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Abstract

This thesis describes a linear-optical device for performing generalized quantum mea-

surements on quantum bits (qubits) encoded in photon polarization, the implementation

of said device, and its use in two different but related experiments. The device works by

coupling the polarization degree of freedom of a single photon to a ‘mode’ or ‘path’ degree

of freedom, and performing a projective measurement in this enlarged state space in order

to implement a tunable four-outcome positive operator-valued measure (POVM) on the

initial quantum bit. In both experiments, this POVM is performed on one photon from a

two-photon entangled state created through spontaneous parametric down-conversion.

In the first experiment, this entangled state is viewed as a two-qubit photonic cluster

state, and the POVM as a means of increasing the computational power of a given re-

source state in the cluster-state model of quantum computing. This model traditionally

achieves deterministic outputs to quantum computations via successive projective measure-

ments, along with classical feedforward to choose measurement bases, on qubits in a highly-

entangled resource called a cluster state; we show that ‘virtual qubits’ can be appended to a

given cluster by replacing some projective measurements with POVMs. Our experimental

demonstration fully realizes an arbitrary three-qubit cluster computation by implementing

the POVM, as well as fast active feed-forward, on our two-qubit photonic cluster state.

Over 206 different computations, the average output fidelity is 0.9832±0.0002; furthermore

the error contribution from our POVM device and feedforward is only of order 10−3, less

than some recent thresholds for fault-tolerant cluster computing.

In the second experiment, the POVM device is used to implement a deterministic

protocol for remote state preparation (RSP) of arbitrary photon polarization qubits. RSP

is the act of preparing a quantum state at a remote location without actually transmitting

the state itself. We are able to remotely prepare 178 different pure and mixed qubit

states with an average fidelity of 0.995. Furthermore, we study the the fidelity achievable

by RSP protocols permitting only classical communication, without shared entanglement,

and compare the resulting benchmarks for average fidelity against our experimental results.

Our experimentally-achieved average fidelities surpass the classical thresholds whenever

classical communication alone does not trivially allow for perfect RSP.
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Chapter 1

Introduction

“What happens when we perform this kind of measurement on that entangled system?”

Since first posed by Erwin Schrödinger in 1935 [1], this seemingly simple question has

inspired much progress in understanding quantum theory, and many of the most use-

ful protocols in quantum information, quantum communication, quantum metrology, and

quantum computing.

That same year, Einstein, Podolsky and Rosen famously elucidated the way in which

perfect correlations would be obtained when performing the same measurement on the

subsystems of a bipartite entangled system, even for measurements of non-commuting

observables [2]. Almost 30 years later, John S. Bell achieved a crucial insight by considering

the correlations between the outcomes of measurements on the two subsystems which were

neither the same nor canonically conjugate, and famously showed that these correlations

were sufficiently strong that one cannot consider each measurement to have been simply

revealing pre-existing properties of the subsystems, at least not if one accepts the seemingly

common-sense notion that neither the choice of measurement on a system nor its outcome

can affect the outcome of a simultaneous measurement on a distant system [3].

Among the most famous protocols in quantum information, quantum dense coding

enables the transmission of two classical bits of information in a single quantum bit[4],

and quantum teleportation enables an unknown quantum state held at one location to

be prepared at a distant location via the transmission of only two classical bits [5]. Both

protocols work based on properly performing measurements on subsystems of an entangled

system. Quantum cryptography, the most well-known result from the study of quantum

communication and perhaps the first to have real-world applications, allows the uncondi-
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Ch. 1. Introduction

tionally secure distribution of a cryptographic key through the use of measurements on

distributed entangled systems [6]. In quantum metrology, entanglement is employed to

allow increased precision in some measurements. For instance, measurements of optical

phase using four-photon entangled states can achieve better precision than the standard

quantum limit [7]. In quantum computing, the “one-way” or cluster-state model allows

universal quantum computation using only measurements and classical feedforward on a

large, ordered, multi-partite entangled resource called a cluster-state [8, 9, 10].

Most of these protocols involve performing projective measurements, the standard de-

termination of the value of an observable that most physicists probably have in mind

when they think of quantum measurement. However, the theory of generalized quantum

measurements allows significantly more freedom in the choice of a set of measurement op-

erators, and such measurements, sometimes called Positive Operator-Valued Measures or

POVMs, have been shown to be optimal for some quantum information tasks, in particular

discrimination between non-orthogonal states [11]. Also, beginning with the tests of Bell’s

theorem [12, 13, 14], entangled photons have been among the earliest systems used to test

many of these protocols (see e.g. [15, 16, 17, 18]). This is due to the relative ease of

preparing, distributing and measuring entangled photons.

In this thesis I present results derived from inquiring once again as to the utility of

measurements on entangled systems, but this time considering generalized measurements.

I present and explain a tunable linear-optical apparatus for performing a range of four-

outcome POVMs on the polarization degree-of-freedom of a single photon. I then detail two

experiments enabled by this measurement apparatus, both performed using polarization-

entangled photon pairs. The first experiment concerns cluster-state quantum computing.

After explaining how POVMs can be used to extend the computational power of a given

cluster resource, I present the results of an experiment showing that by performing a POVM

one subsystem from a system of two entangled binary quantum systems, or qubits, and

employing classical feedforward of the measurement result, one can implement a cluster

computation which would normally require three qubits.

The second experiment concerns remote state preparation, a protocol related to quan-

tum teleportation but where the state to be remotely prepared is known to the transmitting

party. By implementing a tunable POVM on one photon from an entangled pair and trans-

mitting the result as a two-bit classical string, the other photon can be deterministically

prepared in an arbitrary pure or mixed polarization state. Furthermore bounds are derived

on remote state preparation without entanglement, i.e. limited to only classical commu-

2



Ch. 1. Introduction

nication, and our experimental protocol clearly surpasses these bounds in every instance

where classical communication is not sufficient for perfect remote state preparation.

1.1 Overview of the Thesis

The results concerning cluster-state quantum computation and remote state preparation

were first prepared, along with my experimental and theoretical collaborators, as papers

to be submitted for publication. These papers, with the addition of notes concerning

the contributions of the several co-authors, constitute Chapters 4 and 5. In Chapter

2, I present a review of concepts from the theory of quantum information and quantum

computing which will be relevant to the experiments, including quantum states and qubits,

quantum measurement theory, quantum state tomography, teleportation, and cluster-state

quantum computation. Chapter 3 provides an overview of using polarization-entangled

photonic qubits for quantum information tasks, including their production, manipulation,

and measurement, and specifically addresses the realization of the apparatuses used in the

cluster-state and remote state preparation experiments, including the source of entangled

photon pairs, the apparatus for performing the POVM, and the use of feedforward to

implement correction operations on the other photon.

I have endeavored to present sufficient background information in the earlier chapters

such that any physicist could have a complete understanding of Chapters 4 and 5, and also

to include most everything that could be useful as a reference for someone using signifi-

cant portions of my experimental apparatus in the future. Because of this, to physicists

knowledgeable in quantum information, much of the material in Ch. 2 may already be

familiar. Such a reader might wish to skip this chapter, with the possible exceptions of

sections 2.1.3.3, 2.1.5, 2.2.2, and 2.2.3 (especially 2.2.3.2). Furthermore, there is some

unavoidable repetition between Chapters 2 and 3, where many concepts and experimental

apparatuses and procedures are explained in detail, and Chapters 4 and 5 which concern

the experiments and results. Most of Ch. 3 could therefore also be skipped by a reader

who is somewhat familiar with single-photon experiments and is uninterested in the details

of the experimental implementation.

In Chapter 6 I review the main results of the thesis and suggest some future directions

for related investigations.

3



Chapter 2

Background: Quantum Information

and Computation

2.1 Quantum Information

2.1.1 Quantum States

In quantum theory the state of an isolated physical system can be represented as a unit

vector ∣ ⟩ in an abstract Hilbert space ℋ, where the inner product ⟨ ∣ ⟩ = 1 (the nor-

malization condition). If {∣ i⟩} are all physically valid states then any superposition

∣�⟩ =
∑

i ci ∣ i⟩, ci ∈ ℂ will also be a physically valid state, as long as ⟨�∣�⟩ is still

equal to unity, or equivalently
∑

i ∣ci∣2 = 1. This is known as the superposition principle.

If ℋ is of finite dimension d1, then ∣ ⟩ can be represented as a d-vector in a particular

orthonormal basis {∣�j⟩} with j = {1, . . . , d} and ⟨�i∣�k⟩ = �ik. The normalization con-

dition implies the following restriction on the d elements of the vector ci:
∑

i ∣ci∣2 = 1. A

d-dimensional system is sometimes called a qudit.

However it may be that the physical system in question is not isolated, meaning that

through previous interactions it has become somehow correlated with the environment. In

fact in experiment this is nearly always unavoidable2. In this case we must resort to the

1For the remainder of this thesis we are concerned only with finite-dimensional Hilbert spaces.
2Of course, we could just expand the definition of “system” at the expense of “environment” in order to

include those (previously external) physical systems with which our original system has become correlated.

This is often cumbersome in theory, impossible in experimental practice, and undesirable in both.
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Ch. 2. Background: Quantum Information and Computation

density operator formalism: a state is represented by an d×d nonnegative operator � acting

on ℋd which is Hermitian (self-adjoint; �† = �) and has trace one (Tr� ≡
∑d

i=1 ∣�ii∣2 = 1).

Any density matrix can be written as � =
∑

i pi ∣ i⟩⟨ i∣ for at least one choice of {∣ i⟩},
and if the set {∣ i⟩} are orthonormal then the pi will be nonnegative probabilities that

sum to unity. If the system could be considered isolated then all pi but one (say, i = �)

will be zero, Tr�2 will equal one, and we say the system is in a pure state � = ∣ �⟩⟨ �∣.
Otherwise if more than one pi > 0 we say the state is mixed, and P = Tr�2 is a measure of

the degree of mixedness called the purity. For a qudit 1
d
≤ P ≤ 13.

Although d linearly independent vectors suffice to span the space of pure states in

ℋd, due to the greater complexity allowed by mixed states d2 matrices are required to

span the space of possible density operators. Note that these basis matrices need not

necessarily be density operators themselves; for instance the basis ejk = ∣j⟩⟨k∣ may suffice

but for j ∕= k do not represent physical states. An orthonormal operator basis can be

defined under the Hilbert-Schmidt inner product ([19],p.76), defined for matrices A and B

as (A,B) = Tr(A†B).

The state space of a composite system consisting of subsystems {ℋj}, j = {0, 1, . . .},
each with respective dimension dj, is given by the tensor product

⊗
jℋj = ℋ0 ⊗ ℋ1 ⊗

ℋ2 ⊗ . . ., and will have dimension
∏

j dj.

2.1.1.1 Qubits

The simplest type of quantum system, and the one with which we will be mostly concerned

in this thesis, is two-dimensional i.e. has state space ℋ2. This is often called a two-level

system or a quantum bit or qubit. This is a direct quantum analogue of the (classical) bit

(or cbit), the simplest unit of classical information, which is a binary system with states 0

and 1. A qubit has two logical basis states,

∣0⟩ =

[
1

0

]
and ∣1⟩ =

[
0

1

]
. (2.1)

However, unlike the cbit, a qubit can also occupy any superposition ∣ ⟩ = c0 ∣0⟩ + c1 ∣1⟩
with ∣c0∣2 + ∣c1∣2 = 1. The set {∣0⟩ , ∣1⟩} is called the logical or computational basis for ℋ2.

3 Alternately the purity is sometimes defined as P = d+1
d

[
Tr(�2)− 1

d

]
so that 0 ≤ P ≤ 1.
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Ch. 2. Background: Quantum Information and Computation

Figure 2.1: The Bloch sphere. a) shows a qubit state represented as a Bloch vector with

Cartesian coordinates (rx, ry, rz). b) shows the same qubit state represented as a Bloch

vector with spherical polar coordinates � and �. In both cases r =
√∑

i r
2
i = 1, so the

state shown is pure, but Bloch vectors with length r < 1 are also possible and represent

mixed states.

A particularly useful operator basis for representing the state of a qubit in density

matrix form consists of the three 2× 2 Pauli matrices and the identity matrix:

�1 = X =

[
0 1

1 0

]
�2 = Y =

[
0 −i
i 0

]

�3 = Z =

[
1 0

0 −1

]
�0 = 1 =

[
1 0

0 1

]
(2.2)

In this basis any arbitrary qubit state � can be written as4

� =
1 + r⃗⋅ �⃗

2
, (2.3)

where �⃗ = (X, Y, Z), ∣r⃗∣ ≤ 1, and r⃗ is a vector whose components (rx, ry, rz) are respectively

given by the Hilbert-Schmidt inner product of the state with the respective Pauli operator,

4 This equation can be simplified to � = 1
2 r⃗
′⋅ �⃗′ where �⃗′ is the ordered set including �0. However

Tr(�0�) = 1
2 for any valid quantum state and thus the ‘r′0-component’ of a state is neither useful nor

necessary for orienting the state e.g. in the Bloch sphere representation.
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i.e. ri = Tr(�i�). The x−, y−, and z−axes are often called the Bloch axes as they serve

to orient the Bloch sphere, a useful representation of the state space of a qubit as a three-

dimensional unit sphere, shown in Fig. 2.1. Points on the surface of the Bloch sphere

represent possible pure qubit states, and points inside the sphere represent mixed states.

The points at ±1 on the three orthogonal axes of the Bloch sphere represent eigenstates

of the respective Pauli operators:

The eigenstates of X : ∣±⟩ ≡ 1√
2

(∣0⟩ ± ∣1⟩) 7→ 1

2
(�0 ± �1)

The eigenstates of Y : ∣±i⟩ ≡ 1√
2

(∣0⟩ ± i ∣1⟩) 7→ 1

2
(�0 ± �2)

The eigenstates of Z : ∣0, 1⟩ 7→ 1

2
(�0 ± �3) (2.4)

Note that the last column represents the states in density operator form whereas the others

are in state vector form. These three eigenbases of the Pauli operators are sometimes called

the standard bases, and the six states themselves the standard states.

Alternately, an arbitrary qubit state can be written as

�(�, �, r) = r ∣ (�, �)⟩⟨ (�, �)∣+ (1− r)(1/2), (2.5)

where

∣ (�, �)⟩ = cos(�/2) ∣0⟩+ ei� sin(�/2) ∣1⟩ . (2.6)

Here � ∈ [0, �) and � ∈ [0, 2�) are the polar and azimuthal angles of � in the Bloch sphere

representation, respectively, and r = ∣r⃗∣ =
√

2
(
Tr�2 − 1

2

)
∈ [0, 1] is the radius of the

state’s Bloch vector. Note the straightforward relation between the Bloch radius and the

purity P = Tr�2. In the remainder of this thesis I may sometimes refer to a qubit’s state

vector, density operator, or Bloch vector as the state of the qubit; my meaning should be

clear from the context.

Note finally that a qubit, like a (c)bit, is a unit of information, not a physical system,

but in any experimental application must be represented by the state of a physical system,

or (more likely) by a particular, defined subspace of states of a physical system. For

instance, cbits are often represented in solid-state computer memory by a charge across

a tiny capacitor, with some threshold separating the high-charge state 1 from the low -

charge state 0. Similarly, qubits can be represented by the charge (or flux or phase) in

a superconducting Josephson junction circuit, the spins of electrons or nuclei, the ground

and first excited energy levels of quantum dot, or the polarization of a single photon.

7
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2.1.2 State Evolution

In quantum theory the evolution of any closed system must be described by a unitary

transformation, represented by the action of a unitary operator. If the system is a qudit

this operator can be represented by a d × d unitary matrix U ; U is unitary if and only

if U †U = 1. In quantum theory, an operator Ô acts on a state vector ∣ ⟩ as Ô ∣ ⟩,
and on other operators, including a density operator �, as Ô�Ô†. Unitary operators are

trace-preserving and therefore purity-preserving, and also preserve inner products [19].

Some important unitary operators on qubits have already been encountered: the Pauli

operators in Eq. 2.2, which each act on a qubit state by rotating it by � about the respective

Bloch axis. In fact, all unitary transformations on a qubit correspond to geometric rotations

of the state in the qubit sphere. Other important examples include rotations about the

three Bloch axes by an arbitrary angle �:

X(�) ≡ e−i�X/2, Y(�) ≡ e−i�Y/2, Z(�) ≡ e−i�Z/2. (2.7)

Any rotation in 3-space can be written in the Euler representation as a product of three

rotations by arbitrary angles around two non-parallel axes, e.g. Urot = n̂(�)m̂(�)n̂(). Thus,

any unitary on a qubit can, for instance, be decomposed into three successive rotations

about two different Bloch axes (see [19], pp.175-6.)

Another important unitary operation on qubits is the Hadamard operation H, which

maps Z to X and vice-versa:

H =
1√
2

(Z +X) =
1√
2

[
1 1

1 −1

]
HZH = X, HXH = Z,

H ∣0, 1⟩ = ∣±⟩ , H ∣±⟩ = ∣0, 1⟩ . (2.8)

The most general evolution of a quantum system is not necessarily unitary, because

the system may not be closed—it may interact with the environment. Analogously to the

way density operators are needed to represent mixed states of non-isolated systems, more

general quantum operations ℰ are needed to describe the evolution of non-closed systems.

There are several ways of representing general quantum operations, but all have roughly the

same physical interpretation: A system S, which includes as subsystems both the system

in question � and the (relevant part of) the environment, undergoes some combination of

8



Ch. 2. Background: Quantum Information and Computation

unitary evolution and quantum measurement (discussed in sec. 2.1.3). This process can

be represented by the action of some combination of unitary operators and measurement

operators on S; when one neglects the environment and considers only �, the output will

appear to be the result of a general quantum operation.

In this thesis there will be little need to resort to the formalism of general quantum

operations, but they would be necessary, for instance, to fully describe the action of our

optical POVM apparatus or our unitary correction apparatus on a single photon (see Chs.

3, 4, 5.)

2.1.3 Quantum Measurement

2.1.3.1 Projective Measurements

In addition to density operators and unitary operators, another important type of operator

in quantum theory is the projection operator, or projector. A projector P acting on a qudit

in ℋd is used to find the projection of the qudit into an n-dimensional subspace W n (where

n < d.) In fact if n = 1 then P looks just like a pure state density operator ∣�⟩⟨�∣, where

∣�⟩ is the state onto which one is projecting; if 1 < n ≤ d then the projector is given by

P ≡
∑
j∈Wn

∣�j⟩⟨�j∣ , (2.9)

where the entire set {∣�j⟩} forms a basis for ℋd. n is called the rank of the projector. The

action of a projector P on a state � is to ‘filter out’ only that part of � which lives in W n

(i.e. those components of � parallel to some ∣�⟩ ∈ W n). Projectors are hermitian, meaning

P † = P , and also satisfy P 2 = P .

A projective measurement on a qudit is defined by an observable O, a hermitian operator

acting on ℋd which can be written as5:

O =
∑
m

�mPm, (2.10)

where {Pm} are orthogonal projectors (Pm′Pm = �m,m′Pm) that sum to unity (
∑

m Pm = 1),

and Pm projects onto the eigenspace of O with eigenvalue �m ([19], pp. 70 and 87-88).

5This is called a spectral decomposition.
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When one performs a projective measurement on a system �, outcome m is obtained with

probability p(m) = Tr(Pm�), and the state �′ of the system after measurement is

�′ =
Pm�Pm
p(m)

. (2.11)

Clearly the number n of possible outcomes of a projective measurement on a qudit

must be at most as large as the dimension d of the system being measured, or else the

corresponding projectors could not all be orthogonal. The special case where n = d, or

equivalently each Pm is a rank-one projector Pm = ∣�m⟩⟨�m∣ for some orthonormal basis

{∣�m⟩}, is often called a Von Neumann measurement, a complete projective measurement,

or to be specific a ‘measurement in the basis {∣�m⟩}’. The simplest example is a mea-

surement in the computational basis {∣k⟩}, k = {0, 1, . . . , d − 1}. Note finally that any

complete projective measurement on a qudit specified by observable Ω =
∑

j �j ∣�j⟩⟨�j∣ can

be implemented as a unitary U on the system, followed by a projective measurement in the

computational basis, where Ujk = ⟨�j∣ k⟩6. For instance a measurement of X on a qubit

can be accomplished by a Hadamard operation before a computational-basis measurement

(see (2.8).)

Projective measurements have the nice property that it is straightforward to calculate

their average value, also called expectation value, which is the expected average of the out-

come over many measurements on the same state. The average value ⟨O⟩ of an observable

O for a state �, given by
∑

m �mp(m), simplifies to Tr(O�).

To measure an average value ⟨O⟩ in the lab, it is sufficient to repeat the projective

measurement on a large number n of identically prepared systems, recording the outcome

mi, i ∈ {1, . . . , n}, and then take the mean (
∑

i �mi
)/n. However it is often the case

(in particular when working with photons) that a measurement apparatus only records a

single outcome, while the others are discarded. In this case, it is often more convenient

to calculate the average value of the observable from the average values of the projectors.

The average value of a projector Pm for a state � is just the probability p(m) that � is

found in the subspace Wm associated with Pm. Each p(m) = Tr(Pm�) can usually be

calculated from easily-measurable quantities such as a count rate, given by the number �

of identically-prepared systems in state � that are projected into Wm in some time interval,

divided by the interval, and a normalization rate, given by the total rate at which systems

6Alternately, the columns of U† are the eigenvectors of Ω. All of this is a consequence of the spectral

theorem.
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are generated. The average value of the observable is then given by the weighted average of

the average values of the projectors: ⟨O⟩ =
∑

m �m⟨Pm⟩ =
∑

m �mp(m). Because � is finite

and due to the Poissonian distribution of counting statistics, which is well-approximated

as Gaussian for large numbers, � will have an error of approximately
√
�. The counts used

to determine the normalization rate will likely also have approximately square-root errors,

and the total error in the average values of projectors or observables can then be obtained

via standard error propagation techniques.

In addition to being unitary operators and forming a Hilbert-Schmidt-orthogonal op-

erator basis for qubits, the Pauli matrices {�j} are all also important qubit observables,

especially in the context of quantum state tomography (section 2.1.5). A measurement of

Z is a measurement in the computational basis of a qubit.

2.1.3.2 Fidelity of states

In quantum information it is often desirable to quantify the ‘closeness’ of two quantum

states �1 and �2. One oft-used measure is the fidelity, which, if at least one of the two

states is pure e.g. �1 = ∣�⟩⟨�∣, is given by

F (∣�⟩⟨�∣ , �2) = ⟨�∣ � ∣�⟩ . (2.12)

This has a nice interpretation: it is equivalent to F (P, �2) = Tr(P�2) where P is the

projector ∣�⟩⟨�∣, and this is just the probability that �2 will be projected onto ∣�⟩. Like any

probability, F varies between 0, meaning �2 is orthogonal to �1, and 1 meaning �2 = P = �1.

For two pure qubit states in the Bloch sphere representation, the fidelity can be calculated

via a convenient geometrical relation: if the states are separated by a central angle �, then

F = cos2

(
�

2

)
. (2.13)

A generalization of the fidelity to mixed states should:

∙ reduce to Eq: 2.12 if one of the states is pure,

∙ yield F = 1 if �1 = �2, and

∙ yield F = 0 if �1 is orthogonal to �2.

11



Ch. 2. Background: Quantum Information and Computation

The function which accomplishes this is given by [20]:

F (�, �) =

[
Tr

(√√
� �
√
�

)]2

. (2.14)

Unfortunately, this definition of the fidelity does not have a physical interpretation which

this author finds to be as intuitive or enlightening when both states are mixed as when at

least one is pure.

2.1.3.3 Generalized Measurements and POVMs

Many physicists may only be familiar with pure states, unitary evolution processes, and

projective measurements. Indeed, if one includes a sufficient part of the ‘environment’ in

one’s definition of the ‘system’, then all of quantum theory can in principle be reduced

to pure states, unitary evolution, and projective measurements. However the formalisms

of mixed states and general quantum processes serve both to greatly simplify some calcu-

lations and to provide a mathematical representation which may bring different physical

features to light, in some cases enabling different insights. The formalism of generalized

measurements or POVMs can serve the same purposes with respect to quantum measure-

ment theory.

A general quantum measurement on a qudit can be represented by any set of operators

{Mm} acting on ℋd such that
∑

mM
†
mMm = 1. In particular, {Mm} need not be projec-

tors, nor need they be orthogonal, and the number n of possible measurement outcomes

may be greater than d. After a measurement {Mm} is performed on a system in state �

yielding outcome m, the resulting state will be

�′ =
Mm�Mm′

p(m)
, (2.15)

where p(m) = Tr(M †
mMm�) is the probability that outcome m is obtained. We can define

M †
mMm = Em, and {Em} will then be a set of positive operators such that

∑
mEm = 1

and p(m) = Tr(Em�). {Em} is sometimes called a POVM for Positive Operator-Valued

Measure, and in fact, though it properly applies only to {Em} according to Ref. [19], p.90,

the term POVM is sometimes also used to refer to the generalized measurement {Mm} as

well. The operators Em are called the elements of the POVM.

