturers are beginning to look to robots as a cheaper alternative where applicable in 

order to exploit several advantages such as lower capital cost and increased dexterous work 

volume. Research is currently being carried out to expand the capabilities of robotic machine 

tools in material removal applications, specifically metal cutting to increase the number of 

situations where this substitution is worthwhile. 

As robotic machine tools are increasingly used for metal cutting, there is a need for more rigid 

robots to be constructed. However, several factors inherent in the design of industrial 

manipulators prevent rigidity that can compete with that of CNC machine tools. The most 

significant and widely investigated of these is the use of harmonic drives. Harmonic drives are 

an excellent choice for industrial robots as they allow very large reduction ratios and enable 

manipulators to handle very high payloads. When operating with machining forces, this is a 

desirable trait. The disadvantage associated with this is the flexibility inherent in their design. 

Several researchers have attempted to model the dynamics of these mechanisms with varying 

levels of detail and success and the problem is further amplified by the cantilever nature of 

serial manipulators. 

In order to reduce the apparent flexibility of robotic machine tools, several researchers have 

investigated posture selection and control strategies that can compensate for the flexibility in 

the manipulator. In some cases, primarily in posture selection, the dynamic model needs to be 

known in advance, while in others an adaptive scheme can be used to correct for errors in the 
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assumed dynamic parameters. The posture selection measures proposed to date are based on 

static loading dynamics even when applied to vibration problems. The motivation for this work 

is therefore to add to this body of knowledge by creating a posture measure that can include 

frequency effects and verify it experimentally. In order to do this, a manipulator needs to be 

parametrically identified to generate an accurate model and so it is desirable to both develop a 

method of parametrically identifying a dynamic model of the manipulator, while reducing the 

downtime of the machine in a factory setting, and to develop posture selection measure that 

will identify optimum configurations for carrying out tasks that include oscillating external 

loads. 

4.1.2 Dynamic Modelling of Industrial Manipulators 

Flexible manipulators can be modelled with flexibility in both the joints and links. It has been 

shown for industrial manipulators that the majority of flexibility can be modelled in the joints 

alone and so this model was selected. Additional pseudo-joints were added to compensate for 

any link flexibility. 

The ideal dynamics of serial manipulators are nonlinear with configuration due to the 

gravitational and squared velocity terms. The gravity terms can be neglected from the model 

either by operating in a plane or by dismissing the force of gravity as a constant and therefore 

not part of the oscillatory response. Since the effects of gravity are constant with time for any 

given configuration and, when the deflections in the manipulator are small enough that the 

configuration can be considered constant, these terms are neglected by adjusting the 

equilibrium configuration of the manipulator. The squared velocity terms however are not 

necessarily negligible and so the experimental configurations were selected to minimise their 

effects. 

The effect of the joint controllers as servo stiffness was found to be negligible when compared 

to the physical compliance and was therefore neglected. This was expected for an industrial 

manipulator since these machines generally offer very high repeatability and accurate 

positioning. For the Fanuc S-360 manipulator, the repeatability is listed at ±0.5mm [106], 

while the end-effector deflection that can be achieved by manually exciting the system near the 

first resonance is in excess of 1cm. 
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The rigidity of the links was also investigated and the model was updated to include pseudo-

joints to compensate for the link flexibility. The first link was found to be rigid in that the 

motions of the measured points on the link joint did not match any fixed free beam modes and 

thus the parallel mechanism compensated for any significant link flexibility. The second link 

flexibility was found to have a significant effect on the end-effector and so the harmonic 

frequencies were also investigated. The harmonics were found to be negligible and thus only a 

single pseudo-joint was added to compensate for the link flexibility. 

4.1.3 Modal Parameter Identification 

Two separate modal analysis software packages were used with varying amounts of user input 

and model complexity to identify the modal parameters of the measured FRFs. Neither 

program was able to consistently identify accurate modal parameters despite the repeatable 

data used. In some experiments the mode shape vectors were accurate for certain FRFs, but the 

full set of FRFs corresponding to the system were never accurately obtained. The implication 

here is that once the more accurate mode shapes vectors had been identified, there was no 

solution for the remaining mode shape vectors that satisfied the restrictions placed by those 

already identified. It is expected that the failure of these programs is due to the nonlinear nature 

of the captured manipulators dynamics. 

A more user intensive technique was then employed that allowed more operator input and thus 

could be adjusted for the peaks and locations where the data was significantly different from 

the modelled form of a linear system. A circle fit technique was used that identified natural 

frequency, damping ratio, and amplitude multipliers, but could have either the natural 

frequency, damping ratio, or both entered manually when the data quality was poor or the 

calculated results were considered too erroneous. The reduced restrictions on the modal 

parameters prevented the measured mode shape vectors from satisfying the orthogonality 

property that decouples the modal mass or equivalent matrix. This, in turn, prevented use of the 

high precision techniques used in model updating to identify the dynamic parameters since 

these techniques rely on the orthogonality condition. A more general approach was instead 

developed using a least squares optimisation. 
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4.1.4 Dynamic Parameter Identification 

When identifying the dynamic parameters, the errors in the mode shape vectors were trivialised 

since the least squares optimisation was unable to correlate the dynamic parameters to the 

mode shapes. This prevented the use of the mode shape vectors when parameterising the 

dynamic model therefore led to inaccurate reconstructed eigenvectors. Surprisingly, these 

eigenvectors could still be used to generate the correct amplitude of the first peak with respect 

to the higher frequency response (after the effects of the remaining peaks had died out). 

However, as expected, the intermediate peaks were not accurately modelled when these 

eigenvectors were included. It was found that in the intermediate region, the eigenvectors could 

be completely ignored and the relative amplitude of the peaks could be adjusted using only the 

damping ratios and natural frequencies. The accuracy with this method was not a high as 

would be ideally desired since the anti-resonance information is contained in the amplitude 

multipliers, which depend on the system eigenvectors. To take advantage of the unexpected 

low frequency benefits of the eigenvectors given by the parameterised model, different models 

were used in different frequency ranges. 

4.1.5 Industrial Manipulator Optimisation 

The configuration optimisation with the parameterised model was unable to identify an 

optimum configuration at the first resonance due to the high sensitivity in the FRF around the 

peak and the small variances in the actual peak frequency between the configurations that 

become insignificant when compared to the signal noise. This trend was noticed in all regions 

where the dynamics of the system were relatively smooth. However, the configuration became 

relevant when comparing the 50-60Hz region of the different FRFs. Due to the increase in the 

configuration dependent dynamics in this range, the optimisation could be verified with the 

measured data and was found to accurately predict general trends with enough accuracy to be 

useful when machining. However, the optimisation still did not identify the trends exactly, 

particularly for the more extreme configurations. 

