
A Content Delivery Model for
Online Video

by

Liang Yuan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Liang Yuan 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Liang Yuan

ii

Abstract

Online video accounts for a large and growing portion of all Internet traffic.
In order to cut bandwidth costs, it is necessary to use the available bandwidth of
users to offload video downloads. Assuming that users can only keep and distribute
one video at any given time, it is necessary to determine the global user cache
distribution with the goal of achieving maximum peer traffic.

The system model contains three different parties: viewers, idlers and servers.
Viewers are those peers who are currently viewing a video. Idlers are those peers
who are currently not viewing a video but are available to upload to others. Finally,
servers can upload any video to any user and has infinite capacity.

Every video maintains a first-in-first-out viewer queue which contains all the
viewers for that video. Each viewer downloads from the peer that arrived before it,
with the earliest arriving peer downloading from the server. Thus, the server must
upload to one peer whenever the viewer queue is not empty. The aim of the idlers
is to act as a server for a particular video, thereby eliminating all server traffic
for that video. By using the popularity of videos, the number of idlers and some
assumptions on the viewer arrival process, the optimal global video distribution in
the user caches can be determined.

iii

Acknowledgements

I want to express my gratitude to my supervisor, Dr. Gordon Agnew, without
whom this thesis would not have been possible. He was the one who brought me
into the Cisco Graduate Internship Program. With his inspiration, guidance and
encouragement, he helped make this short journey fun for me. I wish to also thank
Professor Ian Munro and Professor Paul Ward for reviewing my thesis.

I would also like to thank the numerous people at Cisco: my manager, Milton
Xu, my mentor, Dr. Steve Workman, and of course Suran De Silva for their kind
assistance and helpful advice.

I am indebted to my friends who put up with my sometimes difficult self. They
inspired me, cared for me and most importantly gave me reasons to persevere.
Thank you, Andy Sun, Bo Hu, Brian Ji, Fangjin Yang, Funing Gao, Henry Hoang,
Murched Ajami, Nancy Xu, Omar Karim, Pat Nicholson and Yan Huang.

Finally, I wish to thank the teachers that have been a part of my life from the
very beginning: my elementary school teachers at Rödaberg, my junior high teach-
ers (especially Mr. Miwa), my high school teachers (especially my programming
teacher Mrs. Marshall) and my teachers at Waterloo (especially Dr. Larry Smith,
Dr. Paul Ward, and Dr. MacPhie).

iv

Dedication

I wish to thank my parents: my dad, Dr. Shi Zeng Yuan and my mom, Yi Qin
Duan. They have always been there for me, taught me and loved me. I dedicate
this thesis to them.