Unlike projective measurements, where the number of possible outcomes is upper-

bounded by the dimension d of the Hilbert space ℋd of the measured system, the number

12



Ch. 2. Background: Quantum Information and Computation

n of operators in a POVM {Em} may be greater than d. However, any n-outcome POVM

can be implemented by performing a projective measurement on some ℋn, of which ℋd

is a subspace. This is sometimes called Neumark’s or Naimark’s theorem, and in practice

it means that any POVM on a physical system S with associated Hilbert space ℋS
d can

be implemented by coupling the system to some ancillary system A (which may itself be

a composite system), and performing a projective measurement in the combined Hilbert

space ℋS
d ⊗ℋA (see [21], pp. 283-289).

2.1.4 Quantum Correlations and Entanglement

Valid quantum states in a composite Hilbert space
⊗

iℋi can be simple tensor products of

states in the subsystems
⊗

i ∣ ⟩i, where ∣ ⟩i ∈ ℋi. For instance, for a composite system of

two qubits ℋ = ℋA⊗ℋB, such product states include ∣0⟩A⊗∣0⟩B, ∣0⟩A⊗∣1⟩B, ∣1⟩A⊗∣0⟩B,

∣1⟩A ⊗ ∣1⟩B, or any ∣�⟩A ⊗ ∣�⟩B. We often omit the tensor product, the labels, and even

the separate kets, writing e.g. ∣00⟩, understood to mean ∣0⟩A⊗ ∣0⟩B. Such a state is called

separable, and a mixed state is said to be separable if it can be written as a convex sum

of separable states: � =
∑

i pi�
A
i ⊗ �Bi where {pi} are nonnegative and sum to one.

However, due to the superposition principle (p. 4) any normalized sum of valid states

is also a valid state, including those that cannot be written as a product state. Important

examples include the Bell states, named after J.S. Bell’s seminal work on entanglement

and its consequences [3]:∣∣Φ±〉 =
1

2
(∣00⟩ ± ∣11⟩)

∣∣Ψ±〉 =
1

2
(∣01⟩ ± ∣10⟩). (2.16)

The Bell states form an often-convenient orthonormal basis for ℋ2 ⊗ℋ2, hereafter called

the Bell basis. Another example of an entangled state is the so-called n-GZH states [22],

∣GHZ⟩n = 1√
2
(∣0⟩⊗n + ∣1⟩⊗n).

These states have several interesting and (some might say) counter-intuitive properties

which have incited much research and debate in the history of quantum theory, its inter-

pretation or foundations, and quantum information. Consider performing a measurement

in the computational basis (a measurement of Z) on one qubit (say A) from a Bell state,

without measuring qubit B: both outcomes are equally probable. In fact, if particle B is

discarded or ignored, the outcomes will be equiprobable for any binary observable on A: in

other words, qubit A appears to be maximally-mixed. However, consider measuring both

qubits in the computational basis: although the specific outcome of the measurement on
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the first qubit is completely random, it completely determines the outcome of the measure-

ment on the second qubit. For the ∣Φ⟩ states the outcomes will be perfectly correlated; for

the ∣Ψ⟩ states they will be anticorrelated. Einstein, Podolsky, and Rosen famously noted

these correlations in 1935 and used them to argue against the completeness of quantum

theory [2].

Remarkably, these correlations persist regardless of the measurement basis. For instance

the ‘singlet’ state ∣Ψ−⟩ can be written as 1√
2
(∣ ⟩ ∣ ⊥⟩−∣ ⊥⟩ ∣ ⟩) for any orthonormal basis

{∣ ⟩ , ∣ ⊥⟩}. Thus the measurement outcomes in such a basis will always be perfectly

anticorrelated, and the outcomes of measuring A and B respectively in two different bases

will be imperfectly correlated in a straightforward way7. Furthermore, the correlations

persist even if qubits A and B are spacelike-separated at the time of measurement so that

neither measurement can properly be said to have occurred ‘first.’ Bell’s famous theorem

shows that these correlations are stronger than would be possible for classical systems,

which always inhabit defined states rather than superpositions [3], and experimental tests

confirm that the correlations observed for some systems in nature obey the predictions of

quantum theory, rather than conforming to classically intuitive notions [23, 24, 25, 26].

Viewed as a resource, entanglement enables many of the most famous and useful exper-

iments and applications in quantum information and quantum computing, including Bell

inequality violations, quantum teleportation (see Sec. 2.1.6,) quantum key distribution

[27, 6, 28, 29, 30, 31, 32, 33], and the experiments in this thesis concerning cluster-state

quantum computation and remote quantum state preparation.

2.1.4.1 Quantifying Entanglement

The Bell and GHZ states are said to be maximally-entangled because, when measured

in the same bases, the subsystems exhibit perfect correlations. Equivalently, if the other

subsystems are ignored or discarded, any one subsystem appears maximally-mixed. Various

measures have been developed to quantify the amount of entanglement present in a state

of a composite system (see [34] for a detailed review).

The amount of entanglement in one maximally-entangled qubit pair (e.g. a Bell state) is

commonly called an ebit. One way to quantify the entanglement in a system is through its

7In particular if observable r⃗A⋅ �⃗ is measured on qubit A and r⃗B ⋅ �⃗ is measured on qubit B, where ⃗rA(B)

are two different pure-state Bloch vectors, then the expectation value of the product of the two observables

⟨r⃗A⋅ �⃗ ⊗ r⃗B ⋅ �⃗⟩ is given by −r⃗A⋅ r⃗B [3].
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fidelity with some target state, e.g. for a two-qubit system with one of the Bell states. Other

more general measures of the entanglement in a two-qubit system are the concurrence and

tangle, both of which are related to the entanglement of formation EF (�), which is perhaps

the canonical measure of pure state entanglement and represents the minimum number of

ebits required to construct � through local operations ([35], p.29). The concurrence is given

by C(�) = max{0, �1−�2−�3−�4}, where the �i are the eigenvalues, in decreasing order,

of the matrix R ≡
√√

��sf
√
�, and �sf is the ‘spin-flipped’ density operator given by

(Y ⊗Y )�∗(Y ⊗Y ). The tangle T (�) ≡ C2(�). Both measures range from 0 for unentangled

states to 1 for maximally entangled qubit pairs, and are easier to compute than other

measures such as the entanglement of formation or entropy of entanglement. The tangle

is used to quantify entanglement in this thesis.

2.1.5 Quantum State Tomography

In quantum theory no single measurement can completely determine the state � of a quan-

tum system. This is because, after an observable is measured on a system, the subsequent

state of that system will be an eigenstate of that observable, nullifying the chance to obtain

information about the original state with respect to other observables. However, it is possi-

ble to estimate � for a large number of identically- prepared systems via a finite number of

measurements of different observables. This task is called quantum state tomography and

is a valuable tool for assessing the outcomes of experiments and the success of quantum

information, computation, and communication protocols.

Recall from equation 2.3 that the state � of a single qubit can be expanded in terms

of the Pauli matrices as 1

2
+ 1

2

∑
j Tr(�j�)�j. Any set of d2 linearly independent operators

acting on ℋd is said to be tomographically complete; the Pauli matrices for a qubit have

the added benefit of being orthogonal under the Hilbert-Schmidt inner product. Recall

that Tr(�j�) is the average value of an observable, and as such can be measured in the lab

as described on p. 10. Measuring the average value of each �j amounts to determining the

three (Cartesian) coordinates of the state’s Bloch vector, which uniquely determine the

state.

One need not even measure all six projectors corresponding to the six standard states

(the eigenstates of {�j};) projections onto one eigenstate of each �j are sufficient to deter-

mine � (the 22 = 4 parameters of a qubit are constrained by normalization so that there

are really only three free parameters.) However in practice the normalization rate usually
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need also be determined, which necessitates a fourth projection; a standard tomographic

set is then to measure the average values of the projectors {∣0⟩⟨0∣ , ∣1⟩⟨1∣ , ∣+⟩⟨+∣ , ∣+i⟩⟨+i∣}.
However in practice a more accurate reconstruction can be obtained by measuring the pro-

jections onto all six standard states [35]. Such a set is an example of an overcomplete

tomographic set, so-called because they contain more than the 2d projectors required to

span the qudit Hilbert space. Overcomplete tomography using all six standard projectors

is used throughout this thesis.

The state of a composite system of n qubits can be tomographically reconstructed

using measurements of observables which are tensor products of Pauli operators, e.g.⊗n
i=1 �

i
j, j ∈ {x, y, z}. James et. al. showed that measurements of 4n projections are

sufficient [36]. However, again overcomplete tomography with 6n projections leads to

more accurate reconstructions and is used herein. Furthermore they found a solution

to the problem that, due to measurement noise (e.g., in the case of counting photons, the

aforementioned Poissonian fluctuations) sometimes the density matrix �r reconstructed

via standard techniques (linear tomography) is not physical in that it may have negative

eigenvalues. The details of their solution will not be addressed here but the basic idea

involves parameterizing the distance of �r from physically valid density matrices, and then

finding the nearest physically valid �, the one most likely to have produced the obtained

measurement results. This technique is called maximum-likelihood tomography and is used

throughout this thesis.

2.1.5.1 Error Determination and Monte Carlo Methods

Calculating the error in a tomographically-reconstructed density operator (or in quantities

one might wish to calculate from that operator i.e. fidelity, purity, and tangle) is laborious

using standard error-propagation techniques, and difficult or impossible when using non-

linear reconstruction methods such as maximum-likelihood tomography. Another method

to obtain error estimates for such quantities is via performing stochastic numerical simu-

lations of the errors. This is often called the Monte Carlo method and can be summarized

as follows:

1. From the data set N = {ni} obtained when measuring each projection used in the

tomographic reconstruction, generate a large number of random sample data sets

{N S} using appropriate estimates of the probability distribution for the data. For

instance for the aforementioned case of counting photons, the individual ni will be
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counts recorded in some time interval, and assuming that the primary source of error

is Poissonian counting fluctuations, one can generate the corresponding set of sample

counts {ns}i by selecting at random from a Poissonian distribution with standard

deviation �i =
√
ni.

2. For each sample data set N S
j perform the numerical tomography and generate a

density matrix �Sj .

3. The uncertainty in any desired quantity determined from the (original) reconstructed

density matrix �r, such as the purity or tangle or fidelity with some target state �tar,

is then given by the standard deviation of the same quantity, calculated for each

�Sj . For instance the estimate of the error in the purity of the reconstructed density

matrix, ΔP (�r), will be the standard deviation �({P (�S)}).

The utility of the Monte Carlo method requires the validity of several assumptions.

First the statistical data fluctuations must be the dominant source of error in the recon-

structed density matrix, as opposed to systematic errors. e.g. in the measurement settings,

or problems with the tomographic reconstruction process. Furthermore the number k of

sample data sets N S must be sufficient for the sample standard deviation to be a good

estimate of the population standard deviation. This in turn may require significant com-

puting power and/or time, dependent on the mathematical details of the tomographic

reconstruction method used.

While these assumptions are important and deserve careful consideration, they have

been investigated thoroughly in e.g. [35] where it has been shown that for tomography of

photonic qubits using measurement methods very similar to those employed herein, and

based on k = 200 simulations (which is the number we used to provide error estimates on

the two-photon density matrices in Figs. 4.3 and 5.5), Monte Carlo methods yield quite

good error estimates.

There are also several occasions in this thesis where I estimate the error in (single-qubit)

tomographic reconstructions of our experimental output without the aid of Monte Carlo

techniques. Particularly in Ch. 5, where I wish to estimate the error in the averege fidelity

with which we can prepare ensembles of qubit states, each specified by a set {r, �, �} of

the radius and polar and azimuthal angles of the desired output state in the Bloch sphere.

In this case I do so by taking the standard error of the mean of the fidelities for each of
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the states in the ensemble8. Ideally, this number yields a range within which the average

fidelity for the ensemble would be likely to fall if tomographic reconstructions of all the

states in the ensemble were performed again, with the experimental apparatus identically

aligned.

However, in order for this to be the case, one must assume that the fidelities are drawn

from the same distribution, regardless of the settings {r, �, �} of each particular state. This

assumption would be completely valid if and only if the error in the fidelity value for every

state was determined entirely by Poissonian counting statistics, and not by systematic

errors which could vary in their effects depending on r, � and �. This assumption is

undoubtably untrue, due both to the vagaries of the imperfect 2-photon entangled states

(see for instance Figs. 4.4 and 4.3), and due to the functioning of our apparatus for

performing POVMS, especially vis-a-vis fluctuations in the ambient laboratory temperature

(see sec. 3.5.1). However, for the source used for the experiments in Chs. 4 and 5, and

for data taken during a sufficiently short time period when the lab temperature was not

fluctuating too much, the systematic errors due to these factors should be small compared

to the error due to Poissonian counting fluctuations. In fact, Monte Carlo simulations

based on the counts for tomography of just one output qubit state, when compared with

the expected variance in output states accross the Bloch sphere due to the imperfect

tomographically-reconstructed 2-photon entangled state, suggest that error in the output

fidelity due to the former is approximately 2 or 3 times as large as the variation over the

space of all possible settings {r, �, �} expected due to the latter. In this case, the standard

error in the mean will yield a reasonable estimate of the expected variance in potential

future measurements of the average output fidelity for ensembles of states at different

locations on the Bloch sphere, if anything yielding a slight overestimate.

2.1.6 Teleportation

As an example of a useful quantum information protocol illustrating or utilizing many of

the concepts presented in previous sections, I will briefly describe the quantum teleportation

of a qubit state. This protocol will be contrasted with that for remote state preparation

in chapter 5. My treatment of teleportation largely follows Ref. [37], pp. 80-81.

Imagine two separated parties Alice and Bob share an entangled state ∣Φ+⟩, i.e. they

8The standard error of the mean of a quantity F over an ensemble s is given by the sample standard

deviation divided by the square root of sample size, or �F /
√
ns.
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each have one qubit from the state, and that Alice also has a qubit in state ∣ ⟩ which

she would like to transmit to Bob. Using only classical communication, this would nor-

mally require a double-infinity of cbits to fully specify the real numbers � and � (see Eq.

2.5); however by exploiting the shared entangled state Alice can accomplish this task by

communicating only two cbits!

The protocol can be explained as follows: the initial state of the three qubits is ∣ ⟩ ∣Φ+⟩.
However, the state of the two qubits in Alice’s possession can be rewritten in the Bell basis:

∣ ⟩
∣∣�+
〉

=
1

2

[∣∣Φ+
〉
∣ ⟩+

∣∣Ψ+
〉

(X ∣ ⟩) +
∣∣Φ−〉 (Z ∣ ⟩) +

∣∣Ψ−〉 (XZ ∣ ⟩)
]
. (2.17)

Alice measures her two qubits in the Bell basis and transmit the result to Bob, encoded in

two cbits as follows: ∣∣Φ+
〉
7→ 00

∣∣Ψ+
〉
7→ 01∣∣Φ−〉 7→ 10

∣∣Ψ−〉 7→ 11 (2.18)

(2.19)

To complete the protocol, Bob performs Z on his qubit if the first cbit of his received

message is 1 and X on his qubit if the second cbit is 1 (otherwise performing the identity

1.) Bob’s resulting output state will be ∣ ⟩.

The teleportation protocol is shown in the form of a quantum circuit diagram in Fig.

2.2. Note that Alice’s measurement of her two qubits in the Bell basis, or Bell state

measurement (BSM) is shown as a unitary—specifically a c-not operation (see section

2.2.1) and a Hadamard—followed by a measurement in the computational basis. However

this is not the only possible means of performing a BSM, and the teleportation protocol

succeeds regardless of the method used.

2.2 Quantum Computing

Quantum computers promise great speedups in solving certain classes of problems and in

simulating physical systems [19]. The most common model of quantum computation is

the quantum circuit or network model QCN , which is an analogue of the circuit model

of classical computation based on boolean operators such as not, and and nand. In

QCN , quantum bits (qubits) are prepared in some initial state, usually some fiduciary
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BSM

∣ ⟩ ∙ H NM
 ∙

∣Φ+⟩
��������

NM


X Z ∣ ⟩

_ _ _ _ _ _ _ _�
�
�
�
�

�
�
�
�
�

_ _ _ _ _ _ _ _

⎧⎨⎩
Figure 2.2: Teleportation circuit. The top two rails represent Alice’s qubits whereas the

bottom represents Bob’s. Alice possesses a qubit in the (possibly unknown) state ∣ ⟩ as

well as one qubit from a ∣Φ+⟩ Bell pair; Bob has the other. Alice measures the combined

state of her two qubits in the Bell basis (Bell State Measurement, BSM) and encodes the

measurement result in two cbits sent to Bob. The cbits control which Pauli operation(s)

Bob performs on his qubit, which will then be left in state ∣ ⟩.

state such as ∣0⟩⊗n, and then propagated through a succession of gates, which represent

unitary operators acting on one, two, or more qubits. The final state of the qubits after

these operations constitutes the output of the quantum computation.

The cluster state model of quantum computation QCC is a different model for how a

quantum computation would proceed. In QCC, a specific entangled, ordered and (usually)

large state of several qubits, called a cluster state, is first prepared, and then the processing

of the quantum information occurs via a series of successive single-qubit projective mea-

surements on the qubits in the cluster. Classical feed-forward must sometimes be used to

choose the bases for measurements, based on the outcomes of previous measurements in

the computation.

The initial cluster can be prepared via various procedures, some of which it is convenient

to describe via quantum gates, but once it has been prepared, no quantum gates are

necessary in order to enact the computation. This may prove to be a great advantage

for some potential physical implementations of quantum computing, where one- and (in

particular) two-qubit gates have proven difficult to realize. In particular, for photonic

quantum computing as considered in this thesis, two-qubit gates are quite difficult to

implement in practice, and thus cluster computation presents itself as an attractive option.

QCC can be used to fully efficiently simulate QCN : they are computationally equivalent.
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This section 2.2 is structured as follows: I first briefly review the QCN model, including

common notation, several important gates, and results concerning sufficient operations

for universal quantum computing, meaning the ability to implement arbitrary quantum

computations. I then more thoroughly introduce QCC: I define a cluster state, describe how

one might be created, and outline how a cluster state quantum computation proceeds. The

chapter ends with an outline of a proof that QCC is universal, in that cluster-state quantum

computations can efficiently simulate a universal set of gate operations from QCN .

2.2.1 Circuit Quantum Computing: A Brief Review

The diagram shown for quantum teleportation, Fig. 2.2, represents a quantum circuit,

which processes quantum information in QCN : In this diagram the horizontal lines are

called quantum wires, and each represents the progression through time of a qubit. Boxes

on quantum wires represent single-qubit gates, which act on the qubit with the unitary

operation denoted by the content of the box. Vertical lines with boxes or other markers at

the endpoints (on quantum wires) represent two-qubit gates, unitary operations involving

the qubits on those quantum wires. Meters represent measurements, usually taken to be

Von Neumann measurements in the computational basis. Double-lines represent classical

information (in this case the outcome of the computational basis measurements).

The processing of quantum information in QCN proceeds by enacting the operations

represented by the gates in the circuit diagram, in left-to-right order, on some input state of

qubits. Several operations represented by important single qubit gates have already been

encountered (see e.g. Eqs. (2.7,2.8)). The following represents an important two-qubit

gate, the controlled-Z or controlled-phase or CZ gate.

∙
≡

∙
=

Z

∙ Z ∙

≡

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

⎤⎥⎥⎥⎦ (2.20)

Here the small bullet indicates that the bulleted qubit controls the action of the connected

gate: the connected operation occurs if the control is in state ∣1⟩, but not if the control is

in state ∣0⟩. The action of the CZ gate is such that it can equivalently be described as a
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Z operation on the second qubit, controlled by the first, or as a Z on the first, controlled

by the second. Another important two-qubit gate is the controlled-X (c-not or CX).

∙
≡

∙

X ��������

≡

⎡⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎥⎥⎦ (2.21)

Either of these is said to be an entangling gate because for some input state ∣ ⟩ ∣�⟩, the

output will be maximally entangled. As an example, if the input state to the c-not is

∣+0⟩ = 1√
2
(∣00⟩+ ∣10⟩), meaning the control qubit is in ∣+⟩ and the target qubit in ∣0⟩, the

output will be 1√
2
(∣0⟩ ∣0⟩+ ∣1⟩X ∣0⟩) = 1√

2
(∣00⟩+ ∣11⟩), the ∣Φ+⟩ Bell state. Note also that,

just as the X and Z gates are related by the Hadamard operation by Eq. (2.8), the CX

and CZ gates are related by a Hadamard on the target qubit:

(1⊗H)× CX × (1⊗H) = CZ, and

(1⊗H)× CZ × (1⊗H) = CX. (2.22)

An important result which will not be proven here concerns universal gate sets : it can

be proven that from a subset of one- and two-qubit gates, all possible unitary quantum

operations on any finite number of qubits can be constructed. In other words, such a set

is universal for arbitrary quantum computations. In particular, the set of all single-qubit

unitary operations along with any one entangling two-qubit gate (such as the CZ) consti-

tutes a universal set ([37], Theorem 4.3.3, p.69). In section 2.2.2 we will outline a proof

that QCC can efficiently simulate arbitrary single-qubit unitaries as well as the CZ gate,

thus effectively showing QCC to be capable of effecting arbitrary quantum computations.

2.2.2 The Cluster-State Model of Quantum Computation

The idea of cluster state quantum computing is due to R. Raussendorf, H. J. Briegel, and

collaborators [9, 8, 10]. QCC has also been called “one-way quantum computing” because

the computation proceeds via irreversible ‘one-way’ projective measurements, in contrast

to QCN wherein all the processing of quantum information is done via unitary operations

which are necessarily reversible.
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GFED@ABC GFED@ABC GFED@ABC

GFED@ABC GFED@ABC GFED@ABC

Figure 2.3: Example cluster state. A cluster state is an entangled state defined by a graph

with qubits at the vertices and edges representing an entangling operation.

Cluster states can be defined mathematically via eigenvalue equations, and those def-

initions will be given in section 2.2.2.2. However, the author has not found such a means

of definition to be particularly enlightening. In this section we attempt to give a useful

intuition for what a cluster state is via enumerating a particularly simple procedure for

creating one.

2.2.2.1 Preparation Procedure

Fig. 2.3 represents a cluster state and will be useful for explaining many of their salient

features. Each open circle represents a qubit. Technically, these qubits can be at the

vertices of any graph9. The edges in the graph then represent entanglement of a specific

type which will be explained shortly. A ‘cluster state’ originally referred to the case where

the graph in question was a a regular two- or three-dimensional lattice, usually with a

boundary, and the term ‘graph state’ was used to refer to the case wherein the qubits are

arranged on some more general graph, but this usage has blurred over time and it is now

common to refer to all graph states as cluster states.

An n-qubit cluster state can be created via the following procedure: One begins with

a collection of n qubits, perhaps but not necessarily in some fiduciary state such as ∣0⟩⊗n,

represented pictorially (for n=6) as follows:

GFED@ABC GFED@ABC GFED@ABC

GFED@ABC GFED@ABC GFED@ABC

(2.23)

9In the usual mathematical definition of an ordered set of vertices and edges

23



Ch. 2. Background: Quantum Information and Computation

One then prepares all the qubits in the state ∣+⟩; this can be done, for instance, by applying

the Hadamard operation to all qubits in ∣0⟩⊗n. Mathematically we have:

∣+⟩C = ∣+⟩⊗n = H⊗n ∣0⟩⊗n =
⊗
a∈C

∣+⟩a , (2.24)

where n qubits constitute the cluster C. Pictorially this results in the following:

∣+⟩_^]\XYZ[ ∣+⟩_^]\XYZ[ ∣+⟩_^]\XYZ[

∣+⟩_^]\XYZ[ ∣+⟩_^]\XYZ[ ∣+⟩_^]\XYZ[

(2.25)

The final step in creating the cluster state is to perform a CZ operation between each

pair of qubits connected by an edge on the underlying graph. This is equivalent to acting

with the following operator

S(C) =
∏

b∈N(a)

Sab, (2.26)

where

Sab = ∣0⟩a ⟨0∣ ⊗ 1
b + ∣1⟩a ⟨1∣ ⊗ Zb, (2.27)

and b ∈ N(a) if and only if a, b are connected by an edge of the underlying graph defining

C. This operator defines the CZ operations; it is notable that all the individual CZ

operations between pairs of neighboring qubits commute, so these operations can be done

in any temporal order, or all at once. Then the final cluster state is:

∣ ⟩C = S(C) ∣+⟩C (2.28)

Pictorially, we represent the final cluster state as in Fig. 2.3.