Frequency optimisation with the industrial manipulator was limited by the anti-resonance 

errors as observed in the dynamic model parameterisation. Within this limitation however, the 

optimisation was found to be effective at identifying a desirable, if not optimum, frequency for 

operation. An additional beneficial characteristic of the frequency optimisation is that the 
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worse case number of local minima is known and the approximate locations of each can be 

identified from the frequency locations of the resonance peaks. The region of accuracy for the 

model was also identified by comparing the modelled response at very high frequencies to the 

measured response at equivalent frequencies. It was established from the measured FRFs that 

the model reaches a frequency of constant returns after which point there is no benefit or 

penalty associated with increasing the frequency since the measured FRFs at these frequencies 

typically become extremely volatile and the benefits neither frequency nor configuration 

cannot be accurately measured. Conversely, the model continues to suggest reduced receptance 

with increasing frequency. This characteristic is common to all types of mechanism, although 

machines such as high precision CNC tools exhibit this characteristic at much higher 

frequencies and with lower receptance values due to the higher apparent stiffness of the 

mechanisms even after the introduction of control laws to increase the system bandwidth. 

4.1.6 Redundant Manipulator Optimisation 

The restricted configurations identified as problematic for the industrial manipulator were 

overcome in simulation by using a redundant six link planar manipulator. This ensured that the 

FRFs would vary significantly with configuration and also removed the experimental noise that 

was partially preventing verification of the optimisations for the industrial manipulator. 

Initially, unrestricted optimisation showed that the redundant manipulator generally converged 

to a vertical singularity. When the end-effector location was maintained and the optimisation 

was relegated to the manipulator null space, this trend continued with some notable exceptions 

corresponding to different mechanism in the optimisation and escaping local minima. 

Two key results of the optimisation were identified this way. The first was the general 

improvement to the FRF by moving toward the singularity, and the second was the frequency 

specific pole placement effects. This first could be duplicated by using a weighted mobility 

measure using joint stiffness to weigh the DOF. This enabled the frequency specific results to 

be seen and by comparing the receptance optimised configuration to the stiffness optimised 

configuration. Although different for each machining point and operating frequency, the 

frequency optimisation generally performed better than the stiffness optimisation. 

The exception to the trend above occurred when the optimisation gains were increased too far. 

In this case the manipulator moved to a sub-optimal local minimum by escaping the well of the 
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initial local minimum, which offered a more beneficial solution. In order to keep the solution in 

the original locality, the optimisation gains had to be reduced, which prevented the 

optimisation from reaching the optimal configuration in the allotted time. The global solution 

was therefore the stiffness optimisation although the difference in the three optimised 

configurations was very small when compared to the improvement with respect to the initial 

configuration. 

4.2 Conclusions 

4.2.1 Dynamic Modelling and Parameterisation 

In order to gain an accurate dynamic model through modal analysis, the complete set of modal 

data is required. When the mode shape vectors are not accurately identified, the parameterised 

model will not be able to accurately capture the frequency response of the system. This is 

particularly true of the anti-resonances, which were inaccurately placed by the reconstructed 

and predicted FRF curves. However, to create a useful model with reasonable accuracy, it is 

possible to use a subset of the data and rely on only the poles of the system for large sections of 

the model. This gives accurate FRF reconstructions in the range used to parameterise the model 

with the exception of the first peak, which was modelled with severely reduced amplitude. This 

can be corrected by using a two part model, but still generally fails outside the configuration 

range used for parameterisation due to the nonlinearities absorbed by the linear model.  

4.2.2 Optimisation 

Though the model was erroneous as mentioned above, it was beneficial in certain situations; 

particularly in the frequency regions where the manipulator dynamics were dominant. The 

model was better able to identify the resonances than the anti-resonances, however when used 

to minimise the receptance the optimisation successfully avoided the resonance peaks and 

improved performance. In other frequency regions the benefits of configuration were measured 

as negligible and thus there was no disadvantage to reconfiguring the manipulator. Thus it can 

be concluded that the optimisation is potentially beneficial and, when the model is not 

beneficial, will not produce configurations that degrade the performance of the manipulator 

significantly. 



121 

 

Frequency optimisation highlighted the errors with the dynamic model and suffered from the 

inaccurate anti-resonance placement in the model. The local minima were placed in the correct 

regions by the model; however the exact frequencies and thus the final receptance values were 

inaccurate. Where there was no disadvantage to the optimisation errors in the configuration 

optimisation, there was a clear and significant difference in the measured and predicted 

receptance for the frequency optimisation. A redeeming feature of the frequency optimisation 

is that the general locations of the local minima are all known at all times from the poles of the 

FRF at a given configuration and thus a global minimum can always be identified. From this it 

was concluded that for this model the frequency optimisation is only advantageous when trying 

to avoid resonance peaks. Identifying the true local minima is beyond the capability of the 

erroneous model. 

Redundancy successfully overcame the limitations of the Fanuc S-360 manipulator when 

trying to get significant receptance variance with configuration. Two mechanisms were 

identified for the receptance optimisation allowing the frequency effects to be seen directly by 

comparing a receptance optimisation to a rigid body stiffness optimisation. The improvements 

varied for different operating frequencies; however the receptance optimisation consistently 

performed better than the rigid body stiffness optimisation. From this it was concluded that 

including frequency effects in the configuration selection is a superior method to reducing the 

vibration susceptibility of a manipulator. A further conclusion seen from the effects of 

increasing the optimisation gain too far is that the implementation of the optimisation must be 

considered to prevent the gradient from failing to reach the true local minimum or from 

escaping a local minimum and moving to a less optimal configuration.   

4.3 Applications and Future Work 

4.3.1 Applications of this Work 

Robotic machining is moving toward harder materials in order to reduce the costs associated 

with CNC machining where possible and also to reduce the number of workers in hazardous 

environments. Previous work has been carried out for optimising the posture of industrial 

manipulators for machining operations such as grinding and pre-machining; however the 

effects of vibrations have been neglected when selecting postures to date. This work stands as 
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an improvement on the current techniques to compensate for natural frequencies in the 

manipulators that could be unknowingly excited using existing posture measures. 

The ideal application of posture optimisation with frequency consideration is when working 

with rotary tools and specifically when using a redundant kinematic system. The redundancy 

gives the manipulator a greater opportunity to reconfigure while performing a given task. 

Without this the manipulator will be unable to improve its dynamic characteristics without 

moving the end-effector to a different position in the workspace, which will significantly 

reduce the effective workspace and therefore the applications of the manipulator. 

Additionally, this optimisation can be applied to any manipulator application where external or 

even self excitation is important since the excitation frequency can be set to 0Hz. The apparent 

compliance at a given frequency can be relevant to all workspace applications where force 

interactions are required at speed, or when self excited deflection needs to be controlled while 

travelling at speed. 

4.3.2 Locally Weighted Models  

The limited range of the linearised model is supported by the concept of Locally Weighted 

Learning (LWL) advocated by Schaal et al.[107] in machine learning for various complex 

tasks. The stated key concept is to use a series of linear models to approximate nonlinear 

functions over a large domain. This way, when the effects of a certain machine or task 

characteristic are absent for a given situation, a neural network learning algorithm is not 

required to forget useful information that is simply not relevant in the current circumstance. 

