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Abstract

A combined relative pose and target object model estimation framework using a

monocular camera as the primary feedback sensor has been designed and validated

in a simulated robotic environment. The monocular camera is mounted on the

end-effector of a robot manipulator and measures the image plane coordinates of

a set of point features on a target workpiece object. Using this information, the

relative position and orientation, as well as the geometry, of the target object are

recovered recursively by a Kalman filter process. The Kalman filter facilitates the

fusion of supplemental measurements from range sensors, with those gathered with

the camera. This process allows the estimated system state to be accurate and

recover the proper environment scale.

Current approaches in the research areas of visual servoing control and mobile

robotics are studied in the case where the target object feature point geometry

is well-known prior to the beginning of the estimation. In this case, only the

relative pose of target object frames is estimated over a sequence of frames from

a single monocular camera. An observability analysis was carried out to identify

the physical configurations of camera and target object for which the relative pose

cannot be recovered by measuring only the camera image plane coordinates of the

object point features.

A popular extension to this is to concurrently estimate the target object model

concurrently with the relative pose of the camera frame, a process known as Simulta-

neous Localization and Mapping (SLAM). The recursive framework was augmented

to facilitate this larger estimation problem. The scale of the recovered solution is

ambiguous using measurements from a single camera. A second observability anal-

ysis highlights more configurations for which the relative pose and target object

model are unrecoverable from camera measurements alone. Instead, measurements

which contain the global scale are required to obtain an accurate solution.

A set of additional sensors are detailed, including range finders and additional

cameras. Measurement models for each are given, which facilitate the fusion of this

supplemental data with the original monocular camera image measurements. A

complete framework is then derived to combine a set of such sensor measurements

to recover an accurate relative pose and target object model estimate.

This proposed framework is tested in a simulation environment with a virtual

robot manipulator tracking a target object workpiece through a relative trajectory.

All of the detailed estimation schemes are executed: the single monocular camera
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cases when the target object geometry are known and unknown, respectively; a two

camera system in which the measurements are fused within the Kalman filter to

recover the scale of the environment; a camera and point range sensor combination

which provides a single range measurement at each system time step; and a laser

pointer and camera hybrid which concurrently tries to measure the feature point

images and a single range metric. The performance of the individual test cases are

compared to determine which set of sensors is able to provide robust and reliable

estimates for use in real world robotic applications.

Finally, some conclusions on the performance of the estimators are drawn and

directions for future work are suggested. The camera and range finder combination

is shown to accurately recover the proper scale for the estimate and warrants further

investigation. Further, early results from the multiple monocular camera setup show

superior performance to the other sensor combinations and interesting possibilities

are available for wide field-of-view super sensors with high frame rates, built from

many inexpensive devices.
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Chapter 1

Introduction

In traditional industrial robotics, the end-effector is programmed to repeat a set

of tasks defined in the global frame provided that the target object’s position is

accurately known in this frame. Such an operation is shown in Fig. 1.1(a). This

positioning technique relies on a kinematic model of the robot, which is assumed

to accurately predict the robot manipulator pose given knowledge of joint param-

eters and link lengths. However, if the pose of either the robot, due to imperfect

modelling, or the target object, due to misalignment, are not known with sufficient

accuracy, operation failure will result, as shown in Fig. 1.1(b).

For mobile robots, the position and orientation of the vehicle can be estimated

based on dead reckoning using odometry measurements and a model of the vehicle

dynamics. The new pose can be calculated from a previous pose by integrating

drive motor speeds over time using the relationship between wheel rotation and

robot motion. However, even small amounts of noise or unmodelled disturbances

accumulate to produce large positioning errors over time. Consider a wheel slip-

ping or sliding during a maneuver. Without an external mechanism to remove the

accumulated error, or drift, the positioning operation will certainly fail.

For successful robot manipulation operations, it is not the absolute positions

of the robot end-effector and target object which are important, but rather, the

relative position and orientation of these two entities with respect to each other.

Accordingly, sensors capable of measuring this relative pose can be mounted on the

robot end-effector and the operations are carried out using direct measurements

of the target object position. Many researchers have considered using monocular

cameras for this task. The camera is fixed to a location on the robot end-effector, as

shown in Fig. 1.1(c). Using feedback from this end-effector mounted camera to con-

trol a robotic manipulator around a desired relative position and orientation with
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Figure 1.1: (a) Typical industrial robotic operation in which the robot attempts to

pick up an object where the absolute pose of both the end-effector and the workpiece

are known in the global frame. (b) If the position of the target object is not as

expected, the operation will fail. (c) Mounting a camera on the end-effector, the

robot measures relative pose of target object and makes the proper adjustments.
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respect to a target object is known as Visual Servoing [7]. Consequently, robotic

operations on a target workpiece can be performed when the absolute position and

orientation of the object in a global frame are not known with confidence.

Visual servoing controllers can be classified into two broad classes, first identified

by Weiss [52]: Image-Based Visual Servoing (IBVS) and Position-Based Visual

Servoing (PBVS). For an overview of the two structures, with more emphasis on

the IBVS methods, the reader is referred to the tutorial papers by Chaumette and

Hutchinson [7] and [8]. Each approach has particular advantages and disadvantages.

The bulk of the research effort has focussed on IBVS systems, with only a

handful of research groups working in the position-based visual servoing paradigm.

Most of the previous research in PBVS systems has been carried out by the labs of

Wilson [53], Martinet [38], and more recently, Yoon [55] and Fontanelli [23]. The

work detailed in this thesis is an extension of these foundations, intended to make

the position-based visual servoing control scheme more applicable to a wider array

of practical applications.

1.1 Position-Based Visual Servoing

The PBVS scheme aims to track and control the relative position and orientation

of a target object with respect to the robot end-effector using a fixed monocular

camera [53]. The system consists of a controller and observer, which are indepen-

dent, with the pose estimation component acting as the observer and providing a

full state estimate as feedback to the controller. In this way, the control error signal

can be formed in 3D Cartesian space.

Within the position-based visual servoing control structure, the controller relies

on state estimates from the pose estimation module to regulate the robot end-

effector to the desired relative configuration with respect to the target object. Tra-

ditionally, the pose estimation recursively calculates the relative position and ori-

entation of the target object using the measurements from the monocular camera

assuming that a perfect geometric model of the workpiece is available [53]. There-

fore, in order for the controller to work effectively, a known target object model

must be determined a priori. This is often cited as the principal weakness of the

PBVS methods.

Some research has attempted to estimate the target object model along with

the relative object pose, but with limited success [17]. The ability to estimate both
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the target object model and relative pose, simultaneously, would allow a position-

based visual servoing system to operate effectively on a wide range of completely

unknown target workpieces. The design and verification of a combined pose and

target model estimation system is the focus of this thesis.

1.2 Organization

The thesis is organized in the following manner. The basic problem of using an

end-effector-mounted monocular camera to estimate the relative position and ori-

entation of a target object with known geometry is outlined in Chapter 2. In this

context, the target object model consists of a set of point features at known loca-

tions. The parallels between the visual servoing pose estimation and the mobile

robot localization problems are identified. A recursive filtering framework is out-

lined in which accurate, up-to-date estimates of the relative pose are recovered at

each time step. Finally, an observability analysis is performed on the relative pose

system to identify relative configurations of the camera and target object for which

the image plane measurements do not indicate a unique relative pose.

Chapter 3 extends the problem into one of estimating both the relative pose of

the target object, as well as the feature point locations on the object itself, using

the single monocular camera. Current techniques from multiple research areas are

outlined, and effective parameterizations from mobile robotic Simultaneous Local-

ization and Mapping (SLAM) systems are adapted for use in the visual servoing

system. An extended recursive framework for estimating the pose and model is de-

tailed, and another observability analysis identifies conditions when the combined

estimation is not possible. The significant result is that while such a system is

able to recover a consistent solution, it is unable to recover the global scale of the

environment.

Additional measurements of the target object are required to recover a solution

to the combined problem which is accurate to scale. In Chapter 4, the use of

supplemental sensors on the robot end-effector is considered. A framework for

combining measurements from supplemental range and bearing sensors is given

which will recursively fuse the data with the monocular camera measurements.

The system proposed in Chapter 4 is analyzed under a simulation environment

in Chapter 5. A set of sensor combinations are tested and compared operating

on a virtual target object in a robotic environment. The reliability, accuracy, and

robustness of each system is evaluated.
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Finally, conclusions and recommendations for future research are found in Chap-

ter 6.
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Chapter 2

Known Object Model

The pose estimation component of a position-based visual servoing controller is

designed to make direct measurements of a target object’s position and orientation

(collectively known as pose) relative to the robot end-effector frame [53]. In this

way, the estimator serves as an observer for the visual servoing controller, which

subsequently uses these estimates to drive the end-effector through some relative

trajectory with respect to the object to complete a specified task.

In this chapter, a perfect geometric model of the target object is assumed to be

available. An object point feature is a visually distinguishable entity on the tracked

physical object that corresponds to a unique Cartesian position with respect to a

fixed local object frame and is identifiable in a camera image. When the object

model is known, all of the 3D coordinates of the object point features are exactly

known in a common local object coordinate frame (O). Further, the object is a

rigid-body and accordingly, the locations of the point features are fixed within the O

frame. A valid set of features is not limited to point features. Other viable geometric

features to track include, but are not limited to, edges [55] or planar surfaces.

However, for the purposes of this work, only point features will be considered for

tracking.

The coordinate frames used for this estimation are shown in Fig. 2.1. The

camera coordinate frame (C) is fixed with with respect to the camera device, which

is in turn fixed with respect to the robot end-effector coordinate frame (EE). A fixed

homogeneous transformation [49] relating the location of a point in the C frame to

the EE frame, written TEE
C , can be found through camera extrinsic calibration. As

a result, this allows control actions to be performed with respect to the EE frame.
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Figure 2.1: The camera frame (C) is fixed with respect to the robot end-effector

frame (EE). The relative pose of the object frame (O) with respect to the C frame

is the subject of the estimation.

2.1 Problem

2.1.1 Definition

A relative pose estimation system must provide accurate, real-time estimates of the

relative position and orientation of the target object O frame with respect to the

robot end-effector EE frame using the measurements from a set of onboard sensors.

In this case, that sensor is a monocular camera mounted on the robot end-effector

with an associated coordinate frame C. The relative pose estimation system must

then use image measurements of point features on the target object and provide

a solution to a set of photogrammetric equations to estimate the transformation

from the O to C frames, TC
O. The relative pose of the target object with respect

to the end-effector can then be trivially found,

TEE
O = TEE

C TC
O. (2.1)

In the remainder of this chapter, the work will only consider the estimation of

TC
O since TEE

C is assumed known. The three-dimensional transformation, TC
O, can

be uniquely parameterized by six values, (three for position, three for orientation)
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which together form the relative pose vector [53],

w = [ X Y Z φ θ ψ ]T , (2.2)

where X, Y , Z give the Cartesion coordinates of the O frame origin expressed

in the C frame and φ, θ, ψ represent Euler angles for roll, pitch, and yaw, with

respect to the camera frame’s XC , Y C , and ZC axes, respectively. The coordinate

transformation for a point in the O frame to the C frame, which proceeds by first

rotating the point to correspond to the object frame’s relative orientation, and then

translating by the relative position expressed in the C frame, can be written as a

matrix operation using homogeneous coordinates,
xC

yC

zC

1

 = TC
O


xO

yO

zO

1

 , (2.3)

where

TC
O =

 RC
O

X

Y

Z

0 1

 . (2.4)

The relative orientation of the O frame with respect to the C frame is expressed

by a rotation matrix and is formed using these 3-2-1 Euler angles,

RC
O = RZC (ψ)RY C (θ)RXC (φ), (2.5)

where RZC (ψ) is a rotation about the ZC-axis of the C frame by an angle ψ, and

likewise for the other two parameters. Accordingly, the full rotation matrix is,

RC
O =

 CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

CθSψ SφSθSψ + CφCψ CφSθSψ − SφCψ
−Sθ SφCθ CφCθ

 , (2.6)

where Cφ = cosφ and Sφ = sinφ.

Providing accurate estimates of the relative pose vector is the principal re-

quirement of the pose estimation scheme. The next section summarizes a set of

assumptions used to make such a solution tractable for most practical applications.
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2.1.2 Assumptions

In order to provide real-time relative pose estimates, some explicit assumptions

about the relative pose system will be made:

Assumption 1 The relative motion between the camera and target object is smooth

and can be approximated by a constant velocity model [53] [13]. That is, the

dynamics of the relative pose vector parameters can be described at time step

k by,

wk = wk−1 + δtẇk−1 + ηpk (2.7)

and

ẇk = ẇk−1 + ηvk. (2.8)

where δt is the sampling period of the system and ηpk and ηvk are vectors of

zero-mean Gaussian disturbance noise with known covariance.

Assumption 2 The target object is a rigid-body and defined by set of N ≥ 3

feature points and their Cartesian coordinates in the local object frame, ζOj =

[ xOj yOj zOj ]T , j = 1...N , are perfectly known.

Assumption 3 The object features points are distinguishable in the camera im-

ages and their perspective projection can be measured, up to zero-mean Gaus-

sian measurment noise, at each time step.

Assumption 4 Both the disturbance noise and measurement noise can be repre-

sented by vectors of zero-mean Gaussian noise with known covariance. All of

the individual noise processes are assumed to be uncorrelated to other noise

processes and the system states at each system time step.

These assumptions do not restrict the applicability of any solution to this prob-

lem since they are generally satisfied in practical situations. Instead, the problem

presented here is general and many real-world applications would allow other con-

straints to be asserted which would simplify the task.

Some previously proposed solutions to the problem defined in this section are

detailed next.

2.2 Common Approaches

The use of visual information for estimating the relative position and orientation

of two coordinate frames where a single camera is rigidly mounted within one, has
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received a great deal of attention by researchers across multiple areas. The two

fields comprising the focus of this investigation are position-based visual servoing

where it is known as pose estimation and mobile robotics where it is referred to as

localization [50]. Regardless of which perspective is used, the problem is essentially

one of an optimization over the state space to find the set of relative position

and orientation parameters which provide the best match for a set of perspective

measurements. The specific algorithms used to solve this optimization vary from

one-shot batch optimizations to recursive filters. For real-time operation, filter-

based recursive estimations have received the most attention since a ’near optimal’

estimate can be calculated quickly using all of the available measurement data up

to and including the current time step [53].

Within position-based visual servoing, the pose estimation component acts as

an observer, providing the robot controller with a full-state estimate of the relative

position and orientation of the target object with respect to the robot end-effector

coordinate frame. The target object is free to move during the pose estimation

with position-based visual servoing. Accordingly, any odometric data from the joint

encoders on the robot only describe half of the relative motion to be estimated and

therefore, are usually not included in the measurement space of the estimation [38]

[53] [39] [28]. Instead, only the image plane measurements from a single monocular

camera mounted on the robot manipulator are used to estimate the relative motion.

This configuration is commonly known as eye-in-hand.

The definitive work on position-based visual servoing control is that of Wilson

et al. [53]. Position and orientation (POSE) estimates of a target object with a per-

fectly known geometric model are recursively calculated using an Extended Kalman

Filter [31] (EKF) on measurements of object point features from a monocular cam-

era mounted on the robot end-effector. These POSE estimates are then used by

the visual servoing controller to move the robot to, and remain at, the commanded

relative position and orientation. The EKF framework allows for the fusion of any

number of point feature image plane measurements, including properly coping with

occluded features. The demonstrated system is able to track fast relative motions

by operating at a 60 Hz sampling rate on the limited computing hardware of the

time. A restriction of this method is the requirement for a perfect object model of

the tracked workpiece. This work provides the base framework on which this study

builds and will be investigated in detail starting in the next section.

Martinet et al. have also proposed several position-based visual servoing control

schemes using pose estimates of a target object with a known model [38] [39].

The pose estimation is performed by extracting image primitives (points, lines,
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etc. ) and using the known object model to iteratively find the object rotation and

translation such that the reprojections of these features on the model best match

those measured in the image. This is done by applying the DeMenthon algorithm

from [16] which can determine the pose of a known object from a single image. The

algorithm works by iteratively solving a set of approximate linear equations for a

given camera image. The assumption is made that at least four coplanar point

features are available in each image and the correspondence between these points

and the target model point features is known.

Hulls et al. [28] build on the work of Wilson et al. [53] and examine the fusion

of end-effector mounted camera and laser range measurements to improve the ro-

bustness and reliability of the pose estimation for tracking known object models.

It is assumed that the complete surface geometry of the target object is available

and, as a result, a measurement model for the laser range sensor is produced using

ray-tracing techniques. With this new measurement model, the EKF was used to

properly combine the two measurement sets and resulted in improved relative pose

estimates of the target object. An improvement in the depth estimate of the object

was obtained, which is typically a parameter with low sensitivity when using only

a monocular camera [53].

Recently, Yoon et al. [55] recreated the work of Wilson for tracking the relative

position and orientation of a target object with a single camera using the EKF

for estimation. The target object model consists of edges defined by two end-

points. While the pose estimation component is similar to previous work, the

feature extraction phase has been made more robust by actively searching for, and

verifying, object model feature-to-measurement correspondence.

Mobile robot localization using camera sensors is a slightly simpler problem

than position-based visual servo pose estimation since the robot is assumed to be

moving through a static environment consisting of landmarks at known locations

and the estimation is usually performed in two dimensions. As a result, the motion

of the robot and camera within the world is completely described by the planar

robot dynamics. This allows for a dynamic model of the mobile robot to be used

along with odometry measurements from wheel encoders [4] [46] to supplement the

measurement space for the estimation.

Several researchers have investigated the localization problem for mobile robots

in structured environments where it is assumed that a map of the world is avail-

able. A survey of many such techniques can be found in [18]. Where position-based

visual servo pose estimation tracks the motion of the target object in the robot end-
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effector frame, mobile robot localization tracks the inverse – the robot motion in

the world frame. While it is a subtle difference, it has implications for the inter-

pretation of the recovered parameters and the linearity of the measurement model

[40]. Additionally, features in the visual servoing context are often referred to as

landmarks in the mobile robotics literature [19]. They will be used interchangeably

in this work.

Baumgartner et al. detail a 2D localization system using a robot-mounted cam-

era to measure the bearing to point features in the environment at known locations

[4]. The robotic vehicle is assumed to move in the plane and therefore only the

X-Y positions and one angle θ need to be tracked to represent the robot pose at

each time step. The estimation system is formulated similar to the recursive pose

estimation systems and also utilizes the EKF to track the robot position. However,

the robot is assumed to have a known dynamic model and provides odometry data

for dead-reckoning to augment the vision-based measurements.

Mobile robots capable of visually localizing their position and orientation within

a known environment have also been augmented with simple range finding devices

and information from both sensors is used to help with localization and naviga-

tion tasks. In [46], ultrasonic sensors are mounted on the front of a mobile robot

alongside a single camera capable of localizing the robot within the environment.

While the supplementary sensors are not used directly in the localization estimates,

they serve to aid in avoiding obstacles in the environment. Similar to the previous

system, the estimation is performed by an EKF and the odometry measurements

are used to further supplement the visual information.

If multiple robots can be used in an application, the sensory readings from each

can be fused in a decentralized estimation to localize each robot with respect to

some known landmarks. Nakumura et al. use many soccer-playing robots, each

carrying a camera, and the measured azimuth angles between them as well as a few

fixed landmarks (goal posts), to calculate the absolute location of each robot [44].

The geometric contraints imposed by the relative angles to each robot are solved

iteratively to try and localize the robots.

A good discussion of the localization process and the application of recursive

estimation techniques for the general mobile robot case can be found in Thrun et

al. [50].
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2.3 Recursive Estimation

The EKF is used extensively to provide recursive estimates from noisy measure-

ments of the outputs of nonlinear pose estimation systems [9] [13] [17] [28] [43] [53].

In order to deploy the EKF framework, the noise processes acting on the system

must be (approximately) that of zero-mean Gaussian noise. This is an assumption

in the context of position-based visual servoing pose estimation. Madhusudan [36]

showed that the measurement noise associated with extracting image measurements

of object point features has approximately these properties and the use of the EKF

is justified in practice. The following discussion is based on the work of Wilson et

al. [53] and will attempt to follow their notation where possible.

Consider the following nonlinear discrete-time state space system,

xk = f(xk−1) + ηk, (2.9)

zk = g(xk) + νk, (2.10)

where xk ∈ Rn is the state vector at time step k, zk ∈ Rm is the measurement vector,

f(x) : Rn → Rn is the process model, g(x) : Rn → Rm is the measurement model,

and ηk and νk are vectors of zero-mean Gaussian disturbance and measurement

noise, respectively.

In this description, let x̂r,s be the estimate mean of the system states at time step

r using measurements up to time step s. Simlarly, Pr,s is the estimate covariance

at time step r using measurements up to time step s.

After initialization, the EKF proceeds recursively in two steps: a prediction

step using the process model of the system dynamics; and a measurement update

step that adjusts the predicted states based on the measured outputs and relative

magnitudes of the disturbance and measurement noise covariances.

In the pose estimation system, the prediction step, at time step k, uses the

previous estimate to predict the system states using the process model,

x̂k,k−1 = f(x̂k−1,k−1) (2.11)

Pk,k−1 = FkPk−1,k−1F
T
k + Qk, (2.12)

where Qk is the disturbance noise covariance at the kth time step, Fk is the lin-

earization, through Taylor series expansion, of the process model,

Fk =
∂f(x)

∂x
|x=x̂k−1,k−1

, (2.13)
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and FT
k is the matrix transpose of Fk,

Similarly, the measurement model is linearized about the current state estimate,

resulting in the measurement Jacobian, Ck,

Ck =
∂g(x)

∂x
|x=x̂k,k−1

. (2.14)

The Kalman gain, K is calculated using this linearized model, the previous

estimate covariance, and the measurement noise covariance, Nk,

K = Pk,k−1C
T
k (Nk + CkPk,k−1C

T
k )−1. (2.15)

Finally, the estimates and estimate covariance are updated using this gain and

the innovation of the measurements – the difference between the measured and

predicted outputs,

x̂k,k = x̂k,k−1 + K(zk − g(x̂k,k−1)) (2.16)

Pk,k = Pk,k−1 −KCkPk,k−1. (2.17)

These two steps are applied at each time step (i.e. each camera frame) through

the relative motion sequence to provide a recursive estimate of the relative position

and orientation of the target object with respect to the camera frame.

The pose estimation process proceeds at each time step k as follows:

1. Capture camera image and extract image plane measurements for each of the

N features on the target object.

2. Carry out the prediction step of the EKF to obtain the new predicted state

estimate, x̂k,k−1.

3. Linearize the process and measurement models about this new state estimate

to find Fk and Ck.

4. Find the predicted estimate covariance, Pk,k−1, using Fk.

5. Calculate the Kalman gain, K.

6. Use the measurement update step to find a new near-optimal state estimate,

x̂k,k and Pk,k, based on all of the available system information up to time step

k.

7. Pass these current state estimates on to the controller.
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8. Repeat recursively from step 1 using these current estimates for prediction

step, (x̂k−1,k−1 = x̂k,k and Pk−1,k−1 = Pk,k).

This scheme has been shown to work quite well, especially when the number of

features is relatively low (5-8) and the camera frame rate is high (30 - 60Hz) [53]

[12] [14]. The next sections will provide the details of the process and measurement

models for this system.

2.3.1 Relative Motion Dynamics

The pose estimation scheme can be represented by a nonlinear state-space system by

choosing an appropriate set of states, as well as suitable process and measurement

models to represent the system dynamics and outputs. As noted previously, the

relative motion dynamics were assumed to be well-approximated by the constant

velocity process model. This model assumes that the velocities of the six degrees of

freedom are constant between samples, and integrates them into the position states

accordingly.

In order to use the constant velocity process model, the system state vector will

be denoted [53],

x = [ X Y Z φ θ ψ Ẋ Ẏ Ż φ̇ θ̇ ψ̇ ]T (2.18)

and consists of the six pose parameters plus their time-derivatives.

Accordingly, the system dynamics are then,

xk = Axk−1 + ηk, (2.19)

for the kth time step, where ηk is a vector of zero mean Gaussian disturbance noise

with covariance Q, and

A =

[
I6×6 δtI6×6

0 I6×6

]
, (2.20)

where I is the identity matrix.

While the name of this model implies that the velocities of the system do not

change, in fact, the disturbance noise acts as inputs and implicitly includes the

unmodeled dynamics of the system. As a result, the system noise will drive the

system relative velocities, and they will not remain strictly constant. The ability of

this process model to approximate the true dynamics of a physical relative motion

system depends on the magnitude of the sampling period. Decreasing the sampling

period reduces the apparent change in velocity between frames and the constant
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velocity model provides a better approximation of the motion. This implies that

using cameras with high framerates will result in better relative pose estimates.

It is also possible to represent the relative motion dynamics as a constant ac-

celeration process. While this would allow for improved model prediction, the

performance gains are marginal when compared to the benefits of using the simpler

constant velocity model and increasing the sampling rate of the system.

2.3.2 Monocular Camera Model

In order to relate the measured outputs to the system states, an appropriate mea-

surement model must be identified which maps the system states at time step k, to a

set of measurements, zk. The measurement model is derived from the physical con-

straints of the sensors, and as long as the sensor model can be fully described using

only the system states and deterministic inputs, measurements from any number of

different sensors can be fused together by the EKF framework [28]. Furthermore,

when the covariance of the measurement noise process of each output is known, the

resulting state estimate will be properly weighted based on the relative confidence

levels.

In this system, the output is measured by a single monocular camera. Accord-

ingly, a simple pin-hole camera measurement model is detailed in the following.

A monocular camera is a sensor which maps 3D points onto a 2D plane called

the image plane [35], as shown in Fig. 2.2. A 3D point ζC = [ xC yC zC ]T is

mapped to a 2D point in the image plane where the line from ζC through the

camera’s center of projection, intersects the image plane. This intersection is at[
f x

C

zC
f y

C

zC

]T
, where f is the focal length of the camera sensor.

Expressed in homogeneous coordinates, this projection can be written,

ζ̃I = Φζ̃C , (2.21)

 −FxxC−FyyC

zC

 =

 −Fx 0

−Fy 0

1 0



xC

yC

zC

1

 , (2.22)

which is mapped to the image plane coordinates, in pixels,

[ xI yI ]T =
[
−Fx x

C

zC
−Fy y

C

zC

]T
, (2.23)
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Figure 2.2: A simple pin-hole camera measurement model is used to relate the

camera frame coordinates to the camera image plane coordinates for a feature

point.
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where Fx = f
Px

and Fy = f
Py

with Px and Py as the interpixel spacing of the camera.

The camera coordinate frame is arranged with the center of projection at the

origin of the camera frame, OC , and the principal ray of the camera, the ray through

the camera center perpendicular to the image plane, is assumed to lie along camera’s

ZC-axis.

In this work, the camera is assumed to have no skew (i.e. the image axes are

perpendicular) and the principal point, the intersection of the principal ray and the

image plane, is located at [ 0 0 ]T in the image plane.

The measurement vector consists of the image plane measurements at time step

k of all of the visible object point features and is modelled here by,

zk = g(xk) + νk, (2.24)

where νk is vector of zero mean Gaussian measurement noise with covariance N.

The output vector is composed of the projections of all of the object feature points

in the camera image plane, which are calculated as a function of the state vector

and the feature coordinates in the camera frame,

g(xk) = [ g1(xk)
T ... gj(xk)

T ... gN(xk)
T ]T . (2.25)

for all d feature points on the target object, where

gj(xk) = [ xIj y
I
j ]T . (2.26)

This mapping gj(x) is developed by transforming the known object frame co-

ordinates of the jth feature point into the camera frame,

ζ̃Cj = TC
Oζ̃

O
j , (2.27)

where TC
O is the homogeneous transformation of the object frame with respect to

the camera frame,

TC
O =

[
RC
O tCO

0 1

]
, (2.28)

with tCO = [ X Y Z ]T .

Subsequently, these camera frame coordinates are projected into the image

plane, using the camera calibration matrix, −FxxCj−FyyCj
zCj

 = ΦTC
Oζ̃

O
j , (2.29)
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resulting in the image plane coordinates for the jth feature point,

gj(x) = [ xIj y
I
j ]T =

[
−Fx

xCj
zCj
−Fy

yCj
zCj

]T
. (2.30)

In order to use this measurement model within the EKF measurement update

step, this nonlinear function of the system states needs to be linearized about the

current state estimate. The elements of the resulting measurement Jacobian can

be found using the method in Appendix A.2.

Once sufficient image plane measurements are made and added to the measure-

ment vector, the goal is to find the inverse mapping,

z
g−1

−−→ x, (2.31)

which will relate the measured outputs to a state vector.