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 YouTube . 3

1.1.1 Operation . 4

1.1.2 Browser and P2P Client Integration 5

1.2 Youtube Characteristics . 6

1.2.1 Videos . 7

1.2.2 Users . 10

1.3 Scope . 10

1.4 Outline . 10

2 Background 11

2.1 Content Distribution Networks . 11

2.1.1 Traditional CDNs . 12

2.1.2 Peer-to-Peer CDNs . 13

2.1.3 Other CDNs . 14

2.2 Peer-to-Peer Systems . 15

2.2.1 What is P2P? . 15

2.2.2 Classification of P2P Systems 16

2.2.3 P2P CDN . 16

2.2.4 Definitions . 17

2.3 P2P CDN Applications . 18

2.3.1 Napster . 18

vi

2.3.2 Gnutella . 20

2.3.3 FastTrack . 21

2.3.4 eMule . 24

2.3.5 BitTorrent . 25

2.3.6 Kademlia . 30

2.3.7 Other . 34

2.4 Application to Online Video . 34

2.4.1 Scalable . 34

2.4.2 Cost . 34

2.4.3 Timeliness . 35

2.4.4 Usable . 35

2.4.5 Easily Deployable . 35

2.4.6 Robust . 35

2.4.7 Data integrity . 36

2.4.8 Security . 36

2.4.9 Fairness . 36

2.4.10 Highly Available . 36

3 System Model 38

3.1 Components . 38

3.1.1 Servers . 38

3.1.2 Viewers . 38

3.1.3 Idlers . 39

3.2 Collaboration . 39

3.3 Service Models . 40

3.4 Single Video Collaboration . 41

3.4.1 Viewer Queue . 42

3.4.2 No Idlers . 42

3.4.3 P2P with LRU Cache of Size 1 44

vii

4 Results 49

4.1 SVC Numerical Examples . 49

4.1.1 No P2P . 49

4.1.2 P2P but No Idlers . 50

4.1.3 P2P with LRU Cache of Size 1 50

4.1.4 P2P with Arbitrary Cache of Size 1 50

4.2 Cache Parameters . 51

4.2.1 Video Popularity . 52

4.2.2 Number of Idlers . 56

4.2.3 Replacement Strategy . 56

4.2.4 Cache Size . 57

4.2.5 Global Cache Model . 58

4.2.6 Limits . 59

4.3 Global Cache Optimization . 60

4.3.1 Solving for qi . 60

4.3.2 q1 . 62

4.3.3 qj, 2≤j≤c . 64

4.3.4 Cutoff . 64

4.4 Single Video Cache for YouTube . 65

5 Summary 72

6 Future Work 73

Appendices 74

A BitTorrent .torrent file 75

A.1 BitTorrent specification . 75

A.2 ubuntu-8.04.2-desktop-i386.iso.torrent 75

B Cheng et al YouTube trace 76

B.1 Methodology . 76

B.2 Trace used . 77

viii

C Queueing Theory Background 78

C.1 M/M/∞ queue . 78

C.2 M/G/∞ queue . 79

References 80

ix

List of Tables

1.1 Protocol usage in Germany [1]. 1

1.2 Proportion of protocol usage in North America. [2]. 1

1.3 Distribution of HTTP traffic by bandwidth [3]. 2

1.4 BitTorrent content type distribution for a German University based
on local traces [1]. Based on the data collected, video accounts for a
large portion of BitTorrent traffic. 2

1.5 YouTube income and expenses [4]. 3

1.6 Number of traditional videos [5]. 7

4.1 Mean and variance of trace data. 53

4.2 η and optimal c . 70

B.1 Cheng et al data set schema. 77

x

List of Figures

1.1 Requesting video content on YouTube. 5

1.2 Requesting video content using a proxy and a P2P client. 6

1.3 Number of views for videos in YouTube’s Science and Technology
category over 30 days (January 15, 2007 - February 14, 2007). . . . 8

1.4 Integral of the number of views weighted by the total number of
views for videos in YouTube’s Science and Technology category over
30 days (January 15, 2007 - February 14, 2007). 8

1.5 Complementary cumulative distribution function (CCDF) of the pop-
ularity of videos in YouTube’s Science and Technology category over
30 days (January 15, 2007 - February 14, 2007). 9

2.1 P2P CDN architectures . 17

2.2 Napster Architecture . 19

2.3 Gnutella architecture . 21

2.4 FastTrack Architecture . 22

2.5 Original BitTorrent Architecture . 26

2.6 Example BitTorrent data transfer: Round 1 27

2.7 Example BitTorrent data transfer: Round 2 27

2.8 Kademlia system architecture . 31

2.9 Kademlia node states . 32

2.10 Kademlia k-bucket . 32

3.1 Single video collaboration. 39

3.2 Multiple video collaboration. 39

3.3 SVC with immediate peer departure. 40

3.4 SVC with idlers offering previously watched video. 41

3.5 MVC with idlers offering previously watched video. 41

3.6 Tserver, no p2p and b = 300 Kbps. 43

xi

3.7 M/G/∞ queue modelling arrivals of viewers. 43

3.8 Tserver, no idlers and Tpeers, no idlers with b = 300 Kbps. As ρ approaches
∞, Tserver approaches b. 44

3.9 Ppeers, no idlers(ρ) with b = 300 Kbps. As ρ increases, Ppeers approaches
1. 45

3.10 Qviewer and Qidler model. 46

3.11 Tserver, with idlers and LRU cache(ρ) with b = 300 Kbps for different values
of η. As η increases, Tserver decreases for all values of ρ. 47