The set of models developed by the LWL process then gives a set of simplified models when 

only a subset of the system or task characteristics need to be considered. 

A potential application of this concept is in the parameterisation of the Fanuc S-360 

manipulator. It may be beneficial to include or ignore different peaks in different 

configurations. For example, the 51Hz peak, though still relevant in terms of amplitude, 

quickly becomes very narrow as the manipulator moves away from Configuration 1. While it 

cannot be neglected throughout the configuration space as the 33Hz peak was, it is none-the-

less unimportant to the overall FRF in several configurations. In the configurations where this 

peak can be ignored, a second model could be introduced with fewer DOF and parameterised 
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to match the remaining frequency data. The 38Hz peak shown in Figure 4.1 could also benefit 

from the use of multiple models. 

 

Figure 4.1: 38Hz Peak Variance with Configuration 

There is a lack of relevance for the 38Hz peak for Configuration 1 when compared to 

Configuration 4 and in general it was not deemed important enough to be included in the 

model. This peak is within the amplitude range of the measurement noise in Configuration 1, 

whereas it is a crucial part of the inertance in Configuration 4. The declining relevance of the 

peak as the measurement point moves away from the end-effector is also clear. At the 

parameterisation configurations (Configurations 1, 2, 6, and 7), this peak was not well enough 

defined at each of the measurement locations for the mode shapes to be identified with any 

level of confidence as can be seen from Appendix C. Often the damping ratio and natural 

frequency had to be manually entered to get plausible results. An additional DOF could 

therefore not be parameterised since the mode shape vectors and poles were unidentified and 

so the peak was neglected. Conversely, in configuration 4 this peak is very relevant to the 

measured FRF. The implication here is that a single model for this range, while accurately 
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identifying the peaks selected for the model parameterisation, was forced to neglect an 

important characteristic at Configuration 4. A multiple model approach would have been able 

to better identify this peak by adding another DOF for the region between Configurations 3 and 

5, where the 38Hz peak is an important part of the manipulator FRF. 

In addition to improving the order of the model in a particular range, multiple models would 

also improve the accuracy of the individual models in the reduced ranges. The un-modelled 

nonlinear dynamics such as the characteristics of harmonic drives cause errors in the model 

since they are absorbed into a model which does not contain the corresponding parameters. The 

effects are then falsely included in the model parameters used and. as the configurations 

considered move away from the identification configurations, these errors will be amplified 

and reduce the effectiveness of the model. 

4.3.3 Extension to Multiple Axes 

The stiffness measure used in chapter 3 was defined for an arbitrary projected axis, which in 

that instance was the vertical direction. The same was done with the receptance through the 

transformation Jacobian TR, which controlled the projection onto the measurement axes, which 

were also vertical. The same method can be used to transform the joint space model onto any 

arbitrary axis. The axes do not need to be decoupled to include, for example, the horizontal 

deflection. Defining an additional transformation Jacobian TS as  

 𝒁 𝐻 = [𝑇𝑆]𝒒 , (4.1) 

where 𝒁 𝐻  is the set of horizontal measurement axes, allows both axes to be considered. For a 

three dimensional model, a third transformation Jacobian can be added and similarly the 

angular deflections can also be included. This is useful for the parameterisation of the model as 

it allows more information to be included by simply concatenating the errors from the different 

FRFs in a least squares optimisation as was performed when identifying the dynamic 

parameters for multiple configurations simultaneously. 

However, when using this process for prediction, the objective function must be expanded to 

include the additional axes and, more importantly, the coupling of these axes. The coupling 

relationship between the receptance of the two axes can be approximated assuming that the 

Jacobians are constant with deflection. Though not strictly accurate, the assumption is 
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reasonable for very small deflections. The deflection on the measurement space axes can be 

approximated as 

 𝒁 = [𝑇𝑅]𝒒 (4.2a) 

 𝒁𝐻 = [𝑇𝑆]𝒒 (4.2b) 

and recalling the force projections 

 𝝉 = [𝑇𝑅]𝑇𝑭𝑧  (4.3a) 

 𝝉 = [𝑇𝑆]𝑇𝑭𝐻 (4.3b) 

where 𝑭𝒛 and 𝑭𝐻 are the applied force on the 𝒁 and 𝒁𝐻  axes respectively. The joint space 

receptance can be expressed as 

 𝜹𝑞 = 𝒒𝝉−1 (4.4a) 

and equivalently for the two measurement space axes 

 𝜹𝑧 = 𝒁𝑭𝑧
−1 (4.4b) 

 𝜹𝐻 = 𝒁𝐻𝑭𝐻
−1 (4.4c) 

Substituting (4.3) and (4.4) into (4.5a) and solving for 𝜹𝑞  yields 

 𝜹𝑞 = [𝑇𝑅]−1𝜹𝑧[𝑇𝑅]−𝑇  (4.5a) 

 𝜹𝑞 = [𝑇𝑆]−1𝜹𝐻[𝑇𝑆]−𝑇 (4.5b) 

Equating (4.5a) and (4.5b) and solving for 𝜹𝐻 yields 

 𝜹𝐻 = [𝑇𝑆][𝑇𝑅]−1𝜹𝑧[𝑇𝑅]−𝑇[𝑇𝑆]𝑇  (4.6) 

An equivalent transformation can be used for any number of coupled axes. The total amplitude 

of a coupled axis also requires considering the coupling term from the other excitation axes. 

For these terms, the excitation axis a similar derivation is used. Solving (4.2a) for 𝒒 and 

substituting into (4.2b) gives 
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 𝒁𝐻 = [𝑇𝑆][𝑇𝑅]−1𝒁 (4.7) 

and so 

 𝒁𝐻𝑭𝑧 = [𝑇𝑆][𝑇𝑅]−1𝜹𝑧  (4.8) 

gives the coupling term that relates the response along the horizontal axes for vertical 

excitation. 

A new objective function needs to be identified for evaluating different postures with coupled 

axes. One application specific option is a weighted sum of receptance amplitudes. This requires 

that the model be accurate in amplitude rather than simply for the trends observed and would 

allow the variance in machining forces on different axes to be included. A simpler function 

may simply sum the deflections on reach axis and use a vector norm to generate a single value. 

Extension to multiple axes with axis coupling considered would create a valuable tool for 

predicting the deflection of a manipulator when exposed to oscillatory external vibrations. 
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Appendices 

Appendix A:  Effects of Hammer Tips on Repeatability of FRF 

Measurements 

The following figures show the results of experimental modal analysis on the Fanuc S-360 

manipulator using soft and hard hammer tips at various locations throughout the structure in 

Configuration 7 as defined in Table 2.5. Each trial was excited at Location 2 and measured at 

the labelled locations defined in Figure 2.10. Three trials (trials 1-3) are shown for the softer 

hammer tip illustrating the repeatability of the soft tip results and single trial (trial 4) is shown 

for the harder tip for clarity. The repeatability of the hard tip results is equivalent to that of the 

soft tip results. The data was used to determine the qualitative characteristics of the 

manipulator vibrations and then the hard tip data was used to for the modal parameter 

identification using both the LS fit to (2.19) and the circle fit method. 