2.3.3 Initialization

Due to the linearity assumptions associated with the EKF, the initialization of the

estimation system plays a significant role in the performance of the relative pose

tracking. The nonlinear process and measurement models dictate that the initial

state estimate, x̂0,0 with covariance P0,0 must define a region near the true state of

the system. If this is not the case, the filter will almost certainly diverge or could

converge to a suboptimal solution. However, the proximity to the true state that is

required for successful tracking is not easily found and likely depends strongly on

the system configuration.

Acceptable parameters of these initial estimates vary with different relative mo-

tion profiles, but can be estimated with some intuition and knowledge of the ex-

pected ranges. The 95% confidence interval of a Gaussian distribution centred

about a mean, µ with a standard deviation, σ, is quantitatively expressed by

[ µ − 2σ, µ + 2σ ] = [ µmin, µmax ]. Therefore, if an approximation of this re-

gion can be found or estimated, the initial mean, µ0, and covariance, σ2
0, can be

expressed with respect to this region,

µ0 =
µmin + µmax

2
, σ2

0 =
(µmax − µmin)2

16
. (2.32)

An initial set of estimate parameters for all of the relative pose states and their

velocities must be made and compiled into the initial state estimate mean and

covariance matrix as,

x̂0,0 = [ X0 Y0 Z0 φ0 θ0 ψ0 Ẋ0 Ẏ0 Ż0 φ̇0 θ̇0 ψ̇0 ]T , (2.33)
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P0,0 = diag([ σ2
X0 σ

2
Y 0 σ

2
Z0 σ

2
φ0 σ

2
θ0 σ

2
ψ0 σ

2
Ẋ0

σ2
Ẏ 0

σ2
Ż0
σ2
φ̇0
σ2
θ̇0
σ2
ψ̇0

]). (2.34)

This initial mean and covariance are then used to seed the recursive filter and

the estimation can proceed throughout the relative motion sequence.

2.4 Observability Analysis

In the previous section, the assertion was made that a certain minimum amount of

information was necessary to find an inverse mapping from the measured output

vector to the corresponding system states. It is important to know whether or

not the system states at any time step k can be reconstructed using only the

measurements up to the current time. If it is not possible to find this unique

relationship, then the pose estimates may not be accurate and therefore of limited

usefulness. Further, it is important that the mapping be unique since, if the robot

and object are physically in one relative configuration but the estimation converges

to a different configuration which also fits the measurements, this would lead to

failure of the robotic operation.

With this in mind, this section investigate which relative configurations of target

object and camera allow for such a unique mapping to be found. In the context of

control systems, such a study is called an observability analysis. The process has

been extensively studied for the case of linear control systems [45] and leads to a

simple rank condition of an observability matrix. However, in the case of nonlinear

systems, such as this one, the analysis becomes much more involved [27]. In this

work, the simpler linear approximation techniques will be used to identify a subset

of the configurations for which the system states are not recoverable from only the

measured outputs. In other words, when the system is unobservable.

2.4.1 1D Pose Estimation

Consider the problem of estimating the position of a point feature with respect to a

camera frame in a planar environment, where the relative position is free to vary in

only one dimension. Suppose that the camera’s center of projection is at the origin

of the camera frame and the principal ray is aligned with the Y C-axis, as shown in

Fig. 2.3. The camera is able to measure the position of a feature point’s projection

onto the image line as the feature point moves parallel to the principal ray of the

line camera.
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Figure 2.3: The line camera is able to measure the image line projection of the

single feature point (star) as relative position between point and camera is free to

vary in Y C direction only.

It is assumed that the position of a single feature point is known in the camera

frame XC-axis, denoted xO. It is further assumed that the relative motion is

smooth and is well approximated by a constant velocity dynamic model. Finally,

the focal length of the camera is assumed to be unity for simplicity, Fx = 1. The

discrete-time system, with no disturbance or measurement noise, is written,

xk = [ Y Ẏ ]Tk (2.35)

xk = Axk−1 (2.36)

zk = g(xk) = xIk = −x
O

Yk
(2.37)

where Yk is the distance to the feature point along the camera Y C-axis, A is defined

using the system sampling period δt > 0 by,

A =

[
1 δt

0 1

]
, (2.38)

and zk is the camera image line measurement of the feature point. This measure-

ment model is a nonlinear function of the system states.

Observability with Known Model

This section investigates the conditions when estimating the relative position (in

this case, depth) of the feature point is not possible. With the nonlinear mea-
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surement model defined above, the system cannot be analyzed by immediately

applying classical linear observability techniques. Instead, the nonlinear system

must be linearized about an operating point. In the case of this system, there are

no deterministic inputs.

The process model is already linear but the measurement model is linearized by

a first-order Taylor series expansion to form the linear output matrix, Ck at each

time step k,

Ck =
∂g(x)

∂x
|x=xk =

[
xO

Y 2
k

0
]
. (2.39)

Therefore, the linearized system is written,

xk = Axk−1, (2.40)

∆zk = Ck∆xk, (2.41)

where ∆zk and ∆xk are perturbations about the operating point at which the

nonlinear measurement model was linearized.

The linear system is said to be completely observable if and only if the the rank

of Qk is equal to n, the number of system states. If a system is not completely

observable, it is unobservable.

The linear observability at xk of this linearized relative pose system can be

checked by forming the observability matrix, Q at each time step k,

Qk =

[
Ck

CkA

]
=

[
xO

Y 2
k

0
xO

Y 2
k

δt
xO

Y 2
k

]
. (2.42)

This system is unobservable when the rank of Qk is less than n = 2, a condition

that occurs when the determinant is zero,

det(Qk) =
δtx

O2

Y 4
k

. (2.43)

Therefore, the system is unobservable when xO = 0 or |Yk| → ∞. These conditions

make intuitive sense since, when xO = 0, the feature point is directly in front of

the camera and moving toward or away from the feature point does not produce a

change in the image projection. Further, when |Yk| → ∞, the image line projection

goes to zero and finite motion in the any direction again does not produce any

change in the feature point projection onto the image line.

Conversely, this result dictates that the system is linearly observable almost

everywhere except those configurations which fall into those two sets identified.
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That is, with a known xO coordinate, the feature point depth can be tracked using

the measurements from just one camera image, in almost all cases.

With this initial insight into the simple one-dimensional pose estimation system,

the more complicated two-dimensional case will be investigated in the next section.

2.4.2 2D Pose Estimation

The problem is now expanded to estimating the relative position and orientation

of the target object frame with respect to the camera frame in a planar environ-

ment when there are three degrees of freedom in the relative motion. The motion

between the target object frame and camera is free to vary in the two translational

coordinates, as well the rotation of the object frame about its origin. While this

makes the problem more complicated than the one dimensional example studied in

the previous section, some of the insights previously gained will assist in analyzing

this case.

It is assumed that there are N ≥ 3 feature points and the feature point coordi-

nates, ζOj = [ xOj y
O
j ]T for j = 1, 2, ... N , are known with respect to a common local

object (O) frame. Accordingly, the relative pose of this object frame is the subject

of this estimation. The further assumption that the relative motion between the

camera and object is smooth, is again made, and leads to a relative motion system

in the same style as the previous sections.

The state vector at time k is composed of the three pose parameters and their

velocities,

xk = [ X Y θ Ẋ Ẏ θ̇ ]Tk , (2.44)

where [ X Y ]T is the location of the object frame origin and θ is the rotation of

the object frame, both with respect to the camera frame.

The discrete-time state-space model using the constant velocity is then,

xk = Axk−1, (2.45)

this time with

A =

[
I3×3 δtI3×3

0 I3×3

]
. (2.46)

The measurement model is assumed to be that of a simple pin-hole line camera

model depicted in Fig. 2.4. The camera’s center of projection is located at the origin

of the camera frame, with the principal ray along the camera Y C-axis. Projecting
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Figure 2.4: The line camera is able to measure the image line projections of the

three feature points (stars) of which the coordinates in the object frame are known.

From these measurements, the relative pose and orientation of the object frame

with respect to the camera frame is found.
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the jth feature point onto the camera’s image line involves finding the location of

the feature point in the camera frame, then projecting onto the image line using

the camera calibration matrix.[
xI

yI

]
j

= ΦTC
Oζ̃

O
j =

[
−1 0 0

0 1 0

][
RC
O tCO

0 1

] xO

yO

1


j

(2.47)

where RC
O is the rotation matrix representing the relative orientation of the object

frame with respect to the camera frame,

RC
O =

[
cos θ − sin θ

sin θ cos θ

]
(2.48)

and

tCO =

[
X

Y

]
. (2.49)

The system measurements are these image line projections of the of the jth

target object point feature,

zj = gj(x) = −f

(
xCj
yCj

)
= −

(
xOj cos θ − yOj sin θ +X

xOj sin θ + yOj cos θ + Y

)
. (2.50)

The nonlinear measurement model can be linearized at each operating point

by finding the first-order Taylor series expansion, and forming the measurement

Jacobian. This allows for the direct use of linear control techniques and analysis.

However, the results are then local to a small neighbourhood about the operating

point.

For each element in the measurement vector, the corresponding row in the

measurement Jacobian is the set of partial derivatives with respect to the system

states evaluated at the operating point,

Cj
k =

∂gj(x)

∂x
|x=xk (2.51)

Taking these partial derivatives,

∂gj(x)

∂X
=
−1

yCj
=

−1

xOj sin θ + yOj cos θ + Y
(2.52)

∂gj(x)

∂Y
=

xCj

yCj
2 =

xOj cos θ − yOj sin θ +X(
xOj sin θ + yOj cos θ + Y

)2 (2.53)
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∂gj(x)

∂θ
=

−
[
xOj yOj

]([ xOj
yOj

]
+RO

C

[
X

Y

])
(
xOj sin θ + yOj cos θ + Y

)2 (2.54)

∂gj(x)

∂Ẋ
= f

∂gj(x)

∂Ẏ
=
∂gj(x)

∂θ̇
= 0. (2.55)

Accordingly, the linearized relative pose system is written,

xk = Axk−1, (2.56)

∆zk = Ck∆xk, (2.57)

where ∆zk and ∆xk are perturbations about the operating point at which the

nonlinear measurement model was linearized.

Linear Observability

Since there are three pose parameters to estimate in this problem, a necessary

condition for the system to have a unique solution is that at least three feature

point image line measurements must be observed.

Therefore, for the 2D relative pose estimation problem, consider the case when

three features are observed in each frame. As a result, the measurement Jacobian,

formed by the partial derivatives of the output equations with respect to the system

states, Ck ∈ R3×6. The measurement Jacobian at time-step k, Ck, has the form,

Ck =
[
fV−1H 0

]
k
, (2.58)

where

Vk =

 yC1
2

yC2
2

yC3
2


k

(2.59)

and

Hk =

 −xC1 yC1 −[ xO1 yO1 ][ x
C/O
1 y

C/O
1 ]T

−xC2 yC2 −[ xO2 yO2 ][ x
C/O
2 y

C/O
2 ]T

−xC3 yC3 −[ xO3 yO3 ][ x
C/O
3 y

C/O
3 ]T


k

(2.60)

with

[ x
C/O
j y

C/O
j ]T = RO

C [ xCj yCj ]T , (2.61)

which are the camera coordinates of the jth feature point expressed with respect to

the O frame.

26



Theorem 1. Assuming f > 0 and δt > 0, the linearized system, (2.56) and (2.57),

is unobservable if and only if:

(i)

 xC1
2

+ yC1
2

xC2
2

+ yC2
2

xC3
2

+ yC3
2


T

k

 xC2 y
C
3 − xC3 yC2

xC3 y
C
1 − xC1 yC3

xC1 y
C
2 − xC2 yC1


k

= 0,

or

(ii) ∃j ∈ {1, 2, 3} s.t. yCj,k →∞.

Proof. The observability matrix at time step k, for a linear control system is formed

by stacking products of the measurement matrix and powers of the process matrix,

QT
k =

[
CT
k (CkA)T ... (CkA

(n−1))T
]T
. (2.62)

For the linearized relative pose system, the observability matrix is,

Qk = f

[
V−1H 0

V−1H δtV
−1H

]
k

. (2.63)

This matrix loses rank, and the linear system is unobservable, if and only if the

determinant of the submatrix fδtV
−1
k Hk is zero,

det(fδtV
−1
k Hk) = fδt

det(Hk)

det(Vk)
= 0. (2.64)

Therefore, the system is unobservable if and only if,

det(Vk)→∞, (2.65)

or

det(Hk) = 0. (2.66)

These conditions are equivalent to,

det(Vk) =
(
yC1

2
yC2

2
yC3

2
)
k
→∞, (2.67)

which indicates that the camera frame Y C-axis coordinate of any of the three feature

points goes to infinity. Additionally,

det(Hk) =

 xC1
2

+ yC1
2

xC2
2

+ yC2
2

xC3
2

+ yC3
2


T

k

 xC2 y
C
3 − xC3 yC2

xC3 y
C
1 − xC1 yC3

xC1 y
C
2 − xC2 yC1


k

= 0, (2.68)
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Figure 2.5: The zero-determinant of the Hk matrix specifies a circle through the

three features and the camera center of projection.

which dictates that the rest of the unobservable configurations occur due to the

camera center of projection lying on the feature circle F , shown in Fig. 2.5. The

feature circle is the circumscribed circle through the three feature points in the

camera frame. When (2.68) is satisfied, this circle passes through the point [ 0 0 ]T ,

the camera center.

These necessary and sufficient conditions for the system being unobservable

can be interpreted physically to recognize the situations that should be avoided to

ensure the relative pose can be tracked successfully. The first condition in (i) is

satisfied when the point features and camera center of projection lie on a common

circle, and the second condition, (ii) is true when any of the point features are

infinitely far away from the camera in the Y C-axis.

This result is consistent with the work of Bonnifait and Garcia [5] who consider

the observability of estimating the pose of a planar mobile robot with respect to

three beacons at known locations. Importantly, their analysis excludes the use of

deterministic inputs, which would include odometric information. They provide a

geometric interpretation for the result dictating that the robot pose is constrained,

by the relative observation angles between a pair beacons, to lie on a circle. The

three pairs of beacons lead to three circles which intersect at the robot location.
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The system becomes unobservable when these three circles merge. The positions

where this happens are on the circle defined by the three beacons.

From a practical point-of-view, measurements from three non-collinear feature

points will make the system observable if the distance to the object is sufficient to

keep the camera off of this feature circle.

Adding a fourth feature to the system will make it completely observable as

long as this feature does not fall on the circumscribed circle through the first three

features. This excludes common shapes like rectangles. In fact, this is true for any

number of supplemental features which together form a cyclic polygon, as will be

shown in the next section.

Unobservable Configurations

For any three feature points with coordinates, [ xOj yOj ]T , j = 1, 2, 3, a feature

circle, F , circumscribed through all three points can be found. It was shown in

the previous section that if the camera frame origin also lies on F , the system

is unobservable suggesting that the measurements do not imply a unique state.

However, there is no information about the cause and nature of these singularities.

This section demonstrates that the feature point projections onto the image line

when the camera center lies on F , are not unique and, in fact, there is a continuum

of configurations at which the feature points will have the same projection on the

image line. This means, at least in theory, that the system could reach such a

singular configuration, and move along the singular trajectory without an observer

being able to detect the changes of the true state. In the case of an EKF, this would

almost certainly lead to filter divergence and tracking failure. The relationship

between the feature locations, the image projections and the relative object pose

are investigated in order to characterize these singular configurations.

When the camera frame origin lies on F , the relative pose system can be pa-

rameterized as shown in Fig. 2.6. Note that the symbols representing these angles

in the figure are temporarily redefined in this subsection.

Since F passes through the feature point and the camera origin at an unobserv-

able configuration, the triangle formed by the those two points and the circle F
centre is isosceles with two side lengths r, which is the radius of F . Using geometric

identities, the angles, ρ and β, can be written as,

ρ = ψ − φ (2.69)
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Figure 2.6: An unobservable configuration showing one feature point. Using

trigonometric identities facilitates parameterizing the unobservable configurations

of the camera and target object.

β =
1

2
(π − θ − α + φ) . (2.70)

The motion of the feature along the projection ray through the center of pro-

jection can be interpreted as the result of a slider crank mechanism [26] with rigid

arms of length r between the camera center, the circle center, and the feature point.

Writing the constraint equations for such a physical system,

r cos ρ− r sin β = 0 (2.71)

and

r sin ρ− r cos β = 0. (2.72)

The equations can be expanded and simplified to solve for α,

α = 2ψ − φ− θ. (2.73)

For a set of three feature points, three equations of this form result,

Solving the pairs of equations for the projection ray angles of feature points i

and j where i 6= j,

ψi = ψj +
1

2
(θi − θj). (2.74)

The resulting equations describe a set of three slider crank mechanisms with a

common first link between the camera center and the center of F . In the current
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form, the projection ray angle, ψi of one of the feature points can be specified, as

well as the angle, φ to the center of F . If more features are added to the system

which lie on F , there will still be one degree of freedom.

As an example, two configurations which result in the same image projections

are shown in Fig. 2.7. The angle φ is specified with values 0 and π
4
. This illustrates

why the system goes unobservable in these configurations. There is an entire set of

configurations for which the resulting measurements will be identical, so one cannot

discriminate between them using this information. This insight will allow the more

complicated 3D case to be studied with this focus since a direct interpretation of

the determinant of the larger observability matrix is much more complex.

In the context of any state observer, the fact that multiple configurations can

result in the same measurements means there the inverse mapping from the image

line measurements to the system states is not unique. However, similar to the one

dimensional case studied previously, the system is completely observable almost

everywhere. Additionally, the chances of exactly landing in a singular configuration

is low due to the presence of measurement noise. More likely, the system will become

extremely sensitive near these regions, rather than going unobservable.

Since the object model is completely known, it would be possible to detect if a

singular configuration is being approached. If possible, the camera could be actively

controlled away from these configurations. Alternatively, redundant features would

allow the estimator to choose features such that the unobservable configurations

have a less profound effect on the estimation.

The unobservable configurations explored in the planar pose estimation case are

a subset of those of the full three dimensional estimation. The analysis that follows

attempts to extend this approach to all six degrees of freedom.

2.4.3 3D Pose Estimation

Now that the lower dimensional cases have been explored, the full six degree of

freedom relative pose estimation is considered. The target object is now free to

undergo translation and rotation in 3D space, and the relative pose vector, w is

given in (2.2).

As before, it is assumed that the target object model point feature locations

are perfectly known in the O frame and the relative motion between the camera

and object is smooth. Accordingly, the dynamic model of the system was given in

Section 2.3.1 and the monocular camera measurement model in 2.3.2. However, in
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Figure 2.7: A set of distinct relative positions and orientations of the target object

which all result in the same projections of the feature points on the camera image

line.
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this analysis, it will be assumed that these processes are not subject to noise. Each

target object feature point observation results in two measurements corresponding

to the horizontal and vertical coordinates on the camera’s image plane.

To apply the linear control systems observability conditions, the nonlinear mea-

surement model needs to be linearized, resulting in the measurement Jacobian,

Ck,

Ck =
[

Hk 0
]
, (2.75)

where

Hk =



∂g1x (x)
∂X

∂g1x (x)
∂Y

∂g1x (x)
∂Z

∂g1x (x)
∂φ

∂g1x (x)
∂θ

∂g1x (x)
∂ψ

∂g1y (x)

∂X

∂g1y (x)

∂Y

∂g1y (x)

∂Z

∂g1y (x)

∂φ

∂g1y (x)

∂θ

∂g1y (x)

∂ψ
∂g2x (x)
∂X

∂g2x (x)
∂Y

∂g2x (x)
∂Z

∂g2x (x)
∂φ

∂g2x (x)
∂θ

∂g2x (x)
∂ψ

∂g2y (x)

∂X

∂g2y (x)

∂Y

∂g2y (x)

∂Z

∂g2y (x)

∂φ

∂g2y (x)

∂θ

∂g2y (x)

∂ψ
∂g3x (x)
∂X

∂g3x (x)
∂Y

∂g3x (x)
∂Z

∂g3x (x)
∂φ

∂g3x (x)
∂θ

∂g3x (x)
∂ψ

∂g3y (x)

∂X

∂g3y (x)

∂Y

∂g3y (x)

∂Z

∂g3y (x)

∂φ

∂g3y (x)

∂θ

∂g3y (x)

∂ψ


k

, (2.76)

and gjx(x) indicates the XI coordinate of the image plane projection of the jth

feature point, and similarly for gjy(x) and the Y I coordinate.

Similar to the planar case, the observability matrix at time step k has the form,

Qk =

[
Hk 0

Hk δtHk

]
. (2.77)

This observability matrix will have full rank of n = 12, when Hk has rank 6.

Therefore, the system is unobservable when the rank of Hk is less than 6. The

expression for the determinant of this dense 6 × 6 matrix quickly becomes very

complex.

Michel et al. investigate the singular configurations for the relative pose estima-

tion system when three feature points of known geometry are observed in a single

camera image plane [41]. The measurement Jacobian is interpreted as a measure of

the optical flow of the image plane coordinates of the feature points. In this way,

the unobservable configurations of the target object are those which result in no

motion of the image projections. This is analogous to the feature points remaining

on the same projection rays through the camera’s center of projection.

The results of their analysis dictates that the system is singular when the cam-

era’s center of projection lies on the cylinder with circular cross section defined

by the three feature points, and with axis perpendicular to the plane containing
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Figure 2.8: The pose estimation system with three feature points is unobservable

when the camera center lies on the cylinder formed by the feature points. The

circular cross-section is circumscribed through the points and the cylinder axis is

perpendicular to the plane defined by the three points.

the three feature points [41]. An example configuration is illustrated in Fig.2.8.

This geometric result is a generalization of the planar case studied in the previous

section, for which the singular configurations are in a circle created by the three

feature points. In that case, the camera lies on the plane defined by the feature

points, and therefore on the cylinder, as well.

Using the intuition gained from the previous planar case, it is apparent that

the system is unobservable when the image plane coordinates of the target object

feature point projections are not unique to a particular relative pose for a given

target model. The following will detail the initial investigation into this problem

when the target object consists of three feature points.

Any 3D point which lies on the line from a particular set of image plane co-

ordinates, through the center of projection, will be projected onto those image

coordinates. For the three feature points, let r1, r2, and r3 represent those three

lines or rays, respectively. As a result, a particular relative configuration of the

target object leads to an unobservable system if there is a different relative pose

which places the feature points on those same projection lines.

For any pair of feature points, ζi and ζj, keeping these two feature points on the

same projection line, amounts to a rotation with axis parallel to the plane defined

34



by the respective rays, ri and rj. With a rigid-body, the distance between feature

points ζi and ζj is fixed.

Consider the relative pose of a target object with respect to the camera frame.

A distinct configuration, in which the image plane projections of the three feature

points are the equivalent to the original, can be constructed in the following manner,

shown in Fig. 2.9. Choose a feature point and move it along its projection line,

here called r1. Rotate the target object around that feature point about an axis

perpendicular to the plane defined by r1 and r2 to align the second feature with

r2. There are two possible solutions imposed by the length constraint. Now, two

of the three feature points are aligned with their original projection rays. For the

final feature point, the first two feature points will remain on their projection rays

if the target object is rotated about an axis with direction parallel to ζ2 − ζ1. The

set of possible resulting positions for ζ3 form a circle in 3D space. The second

configuration will have the same measurements as the original when this circle and

r3 intersect. If this is not the case, the new position of ζ1 along r1 must be adjusted

until the resulting circle and r3 have a common point.

Using a simulation developed in MATLAB, it has been observed that a set of

three feature points will have the same image plane measurements in multiple target

object configurations for almost all starting relative configurations. That is, it is

nearly always possible to find distinct relative poses of the same target object which

lead to the feature points lying on the same projection rays. For a set of image

plane measurements of three feature points, there are up to four possible relative

configurations [41].

It is important to point out that while multiple configurations lead to the same

measurements, the measurement Jacobian only goes singular at the cylindrical set

above. This is essentially the difference between tracking and detecting. Assuming

that the initial condition is correct, the pose can be tracked from this point onwards.

Accordingly, the three dimensional relative pose estimation system with a known

target object model consisting of three feature points is observable in almost all

configurations. However, with no prior information about the previous pose, the

relative pose of the target object cannot be detected uniquely using only three

feature point measurements.

The results presented in this section are only preliminary for this analysis. A

better means of parameterizing the relative poses for a particular model which lead

to the same measurements has yet to be identified. Additionally, adding a fourth

feature point to the target object seems to make the system observable in practice.
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Figure 2.9: In most cases, multiple relative configurations for a set of image mea-

surements can be found by moving ζ1 along r1, rotating within the plane defined
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ζ3 with r3.
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It is noted in [41] that four coplanar feature points will lead to a unique relative

configuration if one exists.
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Chapter 3

Unknown Object Model

In the previous chapter, it was assumed that a perfect model of the target object

was known a priori. Consequently, all of the Cartesian positions of the object

feature points were perfectly known with respect to a common local object (O)

coordinate frame. It was determined that, in almost all configurations of camera

and target object, the relative pose was theoretically recoverable at each time step

using only measurements from a single monocular camera from three point features

on the object.

In this chapter, this known model assumption is relaxed and the feasibility

of a combined estimation of both the relative pose and target object model is

investigated. Such an estimation would facilitate a greater number of application

areas where the target object model, on which an operation is being performed, is

not well known, or even completely unknown.

It is well understood in the computer vision community that when bearing-only

measurements, such as those from a monocular camera, are used to estimate both

the relative pose and target object model geometry, only an up-to-scale solution can

be recovered [9] [35] [15]. As shown in Fig. 3.1, a scaled version of the true solution

will be found that is accurate up to a single degree of freedom which pertains to the

global scale. Another way of saying this is that the solution is estimated up to a

similarity transform [35]. As a result, without a priori information about this scale,

any estimation of both relative pose and target model feature locations using only

the monocular camera image plane measurements would not be able to recover the

global scale of the relative motion and object model.

For position-based visual servo control, the scale of the relative motion and

target object is particularly important since operations are to be performed on the
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Figure 3.1: Since the monocular camera can only measure the bearing to the target

object feature points, the recovered solution will be unable to disambiguate the

scale of the environment.

workpiece. Therefore, supplemental information or measurements which include

scale information must be added to the estimation to allow for operations to be

carried out on target objects with unknown models.

In this chapter, the combined relative pose and target model estimation with a

single monocular camera will be considered to determine why this deficiency exists

and help suggest some possible solutions.

3.1 Problem

3.1.1 Definition

Similar to the case when the object model was known, the goal of this estimation is

primarily to recover an accurate, real-time relative position and orientation estimate

of the target object frame with respect to the camera frame from observations as a

sequence of camera images. However, the locations of the object feature points in

a local object frame, ζOj = [ xO yO zO ]j, are not known a priori. As a result, these

model parameters now must be estimated alongside the pose parameters which

constitute the relative pose vector, w.
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The quality of the pose estimates depends critically on the accuracy of the target

object model, which in turn depends on the relative pose estimates. As a result,

the pose and model must be estimated simultaneously.

3.1.2 Assumptions

As in the known object model case, some assumptions on the system are made to

facilitate the combined estimation:

Assumption 1 The relative motion between the target object and camera is smooth

and can be approximated by a constant velocity model. Since both the robot

and target object are free to move, this general motion model is used and the

modelling error is represented as disturbance noise.

Assumption 2 The target object is defined by set of N ≥ 3 point features,

[ xO yO zO ]Tj , j = 1, 2, ..., N which are fixed with respect to a common

local object coordinate frame. That is, the target object is a rigid body.

Assumption 3 Object features points are uniquely distinguishable in the cam-

era images and their respective image plane coordinates can be measured at

each time step in an image sequence. The correspondance between image

plane measurements and each of the point features is available at each time

step. There are a large number of techniques for solving this problem in the

literature, but it will not be dealt with in this work.

Assumption 4 Both the disturbance noise and measurement noise can be repre-

sented by vectors of zero-mean Gaussian noise with known covariance. All of

the individual noise processes are assumed to be uncorrelated to other noise

processes and the system states at each system time step.

3.2 Common Approaches

While the problem of estimating both the relative pose and target object model

has received only a small amount of attention in the visual servoing context, it has

been extensively studied both in the mobile robotics and computer vision fields.

In computer vision, the process is called Structure From Motion (SFM) in which

the 3D structure of an environment is reconstructed based on 2D camera images
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from unknown locations [15]. An overview of several different SFM approaches and

algorithms is available in [35].

In the following two sections, an overview is presented regarding current solu-

tions proposed by researchers in the mobile robotics and visual servoing domains.

Both groups attempt to solve the problem mentioned previously, but until recently,

the link between them has not been fully recognized and exploited. This review will

attempt to acknowledge the strengths and weaknesses of the current techniques in

anticipation of combining the strengths of each into a common framework.