3.12 Tpeer, with idlers and LRU cache(ρ) with b = 300 Kbps for different values
of η. As η increases, Tpeer approaches a straight line. 47

3.13 Ppeers, with idlers and LRU cache(ρ) with b = 300 Kbps for different values
of η. 48

4.1 Comparing the peer traffic for v1 and v2 for different P2P models. . 52

4.2 Probability plot showing trace data and best-fit. 54

4.3 Log-normal probability density function for different means and vari-
ances. 54

4.4 Log-normal cumulative distribution function for different means and
variances. 55

4.5 f(ρ)ρ for different means and variances. 55

4.6 Qvi,viewer and Qcache model. 58

4.7 Total views by rank. 65

4.8 Arrival rate by rank. 66

4.9 Video length distribution. 66

4.10 Distribution of ρ for trace data. 10 logarithmically spaced bins were
used per decade. 67

4.11 Distribution of k for trace data. 10 logarithmically spaced bins were
used per decade. 68

4.12 Distribution of ln(k). 68

4.13 Conditions on Zc for η by c. 70

4.14 Video probability density for different proportion of idlers. 71

4.15 Server usage for different idler proportions. 71

C.1 Flow diagram for M/M/∞ model [6]. 78

C.2 pn for different ρ. 81

xii

Chapter 1

Introduction

The traffic makeup of the Internet is constantly changing. Today, a fundamental
shift is taking place. For many years, P2P traffic used to dwarf HTTP traffic [1],
largely driven by the relative ease at which music, movies and software could be
downloaded. However, this trend is slowly changing. A recent study conducted
by Ipoque has shown a proportional decrease in P2P traffic as compared to HTTP
traffic [1] (see Table 1.1).

Table 1.1: Protocol usage in Germany [1].

Protocol class 2008/2009 2007
P2P 53% 69%
Web 26% 14%

Streaming 7% 8%
Other 1% 1%

Another study of North American broadband users even puts HTTP traffic
above P2P traffic. The study by Ellacoya Networks 1 found that HTTP traffic
accounted for 46% of all traffic where P2P traffic only accounted for 37% [2] (see
Table 1.2).

Table 1.2: Proportion of protocol usage in North America. [2].

Type %
HTTP 46%
P2P 37%

non-HTTP video streaming 3%
Other 14%

1In 2008, Ellacoya was acquired by Arbor Networks [7].

1

This change in traffic is largely due to file hosting sites, such as RapidShare and
Megaupload taking over the use of P2P networks to deliver content, but also to
the increasing media-richness of web pages [1] and in particular video streaming.
Streaming video accounts for nearly 36% of all HTTP traffic [3]. YouTube (the
most popular video website) accounts for nearly 20% of all HTTP traffic or almost
10% of all traffic on the Internet [3] (see Table 1.3).

Table 1.3: Distribution of HTTP traffic by bandwidth [3].

HTTP content type %
Text and Images 45%
Streaming Video 36%
Streaming Audio 5%

Other 14%

The web has changed into a place where anyone can publish anything. A place
where User Generated Content (UGC) is quickly becoming more important than
traditional publisher content. In the meantime, P2P networks are still stuck on
distributing content that is generally created by content providers: movies, TV
shows, software and music. Table 1.4 shows that video traffic accounts for the
majority (57%) of P2P traffic.

Table 1.4: BitTorrent content type distribution for a German University based on
local traces [1]. Based on the data collected, video accounts for a large portion of
BitTorrent traffic.

Category Type %
Video Movie 30%

TV 15%
Anime 7%
Porn 5%

Software Games 24%
Application 17 %

Music 1 %

The various anti-piracy agencies around the world have long tried to shut down
the illicit distribution of licensed content to very little success. However, new laws
enacted by Sweden [8] has shown promise and will only push more and more P2P
users onto the web. One reason why content providers have not embraced the P2P
world is because these tools were not built to support revenue generation. There are
no advertisements that can be shown at opportune times and no paid subscriptions.