2.2.2.2 Eigenvalue Equations

The preparation procedure outlined previously leads to a final state which satisfies the

eigenvalue equation:

Ka ∣ ⟩C = ± ∣ ⟩C , ∀ a ∈ C, (2.29)
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where Ka is an operator that is a product of Pauli matrices on the qubit a and its neighbors,

defined as

Ka = Xa

⊗
b∈N(a)

Zb. (2.30)

Any state satisfying this eigenvalue equation will be a cluster state useful for QCC[10].

Such a state could result from the preparation procedure defined in section 2.2.2.1, or from

other preparation procedures. The salient point is that, once created, such a cluster state

will be universal for quantum computation.

2.2.3 Computation Procedure

Once the cluster is prepared QCC proceeds by performing projective measurements on the

qubits in the cluster in appropriate bases. Classical feed-forward based on measurement

results, including classical logical processing of the outcomes, 10 may be used to choose the

bases for subsequent measurements.

Note that any cluster C can be subdivided into input qubits CI (taken to be the leftmost

qubits in a pictorial representation such as Fig. 2.3), output qubits CO (taken to be the

rightmost qubits) which, after the cluster computation is complete, will encode the output

state of the processed computational qubits, and body qubits CB, taken to be all the qubits

not in the other two sets. It is often convenient to take the input qubits to be in some

arbitrary state ∣ in⟩ (instead of
⊗
a∈CI
∣+⟩a) before the entangling operation S(C). We can

make this generalization without loss of generality, because the qubits in CI could be the

output qubits CO of a previous step in the computation, such as a preprocessing cluster

which could prepare the state ∣ in⟩ solely via measurement.

Different measurement bases serve different purposes in QCC:

∙ Measurements in the computational basis do not effect the overall computation and

can be used to remove qubits from the cluster, leaving (up to an unimportant global

phase) an identical cluster with the qubit in question removed.

∙ Measurements in ∣±⟩ are used to propagate or teleport computational qubits along

the physical qubits in the cluster.

10Obviously, any classical processing must be polynomial in required resources in order for the overall

cluster computation to be efficient.
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(a) ∣ ⟩ ∙ H NM
 m

∣+⟩ ∙ XmH ∣ ⟩

(b) ∣ ⟩ ∙ Z(�) H NM
 m

∣+⟩ ∙ XmHZ(�)∣ ⟩

Figure 2.4: One-bit teleportation. a) This circuit shows how an arbitrary input state ∣ ⟩
can be transferred between two qubits, up to known single-qubit unitaries, using a single

CZ gate and measurement. b) This extension of the previous circuit shows how some

unitaries (specifically rotations about the z-axis) can also be ‘teleported’ to the second

qubit, even if the unitary acts on the first qubit after their initial CZ interaction. This

circuit identity underlies QCC.

∙ Measurements in the following bases are used to perform rotations on computational

qubits, as will be explained in the following section:

∣�±⟩ = Z(�)H ∣0, 1⟩ =
∣0⟩ ± ei� ∣1⟩√

2
(2.31)

2.2.3.1 One-Bit Teleportation and Arbitrary Rotations

My explanation of how measurements in these bases effect their purposes, and our subse-

quent demonstration of the universality of QCC, owes much to the exposition of Michael

Nielsen [38], although I have added some details and simplified in some instances. First,

note the straightforward identity from the circuit model shown in Fig. 2.4a), sometimes

called one-bit teleportation. In this circuit m is the outcome (0 or 1) of the measurement

on the first qubit. This identity can be proven as follows: without loss of generality, let

∣ ⟩ = � ∣0⟩ + � ∣1⟩. The state after the CZ gate is then � ∣0⟩ ∣+⟩ + � ∣1⟩ ∣−⟩, which be-

comes � ∣+⟩ ∣+⟩+� ∣−⟩ ∣−⟩ after the Hadamard operation. This state can be re-written as

(∣0⟩ ⊗H ∣ ⟩+ ∣1⟩ ⊗XH ∣ ⟩)/
√

2, which completes the demonstration of the identity.

The identity can be further generalized as shown in Fig. 2.4b). The proof follows

simply from noting that all rotations of the form Z(�) commute with the CZ gate, and

thus this circuit is equivalent to a), but with the state Z(�) ∣ ⟩ input for the first qubit.

This simple identity can be used to demonstrate several example circuits in QCC, and

in fact to suggest a proof of the universality of QCC.
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(a) ∣�±⟩_^]\XYZ[ ∣�±⟩_^]\XYZ[ _^]\XYZ[ 7→ ∣+⟩ Z(�) H Z(�) H X(�)Z(�) ∣+⟩

(b) ∣+⟩ ∙ Z(�) H NM
 m1

∣+⟩ ∙ ∙ Z(±�) H NM
 m2

∣+⟩ ∙ Xm2Zm1X(�)Z(�) ∣+⟩

(c) ∣+⟩ ∙ HZ(�) NM
 ∙

∣+⟩ ∙ ∙ HZ(±�) NM


∣+⟩ ∙

_ _ _ _ _ _ _ _�
�
�
�

�
�
�
�_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _ _ _ _

Figure 2.5: State preparation in the cluster model. a) The simple linear three-qubit cluster

on the left simulates the circuit on the right and can thereby effect the preparation of an

arbitrary pure qubit state via successive rotations of ∣+⟩ around the z and x axes. The

cluster computation in a) is by definition equivalent to the circuit computation in b), which

if temporally re-ordered as in c) can be seen as two chained instances of the generalized

one-bit teleportation protocol from Fig. 2.4b).

2.2.3.2 Single-Qubit Unitaries in the Cluster Model

The circuit in Fig. 2.4b) is effected by the following cluster computation:

∣ ⟩ ⇒ ∣�±⟩_^]\XYZ[ _^]\XYZ[ (2.32)

Here the label in the first qubit refers to the basis in which that cluster is measured,

and the second qubit yields the output XmHZ(�) ∣ ⟩. The correspondence between this

cluster and circuit Fig. 2.4b) can be seen by considering the process to create and measure

the cluster: first a qubit is prepared in state ∣ ⟩ and another in ∣+⟩, and then these are

entangled via a CZ gate. Then the first qubit is measured in the basis ∣�±⟩, which is

equivalent to successive rotations by the operators Z(�) and H, followed by measurement

in the computational basis. So this cluster computation effects a single-qubit rotation of

the form HZ(�).

By concatenating rotations of this form, one can effect more general single-qubit ro-

tations. For instance, the cluster computation in Fig. 2.5a) can effect the preparation of

an arbitrary pure qubit state from the input ∣+⟩ state. We explain this example in some
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detail because, up to an unimportant re-definition of the rotation angles and local unitaries

on the inputs, this is the computation we implement experimentally in Chapter 4. Note

that the operator HZ(�)HZ(�) is equal to X(�)Z(�) by Eq. (2.8), and that by rotating the

state ∣+⟩ first around the z-axis and then around the x-axis by arbitrary angles, one can

reach any other point on the surface of the Bloch sphere, i.e. any pure qubit state. To

see that this cluster computation effects the stated circuit computation, note that it is by

definition equal to that of the circuit shown in Fig. 2.5b). However, due to the fact that

the CZ gate on the second and third qubits in (b) commutes with the operations on the

first qubit, it can be delayed until after the measurement on the first circuit, re-ordering

the time orientation of the circuit as in (a). Note that the boxed sections of this circuit are

both of the form of Fig. 2.4, and thus the output is equal to Xm2HZ(±�)X
m1HZ(�) ∣+⟩,

where m1 and m2 are the outputs of the measurements on the first and second qubits,

respectively.

The enacted unitary differs from the desired unitary HZ(�)HZ(�) due to the factors

Xm2 and Xm1 . However, the sign of ±� can be chosen based on m1 such that Z(±�)X
m1 =

Xm1Z(�). Therefore the enacted unitary is equal to Xm2Zm1HZ(�)HZ(�), which, up to the

known Pauli matrix Xm2Zm1 , is identical to the desired unitary rotation.

In Chapter 4, we show that this same computation can be performed using only two

qubits if the measurement on the first qubit is a particular POVM, instead of a simple Von

Neumann measurement.

This example illustrates two important points:

1. For any cluster computation designed to enact a desired unitary rotation Ug, (where

g refers to the desired gate), the signs of measurement bases need to be appropriately

chosen based on earlier outcomes in order to enact the desired computation. This

necessitates a certain time-ordering of the measurements, generally from left to right

in a cluster diagram.11

2. Even if measurement bases are correctly chosen using feedforward, the enacted uni-

tary may differ by a correction unitary called a byproduct operator, and denoted

UΣ. This operator is due only to the randomness of the measurement results and

11When g ∈ GC , the Clifford group, which includes common unitaries such as the Paulis, Hadamard,

and c-not, no feedforward is necessary to choose measurement bases, and the necessary Pauli corrections

can all be delayed until the end of the computation. Thus all such gates can, if desired, be performed in

a single time-step or with any temporal ordering [39].
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will always be a product of Pauli operators. For instance, in the above example

UΣ = Xm2Zm1 .

The output of the cluster computation can then always be written as:

∣ out⟩ = UΣUg ∣ in⟩ (2.33)

One must then perform a final correction U †Σ = UΣ, or, equivalently, change the final

measurement basis in order to achieve the desired outcome. During the remainder of this

chapter we will omit the byproduct operators, which is equivalent to assuming that all

processing measurements yield the positive-eigenvalue outcome.

The step from preparing an arbitrary state in the cluster model to performing an

arbitrary qubit unitary is not difficult. I have shown how to perform unitaries of the form

HZ(�) in QCC. Because HZ(�)H = X(�), we can use these operators to perform unitary

rotations around two perpendicular axes in the Bloch sphere. Therefore using the Euler

decomposition of an arbitrary rotation (p. 8), an arbitrary single-qubit unitary can be

performed using a 4-qubit linear cluster.

2.2.3.3 Two-Qubit Unitaries in the Cluster Model

Along with arbitrary single-qubit unitaries, the demonstration that QCC can simulate a

single two-qubit entangling gate shows that it can simulate a universal gate set from QCN ,

and thus perform arbitrary quantum computations.

Unsurprisingly perhaps given the preparation procedure outline in Sec. 2.2.2.1, the CZ

gate acting on two arbitrary input qubits is particularly simple to demonstrate in QCC; it

can be enacted by the cluster computation shown in Fig. 2.6a). This cluster computation

is by definition equal to the circuit model computation in part b), and can therefore be

viewed as a CZ gate on the middle two qubits, followed by four copies of the one-bit

teleportation circuit in Fig. 2.4a). The output at the top and bottom qubits will be:

∣ out⟩ = � (Xm2HXm3H ∣0⟩ ⊗Xm5HXm4H ∣�⟩) (2.34)

+ � (Xm2HXm3H ∣1⟩ ⊗Xm5HXm4HZ ∣�⟩)

Up to a byproduct operator on each qubit, this is equal to � ∣0⟩⊗ ∣�⟩+� ∣1⟩⊗Z ∣�⟩, which

is the output of a CZ gate on ∣�⟩ and ∣�⟩.
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(a) ∣�⟩ ⇒ X_^]\XYZ[ X_^]\XYZ[ _^]\XYZ[

∣�⟩ ⇒ X_^]\XYZ[ X_^]\XYZ[ _^]\XYZ[

(b) ∣+⟩ ∙

∣+⟩ ∙ ∙ H NM


∣�⟩ = (� ∣0⟩+ � ∣1⟩) ∙ ∙ H NM


∣�⟩ ∙ ∙ H NM


∣+⟩ ∙ ∙ H NM


∣+⟩ ∙

Figure 2.6: A CZ operation in the cluster model. The cluster in a) is by definition

equivalent to the circuit in b), but both simply simulate a CZ gate on the input qubits ∣�⟩
and ∣�⟩. Note that, without loss of generality, ∣�⟩ and ∣�⟩ could have been the output of

an earlier portion of the cluster computation.
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Other examples of cluster computations can be seen in Ch. 4, Fig. 4.1.

I note finally that experiments with clusters have been carried out using various physical

implementations including neutral atoms in optical lattices [40], as well as linear optics

[41, 18, 42, 43, 44, 45, 46]. Furthermore, quantum error correction has been shown to

be possible in the QCC model, and thresholds for fault-tolerance have been found in e.g.

[47, 48].

31



Chapter 3

Experimental Implementation

This chapter concerns the details of the implementation of the experiments described in this

thesis. I first describe the protocols implemented in the experiments in Chs. 4 and 5 via

quantum circuit diagrams in Sec. 3.1. These protocols are implemented with polarization-

encoded photonic qubits. They require the integration of experimental apparatus which

can be divided into three primary pieces: a source of polarization-entangled photon pairs,

a linear-optical device for performing a tunable POVM on a polarization-encoded photonic

qubit, and a setup for performing fast correction unitaries with Pockels cells and for per-

forming tomography on the output. In the remaining sections of the chapter I detail the

experimental implementation of these protocols in three sections themed around the cre-

ation, unitary manipulation, and measurement of polarization-entangled photons. In each

section I move from a general overview to the specific implementations used in this thesis.

In sec. 3.2, I discuss the process of spontaneous parametric downconversion convention-

ally used to create isolated optical photons for quantum information experiments before

describing the specific source of polarization-entangled photon pairs utilized in herein. In

sec. 3.3 I discuss birefringence before describing the implementation of unitary rotations on

polarization-encoded photons with waveplates, and the implementation of fast-switchable

unitaries with Pockels cells. In sec. 2.1.3 I describe the implementation of Von-Neumann

measurements on polarization-entangled photons and the apparatus used to implement the

POVM measurement in the experiments. This included a discussion of photon detectors

and of the classical logical processing of the POVM apparatus outcome. Finally in sec.

3.5 I discuss the integration of all these components to perform the protocols, and some

problems encountered while implementing the experiments.
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3.1 Experimental Protocols

This thesis concerns two different experiments, both involving the implementation of a

specific POVM (see secs. 2.1.3.3) on one qubit from an entangled pair. Circuits for these

experiments are shown in Fig. 3.1.

(a) POVM

{Eab(�, �)}
GF ED
@A BC a

∙

∣Φ+⟩ ∙ b

X Z ∣ (�, �)⟩

⎧⎨⎩
_ _ _ _ _ _ _ _ _�
�
�
�

�
�
�
�

_ _ _ _ _ _ _ _ _

(b) Veto Signal ��������

{Eab(�, �)}
GF ED
@A BC

∙

∣Φ+⟩ ∙

X Z �(r, �, �)

⎧⎨⎩
Figure 3.1: Circuits depicting the experiments detailed in Chs. 4 and 5. a) A POVM

{Eab(�, �)} is performed on one qubit from an entangled ∣Φ+⟩ pair (see Eq. (3.1)). The

measurement has four outcomes which can be encoded in two classical binary signals, which

in turn respectively (classically) control an X and Z operation on the other qubit, resulting

in an arbitrary pure output state ∣ (�, �)⟩ as in Eq. (2.6). b) A slight modification of the

circuit, via the introduction of a Veto Signal which also classically controls the X and Z

operations with probabilistic operation, can result in arbitrary mixed state outputs. The

mechanism will be further explained in secs. 5.3.1 and 5.5.1.

The experiments begin with an entangled pair in the Bell state ∣Φ+⟩12 with subsystems

1 and 2. A POVM {Eab} consisting of four measurement operators, each equal to a rank-

one projector up to normalization and labeled by a two-bit classical string ab, is performed
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on subsystem 1:

E00(�, �) =
�∗(�, �)

2

E01(�, �) =
Z�∗(�, �)Z

2

E10(�, �) =
X�∗(�, �)X

2

E11(�, �) =
XZ�∗(�, �)ZX

2
. (3.1)

Here �(�, �) = ∣ (�, �)⟩⟨ (�, �)∣, with ∣ (�, �)⟩ as in Eq. (2.6), and �∗(�, �) is the complex

conjugate of � in the computational basis. The X and Z operations are then performed on

qubit 2, controlled respectively by the bit values of a and b, resulting in an output state

∣ (�, �)⟩. In Chs. 4 and 5, this POVM is called {ℰn} and {Em}, respectively.

For any arbitrary pure qubit state ∣ ⟩, the Bell state ∣Φ+⟩ can be written as follows:∣∣Φ+
〉

=
1√
2

(∣0⟩ ∣0⟩+ ∣1⟩ ∣1⟩)

=
1√
2

(∣ ∗⟩ ∣ ⟩+ ∣ ⊥⟩ ∣ ∗⊥⟩)

=
1

2
(∣ ∗⟩ ⊗ ∣ ⟩+ Z ∣ ∗⟩ ⊗ Z ∣ ⟩+X ∣ ∗⟩ ⊗X ∣ ⟩+XZ ∣ ∗⟩ ⊗XZ ∣ ⟩) (3.2)

In order to facilitate subsequent data analysis, the output of the computation (qubit 2)

should be ∣ (�, �)⟩, where � and � are the polar and azimuthal Bloch angles, therefore our

POVM elements are all related by Pauli operators to the projector of ∣ ∗⟩. This explains the

appearance of the complex conjugation operation in the definition of the POVM elements.

Note the similarities between the circuit in Fig. 3.1 and the teleportation protocol in

Fig. 2.2, as well as the preparation of an arbitrary state in the cluster model shown in in

Fig. 2.5. Like the teleportation circuit, the circuit in 3.1a) results in an arbitrary quantum

state using a ∣Φ+⟩ state and two transmitted cbits controlling ‘correction’ Pauli opera-

tions. However, the state must be known, as in the cluster preparation circuit where the

desired rotation angles are chosen by the experimenter (here � and � are parameters of the

measurement chosen by the experimenter.) Unlike teleportation or standard cluster prepa-

ration, the circuit depicted here requires only two qubits, and, also unlike teleportation,

requires no Bell-state measurement.
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3.1.1 Photonic Qubits

These experiments were realized using single photons as qubits, primarily encoded in po-

larization (although the implementation of the POVM requires entangling the polarization

with a ‘path’ degree of freedom to create the expanded Hilbert space ℋ4 for the generalized

measurement.) Single optical photons are in several respects ideal candidates for physical

implementation of qubits: they travel at the speed of light for quick communication, they

generally interact quite weakly with each other and with many types of matter leading

to low environment-induced decoherence, and they are relatively easy to manipulate and

measure. The latter point is especially true of photonic qubits encoded in the polariza-

tion degree of freedom, which is what I used for the experiments in this thesis. However

photonic qubits pose some problems as well: due to their weak interaction, multi-qubit

gates are experimentally difficult to implement. Furthermore, both reliable, deterministic

sources of isolated single photons and highly efficient detectors have proven difficult to

achieve, the latter especially if non-demolition detection is desired, meaning detecting the

photon without destroying it i.e. through absorbtion in the detector.

Before proceeding to discuss the creation, manipulation, and measurement of

polarization-encoded photonic qubits in some detail, I pause to briefly mention other pos-

sible ways to encode quantum information in single photons. Besides polarization, the

other degrees of freedom of a single photon are its time-frequency and spatial-momentum

distributions. Photons have been entangled in the former (time-bin entanglement [49] and

frequency entanglement [50, 51]) and in the latter (spatial-mode entanglement [52] and

path entanglement [53]). Of these, path encoding is one of the most promising techniques

for application in large-scale quantum computing. In this scheme, a qubit is represented by

a photon which can be in a superposition of two different paths or rails, such as two arms

of an interferometer. Single-qubit unitaries can be implemented by controlling the phase

at an interferometric junction of the two paths, and multi-qubit unitaries by interfering the

rails corresponding to different qubits. The difficulties with such an implementation stem

from the requirement for precise phase-stabilization and control over many coupled inter-

ferometers, although this may be mitigated in the future with advancing integrated-optics

technology. Path encoding will be employed to extend the Hilbert space of our polarization

qubit for the POVM (see sec. 3.4.2).

When encoded in polarization,1 the convention is to represent the logical basis states

1By definition the polarization is the direction of the electric field vector.
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∣0⟩ and ∣1⟩ by the orthogonal horizontal and vertical polarization components ∣H⟩ and ∣V ⟩,
respectively. The eigenstates of the X and Y operators are then respectively represented

by the (Anti-)Diagonal and Right/Left circular polarization components as follows:

∣0⟩ 7→ ∣H⟩ ∣1⟩ 7→ ∣V ⟩
∣+⟩ 7→ ∣D⟩ ∣−⟩ 7→ ∣A⟩
∣+i⟩ 7→ ∣L⟩ ∣−i⟩ 7→ ∣R⟩ . (3.3)

It is also possible to create photon pairs entangled in multiple degrees of freedom, e.g.

(∣HH⟩ + ∣V V ⟩) ⊗ (∣PAPA⟩+ ∣PBPB⟩)/2, where A and B refer to two different paths, but

all the encoding is done on the same two photons (i.e. the first position in each ket refers

to the same photon). This is called hyperentanglement, and will be referenced in Ch. 4

but not directly employed in this thesis.

The experimental apparatuses used to create polarization-entangled photon pairs, per-

form the requisite POVM, encode and transmit the outcome, implement the requisite

‘correction’ unitaries, and measure the final output is shown in Fig. 3.2.

3.2 Creating Photons through Spontaneous Paramet-

ric Downconversion

While several methods exist for producing photons for use in quantum information tasks,

the most successful and widely-applied has doubtless been spontaneous parametric down-

conversion (SPDC) in nonlinear crystals [56]. Because the apparatus for creating the

photons used in these experiments was built by my colleague Deny Hamel and was not a

focus of my research, and also because the SPDC process and its implementation in photon

sources has been extensively treated in many other papers, books, and theses, I will not

detail it here, but will nonetheless address it briefly for the sake of completeness. In writing

this material I draw on Refs. [35, 57] and the appendices to [58].

SPDC is a non-linear optical process relying on the second-order coefficient �(2) of the

polarization response of some media to an applied propagating electromagnetic field. In

SPDC a high-energy “pump” field is mixed with two lower-energy vacuum fields, known

for historical reasons as the signal and idler, in such a nonlinear medium. This three-wave

36



Ch. 3. Experimental Implementation

C
o
in

ci
d
en

ce
 L

o
g
ic

(b)

(c)

(a)  

PPKTP

PC1:  X or I PC2: Z or I

P
O

V
M

Fiber delay

State tomo.

To Bob

PhotonA

SMF-coupler

PBS

HWPQWP

For 2-photon
tomography

BD
OR

IF

OR

TT

TT

RR

RT

RR

RT

TR

TR

Δt

Δt

Δt

Δt
Δt

Δt

C
o
m

p
u
te

r

SPCM

DM

Pockels cell

Alice

Bob

PhotonB

PhotonA

PhotonB

AND

AND

Veto Signal

Figure 3.2: Diagram of the experimental apparatus. (Note that this is identical to Fig.

5.4, but is included in both places for the reader’s convenience.) (a) Entangled photon pairs

are produced via parametric downconversion in a polarization-based Sagnac interferometer

[54, 55] (see text for details) and distributed via single-mode fibers (SMFs). (b) A POVM

is performed on photon A. The apparatus consists of a double-interferometer based on

calcite beam displacers (BDs) which couple the polarization qubit to a ‘path’ qubit for

the generalized measurement. See sec. 3.4.2 for details. (c) Schematic of the entire

experimental protocol. The POVM {Ea,b} is performed on Photon A. Based on the outcome

m a message is encoded in two classical electronic signals, and then sent to Bob with

probability r which is controlled by a Veto Signal. Dependent on the message, up to

two Pockels cells (PCs) fire to perform the necessary unitary correction on Photon B,

which has been delayed in a 50 m fiber to allow time to trigger the PCs. Bob’s output

is analyzed using quantum state tomography. Note: DM: dichroic mirror; IF: blocking

and interference filter; PBS: polarizing beamsplitter; H(Q)WP: half (quarter) wave-plate;

SPCM: fiber-coupled single-photon counting module.
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mixing process is described by an interaction Hamiltonian of the form

ℋ = (�(2))a†sa
†
iap + (�(2))asaia

†
p, (3.4)

where the aj and a†j are respectively annihilation and creation operators for a photon

in the jth mode. The first term in this Hamiltonian describes SPDC while the second

describes the reverse process sum-frequency generation (SFG). While SFG is a classical

effect describable via Maxwell’s equations, SPDC admits no such classical description due

to the mixing of pump light with previously-unpopulated vacuum fields and is thus a

distinctly quantum-mechanical effect.