 

Figure A.1: Location 1 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 
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Figure A.2: Location 2 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 

 

Figure A.3: Location 3 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 

20 40 60 80 100 120 140 160 180

10
-3

10
-2

In
e
rt

a
n
c
e
 A

m
p
lit

u
d
e
 [

m
/s

2
 /

 N
]

Frequency [Hz]

 

 

Trial 1 (Soft Tip)

Trial 2 (Soft Tip)

Trial 3 (Soft Tip)

Trial 4 (Hard Tip)

20 40 60 80 100 120 140 160 180

10
-4

10
-3

10
-2

In
e
rt

a
n
c
e
 A

m
p
lit

u
d
e
 [

m
/s

2
 /

 N
]

Frequency [Hz]

 

 

Trial 1 (Soft Tip)

Trial 2 (Soft Tip)

Trial 3 (Soft Tip)

Trial 4 (Hard Tip)



138 

 

 

Figure A.4: Location 4 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 

 

Figure A.5: Location 5 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 
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Figure A.6: Location 6 Inertance Response for Multiple Location 2 Excitation Trials with Different Hammer Tips 
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Appendix B:  Repeatability of Flexible Link FRF Measurements 

The following figures show the results of experimental modal analysis on the Fanuc S-360 

manipulator at various locations throughout the structure in Configuration 7 as defined in Table 

2.5. Each trial was excited at Location 2 and measured at the labelled locations defined in 

Figure 2.10. The three trials illustrate the repeatability of the results used in the identification 

of the flexible link dynamic characteristics. 

 

 

Figure B.1: Multiple Trials of Location 3 Drive Point Inertance Amplitude 
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Figure B.2: Flexible Multiple Trials of Location 9 Inertance Amplitude Excited at Location 3 

 

Figure B.3: Flexible Multiple Trials of Location 4 Inertance Amplitude Excited at Location 3 
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Figure B.4: Flexible Multiple Trials of Location 10 Inertance Amplitude Excited at Location 3 

 

Figure B.5: Flexible Multiple Trials of Location 5 Inertance Amplitude Excited at Location 3 
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Figure B.6: Flexible Multiple Trials of Location 11 Inertance Amplitude Excited at Location 3 

 

Figure B.7: Flexible Multiple Trials of Location 12 Inertance Amplitude Excited at Location 3 
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Appendix C:  Circle Fit Modal Parameters 

The following tables list the modal parameters identified through the circle fit method and, 

where indicated, the LS fit to (2.19). These values were used to identify the parameters in the 

dynamic model as outlined in Section 2.6.4. The parameters labelled as missing could not be 

identified with confidence and as such these values were rejected as unidentifiable. 

Table C.1: Identified Modal Parameters for Configuration 1 

Parameter Peak Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

Natural 

Frequency [Hz] 
8 7.4 7.5 7.4 7.5 7.4 7.5 

Damping Ratio 

[-] 
 0.075 0.082 0.074 0.076 0.073 0.076 

Amplitude 

Multiplier [-] 
 

4.4𝑥10−4  -

1.7𝑥10−4i 

 3.7𝑥10−5 -

2.2𝑥10−4i 

2.6𝑥10−4 -

1.3𝑥10−4i 

2.3𝑥10−4  

-1.7𝑥10−4i 

9.3𝑥10−4  -

5.3𝑥10−4i 

-2.2𝑥10−5 

+2.3𝑥10−5i 
Natural 

Frequency [Hz] 
38 38.2 38.2 38.2 38.2 38.2 38.2 

Damping Ratio 

[-] 
 0.12 0.12 0.12 0.12 0.12 0.12 

Amplitude 

Multiplier [-] 
 MISSING MISSING MISSING MISSING MISSING MISSING 

Natural 

Frequency [Hz] 
51 51.6 51.8 MISSING 50.5 51.0 51.0 

Damping Ratio 

[-] 
 0.0415 0.0483 MISSING 0.0497 0.0452 0.0575 

Amplitude 

Multiplier [-] 
 

8.7𝑥10−5 

-4.3 𝑥10−5i 

5.0𝑥10−5   

-4.0 𝑥10−5i 
MISSING 

-3.3𝑥10−5  

-2.5𝑥10−5i 

-5.2𝑥10−5  

-1.4𝑥10−5i 

-5.2𝑥10−6  

+1.5𝑥10−5i 

Natural 

Frequency [Hz] 
58 56.9 57.0 MISSING 55.9 56.7 56.7 

Damping Ratio 

[-] 
 0.06 0.075 MISSING 0.0253 0.0416 0.0373 

Amplitude 

Multiplier [-] 
 

2.2𝑥10−5   

-4.4 𝑥10−5i 
1.4𝑥10−5   

-2.9𝑥10−5i 
MISSING 

-7.2𝑥10−6  

-3.4𝑥10−6i 

-1.4𝑥10−5  

+7.3𝑥10−6i 

2.5𝑥10−6  

+8.6𝑥10−6i 

Natural 

Frequency [Hz] 
94 95.9 96.0 93.3 93.7 92.7 93.0 

Damping Ratio 

[-] 
 0.1309 0.1268 0.0386

*
 0.0413 0.0640 0.0360 

Amplitude 

Multiplier [-] 
 

7.5𝑥10−5  -

2.2 𝑥10−4i 
6.3𝑥10−5   

-4.6𝑥10−4i 

-5.5𝑥10−5 

-1.1𝑥10−5i 

-2.6𝑥10−5 

+2.7𝑥10−5i 

-5.2𝑥10−5 

-2.8𝑥10−5i 

2.6𝑥10−6   

-1.1𝑥10−6i 
*
Excellent fit – Used for dynamic parameter identification 
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Table C.2: Identified Modal Parameters for Configuration 7 

Parameter Peak Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

Natural 

Frequency [Hz] 
8 7.7 7.7 7.7 7.7 7.7 7.7

*
 

Damping Ratio 

[-] 
 0.0692 0.0692 0.0692 0.0694 0.0778 0.07

*
 

Amplitude 

Multiplier [-] 
 

4.5𝑥10−4   

-9.5𝑥10−5i 

3.7𝑥10−4   

-8.4𝑥10−5i 

3.0𝑥10−4   

-6.9𝑥10−5i 

2.1𝑥10−4   

-4.9𝑥10−5i 

9.1𝑥10−5   

-1.7𝑥10−5i 

-1.7𝑥10−5   

-2.7𝑥10−5i 
Natural 

Frequency [Hz] 
38 38.2 38.1 39.1 39.1 MISSING 39.0 

Damping Ratio 

[-] 
 0.1123 0.1422 0.1300

*
 0.1300

*
 MISSING 0.0424 

Amplitude 

Multiplier [-] 
 