2

However this is slowly changing as well. Knowing that it is difficult to fight an
essentially free service in P2P networks, websites such as YouTube and Hulu have
begun offering TV content and music videos free [9], subsidized only by advertise-
ment. Content is provided in high quality and can be viewed without any waiting.
By contrast, P2P content cannot be used until the full file has been completely
downloaded.

If this continues, and video traffic from P2P continues to move in the direction of
the web, and with the explosion of user generated content in its own right, YouTube
faces serious scalability and bandwidth issues. By some estimates, YouTube will
incur a $362 million dollar bandwidth bill in 2009 for serving at a peak rate of 30
million Mbps [4]. See Table 1.5 for more details.

Table 1.5: YouTube income and expenses [4].

Category Type $
Revenue Advertisements $240 million

Expenses Bandwidth $362 million
Content licensing $256 million

Other $93 million
Total expenses $711 million

Net Loss $471 million

All of this points to a need for a P2P application that can offload video traffic
on the web. This report serves to provide a model of such an application and some
interesting results. Based on the analysis, a P2P system for YouTube is viable and
can be highly beneficial in offloading traffic.

1.1 YouTube

At the forefront of the new Internet is the Youtube online video sharing service. It
was started in February 2005 by three former PayPal employees [10]. It is by far
the most popular of its kind and estimates in 2006 put the number of daily views
at 100 million videos [11]. The number of videos on Youtube is also increasing at
a rate of about 65000 a day, far more than traditional production schemes [11].

YouTube is perhaps the best example of the UGC revolution. Other sites in
this category include Flickr (a photo sharing site), Facebook (a social networking
site) and more recently Twitter (a micro-blogging platform).

Although a small fraction of requests to YouTube are for videos, the majority
of data transferred is due to video traffic [12]. As video quality increases, this will
become even more pronounced. Therefore, distributing video traffic is the most

3

important aspect of the bandwidth requirements. One benefit of video traffic is
that it does not change very often. The same video is viewed over and over again,
unlike other items on the web page.

1.1.1 Operation

Every video uploaded to YouTube must be converted into Adobe’s Flash Video
(.flv) format. The benefit of this format is that anyone with the Flash Player 7
(or later versions) can view the videos without any additional downloads [12]. As
of December 2008, the market penetration of Flash Player 7 exceeds 99% in most
places [13].

The external progressive download [14] feature of the .flv format allows any part
of a video to be viewed before the full content has been downloaded. Unlike tra-
ditional streaming methods, no dedicated, stateful, streaming servers are required.
Any conventional HTTP web server is sufficient. Downloaded data is saved in the
browser’s cache and sent to the Flash Player (.swf) for display.

To view a video, a user must first navigate to a webpage containing the video.
This amounts to a HTTP request to www.youtube.com/watch?v=<videoID>. Sup-
pose one wanted to see one of the most popular videos (117 million views as of April
2009),“Evolution of Dance” at http://www.youtube.com/watch?v=oHg5SJYRHA0.
The first request will return a HTML web page. After parsing this page, the web
browser will make additional requests. Embedded content such as .css, .js, .jpg,
.ico, and .swf files are served by ytimg.com. The .flv may be downloaded from
YouTube directly, a cache like v13.lscache6.googlevideo.com or perhaps a Con-
tent Distribution Network like Limelight. The HTML web server performs a load
balancing role to distribute traffic efficiently. This is all illustrated in Figure 1.1.

A P2P system should hook into this existing architecture with as few modifica-
tions as possible. Information about the P2P network can be embedded into the
.html file. If a client supports P2P, instead of requesting the video by traditional
means a P2P network can be used. This way, no other feature of the system is af-
fected. For example, any sort of statistics tracking, advertisements, or user specific
information can be served as usual.

