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Abstract

Several magnetic materials, in the first approximation, can be described by idealised
theoretical models, such as classical Ising or Heisenberg spin systems, and, to some
extent, such models are able to qualitatively expose many experimentally observed
phenomena. But often, to account for complex behavior of magnetic matter, such
models have to be refined by including more terms in Hamiltonian.

The compound LiHoxY1−xF4, by increasing concentration of nonmagnetic yttrium
can be tuned from a diluted ferromagnet to a spin glass. LiHoF4 is a good realisation
of the transverse field Ising model, the simplest model exhibiting a quantum phase
transition. In the pure case the magnetic behaviour of this material is well described by
mean-field theory. It was believed that when diluted, LiHoxY1−xF4 would also manifest
itself as a diluted transverse field Ising model which continue to be well described by
mean-field theory, and, at sufficient dilution, at zero temperature, exhibit a quantum
spin-glass transition. The experimental data did not support such a scenario, and it
was pointed out that, to explain physics of LiHoxY1−xF4 in transverse magnetic field,
the effect of a transverse-field-generated longitudinal random field has to be considered.
We explore this idea further in local mean-field studies in which all three parameters:
temperature, transverse field and concentration can be consistently surveyed, and
where the transverse-field-generated longitudinal random field is explicitly present in
the effective spin-1/2 Hamiltonian.

We suggest other materials that are possible candidates for studying quantum crit-
icality in the transverse field Ising model, and in the diluted case, for studying the
effects of transverse and longitudinal random fields. The compounds we consider are
RE(OH)3, where RE are the rare earth ions Tb3+, Dy3+ and Ho3+. Using mean-field
theory, we estimate the values of the transverse magnetic field that, at zero temper-
ature, destroy ferromagnetic order to be Bc

x =4.35 T, Bc
x =5.03 T and Bc

x =54.81 T
for Ho(OH)3, Dy(OH)3 and Tb(OH)3, respectively. We confirm that Ho(OH)3 and
Tb(OH)3, similarly to LiHoF4, can be described by an effective spin-1/2 Hamilto-
nian. In the case of Dy(OH)3 there is a possibility of a first order phase transition at
transverse field close to Bc

x, and Dy(OH)3 cannot be described by a spin-1/2 effective
Hamiltonian.

While diluted dipolar Ising spin glass has been studied experimentally in LiHoxY1−xF4
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and in numerical simulations, there are no studies of the Heisenberg case. Example
materials that are likely candidates to be realisations of the diluted dipolar Heisenberg
spin glass are (GdxY1−x)2Ti2O7, (GdxY1−x)2Sn2O7 and (GdxY1−x)3Ga5O12. To stim-
ulate interest in experimental studies of these systems we present results of Monte of
Carlo simulations of the diluted dipolar Heisenberg spin glass. By performing finite-
size scaling analysis of the spin-glass correlation length and the spin-glass susceptibil-
ity, we provide a compelling evidence of a thermodynamical spin-glass transition in
the model.

Frustrated pyrochlore magnets, depending on the character of single ion anisotropy
and interplay of different types of interaction over a broad range of energy scales,
exhibit a large spectrum of exotic phases and novel phenomena. The pyrochlore an-
tiferromagnet Er2Ti2O7 is characterised by a strong planar anisotropy. Experimental
studies reveal that Er2Ti2O7 undergoes a continuous phase transition to a long-range
ordered phase with a spin configuration that, in this thesis, is referred to as the
Champion-Holdsworth state. Such results are not in agreement with the theoretical
prediction that the ground state of the pyrochlore easy-plane antiferromagnet with
dipolar interactions complementing the nearest neighbour exchange interactions, is
not the Champion-Holdsworth state but the so-called Palmer-Chalker state. On the
other hand, Monte Carlo simulations of the easy-plane pyrochlore antiferromagnet
indicate a thermal order-by-disorder selection of the Champion-Holdsworth state. To
answer the question of whether order-by-disorder selection can be the mechanism at
play in Er2Ti2O7, we performed Monte Carlo simulations of the easy-plane pyrochlore
antiferromagnet with weak dipolar interactions. We estimate the range strengths of the
dipolar interaction such that order-by-disorder selection of the Champion-Holdsworth
state is not suppressed. The estimated value of the allowed strength of the dipolar
interactions indicates that the model studied is likely insufficient to explain the physics
of Er2Ti2O7 and other types of interactions or quantum effects should be considered.
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Chapter 1

Introduction

The study of magnetic materials plays an important role in exploring the physics
of systems with many interacting degrees of freedom. It offers more than just an
understanding of magnetism in matter as such. Some general conclusion may be
extended to nonmagnetic systems and shed some light on the more fundamental issues
in condensed matter. Often, in the study of magnetism, phenomena can be identified
that are analogous to phenomena occurring in systems of a totally different nature; e.g.
in this thesis magnetic phases will be mentioned that are referred to as a spin ice, spin
liquid or spin glass, which, in some sense, are analogues of these non magnetic systems
from which they take their names. A salient example of research where the study of
magnetism extends our understanding of a much broader class of phenomena is the
study of phase transitions and criticality. Magnetic systems are quite convenient to
study experimentally and to describe theoretically; thus, many major advances in the
study of complex and interacting systems were made in studies of models related to
crystalline magnetic solids. An important model, that was proposed in the context of
magnetism, and turned out to bring an important contribution to the understanding
of physics of many interacting degrees of freedom, is the famous Ising model [4],
describing the classical magnetic moments that can point in two directions, either up or
down, interacting via nearest-neighbour ferromagnetic or antiferromagnetic exchange.
The Ising model in two dimensions was the first model to be solved exactly [5] that
exhibits a phase transition at finite temperature.

Among magnetic materials are systems that can be quite well approximated by
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relatively simple model Hamiltonians. An important group among such materials
are some compounds containing rare earth elements playing the role of interacting
magnetic ions. One of the materials that falls into this category, that is widely known
and the subject of extensive research, is the Ising ferromagnetic compound LiHoF4 [6–
21]. When a magnetic field is applied perpendicular to the Ising direction, LiHoF4

is a realisation of the transverse-field Ising model, that is regarded as the simplest
model exhibiting a quantum phase transition [22, 23]. When magnetically diluted,
LiHoxY1−xF4 creates an opportunity for experimental studies of the physics of spin
glass [7, 8, 19]. When both diluted and subject to transverse magnetic field, an effective
longitudinal random field appears [24–26]. Other materials with similar properties can
be identified. In this work we propose Ho(OH)3 and Dy(OH)3 as candidates for studies
of quantum criticality and glassiness in diluted dipolar ferromagnets [27].

A very interesting class of magnetic materials is that of geometrically frustrated rare
earth pyrochlores [28]. In this group of materials, systems with different types and
strengths of local anisotropy can be investigated and compared. One can find Ising-like
materials (spin ice), i.e. Dy2Ti2O7, Ho2Ti2O7 and Ho2Sn2O7 [28–32], Heisenberg-like
Gd2Sn2O7 or Gd2Ti2O7 [28, 33, 34], and XY-like Er2Ti2O7 [28, 35–37]. Frustrated
magnets display a broad array of phenomena and new states of matter that are not
observed in conventional magnets. Their behaviour is often very difficult to predict
and depends on the interplay of multiple types of interactions over a broad range of
energy scales.

In most cases, the leading interaction in insulating magnetic matter is a short range
exchange, and indeed some phenomena occurring in magnetic solids can be captured in
models considering only the nearest-neighbour exchange interaction. But besides the
short range exchange other interactions are also present in physical systems, of which
the most important is the dipolar interaction. The magnetostatic interaction between
magnetic dipolar moments is usually weaker than the exchange interaction. Never-
theless, it can profoundly affect the physics of the magnetic materials. An important
example, where the dipolar interaction deeply changes the behaviour of the system is
domain formation in ferromagnets. The dipolar interaction often plays an important
role in rare earth magnetism because in rare earth compounds, due to the screening
of the partially filled 5f electron shell by the external shells, the exchange interaction
is relatively weak and thus of comparable magnitude to the dipolar coupling.
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An important group of systems where interactions weaker than the leading nearest-
neighbour exchange play also an important role are systems where the nearest-neighbour
exchange interaction is geometrically frustrated, such that, if only nearest-neighbour
exchange is considered, the ground state would be extensively degenerate and such
system would not order at the temperature corresponding to the energy scale of the
exchange interaction, an example of such system are classical Heisenberg spins placed
on the pyrochlore lattice [38–40]. At sufficiently low temperature, other interactions,
such as dipole-dipole interaction, may then bring about ordering in such system. Ex-
amples of geometrically frustrated magnets, where the dipolar interaction is often
important in understanding the physics at play, are the aforementioned rare-earth
pyrochlores [28].

Another type of frustration that also leads to interesting physics is random frustra-
tion that is induced by random disorder in the system in question. While the simplest
models of magnetic matter describe ideally periodic and spatially homogeneous sys-
tems, all experimentally accessible samples contain chemical impurities and crystal
dislocations. Besides considering the effect of disorder as a correction to a model pure
system, there are instances where strong disorder takes control of the system’s proper-
ties causing completely new physics to emerge. Such a situation occurs in spin glasses.
In the canonical spin-glass materials, the magnetic element appears as an impurity in
an otherwise nonmagnetic crystal [41, 42]. In the case of a strongly spatially varying
interaction between impurities, the spatial disorder leads to random frustration. Such
a system does not order down to zero temperature but freezes in an apparently ran-
dom, disordered configuration. The canonical spin glasses are metallic systems with
magnetic ions interacting via the isotropic RKKY interaction [43–45] that varies with
the inter-ion distance, r, like cos(kF r)/r

3, where kF is the Fermi wavevector of the
conduction electrons. Other systems in which spin glass physics arises are systems
of spatially disordered dipoles. The dipolar interaction, similarly to the RKKY in-
teraction, decreases with distance like 1/r3, but the strong spatial fluctuations are
not distance-dependent, as in the RKKY interaction, but angle-dependent. Specifi-
cally, the sign of the dipolar coupling depends on the relative direction of the vector
connecting the interacting moments.

This thesis contains four independent but related research projects. The common
theme is the presence of the long-range dipolar interaction and the motivation of the
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work we have undertaken is largely to make comparison with experimental data or
to suggest interesting systems and phenomena that can be suitable for experimental
studies. In Chapter 2, mean-field approximation and Monte Carlo methods, applied
in the studies presented in the subsequent chapters, are briefly introduced. In Chap-
ter 3, in the framework of local mean-field theory, a transverse-field diluted dipolar
Ising model is studied in the context of the magnetic compound LiHoF4. In Chapter 4,
a preliminary, mean-field study of other magnetic materials - rare-earth hydroxides -
is conducted with the aim of assessing their validity for experimental studies of trans-
verse field induced quantum criticality. In Chapter 5, a diluted dipolar Heisenberg spin
glass is studied using Monte Carlo methods. And finally, in Chapter 6, a Monte Carlo
investigation of the effect of the dipolar interaction on the order-by-disorder transition
in an easy-plane antiferromagnet is presented. A short conclusion is provided in Chap-
ter 7. In the remaining part of this Introduction, the topics briefly mentioned in the
above preface are further discussed, with the objective of introducing the motivation
of the work presented in the following chapters.

1.1 Geometrical frustration

Interest in geometrically frustrated magnets dates back to the study of an antiferro-
magnetic Ising model on the triangular lattice by Wannier in 1950 [46]. It was observed
that the Ising antiferromagnet on the triangular lattice dramatically differs in its prop-
erties from ferromagnets or antiferromagnets on bipartite lattices. Bipartite lattices
can be separated into two identical interpenetrating lattices; examples of bipartite
lattices are the square or simple cubic lattice. On bipartite lattices, antiferromagnetic
Ising spins can form a long-range ordered Néel state. Formation of a Néel state is not
possible in the Ising antiferromagnet on a triangular lattice. The ground state of such
system is disordered and the system possesses a finite zero-temperature entropy. A
three dimensional model with quite similar properties, that is an extensive degeneracy
of a ground state and a lack of long-range order down to zero temperature, was studied
by Anderson [47]. In the context of magnetic properties of ferrites he studied a system
of antiferromagnetic Ising spins on the octahedral sites of normal spinels. This lattice
structure is now often referred to as the pyrochlore lattice and is frequently occurring
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in studies of frustrated magnetism. The problem of antiferromagnetic Ising spins on
the pyrochlore lattice is especially interesting due to the connection to the topic of
proton ordering in hexagonal water ice (Ih) [48]. The oxygen atoms in water ice are
surrounded by four protons and in this structure each proton is shared between two
oxygen atoms. The protons are placed on the pyrochlore structure of corner-sharing
tetrahedra. Each proton is bound to one of the oxygen atoms by a covalent bond and
form a hydrogen bond with the other. This creates an Ising-like, two value, “in” or
“out”, degree of freedom. In his seminal paper in 1935 Linus Pauling showed [48] that
such proton arrangement allows for an extensive number of ground states, with proton
configurations on each tetrahedron described by the so-called ice rules, i.e. two cova-
lent and two hydrogen bonds on each oxygen atom or “two-in/two-out” configuration,
and explains a finite zero-temperature entropy measured in Ih ice [49, 50]. A global
easy-axis direction of Ising spins on pyrochlore lattice, like in the model considered
by Anderson, cannot occur due to symmetry. But pyrochlore magnetic systems with
spins pointing in local Ising directions, “in” or “out” of the tetrahedron, exactly like
protons in water ice, were identified. In the first work, investigating one of such mag-
nets, Ho2Ti2O7, for its analogy to water ice, Harris et al. coined the term spin ice to
refer to such frustrated magnetic systems [29].

1.1.1 The concept of frustration

Frustration occurs when a Hamiltonian contains terms that cannot be simultaneously
satisfied. It means that the minimum of total energy does not correspond to the
minimum of each term in the Hamiltonian separately. The concept of frustration was
introduced for the first time by Toulouse [51] in the context of spin-glass systems.
Real materials are often frustrated due to the presence of several types of interactions,
but usually the energy scale of different couplings is different. For example a nearest-
neighbour exchange can dominate and dictate the type of ordering in the system, while
weaker interactions like a next-nearest-neighbour exchange, that may be of different
sign, or a dipolar interaction are also present. Another example of frustrated but
ordered systems are magnetic dipoles placed on a lattice. Such systems choose a long-
range ordered Néel state that minimizes the energy [52], e.g. an antiferromagnetic
state on the simple cubic lattice and a ferromagnetic state on the face centered cubic
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Figure 1.1: Frustrated plaquettes of Ising spins.

or body centered cubic lattice, but in such configurations some interaction still remain
unsatisfied.

An interesting case of frustration is when it is the geometry of the system that
leads to frustration and degeneracy of the ground state. A simple example is the tri-
angular plaquette containing three antiferromagnetically coupled Ising spins as shown
in Fig. 1.1. Anti-parallel alignment minimizes the energy. In triangular geometry at
most two bonds can be satisfied. While two spins are anti-parallel, the third spin, re-
gardless of its direction, stays parallel to one of the remaining two; the lowest energy
state is that of two spins pointing up and one spin pointing down. Among all 23 = 8

possible configurations 6 satisfy this condition; hence, the lowest energy state is highly
degenerate. A similar argument can be provided for the three dimensional system of
four antiferromagnetic Ising spins residing on the vertices of a tetrahedron, shown in
Fig. 1.1. Among the 24 = 16 possible configurations there are 6 degenerate lowest
energy states. These ground states consist of two spins pointing up and two spins
pointing down. In such a configuration, each spin has two bonds satisfied - pointing
to antiparallel spins, and one bond not satisfied - pointing to the parallel spin. These
two cases are examples of geometrical frustration that occurs solely due to the lat-
tice geometry. It should be distinguished from random frustration, that occurs when
interaction between spins varies randomly [41, 42].
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1.1.2 Cubic pyrochlore oxides and pyrochlore lattice

Geometrical frustration occurs for lattices consisting of frustrated units like triangles
or tetrahedra. In two dimensions, the most obvious example is the triangular lattice.
Another instance is the kagome lattice of corner-sharing triangles. In three dimensions,
the most often studied is the pyrochlore lattice of corner-sharing tetrahedra; numerous
instances of extensively studied frustrated magnetic materials are a realisation of this
structure [28]. The pyrochlore lattice is depicted in Fig. 1.2. A different example of a
three-dimensional frustrated system is the corner sharing triangle structure of garnets;
among them an interesting example is gadolinium gallium garnet (GGG) [53–55].

The cubic pyrochlore oxides, A2B2O7 have attracted a significant amount of at-
tention in the context of frustrated magnetism. Either one or both of the A and B
elements can carry a magnetic moment. The elements A and B reside on two inter-
penetrating pyrochlore lattices. It is a non-Bravais lattice with a basis of four ions.
The pyrochlore structure can be viewed as a system of tetrahedra placed in the sites
of FCC lattice. In Fig. 1.2, the faces of these tetrahedra are colored in red. An-
other set of “inverted” tetrahedra that are connecting the red tetrahedra is colored
in blue. Often a cubic unit cell is considered, containing 16 sites and 4 tetrahedra.
In the case of antiferromagnetic classical Heisenberg spins residing on the pyrochlore
lattice, the system is geometrically frustrated and the ground state is macroscopically
degenerate [30, 38, 40, 56].

1.1.3 Experimental measure of frustration

As was explained in the previous section, the geometrical frustration of antiferromag-
netic interactions between spins on the pyrochlore lattice prevents the system from
exhibiting long-range order. Experimentally, a frustration is visible in the temper-
ature dependence of magnetic susceptibility. According to the Curie-Weiss law, the
susceptibility, χ, above the ordering temperature is given by the expression

χ =
1

T − θCW

, (1.1)

where the Curie-Weiss constant, θCW, determines the sign and the strength of in-
teraction. θCW is positive in ferromagnets and negative in antiferromagnets. In an
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Figure 1.2: The pyrochlore lattice of corner sharing tetrahedra. The lattice can by
constructed by placing the tetrahedral four atom basis on the body centered lattice.
These tetrahedra are colored in red. Another set of inverted tetrahedra, connecting
the red tetrahedra, is colored in blue.

antiferromagnetic system without frustration, if the phase transition from a param-
agnetic to an ordered Néel state occurs, it happens in the proximity of θCW, and it is
signalled by a cusp in a plot of χ vs T . In the case of geometrically frustrated systems
such features are either not present, or, more often, postponed to much lower temper-
atures, where interaction other than the frustrated nearest-neighbour exchange, give
rise to long-range order or spin-glass freezing. A convenient measure of frustration is
the so-called frustration index [57]

f ≡ |θCW|
T ∗

, (1.2)

where T ∗ is the ordering temperature, Tc for a ferromagnet, TN for an antiferromagnet
or freezing temperature, Tg, in the case of a spin glass.

In the ideal spin liquid system the frustration index is infinite, i.e. there is no
ordering even at T=0. But in the real materials some perturbations are present. Such
systems may stay in a spin liquid state down to a very low temperature, but finally,
at the temperature of the energy scale set by the perturbing interaction, they order,
as “directed” by the perturbing interactions.

8



1.1.4 Ground state degeneracy in the classical Heisenberg py-

rochlore antiferromagnets - classical spin liquid

It will be shown that in the case of purely nearest-neighbour Heisenberg antiferro-
magnetic interaction the lowest energy state of a single tetrahedron is continuously
degenerate, and furthermore on the pyrochlore lattice, there is an extensive degeneracy
and the system stays dynamically disordered at all temperatures.

A lattice can be separated into a number of clusters or plaquettes. For example,
in the case of the triangular or kagome lattices they are triangles, or in the case of the
pyrochlore lattice they are tetrahedra. If all the plaquettes have their energy separately
minimized it is also a ground state of the whole lattice. But one has to bear in mind
that the problem is more difficult than it initially sounds, because the plaquettes are
usually not independent. What is a ground state of a frustrated antiferromagnetic
plaquette? The Hamiltonian for one plaquette can be written as [38–40]

H = −J
2

q∑
i 6=j

SiSj = −J
2

( q∑
i

Si

)2

−
q∑
i

Si · Si

 , (1.3)

where q is the number of spins in the plaquette. The second term in the square bracket
is a constant, and for spins of unit length it is equal q. The first term is just the square
of the total magnetic moment on the plaquette; hence, for J < 0, the condition of
minimum energy is that of minimum total magnetic moment. The Hamiltonian for
the whole lattice can be written in the form [38–40]

H = −J
2

Nα∑
α

L2
α −

J

2
Nαq, (1.4)

where Nα is the number of plaquettes, and Lα is a magnetic moment on a plaquette,

Lα =

q∑
i

Sαi . (1.5)

In the case of Heisenberg spins on the pyrochlore lattice the ground state is such
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Figure 1.3: A configuration of four spins such that their total magnetic moment reduces
to zero.

that the total magnetic moment on each tetrahedron is zero,

L = S1 + S2 + S3 + S4 = 0. (1.6)

It can be realised in many ways. A diagram of a configuration of four spins that has
zero total magnetic moment is shown in Fig. 1.3. The rotation of the system as a whole
can be described using three Euler angles. In addition to these three rotational degrees
of freedom of the whole system, that is due to the symmetry of the Hamiltonian, there
are also two internal degrees of freedom, θ and φ. The question of how this degeneracy
of the ground state on a single plaquette extends to the whole lattice can be understood
using a Maxwellian counting argument [38–40]. We determine the number of degrees
of freedom in the ground state, D, by subtracting the number of constraints that
the system must satisfy to stay in the ground state, K, from the total number of
degrees of freedom, F . There are 2 degrees of freedom for each of N Heisenberg
spins; hence, the total number of degrees of freedom is F = 2N . The condition for a
tetrahedron to be in the ground state is given by three equations, one for each of the
Cartesian directions. Each spin is shared between two tetrahedra, and the number of
all tetrahedra is Nα = N/2, where N is the number of all spins. This gives K = 3/2N

for the number of the ground state constraints. Finally, we obtain D = F −K = N/2,
that is the number of degrees of freedom in the ground state and it is extensive.
This argument can underestimate D if the ground state constraints are not linearly
independent, but it was shown [38–40] that in the case of the pyrochlore lattice any
corrections to D cannot be extensive. i.e. they are proportional N ν with ν < 1, and
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Figure 1.4: Local <111> directions.

they vanish in the thermodynamic limit. An important conclusion of this section is
that due to the extensive ground state degeneracy the pyrochlore antiferromagnet does
not order down to zero temperature but stays in a so-called collective paramagnetic
or classical spin liquid state.

1.1.5 Ising antiferromagnet on the pyrochlore lattice - spin ice

In the previous section, the subject of the pyrochlore Heisenberg antiferromagnet was
discussed. Here the case of Ising spins is considered. To start, consider Ising spins
on the vertices of a tetrahedron, as shown in the right panel of Fig. 1.1. The case
with spins interacting via ferromagnetic exchange interaction is trivial: the ground
state is ferromagnetically ordered; all the spins point in the same direction. In the
antiferromagnetic case the system is frustrated as discussed in Sec. 1.1.1. Such a
situation when the spins point along a global Ising easy axis is unphysical for the
cubic pyrochlore lattice. In a real material, the crystal field will tend to select
local <111> direction: that is, on each of the vertices of a tetrahedron, the spins
point along the lines connecting each vertex with the center of the opposite face, as
illustrated in Fig. 1.4. The discussion below shows that the global easy-axis model with
ferromagnetic interactions maps to antiferromagnetic interaction in the local <111>
easy-axis model, and vice versa.
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Consider a Hamiltonian

H = −J
2

N∑
〈i,j〉

SiSj, (1.7)

where for J>0 the interaction is ferromagnetic and for J<0 the interaction is antifer-
romagnetic. The Ising easy axes lie along the local <111> direction; hence, the spins
can only point “in”, into the tetrahedron, toward the centre of the opposite plane, or
in the opposite direction, “out” of the tetrahedron. For such spins, the Hamiltonian
can be rewritten as

H = −J
2

N∑
〈i,j〉

(ẑi · ẑj)Szi Szj , (1.8)

where ẑi and ẑj are the local easy axes, and ẑi · ẑj = −1
3
. Hence, for ferromagnetic

global interaction the system maps onto an effective frustrated Ising antiferromagnet.
This spin ice model with Ising spins that are pointing in or out and are effectively
coupled by antiferromagnetic exchange is equivalent to a system of antiferromagnetic
spins on tetrahedron with a global easy axis, as illustrated in Fig. 1.1.

In the antiferromagnetic case, J<0, the effective interaction between the local
<111> Ising spins is ferromagnetic, −1

3
J > 0, and the ground state in not frustrated.

It consists of all the spins pointing “in” or all spins pointing “out”. In the pyrochlore
lattice in Fig. 1.2, this means that all the spins on the red tetrahedra point “in” and,
consequently, all the spins on the blue tetrahedra are point “out”, or the reverse.

For a ferromagnetic interaction, J>0, the pyrochlore Ising system is frustrated.
Analogously to the discussion of Sec. 1.1.4, the Hamiltonian (1.8) can be written in
the form:

H =
J

6

Nα∑
α

L2
α −

JNαq

6
, (1.9)

where
L = S1 + S2 + S3 + S4. (1.10)

The condition for the ground state of a single tetrahedron is that L=0. Such a re-
quirement is satisfied if there are two spins pointing in and two spins pointing out.
Six of all 24 = 16 possible spin configurations satisfy this condition. To determine the
lattice ground state degeneracy, we use the argument introduced by Pauling in the
context of proton ordering in water ice [48]. Note that for the pyrochlore lattice there
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are two types of tetrahedra that are related by inversion symmetry; in Fig. 1.2 they
are distinguished by color. Each site is shared between a red and blue tetrahedron.
Considering only the blue tetrahedra, there are 6 possible ground-state configurations
per each tetrahedron. The total number of configurations in the lattice would be then
6N/4, where N/4 is the number of blue tetrahedra. But, the red tetrahedra have to
satisfy the “two-in/two-out” condition as well. The probability that a given red tetra-
hedron satisfies the “two-in/two-out” ice rule is 6/16. For the whole lattice we have to
multiply 6N/4 states, that satisfy ice rules for the blue tetrahedra, by the probability
that all red tetrahedra are satisfied, that is (6/16)N/4. This gives the ground-state
degeneracy Ω = 6N/4 (6/16)N/4 = (3/2)N/2. Consequently, in the ground state there is
a zero-temperature entropy of S0 = kB ln Ω0 = 1

2
NkB ln (3/2).

The magnetic phenomena occurring in ferromagnetically coupled <111> Ising
spins on the pyrochlore lattice was termed spin ice [29] in relation to a similar phe-
nomenon of finite zero-temperature entropy that was observed for the first time in
water ice [48].

1.1.6 Order by disorder

In a system where degeneracy is not just a consequence of symmetry, as is the case in
frustrated magnets, the fluctuations around different ground states can be different.
Some of them can be characterized by higher density of zero modes in the Brillouin
zone. Being able to fluctuate in a larger number soft modes, such states are character-
ized by the highest entropy while the energy is kept close to the minimal, ground-state
value. Hence, a system has a tendency to stay in the region of the ground-state man-
ifold with the largest number of soft modes available, and paradoxically more ordered
configuration is selected in the presence of fluctuations. The fluctuations enhance
order instead of suppressing it, and because of that, such selection of ordered con-
figuration is referred to as order-by-disorder [58]. Order-by-disorder selection can be
induced both by thermal or quantum fluctuations.

The idea of order-by-disorder, or in other words entropic, selection can be illus-
trated with the aid of a cartoon diagram [40] shown in Fig. 1.5. In the left panel a
schematic view of phase space is shown. The solid line represents the ground state
manifold. At low temperature only a narrow band of states around the ground state
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Figure 1.5: Cartoon diagram of the phase space of a frustrated magnet [40]. In the
left panel the case of frustrated magnet where order-by-disorder does not occur. In
the right panel a situation where entropic selection is likely to occur.

manifold is accessible. In the right panel order-by-disorder selection takes place. In
a particular region of the ground-state manifold there is a bulge of accessible states.
This is the place where soft modes allow low energy excitations from the ground state
and this region of phase space is entropically selected.

1.1.7 XY-pyrochlore antiferromagnet

In the previous sections the cases of frustrated Heisenberg and Ising spins on the
pyrochlore lattice were discussed. No less interesting is the case of the XY pyrochlore
antiferromagnet in which the spins are confined to easy planes. The easy planes are
perpendicular to the local <111> directions, as illustrated in Fig. 1.6. The study of
such a model with both a nearest-neighbour exchange and weak dipolar interaction is
the topic of Chapter 6.

In Sec. 1.1.4 a ground state manifold of antiferromagnetic Heisenberg spins on a
tetrahedron was discussed. Here confinement of the spins to their easy planes decreases
the number of spin degrees of freedom. The ground state of the XY model is just the
subset of the ground-state manifold in Heisenberg case, chosen such that the the spins
remain in the easy-planes. The Heisenberg spins on a tetrahedron have 5 degrees of
freedom in their ground state (see Sec. 1.1.4). With the 4 constraints confining the
spins to the planes, there is still one continuous degree of freedom per tetrahedron.
Considering the whole lattice, it can be shown that there is a macroscopic degeneracy
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Figure 1.6: The easy-planes on the pyrochlore lattice.

of the ground state [59–61].
It was found in Monte Carlo simulations that in the pyrochlore XY-antiferromagnet

there is an order-by-disorder selection of a particular set of 6 symmetry-related ground
states [59–61], and it was confirmed by a spin-wave calculation that these states are
characterised by the existence of soft modes that induce entropic selection [60, 61].

1.2 The various faces of geometrical frustration in

real materials

The study of geometrically frustrated magnetism is a very rich topic [28, 62]. Here only
a short introduction is provided and a very restricted selection from a large number of
frustrated magnetic materials is discussed, to set some of the background for the study
of the pyrochlore dipolar XY antiferromagnet in the context of Er2Ti2O7 presented in
Chapter 6.

1.2.1 Gd2Ti2O7 and Gd2Sn2O7

A good examples of geometrically frustrated materials that do not order down to
very low temperatures relative to their Curie-Weiss constants, θCW, are Gd2Ti2O7

and Gd2Sn2O7. Gd3+ magnetic ions reside on the vertices of the pyrochlore lattice.
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Gd3+ has a half-filled 4f -shell. The ground state manifold is 8S7/2 and Gd3+ has
no orbital momentum. Gd2Ti2O7 and Gd2Sn2O7 [28, 33, 34] are strongly frustrated
Heisenberg pyrochlore antiferromagnets and in these materials Gd3+ is a very good
approximation of the classical Heisenberg spin. While the Curie-Weiss temperature
is about θCW ∼ −10 K, due to frustration, both compounds stay disordered down
to T ∼ 1 K [33, 63]. Theoretically, the extensive ground-state degeneracy in the py-
rochlore nearest-neighbour Heisenberg antiferromagnet prevents ordering down to zero
temperature [64, 65](see Sec. 1.1.4), and the low temperature order in the materials
Gd2Ti2O7 and Gd2Sn2O7 is induced by other, weaker interactions that are specific to
each of these compounds. One of the interactions at play below 1 K is the dipolar
interaction. Indeed, in the case of Gd2Sn2O7, the spin configuration in the ordered
state was found [66] to be the ground state of a pyrochlore antiferromagnet with
dipolar interactions, termed here the Palmer-Chalker state [67]. Unlike Gd2Sn2O7,
Gd2Ti2O7 does not order to the Palmer-Chalker state [68, 69]. It was suggested that
small differences in further nearest-neighbour exchange couplings, are responsible for
the differences between the titanate and stannate [66, 70]. In Gd2Ti2O7, below the
first phase transition at 1 K there is another one at 0.7 K [63], and in the both phases
the material orders with ordering vector k =

[
1
2

1
2

1
2

]
[68, 69].

Beside being good materials to study geometrical frustration, Gd2Ti2O7 and Gd2Sn2O7

will be mentioned later in this Introduction (Sec. 1.5.2), and in Chapter 5 in a different
context - their magnetically diluted forms: (GdxY1−x)2Ti2O7 and (GdxY1−x)2Sn2O7

are good candidates for the study of the diluted dipolar Heisenberg spin glass.

1.2.2 Spin ice materials Ho2Ti2O7 and Dy2Ti2O7

Both Ho2Ti2O7 and Dy2Ti2O7 are spin ices; the spin ice state was described in
Sec. 1.1.5 [56]. The Curie-Weiss temperature is θCW ≈ +1.9 K [29] and θCW ≈
+0.5 K [71] for Ho2Ti2O7 and Dy2Ti2O7, respectively; thus the interaction is ferro-
magnetic overall. Magnetic ions, Ho3+ or Dy3+, are located on the vertices of the
pyrochlore lattice. The strong axial crystal field acting on the Ho3+ or Dy3+ ion in
the local <111> direction makes the ground-state doublet a very good realisation of
an Ising spin. The ground states are separated from the higher crystal-field levels by
hundreds of Kelvin [72, 73]; hence, admixing of the ground state doublet with higher
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levels is negligible in the temperature range of interest [56, 72, 73].
The discovery of a spin ice initiated an extensive research in the field of frustrated

magnetism. Spin ice physics was first observed in Ho2Ti2O7 by Harris et al. [29],
who also coined the term spin ice in analogy to the proton ordering in water ice [48].
Despite a θCW of the order of 2 K, muon spin relaxation experiments (µSR) indicate
that Ho2Ti2O7 does not order down to a temperature of 0.05 K [29, 36].

The most direct indication of spin ice state is the presence of a residual entropy.
From the specific heat data measured in the both systems [71, 74], a residual entropy
was obtained close to the value S0 = 1

2
NkB ln (3/2) [48], calculated in Sec. 1.1.5.

The above values of Curie-Weiss temperature, θCW, contain both the contribution
of the exchange and dipolar interaction. The dipolar moment of magnetic ions Ho3+

and Dy3+ in Ho2Ti2O7 and Dy2Ti2O7 is very large, around 10µB [28]. The dipolar
interaction in both materials is estimated to be +2.4 K [30]; hence, the ferromagnetic
dipolar interaction is larger than the Curie-Weiss constant, and the dipolar interaction
is the leading coupling in the system, while the exchange interaction is smaller and
negative [28]. As the exchange is antiferromagnetic, a naive interpretation suggest that
Ho2Ti2O7 and Dy2Ti2O7 should exhibit all-in/all-out long-range order rather than the
spin ice phenomenology, as discussed in Sec. 1.1.5.

To explain the spin ice physics in Ho2Ti2O7 and Dy2Ti2O7, a dipolar spin ice model
has to be considered. The nearest-neighbour Hamiltonian (1.8) must be “upgraded”
by the inclusion of dipolar coupling

H = −J
N∑
〈i,j〉

Si · Sj +Dr3
nn

∑
i>j

Si · Sj
|rij|3

− 3 (Si · rij) (Sj · rij)
|rij|5

. (1.11)

Again, the rescaling of the interaction constant in the projection onto local <111> spin
direction takes place, and, as in Sec. 1.1.5, from geometry of the system Jnn = −1

3
J ,

and for the nearest-neighbour dipolar interaction, observing that ẑi · ẑj = −1
3
and

(ẑi · rij)(ẑj · rij) = 2
3
r2
nn one gets Dnn = 5

3
D. Thus, for 5

3
D > −1

3
J the effective

interaction between Ising spins is antiferromagnetic an spin ice physics emerges.
In the early Monte Carlo simulations of the dipolar spin ice model, the dipolar

interactions were truncated to a certain number of nearest neighbours [35, 71, 75].
The conclusion was that the spin ice state can exist for Dy2Ti2O7, while for Ho2Ti2O7
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a partially ordered state was obtained. In subsequent simulations [31], with a more
careful treatment of the dipolar interaction via the use of the Ewald summation tech-
nique [76–79](see Appendix D), no ordered phases were found and the residual entropy
was obtained to be within a few percent of Pauling’s residual entropy, 1

2
NkB ln (3/2).

In further Monte Carlo studies of the dipolar spin ice model [80], using a new, designed
to speed up equlibration in the spin ice state, loop algorithm, it was found that below
the lacking long-range correlations spin ice state, at very low temperature a long range
ordered spin ice phase, so-called Melko phase exist [80]. The Melko phase has not been
found in experiments and it is under debate if this low temperature long-range ordered
phase occurs in the spin ice materials, Dy2Ti2O7 and Ho2Ti2O7 [80].

1.2.3 Gd3Ga5O12 (GGG)

Another interesting geometrically frustrated antiferromagnet is Gd3Ga5O12, gadolin-
ium gallium garnet (GGG). The lattice structure of this material is not the pyrochlore
structure of corner sharing tetrahedra but the cubic garnet structure of corner sharing
triangles. This system is not directly related to the frustrated pyrochlores discussed
here, but it is mentioned in the context of discussed later, in Sec. 1.5.2 and in Chap-
ter 5, dipolar spin glasses. While the Curie-Weiss temperature is θCW = 2 K, the
frustration postpones ordering down to 0.18 K [81]. The rich low temperature physics
of GGG is still not fully understood, but recently some insight was gained from dy-
namic magnetization studies, revealing that in the low temperature phase, there is a
long range-order coexisting with spin liquid behaviour [55]. In the framework of mean-
field theory, it was shown that the dipolar interaction plays an important role in the
ordering in GGG [54], and that the neutron scattering [53] data can be reproduced with
a proper treatment of the dipolar interactions [54]. Analogously to (GdxY1−x)2Ti2O7

and (GdxY1−x)2Sn2O7, at sufficient dilution, (GdxY1−x)3Ga5O12 may be expected to
exhibit, at low temperature, a dipolar spin-glass phase.

1.3 Er2Ti2O7 - pyrochlore XY antiferromagnet

The calculations in Chapter 6 are motivated by the puzzling properties observed in
the rare earth pyrochlore Er2Ti2O7. The electronic configuration of Er3+ is 4f 11 and
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it gives rise to a 4I15/2 (L=6, S=3/2) single ion ground-state configuration. The
crystal field on Er3+ in Er2Ti2O7 is characterised by a strong uni-axial anisotropy.
This results in a weak magnetic moment of 0.12µB along local <111> direction, while
in the plane perpendicular to the local easy axis it is 3.8µB, that is over 30 times
larger; hence, Er2Ti2O7 can be recognised as an easy-plane system [35, 36]. The
Curie-Weiss temperature is θCW = −15.9 K [82], thus suggesting that the exchange
interaction is antiferromagnetic. Being an odd electron system, the crystal field energy
level structure of Er3+ in Er2Ti2O7 consists of Kramers doublets. The first doublet is
separated from the ground-state doublet by the energy gap of 74.1 K, and the next
doublet is 85.8 K above the ground-state doublet [37].

Measurements of the specific heat of Er2Ti2O7 reveal a sharp peak at 1.2 K [35, 83]
that signals a phase transition. The powder neutron scattering experiments indi-
cate that the transition is to a long-range ordered phase with propagation vector
q=[000] [37, 61]. Zero propagation vector means that each tetrahedron has the same
spin configuration. The magnetic ordering was determined in spherical neutron po-
larimetry studies [84]. The observed spin configuration in the ordered state is referred
to as ψ2 state in Ref. [37] and Ref. [84]; later in this thesis, we will refer to this ψ2

configuration as the Champion-Holdsworth state [60, 61]. The spin configuration in
the Champion-Holdsworth state is shown in the left panel of Fig. 1.7. This configu-
ration is in agreement with that found in Monte Carlo simulations on the easy-plane
pyrochlore antiferromagnet [60, 61].