1.2𝑥10−5   

-2.3𝑥10−5i 

5.6𝑥10−5   

-4.3𝑥10−5i 

-1.4𝑥10−7   

-1.2𝑥10−5i 

5.5𝑥10−6   

-2.2𝑥10−6i 
MISSING 

-4.4𝑥10−7   

+4.2𝑥10−6i 

Natural 

Frequency [Hz] 
51 51.1 51.2 MISSING 50.8 50.7 50.8 

Damping Ratio 

[-] 
 0.0224 0.0120 MISSING 0.0855 0.0627 0.0541 

Amplitude 

Multiplier [-] 
 

1.0𝑥10−5   

+6.6𝑥10−6i 
3.4𝑥10−6   

+7.8𝑥10−7i 
MISSING 

-1.3𝑥10−5   

-2.5𝑥10−5i 

-1.7𝑥10−5   

-2.1𝑥10−5i 

-6.0𝑥10−6   

+1.9𝑥10−6i 

Natural 

Frequency [Hz] 
58 58.1 58.1 MISSING 57.5 57.7 57.9 

Damping Ratio 

[-] 
 0.0473 0.0512 MISSING 0.0379 0.0336 0.0297 

Amplitude 

Multiplier [-] 
 

5.9𝑥10−5   

-7.1𝑥10−5i 
2.9𝑥10−5   

-4.2𝑥10−5i 
MISSING 

-4.8𝑥10−5   

-1.2𝑥10−5i 

-3.8𝑥10−5   

+9.7𝑥10−6i 

1.6𝑥10−5   

-6.0𝑥10−6i 

Natural 

Frequency [Hz] 
94 93.9 95.8 92.36 92.7 93.3 94.5 

Damping Ratio 

[-] 
 0.0729 0.0729

*
 0.0505 0.0447 0.0276 0.0638 

Amplitude 

Multiplier [-] 
 

2.9𝑥10−5   

+8.1𝑥10−5i 
6.4𝑥10−6   

-1.8𝑥10−5i 
1.4𝑥10−5   

-4.0𝑥10−5i 

-1.7𝑥10−5   

+1.6𝑥10−5i 

1.7𝑥10−6   

+1.6𝑥10−6i 

4.1𝑥10−6   

-3.6𝑥10−6i 
*
Not measured – Taken from existing values 
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Table C.3: Identified Modal Parameters for Configuration 2 

Parameter Peak Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

Natural 

Frequency [Hz] 
8 7.7 7.7 7.5 7.5 7.5 8 

Damping Ratio 

[-] 
 0.0994 0.0999 0.0927 0.1153 0.1021 0.0741 

Amplitude 

Multiplier [-] 
 

3.8𝑥10−4   

-1.8𝑥10−4i 

3.2𝑥10−4   

-1.6𝑥10−4i 

2.7𝑥10−4   

-1.4𝑥10−4i 

2.7𝑥10−4   

-9.8𝑥10−5i 

1.0𝑥10−4   

-5.5𝑥10−5i 

-1.9𝑥10−6   

+1.4𝑥10−5i 

Natural 

Frequency [Hz] 
38 MISSING MISSING MISSING MISSING MISSING MISSING 

Damping Ratio 

[-] 
 MISSING MISSING MISSING MISSING MISSING MISSING 

Amplitude 

Multiplier [-] 
 MISSING MISSING MISSING MISSING MISSING MISSING 

Natural 

Frequency [Hz] 
51 51.1 51.1 52.3 52.4 52.3 49.9 

Damping Ratio 

[-] 
 0.0155 0.0123 0.2606 0.0143

+
 0.0265 0.07 

Amplitude 

Multiplier [-] 
 

8.5𝑥10−6   

-4.0𝑥10−6i 

2.8𝑥10−6   

-3.2𝑥10−6i 

1.8𝑥10−5   

-1.6𝑥10−5i 

-4.2𝑥10−6   

-1.6𝑥10−6i 

7.8𝑥10−6   

-3.3𝑥10−6i 

-2.7𝑥10−6   

+3.6𝑥10−6i 

Natural 

Frequency [Hz] 
58 56.1 56.1 MISSING 54.6 55.3 55.4 

Damping Ratio 

[-] 
 0.0507 0.0635 

MISSING 
0.0461 0.0337 0.0357 

Amplitude 

Multiplier [-] 
 

4.6𝑥10−5   

-8.5𝑥10−5i 

3.4𝑥10−5   

+1.1𝑥10−5i 

MISSING -2.6𝑥10−5   

-9.7𝑥10−6i 

-2.0𝑥10−5   

+2.0𝑥10−5i 

3.6𝑥10−6   

+1.1𝑥10−5i 

Natural 

Frequency [Hz] 
94 92.3 95 91.4 91.5 91.6 91.8 

Damping Ratio 

[-] 
 0.0886 0.3251 0.0728 0.0636 0.0590 0.0432 

Amplitude 

Multiplier [-] 
 

9.8𝑥10−5   

+8.5𝑥10−5i 

2.6𝑥10−5   

-3.6𝑥10−5i 

1.9𝑥10−6   

-6.6𝑥10−5i 

-2.5𝑥10−5   

-3.1𝑥10−5i 

-7.8𝑥10−6   

-2.6𝑥10−6i 

3.1𝑥10−6   

-6.9𝑥10−7i 
+
Identified from (2.19) 
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Table C.4: Identified Modal Parameters for Configuration 6 

Parameter Peak Location 1 Location 2 Location 3 Location 4 Location 5 Location 6 

Natural 

Frequency [Hz] 
8 7.7 7.6 7.7 7.7 7.6 8.3 

Damping Ratio 

[-] 
 0.0871 0.0898 0.0819 0.0830 0.1241 0.0589 

Amplitude 

Multiplier [-] 
 

4.0𝑥10−4   

+1.5𝑥10−4i 

3.2𝑥10−4   

-1.2𝑥10−4i 

2.5𝑥10−4   

-1.0𝑥10−4i 

1.7𝑥10−4   

-6.9𝑥10−5i 

8.5𝑥10−5   

-1.6𝑥10−5i 

-3.3𝑥10−5   

+2.7𝑥10−5i 

Natural 

Frequency [Hz] 
38 36.7 36.4 37.5 37.9 38.3 36.3 

Damping Ratio 

[-] 
 0.0645 0.0898 0.1350 0.0800

*
 0.1089 0.0363 

Amplitude 

Multiplier 

[-] 