3.2.1 Simultaneous Localization and Mapping

Within mobile robotics, the process is called Simultaneous Localization and Map-

ping (SLAM) and involves a mobile robot being placed at an unknown location in

an unknown environment and incrementally building a consistent map of the envi-

ronment while concurrently localizing itself within it [20]. A good overview of the

current state of the art, as well as the outstanding issues is given by Durrant-Whyte

and Bailey in [20] and [3].

The formulation of SLAM studied in this work is the estimation-theoretic or

EKF-based approach identified in [19]. In this framework, the solution to the

navigation problem can be found recursively and the uncertainties in the system

and resulting estimates can be represented as random variables with a statistical

basis. This approach closely follows that of the traditional position-based visual

servoing pose estimation [53] in which the localization problem is formulated as a

stochastic process and recursively estimated using an EKF.

The system is formed by augmenting the vehicle position and orientation states

with the map feature point parameters. A robotic platform moving through the

environment is able to make measurements of the relative location between the

individual landmarks (which are assumed stationary) and the vehicle itself [19].

By making successive observations over time at different locations, the algorithm

concurrently builds a statistical map of the feature locations and tracks the robot’s

location within it. At each time step k, the state estimate is represented by a

Gaussian random variable with associated mean, x̂k, and covariance matrix, Pk.

The steady-state behaviour of this estimate is studied by Dissanayake et al. in

[19]. Given the similarity with the EKF-based relative pose and target model

estimation problem, these results apply equally well in the position-based visual
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servoing context. Mathematical proofs are presented for the following properties of

the SLAM solution [19]:

1. The determinant of any submatrix of the map covariance matrix decreases

monotonically as observations are made throughout the robot trajectory.

2. The estimates of the feature locations become fully correlated as the number

of successive measurements goes to infinity.

3. An individual feature’s estimate covariance is bounded below by only the

covariance of the initial vehicle location, as the number of successive mea-

surements tends to infinity.

The critical insights offered by these results are that the correlation between the

feature location estimates only grows over time, and that it is possible to recover

the relative locations of features within the map with perfect accuracy, while the

absolute location is limited by the initial vehicle location uncertainty [19]. This

makes intuitive sense since without measurements of the absolute position of the

robot, the entire relative map can be shifted in an absolute coordinate frame without

changing the measurements.

For pose estimation with position-based visual servoing, these results mean that

an accurate target object model can be found concurrently while estimating the rel-

ative pose of that object with respect to the robot end-effector. Since the absolute

position of the target object in the absolute world frame is not important for per-

forming relative operations, the resulting estimate should perform flawlessly.

While the SLAM process applies most generally to mobile robots equipped with

any number of different types of sensors, the use of cameras as the primary sensor

has been investigated by several researchers.

SLAM with Monocular Camera

Deans and Hebert [15] investigate 2D SLAM using bearing-only sensors mounted

on a mobile robot. After making the connection with SFM techniques, they suggest

using a hybrid approach using a combined EKF and Bundle adjustment technique.

Bundle adjustment is a batch optimization technique widely used in the computer

vision community for SFM [15]. More significant than the proposed algorithm itself

is the insight offered by Deans and Hebert into the structure of the bearing-only

SLAM problem. Specifically, a single image from a monocular camera is able to
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only determine the ray on which a feature point lies and in the two dimensional

case, there are four gauge freedoms in the estimation. That is, the solution can

be translated, rotated or scaled and the resulting measurements will be unchanged

[35]. To overcome this limitation, an absolute coordinate frame and scale must be

imposed as a set of constraints for the solution to be unique. Further, they assert

that odometric data is sufficient to disambiguate the scale of the environment, but

a bias in the odometry cannot be corrected by the bearing-only measurements.

These insights are key to successfully recovering the global scale of the solution in

the next chapter.

The first significant application of the SLAM framework using a single monoc-

ular camera was by Davison in [12]. The full 3D position and orientation of a

handheld camera with respect to an (almost) unknown environment is estimated

in real-time, as well as the locations of a large set of feature points within the en-

vironment. The estimations are performed by an EKF, and the algorithm includes

the ability to add or remove feature points from the map as new landmarks become

available or others are no longer stable during the estimation. The use of a camera

with a wide-angle lens is suggested in [13] and the process is further refined in [14].

Eade and Drummond have developed a monocular camera SLAM algorithm [21]

based on the FastSLAM filter proposed by Montemerlo et al. [42]. The FastSLAM

algorithm is a variation of the Particle Filter [50] which capitalizes on the structure

of the SLAM problem to decrease the computational requirements for maintaining

accurate estimates. As a result, maps with large numbers of landmarks can be

maintained at reduced computational cost compared with EKF-based solutions

[50]. The difficulty with this method comes when trying to maintain a sufficient

number of particles to adequately represent the probability distributions over the

entire state space. Even if there are a large number of particles, there may not be

any particles near the correct state. This is called particle deprivation [50]. Despite

this, Eade and Drummond show good results for large maps of features with a

system operating in real-time.

Davison’s work of EKF-based monocular SLAM has since been improved, first

by Montiel et al. [43]. Instead of parameterizing the map feature point locations

by their Cartesian parameters in the world frame, it is suggested that tracking

the location of the camera’s center of projection where the 3D point was first

observed, the azimuth and altitude for the observation ray and the inverse of the

depth along that ray to the feature point, provides a better representation. Using

these six parameters for each feature point is called inverse depth parameterization.

The bearing-only nature of the camera sensor means that the greatest uncertainty
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associated with a feature point upon the first observation is in the depth parameter.

By using the inverse of the depth, the resulting measurement model is shown to

be significantly more linear than using a Cartesian representation [43]. As a result,

the Gaussian distributions representing the state estimates are more accurately

propogated through the transformations in the measurement update step of the

EKF. Using this parameterization allows for new feature points to be added to the

estimation upon the first observation, and even permits the use of feature points

at an infinite distance from the camera.

In a more recent work, an alternative parameterization using an inverse scale

parameter along with a vector bearing to the feature point has been proposed

by Marzorati et al. [40]. Instead of requiring six parameters, each feature point

requires only four and the estimation proceeds in a robocentric manner. This is

the same relative position and orientation parameterization as is traditionally used

in position-based visual servoing pose estimation [53], and is said to produce a

measurement model with better linearity properties. Further, it is asserted that the

inverse depth parameterization from Montiel et al. suffers from underestimation of

the feature location uncertainty.

The second improvement to Davison’s framework is detailed in Civera et al. [9].

The significant contribution of this work is the explicit realization that the global

scale of the map and robot pose cannot be recovered from monocular camera mea-

surements alone. More significantly, it is demonstrated that the estimation can

proceed with no a priori information about the environment or initial robot lo-

cation and the resulting solution will be consistent in an up-to-scale manner. In

other words, the solution will almost certainly have the wrong global scale and with

only the monocular camera measurements, this parameter will not converge to the

correct value.

Where the previous methods try to map and localize a robot in an environment

defined by a set of discrete features, Trajectory-Oriented SLAM [3] attempts to

directly align sensed data. Each pose estimate has an associated scan of data

from, for example, a laser scanner or camera. Each of these poses are aligned to

determine a global map. An example of such a system using camera data is found

in [34]. Konolige et al. attempt to match frames from a robot-mounted camera at

each time step to map dense environments and localize the robot within it. They

propose schemes for selecting which information should be kept from the large

quantity available. Without an effective means of dealing with the information, the

memory space requirements for this method will grow unbounded as the estimation

proceeds [3].
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3.2.2 Visual Servoing Pose Estimation

Concurrently, researchers in the visual servoing domain have sought to augment

traditional methods to accomodate for unknown target objects. The original divi-

sion between image-based and position-based methods is now being blurred with

the development of so-called hybrid methods. This section will detail the recent

developments in all three of these visual servoing flavours.

Several authors have attempted to add an explicit pose estimation phase to

the original image-based visual servoing architecture. Hafez et al. have added a

Gaussian Particle filter in order to estimate the depth of a feature observed in

the image plane [25]. With image-based techniques, it is important to have an

accurate estimate of a feature’s depth in order to obtain a valid image Jacobian for

controlling in the image plane. For each feature on the target object, a distribution

of particles is drawn from the conical region projecting out from the camera’s center

of projection through the observed feature. Subsequent observations are used to

prune out particles at the wrong depth estimates until the resulting distribution

collapses to a near-Gaussian shape. At this point, an estimate of the depth of the

feature can be extracted and it is claimed that the stability of image-based methods

can be improved.

This technique suffers from the same problems as all bearing-only estimations

where the solution may be consistent but to the wrong scale. There are no supple-

mental measurements used to recover the scale and the estimates will likely diverge

from the true state.

Recently, much of the work in image-based visual servoing has changed to a

hybrid technique called 2 1/2 D visual servoing [37]. This approach does not re-

quire an explicit 3D model of the target object, but instead calculates a partial

pose estimate between the current and desired image plane configurations. Subse-

quently, the relative position and orientation controllers can be decoupled similar

to position-based visual servoing control schemes. The scale of the target object

cannot be recovered from the measurement space and instead must be initialized to

an approximate value prior to starting an operation. This technique also requires

at least 8 feature points for non-coplanar target objects [37], compared with 3 for

other methods.

For position-based visual servoing, this combined estimation problem was inves-

tigated by Deng et al. in [17]. In this work, only monocular camera measurements

were used with two decoupled EKFs. One is designed to estimate the relative pose

45



of the object frame with respect to the camera frame and the other to estimate the

target object model feature locations. The two EKFs proceed in lock-step with the

results of one utilized by the other in the next time step. Further, two methods

are proposed to initialize the estimation. The first assumes that the target object

is stationary and uses the robot kinematics and joint encoder readings to calculate

changes in the relative pose, allowing for triangulation of feature point locations

from image-plane measurements. The second method assumes that the relative

depth of the object is approximately known and that the object is close to planar.

However, since the system uses only image-plane measurements in the estimation,

the scale of the object and relative motion will not be recovered accurately. The

system is able to converge to a consistent solution, but it will rarely be to the

correct scale.

In [23], Fontanelli et al. use a position-based visual servoing switching controller

to explore and navigate a mobile robot around unknown indoor environments. Sig-

nificantly, this work acknowledges the parallels between the SLAM and position-

based visual servoing pose estimation problems, and directly applies techniques

from SLAM to estimate the environment map. The global scale is recovered using

the odometric data from the robot dynamic model and therefore the environment

is assumed to be static. While calling this particular approach visual servoing is

a slight misnomer (this is, in fact, closer to monocular camera SLAM used as an

estimator for the robot controller), it is the recognition of the link between the

fields which is valuable.

3.3 Recursive Estimation

In the previous chapter, it was assumed that the target model parameters were

known a priori. However, in this chapter, these parameters are initially unknown

and must be estimated online along with the system states. The system, therefore,

becomes a combined state and parameter estimation.

The unknown parameters can be appended to the original state vector and

treated as static states. This new system is now a state estimation and can be solved

recursively using the EKF framework, as before. The process and measurement

models used in this combined estimation are similar to the relative pose estimation

system, but some former parameters are now states.
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3.3.1 Relative Motion Dynamics

While the geometry of the target object model is not known at the beginning of

the estimation, the object itself is assumed to be a rigid body and therefore, its

position and orientation in the camera coordinate frame can be represented by three

position and three rotational parameters comprising the relative pose vector, w.

As with the previous estimation when the object model was known, the relative

motion dynamics are assumed to be well-represented by a constant-velocity model.

Accordingly, the system state vector is composed of the six pose parameters and

their associated velocities. Therefore, let xk = [ X Y Z φ θ ψ Ẋ Ẏ Ż φ̇ θ̇ ψ̇ ]Tk be

the state vector at time step k.

The dynamics of the system can then be written in discrete-time state-space

form as a function of the states,

xk = Axk−1 + ηk, (3.1)

where ηk is again a vector of zero mean Gaussian disturbance noise with covariance

Q, and the process matrix has the form,

A =

[
I6×6 δtI6×6

0 I6×6

]
, (3.2)

where δt is sampling period. At this point, the process model is identical to that

of the known object model estimation studied in the previous chapter. This is not

surprising since the model parameters do not affect the relative motion dynamics

between the target object and camera frames. However, in order to estimate the

model parameters in addition to the system states, the parameters will be appended

to the state vector and the process matrix will change slightly, as will be shown in

the next section.

3.3.2 Cartesian Feature Parameterization

For this combined estimation, both the system states, as well as the model param-

eters are estimated simultaneously. The model parameters are the object feature

point locations within the local object frame as shown in Fig. 3.2. The parame-

ters for each feature are appended to the state vector and therefore each feature

that is included in the estimation increases the length of the state vector by three

elements. Augmenting the state vector to include the parameters this way is anal-

ogous to treating the parameters as static states. The new augmented state vector
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Figure 3.2: In the Cartesian object feature point parameterization, the point fea-

ture locations (black dots) are expressed by their coordinates in the local object

coordinate frame for an example target object.

is x̃ = [ xT xO1 yO1 zO1 ... xOj y
O
j zOj ... xON yON zON ]T with the feature point parameters

appended for the N feature points.

The process matrix must also be adjusted to accomodate the dynamics of these

augmented states. The dynamics of the states representing the model parameters

are defined to be static. When these parameters are added to the relative motion

dynamics, this makes the full system dynamics,

x̃k = Ãx̃k−1 + η̃k, (3.3)

where η̃ = [ηTk 0T3N×1]
T is a vector of zero-mean Gaussian disturbance noise with

covariance Q, and

Ã =

[
A 0

0 I3N×3N

]
, (3.4)

with A as defined previously in equation (3.2).

By specifying that the model parameters are not subject to disturbance noise,

these appended states should converge to the correct values and remain there once

the initial covariance, specified at the initialization phase, is reduced with subse-

quent measurement update steps of the EKF. This is the difference between the

relative pose velocity states and the model parameter states – the relative velocities

are subject to disturbance noise which dictates that they will not necessarily con-

verge to one value and remain there. The disturbance noise serves to perturb these

values at each time step by injecting some uncertainty at the prediction step that

the measurement update step can use to affect change in their values. With the

model parameters, on the other hand, their covariance will be monotonically de-

creasing [19] with successive measurements and will eventually become fixed. This

behaviour can lead to challenges when recovering the correct global scale.
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3.3.3 Single Monocular Camera Model

The measurement model utilized in the estimation is once again that of the pin-hole

camera subject to zero-mean Gaussian measurement noise,

zk = g(xk) + νk, (3.5)

but the object feature point positions, ζOj = [ xO yO zO ]Tj , are now part of the

state vector.

The camera frame is defined as previously in Section 2.3.2, for each feature point

j,

gj =

[
xi

zi
yi

zi

]
j

, (3.6)

where  xi

yi

zi


j

= ΦTC
Oζ̃

O
j . (3.7)

Since the EKF is used to estimate both the relative pose and target model

parameters, the measurement model must be linearized at every time step as part

of the measurement update step. The pin-hole camera equations are linearized

about the current state estimate, which in this case, contains the current estimate

of the target model. As a result, the partial derivative of the output equations with

respect to the each model parameter is calculated and becomes another column in

the measurement Jacobian, Ck. The expressions for the elements of Ck are derived

in Appendix A.3 using the MATLAB software package.

3.3.4 Inverse Depth Feature Parameterization

Within the SLAM framework, Montiel et al. in [43] present a useful parameteriza-

tion for feature points measured using bearing-only sensors which more effectively

reflects the relative uncertainty arising from these measurement systems, compared

with the Cartesian feature point parameterization.

Instead of parameterizing the object feature point positions using the three

Cartesian values, they are represented in the local object frame as the sum of an

initial observation point and an observation ray, xOj
yOj
zOj

 =

 pOj
qOj
rOj

+
1

τj

 cos γj sinχj

sin γj sinχj

cosχj

 , (3.8)
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Figure 3.3: Each feature point is represented by the camera center coordinates in

the object frame where the feature was first observed (pOj , q
O
j , r

O
j ), the bearing to

the point (γj, χj), and the inverse of the depth along that bearing, τj.

where [ pOj qOj rOj ]T is the position of the camera center in the object frame when

the feature point was first observed, γj and χj are the azimuth and altitude angles

respectively, to the feature point from this first observation point, and 1
τj

is the

depth along those bearings to the feature point. It is important to note that the

azimuth and altitude angles are specified with respect to the object coordinate

frame. This parameterization is shown in Fig. 3.3.

By using this parameterization, the feature point can be more effectively esti-

mated using the EKF, since the resulting measurement model has better linearity

properties than when the feature points parameters are the Cartesian coordinates.

Since the model linearizations are valid over a larger region, propogating the state

estimates through the process and measurement equations results in more Gaussian-

like distributions and the filter is able to provide more accurate estimates [43].

As a consequence of parameterizing the feature point with the inverse depth,

feature points at infinity, those which are infinitely far away from the camera, can

be represented with τ = 0. When a feature point at infinity is tracked, only relative

orientation information is available from such measurements.

Finally, the initialization of new points into the EKF framework can be done

with no prior knowledge of feature locations, and on the first observation of that

new feature point. Within SLAM, there is interest in being able to add new feature
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points during the estimation. With previous monocular camera systems, initializing

a new feature point had to be done in a separate batch optimization over several

observations to try and reduce the uncertainty associated with the feature point

Cartesian coordinates such that the EKF could correctly estimate the location [12]

[21]. Without a fairly accurate initial estimate, the filter would diverge and the

tracking operation would fail.

In order to calculate these initial azimuth and altitude angles for a new feature

point, j, given an initial pair of image-plane measurements, xIj0 and yIj0, the bearing

to the feature point in the camera frame is,

hCj =

 hx

hy

hz

 = RC
O


−xIj0
Fx
−yIj0
Fy

1

 . (3.9)

Then, the initial azimuth and altitude angles relative to the object frame are

found by,

γj0 = tan−1

(
hy
hx

)
(3.10)

and

χj0 = tan−1
(√

h2
x + h2

y

)
. (3.11)

This parameterization comes at the cost of using six parameters for each point

feature instead of three as with the Cartesian coordinate case. However, once the

location of the feature is known with relative certainty and the distribution associ-

ated with the estimated position becomes a sharp peak about the estimated mean,

the parameterization can be reduced to only the three Cartesian coordinates in the

object frame [43]. This transformation will not be considered in this work, but

would aid in practical implementations of the algorithms by reducing the dimen-

sion of the state vector and therefore, the computational cost of the filter. The

problem of how and when to convert the inverse depth parameters to the Cartesian

representation is addressed in [10].

The strength of this parameterization is the ability to effectively represent and

correctly propogate a large uncertainty in the depth of the object feature points. As

a result, this parameterization will be used for the target model estimation schemes

presented in the remaining sections.
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3.3.5 Relative Orientation Parameterization

In many previous position-based visual servoing systems [53] [28] [17], the relative

orientation of the object frame with respect to the camera frame was represented

using Euler angles, (φ, θ, ψ) for roll, pitch, and yaw. The corresponding rotation

matrix RC
O is composed,

RC
O = R(φ, θ, ψ) = RZC (ψ)RY C (θ)RXC (φ), (3.12)

where RZC (ψ) indicates rotation about the camera frame ZC-axis by an angle ψ.

Recall, when the relative motion is modeled as a constant velocity dynamical

system, the process model used in the pose estimation scheme is,

xk = Axk−1 + ηk, (3.13)

where,

xk = [ X Y Z φ θ ψ Ẋ Ẏ Ż φ̇ θ̇ ψ̇ ]Tk , (3.14)

and

A =

[
I6×6 δtI6×6

0 I6×6

]
, (3.15)

δt is the sampling period, and I6×6 is the identity matrix.

In this case, the process model is linear and can be used directly in the EKF

framework without first having to linearize about the current state estimate.

However, when using Euler angles to represent the relative orientation, there

are singularities when,

θ =
π

2
+ πn, n ∈ Z. (3.16)

At these configurations, the axes of the first and third rotations are aligned and

the system loses a degree of freedom. A rotation matrix can be formed for all

values of φ and ψ, however, the inverse mapping is not unique. In the context of

visual servoing, this leads to the system becoming locally unobservable since the

measurement Jacobian, Ck, loses rank and the filter can diverge.

In an effort to remove this issue, Montiel et al. [43] and Civera et al. [9] in the

context of mobile robot localization, have used unit quaternions to represent the

relative orientation of the camera frame with respect the static world frame. This

is similar to the pose representation for the position-based visual servoing.

The relative orientation of the object frame with respect to the camera frame

can be parameterized by the unit quaternion [22], q = [ q0 q1 q2 q3 ], where the
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elements are subject to the following constraints,

q = q0 + q1î + q2ĵ + q3k̂, (3.17)

î
2

= ĵ
2

= k̂
2

= î̂jk̂ = −1, (3.18)

q = cos(
α

2
) + n̂ sin(

α

2
) (3.19)

q0 = cos(
α

2
), [ q1 q2 q3 ]T = n̂ sin(

α

2
), (3.20)

where α is the angle of rotation about the n̂ axis.

The rotation matrix RC
O can be formed using the unit quaternion representation

by,

RC
O =

 1− 2q2
2 − 2q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

−2q1q2 + 2q0q3 1− 2q2
1 − 2q2

3 2q2q3 − 2q0q1

−2q1q3 − 2q0q2 −2q2q3 + 2q0q1 1− 2q2
1 − 2q2

2

 . (3.21)

The angular velocity is represented by the 3-tuple [ ωx ωy ωz ]T . The state vector

at time step k for the pose estimation system with unit quaternions becomes,

xk =
[
X Y Z q0 q1 q2 q3 Ẋ Ẏ Ż ωx ωy ωz

]T
k
. (3.22)

This system does not suffer from the same singularities as the Euler angles-based

estimation but has some disadvantages in this context. Observe that the relative

pose vector now contains 13 states compared to 12 previously.

When the constant velocity model is assumed to represent the relative motion,

the process model is more complicated than in the Euler angle case and is, in fact,

nonlinear,

xk = f(xk−1, δt) + ηk, (3.23)

of which the quaternion transition is,

qk = (qqω)k−1 , (3.24)

where

qω =

[
cos
(
|ωδt|

2

)
sin

“
|ωδt|

2

”
|ω| [ωx ωy ωz]

]T
k−1

, (3.25)

and

|ω| =
√
ω2
x + ω2

y + ω2
z . (3.26)

This transition of the unit quaternion between time steps is a nonlinear process,

and therefore, must be linearized at each filter recursion to use the EKF framework.
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This, however, can lead to problems since the magnitude of the angular velocity

vector, ω appears in the denominator of many of the elements of the process Ja-

cobian, Fk. This is problematic since zero angular velocity, |ω| = 0, is a common

operating condition, especially when a visual servoing controller is regulating about

a fixed relative pose.

Despite this significant drawback, this parameterization has seen widespread

use, especially within the SLAM community [14] [43] [9]. A simple solution used by

these systems is to assign a very small value initially to angular velocity and count

on the singularity never being exactly reached,

ω0 = [ ε ε ε ]T , ε > 0. (3.27)

This is a temporary fix and there is still a real possibility of hitting the singular-

ity in normal operating circumstances. At the very least, it could lead to numerical

stability problems due to poor conditioning.

Crassidis and Markley [11] refer to other attempted solutions to this issue, but

further point out that the EKF will not ensure that the unit quaternion remains

normalized. Using four parameters to represent orientation means that these values

will be dependent, and a parameterization with three values would be more useful.

Accordingly, the authors in [11] uses Modified Rodriques Parameters (MRP) to

represent attitude estimates made with an EKF.

The MRP are defined using the unit quaternion parameters as,

p = [ a b c ]T =
1

1 + q0
[ q1 q2 q3 ]T = n̂ tan

(α
4

)
, (3.28)

of which the derivative is

ṗ =
1

2

(
1

2

(
1− pTp

)
I3×3 + [p×] + ppT

)
ω, (3.29)

where [a×] is the skew-symmetric matrix formed by vector a,

[a×] =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (3.30)

and ω is the angular velocity vector as before.

Using MRP, the relative pose system, again assuming constant velocity is,

x =
[
X Y Z a b c Ẋ Ẏ Ż ωx ωy ωz

]T
, (3.31)
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with dynamics,

xk = f(xk−1, δt), (3.32)

where the MRP transition is,

[ a b c ]Tk = [ a b c ]Tk−1 + δtṗk−1, (3.33)

which is again a nonlinear function of the states and must be linearized about the

current state estimate at each time step for use with the EKF. However, this process

Jacobian, Fk, does not lose rank when ωk = 0.

While the MRP eliminate the former singularities in the process model, they do

suffer from another singularity which occurs when,

α = 2π + 4πn, n ∈ Z. (3.34)

At this point, the denominator of the MRPs is,

1 + q0 = 1 + cos
(α

2

)
= 1 + cos π = 0. (3.35)

However, if the angle is kept on the interval (−π, π], all relative orientations can

be represented. Further, if the orientation MRP are reset to this interval at each

timestep, then the system will never hit the singularity as long as an interframe

rotation is less than π radians, or 180◦. This should be a reasonable assumption

since such rotations would almost certainly violate the linearity assumptions nec-

essary to use the EKF framework in the first place. Otherwise, the other option is

to increase the sampling rate of the system by using a camera with a faster frame

rate.

The MRPs are better-suited for the EKF framework than unit quaternions since

there are three instead of four parameters for relative orientation, the parameters

are not dependent and do not need to remain normalized, and there are not singu-

larities with zero angular velocity.

3.3.6 Object Frame Redefinition

Without any knowledge of the object model feature point locations, there are un-

constrained degrees of freedom in the object frame relative pose estimate and its

initial relative position and orientation with respect to the camera frame is arbi-

trary. This is a consequence of the gauge freedoms identified in [15] and [35]. Using

only the information from the first frame of the image sequence to initialize the
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Figure 3.4: The object frame is defined with respect to three selected feature points.

The Modelling frame is initially superimposed on the camera frame and the esti-

mated target model feature point parameters are made with respect to this M

frame. Furthermore, the relative pose is now the position and orientation of the M

frame with respect to the C frame.

estimation does not give any measure of the depth of any of the feature points and

therefore, specifying an accurate initial position of the object frame origin with

respect to the camera frame is difficult. If the object frame were initially assigned

some relative pose, the estimated object feature point locations may converge far

from the object frame origin, which makes it awkward when representing object

orientation and could amplify small rotations into large transformations due to the

apparent motion of the frame origin.

Instead, the object frame can be defined with respect to feature locations on

the target object [17] which would simplify specifying relative tasks. This requires

the introduction of a third coordinate frame to act as an intermediary between

the camera and this new object frame as depicted in Fig. 3.4. The initial feature

location uncertainty is effectively propogated by the inverse depth parameterization.

In order to use this representation, the position of the camera center at the first

observation of the feature points needs to be captured. Accordingly, the Modelling

(M) coordinate frame is initially assumed to be superimposed on the camera frame.

At the beginning of the estimation, all observed feature points are initialized

to have an observation point of identically [ pMj qMj rMj ]T = [ 0 0 0 ]T . The

point feature locations are estimated as before, but in the M frame. Furthermore,
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the relative pose parameters now represent the relative position and orientation

of the M frame with respect to the camera C frame. Since these two frames

are defined as being initially superimposed, the initial relative pose parameters

have no initial uncertainty, quantified by an associated estimate covariance of zero.

Recall the result of Dissanayake et al. asserting that the final estimation covariance

is bounded below by the initial covariance of the relative pose parameters [19].

With this representation, it is made explicit that only the relative pose is what is

important and, accordingly, the final model and pose can be recovered perfectly in

the limit.

The object O frame can now be redefined in terms of three point features on the

target object itself with coordinates expressed in the M frame. Assume that there

exists three non-collinear feature points on the target object (ζM1 , ζM2 , and ζM3 ) for

which the coordinates are expressed in the M frame. This property can be verified

in the image plane since collinear points in M will be collinear in the image plane

as well. The new object frame will be formed from the three feature points using

the following rules: the first feature point, ζM1 , specifies the origin of the coordinate

frame, OO; the second, ζM2 , lies on the ZO-axis; and the third feature point, ζM3 ,

lies within the XO-ZO plane. With these three points, all six degrees of freedom in

the placement of the object frame can be fixed.

Next, define the object frame as an orthonormal basis, such that the transfor-

mation from the object frame to the M frame is written,

TM
O =

[
îMO ĵMO k̂MO ζM1
0 0 0 1

]
(3.36)

where îMO , îMO , îMO for the orthonormal basis as unit vectors in the directions of the

XO, Y O, and ZO axes respectively,

îMO =
iMO
|iMO |

, (3.37)

k̂MO =
kMO
|kMO |

, (3.38)

with,

kMO = ζM2 − ζM1 (3.39)

iMO = (ζM2 − ζM1 )− ((ζM2 − ζM1 )T k̂MO )k̂MO (3.40)

ĵMO = k̂MO × îMO . (3.41)
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In this configuration, the relative position and orientation of the new object

frame with respect to the camera frame can be found by the following transforma-

tion,

TC
O = TC

MTM
O . (3.42)

With this new scheme, the system produces estimates of the relative position

and orientation of the modelling frame with respect to the camera frame. The

object feature point locations in M are estimated as previously and the new object

frame within which the robotic operations are performed, can be found at any time

using the estimates of the three selected feature points to form the transformation,

TM
O .