The agreement of the configuration found in the experiments on Er2Ti2O7 and
in the simulation of the easy-plane pyrochlore antiferromagnet is only superficially
satisfactory, and in fact it constitutes a puzzle that is not yet solved. Energetically, the
isotropic exchange XY model has continuous degeneracy. The Monte Carlo simulations
show that there is a first order thermally-driven order-by-disorder phase transition
selecting the Champion-Holdsworth state. That the phase transition is first order
is in disagreement with neutron scattering data [60, 61] that suggest a second order
transition. At TN the scattering intensity vanishes like I(T ) ∝ (TN − T )2β with β ≈
0.33, that is characteristic of 3D XY model [37, 61].

Furthermore, in Er2Ti2O7, besides the nearest-neighbour antiferromagnetic ex-
change, a sizable dipolar interaction is present. The dipolar interaction breaks the
degeneracy of the ground-state manifold, and selects a discrete set of states, that is
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Figure 1.7: The Champion-Holdsworth, ψ2, state (left) and the Palmer-Chalker state
(right).

different from the thermally selected Champion-Holdsworth state. The ground state
configuration of the XY antiferromagnet with the dipolar interaction is six-fold de-
generate. The ground-state spin configurations consist of two perpendicular pairs of
antiparallel spins that are parallel to the opposite plane of the tetrahedron [67], as
depicted in the right panel of Fig. 1.7. In this thesis, this state will be referred to as
the Palmer-Chalker state [67].

In Chapter 6, the range of dipolar interaction coupling over which order-by-disorder
selection of the Champion-Holdsworth state persists is investigated. It turns out that
the dipolar interaction must be very weak, much weaker than the dipolar interaction
in Er2Ti2O7, relative to the exchange coupling, for thermal selection of the Champion-
Holdsworth state.

McClarty et al. [85] studied the effect of interaction-induced admixing of the
ground doublet with excited crystal field levels. They show that such admixing may
induce a six-fold anisotropy, that is consistent with the six-fold modulation of the
Champion-Holdsworth state, and, in principle, could induce an energetic selection
of the Champion-Holdsworth state. But, the energy level splitting is much larger
than the energy scale of the interaction, and the six-fold anisotropy created by the
interaction-induced admixing of the ground doublet with excited crystal field levels is
very weak relatively to the strength of the dipolar coupling. Moreover, if the order-
ing in the Champion-Holdsworth state were driven by this effect alone, the transition
temperature would have to be much lower than the experimental Tc.
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1.4 Random frustration and spin glasses

1.4.1 Classical spin glass theories

Our current theoretical understanding of the spin-glass (SG) phase is mostly based
on the replica symmetry breaking (RSB) picture set by the Parisi solution [86, 87]
of the infinite-dimensional Sherrington-Kirkpatrick model [88]. As the upper critical
dimension (UCD) of SG models is large (dUCD=6) [42], such a mean-field description
is likely to be insufficient to understand the physics of real materials exhibiting glassy
behaviour. An alternative description of the SG phase in finite dimension is given by
the phenomenological droplet picture [89], which has been found to possibly charac-
terize better three dimensional (3D) SG [90]. But it remains an open debate what is
the proper theory describing SG systems in real (finite) dimensions.

1.4.2 Simulations of Edwards-Anderson model

The theoretical studies of 3D SG models are almost entirely limited to numerical simu-
lations, but the slow relaxation characterizing spin-glass systems makes the numerical
studies very difficult. Most of the work has concentrated on the Edwards-Anderson
(EA) model [91] of n-component spins interacting via a nearest-neighbour random ex-
change interaction, Jij, where both ferromagnetic or antiferromagnetic couplings are
present. The cases n=1 and n=3 refer to Ising and Heisenberg SG, respectively. The
probability distribution of the random bonds, P (Jij), is usually taken to be Gaussian
or bimodal [41, 42].

The greater part of all numerical studies on SG have been devoted to the minimal
EA model, the one-component Ising SG. Due to severe technical difficulties, only
a very limited range of system sizes was accessible in the early simulations, while
scaling corrections in SG systems are large. The existence of a finite temperature
SG transition in 3D Ising SG model remained under debate for a long time [92–96].
The early MC studies strongly supported the finite-temperature SG transition, but
a zero-temperature transition could not be definitively ruled out [92, 93, 97]. Only
quite recently, in the course of large-scale Monte Carlo studies, has the existence of
a thermodynamic phase transition in the Ising case been established [94] and the
universality among systems with different bond distributions been confirmed [95, 96].
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The case of the Heisenberg SG is somewhat more controversial than the Ising SG.
Originally, it was believed that the lower critical dimension (LCD) for the Heisenberg
SG is dLCD ≥ 3, and that the small anisotropies present in the real system are re-
sponsible for the SG behaviour observed in experiments [98, 99]. But no indication of
a crossover from the Heisenberg to the Ising SG universality class caused by a weak
anisotropy has been observed in experiments [99]. It was suggested that in the Heisen-
berg EA SG a finite-temperature transition occurs in the chiral sector [99, 100], while
a SG transition in the spin sector occurs at zero temperature [101, 102]. The chirality
is a multi-spin variable representing the handedness of the noncolinear or noncoplanar
spin structures [99, 100]. At that point, the SG phase in the Heisenberg SG materi-
als was attributed to the spin-chirality coupling induced by small anisotropies. Later
simulations indicated the existence of a nonzero-temperature SG transition [103, 104].
The most recent work on the 3D Heisenberg SG shows either that the SG transition
is decoupled from occurring at slightly higher temperature chiral glass (CG) transi-
tion [105, 106], or that a common transition temperature may exist [107].

1.4.3 Spin-glass materials

On the experimental side there do exist some SG materials with a strong, Ising-like
uni-axial anisotropy, but the majority of experimental studies of SG focus on nearly
isotropic, Heisenberg-like systems. A well studied Ising SGmaterial is Fe0.5Mn0.5TiO3 [108,
109], and other examples of Ising SGs Eu0.5Ba0.5MnO3 [110] and Cu0.5Co0.5Cl2-FeCl3 [111,
112] can be mentioned. Considering Fe0.5Mn0.5TiO3, the leading coupling is a nearest-
neighbour exchange, and both base compounds: FeTiO3 and MnTiO3, are antifer-
romagnets. In both cases, the nearest-neighbour exchange interactions within the
hexagonal layers is antiferromagnetic. The magnitude of the intralayer coupling is
substantially larger than the interlayer coupling. The SG nature of the mixture,
Fe0.5Mn0.5TiO3, originates from the fact that the coupling between the layers is fer-
romagnetic in FeTiO3 but antiferromagnetic in MnTiO3 [108]; hence, in the mixture,
random frustration occurs. For the Heisenberg case, some short-range SG compounds
are also available, for example insulating EuxSr1−xS. In the Eu-rich case, this ma-
terial is a ferromagnet; the nearest-neighbour exchange interaction between Eu ions
is ferromagnetic and the next-nearest-neighbour exchange is weaker and antiferro-
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magnetic [113]. When magnetic Eu is randomly substituted with nonmagnetic Sr, a
random frustration of the ferromagnetic and antiferromagnetic bonds arises. But the
most often studied SG [41, 42] are nearly anisotropic (Heisenberg) metallic systems
interacting via the long-range Ruderman-Kittel-Kasuya-Yoshida (RKKY) [43–45] in-
teraction, in which the interaction between localized magnetic moments is mediated
by conduction electrons. In this category, the classical systems are the alloys of noble
metals as Ag, Au, Cu or Pt, diluted with a transition metal, such as Fe or Mn, often
labeled as canonical SGs [41, 42]. In the large r approximation, the RKKY interaction
varies with r as cos(2kF r)/r

3, where kF is the Fermi wavevector; hence it is anisotropic
and long range.

1.5 Dipolar spin glass

An another class of SG materials consist of systems of spatially disordered magnetic
dipoles. The dipolar interaction has either ferromagnetic or antiferromagnetic char-
acter depending on the relative position of the interacting dipoles. In the presence of
positional disorder, it gives rise to random frustration and the presence of a SG phase
at low temperature and sufficiently high level of disorder is expected.

1.5.1 Studies of dipolar Ising spin glasses

A number of Ising dipolar SG materials have been identified and related models have
been studied numerically. In the context of nanosized magnetic particles dispersed
in a frozen nonmagnetic solvent [114], a system of Ising dipoles with randomly ori-
ented easy axes has been simulated [115, 116]. In three dimensions, a spin-glass
transition has been confirmed, both in the diluted and undiluted case [115, 116]. A
well known physical realization of a diluted dipolar Ising model and a dipolar SG is
LiHoxY1−xF4 [117–120]. The early numerical studies of diluted Ising dipoles on the
simple cubic (SC) lattice and in the lattice geometry corresponding to LiHoxY1−xF4

did not find a spin-glass transition [121, 122]. A more recent work confirms the exis-
tence of a spin-glass phase in a model approximating LiHoxY1−xF4 [120]; although, as
in the previous works, crossing of the spin-glass Binder ratio plots was not found, but
a finite size scaling of the spin-glass correlation length provided compelling evidence
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for a thermodynamical phase transition [120]. Apparently, the corrections to scaling
are large for the system sizes studied, and they are much more pronounced in the
Binder ratio, while the SG correlation length is somewhat less affected.

1.5.2 Diluted dipolar Heisenberg spin glass

The case of the dipolar Heisenberg SG might be even more interesting, but to the
extent of our knowledge such systems have not been studied yet. In the presence of
spatial disorder, the off-diagonal terms in the dipolar interaction destroy the rotational
symmetry of the ground state. Thus, the dipolar Heisenberg SG is expected to be in
the Ising universality class [98, 123]. As mentioned in the discussion of the existence
of a SG phase in the Heisenberg EA SG model, a crossover from the Heisenberg
SG universality class to the Ising SG universality class induced by small anisotropies
has not been observed in experiments. In this context, it is interesting to study a
SG system where anisotropic and long-range interactions, i.e. dipolar interactions,
dominate. Finding in such a system critical exponents that are consistent with the
exponents of the Ising SG universality class would further confirm universality in SG.

In anticipation of eventual experimental studies of dipolar SG, e.g. diluted Gd
compounds, we performed numerical studies of the SG transition in a diluted dipolar
Heisenberg model. This work is presented in Chapter 5. Experimentally, a diluted
dipolar spin glass can be realised by sufficiently diluting magnetic dipoles with a non-
magnetic substituent, to the point that a short-range exchange interaction becomes
insignificant, and a long-range dipolar interaction dominates. The best candidate ma-
terials are those compounds containing rare earth magnetic ions, because, as a result of
the screening of the partially filled 4f shell by outer shells, the exchange interaction is
relatively weak among the rare earths, while their magnetic moments can be large. In
this group, the Gd3+ ion has a half-filled 4f -shell. The ground state manifold is 8S7/2

and Gd3+ has no orbital momentum. Gd3+ a very good approximation of a classical
Heisenberg spin. A good example of materials that can be considered as candidates for
Heisenberg diluted dipolar spin glasses are (GdxY1−x)2Ti2O7 and (GdxY1−x)2Sn2O7.
The physics of the pure case Gd2Ti2O7 and Gd2Sn2O7 was presented in Sec. 1.2.1.
Another frustrated antiferromagnet, mentioned in Sec. 1.2.3, gadolinium gallium gar-
net, Gd3Ga5O12, in a diluted form, (GdxY1−x)3Ga5O12, similarly to (GdxY1−x)2Ti2O7
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and (GdxY1−x)2Sn2O7, may be expected to exhibit, at low temperature, a dipolar SG
phase.

1.6 Experimental realisations of transverse field Ising

model1

1.6.1 Transverse field Ising model

Quantum phase transitions occur near zero temperature and are driven by quantum
mechanical fluctuations associated with the Heisenberg uncertainty principle and not
by thermal fluctuations as in the case of classical temperature-driven phase transi-
tions [124, 125]. There is accumulating evidence that the exotic behaviour exhibited
by several metallic, magnetic and superconducting materials may have its origin in
underlying large quantum fluctuations and proximity to a quantum phase transition.
For this reason, huge efforts are currently being devoted to understanding quantum
phase transitions in a wide variety of condensed matter systems.

Perhaps the simplest model that embodies the phenomenon of a quantum phase
transition is the transverse field Ising model (TFIM) [22, 23], first proposed by de
Gennes to describe proton tunneling in ferrolectric materials [126]. The spin Hamil-
tonian for the TFIM reads:

HTFIM = −1

2

∑
(ri,rj)

Jij(|rj − ri)|)Szi (ri)S
z
j (rj) (1.12)

−Γ
∑
(ri)

Sxi (ri).

The Si (S = 1/2) quantum spin operators reside on the lattice sites ri of some
d−dimensional lattice. The Si operators are related to the Pauli spin matrices by
Si = 1

2
σi (here we set ~ = 1). The components of Si obey the commutation relations

[Sαi , S
β
j ] = iεαβγS

γ
i δij where α, β and γ indicate x, y and z spin components, δij and

εαβγ are the Kronecker delta and fully antisymmetric tensor, respectively. Γ is the
1The content of Section 1.6 is reproduced with permission from P. Stasiak and M. J. P. Gingras,

Phys. Rev. B 78, 224412 (2008). Copyright 2008, The American Physical Society.
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effective transverse field along the x direction, perpendicular to the Ising z axis. As
described below, the effective transverse field Γ does not correspond one-to-one to the
applied physical field Bx. Rather, Γ in Eq. (1.12) is a function of the real physical
field Bx. In fact, Jij is also a function of Bx [1, 26, 127]. If the spin interactions,
Jij, possess translational invariance, the system displays for Γ = 0 conventional long
range magnetic order below some critical temperature, Tc. In the simplest scenario,
where Jij > 0, the ordered phase is ferromagnetic and the order parameter is the
average magnetization per spin, mz = (1/N)

∑
i〈Szi 〉, where N is the number of spins.

Since Sxi and Szi do not commute, nonzero Γ causes quantum tunneling between the
spin-up, |↑〉, and spin-down, |↓〉, eigenstates of Szi . By increasing Γ, Tc decreases
until, ultimately, Tc(Γ) vanishes at a quantum critical point where Γ = Γc. On the
T = 0 temperature axis, the system is in a long-range ordered phase for Γ < Γc while
it is in a quantum paramagnetic phase for Γ > Γc. The phase transition between
the paramagnetic and long range ordered phase at Γc constitutes the quantum phase
transition [22, 23].

One can also consider generalizations of the HTFIM where the Jij are quenched
(frozen) random interactions. Of particular interest is the situation where there are
as many ferromagnetic Jij > 0 and antiferromagnetic Jij < 0 couplings. This causes
a high level of random frustration and the system, provided it is three dimensional,
freezes into a spin-glass state via a true thermodynamic phase transition at a spin-
glass critical temperature Tg [41, 128]. Here as well, one can investigate how the
spin-glass transition is affected by a transverse field Γ. As in the previous example,
Tg(Γ) decreases as Γ is increased from zero until, at Γ = Γc, a quantum phase transition
between a quantum paramagnet and a spin-glass phase ensues. Extensive numerical
studies have found the quantum phase transition between a quantum paramagnet and
a spin-glass phase [129–131] to be quite interesting due to the occurrence of Griffiths-
McCoy singularities [132, 133]. These Griffiths-McCoy singularities arise from rare
spatial regions of disorder which may, for example, resemble the otherwise non-random
(disorder-free) version of the system at stake. As a result, Griffiths-McCoy singularities
can lead to singularities in various thermodynamic quantities away from the quantum
critical point.
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1.6.2 LiHoxY1−xF4

On the experimental side, most studies aimed at exploring the phenomena associated
with the TFIM have focused on the insulating LiHoxY1−xF4 Ising magnetic mate-
rial [6–21]. In this system, the Ho3+ Ising spin direction is parallel to the c axis of the
body-centered tetragonal structure of LiHoxY1−xF4. The random disorder is intro-
duced by diluting the magnetic Ho3+ ions by non-magnetic Y3+. Crystal field effects
lift the degeneracy of the 5I8 electronic manifold, giving an Ising ground doublet |Φ±0 〉
and a first excited |Φe〉 singlet at approximately 11 K above the ground doublet [16].
The other 14 crystal field states lie at much higher energies [16]. Quantum spin flip
fluctuations are introduced by the application of a magnetic field, Bx, perpendicular
to the Ising c axis. Bx admixes |Φe〉 with |Φ±0 〉, splitting the latter and producing an
effective TFIM with Γ(Bx) ∝ B2

x for small Bx [127].
The properties of pure LiHoF4 in a transverse Bx are now generally qualitatively

well understood [127]. Indeed, a recent quantum Monte Carlo study [127] found
general agreement between experiments and a microscopic model of LiHoF4. However,
some quantitative discrepancies between Monte Carlo and experimental data, even
near the classical paramagnetic to ferromagnetic transition where Bx/Tc is small, do
exist [1, 127]. One noteworthy effect at play in LiHoxY1−xF4 at low temperatures
is the significant enhancement of the zero temperature critical Bx, Bc

x, caused by the
strong hyperfine nuclear interactions in Ho3+-based materials [10, 15, 127, 134].

LiHoxY1−xF4 in a transverse Bx and x < 1 has long been known to display para-
doxical behaviours, both in the ferromagnetic (FM) (0.25 < x < 1.0) and spin-glass
(SG) (x < 0.25) regimes. In the FM regime, a mean-field behaviour Tc(x) ∝ x for
the PM to FM transition is observed when Bx = 0 [11]. However, in nonzero Bx,
the rate at which Tc(Bx) is reduced by Bx > 0 increases faster than mean-field the-
ory predicts as x is reduced [12, 17]. In the high Ho3+ (SG) dilution regime (e.g.
LiHo0.167Y0.833F4), LiHoxY1−xF4 has long been [7, 8, 19]2 argued to display a conven-
tional SG transition for Bx = 0 signalled by a nonlinear magnetic susceptibility, χ3,
diverging at Tg as χ3(T ) ∝ (T − Tg)−γ [128]. However, χ3(T ) becomes less singular as
Bx is increased from Bx = 0, suggesting that no quantum phase transition between a

2A recent experimental study suggest that there might not even be a spin-glass transition in
LiHoxY1−xF4 for x ≤ 0.16, even in zero Bx. See Ref. [19] and the discussions in Refs. [20, 21].
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PM and a SG state exists as T → 0 [8, 9]. Recent theoretical studies [24–26] suggest
that for dipole-coupled Ho3+ in a diluted sample, nonzero Bx generates longitudinal
(along the Ising ẑ direction) random fields that (i) lead to a faster decrease of Tc(Bx)

in the FM regime [12, 17, 25] and (ii) destroy the PM to SG transition for samples
that otherwise show a SG transition when Bx = 0 [8, 9, 19, 21, 24–26], or, at least,
lead to a disappearance of the χ3 divergence as Bx is increased from zero [8, 9, 25].

Perhaps most interesting among the phenomena exhibited by LiHoxY1−xF4 is
the one referred to as antiglass and which has been predominantly investigated in
LiHo0.045Y0.955F4 [6, 13, 14, 19, 135]. The reason for this name comes from AC sus-
ceptibility data on LiHo0.045Y0.955F4 which show that the distribution of relaxation
times narrows upon cooling below 300 mK [6, 13, 14]. This behaviour is quite differ-
ent from that observed in conventional spin glasses where the distribution of relaxation
times broadens upon approaching a spin-glass transition at Tg > 0 [41, 128]. The
antiglass behaviour has been interpreted as evidence that the spin-glass transition in
LiHoxY1−xF4 disappears at some nonzero xc > 0. Results from more recent experimen-
tal studies on LiHo0.165Y0.835F4 (x = 16.5%) and LiHo0.045Y0.955F4 (x = 4.5%) suggest
an absence of a genuine spin-glass transition, even for a concentration of Ho as large as
16.5% [19]. In particular, it is in stark contrast with theoretical arguments [136] which
predict that, because of the long-ranged 1/r3 nature of dipolar interactions, classical
dipolar Ising spin glasses should have Tg(x) > 0 for all x > 0. However, even more
recent work asserts that there is indeed a thermodynamic SG transition for x = 16.5%

[20], but that the behaviour found in LiHo0.045Y0.955F4 is truly unconventional [20].
Two very different scenarios for the failure of LiHo0.045Y0.955F4 to show a spin-glass

transition have been put forward [14, 137–139]. Firstly, it has been suggested that the
(small) off-diagonal part of the dipolar interactions lead to virtual crystal field exci-
tations that admix |Φ±0 〉 with |Φe〉 and give rise to non-magnetic singlets for spatially
close pairs of Ho3+ ions. The formation of these singlets would thwart the development
of a spin-glass state. This mechanism is analogous to the one leading to the formation
of the random singlet state in dilute antiferromagnetically coupled S = 1/2 Heisen-
berg spins [140]. However, a recent study [141] shows that the energy scale for this
singlet formation is very low (∼ 100 mK) and that the random singlet mechanism [14]
may not be very effective at destroying the spin-glass state in LiHo0.045Y0.955F4 [14].
Hence the proposed formation of an entangled state in LiHo0.045Y0.955F4 may, if it re-
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ally exist, perhaps proceed via a more complex scheme than that proposed in Ref. [14].
Also, the low-temperature features observed in the specific heat in Ref. [14] have not
been observed in a more recent study [135]. Secondly, and from a completely different
perspective, early numerical simulations of classical Ising dipoles found that the spin-
glass transition temperature, Tg appears to vanish for a concentration of dipoles below
approximately 20% of the sites occupied [137–139]. However, a more recent Monte
Carlo studies found compelling evidence that there is a thermodynamical spin-glass
transition at Ho3+ concentration x = 0.0625 and x = 0.125 [120].

As another possible and yet unexplored scenario, we note here that since Ho3+ is
an even electron system (i.e. a non-Kramers ion), the Kramers’ theorem is inopera-
tive and the ground state doublet can be split by random (electrostatic) crystal field
effects that compete with the collective spin-glass behaviour. For example, random
strains, which may come from the substitution of Ho3+→Y3+, break the local tetrag-
onal symmetry and introduces (random) crystal fields operators (e.g. O±2

2 ) which
have nonzero matrix elements between the two states |Φ+

0 〉 with |Φ−0 〉 of the ground
doublet, splitting it, and possibly destroying the spin-glass phase at low Ho3+ concen-
tration. Indeed, such random transverse fields have been identified in samples with
very dilute Ho3+ in a LiYF4 matrix [142, 143]. Also, very weak random strains, hence
effective random transverse fields, arise from the different (random) anharmonic zero
point motion of 6Li and 7Li in Ho:LiYF4 samples with natural abundance of 6Li and
7Li [144]. Finally, there may be intrinsic strains in the crystalline samples that do
not arise from the Ho3+/Y3+ or 6Li/7Li admixture [142]. However, using available
estimates [142–144], calculations suggests that strain-induced random fields at play in
LiHo0.045Y0.955F4 may be too small [< O(101 mK)] to cause the destruction of the spin-
glass phase in this system [145]. Nevertheless, the point remains that, in principle, the
non-Kramers nature of Ho3+ does offer a route for the destruction of the spin-glass
phase in LiHoxY1−xF4 outside strictly pairwise, quantum [14, 141] or classical [137–
139], magnetic interaction mechanisms. At this stage, this is clearly a matter that
needs to be investigated experimentally further. One notes that, because of Kramers’
theorem, the destruction of a SG phase via strain-induced effective random transverse
fields would not occur for an odd-electron (Kramers) ion such as Dy3+ or Er3+. In
that context, one might think that a comparison of the behaviour of LiDyxY1−xF4

or LiErxY1−xF4 with that of LiHoxY1−xF4 would be interesting. Unfortunately, while
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LiHoxY1−xF4 is an Ising system, the Er3+ and Dy3+ moments in LiErxY1−xF4 and
LiDyxY1−xF4 are XY-like [146, 147]. Hence, one cannot compare the LiErxY1−xF4

and LiDyxY1−xF4 XY compounds with the LiHoxY1−xF4 Ising material on the same
footing.

From the above discussion, it is clear that there are a number of fundamental
questions raised by experimental studies of LiHoxY1−xF4, both in zero and nonzero
transverse field Bx, that warrant systematic experimental investigations in other sim-
ilar diamagnetically-diluted dipolar Ising-like magnetic materials. Specific questions
are:

1. How does the quantum criticality of a transverse field Ising material with much
smaller hyperfine interactions than Ho3+ in LiHoxY1−xF4 manifest itself [10, 15,
134] ?

2. Is the theoretical proposal of transverse-induced random longitudinal fields in
diluted dipolar Ising materials [24–26] valid and can it be explored and confirmed
in materials other than LiHoxY1−xF4 [17]? In particular, are the phenomena
observed in Ref. [17] and ascribed to Griffiths singularities observed in other
disordered dipolar Ising systems subject to a transverse field?

3. Does the antiglass phenomenon [6, 13, 14] occur in other diluted dipolar Ising
materials? If yes, which, if any, of the aforementioned theoretical proposals for
the destruction of the spin-glass state at small spin concentration is correct?

1.6.3 RE(OH)3 materials

As mentioned above, these questions cannot be investigated with the LiErxY1−xF4 and
LiDyxY1−xF4 materials isotructural to the LiHoxY1−xF4 Ising compound since they are
XY-like systems. However, we note in passing that it would nevertheless be interesting
to explore the topic of induced random fields [24–26] and the possible existence of an
XY dipolar spin glass and/or antiglass state in LiErxY1−xF4 and LiDyxY1−xF4. The
LiTbxY1−xF4 material is of limited use in such investigations since the single ion
ground state of Tb3+ in this compound consists of two separated singlets [148], and
local moment magnetism on the Tb3+ site disappears at low Tb concentration [149].
In this paper, we propose that the RE(OH)3 (RE=Ho, Dy) compounds may offer
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themselves as an attractive class of materials to study the above questions. Similarly
to the LiHoF4, the RE(OH)3 materials possess the following interesting properties:

1. They are insulating rare earth materials.

2. Their main spin-spin couplings are magnetostatic dipole-dipole interactions.

3. The RE(OH)3 materials are stable at room temperature.

4. Both pure RE(OH)3 and LiHoF4 are colinear (Ising-like) dipolar ferromagnets
with the Ising direction along the c axis of a hexagonal unit cell (RE(OH)3)
or body-centered tetragonal unit cell (LiHoF4). In both cases there are two
magnetically equivalent ions per unit cell.

5. In RE(OH)3, the Kramers (Dy3+) and non-Kramers (Ho3+) variants possess a
common crystalline structure and both have similar bulk magnetic properties in
zero transverse magnetic field Bx.

6. The critical temperature of the pure RE(OH)3 compounds is relatively high,
∼ 3 K. This would make possible the study of Y−substituted Dy and Ho
hydroxides down to quite low concentration of rare earth while maintaining the
relevant magnetic temperature scale above the lowest attainable temperature
with a commercial dilution refrigerator.

7. Finally, and this is a key feature that motivated the present study, the first
excited crystal field state in the Ho(OH)3 and Dy(OH)3 compounds is low-
lying, hence allowing a possible transverse-field induced admixing and, possibly,
a transverse field Ising model description.

To the best of our knowledge, it appears that the RE(OH)3 materials have so far
not been investigated as potential realization of the TFIM. The purpose of the work
presented in Chapter 4 is to explore (i) the possible description of these materials as
a TFIM, (ii) obtain an estimate of what the zero temperature critical transverse field
Bc
x may be and, (iii) assess if any new interesting phenomenology may occur, even in

the pure compounds, in nonzero transverse field Bx.
We note, however, that there are so far no very large single crystals of RE(OH)3

available [3]. For example, their length typically varies between 3 mm and 17 mm
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and their diameter between 0.2 and 0.6 mm. The lack of large single crystals would
make difficult neutron scattering experiments. However, possibly motivated by this
work and by a first generation of bulk measurements (e.g. susceptibility, specific
heat), experimentalists and solid state chemists may be able to conceive ways to grow
larger single crystals of RE(OH)3. Also, in light of the fact that most experiments on
LiHoxY1−xF4 that have revealed exotic behaviour are bulk measurements [6–8, 11, 13,
14, 135], we hope that at this time the lack of availability of large single crystals of
the RE(OH)3 series is not a strong impediment against pursuing a first generation of
bulk experiments on RE(OH)3.

1.7 Outline of the thesis

The rest of the thesis is organised as follows. In Chapter 2, the techniques used in
the thesis are discussed, i.e Weiss mean-field theory and Monte Carlo methods. The
application of the mean-field approximation to the transverse-field Ising model is in-
troduced. The discussion of the Monte Carlo methods includes subsections on the
Metropolis algorithm, thermal parallel tempering, overrelaxation method and heat-
bath algorithm.

In Chapter 3, local mean-field studies of LiHoxY1−xF4 are described. Local mean-
field equations are solved iteratively. In the presence of dilution, the spatial disorder
gives rise to random frustration. The free energy landscape of randomly frustrated
systems is complicated and characterised by the existence of many local minima. To
find low-lying solutions, ideally the global minimum, and to estimate the number of
local free energy minima, the iterative procedure is repeated starting from different
initial configurations. That way, multiple solutions are obtained, corresponding to
different local free energy minima. A phase diagram for concentration, x, vs temper-
ature for different values of transverse magnetic field, Bx, is obtained. To locate the
phase boundary two methods are used. The first method is based on calculation of
the order parameters for ferromagnetic and spin-glass phases. In the second method,
the location of the spin-glass phase is found by locating the region in parameter space
that is characterised by a large number of local free energy minima.

In Chapter 4, studies of the rare earth hydroxides: Ho(OH)3, Dy(OH)3 and Tb(OH)3
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are presented. The aim of that work is to assess the suitability of these Ising-like mag-
netic materials for experimental studies of quantum criticality and quantum phase
transitions. A mean-field approximation is used to estimate the values of the critical
transverse field, Bc

x, for each of these compounds. Ho(OH)3 is found to be a good
realization of the transverse-field Ising model, with an experimentally accessible value
of the critical transverse field, Bc

x. Tb(OH)3 can also be described by an effective
transverse-field Ising model Hamiltonian, but the estimated value of Bc

x is too large
for experimental studies. As opposed to the two materials discussed above, Dy(OH)3

cannot by described by an effective spin-1/2 Hamiltonian. The value of the transverse
magnetic field that is inducing the zero-temperature phase transition is experimentally
accessible, but the transition in high transverse field, Bx, is first order. The first-order
transition in Dy(OH)3 is studied in the framework of Ginzburg-Landau theory.

In Chapter 5, numerical studies of a diluted dipolar Heisenberg spin glass are
presented. A system of Heisenberg spins interacting via dipolar interactions, randomly
placed on the simple cubic lattice is simulated. Two values of dipole concentrations
are considered: x=0.125 and x=0.0625. The Metropolis Monte Carlo method with
thermal parallel tempering is used. Finite-size scaling analysis of the Binder ratio,
spin-glass correlation length and spin-glass susceptibility is performed. The finite-size
scaling of the spin-glass correlation length and the spin-glass susceptibility strongly
indicates a thermodynamical phase transition to a spin-glass phase. Critical exponents
ν and η are computed and compared with the exponents obtained in experiments and
simulations of different models.

In Chapter 6, the results of Monte Carlo simulations of the easy-plane pyrochlore
antiferromagnet with dipolar interaction are discussed. The model is studied in the
context of the physics of Er2Ti2O7. The aim of the study is to estimate the range
of the dipolar interaction strength for which, in the transition from the paramagnetic
state, the order-by-disorder selection is not suppressed, and for which the Champion-
Holdsworth state is selected, and not the Palmer-Chalker state that is the actual
ground state of the easy-plane pyrochlore antiferromagnet with dipolar interactions.
It is found that a very weak dipolar interaction, when compared with the exchange
interaction, is sufficient to destroy the entropic selection of the Champion-Holdsworth
state. This suggests that the explanation of the experimentally observed selection of
Champion-Holdsworth state in Er2Ti2O7 should be sought among other phenomena
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than thermal order-by-disorder; for example, other types of interactions and quantum
effects might be considered.

Chapter 7 contains a short conclusion.
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Chapter 2

Methods

2.1 Local mean-field theory for transverse-field Ising

model

Only few models can be solved exactly. Even Ising model, considered simple, is not
solved exactly in dimensionality higher that two. Powerful but difficult in practical
calculations renormalization group techniques require development of new methods
almost for each problem considered. Hence, crude but easy to apply mean-field ap-
proximation is often the first method chosen to study critical phenomena in new
models. In the most cases, mean-field approximation allows qualitative exploration of
the phase diagram.

2.1.1 Weiss molecular field theory

The concept and the most intuitive formulation of mean-field theory is due to Pierre
Weiss (1907). The basic idea is that the interaction is replaced by the molecular
field that captures the effect of interaction with all other particles. Consider Ising
Hamiltonian

H = −1

2

∑
i,j

Jijσ
z
i σ

z
j − h

∑
σzi , (2.1)

where σzi is a classical Ising spin and σzi = ±1, and the summation is carried over
all spin pairs i,j. To calculate the thermal average of spin σzi we need to perform a

35



difficult summation

〈σzi 〉 =
∑
{σzi }

σzi e
−β(− 1

2

P
i,j Jijσ

z
i σ
z
j−h

P
σzi )/

∑
{σzi }

e−β(− 1
2

P
i,j Jijσ

z
i σ
z
j−h

P
σzi ). (2.2)

The difficulty here is that the Hamiltonian (2.1) cannot be separated into parts de-
pending on a single spin, σi. To alleviate this problem, to be able to conveniently
factorize the Boltzmann probability term, and calculate 〈σzi 〉 in Eq. (2.2), we make an
assumption that all other spins are fixed and equal to their thermal average values.
By doing so, we neglect the effect of thermal fluctuations. The summation reduces to
the summation over the two states of the spin σzi ,

〈σzi 〉 =
∑
σzi =±1

σzi e
−β(−

P
j Jij〈σzj 〉−h)σzi /

∑
σzi =±1

e−β(−
P
j Jij〈σzj 〉−h)σzi , (2.3)

and one obtains

〈σzi 〉 = tanh

(
β

(∑
j

Jij
〈
σzj
〉

+ h

))
. (2.4)

In a slightly different approach, σzi in Hamiltonian (2.1) is replaced with an equiv-
alent expression 〈σzi 〉 + (σzi − 〈σzi 〉), and the fluctuation term (σzi − 〈σzi 〉)

(
σzj −

〈
σzj
〉)

is neglected, to obtain

H = −1

2

∑
i,j

Jij
[
〈σzi 〉

(
σzj −

〈
σzj
〉)

+
〈
σzj
〉

(σzi − 〈σzi 〉) + 〈σzi 〉
〈
σzj
〉]
− h

∑
i

σzi

= −
∑
i,j

Jij
〈
σzj
〉
σzi − h

∑
σzi +

1

2

∑
i,j

Jij 〈σzi 〉
〈
σzj
〉
. (2.5)

All thermodynamical quantities can be calculated from the partition function, Z.
To compute Z in Weiss mean-field theory one writes:

Z = e−
1
2
β

P
i,j Jij〈σzi 〉〈σzj 〉∏

i

∑
σi=±1

e−β(−
P
j Jij〈σj〉−h)σi

= e−
1
2
β

P
i,j Jij〈σzi 〉〈σzj 〉∏

i

2 cosh

[
β

(∑
j

Jij 〈σj〉+ h

)]
. (2.6)

36



The free energy, F = −kBT lnZ, reads

F = −kBT
∑
i

ln

{
2 cosh

[
β

(∑
j

Jij 〈σi〉+ h

)]}
+

1

2

∑
i,j

Jij 〈σzi 〉
〈
σzj
〉
. (2.7)

2.1.2 Transverse field Ising model and mean-field solution

The above argument can be extended for the case of transverse-field Ising model. We
consider the Hamiltonian

H = −1

2

∑
i,j

Jijσ
z
i σ

z
j − Γ

∑
i

σxi . (2.8)

In the mean-field approximation, one gets

H = −
∑
i,j

Jij
〈
σzj
〉
σzi − Γ

∑
i

σxi +
1

2

∑
i,j

Jij 〈σzi 〉
〈
σzj
〉
, (2.9)

or, denoting Pi =
∑

,j Jij
〈
σzj
〉
and Γi = Γ,

H =
1

2

∑
i,j

Jij 〈σzi 〉
〈
σzj
〉
−
∑
i

Piσ
z
i −

∑
i

Γiσ
x
i . (2.10)

The partition function is of the form

Z = C
∏
i

Tr exp [β (Piσ
z
i + Γiσ

x
i )] , (2.11)

where C = exp
[
−1

2
β
∑

i,j Jij 〈σzi 〉
〈
σzj
〉]
. The eigenvalues of the 2× 2 matrix

Piσ
z
i + Γiσ

x
i =

(
Pi Γi

Γi −Pi

)
(2.12)

are ± |λi|, where |λi| =
√

(Pi)
2 + (Γi)

2, and the partition function reads

Z = C
∏
i

(
e−|λi| + e|λi|

)
= C

∏
i

[2 cosh (β |λi|)] . (2.13)
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The free energy, F = −kBT lnZ, takes the following form

F = −kBT
∑
i

ln

[
2 cosh

(
β

√
(Pi)

2 + (Γi)
2

)]
+

1

2

∑
i,j

Jij 〈σzi 〉
〈
σzj
〉
. (2.14)

The local magnetization, mz
i = 〈σzi 〉, can be expressed as the derivative of the partition

function
mx
i =

∂F

∂Γi
, mz

i =
∂F

∂Pi
, (2.15)

and one obtains

mx
i =

Γi√
(Pi)

2 + (Γi)
2

tanh

[
β

√
(Pi)

2 + (Γi)
2

]
,

mz
i =

Pi√
(Pi)

2 + (Γi)
2

tanh

[
β

√
(Pi)

2 + (Γi)
2

]
. (2.16)

2.2 The Monte Carlo method

Another class of techniques used to tackle problems that cannot be solved exactly are
Monte Carlo methods [150, 151]. The term “Monte Carlo method” refers to a wide
class of numerical algorithms based on statistical sampling. In statistical physics it
applies almost exclusively to Metropolis algorithm [150–152] and its derivatives.

2.2.1 Metropolis Algorithm

We consider here the canonical ensemble that is representing a system that can ex-
change energy with a heat reservoir, thus it is isothermal. The probability of a mi-
crostate k, characterized by energy Ek, is given by Boltzmann distribution

wB(Ek) =
1

Z
e−Ek/kBT , (2.17)

where T is the temperature and kB is Boltzmann constant, kB = 1.38 · 10−23J· K−1.
The normalization constant

Z =
∑
k

e−Ek/kBT , (2.18)
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is the partition function. The summation is carried over all configurations, k. The aim
of a simulation is to sample the configurations with a statistical weight wB(Ek). The
most straightforward approach is to sample configurations from a uniform probability
distribution. The estimator for the expected value of physical observable, O, is given
by the formula

Ō =
∑
k

wB(Ek)Ok, (2.19)

where Ok is the value of observable O in the microstate k. In practice such “simple-
sampling” is prohibitively inefficient. The statistical weight, wB(Ek), of the majority of
drawn configuration is very small and the statistically important configuration would
be likely missed. To alleviate this problem, the sampling can be performed from an
arbitrary probability distribution, w(Ek), that would promote sampling of statistically
important configurations. The estimator for the expected value of observable O from
such “importance-sampling” is

Ō =
∑
k

wB(Ek)

w(Ek)
Ok. (2.20)

In the case of sampling from Boltzmann distribution, wB(Ek), the average is just the
arithmetic mean

Ō =
1

N

∑
k

Ok, (2.21)

where N is the number of sampled configurations, k. In practice it may be difficult
to generate random configurations with arbitrary distribution function, w(Ek). The
particular difficulty of sampling configurations form Boltzmann distribution (2.17) is
that the partition function, Z, is not known. The solution to this problem is the
Markov chain Monte Carlo. A Markov chain is a stochastic process having a property
that the future state is dependent only on the present state, and does not depends on
the previous states. The Markov chain is described by a transition matrix (transition
probability), P . Pij is the probability of the transition from state i to state j. It is
not difficult to create a Markov chain that has an arbitrary probability distribution
as its equilibrium distribution. The necessary conditions that must be satisfied by the
transition matrix are ergodicity and detailed balance. By ergodicity we understand
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the condition that any possible state can be reached from any other state in a finite
number of elementary moves. The detailed balance is given by the equation

Pijwi = Pjiwj, (2.22)

where wi and wj is are the equilibrium probabilities of being in states i and j, respec-
tively, and Pij is the probability of transition from state i to state j.