As an example consider Figure 1.2. This system requires users to have two
pieces of software: a proxy, and a P2P client. The proxy is transparent for all
non-video requests. Video requests are routed to the P2P client. Any acquired
data is sent back to the browser. On the server side, a single seed must be available
to communicate with the P2P network. If traffic is light, the server may serve the
client without any P2P benefit. However, with more simultaneous requests coming
from multiple clients, the servers will benefit from clients interchanging data with
each other.

4

Client

YouTube web
server

ytimg.com

(static server)

YouTube,
cache, or

Limelight CDN

(1) request .html

(2) .html

(3) .js, .swf

(4) request
video

(5) video data transfer

Figure 1.1: Requesting video content on YouTube. First, the .html web page is
loaded. Then, the .swf Flash player and other small-sized content is loaded. Finally,
data is transferred sequentially from a video web server. Usually, web pages are
stored on a web server which is optimized for computations of dynamic content.
ytimg.com is probably optimized for distributing small, often requested files. Videos
are stored on a server optimized for data transfer of large static content.

1.1.2 Browser and P2P Client Integration

Some browsers support add-ons which provides the functionalities of a P2P client.
An example is FoxTorrent [15] for the Firefox browser. The Opera browser has a
P2P client built-in [16]. While this simplifies downloading of torrent files, there
is still a disconnect between the web and the viewing of the content. The down-
loaded content is generally not viewable inside the browser. It is as if e-mails are
downloaded through the browser to be viewed inside an external e-mail reading
application.

LittleShoot

LittleShoot [17] is an example of a new browser with P2P technology built-in. It
requires a background running LittleShoot client which handles the connections to
the LittleShoot central server. The central server is used for finding content and
peers. Actions performed from within the browser are sent through the LittleShoot
client. One significant issue is in having to use the LittleShoot search engine in
order to find P2P-assisted content. This content is not displayed in a web format
and instead in an application format. This produces a disconnect between normal
web content and P2P-assisted content.

5

Client

Request *.html
Browser Proxy

P2P
client

Server

Web
Server

(Dynamic)

Web
Seed

Request *.html

Return *.htmlReturn *.html

Request *.flv

Return file pieces

PeerPeer Peer

data

data datadata

Request *.flv data

Figure 1.2: Requesting video content using a proxy and a P2P client. Requests to
dynamic content or unknown content are forwarded by the proxy without manip-
ulation. For servers that support web seeding, requests are routed to a P2P client
which gathers data from the P2P network. Data is eventually sent back to the
browser.

SlapVid

Slapvid (now obsolete) [18] was a P2P system used to view video inside a browser.
A Java applet manages the delivery of content which is displayed within a Flash
video player.

The first part of the video is downloaded from a central server. While this is
taking place, the applet gathers nodes and initiates the P2P protocols. Subsequent
pieces of the video are downloaded via the P2P network.

1.2 Youtube Characteristics

YouTube is essentially made up of three components: videos, users and the server.
Videos are generally short and its popularity may vary widely. Users may watch
videos at any time and in any order. The server has an infinite capacity for videos
which can be accessible by all users.

6

1.2.1 Videos

Number of videos

The number of YouTube videos as compared to traditional video content is signifi-
cant. A 2006 scrape of YouTube’s website showed that almost 1.7 million videos[19]
were available in the Entertainment category alone. Youtube uses 14 categories [20]
to classify its videos. In May 2006, the number of new videos uploaded to YouTube
totalled 50,000 a day, which jumped to 65,000 by June. At this rate, almost 25
million new videos would be available every year. It is not inconceivable that by
2009, YouTube would have over 100 million videos.

By contrast, according to the Internet Movie Database [5], there has only been
about 890,000 movies and 745,000 TV episodes released all-time (up to April 2009)!
See Table 1.6. Only a fraction of these videos are actually available from commer-
cial video rental companies. Blockbuster[21], Zip.ca[22] and Netflix[23] advertises
hosting at most 100,000 movies and TV shows.

Table 1.6: Number of traditional videos [5].