Although SPDC can lead to higher order photon-number states in the signal and idler

fields (i.e. multiple photons in the same mode at the same time instead of one photon

each in the signal and idler modes), the coupling constant  is small enough in most media

that even with bright coherent pump fields the vacuum and single-photon terms vastly

exceed the multi-photon terms. This is especially true with low-power continuous-wave

pump beams, as used in this thesis, and thus the output can be well-approximated as a

spontaneous source of pairs of single photons in the signal and idler modes ([35], ch.6.)

3.2.1 (Quasi-)Phase Matching Conditions

In the downconversion process energy must be conserved, and usually for any significant

efficiency momentum must be nearly conserved among the three photons as well2. Usually

this requires that the signal and idler frequencies sum to the pump frequency, and their

wavevectors sum to the pump wavevector. These conditions require the three interacting

fields to be in phase along their direction of propagation and are thus often called the

phase-matching conditions. This is often accomplished via manipulating the geometry of

the interaction such that the indices of refraction of the pump, signal and idler fields are

matched for certain propagation directions (with respect to the crystallographic axes) and

polarization directions of each field; these are respectively called angle phase-matching and

birefringent phase-matching.

A more recently-developed technique takes advantage of periodically-poled crystal struc-

tures, where the nonlinear material is specially grown such that its effective nonlinearity is

2It is possible that momentum is not exactly conserved due to the finite crystal length which allows for

some absorbtion or contribution of momentum by the crystal phonon field.
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flipped with a period equal to the coherence length of the pump and signal/idler phases.

This allows for quasi-phase-matching, where the effective wavevector of the structure con-

tributes to the momentum conservation condition, allowing greater experimental freedom

for the pump and downconversion directions, wavelengths, and polarizations [57]. In par-

ticular, the poling period and operating temperature can be tuned such that the signal and

idler are orthogonally polarized and all three propagation directions are collinear along one

of the crystallographic axes. This rids the interaction of the birefringent walkoff problems

that plague angle- and birefringent-phase-matched downconversion setups, and thereby

allows for much longer crystals, and thus longer interaction times and higher SPDC rates.

3.2.1.1 The Sagnac Source of Entangled Photon Pairs

In this thesis we are specifically interested in the production of polarization-entangled

photon pairs. The source used for the experiments described herein was built by Deny

Hamel based on a design first implemented by Kim et. al. [54] and later refined by Fedrizzi

et. al. [55, 57]. It is shown schematically in Fig. 3.2a), and as an annotated photograph

in Fig. 3.3. Note that in Fig. 3.2a) the signal and idler outputs are respectively labeled

Photon A and Photon B. The source produces entangled photon pairs via embedding a

periodically-poled potassium titanyl phosphate KTiOPO4 (PPKTP) nonlinear crystal in

a polarization Sagnac interferometer.

A Sagnac interferometer is one in which two counter-propagating beams follow the

same path, but propagating in opposite directions, before recombining interferometrically.

Due to the fact that both beams traverse the same optical path, the Sagnac configuration

is insensitive to mechanical displacements except rotations, and is therefore quite stable

without the need for active stabilization or phase-locking. In a polarization Sagnac inter-

ferometer, the input/output beamsplitter is a polarizing beamsplitter (PBS), so that one

beam (the one traveling clockwise in Fig. 3.2a) is initially H-polarized, while the other

(traveling counter-clockwise in the figure) is initially V -polarized. The PPKTP crystal is

oriented, cut, and temperature-tuned for collinear, degenerate type-II SPDC. Here collinear

means the pump, signal, and idler beams all propagate in the same direction, degenerate

means the signal and idler output wavelengths are the same (�s = �i), and type-II refers

to the orthogonal polarization of the output signal and idler beams: ∣H⟩p 7→ ∣H⟩s ∣V ⟩i,
and any V -component of the pump does not satisfy the phase-matching conditions for

downconversion.
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(a)

(b)

Figure 3.3: Photographs of the Sagnac source of polarization-entangled photon pairs used

for the experiments in this thesis. a) A photograph of the source. b) A photograph with

superimposed depictions of the beam path, important optical elements, and output fibers.
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To produce entangled photon pairs from this source, the PBS is ensured to operate at

both the pump and signal/idler wavelengths, and a similarly dual-wavelength half-wave

plate (HWP, see sec. 3.3.2) at 22.5∘ is inserted before the PPKTP for the V -polarized

pump beam (and thus after the PPKTP for the H-polarized pump), so that the type-II

phase-matching conditions are met for both counter-propagating pump beams. This leads

to counter-clockwise-propagating SPDC pairs of the form ∣H⟩s ∣V ⟩i, while the clockwise-

propagating pairs are rotated by the HWP: ∣H⟩s ∣V ⟩i
HWP7−−−→ ∣V ⟩s ∣H⟩i. The clockwise- and

counter-clockwise propagating pairs are then coherently combined at the input/output

PBS, which for a pump beam with equal H and V components yields an output state of

the form:3
1√
2

(
∣H⟩s ∣V ⟩i + ei� ∣V ⟩s ∣H⟩i

)
. (3.5)

Note that the signal photon always exits the interferometer back along the path of the

incoming pump beam, but is separated from the exiting pump by a dichroic mirror (DM),

while the idler exits through the other PBS output port.

The phase � in this maximally-entangled output state can be adjusted by changing

the phase between the H- and V -polarized components of the pump beam, usually by

tilting a waveplate with its optic axis in the H- or V -plane about its vertical axis. In

particular the output can be adjusted to the Bell states ∣Ψ±⟩ (see sec. 2.1.4. A notable

feature of the polarizing Sagnac interferometer SPDC configuration is that longitudinal

walk-off in the nonlinear crystal, which in other schemes for entangled-pair generation

might lead to timing information and therefore distinguishability and loss of entanglement,

is automatically compensated due to the bi-directional pumping and the fact that signal

photons always end up in one output mode, and idlers in the other.

In the particular implementation of this source used in the experiment, a 25 mm long

PPKTP crystal is embedded in the polarization Sagnac interferometer and pumped by a

grating-stabilized UV diode laser outputting < 1 mW at 404.5 nm, leading to degenerate

downconversion at �s,i = 809 nm. The resulting entangled photon pairs are coupled into

single-mode fibers (SMFs). Long-pass filters and 5 nm FWHM interference filters before

the fiber-couplers rid the transmitted light of any stray UV pump photons. These fibers are

used to transport the photons to the other portions of the experimental apparatus. Fiber

polarization-conrollers, called “bat-ears” by experimentalists due to their appearance, are

used to rotate the output state to ∣Φ−⟩, as will be further described in sec. 3.5.

3Note that the ‘i’ in the exponential is the imaginary number whereas that in subscripts refers to ‘idler.’
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The quality of sources of entangled photons is measured by at least two general features:

the rate of pair production and the quality of entanglement, both suitably quantified. The

former is often quantified simply as [pairs s−1], or as the pair rate normalized by the pump

power [pairs s−1 mW−1], or even as the spectral brightness given in pairs per second per

mW of pump power per nm of output photon bandwidth [pairs s−1 mW−1 nm−1]. The

entanglement can be quantified by performing state tomography on the source output and

calculating some measure like the tangle, or even the fidelity with a desired output like

one of the Bell states. A third feature often but not always desired is a high efficiency,

meaning that a high proportion of the photons detected at the source outputs are from an

entangled pair. At the pump power used in these experiments of about 0.86 mW, the rates

detected out of the fibers were typically 150 kHz single detection events at each output

(“singles”) and 30 kHz coincident pairs (within a suitable window; photon detection will be

discussed further in sec. 3.4). This yields a brightness of about 3.5× 104 pairs s−1 mW−1

and an efficiency of 20%, both comparable to the state-of-the-art (see e.g. [57]). Typical

tomographically-reconstructed density matrices of the source output state are shown in

Figs. 4.3 and 5.5. The figures of merit varied slightly from day to day but with careful

alignment we generally achieved a tangle of about 0.93 and a fidelity with the intended

Bell state of about 0.980 (more precise numbers are given in the respective chapters 4 and

5, and in the figure captions.)

3.3 Manipulating Polarization-Encoded Photons

The evolution of polarized beams or photons through optical circuits is often found using

Jones calculus. In this method, the polarization of a beam is represented through a vector

J⃗ =

[
AH
AV

]
, (3.6)

where Ai is the complex amplitude of the ith component of the electric field. The Jones

vector is often normalized such that
∑

iAi = 1. Notice that a normalized Jones vector is

the same vector used to represent a polarization qubit. In fact, the techniques from Jones

calculus can be used to calculate the propagation of a single polarization-encoded photonic

qubit through an optical circuit of polarizing elements. The difference is that for a photon,

the squares of the vector components yield the probability of finding the photon to have

the respective polarization, whereas the components of the classical vector represent the
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square-root of the normalized intensity in the respective polarization mode. Note that

care must be taken and classical techniques can not always be so readily employed when

considering the propagation through an optical circuit of more than one photon, where

non-classical interference effects can happen, leading for example to the famous Hong-Ou-

Mandel effect [59] in which two photons with identical transverse spatial modes, time-

frequency distributions, and polarizations will ‘bunch’ when impinging on a beamsplitter

from different input ports. In such cases it is often better to perform the circuit analysis

in terms of the creation and annihilation operators ak and a†k for the different modes {k}.4

The action of optical elements or circuit components are represented by Jones matri-

ces, and in fact the Jones matrices for ideal elements are often unitaries or projectors. I

will physically motivate several Jones matrices for polarizing elements used in the experi-

ments in this thesis, and show how they can be used to manipulate and measure photonic

polarization qubits and in particular to construct our POVM apparatus.

3.3.1 Birefringence and Polarizing Beamsplitters

A common way of manipulating the polarization of light is through the use of birefringent

materials. These are materials for which the light will experience a different index of

refraction and therefore travel at a different speed depending on its polarization with

respect to the crystallographic axes of the material. Of course, the index of refraction also

depends on the frequency; the following best applies to monochromatic plane waves. My

discussion of birefringence and optical components employing this effect is drawn from [35]

Ch. 4, [61] pp.336-358, and [62] Ch. 6. Regardless of the direction of propagation and

angle of incidence, any birefringent medium will split the incoming light into two normal

modes, orthogonal polarization states which are unchanged by propagation through the

medium (they’re eigenstates of the transformation it induces on the polarization state).

Generally light in one of these modes will travel faster through the medium than light in the

other, and thus the normal modes define a ‘fast axis’ and ‘slow axis’, both perpendicular

to the direction of propagation. The simplest birefringent materials are uniaxial meaning

4 The details of the quantization of classical electromagnetic field are outside the scope of this thesis.

However, in such a quantization, the complex-valued amplitudes associated with classical electromagnetic

field modes �k, and their complex conjugates �∗k, are replaced respectively by annihilation operators ak
and their Hermitian conjugates, creation operators a†k. Single photons behave in some sense ‘like classical

beams’ because they are linear functions of creation operators acting on the vacuum field ∣0⟩: a single

photon in a superposition among modes k can be written as
(∑

k Aka
†
k

)
∣0⟩. See [35] ch. 2 or [60].
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they have a single crystallographic axis of symmetry, the optic axis âo. Light polarized

parallel to this axis is said to have extraordinary polarization and will experience an index

of refraction ne, while light polarized perpendicular to âo is said to be ordinary and will

experience an index no.

Consider a beam propagating through a uniaxial material, without loss of generality

along the axis z. If z = âo then all polarizations of the beam are ordinary. Otherwise z

and âo define a principal plane; any component of the beam polarized perpendicular to

this plane will be ordinary and experience index of refraction no, while the component in

the plane is called the e-ray and will experience an index

n(�) =

√
n2
o

cos2 �
+

n2
e

sin2 �
, (3.7)

where � is the angle between z and âo.

When the optic axis is neither parallel nor perpendicular to the direction of propagation

of the beam as it enters the crystal, birefringent media can lead to the effect of double

refraction or walkoff,5 where the ordinary-polarized component of the input ray and the

extraordinary-polarized component refract at different angles. For an angle of incidence �i,

the angles of refraction �o and �e of the o- and e-rays are given by a modified Snell’s law:

sin �i = no sin �o

sin �i = n(�e) sin(�e), (3.8)

where n(�e) is given by Eq. (3.7). A thorough treatment of this and related birefringent

phenomena can be found in Ref. [62], pp. 210-222.

This effect can be used to construct several types of polarizing beamsplitters, devices

which separate an input beam into two orthogonally-polarized and spatially-separated

output modes. If one looks only at one output mode of a polarizing beamsplitter, i.e. by

blocking or simply failing to detect the other mode, then their action is to project onto a

single polarization, and their Jones matrix is given by e.g. ∣H⟩⟨H∣ or ∣V ⟩⟨V ∣, depending on

the output mode considered. A particular type of polarizing beamsplitter made with the

uniaxial birefringent crystal calcite is shown in Fig. 3.4. This element, called a calcite beam

5sometimes called spatial walkoff, as it involves differing propagation directions in the crystal for e- and

o-rays, to distinguish it from temporal walkoff which results from a difference in the phase velocities of e

and o polarizations.
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Input Beam

Output mode 2 (V)

Output mode 1 (H)

Figure 3.4: (Color online) Calcite Beam Displacer. This type of polarizing beamsplitter,

made from a single block of calcite, cut for the maximum walkoff angle between orthogonal

polarizations of a normally-incident beam, separates the beam into two spatially separated

but parallel output beams in output modes 1 and 2. Note that if both output beams are

in the horizontal plane, as shown here, then it is the vertical output which is deviated.

displacer (BD) is unique in that the orthogonally-polarized output beams are parallel, and

forms a key component in the construction of the POVM apparatus.

Some birefringent polarizers, in particular Glan-type prisms, only yield one very-highly

polarized output beam (usually the transmitted beam, which for normal orientations of

these polarizers is H-polarized) while the other output is either broken into multiple beams

or not fully polarized, and thus these can only be used to project (perhaps with some loss)

onto one polarization mode. Another important type of polarizing beamsplitter, which I

will refer to as a PBS-cube or simply a PBS, actually operates not based on birefringent

effects but rather using a stack of many layers of polarizing dielectric films at the interface

between two triangular glass prisms, joined to form a cube with the dielectric across the

inner diagonal. These will also be used in the POVM apparatus, and are useful for making

a projective measurement of polarization because they separate the input beam into two

output modes with orthogonal polarizations and perpendicular propagation directions.

3.3.2 Waveplates

An important optical component constructed from birefringent materials, in particular

quartz, is the phase retarder or waveplate, which I have already mentioned in discussing the

Sagnac source of polarization-entangled photons. These are birefringent uniaxial crystals
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cut and mounted such that the optic axis is parallel to the entrance face, and therefore one

component of the incoming beam always experiences ne and the perpendicular component

no. The difference in refractive index means that the e-component will have experienced

a phase shift Δ� relative to the o-component when they exit the waveplate, given by

Δ� = k0d∣no − ne∣, where d is the thickness of the plate and k0 the magnitude of the

wavevector of the incident light in free space.

The action of a waveplate with the optic axis oriented horizontally is described (up to

an unimportant global phase) by the Jones matrix:

Uwp(�) =

[
ei�/2 0

0 e−i�/2

]
. (3.9)

Notice that this is the same operator as for a rotation about the Bloch z-axis by �.

The action in the H,V -basis of any polarizing optical component when rotated by an

angle � from the horizontal around the direction of propagation can be found by applying

the two-dimensional rotation operator6 R(−�) to the corresponding Jones matrix, where

R(�) =

[
cos � sin �

− sin � cos �

]
. (3.10)

For instance the action of a �-waveplate, rotated around the direction of propagation by �

is

Urwp(�, �) ≡ R(−�)Uwp(�)R†(−�) = R(−�)Uwp(�)R(�). (3.11)

This is a fairly general unitary, describing a rotation by � about the real superposition of

the computational basis states (i.e. the linear polarization) making an angle in the Bloch

sphere of � with ∣H⟩.

Fortunately, most applications do not require control over the retardance � of a wave-

plate, but rather use combinations of just two: the half-waveplate (HWP)

HWP (�) = −iUrwp(�, �)

=

[
cos 2� sin 2�

sin 2� − cos 2�

]
, (3.12)

6The basis in which the component operates is related by a rotation of positive � to the H,V -basis,

therefore the transformation to find its action in the H,V -basis is a rotation by negative �.
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and the quarter-waveplate (QWP), which I define for my calculations as

QWP (�) = iUrwp

(
−�
2
, �

)
=

1√
2

[
i+ cos 2� sin 2�

sin 2� i− cos 2�

]
. (3.13)

These are called as such because they retard one polarization by a half (quarter) wavelength

with respect to the other. Note that the global phases (−i and i respectively) are added

only for convenience, and also that HWP (0) = Z, HWP (�/4) = X, and HWP (�/8) = H.

Finally, notice that the HWP and QWP operators are both unitary and Hermitian: they

are their own inverse and their own conjugate-transpose.

In practice, waveplates which only retard light along the ‘slow’ axis by half or a quar-

ter wavelength are quite thin and therefore fragile and difficult to manufacture and use.

However, waveplates with �/k0 = n + 1
2
�0 or n + 1

4
�0, where n is an integer, accomplish

the same purpose for monochromatic light of vacuum wavelength �0. However if the n is

large and so is the bandwidth of the incident light, such a multi-order waveplate imparts

different retardances and thus different phases to the various frequency components of the

input. A more precise solution is to use two multi-order waveplates, differing in retardance

by � (�/2 for a QWP), mounted back-to-back with the fast axis of one aligned with the

slow axis of the other to yield a compound zero-order waveplate. The waveplates used in

the POVM apparatus, implementation of fast unitary corrections, and tomography in this

thesis were exclusively air-spaced compound zero-order waveplates designed for a central

operating wavelength of 810 nm.7.

QWPs can transform linear polarizations to elliptical, and vice-versa, while HWPs can

rotate any linear polarization to any other, or rotate the axes of the ellipse of an ellipti-

cally polarized beam. An arbitrary unitary rotation can be achieved by concatenating three

waveplate rotations at arbitrary angles, specifically in the

order QWP (�)HWP (�)QWP () or QHQ [35]. It is interesting to contrast this decom-

position of an arbitrary unitary—into rotations about three arbitrary linear-polarization

axes by two fixed amounts (� and �
2
)—with the Euler decomposition (p. 8) of an arbitrary

unitary into rotations by three arbitrary angles about two different fixed non-parallel axes.

7Casix WPZ1315-�/4-810 and WPZ1315-�/2-810
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3.3.3 Fast Unitaries with Pockels Cells

Waveplates serve perfectly well to perform slow unitaries on polarization-encoded photonic

qubits. By slow, I refer not to the speed of the actual unitary transformation, which takes

only on the order of 10 ps for the actual transit time of the photon through the waveplate(s),

but rather to the speed at which the unitary is switchable, which depends on the speed at

which the experimenter is able to precisely mechanically rotate the waveplates. These times

are generally much too slow for the fast switching required to implement the correction

unitaries (the classically-controlled X and Z operations) in e.g. Fig. 3.1. The speed at

which these need to be switched depends on the source rate and detector characteristics

but might typically be from a few to a few hundred nanoseconds, too fast for cheap reliable

mechanical rotations.

Such fast-switchable unitaries can be implemented on polarization photonic qubits using

e.g. acousto-optic modulators (AOMs) or Pockels cells. I will describe the latter, as they

were employed in the experiments in this thesis, drawing on Ref. [62], pp. 696-701.

In some materials the index of refraction will change in proportion to an applied electric

field; this is known as the Pockels effect after its discoverer Friedrich Pockels. An arrange-

ment of such a material with electrodes to control the Pockels effect is called a Pockels

cell (PC). In a birefringent material exhibiting the Pockels effect, the two orthogonally-

polarized normal modes of an incident beam will experience a total relative phase shift

�total = �0(d, nf , ns) + �
V

V�
, (3.14)

where �0 is the phase shift induced with no applied electric field and takes the form of

Eq. (3.9), only the fast and slow axes might not correspond to ne and no if the crystal is

not uniaxial or the propagation direction is not perpendicular to the optic axis. V is the

voltage applied across the medium, and V� is an important property of the physical system

called the half-wave voltage, which depends on the crystal material, size, and geometry, the

frequency of light considered, and the geometry of the electrodes across which the voltage

is applied. The half-wave voltage is that for which the retardance changes by �. Often the

PC system is arranged such that �0 = 0 and there is no (spatial) walk-off; in this case the

PC performs the identity on an incident polarization state when no voltage is applied, and

acts as a HWP if V� is applied.

The Pockels cells used to perform the correction unitaries in the experiments in this
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thesis were constructed of rubidium titanyl phosphate RbTiOPO4 (RTP) 8. They are trans-

verse-operating, meaning that the voltage is applied perpendicular to the direction of

propagation. Because RTP actually exhibits some temporal walkoff along the direction

of propagation, these PCs are constructed from two crystals of equal optical thickness,

the one oriented with its fast axis parallel to the slow axis of the other (similar to the

compound zero-order waveplates discussed above, only here the net retardance is � = 0

when no external voltage is applied). They have a 4 mm aperture and a 20 mm length.

For more info see Ref. [63] and [64].

8Leysop RTP4-20-AR800
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3.3.3.1 Testing and Aligning the Pockels Cells

The Pockels cells were purchased along with mounts, driving electronics, and power supplies

as a package (model BME PC dpp) from Bergmann Messgeraete Entwicklung KG (BME).

Each is mounted with its optic axis at 45∘ such that it performs an X operation when V�
is applied, switching horizontal and vertical polarization. However, HWPs at 22.5∘, which

perform the Hadamard operation, were placed before and after the second Pockels cell.

This changes the net action of the HWP-PC-HWP to Z when the high voltage (HV) is

on, and yet it still acts as the identity when the HV is off: HXH = Z and H1H = 1 (see

Eq. (2.8)). Each PC is driven by a double push-pull driver which controls the application

of the high voltage. The triggering pulses for the push-pull driver are from a specially

designed pulse splitter box BME sp02, also included in the package from BME. The pulses

which switch the HV on and off can be triggered independently, or the experimenter can

set the splitter box such that the ‘off’ pulse always follows the ‘on’ pulse after a specified

amount of time. I set the HV to turn off approximately 20 ns after each ‘on’ pulse (which

came from the classical logic and ultimately from the photon detectors; see sec. 3.4.3).

The optical circuit for using the Pockels cells to perform correction unitaries, and then

performing tomography on the output, is shown schematically in Fig. 3.2c), but a more

detailed version in the form of an annotated photograph is shown in Fig. 3.5. When setting

up the Pockels cells, they must first be aligned such that the beam is retro-reflected (i.e.

normally incident to the entrance face) and passes approximately through the center of the

aperture. Several steps are then required to properly align the PCs and assure that the

entire setup was performing the correct transformations on incident photons when both,

neither, or either PC was triggered. The half-wave voltage must be found, the correct

delay must be determined such that each PC, if triggered by a signal photon detection,

will be fully on when the idler photon passes through, and finally waveplates must be used

to compensate for slight misalignments in each PCs orientation.

The half-wave voltage V� can initially be roughly found by sending an H-polarized

beam of approximately the desired wavelength9 through the Pockels cell with the polar-

ization analyzer set to project onto H, and examining the the output signal from a fast

photodiode with an oscilloscope as the Pockells cell is triggered periodically and the HV

is adjusted. When the output signal is minimized during the time that the HV is ‘on’,

then the PC is sending H-polarized light nearly to V , and thus operating close to V�. A

9Source: Thorlabs CPS808 808 nm collimated laser diode module.
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more precise determination of V� was effected using photon pairs from SPDC. This was

accomplished by triggering the PC on the detection of a signal photon, sending H-polarized

idler photons into the PC, projecting the output onto ∣H⟩, and counting the number of

coincident detections in a certain time interval as a function of the HV value.
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Figure 3.6: Scanning for optimal Pockels cell delay. The Pockels cells were both set such

that the high voltage would be on for approximately 20 ns after being triggered. However,

due probably to some ringing in the electronics, the retardance imparted by the PCs

appeared to vary during this interval. To find the optimal delay for triggering each PC

after a detection event in one of Alice’s POVM outcomes, I placed the PC between anti-

crossed polarizers and counted coincidences between the output of the PC setup and Alice’s

detectors as I scanned the triggering delay. This figure shows two such scans, of coincidence

counts versus the delay imparted by the Stanford Research Systems delay generator before

triggering the second PC (Z), at a voltage setting of 467 on the voltage dial or ≈ 1.027 kV.

The other PC was off during this scan. The error bars are given by the square root of

the number of photons counted, and the grey line is meant only to guide the eye. The

data in the left graph shows the full triggering period of the Pockels cell, and was taken

on April 21, 2009, while the right graph shows a different scan intended to zoom in and

isolate the ringing effect, and was taken on April 27. Based on the results of the right scan

and another more detailed scan I set the delay to 28.1 ns.