A popular method for generating a Markov chain with such properties is known as
Metropolis-Hastings algorithm [150–152]. The method is based on generating small
random changes of the configuration and accepting or rejecting them with probability

Paccept = min(1,
wj
wi

), (2.23)

where wi and wj are the probabilities of the current configuration, i, and proposed
new configuration, j, respectively. In the case of the Boltzmann distribution, wB(Ek)

of Eq. (2.17), the acceptance probability is

Paccept = min(1, e−∆E/T ), (2.24)

where ∆E = Ej − Ei, is the change of energy that follows the configuration change
from state i to state j; Ei and Ej are the energies of the configurations i and j,
respectively.

2.2.2 Parallel Tempering

In simulations of slowly equilibrating systems such as spin glasses the parallel tem-
pering, also known as replica exchange method was found to substantially improve
the performance [153, 154]. The technique is intended for simulating systems with
large energy barriers. In parallel tempering Monte Carlo a number of temperatures is
simulated simultaneously. In addition to standard Metropolis local updates configura-
tion swaps between different temperatures, so-called thermal replicas, are performed.
At high temperatures updates associated with large energy changes are more likely
to happen than in low temperatures. Hence, when temperature is high, a simulation
explore a large volume of phase space, while at low temperatures a narrow local region
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of phase space space is sampled, and the system can be easily trapped in a local energy
minima. Performing configuration exchanges with thermal replicas at higher tempera-
ture allows a low temperature system to travel between local free energy minima that
are separated by energy barriers that local update alone would be very unlikely to
overcome.

The probability of configuration swaps are chosen such that the detailed balance
(2.22) is satisfied. The system of M thermal replicas can be formally treated as an
extended ensemble. Let the replicas be associated with a set of temperatures Tm,
where m = 1, 2, . . . ,M . The state of the extended ensemble, X, is specified by the
configurations of all M replicas, X = {X1, X2, . . . , XM} and the partition function is

Z =
M∏
m=1

Zm, (2.25)

where Zm is the partition function of the replica at temperature Tm. The probability
of a configuration X reads

W (X) =
M∏
m=1

w(Xm, Tm), (2.26)

where
w(Xm,Tm) =

1

Zm
e
−H(Xm)
kBTm (2.27)

is the probability of configuration Xm in temperature Tm. Let

X = {X1, . . . , Xk, . . . , Xl, . . . , XM}

and
X ′ = {X1, . . . , Xl, . . . , Xk, . . . , XM},

thus the extended ensemble configuration change, X|X ′, consist of swapping the con-
figurations between replicas k and l. A transition matrix P (X|X ′) is defined. For
convenience we write

Pkl→lk = P ({X1, . . . , Xk, . . . , Xl, . . . , XM}|{X1, . . . , Xl, . . . , Xk, . . . , XM}), (2.28)
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and
Wkl = W ({X1, . . . , Xk, . . . , Xl, . . . , XM}). (2.29)

The detailed balance condition take the form

Pkl→lkWkl = Plk→klWlk. (2.30)

Like in the case of local updates, we compute

Wlk

Wkl

=
e
−H(Xk)

kBTl
−H(Xl)

kBTk

e
−H(Xk)

kBTk
−H(Xl)

kBTl

= e
−[H(Xl)−H(Xk)]

h
1

kBTk
− 1
kBTl

i
, (2.31)

and a possible choice of the probability of swapping the configurations between k and
l replicas, satisfying the detailed balance condition, is Metropolis-Hastings formula
(2.23), that gives here

Paccept = min(1, e−∆), (2.32)

where
∆ = [H(Xl)−H(Xk)]

[
1

kBTk
− 1

kBTl

]
. (2.33)

The difference between the simulated temperatures, ∆T , must be small enough for
the configuration swap to happen. Each of the replicas is sampled with the Boltzmann
probability characteristic for the relevant temperature, Tm. The energy of a new con-
figuration, to be accepted, must be in the energy range characteristic for the sampled
temperature. If the configurations of thermal replicas k and l are to be exchanged,
there must be overlap between the probability distributions for the temperatures Tk
and Tl, or, in other words, the configurations sampled at T = Tk must be also likely
to appear at T = Tl. As the probability of a configuration exchange decreases with
increasing temperature difference, the configuration swaps are usually performed be-
tween adjacent replicas. The probability of configuration exchange should reasonably
large and uniform among the replicas. For this to happen, ∆ (2.33) should be small,
and uniform for considered temperatures. One can write

∆ =
H(Xl)−H(Xk)

Tl − Tk
(Tl − Tk)2

TlTk
≈ CV (T )

(∆T )2

T 2
, (2.34)
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where T = (Tk + Tl)/2, and CV (T ) ≈ H(Xl)−H(Xk)
Tl−Tk

. That means that the difference
between the temperatures should be

∆T ∝ T√
Cv

=
T√
cvN

, (2.35)

where cV is the specific heat per particle in the simulation cell. Hence, for a fixed
temperature range, the number of thermal replicas should increase with the system
size, N , as 1√

N
.

2.2.3 Overrelaxation

It has been reported that, in simulations of Heisenberg spin systems, such as the model
considered in Chapter 5, supplementing canonical Metropolis spin updates with “over-
relaxation” steps, computationally inexpensive, zero energy transformations, can sub-
stantially reduce autocorrelation times [155, 156]. Unfortunately, this technique does
not provide performance improvement in the case of long-range interactions and can-
not be used when periodic boundary condition are imposed on a system characterized
by dipolar interaction with non-cubic lattice symmetry.

In overrelaxation update, a new spin direction, S′i, is obtained by performing a
reflection of the spin at site i, Si, around the local dipolar field vector, Hi,

S′i = −Si + 2
Si ·Hi

H2
i

Hi. (2.36)

The local dipolar field is given by Eq. (5.5),

Hk =
∑
j 6=k

L̂kjSj, (2.37)

where the tensor L̂kj stands for dipolar interaction. Using Eq. (2.37) the Hamiltonian
can be written in the form

H = −1

2

∑
k

SkHk −
1

2

∑
k

SkL̂kkSk. (2.38)
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Let the energy of a spin configuration be written in the form

E = −1

2
SiHi −

1

2

∑
k 6=i

SkHk −
1

2

∑
k

SkL̂kkSk. (2.39)

After changing spin Si to S′i, according to Eq. (2.36), we have

E ′ = −1

2
S′iHi −

1

2

∑
k 6=i

SkH
′
k −

1

2

∑
k

S′kL̂kkS
′
k, (2.40)

where H ′k are updated dipolar fields; H ′i = Hi and for k 6= i :

H ′k = Hk + L̂ki(S
′
i − Si). (2.41)

Eqs. (2.36), (2.39), (2.40) and (2.41) give

E ′ − E =
1

2

(
S′iL̂iiS

′
i − SiL̂iiSi

)
. (2.42)

The energy does not change only if S′iL̂iiS′i − SiL̂iiSi = 0. It is the case when, for
each µ,ν, Lµνii = 0, or for diagonal L̂ii, Lµνii = Liiδµν , what is satisfied in the case of
cubic lattice symmetry (see Appendix C).

In simulations discussed in Chapter 5 we do not use the overrelaxation method.
For the model considered in Chapter 5, the fact that we do not use the overrelax-
ation method does not cause a large decrease of efficiency in our simulation. In the
case of long-range interaction, the reflection (2.36) would have to be followed by the
recalculation of dipolar field, H ′k, of Eq. (2.41). A similar lattice sums have to be
performed in the case of Metropolis updates.Most of the computation time is spent
on doing such lattice sums; hence, here the overrelaxation move would be practically
as computationally expensive as a Metropolis update.

2.2.4 Heatbath algorithm

In the original Metropolis algorithm a random configuration update is attempted and
it is accepted with the probability depending on the change of the energy that follows
such configuration change. The updates lowering the energy are always accepted,
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while if the energy was going to increase, the acceptance probability is

P (∆E) = exp(−β∆E), (2.43)

where β = 1/kBT . The probability exponentially decreases with increase of the energy
change, ∆E. Thus, to obtain a sufficient acceptance rate the attempted moves have
to be sufficiently small. Usually the configuration update is chosen in such way that
the acceptance rate is close to 50%. In many applications a better way of performing
a local spin updates is the “heatbath” algorithm [157–159], where the new direction of
a spin is drawn from suitable probability distribution, such that the new configuration
energy is distributed according to a Boltzmann weight. In the case of isotropic (O(3))
Heisenberg model, the distribution of angle θ between the local dipolar field, Hi, and
the spin vector Si can be calculated analytically [157–159]. In such isotropic case, the
Hamiltonian that can be written as

H = −1

2

∑
i

SiHi (2.44)

where Hi is the interaction field and Hi does not depend on spin Si. In the case of
long-range interaction we write

Hi =
∑
j 6=i

L̂ijSj (2.45)

It is convenient to describe spin Si in the polar coordinates, θ and φ , with the polar
axis along the local dipolar field, Hi. The energy of spin i in the field of other spins
is,

Ei = −SiHi = −Hi cos(θ), (2.46)

where θ is the polar angle defined as the angle between Si and Hi. We wish to
randomly choose Si such that the probability distribution of the energy (2.46) given
by Boltzmann distribution. The energy does not depend on the azimuthal angle, φ;
hence, φ is randomly chosen from the uniform distribution on the interval [0, 2π]. The
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polar angle, θ, is chosen such that x = cos(θ) is given by the probability distribution

P (x) =
eβHix´ 1

−1
dxeβHix

=
βHi

2 sinh βHi

eβHix, (2.47)

where β = 1/T . To obtain random variable x drawn from distribution (2.47), we
calculate the cumulative distribution

F (x) =

ˆ x

−1

P (x′)dx′ =
eβHix − e−βHi
eβHi − e−βHi (2.48)

and we reverse r = F (x), where r ∈ [0, 1] is a uniformly distributed random number.
We obtain [157–159]

x =
1

βHi

ln
[
1 + r

(
e2βHi − 1

)]
− 1. (2.49)

Having chosen φ and θ we need to compute the vector components of the spin and
rotate them to the global coordinate system. Let φH and θH denote azimuthal and
polar angle of vector Hi in global coordinates. One of possible choices of the local
coordinates x̂′, ŷ′ and ẑ′, having ẑ′ axis along Hi is

x̂′ = cos(θH) cos(φH)x̂+ cos(θH) sin(φH)ŷ − sin(θH)ẑ

ŷ′ = − sin(φH)x̂+ cos(φH)ŷ (2.50)

ẑ′ = sin(θH) cos(φH)x̂+ sin(θH) sin(φH)ŷ + cos(θH)ẑ.

The new spin, Si, in local coordinates is

Si = sin(θ) cos(φ)x̂′ + sin(θ) sin(φ)ŷ′ + cos(θ)ẑ′, (2.51)

and finally, combining Eq. (2.50) and Eq. (2.51), we get

Sx = Θ cos(φH)− sin(θ) sin(φ) sin(φH),

Sy = Θ sin(φH) + sin(θ) sin(φ) cos(φH), (2.52)

Sz = − sin(θ) cos(φ) sin(θH) + cos(θ) cos(θH),
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where
Θ = sin(θ) cos(φ) cos(θH) + cos(θ) sin(θH). (2.53)

Hamiltonian (2.44) with dipolar field (2.45) does not include self-interaction term.
In the case of dipolar interaction with periodic boundary condition we have to include
self-interaction and we write

H = −1

2

∑
i

(
SiHi + SiL̂iiSi

)
. (2.54)

For Hamiltonian (2.54), as opposite to Hamiltonian (2.44), in the general case, cumu-
lative distribution (2.48) could not be integrated and reversed analytically. For cubic
symmetry self-interaction term is of the form Lµνii = Liiδµν and Eq. (2.54) reduces to

H = −1

2

∑
i

(SiHi + Lii) ; (2.55)

hence, it is of the form (2.44) with just an independent of spin configuration constant
added and the heatbath method can be applied.

In principle, for the model discussed in Chapter 5 the heatbath algorithm could be
used, because a cubic lattice is considered. Nevertheless, we decided to use a method
generally applicable for any lattice symmetry, to obtain results that are directly com-
parable with simulations for other lattice geometries, and we do not use heatbath.

2.3 Summary

In this chapter, the mean field approximation and Monte Carlo methods were dis-
cussed. The mean-field theory is used in Chapter 3 and 4 to study LiHoxY1−xF4

and rare earth hydroxides, RE(OH)3, respectively. The Monte Carlo simulations are
used in Chapter 5 and 6 to study diluted dipolar Heisenberg spin glass and dipolar
pyrochlore easy-axis antiferromagnet.

In the next chapter, local mean-field method is used to study LiHoxY1−xF4 [6–21].
In zero transverse magnetic field, depending on the concentration, x, LiHoxY1−xF4

is a diluted dipolar Ising ferromagnet or diluted dipolar Ising spin glass [7, 8, 120].
The effect of the transverse field on the pure LiHoF4 ferromagnet-paramagnet phase
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diagram, with a quantum critical point at T=0 was studied using quantum Monte
Carlo simulations [127]. At large dilution, in the classical, Bx = 0, case, the spin glass
transition was also investigated, using Monte Carlo simulations [120]. It is difficult or
impossible to consider together in a Monte Carlo simulation the effect of transverse
magnetic field and dilution, especially in the high dilution regime, where frustration
would lead to severe sign problem in quantum Monte Carlo simulation. For that
reason local mean-field approximation is used. It was shown that in a diluted, spa-
tially disordered, LiHoxY1−xF4 the transverse field gives rise to a longitudinal random
field [24–26]. The longitudinal random field suppress the spin-glass phase and affects
the ferromagnet-paramagnet phase boundary. Used in the following chapter, local
mean-field theory allows in quite a direct way to analyse the effect of the random field
on both ferromagnetic and spin glass phases.
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Chapter 3

Mean-field studies of LiHoxY1−xF4 in
transverse magnetic field

In this chapter, the effect of transverse-field-induced longitudinal random field in
LiHoxY1−xF4 is studied. In the pure case, LiHoF4 is a dipolar Ising ferromagnet with
a Curie temperature Tc = 1.53 K [160]. The magnetic moments of Ho3+ in the perfect
crystalline environment of LiHoF4 are characterized by a strong Ising anisotropy [161].
The first excited state is ∼ 11 K above the ground state doublet [16]. At the temper-
atures of interest, T < Tc = 1.53 K, LiHoF4 is well described by a spin-1/2 effective
Ising Hamiltonian [162]. The exchange interactions between Ho3+ ions are relatively
weak and the long-range dipolar interactions play the leading role [117].

Subject to a magnetic field perpendicular to the Ising easy-axis direction, Bx,
LiHoF4 is a realization of the transverse-field Ising model [22, 23, 126]. The transverse
magnetic field admixes the ground state doublet with the excited states and splits the
ground-state doublet. The energy gap created between the states of the ground doublet
plays the role of a transverse magnetic field, Γ, in the effective transverse field Ising
Hamiltonian

H = −1

2

∑
i,j

Jijσ
z
i σ

z
j − Γ

∑
i

σxi , (3.1)

where σµi (µ = x, z) denotes spin operators given by Pauli matrices and Jij is the
effective dipolar interaction, rescaled by the transverse field, Bx. The transverse-field
Ising model is the simplest model that exhibits a quantum phase transition [22, 23];
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LiHoF4 and its diluted variant LiHoxY1−xF4 have long been used to study the effects of
tunable quantum fluctuations and quantum criticality [6–21]. For the classical phase
transition in an Ising system with dipolar interactions, the upper critical dimension
is dU = 3, and not dU = 4 as in the case of short range interactions [163, 164]. Thus,
one expects mean-field-like critical behaviour with logarithmic corrections [163]. The
quantum criticality is expected to be mean-field like as a quantum phase transition in d
dimensions can be identified with a classical phase transition in d+1 dimensions [165].

Bitko et al. [10] obtained an experimental Bx vs T phase diagram for LiHoF4. In
the high transverse field regime, the critical transverse field, Bc

x, is pushed up [10].
This feature is due to the hyperfine interaction and it was reproduced in a mean-
field calculation [10]. Stochastic series expansion [127] and perturbative [1] quantum
Monte Carlo simulation studies of Bx vs T phase diagram for LiHoF4 were performed.
Qualitative agreement between the experimental and numerical phase diagrams have
been obtained [127], but there is a significant discrepancy in the vicinity of the classical
critical point [1, 127], and it was shown that the discrepancy cannot be resolved just
by more careful treatment of the long-range dipolar interactions [1].

Many interesting phenomena can be explored in magnetically diluted LiHoxY1−xF4,
where some of the magnetically active Ho3+ ions are randomly replaced with nonmag-
netic Y3+. The temperature vs concentration, x, phase diagram for LiHoxY1−xF4

that was proposed by Reich et al. [117] is shown in Fig. 3.1. As mentioned before,
in the pure case, x = 1, the system undergoes a continuous phase transition from
the paramagnetic to the ferromagnetic phase at Tc = 1.53 K. Upon decreasing the
concentration, x, of the magnetic Ho3+ ions the critical temperature, Tc(x), is de-
pressed. In agreement with analytical predictions [136, 166], down to x ∼ 0.5, Tc(x)

vs x is given by a linear, mean-field form Tc(x) = xTc(x = 1) [11, 12, 17]. The linear
dependency, Tc(x) = xTc(x = 1) was also found in Monte Carlo simulations [138].
The dipolar interactions can have either ferromagnetic or antiferromagnetic charac-
ter, depending on the spatial arrangement of the dipoles; hence, in the presence of
spatial disorder, random frustration occurs. Upon dilution below x = 0.5, the an-
tiferromagnetic component of the dipolar interaction becomes more prominent and
the paramagnet-ferromagnet transition temperature is depressed at a higher rate than
linearly, and finally, around x ' 0.25, the long-range order vanishes and gives way to a
spin-glass phase. For x = 0.167, a signature of a spin-glass transition was via a diver-
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Figure 3.1: The phase diagram for LiHoF4. PM, FM and SG denote paramagnetic
phase, ferromagnetic phase and spin glass, respectively; and ’?’ shows “anti-glass”
state [117].

gence in the nonlinear susceptibility, χ3, and by the imaginary part of the linear AC
susceptibility, χ′′(f), that shows critical behaviour broadening as the temperature is
lowered [7, 8]. Theory predicts that either spin-glass or ferromagnetic ordering persist
down to x=0 [136, 166], but in early experimental studies, it was found that at the
concentration x = 0.045, the system exhibits unusual glassy behaviour [13, 14, 117].
In contrast to the conventional spin-glass response, the imaginary part of the linear
AC susceptibility, χ′′(f), does not exhibits broadening but rather narrowing when the
temperature is decreased. Because of this behaviour, the state of matter in this regime
was named the anti-glass phase. Contradictory results were obtained in recent mea-
surements of specific heat [135] and susceptibility [119], which clearly indicate that
there is a spin-glass transition for x=0.045.

Interesting phenomenology occurs when transverse magnetic field, Bx, and dilution
are considered simultaneously. Naively, one would expect that such system provides a
framework to study the physics of the transverse field Ising model when the system is
either a diluted ferromagnet or a spin glass, and hence possibly to observe a quantum
phase transition in a strongly disordered system. In fact, the physics of LiHoxY1−xF4
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in a transverse magnetic field turns out to be more complex. The transverse field
induces quantum fluctuations which suppress the spontaneous magnetic order, and
the critical temperature decreases. In the experiments, with increasing Bx, the critical
temperature decreases faster than is predicted by mean-field theory [12], which suggest
that the transverse field becomes more efficient in destroying long-range order [12]. The
spin-glass transition is signaled by a divergence in the nonlinear susceptibility, χ3. If
the transverse field Ising model is considered, the transverse field would be expected
to reduce the spin-glass transition temperature, Tg, and, at T = 0, a quantum phase
transition between a spin-glass and quantum paramagnet would occur, that would be
signalled by a divergence of χ3 as a function of the transverse field, Bx [167, 168].
In LiHo0.167Y0.833F4, a completely different behaviour was observed. Upon decreasing
temperature, the character of χ3 becomes progressively less singular, suggesting that
there is no quantum spin-glass transition at T = 0 [8].

In an attempt to explain these two observations: the increasing of the rate of
depressing of Tc with dilution in transverse field and the suppression of the spin-glass
phase by the transverse field, it was observed that in the presence of transverse field
and dilution, when the effective spin-1/2 Hamiltonian is considered, not only does
the effective transverse field term Γσxi occur, as in Eq. (3.1), but also other terms
mixing longitudinal and transverse spin operators and, due to the spatial disorder, an
effective longitudinal random field appear [24–26]. Tabei et al. analysed the effective
spin-1/2 Hamiltonian for LiHoxY1−xF4 [26] and demonstrated in finite-lattice mean-
field calculations [25] that the paramagnet-ferromagnet transition temperature gets
suppressed when the random field term is included. Also, using the replica trick and
imaginary time formalism in a toy model where a Gaussian distribution of fields and
interactions is used, they showed that the longitudinal random field suppresses the
divergence in the nonlinear susceptibility, χ3.

Here, we would like to extend the existing mean-field study to consistently survey
range of macroscopic parameters: T , Bx and x, to produce a complete phase boundary
including both the spin glass and ferromagnetic phases. The effect of the longitudinal
random field on the spin-glass phase was investigated using an infinite dimensional
toy model [25]. The computational method used herein allows us to study a realistic
model of LiHoF4. In the case of experimental studies of other, similar materials,
e.g. Ho(OH)3 that is discussed in the next chapter, it is reasonable to believe that
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our theoretical method may be able to capture eventual difference between magnetic
properties observed in LiHoxY1−xF4 and HoxY1−x(OH)3.

Considering disorder substantially increases computational complexity of the prob-
lem, because of the need to compute disorder average and because of rugged free energy
landscape and our attempts to estimate a number of free energy minima. Hence, we
decided to not include the hyperfine interaction and perform the calculation using a
spin-1/2 effective Hamiltonian rather than diagonalising 136×136 matrices that would
be required for the hyperfine interaction to be included [10]. Besides substantially de-
creasing the the complexity of calculations, a benefit of using the effective spin-1/2
Hamiltonian is that the transverse-field-generated longitudinal random field is explic-
itly present in the effective spin-1/2 Hamiltonian. The effect of hyperfine interactions
is pronounced at high Bx only [10]; hence our calculations for moderate Bx should
not lose too much in accuracy in respect to the case when the hyperfine interaction is
considered.

We use a local mean-field theory to study the effect of transverse-field-induced
longitudinal random fields on the phase diagram of LiHoxY1−xF4, considering both
the transverse field, temperature and dilution as the variable parameters. We derive
a low energy spin-1/2 Hamiltonian that includes the effect of the transverse field and
dilution. Within a mean-field approximation, a system of equations is derived which
describes the local magnetizations at all the lattice sites occupied by magnetic ions for a
given realisation of disorder at the considered dilution. This set of equations amounts
to a condition for a local free energy minima. Random frustration in the system
gives rise to a rugged free energy landscape with many local minima; hence, multiple
solutions to each set of equations are found and they are counted to estimate the
complexity of the free energy landscape. A range of temperatures, T , transverse field,
Bx, and concentration, x, is surveyed. For each value of the macroscopic parameters:
T , Bx and x, a number of realisations of disorder is considered and, in the glassy phase,
for each realisation of disorder, multiple solutions of the local mean-field equations are
found.

Two methods for locating the phase boundaries are used. In the first method
we calculate a relevant order parameter: the magnetization for a ferromagnet and
the Edwards-Anderson order parameter for a spin-glass, and estimate the transition
temperature by looking for inflection points in plots of the order parameter vs con-
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centration, x. To locate the spin-glass phase, we also estimate the complexity of the
free energy landscape by counting the solutions of the mean field equations. The sec-
ond method of locating the spin-glass phase is superior to the inflection point method
for the Edwards-Anderson order parameter, because it allows one to locate not only
the paramagnet-spin-glass boundary but also the boundary between the ferromagnetic
and spin-glass phases. In zero transverse field, the phase diagram obtained is qualita-
tively similar to the phase diagram shown in Fig. 3.1. In an applied transverse field,
the estimated number of local free energy minima, in the regime where the spin-glass
phase is expected, is considerably reduced, indicating a quenching of the spin-glass
phase, while the magnitude of the local magnetizations does not vanish - suggesting
that the spins are aligned with the local random longitudinal field.

Our original aim was to use the local mean-field theory to compute the nonlinear
susceptibility, χ3. We hoped to reproduce the smearing of the χ3 divergence at the
spin-glass transition with decreasing temperature in χ3 vs Bx plots, as it was obtained
in experimental work of Wu et al. [8]. Unfortunately, we found that it is not possible to
calculate the nonlinear susceptibility, χ3, in the framework of local mean-field theory
because of local singularities that occur in the model.

This chapter is organised as follows. In Section 3.1, we discuss the material proper-
ties of LiHoF4 or equivalently its diluted version LiHoxY1−xF4. We consider the effect
of transverse magnetic field on the single ion crystal field Hamiltonian and we exam-
ine the interactions present in the system. In Section 3.2, the mean-field Hamiltonian
is derived and a projection to the Ising, spin-1/2 subspace is discussed. In Section
3.3, the system of mean-field equations for local magnetizations is presented, and the
iterative procedure for obtaining and counting solutions is discussed. Section 3.4 is
devoted to a discussion of the results, both in the case of zero transverse field and for
nonzero transverse field, where the effect of random field is observed. The chapter is
concluded by a short summary.
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Figure 3.2: The crystal structure of LiHoF4.

3.1 Material properties

3.1.1 Crystal structure and crystal field Hamiltonian

LiHoF4 forms tetragonal crystals with lattice constants a=b=5.175 Å and c=10.75 Å
[169]. The magnetic properties of LiHoF4 originate from Ho3+ cations. LiHoF4 is an
Ising ferromagnet with the easy axis pointing along the crystallographic c direction.
There are 4 Ho3+ ions in a unit cell, at the positions: (0,0,1/2), (0,1/2,3/4), (1/2,1/2,0)
and (1/2,0,1/4) [169]. The crystal structure of LiHoF4 is shown in Fig. 3.2. The black
dots in the figure represent the Ho3+ ions. The red circles mark the positions of Li+

ions. The F− ions are drawn as small green dots. For clarity, only the four nearest-
neighbour and the four next-nearest-neighbour F− ions, surrounding the Ho3+ central
ion, are shown. The lines connecting the central Ho3+ ion with the F− ions and then
with the other Ho3+ ions indicate exchange pathways between nearest-neighbour Ho3+

cations [169].
The electronic configuration of Ho3+ is 4f 10. Because the 4f orbital is screened
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by 5s, 5p and 5d shells the exchange interaction in LiHoF4 is relatively weak, and
the dipolar interaction plays a dominant role [127]. The ground state configuration of
Ho3+ is 5I8(S=2,L=6,J=8). The energy gap between the ground-state, 5I8, manifold
and the first excited state, 5I7, is around 7400 K [170]. The ground state is a 17-fold
degenerate multiplet. The Ho3+ ions in LiHoF4 are subject to a strong crystal electric
field from the F− and Li+ ions. The crystal field partially lifts the degeneracy of
the ground-state manifold. The crystal field ground state is a non-Kramers doublet,
i.e. that degeneracy is coincidental, as opposite to Kramers multiplets that originate
from time reversal symmetry in odd electron systems. The first excited state is a
singlet, located around 11 K above the ground doublet. There are no Jx and Jy

matrix elements between the states of the ground doublet; hence, to the first order in
applied transverse magnetic field, the transverse susceptibility vanishes and Ho3+ ions
in LiHoF4 are characterised by a strong Ising anisotropy.

The crystal field Hamiltonian for the ground-state manifold can be expressed in
terms of Stevens’ “operator equivalents” [171, 172]1. The Stevens’ operators, Om

n , are
conveniently expressed in terms of vector components of angular momentum operator,
J . The crystal field Hamiltonian can be written in the form

Hcf =
∑
nm

Bm
n O

m
n , (3.2)

where Om
n are Stevens’ “operator equivalents”, and Bm

n are crystal field parameters2.
From angular momentum algebra, we know that in the case of f electrons, we need
to consider only n = 0, 2, 4, 6 in the sum (3.2) [172]. The choice of Bm

n coefficients in
Hamiltonian (3.2) that do not vanish and have nonzero corresponding matrix elements
is dictated by the point symmetry group of the crystalline environment. The point
symmetry group at the Ho3+ site in LiHoF4 is S4, and the crystal-field Hamiltonian
reads

Hcf(Ji) = B0
2O

0
2(Ji) +B0

4O
0
4(Ji) +B0

6O
0
6(Ji)

1Ref. [172] contains a comprehensive review of the method and conventions used to express crystal
field Hamiltonians

2Writing Hamiltonian (3.2) we assume that Bmn include Stevens multiplicative factors [172], θn.
In Chapter 4 a different convention for writing a crystal field Hamiltonian is used - θn are written
explicitly.
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Ref. [16, 127] Ref. [142]
B0

2 -0.696 K -0.609 K
B0

4 4.06× 10−3 K 3.75× 10−3 K
B0

6 4.64× 10−6 K 6.05× 10−6 K
B4c

4 4.18× 10−2 K 3.15× 10−2 K
B4s

4 0 K 2.72× 10−2 K
B4c

6 8.12× 10−4 K 6.78× 10−4 K
B4s

6 1.137× 10−4 K 4.14× 10−4 K

Table 3.1: Crystal field parameters for LiHoF4 from Ref. [16, 127], used in the calcu-
lations of this chapter, and from Ref. [142], given just for comparison.

+B4c
4 O

4c
4 (Ji) +B4s

4 O
4s
4 (Ji) +B4c

6 O
4c
6 (Ji) +B4s

6 O
4s
6 (Ji). (3.3)

The CFP are usually determined by fitting the crystal-field Hamiltonian to exper-
imental data, for example electron paramagnetic resonance [142], inelastic neutron
scattering [16] or magnetic susceptibility measurements [161]. In the calculations pre-
sented in this chapter we use values of the crystal field parameters proposed by Rønnow
et al. [16]. These crystal field parameters were obtained from fitting the results of
random phase approximation calculations to neutron scattering data [16]. Taking into
account a rather qualitative character of mean-field calculations, we do not attempt
to study rather subtle differences between the results obtained when using different
estimations of the crystal field parameters, and we stick to the crystal field parameters
of Ref. [16, 127]. But for comparison, the values of crystal field parameters collected
in Table 3.1, besides the used here crystal field parameters from Ref. [16], include also
the values given in Ref. [142].

3.1.2 Transverse field spectrum

To derive an effective spin-1/2 Hamiltonian we start from considering the effect of
transverse field on single Ho3+ ion [127]. A transverse magnetic field, Bx, applied in
the direction perpendicular to the direction of the Ising easy axis splits the degeneracy
of the ground doublet. In a transverse field, the Hamiltonian of a single Ho3+ ion
consist of the crystal-field and Zeeman term,

H0 = Hcf(Ji)− gµBBxJx. (3.4)
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Figure 3.3: The lowest energy levels in LiHoF4 in transverse field, Bx.

Diagonalizing Hamiltonian (3.4), the transverse field dependence of the energy levels is
obtained, and for the three lowest levels it is shown in Fig. 3.33. As will be discussed in
Section 3.2.1 the transverse-field-induced energy gap between the states of the ground
doublet plays the role of a transverse magnetic field in the effective spin-1/2 model.

3.1.3 Interaction Hamiltonian

The low-energy Hamiltonian for LiHoF4, containing the crystal-field term, Zeeman
term, and magnetic interaction terms, can be written in the form

H =
∑
i

Hcf(Ji)− gµB

∑
i

BxJi,x

+
1

2

∑
ij

∑
µν

Lµνij Ji,µJj,ν +
1

2
Jex

∑
i,nn

Ji · Jnn. (3.5)

Lµνij are the anisotropic dipole-dipole interaction constants of the form Lµνij = µ0(gµB)2

4πa3 Lµνij ,
where µ, ν = x, y, z; a is a lattice constant and µ0 is the permeability of vacuum. Lµνij

3A similar plot was originally shown in Ref. [127]

58



are dimensionless dipolar interaction coefficients,

Lµνij =
δµν |rij|2 − 3 (rij)

µ (rij)
ν

|rij|5
, (3.6)

where rij = rj − ri, with ri the lattice position of magnetic moment Ji, expressed
in units of the lattice constant, a. Jex is the antiferromagnetic (Jex > 0) exchange
interaction constant, which can be recast as Jex = µ0(gµB)2

4πa3 Jex, where Jex is now a di-
mensionless exchange constant that can be directly compared with dipolar interaction
Lµνij . The label nn in Eq. (3.5) denotes the nearest-neighbour sites of site i. The value
of nearest-neighbour exchange, Jex, is not exactly known. In the calculations pre-
sented in this chapter we use Jex = 0.75 [1]. For simplicity, the dipolar and exchange
interaction coefficients can be combined together, and the Hamiltonian is written,

H =
∑
i

Hcf(Ji)− gµB

∑
i

BxJi,x +
1

2

∑
ij

∑
µν

Dµν
ij Ji,µJj,ν , (3.7)

where Dµν
ij includes both dipolar and exchange interaction, Lµνij and Jex.

Periodic boundary conditions are imposed. For each considered spin, an array of
its periodic images, repeated outside the simulation cell, is considered. To compute
the effect of the periodic images, the Ewald summation technique is used [76–79]. The
Ewald method is described in Appendix D.

3.2 Mean-field Hamiltonian and projection to spin-

1/2 subspace

3.2.1 Projection to Ising spin-1/2 subspace

We construct an effective Ising Hamiltonian, following the method of Refs. [1, 26, 127];
a similar method is used in Chapter 4. We diagonalize exactly the non-interacting
Hamiltonian, H0 of Eq. (3.4), for each value of the transverse field, Bx. We denote the
two lowest states by |α(Bx)〉 and |β(Bx)〉 and their energies by Eα(Bx) and Eβ(Bx),
respectively. A transverse field enforces a unique choice of basis, in which the states
can be interpreted as |→〉 and |←〉 in the Ising subspace. We introduce a new |↑〉 and
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|↓〉 basis, in which the Jz matrix elements are diagonal, by performing a rotation

|↑〉 = 1√
2
(|α(Bx)〉+ exp(iθ) |β(Bx)〉),

|↓〉 = 1√
2
(|α(Bx)〉 − exp(iθ) |β(Bx)〉).

(3.8)

In this basis, the effective single ion Hamiltonian, describing the two lowest states, is
of the form

HT = ECM(Bx)−
1

2
∆(Bx)σ

x, (3.9)

where ECM(Bx) = 1
2
(Eα(Bx) + Eβ(Bx)) and ∆(Bx) = Eβ(Bx) − Eα(Bx). Thus the

splitting of the ground state doublet plays the role of a transverse magnetic field,
Γ ≡ 1

2
∆(Bx) in Eq. (1). The energies Eα(Bx) and Eβ(Bx) are plotted in Fig. 3.3.

To include the interaction terms in our Ising Hamiltonian, we expand the matrix
elements of Jx, Jy and Jz operators in terms of the σν (ν = x, y, z) Pauli matrices and
a unit matrix, σ0 ≡ 1,

Ji,µ = Cµ1 +
∑

ν=x,y,z

Cµν(Bx)σ
ν
i . (3.10)

The coefficients, Cµ and Cµν , are defined as

Cµ =
1

2
[〈↑ |Jµ|↑〉+ 〈↓ |Jµ|↓〉] ,

Cµx =
1

2
[〈↑ |Jµ|↓〉+ 〈↓ |Jµ|↑〉] ,

Cµy =
1

2i
[〈↑ |Jµ|↓〉 − 〈↓|Jµ|↑〉] ,

Cµz =
1

2
[〈↑ |Jµ|↑〉 − 〈↓|Jµ|↓〉] . (3.11)

The states |↑〉 and |↓〉 are obtained from diagonalization of the transverse-field Hamil-
tonian (3.4) thus they are Bx-dependent, and so are the coefficients Cµν . There are
12 coefficients, 5 of them: Cxz, Cyz, Czx, Czy and Cz are equal zero. The remaining 7
are plotted vs. transverse field, Bx, in Fig. 3.4. The coefficients Cy, Cxy and Cyx are
small and they are neglected in the calculations presented below.

To obtain the effective low-energy Hamiltonian, Jx, Jy and Jz operators in the
Hamiltonian (3.7) are replaced by their spin-1/2 projections (3.10). In the case of zero
transverse field, Bx = 0, only the Czz coefficient has a non-zero value, and the effective
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Figure 3.4: The dimensionless Cµν coefficients vsBx for LiHoF4. Analogous calculation
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spin-1/2 Hamiltonian takes a simple form

H =
1

2

∑
ij

Azzij σ
z
i σ

z
j , (3.12)

where Azzij = Dzz
ij Czz

2. To further simplify the form of the effective Hamiltonian,
we also define: Axxij = Dxx

ij Cxx
2, Axzij = 2Dxz

ij CxxCzz, Axij = 2Dxx
ij CxCxx and Azij =

2Dxz
ij CxCzz. The magnetization in ŷ direction vanishes, and for simplicity, we neglect

the terms containing σyi operators. Using Aµνij coefficients, the effective Hamiltonian
is written in the form:

H = E0 +
1

2

∑
ij

Azzij σ
z
i σ

z
j +

1

2

∑
ij

Axxij σ
x
i σ

x
j +

∑
ij

Axzij σ
x
i σ

z
j

+
∑
i

Axi σ
x
i +

∑
i

Aziσ
z
i . (3.13)

The coefficients Aµνij depend on Bx via the coefficients Cµν , and on the spatial arrange-
ment of the spins via the dipolar coupling, Dµν

ij .
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3.2.2 Mean-field Hamiltonian

Using the mean-field approximation as shown in Sec. 2.1.1 of Chapter 2 one can write

1

2

∑
ij

Azzij σ
z
i σ

z
j
∼=

∑
i

(∑
j

Azzijm
z
j

)(
σzi −

1

2
mz
i

)
(3.14)

1

2

∑
ij

Axxij σ
x
i σ

x
j
∼=

∑
i

(∑
j

Axxij m
x
j

)(
σxi −

1

2
mx
i

)
(3.15)

∑
ij

Axzij σ
x
i σ

z
j
∼=

∑
i

[(∑
j

Axzij m
x
j

)
σzi +

(∑
j

Axzij m
z
j

)
σxi

]
−
∑
i,j

Axzij m
x
jm

z
i , (3.16)

where mx
i = 〈σxi 〉 and mz

i = 〈σzi 〉. Finally, the mean-field Hamiltonian can be written
as

HMF = E0 +
∑
i

Piσ
z
i +
∑
i

Γiσ
x
i −

1

2

∑
ij

Axxij m
x
im

x
j −

1

2

∑
ij

Azzijm
z
im

z
j−

1

2

∑
ij

Axzij m
x
im

z
j ,

(3.17)
where Pi is the local longitudinal mean field,

Pi =
∑
j

Azzijm
z
j +

∑
j

Axzij m
x
j + Azi , (3.18)

and Γi is the local transverse field,

Γi =
∑
j

Axxij m
x
j +

∑
j

Axzij m
z
j + Axi . (3.19)

3.3 Local mean-field equations and iterative solutions

Having defined the effective spin-1/2 Hamiltonian (3.17), in terms of Bx- and disorder-
dependent coefficients Aµνij , we want to compute disorder-averaged macroscopic ob-
servables such as magnetization or Edwards-Anderson spin-glass order parameters.
A set of self-consistent equations describing the local magnetizations, mi, is derived.
The self-consistent equations are solved iteratively for a number of different disor-
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der realizations. As the number of local free energy minima, that are defined by the
self-consistent equations, is increasing upon entering the spin-glass phase. The self-
consistent solutions, found for different initial conditions, are counted, where solutions
are regarded as different if their free energy differs, and their number is treated as an
estimation of the number of local free energy minima.