Type Number
TV episodes 745,298

movies released theatrically 442,399
direct to video movies 73,738
made for TV movies 73,472

TV series 60,418

Popularity of videos

Using traces obtained by Cha et al[24], the distribution of popular videos is dis-
played in Figure 1.3. Large portions of the data exhibits a non-power-law nature.
This is evidenced by the curve as opposed to a line in the log-log graph. Whereas
power-law distributions are common for this type of phenomenon, it seems the
distribution observed is that of a log-normal distribution.

Clearly, a small portion of videos receive the majority of views and a large
portion of videos receive very few. The top 100 videos received more than 100,000
views each and the bottom 150,000 videos received less than 100 views each. This
is important from a caching point of view as caching the popular files will produce
very good results. From Figure 1.4, one can see that 80% of the views are generated
by the top 10% of the videos. An additional 10% of videos are needed to generate
another 10% of views. This is important to take into consideration for any model.

Figure 1.5 shows the complementary cumulative distribution function (CCDF)
for the popularity of the videos. For this dataset, the cutoff for the top 10% of

7

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106

N
u
m

b
er

of
v
ie

w
s

Rank of video

videos

Figure 1.3: Number of views for videos in YouTube’s Science and Technology cat-
egory over 30 days (January 15, 2007 - February 14, 2007).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

iz
ed

cu
m

u
la

ti
ve

v
ie

w
s

Normalized rank

videos

Figure 1.4: Integral of the number of views weighted by the total number of views
for videos in YouTube’s Science and Technology category over 30 days (January
15, 2007 - February 14, 2007).

8

videos is about 1000 views. Curve-fitting and focusing on these 10% of videos
suggests a log-normal distribution with μ = 3.7 and σ = 2.26:

P{X ≥ x} =
1

2
− 1

2
erf

(
ln(x) − μ

σ
√

2

)
(1.1)

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

100 101 102 103 104 105 106

P
ro

b
ab

il
it
y

v
id

eo
h
as

m
or

e
th

an
x

v
ie

w
s

Views

Youtube empirical
log-normal

Figure 1.5: Complementary cumulative distribution function (CCDF) of the pop-
ularity of videos in YouTube’s Science and Technology category over 30 days (Jan-
uary 15, 2007 - February 14, 2007).

Video duration, file size and bit rate

The majority of videos on YouTube have fixed bit rates. Therefore, the video
duration, file size and bit rate can be described by the following formula:

File size = (Video duration)(bitrate) (1.2)

From Cheng et al’s [25] YouTube traces, the average file size is 8.4 MB. The bit
rate is concentrated around 330 Kb/s, with two other peaks at 285 Kb/s and 200
Kb/s [25]. The bit rate allows the majority of broadband users to watch the video
without any delay during the duration of the video.

Bandwidth

Since videos can be accessed from anywhere and anytime, the server bandwidth
can be considered to be infinite. However, local traces observed by Zink et al [26]

9

showed that YouTube distributes videos at peak data rates of either around 700
Kb/s or 1200 Kb/s.

1.2.2 Users

YouTube does not provide significant information on its users. Some local network
traces are available but show very limited information on all the users for any
particular video. An example is the local trace conducted at the University of
Massachusetts by Zink et al [26]. It is difficult to characterize all the arrivals for a
particular video.

For these reasons a very simple user model is assumed. For every video, users
arrive according to a random Poisson process. There is no correlation between
the users of different videos. In reality, it may be important to characterize the
likelihood for users to watch similar or related videos.

1.3 Scope

To simplify the analysis, users may cache at most one video. In addition, what each
user has in the cache is not important. Instead, what is important is the probability
of a video existing in the user’s cache and the global cache at any particular instant.

1.4 Outline

Chapter 2 provides a background on content distribution networks and existing peer
to peer systems. Chapter 3 introduces the model used in describing a peer-to-peer
system for online video. Chapter 4 presents results and analysis. Finally, Chapter
5 concludes the study and Chapter 6 presents avenues for future work.

10

Chapter 2

Background

2.1 Content Distribution Networks

A Content Distribution Network (CDN) is a networked system whereby content,
such as movies or photos are delivered to end users in an acceptable manner. The
main goals of such a network are described below. How well a network tackles these
challenges usually determine how popular the network becomes.