3.3.7 Summary

Integrating all of the modifications detailed above, the resulting combined state and

parameter estimation system has a different form than previously written. While

significant changes are made in the state vector itself, most of the differences with

the previous system are in the interpretation of the parameters. This section will

attempt to tie all of these changes together into a cohesive framework.

The camera (C) frame is defined to be initially superimposed with the mod-

elling (M) frame, and the relative pose parameters encode the relative position and

orientation of the M frame with respect to the C frame,

x = [ X Y Z a b c Ẋ Ẏ Ż ωx ωy ωz ]T , (3.43)

which together can be used to define the homogeneous transformation from the M

frame to the C frame,

TC
M =

[
RC
M(a, b, c) tCM

0 1

]
, (3.44)

where

tCM = [ X Y Z ]T . (3.45)

Subsequently, the target model feature point parameters expressed in the M

frame, are appended to the state vector such that they are now estimated along

side the relative pose states,

x̃ = [ xT ... pMj qMj rMj γj χj τj ... ]T , (3.46)

forming the augmented state vector for the combined state and parameter estima-

tion system.
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While the dynamics of the target object model parameters remain stationary,

the relative motion dynamics, using the Modified Rodrigues Parameters, are now

nonlinear,

xk = f(xk−1) + ηk (3.47)

leading to the process matrix used at each time step k,

Ãk =

[
Fk−1 0

0 I6n×6n

]
, (3.48)

where

Fk =
∂f(x)

∂x
|x=xk (3.49)

is the first-order Taylor series expansion of the relative pose dynamics, f(x).

The measurement model changes as well to reflect the new parameterizations.

First, the transformation of the object feature points from the M frame to the C

is written, 
xCj
yCj
zCj
1

 = TC
M



pMj
qMj
rMj
1

+
1

τj


cos γj sinχj

sin γj sinχj

cosχj

0


 . (3.50)

Then, the now familiar projection onto the camera image plane is found,

xIj = −Fx
xCj
zCj

(3.51)

yIj = −Fy
yCj
zCj
. (3.52)

Consequently, the measurement model must now be linearized about the current

state estimate, using the new parameterizations, for use in the EKF framework.

Both the process and measurement Jacobians for this system are found in Appendix

A.4 and Appendix A.5 respectively.

This combined relative pose and target model estimation system can now be

recursively solved by the EKF using the procedure outlined in Section 2.3. The final

requirement is to seed the filter with reasonable initial estimates of the unknown

system.
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Initialization

Similar to many of the previous localization systems, the target model can be

initialized with a subset of the feature points at known locations. The specific

initialization values depend on whether the target object model is assumed to be

partially known or completely unknown. A known object model actually places

more constraints on the initial relative pose estimate, whereas for a target object

with a completely unknown feature point set, the choice of initial pose is arbitrary.

Only the completely unknown case is investigated here.

Unknown Target Model

All of the necessary information for the initial estimate can be derived from the

first set of measurements. As they were defined in Section 3.3.6, the relative pose

parameters express the relative position and orientation of the modelling M frame

with respect to the camera C frame. By this definition, the two frames are superim-

posed on the start of the estimation and all of the pose parameters are represented

by Gaussian distributions with zero mean and zero covariance,

X0 = 0, σ2
X0 = 0 (3.53)

Y0 = 0, σ2
Y 0 = 0 (3.54)

Z0 = 0, σ2
Z0 = 0 (3.55)

a0 = 0, σ2
a0 = 0 (3.56)

b0 = 0, σ2
b0 = 0 (3.57)

c0 = 0, σ2
c0 = 0. (3.58)

The pose velocity parameters are also set to zero-mean Gaussian distribution,

but with a suitable set of covariance values to characterize the confidence.

Finding initial estimates for the feature point locations is slightly more com-

plicated, but follows the same idea. If it is assumed that all of the object feature

points are visible in the first image, the initial measurements from the first camera

image provide a reasonable bearing to the feature point location. Additionally, the

initial observation point for the features is identically zero, just like the initial pose

parameters. As a result, five of the six feature point parameters can be initialized

to reasonable values using the measurements from the first camera image alone.

pMj0 = 0, σ2
pj0

= 0 (3.59)
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qMj0 = 0, σ2
qj0

= 0 (3.60)

rMj0 = 0, σ2
rj0

= 0 (3.61)

with the initial azimuth and altitude angles γj0 an χj0 defined using equations

(3.10) and (3.11), and the covariances associated with these angles, σ2
γj0

an σ2
χj0

,

are set using the 95% confidence interval method.

The final feature parameter for the inverse depth, τ , is where the majority of the

uncertainty resides in the single camera estimation scheme. While it is possible to

specify a large uncertainty range covering from centimetres in front of the camera

all the way out to infinity, using prior knowledge about the working conditions may

help with convergence. Assumptions about the range of depths for object features

can be quantitatively represented as a mean and covariance pair. Suppose that

all of the object feature points were assumed to have an initial image depth on

[ dmin, dmax ] with a 95% confidence interval, where 0 < dmin ≤ dmax,

τmin =
1

dmax
, τmax =

1

dmin
, (3.62)

τmax − τmin = 4στj0 , (3.63)

σ2
τj0

=

(
dmax − dmin
4dmindmax

)2

, (3.64)

τj0 =
1

dmax
+ 2στj0 =

dmin + dmax
2dmaxdmin

. (3.65)

3.4 Observability Analysis

In order for the EKF to produce a reasonable estimate for the system states, which

in this case are the relative pose, the relative velocity, and the target object model

parameters, the system must be completely observable, or at least be operated in

an observable region of the state space. The relative pose system uses a nonlinear

measurement model and therefore, the classical linear observability concepts can

not be trivially applied in this situation.

Following in the example of Vidal-Calleja et al. in the context of a planar SLAM

system with a vehicle dynamics process model, in [51], this system is approximated

as a discrete Piece-Wise Constant System (PWCS) [24].
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3.4.1 Discrete Piece-Wise Constant Systems

A discrete-time PWCS can be written in the following form [24],

xk = Ajxk−1 + Bjuk−1 (3.66)

zk = Cjxk, (3.67)

where xk ∈ Rn, Aj ∈ Rn×n, uk−1 ∈ Rs, Bj ∈ Rn×s, zk ∈ Rm, Cj ∈ Rm×n and

j = 1, 2, ..., r. Within each time segment, j, the system matrices, Aj, Bj, and Cj

are constant in their elements.

In this analysis, each time segment, j, corresponds with the time step, k. In

linear systems observability analysis, the observability of a given system is not

affected by the excitations or deterministic inputs. However, this is not necessarily

the case for nonlinear systems [27]. The relative motion system is autonomous

and therefore does not include deterministic inputs. The (noiseless) linear system

matrices change at every time step as the linearization of the nonlinear process

and measurement equations about the current state. The resulting PWCS can be

written, with a slight notation change to reflect each time segment containing only

one time step, as,

xk = Akxk−1 (3.68)

zk = Ckxk. (3.69)

The observability of this linear system depends on the set of Ak and Ck matrices

over the discrete time steps. The observability matrix at each individual time

segment (time step, in this case) is,

QT
k =

[
CT
k (CkAk)

T ... (CkA
(n−1)
k )T

]T
. (3.70)

Stacking the individual observability matrices from each time segment forms

the total observability matrix (TOM) [24] over all r segments,

Q(r) =


Q1

Q2A
n−1
1

Q3A
n−1
2 An−1

1

...

QrA
n−1
r−1An−1

r−2 ...A
n−1
1

 . (3.71)

From this, it can be shown that the PWCS is completely observable if and only if

the TOM has rank n. When the system is not completely observable, it will be

said to be unobservable, as done previously.
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Goshen-Meskin et al. [24] also introduce a simpler object called the stripped

observability matrix (SOM) which drops the process matrices, Ak, from the TOM

for the case where all of the unobservable modes of the system are associated with an

eigenvalue of 1. A relative pose dynamics model which uses the constant velocity

approximation, such as the one used in this analysis, satisfies this requirement

trivially since all of the modes of the system are associated with eigenvalue 1. This

is evident from the structure of Ak in the system.

The SOM over r time segments, Qs(r) is then simply,

Qs(r) =


Q1

Q2

Q3

...

Qr

 . (3.72)

Obviously, the SOM (or TOM) where r = 1 reduces to the familiar linear control

system observability matrix. In this single time segment case, if the matrix has rank

n, the system is completely observable in the first time segment and there is no

need to consider further time segments. However, if this is not the case, more time

segments can be used to see if and when the PWCS becomes completely observable.

Additionally, the observability matrices can be analyzed to discover which modes

are unobservable and what kinds of measurements must be supplemented to make

the system observable.

3.4.2 One Degree of Freedom

Recall the problem of estimating the position of a feature point with respect to a

camera frame in a planar environment where the relative position is free to vary

in only one dimension from Section 2.4.1. Previously, it was shown that in almost

all configurations, when the XC-axis coordinate of the point feature was known

with certainty, it was possible to estimate the relative depth of a feature point with

respect to the camera frame. The analysis is now extended to the case where the

xO parameter is unknown and thus must be estimated.

Observability with Unknown Model

If there is no prior knowledge of the camera XC-axis position of the single feature

point, it is now also part of the estimation scheme along with the Y C-axis motion,
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Figure 3.5: The setup for the one degree-of-freedom relative pose estimation when

the feature point location is completely unknown. Two time steps of the relative

motion are shown (white to black stars).

shown in Fig. 3.5. This problem becomes a combined state and parameter estima-

tion. The unknown parameter, xO is appended to the state vector to form a new

augmented system where the dynamics of the parameter dictate it is stationary,

x̃ = [ Y Ẏ xO ]T (3.73)

x̃k = Ãx̃k−1 (3.74)

zk = g(x̃k) = −
(
xO

Y

)
k

, (3.75)

where

Ã =

 1 δt 0

0 1 0

0 0 1

 . (3.76)

For this analysis, this nonlinear system will be approximated by a PWCS, as

detailed previously. Accordingly, the measurement model needs to linearized at

each time step, k, as follows,

C̃k =
∂g(x̃)

∂x̃
|x̃=x̃k =

[
xO

Y 2 0 − 1
Y

]
k
. (3.77)

By assuming that the nonlinear system is approximated by the PWCS, it is

assumed that this linearization will remain valid over the entire time step. In the

context of the PWCS, it is then assumed that each time segment consists of a
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single time step and the system matrices at that time segment are formed by the

linearizations at that operating point which is the true system state at that time

step. There is an issue with such an assumption that will be explored in the next

section.

Investigating the observability over just one time step with the Ck found from

the linearization, the observability matrix Q̃k becomes,

Q̃k =

 C̃k

C̃kÃ

C̃kÃ
2

 =


xO

Y 2
k

0 − 1
Yk

xO

Y 2
k

δt
xO

Y 2
k
− 1
Yk

xO

Y 2
k

2δt
xO

Y 2
k
− 1
Yk

 . (3.78)

For complete observablity, this matrix must have full rank. However, the rank

of this matrix is never n = 3, as verified by observing that the matrix is rank-

equivalent through elementary row operations to,

U =

 1 0 − Yk
xO

0 1 0

0 0 0

 . (3.79)

Following the procedure in [24], two time segments of the PWCS will now be

considered to see if successive measurements can produce an observable system.

Notice that since the eigenvalues of Ã are all 1, the SOM can be utilized for the

analysis rather than the more complicated TOM. The SOM is formed by stacking

the two observability matrices for the two time-segments,

Q̃(r) =

[
Q̃k

Q̃k+1

]
=



xO

Y 2 0 − 1
Y

xO

Y 2 δt
xO

Y 2 − 1
Y

xO

Y 2 2δt
xO

Y 2 − 1
Y

xO

(Y+δtẎ )2
0 − 1

(Y+δtẎ )
xO

(Y+δtẎ )2
δt

xO

(Y+δtẎ )2
− 1

(Y+δtẎ )
xO

(Y+δtẎ )2
2δt

xO

(Y+δtẎ )2
− 1

(Y+δtẎ )


k

. (3.80)

It is then found that this matrix is rank-equivalent through row operations to,

Ũ =


xO

Y 2 0 − 1
Y

0 δt
xO

Y 2 0
xO

(Y+δtẎ )2
0 − 1

(Y+δtẎ )

 . (3.81)

This indicates that the system will be completely observable when when the

determinant is non-zero, where,

det(Ũ) = − δ2
t x

OẎk

Y 4
k (Yk + δtẎk)

. (3.82)
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Therefore, the system is unobservable when:

1. Ẏk = 0 – there must be some relative motion between measurements.

2. xO = 0 – the feature must not be directly aligned with camera’s projection

ray.

3. |Yk| → ∞ and |Yk + δtẎk| → ∞ – observations must be from a finite depth

away.

The PWCS approximation of the nonlinear system is completely observable over

two timesteps where the configurations do not fall into the sets detailed above. It

should be noted that the unobservable configurations for this unknown feature lo-

cation estimation include the requirements of the known object model observability

criteria (from Section 2.4.1) as necessary conditions. In other words, these combined

relative pose and target model estimation systems include the unobservable con-

figurations of the relative pose estimation systems as a subset of the unobservable

configurations here.

3.4.3 Shortcomings of PWCS Analysis

When using the PWCS on a nonlinear system, it is assumed that the nonlinear

relative pose and target model estimation system could be effectively approximated

by a linearization at each time step. In fact, this is not absolutely true. A PWCS

assumes that the process and measurement matrices are a function of the time step,

but for this particular system, they are also a function of the states.

Somewhat unexpectedly, the analysis in the previous section suggests that the

unknown target model system is completely observable (including global scale) over

two time steps. This contradicts the previous assertion that the global scale should

not be recoverable using a single bearing-only measurement device. Clearly, some

information is not being captured in the approximated model.

When the measurement model was linearized to form Ck, the operating point

used is the actual trajectory of the target object with respect to the camera. In

other words, the true state at that time step. During the estimation, however, the

output model is linearized about the current state estimate. This discrepancy is the

reason why the PWCS suggests it should be possible to recover the global scale.
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To see how this can occur, consider the following. For the one-dimensional

estimation above, assume that the system is not affected by noise and measurements

are taken from three distinct relative positions.

z1 = C̃1x̃1 (3.83)

z2 = C̃2x̃2 (3.84)

z3 = C̃3x̃3 (3.85)

where

C̃k =
∂g(x̃)

∂x̃
|x̃=x̃k (3.86)

with x̃2 = Ãx̃1, x̃3 = Ã2x̃1, and g(x̃) was given in Section 2.4.1.

In order to form an estimate of the system states from the measurements, an

inverse mapping is required. Start by stacking the measurements into a vector,

z =

 z1

z2

z3

 = Ĉx̃1 =

 C̃1

C̃2Ã

C̃3Ã
2

 x̃1. (3.87)

This augmented output matrix has the form,

Ĉ =


xO

Y 2 0 − 1
Y

xO

(Y+δtẎ )2
δt

xO

(Y+δtẎ )2
− 1
Y+δtẎ

xO

(Y+2δtẎ )2
2δt

xO

(Y+2δtẎ )2
− 1
Y+2δtẎ

 . (3.88)

When this Ĉ matrix is invertible, the system states can be expressed as a

function of the outputs,

x̃1 = Ĉ−1z (3.89)

If the linearization of the output model is performed at an operating point which

is a scaled version of the true system states, that state estimate will be scaled by an

identical factor. Let the linearization occur at the operating point x̂ = αx̃, where

α ∈ R. The corresponding augmented output matrix Č is a scalar multiple of Ĉ,

Č =
1

α
Ĉ (3.90)

and therefore the inverse will be,

Č−1 = αĈ−1. (3.91)
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Figure 3.6: Three possible relative trajectories (from white to black stars) of the fea-

ture point with respect to the camera leading to the same image line measurements.

The estimator is unable to distinguish the correct trajectory based on monocular

camera measurements alone.

This result indicates that the state estimate will be a scaled version of the true

states. In terms of the recursive estimation algorithms, using the current state

estimate will almost certainly lead to a scaled solution for the relative pose and

target model parameters. Further, if there is any error in the estimates – including

round-off errors – this will lead to a change in the scale of the estimated states.

There is nothing that is driving the states back to the correct global scale value.

A helpful way of looking at this situation is to think of a set of parallel trajec-

tories between the camera and target object, each representing a different global

scale. Fig. 3.6 shows three such two-step trajectories of a feature where the white

stars are the first step and black are the second step. All three trajectories result in

the same image line measurements. With perfect information about the true state

and noiseless measurements, the correct trajectory is closed and the estimation will

remain within it, leading to the correct solution. Estimation errors and noisy mea-

surements can cause the states to jump between these trajectories to a new scale.

There is no information in the measurements that will discriminate one such scale

trajectory from the next. In this sense, more information needs to be added to the

system to drive it towards the correct trajectory.

In the PWCS analysis, the global scale is resolved by using these true operating

points. By linearizing the system about a point, the solution scale is implied by that

operating point. Thus, the PWCS observability algorithm cannot directly detect
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all conditions when a nonlinear system is unobservable. By linearizing the system,

some system information is lost. This suggests that a true nonlinear observability

analysis is called for, such as is suggested in [27] investigating Lie derivatives.

However, as evidenced in the previous section, there is still value in performing

the PWCS analysis as it communicates a subset of the unobservable configurations

without the added complexity of the nonlinear analyses.

3.4.4 2D Observability

The analysis is now extended to higher dimensions by returning to the planar rel-

ative pose system described in Section 2.4.2. Originally, the observability of the

relative pose system was investigated for the case when the target object model

was known with perfect certainty, and measurements of feature points were made

using a single monocular camera. In this section, the target object model is as-

sumed completely unknown. The unobservable configurations are of interest in this

analysis.

Previous Results

Andrade-Cetto et al. assert that solving the mobile robot SLAM problem in a global

reference frame is inherently unobservable [2]. Specifically, they cite to partial ob-

servability of the system as the cause of the results from Dissanayake et al. showing

that the absolute accuracy of the generated map is bounded below by the initial ve-

hicle pose uncertainty [19]. In this way, the absolute positions of the robot and the

map landmarks are dependent on one another and only the combination of these

values can be recovered. It is then shown that in order for the system to become

fully observable, a fixed external sensor such as a GPS receiver must be added

to the system, or a feature point must be selected to act as a global localization

reference.

Vidal-Calleja et al. investigate the observability of mobile robot SLAM in a

planar environment using a bearing-only sensor [51]. The nonlinear system, which

includes a model of the vehicle dynamics, is approximated by a PWCS and the

SOM is analyzed to determine its null space. The work looks at the observability

of systems with all unknown feature point locations, some known feature points

called anchors, and a purely relative model where the absolute positions of both

the robot and feature points are disregarded. This last case is a consequence of the

absolute pose of the mobile robot being unrecoverable from relative measurements
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of feature point locations without an external anchor of known absolute position

being available [2] [19]. It is found that the final system is unobservable over two

time steps if there is no translational motion, or if the robot moves directly towards

an unknown feature point. In the former case, there is no parallax between the two

observations with which to triangulate the depth of the feature point, and in the

latter case, moving towards the point does not change the relative bearing to that

feature point. While these results are informative, the problem is different from the

relative pose estimation systems presented in this study. The principle difference

being the use of the robot dynamics model, which makes these unobservable modes

a subset of this which arise in the pose estimation.

These two previous works from the SLAM community rely on different process

models than the generic constant velocity models used here. As a result, the observ-

ability results, while relevant to this discussion, are likely not the complete picture

for this system. The next section will look at the more general results for the rel-

ative pose estimation and attempt to characterize the unobservable configurations

in a geometric sense, as before.

Pose Estimation

In order to study the changes that arise when information about the target object

model is not available, the system is modified in the same fashion as with the simple

one dimensional system described in the previous section. As will become evident

below, the additional degrees of freedom significantly complicate the observability

analysis, but valuable insight can be gained in the case when the relative position

and orientation of the target object model can be recovered accurately using the

single camera.

A system where three feature points are observed by a line camera at each time

step will again be considered, and is shown in Fig. 3.7. It is well-known that the

combined estimation of both the model and relative pose can only be recovered up

to a similarity transform [35]. As a result, a set of constraints must be imposed to

allow the system to converge to a unique solution and accomodate for the gauge

freedoms [15].

The locations of some of the feature points can be fixed with respect to the local

object frame to remove these degrees of freedom, without loss of generality. It will

be assumed that the first feature point is at the origin of the object frame,

[ xO1 yO1 ] = [ 0 0 ]. (3.92)
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Figure 3.7: Two time steps of the planar pose estimation system with three feature

points on the target object. The observabililty analysis reveals when the two sets

of image line measurements are not sufficient to recover both the relative pose and

model of the target object.

Additionally, it is assumed that the second feature point lies on the Y O-axis,

xO2 = 0. (3.93)

With these three coordinates fixed, there are only three more parameters which

must be estimated, and are therefore appended to the state vector,

x = [ X Y θ Ẋ Ẏ θ̇ yO2 xO3 yO3 ]T . (3.94)

These new states are considered static as reflected in the state transition for the

kth time step,

xk = Axk−1 + ηk, (3.95)

where

A =

 I3×3 δtI3×3 0

0 I3×3 0

0 0 I3×3

 . (3.96)

While the process model has been slightly modified to accomodate for the aug-

mented state vector, the measurement model is unchanged, except that some of the

feature point parameters are now states.
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The PWCS for this planar combined relative pose and target object model

estimation is,

xk = Axk−1, (3.97)

∆zk = Ck∆xk, (3.98)

where ∆zk and ∆xk are perturbations about the operating point at which the

nonlinear measurement model was linearized.

The observability of this new system is the subject of the analysis in the following

sections.

One Time Step

Consider the observability of the system using observations of the three feature

points from a single time step. The linearized measurement matrix used in the

PWCS, Ck, is formed by finding the Jacobian of the measurement model evaluated

at the current state, which now includes the feature point parameters,

Ck =
∂g(x)

∂x
|x=xk = fV−1

k

[
Hk 03×3 Jk

]
(3.99)

where Vk is given in (2.59), Hk is given in (2.60), and

Jk =

 0 0 0

x
C/O
2 0 0

0 −yC/O3 x
C/O
3


k

. (3.100)

Given the form of the measurement matrix, the product of Ck and the ith power

of A will be,

CkA
i = fV−1

k

[
Hk iδtHk Jk

]
, (3.101)

and as a result, the observability matrix at the kth time step, Qk, is rank-equivalent

through row operations to

Uk =

[
V

V

]−1

k

[
H 0 J

0 H 0

]
k

. (3.102)

In this form, it is apparent that this matrix has rank(Uk) ≤ 6, which is less

than the required rank of 9 for complete observability of the PWCS. Adding more

unknown features will not make the system observable since each new feature adds

two more states but only a single measurement at each time step. Therefore, the

system is always unobservable over one time step.
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Two Time Steps

Consider now, the observability of the system using observations of three distinct

feature points over two time steps, k and k + 1.

Theorem 2. Assuming f > 0, and δt > 0, the PWCS, (3.97) and (3.98), is

unobservable over two timesteps if and only if:

(i) ∃j ∈ {1, 2, 3}, m ∈ {k, k + 1} s.t. yCj,m →∞,

or

(ii) xI1,k = xI1,k+1,

or

(iii) ∃j ∈ {2, 3} s.t.

(
RC
Ok+1R

O
Ck

[
xCj
yCj

]
k

)
‖

([
xCj
yCj

]
k+1

)
.

Proof. The SOM for the PWCS is constructed by stacking the two observability

matrices from the successive time steps,

Q(2) =

[
Qk

Qk+1

]
, (3.103)

which is rank equivalent through elementary row and column operations to,

U =


V−1
k Hk 0 V−1

k Jk

0 V−1
k Hk 0

V−1
k+1Hk+1 0 V−1

k+1Jk+1

0 V−1
k+1Hk+1 0



=


Vk 0 0 0

0 Vk+1 0 0

0 0 Vk 0

0 0 0 Vk+1


−1 

Hk Jk 0

Hk+1 Jk+1 0

0 0 Hk

0 0 Hk+1

 ,
(3.104)

where the matrices V, H, and J are given in (2.59), (2.60), and (3.100), respectively.

The PWCS is unobservable if and only if U loses full rank, and the structure of

this matrix dictates this happens only when any of the following three conditions

are met,

rank(UA) = rank

[ Vk 0

0 Vk+1

]−1
 < 6, (3.105)
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rank(UB) = rank

([
Hk Jk

Hk+1 Jk+1

])
< 6, (3.106)

or

rank(UC) = rank

([
Hk

Hk+1

])
< 3. (3.107)

Consider each of these conditions individually. First, the inequality on UA in

(3.105) is satisfied when any of the features are infinitely far away from the line

camera in the ~Y C-axis direction at either time step, since the zero determinant

implies, (
yC1,ky

C
2,ky

C
3,ky

C
1,k+1y

C
2,k+1y

C
3,k+1

)2 →∞. (3.108)

This is equivalent to (i).

The second condition, from (3.106), specifies a rank requirement on the UB

submatrix. By taking advantage of the zero-elements in the matrix, the zero deter-

minant gives the equation,(
x
C/O
3,k y

C/O
3,(k+1) − y

C/O
3,k x

C/O
3,(k+1)

)
xC/O2,k det


 H→1

k

H→2
k+1

H→1
k+1


− xC/O2,(k+1)det


 H→1

k

H→2
k

H→1
k+1



 = 0,

(3.109)

where H→ik indicates the ith row of Hk, which is related to the ith feature location

at time step k.

The first term in (3.109) going to zero specifies,(
RC
Ok+1R

O
Ck

[
xC3
yC3

]
k

)
‖

([
xC3
yC3

]
k+1

)
. (3.110)

That is, the camera frame coordinates of the third feature point at time step k,

rotated by θk+1− θk, are parallel with the camera frame coordinates of that feature

point at the k + 1 time step. This situation occurs, for instance, when the camera

undergoes a pure rotation, or when the feature points are collinear and all project

to the same image line position at both time steps.

The second term of (3.109) can be expanded by first substituting equations

(3.92) and (3.93) into (2.60) for both time steps, k and k+1, to find the determinants

of the H submatrices,

det


 H→1

k

H→2
k

H→1
k+1


 = yO2 (YkXk+1 −XkYk+1) y

C/O
2,k (3.111)
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and

det


 H→1

k

H→2
k+1

H→1
k+1


 = yO2 (YkXk+1 −XkYk+1) y

C/O
2,(k+1), (3.112)

such that the UB determinant also goes to zero when,

yO2 (YkXk+1− XkYk+1)(
x
C/O
2,k y

C/O
2,(k+1) − x

C/O
2,(k+1)y

C/O
2,k

)
= 0.

(3.113)

This expression indicates that the PWCS is unobservable in three additional

configurations. First, when yO2 = 0, the first and second point features have the

same coordinates and provide redundant measurements on the image line. Three

distinct feature points are required for the system to be observable. The next term

specifies a zero determinant, and therefore, an unobservable system, can also be

caused by the first feature point positioned on the same projection ray in both time

steps such that,
Xk

Yk
=
Xk+1

Yk+1

, (3.114)

or equivalently,

xI1,k = xI1,k+1, (3.115)

meaning that the image line measurement of this feature does not change between

time steps. This case is presented in (ii). Finally, the last term dictates that the

second feature point has the same constraints as the third, shown before in (3.110).

These conditions are encapsulated in (iii).

The final condition, regarding UC in (3.107), specifies that an unobservable

PWCS can be the result of the 6× 3 matrix having a rank less than three. That is,

no three of the six rows may be linearly independent if the system is unobservable.

This gives 20 possible combinations of rows to check for the geometry in which the

submatrices are not full rank. However, it will be shown that the condition on UC

implies the UB condition is also met, and can therefore be disregarded. Assume

that the condition (3.106) is not statisfied.

For this third condition, in (3.107), to be met, (2.68) dictates that the camera

center is on F at each time step. Additionally, (3.111) and (3.112) will be zero

when y
C/O
2 = 0, hence the second feature point is on the same projection ray as the

first feature point. These four constraints are upheld only when the second feature

point is on the camera center or when all the points are collinear and on the same

projection ray. These cases are impossible if (3.106) is not satisfied. Therefore, the
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unobservable configurations for the PWCS are completely described by the first

two conditions, on UA and UB.