3.3.1 Local mean-field equations

Using Hamiltonian (3.17), the free energy is calculated as described in Sec. 2.1.2, and
one obtains

F = E0 −
1

2

∑
ij

Axxij m
x
im

x
j −

1

2

∑
ij

Azzijm
z
im

z
j −

1

2

∑
ij

Axzij m
x
im

z
j

−
∑
i

kBT ln

[
2 cosh

(
β

√
(Pi)

2 + (Γi)
2

)]
, (3.20)

where Pi and Γi are given by Eqs. (3.18) and (3.19). Referring to Sec. 2.1.2 one finds
that the x̂ and ẑ vector components of local magnetization are

mx
i =

Γi√
(Pi)

2 + (Γi)
2

tanh

[
β

√
(Pi)

2 + (Γi)
2

]
,

mz
i =

Pi√
(Pi)

2 + (Γi)
2

tanh

[
β

√
(Pi)

2 + (Γi)
2

]
. (3.21)

3.3.2 Iterative procedure

The solution to Eqs. (3.21) is obtained by starting from random initial values of
mx
i and mz

i taken from the uniform probability distribution on the interval (-1,1)
and iterating the equations, i.e. evaluating mx

i and mz
i as a function of other local

magnetizations, mx
j and mz

j , until convergence is reached. The local magnetizations
are updated “in place”, that means that once a new value for a single site is calculated
it replaces the old value and is instantaneously used in subsequent calculation for the
other sites 4. The order in which the local magnetizations, mx

i and mz
i , are updated

4The alternative way, such that whole N component vectors mµ(new), µ = x, z ,where N is the
number of sites, are calculated using the old vectors, mµ(old), i.e. after mµ(new)

k was computed,
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is chosen randomly for each sweep over all the sites, i.
The iteration procedure is stopped when the relative change of the free energy, F

of Eq. (3.20) is smaller than ε = 10−6,

|(Fn − Fn−1) /Fn| < ε. (3.22)

In presence of a disorder, the free energy landscape is complicated and the iterative
procedure may yield different solutions when started from different initial configura-
tions (set of mx

i and mz
i values). Eqs. (3.21) are the condition for local minimum

of the free energy; hence, in the presence of many local minima, many solutions to
Eqs. (3.21) exist. To find a solution with a possibly lowest value of the free energy,
the procedure is repeated multiple times, each time starting from a different random
initial configuration. The value of F for each solution is compared against the lowest
value obtained in the previous attempts that used different initial conditions. If a
solution with lower F than the previous best solution is found, it is taken as the new
best solution.

To estimate the number of solutions, and to establish a terminating condition of
the solution counting loop, the following procedure is used. The obtained values of
the free energy, F , are grouped into bins of width ∆ = 10−4Fk, where Fk is the center
of the k-th bin. If a new value, Fl, satisfies the condition: |Fl − Fk| < ∆ = 10−4Fk

for any of the existing bins, k, than it is added to that bin (the counter of the bin
is incremented). In the opposite case, or trivially, if it is the first attempt, a new
bin, with the center Fl, is created. The binning procedure is stopped when the bin
corresponding to the lowest free energy contains at least 5 counts or if the number of
bins reaches 100. These numbers are arbitrarily chosen to cut off the computational
power to be employed for a given solution search. To illustrate the solution counting
procedure with an example, in the case when there is only one solution, the iteration
is repeated 5 times; in the case when there is exactly 10 solutions (and if all of them
are found), the iteration is repeated at least 50 times. The number of bins is an
estimate of the number of solutions or the complexity of the free energy landscape. At
the boundary of the spin-glass phase, an exponential increase of the number of local

m
µ(new)
l is computed using mµ(old)

k and not mµ(new)
k , was also attempted. When iterating Eqs. (3.21)

that way, the iteration converged very slowly or a convergence has not been reached.
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minima occurs, and the increase of the number of solutions is one of the determinants
of the of onset glassiness in the model.

To perform the disorder average, the procedure described above is repeated for
1000 samples of random dilution and a mean value is computed for all the calculated
quantities.

3.3.3 Calculated quantities

As described in the preceding section, for a given realisation of disorder a set of local
magnetizations, mi, is obtained. The total magnetization of the sample in ẑ direction
is computed

msample
z =

∣∣∣∣∣ 1

N

N∑
i=1

mz
i

∣∣∣∣∣ , (3.23)

where N is the number of spins, and absolute value was taken to avoid random al-
teration of sign of the total (macroscopic) magnetization. The expression for the
disorder-averaged magnetization reads

mz =

[∣∣∣∣∣ 1

N

N∑
i=1

mz
i

∣∣∣∣∣
]

dis

(3.24)

where [. . .]dis denotes the disorder average. In a similar way, the Edwards-Anderson
spin-glass order parameter, q, is computed

q =

[
1

N

N∑
i=1

(mz
i )

2

]
dis

. (3.25)

An order parameter, q|m|, that also indicates “spin freezing”, i.e. that there are nonzero
thermally averaged local magnetizations, mi, and which is equal to the magnetization
in the ferromagnetic phase is also calculated,

q|m| =

[
1

N

N∑
i=1

|mz
i |
]

dis

. (3.26)
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Finally, to detect whether spins are aligned with longitudinal random field, an order
parameter qA is defined,

qA =

[
1

N

N∑
i=1

mz
i sign(Azi )

]
dis

, (3.27)

where Azi is the effective transverse-field-induced longitudinal random field (see Eq.
(3.13)). For q|m|and qA, the inequality q|m| ≤ qA is always satisfied, and in the case
when all the spin are aligned with random field, qA is equal to q|m|.

Due to finite-size effects, the order parameters do not vanish rapidly at the tran-
sition from an ordered phase to the paramagnetic phase, as it would happen in an
infinite system. A finite-size tail is present in the order parameter vs concentration, x,
plots, and the phase boundary cannot be straightforwardly located by looking for the
order parameter to decrease to zero. In Monte Carlo simulation finite-size effects at the
critical point can be taken into account by using the finite-size scaling methods. Here,
for the local mean-field calculation, finite-size scaling techniques in the form known
from Monte Carlo cannot be applied. Having in mind the fact that the mean-field
approximation already introduces a large systematic error to the calculations, looking
for sophisticated methods to analyze finite size data would not improve the accuracy
of the results. For that reason only one system size (L=6, i.e with N = 4 · 63 = 864

lattice sites) is simulated. The phase boundary, separating the paramagnetic phase
form the ferromagnetic or spin glass phase, is taken to be at the inflection point of the
plot of magnetization, mz, or Edwards-Anderson order parameter, q, respectively.

3.4 Results

The aim of this work is to study the effect of transverse-field-induced longitudinal
random fields on the paramagnet-ferromagnet phase boundary and on the presence of
the spin-glass phase. For completeness, and to have a reference data to compare with,
the finite Bx results, we start from the case of Bx = 0. When analysing the case of
zero transverse field, we show the intermediate results such as magnetisation plots vs
temperature and concentration, x, to illustrate how the method is used to obtain the
phase boundaries. The same technique is used to computer the phase boundaries in
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the Bx > 0 case. To study the effect of transverse field, some order parameter plots
are also shown for Bx = 1.5 T, but for other values Bx > 0 we show only the final
results, i.e the phase boundaries.

3.4.1 Graphical presentation of Bx = 0 results and the proce-

dure of calculating the critical concentration, xc

In this section, while presenting the data for zero transverse field, the details of the
method used to find the critical temperature is discussed. We consider one system
size, L=6, that gives 4 · 63 = 864 lattice sites. In order to vary the concentration, x,
the number of occupied sites, N , is varied between 50 and 850. For completeness, a
pure system, with N = 864, is also considered.

To start, in Fig. 3.5 the magnetization, msample
z of Eq. (3.23), vs magnetic ion

fraction, x, for three simulation runs, at T=0.6 K is shown. In one simulation run,
the concentration x, or in practice the number of ions, is varied by starting from
a system with the maximal number of ions and reducing x by randomly, gradually
removing ions. Hence, some correlation between subsequent values of x is present.
Such correlation is visible especially at the right, large x, side of the plots in Fig. 3.5.

The choice of x as the parameter that is densely sampled to search for the inflection
point, instead of temperature or transverse field, may seem peculiar at first. But, as it
will be explained later, it is the best way to consistently identify the phase boundary
from the inflection point of order parameter plot, when one wants to explore a three
dimensional parameter space consisting of x, T and Bx.

From this point, all presented data are averaged over 1000 disorder samples. Dis-
order averaged magnetization, mz, vs x for T=0.1, 0.6, 1.1 and 1.6K is shown in Fig.
3.6. The error bars are calculated based on the disorder sample to sample fluctuation.
As the estimate of the critical concentration, xc, the inflection point of the magneti-
zation plot is taken. The inflection points on the magnetization plots in Fig. 3.6 are
marked with red squares. To locate the inflection point a cubic spline interpolation
of the disorder-averaged data is computed. The cubic spline interpolation is differen-
tiated and the maximum of its derivative is found. To calculate the statistical error
of the critical concentration, xc, the 1000 disorder samples is divided into 10 sets, 100
samples each. From each set, n, xnc is computed and the fluctuation of xnc is used as
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Figure 3.5: Example plots of msample
z vs x for 3 disorder realisations, T=0.6K and
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Figure 3.6: Disorder-averaged magnetization, mz vs x, for T=0.1, 0.6, 1.1 and 1.6 K,
Bx=0. The red squares mark the inflection points.
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the measure of the statistical uncertainty of xc. In Fig. 3.6 the horizontal error bars
for xc are smaller than the marker size.

In Fig. 3.7 magnetization vs x and T is presented in a three dimensional plot. The
plot consist of mz vs x blue lines for a number of temperatures separated by intervals
of 0.1K. Each of the lines has the inflection point marked with a red square marker,
similar to the plots in Fig. 3.6. The projections of the inflection points on the (T ,x)
plane determines the phase boundary Tc(x), or technically, xc(T ), and is marked in the
(T ,x) plane with red stars connected by a red line. At the low T side a thick finite-size
tail in mz vs x plots is present, extending down to x=0. This large finite-size tail is
suggesting the presence of a spin-glass phase. Additionally, in Fig. 3.7, mz vs T plot
for x = 1 is shown with a green line. A similar method is used to obtain the spin-glass
phase boundary from the inflection points in the plots of Edwards-Anderson spin-glass
order parameter, q, vs x. In Fig. 3.8 a three dimensional plot of q vs x and T is shown.
The Edwards-Anderson order parameter has a nonzero value also in a ferromagnetic
phase. Tg, found that way is meaningful only for x < xc, where xc is the critical value
of x below which the ferromagnetic phase ceases to exist, Tc(xc) = 0. Computed that
way, the Tg vs x dependency, together with ferromagnetic phase boundary, Tc(x), for
both zero and nonzero Bx, is presented in the next section, in Fig. 3.9.

Visualization of the magnetization vs T and x in Fig. 3.7 shows why the critical
temperature was defined as the inflection point of mz vs x plot and not mz vs T
or mz vs Bx. There is a finite-size tail in mz vs x plots at low temperature (and
low Bx). In the thermodynamic limit, the magnetization vanishes abruptly at the
boundary between a spin-glass and ferromagnetic phase. In a finite-size system, the
magnetic moments of randomly frozen spins do not average out to zero exactly, and a
finite magnetization in the spin-glass phase persist. Nevertheless an abrupt decrease
of magnetization from a large value at the ferromagnetic phase to a smaller finite-size
value in the spin-glass regime is present, and the transition can be located at the
inflection point. One can imagine that, in the opposite case, if the inflection point
in a plot of mz vs T was chosen as the estimation of Tc, Tc vs x plot would bend
towards lower x, into the spin-glass part of the phase diagram, due to the fact that on
the finite-size tail mz vs T dependency still could be plotted, and an inflection point
would be found, erroneously identifying paramagnet to ferromagnet transition, in the
part of the phase diagram that should be recognised as a spin-glass phase. From a
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Figure 3.7: Magnetization mz vs T and x for Bx=0. The red squares mark the
inflection points. The projection of the inflection points onto (T ,x) plane marks the
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plane marks the phase boundary, Tg(x).
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slightly different perspective, the difference of looking for the phase boundary when
going along x axis with T constant, or when going along T axis with x constant can be
understood when looking at Fig. 3.9 shown in the next section. The phase boundary
between the ferromagnetic and spin-glass phase is almost parallel to the T axis and
thus finding the phase boundary would be very difficult in the proximity of xc, while
when going parallel to the x axis, perpendicular to the phase boundary, the feature
indicating the transition is fairly sharp. It is visible in Fig. 3.8 that a large finite size
tail is not present in the spin glass region of the (T ,x) plane, in the q vs x plots. The
finite-size magnetization in the spin-glass phase will be discussed further in Section
3.4.3.

3.4.2 The effect of transverse field on T vs x phase diagram

In Fig. 3.9, the phase boundaries Tc vs x for Bx=0, 1.5, 2.0, 2.5, 2.8 and 3.0 T are
shown with blue lines. For Bx=0 and Bx=1.5T, the Tg vs x dependence is illustrated
with red lines. The way of obtaining such phase boundaries was discussed in the
previous section, and for Bx = 0 illustrated in Fig. 3.7 for Tc, and in Fig. 3.8 for Tg.
At Bx = 0, the ferromagnetic phase vanishes at xc = 0.35. Below that value of xc the
red line obtained from inflection points in q vs x plots marks the paramagnet to spin
glass phase boundary. The plots for Bx=1.5T show that there is no spin glass phase.
As will be argued later, at finite Bx the spin glass is suppressed by the longitudinal
random fields. It will be argued that for Bx > 0, in an intermediate range of Bx, a
disordered state with spins aligned along the random fields occurs.

The Edwards-Anderson order parameter, q, differs from the magnetization mz in
the ferromagnetic phase. It is of interest to analyze also a quantity that is equal to
magnetization in the ferromagnetic phase and does not vanishes in the spin glass-
phase. Such order parameter, q|m|, is defined in Eq. (3.26). q|m| is better suited to
indicate the state with the spins aligned with the random fields than is the parameter
q. In Fig. 3.10 q|m| instead of q is used to locate the phase boundary of a “frozen
state”. Surprisingly, now, below xc=0.44, where the ferromagnetic phase vanishes,
a region with a nonzero q|m| is present. The explanation of the existence of this
region may the presence of a state with the spins aligned with the transverse-field-
generated longitudinal random fields. This issue is disscussed further in Section 3.4.3.
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Figure 3.10: Tc (blue lines) and T|m| (red lines) vs x for different values of transverse
field, Bx. Starting from left and progressing to the right Bx=0, 1.5, 2.0, 2.5, 2.8 and
3.0 T.
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To understand why this state was not indicated when inflection point was sought in
the plots of q, one needs to take into account how the square in the definition of q
affects the location of the inflection point. In both cases, in q|m| vs x or q vs x plot,
a thick tail is present. The square of local magnetizations that is taken to compute q
sharpens the features of q vs x curve relative to the q|m| vs x plot. The inflection point
in the q vs x plot is to the left from the inflection point of the q|m| vs x plot because
in the case of q, the tail decreases sooner. Three-dimensional plots of q and q|m| for
Bx = 1.5 T are shown in Figs. 3.11 and 3.12, respectively.

An alternative method to detect glassiness is to study the complexity of the free
energy landscape or to count the number of local free energy minima. Using this
method one can easily distinguish a spin glass from the state characterized by the
spins aligned with the local longitudinal random fields. While in the spin-glass phase
the number of “solutions” is large, in the case when the spins are aligned with the
random field the unique ground state exists and it is easily found with the used here
iterative procedure. In Fig. 3.13, for Bx=0, together with the “inflection point based”
phase boundaries repeated from Fig. 3.9, the number of solutions, found as described
in Sec. 3.3.2, is shown in the form of a color plot. Note that the maximum number
of solutions shown in Fig. 3.13 is 100 because the solution counting loop is stopped
at this value. There is a clear indication of a spin-glass phase and the obtained phase
diagram is very similar, perhaps even semi-qualitatively, to the experimental phase
diagram proposed in Ref. [117] and reproduced in Fig. 3.1. On the left side from
xc, the phase boundary where the number of solution drops to zero is in quite good
agreement with the phase boundary obtained from Edwards-Anderson parameter, q.

Figure 3.14 shows a color plot of the number of solutions vs x and T for Bx=1.5
T. The spin-glass phase is clearly suppressed; there is no large increase of the number
of solutions reaching the limiting value of 100, as was the case at Bx = 0. Instead,
there is only a very small region where the number of solutions reaches around 40. In
the state with a nonzero local magnetizations, below the boundary of ferromagnetic
phase at xc=0.44, that is marked by the red line obtained from q|m|, as discussed
above, there are not many solution. In the next section, it is shown that nonzero local
magnetizations in this regime are due to the alignment of the spin with the random
field rather than due to the frustrated interaction between the spins and the spin-glass
freezing.
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Figure 3.11: Edwards-Anderson order parameter, q, vs T and x for Bx=1.5 T. The
red squares mark the inflection points. The projection of the inflection points onto
(T ,x) plane marks the phase boundary, Tg(x).
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Figure 3.13: Color plot of number of solutions vs T and x at Bx=0. The blue and the
red line show Tc vs x and Tg vs x phase boundaries, respectively.

Figure 3.14: Color plot of number of solutions vs T and x at Bx=1.5T. The blue and
the red line show Tc vs x and T|m| vs x phase boundaries, respectively.
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Figure 3.15: Order parameters mz, q|m| and qhz vs Bx.

3.4.3 The alignment with longitudinal random field and finite-

size effects

In this section, we analyse transverse field dependence of various order parameters at
the concentration, x = 0.4, which for Bx = 0 is in the spin-glass phase and for Bx > 0

is in a frozen state that is controlled by the transverse-field-induced random field. In
the previous section we reported only results obtained for one system size, L = 6.
Here, we directly compare numerical values of different order parameters. To able to
distinguish the physical behavior from finite size effects we consider a range of system
sizes between L = 4 and L = 8.

In Fig. 3.15 we show the effect of transverse-field-generated longitudinal random
field. We look at the transverse field dependence of the local magnetization order pa-
rameter, q|m|, the random field projection order parameter, qA and magnetization, mz.
The magnetization, mz, is plotted for three system sizes: L=6, 7 and 8. mz systemat-
ically decreases with increase of system size, L, suggesting that for this concentration,
x = 0.4, at Bx = 0, magnetization likely is reduced to zero in the thermodynamical
limit, as expected in a spin-glass phase. For L=6, the finite size magnetization at
x = 0.4 and Bx = 0 is very large, mz ' 0.8. This explain why the deflection point
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method does not provide correct phase boundary separating the spin glass and ferro-
magnetic phases. This large value of the finite-size magnetization can be attributed
to formation of ferromagnetic clusters that are small in comparison with spin-glass
correlation length, such that their effect is significant only in small system sizes.

Finite-size effects are practically absent in the order parameters q|m| and qA. If
plots q|m| and qA for the considered system sizes, L=6, 7 and 8, would be shown, there
is no visible difference between plots for different L; hence, only single plots of q|m|
and qA are shown. The order parameter qA indicates that spins are frozen and aligned
with longitudinal random field, Az. The order parameter q|m| indicates that the spins
are froze, i.e. the local magnetization are nonzero, but it does not distinguish between
spins aligned along random field and spins oriented in directions independent on the
directions of random field. Both q|m| and qA are reduced due to the transverse-field-
induced admixing of spin-up and spin-down states. To see if the spin are aligned with
random field qA should be compared with q|m|. Clearly, at weak Bx, qA is much smaller
than q|m| which is indicating that the spins are mostly oriented to satisfy the inter-
spin interactions rather that the random field. Upon increasing Bx, q|m| decreases due
to the transverse-field-induced admixing, but, for some intermediate value of Bx, qA
increases because the strength of the random field increases with Bx. Around Bx = 1.5

T, qA has a maximum and a value quite close to q|m|. This is the value of Bx where
random field effects are the strongest. Upon further increasing of Bx, both q|m| and
qA decrease due to transverse-field-induced admixing.

3.5 Summary

In this chapter, the suppression of the spin-glass phase by the transverse-field-induced
longitudinal random field was shown5. A plausible argument for the vanishing of
the spin-glass phase when a transverse field is applied is provided by analysing the
number of solutions of the local mean-field equations. At the intermediate values of the
transverse field, Bx=1.5, there is a region in the (x,T ) plane, outside of the boundaries

5We also made an attempt to use local mean-field theory to calculate nonlinear susceptibility in
order to reproduce the effect where the divergence of nonlinear susceptibility become less singular
with increase of transverse field, Bx [8]. We found that it is not possible to calculate nonlinear
susceptibility in the framework of local mean-field theory.
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of the ferromagnetic phase, where there are nonzero local magnetizations mi
z. As the

counting of the number of local minima of the free energy is excluding a spin-glass
phase, the spins in this regime are expected be aligned with the local longitudinal
random fields. With the increase of Bx the random-field-aligned state vanishes, i.e
in Fig. 3.10, at Bx = 2, T|m|(x) boundary is overlapping with Tc(x) and there is no
indication of nonzero local magnetization mi below the concentration, xc, where the
ferromagnetic phase vanishes. This happens because the ratio of the longitudinal and
transverse random field terms in the Hamiltonian depends on the concentration, x.
The random field depends on the inter-spin distance, r, and at some point the effect
of quantum fluctuations induced by the applied field, Bx, is stronger than the effect
of longitudinal random field.

At Bx = 0, Tc is approximately proportional to x, Tc(x) ∝ x. At high concentration
regime, the effect of transverse-field-induced longitudinal random field is indicated by
the increase of the rate at which the critical temperature decreases with decreasing
concentration, x. It happens because the random field increase with the transverse
field, Bx, and with the dilution, x.

It would be interesting to study other magnetic materials that have properties
similar to LiHoxY1−xF4. Example systems that can be useful for such studies are rare
earth hydroxides: Ho(OH)3, Dy(OH)3 and Tb(OH)3. These three magnetic materials,
similarly to LiHoF4, are characterised by a strong Ising anisotropy; in a transverse
magnetic field, Bx, they are likely to be an experimental realisation of the transverse
field Ising model and, at T=0, to exhibit a quantum phase transition induced by the
magnetic field applied in the direction perpendicular to the direction of the Ising easy
axis. Like in LiHoxY1−xF4, the rare earth atoms in the rare earth hydroxides can be
randomly replaced by nonmagnetic yttrium and possibly the effects of transverse-field-
induced random field may be observed. In the next chapter, we use a simple mean-
field theory to investigate the validity of the mentioned hydroxides for experimental
studies of quantum criticality. We estimate the values of critical transverse field, Bx,
that, at T=0, induces a quantum phase transition from the ferromagnetic to quantum
paramagnetic phase. We find that Ho(OH)3 can be a good candidate to study quantum
criticality while the critical transverse field for Tb(OH)3 is too large to be produced
in a laboratory. In the case of Dy(OH)3, we find that in the model studied, at high
Bx, there is a first order phase transition, but the occurrence of the first order phase
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transition is strongly dependent on the microscopic parameters and may, but do not
have to, occur in the real material.
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Chapter 4

Mean-field study of RE(OH)3
Ising-like Magnetic Materials1

The LiHoxY1−xF4 Ising magnetic material subject to a magnetic field, Bx, perpendic-
ular to the Ho3+ Ising direction has shown over the past twenty years to be a host of
very interesting thermodynamic and magnetic phenomena [6–21]. Unfortunately, the
availability of other magnetic materials other than LiHoxY1−xF4 that may be described
by a transverse field Ising model remains very much limited. It is in this context that
we use here mean-field theory to investigate the suitability of the Ho(OH)3, Dy(OH)3

and Tb(OH)3 insulating hexagonal dipolar Ising-like ferromagnets for the study of the
quantum phase transition induced by a magnetic field, Bx, applied perpendicular to
the Ising spin direction. Experimentally, the zero field critical (Curie) temperatures
are known to be Tc ≈ 2.54 K, Tc ≈ 3.48 K and Tc ≈ 3.72 K, for Ho(OH)3, Dy(OH)3

and Tb(OH)3, respectively [2, 3]. From our calculations we estimate the critical trans-
verse field, Bc

x, to destroy ferromagnetic order at zero temperature to be Bc
x =4.35 T,

Bc
x =5.03 T and Bc

x =54.81 T for Ho(OH)3, Dy(OH)3 and Tb(OH)3, respectively. We
find that Ho(OH)3, similarly to LiHoF4, can be quantitatively described by an effective
S = 1/2 transverse field Ising model (TFIM). This is not the case for Dy(OH)3 due
to the strong admixing between the ground doublet and first excited doublet induced
by the dipolar interactions. Furthermore, we find that the paramagnetic (PM) to

1The content of this chapter is reproduced with permission from P. Stasiak and M. J. P. Gingras,
Phys. Rev. B 78, 224412 (2008). Copyright 2008, The American Physical Society.
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ferromagnetic (FM) transition in Dy(OH)3 becomes first order for strong Bx and low
temperatures. Hence, the PM to FM zero temperature transition in Dy(OH)3 may
be first order and not quantum critical. We investigate the effect of competing an-
tiferromagnetic nearest-neighbour exchange and applied magnetic field Bz along the
Ising spin direction ẑ on the first order transition in Dy(OH)3. We conclude from
these preliminary calculations that Ho(OH)3 and Dy(OH)3, and their Y3+ diamagnet-
ically diluted variants, HoxY1−x(OH)3 and DyxY1−x(OH)3, are potentially interesting
systems to study transverse-field induced quantum fluctuations effects in hard axis
(Ising-like) magnetic materials.

This chapter is organized as follows. In Section 4.1, we review the main single
ion magnetic properties of RE(OH)3 (RE=Dy, Ho, Tb). In particular, we discuss
the crystal field Hamiltonian of these materials and the dependence of the low-lying
crystal field levels on an applied transverse field Bx. We present in Section 4.2 a
mean-field calculation to estimate the Bx vs temperature, T , Tc(Bx) phase diagram of
these materials. In Section 4.3, we show that Ho(OH)3 and Tb(OH)3 can be described
quantitatively well by a transverse field Ising model, while Dy(OH)3 cannot. The Sub-
section 4.4.1, uses a Ginzburg-Landau theory to explore the first order paramagnetic
(PM) to ferromagnetic (FM) transition that occurs in Dy(OH)3 at low temperatures
and strong Bx. The following Subsection 4.4.2 discusses the effect of nearest-neighbour
antiferromagnetic exchange interaction and applied longitudinal (i.e. along the ẑ axis)
magnetic field, Bz, on the first order transition in Dy(OH)3. A brief conclusion is
presented in Section 4.5. Appendix A discusses how the excited crystal field states in
Dy(OH)3 play an important quantitative role on the determination of Tc(Bx) in this
material. 2

4.1 RE(OH)3: Material properties

4.1.1 Crystal properties

All the rare earth hydroxides form hexagonal crystals that that are iso-structural
with Y(OH)3. The lattice is described by translation vectors a1 = (0, 0, 0), a2 =

2The content of this chapter is reproduced with permission from Phys. Rev. B 78, 224412 (2008).
Copyright 2008, The American Physical Society.
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(−a/2, a
√

3/2, 0) and a3 = (0, 0, c). A unit cell consist of two Ho3+ ions at coordinates
(1/3, 2/3, 1/4) and (2/3, 1/3, 3/4) in the basis of lattice vectors a1, a2 and a3. The
coordinates of three O2− and H− ions, relative to the position of Ho3+, are ±(x, y, 0),
±(−y, x − y, 0) and ±(y − x,−x, 0), where ± refers to the first and second Ho3+ in
the unit cell, respectively [173]. The values of the parameters x and y are listed in
Table 4.1. x=0.396, y=0.312 and for H−: x=0.28, y=0.17 [174]. The lattice structure
is depicted in Fig. 4.1. The lattice constants for Tb(OH)3, Dy(OH)3, Ho(OH)3 and
Y(OH)3, from Beall et al. [174], are collected in Table 4.2. Each magnetic ion is
surrounded by 9 oxygen atoms that create a crystalline field characterized by the
point group symmetry C3h [173].

O2−, x O2−, y H−, x H−, y
Tb(OH)3 0.3952(7) 0.3120(6) 0.276(1) 0.142(1)
Dy(OH)3 0.3947(6) 0.3109(6) 0.29(3) 0.15(2)
Ho(OH)3 0.3951(7) 0.3112(7) 0.30(3) 0.17(3)
Y(OH)3 0.3958(6) 0.3116(6) 0.28(1) 0.17(1)

Table 4.1: Position parameters of O2− and H− ions in rare earth hydroxides and
Y(OH)3 from Ref. [174] and Ref. [175] (see text in Section 4.1.1).

a c c/a

Tb(OH)3 6.315(4) 3.603(2) 0.570(5)
Dy(OH)3 6.286(3) 3.577(1) 0.569(0)
Ho(OH)3 6.266(2) 3.553(1) 0.567(0)
Y(OH)3 6.261(2) 3.544(1) 0.566(0)

Table 4.2: Lattice constants for rare earth hydroxides and Y(OH)3 (from Ref. [174]).

4.1.2 Single ion properties

The electronic configuration of the magnetic ions Tb3+, Dy3+ and Ho3+ is, respectively,
4f 8, 4f 9 and 4f 10. Magnetic properties of the rare earth ions can be described by the
states of the lowest energy multiplet: the spin-obit splitting between the ground state
J manifold and the first excited states is of order of few thousands K. The ground
state manifolds can be found from Hund’s rules and are 7F6, 6H15/2 and 5I8 for Tb3+,
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Figure 4.1: The lattice structure of rare earth hydroxides and Y(OH)3. The arrows
indicate the 6 nearest neighbours of the central ion in the lower prism. The lower left
corner shows a projection of the unit cell onto the plane given by lattice vectors a1

and a2.

Dy3+ and Ho3+, respectively. The Wigner-Eckart theorem gives the Landé g-factor
equal to 3

2
, 4

3
and 5

4
for Tb3+, Dy3+ and Ho3+, respectively.

In a crystalline environment, an ion is subject to the electric field and covalency
effects from the surrounding ions. This crystalline field effect partially lifts the degen-
eracy of the ground state multiplet. The low energy levels of Tb3+ in Tb(OH)3 are a
pair of singlets, that consist of the symmetric combination of |±6〉 states with a small
admixture of the |0〉 state and an antisymmetric combination 0.3 cm−1 above [176].
The next excited state is well separated from the lowest energy pair by an energy of
118 cm−1 [176] (1 cm−1 ≈ 1.44 K). In the case of Dy3+ in Dy(OH)3, the spectrum
consist of 8 Kramers doublets with the first excited state 7.8 cm−1 above the ground
state [177]. The low energy spectrum of Ho3+ in Ho(OH)3 is composed of a ground
state doublet and an excited singlet state 11.1 cm−1 above [173].

Due to the strong shielding of the 4f electrons by the electrons of the filled outer
electronic shells, the exchange interactions for 4f electrons is weak and the crystal field
can be considered as a perturbation to the fixed J manifold. Furthermore, because
the strong spin-obit interaction yields a large energy gap between the ground state
multiplet and the excited levels, we neglect all the excited electronic multiplets in the
calculation.
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According to arguments provided by Stevens [171], we express the matrix elements
of the crystal field Hamiltonian for the ground state manifold in terms of operator
equivalents. The details of the method and conventions for expressing the crystal
field Hamiltonian can be found in the review by Hutchings [172]. On the basis of the
Wigner-Eckart theorem, one can write the crystal field Hamiltonian in the form

Hcf =
∑
nm

θnB
m
n O

m
n , (4.1)

where Om
n are Steven’s “operator equivalents”, θn are constants called Stevens multi-

plicative factors and Bm
n are crystal field parameters (CFP)3. The CFP are usually

determined by fitting experimental (spectroscopic) data. From angular momentum
algebra, we know that in the case of f electrons, we need to consider only n = 0, 2, 4, 6

in the sum (4.1). The choice of Bm
n coefficients in Hamiltonian (4.1) that do not vanish

and have nonzero corresponding matrix elements is dictated by the point symmetry
group of the crystalline environment. The Stevens operators, Om

n , are conveniently
expressed in terms of vector components of angular momentum operator J . In the
case of the RE(OH)3 materials, considered herein, the point-symmetry group is C3h,
and the crystal field Hamiltonian is of the form

Hcf(Ji) = αJB
0
2O

0
2(Ji) + βJB

0
4O

0
4(Ji)

+γJB
0
6O

0
6(Ji) + γJB

6
6O

6
6(Ji). (4.2)

The Stevens multiplicative factors αJ , βJ and γJ (θ2, θ4 and θ6) are collected in Table.
4.3.

Ion αJ βJ γJ

Tb3+ −1/(32 · 11) 2/(33 · 5 · 112) −1/(34 · 7 · 112 · 13)
Dy3+ −2/(32 · 5 · 7) −23/(33 · 5 · 7 · 11 · 13) 22/(33 · 7 · 112 · 132)
Ho3+ −1/(2 · 32 · 52) −1/(2 · 3 · 5 · 7 · 11 · 13) −5/(33 · 7 · 112 · 132)

Table 4.3: Stevens multiplicative factors

3To be consistent with the source of crystal field parameters, in Chapter 3 a different convention
for writing the crystal field Hamiltonian was used. Here the multiplicative factors, θn, are written
explicitly, while in Chapter 3 Bmn are already multiplied by the factor θn; hence, the Hamiltonian is
of the form Hcf =

∑
nmB

m
n O

m
n .
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Ref Crystal B0
2(cm−1) B0

4(cm−1) B0
6(cm−1) B6

6(cm−1)

[173] Tb(OH)3* 207.9± 2.8 −69.0± 1.6 −45.3± 1.1 585± 10
[173] Tb:Y(OH)3 189.1± 2.6 −69.1± 1.5 −45.7± 1.0 606± 9
[173] Dy(OH)3* 209.4± 3.4 −75.5± 3.5 −40.1± 1.9 541.8± 26.5
[178] Ho(OH)3 200± 2.0 −57± 0.5 −40± 0.5 400± 5
[173] Ho:Y(OH)3* 246.0± 3.4 −56.7± 1.2 −39.8± 0.3 543.6± 3.3
[179] Dy(OH)3 215.9 −72.0 −42.0 515.3

Table 4.4: Crystal field parameters. Some of the calculation we performed with one
set of crystal field parameters only. Crystal field parameters arbitrary chosen to be
used in these calculations are marked by an asterisk.

For the sake of conciseness, and to illustrate the procedure, most of our numer-
ical results below are presented for one set of CFP only. The qualitative picture
that emerges from our calculations does not depend on the specific choice of CFP
parameters. Only quantitative differences are found using the different sets of CFP.
Ultimately, a further experimental determination of accurate Bm

n values would need
to be carried out in order to obtain more precise mean-field estimates as well as to
perform quantum Monte Carlo simulations of the Re(OH)3 systems. According to our
arbitrary choice4, if not stated otherwise, we use in the calculations the CFP provided
by Scott et al. [173, 176, 177, 180]. For Ho(OH)3 and Dy(OH)3 different values of
CFP were proposed by Karmakar et al. [178, 179]. As one can see in Fig. 4.3, for
Ho(OH)3, the latter set of CFP yields a somewhat higher mean-field critical temper-
ature and quite a bit higher critical value of the transverse magnetic field Bc

x =7.35
T, compared with Bc

x =4.35 T obtained using Scott et al.’s CFP [173] (see Fig. 4.3).
Similarly, Karmakar et al.’s CFP [179] for Dy(OH)3 give a much higher critical field
of Bc

x =9.12 T, compared with Bc
x = 5.03 T when Scott ’s et al.’s CFP [173, 177, 180]

are used. From the two sets of CFP for Tb(OH)3 we choose the one obtained from
measurements on pure Tb(OH)3 [173]. Using the CFP obtained for the system with
a dilute concentration of Tb in a Y(OH)3 matrix, Tb:Y(OH)3 [173], makes only a
small change to the value of critical transverse field; we obtained Bc

x =50.0 T and
Bc
x =54.8 T calculated using Tb:Y(OH)3 and Tb(OH)3 CFP, respectively (see Fig.

4.3). Available values of the CFP are given in Table 4.4.
4By making this choice, we do not imply higher validity or better accuracy of the chosen sets of

crystal field parameters.
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Eigenstate Energy (cm−1)
Dy(OH)3

0.92 |±15/2〉 − 0.15 |±3/2〉+ 0.37 |∓9/2〉
0.40 |±15/2〉+ 0.20 |±3/2〉 − 0.90 |∓9/2〉 9.6
Dy(OH)3 Karmakar et al., Ref. [178, 179]
0.98 |±15/2〉 − 0.09 |±3/2〉+ 0.15 |∓9/2〉
0.17 |±15/2〉+ 0.22 |±3/2〉 − 0.96 |∓9/2〉 19.3
Ho:Y(OH)3

0.94 |±7〉+ 0.31 |±1〉+ 0.15 |∓5〉
0.59 |6〉+ 0.55 |0〉+ 0.59 |−6〉 12.7
Ho(OH)3 Karmakar et al., Ref. [178, 179]
0.97 |±7〉+ 0.24 |±1〉+ 0.09 |∓5〉
0.60 |6〉+ 0.52 |0〉+ 0.60 |−6〉 23.6
Tb(OH)3

0.71 |6〉+ 0.05 |0〉+ 0.71 |−6〉
0.71 |6〉 − 0.71 |−6〉 0.49
0.99 |±5〉+ 0.13 |∓1〉 122.06
Tb:Y(OH)3

0.71 |6〉+ 0.06 |0〉+ 0.71 |−6〉
0.71 |6〉 − 0.71 |−6〉 0.58
0.99 |±5〉+ 0.16 |∓1〉 115.33

Table 4.5: Eigenstates and energy levels calculated with the crystal field parameters
collected in Table 4.4.

We show in Table 4.5 the lowest eigenstates and eigenvalues of the crystal field
Hamiltonian (4.2). The calculated energies are not in full agreement with the experi-
mentally determined values because the CFP were fitted using all the observed optical
transitions, including transitions between different J manifolds [173]. Furthermore,
the fitting procedure used by Scott et al. [173] includes perturbative admixing between
manifolds with the admixing incorporated into effective Stevens multiplicative factors
αJ , βJ and γJ that slightly differ from those given in Table 4.3.