 
3.6𝑥10−5   

-3.1𝑥10−5i 

8.5𝑥10−5   

-1.2𝑥10−5i 

7.1𝑥10−6   

-3.6𝑥10−5i 

7.0𝑥10−7   

-1.9𝑥10−5i 

-2.5𝑥10−6   

-1.0𝑥10−5i 

-1.3𝑥10−5   

+2.3𝑥10−6i 

Natural 

Frequency [Hz] 
51 51.0 51.1 MISSING 48.9 49.3 50.4 

Damping Ratio 

[-] 
 0.0066 0.0072 MISSING 0.1374 0.0812 0.0771 

Amplitude 

Multiplier [-] 
 

4.1𝑥10−6   

+4.7𝑥10−8i 

2.9𝑥10−6   

+3.4𝑥10−7i 
MISSING -8.5𝑥10−6   

+3.5𝑥10−5i 

-1.9𝑥10−5   

-2.7𝑥10−5i 

4.4𝑥10−6   

+7.0𝑥10−6i 

Natural 

Frequency [Hz] 
58 56.9 57.1 54.0 56.4 56.5 56.5 

Damping Ratio 

[-] 
 0.0366 0.0275 0.1951 0.0371 0.0343 0.0305 

Amplitude 

Multiplier [-] 
 

6.8𝑥10−5   

-5.9𝑥10−5i 

1.2𝑥10−5   

-3.1𝑥10−5i 

1.5𝑥10−5   

-5.7𝑥10−5i 

-4.2𝑥10−5   

-7.9𝑥10−6i 

-3.9𝑥10−5   

-2.5𝑥10−6i 

1.5𝑥10−5   

-2.6𝑥10−6i 

Natural 

Frequency [Hz] 
94 96.4 97.0 92.3 92.5 92.6 93.6 

Damping Ratio 

[-] 
 0.100

*
 0.100

*
 0.0300

*
 0.0581 0.1052 0.0474 

Amplitude 

Multiplier [-] 
 

9.3𝑥10−5   

+1.9𝑥10−5i 

2.1𝑥10−5   

+6.7𝑥10−6i 

-6.1𝑥10−6   

+4.7𝑥10−6i 

-6.1𝑥10−6   

+8.0𝑥10−6i 

-3.6𝑥10−6   

+7.4𝑥10−7i 

1.9𝑥10−6   

-2.2𝑥10−6i 
*
Not measured – Taken from existing values 
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Appendix D:  Initial and Boundary Conditions for Dynamic 

Parameter Optimisation 

The table shows the initial and boundary conditions for the LS parameterisation of the dynamic 

parameters. The initial values are based on experimental static stiffness values and natural 

frequency approximations and were adjusted to improve identification results. The lower 

bounds are to prevent the parameters from becoming negative since they are intended to 

represent physical dynamic parameters. The upper bounds were found to be necessary to 

improve the results when fitting to the eigenvalues as outlined in Section 2.6.4. When 

attempting to fit to the eigenvectors as well as the eigenvalues, the bounds and intial conditions 

were varied unsuccessfully. 

 

Table D.1:  Initial and Boundary Conditions for Dynamic Parameter Optimisation 

Condition Link Mass [kg] Inertia [kgm
2
] Stiffness [Nm/rad] Damping [Nms/rad] 

Minimum 1 1.00 1.00  1.00 1.00 

Minimum 2 1.00 1.00  1.00 1.00 

Minimum 3 1.00 1.00  1.00 1.00 

Minimum 4 1.00 1.00  1.00 1.00 

      

Initial 1 50.0 50.00  5.00 × 105 100.00 

Initial 2 50.00 50.00  5.00 × 105 100.00 

Initial 3 5.00 50.00  5.00 × 105 10.00 

Initial 4 50.00 50.00  5.00 × 105 100.00 

      

Maximum 1 50.00 50.00  1.00 × 106 200.00 

Maximum 2 50.00 50.00  1.00 × 106 200.00 

Maximum 3 10.00 50.00  1.00 × 106 200.00 

Maximum 4 50.00 50.00  1.00 × 106 200.00 
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Appendix E:  Six Link Planar Manipulator Receptance 

Optimisation Results 

The following tables list the initial and final joint values, natural frequencies, and receptance 

amplitude values for the redundant manipulator receptance optimisation simulations. The 

results were determined using a gradient descent optimisation defined by the objective function 

derivative (3.2), the objective function (3.3) and an update algorithm. The results in Section 

E.1 are for the unrestricted case whereby the end-effector is free to move in the workspace and 

uses the update algorithm defined by (3.4) and (3.15). The results in Section E.2 are for the 

restricted optimisations whereby the end-effector is held in position through a Cartesian error 

term and the links are configured in the simulated manipulator null space using the redundancy 

of the robot. This uses the update algorithm define by (3.4) and (3.13). 

E.1 Unrestricted Optimisations at 0Hz and 100Hz 

 

Table E.1: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

0Hz Starting at Location (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies
7
 [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 1.12 11.01 

2: 0.52 4.55 2: 0.65 4.48 

3: 0.52 3.90 3: 2.22 5.27 

4: 0.52 3.29 4: 1.10 3.55 

5: 0.52 2.57 5: -0.21 2.98 

6: 0.52 1.28 6: -0.25 1.98 

 0.52  0.58 

Initial Receptance 

Amplitude [m/N] 
2.62 × 10−3 

Final Receptance 

Amplitude [m/N] 
2.64 × 10−5 

 

 

 

 

 

                                                 
7
 Repeated Frequency Values are Omitted 
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Table E.2: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

0Hz Starting at Location (-2, 2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 1.58 33.12 

2: 0.26 4.75 2: 0.07 6.67 

3: 0.26 5.79 3: -0.07 7.64 

4: 0.21 4.64 4: -0.07 6.88 

5: 1.43 3.05 5: 2.74 5.06 

6: 1.05 1.45 6: 0.97 2.51 

 0.81  1.21 

Initial Receptance 

Amplitude [m/N] 
8.38 × 10−4 

Final Receptance 

Amplitude [m/N] 
2.60 × 10−5 

 

Table E.3: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

0Hz Starting at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 1.75 39.76 

2: -0.63 9.36 2: -0.27 11.05 

3: 1.05 5.16 3: 0.05 7.56 

4: 0.78 4.50 4: 0.15 6.44 

5: 1.65 3.31 5: 3.07 5.59 

6: 0.39 1.70 6: 0.01 4.45 

 1.19  2.44 

   1.25 

Initial Receptance 

Amplitude [m/N] 
6.85 × 10−4 

Final Receptance 

Amplitude [m/N] 
1.30 × 10−6 

 

Table E.4: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

100Hz Starting at Location (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 1.12 11.14 

2: 0.52 4.55 2: -0.06 10.96 

3: 0.52 3.90 3: 0.53 6.91 

4: 0.52 3.29 4: 2.45 4.49 

5: 0.52 2.57 5: 0.27 3.81 

6: 0.52 1.28 6: 0.29 0.85 

 0.52  2.67 

Initial Receptance 

Amplitude [m/N] 
8.45 × 10−7 

Final Receptance 

Amplitude [m/N] 
2.87 × 10−8 
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Table E.5: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