A physical interpretation for the three necessary and sufficient conditions for an

unobservable PWCS is important for fully understanding the configurations that

should be avoided. The first condition, (i), dictates that the system is unobservable

if any of the point features are infinitely far away from the camera in the Y C-axis

at either time step. This is similar to the condition from the case when the target

object model is known, but incorporates both time steps.

The second condition, (ii), indicates that the image line projection of the first

feature point cannot be the same at both time steps. This is caused by the feature

point moving along the original projection ray and the resulting lack of parallax

which does not allow the point to be located along this ray.

The final condition in (iii) means that the PWCS is unobservable when the

camera frame coordinates of the second or third feature point at time step k, rotated

by the change in relative orientation, are parallel with the camera frame coordinates

at time step k + 1.

These conditions specify the situations which are to be avoided to keep the

relative pose PWCS observable over the entire estimation. With this information,

the combined pose and target model estimation in planar environments can be

made more robust and reliable.

3.4.5 3D Observability

In the final observability analysis, the problem is expanded again to investigate the

full six degree of freedom relative pose estimation with an unknown target object

model measured by a monocular camera. The added degrees of freedom increase the

complexity of such a study dramatically such that using the brute-force approach

previously employed, seems intractable. Instead, this section will only comment

on other work related to such a study, and the implications from the previous

lower-dimensional cases.

A thorough work on the observability of estimating systems of this type is found

in [47]. In this work, Soatto investigates the observability of the full 3D camera

motion estimation when the structure of a rigid scene is initially unknown. He also

points out that using state observers to recover the camera pose and scene structure,

represented by a set of salient points, amounts to computing differentiations of the
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system output until the relationship between the output and initial state can be

found. Further, when the system state vector contains only the six pose parameters,

both the input (i. e. position noise) and initial state appear at the same level of

differentiation. In this case, either the camera motion or the scene depth can be

recovered, but not both.

In order to remedy this issue, the relative velocities of the pose parameters can

be added to the state vector, referred to as dynamic extension and is equivalent to

using the constant velocity model. In a similar approach to the planar observability

studied previously, Soatto shows that such a system will never be linearly observable

over one time step. Subsequently, Soatto then shows that the nonlinear system is

not locally observable because the initial state of the system is indistiguishable with

scaled versions of that initial state. This result dictates that the global scale will

never be recoverable for systems using a single camera.

Soatto then looks at a different parameterization of the camera motion called

the essential model which imposes constraints on the motion of the image points

based on the rigid motion assumptions [47]. An essential model is said to be in

general position when there are either more than 8 visible points, or a so-called

extended matix, leading to a constraints matrix with rank 8. The major result of

that work is the following theorem [47]:

Theorem 3. An essential model is in general position ⇐⇒ there does not exist

a quadric surface in R3 which contains all of the feature points and the path of the

camera’s center of projection.

Furthermore, when the model is in general position, the work claims that it is

possible to reconstruct the camera motion if an arbitrary scale factor is imposed.

Quadric surfaces in R3 include ellipsoids, paraboloids, and hyperboloids.

Importantly, the conditions under which the extended matrix becomes full rank

are not investigated in Soatto’s work. Rather, it is shown that if it is full rank,

then the results follow. The observability analyses in this thesis have investigated

the conditions under which such a matrix could be full rank.

While Soatto identifies a large number of the unobservable configurations of the

relative pose estimation system, there is more detailed information which can be

inferred by looking at the previous results for the cases in this work, as a supplement.

The full linear observability matrix for the six degree of freedom case is not

included in this report, but it is apparent from the previous results that the observ-

ability results from the 3D known object model observability analysis will directly
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apply here. Specifically, when only three feature points are measured over multi-

ple time steps, there will be several different configurations which will result in the

same feature point image plane measurements. These would represent local minima

for an observer trying to find the optimal state estimates. Additionally, when the

camera’s center of projection lies on the cylinder with circular cross-section defined

by the three feature points and projecting normal to the plane containing those

points, the system will be in a singular configuration [41].

Further, from the planar case with unknown object model, motion in the direc-

tion of any one of the feature points makes the system unobservable over two time

steps. Additionally, a pure rotation of the camera leads to an unobservable system.

The results in this section are preliminary and suggest an important direction for

future research. Fully characterizing the relative motion and target object configu-

rations which lead to an unobservable system, is important for understanding when

such an observer can be deployed and the types of configurations which should ac-

tively be avoided to generate reliable estimates of both the relative pose and target

object model.
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Chapter 4

Recovering Scale

The previous chapter showed that the combined relative pose and target model

estimation using a single monocular camera is always an unobservable system in

which the global scale is ambiguous. The geometry of the target object, as well

as an up-to-scale estimate of the relative pose of the target object with respect to

the camera can be recovered in almost all cases, but the bearing-only nature of the

camera sensor means that scale remains an unconstrained degree of freedom in the

recovered solution.

In this chapter, the effects of adding additional sensors and the corresponding

measurements to the system is considered. Specifically, those sensors which can

provide measurements of the scale metric, are of interest. The ultimate goal is to

come up with a combination of supplemental sensors to add to the original single

monocular camera system detailed in the previous chapter, such that the resulting

estimation is able to recover the scale information of both the target object model

and the relative position and orientation of that target object with respect to the

camera and robot end-effector.

4.1 Scale Information from Monocular Cameras

One can parameterize the relative position of the object, as well as the object

feature point positions, in terms of a normalized pose x̌, multiplied by a global scale

factor, s [9]. Now the relative pose portion of the state vector for the combined

system can be expressed,

x = [ X Y Z a b c Ẋ Ẏ Ż ωx ωy ωz ]T = [ sX̌ sY̌ sŽ a b c s ˙̌X s ˙̌Y s ˙̌Z ωx ωy ωz ]T .

(4.1)
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Similarly, for the augmented state vector with the target model parameters

appended to the state vector,

x̃ = [ sx̌T ... sp̌Mj sq̌Mj sřMj γj χj
τ̌j
s
... ]T , (4.2)

and the rotation parameters are not affected by the global scale parameter.

Consider the monocular camera measurement model for the jth feature point

image plane projection,

xIj = −Fx
xCj
zCj

(4.3)

yIj = −Fy
yCj
zCj

(4.4)

where 
xCj
yCj
zCj
1

 =

[
RC
M sťCM
0 1

]

sp̌j

sq̌j

sřj

1

+
s

τ̌j


cos γj sinχj

sin γj sinχj

cosχj

0


 . (4.5)

and in this case,

ťCM =

 X̌

Y̌

Ž

 . (4.6)

When these values are substituted into the measurement equations, the scale

factor, s, multiplies both the numerator and denominator values, and as a result,

xIj = −Fx
x̌Cj
žCj

(4.7)

yIj = −Fy
y̌Cj
žCj

(4.8)

where  x̌Cj
y̌Cj
žCj

 =
1

s

 xCj
yCj
zCj

 . (4.9)

These measurements do not contain information about the global scale of the

environment. Instead, the ratio of the camera frame coordinates determines the

projection measurements. This concept is clear when considering the feature point

projections in terms of two angles, azimuth and altitude, with respect to the camera

coordinate frame. Only the bearing to the feature is measureable, not the distance
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along that bearing. Hence the name bearing-only sensor. This is why the inverse-

depth parameterization is useful – the large uncertainty in the range to the feature

point can be more effectively encoded and propogated through each filter recursion

as a Gaussian distribution.

Suppose that the scale parameter, s, was appended to the state vector, similar

to the feature point parameters and therefore becomes part of the estimation. Un-

like the feature point parameters, the scale parameter does not appear in any of

the measurement equations using the single monocular camera model. This lack

of information about the scale leads to the s column entries of the measurement

Jacobian being zero, and the measurement update step of the EKF is not able to

map the innovation to a change in the scale parameter,

∂xIj
∂s

= 0 (4.10)

∂yIj
∂s

= 0. (4.11)

Therefore, there is no information about the scale parameter contained in the

measurements and its value will not converge to the correct value. In fact, including

this parameter in the estimation, leads to a measurement Jacobian with a column

of zeros. This means that the augmented system is always unobservable no matter

how many time steps or feature point measurements are considered. However, this

is not quite a fair test since it is adding another state to the system, making it

non-minimal and possibly artificially unobservable.

To recover this scale then, a measurement, or set of measurements, must be

made for which the measurement model implicitly includes this scale parameter.

Alternatively, it is also possible to constrain the global scale without extra mea-

surements if prior information about the system is assumed. This is what happens

in the known object model case studied in Chapter 2. The global scale is embedded

in the target object model which is assumed known with perfect certainty. As a

result, in almost all cases, there is only one unique set of relative pose parameters

for which the feature measurements make sense.

Consequently, most monocular vision systems which attempt to simultaneously

estimate the model along with the relative pose, specify the global scale by initially

adding feature points with known location to constrain the estimation [21] [12]

[43]. Typically, this consists of a set of four points arranged in a shape of known

dimension. These features lock in both the global scale and the initial object frame
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configuration. As new features are added to the estimation, their location estimates

must therefore, converge to the correct scale for the solution to be consistent.

By having to pre-specify the locations of a subset of the target object feature

points upon initialization, the resulting systems do not accomodate for truly un-

known target objects. In the SLAM context, where the object (the world, in this

case) may consist of hundreds of feature points, the initial ’known’ set may be

lost as the world is traversed. At this point, since there is no scale information

in the measurements of the estimated unknown feature point locations, the scale

parameter can and will drift as error accumulates.

It is well-known in SLAM that loop closure is an important mechanism for

building consistent maps [50]. When previously tracked feature points are revis-

ited, after looping around an interior corridor, for example, the observations are

propogated through the feature point correlations and act to correct drift and accu-

mulated errors in the map estimates. With the monocular camera SLAM system,

the problem is exaggerated since the scale parameter could wander away from the

true value until the initially known points are revisited, instead of just any previous

feature points.

Obviously, the requirement that a set of features be at known locations, means

that information must be available at the start of the estimation. While this may be

the case for some situations, there are many instances where a robot manipulator

could be working within a completely unknown environment where the target fea-

ture locations are all initially completely unknown. Being able to build an accurate

target model and then estimate its position and orientation relative to the camera

would eliminate the requirement for this a priori information. Therefore, the ability

to accurately recover the scale of the environment at each time step would alleviate

these problems.

4.2 Current Approaches

While it is possible to impose constraints on the estimation by initializing the system

with known target object feature points, truly unknown target object model estima-

tion requires supplemental measurements over and above those from a monocular

camera. In mobile robotics literature, this information is usually vehicle odome-

try with respect to a static environment, but some researchers have investigating

adding supplemental sensors to aid in recovering the global scale. These can take

the form of range measurement devices or additional monocular cameras.
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4.2.1 Camera and Range Sensors

Jung et al. in [29] implement a range finding device for use in a SLAM context

by projecting a structured light on the environment and measuring the resulting

distortions with a monocular camera. In this case, a narrow horizontal line of

infrared laser light is shone at an angle and the resulting camera image is used to

detect corners in an interior environment. With a known configuration of the light

beam with respect to the camera, the depths of each pixel comprising the laser

line in the image can be calculated. Despite the pairing of the two sensors, the

estimation, implemented using the FastSLAM filter [42], does not use any visual

information besides that for extracting the range to the laser line. The system is

limited in both accuracy and effective range of the sensors.

One of the most popular sensors used for the mobile robot SLAM problem is the

2D laser range finder (LRF). It has seen widespread use as the primary sensor on a

robotic platform since it is able to measure both the range and bearing to landmarks

by sweeping a laser beam across the environment and measuring the time-of-flight

at each bearing. It is seen as a competitor sensor to the use of monocular cameras.

Only a few systems have integrated the two sensors and fused the measurements

to try and improve the estimation of the robot pose and map landmark locations.

An early example is the work of Castellanos et al. in which the explicit fusion of

vision and laser measurements is used to improve the resulting estimation compared

with the exclusive use of only one of the two sensors [6]. The LRF is used to detect

vertical corners and semiplanes in a structured environment. These features are

matched with vertical edges in the image plane of the monocular camera. This

allows the two sensors to collect information about a set of features common to

both devices. With both the range and bearing available to each map feature, the

global scale of the solution is easily recovered.

A similar approach is taken by Yan et al. [54] where a monocular camera and

laser range finder are used to both measure vertical edges and corners in the environ-

ment. The measurements are fused in the EKF framework by forming appropriate

measurement models for each device which relate the measured edge locations to

the system states. Estimations are further enhanced by the use of a vehicle dynamic

model instead of the constant velocity model, imposing a static map through which

the robot moves.

More recently, Amarasinghe et al. [1] integrate laser and camera measurements

explicitly by using the laser scans only to determine the distance to vertical edge
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features measured in the monocular camera. As demonstrated in the two previ-

ous systems, this measurement fusion would be better accomplished by the EKF

framework and it is likely that information is being lost by using these pre-combined

measurements instead of the two seperate metrics. However, the availability of this

range data means that the global scale is again readily recovered.

These systems suggest that the availability of this range data is sufficient to re-

cover and maintain the proper global scale. Whether the quantity of data available

from these sophisticated LRFs is necessary, is of interest in this study. A single

range measurement at each system time step is used in the following sections.

4.2.2 Multiple Cameras

Other researchers have proposed to make the relative pose and target object model

estimation system observable by adding additional monocular cameras to make

feature measurements. It is important to realize that these are not stereo camera

sensors since the image planes from the individual cameras are not fused to form a

disparity map. Instead, they are treated as seperate sensors each measuring only

the bearing to the set of feature points, and these measurements are fused by the

estimator to recover the solution. The mechanics of such a sensor fusion framework

are detailed in later sections.

An example of a mobile robot system with many monocular cameras arranged

in a ring configuration is proposed by Kaess and Dellaert [30]. A planar SLAM

process makes estimations of the pose and landmark map based on observations

of features in all of the monocular camera image planes. Significantly, none of the

monocular cameras have overlapping fields of view and the feature measurements

from each are fused by the estimator. While odometry data is used to assist the

estimation accuracy, this extra information is not required if the extrinsic calibra-

tion parameters between each of the monocular cameras is available. In any case,

the effective field of view of the resulting super sensor is nearly 360 degrees and

the combined system estimates are accurate in the global scale.

Sola et al. [48] also propose a multiple camera system in which monocular cam-

eras are mounted on one or across mobile robots. In the single vehicle model,

multiple cameras are used to estimate the robot pose, the world map, and the ex-

trinsic calibration parameters of the monocular cameras. The authors are aware

that by estimating the extrinsic calibration of the cameras, the odometry of the mo-

bile robot is the key to recovering the global scale of the environment. Without this

84



extra information, the estimation would be similar to multiple monocular cameras

independently estimating the combined problem, for which the scale is ambiguous.

The alternate way to impose a constraint on the global scale is to explicitly specify

the extrinsic calibration parameters accurately.

A second setup, involving multiple robots each with a single monocular camera,

works to cooperatively build a unified map [48]. The effective baseline, which

now changes as the robots move, is estimated based on the monocular camera

measurements and the odometric data and the resulting solution scale is adversely

affected by bias in the odometry readings.

Kim et al. also propose a multiple robot with monocular camera system [33].

Two seperate monocular cameras are mounted on two different robots. As with

most of the other previous systems, the odometric data is used with the robot

dynamics, as well as having the estimation initialized with a set of known landmark

locations. While the resulting map is accurate to the proper global scale, this fact is

not solely due to using multiple cameras on multiple robots, it is the result of using

known feature points and vehicle odometry. While the extra camera measurements

would improve the quality of the feature point estimates, the goal of this chapter

is to understand why a particular set of sensors will make the resulting estimation

accurate to the environment scale, and what measurements are necessary to reliably

and efficiently recover this information.

4.3 Supplemental Measurements

As previously mentioned, Civera et al. [9] show how the global scale of the world

frame can be treated as a separate parameter in the monocular vision-based SLAM

context, and therefore must be estimated independently using supplemental mea-

surements, in addition to those from the camera. It is, therefore, necessary to

include additional measurements which contain information about the global scale

of the object and camera motion to make the complete system fully observable.

However, the selection of specific sensors and measurements which are best-suited

to the task is not discussed.

There are several options for supplementing the measurement space to poten-

tially make the system observable: additional cameras with known baselines be-

tween each, ultrasonic/sodar/laser point range finders, Light Detection and Rang-

ing (LIDAR), inertial measurement units (accelerometers, gyroscopes, magnetome-

ters), Global Positioning System (GPS) receivers, and odometry measurements are
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Figure 4.1: Both the camera and object are free to move in the world coordinate

frame, but it is the relative pose of the two frames which must be estimated.

just a few examples. These alternatives have different characteristics which affect

their suitability to the task of localization and model-building on a specific robotic

platform. Additionally, there are significant differences between these types of sen-

sors in terms of cost, weight, and performance. Moreover, the sensors provide

measurements with respect to different coordinate frames.

In the pose estimation process of position-based visual servoing, it is the relative

pose of the target object frame with respect to the camera frame that is used

for robot feedback control purposes [53]. The target object being manipulated is

assumed to be a rigid-body, but is not assumed to be static. That is, the point

feature locations are assumed fixed with respect to the object frame, but the object

frame itself is able to move freely with respect to the world frame. An example

of both the camera and target object moving within the world coordinate frame

is show in Fig. 4.1. The system is not interested in measuring the position and

orientation of either frame in the world frame, only their relative pose with respect

to each other. This is the most important difference between position-based visual

servoing pose estimation and mobile robot localization or SLAM.

With both the object and camera free to translate and rotate in the world

frame, measuring the relative motion is not possible with inertial sensors mounted

on the camera since it does not provide a measure of the object’s motion. The

same is true for measurements from a GPS receiver, which provides positions in

the Earth-Centred Earth-Fixed (ECEF) coordinate system. Without the second set

of inertial or GPS measurements for the target object as well, the relative motion

of the camera and object cannot be determined. As a result, using measurements
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of the camera movement based in the world frame would not be sufficient for the

relative motion estimation since both the camera and the object may be moving.

Instead, only direct relative measurements can be used – such as those from end-

effector-mounted bearing and/or range sensors at known displacements.

The goal of this section is to identify a small set of supplemental measurements

necessary to reliably recover the relative motion of a rigid target object with respect

to the end-effector coordinate frame. These estimates, which must include the true

global scale, provide pose measurements utilized for controlling a robotic system.

Three major factors considered for any candidate sensor in this work are speed,

cost, and weight. Ideally, the measuring equipment should be fast, inexpensive and

light-weight.

Accordingly, this work will look at three supplemental sensors. First, a second

monocular camera is added to the robot end-effector at a known position and orien-

tation with respect to the first camera as shown in Fig. 4.2. By observing features

in the two cameras, the distance to the features can implicitly be triangulated and

recovered to scale. While many researchers have considered stereo cameras, this

algorithm does not try to associate features to create a disparity map [32] before

applying the measurements to the EKF. Instead, the two cameras proceed as if

they were running two separate monocular camera-based estimations recovering the

relative pose and target model up-to-scale, and then can use the information to

predict when the features will be visible in each camera and resolve the scale based

on measurements from both cameras. In this way, the cameras do not necessarily

have to have their fields of view (FOV) overlap, and adding n cameras to the system

can increase the combined FOV and framerate by n times. For this work, the dual

camera system will only serve as a ’best case’ scenario since it definitely represents

a non-minimal set of additional measurements.

Second, a single-point reflection range-finder device operating with one of ul-

trasonic, sonar, or laser signals is added to the robot. This sensor will be fixed at

a location on the end-effector and remain in a constant orientation relative to the

camera frame as shown in Fig. 4.3. It is important that the range sensor be oriented

in such a way that it is likely to strike the target object and enable measurement

of the relative distance.

Third, in a slight variation of the previous device, a laser pointer is fixed to the

robot end-effector at a known position and orientation, as shown in Fig. 4.4. Then,

using the monocular camera, the image plane projection of the the laser dot striking

the target object can be measured and the two bearings are used to triangulate the
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Figure 4.3: A point range sensor is mounted on the robot end-effector and the beam

strikes the surface of the target object. It is able to measure the distance to this

intersection at each time step.
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position and orientation such that image of where the laser beam dot strikes the

target object surface provides a measure of the distance.

distance to the target object. This sensor has the advantage of being inexpensive

to implement, and the measurements are available at the frame rate of the camera.

4.3.1 Additional Monocular Cameras

If the baselines between multiple cameras are accurately known from calibration

and the feature points within the images can be correctly associated across camera

frames and time steps in the sequence, a multiple camera setup can give an estimate

of the scene depth and scale at the first observation.

In this work, an interpretation of the sensors will be used similar to [30]. Instead

of actively trying to associate a feature in the two cameras in every single frame

to try and determine the scene depth at every pixel, the cameras will operate as if

each were performing a pose estimation with only one camera but the two sets of

measurements will be fused by the EKF framework. To simplify implementation

and facilitate comparison, it is assumed that the correspondance problem between

object feature points and image plane measurements, is solved at each time step.

Consider the combined relative pose and target model estimation with a single

monocular camera. The system is able to produce consistent estimates to an up-

to-scale solution. By introducing the scale parameter, s, explicitly into the state
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vector, the uncertainty in the global scale can be quantified. When the object is

observed in a single camera, the relative orientation, as well as the shape of the

target object can be accurately estimated. Therefore, target object feature points

are known to lie on a set of rays projecting out from the intial observation point.

With the uncertainty constrained to lines in three dimensional space, a reasonable

estimate of when the object feature should be visible in the second camera, can be

asserted. Furthermore, the search region for a given feature point will be a line in

the second camera image [35].

If the relative position and orientation of the second camera frame with respect

to the first camera is known accurately, the scale parameter can be estimated once

features have been observed in both the first and second cameras. In fact, only a

single feature is needed to be observed across the two cameras to resolve the scale.

As a result, only the most likely correspondences need to be considered. This can

generalized for multiple cameras with known relative position and orientations, even

when the fields of view do not overlap. However, in the latter case, different parts

of the target object need to be visible in two different cameras at one time. This

requirement is easily met for tracking feature points associated with large objects

such as building interiors, in which the robot is surrounded by the object.

Suppose there are n cameras mounted at the robot end-effector. Each camera

has an associated coordinate frame (Ci) in which the origin corresponds the center

of projection of the camera and the ZCi-axis is aligned with the principal ray. The

camera’s image plane is spanned by the orthogonal XI and Y I axes corresponding

to the horizontal and vertical image directions respectively, and run parallel with

the XCi and Y Ci coordinate frame axes.

To simplify the equations, the first camera will be assumed to be the primary

coordinate frame in which the estimation proceeds. Accordingly, the relative pose

estimates are made with respect to this C1 frame. The position and orientation of

all the camera frames are assumed known with respect to the C1 frame and the

corresponding transformations can be written as TC1
Ci

.

For the jth feature point observed in the ith camera image plane, the measure-

ment model to relate the output to the system states is formed similar to that for

the single camera system. First, the feature point location is transformed into the
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C1 frame as before,
xC1
j

yC1
j

zC1
j

1

 = TC1
M



pMj
qMj
rMj
1

+
1

τj


cos γj sinχj

sin γj sinχj

cosχj

0


 . (4.12)

such that

TC1
M =

[
RC1
M (a, b, c) tC1

M

0 1

]
, (4.13)

where

tC1
M = [ X Y Z ]T . (4.14)

Then, the feature point is transformed into the Ci frame using the known trans-

formation, 
xCij
yCij
zCij
1

 = TCiC1


xC1
j

yC1
j

zC1
j

1

 (4.15)

and finally projected onto the ith camera’s image plane,

xIij = −FCi
x

xCij

zCij
(4.16)

yIij = −FCi
y

yCij

zCij
. (4.17)

The significance of these equations is the transformation, TCi
C1

, which contains

scale information. In fact, the image plane projection does not cause a normaliza-

tion of this scale information and therefore the estimation can determine the global

scale of the relative pose and target object model parameters.

If the system were parameterized with the explicit global scale s, as before, it

is found that,
∂xIij
∂s
6= 0, i 6= 1 (4.18)

∂yIij
∂s
6= 0, i 6= 1 (4.19)

and therefore the solution scale affects the measurement and will be driven to a

value which tries to minimize the sum of squared error.
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An advantage of using multiple cameras instead of simple range finding devices

for this estimation is an easier association of the outputs and states since the

individual feature points can be measured instead of some combination of all of

them. As a result, the measurement model relies on weaker assumptions and is less

affected by the unknown surface geometry of the target object.

4.3.2 Point Range Finder

For the purposes of this study, a point range finder is a device capable of measuring

the distance along a ray eminating from the origin to the first point of intersection

with the surface of the target object. While there are several varieties of physical

devices using different media ( i. e. ultrasonic, sonar, laser, etc. ), each with different

beam characteristics (sonic devices tend to have cones of energy, where lasers can

have much narrower focussed beams), it will be assumed that the beam is infinitely

narrow such that the range to a single point straight out from the device can be

measured up to some zero-mean Gaussian measurement noise.

Mathematically, the range finder device is represented by a Range Finder (G)

coordinate frame, in which the measurement beam eminates from the origin and

out along the ZG-axis. By assuming that the relative position and orientation of

the G frame with repect to the C frame is known, the range measurements can then

be related to the image-plane measurements from the monocular camera. If the

surface geometry of the target is known, the range measurement can be calculated

as the distance to the first intersection of the range beam with a surface on the

target object using ray-tracing techniques [28].

Range Finder Measurement Model

One of the main difficulties in adding a range sensor to the monocular camera-only

system is fusing the range measurement data with the feature point measurements

from the camera images if the target object surface geometry is unknown. The

image plane measurements are in reference to point and line features which will

rarely be exactly aligned with the range sensor. The range measurement device

sends out a beam or cone of energy and measures the amount of time it takes for

the the reflection off of a surface to return to the sensor. These reflecting surfaces

do not necessarily have anything in common with the visual object features in the

images, besides being fixed with respect to the same local coordinate frame, as is

the case for a rigid-body. As a result, one cannot write a model for the range sensor
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in terms of the object feature points without making some assumptions about how

a surface is defined with respect to the object feature points.

The problem with relying on such assumptions is that the generated model is

a sparse set of point features and therefore, little information about the solidity or

surface geometry of the target object can be immediately inferred from the locations

of the features. It would be possible to create an Occupancy Grid Map [50] over

time, but the sparsity of the features could make this a time-consuming process.

However, an assumption about the surface that the range sensor is striking can be

made, in order to avoid or at least delay the need for this more complicated model

representation.

For example, if it is assumed that the beam of the range sensor will strike

a smooth surface that is fixed in the object coordinate frame, where the surface

parameters are relatively consistent between time steps, a mathematical model

for the ranger’s measurements can be formulated relating the system states and

parameters with the range measurements. While it could be further assumed that

the surface was planar, there is no reason why a more complicated surface could

not be used to represent more complex surfaces. However, a flat reflection surface

could be a reasonable assumption, especially if the range device is pointed at the

floor, ceiling, or a wall section of a building interior. The parameters of such a

surface could be appended to the state vector exactly as done for feature point

coordinates.

The range sensor could be turned on and off once the global scale is determined

since the camera image plane measurements will result in properly scaled models

once the scale is recovered. Therefore, the range sensor measurements could be

turned on in areas with known flat surfaces and then disabled once the scale is

recovered. Subsequently, the system could continue to estimate the relative motion

with this accurate scale information. At this point, the scale parameter may drift

when only the camera is used, but the range sensor can then be enabled to capture

this metric again.

This particular range measurement model is suitable for target objects which

are rather large where the assumptions for consistently measuring the range to a

smooth surface would remain valid. A good example of where this would be the case

would be an aircraft carrier. The ship, since it is afloat, would not be a stationary

object in the world frame and trying to land a helicopter on the deck, for example,

requires that a relative trajectory down to the deck be followed precisely. With a

range device reflecting off the deck, the scale of the relative pose and model of the
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deck could be recovered accurately without a priori information.

Conversely, for small workpiece target objects in an industrial robotics envi-

ronment, this measurement model may not be ideal for recovering the scale of the

environment. For parts with abrupt changes in the surface geometry, like steps, the

estimation may fail or cause an inaccurate scale to be recovered. In this environ-

ment, it may be more likely that the depth variations in the object feature points

are small compared to the distance from the camera to the target object. If this is

the case, a different measurement model can be formulated by assuming that the

range measurement is the average depth of the target object feature points. This

is the measurement model that will be used for the range sensors in this work, and

its derivation is the subject of the next section.