Given the uncertainty in the CFP, which ultimately lead to an uncertainty of
approximately ∼ 40% on Bc

x in Ho(OH)3 and Dy(OH)3, as well as the nature of
the mean-field calculations that we use and which neglects thermal and quantum
mechanical fluctuations, as well as for simplicity sake, we ignore here the effect of
hyperfine coupling of the electronic and nuclear magnetic moments. However, as
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shown for LiHoxY1−xF4, the important role of hyperfine interactions for Ho3+ on the
precise determination of Bc

x must eventually be considered [10, 15, 127, 134]. At
this time, one must await results from further experiments and a precise set of CFP
for Hc in order to go beyond the mean-field calculations presented below or to pursue
quantum Monte Carlo calculations as done in Refs. [1, 127]. As suggested in Ref. [127],
the accuracy of any future calculations (mean-field or quantum Monte Carlo) could
be improved by the use of directly measured accurate values of the transverse field
splitting of the ground state doublet instead of the less certain values calculated from
CFP.

Since our main goal in this exploratory work is to estimate the critical transverse
field, Bc

x, for the family of RE(OH)3 compounds and to explore the possible validity
of a transverse field Ising model description of these materials, we henceforth restrict
ourselves to the Hcf in Eq. (4.1) with the CFP (Bm

n parameter values) given in Table
4.4. These calculations could be revisited and quantum Monte Carlo simulations [1,
127] performed once experimental results reporting on the effect of Bx on Dy(OH)3

and Ho(OH)3 become available.

4.1.3 Single ion transverse field spectrum

A magnetic field, Bx, applied in the direction transverse to the easy axis splits the
degeneracy of the ground state doublet in the case of Ho(OH)3 and Dy(OH)3, or
increase the separation of the ground levels in the case of the already weakly separated
singlets in Tb(OH)3. By diagonalizing the single-ion Hamiltonian, H0, which consist
of the crystal field and Zeeman term,

H0 = Hcf(Ji)− gµBBxJx, (4.3)

we obtain the transverse field dependence of the single ion energy levels, plotted in
Fig. 4.2. In the case of Dy(OH)3, the two lowest energy levels splitting is too small to
be clearly visible in the main panel of Fig. 4.2. Hence, we show the energy separation
between the two lowest levels in the inset of Fig. 4.2 for Dy(OH)3. Furthermore,
the separation vanishes at Bx = 3.92 T, indicating that the two lowest states for this
specific value of the transverse field, Bx, are degenerate.
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Figure 4.2: Energy levels as a function of applied transverse field for Dy(OH)3 and
Ho(OH)3. The inset shows the separation of the lowest energy levels in Dy(OH)3.

To calculate the transverse field dependence of the lowest energy levels up to the
critical transverse field where dipolar ferromagnetism is destroyed, we do not have to
include all the crystal field states since the Bx-induced admixing among the states
decreases with increasing energy separation. We have tried how many energy levels
have to be included in the calculation to obtain results that are visually overlaping
with these of Fig. 4.2. In the case of Ho(OH)3 we can reproduce the field dependence,
Bx, of the lowest energy levels, E in Fig. 4.2 using only the four lowest levels. In
the case of Dy(OH)3, we have to retain the ground doublet and several of the lowest
excited doublets.

4.2 Numerical solution

The collective magnetic properties of the considered rare earth hydroxides are mainly
controlled by a long range dipolar interaction between the magnetic moments carried
by the rare earth ions. The dipolar interaction is complemented by a short range
exchange interaction. Adding the interaction terms to the single ion Hamiltonian
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(3.4) gives a full Hamiltonian, H, of the form

H =
∑
i

Hcf(Ji)− gµB

∑
i

BxJi,x

+
1

2

∑
ij

∑
µν

Lµνij Ji,µJj,ν +
1

2
Jex

∑
i,nn

Ji · Jnn. (4.4)

Lµνij are the anisotropic dipole-dipole interaction constants of the form Lµνij = µ0(gµB)2

4πa3 Lµνij ,
where µ, ν = x, y, z; a is a lattice constant (see Table 4.2) and µ0 is the permeability
of vacuum. Lµνij are dimensionless dipolar interaction coefficients,

Lµνij =
δµν |rij|2 − 3 (rij)

µ (rij)
ν

|rij|5
, (4.5)

where rij = rj − ri, with ri the lattice position of magnetic moment Ji, expressed
in units of the lattice constant, a. Jex is the antiferromagnetic (Jex > 0) exchange
interaction constant, which can be recast as Jex = µ0(gµB)2

4πa3 Jex, where Jex is now a
dimensionless exchange constant that, when multiplied by the nearest neighbour co-
ordination number, z=6, can be use to compare the relative strength of exchange vs
the magnetic dipolar lattice sum (energies) collected in Table 4.6. The label nn in
Eq. (4.4) denotes the nearest neighbour sites of site i.

The exchange interaction is expected to be of somewhat lower strength than the
dipolar coupling [2, 3]. We therefore neglect it in most of the calculations, but we
discuss its effect on the calculated Bx vs T phase diagram at the end of this section
as well as explore its influence on the occurrence of a first order phase transition in
Dy(OH)3 in Section 4.4.2. Denoting Lµν =

∑
j L

µν
ij and Lµν = µ0(gµB)2

4πa3 Lµν , we write a
mean-field Hamiltonian in the form

HMF = Hc(J)− gµBBxJx

+
∑

µ=x,y,z

(Lµµ + zJex)

(
Jµ 〈Jµ〉 −

1

2
〈Jµ〉2

)
. (4.6)

with z = 6 the number of nearest neighbours. The last term in Eq. (4.6), −1
2
〈Jµ〉2,

has no effect on the calculated thermal expectation values of the x̂ and ẑ components
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of the magnetization, and can be dropped. The off-diagonal terms, Lµν with µ 6= ν,
vanish due to the lattice symmetry. We employ the Ewald technique [76, 181–184] to
calculate the dipole-dipole interaction, Lµνij , of Eq. (4.5). By summing over all sites j
coupled to an arbitrary site i, we obtain the coefficients Lµν listed in Table 4.6. The
considered Ewald sums ignore a demagnetization term [184] and our calculations can
therefore be interpreted as corresponding to a long needle-shape sample.

Lxx Lyy Lzz

Tb(OH)3 -11.43 -11.43 -28.01
Dy(OH)3 -11.40 -11.41 -28.20
Ho(OH)3 -11.38 -11.37 -28.45

Table 4.6: Dimensionless lattice sums calculated with the values of c/a taken from
Table 4.2.

We diagonalize numerically HMF in Eq. (4.6), and calculate self-consistently the
thermal averages of Jx and Jz operators, from the expression

〈Jµ〉 =
Trace[Jµ exp(−HMF/T )]

Trace[exp(−HMF/T )]
, (4.7)

where µ stands for x and z. 〈Jy〉 = 0 due to the lattice mirror symmetries and since
B is applied along x̂.

For a given Bx, we find the value of the critical temperature, Tc(Bx), at which
the order parameter, 〈Jz〉, vanishes. The resulting Bx vs T phase diagrams, obtained
that way, using all sets of CFP from Table 4.4, are shown in Fig. 4.3. In the main
panel, we plot the phase diagrams for Ho(OH)3 and Dy(OH)3, using Scott et al.’s
CFP [173, 176, 177, 180]. The top inset shows the Bx vs T phase diagrams for
Tb(OH)3, using two available sets of CFP. This indicates that, for Tb(OH)3, the
critical field Bx(T ) reaches very quickly the upper limit of magnetic fields attainable
with commercial magnets. The bottom inset shows the Bx vs T phase phase diagrams
for Ho(OH)3 and Dy(OH)3 using Karmakar et al.’s CFP [178, 179]. Although the
diagrams differ quantitatively for the two sets of CFP, the overall qualitative trend is
the same for both sets. Table 4.7 lists the mean-field estimates of Tc and Bc

x together
with the experimental values of Tc [2, 3, 185].

There are two contributing factors behind the difference between the experimental
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Figure 4.3: The main panel shows the phase diagrams for Dy(OH)3 and Ho:Y(OH)3

(crystal field parameters of Scott et al. [173, 177]). The dot indicates the location of
the tricritical point for Dy(OH)3. The transition is first order for temperatures below
the temperature location of the tricritical point. The upper inset shows the phase
diagram for Tb(OH)3 (crystal field parameters of Scott et al. [173, 176, 180]). The
lower inset shows the phase diagram for Ho(OH)3 and Dy(OH)3 calculated with the
crystal field parameters of Karmakar et al. [178, 179].

and mean-field values of Tc in Table 4.7 and, presumably once they are experimentally
determined, those for Bc

x. Firstly, in obtaining those mean-field values from Eq. (4.6)
and Eq. (4.7), we neglected the (presumably) antiferromagnetic nearest-neighbour
exchange Jex which would contribute to a depression of both the critical ferromag-
netic temperature Tc and Bc

x. Secondly, mean-field theory neglects correlations in the
thermal and quantum fluctuations which would also contribute to reduce Tc and Bx.
From the comparison of mean-field theory [127] and quantum Monte Carlo [1, 127] for
LiHoF4, we would anticipate that our mean-field estimates of Tc and Bx are accurate
within 20% to 40%, notwithstanding the uncertainty on the crystal field parameters.

By seeking a self-consistent solution for 〈Jz〉, starting from either the fully polarized
or weakly polarized state, two branches of solutions are obtained at low temperature
and large Bx for Dy(OH)3. This suggests a first order PM to FM transition when using
either set of CFP for this material. This result was confirmed by a more thorough
investigation (see Section V below). The top right inset of Fig. 4.7 shows the behaviour
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of the 〈Jz〉 as a function of Bx for T = 0.3 K, illustrating the transition field and the
limits for the superheating and supercooling regime. The black dot in the main panel
and inset of Fig. 4.3 shows the location of the tricritical point (see Section V). Note
that the Bx value at the tricritical point is ∼ 4.85 T using the CFP of Scott et al.
(main panel of Fig. 4.3) [173, 176, 177, 180]. Hence, the occurrence of a first order
transition here is not directly connected to the degeneracy occurring between the two
lowest energy levels at Bx = 3.92 T using the same set of CFP (see inset of Fig. 4.2 for
Dy(OH)3). A zoom on the low temperature regime and the vicinity of the tricritical
point for Dy(OH)3 is shown in Fig. 4.7. The calculation details needed to obtain the
phase diagram of Fig. 4.7 are described in Section 4.4.1. The existence of a first order
transition at strong Bx in Dy(OH)3 depends on the details of the chosen Hamiltonian
in Eq. (4.4). For example, as discussed in Section 4.4.2, a sufficiently strong nearest-
neighbour antiferromagnetic exchange, Jex, eliminates the first order transition. We
also discuss in Section 4.4.2 the role of a longitudinal field Bz (along c axis) on the
first order transition. At this time, one must await experimental results to ascertain
the specific low temperature behaviour that is at play for strong Bx in Dy(OH)3.

Crystal experimental Tc [K] MFT Tc [K] MFT Bc
x [T]

Ho(OH)3 2.54 4.28 4.35
Dy(OH)3 3.48 5.31 5.03
Tb(OH)3 3.72 5.59 54.81

Table 4.7: Experimental values of critical temperatures Tc [2, 3] and mean-field theory
(MFT) estimates for Tc and Bc

x.

We now briefly analyze the effect of a nonzero exchange interaction. The depen-
dence of the critical temperature, Tc, and the critical transverse field, Bc

x, on the
exchange constant, Jex, is plotted in Fig. 4.4. The dot on the Bx vs Jex plot for
Dy(OH)3 indicates the threshold value of Jex, J2nd

ex =0.995, above which the first order
transition ceases to exist. The dependence of the existence of the first order transi-
tion on Jex is discussed in some detail in Section 4.4.2. For Jex < J2nd

ex , the thinner
lines correspond to the boundary of the supercooling and superheating regime. In
the mean-field theory presented here, Jex simply adds to the interaction constant Lµµ
with µ = x, y, z in Eq. (4.6) (see Table 4.6). Hence, beyond a threshold value of Jex,
the system no longer admits a long range ordered ferromagnetic phase. In the case of
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Dy(OH)3, Bcx stays almost unchanged as a function of Jex, until it drops very sharply
when Lzz+zJex = 0 (z = 6). In the inset of Fig. 4.4, we focus on the regime where Bc

x

vs Jex plot sharply drops. The cusp at Bx =3.92 T is a consequence of the degeneracy
of the lowest energy eigenstates (see Fig. 4.2). As will be shown in detail in the next
section for the Ho(OH)3 system, the energy gap separating transverse-field-split levels
of the ground state doublet plays the role of an effective transverse field Γ(Bx) acting
on effective Ising spins.
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Figure 4.4: The effect of the value of the exchange constant on the phase boundary, Tc
vs Jex at Bx=0 (left) and Bc

x vs Jex at T = 0 (right). Solid and dashed lines are used
for Dy(OH)3 and Ho(OH)3, respectively. The inset of the right graph shows a focus
on the features of the high Jex regime in the Dy(OH)3 plot. The dot in the right panel
indicates the tricritical point. The two additional lines at the left side of the tricritical
point mark the limits of superheating and supercooling regimes. In the calculations,
the CFP of Ref. [173] were used.

4.3 Effective S = 1/2 Hamiltonian

In this section we show that Ho(OH)3 and Tb(OH)3 can be described with good
accuracy by an effective TFIM Hamiltonian. On the other hand, although Dy(OH)3

has been referred in the literature as an Ising material [2, 186], we find that it is not
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possible to describe the magnetic properties of this material within the framework of
an effective Ising Hamiltonian that neglects the effect of the excited crystal field states.

To be able to identify a material as a realization of an effective microscopic Ising
model, the following conditions should apply [187]:

• There has to be a ground state doublet or a close pair of singlets that are
separated from the next energy level by an energy gap that is large in comparison
with the critical temperature. This ensures that at the temperatures of interest
only the two lowest levels are significantly populated.

• To first order, there has to be no transverse susceptibility. It means that there
should be no matrix elements of (Jx, Jy) operators between the two states of the
ground doublet.

• Furthermore, the longitudinal (in the easy axis direction) susceptibility has to be
predominantly controlled by the two lowest levels. In other words, there has to
be no significant mixing of the states of the lowest doublet with the higher levels
via the internal mean field along the Ising direction. In more technical terms,
the van Vleck susceptibility should play a negligible role to the non-interacting
(free ion) susceptibility near the critical temperature [188].

• In setting up the above conditions, one is in effect requesting that a material
be describable as a TFIM from a microscopic point of view. However, one can,
alternatively, ask whether the quantum critical point of a given material is in
the same universality class as the relevant transverse field Ising model. In such a
case, as long as transition is second order, then sufficiently close to the quantum
critical point, a mapping to an effective TFIM is always in principle possible.
However, it can be difficult to estimate the pertinent parameters entering the
Ginzburg-Landau-Wilson theory describing the transition. From that perspec-
tive, the first and the third point above are always fulfilled sufficiently close to
a second order quantum critical point5.

The first condition is not satisfied in the case of Dy(OH)3. The energy gap of 7.8 cm−1

≈ 11.2 K is not much larger than the mean-field critical temperature Tc ∼ 5.31 K.
5We thank an anonymous referee for his/her comments on this point.
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Hence, at temperatures close to Tc, the first excited doublet state is also significantly
populated. Furthermore, and most importantly, in the context of a field-induced
quantum phase transition, the third condition above is also not satisfied. Hence, even
at low temperatures, because of the admixing of the two lowest energy states with the
higher energy levels that is induced via the internal (mean) field from the surrounding
ions, Dy(OH)3 cannot by described by an effective microscopic Ising model that solely
considers the ground doublet and ignores the excited crystal field states. This effect
and the associated role of nonzero Jz matrix elements between the ground state and
higher crystal field levels is discussed in more detail in Appendix A. As an interesting
consequence of this participation of the higher energy levels, we predict that, unlike
in the TFIM of Eq. (1), a first order phase transition may occur at high transverse
field in Dy(OH)3 (see Section 4.4.1).

For Ho(OH)3 and Tb(OH)3 we construct an effective Ising Hamiltonian, following
the method of Refs. [1, 26, 127]. We diagonalize exactly the noninteracting Hamil-
tonian, H0 of Eq. (3.4), for each value of the transverse field, Bx. We denote the
two lowest states by |α(Bx)〉 and |β(Bx)〉 and their energies by Eα(Bx) and Eβ(Bx),
respectively. a transverse field enforces a unique choice of basis, in which the states
can be interpreted as |→〉 and |←〉 in the Ising subspace. We introduce a new |↑〉 and
|↓〉 basis, in which the Jz matrix elements are diagonal, by performing a rotation

|↑〉 = 1√
2
(|α(Bx)〉+ exp(iθ) |β(Bx)〉),

|↓〉 = 1√
2
(|α(Bx)〉 − exp(iθ) |β(Bx)〉).

(4.8)

In this basis, the effective single ion Hamiltonian, describing the two lowest states, is
of the form

HT = ECM(Bx)−
1

2
∆(Bx)σ

x, (4.9)

where ECM(Bx) = 1
2
(Eα(Bx) + Eβ(Bx)) and ∆(Bx) = Eβ(Bx) − Eα(Bx). Thus the

splitting of the ground state doublet plays the role of a transverse magnetic field, Γ ≡
1
2
∆(Bx) in Eq. (1). In the case of Tb(OH)3, after performing the rotation (4.8), even

at Bx = 0, a small transverse field term (Γ = 1
2
∆(0) > 0) is present in Hamiltonian

(4.9). For Dy(OH)3 and Ho(OH)3, the splitting of the energy levels, obtained via exact
diagonalization was already discussed at the end of Section 4.1 and is shown in Fig.
4.2. To include the interaction terms in our Ising Hamiltonian, we expand the matrix
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elements of Jx, Jy and Jz operators in terms of the σν (ν = x, y, z) Pauli matrices and
a unit matrix, σ0 ≡ 1,

Ji,µ = Cµ1 +
∑

ν=x,y,z

Cµν(Bx)σ
ν
i . (4.10)
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Figure 4.5: The coefficients in the projection of J operators onto the two dimensional
Ising subspace for Ho(OH)3. The inset shows the ratios of the coefficients present in
Eq. (4.11).

By replacing all Ji,µ operators in the interaction term of Hamiltonian (4.4) by
the two dimensional representation of Eq. (4.10), one obtains in general a lengthy
Hamiltonian containing all possible combinations of spin-1

2
interactions. In the present

case, the resulting Hamiltonian is considerably simplified by the crystal symmetries
and the consequential vanishing of off-diagonal elements of the interaction matrix Lµν .
This would not be the case for diluted HoxY1−xF4 (see Ref. [26]). After performing the
transformation in Eq. (4.8), we have Jzi = Czzσ

z
i , J

y
i = Cyyσ

y
i and Jxi = Cxxσ

x
i +Cx1.

Hence, we can rewrite the mean-field Hamiltonian (4.6) in the form

HMF = (Lzz + zJex)C2
zzmzσ

z +

(
LxxCxCxx −

1

2
∆(Bx)

)
σx

+ (Lxx + zJex)C2
xxmxσ

x + (Lyy + zJex)C2
yymyσ

y, (4.11)
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where mν ≡ 〈σν〉 and 〈. . .〉 denotes a Boltzmann thermal average.
The Czz, Cxx and Cx coefficients for Ho(OH)3 are plotted in Fig. 4.5. The inset

shows a comparison of the terms in HMF. In Ho(OH)3, the coefficient LxxCxx
2 (the

fourth therm of HMF) does not exceed 1.5% of the effective transverse field, Γ =

LxxCxCxx − 1
2
∆(Bx). In Tb(OH)3, this ratio is even smaller, and we thus neglect

it, further motivated by the fact that doing so decouples mz from mx and make the
problem simpler. The term LyyCyy2myσ

y in Eq. 4.11 can be omitted, since due to
symmetry my ≡ 〈σy〉 = 0. The interaction correction, LxxCxCxx , to the effective
transverse field, Γ, is of order of 3% of Γ and we retain it in our calculations. Thus,
we finally write

HMF = Pσz + Γσx, (4.12)

where P = LzzCzz
2mz and Γ = LxxCxCxx − 1

2
∆(Bx).

Diagonalizing the Hamiltonian (4.12) allows us to evaluate mz and mx ≡ 〈σx〉,
giving well known formulae [23]:

mx = Γ√
P 2+Γ2 tanh(

√
P 2 + Γ2/T ),

mz = P√
P 2+Γ2 tanh(

√
P 2 + Γ2/T )

, (4.13)

and the phase boundary,

Tc(Bx) =
Γ(Bx)

atanh( Γ(Bx)
LzzC2

zz
)
. (4.14)

In Fig. 4.6, we show that Eq. (4.14) yields a phase diagram that only insignificantly
differs from the one obtained from the full diagonalization of HMF in Eq. (4.6) shown
in Fig. 4.3, in the case of Ho(OH)3, and, in the case of Tb(OH)3, the discrepancy is
even smaller because the energy gap to the third crystal field state, 118 cm−1 ' 170
K, is very large compared to TMF

c = 5.59 K.
As alluded to above, in the case of Dy(OH)3, a description in terms of an effective

Ising Hamiltonian method does not work because of the admixing between states of
the two lowest doublets induced by the local mean-field that is proportional to 〈Jz〉
(see Appendix A). The dashed line in the last panel of Fig. 4.6 shows the incorrect
phase diagram obtained for Dy(OH)3 obtained using an effective spin-1/2 Hamiltonian
constructed from only the ground doublet. It turns out that a form of the method
of Section 4.3 can still be used. However, instead of keeping only two levels in the
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interaction Hamiltonian, one needs to retain at least four states. In analogy with the
procedure in Section 4.3, we diagonalize the single ion Hamiltonian H0 of Eq. (3.4)
which consist of the crystal field Hamiltonian and the transverse field term. Next, we
write an effective interaction Hamiltonian using the four (or six) lowest eigenstates of
H0. The resulting effective Hamiltonian is then used in the self-consistent Eqs. (4.7).
For example, for Bx = 4.8 T, proceeding by keeping only the four lowest eigenstates
of H0 to construct the effective Hamiltonian, one finds a critical temperature that is
only about 3% off compared to a calculation that keeps all 16 eigenstates of H0. This
difference drops below 1% when keeping the 6 lowest eigenstates of H0.
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Figure 4.6: Comparison of the phase diagrams obtained with diagonalization of the
full manifold (solid lines) and with effective spin-1/2 Hamiltonian (dashed lines). Cal-
culation for Ho(OH)3 were performed using the CFP of Karmakar et al. [178, 179].

Having explored the quantitative validity of the spin-1/2 TFIM description of
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Ho(OH)3 and Tb(OH)3 in nonzero Bx, we now turn to the problem of the first order
PM to FM transition at large Bx and low temperature in Dy(OH)3, exposed in the
numerical solution of the self-consistent equations comprised in Eq. (4.7) (with µ =

x, z).

4.4 First order transition

The first order transition in Dy(OH)3 takes its origin in the sizable admixing among
the four lowest levels induced by the the local mean-field that is proportional to 〈Jz〉.
Under the right temperature and field conditions, two free-energy equivalent configu-
rations can exist: an ordered state with some not infinitesimally small magnetization,
〈Jz〉 > 0, and a state with zero magnetic moment, 〈Jz〉 = 0. To simplify the argu-
ment, we consider how this occurs at T = 0. At first, let us look at the situation
when the longitudinal internal mean field induces an admixing of the ground state
with the first excited state only (as in the TFIM). In such a case, there is only a
quadratic dependence of the ground state energy on the longitudinal mean field, BMF

z ,
and, consequently, only one energy minimum is possible. Now, if there is an admixing
of the ground state and at least three higher levels, the dependency of the ground state
energy on BMF

z is of fourth order and two energy minima are, in principle, possible.
Thus, at a certain value of external parameters the system can acquire two energet-
ically equivalent states, one with zero and the other with a non-zero magnetization.
When passing through this point, either by varying the transverse field or the tem-
perature, a first order phase transition characterized by a magnetization discontinuity
occurs. To make this discussion more formal, we now proceed with a construction of
the Ginzburg-Landau theory for Dy(OH)3 for arbitrary Bx in the regime of Bx and T
values where the paramagnetic to ferromagnetic transition is second order. This al-
lows us to determine the the tricritical transverse field value above which the transition
becomes first order.

4.4.1 Ginzburg-Landau Theory

To locate the tricritical point for Dy(OH)3, we perform a Landau expansion of the
mean-field free energy, FMF(〈Jx〉 , 〈Jz〉). Next, we minimize FMF with respect to 〈Jx〉,
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leaving 〈Jz〉 as the only free parameter. The mean-field free energy can be written in
the form

FMF (〈Jx〉 , 〈Jz〉) = −T logZ (〈Jx〉 , 〈Jz〉)
− 1

2

(
Lxx 〈Jx〉2 + Lzz 〈Jz〉2

)
, (4.15)

where Z (〈Jx〉 , 〈Jz〉) is the partition function.
Just below the transition, in the part of the phase diagram where the transition

is second order, 〈Jz〉 is a small parameter (i.e. has a small dimensionless numerical
value). We therefore make an expansion for 〈Jx〉 as a function of 〈Jz〉, which we write
it in the form:

〈Jx〉 = 〈Jx〉0 + δ(〈Jz〉). (4.16)

〈Jx〉0 is the value of 〈Jx〉 that extremizes FMF when 〈Jz〉 = 0. δ(〈Jz〉) is a perturba-
tively small function of 〈Jz〉, which we henceforth simply denote δ, and which is our
series expansion small parameter for 〈Jx〉. Substituting expression (4.16) to HMF of
Eq. (4.6), and setting Jex = 0 for the time being, we have

H = Hcf(Ji)− gµBBxJx

+ LxxJx(〈Jx〉0 + δ) + LzzJz 〈Jz〉 , (4.17)

or
H = H0(Bx, 〈Jx〉0) + LxxJxδ + LzzJz 〈Jz〉 , (4.18)

where for brevity, as in Eq. (4.6), the constant term has been dropped because, again,
it does not affect the expectation values needed for the calculation.

The power series expansion of the partition function, and then of the free en-
ergy (4.15), can be calculated from the eigenvalues of Hamiltonian (4.18). Instead of
applying standard quantum-mechanical perturbation methods to Eq. (4.18), we ob-
tain the expansion of energy levels as a perturbative, ‘semi-numerical, solution to the
characteristic polynomial equation

det [H0 + LxxJxδ + LzzJz 〈Jz〉 − En] = 0. (4.19)
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We can easily implement this procedure by using a computer algebra method (e.g.
Maple or Mathematica). To proceed, we substitute a formal power series expansion
of the solution

En = E(0,0)
n + E(0,1)

n δ + E(2,0)
n 〈Jz〉2 + E(2,1)

n 〈Jz〉2 δ + . . . , (4.20)

to Eq. (4.19), containing all the terms of the form E
(α,β)
n 〈Jz〉α δβ, where α + 2β ≤ 6,

as will be justified below Eq. (4.23). To impose consistency of the resulting equation
obtained from Eq. (4.19) and Eq. (4.20), up to sixth order of the expansion in 〈Jz〉
in), we need to equate to zero all the coefficient with the required order of 〈Jz〉 and
δ, i.e. α + 2β ≤ 6. This gives a system of equations that can be numerically solved
for the coefficients E(k,l)

n , where k, l > 0. By E(0,0)
n we denote the eigenvalues of the

Hamiltonian H0(Bx, 〈Jx〉0).
We use the perturbed energies, En, of Eq. (4.20) to calculate the partition function

Z(δ, 〈Jz〉) =
∑
n

e−En/T (4.21)

and substitute it in Eq. (4.15). We Taylor expand the resulting expression to obtain
the numerical values of the expansion coefficients in the form

FMF = A(0,0) + A(2,0) 〈Jz〉2 + A(0,1)δ + A(2,1) 〈Jz〉2 δ + . . . . (4.22)

The free energy FMF is a symmetric function of 〈Jz〉, so the expansion (4.22) contains
only even powers of 〈Jz〉. We minimize FMF in Eq. (4.22) with respect to δ. To achieve
this, we have to solve a high order polynomial equation dFMF/dδ = 0. Again, we do
it by substituting to the equation a formal power series solution

δ(〈Jz〉) = D2 〈Jz〉2 +D4 〈Jz〉4 + . . . (4.23)

and then solve it for the values of the expansion parameters Dn. Due to symmetry,
only even powers of 〈Jz〉 are present and, from the definition of δ, the constant 〈Jz〉-
independent term is equal to zero. From the form of the expansion in Eq. (4.23),
we see that to finally obtain the free energy expansion in powers of 〈Jz〉, up to n-th
order, we need to consider only the terms 〈Jz〉α δβ where α + 2β ≤ n. Finally, by
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substituting δ from Eq. (4.23) into Eq. (4.22), we obtain the power series expansion
of the free energy in the form:

FMF = C0 + C2 〈Jz〉2 + C4 〈Jz〉4 + C6 〈Jz〉6 . (4.24)

In the second order transition region, the condition C2 = 0 with C4 > 0 parametrizes
the phase boundary. The equations C2 = C4 = 0 gives the condition for the location
of the tricritical point. In the regime where C4 < 0, the condition C2 = 0 gives the
supercooling limit. The first order phase transition boundary is located where the free
energy has the same value at both local minima. Increasing the value of the control
parameters, T and Bx, above the critical value, until the second (nontrivial) local
minimum of FMF vanishes, gives the superheating limit.
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Figure 4.7: Tricritical behaviour of Dy(OH)3. The continuous line marks the phase
boundary. The dot indicates the location of the tricritical point. The upper and lower
lines (dashed) are the limits of the superheating and supercooling regimes, respectively.
As an example, the inset shows the order parameter 〈Jz〉 vs Bx, at the temperature
T =0.3 K. For this temperature, the phase transition occurs at Bx ≈ 4.98 T. The upper
dashed extension of the solid line corresponds to the superheating limit. The dash-
dotted line to the left of the tricritical point shows the transition at the supercooling
limit.

The location of the tricritical point is TTCP
c =0.75 K, BTCP

x =4.85 T. We show
in Fig. 4.7 the first and the second order transition phase boundary; the tricritical
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Figure 4.8: Free energy vs average magnetic moment 〈Jz〉 at the temperature of 0.3 K.
The free energy at the first order phase transition is plotted with continuous line. The
upper (dashed) line shows the free energy at the boundary of the superheating limit.
The lower (dot-dashed) line shows the free energy when the system passes through the
supercooling limit. All the plots show the free energy displaced by a constant chosen
such that their shape can be compared.

point is marked with a dot. In the first order transition regime, the superheating and
supercooling limits are also plotted. 〈Jz〉 ceases to be a small parameter for values of
T and Bx ‘away’ from the tricritical point. Thus, the two upper curves in the phase
diagram of Fig. 4.7 are determined from a numerical search for both local minima
of the exact mean-field free energy in Eq. (4.15) without relying on a small 〈Jz〉 and
δ(〈Jz〉) expansion. The supercooling limit is calculated from the series expansion
(4.24) and determined by the condition C2 = 0.

In the inset of Fig. 4.7, we show the average magnetic moment, 〈Jz〉, as a function
of the transverse field, at the temperature of 0.3 K. The dots and the dashed lines
mark the supercooling limit, first order phase boundary and the superheating limit,
in order of increasing Bx. The shape of the free energy at these three characteristic
values of the magnetic field, Bx, at temperature of 0.3 K, is shown in Fig. 4.8.

In Fig. 4.8, we plot the free energy as a function of 〈Jz〉, where 〈Jx〉 is minimizing
FMF as a function of 〈Jz〉 at T = 0.3 K. Free energy at the phase transition (Bx ≈
4.977 T) is plotted with a continuous line. The dashed and dot-dashed plots show
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free energy at the superheating and supercooling limits, at Bx ≈ 4.995 T and Bx ≈
4.940 T, respectively. The free energy clearly shows the characteristic structure (e.g.
barrier) of a system with a first order transition. It would be interesting to investigate
whether the real Dy(OH)3 material exhibits such a Bx−induced first order PM to FM
transition at strong Bx. In the event that the transition is second order down to T = 0

and Bx = Bc
x, Dy(OH)3 would offer itself as another material to investigate transverse

field induced quantum criticality (see 4th item in the list at the beginning of Section
IV). However, a quantitative microscopic description at strong Bx would nevertheless
require that the contribution of the lowest pairs of excited crystal field states be taken
into account.

One may be tempted to relate the existence of a first order transition in Dy(OH)3,
on the basis of Eq. (4.22), with two expansion parameters 〈Jz〉 and δ, to the familiar
problem where a free-energy function, F(m, ε), of two order parameters m and ε,

F(m, ε) =
a

2
m2 +

|b|
4
m4 +

|c|
6
m6 +

K

2
ε2 − gεm2

displays a first order transition when g2/K > b/2. However, we have found that this
analogy is not useful and the mechanism for the first order transition is not trivially
due to the presence of two expansion parameters, 〈Jz〉 and δ, in the expansion (4.22).
It is rather the complex specific details of the crystal field Hamiltonian for Dy(OH)3

that are responsible for the first order transition. For example, at a qualitative level,
a first order transition still occurs even if δ(〈Jz〉), in Eq. (4.16), is taken to be 0, for
all values of 〈Jz〉.

4.4.2 The effect of longitudinal magnetic field and exchange

interaction on the existence of first order transition in

Dy(OH)3

Having found that the PM to FM transition may be first order in Dy(OH)3 at large
Bx (low T ), it is of interest to investigate briefly two effects of physical relevance
on the predicted first order transition. Firstly, since the transition is first order from
0 ≤ T ≤ TTCP, one may ask what is the critical longitudinal field, Bz, required to push
the tricritical point from finite temperature down to zero temperature. Focusing on
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Figure 4.9: Average magnetic moment, 〈Jz〉, vs transverse magnetic field, Bx, at T = 0,
Jex = 0, for different values of longitudinal magnetic field, Bz.

the CFP of Scott et al. from Refs. [173, 176, 177, 180], we find that a sufficiently strong
magnetic field, Bz, applied along the longitudinal z direction destroys the first order
transition, giving rise to an end critical point. We plot in Fig. 4.9 the magnetization,
〈Jz〉, as a function of Bx for different values of Bz at T = 0. We see that a critical
value of Bz is reached between 1 T and 2 T, where the first order transition disappears,
giving rise to an end critical point at T = 0. Hence, assuming that the low-temperature
Bx-driven PM to FM transition is indeed first order in Dy(OH)3, the results of Fig.
(4.9) indicate that the critical longitudinal field for a quantum critical end point is
easily accessible, using a so-called vector magnet (i.e. with tunable horizontal, Bx,
and vertical, Bz, magnetic fields) [189].

It was discussed in Section 4.2 (Fig. 4.4) that the (yet undetermined) nearest-
neighbour exchange interaction, Jex, affects the zero Bx critical temperature, Tc, and
the zero temperature critical transverse field, Bc

x. It is also of interest to explore what
is the role of Jex on the location (temperature and transverse field) of the tricritical
point in Dy(OH)3.

We plot in Fig. 4.10 the temperature corresponding to the tricritical point (TCP)
as a function of antiferromagnetic exchange and, in the upper inset, the location of the
TCP on the phase diagram is presented. The location of the TCP was calculated using
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Figure 4.10: Temperature corresponding to the TCP as a function of nearest-neighbour
exchange constant Jex. The upper inset shows position of the TCP in the phase
diagram plane for the same range of exchange constant as in the main plot. For an
exchange Jex > J2nd

ex , with J2nd
ex = 0.995, the tricritical point at T > 0 ceases to

exist. The lower inset shows average magnetic moment 〈Jz〉 vs transverse field Bx at
temperature T =0, for the shown values of exchange constant Jex.

the semi-analytical expansion described in Section 4.4.1. We found that the system
ceases to exhibit a first order transition at nonzero temperature when the value of
nearest neighbour exchange constant, Jex, exceeds J2nd

ex = 0.995. At Bx=0, the critical
temperature calculated with the value of exchange constant Jex=0.995 is 4.09 K. In
the lower inset of Fig. 4.10 we plot the average magnetic moment, 〈Jz〉, as a function
of Bx at zero temperature, for different values of Jex. The top inset shows a parametric
plot of the position of the TCP in the (T,Bx) plane as Jex is varied.

4.5 Summary

We have presented a simple mean-field theory aimed at motivating an experimental
study of transverse-field-induced phase transitions in the insulating rare-earth Ising
RE(OH)3 (RE=Dy, Ho) uniaxial dipolar ferromagnetic materials.

In setting out to perform the above calculations, we were mostly motivated in
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identifying a new class of materials as analogous as possible to LiHoxY1−xF4, where
interesting phenomena, both in zero and nonzero applied transverse field Bx, have been
observed. In particular, we were interested in finding compounds where a systematic
comparison between a non-Kramers (e.g. Ho3+) and a Kramers (e.g. Dy3+) variant
could be investigated. From our study, we are led to suggest that an experimental
study of the DyxY1−x(OH)3 and HoxY1−x(OH)3 materials could bring new pieces of
information on the physics that may be at play in LiHoxY1−xF4 and to ascertain if
that physics is unique to LiHoxY1−xF4 or if it also arises in other diluted dipolar Ising
ferromagnets.

Depending on the details of the Hamiltonian characterizing Dy(OH)3, it may be
that a first order transition occurs at low temperature (large Bx), due to the admixing
between the ground doublet and the low-lying crystal field states that is induced by
the spin-spin interactions. For the same reason, we find that Dy(OH)3 is not well
described by an effective microscopic transverse field Ising model (TFIM). On the
other hand, Ho(OH)3 appears to be very well characterized by a TFIM and, therefore,
constitutes a highly analogous variant of LiHoF4. Tb(OH)3 is also very well described
by a TFIM. Unfortunately, in that case, the critical Bx, Bc

x, appears prohibitively
large to be accessed via in-house commercial magnets.

We hope that our work will stimulate future systematic experimental investigations
of these materials and, possibly, help shed some light on the rather interesting problems
that pertain to the fundamental nature of classical and quantum critical phenomena
in disordered dipolar systems and which have been raised by nearly twenty years of
study of LiHoxY1−xF4.

The Ising diluted dipolar spin glass has been extensively studied experimentally, in
LiHoxY1−xF4 [7, 8, 19, 118], and numerically [120–122]. Similar studies can likely be
in the context rare-earth hydroxides. It is surprising that the problem of Heisenberg
diluted dipolar spin glass has not been investigated yet. A strong Ising anisotropy
is quite rare in nature and many magnetic materials are well described by isotropic,
Heisenberg Hamiltonians. Example Heisenberg materials that, sufficiently diluted, can
be described by dipolar Heisenberg Hamiltonian and are likely to exhibit a spin-glass
phenomenology are (GdxY1−x)2Ti2O7, (GdxY1−x)2Sn2O7 and (GdxY1−x)3Ga5O12. In
the next chapter we numerically study a diluted dipolar Heisenberg spin glass on the
simple cubic lattice. At sufficient dilution, the lattice geometry is unimportant and
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we believe that a similar result would obtained if different lattice is used, such as
pyrochlore or garnet lattices that pertain to (GdxY1−x)2Ti2O7 or (GdxY1−x)2Sn2O7

and (GdxY1−x)3Ga5O12, respectively. We perform a finite-size analysis of the spin-
glass correlation length and spin-glass susceptibility. Our studies provide a compelling
evidence of an equilibrium spin-glass transition. We estimate values of the critical
exponents, ν and η, and we compare them with the exponents obtained in experimental
and numerical studies of different spin-glass materials and models.
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Chapter 5

Spin-Glass Transition in a Diluted
Dipolar Heisenberg Model

In this chapter, by means of parallel tempering Monte Carlo simulation [153, 154],
we study a system consisting of diluted classical Heisenberg dipoles randomly placed
on the simple cubic lattice. The character of the dipolar interaction can be either
ferromagnetic or antiferromagnetic depending on the spatial arrangements of the in-
teracting dipoles. In dipolar systems on fully occupied lattices, the character of a
long-range ordered phase depends on the lattice geometry. For example, a system of
dipoles placed on the body centered cubic or on the face centered cubic lattice or-
ders ferromagnetically, while the ground state of dipoles on the simple cubic lattice is
antiferromagnetic. In either case, in the ground-state configuration, both ferromagnet-
ically and antiferromagnetically coupled dipole pairs are present; hence, some of the
interactions are frustrated. If the spatial arrangement of the dipoles is random, ferro-
magnetic and antiferromagnetic bonds occur randomly. Thus, a spatially disordered
dipolar system is randomly frustrated, and, if the amount of disorder is sufficient, the
spin-glass phase occurs.