Determining the correct delay should have been a simple matter, in the same configura-
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tion just described, of scanning the delay10 between the detection of a signal photon and the

triggering of the PC, and searching for the minimum coincidence rate as a function of delay.

According to my chosen settings for the splitter box triggering the push-pull circuit, the

HV should ideally have been applied across the PCs for a window of approximately 20 ns

after being triggered, thus yielding some freedom in the delay setting. However, in practice

I found that the coincidence rate varied significantly during this window. I attribute this

to some ringing effect in the electronics. Finding the best delay then required carefully

scanning the delay in e.g. 0.5 ns steps and counting coincidences for several seconds at

each setting in order to determine a delay value for which the HV would consistently be

closest to V� as the idler photon passed through the PC. Two examples of such scans are

shown in Fig. 3.6. Using this technique I was able to achieve a contrast ratio through each

Pockels cell of nearly 3000:1, measured using coincidence counts.

Because each PC was not mounted with its fast and slow axes perfectly aligned along

the ±45∘ directions from the horizontal, and no fine adjustment of this mounting angle was

possible, extra waveplates were required to assure that the net operation still corresponded

to X (or Z), while still leaving the polarization unchanged when the PC was not triggered.

For instance if the fast axis of the first PC were aligned at 45∘+2�, this could be corrected

with HWPs at angle � before and after the PC: HWP (�)×HWP (45∘+2�)×HWP (�) = X

and HWP (�) × 1 × HWP (�) = 1, at least up to a global phase on the operation. For

the PC meant to perform Z, the same two waveplates could be used to compensate this

angular misalignment as were used to perform the Hadamard operations transforming X

to Z: HWP (22.5∘ + �)×HWP (45∘ + 2�)×HWP (22.5∘ + �) = Z.

Solving all three of these problems required multiple iterations, switching between

searching for the optimal high voltage setting, delay, and � for each Pockels cell, in each

case by searching for the setting that most effectively minimized coincidence counts when

the expected photon polarization after the respective PC was orthogonal to the analyzer

setting. However, this iterative search procedure was further complicated by an unantic-

ipated experimental difficulty, which I only understood in retrospect after already having

fixed it. Ideally the Jones matrix of a mirror would be the identity: the mirror, while

changing the direction of propagation, would do nothing to the polarization state of an

incident beam. I knew when building the PC-setup that dielectric mirrors often impart a

phase between the component of the incident polarization in the plane of reflection and

that component perpendicular to said plane. However, I purposefully used silver-surfaced

10using a scanning delay generator, Stanford Research Systems model DG535
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mirrors in order to avoid this problem, and was under the impression they would impart

no such relative phase.

For the first PC, intended to implement X, I found myself unable to attain a com-

bination of �-correction waveplate angles and HV setting such that the correct unitary

was implemented. I tested the PC by inputting the six standard states and performing

tomography on the output, and found that when � and the HV were set such that ∣H⟩ was

rotated to ∣V ⟩ and vice-versa, the setup would impart some rotation to ∣D⟩ and ∣A⟩, which

should be eigenstates of the X operation. Conversely, if I adjusted the HV such that no net

transformation was enacted on ∣D⟩ and ∣A⟩, then the setup would not fully rotate ∣H⟩ to

∣V ⟩ and vice-versa, leaving instead some elliptically-polarized output. Eventually I solved

this problem through the introduction of two auxiliary QWPs, one placed before the first

mirror and the other after the �-correction HWP for the X-PC. These auxiliary QWPs, set

with their fast axes at 0∘, were tilted about their vertical axes such as to introduce equal

and opposite relative phase shifts between H- and V -polarizations. These introduced no

net transformation of the polarization state when the HV was off, while compensating for

what I thought at the time to be an incomplete rotation when the PC was triggered. It was

only later that I surmised that these waveplates were actually compensating for relative

phase shifts introduced by the reflections from the silver mirrors, and not for a problem

with the Pockels cell.

With all the waveplates properly oriented, I found the half-wave voltage V� for both

PCs to correspond to a setting of 467 on the voltage dial on the respective HV power

supplies. As this dial is supposed to represent a range of 0 to 2.2 kV, this would imply

V� = 1.027 kV. However, I never confirmed this value independently.

I finally tested the PCs by inputting all six standard states and performing tomography

on the output state for all combinations of neither, either, or both PCs being triggered.

For all of these 24 combinations of input states and PC settings, the fidelity of the tomo-

graphically reconstructed density matrix with the ideal output state was 0.998 or better,

suggesting near perfect operation of the unitary correction apparatus.
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3.4 Measuring Polarization-Encoded Photonic Qubits

3.4.1 Von Neumann Measurements

Von Neumann measurements of photon polarization are fairly easy to implement. A PBS

cube serves to measure a photon’s polarization in the computational basis: photons in the

transmitted ports are projected onto ∣H⟩, whereas those in the reflected port are projected

onto ∣V ⟩. A Von Neumann measurement in an arbitrary basis can be accomplished with

suitable waveplates before the PBS. While three waveplates in the QHQ formation are

necessary to perform an arbitrary unitary, a single HWP and QWP suffice to rotate an

arbitrary basis into the computational basis, and therefore a HWP, QWP, and PBS form an

arbitrary polarization analyzer. Such an analyzer is used to perform the various projections

of our photons needed for tomography throughout this thesis.

3.4.2 The POVM Apparatus

Controllable generalized measurements are generally more difficult to implement on pho-

tonic qubits. For examples of how some types of generalized measurements have been or

could be implemented, see Refs. [65, 66, 67, 68, 69, 70].

The POVM used in my experiments (Eq. (3.1)) was implemented as shown in Fig.

3.2b), and is also shown in more detail as an annotated photograph in Fig. 3.7. It is an

interferometer, or rather two interlocking interferometers with one input and four outputs

corresponding to the four POVM elements. The optical elements used to separate and

recombine the interferometer paths are calcite beam displacers as in Fig. 3.4. Because

the two paths exit the first BD parallel, and all the reflecting optics (as well as some of

the waveplates) are common to both paths before the recombine in subsequent BDs, such

a configuration is inherently phase-stable; in fact, like the Sagnac configuration of the

entangled photon source, it is insensitive to all mechanical displacements except rotations

[71]. This negates the need for active stabilization, thus reducing experimental complexity

and/or increasing operation fidelity for longer measurement periods compared to many

other implementations of generalized measurements e.g. Refs. [68, 70].

The operation of the POVM apparatus can be explained as follows. The reader may

find it helpful to follow Fig. 3.2b), beginning at the first BD. Consider an arbitrary pure

input qubit state, expressed without loss of generality as � ∣H⟩ + � ∣V ⟩. The first BD
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RT

RR
TT

TR

Figure 3.7: Annotated photograph of the POVM apparatus. The annotations label the

four outputs (discussed in the text) and the waveplates used to set the angles � and �

defining the POVM.
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separates the polarization components of this state into two different paths, which I’ll refer

to as U for the upper path in the figure and L for the lower path. The resulting state is

then entangled:

� ∣H⟩+ � ∣V ⟩ BD7−−→ �(∣H⟩ ⊗ ∣U⟩) + �(∣V ⟩ ⊗ ∣L⟩). (3.15)

The two paths then pass through a HWP at angle �/4 and a PBS cube; the result is

to project the polarization state of the light transmitted through the PBS cube (in both

paths) onto cos (�/2) ∣H⟩+ sin (�/2) ∣V ⟩, and the reflected light onto the orthogonal state

sin (�/2) ∣H⟩ − cos (�/2) ∣V ⟩. This can be viewed as a projective measurement on the

polarization subspace of the combined polarization-path Hilbert space.

The next waveplates to be encountered, along with the the recombination BDs in each

arm, serve to transfer the ‘path’ qubit back into polarization encoding such that it might

also be measured. In the transmitted (reflected) arm, a HWP at 45∘ in the U (L) path

serves to rotate the polarization from H to V (V to H). The waveplate in the other path is

a HWP at 0∘ which serves to equalize the optical path lengths of the U and L paths, and

can be tilted around its vertical axis to implement an arbitrary waveplate unitary (see Eq.

(3.9)), and thereby adjust the relative phase of the U and L paths. The phase introduced

between the U and L paths, in each arm, should be ei�/2 (mod 2� of course).

The two paths, now with orthogonal polarizations and the proper relative phase, are

then coherently recombined in BDs. The net result is to map ∣U⟩ 7→ ∣V ⟩ and ∣L⟩ 7→ i ∣H⟩
in the transmitted arm, and ∣U⟩ 7→ ∣H⟩ and ∣L⟩ 7→ i ∣V ⟩ in the reflected arm. The

path qubit, now mapped into polarization, then passes through a QWP at 45∘, a HWP

at angle −�/4 (+�/4 in the reflected arm), and another PBS cube. This projects the

state in the transmitted arm onto 1√
2

(
∣H⟩ ± iei� ∣V ⟩

)
, and that in the reflected arm onto

1√
2

(
∣H⟩ ± ie−i� ∣V ⟩

)
, where in both cases the ‘+’ outcome is transmitted, and the ‘−’

outcome reflected. Each of these four outcomes is then collected into single-mode fibers to

be transported to detectors.

The net result of the entire apparatus described above is that the light which is

(T)ransmitted at the first PBS and (R)eflected at the second has been projected onto the

state �∗(�, �), where � = ∣ ⟩⟨ ∣ and ∣ (�, �)⟩ = cos(�/2) ∣H⟩+ei� sin(�/2) ∣V ⟩ describes an

arbitrary pure state with spherical angles � and � in the Bloch sphere representation (see

sec. 2.1.1.1). I refer to this outcome as TR. This is the element E00 of the POVM {Eab}
which the apparatus was intended to implement, and furthermore outcomes TT, RT, and

RR correspond respectively to E01, E10, and E11, as desired.
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3.4.2.1 Aligning the POVM apparatus

This short section is intended primarily for the benefit of anyone who may wish to use the

POVM apparatus for further experiments in the future. The POVM apparatus described

above can be aligned using a fiber-coupled 808 nm diode laser, an ‘input PBS’ which is set

on a translation stage near the input fiber-collimator so as to be removable (shown in Fig.

3.7 but not Fig. 3.2), the ‘input HWP’ which is shown before the first BD in Fig. 3.2c),

and a photodiode. For the latter I used the NewFocus model 2107 photodiode, along with

the LabView program “observe interference live.vi”, written by Rainer Kaltenbaek, which

shows the output signal on a computer and calculates the visibility of interference fringes

in real time. A fiber-coupled source of broadband near-infrared light is also helpful, e.g.

from a sufficiently-attenuated mode-locked titanium-sapphire laser emitting 10 to 15 nm

of bandwidth centered at 790 or 800 nm.

To align the apparatus, first all the optics must be properly placed, the waveplates set

to the correct angles, and the input and output fiber-couplers properly aligned. In my

usual procedure, I then input the light from the Ti:sapphire laser if available, or if not

then the light from the diode laser. With the H-polarizing input PBS in place, and the

‘input HWP’ and the ‘�-HWP’ both set to 22.5∘, one should in theory be able to detect

interference fringes of 100% visibility in any of the four output ports as the ‘tilting’ HWP in

the respective arm is turned, thereby changing the relative phase upon path recombination

in the second BD. The angle of the �-HWP should not affect this visibility, but in fact it

is a good idea to check the interference visibility both when this waveplate is set to 0∘ and

when it is set to 22.5∘. The interference visibility can then be adjusted by rotating of the

recombination BD, primarily about the vertical axis, so as to equalize the interferometric

path lengths; this should be done with the ‘tilting’ HWPs near normal incidence. This task

is much easier with the broader-bandwith Ti:sapphire light, as the interference visibility

falls off more quickly for unequal path lengths with this higher input bandwidth. Using

this technique I was able to obtain interference visibilities of 99.8% or better in both arms,

as measured using the photodiode and LabView program mentioned above.

The final task is to set the correct recombination phase using the ‘tilting’ HWPs. For

the transmitted arm, this is done by minimizing the optical power in the TT output

with the input HWP, �-HWP, and �-HWP respectively set to 22.5∘, 22.5∘, and 0∘. For

the reflected arm, the RT output should be minimized with the input HWP, �-HWP,

and �-HWP respectively set to -22.5∘, 22.5∘, and 0∘. I prefer to minimize the outcomes

transmitted at the final PBSs, instead of reflected, because there is some small leakage
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of H-polarized light into the reflected output ports in these PBS cubes. For both these

mimizations, it is best to turn up the gain on the photodiode to its highest setting.

3.4.3 Detection and Logic

Once projected onto the desired output state, either by the POVM apparatus or by the

polarization analyzer after the Pockels cells, the photons must then be detected. In the

experiments in this thesis, this is accomplished by first collecting the photons into single-

mode fibers, which in turn transport the photons to single photon detectors, specifically

PerkinElmer four-channel SPCM-AQ4C modules. Each of these contains four separate

fiber-coupled silicon avalanche photodiodes; when a photon is absorbed in the diode a

25 ns electronic TTL pulse is produced which can in turn be manipulated with further

electronics or detected by e.g. an oscilloscope or computer.

These detectors are each specified to have a quantum efficiency between 45% and 50%

at 810 nm and a maximum dead time of 50 ns after a detection event, during which

further incident photons will not generate an output pulse [72]. The detectors used in

these experiments were measured to have dark count rates ranging from 100 to 500 counts

per second, defined as the rate at which they output signals when on, but with their optical

inputs blocked.

For the experiments in this thesis and in fact most quantum information experiments

with single photons as qubits, it is important to identify those detection events corre-

sponding to pairs from SPDC, as opposed to those from dark counts or ambient light.

Furthermore, in order for our experimental protocols to have succeeded, the photons from

a shared entangled pair must have been measured both in the POVM and in the analyzer

following the Pockels cells. These purposes are accomplished by including in the final

data analysis only those detection events which form coincidence counts. By a coincidence

count, I mean an incidence where two detection events, one in a POVM output detector

and one in the detector for the analyzer following the Pockels cells, occur simultaneously to

within a narrow time window. The coincidence window used in this thesis is approximately

5 ns. Our coincidence-logic box, like most of the other classical TTL logic used in these

experiments, was custom-built by Zhenwen Wang of the University of Waterloo Science

Technical Services.

Before being directed to the coincidence-logic box, the outputs from the four POVM-

outcome detectors are first copied so that their individual rates can be recorded, and so
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that they can be used to trigger the Pockels cells. A logical OR operation is then applied

between the pulses stemming from the RT and RR outcomes, and the resulting signal is

used to trigger the X-implementing Pockels cell. A logical OR operation between the TT

and RR outcomes generates the signal which triggers the Z-performing Pockels cell. As

described in sec. 3.3.3.1, the correct delay must be applied to each signal before it triggers

the PCs.

The idler photons are stored in a 50 m fiber loop before entering the unitary correction

apparatus in order to allow time for the POVM, logical processing of the outcome, and trig-

gering of the Pockels cells. Of course, this means that photons from the same SPDC pair do

not actually produce simultaneous detection events. Instead, the signals from the POVM

detectors must be electronically delayed such that they arrive at the coincidence-logic box

simultaneously with the detector signal from the idler photon, which has experienced a

much longer optical path prior to detection.

3.5 Integration of Experimental Components, Data

Acquisition, and Analysis

Once the source of entangled photon pairs, the setup for unitary corrections and output

analysis, and the POVM apparatus had all been individually aligned, it was necessary

to connect the output fibers from the source to the inputs of the other two apparatuses,

and ensure that the proper entangled state was being transmitted for the experimental

protocols. This was accomplished via a set of fiber polarization controllers, known to optics

experimentalists as ‘bat-ears,’ in each of the fibers leading from the source to the other two

apparatuses. These were used to ensure a joint input state into the POVM apparatus and

unitary correction setup of 1√
2
(∣HsHi⟩ + ei� ∣VsVi⟩). A phase-plate, consisting of a QWP

at 0∘ capable of tilting around the vertical axis, is placed following the input fiber-coupler

to the POVM apparatus and was used to adjust the phase � to �. The resulting ∣Φ−⟩
state was then analyzed via two-photon tomography, as discussed in sec. 3.2.1.1, using

the polarization analyzer after the Pockels cells for the idler photon (with the Pockels cells

switched off) and the ‘input’ HWP and QWP shown before the first BD in the POVM

apparatus in Fig. 3.2b). When not in use for tomography, the ‘input’ QWP was removed

and the HWP set to 0∘, thereby performing a Z operation on the signal photon and

transforming the ∣Φ−⟩ state to ∣Φ+⟩, as required for the protocols illustrated in Fig. 3.1.
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LabView software written by Rainer Kaltenbaek was used to control the settings of

the �- and �-waveplates in the POVM apparatus, as well as the analyzer HWP and QWP

following the unitary correction setup. For each desired POVM setting {�, �}, this software

set those waveplates to the required angles, then projected the output of the unitary

correction apparatus onto all six standard states sequentially, recorded the coincidence

events between this detector and any of the four POVM detectors, and automatically

performed maximum-likelihood tomographic analysis on the resulting dataset. The counts

and the the tomographically-reconstructed density matrices were recorded in a text file

where they could be used for further data analysis.

3.5.1 Problems due to Temperature Variation

Figure 3.8: Fidelity of the experimental protocol as a function of the settings � and � of

the POVM apparatus. These should ideally be the polar and azimuthal angle of the output

state. Note that this data was not taken with the Sagnac source described above, but rather

with a different source constructed by Kurt Schreiter and Aron Pasieka and modeled after

Ref. [73]. The entire top and bottom lines of the graph correspond respectively to the

same ideal output state, the ‘South pole’ and ‘North pole’ of the Bloch sphere respectively.

The black dots represent the settings for which data was taken. The coloring of the rest of

the plane was achieved via numerical interpolation between the results at these 206 points.
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An example of some results obtained using the POVM apparatus and unitary correction

setup is shown in Fig. 3.8. Note that this data was in fact taken with a different source

of entangled photons than the one described in sec. 3.2.1.1, built by Kurt Schreiter and

Aron Pasieka and modeled after Ref. [73]. However, this source was used with the POVM

apparatus and unitary correction setup in exactly the manner described above.

The data shows the fidelity between the tomographically reconstructed output state and

the output of the ideal protocol as a function of the polar angle � and the azimuthal angle

� of the ideal output in the Bloch sphere representation. Note that the top and bottom

of the graph respectively correspond to the ‘South pole’ and ‘North pole’ of Bloch sphere,

and thus each represent only one distinct state. The coloring of the plane, representing

fidelity, was obtained by interpolating between the fidelity values obtained for 206 different

measured output states, represented in the figure as black circles. Note that these are the

same 206 sets of settings {�, �} as measured to produce Fig. 4.4, and the interpolation

was accomplished using the same methods as well.

Notice that the fidelity is noticeably better near the ‘poles’ of the Bloch sphere than

near the ‘equator’, which contains the states with equal superpositions of ∣H⟩ and ∣V ⟩.
This is due in part to the characteristics of this source, which exhibited significantly better

correlations in the ∣H,V ⟩ basis than the ∣D,A⟩ basis. However it is also due in part to

variations in the ambient laboratory temperature, which can slightly shift the relative phase

of the U and L paths in the POVM apparatus before recombination in the respective beam

displacer. For the preparation of states near the ‘poles’ of the Bloch sphere, i.e. � ≈ 0 or �,

this has little effect on the output state, as the measured photon is nearly localized in either

the U or L path. However, for states near the ‘equator’, the measured photon is in a near-

equal superposition of these two paths, and the recombination phase significantly affects

the output state.

As the lab temperature varied away from the temperature at which the POVM appara-

tus phases were aligned, this caused a corresponding decrease in the output fidelity of the

protocols. This is illustrated in Fig. 3.9, which shows the output fidelity for expected states

{∣ (�, �)⟩} near the Bloch equator, the output fidelity for states near the Bloch poles, and

the ambient laboratory temperature as a function of time. This data was obtained from

the results of tomographies on the output for 2060 sets of POVM settings {�, �}, taken

over a period of nearly two days. Note that not all 2060 output fidelities are included in

this figure, but rather only those that fall within �/10 radians of either the Bloch ‘equator’

or one of the ‘poles.’
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Figure 3.9: Fidelity of the experimental protocol for those settings near the Bloch ‘equator’

and those near the Bloch ‘poles’, and ambient laboratory temperature, as a function of

time. The green line represents the protocol fidelity for those POVM settings for which

the ideal output should have been within �/10 radians of either the North or South ‘pole’

of the Bloch sphere. The blue line represents the protocol fidelity for settings with ideal

outputs within �/10 radians of the Bloch ‘equator’, consisting of states which are near-equal

superpositions of ∣H⟩ and ∣V ⟩. The red line shows the temperature in the laboratory.

The correlations between temperature change and fidelity for states near the ‘equator’

are illustrated even more starkly in Fig. 3.10, which again shows the output fidelities for

states near the Bloch ‘equator’, but this time also shows the absolute temperature difference

∣T −T0∣, where T0 was the temperature at which the POVM apparatus was aligned. In this

case the correlations are clearly visible. In practice, these results meant that, given the

usual degree of temperature fluctuations in our laboratory, data could only be taken for

approximately four or five hours without the need to re-align the POVM apparatus. How-

ever, this window still allows time to perform the protocol and tomographically reconstruct
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Figure 3.10: Fidelity of the experimental protocol for those settings near the Bloch ‘equa-

tor’, and the absolute difference ∣T − T0∣ between the ambient lab temperature T and the

temperature T0 at the time of POVM alignment, as a function of time. Notice the strong

anticorrelations between the absolute temperature difference and the fidelity: the further

the temperature deviates from its initial value, the worse the protocol fidelity becomes.

the output for several hundred different sets of settings {�, �}.
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Chapter 4

Cluster-State Quantum Computing

Enhanced by High-Fidelity

Generalized Measurements

4.1 Notes and Acknowledgements

The remaining sections of this chapter consist of the following paper, which is currently

available on the physics e-print repository the arXiv, and at the time of writing this thesis

is in submission for publication:

Devon N. Biggerstaff, Terry Rudolph, Rainer Kaltenbaek, Deny Hamel, Gregor Weihs,

and Kevin J. Resch. Cluster-state quantum computation enhanced by high-fidelity gener-

alized measurements. e-print arXiv:quant-ph/0909.2843v1, 2009.

Abstract

We introduce and implement a technique to extend the quantum computational power

of cluster states by replacing some projective measurements with generalized quantum

measurements (POVMs). As an experimental demonstration we fully realize an arbitrary

three-qubit cluster computation by implementing a tunable linear-optical POVM, as well

as fast active feedforward, on a two-qubit photonic cluster state. Over 206 different com-

putations, the average output fidelity is 0.9832±0.0002; furthermore the error contribution
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from our POVM device and feedforward is only of O(10−3), less than some recent thresh-

olds for fault-tolerant cluster computing.

Changes for this Thesis

In order to maintain consistency to the best extent possible with the e-print version and

with any eventual published version of this material, the material has not been changed

from the version posted online and submitted for publication, with the following exceptions:

∙ Equations and figures have been re-numbered in line with the remainder of the thesis.

∙ Figures have been re-sized.

∙ The references of this chapter have been merged into one bibliography with those of

the rest of the thesis, including changes to the numbering and reference style.

∙ Titles have been given to sections and subsections for clarity of organization and

consistency with the remainder of the thesis.

∙ For the benefit of the reader, references to background material presented earlier in

the thesis have been added where appropriate.

Acknowledgement of Contributions by Co-Authors

The material presented in this chapter stems from joint work with collaborators who form

the co-authors on the e-print version and that submitted for publication. I take this

opportunity to thank each of my co-authors for their work, their help, and their patience

with me. The major contributions of each author, including myself, were as follows:

∙ I, Devon N. Biggerstaff constructed the experimental apparatus with the ex-

ception of the Sagnac source of polarization-entangled photon pairs (built by Deny

Hamel) and the individual (classical) TTL logic components. Furthermore I tested

and aligned the apparatus and calculated its expected output as detailed in Ch. 3,

analyzed the experimental data, created the figures, wrote the first draft of all the

text except for sec. 4.3, and had primary responsibility for the editing process.
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∙ Terry Rudolph initially developed the theory for the use of POVM measurements

to extend the power of cluster-state quantum computing, wrote the primary draft

of the material in sec. 4.3, and provided invaluable help and suggestions with the

remainder of the writing and editing process.

∙ Rainer Kaltenbaek wrote all the software for controlling the measurement appara-

tuses and performing tomographic analysis of the results. In addition he performed

initial testing of the Pockels cells, numerically calculated the settings for the set of

200 maximally-spread pure states which we computed (see p. 74), and was an invalu-

able resource in helping me understand and address experimental problems. Finally

he also played a large part in the editing process.