Mean Depth Measurement Model

The measurement model which relates the range measurements to the object feature

points visible in the camera image plane, assumes that the range sensor measures

the distance to the average feature point on the target object. Shown in Fig. 4.5, the

calculation of this mean depth value, over N feature points, involves first calculating

the average feature location in the modelling coordinate frame. xMavg
yMavg
zMavg

 =
1

N

N∑
j=1


 pMj
qMj
rMj

+
1

τj

 cos γj sinχj

sin γj sinχj

cosχj


 . (4.20)

Next, this point is transformed into the G frame through the camera frame

according to the transformation assumed known from calibration,
xGavg
yGavg
zGavg

1

 = TG
CTC

M


xMavg
yMavg
zMavg

1

 . (4.21)

Now that the mean feature position in the G frame has been found, it is only

the ZG coodinate that is of interest, representing the depth to the object,

gG(x̃) = zGavg. (4.22)

The range beam travels out the ZG-axis and is therefore the predicted distance

measured by the range sensor.
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Figure 4.5: The range measurement is assumed to correspond with the average

feature point depth in the G coordinate frame.

4.3.3 Laser Pointer

A variant of the simple point range-finder device, the monocular camera can be

augmented with a laser pointer to provide range measurements of the target object.

By fixing the laser pointer at some known position and orientation with respect to

the monocular camera, the reflection of the laser light on the target object can

be captured in each camera image. In this way, two bearings to the laser dot

are available and the depth can then be triangulated to get a measurement of the

distance to the target object as shown in Fig. 4.6.

One way to think about this process is to consider the laser pointer as a single-

pixel point camera. When the laser light is on, this ’feature’ is always seen at that

single pixel. The monocular camera then becomes the second camera in a pseudo-

stereo camera rig. In the same way that a stereo camera is able to extract depth

from the two camera images, so does this device.

One difficulty arises when trying to extract the laser point from the camera

image. This can be simplified in several ways. First, since the laser beam is a line,

the laser dot will only show up in a certain line across the camera image. This

concept is from epipolar geometry [35], and significantly limits the region of the

image which must be searched for the laser dot. Secondly, the laser dot, usually

red, can be found by colour filtering and treated as a simple blob. Thirdly, the laser

light could be pulse-modulated to make extracting its location even more robust.
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Figure 4.6: The laser pointer beam is assumed to intersect with the target object

surface at the average feature point depth in the L frame.

Finally, if the laser cannot be reliably extracted from an image, the EKF framework

would allow the measurement to be neglected and the estimation would proceed

with the scale information only when it was available.

Similar to the point range finder, the laser pointer is modelled such that the

laser beam projects from the origin of the Laser Pointer (L) coordinate frame, out

along the ZL-axis. The measurements are the two camera image-plane coordinates

of the laser dot reflection off the first intersection with the target object’s surface.

If the target object’s surface geometry is known, ray-tracing techniques can again

be used to find the point of intersection in the camera frame, [ xCl yCl zCl ]T , and

then it is projected onto the camera image plane [28].

Just like the previous range data, this measurement needs to be related to the

feature point locations comprising the target object model. It is again assumed

that the laser beam strikes the object at the mean feature point depth, determined

from the average feature point location,
xLavg
yLavg
zLavg

1

 = TL
CTC

M


xMavg
yMavg
zMavg

1

 . (4.23)

Only the zLavg coordinate is of interest and is used to find the expected position
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in the camera frame, 
xCl
yCl
zCl
1

 = TC
L


0

0

zLavg
1

 . (4.24)

Finally, the point is projected onto the camera image-plane to get the predicted

output,

xIl = −Fx
xCl
zCl

(4.25)

yIl = −Fy
yCl
zCl
, (4.26)

such that the resulting predicted measurements become,

gL =
[
xIl yIl

]T
. (4.27)

4.4 Recursive Estimation

In this section, the full recursive estimation system is described for combining all

of the aforementioned sensor measurements into a relative pose and target object

model estimate, including global scale information. The system builds on the frame-

work described at the end of the previous chapter and facilitates the fusion of the

supplemental sensor data with the single monocular camera.

4.4.1 Relative Motion Dynamics

The relative motion between the camera and target object is once again approxi-

mated with a constant velocity model. Accordingly, the process model, as well as

the system states are identical to the system in Section 3.3.7. The system states

represent the relative position and orientation parameters and their time-derivatives

of the modelling M frame with respect to the first monocular camera C1 frame, as

well as the feature point parameters for the N feature points on the target object,

expressed in the M frame,

x̃ = [ X Y Z a b c Ẋ Ẏ Ż ωx ωy ωz | ... pMj qMj rMj γj χj τj ... ]T , (4.28)

where j = 1 ... N .
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The process model dictates that the relative pose parameters follow the constant

velocity approximation, while the model parameters are fixed,

x̃k = Ãk−1x̃k−1 + η̃k, (4.29)

where

Ã =

[
Fk−1 0

0 I6N×6N

]
, (4.30)

such that,

Fk−1 =
∂f(x)

∂x
|x=xk−1

, (4.31)

is the process Jacobian for the nonlinear relative pose process model,

f(x) =



 X + δtẊ

Y + δtẎ

Z + δtŻ


p + δtṗ[

Ẋ Ẏ Ż ωx ωy ωz

]T


, (4.32)

using MRP for relative orientation,

p = [ a b c ]T , (4.33)

given,

ṗ =
1

2

(
1

2

(
1− pTp

)
I3×3 + [p×] + ppT

)
ω, (4.34)

and

ω = [ ωx ωy ωz ]T . (4.35)

4.4.2 Measurement Models

While the process model for this new system is unchanged from those previous, the

significant differences are found in the measurement model. Moreover, the different

measurement models for each sensor all fit into the estimation framework to allow

all of the data to be fused into one cohesive solution for the relative position and

orientation of the target object.

Using these different models, it is possible to pick and choose which measure-

ments are used at any one time step. The sensors, with the exception of the first

monocular camera, are optional. The inclusion of any of the supplemental sensors
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should provide scaled estimates of the system solution, but adding more will provide

redundancy and robustness.

With that in mind, all of the measurement models will be shown in this section

to create a framework to which any number of supplemental monocular cameras,

or range finding devices can be added.

Each measurement occupies one row in the output matrix, which relates the

measurement with the system states. At each timestep k, the individual measure-

ments are stacked to form the measurement vector,

gk(x̃k) =

 gCk (x̃k)

gGk (x̃k)

gLk (x̃k)

 , (4.36)

where gCk (x̃k) are the measurements from all of the monocular cameras stacked into

rows, gGk (x̃k) are the measurements from all of the point range devices, and gLk (x̃k)

are measurements from laser pointer range sensors. The specific structures of these

subvectors will be discussed in the following sections.

Just as before, this measurement vector needs to be linearized about the current

state estimate for use in the EKF,

Ck =
∂gk(x̃)

∂x̃
|x̃=x̃k . (4.37)

Each of the sensors have associated measurement noise parameters which need

to be known accurately to allow the measurements and predictions to be weighted

in an ’optimal’ way determine the best estimate of the state variables. All of the

measurement noise is assumed to be uncorrelated, zero-mean Gaussian noise, but

the covariance is specified for each measurement by a diagonal covariance matrix,

Nk,

Nk =

 NC
k

NG
k

NL
k

 , (4.38)

where NC
k are the noise covariance statistics for the monocular camera measure-

ments, NG
k are for the point range devices, and NL

k are the noise properties associ-

ated with the laser pointer measurements. The contents of these vectors for each

of the sensor groups will be detailed individually the following sections.
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Monocular Cameras

For a set of α monocular cameras, the measurements of the target object feature

points in each image plane can be compiled into a 2αN × 1 measurement vector as

follows,

gCk (x̃k) =

 gC1
k (x̃k)

...

gCαk (x̃k)

 , (4.39)

where each subvector corresponds to the 2N feature measurements in each camera’s

image plane,

gCik (x̃k) =


[
−FCi

x
x
Ci
1

z
Ci
1

−FCi
y

y
Ci
1

z
Ci
1

]T
...[

−FCi
x

x
Ci
N

z
Ci
N

−FCi
y

y
Ci
N

z
Ci
N

]T
 , (4.40)

and FCi
x and FCi

y are the horizontal and vertical focal lengths for the ith camera

expressed in pixels.

The measurement model uses the feature point coordinates written in the Ci

frame. The points are transformed from the feature coordinates in the first camera

frame (C1), in which the relative pose estimation takes place,
xCij
yCij
zCij
1

 = TCi
C1


xC1
j

yC1
j

zC1
j

1

 . (4.41)

It is assumed that the transformation between camera frames, TCiC1
, is well known

from calibration.

The coordinates of the feature point in the first camera frame (C1) are calculated

from the system states,
xC1
j

yC1
j

zC1
j

1

 = TC1
M



pMj
qMj
rMj
1

+
1

τj


cos γj sinχj

sin γj sinχj

cosχj

0


 (4.42)

where the transformation is given by the relative pose parameters,

TC1
M =

 RC1
M (a, b, c)

X

Y

Z

0 1

 . (4.43)
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Obviously, in the case of measurements in the first camera, the transformation,

TC1
C1

, is simply the 4× 4 identity matrix. The resulting measurement models must

be linearized about the current state estimates to form the measurement Jacobian.

The expression for this matrix is determined for each additional camera in Appendix

A.6.

Using this framework, the measurements from any number of monocular cam-

eras can be used to estimate the relative position and orientation of the target

object with respect to the robot end-effector. The difficulty arises when trying to

associate the measurements of features in each camera’s image plane with the cor-

rect feature parameters in the state vector. If improper correspondances are made,

the estimation will be adversly affected and the tracking operation could fail.

To see how this problem could be alleviated, consider a two-camera system in

which the target object is initially visible in only one camera. As the estimation

progresses, the measurements from the first camera are sufficient to recover the

shape of the target object feature point configuration, as well as the relative ori-

entation of the object with respect to the camera frame. Given that the relative

position of the second camera is known with respect to the first camera frame,

the knowledge collected from the first camera measurements, indicates when some

features of the object may potentially be visible in the second camera.

Since the scale parameter is the uncertain part of the system, the possible lo-

cations for the features within the second camera’s image plane are restricted to a

line. By searching only along these rays for the target object features, a single value

of the scale parameter should provide a good fit for the set of feature measurements.

The suitability of these feature correspondances in the second camera’s image can

be tested before the measurements are used in the estimation to make sure that

the data passed to the estimation is valid. In this way, the search space for when

and where to look for feature points across different cameras can be significantly

reduced, and therefore the recovery of the global scale, can be improved. A planar

example is shown in Fig. 4.7. Additionally, once the scale has been recovered, the

movement of features from one camera’s image to another’s can be accurately pre-

dicted from the relative pose parameters provided the camera extrinsic parameters

are properly calibrated.

The final requirement for adding the monocular camera measurements to the

estimation is to assign appropriate measurement noise parameters. While these

values can be influenced by the relative motion profile, they are more significantly

impacted by the feature extraction method employed, and the nature of the features
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Figure 4.7: When the target object (yellow stars) is visible in only one camera,

the shape and orientation (estimated at black stars) can be recovered. From this

information, the scale search line for feature point one in the second camera specifies

where to look for the feature point, and the distance along this line resolves the

global scale provided that the baseline between the cameras is known. The black

star estimates now move to align with the true scale and the yellow stars.
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themselves.

While not a requirement for this system to operate successfully, the variance

of the noise process will be assumed constant for this discussion. Accordingly, the

covariance submatrix associated with the monocular camera measurements has a

diagonal element corresponding to each individual feature image plane coordinate

in each camera,

NC
k =

 NC1
k

...

NCα
k

 , (4.44)

where the diagonal submatrix for the ith camera is 2N × 2N such that,

NCi
k =


σ2
xCi

σ2
yCi

...

σ2
xCi

σ2
yCi

 . (4.45)

Using appropriate values for the measurement noise parameters, this framework

will combine the available feature point measurements from all α cameras. The next

section looks at adding range measurements from point range finders to supplement

the estimation system.

Point Range Finders

For a set of λ point range finders, the individual range measurements at time-step

k are arranged into a λ× 1 vector,

gGk (x̃k) =

 gG1
k (x̃k)

...

gGλk (x̃k)

 (4.46)

where

gGik (x̃k) = zGiavg. (4.47)

The measured range is assumed to be the mean of the depth of all of the object

feature points as measuremed by the ith range sensor. The average depth with

respect to the ith range sensor is determined from the average feature location in
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M which is found from the state variables,

zGiavg = [ 0 0 1 0 ] TGi
C1

TC1
M


xMavg
yMavg
zMavg

1

 . (4.48)

where 
xMavg
yMavg
zMavg

1

 =
1

N

N∑
j=1



pj

qj

rj

1

+
1

τj


cos γj sinχj

sin γj sinχj

cosχj

0


 . (4.49)

Similar to the monocular camera models, the coordinate transformation from

the C1 frame to the point range finder Gi frame, TGi
C1

, is assumed known from

calibration. The measurement Jacobian for the range sensor measurement model

is developed in Appendix A.7.

The zero-mean Gaussian measurement noise associated with each range mea-

surement is parameterized by the covariance submatrix,

NG
k =

 σ2
G1

...

σ2
Gλ

 . (4.50)

Significantly, the covariance values specified in this matrix are not the true noise

variance of the range sensor itself. Instead, the measurement noise is assumed

to also contain the modelling error arising from the assumption that the range

measurement is the average feature point depth. Because the surface geometry is

not available from feature point locations, the assumptions used to form the range

measurement model will be violated when the reflection surface is not at the average

feature depth. If the range sensor strikes a surface that is closer than the average

feature point depth, this error acts like a bias and will lead to the recovery of a

scale which is too small. Conversely, if the surface is further away than the mean

feature depth, the scale will converge to a larger value than the true global scale.

By artificially inflating the noise covariance, the relative weighting of the camera

and range measurements will reduce the impact of the range measurements on the

state estimate. In this way, the range measurements act to slowly influence the

scale of the solution and, as an added benefit, will increase the sensitivity of the

estimation in the ZCi-axis direction [28].
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Adding multiple range sensors should tend to find the average surface depth

more effectively than a single range finder. Measuring the range to several points

on the object surface may help to remove the bias and lead to a more accurate

global scale of the solution. This will allow the filter to be more robust to the

modelling error caused by non-ideal target object surface geometries.

Laser Pointers

A set of β laser pointing devices can be used to make range measurements via the

first monocular camera by stacking the image plane measurements of the laser dots

into a 2β × 1 vector,

gLk (x̃k) =

 gL1
k (x̃k)

...

g
Lβ
k (x̃k)

 (4.51)

where each element includes the xI and yI coordinates of the ith laser’s dot image,

gLik (x̃k) =

[
−FC1

x

x
C1
li

z
C1
li

−FC1
y

y
C1
li

z
C1
li

]T
. (4.52)

The coordinates of the average depth of the feature points from the laser pointer

Li frame are transformed into the C1 frame via the homogeneous transformation

TLi
C1

, again known from calibration,
xC1
li

yC1
li

zC1
li

1

 = TC1
Li
diag([ 0 0 1 1 ]) TLi

C1
TC1
M


xMavg
yMavg
zMavg

1

 . (4.53)

The measurement model is linearized at each time step about the current state

estimate to find the measurement Jacobian for use in the EKF framework. This

matrix is computed as shown in Appendix A.8.

Parameterizing the noise process for these measurements is not as straight-

forward as for the two previous classes of devices. While the laser dots are being

measured by the camera, there is significant modelling error in the range measure-

ment similar to the point range sensor which must be represented. Additionally,

while there are two measurements for each laser dot, a given relative position and

orientation of the laser pointer with respect to the camera dictates that the dot

can only appear on a line within the image plane and the two measurements are
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Figure 4.8: The projection of the depth uncertainty for the two different range

measurements (ρ) with a standard deviation of σd, on to the camera image plane.

Close range measurements cover larger regions of the image-plane, but the precision

decreases with distance.

dependent. Accordingly, it would be possible to use only one of the measurements

to estimate the depth as long as the line was not perpendicular to that image

plane axis. Using the two coordinates provides some degree of redundancy in the

measurement.

An additional problem arises in the sensitivity of the depth measurement. The

magnitude of the noise variance changes with the depth of the laser dot. A variance

of a few pixels may represent an uncertainty of a few millimeteres for close objects,

but can represent tens of metres or more at long range. As a result, the noise covari-

ance cannot be held constant over every time step for every measurement. Fig 4.8

demonstrates the sensitivity of such a sensor to the depth of the measurements.

For this device, it will be assumed that the covariance of the measurement noise

is related to the measured distance, ρ, which can be found by either of the image

plane coordinates of the laser dot (xIl , y
I
l ),

ρ = − xIlZL + FxXL

Fx sin θL + xIl cos θL cosψL
, (4.54)

or

ρ =
yIl ZL + FyYL

Fy cos θL sinψL − yIl cos θL cosψL
, (4.55)

where the relative position and orientation of the laser pointer L frame with respect
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to the first camera C1 frame is known and parameterized by,

TC1
L =

 RXC1 (ψL)RY C1 (θL)

XL

YL

ZL

0 1

 . (4.56)

The laser dot location in the L frame is [ 0 0 ρ ]T . If the uncertainty associated

with the distance measure has a standard deviation of σd, the image plane coordi-

nates of one standard deviation can be found by projecting [ 0 0 (ρ−σd) 1 ]T into the

camera image plane. The near end of the range leads to greater uncertainty, so it

will be used so that the uncertainty in the depth is not underestimated. Therefore,

the associated variance for a range measurement is found by calculating,

 −FxxCσd−FyyCσd
zCσd

 = ΦTC1
L


0

0

ρ− σd
1

 , (4.57)

and projecting this point into the first camera’s image plane to find the variance in

this frame, resulting in,

σ2
xLi

=

(−FxxCσd
zCσd

− xIl
)2

, (4.58)

and

σ2
yLi

=

(−FyyCσd
zCσd

− yIl
)2

. (4.59)

The variances of each of the measurements from the β laser pointers are compiled

together to form the covariance matrix,

NL
k =



σ2
xL1

σ2
yL1

...

σ2
xLβ

σ2
yLβ


. (4.60)

4.4.3 Initialization

The initialization of the system follows directly from Section 3.3.7. When the addi-

tional range sensors are supplemented for the estimation, their initial measurements
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can be used to give a better starting estimate for the inverse depth parameter of

the feature points than was possible in Chapter 3 when a single camera was the

only device.

For the point range sensors, an initial distance measurement, ρ, plus an estimate

of the depth variation of the feature point coordinates, can be used to find an

appropriate initial mean and covariance for the τj parameter with the values,

dmin = ρ− 2σGi − 2σd, (4.61)

dmax = ρ+ 2σGi + 2σd, (4.62)

where σGi is the standard deviation for the Gaussian measurement noise associated

with the ith point range sensor, and σd is an extra term to quantify the variability

in depth between all of the feature points. Since the initial inverse depth is applied

to all of the feature points, using only the range measurement to quantify a high

degree of confidence may be problematic if the real feature depth is far from this

single range measurement. This last parameter, σd, can be expressed by a 95%

confidence interval as well.

The same method can be used for the laser pointer initial measurements with

the range calculated by the laser dot image plane coordinates using equations (4.54)

or (4.55).

When a second camera is available, the feature point measurements in the two

initial frames can be used to calculate an accurate initial estimate for full 3D posi-

tion of all of the feature points individually. However, the mechanics of this method

are outside the scope of this work.

4.5 Summary

This chapter outlined a complete framework for estimating the relative position

and orientation of an unknown target object with respect to a robot end-effector.

By using a monocular camera as well as a set of supplemental measurements, the

relative pose and target object model can be recovered to the proper scale. The

following chapter will compare the performance of this estimation using different

sets of these supplemental measurement devices.
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Chapter 5

Simulations

In order to validate and evaluate the algorithms listed in the previous chapters,

a simulation study was conducted in the MATLAB software package on a virtual

robotic environment. A robotic manipulator is equipped with a variety of sensors,

with which, direct relative, noisy measurements of a target object are used to

attempt to estimate both the relative pose and target object model. By using

combinations of the available sensors, the effects of different relative measurements

on the estimated parameters were evaluated for accuracy and robustness under a

specified relative motion profile.

5.1 Environment

The simulation environment must provide a reasonably accurate representation of

the true conditions under which the estimation proceeds and the significant dy-

namics of the real system should be captured. Only then can a valid comparison of

each of the presented techniques be made and the resulting conclusions be asserted

confidently.

The general simulation environment is shown in Fig. 5.1. The robot end-effector

carries four sensors which make relative measurements of the virtual target object.

In the following sections, the implementation of each of these components is de-

tailed.
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Figure 5.1: The simulation environment containing virtual robot manipulator with

monocular camera fixed to end-effector and target workpiece to be tracked.
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5.1.1 Target Object

In the simulation, the target object to be tracked must properly interact with the

sensors mounted on the robot end-effector. There are two main classes of sensors in

use for this system: the cameras are used to recognize and measure point features

on the object when they are visible in their image planes; and the range sensors

involve a ray striking a solid surface on the target object. As a result, information

about the visible features, as well as the surface geometry of the target objectmust

be available in the simulation environment.

With this in mind, objects are defined with a local coordinate frame, and consist

of a set of feature points, assumed identifiable when projected into the camera image

planes, and a mesh of triangles defined as a triple from a set of vertices. The trigonal

mesh is similar to that used in computer graphics for defining and rendering three-

dimensional scenes for film or interactive games. By computing the intersection of

the range sensor ray and the trigonal mesh, the simulated measurement is produced

by finding the distance to this point and adding a specified amount of zero-mean

Gaussian noise.

Once the object geometry is defined, a scripted set of rigid motions for the

target object are specified in terms of translations and rotations of the object’s

local coordinate frame with respect to the world frame. In these simulations, the

camera position and orientation will be held constant, and therefore, the relative

motion will be completely defined by the target object motion in the world frame.

However, since there are no measurements made with respect to the world frame,

this is just a simpler way of defining the relative motion of the system and the

choice has no effect on the quality or validity of the estimation.

The virtual target object used in this experiment is shown in Fig. 5.2. It consists

of five feature points distributed across three different level surfaces.

5.1.2 Sensors

The simulation environment is set up to compare the performance of the relative

pose estimation when a combination of relative measurements of the target object

are used. Four sensors are available in the simulations: two monocular cameras; a

point laser range-finder; and a simple laser pointer. Each sensor is mounted on the

end-effector of the robot with some known position and orientation with respect to

the first camera frame C1, resulting in a transformation TC1
S from the sensor frame
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Figure 5.2: The target object used in the simulations. The five feature points

(circles) are visible to the monocular cameras, and range sensor beams intersect

with the trigonal mesh surfaces.

S to the C1 frame. The relative pose estimate is always made with respect to the

first camera frame, so these transformations serve to move all of the measurements

to a common frame of reference.

First Camera

The first monocular camera is assumed to be used in all simulations and the es-

timation of the target object motion proceeds within this frame of reference. The

camera one frame (C1) is defined such that the origin is located at the center of

projection, with the ZC1-axis aligned with the optical axis. The XC1 and Y C1 axes

are arranged as previously and align with the image plane X i1 and Y i1 axes, re-

spectively. Finally, the camera has an associated field of view specifying a cone

within which feature points are visible in front of the camera. This is to simulate

the limited view of a physical camera and to allow objects to move in and out of

the image plane. When an object feature point is not visible within the camera

image, the estimation must proceed without measurements of that feature point at

that time step.

This camera simulates the base sensor to which the other sensors are added
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to provide the required supplemental measurements when estimating global scale.

Since the position of the object feature points is available at each time step, the

image plane projections of each feature can be calculated using a pin-hole camera

model disturbed by zero-mean Gaussian noise. These noisy measurements are then

passed to the estimator at each time step along the relative motion trajectory.

Second Camera

The second monocular camera is optional and provides a second image of the ob-

ject feature points with a known base-line to the first camera, specified by the

transformation, TC1
C2

. It is assumed that the correspondance problem of which ob-

ject feature points correspond to which image plane measurements has been solved

by the feature extraction phase. This problem is not trivial, but it will not be

considered further here.

The camera two frame (C2) is defined identically to the C1 frame but with

respect to the second camera. Additionally, the measurements from this sensor are

simulated in exactly the same fashion at the first camera and are available at each

simulation time step.

It is important to note that this technique does not involve first creating a

disparity map. Instead, the two monocular cameras operate independently and

only provide raw image plane measurements of the feature points. The depth

information is extracted in the filtering phase,. according to the measurement

model constraints.

Point Range-Finder

As a supplement to the monocular camera, the range finder provides a measure

of the global scale of the estimation. The point range-finder sensor projects a ray

from the origin of the G frame along the ZG-axis and measures the shortest distance

to the intersection with the target object geometry. The associated range-finder

frame (G) is defined such that the beam originates at the origin and the ZG-axis

is aligned with the direction of the ray. Once again, it is assumed that the relative

position and orientation of this sensor with respect to the C1 frame is known with

certainty and parameterized by the transformation, TC1
G .

This sensor model is similar to that of a sonar or ultrasonic range finder with

a cone radius of zero. Alternatively, these ’coarse’ sensors may be approximated
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by increasing the measurement noise covariance to simulate the added uncertainty.

However, the basic information provided is identical.

To simulate the measurements from such a device, the triangles specifying to

object surface geometry are used sequentially to calculate the distance to an in-

tersection with a ray, originating from the range finder frame origin down the Z

axis, representing the measurement beam. It is then checked that the intersec-

tion is within the boundaries of the triangle, and the distance to the closest valid

intersection is used as the measurement after adding zero-mean Gaussian noise.

Laser Pointer

While the laser pointer is not a measurement device on its own, when combined

with a camera, it can be thought of as a simple stereo-vision configuration. When

the base-line between the camera and laser pointer are known, TC1
L , the reflection

of the laser pointer, the laser dot, can be recogized in the camera image plane,

providing a bearing measurement. Along with the known bearing with respect to

the laser pointer, this measurement can be used to triangulate the depth of the

laser dot in the environment. If it is assumed that the reflection occurs on the

target object, a rough measurement of the depth to the object can be made.

The laser pointer frame (L) is defined similar to the G frame with the origin

as that laser ray origin and the ZL-axis aligned with the ray itself. Since the laser

dot is measured in the camera image-plane, the actual measurements will be the

xiL, yiL coordinates of the image of the laser dot within the image plane.

Similar to the laser range finder above, the simulated measurement is found by

first finding the closest intersection of the laser beam ray projecting out from the

origin. Then, the coordinates of this intersection are transformed into the C1 frame

and projected onto the camera’s image plane. Zero-mean Gaussian noise is added

to these image measurements before being passed to the estimator at each time

step.

5.1.3 Sensor Selection

In this analysis, the number and combinations of the sensors used will be varied.

This will serve to compare the performance of the estimation of the relative pose

with different combinations of sensors enabled.

114



To serve as the baseline, the case when only a single monocular camera is used

with a known object model, will be explored first. This example closely resembles

the work of Wilson et al. [53] detailed in Chapter 2. Next, the assumption that

the target object model is known with certainty, will be relaxed, and both the

target model and the relative pose will be estimated using only a monocular camera

as outlined in Chapter 3. This case will demonstrate that while the shape and

orientation of the target object can be found, the absolute scale of the target object

model and the relative motion are not recoverable.

As discussed in Chapter 4, adding supplementary sensors with the appropriate

measurement models should allow the scale to be recovered. However, the suit-

ability and validity of the additional sensors and the corresponding measurement

models, is of interest. Adding a second monocular camera adds more measure-

ments than is strictly necessary to fully recover the global scale, but serves as a

good baseline against which the simpler devices are evaluated. The combination of

monocular camera and point range-finder will be investigated. Then, in an attempt

to simplify the hardware required, the point range finder will be replaced with a

simple laser pointer which is coupled with the monocular camera to make a different

range-finder type device. The success of these last two methods depends crucially

on how well the measurement model assumptions align with the true system.

5.1.4 Initialization

For the simulations detailed here, the specific initialization values depend on whether

the target object model is assumed to be known or unknown. When the target ob-

ject is assumed to be completely unknown at the start of the estimation, the initial

distributions for the system state estimates are determined using the process de-

scribed in Sections 3.3.7 and 4.4.3.

While the initialization of an estimation with a known object model is similar

to the case described in Section 2.3.3, the specific process is more complicated given

the framework used in the simulations. The simulations are set up to estimate both

relative pose and target object model simultaneously. When the target object is

known, the model parameters must be set to the proper values and fixed (i. e. given

an associated covariance of zero).
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Known Target Model

For this simulation study, a known target model means that the locations of the

target object feature points are known with complete certainty. However, unlike

the target models detailed in Chapter 2, where the features were known in a local

object coordinate frame, here they are known in the modelling frame M , and the

object coordinate frame O is defined by a set of three specified feature points.

As a result, the estimation of the relative pose can proceed within the same

framework as for the unknown target model estimation, but the target model feature

point parameters are initialized with their locations and the corresponding initial

estimate covariance values are set to zero. Additionally, the object frame in this

case is not defined by three features as is the case for unknown target models.