Systems with magnetic order induced by dipolar interactions alone are somewhat
rare in nature. In typical magnets, the interaction that is responsible for formation of
a long-range order is usually the short-range exchange interaction. A low temperature
phase, that is induced by the dipolar interaction, can occur when the nearest-neighbour
exchange is geometrically frustrated, and as such does not produce long-range order;
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hence, at the temperatures much lower that the exchange interaction energy scale,
weak interactions such as the dipolar interaction induce ordering. Another way in
which ordering can be controlled by the dipolar interactions is to dilute the system
such that there are few pairs of spins separated by the nearest-neighbour distance.
As the spatially disordered dipolar system is randomly frustrated, a diluted lattice
system of magnetic dipoles can either have a tendency to long-range order, in the
case of weak disorder, or may enter the spin-glass phase, if the amount of randomness
is large. One can also think of systems of interacting macroscopic magnetic dipoles,
each one corresponding to a magnetic nanoparticle that consist of a single magnetic
domain, where quantum effects such as exchange interaction are not present at the
considered length scale.

Some dipolar Ising spin-glass systems were studied experimentally and numeri-
cally. Experimental studies of magnetic nanoparticles, both ferromagnetic [114, 190]
and antiferromagnetic [191], indicate a spin-glass-like behaviour. In Ref. [114] and
Ref. [190] ferromagnetic magnetite, Fe3O4, nanoparticles of average size around 5nm
have been studied. A magnetic moment of such particles is around 3000µB. Such a
large magnetic moment brings the temperature scale from miliKelvin, as in the case of
interactions of single ion dipoles, to the order of several Kelvin [192]. Each nanoparti-
cle consists of a single magnetic domain and develops an easy axis due to anisotropy
in the shape of the particle. The nanoparticles are dispersed in a liquid solvent. When
the solvent freezes, the directions of the easy axes are frozen randomly. Numerically,
a spin-glass freezing in a system of random easy-axis Ising dipoles has been found in
local mean-field studies [192] and in equilibrium Monte Carlo simulations [115, 116].
The Monte Carlo studies in Ref. [115] and in Ref. [116] pertain to systems of ran-
dom easy-axis Ising dipoles placed on a fully unoccupied simple cubic lattice and on
a diluted simple cubic lattice, respectively.

A well studied example of a diluted dipolar Ising SG in a crystalline system is
LiHoxY1−xF4. Ho3+ ions in the crystalline environment of LiHoF4 constitute strongly
uniaxial, Ising-like, magnetic dipoles. Numerous experimental studies [7, 8, 118, 119]
show that, at sufficiently high dilution, LiHoxY1−xF4 exhibits a spin-glass phase, but
other experiments suggested that the spin-glass transition is absent [21, 193]. In Chap-
ter 3, the diluted magnetic material LiHoxY1−xF4 has been studied numerically using
local mean-field theory. The first Monte Carlo studies of diluted dipolar Ising model
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suggested that there is no spin-glass transition in this system [121, 122], but recent
large-scale Monte Carlo simulations [120], using the parallel tempering technique and
a finite-size scaling analysis of the spin-glass correlation length, ξL, show compelling
evidence of an equilibrium transition to the spin-glass phase.

Both experimental and numerical studies of the diluted dipolar Heisenberg spin
glass are still missing. Similarly to the Ising-like material LiHoxY1−xF4, Heisenberg-
like magnetic materials with relatively strong dipolar interactions, can be diluted
to diminish the effect of the exchange interaction and to generate random frustra-
tion. Examples of candidate materials are diluted variants of geometrically frus-
trated gadolinium compounds such as (GdxY1−x)2Ti2O7 and (GdxY1−x)2Sn2O7 or
(GdxY1−x)3Ga5O12 that were introduced in Section 1.2.1 and 1.2.3, respectively. With
a half-filled 5f electronic shell Gd3+ ion is almost an ideal realisation of an isotropic,
Heisenberg-like, magnetic dipole.

It is interesting to compare diluted dipolar Heisenberg spin glasses, where the in-
teraction is anisotropic, with extensively studied canonical spin glasses [41, 42], where
Heisenberg-like spins are interacting via isotropic RKKY coupling [43–45]. A compar-
ison of diluted dipolar Heisenberg spin glass with Ising spin glass, either interacting
via short-range exchange interaction like Fe0.5Mn0.5TiO3 [108, 109], or with diluted
dipolar Ising spin glass like LiHoxY1−xF4[7, 8, 118] is also of interest. Numerically,
results of simulations of a diluted dipolar a Heisenberg spin glass can be compared
with numerical studies of the Heisenberg Edwards-Anderson model [99, 101, 102, 104–
107], Ising Edwards-Anderson model [92–96, 194], or with the recent study of a diluted
dipolar Ising SG [120].

At high dilution, the lattice structure should be irrelevant and data obtained for
different systems should be directly comparable. Here we consider the simplest pos-
sible geometry - we study dipoles randomly placed in the sites of the simple cubic
lattice. We provide Monte Carlo data that supports the scenario that in the low
dipole concentration regime, of the diluted dipolar Heisenberg model there is an equi-
librium phase transition to a spin-glass phase. We calculate the critical exponents ν
and η for the spin-glass transition in the model studied. Unfortunately, the exponents
we obtained do not agree with those in the literature for Heisenberg or Ising spin
glasses studied experimentally [42] and by simulations [94, 96, 105, 107]. This may
be due to significant scaling corrections. Effects of significant scaling corrections were
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also observed in simulations of Heisenberg EA SG [99, 101, 102, 104–107]. Here the
problem of scaling correction is exacerbated by the severe restriction of the system
sizes we are able to study that is due to the computationally expensive summation of
the long-range interaction and the very slow equilibration of the system studied.

The rest of this chapter is organised as follows. In Section 5.1, we define the model
and MC method employed. In Section 5.2, we introduce the observables calculated in
the simulation. In Section 5.3, we present and discuss our results. Our conclusions
are presented in Section 5.4. Some auxiliary data and technical details of the sim-
ulations are discussed in Appendices. In Appendix B, magnetization and staggered
magnetization are discussed. In Appendix C, we discuss the issue of a self-interaction
term that must be taken into account when periodic boundary conditions are used in
a long-range interacting system. And finally, in Appendix D, we discuss the Ewald
summation technique. The parallel tempering technique is explained very briefly in
the text of this chapter; for a more complete introduction to Monte Carlo methods
and the parallel tempering technique, the reader should refer to Chapter 2.

5.1 Model and method

We consider a system that consist of classical three-component (n=3) Heisenberg
dipoles, that are free to point in any direction. The dipoles are randomly distributed
on the sites of 3D simple cubic (SC) lattice. The Hamiltonian is of the form

H =
1

2
εd
∑
i,j,µ,ν

δµνr2
ij − 3rµijr

ν
ij

r5
ij

Sµ(ri)S
ν(rj). (5.1)

Sµ(ri) denotes a Cartesian component of a classical spin vector, S(ri), that is of unit
length, |S(ri)| = 1. The energy scale of dipolar interactions is set by εd = µ0µ2

4πa3 ,
where µ is the magnetic moment of the spin S(ri), a is the lattice constant and µ0

denotes vacuum permeability. In this chapter, the temperature is expressed in units
of εd. The summation is carried over all occupied lattice site pairs and over the vector
components of the spin, µ, ν = x, y and z. The factor 1/2 is included to avoid double
counting. ri and rj are the positions of ions labeled i and j, respectively and their
distance, |rij| = |rj − ri|, is measured in the units of nearest-neighbour distance, a.
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We impose periodic boundary conditions. In the case of long-range interactions, it
means that to calculate pairwise interaction we sum over an infinite array or dipole
images replicated with a periodicity set by the dimensions of the simulation box. It is
convenient to consider the interaction constant for spins i and j as a 3 by 3 matrix,
L̂ij. Matrix elements of L̂ij are denoted Lµνij , and for dipoles separated by a vector rij,
are given by the sum,

Lµνij =
∑

n

δµν |rij + n|2 − 3 (rij + n)µ (rij + n)ν

|rij + n|5
, (5.2)

over vectors n of the SC lattice with the unit cell being the size of a cubic simulation
box, L; L is an integer expressing the size of the simulation cell in units of the lattice
constant, a. Vectors n are of the form n = kLx̂ + lLŷ + mLẑ, where k, l, m are
integers and x̂, ŷ and ẑ are unit vectors of the SC lattice. Note that in the simulation,
care must be taken to correctly include the self-interaction terms (see Appendix C).
The self-interaction terms originate from the interaction of a spin with its periodic
images replicated outside the simulation cell. The lattice summation (5.2) is performed
using the Ewald technique [76–79]; the details of which are given in Appendix D. The
calculated Ewald sums correspond to a summation over a long cylinder, such that the
demagnetization field is zero. Using interaction constants defined in Eq. (5.2), the
Hamiltonian can be written in the form

H =
1

2
εd
∑
i,j

S(ri)L̂ijS(rj). (5.3)

The summation in Hamiltonian (5.3) includes only the spins enclosed in the simulation
cell, while the presence of spins outside the simulation box is approximated by periodic
images of the spin in the simulation cell, and this effect is included in the interaction
constants, given by matrices L̂ij.

Our simulation follows the standard single spin-flip Metropolis Monte Carlo algo-
rithm with parallel tempering (PT) [153, 154] (see Section 2.2). PT was reported to
significantly speed up the equilibration in slowly relaxing systems [153, 154]. In this
technique, we simultaneously simulate NT thermal replicas - the copies of the system
with the same spatial disorder, at different temperatures. In each thermal replica,

113



the simulation begins from a different random initial spin configuration. At every 10
local update sweeps, a configuration swap among thermal replicas is attempted with
acceptance probability preserving the detailed balance condition. The frequency of
tempering is chosen to balance the two factors. As thermal tempering is computation-
ally inexpensive, it is desirable to perform replica swap attempts often, to promote
traveling of the replicas along the temperature axis. But, on the other side, after a
configuration exchange, a sufficient number of local moves have to be performed to let
the new configuration evolve at given temperature; in the case of higher temperature
- to overcome free energy barriers. If the subsequent tempering is attempted to soon,
the two configurations can be swapped back, and in that case no evolution of a trapped
state out of local energy minimum would be made. The number of thermal replicas,
NT, and simulated temperatures, Tα, where α = 1, . . . , NT, are chosen to yield a suffi-
ciently high and temperature independent PT configuration swap acceptance rate, i.
e. not less than 50%. This is achieved by choosing Tα to satisfy the formula [104] (see
Section 2.2.2)

(Tα − Tα−1)/Tα = 1/
√
CV N, (5.4)

wereN denotes the number of dipoles. The specific heat per spin, CV , used in Eq. (5.4)
was measured in a preliminary simulation of the smallest system size, with uniformly
distributed temperatures.

The Metropolis single-spin moves are attempted within a temperature-dependent
solid angle, where the angle is self-consistently chosen such that the acceptance rate is
close to 50%. To carry out a spin move we choose a coordinate system with the ẑ axis
along the current spin direction, and randomly choose a polar angle, θ, and azimuthal
angle, φ. In order to obtain a uniform distribution of random points on a unit sphere,
one needs to draw φ and z = cos(θ) from a uniform probability distribution, such that
φ ∈ (0, 2π) and z ∈ (−1, 1). Here, to maintain the desired acceptance rate, the move
is restricted to a limiting angle, θmax, relative to the initial spin direction; hence, the
choice of z is restricted to z ∈ (1 − zmax, 1), where zmax = cos(θmax). To obtain zmax

such that the acceptance rate, pacc, is 50%, during each 100 MCS pacc is measured,
and afterwards zmax is adjusted. If pacc is lower than 0.5, zmax should be decreased;
in the opposite case, when pacc > 0.5, zmax should be increased, while, formally, for
pacc = 0.5 zmax does not change. Such update of zmax can be obtained when multiplying
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the current value of zmax, z
(old)
max , by 2pacc; hence, a new value of zmax is calculated

according to the formula z(new)
max = 2paccz

(old)
max , with the restriction z

(new)
max ∈ (0.001, 2).

After choosing φ and θ, that is a new spin direction in the coordinates relative to the
initial spin direction, a transformation to the global coordinate system is performed.

We simulated two dipole concentrations, x=0.0625 and x=0.125, and for each con-
centration we consider 4 system sizes varying between around 30 and 200 dipoles,
which is the largest size that we were able to equilibrate. To perform the necessary
disorder average (see Section 5.2), we considered at least 1000 disorder samples. The
parameters of the simulations are collected in Table 5.1. To generate results reported
here, we used in total around 3 ·105 hours (∼35 years) of CPU time on AMD Opteron,
2.6 GHz. The statistical error is based on disorder sampling fluctuation and is calcu-
lated using standard jackknife method [150, 195, 196].

L Ndip Nsamp Neq Nprod NT Tmin Tmax

x=0.0625
8 32 5000 5·105 5·105 16 0.05 0.1763
10 62,63 2000, 2000 2·106 106 16 0.05 0.1763
12 108 1200 107 106 16 0.05 0.1763
14 172 1000 107 106 16 0.05 0.1763

x=0.125
6 27 3000 5·105 5·105 16 0.0750 0.2869
8 64 2000 2·106 106 16 0.0750 0.2869
10 125 1500 2·106 106 16 0.0800 0.2811
12 216 1000(+200) 5·106(2·107) 106 16 0.0850 0.2787

Table 5.1: Parameters of the Monte Carlo simulations for two dipole concentrations, x.
L is the linear size of the simulation box; Ndip is the number of spins, andNsamp denotes
number of disorder samples. Neq and Nprod are the number of MCS in the equilibration
and measurement phase of the simulation, respectively. NT is the number of thermal
replica and Tmin, Tmax are the lowest and highest temperatures in PT scheme. For
L=10, x=0.0625, to obtain desired x, two numbers of dipoles were simulated, and the
disorder average was taken over the results for both Ndip = 62 and Ndip = 63. For
L=12, x=0.125 the numbers given in round brackets pertain to a subset of disorder
replicas simulated longer, to monitor equilibration; the long equilibration time results
for these replicas were included in the disorder averaging.

To reduce the number of performed lattice sums, for each lattice site k we calculated
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the local interaction field,
Hk =

∑
j 6=k

L̂kjSj, (5.5)

and update it only when the spin change is accepted. Having Hk available, the
computational cost of calculating the energy from Hamiltonian (5.3) is of order of
N , and not N2, and the computational cost of calculating the energy change after
a single spin move is O(1); hence, rejected Metropolis updates are computationally
inexpensive.

In was reported that the autocorrelation time can be substantially decreased in
simulations of Heisenberg SG by performing computationally inexpensive overrelax-
ation (microcanonical) spin updates [155, 156]. Here, in the case of long-range inter-
action, computational cost of overrelaxation moves would not be less then the cost of
Metropolis spin flips, as most of the time is spent on updating the local interaction
field (5.5), and the local interaction field has to be updated both after a Metropolis
spin flip and after an overrelaxation move. Furthermore, it is worth to note that, in a
general case of non-cubic geometry, in the case of periodic boundary condition, where
the self-interaction term is present (see Appendix C), an overrelaxation move does not
preserve the energy (see Section 2.2.3).

In the case of the nearest neighbour Heisenberg SG model, it is more efficient to use
the heatbath algorithm [157–159] for local spin updates. In the heatbath algorithm,
the computational cost of rejected spin moves is avoided. Here the benefit of using the
heatbath algorithm would not be high because the computational cost of rejected spin
update attempts is negligible in comparison with the computational cost of accepted
updates which require calculating the lattice sums in Eq. (5.5). Also, similarly to the
case of overrelaxation moves, if the geometry of the simulation cell is not cubic, the self-
interaction term in the Hamiltonian introduced by the periodic boundary conditions
makes heatbath algorithm impractical (see Appendix C and Section 2.2.4). To keep
our method general and to obtain results that are the easiest to compare with possible
future simulation with different lattice geometries, we decided to not use the heatbath
algorithm nor overrelaxation moves in this work.
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5.2 Physical Quantities

In glassy systems, the order parameter can be defined as an overlap between two
independent, identical copies of the system. In the case of 3D Heisenberg spins, the
overlap can be calculated for 9 combinations of vector components µ and ν, where
µ, ν = x, y, z. We write

qµν(k) =
1

N

∑
r

S(α)
µ (r)S(β)

ν (r) exp(ik · r), (5.6)

where α and β denote different real replicas that are simulated independently copies
of the system with the same random disorder. The wave-vector-dependent SG order
parameter is

q(k) =

√∑
µ,ν

|qµν(k)|2. (5.7)

Traditionally the finite size scaling (FSS) analysis of SG simulation data is based on
calculation of Binder ratios [151, 197, 198], which for an n=3 Heisenberg SG is defined
as [105, 107]:

UL =
1

2

(
11− 9

[〈q(0)4〉]
[〈q(0)2〉]2

)
, (5.8)

where 〈. . .〉 denotes thermal averaging and [. . .] is a disorder average. The numerical
factors in Eq. (5.8) are chosen such that at T =∞, assuming Gaussian distribution of
q(0), UL = 0, and at T = 0, where q(0) is not fluctuating, UL is 0. Being dimensionless,
the quantity UL is expected to display finite-size scaling (FSS) properties described
by [95]

UL = X̃(L1/ν(T − Tg)), (5.9)

where scaling function X̃ is an analytic function of its argument, 1 and ν is the
universal correlation length exponent, such that there is no system size dependence
outside the the argument of the scaling function. Many recent works report that in
the case of disordered systems, a FSS analysis can be achieved when considering finite

1We do not call the function X̃ universal because it implicitly contains a non-universal factor,
as opposite to the case when a scaling formula is written as UL = X̃ ′(AL1/ν(T − Tg)), with a
non-universal constant, A, given explicitly and X̃ ′ being a universal scaling function [95, 199].

117



size correlation length [94, 104, 120, 200], ξL, while UL may not cross due to a lack of
unique ground state [200] or because it is too noisy [94], being a quantity that requires
evaluation of a four-point correlation function, as opposite to ξL, that is defined using
a two-point correlation function. We define the SG susceptibility [41, 94, 104] as

χSG(k) = N
[〈
q(k)2

〉]
. (5.10)

Assuming an Ornstein-Zernike form for the SG susceptibility [201],

χSG(k) ∝ 1/(|k|2 + ξ−2), (5.11)

where |k| � 1/ξ, we define a finite-size SG correlation length [94, 202], ξL, via

ξL =
1

2 sin(kmin/2)

(
χSG(0)

χSG(kmin)
− 1

)1/2

. (5.12)

The correlation length divided by the system dimension, ξL/L, similarly to the Binder
ratio, is a dimensionless quantity and is expected to scale according to the relation [94,
95, 104, 107]

ξL/L = Ỹ (L1/ν(T − Tg)), (5.13)

where Ỹ is a scaling function. Hence, at a putative SG transition temperature, Tg,
ξL/L is expected to be size independent.

5.3 Monte Carlo Results

A system of dipoles in a fully occupied SC lattice orders antiferromagnetically [52].
To rule out a long-range order in the simulated diluted systems, we calculated mag-
netization, M , and staggered magnetization, Mstag. Both M and Mstag are small and
decrease with increasing system size. This indicates that their nonzero value is a
finite-size effect and not a result of long-range ordering. More detailed discussion of
M and Mstag is given in Appendix B.

We plot in Fig. 5.1 the temperature dependence of the Binder ratio, UL, for
x=0.125 and x=0.0625, for different system sizes. The Binder ratio curves do not
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Figure 5.1: Binder ratios for x=0.0625 (left) and x=0.125 (right) as a function of
temperature.

cross; hence, they do not provide indication of phase transition. Also, in some studies
of other models, a crossing of the Binder ratios was not found, while the scaling
invariance of the finite size correlation length was established, indicating a transition to
a SG phase. The magnitude of scaling corrections is different for different observables
and it is larger for binder ratio than for correlation length. In the simulation of Ising
EA SG [94, 95] UL do cross, but the scaling correction are larger for UL than for
ξL/L [94]. In the case of site diluted EA Ising SG [194], where scaling corrections
are large in comparison with other Ising SG models, while ξL/L plots are crossing
with large shifts between system sizes, the UL plots do not cross, but merge at low
temperature. A similar effect can be seen in the studies of diluted dipolar SG [120]
- UL plots do not cross, but they have a tendency to merge at low T , while ξL/L
plots intersect. In the case of Heisenberg EA SG [105–107], the behaviour of spin and
chirality Binder ratios differs, but both do not cross, while in correlation length shifts
between system sizes shows that scaling corrections are large. It is worthwhile to note
that the form of Binder ratio plots, characterized by a dip to a negative value in the
proximity of Tg, resembles the Binder ratio plots for chirality (and not spin) in the
Heisenberg EA model [105, 107], or the Binder ratio plots for spin in Heisenberg SG
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models in the presence of random anisotropy in 3 [203] and 4 [204] dimensions.
In Figs. 5.2 and 5.3, we show the plots of ξL/L vs T for various system sizes.

The curves do cross; but, for both concentrations, there are large shifts between the
intersection points for different system sizes. Due to a narrow range of available system
sizes, the separation between the curves in the crossing region is small in comparison
with errorbars. An attempt to locate the intersection points would be hampered by a
large statistical uncertainty. Also, the number of intersection points is small. Thus, it
is not possible to systematically analyze the scaling corrections shifts of the crossing
points versus system size. Neither would it be helpful to use FSS techniques that
include scaling corrections. Similarly, large scaling corrections are found in studies of
Heisenberg EA SG model [105–107]. In the case of Heisenberg EA SG a broad range
of system sizes were studied and the data could be analysed with scaling corrections
taken into account [105–107].

The scaling equation (5.13) is expected to be satisfied only in close proximity of
Tg. To better describe the data at a larger distance from the critical point, Campbell
et al. proposed a heuristic extended scaling scheme (ESS) [205]. They suggested a
scaling equation for ξL/L of the form:

ξL/L = Ỹ

(
(TL)1/ν

(
1− Tg

T

))
, (5.14)

and showed the improvement of the accuracy it provides in the case of 2D Ising
ferromagnet. Based on the assumption of a symmetric interaction distribution they
proposed, and tested numerically, an alternative scaling formula for the Ising EA spin
glass, where Tg/T in Eq. (5.14) is replaced with (Tg/T)2. Here we use the scaling
formula of Eq. (5.14) because the bond distribution in the case of diluted dipoles is
not symmetric. In a recent MC simulation of a diluted dipolar Ising SG, an ESS as
given by (5.14) was found to describe the scaling of ξL/L better than if (Tg/T)2 was
used [120].

We fit our data for ξL/L to the scaling function (5.14) over the whole simulated
temperature range, shown in Table I. The scaling function, Ỹ , is approximated with
a 6th order polynomial,

F (z) =
6∑

m=0

amz
m, (5.15)
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Figure 5.2: SG correlation length as a function of temperature, x=0.0625.
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where z = (TL)1/ν (1− Tg/T). We define the penalty function,

D =
∑

MC data

(F (z)L/ξL − 1)2 , (5.16)

that is minimized with respect to the parameters {am}, Tc and ν. We obtain the
values of the critical exponent ν =1.16, ν =1.09, and the transition temperatures
Tg=0.074, Tg=0.12 for x=0.0625 and x=0.125, respectively. The scaling collapse of
the simulation data is shown in Fig. 5.4 and Fig. 5.5.

In Figs. 5.6 and 5.7, just for comparison, we present the results of the fitting to
the conventional formula (5.13) and ESS with (Tg/T)2. The fitting to the conventional
formula (5.13), shown in Fig. 5.6, gives quite similar results to the ESS of Eq. (5.14).
Apparently, the inaccuracy due to the small system sizes studied is larger here than
the correction made by replacing Eq. (5.13) with Eq. (5.17).

In the case of fitting to Eq. (5.17) with (Tg/T)2, we obtained visibly worse data
collapse than when Tg/T was used; the result of this fit is shown in Fig. 5.7.

In Figs. 5.8 and 5.9, we plot the SG susceptibility of Eq. (5.10) for x=0.0625 and
x=0.125, respectively.

The SG susceptibility is expected to scale according to the ESS formula [205]

χSG = (TL)2−η Z̃

(
(TL)1/ν

(
1− Tg

T

))
, (5.17)

We performed a fit following a procedure similar to the method used for the scaling
fit of ξL/L, described in Eqs. (5.15) and (5.16). For x=0.0625 we obtain Tg= 0.078,
ν=1.25 and η=1.45. For x=0.125 we got Tg= 0.12, ν=1.18 and η=1.35. The critical
temperatures are consistent with those obtained from FSS of ξL/L. The values of a
critical exponent ν obtained here are slightly larger than ν obtained from scaling of
ξL/L. The scaling collapse of χSG is plotted in Fig. 5.10 and 5.11 for x=0.0625 and
x=0.125, respectively.

In the dipolar Hamiltonian (5.1) off-diagonal terms, that couple different vector
components of the dipolar moment are present. The off-diagonal terms destroy the
rotational (O(3)) symmetry in an otherwise isotropic vector spin system, and only the
Z2 Ising symmetry remains. It was suggested that such spatially disordered dipolar
systems belong to the Ising universality class [123, 206]. Due to spatial disorder,
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Figure 5.6: Conventional scaling of ξL/L with L1/ν (T − Tg); x=0.0625 (left) and
x=0.125 (right).
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Figure 5.12: Snapshot of 200 equilibrated independently spin configurations for L=12,
at T=0.05 and x=0.0625. The alignment, i.e the dot product, of the spins with the
local freezing axes is indicated by the colors of arrows.
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the couplings, including the off-diagonal terms, are random, and the distribution of
local freezing direction in the SG phase remains uniform, unlike in a system with a
global single-ion anisotropy (e.g. −DS2

z term in the Hamiltonian). With a uniform
distribution of local freezing directions, a system is said to have a statistical rotational
symmetry [206].

The values of the critical exponents found in this work do not agree with either
those from simulations of Ising SG, ν = 2.45, η = −0.375 [96], nor Heisenberg SG,
ν = 1.49, η = −0.19 [107]. It is possible that our exponent ν is in agreement with
ν = 1.3 obtained for Ising diluted dipolar SG [120]. Extracting SG critical exponents
from simulations is difficult. Critical exponents for Ising SG were discussed for a long
time [92–96], and proposed values were changing much with progress in development
of simulation algorithms and computer hardware. Similarly to the early simulations of
the Ising SG [92, 93], our data suffer from large scaling corrections. As our system sizes
are small, one may want to compare our exponent ν with the results of simulations
of the Ising SG performed for small system sizes, e.g. these in Ref. [92] (ν = 1.2) or
Ref. [93] (ν = 1.3). There is a reasonably good agreement in ν but not in η. The
value of the exponent η, from simulation [94–96, 107] and experiments [42, 109, 110]
on many different materials, both Ising and Heisenberg, is a small number, either
positive or negative but not exceeding 0.5 in absolute value. Surprisingly, the value of
η we obtained for diluted dipolar Heisenberg SG, η = 1.4, is much larger.

Having discussed the question of universality class and commented on the expecta-
tion that, for diluted n=3 component dipoles, it should be Ising, it is interesting to ask
whether such Ising structure is explicitly physically manifest in the low temperature
regime of the systems studied above. We show in Fig. 5.12 a number of super imposed
snapshots of the spin configurations for one disorder realization, in the low temper-
ature phase, at T=0.05, and dipole concentration x=0.0625. To obtain the graph
presented, we independently simulated 200 copies of a system with the same spatial
disorder realisation, starting from a different random initial spin configuration and us-
ing a different pseudorandom number stream. A final spin configuration was recorded
at the end of each of the simulations. We considered the system size L=12, and for
x=0.0625 we have 108 occupied lattice sites, out of the total number of 123 = 1728.
The parameters of the simulations, such as parallel tempering temperature ranges and
numbers of Monte Carlo sweeps, are given in Table 5.1, i.e. they are the same as in the
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simulations where disorder averages were taken. At each of the occupied lattice sites,
200 arrows are drawn, showing the spin directions obtained from 200 independent
simulations, as described above. In the case of isotropic Heisenberg model, the Hamil-
tonian has O(3) rotational symmetry, and one expects the spin directions obtained
from the procedure explained above to be uniformly distributed at all the lattice sites
considered. Here, due to the anisotropic character of the dipolar interactions, a subset
of the dipoles is characterized by a unique Ising local freezing direction. It is indicated
by the fact that in the snapshots some dipoles have a strong tendency to point along a
particular local random direction, i.e the arrows can be enclosed by a circular conical
surface with a small opening angle. For clarity, the alignment of spins with the local
freezing directions, which is measured as an absolute value of the scalar product of a
spin and the local freezing direction, is indicated by the color of the arrows. The local
freezing direction vector is computed by summing all the spin vectors in the following
way. Starting from the second element in the sum, it is checked if adding another
vector to the existing sum will increase or decrease the magnitude of the new sum.
If adding the new element is to decrease the magnitude of the sum, the spin vector
is added with a minus sign, such that the magnitude of the sum always increases. In
this way we always obtain a vector that is pointing along the unoriented local freez-
ing axis, but the orientation of the vector obtained, which is irrelevant, depends on
the order of summation, precisely on the choice of the first vector in the summation.
Not all the sites are characterised by a local freezing direction. The arrows on the
sites that do not have a local freezing direction create spherical structures. These
dipoles have freedom to point in any direction in the low temperature phase. That
means that these dipoles are strongly frustrated and decoupled from the other dipoles.
Such inhomogeneous “random Ising structures” have also been observed in a model of
diluted two-component 2D quadrupoles [207]. Furthermore, it is interesting to note
that this behavior resembles the presence of “protected degrees of freedom” observed
in gadolinium gallium garnet (GGG) [55], a material that, when magnetically diluted,
is likely to be an experimental realization of the dipolar SG.

In the simulations of a SG system, it is of paramount importance to ensure equi-
libration of the system before the statistics for the measured observables is collected.
As the quantity of foremost interest here is the correlation length, we assume that
the system is equilibrated when the correlation length reaches a stationary state. In
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Figure 5.13: Equilibration, x=0.0625 (left) and x=0.125 (right).

Fig. 5.13 we plot ξL/L vs. the number of the equilibration steps performed before the
measurement was taken. The number of necessary equilibration steps increases very
fast with the system size and, because of this, we were only able to equilibrate system
sizes up to around 200 dipoles.

We observe that the long-range Heisenberg SG takes longer time to equilibrate
that its short range counterpart [105, 107]. A similar fact has been observed in the
case of dipolar Ising SG [120].

5.4 Summary

In conclusion, we studied the spin-glass (SG) transition in a diluted dipolar Heisen-
berg model. From an analysis of the finite size scaling of the SG correlation length, ξL,
we found an indication of a SG transition at a temperature Tg=0.074, Tg=0.12, and
critical exponent ν =1.16, ν =1.09 for dipole concentrations x=0.0625 and x=0.125,
respectively. From finite size scaling of SG susceptibility, χSG, we obtained Tg= 0.078,
ν=1.25, η=1.45, and Tg= 0.12, ν=1.18, η=1.35 for x=0.0625 and x=0.125, respec-
tively. As in the isotropic Heisenberg SG, the Binder ratio, UL, does not exhibit
crossing for different system sizes.
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Because long-range interactions and hence a large number of interacting spin pairs
gives rise to larger magnitude of frustration than in short range (nearest neighbour)
SG, diluted dipolar SG seems to be more difficult to equilibrate than nearest-neighbour
models. We perform 107Monte Carlo sweeps to equilibrate a system of around 200
dipoles. To compare, in the the case of the Heisenberg Edwards-Anderson spin glass
around 107 Monte Carlo sweeps, with both overrelaxation and heatbath sweeps are
counted as a Monte Carlo sweep, were used to equilibrate a system of 32,768 spins [106].
In simulations of the Ising Edwards-Anderson spin glass around 6.5 · 106 Monte Carlo
sweeps was used to equilibrate a system of 8000 spins [94].

In the next chapter we study the easy-plane pyrochlore antiferromagnet with weak
dipolar interactions. The phenomenology observed in the easy-plane pyrochlore anti-
ferromagnet is different than that of a spin glass. Without the dipolar interaction the
system is geometrically frustrated and a long-range ordered configuration is selected
by the order-by-disorder mechanism. The dipolar interaction lifts the degeneracy of
the ground-state manifold. Surprisingly, the technical difficulty of simulating such
model turns out to be similar to that of long-range spin glass discussed above. For
moderate system sizes, the system does not equilibrate even with a very large number
of Monte Carlo sweeps and only very small system sizes can be simulated.
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Chapter 6

Monte Carlo Studies of The
Pyrochlore Easy-Plane
Antiferromagnet

In this chapter, Monte Carlo studies of the pyrochlore easy-plane antiferromagnet
with dipolar interactions are reported. These studies are motivated by the physics
of the pyrochlore antiferromagnet Er2Ti2O7. The magnetic moments of Er3+ ions in
the crystalline environment of Er2Ti2O7 are found to be characterised by a strong
planar anisotropy [36], such that, effectively, they can be approximated by magnetic
moments of magnitude ∼ 3µB that are confined to the local XY planes tangential
to the tetrahedra of the pyrochlore lattice [37, 61]. The Curie-Weiss temperature of
Er2Ti2O7 is θCW = −22 K [37, 83], with the negative sign of θCW indicating an overall
antiferromagnetic character of the interactions. While the Curie-Weiss temperature
is quite large, the magnetic ordering is postponed down to TN ∼ 1.2 K [37, 61, 83,
84, 208]; which suggests a significant degree of frustration. The magnetic order in
Er2Ti2O7 was studied using neutron scattering [37, 84, 208]. It was found that the
phase transition at TN ∼ 1.2 K is continuous. The system orders with propagation
vector q=0; that is, with the periodicity of the lattice, such that there is the same
spin arrangement on each tetrahedron. The configuration of the spins was found to
be the ψ2 state, in the notation of Refs. [37, 84, 208]. In this thesis this configuration
will be referred to as the Champion-Holdsworth state [37, 60, 61].
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The ground state of the isotropic easy-plane pyrochlore antiferromagnet with nearest-
neighbour exchange interactions is macroscopically degenerate; it contains a continu-
ously degenerate manifold with propagation vector q=0, and a macroscopic number
of disordered configurations [60, 61]. In Monte Carlo simulations, it was found that,
despite the degeneracy, the system undergoes a first order phase transition at the tem-
perature ∼ 0.1J , where J is the exchange constant, to a long-range ordered state with
propagation vector q=0 [59]. In subsequent numerical studies, it was established that
the spin configuration is the Champion-Holdsworth state [60, 61] - the same configu-
ration that was found in the neutron scattering experiments on Er2Ti2O7 [37, 84, 208].
But, as it was already pointed out by the authors of Ref. [37] that this agreement can-
not provide the explanation of the physics of Er2Ti2O7. It has to be noted that there is
a continuous phase transition in Er2Ti2O7, while in the simulations of the easy-plane
pyrochlore antiferromagnet, the transition appears to be strongly first order. Another
inconsistency, that will be discussed later, and which is investigated in this chapter, is
the effect of the dipolar interactions that are present in Er2Ti2O7 and have not been
considered in the aforementioned numerical studies.

The first order phase transition in the easy-plane pyrochlore antiferromagnet is an
example of a so-called order-by-disorder selection [58]. This phenomenon has been
extensively discussed in the context of the Heisenberg antiferromagnet on the kagome
lattice [209]. In an order-by-disorder transition, while the ground state is macro-
scopically degenerate the entropic contribution to the free energy selects particular
configurations. In the presence of thermal or quantum fluctuations, the states that
are characterised by the largest number of soft modes are selected. Champion et
al. [37, 60, 61] studied the spin wave excitations in the easy-plane pyrochlore anti-
ferromagnet. To prove that indeed the order-by-disorder selection is responsible for
ordering in the model studied, they showed that in the Champion-Holdsworth state,
in reciprocal space, there are planes of soft modes, which do not occur in other q=0
configurations. A related approach is to consider the zero-point energy. It was found
that the minimum of zero-point energy is in the Champion-Holdsworth state [210],
confirming that there is a quantum-fluctuation-driven order-by-disorder selection of
the Champion-Holdsworth state.

In Er2Ti2O7, in addition to the antiferromagnetic exchange interactions, dipolar
interactions of significant magnitude are present. For example, in the Champion-
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Holdsworth state the energy of the dipolar interactions per spin is ∼0.6 K [37]. The
theoretical model discussed so far [37, 59–61], i.e. the pyrochlore easy-plane anti-
ferromagnet, does not include the dipolar interactions. The dipolar interactions lift
the degeneracy of the ground state. The ground state selected by the dipolar interac-
tions is a configuration that belongs to the ground-state manifold of the exchange-only
model, but it is not the configuration selected by the order-by-disorder mechanism.
This ground state will be called the Palmer-Chalker state [67].

It was suggested that, in addition to thermal fluctuations, quantum fluctuations
may play a role in stabilising the entropic selection of the Champion-Holdsworth
state [37, 61]. The free ion magnetic moment of Er3+ in the crystalline environ-
ment of Er2Ti2O7 is 3.8µB [37] while the ordered moment, at 50 mK, was found to
be ∼ 3µB [37]. In antiferromagnets, quantum fluctuations reduce the ordered mag-
netic moment from the single ion value [37]; and the reduction in the magnetic mo-
ment observed in Er2Ti2O7 might be an indication that quantum fluctuations are at
play [37]. But, it is also possible that the selection of the Champion-Holdsworth state
in Er2Ti2O7 can be explained without considering quantum effects.

While for any nonzero dipolar interaction the ground state is the Palmer-Chalker
state1, it is plausible that, if the dipolar interaction is sufficiently weak, over some
temperature range, the order-by-disorder selection of the Champion-Holdsworth state
still takes place. While at T=0 the energetic ground state is selected, it is possible
that over the intermediate temperature range, between the energetic selection of the
ground state and the paramagnetic phase, the entropic contribution to the free energy
prevails and order-by-disorder selection takes place. A situation where a thermal
selection prevails over an energetic selection was observed in the so-called J − J ′

model [211]. The J − J ′ model is a generalisation that combines the properties of the
Heisenberg face centered cubic (FCC) and pyrochlore antiferromagnets, such that for
J < 0 (antiferromagnetic) and J ′ = 0 we have the pyrochlore antiferromagnet and for
J = J ′ < 0 the Hamiltonian describes the FCC antiferromagnet [211]. In the case of
the FCC antiferromagnet, there is an order-by-disorder selection of the q0 = (π/a, 0, 0)

ordered state from the degenerate π
a
(1, q, 0) ground-state manifold [212–215]. On the

other hand, the pyrochlore antiferromagnet does not order down to T = 0 [38–40].
1Strictly speaking, the Palmer-Chalker state is the ground state of the easy-plane pyrochlore

antiferromagnet for the dipolar, D, and exchange, J , coupling such that D/J < 5.7 [67].
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For 0 < α < αc ' 0.21, where α = J ′/J , there is an unique incommensurate ground
state [211]. Nevertheless, it was shown in Monte Carlo simulations that, for 0 < α <

αc, the thermal selection of the collinear q0 state and not the energetic selection of
the incommensurate ground state takes place [211].