∙ Deny Hamel built the Sagnac source of polarization-entangled photon pairs (see

Fig. 4.2a) and helped me to align it and integrate it with the rest of the experiment.

∙ Gregor Weihs helped procure the experimental equipment for the Sagnac source.

∙ Kevin J. Resch Developed the initial design for the POVM apparatus as well as

the theory for this specific experimental implementation of Terry’s ideas concerning

cluster computing and generalized measurements, and supervised all my experimental

work, data analysis, and the entire writing and editing process.

4.2 Introduction

Measurement-based (cluster) computation [8, 9, 10] is an attractive alternative to stan-

dard circuit-based quantum computing (see sec2.2.2). Instead of requiring multi-qubit

gates, which are hard to implement experimentally, cluster computing requires only sim-

ple, single-qubit projective measurements (see Sec. 2.2.2-2.2.3). However, the prerequi-

site is a highly-entangled, multi-qubit cluster state. Thus far, laboratory cluster states

[18, 42, 74, 43, 44, 45, 46] have proven difficult to generate and limited in size. In or-

der to make the most of these resources it is thus desirable to find means to extend the

computational power of available clusters. Here we introduce one such technique, based

on performing Positive Operator-Valued Measures (POVMs, see Sec. 2.1.3.3)[21, 65, 67]

on cluster-state qubits instead of standard projective measurements. As an experimental

demonstration, we implement this technique to perform a three-qubit cluster computation

for state preparation using linear optics and two entangled photons. Our results show the
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Figure 4.1: Cluster computing with POVMs. (a) A four-qubit ‘box’ cluster, one of the

largest clusters achievable experimentally with optical qubits [18, 42, 74, 43, 44, 45, 46].

By measuring the input cluster qubits and implementing the correct Pauli error correc-

tion, one achieves output equivalent to the circuit shown. Note: {X, Y, Z}: standard Pauli

operators; H: Hadamard operator (X +Z)/
√

2; Z(�): exp (iZ�/2); � (on a cluster qubit):

measurement in ∣�±⟩ = ∣0⟩±exp (i�) ∣1⟩. (b) A larger computation, and equivalent circuit,

achievable via implementing POVMs on each input qubit of the same ‘box’ cluster. Clus-

ter qubits with dashed outlines represent ‘virtual’ qubits simulated by performing POVMs

{E}� and {E}�. (c) The computation we perform experimentally. By performing the

POVM {Em} on the input qubit to our two-qubit cluster, we realize a three-qubit lin-

ear cluster computation, which in turn corresponds to a circuit for arbitrary pure state

preparation via successive rotations of ∣+⟩ around the z and x axes.

error introduced by the POVM apparatus and subsequent feedforward to be of O(10−3),

suggesting operation within recent thresholds for fault-tolerant cluster quantum computing

[48].

4.3 Theory

Every POVM can be implemented by interacting an ancilla with the system to be mea-

sured, and performing projective measurement(s) on the combined Hilbert space [21] (see

p. 13). Consider using the controlled-Z (CZ) operation (the interaction) to attach a new
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small cluster (the ancilla) to a qubit S (the system) in a cluster to be used for compu-

tation. By then performing single-qubit projective measurements on the ancillary cluster

and S, we implement a POVM on S. For cluster computation, it matters only that the

correct POVM is implemented; the manner in which this is accomplished is immaterial. In

particular it may not be necessary to perform the (often technically challenging) task of

interacting S with ancillary physical systems; the same POVM can be implemented using

additional degrees of freedom of the qubit itself [75, 76], which are readily available in many

architectures. For the photonic polarization qubits considered herein, one can employ an

additional spatial-mode degree of freedom to implement an arbitrary 4-outcome POVM,

and all single-qubit POVMs can be obtained by suitable (classical) processing of such a

POVM [75].

As a specific example, consider the 4-qubit box cluster [18], and equivalent circuit,

shown in Fig. 4.1a). By performing POVMs on each of the first two qubits, one can

effectively add ‘virtual’ qubits, thereby simulating a larger circuit, as shown in Fig. 4.1b).

Our approach differs fundamentally from recent experiments employing hyperentangled

photon pairs for cluster computing [46, 44]. In contrast to those works, our method can

replace arbitrarily large pieces of cluster, and avoids the complications of sources producing

particles entangled in multiple degrees of freedom. Furthermore our technique incorporates

perfect automatic feedforward in the ‘virtual’ qubits, and is sufficiently versatile to serve

as a useful primitive for large-scale cluster computers: POVMs (including those performed

herein) can be applied, without modification, towards enhancing the computational power

of any given cluster.

Before addressing the specifics of implementing an optical POVM to simplify cluster

computations, let us mention some other closely related quantum information processing

tasks. The ability to perform an arbitrary POVM on one qubit from a (not necessarily

maximally) entangled pair constitutes the basic primitive of quantum steering [1, 77],

which underlies the optimal cheating attacks [27, 78] on generalizations of the BB84 two-

party bit commitment protocol. It also underlies the procedure for achieving maximum

disturbance-free control [79], a basic primitive of quantum cryptography.

As a demonstration of our technique, consider the computation in Fig. 4.1c). We employ

the smallest non-trivial cluster of two qubits; as depicted, a POVM on the first qubit allows

a three-qubit computation. We label the ancillary qubit A and the system qubits S1 and

S2. In the manner of a standard cluster computation, we imagine A is initially in the

state ∣+⟩A, is bonded to S1 via a CZ gate CZS1A, and is then projected into the basis

69



Ch. 4. Cluster-State Quantum Computing with POVMs

∣�±⟩ = ∣0⟩ ± ei� ∣1⟩. Depending on the sign of the outcome (+ or −), qubit S1 must

subsequently be projected into either ∣±⟩ or X ∣±⟩, respectively. These measurements

are equivalent to the 4 projectors ΠS1A
ab = Za∣�+⟩A⟨�+∣Za ⊗XaZb∣+⟩S1⟨+∣ZbXa , where

a, b ∈ {0, 1}. We can represent this process as a POVM on S1 as:

ES1
ab = ⟨+A∣CZS1AΠS1A

ab CZS1A∣+A⟩. (4.1)

As can be readily verified, the POVM elements are {Em} = 1
2

{
�m ∣�⟩⟨�∣�†m

}
, where we use

the index m = 1, ..4, ∣�(�, )⟩ = cos (�/2) ∣0⟩ − iei sin (�/2) ∣1⟩, and �m ∈ {1, X,XZ,Z}.

The cluster model requires active feedforward in order to drive deterministic quantum

computations despite inherently random measurement outcomes [80, 74]. When using

POVMs on cluster qubits, the required feedforward depends on the measurement outcome:

after performing POVM {Em} on S1 and obtaining outcome m, the operator �m must be

applied to the output qubit S2 in order to recover the outcome of the circuit in Fig. 4.1c).

4.4 Experimental Implementation

In our experiment we begin with photons in the Bell state ∣Φ+⟩S1S2
, where ∣Φ±⟩ = ∣HH⟩±

∣V V ⟩, and H and V indicate horizontal and vertical polarization, our ∣0⟩ and ∣1⟩, respec-

tively. ∣Φ+⟩ differs from a 2-qubit cluster by a Hadamard on one photon. We make a

convenient adjustment of our second measurement angle so as to implement the POVM:

{ℰn(�, �)} =
1

2
{Z�∗Z, �∗, X�∗X, XZ�∗ZX}, (4.2)

where � = ∣ ⟩⟨ ∣, and ∣ (�, �)⟩ = cos (�/2) ∣H⟩ + ei� sin (�/2) ∣V ⟩. After performing

{ℰn} on photon S1 from our actual two-photon state ∣Φ+⟩S1S2
, obtaining outcome n, and

implementing �n ∈ {Z,1, X,XZ} on S2, the output will be state ∣ (�, �)⟩, where � and

� are adjustable experimental parameters which respectively correspond to the polar and

azimuthal angle of the output in the Bloch sphere representation (see Sec. 2.1.1.1).

We generate entangled photons as shown in Fig. 4.2a) [54, 55] (see sec. 3.2.1.1). A

grating-stabilized diode laser outputs 0.86 mW at 404.5 nm to bi-directionally pump a

25 mm periodically-poled KTiOPO4 (PPKTP) crystal in a polarization-dependent Sagnac

interferometer, yielding 809 nm entangled photons via type-II parametric downconversion.

At this power, the SMFs typically output singles (coincidence) rates of 150 (30) kHz.

Polarization controllers (bat-ears) in the SMFs ensure the output is ∣Φ+⟩.
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Figure 4.2: Experimental implementation of cluster-state computing with a POVM. a)

A source [54, 55] produces maximally-entangled photon pairs coupled into single-mode

fiber (SMF). b) The POVM is based on an optical interferometer constructed using calcite

beam-displacers (BDs), which couple the polarization of the photon to the path, thereby

enlarging the state space for the generalized measurement. Details are given in the text.

c) Schematic of the cluster-state quantum computer. Photon-1 is measured in the POVM.

Two Pockels cells (PCs), each fired dependent on the measurement outcome, actively

perform the required correction of Pauli errors. A 50 m SMF serves to delay Photon-2,

allowing time to trigger the PCs. The computational output is analyzed using quantum

state tomography. Note: DM: dichroic mirror; IF: blocking and interference filter; PBS:

polarizing beamsplitter; H(Q)WP: half (quarter) wave-plate; SPCM: fiber-coupled single-

photon counting module.
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The apparatus for performing the POVM {ℰn} is depicted schematically in Fig. 4.2b)

(see sec. 3.4.2). It is a polarization-based double interferometer employing calcite beam

displacers (BDs). Due to transverse walk-off, these couple polarization with optical path,

enlarging the state space from dimension two to four. The settings {�, �} of the POVM

are determined by half-wave plates (HWPs) in the interferometer. Polarization measure-

ments are implemented using polarizing beamsplitters (PBSs). The four output modes are

coupled into SMF and detected using single-photon counting modules (SPCMs). The BD

construction is inherently phase-stable because the interfering paths propagate through

common optics [71]. Furthermore, we align the setup using an 809 nm diode laser injected

through the input SMF and a removable polarizing optic, and typically measure classi-

cal interference visibilities > 99.8%; thus the setup is promising for high-fidelity, stable

operation.

The action of this apparatus can be understood as follows. An arbitrary input qubit

is in state a ∣H⟩ + b ∣V ⟩. The first BD displaces the H- relative to the V -component,

introducing a ‘path qubit’ with basis states upper ∣U⟩ and lower ∣L⟩, and thereby creating

the entangled state a ∣HU⟩ + b ∣V L⟩. The polarization qubit is then measured using a

HWP at angle �/4 and a PBS. HWPs at 45∘ then flip the polarization in path U (L) in

the transmitted (reflected) arm. HWPs at 0∘ are included in the other path to balance

path-lengths, and allow the phase to be adjusted via tilting about their vertical axes.

Recombining the paths at subsequent BDs converts the ‘path’ qubit back to polarization;

this qubit is then measured via a QWP at 45∘, a HWP at −�/4 (+�/4), and a PBS in the

transmitted (reflected) arm. This yields the POVM elements {ℰn} as follows: The outcome

TR which stems from (T)ransmission at the first PBS and (R)eflection at the second then

corresponds to �∗(�, �)/2, and the TT, RT and RR outcomes to Z�∗Z/2, X�∗X/2, and

XZ�∗ZX/2, respectively.

We implement the necessary feedforward using two fast RbTiOPO4 (RTP) Pockels cells

(PCs) (Leysop RTP4-20-AR800), able to switch to their half-wave voltage of 1.027 kV in

< 5 ns, both oriented such as to enact an X operation (i.e. a HWP at 45∘) when triggered.

The first PC will be triggered by POVM outcomes RT or RR; the second is surrounded

by HWPs which rotate its action to Z, and is triggered by outcomes TT or RR. Photon-2

is stored in a 50m SMF for 250 ns of delay to allow ample time for detection, logic, and

triggering the PCs. Note that one stage of feedforward is incorporated directly into the

design of the POVM since the angle of the last HWP is dependent on the outcome of the

polarization measurement. This reduces experimental cost and complexity, as we require
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Figure 4.3: Experimentally reconstructed density matrix �S1S2of our two-photon cluster

state: real part (left) and imaginary part (right). The fidelity with the ideal state ∣Φ−⟩
is F = 0.980 ± 0.001; the tangle is T = 0.926 ± 0.002 and the purity, Tr(�2), is P =

0.963± 0.002 [20, 81].

one less PC over a direct implementation [74]. It also improves computational speed, as

each additional PC requires delaying the relevant photon by O(100)ns to allow time for

detection, logic, and triggering; in our POVM this feedforward requires a mere couple ns

of optical path. After correction, we perform state tomography on Photon-2 using a HWP,

QWP, PBS, and SPCM. Our raw data consists of coincidence counts between this output

and any one of the four POVM outcomes.

4.5 Results and Conclusions

We characterized the entangled state generated in fibers 1 and 2 (see Fig 4.2a) via over-

complete state tomography (see sec. 2.1.5). To analyze Photon-1, we employed the first two

waveplates in the POVM and the H output of the first BD; the V output was blocked, and

the other waveplates set so as to direct all photons to output TT. We then counted coin-

cidences between this output and that of the polarization analyzer following the (switched

off) PCs. The density matrix is reconstructed via a maximum-likelihood technique [36],

and shown in Fig. 4.3. Our measured state �S1S2 has fidelity F = 0.980 with ∣Φ−⟩. When
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not in use for tomography, the QWP at the beginning of the POVM is removed and the

HWP set to 0∘, which maps the ∣Φ−⟩ source state to ∣Φ+⟩.

We tested this cluster computer by performing computations with 206 different mea-

surement settings {�, �} over a period of four hours. The target output states {∣ (�, �)⟩}
include the six eigenstates of X, Y and Z, and 200 numerically-generated settings designed

to be spread evenly over the surface of the Bloch sphere. For each computation, the output

density matrix �m is tomographically reconstructed based on coincidence measurements in-

tegrated over 8 s for each of six analyzer settings (the eigenstates of X, Y and Z.) We

record maximum coincidence rates of about 3 kHz, summed over the four outputs.

Using the reconstructed density matrix �S1S2 (Fig. 4.3), and assuming a perfect POVM

and feedforward, we can estimate the output of the computation:

�e (�, �) =
4∑

n=1

�nTr1

[
(ℰn⊗1)�S1S2(ℰn⊗1)†

]
�†n. (4.3)

Fig. 4.4a) shows the fidelity between �e and the target output ∣ ⟩.

Fig. 4.4b) shows the fidelity F (�m, ∣ ⟩) between our measured states and the target

outputs. For these 206 computations the mean fidelity is 0.9832 ± 0.0002, where the

uncertainty is the standard error in the mean. This compares favorably with the expected

mean fidelity F (�e, ∣ ⟩) = 0.9865 ± 0.0001 for the same 206 states. The distribution of

F (�m, ∣ ⟩) is largely explained by two factors: expected variance due to the imperfect

entangled state, and fluctuations from Poissonian counting statistics, as determined by a

Monte Carlo simulation.

We characterize the errors introduced by the POVM and feedforward using the quan-

tity (1− F (�e, �m)), shown in Fig. 4.4c), where F is the mixed-state fidelity [20] (see sec.

2.1.3.2. With a mean error of only (1 − F ) = (1.16 ± 0.05) × 10−3, our results demon-

strate remarkable agreement with the model (Fig. 4.4a) based on �S1S2 . More importantly,

this shows that our POVM and feedforward are very stable and exhibit a low error rate,

comparable to some thresholds for fault-tolerant cluster computing [48].

We have shown how POVMs may be employed in cluster quantum computing to in-

crease the computational power of any given cluster. Furthermore we have experimentally

demonstrated this technique by fully realizing an arbitrary, high-fidelity three-qubit clus-

ter computation using two photons. Some feedforward steps can be incorporated into the

design of the POVM, significantly improving computational speed while reducing experi-
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Figure 4.4: (Color) Expected and measured fidelity of computational output. a) The ex-

pected output fidelity based on the measured cluster state, �S1S2 , assuming perfect POVM

operation and feedforward. b) The measured output fidelity with the target outputs; the

mean is F = 0.9832 ± 0.0002. c) The deviation from unity of the fidelity between the

expected and measured states 1− F (�e, �m); the mean is (1− F ) = (1.16± 0.05)× 10−3.

This shows our POVM and feedforward to be operating with very high fidelity.
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mental complexity. This technique should be incorporated into future cluster computers

to maximize the utility of available resources.

Acknowledgements We thank N. Killoran, N. Lütkenhaus, and K.M. Schreiter for valu-

able discussions, and Z. Wang for designing and building our TTL logic. D.B. acknowledges

financial support from the Mike and Ophelia Lazaridis Fellowship. T.R. acknowledges sup-

port from EPSRC and the US Army Research Office. We are grateful for financial support

from NSERC, OCE, and CFI.

76



Chapter 5

Derivation and Experimental Test of

Fidelity Benchmarks for Remote

Preparation of Arbitrary Quantum

States

5.1 Notes and Acknowledgements

The remaining sections of this chapter consists of the following paper, which is currently

available on the physics e-print repository the arXiv, and at the time of writing this thesis

is in submission for publication:

Nathan Killoran, Devon N. Biggerstaff, Rainer Kaltenbaek, Kevin J. Resch, and Nor-

bert Lütkenhaus. Derivation and experimental test of fidelity benchmarks for remote

preparation of arbitrary quantum states. e-print arXiv:quant-ph/0909.5461, 2009.

Abstract

Remote state preparation (RSP) is the act of preparing a quantum state at a remote

location without actually transmitting the state itself. Using at most two classical bits and

a single shared maximally entangled state, one can in theory remotely prepare any qubit

state with certainty and with perfect fidelity. However, in any experimental implementation
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the average fidelity between the target and output states cannot be perfect. In order for an

RSP experiment to demonstrate genuine quantum advantages, it must surpass the optimal

threshold of a comparable classical protocol. Here we study the fidelity achievable by RSP

protocols lacking shared entanglement, and determine the optimal value for the average

fidelity in several different cases. We implement an experimental scheme for deterministic

remote preparation of arbitrary photon polarization qubits, preparing 178 different pure

and mixed qubit states with an average fidelity of 0.995. Our experimentally-achieved

average fidelities surpass our derived classical thresholds whenever the classical protocol

does not trivially allow for perfect RSP.

Changes for this Thesis

In order to maintain consistency to the best extent possible with the e-print version and

with any eventual published version of this material, the material has not been changed

from the version posted online and submitted for publication, with the following exceptions:

∙ Equations and figures have been re-numbered in line with the remainder of the thesis.

∙ Figures have been re-sized.

∙ The references of this chapter have been merged into one bibliography with those of

the rest of the thesis, including changes to the numbering and reference style.

∙ The appendices to the paper have been moved to the end of the thesis, in Appendices

A.1 and A.2.

∙ For the benefit of the reader, references to background material presented earlier in

the thesis have been added where appropriate.

Acknowledgement of Contributions by Co-Authors

The material presented in this chapter stems from joint work with collaborators who form

the co-authors on the e-print version and that submitted for publication. In particular, my

colleague Nathan Killoran is primarily responsible for the theory content of this chapter

and is first author on the associated paper, while I was primarily responsible for the

experimental content. The material in this chapter will probably form a significant part of
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Nathan’s Ph.D. dissertation as well. I take this opportunity to thank each of my co-authors

for their work, their help, and their patience with me. The major contributions of each

author, including myself, were as follows:

∙ Nathan Killoran derived the thresholds for bounds on remote state preparation

without shared entanglement, and worked with me to understand our experimental

capabilities and try to produce bounds which could be tested and surpassed in the

lab (with shared entanglement). Furthermore he created some of the figures, wrote

the first draft of the paper except sections 5.3.1 and 5.5, and shared responsibility

with me for the editing process.

∙ I, Devon N. Biggerstaff constructed the experimental apparatus with the ex-

ception of the Sagnac source of polarization-entangled photon pairs (built by Deny

Hamel) and the individual (classical) TTL logic components. Furthermore I tested

and aligned the apparatus and calculated its expected output as detailed in Ch. 3,

analyzed the experimental data, created some of the figures, wrote the first drafts of

sections 5.3.1 and 5.5, and shared responsibility with Nathan for the editing process.

∙ Rainer Kaltenbaek wrote all the software for controlling the measurement appara-

tuses and performing tomographic analysis of the results. In addition he performed

initial testing of the Pockels cells and was an invaluable resource in helping me un-

derstand and address experimental problems. Finally he also played a large part in

the editing process.

∙ Kevin J. Resch Developed the initial design for the POVM apparatus as well as the

theory for its implementation in an RSP protocol, and supervised all my experimental

work, data analysis, and the writing and editing process.

∙ Norbert Lütkenhaus supervised Nathan’s theoretical investigations as well as the

writing and editing process.

5.2 Introduction

The field of quantum information processing has revealed many communication and compu-

tational protocols which can theoretically outperform their classical counterparts [82, 19].
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Among the most famous is quantum teleportation [5], wherein Alice uses pre-shared en-

tanglement and limited forward classical communication to produce an arbitrary unknown

quantum state at Bob’s location (see sec. 2.1.6). Another example is remote state prepara-

tion [83, 84] (RSP), a variant of teleportation where Alice has full knowledge of the state

she intends to prepare at Bob’s location. RSP protocols have several practical applications

including forming part of deterministic arbitrary single-photon sources [66] or efficient,

high-fidelity quantum repeaters [68].

However, due to the practical limitations of imperfect devices, no RSP experiment can

yield remotely-prepared output states which exactly match the intended states. Indeed,

we should be satisfied when the output states have a high fidelity with the intended states.

This raises the question: how high must this fidelity be, on average, for an experiment to

demonstrate a genuine quantum advantage? In other words, if we restrict Alice and Bob

to a comparable, fixed amount of classical communication—but no shared entanglement—

what is the optimal average RSP fidelity they could achieve? It is only when an experiment

surpasses such a classical threshold that we can be sure of having demonstrated verifiable

advantages to quantum communication.

In several early publications on teleportation, thresholds are given to justify which

results are genuinely in the non-classical regime [85, 53, 86, 87]. For example, for the

teleportation of qubit states, average fidelities higher than 2
3

are not possible with only

classical resources [88]. To the best of our knowledge, such thresholds have neither been

published nor tested for RSP. This paper then has two main objectives: First, we exam-

ine the limits on RSP with and without shared entanglement. Dependent on the target

states and the allowed communication resources we derive several benchmarks separating

genuinely quantum results from those which can be achieved with only classical communi-

cation. Second, we report and implement a new, fully-deterministic protocol for the remote

preparation of arbitrary photon polarization states with high fidelity. Our protocol relies

on generalized measurements (POVMs) and demonstrates several distinct advantages over

previous experiments. In comparison with our derived benchmarks, our experimental data

surpasses the limits of classical communication in all possible instances.

The remainder of this paper is organized as follows: In section 5.3, we outline the

common framework for the RSP protocols examined in this work and flesh out the rel-

evant theory in detail. We describe an entanglement-based protocol which theoretically

achieves perfect fidelity between target and output qubit states using two classical bits of

communication. We also analyze the optimal strategy in the “classical” case, where no
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entanglement is allowed. In section 5.4 we evaluate the optimal classical thresholds and

give benchmarks for several choices of pure target state ensembles, including finite, contin-

uous, and mixed state ensembles. Section 5.5 describes our optical RSP experiment and

compares our results to both pure and mixed state benchmarks. In section 5.6 we conclude

the paper.

5.3 Theory

The goal of remote state preparation is to prepare a quantum state at a distant location,

without sending the actual state. Alice, the sending party, knows exactly the target state

�tar that she wants Bob, the receiving party, to have. Several features are usually desired in

an RSP protocol: Bob should need limited or zero knowledge of the state Alice is trying to

prepare, and the required communication resources (classical and/or quantum) should be

limited. Perhaps most importantly, the protocol should yield output states �out at Bob’s

location which closely match the target states �tar which Alice intended to prepare. There is

no universally preferred measure for evaluating protocol performance, but in benchmarking

situations where we want target and output states to match, the quantum fidelity [20] is a

suitable choice, given by

F (�, �) =

[
Tr

(√√
� �
√
�

)]2

. (5.1)

Ideally, the fidelity should be F (�tar, �out) = 1 for any target state.

In order to make meaningful comparisons, we need a common framework to test the

performance of RSP protocols and experiments. We imagine that Alice and Bob are

challenged with the following task: Both parties are given full prior knowledge of some fixed

ensemble of target states {�tar
� , p�}, and may coordinate beforehand on their strategy. To

begin, Alice samples from the ensemble and, with probability p�0 , she picks the index �0.