While not the only possibility, here the M and O frames are superimposed and

each feature point parameterization is found by,

pj = 0, σ2
pj0

= 0 (5.1)

qj = 0, σ2
qj0

= 0 (5.2)

rj = 0, σ2
rj0

= 0 (5.3)

γj = tan−1

(
yOj
xOj

)
, σ2

γj0
= 0 (5.4)

χj = tan−1


√

(xOj )2 + (yOj )2

zOj

 , σ2
χj0

= 0 (5.5)

τj =
1√

(xOj )2 + (yOj )2 + (zOj )2
, σ2

τj0
= 0. (5.6)

Subsequently, the relative pose parameters can then be initialized as shown in

Section 2.3.3. While this does introduce a small amount of unnecessary computing

overhead due to the model feature point parameters still being included in the

state vector, it means only the relative pose states will change as a result of the

measurements and the results will be identical to a system where the states consist

of only the six pose parameters and their velocities as in Chapter 2.
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Figure 5.3: The path of the target object is a figure-eight motion in the XW and

Y W directions with sinusoidal motion in the ZW axes and rotational motions. The

object coordinate frame at intervals are shown to characterize the rotations.

5.2 Procedure

To compare the performance of the estimator with the different sensor measure-

ments, a series of five simulations were carried out under the same relative motion

profile of the robot end-effector and the target object, which is shown in Fig. 5.3.

First, to provide a baseline, a single monocular camera is used to estimate only

the relative position and orientation of a target object with a known model. For

this case, only the six pose parameters and their velocities are estimated.

Second, no information on the object model is available a priori, and the relative

pose and object model are simultaneously estimated using measurements from a

single camera. This test case is chosen to illustrate how the combined estimation

produces a solution which is consistent, but lacks the proper global scale.
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Third, a second camera is added to the robot end-effector to demonstrate how

two bearing-only sensors with a known baseline can recover the scene depth and

scale accurately provided the correspondance problem can be solved reliably. The

results from this test will provide a benchmark for comparing the simpler camera

plus range sensor configurations in the cases to follow.

Fourth, the measurement space is augmented with output from a point range

finder device mounted in a fixed position relative to the robot end-effector. This

case will investigate whether the scale can be reliably recovered using this simple

measurement device with a limited measurement model and avoiding the compli-

cations with a multiple camera setup.

Finally, the range sensor is changed to be the laser pointer and camera setup

detailed previously. This setup is potentially much less expensive and its use may

be justified if good performance is observed compared to the point range finder.

5.3 Results

In this section, the performance of each of the test cases will be examined in order

to compare the ability of each estimator to accurately recover the relative position

and orientation of the target object with respect to the robot end-effector frame.

5.3.1 Pose Estimation with Monocular Camera

In the first test case, the traditional position-based visual servo pose estimation

scheme with a known target object model is simulated. The motivation of running

this scenario is to provide a baseline to represent the ideal case for estimating the

relative pose of the target object with respect to the monocular camera frame. In the

subsequent cases, where the target object model is unknown, it is only reasonable

to expect that the estimator would perform at this level, in the best case. It is more

likely, when estimating both the relative pose and the target object model, that

the relative pose estimates will be hindered by the estimation error in the target

object model and vice-versa.

The simulation was run and the resulting estimated relative pose parameters

are shown in Fig. 5.4. The six parameters representing the position and orientation

of the target object frame are shown through the image sequence compared to

the ground truth for the relative motion. While the estimation of the relative
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orientation is performed in MRP, these parameters have been converted to Euler

angles to make it easier to visualize and analyze the rotations. It is clear that the

estimator is able to accurately track the target object through the entire motion

sequence.

A closer inspection of the estimation error, defined xk−x̂k,k, is shown in Fig. 5.5.

The estimation error on the relative position states is confined to sub-centimetre

magnitudes, while the relative orientation estimates are accurate to less than a

degree. By comparing the estimation error values to the corresponding estimated

parameter, the estimation error follows the trend of the estimation itself. This is

caused by the constant velocity motion assumption used to develop the process

model for the system. If the relative motion dynamics of the system could be

modeled perfectly, the estimation error would consist of only white noise. Since

the relative motion is considered arbitrary, the constant velocity assumption is

employed to deal with the general case. When the velocity of the relative motion,

the slope of the estimation graph, changes quickly, the constant velocity model

is a poor representation for the system dynamics, and these unmodeled dynamics

appear in the estimation error. If this modeling error becomes significant, a solution

may be to reduce the time step by increasing the sampling rate of the system.

A measure of the confidence with which the estimates can be used, the estimate

covariance, along with the mean, parameterizes the Gaussian distribution for each

state estimate. The covariance of the relative pose parameters over this simulation

is shown in Fig. 5.6. Notice that the orientation parameters here are MRP.

These values rise and fall as a function of the disturbance and measurement

noise, as well as the system configurations throughout the relative trajectory. The

EKF prediction step directly injects the disturbance noise into the estimate covari-

ance at each time step, while the amount to which the covariance is reduced by

the measurement update step is heavily dependent on the measurement Jacobian,

which is a function of the current state estimate. Different system configurations

result in greater or lesser effect on the estimate covariance in this step. By quick ob-

servation, it is apparent that when the object is close to the camera, the covariance

of the relative pose parameters falls dramatically, particularly the Z component.

This simulation test case confirms that when the target object model is known

accurately, the relative position and orientation of the target object frame can be

reliably and accurately tracked using a single monocular camera providing image

plane measurements of a set of object feature points. It aligns well with the ob-

servability analysis performed in Chapter 2 which concluded that in almost all
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Figure 5.4: Estimates for the six relative pose parameters over the sequence using

measurements from a single monocular camera with a known target object model.

The estimated MRP have been converted to Euler angles. Actual values are dashed

lines, estimated are solid lines.
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Figure 5.5: Estimation error for the six relative pose parameters through the entire

sequence using measurements from a single monocular camera with a known target

object model. The estimated MRP have been converted to Euler angles.
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Figure 5.6: Estimate covariance for the six relative pose parameters through the

entire sequence using measurements from a single monocular camera with a known

target object model.
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configurations, recovering the relative position and orientation of the target object

should be possible.

Now, when the target object is not assumed to be known in the test cases to

follow, the pose estimates can be compared to these results to determine the perfor-

mance of the augmented system compared with this ideal case. Indeed, unlike the

SLAM work, where recovering an accurate map of the world or object is paramount,

it is the relative pose estimates that are important for control.

5.3.2 Combined Estimation with Monocular Camera

For this next test case, the only sensor used will again be a single monocular camera.

However, the target object model is unknown and must therefore be estimated

alongside the relative pose parameters. The target object moves in the same relative

motion trajectory as the previous test and the initial setup of the system along with

the initial target object model feature point estimates, as well as the final estimate

of the pose and model system, are shown in Fig. 5.7.

Upon reviewing the final state estimate, the deficiencies of this method are

apparent. The resulting relative pose estimates throughout the motion, are shown

below in Fig. 5.8. Looking at the graphs of the relative position parameters, it can

be seen that while the estimated motion has the correct trends, the scale is wrong.

The estimated position, in this case, is less than the true position by a scale factor

at every time step. Additionally, this scale factor is not necessarily constant, but

it is not converging to the true scale. This suggests that the theoretical result,

specifying that the global scale should not be recoverable by a single monocular

camera alone, is correct.

While the global scale is not observable in this system, it is clear that the

relative orientation of the target object certainly is recoverable with the available

information. Once the shape of the object is determined, around four seconds

in this case, the relative orientation parameters are very close to their ground

truth values. This is expected since the global scale does not affect the relative

orientation estimates. Consider the formation of the rotation matrix, for which the

scale parameter does not appear in expression (4.5) as it does in the translation

vector.

The estimation error for the relative pose parameters reflects the problems with

recovering the global scale. These errors through time are shown in Fig. 5.9. While

the error on the position states is significant due to the scale error, the up-to-scale
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Figure 5.7: Initial (left) and final (right) state estimates for the monocular camera

case with unknown target object model. Actual feature point locations are empty

circles on target object, estimated locations are solid dots. The 2σ range of the

feature point depth uncertainty is represented by the dashed lines.
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Figure 5.8: Estimates for the six relative pose parameters over the sequence using

measurements from a single monocular camera with a completely unknown target

object model. Actual values are dashed lines, estimated are solid lines.
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solution is consistent and can be tracked successfully. This scale factor should be

consistent throughout all of the position states of the system, as well as the feature

position estimates at any give time step.

Estimating both the relative pose and the target object model simultaneously

has a significant effect on the estimate covariance of the relative pose parameters

through the relative motion. The covariances of the pose parameters are shown

in Fig. 5.10. Initially, the covariance of all of the parameters grows as a result of

the estimator resolving the general shape of the target object. However, just like

the relative orientation estimate, once the shape is found with sufficient certainty,

around four seconds, the covariance falls sharply for most of the state estimates.

The large uncertainty at the beginning of the sequence is associated with the initial

conditions of the feature points in which they are arranged in a spherical configu-

ration with the camera being at the sphere’s center. This is likely a very sensitive

configuration for the system and this is reflected in the growing covariance.

Of secondary interest is how well the estimator is able to recover the target

object geometry alongside the relative position and orientation of the target object

with respect to the camera frame. Estimates of the parameters for two of the five

feature points are shown in Fig. 5.11. Along the left column is the evolution of the

estimates for the azimuth, altitude, and inverse depth of feature point one, and the

corresponding parameters for feature two are in the right column. Feature points

one and two are identified in Fig. 5.2 showing the target object.

Similar to the relative orientation parameters, the azimuth and altitude angles

for both feature points are recovered accurately over the entire trajectory. This,

once again, suggests that the shape of the object model is observable with the single

monocular camera measurements, as expected. It is a different case for the inverse

depth parameters since they implicitly rely on scale information for the system.

Both parameters converge to a value which is a consistent scale factor of the true

inverse depth from the ground truth data.

The estimation error for the feature parameters leads to the same conclusions,

and is shown in Fig. 5.12.

The estimate covariance of the feature point parameters are shown in Fig. 5.13.

Since there is no disturbance noise associated with the model parameters, the co-

variances associated with these estimates are monotonically decreasing as suggested

in [19]. Therefore, it is a question of how quickly the covariance falls to zero to quan-

tify the quality of the measurement information. The inverse depth parameters,

even though they are known to be converging to the wrong scale, have decreasing
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Time (s)

E
rr

or
(m

)

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2
Roll Error, φk - φ̂k,k

Time (s)

E
rr

or
(r

ad
)

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2
Pitch Error, θk - θ̂k ,k

Time (s)

E
rr

or
(r

ad
)

0 5 10 15 20
−0.2

−0.1

0

0.1

0.2
Yaw Error, ψk - ψ̂k,k

Time (s)

E
rr

or
(r

ad
)

Figure 5.9: Estimation error for the six relative pose parameters through the entire

sequence using measurements from a single monocular camera with a completely

unknown target object model.
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Figure 5.10: Estimate covariance for the six relative pose parameters through the

entire sequence using measurements from a single monocular camera with a com-

pletely unknown target object model.
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Figure 5.11: Estimates of the modelling frame locations of the first (left column)

and second (right column) object feature points from measurements with a single

monocular camera with a completely unknown target object model. Actual values

are dashed lines, estimated are solid lines.
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Figure 5.12: Estimation error of the modelling frame locations of the first (left

column) and second (right column) object feature points from measurements with

a single monocular camera with a completely unknown target object model.
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covariances. This is due to the construction of the EKF. In order to apply the

EKF to a system, it is assumed that the system is observable. If this were the case,

and the nonlinearities do not have a significant effect, the estimate covariance ma-

trix would be adjusted properly according the disturbance and measurement noise

magnitudes.

The falling covariance of the inverse depth estimate raises an issue when adding

additional measurements which contain scale information. Consider what would

happen if the estimation were to initially proceed with only the monocular camera,

and then the other measurements were added at a later time. In the current setup,

the covariance of the model parameters would converge as shown in Fig. 5.13 and

could become effectively fixed if the covariance falls to a point to prevent the scale

measurements from adjusting the parameters to fit the proper scale. This suggests

that it is important to keep enough ’mobility’ in the system parameters to allow this

information to be integrated effectively. A mechanism such as injecting noise into

the relevant parameter estimates, or including a seperate scale parameter which is

acted on by the range measurements alone, may provide a solution.

The test case explored here, in which a single monocular camera is used to

estimate both the relative pose as well as the target object model, demonstrates

the problem which the following sections will attempt to overcome. The image plane

measurements of the object feature points is not sufficient to recover a solution with

the proper global scale. Instead, supplemental measurements which contain scale

information are necessary, and the nature of such measurements are investigated in

the following test cases.

5.3.3 Combined Estimation with Two Cameras

When attempting to recover the scale of the system, an intuitive option is to add

a second monocular camera to the robot end-effector at some fixed position and

orientation relative to the first camera. With this baseline known, the distance to

the object feature points can be triangulated, and the global scale recovered.

For this test case, a second camera is situated alongside the first monocular

camera and the image plane measurements from both cameras are used in the EKF

framework to estimate both the relative pose and the target object model of the

system. While this method is expected to outperform the monocular camera-only

tests both with and without a known target model, it represents a non-minimal

measurement set. In this way, it will serve as a good baseline for comparing the
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Figure 5.13: Estimate covariance of the modelling frame locations of the first (left

column) and second (right column) object feature points from measurements with

a single monocular camera with a completely unknown target object model.
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Figure 5.14: Initial (left) and final (right) state estimates for the two monocular

cameras case with unknown target object model. Actual feature point locations are

empty circles on target object, estimated locations are solid dots. The 2σ range of

the feature point depth uncertainty is represented by the dashed lines.

performance of the camera and range finder combinations in the test cases that

follow.

The initial setup for this test case and the final estimate are shown in Fig. 5.14.

For the same relative motion of the target object and robot end-effector, this system

generates accurate estimates of the relative pose parameters, as shown in Fig. 5.15.

Initially, the object is visible in both cameras and the scale is quickly resolved.

Accordingly, the relative pose estimates go towards the ground truth values.

The estimation errors for the relative pose parameters reflect this evolution, and

are displayed in Fig. 5.16. Once the shape is recovered, just prior to the 5 second

mark, the error drops on the position and orientation states for the rest of the

trajectory.

The estimate covariances for the relative pose parameters are strongly related

to the visibility of the object in both cameras. In Fig. 5.17, when both monocular

cameras can see the feature points, the covariances drop sharply indicating high

confidence can be placed in the resulting estimates. In fact, the covariance values
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Figure 5.15: Estimates for the six relative pose parameters over the sequence using

measurements from two monocular cameras with a completely unknown target

object model. Actual values are dashed lines, estimated are solid lines.
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Figure 5.16: Estimation error for the six relative pose parameters through the

entire sequence using measurements from two monocular cameras with a completely

unknown target object model.
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for the pose parameters are smaller than those in Fig. 5.6, when the target model

was assumed perfectly known and the estimation proceeded with a single monocular

camera.

With the measurements from the two monocular cameras, the depth of any

feature point is measureable in each and every frame. As a result, the feature point

parameter estimations, particularly the inverse depth, are accurate and converge

to a consistent solution quickly, see Fig. 5.18. For the associated estimation errors,

refer to Fig. 5.19.

Finally, the estimate covariance for the feature point parameters reflect a high

and growing confidence in the parameter estimates. By effectively doubling the

number of measurements available at every time step, the covariance of the feature

parameters is significantly less than the same values in the case where only a single

monocular camera was used to estimate both the relative pose and target object

model (see Fig. 5.13).

Not surprisingly, using multiple monocular cameras to estimate both the relative

position and orientation, as well as the feature point locations for a target object,

results in greatly improved performance over the case when only a single camera is

used. The global scale is constrained by the known baseline between the cameras,

and as a result, there is only one solution such that the measurement data can be

fit, in a least-squares sense, to the generated model.

While this does offer a solution to the relative pose estimation problem when the

target object model is unknown, the measurement space is certainly not minimal,

and the correspondance problem presents a significant challenge to make such an

implementation practical. Instead, a simple range finder device will be coupled with

the single monocular camera estimation scheme to provide a range measurement to

the target object at each time step. With the proper measurement model, the data

can be fused to form a cohesive, correctly-scaled relative pose estimate. However,

certain assumptions are necessary to make such a combination possible, and it will

be the suitability of these assumptions which will be verified by comparing the

resulting performance with this test case.

5.3.4 Combined Estimation with Camera and Range Finder

In this test, a point range finder device is fixed in a known position and orientation

with respect the the monocular camera, and supplies a single range measurement
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Figure 5.17: Estimate covariance for the six relative pose parameters through the

entire sequence using measurements from two monocular cameras with a completely

unknown target object model.
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Figure 5.18: Estimates of the modelling frame locations of the first and second

object feature points from measurements with two monocular cameras with a com-

pletely unknown target object model. Actual values are dashed lines, estimated are

solid lines.
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Figure 5.19: Estimation error of the modelling frame locations of the first and

second object feature points from measurements with two monocular cameras with

a completely unknown target object model.
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Figure 5.20: Estimate covariance of the modelling frame locations of the first and

second object feature points from measurements with two monocular cameras with

a completely unknown target object model.
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to the point of reflection on the target object at each time step. The target ob-

ject moves with the same relative motion as in the last two test cases to check

whether augmenting the measurement space in this way will improve the relative

pose estimates of the unknown target object.

The performance of the estimator will depend critically on the validity of the

assumptions associated with the measurement model. Principally, the range finder

is assumed to provide a measure of the average feature point scene depth. Since

it will almost certainly not be the case that the range finder will always strike a

surface at this particular depth, the measurement noise associated with the range

measurement is artificially inflated above the noise from the base sensor so that

the modeling error is accomodated for by (possibly biased) noise. Mathematically,

increasing the measurement noise covariance amounts to de-weighting the measure-

ment in the estimation so that is has a less significant effect relative to the other

measurements available. In this case, and demonstrated by the two previous tests,

more confidence can be placed in the camera measurements compared to the range

finder with an approximate measurement model. The range measurements should

be used sparingly to ’suggest’ the correct scale instead of strongly influencing the

relative pose estimates directly.

After running the estimation, the final estimate of the pose and target model is

shown in Fig. 5.21. The relative pose estimates for the entire motion are shown in

Fig. 5.22. When compared to the estimates from the previous test with the single

monocular camera as the only measurement device, the relative pose estimation is

significantly improved and it is clear the the scale of the pose is being recovered. The

relative trajectory of the target object takes it in and out of the range finder’s beam

several times. Initially, the beam strikes the object a surface which is closer than

the average depth of the feature points. This results in the scale of the solution

initially being too small. Soon after, the object leaves the beam and the range

measurements are not available for the estimator for this period.

This illustrates a strength of the EKF framework, by which measurements can

be included or neglected when they are available and the estimation will continue

with the remaining measurements. When the range measurements are lost, the

current scale value is effectively locked in and the estimation proceeds with the

vision measurements only, at that scale.

Later, the object crosses the range beam again at just before ten seconds. At

this point, the scale converges further towards the proper value. In Fig. 5.23, the

estimation error of the relative pose parameters indicates that the scale is wrong
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Figure 5.21: Initial (left) and final (right) state estimates for the monocular camera

plus point range sensor case with unknown target object model. Actual feature

point locations are empty circles on target object, estimated locations are solid

dots. The 2σ range of the feature point depth uncertainty is represented by the

dashed lines.
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Figure 5.22: Estimates for the six relative pose parameters over the sequence using

measurements from a single monocular camera and point range finder device with a

completely unknown target object model. Actual values are dashed lines, estimated

are solid lines.
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initially, but once it converges at around ten seconds, the errors collapse to what

resembles zero-mean white noise. This indicates that the previously unmodeled dy-

namics, in this case the model scale, are successfully extracted from the information

provided by the measurements.

The estimate covariance for the relative pose parameters looks similar to that of

the previous case, especially when the covariance initially increases until the shape

of the target object model, and therefore the object coordinate frame, are resolved.

The corresponding plots are shown in Fig. 5.24.

Given the dependance of estimating the relative pose on the estimate of the

target object, one would expect that the improve performance of the pose tracking

is a direct result of an improved target model estimation. Indeed, this is the case

for this system, as can be seen from the estimates of the parameters for the first

two features, shown in Fig. 5.25 below.

The azimuth and altitude angles for the two feature points demonstrate similar

tracking performance to the monocular camera-only case. However, the estimates

of the inverse depth shows a great improvement in both cases, with the values

actually moving to the correct values. This is a result of the range measurements

dictating the proper scale for the system. Additionally, three distinct steps can be

seen in each plot representing when the object crosses the range finder’s beam and

range measurements become available.

Once again, estimation errors for the feature parameters are shown in Fig. 5.26.

It can be seen that the error of most of the parameters is falling.

The estimate covariances of the feature parameters, in Fig. 5.27, are all mono-

tonically decreasing, as expected. Of note, are the covariances of the inverse depth

parameters, which show significant reductions during the periods corresponding to

the range measurements being available. Additionally, the final covariance values

are less than those from the monocular camera-only test case. The range measure-

ments allow for the relative confidence of the parameter estimates to be greater

than without them, and the covariance is smaller to indicate it.

This test shows that the performance of the relative pose estimation for an

unknown target object is significantly improved when compared to estimating using

measurements from a monocular camera alone. The keystone is recovering the

global scale of the relative motion and the object model. This is facilitated by the

range finder device, mounted on the robot end-effector, whose measurements are

fused within the EKF framework using a simple measurement model.
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Figure 5.23: Estimation error for the six relative pose parameters through the

entire sequence using measurements from a single monocular camera and point

range finder device with a completely unknown target object model.

145



0 5 10 15 20
0

0.01

0.02

0.03

0.04
Position Variance, σ2

X

Time (s)

V
ar

ia
nc

e
(m

2
)

0 5 10 15 20
0

0.01

0.02

0.03

0.04
Position Variance, σ2

Y

Time (s)

V
ar

ia
nc

e
(m

2
)

0 5 10 15 20
0

0.01

0.02

0.03

0.04
Position Variance, σ2

Z

Time (s)

V
ar

ia
nc

e
(m

2
)

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025
Orientation Variance, σ2

a

Time (s)

V
ar

ia
nc

e

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025
Orientation Variance, σ2

b

Time (s)

V
ar

ia
nc

e

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025
Orientation Variance, σ2

c

Time (s)

V
ar

ia
nc

e

Figure 5.24: Estimate covariance for the six relative pose parameters through the

entire sequence using measurements from a single monocular camera and point

range finder device with a completely unknown target object model.
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Figure 5.25: Estimates of the modelling frame locations of the first and second

object feature points from measurements with a single monocular camera and point

range finder device with a completely unknown target object model. Actual values

are dashed lines, estimated are solid lines.
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Figure 5.26: Estimation error of the modelling frame locations of the first and

second object feature points from measurements with a single monocular camera

and point range finder device with a completely unknown target object model.
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Figure 5.27: Estimate covariance of the modelling frame locations of the first and

second object feature points from measurements with a single monocular camera

and point range finder device with a completely unknown target object model.
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This method has the disadvantage of relying on the assumption that the range

beam measures the average feature point depth. This will almost never happen

and approximating the modelling error as zero-mean noise may not work well if the

distance measured is consistently greater or lesser than the true average. Consider

an object with a convex or concave surface. If, for example, the distance measured

is 90% of the true depth, the estimated scale of the environment will be 90% of the

true value. For target objects where the distance to the camera is large compared

to the variations in the surface depth, the solution recovered may be sufficiently

accurate for certain tasks. This deficiency is important to consider for practical

applications.

In the next test, a modified range finder device utilizing a laser pointer and the

monocular camera with a similar measurement model, is simulated to compare the

performance to the setup used in this section. If the performance is comparable,

this represents an inexpensive alternative both in terms of cost and weight.

5.3.5 Combined Estimation with Camera and Laser Pointer

With the success of the previous estimation using the monocular camera supple-

mented by the point range finder, the current test attempts to achieve the same

results with more compact and less expensive sensors. As described previously, a

laser pointer is fixed at a known position and orientation with respect to the first

monocular camera. The initial setup for the estimation and the final estimate are

shown in Fig. 5.28.

This modified range sensor uses the same measurement model as with the point

range sensor where the measured distance is assumed to be the mean feature point

depth on the object. As a result, the estimation will suffer the same disadvantages

concerning the unknown surface geometry assumptions.

The results of the estimation with the same relative motion profile are not as

impressive as the previous system’s performance. It is clear from Fig. 5.28 that

the final scale of the estimate is too small. The estimated relative pose parameters

though the relative motion are shown in Fig. 5.29.

When compared to ground truth, it is again apparent that the relative position

parameters do not achieve the proper global scale throughout the entire motion

sequence. The estimation error, shown in Fig. 5.30, shows that the estimator is

unable to accurately recover any of the relative position parameters. Similar to the

case when only a single monocular camera was used to estimate both the pose and
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Figure 5.28: Initial (left) and final (right) state estimates for the monocular camera

plus laser pointer case with unknown target object model. Actual feature point

locations are empty circles on target object, estimated locations are solid dots.

The 2σ range of the feature point depth uncertainty is represented by the dashed

lines.
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Time (s)

L
en

gt
h

(m
)

0 5 10 15 20
−2.6

−2.4

−2.2

−2

−1.8

−1.6
Object Roll, φ̂k,k

Time (s)

A
ng

le
(r

ad
)

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Object Pitch, θ̂k,k

Time (s)

A
ng

le
(r

ad
)

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4
Object Yaw, ψ̂k,k

Time (s)

A
ng

le
(r

ad
)

Figure 5.29: Estimates for the six relative pose parameters over the sequence using

measurements from a single monocular camera and laser pointer range device with a

completely unknown target object model. Actual values are dashed lines, estimated

are solid lines.

152



model, the errors follow the trend of the estimates indicating that the recovered

global scale is inaccurate.

Despite the relative pose estimates having large errors associated with the pa-

rameters, the estimate covariance for the pose parameters, in Fig. 5.31, are similar

to those from the previous test case (see Fig. 5.24). This is a result of the dis-

turbance and measurement noise processes having similar characteristics in both

experiments, but slightly different state estimates used for the linearizations during

the EKF recursions. Once again, this demonstrates that it is important to take

care when evaluating the confidence that can be placed in an estimate from the

EKF operating with a nonlinear system which is not observable at every time step

(especially when the laser dot does not strike the target object).

Given the poor quality relative pose estimates, it is expected that the target

object model parameters would suffer as well. Indeed, this is the case as can be

seen in Fig. 5.32, showing the parameters for feature points one and two. While the

azimuth and altitude angles of the observation rays perform similarly to the other

test cases, the inverse depth parameters only slightly move toward their proper

ground truth values.

This result is reenforced by observing the estimation error on these model pa-

rameters in Fig. 5.33.

The most important result for this estimation is seen in the covariance plots

of the target object model parameter estimates in Fig. 5.34. When the laser dot

strikes the target object the covariance associated with the inverse depth parameters

drops significantly. This is the result of the measurement noise and sensitivity of

the range measurements using the laser pointer, combined with the fact that there

are two measurements at each observation (two image plane coordinates). When

the uncertainty in depth is translated into image plane coordinates, the resulting

covariance values are very small due to the sensitivity of the laser dot location at

different measured depths. As the depth increases, the motion of the laser dot in

the image plane becomes less significant. As a result, small differences in the laser

dot location can mean a change in the depth measurement of several metres or

more. Conversely, at short distances, the measurement is much less sensitive to

changes in depth.

When the laser dot strikes the target object and a range measurement becomes

available, the associated covariance found using equations (4.58) and (4.59) is small

and reduces the estimate covariance accordingly. This apparent ’high confidence’

leads the estimate of the inverse depth to converge quickly, even though the relative
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Figure 5.30: Estimation error for the six relative pose parameters through the entire

sequence using measurements from a single monocular camera and laser pointer

range device with a completely unknown target object model.
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Figure 5.31: Estimate covariance for the six relative pose parameters through the

entire sequence using measurements from a single monocular camera and laser

pointer range device with a completely unknown target object model.
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Figure 5.32: Estimates of the modelling frame locations of the first and second

object feature points from measurements with a single monocular camera and laser

pointer range device with a completely unknown target object model. Actual values

are dashed lines, estimated are solid lines.
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Figure 5.33: Estimation error of the modelling frame locations of the first and

second object feature points from measurements with a single monocular camera

and laser pointer range device with a completely unknown target object model.
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depth uncertainty required to use the mean depth model is large. Projecting this

large depth uncertainty in the R3 to R2 results in a small measurement uncertainty

especially over long distances. Once these values have converged, the rest of the

parameters will be constrained to operate at that scale. In this case, the inverse

depth estimates are too large, resulting in a estimate of the entire system which is

too small.