The main goal of this study of the easy-plane Heisenberg antiferromagnet with
dipolar interactions is to determine the range of the ratio of the strength of the dipolar
interaction, D, and the exchange interaction, J , hence D/J , that separates the regime
where, upon cooling from paramagnetic phase, a thermal selection of the Champion-
Holdsworth state takes place, and the regime where the Palmer-Chalker ground state
is selected directly upon cooling from the paramagnetic phase. We find that the D/J
that suppresses the selection of the Champion-Holdsworth state is very small, D/J '
2 · 10−4; which is much smaller than the dipolar interaction strength in Er2Ti2O7.

This chapter is organized as follows. In Section 6.2, we start by reviewing the
previous numerical studies of the easy-plane pyrochlore antiferromagnet. In Section
6.3, we discuss the geometry of the pyrochlore lattice, the ground state manifold of
the easy-plane pyrochlore antiferromagnet and some particular states of the ground-
state manifold, i.e the Champion-Holdsworth state that is selected in order-by-disorder
mechanism and the Palmer-Chalker state that is the ground state when the degeneracy
is lifted by the dipolar interactions. In Section 6.4, the Monte Carlo method that is
used and the observables that are computed in the simulations are described. And
finally, in Section 6.5, we present our results; we discuss the case of zero dipolar
interactions at first, and then we proceed to investigate the effect of nonzero dipolar
interactions. The chapter is concluded with a brief summary.

6.1 The Hamiltonian and the relative strength of the

dipolar interactions in Er2Ti2O7

The Hamiltonian for Er2Ti2O7 can be written in the form

H =
∑
i

Hcf(Ji) +
1

2

∑
ij

∑
µν

Dµν
ij Ji,µJj,ν − Jex

∑
i,j

Ji · Jj, (6.1)
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Figure 6.1: The pyrochlore lattice. Some lines of spins that can be collectively flipped
in q=0 state, without violating L=0 condition, are indicated by thick lines.

where Hcf(Ji) is the crystal field Hamiltonian and the subsequent terms describe the
dipolar and the nearest-neighbour exchange interaction. The crystal field Hamiltonian
is of the form

Hcf(Ji) =
∑
nm

Bm
n O

m
n , (6.2)

where Bm
n are the crystal field parameters and Om

n are Stevens’ “operator equiva-
lents” [171, 172]. The crystal field parameters for Er2Ti2O7 can be found in Ref. [216].
The dipolar interaction tensor, Dµν

ij , is of the form

Dµν
ij =

µ0(gJµB)2

4πa3

δµν |rij|2 − 3 (rij)
µ (rij)

ν

|rij|5
, (6.3)

where rij is a vector connecting spins i and j expressed in the units of the lattice
constant, a. We calculate the dipolar coupling coefficient

Da =
µ0(gJµB)2

4πa3
= 0.0008868 K, (6.4)
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where the Landé g-factor for Er3+ is gJ = 6/5 and the lattice constant is a = 10.04 Å.
For the nearest-neighbour distance, rnn =

√
2

4
a, one gets

Dnn =
µ0(gJµB)2

4πr3
nn

= 0.02 K. (6.5)

The exact value of the exchange constant, Jex, is not known. To have an estimation
of the order of magnitude we use the molecular field components obtained by Cao et
al. in polarized neutron diffraction experiments [216]. In the Fd3̄m symmetry that
characterize Er2Ti2O7, the susceptibility tensor, χ, has only two independent matrix
elements, thus only parallel and perpendicular components to the local anisotropy
axis, χ|| and χ⊥, are considered. The magnetic moment, m, induced by applied field
H , consist of m|| = χ||H|| and m⊥ = χ⊥H⊥. The susceptibility data are fitted [216]
to a mean-field calculations with two anisotropic molecular field tensor components as
free parameters. The anisotropic molecular field tensor components can be treated as
an estimation of the total inter-spin interaction. The mean-field expression for local
magnetization is

mµ = −gJµB
〈
Jµ(Heff

µ , T )
〉
, (6.6)

where µ denote the perpendicular or parallel component, || or ⊥. Heff
µ consist of the

applied magnetic field, H, and the local molecular field,

Heff
µ = H − λµmµ, (6.7)

where λµ is the anisotropic molecular field tensor component that describes the ef-
fect of the exchange and dipolar coupling. Jµ(Heff

µ , T ) is computed by diagonalising
the mean-field Hamiltonian, similarly to the method outlined in Chapter 4 for rare
earth hydroxides. The values of the molecular field tensor components obtained for
Er2Ti2O7 are λ|| = −0.15 T/µB = −0.1452 K and λ⊥ = −0.45 T/µB = −0.4355 K

[216]. That means that the dipolar coupling, Dnn = 0.02 K, is around one order of
magnitude weaker than the exchange coupling. We will compare this estimation with
that obtained from Monte Carlo simulations. In our simulations we estimate the range
of the dipolar and exchange coupling ratio, D/J , for which there is order-by-disorder
selection of the Champion-Holdsworth state.
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In this section the dipolar coupling, Dnn and the molecular field tensor compo-
nents are obtained for the crystal field Hamiltonian (6.1). In the simulation we use an
effective Hamiltonian describing the ground-state doublet. In that effective Hamilto-
nian both the exchange and dipolar interaction constants, J and D, are rescaled by
the same factor; hence, the ratio of the dipolar coupling and the exchange coupling
obtained in this section can be directly compared with D/J from the simulations.

6.2 Previous numerical studies of the easy-plane py-

rochlore antiferromagnet

We start by discussing previous studies of the Heisenberg pyrochlore antiferromagnet
with a strong planar anisotropy [59] and the Heisenberg pyrochlore easy-plane antifer-
romagnet [60, 61]. Previously studied models did not include the dipolar interaction.
For completeness, we begin our calculations by considering the already studied case
of zero dipolar coupling. But the main goal of this work is to investigate the case
when the dipolar interaction is present. We will consider a range of dipolar coupling
strengths relative to the exchange interaction to locate the boundary between the en-
tropic selection of the Champion-Holdsworth state [60, 61] that was established to take
place in the zero dipolar interaction case, and the energetic selection of the Palmer-
Chalker state [67] that is the ground state of the model with a dipolar interaction
included, for the dipolar to exchange ratio D/ |J | < 5.7.

6.2.1 The Heisenberg pyrochlore antiferromagnet with a strong

planar anisotropy

The Heisenberg pyrochlore antiferromagnet with a strong planar anisotropy was stud-
ied by Bramwell et al. [59]. They considered the Hamiltonian

H = −J
∑
<i,j>

Si · Sj − A
N∑
i=1

(δ · Si)2 , (6.8)

where Si are classical Heisenberg spins placed on the sites of the pyrochlore lattice (see
Fig. 6.1), and J < 0 denotes the nearest-neighbour antiferromagnetic exchange inter-
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action constant. The summation runs over all the nearest-neighbour spin pairs, which
are denoted by 〈i, j〉. The second term implements a local easy plane anisotropy; δ is
a unit vector in the the local 〈111〉 easy-axis direction, and A < 0 is the anisotropy
constant. The negative value of A, which is the case considered here, promotes con-
figurations with spins perpendicular to the local 〈111〉 direction, δ; in the opposite
situation, where A > 0, configurations with spins oriented along the local 〈111〉 di-
rection are energetically favourable. A model with A > 0 is often referred to as the
soft spin ice model [217]. In the limiting case of infinite anisotropy, A → −∞, the
Hamiltonian (6.10) reduces to the easy-plane XY pyrochlore antiferromagnet. While,
in the other limit, A→∞, the Hamiltonian (6.10) would describe Ising spins.

A Monte Carlo simulation was performed for A = −5J . The system sizes from
L = 2 up to L=6 were simulated, which corresponds to N=128 and N=3456 spins,
respectively. The root-square-averaged four-sublattice magnetization, M4, was calcu-
lated [59];

M4 =
1

4

√
M2

α +M2
β +M2

γ +M2
δ , (6.9)

where α, β, γ and δ denote the four sublattices. Upon simulated cooling, a sharp
increase of M4 was observed at the critical temperature Tc/J ' 0.1. A nonzero
value of M4 indicates a q = 0 long-range ordered state. A steep increase of the order
parameter is a characteristic feature of a first order phase transition. The discontinuous
character of the transition was confirmed by analysing the finite-size dependence of
the maximum specific heat, Cmax; where one expects at a first order phase transition
the relation, Cmax ∝ L3, where L is a linear size of the system, which was observed in
this case.

A 12-fold degenerate ground state of a single tetrahedron that simultaneously satis-
fies the anisotropy andL=0 conditions was proposed [59]. These 12 configurations con-
sist of coplanar spin arrangements composed of two pairs of antiparallel spins. There
are 3 such arrangements generated by the threefold tetrahedral symmetry. When
combined with the 4 possible inversions of the antiparallel spin pairs, they give 12
ground-state configurations. One of such configurations, the Palmer-Chalker state is
shown in Fig. 6.4, and another one is illustrated in Fig. 6.5. The pyrochlore lattice can
be seen as composed of two perpendicular sets of lines (see Fig. 6.1). Any configura-
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tion such that each line consist of antiparallel spins, while the direction of the spins in
the line is independent of the direction of the spins in other lines, satisfies the ground
state condition. There is a large (∝ L2) number of the ground states constructed
that way (see also the discussion in Sec. 6.3.6). The Monte Carlo simulations [59]
showed that, despite the ground state degeneracy, a long-range ordered configuration
is selected, demonstrating that a thermal order-by-disorder selection mechanism is at
play [58].

6.2.2 The easy-plane pyrochlore antiferromagnet

Champion et al. [60, 61] studied the model with infinite anisotropy, that is given by
the Hamiltonian

H = −J
∑
<i,j>

Si · Sj, (6.10)

with the spin vectors, Si, confined to the easy planes perpendicular to the local easy
axes. The local easy planes on a tetrahedron are shown in Fig. 6.2. This is a limiting
case of the Hamiltonian (6.8) with A → −∞. It was recognized [60, 61] that the
degeneracy of the ground state of a single tetrahedron is continuous [60, 61], and that
the discrete set of ground states that was proposed by Bramwell et al. [59] is just a
subset of this continuous ground state manifold. The equations minimizing the energy
of a spin configuration on a single tetrahedron were solved analytically [60, 61] and a
rather complicated system of solutions, describing the q = 0 ground state manifold,
parametrized by a continuous free variable was obtained [60, 61].

From Monte Carlo simulations, was found [60, 61] that the a set of six symmetry
related long-range ordered configurations is thermally selected. One of such config-
urations is shown in Fig. 6.3. This set of configurations will be referred to as the
Champion-Holdsworth state [60, 61]. The Champion-Holdsworth state is discussed
in more detail in Section 6.3.4. The sublattice magnetization, M4 of Eq. (6.9), was
calculated. Consistently with the results of Bramwell et al. [59], a sharp increase
of M4, that indicates a first order phase transition, was seen. The critical temper-
ature was estimated to be Tc = 0.125J . As might be expected, the Tc for the infi-
nite anisotropy model is higher than Tc = 0.1J obtained in Ref. [59], where a finite
anisotropy, A = −5J , was considered (see Section 6.2.1). Monte Carlo results for his-
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tograms of the energies of bonds between individual spins were analysed. Two peaks
were observed at −2J/3 and J/3. These are the values corresponding to the bond
energies in the Champion-Holdsworth state.

In a spin wave calculation, was found that only in the spin configurations of the
Champion-Holdsworth state there are two continuous planes of soft modes in k-space,
while in other spin configurations soft modes occur only for a discrete number of wave-
vectors, k. This confirms the order-by-disorder selection scenario, i.e. from the ground
state manifold a configuration having the largest number of soft modes is selected. The
specific heat calculated from the mode counting argument [60, 61, 218] compares fairly
well with the specific heat calculated from low temperature Monte Carlo simulation
in the Champion-Holdsworth state.

6.3 The pyrochlore lattice and the ground state of

the XY pyrochlore antiferromagnet

6.3.1 The lattice structure and the local coordinate system

The pyrochlore lattice of corner-sharing tetrahedra is depicted in Fig. 6.1. The py-
rochlore lattice is a non-Bravais lattice; it consist of 4 face centered cubic (FCC)
sublattices. It can be viewed as an FCC lattice with a four atom tetrahedral basis,
constituting together a 16 ion cubic unit cell. In Cartesian coordinates the FCC lattice
vectors are: a1 = a

2
(1, 1, 0), a2 = a

2
(1, 0, 1) and a3 = a

2
(0, 1, 1), where a is the lattice

constant for the 16 ion unit cell. The tetrahedral basis consist of four sites given by
the vectors: b1 = a

4
(0, 0, 0), b2 = a

4
(1, 1, 0), b3 = a

4
(1, 0, 1) and b4 = a

4
(0, 1, 1).

For each sublattice the local easy axis is parallel to the local 〈111〉 direction,
that is, it points from the vertex to the centre of the tetrahedron. The unit vec-
tors pointing in the local 〈111〉 direction are: n̂1 = 1√

3
(1, 1, 1), n̂2 = 1√

3
(−1,−1, 1),

n̂3 = 1√
3

(−1, 1,−1) and n̂4 = 1√
3

(−1, 1, 1). It is convenient to define a local coordi-
nate system with k̂ direction corresponding to the local easy-axis direction. We choose
the x̂ axis to point in the direction of one of the edges of the triangle opposite to the
considered vertex. We choose the unit vectors of such a local coordinate system to be
those given in Table 6.1 and shown in Figure 6.2.
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Figure 6.2: Easy planes (left) and local coordinate system (right). The local (x̂α,ŷα,ẑα)
unit vectors, in terms of the global coordinates, are given in Table 6.1.

α 1 2 3 4

x̂α

(
− 1√

6
,− 1√

6
, 2√

6

) (
1√
6
, 1√

6
, 2√

6

) (
1√
6
,− 1√

6
,− 2√

6

) (
− 1√

6
, 1√

6
,− 2√

6

)
ŷα

(
1√
2
,− 1√

2
, 0
) (

− 1√
2
, 1√

2
, 0
) (

− 1√
2
,− 1√

2
, 0
) (

1√
2
, 1√

2
, 0
)

ẑα

(
1√
3
, 1√

3
, 1√

3

) (
− 1√

3
,− 1√

3
, 1√

3

) (
− 1√

3
, 1√

3
,− 1√

3

) (
1√
3
,− 1√

3
,− 1√

3

)
Table 6.1: The local (x̂α,ŷα,ẑα) unit vectors on the pyrochlore lattice. These vectors
are shown in the right panel of Fig. 6.2.

Using the unit vectors from Table 6.1, it is easy to write the transformation matrices
for converting a vector expressed in local coordinates to global coordinates. Let S′i be
the spin vector at site i, expressed in terms of the local coordinates,

S′i = (S
′(x)
i , S

′(y)
i , S

′(z)
i ). (6.11)

Then, in the global coordinates, the spin vector is:

Si = S
′(x)
i x̂α(i) + S

′(y)
i ŷα(i) + S

′(z)
i ẑα(i), (6.12)

where α(i) denote one of the four sublattices, the one that contain the site i. The
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vectors x̂α(i), ŷα(i), ẑα(i) are the local coordinate vectors given in Table 6.1. This
transformation can be written in matrix notation,

Si = Mα(i)S
′
i, (6.13)

where the matrices Mα are constructed from the local coordinate vectors given in
Table 6.1. We have

M1 =


− 1√

6
1√
2

1√
3

− 1√
6
− 1√

2
1√
3

2√
6

0 1√
3

 , M2 =


1√
6
− 1√

2
− 1√

3
1√
6

1√
2
− 1√

3
2√
6

0 1√
3

 ,

M3 =


1√
6
− 1√

2
− 1√

3

− 1√
6
− 1√

2
1√
3

− 2√
6

0 − 1√
3

 , M4 =


− 1√

6
1√
2

1√
3

1√
6

1√
2
− 1√

3

− 2√
6

0 − 1√
3

 .

6.3.2 Hamiltonian in the local coordinate system

Consider Hamiltonian of the form

H = −1

2

∑
(i,j)

SiL̂ijSj, (6.14)

where tensor L̂ij describes both dipolar and exchange interaction. Si denote spin vec-
tors expressed in the global coordinate system. In the simulation with local anisotropy,
it is more convenient to operate on the spin vectors expressed in local coordinates. We
would like to find a transformation of L̂ij to L̂′ij such that we write the Hamiltonian
in the form

H = −1

2

∑
(i,j)

S′iL̂
′
ijS
′
j, (6.15)

where S′i denote spin Si expressed in the local coordinates. We use Eq. (6.13) and
write

H = −1

2

∑
(i,j)

S′iM̂
T
α(i)L̂ijM̂α(ij)S

′
j. (6.16)
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This gives
L̂′ij = M̂T

α(i)L̂ijM̂α(j) (6.17)

or
Lµνij

′ =
∑
l,k

M lµ
α(i)L

lk
ijM

kν
α(j). (6.18)

6.3.3 The ground-state manifold

As discussed in Sec. 1.1.7, the condition for the q = 0 ground state is that the total
magnetic moment on each tetrahedron, L, is zero,

L = S1 + S2 + S3 + S4 = 0. (6.19)

Additionally, the spins are confined to easy planes, and it narrows down the number
of degrees of freedom compared to the case of Heisenberg spins, but as will be shown
below, there is still a continuously degenerate ground-state manifold. In addition to
the three equations implementing the condition L=0, for each of the spins on the
vertices of a tetrahedron or on the four sublattices there is a further equation that
imposes the requirement that the spin is confined to its easy plane. Further, for each
spin there is a normalization requirement. That gives, in total, 3+4+4 = 11 equations
with 4 ·3 = 12 unknowns, that is 4 spins with 3 vector components each. The solution
to these equations was obtained by Champion et al. [61] with the aid of a computer
algebra system. Here we will use a different approach. We will not present a rigorous
solution but the merit of our method is that the ground-state manifold is described
by relatively simple formulae.

As the spins are confined to the XY planes, the direction of each spin, i, can be
specified by a single angle θi, relative to the local x̂α(i) axis. The configuration of the
spins on a single tetrahedron, or in a q = 0 ordered state, is specified by 4 angles: θ1,
θ2, θ3 and θ4. To find the ground-state configuration one needs to solve a system of
3 equations (6.19) with 4 unknowns θ1, θ2, θ3 and θ4. The spin vectors in the local
coordinate system can be easily expressed in terms of the angles θi, where i = 1, . . . , 4,

S′i = (cos(θi), sin(θi), 0). (6.20)
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Transforming S′i to the global coordinate system, we rewrite Eq. (6.19) as

L = M1S
′
1 +M2S

′
2 +M3S

′
3 +M4S

′
4 = 0, (6.21)

which, after expanding, gives

− cos (θ1) +
√

3 sin (θ1) + cos (θ2)−
√

3 sin (θ2) + cos (θ3)−
√

3 sin (θ3)

− cos (θ4) +
√

3 sin (θ4) = 0

− cos (θ1)−
√

3 sin (θ1) + cos (θ2) +
√

3 sin (θ2)− cos (θ3)−
√

3 sin (θ3)

+ cos (θ4) +
√

3 sin (θ4) = 0

cos (θ1) + cos (θ2)− cos (θ3)− cos (θ4) = 0.

(6.22)

It can be converted to a simpler form:

− cos (60− θ1) + cos (60− θ2) + cos (60− θ3)− cos (60− θ4) = 0

− cos (60 + θ1) + cos (60 + θ2)− cos (60 + θ3) + cos (60 + θ4) = 0

cos (θ1) + cos (θ2)− cos (θ3)− cos (θ4) = 0

. (6.23)

To find the solution of Eq (6.23) we make a heuristic assumption that the angles
appear in equal pairs. We consider 3 cases:

1. The case where θ1 = θ2 = θ.

The first two equation are reduced to

cos (60− θ3) = cos (60− θ4)

cos (60 + θ3) = cos (60 + θ4)
,

and the only solution is
θ3 = θ4.

The third equation gives
θ4 = ±θ,

and finally we have two solutions:

θ1 = θ, θ2 = θ, θ3 = θ, θ4 = θ

θ1 = θ, θ2 = θ, θ3 = −θ, θ4 = −θ
.
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2. For θ1 = θ3 = θ, in similar way, we obtain

θ1 = θ θ2 = θ θ3 = θ θ4 = θ

θ1 = θ θ2 = −120− θ θ3 = θ θ4 = −120− θ
.

3. And for the last case: θ1 = θ4 = θ, we get

θ1 = θ θ2 = θ θ3 = θ θ4 = θ

θ1 = θ θ2 = 120− θ θ3 = 120− θ θ4 = θ
.

Combining these results, the solution to Eqs. (6.23) are four sets of angles θ1, θ2, θ3

and θ4:
θ1 θ2 θ3 θ4

θ θ θ θ

θ θ −θ −θ
θ −120− θ θ −120− θ
θ 120− θ 120− θ θ

(6.24)

The energy of the ground state of the whole lattice cannot be less than the energy
of the configuration where the spin arrangements on all the tetrahedra are optimized
independently. Hence, the configurations such that all tetrahedra are in one of the
configurations described by Eq. (6.24) belong to the ground state manifold of the
whole lattice. Nevertheless, ground states other than the q = 0 states described here
can also exist. Examples of such configurations will be given in Section 6.3.6.

The ground state manifold given by Eq. (6.24) is fully connected. There are 6 high
symmetry configurations where different branches of solutions to Eq. (6.19) intersect
with the first branch, i.e. θ1 = θ2 = θ3 = θ4 = θ. These 6 configurations are such
that the all four angles are equal, θ1 = θ2 = θ3 = θ4 = θ, and θ =0, 60, 120, 180, 240
and 300 degrees. As will be described later, these 6 particular states are selected from
the ground-state manifold by thermal fluctuations. We refer to these configurations
as the Champion-Holdsworth configurations[60, 61].
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Figure 6.3: One of the Champion-Holdsworth configurations. The right panel shows
a projection onto xz plane.

6.3.4 The Champion-Holdsworth configurations

In the presence of thermal or quantum fluctuation a frustrated system2 has a tendency
to choose the configurations of its ground-state manifold that are characterized by the
largest number of soft modes. Such states for the easy-plane pyrochlore antiferromag-
net were identified by Champion et al. One of the six possible Champion-Holdsworth
spin arrangements is illustrated in Fig. 6.3. The angles in the Champion-Holdsworth
state, in the notation introduced in Section 6.3.3 are given in Table 6.2. Each of

θ1 θ2 θ3 θ4

1 0 0 0 0
2 60 60 60 60
3 120 120 120 120
4 180 180 180 180
5 240 240 240 240
6 300 300 300 300

Table 6.2: Champion-Holdsworth states .

these six states consist of two pairs of spins that are coplanar with the edge of the
2Precisely, we mean here systems with non-global degeneracy of the ground state, i.e. where there

are local degrees of freedom in the ground-state manifold.
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tetrahedron connecting them. To list all the possible six Champion-Holdsworth con-
figurations one can imagine that one spin can be coplanar with one of the three edges
of the tetrahedron that meet in the vertex, and for each edge, the spin can have two
opposite directions, giving two configurations related by the inversion of all the spins.

6.3.5 The ground state of the easy-plane pyrochlore antiferro-

magnet with dipolar interaction

Figure 6.4: One of the Palmer-Chalker configurations. The right panel shows a pro-
jection onto xy plane.

In this section, the ground state of the easy-plane pyrochlore magnet with nearest-
neighbour antiferromagnetic exchange and dipolar interaction is discussed. In Sec-
tion 6.3.3 it was shown that the q = 0 ground state of the easy-plane pyrochlore
nearest-neighbour antiferromagnet consists of a continuous manifold described by
Eqs. (6.24). Adding dipolar interaction lifts the degeneracy of the ground state man-
ifold and a six-fold degenerate ground state is selected [67]. One of the ground-state
configurations is illustrated in Fig. 6.4. This is a coplanar arrangement that consists
of two antiparallel pairs of spins. The antiparallel spins are perpendicular to the edge
of the tetrahedron connecting them and oriented along the direction of the opposite
edge. There are six such configurations - a particular spin in a tetrahedron can be
antiparallel to one of its three neighbours, and in each of these three possibilities there
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are two configurations related by reversing all the spins. This six configurations are
given in Table 6.3, using the notation described in Section 6.3.3. The Palmer-Chalker
state belongs to the ground-state manifold of the easy-plane pyrochlore antiferromag-
net. It is worthwhile to note that Palmer-Chalker state is also a ground state of the
Heisenberg pyrochlore antiferromagnet [67].

θ1 θ2 θ3 θ4

1 90 90 270 270
2 270 270 90 90
3 30 210 210 30
4 210 30 30 210
5 150 330 150 330
6 330 150 330 150

Table 6.3: Palmer-Chalker states.

6.3.6 Line defects and macroscopic number of disordered ground

states

Figure 6.5: A “defected” Palmer-Chalker configuration obtained by flipping two spins
in a Palmer-Chalker configuration. The right panel shows a projection onto xy plane.

A possible ground-state configuration for the whole lattice is such that all tetra-
hedra have the same spin arrangement, such that the condition of zero magnetic
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Figure 6.6: Two ways of flipping a pair of spins in a Champion-Holdsworth config-
uration that preserve the L=0 condition. In the left panel, spin 3 is flipped by 120
degrees and spin 2 is flipped by 120 degrees. In the right panel, spin 3 is flipped by
-120 degrees and spin 1 is flipped by -120 degrees.

moment (L = 0 (Eq. 6.19)) on each tetrahedron is satisfied. Here we will show that
besides these long-range ordered spin arrangements, other, disordered, ground states
are possible. Let us imagine that all tetrahedra are in the Palmer-Chalker arrange-
ment illustrated in Fig. 6.4. Two antiparallel spins (one of the two such pairs) can
be reversed by 180 degrees and the new configuration still satisfies the condition of
zero magnetic moment on each tetrahedron. Such a spin arrangement is illustrated
in Fig. 6.5. In the infinite lattice, an infinite chain (see Fig. 6.1) of such antipar-
allel spins can be reversed, creating a line defect [61]. A similar argument can be
provided for the Champion-Holdsworth state (see Fig. 6.3), but in the case of the
Champion-Holdsworth state two spin modifications are possible. These two possibili-
ties are illustrated in Fig. 6.6. In the case of a Palmer-Chalker state (Fig. 6.4) a pair
of antiparallel spins is flipped (Fig. 6.5), so for each spin there is only one antiparallel
and only one such modification. In the Champion-Holdsworth state, a spin can be
flipped together with one of the two other spins, that are not coplanar with the first
spin and the edge of the tetrahedron that connects the spins. Consider flipping the

150



spin 3 in Fig. 6.6 by 120 degrees or by -120 degrees. If spin 3 is flipped by 120 degrees,
spin 2 has to by flipped by 120 degrees. This is shown in the left panel of Fig. 6.6. If
spin 3 is flipped by -120 degrees spin 1 has to by flipped by -120 degrees, as shown in
the right panel of Fig. 6.6. Again, an infinite line of spins can be flipped on a lattice
without violating the L=0 condition for any tetrahedron. In the described way, a
macroscopic number of ground states can be generated [59]. The number of such a
ground states is of the order of L2, where L is the linear size of the system [59].

6.4 The model and the Monte Carlo method

6.4.1 The model and calculated observables

We consider a system consisting of classical XY spins restricted to the easy planes
of the pyrochlore lattice (see Fig. 6.2). The spins interact via the antiferromagnetic
nearest-neighbour exchange interaction and the dipolar interaction. The results pre-
sented here were obtained with the dipolar interaction truncated beyond the nearest-
neighbour distance, to speed up the calculations. The nearest-neighbour model also
has the Palmer-Chalker ground state; hence, such a model still captures the competi-
tion between the energetic selection of the Palmer-Chalker state and thermal selection
of the Champion-Holdsworth state. The nearest-neighbour Hamiltonian is of the form

H = −J
∑
〈i,j〉

Si · Sj +D
∑
〈i,j〉

δµνr2
ij − 3rµijr

ν
ij

r5
ij

Sµi S
ν
j , (6.25)

where 〈i, j〉 denotes summation over the nearest-neighbour pairs. The exchange inter-
action is antiferromagnetic and in the convention used above , the interaction constant
is negative, J<0. We measure the inter-spin distance in units of the lattice constant, a,
that is the size of a cubic unit cell that contains 16 spins; thus, the nearest-neighbour
distance is dNN =

√
2

4
a. The dipolar interaction constant is of the form D = µ0

4π
µ2

a3 ,
where µ is the effective dipolar moment of the classical spins, Si, and µ0 is the vacuum
permeability. Below, for convenience, when presenting the results of our simulations,
we will express both the temperature and the dipolar coupling, D, in units of the
exchange constant, J . To avoid confusion we will write D/ |J | rather than just D, but
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the temperature in units of J will be denoted just T .
The exchange term in the Hamiltonian is minimised by the requirement of zero

magnetic moment on all tetrahedra, L = 0, (see Sec. 1.1.7). If, in addition to that,
the spins are confined to the local easy planes, the ground state is given by the fully
connected manifold described in Sec. 6.3.3. As discussed earlier, at T>0, from the
ground-state manifold, in the exchange-only case, D = 0, the set of symmetry-related
Champion-Holdsworth configurations is selected [60, 61] by an order-by-disorder mech-
anism (see Sec. 6.2.2). The dipolar term lifts the degeneracy of the ground-state
manifold, giving the six-fold degenerate Palmer-Chalker ground state [67]. With a
relatively weak dipolar interaction a competition between the entropic selection of the
Champion-Holdsworth state and the energetic selection of the Palmer-Chalker state
occurs. In the course of the simulations we attempted to establish the value of the
relative strength of the dipolar interaction separating the entropic selection of the
Champion-Holdsworth and the energetic selection of the Palmer-Chalker state at the
phase transition from the paramagnetic state.

The pyrochlore lattice consists of four face-centered cubic sublattices. A direct
measure of q = 0 order is the sublattice magnetization

M4 =

√√√√1

4

4∑
α=1

(
1

Nα

Nα∑
i

Si,α

)2

, (6.26)

where α denotes the sublattices or vertices of tetrahedron and Nα is the number of
sites in each sublattice (i.e. number of primitive tetrahedra).

To distinguish the type of q=0 ordering in the simulations, for each kind of order,
i.e. the Champion-Holdsworth and Palmer-Chalker states, we consider an order pa-
rameter that is a projection of the spin configuration onto the spin directions in the
fully ordered state. Both for the Champion-Holdsworth and Palmer-Chalker states
there are six possible spin directions and all these arrangements have to be included
in the definition of the order parameter. Let êα be the unit vector pointing in the
direction of the spins on the sublattice α in a particular ordered state. The vectors êα
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lie in the easy planes of the pyrochlore lattice . For a given set of ê
(γ)
α we write

Ψγ =
1

N

Nα∑
i=1

4∑
α=1

Si,α · ê(γ)
α , (6.27)

where γ labels the set of spin directions and ê
(γ)
α denotes the set of 4 vectors for a chosen

ground-state configuration, γ. Vectors ê
(γ)
α can be also specified in polar coordinates,

as angles, ϕα relative to the axis x̂α in the XY plane. The angles ϕα are given in Tables
6.2 and 6.3 for the Champion-Holdsworth and Palmer-Chalker states, respectively3.
Using angles θi,α, that, in the same coordinate system, express the directions of the
individual spins, we write

Ψγ =
1

N

Nα∑
i=1

4∑
α=1

cos(ϕ(γ)
α − θi,α). (6.28)

We consider here two particular ordered states: Palmer-Chalker state and Champion-
Holdsworth state. For both of them there are 3 different configurations plus another
3 given by inversion of all spins; hence, to account for all 3 possibilities, we define the
Palmer-Chalker or Champion-Holdsworth order parameter,

qPC/CH =

〈
3∑

γ=1

Ψ2
γ

〉
, (6.29)

where ê
(γ)
α in the definition of Ψγ corresponds to the directions of the spins in the

Palmer-Chalker or Champion-Holdsworth states, and 〈. . .〉 denotes thermal average.

6.4.2 Monte Carlo simulation

We use parallel tempering Monte Carlo simulation technique. The details of this
method were given in Section 2.2. Parallel tempering was reported to significantly
speed up the equilibration in slowly relaxing systems [153, 154]. It was also shown to
be useful in simulation of systems undergoing a first order phase transition [219].

3Note that the angles in Tables 6.2 and 6.3 were denoted θα, because they were denoting spin
directions. Here those angles are denoted ϕα, while θi,α denotes the direction of individual spins.
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In the parallel tempering Monte Carlo method, one simultaneously simulates NT

thermal replicas, copies of the system with the same spatial disorder, at different tem-
peratures. Each thermal replica is simulated independently, using different pseudo-
random number stream. In the simulations where random initial configurations are
used, for each replica the simulation begins from a different random initial config-
uration. In addition to standard Metropolis spin moves, at every 100 local update
sweeps, a configuration swap among thermal replicas is attempted with acceptance
probability preserving the detailed balance condition. Conventionally, a local update
sweep consist of N Metropolis attempts to move a spin, with N being the number of
spins in the system. In the simulations described in this chapter, we use a relatively
large number of thermal replicas, NT = 64, with uniformly increasing temperatures.
The choice of equidistant temperature points is rationalized below. To ensure uniform
acceptance rate for the parallel tempering configuration swaps, the optimal selection
of the temperatures would be such that the largest density of temperature points is
where the specific heat is the largest. The system considered here undergoes a first
order phase transition. In a finite-size simulation, at a first order phase transition,
there is a peak of specific heat, CV . The location, that is the effective transition tem-
perature, and the magnitude of the peak of CV depends on the system size and, in
the problem considered here, it also varies with the strength of dipolar interaction.
Hence, the selections of the temperatures would have to be done self-consistently for
each simulation. In the simulations discussed below, the equilibration is very slow and
self-consistently adjusting the temperatures is impractical, if not impossible.

The spins are confined to their easy planes and each spin in simulation can be
represented by a single angle θi. Local moves consist of rotating a spin by a random
angle drawn from uniform probability distribution, within a particular range of angles,
∆θmax, chosen to obtain 50% acceptance rate. A Monte Carlo sweep consist of N local
spin update attempts, that are accepted or rejected with Metropolis probability. The
local updates are performed on randomly selected spins. The spin move range is self-
consistently adjusted every 100 Monte Carlo sweeps. When the acceptance rate, τ ,
measured over 100 Monte Carlo sweeps, is larger than 0.5 the range ∆θmax is increased,
and if τ < 0.5, ∆θmax is decreased. Such adjustment of ∆θmax is achieved if the new
angle update range ∆θ′max is calculated according to the formula
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∆θ′max = 0.5(∆θmax)τ. (6.30)

The statistics is collected every 100 Monte Carlo sweeps, after the local sweeps and
before the parallel tempering swaps.

The simulations of first order transitions are difficult due to the presence of an
energy barrier between the ordered and paramagnetic phase. While in the thermody-
namical limit the energy barrier has a character of a discontinuous jump, in a finite-size
system the the singularity is smeared off due to the fluctuations, and the transition
between an ordered and disordered phase happens over a finite interval of tempera-
tures. If the fluctuations are of order of the the energy gap the transition between the
ordered and disordered state in the simulation is likely to happen. The fluctuations
decrease with increasing the system size, N , like 1/

√
N . In consequence, equilibrat-

ing a simulation at a first order transition regime gets more difficult as the system
size increases, or when, due to a change of simulation parameters, the energy barrier
increases.

To ensure equilibration, we ran our simulations starting from different initial con-
figurations - either random initial configuration or ordered configurations (i.e. the
Champion-Holdsworth or Palmer-Chalker state), and we compared the results. If the
simulation is not equilibrated a hysteresis-like effect is observed; the effective transi-
tion temperature is higher when the simulation was started from ordered configuration
and lower for simulation started from random initial configuration. The evolution of
observables, i.e. order parameters and energy, with Monte Carlo time was also moni-
tored. Further discussion of equilibration issues is presented in Appendix E.

6.5 Monte Carlo results

6.5.1 Order-by-disorder selection of the Champion-Holdsworth

state in the easy-plane pyrochlore antiferromagnet

Before we present our results on the effect of dipolar interaction on the easy-plane py-
rochlore antiferromagnet, we consider the case with zero dipolar interaction, described
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by the Hamiltonian
H = −J

∑
〈i,j〉

Si · Sj. (6.31)

It was shown in Sec. 6.3.3 that the ground-state manifold of the easy-plane pyrochlore
antiferromagnet is degenerate and contains a q=0 sub-manifold consisting of 4 con-
nected branches parametrized by one continuous variable. It was established by car-
rying out Monte Carlo simulations that from the ground state manifold a q=0 ordered
state is thermally selected [59–61]. The set of 6 thermally selected configurations is
the Champion-Holdsworth [60, 61] state described in Section 6.3.4.

The usage of the parallel tempering method allows us to obtain more accurate
data at the first order phase transition than the data reported in Ref. [60, 61]. Fur-
thermore, we use a direct method of analysing spin configurations such as plotting
angle histograms and computing order parameter which distinguishes the Champion-
Holdsworth state from other q = 0 configurations. But, the main goal in considering
the zero-dipolar-interaction case first is to establish a consistent reference for compar-
ison with the cases when the dipolar interaction is included.

We report here data for 4 system sizes L=2, 3, 4 and 5. To equilibrate the system,
we run the simulation for 5 · 106 Monte Carlo sweeps per spin and the statistics is
collected over another 5 · 106 Monte Carlo sweeps per spin. The number of parallel
tempering swaps and the number of measurements corresponding to 5 · 106 Monte
Carlo sweeps per spin is 5 · 104. We also tried to simulate the larger system size, L=6,
but we could not reach equilibrium. For any set of simulation parameters, two sim-
ulations were run. One simulations was started from a random initial configuration,
and, to ensure equilibration, the results were compared with the results from another
simulation that was started from the Champion-Holdsworth state as an initial configu-
ration. The evolution of the measured quantities with the Monte Carlo time, i.e. with
an increasing number of Monte Carlo sweeps, was also examined (see Appendix E).

In Fig. 6.7, we show the sublattice magnetization, M4 of Eq. (6.26), vs tempera-
ture. There is a sharp increase of M4 at the temperature T ' 0.127. This indicates
a first order phase transition to a q = 0 ordered state. The finite-size effects are very
significant for L=2 and 3 and they considerably smear the signature of the first order
transition. M4 indicates that there is long-range order in each of the four sublattices
but it does not provide any information about the orientation of the spins in each sub-
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Figure 6.7: The sublattice magnetization, M4, for D/J=0 and 4 system sizes L=2,3,4
and 5.
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Figure 6.8: The Champion-Holdsworth order parameter, qCH, of Eq. (6.29) for D/J=0
and 4 system sizes L=2,3,4 and 5.
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Figure 6.9: Normalized histogram of angle θ1 for L=4 and T=0.1.

lattice. To distinguish ordering into the Champion-Holdsworth state from any other
q = 0 order, qCH of Eq. (6.29) is calculated. qCH vs T plots are shown in Fig. 6.8.
Similarly to M4 in Fig. 6.7, qCH vs T plot has a step shape that is characteristic to a
first order transition.