Unlike teleportation, Alice accesses the state index, not the state, though she has complete

information about the state and may prepare herself a copy if desired. She communicates

a message to Bob, sending a limited number c of classical bits (cbits). Bob then prepares

an output state �out
�0

. Their goal is for the output states to match the target states with

the highest possible quantum fidelity, on average, i.e. to maximize the quantity

⟨F ⟩ =
∑
�

p�F (�tar
� , �out

� ). (5.2)
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Figure 5.1: Evaluating remote state preparation protocols. Alice samples a state �tar

from a given distribution of target states and Bob aims to prepare a closely matching

state. In classical RSP protocols, Alice may send only a limited number of classical bits to

Bob. In quantum RSP protocols, the parties also share some pre-distributed entanglement.

Their goal is to maximize ⟨F (�tar, �out)⟩, the RSP fidelity averaged over the entire target

distribution.

We will be considering the situation where the target ensemble consists of a finite number of

states as well as that where the target ensemble forms a continuum. In the latter situation,

the above sum and probabilities are generalized to an integral and probability densities,

respectively.

We are concerned in this work with two types of remote state preparation, which we

call the “quantum case” and the “classical case”. These labels refer to the communication

resources allowed, and not the state prepared, which is always quantum mechanical. In

the quantum case, Alice and Bob share a pre-distributed entangled state to help with their

task. In the classical case, no initial quantum correlations between Alice and Bob are

allowed. In both cases, once a target state has been selected, only c cbits may be sent, and

this classical communication is only permitted one way, from Alice to Bob. We will now

investigate both of these cases separately.

5.3.1 Quantum RSP

In this section we discuss the abilities and limitations of several quantum RSP protocols

and briefly survey previous experimental implementations. We confine the discussion to

the remote preparation of qubit states, although some of the results generalize to higher

dimensions. In all the protocols discussed, Alice must implement a measurement on her

qubit from a shared entangled pair. We term a quantum RSP protocol deterministic if the

protocol succeeds for every outcome of this measurement. Furthermore we differentiate

between those quantum RSP protocols where Alice can prepare any arbitrary (pure or
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mixed) qubit at Bob’s location, and those protocols which require that Bob have some

foreknowledge of the state (e.g. that it be from some particular ensemble which forms a

proper subset of all possible qubit states). We then present the protocol employed in our

experiment, which is deterministic and allows the preparation of arbitrary qubits.

An arbitrary qubit state � can be expressed in terms of the 2× 2 Pauli matrices:

� =
1 + r⃗⋅ �⃗

2
, (5.3)

where �⃗ = (X, Y, Z) and r⃗ is the Bloch vector which uniquely identifies the state according

to its position in the Bloch sphere. Alternately, the same qubit can be written as

�(�, �, r) = r ∣ ⟩⟨ ∣+ (1− r)(1/2), (5.4)

where

∣ (�, �)⟩ = cos (�/2) ∣0⟩+ ei� sin (�/2) ∣1⟩ . (5.5)

Here � and � are the polar and azimuthal angles of � in the Bloch sphere representation,

respectively, and r = ∣r⃗∣ =
√

2
(
Tr�2 − 1

2

)
∈ [0, 1] is the radius of the state’s Bloch vector.

Most RSP (and teleportation) protocols begin with the assumption that Alice and Bob

share an initial supply of maximally-entangled qubit pairs, usually one of the Bell states

∣Φ±⟩ = 1
2
(∣00⟩ ± ∣11⟩) and ∣Ψ±⟩ = 1

2
(∣01⟩ ± ∣10⟩). Shared maximally-entangled pairs are

sometimes called ebits (see sec. 2.1.4).

Lo first proved that in the asymptotic (large-N) limit, Alice can deterministically pre-

pare N known pure qubit states from certain (restricted) ensembles at Bob’s location

using half the classical communication required for the teleportation protocol [83]; Pati

[84] provided an explicit deterministic protocol whereby a single pure target qubit state

�tar = ∣ ⟩⟨ ∣ from such an ensemble can be remotely prepared with only one cbit and

one ebit. The basic idea is as follows: Alice and Bob decide beforehand on an ensemble

of states consisting of a single great circle on the Bloch sphere, specified by a Bloch vec-

tor n̂. For each remotely prepared qubit, they share a singlet state ∣Ψ−⟩. Alice projects

her entangled qubit into the basis {∣ ⟩ ,
∣∣ ⊥〉}. If the result is

∣∣ ⊥〉, Bob’s qubit will be

in state ∣ ⟩ as desired; if Alice’s result is ∣ ⟩, Alice’s transmitted cbit instructs Bob to

perform the basis-specific not operation on his qubit via rotating by � about the n̂ axis,

thereby transforming his qubit
∣∣ ⊥〉 7→ ∣ ⟩. However, if Alice wishes to remotely prepare

an arbitrary pure qubit, not from a pre-specified great circle, Bob cannot reliably flip his

qubit when he ends up with
∣∣ ⊥〉 due to the non-unitarity and thus non-physicality of
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a universal-not operation [89], and therefore the protocol is non-deterministic with only

50% success probability.

Lo conjectured that two cbits transmitted from Alice to Bob would be necessary and

sufficient for the deterministic remote preparation of an arbitrary qubit state with only one

ebit [83]. This result was proven in Ref. [90] and, under more general conditions, in Ref.

[91]. Many other papers have further investigated the trade-off between required cbits,

ebits, and qubits for RSP (see e.g. Refs. [92, 93, 94, 95, 96, 97, 98]).

RSP protocols have been implemented to varying degrees in several experiments em-

ploying systems including nuclear magnetic spins [99], coherent superpositions of photonic

Fock states [100], atom-photon entanglement [68], and polarization-entangled photon pairs

[66, 101, 102, 103, 69, 70]. Among these, most of the employed protocols enabled the

preparation of arbitrary pure states with 50% success probability–or alternately, the de-

terministic preparation of qubits from specific, restricted ensembles. Several also enabled

preparation of some mixed states [66, 101, 103], and some allowed control of all three

parameters {�, �, r} required to prepare arbitrary pure or mixed states [102, 69]. Earlier,

refs. [68, 69] and, while we were preparing this manuscript, [70] successfully implemented

a generalized measurement on Alice’s qubit which should allow Bob to perform a unitary

correction and achieve the desired target state regardless of Alice’s measurement outcome.

However, in none of these papers is the required unitary actually implemented. To the best

of our knowledge we present the first experimental implementation of a fully deterministic

RSP protocol enabling the preparation of arbitrary (mixed and pure) qubit states.

Note however that in our actual experiment, Bob does not necessarily register a de-

tection event every time that Alice detects a photon. This is due to coupling losses and

detector inefficiency, which are unrelated to the efficiency of the RSP protocol itself. These

experimental considerations necessitate postselection on coincident detection events be-

tween any of Alice’s four measurement outcomes and Bob’s detector. Only if a coincidence

occurred can one infer that Alice and Bob shared an entangled pair (ebit), a prerequisite

for quantum RSP. This differs from the protocol employed in e.g. Ref [102], which employs

postselection to detect the ebit and for a specific measurement outcome. In our experi-

ment the postselection is only used to verify a shared ebit, and the protocol then functions

deterministically, succeeding for all of Alice’s measurement outcomes [74].

Our protocol makes use of the Bell state ∣Φ+⟩ and (at most) two cbits to remotely

prepare an arbitrary state �(�, �, r). For any pure state ∣ ⟩, the Bell state ∣Φ+⟩AB can be

written as 1
2

∑4
m=1 �

A
m�

B
m ∣ ∗A⟩ ∣ B⟩, where ∣ ∗(�, �)⟩ is the complex conjugate of ∣ (�, �)⟩ in
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the computational basis, and �
A(B)
m ∈ {1, X,XZ,Z} are Pauli operators acting on Alice’s

(Bob’s) qubit.

First, consider the case where Alice would like to help Bob remotely prepare a pure state

�(�, �) = ∣ ⟩⟨ ∣. She first performs a generalized measurement on her qubit, specifically a

positive operator-valued measure or POVM [19, 65, 67], defined by the elements

{Em(�, �)} =
1

2
{�m ∣ ∗⟩⟨ ∗∣�†m}. (5.6)

Dependent on the outcome m ∈ {0, ..., 3} obtained, Bob’s qubit will be left in the state

�m��
†
m. Alice then encodes the outcome m in two cbits and transmits the resulting message

to Bob. By implementing �m on his qubit, Bob will deterministically recover �.

The generalization of this scheme for preparing arbitrary mixed states is quite straight-

forward. If Alice sends the same message to Bob regardless of her measurement outcome,

his qubit will be left in the maximally mixed state 1
2
1. In order to remotely prepare an

arbitrary state �(�, �, r), Alice performs the same POVM {Em(�, �)} as she would to pre-

pare the pure state ∣ (�, �)⟩⟨ (�, �)∣. However, she only transmits the correct message

encoding the POVM outcome to Bob with probability r. Otherwise she sends a particular

message, regardless of the outcome obtained. Thus with probability r Bob’s qubit ends

up in ∣ ⟩⟨ ∣, and with probability (1 − r) he has 1
2
1, as desired. Due to the unequal dis-

tribution of probabilities among the messages, the classical communication cost required

to prepare mixed states, as measured by the Shannon entropy [104], will thus be less than

for pure states. This cost will range from 0 cbits for preparation of the maximally mixed

state to 2 cbits for pure states.1

5.3.2 Classical RSP

We now examine the classical case, where Alice and Bob share no entanglement. As our

goal is to find the optimal achievable fidelity, we assume in this scenario that Alice and

Bob are unencumbered by the imperfections of real-world devices. This assumption is

in the spirit of security proofs for quantum key distribution, where any adversary Eve is

assumed to be limited only by the laws of physics. It is only by surpassing the limits of this

ideal scenario that an experiment can provably demonstrate genuine quantum advantages.

1In particular the Shannon entropy of the communication required for preparing a state of purity r will

be H(r) = 2− log2(4− 3r) + 3r
4 log2

(
4−3r

r

)
.
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Therefore, the one-way classical channel between Alice and Bob is assumed to be perfect,

as is Bob’s ability to prepare any desired output state.

Although the experiment detailed in Section 5.5 is for qubit states, some of the results

in this section hold equally well for states in any finite dimensional Hilbert space. We begin

with no assumptions about the dimension except that it is finite, and we will specialize to

qubits (dimension 2) when appropriate. Furthermore, we are primarily interested in the

case where the target states are pure, �tar
� = ∣ tar

� ⟩⟨ tar
� ∣, so that the quantum fidelity is

equal to the matrix element

F (�tar
� , �out

� ) =
〈
 tar
�

∣∣ �out
�

∣∣ tar
�

〉
. (5.7)

Accordingly, we assume that the target ensemble consists of pure states {∣ tar
� ⟩ , p�}. In

section 5.4 we give benchmarks based on specific choices for this target ensemble.

We now examine the question: what is the optimal RSP strategy when the parties

share no quantum correlations, and Alice may only send c cbits to Bob? For every target

state ∣ tar
� ⟩, Alice sends a string of c classical bits. We can label all messages of this type

by a natural number m(�) = k ∈ {0, 1, ..., 2c − 1}. In general, the message assignment

may be either deterministic (e.g. m(�) = 3) or probabilistic, i.e. m(�) = k with prob-

ability qk(�), where for each �,
∑

k qk(�) = 1. The probabilistic framework contains all

deterministic strategies as special cases. Note that here we use ‘deterministic’ to refer to

Alice’s messaging strategy whereas elsewhere it is used to refer to the success probability

of the protocol (Sec. 5.3.1); in general our meaning will be clear from the context.

Upon receiving the message k, Bob prepares some output state �out
k . A probabilistic

messaging strategy would necessarily lead Bob to prepare a mixed output state �out
m(�) =∑

k qk(�)�out
k whenever state ∣ tar

� ⟩ is chosen. Similarly, for a given message k, Bob may

change the output state probabilistically. This strategy is naturally incorporated into our

framework, where we allow the output states �out
k to be mixed.

To determine which choice of output states optimize the average fidelity, we rewrite it
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in terms of the 2c unique messages:

⟨F ⟩ =
∑
�

p�
〈
 tar
�

∣∣ �out
m(�)

∣∣ tar
�

〉
=

2c−1∑
k=0

∑
�

p�qk(�)Tr(
∣∣ tar

�

〉〈
 tar
�

∣∣ �out
k )

=
2c−1∑
k=0

pkTr(�k�
out
k ) (5.8)

where pk =
∑

� p�qk(�) is the probability of Alice sending message k and

�k =
1

pk

∑
�

p�qk(�)
∣∣ tar

�

〉〈
 tar
�

∣∣ (5.9)

is a weighted average of the states where message k might be sent. When the fidelity is

written in this form, two notable features become apparent:

1. For each k, the quantity Tr(�k�
out
k ) is upper bounded by the largest eigenvalue �max

k of

the average state �k; this can be achieved if Bob outputs the corresponding eigenstate

�out
k = ∣�max

k ⟩⟨�max
k ∣. Thus, the optimal output states give

⟨F ⟩max =
2c−1∑
k=0

pk�
max
k . (5.10)

2. Since the optimal output states are pure (by point 1), the optimal messaging strategy

must, therefore, be deterministic, not probabilistic. In other words, a unique message

is sent for each target state. This corresponds to only one qk(�) being non-zero for

each �.

Taking these two points into account greatly simplifies the structure of the fidelity

optimization. Because the optimal message assignment is deterministic, the target en-

semble is effectively split into 2c disjoint partitions, depending only on the message k ∈
{0, 1, ..., 2c−1}. For each partitioning of the target ensemble, we can also calculate the

optimal output state and the resulting fidelity value using Eq. (5.10). All that remains is

to determine which partitioning maximizes the value of Eq. (5.10). To clarify notation,

we will henceforth use k to label both a message and the partition of the target ensemble

87



Ch. 5. Remote State Preparation Benchmarks and Experiments

consisting of states for which that message is sent. Again, the meaning will be clear from

the context.

In principle, for a finite number n of target states, the remaining optimization problem

only requires checking the value of Eq. (5.10) for each of the finite number of possible

partitionings, which can be done by computer. However the number of possible partition-

ings scales exponentially in n, rendering this calculation unreasonable for more than about

n = 10 states. In section 5.4 we outline an algorithm which efficiently provides bounds to

Eq. (5.10).

5.3.2.1 Qubits

If the states in question are qubits, we can put Eq. (5.10) into a simple geometric form.

When expressed in its eigenbasis, a qubit state takes the form

� =
1

2

[
1 + r 0

0 1− r

]
(5.11)

where r is the radius of the state’s Bloch vector. The largest eigenvector of a qubit is

directly related to the radius: �max = 1+r
2

. For any deterministic partitioning of the target

ensemble, we denote the average Bloch vectors by r⃗k = 1
pk

∑
�∈k p�r⃗� and their magnitudes

by rk. We find that the maximal average fidelity for qubits is given by

⟨F ⟩max =
1

2

(
1 +

2c−1∑
k=0

pkrk

)
. (5.12)

Hence, for a given deterministic partitioning, the best average fidelity is determined by

two sets of quantities: the probabilities pk of sending each message and the length of the

average Bloch vectors r⃗k within each of the 2c partitions.

In section 5.4, we will outline how to determine which choice of messages, i.e. which

partitioning of the target ensemble, maximizes Eq. (5.12).
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Figure 5.2: Example of a possible classical remote state preparation strategy. The tar-

get ensemble consists of the 6 pure states {∣0⟩ , ∣1⟩ , ∣0⟩±∣1⟩√
2
, ∣0⟩±i∣1⟩√

2
} (represented here as the

vertices of an octahedron inscribed within the Bloch sphere) with equal probabilities. A

possible partitioning strategy is given for the case where two cbits of classical communica-

tion are allowed, and the optimal output state for partition 11 is detailed.

5.4 Threshold calculations

5.4.1 Finite ensembles

Assume now that we have fixed a finite ensemble of target states {�tar
� , p�}n�=1. It is clear

that whenever n ≤ 2c, the optimal classical protocol can achieve perfect fidelity since there

is sufficient capacity in the message to uniquely label the state. The interesting cases

have n > 2c. Given the results of the previous section, the optimum average fidelity can

be determined by checking the value of Eq. (5.10) for all partitionings of the n target

states into 2c disjoint subsets, but this can be inefficient even for modest values of n and c.

Alternatively, we search for an upper bound on the threshold which is easier to calculate.

If an experiment surpasses the upper bound, it has surpassed the actual threshold.

We will now outline an efficient algorithm for determining such upper bounds. For this

algorithm, we make the additional assumption that each target state has equal probability

to be chosen from the target ensemble. We note that each partition contains some number

s of states and contributes one term to the sum in Eq. (5.10). Two different partitions with

the same number of states may contribute differently to the average fidelity, depending on
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the arrangement of the states. However, for each number s ∈ {0, 1, ..., 2c − 1}, there is

a set of s states which yields the maximal possible contribution ⟨F ⟩max
s . By using these

maximal values in Eq. (5.10) instead of the actual values, we obtain an upper bound on

the threshold.

The first step in the algorithm involves checking all partitions of size s to find the

maximal contribution ⟨F ⟩max
s . Next, we list all the ways in which n elements can be

divided into 2c subsets. The order of the subsets does not matter, so for simplicity we can

create our list in order of decreasing partition size. This list forms a table with 2c columns.

For each row i, we have a list of numbers {sij}2c−1
j=0 which sum to n. To determine the

upper bound, we calculate the quantity

⟨F ⟩i =
2c−1∑
j=0

sij
n
⟨F ⟩max

sij
. (5.13)

The highest ⟨F ⟩i provides us with an upper bound on the optimal average fidelity.

It may even be the case that the threshold is equal to the upper bound found via the

above algorithm, especially if the target ensemble exhibits a high degree of symmetry. To

verify this, one would have to find a specific partitioning which leads to the same value as

the upper bound. On the other hand, if we can show through other arguments that the

highest ⟨F ⟩i is unachievable, then the second highest ⟨F ⟩i provides a new, smaller upper

bound. We will make use of both of these points below.

Before proceeding, we pause to discuss the tradeoff between classical and quantum

communication resources. The remote state preparation scheme outlined in sections 5.3.1

and 5.5 uses one entangled qubit (ebit) and two cbits sent from Alice to Bob to remotely

prepare pure qubit states and less than two cbits for mixed states. A classical analog

might limit Alice to sending two cbits to Bob each run. However, it may be argued that

to distribute the entangled qubit between Alice and Bob requires at least one use of a

quantum channel. A more fair comparison scenario might then allow Alice one use of

this quantum channel per run, but only to send classical information. In this scenario,

Alice sends three cbits in total. Arguably, this is unnecessary as one could consider the

entanglement to be distributed by Bob or by a third party. However, the more cbits Alice

is allowed to transmit, the higher the average fidelity the parties can achieve, rendering the

benchmark that much harder to surpass in experiment. For completeness and comparison

purposes we henceforth consider both the two and three cbit cases.
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5.4.1.1 Benchmarks

Thus far no specific target ensemble has been chosen. We now examine several specific

ensembles for comparison with experiment. We restrict ourselves to ensembles of pure qubit

states with a uniform distribution: pi = 1
n
. If our goal is to find benchmarks which are

low enough to be experimentally surpassed, we should make the classical task as difficult

as possible. Given the results above, this is accomplished by choosing ensembles of states

which are maximally “spread apart”, so that the average Bloch vector within any partition

is as small as possible.

An effective choice is to use the vertices of the Platonic solids inscribed in the Bloch

sphere as the target states. The Platonic solids are the tetrahedron, octahedron, cube,

icosahedron, and dodecahedron, with 4, 6, 8, 12, and 20 vertices, respectively. Note that

the orientation of these vertices with respect to a Cartesian reference frame does not matter

in the classical case, but a specific choice must be made in an experiment. Also note that

the tetrahedron states do not provide a surpassable benchmark for c ≥ 2 because they can

be prepared with perfect fidelity simply by assigning a unique message to each of the 4

states. Similarly, for three cbits, the benchmarks yielded by the tetrahedron, octahedron

and cube ensembles are all trivially unity. For the other cases, however, we expect fidelity

thresholds less than unity.

Indeed, using the algorithm above, we can calculate upper bounds on the remaining

thresholds, all of which are less than unity. In fact, for every example studied except for

one, the upper bounds were actually equal to the optimal classical thresholds. This was

verified by finding explicit partitions such that Eq. (5.10) saturated the upper bounds. The

one exception to this statement is the dodecahedron ensemble when c = 2. In this case, the

upper bound returned by the algorithm would only be possible if we could partition the

dodecahedron vertices into four disjoint pentagons. This is geometrically impossible, so

we can omit this upper bound. The next highest bound, consisting of partitions of size 6,

5, 5, and 4, is indeed possible. The optimal thresholds and their corresponding partitions,

along with experimental results, are given in Fig. 5.3.
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5.4.2 Continuous ensemble

Perhaps the most meaningful target ensemble is the uniform ensemble of all pure qubit

states, i.e. the Bloch sphere itself. For the related problem of teleportation, the optimal

classical strategy leads to an average fidelity of 2
3

[88]. Remote state preparation should

be easier than teleportation, since Alice has complete knowledge of the state. The fidelity

threshold should therefore be higher, though the threshold will also depend on how many

communicated cbits are allowed. Therefore, demonstrating genuine non-classical behaviour

experimentally is more difficult for RSP than for teleportation.

We will now derive upper and lower bounds on the classical threshold for both two

and three cbits. Many of the results for pure states from the previous section, suitably

generalized, still hold here. Partitions will be denoted by Ωk, with their union forming the

surface of the Bloch sphere, ∪kΩk = S2. The optimal average fidelity is still given by Eq.

(5.12), but we make the modifications

pk →
1

4�

∫
Ωk

dΩ =
Ak
4�
,

r⃗k →
1

pk

1

4�

∫
Ωk

r⃗�dΩ =
1

Ak

∫
Ωk

r⃗�dΩ, (5.14)

where Ak is the surface area of partition k.

To obtain lower bounds on the threshold, we simply choose a particular partitioning.

For two cbits, we imagine that a tetrahedron is inscribed in the Bloch sphere and connect

the four vertices by segments of great circles (note: this is not to be confused with use

of platonic solids in previous section). This leads to four disjoint regions on the surface

of the Bloch sphere which form our partitions. To calculate the optimal average fidelity

for this arrangement, we integrate Eq. (5.14) and make use of the following equation for

great circles in spherical coordinates: cot(�) = a sin(� + c) ([105], Lemma 28.1). Here,

� ∈ [0, �] and � ∈ [0, 2�] are the polar and azimuthal angles, respectively, and a and c

are constants determined by substituting two points which the great circle passes through.

Using this relation, the bound can be worked out to be 0.8724. For three cbits, we use

the eight octants as our partitions (equivalently, we connect the vertices of an inscribed

octahedron). This straightforwardly gives a lower bound on the threshold of 0.9330. We

conjecture that these two lower bounds are the optimal values, but we cannot prove at this

time.
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To obtain upper bounds, we use an idea similar to the algorithm detailed in section

5.4.1. If we can determine the maximal weighted average fidelity ⟨F ⟩max
A achievable for

a given surface area A of the sphere, then we can calculate an upper bound using these

values:

⟨F ⟩max ≤
2c−1∑
k=0

⟨F ⟩max
Ak

s.t.
2c−1∑
k=0

Ak = 4�. (5.15)

Out of all possible configurations of a given partition with area Ak, a circular cap on the

Bloch sphere gives the longest average Bloch vector, and hence the largest average fidelity.

Also, the optimal distribution occurs when all partition areas are equal, Ak = 4�
2c
∀ k (see

Appendix A.1 for proofs of these statements). Of course, it is only possible to cover the

Bloch sphere with 2c disjoint circular caps when c = 0 or 1, so the upper bounds for c ≥ 2

are not achievable.

Using the equations derived in Appendix A.1, the upper bounds for c = 2 and c = 3

work out to be 0.8750 and 0.9375, respectively. Even these simple ideas yield tight bounds

on the continuum thresholds for two and three cbits. To summarize:

0.8724 ≤ ⟨F ⟩max < 0.8750 for c = 2,

0.9330 ≤ ⟨F ⟩max < 0.9375 for c = 3.

These numbers are significantly higher than the optimal classical teleportation fidelity

of 2
3
. This confirms that, when restricted to classical communication only, the remote

preparation of a known quantum state is indeed easier than the teleportation of an unknown

quantum state. It is thus more difficult to demonstrate a genuine quantum advantage in

an RSP experiment than in a teleportation experiment.

5.4.3 Mixed states

Here we consider the same type of qubit ensembles as in section 5.4.1, but with the mod-

ification that every state in an ensemble is a mixed state with Bloch vector length r.