The poor performance of this estimation is caused, in part, by the sensitivity of

the image plane measurements of the laser dot to changes in range. Unfortunately,

there is little that can be done to improve this result. It may be possible to improve

the results by increasing the baseline between the camera and the laser pointer to

reduce the sensitivity at longer distances, but the complexities will persist and

physically mounting the pointer that far away from the camera may be difficult

and clumsy. Multiple laser pointers mounted at different relative locations may

provide the redundancy required to overcome the sensitivity issues, but will not be

considered further in this report.

Accordingly, the laser pointer mounted on the end-effector makes a poor range

measurement device. The point range finder from the previous test case is superior

since the range uncertainty can more naturally be represented in the Cartesian

frame, instead of a projection onto the image plane.

5.4 Summary

In this chapter, the estimation of the relative pose of a target object with respect to

the robot end-effector using different combination of relative sensors was evaluated

in simulation. A complete robotic manipulator and workpiece were constructed in

virtual environment and designed to properly interact with a set of sensors.

The first experiment showed when an accurate prior model of the target model

is available, the relative pose estimation is accurate when using only a single monoc-

ular camera for all the measurements of target object feature points.

Next, the combined estimation of both the relative pose and the target model

was run using a single monocular camera. The results demonstrated that while

the recovered solution was consistent, the global scale was incorrect. This means

that using a single monocular camera to estimate the relative pose of a completely

unknown target object is impractical without some prior scale information.
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Figure 5.34: Estimate covariance of the modelling frame locations of the first and

second object feature points from measurements with a single monocular camera

and laser pointer range device with a completely unknown target object model.
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The third experiment added a second monocular camera to the robot manipu-

lator and it was shown that even when the target object model was initially com-

pletely unknown, the estimation error of the relative pose parameters is smaller

than with a single camera and a known object model.

In an effort to utilize a smaller number of supplemental measurements, a single

point range sensor was fixed to the robot manipulator alongside the single monocu-

lar camera. Good results were obtained, at the proper scale, when the measurement

noise was inflated to accomodate for the modelling error of the sensor and target

object surface. While it is outperformed by the dual camera system, this experi-

ment represents a simpler, more economical solution to the problem of recovering

the global scale with a single monocular camera.

The final test case replaced the point range sensor with a laser pointer fixed at a

pose with respect to the monocular camera. It was found that the sensitivity of the

image plane measurements and the complexities of representing the uncertainty

in depth lead to a poor estimation of the target object relative pose and model

parameters. While the equipment required is simpler, there are still several issues

to resolve before this configuration can be reliably deployed.
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Chapter 6

Conclusions and Future Work

This chapter reviews the important results from this thesis and then makes recom-

mendations for future work and improvements to the systems proposed herein.

6.1 Conclusions

This thesis investigated the design and verification of a combined relative pose and

target model estimation system for a position-based visual servoing controller.

The classical PBVS relative pose estimation scheme was outlined in which a

single monocular camera mounted on the robot end-effector is used to measure

the relative position and orientation of a target object with a known geometric

model. An observability analysis of the resulting state space system revealed the

geometric configurations of the camera and target object from which the image

plane measurements cannot uniquely determine the relative pose.

Then, the estimation problem was expanded to measure the relative pose of

the target object with respect to the robot end-effector when the locations of a

set of target object point features are initially unknown. The resulting system

treats these models parameters as augmented system states and estimates both the

relative pose and target object model simultaneously. This procedure is very sim-

ilar to the Simultaneous Localization and Mapping (SLAM) problem from mobile

robotics literature. After recognizing this link, recent advances in the mobile robot

literature are translated into the relative pose estimation framework, facilitating

more effective combined estimation. Another observability analysis found a subset

of the unobservable configurations of the system over multiple time steps, high-

lighting situations where the target model and relative pose cannot be recovered
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for a variety of different dimensional systems. More significantly, it was confirmed

that information about the global scale of the environment cannot be recovered

using on the point feature image plane measurements from a monocular camera.

This indicated that supplemental relative measurements were needed to accurately

recover the scale of the resulting estimation.

The specific sensors to provide the additional relative measurements were the

subject of Chapter 4 and included additional monocular cameras, and two point

range finding devices capable of recovering a single distance measurement to a point

on the target object. A simple measurement model to facilitate augmenting the

measurement space and relate the supplemental range data with the feature points

visible in the monocular camera was formulated. Subsequently, a system capable of

fusing the additional camera and range measurements with those from the original

monocular camera was then detailed.

To test the performance of the proposed estimator with differenct combinations

of additional sensors, a full set of simulation experiments are carried out with a

virtual robot manipulator and target object. Five different test cases were consid-

ered for comparison. First, the classic relative pose estimation with a monocular

camera and a known target object model was run to provide a baseline for the rel-

ative pose estimates assuming perfect knowledge of the target object model. Next,

the combined pose and model estimation using a single camera is executed and

it was demonstrated that the recovered solution, while consistent, only recovers a

scaled version of the environment. Third, adding a second monocular camera to

the robot end-effector was shown to improve the resulting estimate of the pose and

model and lead to the recovery of an accurate global scale. Then, the combination

of a monocular camera and a point laser range finder was run and found to be

able to estimate the relative pose and model of the target object with reasonable

accuracy. By artificially increasing the noise covariance associated with the range

measurement, the modelling error can be accomodated for and the global scale of

the solution can be recovered provided the measurement model assumptions are

not significantly violated. Finally, the combination of a monocular camera and a

laser pointer mounted at a fixed relative position was implemented to allow range

measurements to be made corresponding to the laser dot location in the camera

image plane. However, it was observed that this device is sensitive to noise and

does not work well within the EKF framework. The recovered estimates were not

correct to the proper scale.
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6.2 Future Work

From the work presented in the previous chapters, it is clear that the combined

relative pose and target model estimation requires more measurements than are

available from only a single monocular camera. The supplemental measurements,

which are fused with the original camera image plane measurements in the system

presented here, provide the extra information needed to recover the correct scale

of the solution. While the simulated test cases suggest that the camera and range

finder combination is capable of accurately recovering this scale, the implementation

of the estimator using a physical robotic system is an important next step to fully

validate these theoretical and simulation results.

There are also some improvements to the range finder measurement model which

may lead to reduced modelling error in the distance measurements to the target

object surface. The difficulty, as noted previously, was in associating the feature

point parameters with the target object surface geometry. Assuming that the laser

beam strikes the target object at the mean feature point depth may not work in all

cases, especially for convex or concave objects with the feature points on the target

object surface. For these two object shapes, the scale of the estimate is likely to be

too small and too large, respectively. It may be more effective to weight the feature

points used to calculate the expected depth based on relative orientation and target

object shape, which is observable using only the monocular camera measurements.

Further, it may be possible to actively point the range beam at a feature point

directly using the shape information.

Another possibilty for improving the range information would be to add addi-

tional range sensors to the robot end-effector. This would provide a better average

of the mean feature point depth. Instead of relying on only one range measure-

ment per time step, the multiple range measurements should relieve the effect of

modelling error on the resulting estimate.

In the simulation experiments, the combination of the monocular camera and

the laser pointer to provide measurements of the range to the target object, per-

formed poorly. A more in-depth investigation into the sensitivity of the measure-

ments and ways to improve the resulting system is required.

On the theoretical side of this work, some of the observability results can be

extended to fully understand all of the configurations in which the estimators will

struggle or fail to recover the correct solution for the relative pose and target object

model. The case where the target object model is unknown represents a significant
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opportunity. Being able to fully quantify the relative configurations of the camera

and target object, for which the pose and model are not recoverable, is essential in

order to make assertions about the robustness and reliability of any robotic system

based on this technology.

Finally, the most promising estimation results from the simulated test cases oc-

cured when the robot end-effector was fitted with two monocular cameras. When

the baseline between multiple monocular cameras is known accurately from extrin-

sic calibration, the scale of the solution is recoverable for the combined estimation.

Furthermore, the fields of views of the multiple cameras do not necessarily need

to overlap, as with traditional stereo cameras. Accordingly, a set of monocular

cameras can be implemented to observe point features of the target object in a po-

tentially unlimited combined field of view, and provide independent measurements

to a unifying estimation framework. If a suitably robust feature extraction scheme

can be implemented in which the location of a feature point across multiple camera

image planes can be searched, the pose of a robot manipulator in or around rela-

tively large target objects could be estimated effectively. These results would also

be useful when localizing a mobile robot within a map of landmarks which is built

concurrently, as in a SLAM process.

While the theoretical results and proposed estimation systems in this thesis

increase the applicability of the PBVS control scheme, the possiblities for future

research which result are both promising and exciting. It is hoped that this work

will lead to significant advances in producing truly capable autonomous robotic

systems.
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Appendix A

System Jacobians

In this appendix, MATLAB code is provided to determine the symbolic Jacobians

for the nonlinear process and measurement models presented in this thesis.

A.1 Utility Functions

A.1.1 rotationX

function R = rotationX( angle )

R = [ ...

1 0 0 ;

0 cos(angle) -sin(angle) ;

0 sin(angle) cos(angle) ;

];

end

A.1.2 rotationY

function R = rotationY( angle )

R = [ ...

cos(angle) 0 sin(angle) ;

0 1 0 ;
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-sin(angle) 0 cos(angle) ;

];

end

A.1.3 rotationZ

function R = rotationZ( angle )

R = [ ...

cos(angle) -sin(angle) 0 ;

sin(angle) cos(angle) 0 ;

0 0 1 ;

];

end

A.1.4 mrp2R

% A function to find the rotation matrix for a set of

% Modified Rodrigues Parameters

function R = mrp2R( a, b, c )

p = [ a b c ]’;

S = [ ...

0 -p(3) p(2) ;

p(3) 0 -p(1) ;

-p(2) p(1) 0 ;

];

R1 = eye(3);

R2 = ( 4*( 1 - p’*p )/( ( 1 + p’*p )^2 ) * S );

R3 = 8/(( 1 + p’*p )^2) * S*S;

R = R1 - R2 + R3;

end
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A.2 KOM Camera Measurement Jacobian

% Symbolic Measurement Jacobian for a Pin-hole Camera Model

% - Relative Orientation in Euler angles (phi, theta, psi)

% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Object Frame wrt Camera Frame)

syms X Y Z ph th ps real;

% Feature Point Parameters (in Object Frame)

syms xo yo zo real;

% Monocular Camera Model Parameters

% Focal Length in X^I and Y^I Directions

syms Fx Fy real;

% Transformation from Modelling to Camera Frame

Tc_m = [ ...

rotationZ(ps)*rotationY(th)*rotationX(ph) [X Y Z]’ ;

0 0 0 1 ];

% Object Feature Point in the Object Frame

obj = [ xo yo zo ]’;

% Transform the Object Feature Point into the Camera Frame

cam = simplify( Tc_m*[ obj ; 1 ] );

xc = cam(1);

yc = cam(2);

zc = cam(3);

% Project the Feature Point onto the Camera Image Plane

xi = -Fx * xc/zc;

yi = -Fy * yc/zc;
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% Find the Partial Derivatives of the Image Plane Coordinates wrt the

% System States.

dxidX = diff(xi,X);

dxidY = diff(xi,Y);

dxidZ = diff(xi,Z);

dxidphi = diff(xi,ph);

dxidtheta = diff(xi,th);

dxidpsi = diff(xi,ps);

dyidX = diff(yi,X);

dyidY = diff(yi,Y);

dyidZ = diff(yi,Z);

dyidphi = diff(yi,ph);

dyidtheta = diff(yi,th);

dyidpsi = diff(yi,ps);

% Now have a symbolic representation of the Measurement Jacobian rows for

% this feature point

Cj = [ dxidX dxidY dxidZ dxidphi dxidtheta dxidpsi zeros(1,6) ;

dyidX dyidY dyidZ dyidphi dyidtheta dyidpsi zeros(1,6) ];

A.3 UOM Camera Measurement Jacobian

% Symbolic Measurement Jacobian for a Pin-hole Camera Model

% - Relative Orientation in Euler angles (phi, theta, psi)

% - Feature Points in Cartesian Parameterization

% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Object Frame wrt Camera Frame)

syms X Y Z ph th ps real;

% Feature Point Parameters (in Object Frame)

syms xo yo zo real;
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% Monocular Camera Model Parameters

% Focal Length in X^I and Y^I Directions

syms Fx Fy real;

% Transformation from Modelling to Camera Frame

Tc_m = [ ...

rotationZ(ps)*rotationY(th)*rotationX(ph) [X Y Z]’ ;

0 0 0 1 ];

% Object Feature Point in the Object Frame

obj = [ xo yo zo ]’;

% Transform the Object Feature Point into the Camera Frame

cam = simplify( Tc_m*[ obj ; 1 ] );

xc = cam(1);

yc = cam(2);

zc = cam(3);

% Project the Feature Point onto the Camera Image Plane

xi = -Fx * xc/zc;

yi = -Fy * yc/zc;

% Find the Partial Derivatives of the Image Plane Coordinates wrt the

% System States.

dxidX = diff(xi,X);

dxidY = diff(xi,Y);

dxidZ = diff(xi,Z);

dxidphi = diff(xi,ph);

dxidtheta = diff(xi,th);

dxidpsi = diff(xi,ps);

dxidxo = diff(xi,xo);

dxidyo = diff(xi,yo);

dxidzo = diff(xi,zo);
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dyidX = diff(yi,X);

dyidY = diff(yi,Y);

dyidZ = diff(yi,Z);

dyidphi = diff(yi,ph);

dyidtheta = diff(yi,th);

dyidpsi = diff(yi,ps);

dyidxo = diff(yi,xo);

dyidyo = diff(yi,yo);

dyidzo = diff(yi,zo);

% Now have a symbolic representation of the Measurement Jacobian rows for

% this feature point

% First part wrt pose parameters

Cj_w = [ dxidX dxidY dxidZ dxidphi dxidtheta dxidpsi zeros(1,6) ;

dyidX dyidY dyidZ dyidphi dyidtheta dyidpsi zeros(1,6) ];

% Second part wrt feature parameters

Cj_f = [ dxidxo dxidyo dxidzo ;

dyidxo dyidyo dyidzo ];

A.4 MRP Process Jacobian

% Symbolic Process Jacobian for a Constant Velocity Model with MRP

% - Relative Orientation in Modified Rodrigues Parameters

% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Orientation Parameters (Modelling Frame wrt Camera Frame)

syms a b c wx wy wz real;

% System Sampling Period

syms dt real;
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% Construct the Process Jacobian

F = sym(eye( 12 ));

% Position States (X,Y,Z)

F(1:3,7:9) = dt*eye(3);

% Partial derivatives for MRP transition

dfada = dt*((a*wx)/2 + (b*wy)/2 + (c*wz)/2) + 1;

dfadb = dt*(wz/2 + (a*wy)/2 - (b*wx)/2);

dfadc = -dt*(wy/2 - (a*wz)/2 + (c*wx)/2);

dfadwx = dt*(a^2/4 - b^2/4 - c^2/4 + 1/4);

dfadwy = -dt*(c/2 - (a*b)/2);

dfadwz = dt*(b/2 + (a*c)/2);

dfbda = -dt*(wz/2 + (a*wy)/2 - (b*wx)/2);

dfbdb = dt*((a*wx)/2 + (b*wy)/2 + (c*wz)/2) + 1;

dfbdc = dt*(wx/2 + (b*wz)/2 - (c*wy)/2);

dfbdwx = dt*(c/2 + (a*b)/2);

dfbdwy = -dt*(a^2/4 - b^2/4 + c^2/4 - 1/4);

dfbdwz = -dt*(a/2 - (b*c)/2);

dfcda = dt*(wy/2 - (a*wz)/2 + (c*wx)/2);

dfcdb = -dt*(wx/2 + (b*wz)/2 - (c*wy)/2);

dfcdc = dt*((a*wx)/2 + (b*wy)/2 + (c*wz)/2) + 1;

dfcdwx = -dt*(b/2 - (a*c)/2);

dfcdwy = dt*(a/2 + (b*c)/2);

dfcdwz = -dt*(a^2/4 + b^2/4 - c^2/4 - 1/4);

F(4:6,4:6) = [ ...

dfada dfadb dfadc ;

dfbda dfbdb dfbdc ;

dfcda dfcdb dfcdc ;

];

F(4:6,10:12) = [ ...

dfadwx dfadwy dfadwz ;

dfbdwx dfbdwy dfbdwz ;

dfcdwx dfcdwy dfcdwz ;
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];

A.5 UOM Inverse Depth Measurement Jacobian

% Symbolic Measurement Jacobian for a Pin-hole Camera Model

% - Relative Orientation in Modified Rodrigues Parameters

% - Feature Points in Inverse Depth Parameterization

% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Modelling Frame wrt Camera Frame)

syms X Y Z a b c real;

% Feature Point Parameters (in Modelling Frame)

syms p q r gm ch tau real;

% Monocular Camera Model Parameters

% Focal Length in X^I and Y^I Directions

syms Fx Fy real;

% Transformation from Modelling to Camera Frame

Tc_m = [ ...

mrp2R(a,b,c) [X Y Z]’ ;

0 0 0 1 ];

% Feature Point Initial Observation Ray Direction

ro = rotationZ(gm)*rotationY(ch)*[ 0 0 1 ]’;

% Object Feature Point in the Modelling Frame

obj = [ p q r ]’ + 1/tau*ro;

% Transform the Object Feature Point into the Camera Frame

cam = simplify( Tc_m*[ obj ; 1 ] );

xc = cam(1);
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yc = cam(2);

zc = cam(3);

% Project the Feature Point onto the Camera Image Plane

xi = -Fx * xc/zc;

yi = -Fy * yc/zc;

% Find the Partial Derivatives of the Image Plane Coordinates wrt the

% System States.

dxidX = diff(xi,X);

dxidY = diff(xi,Y);

dxidZ = diff(xi,Z);

dxida = diff(xi,a);

dxidb = diff(xi,b);

dxidc = diff(xi,c);

dxidp = diff(xi,p);

dxidq = diff(xi,q);

dxidr = diff(xi,r);

dxidgamma = diff(xi,gm);

dxidchi = diff(xi,ch);

dxidtau = diff(xi,tau);

dyidX = diff(yi,X);

dyidY = diff(yi,Y);

dyidZ = diff(yi,Z);

dyida = diff(yi,a);

dyidb = diff(yi,b);

dyidc = diff(yi,c);

dyidp = diff(yi,p);

dyidq = diff(yi,q);

dyidr = diff(yi,r);

dyidgamma = diff(yi,gm);

dyidchi = diff(yi,ch);

dyidtau = diff(yi,tau);
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% Now have a symbolic representation of the Measurement Jacobian rows for

% this feature point

% First part wrt pose parameters

Cj_w = [ dxidX dxidY dxidZ dxida dxidb dxidc zeros(1,6) ;

dyidX dyidY dyidZ dyida dyidb dyidc zeros(1,6) ];

% Second part wrt feature parameters

Cj_f = [ dxidp dxidq dxidr dxidgamma dxidchi dxidtau ;

dyidp dyidq dyidr dyidgamma dyidchi dyidtau ];

A.6 Additional Camera Measurement Jacobian

% Symbolic Measurement Jacobian for Additional Pin-hole Camera Models

% - Relative Orientation in Modified Rodrigues Parameters

% - Feature Points in Inverse Depth Parameterization

% - Known Extrinsic Calibration wrt Primary Camera

% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Modelling Frame wrt Camera Frame)

syms X Y Z a b c real;

% Feature Point Parameters (in Modelling Frame)

syms p q r gm ch tau real;

% Monocular Camera Model Parameters

% Focal Length in X^I and Y^I Directions

syms Fx Fy real;

% Relative Location wrt Primary Camera

syms xac yac zac phac thac psac real;

% Transformation from Modelling to Camera Frame

Tpc_m = [ ...

mrp2R(a,b,c) [X Y Z]’ ;
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0 0 0 1 ];

% Transformation from Additional Camera (ac) to Primary Camera (pc)

Tpc_ac = [ ...

rotationZ(psac)*rotationY(thac)*rotationX(phac) [xac yac zac]’ ;

0 0 0 1 ];

% Invert the Transformation

Tac_pc = invert_transform(Tpc_ac);

% Feature Point Initial Observation Ray Direction

ro = rotationZ(gm)*rotationY(ch)*[ 0 0 1 ]’;

% Object Feature Point in the Modelling Frame

obj = [ p q r ]’ + 1/tau*ro;

% Transform the Object Feature Point into the Additional Camera Frame

cam = Tac_pc*Tpc_m*[ obj ; 1 ];

xc = cam(1);

yc = cam(2);

zc = cam(3);

% Project the Feature Point onto the Camera Image Plane

xi = -Fx * xc/zc;

yi = -Fy * yc/zc;

% Find the Partial Derivatives of the Image Plane Coordinates wrt the

% System States.

dxidX = diff(xi,X);

dxidY = diff(xi,Y);

dxidZ = diff(xi,Z);

dxida = diff(xi,a);

dxidb = diff(xi,b);

dxidc = diff(xi,c);

dxidp = diff(xi,p);
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dxidq = diff(xi,q);

dxidr = diff(xi,r);

dxidgamma = diff(xi,gm);

dxidchi = diff(xi,ch);

dxidtau = diff(xi,tau);

dyidX = diff(yi,X);

dyidY = diff(yi,Y);

dyidZ = diff(yi,Z);

dyida = diff(yi,a);

dyidb = diff(yi,b);

dyidc = diff(yi,c);

dyidp = diff(yi,p);

dyidq = diff(yi,q);

dyidr = diff(yi,r);

dyidgamma = diff(yi,gm);

dyidchi = diff(yi,ch);

dyidtau = diff(yi,tau);

% Now have a symbolic representation of the Measurement Jacobian rows for

% this feature point

% First part wrt pose parameters

Cj_w = [ dxidX dxidY dxidZ dxida dxidb dxidc zeros(1,6) ;

dyidX dyidY dyidZ dyida dyidb dyidc zeros(1,6) ];

% Second part wrt feature parameters

Cj_f = [ dxidp dxidq dxidr dxidgamma dxidchi dxidtau ;

dyidp dyidq dyidr dyidgamma dyidchi dyidtau ];

A.7 Point Range Sensor Measurement Jacobian

% Symbolic Measurement Jacobian for Point Range Finder Model

% - Relative Orientation in Modified Rodrigues Parameters

% - Feature Points in Inverse Depth Parameterization

% - Known Extrinsic Calibration wrt Primary Camera
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% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Modelling Frame wrt Camera Frame)

syms X Y Z a b c real;

% Parameters for the jth Feature Point (in Modelling Frame)

syms p q r gm ch tau real;

% Point Range Finder Model Parameters

% Number and Average of Feature Points Locations (in Modelling Frame)

syms N xo_avg yo_avg zo_avg real;

% Relative Location wrt Primary Camera

syms xr yr zr phr thr psr real;

% Transformation from Modelling to Primary Camera Frame

Tpc_m = [ ...

mrp2R(a,b,c) [X Y Z]’ ;

0 0 0 1 ];

% Transformation from Ranger (r) to Primary Camera (pc)

Tpc_r = [ ...

rotationZ(psr)*rotationY(thr)*rotationX(phr) [xr yr zr]’ ;

0 0 0 1 ];

% Invert the Transformation

Tr_pc = invert_transform(Tpc_r);

% Transformation from Modelling to Range Finder Frame

Tr_m = Tr_pc*Tpc_m;

% Feature Point Initial Observation Ray Direction

ro = rotationZ(gm)*rotationY(ch)*[ 0 0 1 ]’;

% Object Feature Point in the Modelling Frame
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obj = [ p q r ]’ + 1/tau*ro;

% Separate the Measurement Prediction for Jacobian wrt Pose (w) and Feature

% Parameters (f)

gw = [ 0 0 1 0 ] * ( Tr_m*[ xo_avg yo_avg zo_avg 1 ]’ );

gf = [ 0 0 1/N 0 ] * ( Tr_m*[obj; 1] );

% Find the Partial Derivatives of the Range Measurement wrt the

% System States.

dgdX = diff( gw, X );

dgdY = diff( gw, Y );

dgdZ = diff( gw, Z );

dgda = diff( gw, a );

dgdb = diff( gw, b );

dgdc = diff( gw, c );

dgdp = diff( gf, p );

dgdq = diff( gf, q );

dgdr = diff( gf, r );

dgdgamma = diff( gf, gm );

dgdchi = diff( gf, ch );

dgdtau = diff( gf, tau );

% Now have a symbolic representation of the Measurement Jacobian rows for

% this measurement

% First part wrt pose parameters

C_w = [ dgdX dgdY dgdZ dgda dgdb dgdc zeros(1,6) ];

% Second part wrt feature parameters (for each Feature Point)

C_f = [ dgdp dgdq dgdr dgdgamma dgdchi dgdtau ];

A.8 Laser Pointer Sensor Measurement Jacobian

% Symbolic Measurement Jacobian for Laser Pointer Range Model

% - Relative Orientation in Modified Rodrigues Parameters

% - Feature Points in Inverse Depth Parameterization

% - Known Extrinsic Calibration wrt Primary Camera
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% By Michael Tribou -- August 2009

clear;

% System States as Symbols

% Relative Pose Parameters (Modelling Frame wrt Camera Frame)

syms X Y Z a b c real;

% Parameters for the jth Feature Point (in Modelling Frame)

syms p q r gm ch tau real;

% Laser Pointer Model Parameters

% Number and Average of Feature Points Locations (in Modelling Frame)

syms N xo_avg yo_avg zo_avg real;

% Relative Location wrt Primary Camera

syms xl yl zl phl thl psl real;

% Monocular Camera Model Parameters

% Focal Length in X^I and Y^I Directions

syms Fx Fy real;

% Transformation from Modelling to Primary Camera Frame

Tpc_m = [ ...

mrp2R(a,b,c) [X Y Z]’ ;

0 0 0 1 ];

% Transformation from Laser (l) to Primary Camera (pc)

Tpc_l = [ ...

rotationZ(psl)*rotationY(thl)*rotationX(phl) [xl yl zl]’ ;

0 0 0 1 ];

% Invert the Transformation

Tl_pc = invert_transform(Tpc_l);

% Transformation from Modelling to Range Finder Frame

Tl_m = Tl_pc*Tpc_m;
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% Feature Point Initial Observation Ray Direction

ro = rotationZ(gm)*rotationY(ch)*[ 0 0 1 ]’;

% Object Feature Point in the Modelling Frame

obj = [ p q r ]’ + 1/tau*ro;

% Separate the Measurement Prediction for Jacobian wrt Pose (w) and Feature

% Parameters (f)

gw = Tpc_l*[ ...

0 ;

0 ;

[ 0 0 1 0 ] * ( Tl_m*[ xo_avg yo_avg zo_avg 1 ]’ ) ;

1 ];

gf = Tpc_l*[ ...

0 ;

0 ;

[ 0 0 1/N 0 ] * ( Tl_m*[obj; 1] ) ;

1 ];

% Project the new point into the image plane of the Primary Camera

xi_w = -Fx * gw(1)/gw(3);

yi_w = -Fy * gw(2)/gw(3);

xi_f = -Fx * gf(1)/gf(3);

yi_f = -Fy * gf(2)/gf(3);

% Find the Partial Derivatives of the Image Measurements wrt the

% System States.

dxidX = diff( xi_w, X );

dxidY = diff( xi_w, Y );

dxidZ = diff( xi_w, Z );

dxida = diff( xi_w, a );

dxidb = diff( xi_w, b );

dxidc = diff( xi_w, c );

dxidp = diff( xi_f, p );
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dxidq = diff( xi_f, q );

dxidr = diff( xi_f, r );

dxidgamma = diff( xi_f, gm );

dxidchi = diff( xi_f, ch );

dxidtau = diff( xi_f, tau );

dyidX = diff( yi_w, X );

dyidY = diff( yi_w, Y );

dyidZ = diff( yi_w, Z );

dyida = diff( yi_w, a );

dyidb = diff( yi_w, b );

dyidc = diff( yi_w, c );

dyidp = diff( yi_f, p );

dyidq = diff( yi_f, q );

dyidr = diff( yi_f, r );

dyidgamma = diff( yi_f, gm );

dyidchi = diff( yi_f, ch );

dyidtau = diff( yi_f, tau );

% Now have a symbolic representation of the Measurement Jacobian rows for

% this measurement

% First part wrt pose parameters

C_w = [ dxidX dxidY dxidZ dxida dxidb dxidc zeros(1,6) ;

dyidX dyidY dyidZ dyida dyidb dyidc zeros(1,6) ];

% Second part wrt feature parameters (for each Feature Point)

C_f = [ dxidp dxidq dxidr dxidgamma dxidchi dxidtau ;

dyidp dyidq dyidr dyidgamma dyidchi dyidtau ];
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