100Hz Starting at Location (-2, 2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 1.21 31.54 

2: 0.26 4.75 2: -0.06 9.33 

3: 0.26 5.79 3: 0.02 6.70 

4: 0.21 4.64 4: 0.38 6.11 

5: 1.43 3.05 5: 2.37 5.85 

6: 1.05 1.45 6: 0.98 4.99 

 0.81  2.53 

   1.23 

Initial Receptance 

Amplitude [m/N] 
8.64 × 10−8 

Final Receptance 

Amplitude [m/N] 
6.63 × 10−5 

 

Table E.6: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Optimisation at 

100Hz Starting at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 1.47 40.24 

2: -0.63 9.36 2: 0.05 11.07 

3: 1.05 5.16 3: 0.02 7.81 

4: 0.78 4.50 4: 0.03 6.49 

5: 1.65 3.31 5: 3.11 5.59 

6: 0.39 1.70 6: 0.03 4.45 

 1.19  2.44 

   1.25 

Initial Receptance 

Amplitude [m/N] 
1.29 × 10−7 

Final Receptance 

Amplitude [m/N] 
2.93 × 10−10 

 

E.2 Position Controlled Optimisations at 1Hz, 5Hz, and 20Hz 

Table E.7: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 1Hz at Location (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 3.09 14.38 

2: 0.52 4.55 2: -0.06 7.10 

3: 0.52 3.90 3: -0.63 5.09 

4: 0.52 3.29 4: -1.03 4.76 

5: 0.52 2.57 5: 1.62 2.90 

6: 0.52 1.28 6: 1.74 2.64 

 0.52  0.71 

Initial Receptance 

Amplitude [m/N] 
6.20 × 10−4 

Final Receptance 

Amplitude [m/N] 
9.01 × 10−4 
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Table E.8: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 1Hz at Location (-2,2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 3.05 25.47 

2: 0.26 4.75 2: -0.08 6.57 

3: 0.26 5.79 3: -0.88 5.76 

4: 0.21 4.64 4: -1.43 3.66 

5: 1.43 3.05 5: 0.041 2.09 

6: 1.05 1.45 6: 2.74 0.90 

 0.81   

Initial Receptance 

Amplitude [m/N] 
1.20 × 10−3 

Final Receptance 

Amplitude [m/N] 
4.10 × 10−4 

 

Table E.9: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 1Hz at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 1.93 11.26 

2: -0.63 9.36 2: -1.59 8.60 

3: 1.05 5.16 3: 0.88 8.36 

4: 0.78 4.50 4: 0.39 4.56 

5: 1.65 3.31 5: 2.88 2.54 

6: 0.39 1.70 6: -0.54 1.46 

 1.19  3.97 

Initial Receptance 

Amplitude [m/N] 
1.78 × 10−3 

Final Receptance 

Amplitude [m/N] 
3.24 × 10−4 

 

Table E.10: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 5Hz at Location (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 2.41 10.14 

2: 0.52 4.55 2: -0.01 5.64 

3: 0.52 3.90 3: -0.05 4.64 

4: 0.52 3.29 4: -0.05 4.25 

5: 0.52 2.57 5: 2.36 2.92 

6: 0.52 1.28 6: -0.58 1.46 

 0.52  0.68 

Initial Receptance 

Amplitude [m/N] 
9.34 × 10−5 

Final Receptance 

Amplitude [m/N] 
2.65 × 10−5 
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Table E.11: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 5Hz at Location (-2, 2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 3.87 48.05 

2: 0.26 4.75 2: -1.69 7.00 

3: 0.26 5.79 3: -0.12 5.75 

4: 0.21 4.64 4: -0.41 4.21 

5: 1.43 3.05 5: 0.24 3.43 

6: 1.05 1.45 6: 3.01 2.55 

 0.81  0.75 

Initial Receptance 

Amplitude [m/N] 
2.95 × 10−5 

Final Receptance 

Amplitude [m/N] 
1.13 × 10−5 

 

Table E.12: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 5Hz at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 0.44 11.27 

2: -0.63 9.36 2: 0.15 9.13 

3: 1.05 5.16 3: 1.09 8.52 

4: 0.78 4.50 4: 1.19 4.56 

5: 1.65 3.31 5: 0.06 3.72 

6: 0.39 1.70 6: 2.11 2.55 

 1.19  1.43 

Initial Receptance 

Amplitude [m/N] 
4.22 × 10−5 

Final Receptance 

Amplitude [m/N] 
3.245 × 10−5 

 

Table E.13: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 20Hz at Location (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 2.81 11.01 

2: 0.52 4.55 2: -0.02 6.63 

3: 0.52 3.90 3: -0.7 4.49 

4: 0.52 3.29 4: -0.57 4.83 

5: 0.52 2.57 5: 2.41 3.17 

6: 0.52 1.28 6: 0.29 1.66 

 0.52  0.71 

Initial Receptance 

Amplitude [m/N] 
1.78 × 10−5 

Final Receptance 

Amplitude [m/N] 
2.39 × 10−6 
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Table E.14: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 20Hz at Location (-2, 2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 1.57 10.27 

2: 0.26 4.75 2: 0.24 8.60 

3: 0.26 5.79 3: 0.26 5.98 

4: 0.21 4.64 4: 0.25 4.78 

5: 1.43 3.05 5: 1.42 3.97 

6: 1.05 1.45 6: 1.01 1.75 

 0.81  0.98 

Initial Receptance 

Amplitude [m/N] 
2.07 × 10−6 

Final Receptance 

Amplitude [m/N] 
1.92 × 10−6 

 

Table E.15: Initial and Final Natural Frequencies and Receptance Values for End-Effector Drive Point Receptance 

Optimisation at 20Hz at Location (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 0.47 30.81 

2: -0.63 9.36 2: 0.19 10.96 

3: 1.05 5.16 3: 0.79 6.57 

4: 0.78 4.50 4: 1.35 5.17 

5: 1.65 3.31 5: 0.26 5.75 

6: 0.39 1.70 6: 1.79 4.47 

 1.19  2.48 

   1.42 

Initial Receptance 

Amplitude [m/N] 
3.03 × 10−6 

Final Receptance 

Amplitude [m/N] 
2.90 × 10−6 
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Appendix F:  Six Link Planar Manipulator Stiffness 

Optimisation Results 

The following tables list the initial and final joint values, natural frequencies, and receptance 

amplitude values for the redundant manipulator stiffness optimisation simulations. The results 

were determined using a gradient descent optimisation defined by the objective function 

derivative (3.17) and an update algorithm defined by (3.13) and (3.5). 