Unfortunately, if the target states are mixed states, finding classical thresholds is more

complicated than in the pure state case. For instance, the optimal strategy is not necessar-

ily one with deterministic messaging. Consider a target ensemble consisting of the three

qubit states �tar
�1

= ∣0⟩ ⟨0∣ , �tar
�2

= ∣1⟩ ⟨1∣ , �tar
�3

= 1
2
1 with equal probability 1

3
. Alice sends
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messages according to the distribution

q0(�1) = 1, q1(�1) = 0

q0(�2) = 0, q1(�2) = 1

q0(�3) =
1

2
, q1(�3) =

1

2
,

and Bob prepares the two output states �out
0 = ∣0⟩ ⟨0∣ , �out

1 = ∣1⟩ ⟨1∣ . It is easy to see that

this probabilistic messaging strategy, which uses only one cbit, allows Alice and Bob to

remotely prepare any three of these states with arbitrarily high fidelity.

In fact, for any target ensemble which is contained in the convex hull of N ≤ 2c suitably

chosen points, Alice and Bob can achieve an arbitrarily high fidelity by using a probabilistic

messaging strategy. For instance, if Alice has access to two cbits, she could specify four

pure states which form the vertices of a tetrahedron and prepare any state within this

tetrahedron with perfect fidelity. Similarly, with three cbits, she could perfectly prepare

any state located within a cube whose vertices were pure states. For example, consider a

uniform dodecahedron ensemble with each state having Bloch radius r. For two (three)

cbits, if this radius is not larger than the radius of a sphere inscribed in the tetrahedron

(cube), then the ensemble can be prepared with perfect fidelity. For two (three) cbits, the

insphere radius is 1
3

(
√

1
3
). Similar statements can be made for any ensemble with states

of constant radius.

The possibility that the optimal strategy could involve probabilistic messaging renders

the optimization trickier, as we can no longer use a partitioning argument to find the

optimal value. Another approach is to focus on finding the optimal strategy which involves

only deterministic messages. This is the special case where, for each target state �tar
� , only

one of the qk(�) is non-zero. The optimal value in this case, found by optimizing over output

states, provides a lower bound to the true optimum. Unfortunately, this restriction does

not fairly match with our experiment, where messages are probabilistically determined by

measurement outcomes. However, surpassing this bound is at least a necessary condition,

if not a sufficient one, for any remote state preparation experiment to demonstrate non-

classical advantages.

Under this deterministic messaging assumption, the optimal choices of �out
k (see proof

in Appendix A.2) achieve a maximal average fidelity of

⟨F ⟩max
determ. =

1

2

(
1 +

2c−1∑
k=0

pk

√
r2
k + 1− r2

)
, (5.16)

95



Ch. 5. Remote State Preparation Benchmarks and Experiments

where pk and rk are the same quantities as defined for pure qubit states. In general, this

optimal value is achieved using mixed output states. The fidelity in Eq. (5.16) is modified

from the pure state case, Eq. (5.12), by the additional term 1 − r2 under the square

root. Since this term is fixed beforehand, it does not change which partitioning of the

target ensemble is optimal. In other words, whichever partitioning maximizes Eq. (5.12)

for an ensemble of pure states will also maximize Eq. (5.16), the fidelity bound for the

corresponding ensemble with Bloch radius r. Experimental data is compared with these

theoretical bounds in Fig. 5.7.

5.5 Experiment

We experimentally implemented the RSP protocol described in section 5.3.1 using optical

photons as our qubits. The computational basis states are ∣H⟩ = ∣0⟩ and ∣V ⟩ = ∣1⟩, which

respectively indicate indicate horizontal and vertical polarization.

5.5.1 Implementation

Our experimental setup comprises four parts:

1. The source for preparation of the Bell state ∣Φ+⟩AB = 1√
2

(∣HH⟩+ ∣V V ⟩).

2. The apparatus for performing Alice’s POVM {Em(�, �)} on her qubit and subsequent

logic to determine the message sent to Bob.

3. Bob’s implementation (via Pockels cells) of the unitary correction �m on his qubit.

4. Tomographic analysis of the resulting remotely prepared qubits.

The source of entangled photon pairs is shown in Fig. 5.4a) [54, 55]. It relies on sponta-

neous parametric downconversion in a polarization-based Sagnac interferometer. A 25 mm

long periodically-poled KTiOPO4 (PPKTP) nonlinear optical crystal is embedded in the

interferometer, and bi-directionally pumped by a grating-stabilized diode laser outputting

< 1 mW at 404.5 nm. The crystal is temperature-tuned for collinear, degenerate type-II

quasi-phase-matching. The resulting entangled photon pairs are coupled into single-mode

fibers (SMFs) which, at this pump power, typically yield singles (coincidence) rates of
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Figure 5.4: Remote state preparation experiment. (a) Entangled photon pairs are pro-

duced via parametric downconversion in a polarization-based Sagnac interferometer [54, 55]

(see text for details) and distributed to Alice and Bob in single-mode fibers (SMFs). (b) The

apparatus used by Alice to perform a POVM on her photon. It is a double-interferometer

based on calcite beam displacers (BDs) which couple the polarization qubit to a ‘path’

qubit for the generalized measurement. Further details are in the text. (c) Schematic of

the entire experimental RSP protocol. The POVM {Em} is performed on Photon A. Based

on the outcome m a message is encoded in two classical electronic signals, and then sent to

Bob with probability r which is controlled by a Veto Signal. Dependent on the message,

up to two Pockels cells (PCs) fire to perform the necessary unitary correction on Photon

B, which has been delayed in a 50 m fiber to allow time to trigger the PCs. Bob’s output

is analyzed using quantum state tomography. Note: DM: dichroic mirror; IF: blocking

and interference filter; PBS: polarizing beamsplitter; H(Q)WP: half (quarter) wave-plate;

SPCM: fiber-coupled single-photon counting module.
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150 (30) kHz. Polarization controllers (bat ears, not shown) in the fibers rotate the output

to the Bell state ∣Φ−⟩ = 1√
2

(∣HH⟩ − ∣V V ⟩). However, the first HWP in Alice’s POVM

apparatus, when not in use for tomographic characterization of the source output, flips

this state to ∣Φ+⟩ before her measurement.

The apparatus for performing Alice’s POVM is shown in Fig. 5.4b), and has been

described in detail in Ref. [106]. It is a polarization-based double interferometer employing

waveplates, polarizing beamsplitter cubes (PBSs), and calcite beam-displacers. The latter

serve to couple polarization with path, thereby enlarging the state space for the generalized

measurement [107, 76]; half-wave plates (HWPs) are used to set the parameters {�, �} of

the POVM {Em}. The four output modes are coupled into SMF and detected with single-

photon counting modules (SPCMs). The outcome TR which stems from (T)ransmission

at the first PBS and (R)eflection at the second corresponds to 1
2
�(�, �), and the RT, RR,

and TT outcomes to 1
2
Z�Z, 1

2
X�X, and 1

2
XZ�ZX, respectively.

Due to its the beam-displacer-based construction, the POVM apparatus is inherently

phase-stable, without need for active stabilization [71]. To set the appropriate phase in

each interferometer arm, we use an 809 nm diode laser injected through the input SMF

and a removable polarizing optic; following careful tuning we typically measure classical

interference visibilities > 99.8%. The phase itself is set via tilting HWPs at 0∘, shown

with arrows in 5.4b), in one path of each interferometer arm about their vertical axes.

This phase need only be set periodically, typically once per day, and can stay set for four

hours or more, provided the ambient lab temperature remains stable, allowing time for the

preparation and tomography of several hundred different states.

By means of fast electronic logic gates, the POVM outcome is encoded into the voltage

state of two TTL signals. The POVM outcomes TR, TT, RT, and RR are encoded as binary

strings “00”, “01”, “10”, and “11”, respectively. A value of “1” for the first (second) bit

corresponds to a TTL pulse which will trigger Bob’s X (Z) correction. For the preparation

of pure states, these signals are always transmitted to Bob.

For the preparation of mixed states, a Veto Signal (see Fig. 5.4c)) is produced with

probability (1− r), which is set by the fraction of time spent in the “0” state of a 2 MHz

TTL square-wave from a function generator. If a veto signal is generated, it blocks the

transmission of TTL pulses to Bob, which is equivalent to sending the message “00”. As a

result, the message “00” is sent with probability (1−r)+r/4, and the other three messages

are each sent with probability r/4. Because the arrival times of photons in Alice’s POVM

apparatus are random, and the total rate much less than 2 MHz, the decision whether to
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send each message is both random and independent.

Depending on the message received, Bob must implement the unitary correction �m on

his qubit in order to achieve deterministic RSP. As shown in Fig. 5.4c), this is accomplished

by means of two fast RbTiOPO4 (RTP) Pockels cells (Leysop RTP4-20-AR800). At 809 nm

these have a half-wave voltage of 1.027 kV and a switching time of < 5 ns. The first Pockels

cell is oriented so that when triggered it implements an X operation, which flips ∣H⟩ 7→ ∣V ⟩,
and is fired if the first bit of the received messages is “1”. The second Pockels cell, though

similarly oriented, is preceded and followed by HWPs at 22.5∘ which rotate its action to

Z, so that it flips ∣D⟩ = ∣H⟩ + ∣V ⟩ 7→ ∣A⟩ = ∣H⟩ − ∣V ⟩. This Pockels cell is fired if the

second bit of the received message is “1”. When not fired, each Pockels cell and associated

waveplates have no net affect on the polarization of transmitted photons (they perform 1.)

Bob’s photon is stored in a 50 m loop of SMF to allow time for Alice’s POVM and logic

operations, and triggering of the Pockels cells based on the message.

After the correction stage, Bob’s remotely prepared qubit is analyzed using a polariza-

tion analyzer consisting of a QWP, HWP, and PBS, fiber-coupled to a SPCM. Coincidence

counts between this detector and Alice’s detectors, summed over her four POVM outcomes,

yields our raw data. Note that we do not subtract ‘accidental’ coincidence detections. For

each remotely prepared state, the measured output density matrix �out
m is tomographically

reconstructed using a maximum-likelihood technique [36] based on coincidence measure-

ments for each of six settings of Bob’s analyzer (the eigenstates of X, Y , and Z).

5.5.2 Results

Our data was collected over two days: Day 1 for the remote preparation and tomogra-

phy of all the pure states in Figs. 5.3 and 5.6, and Day 2 for the mixed states (those

where the intended state has r < 1) in Fig. 5.7 and Table 5.1. Each day we character-

ized the entangled state �AB via over-complete state tomography; the results are shown in

Fig. 5.5. The polarization of Photon A is analyzed using the first two waveplates in the

POVM apparatus and the H-polarized output of the first beam displacer; the other output

is blocked and all subsequent waveplates are set so as to direct the resulting photons to

the TT POVM outcome. Coincidences are recorded between this output and that of the

polarization analyzer following Bob’s (switched off) Pockels cells. We perform a tomo-

graphically overcomplete set of 36 different measurements, comprising all combinations of

the six eigenstates of X, Y , and Z on Alice’s and Bob’s qubit, respectively. The results
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Figure 5.5: Experimentally reconstructed density matrices of our 2-photon entangled

state: real part (left) and imaginary part (right). The top row {a) and b)} represents

the source state, as aligned for the remote preparation of the pure states (Fig. 5.6); the

bottom row {c) and d)} represents the source state as aligned (on a subsequent day) for

the preparation of mixed states (states with r < 1 in Fig. 5.7 and Table 5.1.) The state in

the top (bottom) row has fidelity F = 0.9807±0.0004 (0.9813±0.0003) with the ideal state

∣Φ−⟩, tangle T = 0.935± 0.002 (0.932± 0.001), and purity P = Tr(�2) = 0.9676± 0.0009

(0.9659± 0.0007) [81].

are used to reconstruct the two-photon density matrix [36]. On Day 1 (2) the measured

state �AB had fidelity F = 0.9807 (0.9813) with the ideal output ∣Φ−⟩. When not in use

for two-photon tomography, the first QWP on Alice’s side is removed, and the HWP is set

to 0∘, thereby flipping the source output to ∣Φ+⟩ before the POVM.
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We remotely prepared and tomographically reconstructed 178 qubit states, and for

each measured output density matrix �out
m we calculate its agreement with the target state

�tar using the fidelity (Eq. 5.1). Our mean fidelity ⟨F (�tar, �out
m )⟩ is 0.9951, and all but

three of the 178 states have F > 0.98. However, following Ref. [102], we also calculate

the expected remotely prepared state �exp based on our measured imperfect two-photon

entangled state �AB as shown in Fig. 5.5, but assuming perfect operation of the POVM and

unitary correction. If we then examine the fidelity F (�exp, �out
m ), we obtain ⟨F ⟩ = 0.9995,

with 177 out of the 178 states having F > 0.9975. However, in the remainder of the paper

and in Figs. 5.3, 5.6, 5.7, and Table 5.1, the fidelities we report are the more stringent

F (�tar, �out
m ), as these are appropriate for comparison with the bounds on classical RSP.

In order to test our experimental RSP implementation against the benchmarks derived

in Sec. 5.4, we prepare pure states with settings {�, �} corresponding to the vertices of

the five Platonic solids inscribed in the Bloch sphere. The orientations used for each

polyhedron, along with the results for ⟨F ⟩, are shown in Fig. 5.3. These results are

compared graphically against the corresponding benchmarks for classical RSP with two

and three cbits in Fig. 5.6. In all instances where the benchmark based on classical

RSP is less than unity, our experimentally-determined values surpass it conclusively. This

confirms that our results cannot be produced without shared entanglement, even when a

comparable amount of classical communication is allowed.
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Figure 5.6: Experimentally-achieved mean fidelities ⟨F (�tar, �out
m )⟩ and optimal classical

benchmarks for target ensembles of pure states based on the five Platonic solids shown in

Fig. 5.3. The error bars shown are the standard error of the mean. Any experimental data

point above the green diamonds (blue squares) represents results that are not possible with

only two (three) cbits communication and no preshared entanglement. In all cases where

the classical benchmark is less than unity, the experimental results surpass the benchmarks

conclusively. Note: lines are included only to guide the eye and do not represent calculated

thresholds.
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To test our ability to prepare arbitrary mixed qubit states, we use settings {r, �, �},
where � and � correspond to the vertices of the icosahedron and dodecahedron, for all

r ∈ {0.00, 0.25, 0.50, 0.75, 1.00}. Our results for ⟨F ⟩ are summarized in Table 5.1. In Fig.

5.7 these results are compared to the lower bounds found in Section 5.4 for classical RSP;

again our data surpass the bounds on classical RSP whenever the benchmark is less than

unity.

5.6 Conclusion

We have investigated the theory of remote state preparation involving only classical com-

munication resources. Based on sets of states forming the vertices of Platonic solids we

derived several fidelity-based RSP benchmarks bounding such classical protocols. We have

described and implemented an experimental protocol for high-fidelity, fully deterministic

remote preparation of arbitrary photonic qubit states, and compared its results with our

benchmarks. The results show a clear violation of all the classical thresholds whenever

the classical protocols do not trivially allow for a perfect RSP strategy. We also examined

the special cases where the states to be remotely prepared are i) chosen uniformly from all

pure qubit states and ii) mixed qubit states, all with Bloch radius r. We provided appro-

priate benchmarks in these cases, and our experimental fidelity values once again surpass

all sub-unity benchmarks.

An interesting extension to this work would be to deal with the problem of post-

selection. Because of device inefficiencies and losses, many more photons are used in

the experiment than are actually counted in the final analysis. Carefully counting the

lost photons and allowing Alice and Bob to use them as comparable classical resources,

without loss, would lead to more difficult benchmarks. Yet it would also provide even

stronger support for claims that an experiment evidences genuine quantum behaviour. As

well, a comparison of experimental data with the classical thresholds, which were derived

for ideal conditions, necessarily has to assume fair sampling [108, 109].
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Chapter 6

Conclusions and Avenues for Further

Research

Quantum measurement and entanglement are among the most fundamental concepts in

quantum information theory. Generalized quantum measurements allow greater experi-

mental freedom than standard projective measurements, in particular the ability to have

more possible measurement outcomes than the dimension of the state space of the mea-

sured system, and the lifting of the restriction to an orthogonal set of outcomes and output

states. As many of the most famous and useful ideas in quantum information physics stem

at heart from measurements on entangled systems, it seems both useful and interesting to

investigate the effects and applications of implementing generalized measurements on such

systems.

In this thesis I have presented background material relevant for understanding gener-

alized quantum measurements on pairs of entangled photons, as well as the construction

and operation of experimental equipment for the production of such entangled photons,

the realization of a tunable four-outcome POVM on a polarization-encoded photonic qubit,

and the implementation of fast-switchable correction operations on the other photon based

on the POVM outcome. Furthermore I have described two experiments employing these

concepts and experimental techniques.

The first experiment concerns the power of generalized measurements when applied

in place of projective measurements in the cluster-state model of quantum computation.

Our results show that properly-chose POVMs work well in extending the computing power

of a two-qubit cluster to that normally obtained by a three-qubit cluster, and that the
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method can be implemented with quite high fidelity and an error rate comparable to recent

thresholds for fault-tolerant cluster-state computing. In the future it would be interesting

to see this method used to implement the addition of two ‘virtual’ qubits to the cluster

instead of only one, and also to see it applied to larger clusters and even to multiple input

qubits. Finally, there may perhaps be some utility to implementing POVMs on qubits in

the middle of the cluster computation (‘body qubits’) instead of only the input qubits, and

I hope such theoretical avenues are investigated further.

The second experiment realizes the preparation of an arbitrary pure or mixed known

qubit state at a remote location via the transmission of only two classical bits, and is en-

abled by a previously-shared entangled pair and a tunable POVM. I present the derivation

of bounds on the achievable average fidelity of so-called ‘classical’ remote state prepara-

tion, limited to classical communication with no entanglement. Such bounds can provide

thresholds for examining whether the results of a particular experiment demonstrate ad-

vantages to quantum communication or could be equally well achieved using only classical

resources. Our results demonstrate the preparation of both pure and mixed states with very

high fidelity, and in fact conclusively surpass all derived bounds where perfect remote state

preparation could not be achieved with classical resources alone. Related future investiga-

tions might include the utility of similar techniques and experimental apparatus for optimal

remote state preparation with imperfectly entangled states, as well experimental implemen-

tations of optimal quantum steering, wherein Alice’s implementation of a suitably-chosen

generalized measurement on one qubit from a not-necessarily-maximally-entangled pair,

including e.g. Werner states which cannot exhibit Bell-inequality violations, may nonethe-

less be used to affect the probability distribution of outcomes of Bob’s measurements on

his photon [77, 110].

Further applications and protocols will doubtless be developed and further questions

encountered as physicists and other quantum information scientists continue to explore the

application of generalized measurements on entangled systems. I hope that the concepts

explored and the experimental tools developed in this thesis help to inspire new avenues

for implementations of generalized measurements and to experimentally test resulting pro-

tocols and address the questions encountered in these explorations.
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Appendix A

Proofs Regarding Thresholds for

Classical RSP

A.1 Proof of bound for continuous case

In this appendix, we proof two claims from section 5.4.2 used to find upper bounds on the

classical threshold for states on the Bloch sphere.

Claim 1

Define a circular cap as the set of points on the surface of the Bloch sphere lying north of

some fixed latitude or any rigid spherical rotation of this. Amongst all partitions of surface

area A > 0, a circular cap has the longest average Bloch vector.

Proof

Consider an arbitrary partition of total surface area A > 0 (we do not assume that this

partition is connected). This partition, which we call Γ, defines some average Bloch vector

r⃗Γ. We will compare partition Γ with a circular cap of area A centred along the direction

of r⃗Γ, which we shall denote by C. Partition C has an average Bloch vector r⃗C . If r⃗Γ is

the zero vector, then rC ≥ rΓ = 0. If not, then without loss of generality we can assume r⃗Γ

points along the z-axis. By construction, r⃗C must also point along the z-axis. Using Γ and
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C, the Bloch sphere can be divided into four disjoint regions: R1 = Γ ∩ C, R2 = Γ − C,

R3 = Γc ∩C, and R4 = Γc−C. Each of these regions has average Bloch vector r⃗i and area

Ai, i = 1, ..., 4. Also note that we must have A2 = A3.

Since Γ = R1 ∪R2, and C = R1 ∪R3, we must have

r⃗Γ =
A1

A1 + A2

r⃗1 +
A2

A1 + A2

r⃗2, and (A.1)

r⃗C =
A1

A1 + A2

r⃗1 +
A3

A1 + A3

r⃗3. (A.2)

From this we conclude that

r⃗C = r⃗Γ +
A2

A1 + A2

(r⃗3 − r⃗2), (A.3)

i.e. that the vector r⃗3− r⃗2 also lies along the z-axis. However, it might point in the negative

z-direction.

But the boundary of C lies at some fixed height HC on the z-axis. By construction,

every state in R3 has a z-component higher than HC and every state in R2 has a z-

component lower than HC . Then the z-component of r⃗3 must be larger than that of r⃗2.

Therefore, their difference r⃗3 − r⃗2 has a positive z-component. From Eq. (A.3), we can

conclude that r⃗C is longer than r⃗Γ. Thus, for fixed area A, a circular cap gives the longest

average Bloch vector.

Claim 2

Knowing that a circular cap gives the optimum Bloch vector length for fixed area A, we

want to optimize the objective function

2c−1∑
k=0

⟨F ⟩max
Ak

=
1

2

(
1 +

2c−1∑
k=0

pkr
max
k

)
(A.4)

subject to the constraint
2c−1∑
k=0

Ak = 4�. (A.5)

We claim that this is optimized when all areas are equal.
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Proof

To obtain the optimal Bloch vector as a function of area, we temporarily centre a spherical

cap on the z-axis and integrate up to some final angle �fk ,

rmax(�fk) =
1

Ak

∣∣∣∣∣
∫ 2�

�=0

∫ �fk

�=0

sin(�) cos(�)d�d�

∣∣∣∣∣
=

1

Ak
� sin2(�fk). (A.6)

Reparameterizing using Ak = 4� sin2(
�fk
2

), we end up with

rmax(Ak) = 1− Ak
4�
. (A.7)

The corresponding probabilities are given by pk = Ak

4�
. We can group the objective function

(A.4) together with the constraint (A.5) into the following Lagrange function:

Λ(Ak, �) =
1

2

(
1 +

2c−1∑
k=0

Ak
4�

(
1− Ak

4�

))

+�

(
2c−1∑
k=0

Ak
4�
− 1

)
. (A.8)

Solving this Lagrange problem for the maximum yields Ak = 4�
2c

for every k. Hence, the

optimal distribution of areas occurs when all they are all equal.

A.2 Proof of optimal average fidelity for mixed states

In this appendix, we prove the optimality of Eq. (5.16). Since we are dealing with qubits,

we can make use of an alternative formula for fidelity found in [111], namely

F (�, �) = Tr(��) +
√

1− Tr(�2)
√

1− Tr(� 2). (A.9)
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Under the assumptions that the target states all have the same Bloch vector length r and

that the message strategy is deterministic, the average fidelity is

⟨F ⟩ =
∑
�

p�F (�tar
� , �out

m(�))

=
2c−1∑
k=0

∑
�∈k

p�F (�tar
� , �out

k )

=
2c−1∑
k=0

pk[Tr(�k�
out
k )

+

√
1− r2

2

√
1− Tr((�out

k )2)]. (A.10)

As before, pk =
∑

�∈k p� is the probability of sending message k and �k = 1
pk

∑
�∈k p��� is

the weighted average of states where message k is sent. The quantity in square brackets

will be denoted by

Gk[�
out
k ] = Tr(�k�

out
k ) +

√
1− r2

2

√
1− Tr((�out

k )2). (A.11)

For each k, we need to find the choice of �out
k which optimizes Gk. Working in the

eigenbasis of �k, we have

�out
k =

[
a b

b∗ d

]
, (A.12)

with a, d ∈ ℝ, b ∈ ℂ. From the above expression for the fidelity, the optimal choice of �out
k

should be simultaneously diagonal with �k, i.e. b = 0. Equivalently, the Bloch vectors of

�k and the optimal �out
k should be parallel. Denoting the magnitudes of these Bloch vectors

by rk and sk, respectively, we are left with

Gk =
1

4
[(1 + rk)(1 + sk) + (1− rk)(1− sk)]

+

√
1− r2

2

√
1− s2

k

2

=
1

2
(1 + rksk) +

√
1− r2

2

√
1− s2

k

2
. (A.13)

Since rk is fixed by the choice of target state partitioning, we differentiate Gk with respect

to sk and find where this derivative equals zero. The result is

sk = ± rk√
r2
k + 1− r2

. (A.14)
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The positive root will give the maximum of Gk, which works out to be

Gmax
k =

1

2

(
1 +

√
r2
k + 1− r2

)
. (A.15)

Collecting all the terms together yields Eq. (5.16).
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