The XY spin orientations are described by an angle, θi. The most direct way to
analyze the spin configuration is to plot a histogram of their directions, θi. In Fig. 6.9
we show a histogram of spin angles, θi, for L=4 at T=0.1. The histogram includes the
angles for spins in all four sublattices, collected along with other observables every 100
Monte Carlo sweeps, i.e. 5 · 104 configuration snapshots. In the histogram there are
6 peaks corresponding to the 6 possible Champion-Holdsworth configurations. The
presence of the peaks at all 6 angles indicates that during the simulation the system
was switching between different configurations in the Champion-Holdsworth state.

In Fig. 6.10 we plot specific heat, CV . In the thermodynamic limit, at a first
order phase transition the specific heat is divergent. The finite-size effects smears the
divergence. Upon increasing the system size the peaks in CV plots become sharper
and higher.

To confirm that the transition is first order, in Fig. 6.11, we show an energy
histogram for L=4 at T=0.127. The double-peaked form of the histogram at the

158



0.1 0.11 0.12 0.13 0.14 0.15 0.16
0

5

10

15

T

C
V

 

 

L=2

L=3

L=4

L=5

D/J=0

Figure 6.10: Specific heat, CV , for D/J=0 and 4 system sizes L=2,3,4 and 5.
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Figure 6.11: Normalized energy histogram for L=4 and T=0.127.
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tentative transition temperature indicates a first order phase transition.

6.5.2 Competition between the entropic selection of the Champion-

Holdsworth state and the energetic selection of the Palmer-

Chalker state in the easy-plane pyrochlore antiferromag-

net with dipolar interaction

The ultimate aim of this work was to study the XY pyrochlore antiferromagnet in
the presence of the dipolar interaction. In the case of the exchange interaction only,
there is a degenerate, fully connected ground-state manifold. From the continuous
ground-state manifold the Champion-Holdsworth state is selected by an order-by-
disorder mechanism. The thermally-driven order-by-disorder first order phase transi-
tion to the Champion-Holdsworth state in the easy-plane pyrochlore antiferromagnet
was described in the previous section. When the dipolar interactions are included,
the continuous degeneracy of the ground-state manifold is energetically lifted. The
lowest energy configuration is the Palmer-Chalker state [67], that was discussed in
Section 6.3.5. In this section, we show that the order-by-disorder selection of the
Champion-Holdsworth state persist up to some strength of the dipolar interaction
relative to the exchange interaction.

In the case of zero dipolar interaction, the equilibration of simulations for large
system sizes was difficult due to the strongly first order character of the phase transi-
tion. It turns out that equilibrating our simulations becomes even harder when dipolar
interactions are included and the Palmer-Chalker state is selected. We were unable
to equilibrate the simulation for L=4 in the regime where the Palmer-Chalker state is
selected and in this regime we present only the results obtained from simulations for
system size L=3. For the very low values of D/J where the Champion-Holdsworth
state is selected, we report data up to L=5. To obtain the data reported in this section,
we run the simulations for 108 Monte Carlo sweeps, and the thermal averages of ob-
servables are obtained from the last 107 Monte Carlo sweeps. The equilibration issues
are discussed in detail in Appendix E. We do not present results for L=2 because for
such a small system size, finite-size effects smear the transition so much that it would
be impossible to recognize whether the long-range order appearing in the system is
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Figure 6.12: qCH vs T for L=3, L=4 and L=5. D/J = 0.5 · 10−4.
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Figure 6.13: qCH vs T for L=3, L=4 and L=5. D/J = 1 · 10−4.
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Figure 6.14: qCH and qPC vs T for L=3 and L=4. D/J = 2 · 10−4.

Palmer-Chalker or Champion-Holdsworth ordering. Even for L=3, the details of the
low temperature spin configuration are obscured by large fluctuations that occur in
such a small system.

We consider the Hamiltonian (6.25), i.e.

H = −J
∑
〈i,j〉

Si · Sj +D
∑
〈i,j〉

δµνr2
ij − 3rµijr

ν
ij

r5
ij

Sµi S
ν
j .

It contains the antiferromagnetic nearest-neighbour exchange interaction and the dipo-
lar interaction truncated at the nearest-neighbour distance.

In Figs. 6.12 and 6.13 we plot the qCH order parameter vs temperature for D/J =

0.5 · 10−4 and D/J = 1 · 10−4, respectively, for L=3, L=4 and L=5. For these values
of D/J an entropic selection of the Champion-Holdsworth state takes place. qPC was
also calculated and it was found to be very small. The fluctuations of the local angles,
θ, are larger than in the D=0 case; hence, the value of qCH is lower.

At D/J = 2 · 10−4 there is a strong competition between the ordering into the
Champion-Holdsworth state and ordering into the Palmer-Chalker state. In Fig. 6.14
we plot both qCH and qPC for L=3 and L=4. Both qCH and qPC have very small and
comparable values for both system sizes. To get some insight into the type of ordering
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Figure 6.15: The histograms of all angles, θi, in one configuration snapshot for D/J =
2 · 10−4 at T=0.1. Data for L=3 and L=4 is shown in the left and right panel,
respectively.

Figure 6.16: The snapshots of spin configurations for D/J = 2 · 10−4 at T=0.1. Data
for L=3 and L=4 is shown in the left and right panel, respectively. Only one layer of
tetrahedra is shown. The direction of the projection is chosen to be consistent with
Figs. 6.3, 6.4 and 6.5. The angles, θi, are indicated by lines showing a spin direction,
by color and by symbol size. The angles rounded for clarity.
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in the system in this crossover from the thermally-selected Champion-Holdsworth
state and the energetically-selected of Palmer-Chalker state, we analyze a snapshot of
a spin configuration for D/J = 2 · 10−4 at T=0.1. The histograms of local angles, θi,
in one spin configuration snapshot are shown in Figure 6.15. The histograms contain
N=432 and N=1024 data points, i. e. equal to the number of spins for L=3 and L=4,
respectively. The angle distributions are clearly concentrated around two values: 90
and 270 degrees for L=3, and 30 and 210 degrees for L=4. Each of these angle
pairs corresponds to one of the Palmer-Chalker states (see Table 6.3). The peaks in
the angle distributions are very broad. The histograms of spin angles for individual
sublattices were also constructed. They all have two-peak structure, similar to those
in Fig. 6.15, and not just one peak that would indicate the same angle on all the sites
of the considered sublattice. This means that there is no q=0 ordering, not only that
the distribution of angles is broad.

To visualize the spin configurations, we create projections of one layer of the cubic
unit cells; that is 9 cells for L=3 and 16 cells for L=4, respectively. Each cell contains
4 tetrahedra and 16 spins. The distribution of angles is very broad and analyzing
the configuration would not be possible, if exact values of all angles were shown. To
clarify the image we round each angle to the closest “Palmer-Chalker angle” from the
pair of the “Palmer-Chalker angles” that were obtained for the data set considered,
i.e. 90 or 270 degrees for L=3 and 30 or 210 degrees for L=4 respectively (as in
the the histograms in Fig. 6.15). This spin projections are shown in Fig. 6.16. The
spin direction is indicated both by a line and by a color and size of a lattice site. The
projection planes were chosen separately for L=3 and L=4, to provide a view consistent
with the 2D projections in Fig. 6.4 and Fig. 6.5. The general character of the spin
configurations for L=3 and L=4 is quite similar. Let us focus on the L=4 case here, to
simplify the discussion by referring to a single set of angles, the one that was obtained
for L=4. There are two types of single tetrahedron spin arrangements present in
Fig. 6.16. Roughly half of the tetrahedra have the Palmer-Chalker spin arrangement,
either (30, 210, 30, 120) or (210, 30, 30, 210) degrees, which are two configurations
given by spin inversion. Another half of the tetrahedra are in the “defected Palmer-
Chalker” states, like that in Figure 6.5. Such arrangements are created by flipping a
pair of parallel spins in the Palmer-Chalker state. Note that in this “defected Palmer-
Chalker” state all angles are equal, as in the Champion-Holdsworth state. Because of
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this configuration of angles, one can say that this configuration is “more similar” to
the Champion-Holdsworth state than is the Palmer-Chalker state - to transform the
“defected Palmer-Chalker” state into the Champion-Holdsworth state a rotation of all
spin by 30 degrees is required, while to transform the Palmer-Chalker” state into the
Champion-Holdsworth state two spins have to be rotated by 150 degrees.

One can ask if this partialy ordered state which was obtained here for D/J =

2 · 10−4 is somehow similar in origin to the partially ordered phase which was found
by Chern et al. [220] in the pyrochlore Heisenberg antiferromagnet with first-, J1, and
second-nearest-neighbour, J2, intearctions. To answer this question, to look for some
spatial correlations between the type of local order on the tetrahedra, i.e. the Palmer-
Chalker and the “defected Palmer-Chalker” state, a more systematic analysis of spin
configuration snapshots is needed.
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Figure 6.17: qPC vs T for D/J = 3 · 10−4, 4 · 10−4, 5 · 10−4 and 6 · 10−4, L=3.

Upon further increase of D/J , the value of qPC increases while qCH vanishes. In
Figure 6.17 we plot qPC for D = 3 · 10−4, 4 · 10−4, 5 · 10−4 and 6 · 10−4. In this regime
we show only data for L=3 because equilibrating L=4 was not possible (see Appendix
E). Clearly qPC increases with an increase of D/J .

It is difficult to establish the exact value of D/J separating the entropic selection
of the Champion-Holdsworth state and energetic selection of the ground state - the
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Palmer-Chalker state. Based on the data presented here it can be estimated to be
around D/J = 2 · 10−4.

6.6 Summary

In this chapter, Monte Carlo studies of the easy-plane pyrochlore antiferromagnet with
dipolar interactions were presented. The model was studied in the context of the XY-
like pyrochlore antiferromagnet Er2Ti2O7. In the neutron scattering experiments [37,
61, 84, 208] it was found that Er2Ti2O7 undergoes a second order transition to the
Champion-Holdsworth state. This result was compared with Monte Carlo studies
of the easy-plane pyrochlore antiferromagnet [37, 60, 61]. The easy-plane pyrochlore
antiferromagnet undergoes an order-by-disorder first order transition to the Champion-
Holdsworth state. It was already recognized by the authors or Refs. [37, 61] that the
thermal selection of the Champion-Holdsworth state that was observed in Monte Carlo
simulations of the easy-plane pyrochlore antiferromagnet is not a likely explanation
of the physics of Er2Ti2O7. One of the reasons is that the dipolar interaction that
is present in Er2Ti2O7 lifts the degeneracy of the ground-state manifold of the easy-
plane pyrochlore antiferromagnet and selects the Palmer-Chalker configuration as the
ground state [67].

In our work we simulated the easy-plane pyrochlore antiferromagnet with dipo-
lar interactions. Our aim was to check at what relative value of the dipolar cou-
pling strength compared to the exchange interaction the energetic selection of the
Palmer-Chalker suppresses the entropic selection of the Champion-Holdsworth state.
We found that the boundary value of the relative strength of the dipolar coupling is
D/J ' 2 · 10−4. The dipolar coupling constant, D, that was used in the simulation
is corresponding to the distances measured in units of the lattice constant, a, and the
nearest-neighbour dipolar coupling is Dnn = D/rnn = D/

(√
2/4
)3
. Hence, we got

Dnn/J ' 0.005. This is significantly lower value than the ratio of the dipolar coupling
and exchange coupling for Er2Ti2O7, that we estimated to be of order of Dnn/J ' 0.2

(see Section 6.1). Hence, the model studied does not explain the physics of Er2Ti2O7.
It is possible that some other types of interactions can be at play, which, by destabilis-
ing the energetic selection of the Palmer-Chalker state, may promote entropic selection
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of the Champion-Holdsworth state. It was also suggested that quantum fluctuations
can stabilize the order-by-disorder selection in Er2Ti2O7 [37, 61].

Simulations of first order phase transitions are difficult due to the energy barrier
between an ordered state and the paramagnetic phase. In the zero dipolar coupling
case, D=0 and for D > 0, where the Champion-Holdsworth state is selected, we were
able to simulate system sizes up to L=5. In the regime were the Palmer-Chalker
state is selected, performing unusually large number, 108, of Monte Carlo sweeps, we
managed to equilibrate only the simulations for L=3. This peculiar behaviour may be
a topic of a future studies. Can the slow dynamics be attributed to the competition of
order-by-disorder and energetic selection? Or, maybe, it just originates in the specific
features of the easy-plane pyrochlore antiferromagnet?
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Chapter 7

Conclusion

In this work we considered four theoretical problems motivated by or related to ex-
perimental studies of magnetic materials. In Chapter 3, we investigated the effect of
transverse-field-induced longitudinal random field [25] in the diluted dipolar Ising ma-
terial LiHoxY1−xF4. Using a local mean-field theory applied to an effective spin-1/2
Hamiltonian we mapped a phase diagram in the parameter space of temperature, T ,
transverse magnetic field, Bx, and concentration of magnetic ions, x. The tempera-
ture, T, vs Ho3+ concentration, x, phase diagram obtained for zero transverse field,
Bx=0, is in quasi-quantitative agreement with the experimental phase diagram pro-
posed by Reich et al. Ref. [117], with the distinction that the spin-glass phase extends
down to x = 0. This is in agreement with earlier mean-field studies predicting that
either spin-glass or ferromagnetic ordering persist down to x=0 [136, 166]. This is also
in agreement with recent experimental studies [119, 135] that found a spin-glass tran-
sition in experiments on LiHo0.045Y0.955F4, contradicting earlier studies [13, 14, 117]
suggesting a novel anti-glass state and not a spin-glass phase for this concentration of
magnetic ions.

The experimental studies show that in the low dilution regime the rate of depressing
the critical temperature, Tc, by the transverse field, Bx, is larger than basic mean-
field theory predicts. It was shown that this effect can be accounted for in a local
mean-field calculation that includes the effect of transverse-field-induced longitudinal
random field [25]. But the phase boundary, Tc vs Bx calculated in Ref. [25] is restricted
to low values of magnetic field Bx. We recognized that this restriction is due to the
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effect of finite-size tail in magnetization plots and the geometry of the problem in
the parameter space (T ,Bx ,x). By looking for a signature of a phase transition
when concentration, x, and not T or Bx is varied, we were able to identify the phase
boundaries in the broad range of transverse field, Bx.

The main accomplishment of our local mean-field studies, is using local free energy
minima counting as a method to recognise a spin-glass phase. Using this method, we
were able to obtain the spin-glass phase boundary at Bx = 0 and to show that for
Bx > 0 the spin-glass phase is suppressed by a formation of a state with spins aligned
along the longitudinal random field.

The technique used in Chapter 3 to study LiHoxY1−xF4, i.e. the local mean-
field theory applied to an effective spin-1/2 Hamiltonian suffers from two sources of
systematic error. First of them is neglecting the effect of thermal fluctuations, which
is inherent to mean-field method. While the classical, i.e. Bx = 0, case can be studied
by classical Monte Carlo simulations and the pure case, x = 1, in transverse field can
be simulated using quantum Monte Carlo methods [1, 127], Monte Carlo studies of
the effect of transverse field and dilution simultaneously are difficult, if not impossible.
Hence, this source of inaccuracy is difficult to eliminate. The second factor limiting the
accuracy of our calculation is neglecting the hyperfine interaction, which was shown to
have a significant effect in the strong transverse field, i.e. close to the quantum phase
transition [10, 127]. Including hyperfine interaction requires diagonalising 136 × 136

matrices. The local mean-field method is computationally intensive due to considering
a large number of local magnetizations, performing disorder averages and repeating
the calculations for multiple random initial conditions in order to count the local free
energy minima in the glassy state. Adding hyperfine interaction will increase the
computational complexity, but, in principle, performing such calculation, for limited
number of points in the parameter space should, be possible.

In Chapter 4 we studied Ho(OH)3, Dy(OH)3 and Tb(OH)3 magnetic materials to
assess their suitability for experimental studies of quantum criticality and, in their di-
luted form: HoxY1−x(OH)3, DyxY1−x(OH)3 and TbxY1−x(OH)3, effects of transverse-
field-induced longitudinal random field. We used mean field theory to estimate the
value of transverse magnetic field, Bc

x, that, at zero temperature, destroys ferromag-
netic order and brings the system to quantum paramagnetic phase. We obtained
Bc
x =4.35 T, Bc

x =5.03 T and Bc
x =54.81 T for Ho(OH)3, Dy(OH)3 and Tb(OH)3,
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respectively. Bc
x for Tb(OH)3 is too large to be obtained in a laboratory. Ho(OH)3

was found to be very similar to LiHoF4 in its low-temperature magnetic properties,
and Ho(OH)3 seems to be a good candidate to exhibit the phenomena observed in
LiHoF4. In the case of Dy(OH)3 we found that for the values of Bx close to Bc

x, the
phase transition between the ferromagnetic and paramagnetic phases is first order.
This effect is strongly dependent on the parameters of the model, e.g. on the crystal
field parameters which are not known with very high level of accuracy; hence, a first
order transition may, or may not occur in the real material.

In Chapter 5, we provided a compelling evidence that in a system of spatially dis-
ordered Heisenberg dipoles there is a thermodynamical phase transition to a spin-glass
phase. A diluted dipolar Heisenberg spin glass have not been yet observed experimen-
tally, but there do exist magnetic materials that are likely to be a realisation of a
diluted dipolar Heisenberg spin glass. Good candidates are diluted gadolinium com-
pounds (GdxY1−x)2Ti2O7, (GdxY1−x)2Sn2O7 and (GdxY1−x)3Ga5O12. We studied the
systems of Heisenberg dipoles randomly placed on the simple cubic lattice at concen-
trations x=0.0625 and x=0.125. We performed a finite-size scaling analysis of the
spin-glass correlation length, ξL, and the spin-glass susceptibility, χSG. We calculated
the critical exponents ν and η. From our calculations, for both concentrations and
considering both ξL and χSG, we obtained ν between 1.1 and 1.25. The values obtained
for the exponent η are 1.35 and 1.45, for x = 0.125 and x = 0.0625, respectively. Due
to a slow equilibration and computationally expensive summation of long-range inter-
actions, we were able to study only a small number of relatively small system sizes.
Because of that limitation, the accuracy of our data is relatively low, and we were not
able to include scaling corrections in out finite-size scaling analysis.

In Chapter 6, we studied the pyrochlore easy-plane antiferromagnet with dipolar
interaction in the context of frustrated magnetic material Er2Ti2O7. Er3+ ions in
the crystalline environment of Er2Ti2O7 are found to be a good realisation of local-
easy-plane XY spins [36]. Neutron scattering studies reveal that Er2Ti2O7 under-
goes a continuous phase transition and orders in the so-called Champion-Holdsworth
state [37, 84, 208]. This is in disagreement with the fact that the ground state of the
easy-plane pyrochlore antiferromagnet with dipolar interaction is not the Champion-
Holdsworth state but the so-called Palmer-Chalker state [67]. It was demonstrated
that without considering dipolar interaction the easy-plane pyrochlore antiferromag-
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net has a continuously degenerate ground-state manifold and undergoes the order-
by-disorder transition to the Champion-Holdsworth state [37, 60, 61]. Using Monte
Carlo simulations we showed that, even though the the ground state of the easy-plane
pyrochlore antiferromagnet with dipolar interaction is the Palmer-Chalker state, the
order-by-disorder selection of the Champion-Holdsworth state, for some range of tem-
peratures, persist for small values of dipolar coupling strength. Nevertheless, the
upper bound of dipolar to exchange coupling ratio where the thermal selection of the
Champion-Holdsworth state persist, which was found in our simulations, is signifi-
cantly lower than the ratio of the dipolar to exchange coupling strength we estimated
for Er2Ti2O7. This indicates that other possibilities have to be considered in order to
explain the physics of Er2Ti2O7. One of the them is including other types of interac-
tions that would destabilise energetic selection of the Palmer-Chalker state and that
way promote entropic selection of the Champion-Holdsworth state. Another possibil-
ity is that quantum fluctuations are stabilising the order-by-disorder selection of the
Champion-Holdsworth state.

We hope that out work will stimulate interest in experimental studies of such
materials like HoxY1−x(OH)3 and DyxY1−x(OH)3 in the context of quantum criticality,
dipolar diluted Ising spin glass and physics of transverse field Ising model, or the
mentioned above diluted gadolinium compounds, in the context of a diluted dipolar
Heisenberg spin glass.

Theoretically, the local mean-field studies of transverse field diluted dipolar Ising
system, LiHoxY1−xF4, with counting of local free energy minima turned out to be a
useful technique for studies of competition of random frustration and random field
effects in this material. It might become valuable theoretical tool complementing
eventual experimental studies of HoxY1−x(OH)3. The accuracy of local mean-field
studies for diluted holmium compounds in a transverse magnetic field can be im-
proved by including the hyperfine interaction. The problem of Er2Ti2O7 still remains
unsolved. We showed that there is a regime where the order-by-disorder selection wins
the competition with energetic selection of the ground state, but, in the model stud-
ied, the tendency to select the Palmer-Chalker ground state is strong even with very
weak dipolar coupling. A likely avenue that may lead to understanding the physics
of Er2Ti2O7 is to search for possible factors that may destabilise the selection of the
Palmer-Chalker ground state.
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Appendix A

Perturbative calculation of the phase
diagram in Dy(OH)3

To investigate the role of the Jz matrix elements between the two lowest states and
the first excited levels on the magnetic behaviour of Dy(OH)3, we calculate the critical
temperature for a second order transition using second order perturbation theory. This
method is exact in the second order phase transition regime, where Bx is less than the
tricritical field value, BTCP

x (BTCP
x = 4.85 T when using the CFP of Scott et al.).

For a given value of the transverse field, Bx, and the corresponding value of av-
erage magnetization in transverse direction, 〈Jx〉, we consider LzzJz 〈Jz〉 term as a
perturbation to the reference mean-field Hamiltonian,

H0 = Hcf(Ji)− gµBBxJx + LxxJx 〈Jx〉 , (A.1)

describing the PM phase at a temperature T > Tc(Bx) as in Eq. 4.6 Here too, we
have dropped the constant terms. The eigenvalues, Ep, and eigenstates, |p〉, of the
perturbed Hamiltonian,

H = H0 + LzzJz 〈Jz〉 , (A.2)

are written in terms of eigenvalues, E(0)
p , and eigenstates,

∣∣p(0)
〉
, of the unperturbed

Hamiltonian, H0, of Eq. (A.1),

Ep = E(0)
p + 〈Jz〉E(1)

p + 〈Jz〉2E(2)
p , (A.3)
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|p〉 = |p(0)〉+ 〈Jz〉
∑
k 6=p

c
(1)
p,k|k(0)〉. (A.4)

The coefficients of the perturbative expansion are given by

E(1)
p = LzzJzpp, (A.5)

E(2)
p =

∑
k 6=p

L2
zz|Jzkp|2

E
(0)
p − E(0)

k

(A.6)

and
c

(1)
pk =

LzzJzkp
E

(0)
p − E(0)

k

, (A.7)

where Jzkp =
〈
k(0)
∣∣ Jz ∣∣p(0)

〉
are the matrix elements of the Jz operator in the basis

of eigenvectors of the unperturbed Hamiltonian, H0. The applied magnetic field, Bx,
lifts the degeneracy of the Kramers doublets, thus we can use the non-degenerate
perturbation method. The diagonal elements of the Jz operator vanish, hence, the
first order correction to energy vanish, E(1)

p = Jzpp = 0.
We calculate the thermal average of the Jz operator,

〈Jz〉 =
∑
p

〈p| Jz |p〉 e−Ep/T/Z, (A.8)

using the perturbed eigenstates, |p〉, and eigenvalues, Ep, and where Z =
∑

p e
−Ep/T .

Keeping only terms up to third order in 〈Jz〉 in the expansion of Eq. (A.8), we find

1

Z
e−Ep/T = n(0)

p

(
1 +Kp 〈Jz〉2

)
(A.9)

and

〈p| Jz |p〉 = 2Lzz 〈Jz〉
∑
k 6=p

|Jzpk|2

E
(0)
p − E(0)

k

, (A.10)

where, for convenience, we write n(0)
p = e−E

(0)
p /T/Z(0), Z(0) =

∑
p e
−E(0)

p /T and Kp =

1
T

(∑
k n

(0)
k E

(2)
k − E

(2)
p

)
. Thus, we can write

〈Jz〉 = 2 〈Jz〉
∑
p

n(0)
p

(
1 +Kp 〈Jz〉2

)∑
k 6=p

Lzz|Jzpk|2

E
(0)
p − E(0)

k

, (A.11)
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and finally, we get

〈Jz〉2 =
1− 2

∑
p,k 6=p n

(0)
p
Lzz |Jzpk|

2

E
(0)
p −E

(0)
k

2
∑

p,k 6=pn
(0)
p Kp

Lzz |Jzpk|2

E
(0)
p −E

(0)
k

. (A.12)

Putting 〈Jz〉 = 0 in Eq. (A.12) we obtain the condition for the critical temperature
Tc:

2
∑
p,k 6=p

Lzz|Jzpk|2

E
(0)
p − E(0)

k

e
−E(0)

p
Tc = 1. (A.13)

In solving Eq. (A.13) for Tc, we have to self-consistently update the value of 〈Jx〉 in
order to diagonalize H0 in Eq. (A.1) and to find E(0)

p . Solving Eq. (A.13) with only the
4 lowest energy eigenstates (after diagonalizing the full transverse field Hamiltonian
of Eq. (4.3)), yields a phase diagram that is in good agreement for Bx < BTCP

x with
the phase boundary obtained with all crystal field eigenstates (or equivalently from
Eq. (4.7)). Estimating the values of the elements of the sum in Eq. (A.13), one
can see that the matrix elements of the Jz operator, mixing the two lowest states
with the excited states, may bring a substantial correction to the value of the critical
temperature obtained when only the two lowest eigenstates are considered. In the low
temperature regime, one could omit the matrix elements between the states of the
excited doublet, but we have to keep the matrix elements between the states of the
ground doublet and first excited doublet. The contribution from the further exited
states is quite small because of the increasing value of the energy gap present in the
denominator in Eq. (A.13).

At T=0, Eq. (A.10) leads to the equation for the critical transverse field, Bc
x:

2
∑
k 6=1

Lzz|Jz1k(Bc
x)|2

E
(0)
1 (Bc

x)− E(0)
k (Bc

x)
= 1. (A.14)

Again, we see that the matrix elements of Jz operator, admixing the ground state
with excited levels, have to be considered. Note that since Eq. (A.14) pertains to the
case of zero temperature, this equation is only valid in a regime where the transition
is second order (i.e. when Jex > J2nd

ex ).
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Appendix B

Magnetization and staggered
magnetization

To rule out the presence of a long range order we calculate the magnetization and stag-
gered magnetisation. The thermal and disorder averaged magnitude of magnetization
is defined as

M =

[〈∣∣∣∣∣ 1

N

N∑
i=1

Si

∣∣∣∣∣
〉]

, (B.1)

where 〈. . .〉 denotes thermal averaging and [. . .] is a disorder average.
A system of dipoles in fully occupied SC lattice orders antiferromagnetically [52].

The ground state (GS) of such antiferromagnet is described by a spin vector with the
following components: [52, 221]

Sxi = τxi sin θ cosφ,

Syi = τ yi sin θ sinφ

Szi = τ zi cos θ,

, (B.2)

Such GS has two rotational degrees of freedom: polar angle, θ, and azimuthal angle,
φ. τi ≡ [τxi , τ

y
i , τ

z
i ] is given by

τi = [(−1)r
y
i +rzi , (−1)r

x
i +rzi , (−1)r

x
i +ryi ]. (B.3)

ri is the position of site i, measured in units of lattice constant, and its vector com-
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ponents, rxi , r
y
i and ryi , on SC lattice, are all integers. The staggered magnetization,

which is indicating ordering described by Eqs. (B.2), is given by

Mstag =

[〈∣∣∣∣∣ 1

N

N∑
i=1

Siτi

∣∣∣∣∣
〉]

. (B.4)

In Figs. B.1 and B.2 we plot the magnetization, M , and the staggered magne-
tization, Mstag, for x=0.0625 and x=0.125, respectively. M has a small value that
decreases with system size, L; this indicates that nonzero magnetization is just a
finite-size effect and not an indication of long-range order. Furthermore, M remains
constant at all temperatures and does not increase below Tg. The fairy large magne-
tization indicates that the finite-size effects are large, and thus the scaling corrections
are expected to be large. The staggered magnetization, Mstag, is smaller than the
magnetization, M . Mstag, similarly to M , decreases with increasing system size, L,
and there are no features indicating ordering transition.
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Figure B.1: Magnetization, M , and staggered magnetization, Mstag, x=0.0625.
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Figure B.2: Magnetization, M , and staggered magnetization, Mstag, x=0.125.
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Appendix C

Periodic boundary conditions and
self-interaction

We consider a dipolar Hamiltonian of the form

H =
1

2
εd
∑
i,j,µ,ν

δµνr2
ij − 3rµijr

ν
ij

r5
ij

Sµ(ri)S
ν(rj), (C.1)

where µ and ν are vector components, µ,ν=x, y or z. It can be written as

H =
1

2
εd
∑
i,j,µ.ν

Lµνij Sµi Sνj , (C.2)

or shorter

H =
1

2
εd
∑
i,j

SiL̂ijSj, (C.3)

where

Lij = L(rij) =
δij |rij|2 − 3rµijr

ν
ij

|rij|5
. (C.4)

To impose periodic boundary conditions, we replace the coupling tensor, Lij, with

Lµνij =
∑

n

′ δij |rij + n|2 − 3(rij + n)µ(rij + n)ν

|rij + n|5
, (C.5)
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where n = kLx̂+ lLŷ +mLẑ; k, l, m are integers and x̂, ŷ and ẑ are unit vectors. L
is the linear dimension of the cubic simulation box.

∑
n
′ means that the summation

does not include the n=0 term for i = j, where rij = 0. One must be aware of the
presence of the self-interaction term

Lµνii =
∑
n 6=0

δij |n|2 − 3nµnν

|n|5
. (C.6)

The self-interaction term describes the interaction of a dipole with its own periodic
images replicated outside the simulation box. For a cubic simulation box it reduces to
a simple form Lµνii = Liiδµν . To show that the off-diagonal terms are zero, for µ 6= ν

we write
Lµνii = −3

∑
n 6=0,nµ>0

nµnν + (−nµ)nν

|n|5
= 0. (C.7)

And further, in cubic symmetry, all three directions x̂, ŷ and ẑ are equivalent; hence,
Lxxii = Lyyii = Lzzii .
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Appendix D

Ewald summation

We wish to calculate the lattice sum

Lµνij =
∑

n

′ δij |rij + n|2 − 3(rij + n)µ(rij + n)ν

|rij + n|5
. (D.1)

The prime with the summation sign means that for i = j the sum does not include
the n=0 term. Noting that

−∇µ∇ν
1

r
=
δµνr

2 − 3rµrν
r5

, (D.2)

we write

Lµνij = −∇µ∇ν

∑
n

′ 1

|rij + n| ; (D.3)

hence, we may calculate the lattice summation for Coulomb potential and obtain the
sums for dipolar interactions by taking derivatives afterwards.

The infinite sum (D.3) is conditionally convergent, that means that the result de-
pends on the asymptotic order of summation. The Coulomb or dipolar potential is
slowly decaying at large distances; hence, with direct summation it converges slowly.
To alleviate these problems, the summation is to be performed by the method intro-
duced by Ewald [76–79]. In Ewald technique, we separate the summation into two
rapidly convergent sums: one performed in the direct (real) space and the other sum
performed in the reciprocal space. Here we show only simplified derivation, rigorous
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mathematical proofs and detailed discussions can be found in Ref. [78].
Using the relation

1

r
=

2√
π

∞̂

0

e−r
2ρ2dρ, (D.4)

we write

1

r
=

2√
π

αˆ

0

e−r
2ρ2dρ+

erfc(αr)
r

, (D.5)

where
erfc(x) = 1− erf(x) =

2√
π

ˆ ∞
x

e−y
2

dy (D.6)

is the complementary error function. The second term in Eq. (D.5), for large α,
is decreasing fast with increasing r; hence, converges rapidly in the summation over
n. The first term falls to zero slowly with increasing r, but it converges rapidly in
a reciprocal space summation formulation. The splitting parameter α is chosen such
that both real space and reciprocal space sums are converging fast. To obtain the
reciprocal space summation term we use the relation

2√
π

∑
n

e−(r+n)2ρ2 =
2π

L3

∑
K

ρ−3e−K
2/4ρ2eiKr, (D.7)

where K are the reciprocal lattice vectors associated to the simulation cell, n =

kLx̂ + lLŷ + mLẑ; k, l, m are integers and x̂, ŷ and ẑ are unit vectors. Some care
must be taken to account for the particular case of r=0 that is corresponding to self-
interaction (C.6). In that case, n=0 should be excluded from the summation (D.3)
and we write

2√
π

∑
n6=0

e−(r+n)2ρ2 =
2π

L3

∑
K

ρ−3e−K
2/4ρ2eiKr − 2√

π
e−r2ρ2 . (D.8)

Noting that

αˆ

0

dρ ρ−3e−K
2/4ρ2 =

2

K2
e−K

2/4α2

, (D.9)
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we can write

∑
n

′ 1

|rij + n| =
∑

n

′ erfc(α |rij + n|)
|rij + n|

+
∑
K 6=0

4π

L3K2
e−K

2/4α2

eiKrij

− 2α√
π
δij. (D.10)

The divergent, K=0 term in reciprocal lattice summation is omitted.
To calculate dipolar the sum in (D.3), we need to take derivative of expression

(D.8). To start, we compute

−∇µ∇ν
erfc(αr)

r
=
δµνB(r)r2 − C(r)rµrν

r5
, (D.11)

where
B(r) = erfc(r) +

2αr√
π
e−α

2r2 , (D.12)

and
C(r) = 3erfc(r) +

2αr(3 + 2α2r2)√
π

e−α
2r2 . (D.13)

For the reciprocal space part we compute

−∇µ∇νe
iKr = KµKνe

iKr,

and to obtain the self term

−∇µ∇νe
−r2ρ2 = 2ρ2

(
δµν − 2ρ2rµrν

)
e−r

2ρ2 . (D.14)

Finally, we have

Lµνij =
∑

n

′ δµνB(rij)r
2
ij − C(rij)r

µ
ijr

ν
ij

r5
(D.15)
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+
4π

L3

∑
K 6=0

KµKν

K2
e−K

2/4α2

eiKrij (D.16)

− 4α3

3
√
π
δµνδij. (D.17)

Similarly to Coulomb case (D.10), in the reciprocal space summation, divergent K=0
term is omitted.

The effect of the magnetic polarization of the surface does not vanish in the ther-
modynamic limit. In the case of a spherical sample, or a summation over a series of
spherical shells, the surface contribution to the total energy is [79]

U (surf) =
2π

(2ε′ + 1)L3

∑
i,j

µiµj,

where ε′ is the magnetic permeability of the surrounding medium. In the case of a
long cylindrical shape the surface term is zero. In our simulations we set the surface
term to zero; hence, we are implicitly considering a long, cylindrical sample, or we
put ε′ = ∞, infinite magnetic permeability outside the considered system, so called
“metallic boundary conditions”, by analogy to the physical situation with electric, as
opposed to magnetic dipoles.
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Appendix E

Slow equilibration in simulations of
the easy-plane pyrochlore
antiferromagnet

In Monte Carlo simulations a certain number of Monte Carlo sweeps have to be carried
out before the simulation equilibrates, i.e. reaches a steady state, where the configura-
tions are sampled with the Boltzmann probability distribution that is corresponding
to the simulated temperature. There is no universal way to find out how many Monte
Carlo sweeps need to be carried out before equilibrium is reached. It depends on
the simulated model, temperature and system size. Some systems equilibrate quite
quickly; e.g. in simulations of unfrustrated Ising or Heisenberg ferromagnets usually
an order of magnitude larger number of Monte Carlo sweeps is performed to obtain a
good statistics for the measured observables than to equilibrate the system. On the
opposite side, some systems are very hard to equilibrate. It happens in the situations
when high energy barriers are present. An example of such systems are spin glasses.
Another example of models difficult to equilibrate are system undergoing a first order
phase transition. In the case of spin glasses, there is a large number of local energy
minima in the phase space that are separated by high energy barriers. In the case of a
first order phase transition, the energy barrier occurs between the ordered phase and
paramagnetic phase.

It turns out that the simulations of the easy-plane pyrochlore antiferromagnet are
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very difficult to equilibrate. One reason for that is that the transition is strongly first
order. The difficulty of equilibrating a simulation of a first order phase transition
increases with increase of the system size. The energy fluctuations decrease with
increase of the number of spins, N , like 1/

√
N . For small N , the fluctuations may

be sufficient to overcome the energy barrier at the effective critical temperature, and
the simulated system switches between ordered and disordered configurations. For a
large N , the fluctuations are insufficient for the system to overcome the energy barrier,
and in the vicinity of the transition temperature a hysteresis effect occurs - over some
temperature range the system stays in the initial, either ordered or disordered state.
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Figure E.1: Equilibration„ qCH vs number of Monte Carlo sweeps (MCS) for D=0,
L=5 (left) and L=6 (right).

For the Hamiltonian without dipolar interactions (see Section 6.5.1) we were able
to equilibrate system sizes up to L=5. In Fig. E.1, we show evolution of the sublattice
magnetization, M4 of Eq. (6.26), with Monte Carlo time. The left panel shows M4 vs
number of Monte Carlo sweeps for L=5, at two temperatures: T=0.126 and T=0.127.
The fact that at T=0.126M4 reaches a large value, that is corresponding to the ordered
phase, and than switches back to the paramagnetic phase, for a short periods of Monte
Carlo time, indicates that the the system just below the effective critical temperature,
Tc(L), and simulation is equilibrated. At T=0.127, the system is just above Tc(L);
it stays most of the time in the disordered state and occasionally switches to the
ordered state for a short intervals of Monte Carlo time. In the right panel of Fig. E.1
equilibration for L=6 is shown for three values of temperature, T=0.125, T=0.126
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Figure E.2: Equilibration, qPC vs number of Monte Carlo sweeps (MCS) for L=3 (left)
and L=4 (right) with dipolar coupling D/J = 5 · 10−4.

and T=0.127. As the simulation progresses, ordered configurations are obtained at
progresively higher temperatures. The simulation was started from a random initial
configuration; hence, initially there is a large number of thermal replicas that are in
disordered state, and because the thermal fluctuations are smaller than the energy
barrier, the probability of “tunneling” from a disordered to an ordered configuration is
low. There is no indication that the process of “tunneling” to the ordered configurations
will not continue at higher temperatures if the simulation runs longer, i.e that the
plot for T=0.127 will not exchibit a sharp increase of qPC, similar to T=0.125 and
T=0.126, after a sufficiently long equilibration. Hence, the simulation for L=6 is not
yet equilibrated.

When a nonzero dipolar couplings are included in the Hamiltonian (see Section
6.5.2) the simulations get even more difficult to equilibrate. One reason for that can
be increasing of the energy gap between the ordered and the disordered phase when
strength of dipolar force increases. But the slowing down of the simulation dynamics
is very large, and it is likely that there there are other reasons of this peculiar behavior
- the dipolar couplings considered are very weak and thus the change of the energy
barrier is expected to be small. In the regime where the dipolar coupling is large
enough to induce ordering to the Palmer-Chalker state we were able to equilibrate
the system sizes only up to L=3. In Fig. E.2 we show the evolution of the order
parameter qPC that indicates the ordering into the Palmer-Chalker state. For L=3
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it clearly saturates after around 6 · 107 Monte Carlo sweeps. For L = 4, even after
108 Monte Carlo sweeps equilibrium is not reached yet. It seems that to equilibrate
this L=4 simulation the number of Monte Carlo sweeps would have to be increased
by more than one order of magnitude.
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