 

Table F.1: Initial and Final Natural Frequencies and Projected Stiffness Values for Stiffness Optimisation at (-3.5, 1) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 10.63 1: 2.75 10.95 

2: 0.52 4.55 2: -0.43 5.98 

3: 0.52 3.90 3: -0.09 4.49 

4: 0.52 3.29 4: -0.20 4.36 

5: 0.52 2.57 5: 2.33 3.01 

6: 0.52 1.28 6: -0.17 1.49 

 0.52  0.70 

Initial Stiffness [m/N] 2.50 × 103 Final Stiffness [m/N] 1.31 × 104 

 

 

Table F.2: Initial and Final Natural Frequencies and Projected Stiffness Values for Stiffness Optimisation at (-2, 2) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 1.57 9.86 1: 2.24 10.36 

2: 0.26 4.75 2: -0.33 8.45 

3: 0.26 5.79 3: -0.07 5.66 

4: 0.21 4.64 4: -0.23 4.68 

5: 1.43 3.05 5: 2.31 4.00 

6: 1.05 1.45 6: 0.76 1.66 

 0.81  0.99 

Initial Stiffness [m/N] 8.52 × 103 Final Stiffness [m/N] 2.07 × 104 
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Table F.3: Initial and Final Natural Frequencies and Projected Stiffness Values for Stiffness Optimisation at (0, 1.5) 

Initial Joint Values 

[rad] 

Initial Natural 

Frequencies [Hz] 

Final Joint Values 

[rad] 

Final Natural 

Frequencies [Hz] 

1: 0.79 10.95 1: 2.00 10.95 

2: -0.63 9.36 2: -1.57 9.36 

3: 1.05 5.16 3: 1.11 5.16 

4: 0.78 4.50 4: -0.42 4.50 

5: 1.65 3.31 5: 3.26 3.30 

6: 0.39 1.70 6: -0.35 1.70 

 1.19  1.19 

Initial Stiffness [m/N] 7.88 × 103 Final Stiffness [m/N] 5.25 × 104 
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Appendix G:  Optimised Configuration Plots 

The following figures show the final configuration for the redundant manipulator optimisation 

simulations. The configurations were determined using a gradient descent optimisation defined 

by the objective function derivative (3.2), the objective function (3.3) and an update algorithm. 

The results in Section G.1 are for the unrestricted case whereby the end-effector is free to move 

in the workspace and uses the update algorithm defined by (3.4) and (3.15). The results in 

Section G.2 are for the restricted optimisations whereby the end-effector is held in position 

through a Cartesian error term and the links are configured in the simulated manipulator null 

space using the redundancy of the robot. This uses the update algorithm define by (3.4) and 

(3.13). These figures also include the results of the stiffness optimisation, which uses the 

objective function defined by (3.17). 

G.1 Unrestricted Optimisations at 0Hz and 100Hz 

 

Figure G.1: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 0Hz 

Initially Positioned at Location (-3.5, 1) 
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Figure G.2: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 0Hz 

Initially Positioned at Location (-2, 2) 

 

Figure G.3: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 0Hz 

Initially Positioned at Location (0, 1.5) 
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Figure G.4: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 100Hz 

Initially Positioned at Location (-3.5, 1) 

 

Figure G.5: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 100Hz 

Initially Positioned at Location (-2, 2) 
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Figure G.6: End-Effector Drive Point Receptance Optimised Configuration of the Simulated Manipulator at 100Hz 

Initially Positioned at Location (0, 1.5) 

G.2 Position Controlled Optimisations at 1Hz, 5Hz, and 20Hz 

 

Figure G.7: Simulated Manipulator End-Effector Drive Point Receptance at 1Hz and Rigid Body Stiffness 

Optimisation Results at Location (-3.5, 1) 
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Figure G.8: Simulated Manipulator End-Effector Drive Point Receptance at 1Hz and Rigid Body Stiffness 

Optimisation Results at Location (-2, 2) 

 

Figure G.9: Simulated Manipulator End-Effector Drive Point Receptance at 1Hz and Rigid Body Stiffness 

Optimisation Results at Location (0, 1.5) 
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Figure G.10: Simulated Manipulator End-Effector Drive Point Receptance at 5Hz and Rigid Body Stiffness 

Optimisation Results at Location (-3.5, 1) 

 

Figure G.11: Simulated Manipulator End-Effector Drive Point Receptance at 5Hz and Rigid Body Stiffness 

Optimisation Results at Location (-2, 2) 
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Figure G.12: Simulated Manipulator End-Effector Drive Point Receptance at 5Hz and Rigid Body Stiffness 

Optimisation Results at Location (0, 1.5) 

 

Figure G.13: Simulated Manipulator End-Effector Drive Point Receptance at 20Hz and Rigid Body Stiffness 

Optimisation Results at Location (-3.5, 1) 
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Figure G.14: Simulated Manipulator End-Effector Drive Point Receptance at 20Hz and Rigid Body Stiffness 

Optimisation Results at Location (-2, 2) 

 

Figure G.15: Simulated Manipulator End-Effector Drive Point Receptance at 20Hz and Rigid Body Stiffness 

Optimisation Results at Location (0, 1.5)  
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Appendix H:  Receptance Manipulation throughout 

Optimisations 

The following figures show the end-effector drive point receptance throughout the receptance 

optimisations. The optimisations follow a gradient-descent method defined by the objective 

function derivative (3.2), the objective function (3.3) and an update algorithm. The results in 

Section H.1 are for the unrestricted case whereby the end-effector is free to move in the 

workspace and uses the update algorithm defined by (3.4) and (3.15). The results in Section 

H.2 are for the restricted optimisations whereby the end-effector is held in position through a 

Cartesian error term and the links are configured in the simulated manipulator null space using 

the redundancy of the robot. This uses the update algorithm define by (3.4) and (3.13).  

H.1 Unrestricted Optimisations at 0Hz and 100Hz 

 

Figure H.1: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 0Hz Starting at 

Location (-3.5, 1) 
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Figure H.2: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 0Hz Starting at 

Location (-2, 2) 

 

Figure H.3: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 0Hz Starting at 

Location (0, 1.5) 
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Figure H.4: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 100Hz Starting 

at Location (-3.5, 1) 

 

Figure H.5: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 100Hz Starting 

at Location (-2, 2) 
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Figure H.6: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 100Hz Starting 

at Location (0, 1.5) 

H.2 Position Controlled Optimisations at 1Hz, 5Hz, and 20Hz 

 

Figure H.7: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 1Hz at 

Location (-3.5, 1) 
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Figure H.8: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 1Hz at 

Location (-2, 2) 

 

Figure H.9: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 1Hz at 

Location (0, 1.5) 
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Figure H.10: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 5Hz at 

Location (-3.5, 1) 

 

Figure H.11: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 5Hz at 

Location (-2, 2) 
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Figure H.12: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 5Hz at 

Location (0, 1.5) 

 

Figure H.13: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 20Hz at 

Location (-3.5, 1) 
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Figure H.14: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 20Hz at 

Location (-2, 2) 

 

Figure H.15: Objective Function Manipulation for End-Effector Drive Point Receptance Optimisation at 20Hz at 

Location (0, 1.5) 
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