Scalable: The network should be content scalable in the sense that additional
content can be added easily. The network should also be user scalable in that the
load at the content provider should be inelastic as the number of users change [27].

Cost : The network should be cheap to setup. It should also decrease the content
deployment costs for content providers and should be competitively priced for users.

Timely : The content should be delivered to users as quickly as possible. For a
real-time delivery network, such as streaming video, data should be delivered before
the users attempt to use it.

Usable: The act of announcing new or updated content should be easy for
content providers. The act of searching and the delivery of content should be easy
for users.

Easily deployable: Initial setup of the whole system to the stage where it is
usable should be easy. It is much easier to deploy an application layer CDN, than a
CDN which requires new routers or other changes to existing networks. The system
may need to be backwards compatible with some existing system or use an existing
network.

Robust : The CDN should be adaptive to changes in network conditions, network
configurations, number of users, and so on. In other words, the system should be
resilient.

Data integrity : The users must be confident that the downloaded content is the
desired content. This includes both protection against malicious content and users,
and non-malicious errors such as transmission errors due to a lossy network.

11

Security : This is a catch all phrase that is a combination of privacy, data
integrity, authentication access control, anonymity, deniability and accountability.
Depending on the CDN, some, all or none of these requirements may apply.

Fairness : This refers to the ability of the CDN to delivery content in a fair
manner with respect to its users. No user should be starved of content.

Resource management : Content, storage, computational power, and bandwidth
should be used efficiently in the network.

Highly available: Content should be easy to discover and should be available
for downloading for as long as possible. Usually, availability refers to content as a
whole; bits and pieces are generally not very useful.

Fault tolerant : The system should be accommodating when failures occur. This
is particularly a problem of systems with centralized points of failures.

CDNs can be generally grouped into one-way content distribution and two-
way content distribution. In one-way content distribution, there is a clear distinc-
tion between providers of content and consumers of content; content flows from
the provider to the consumer. Most websites can be considered one-way content
providers. CDNs such as Akamai [28], Limelight [29] and CDNetworks [30] are
examples of one-way content distribution networks. These CDNs use a caching
approach where popular content is located close to end users. In two-way con-
tent distribution, consumers also act as providers to other consumers. Peer-to-Peer
(P2P) networks such as the very popular BitTorrent [31] and Octoshape [32] are
two-way content distribution networks.

Content can either be consumed in real-time or when the download of the con-
tent has been completed in full. These two types of content delivery methods
require different models and designs as they are bounded by different constraints.
YouTube users watch videos as they are being downloaded. Thus, a P2P system
would need to account for this.

2.1.1 Traditional CDNs

Most websites today operate on the traditional CDN model. A user makes a request
for some content and through some cloud of logic, the CDN returns the content.
Usually, this is done on the Application Service Provider (ASP) model, otherwise
known as on-demand software or Software as a Service (SaaS) [33]. What this
means is that companies pay CDNs for bandwidth and computational resources
used for distributing content to its users. Traditional CDNs should not be confused
with centralized CDNs, in fact most CDNs today are complex distributed systems.
Various approaches are used by traditional CDNs to provide high performance.
Two popular approaches are by using edge servers and load balancing techniques.

Edge servers are machines deployed by CDNs at the edges of a network where
they are closest to users. Often, a CDN will replicate content at multiple edge

12

servers separated geographically and logically. When a user makes a request, the
closest edge server should respond. This reduces the amount of traffic going through
the backbone of the network and through its interconnects [34]. Often, media assets
are delivered with less delay and better throughput. The redundant nature of CDNs
also allows CDNs to be resilient to network changes. Should a server go down, the
CDN can automatically sense the change and redirect the user. Often times, CDNs
offer services for multiple customers and can redistribute resources where needed.
This benefits the end user in the form of availability of content.

Load balancing attempts to balance the incoming requests among a cluster
of closely grouped servers. One way this is accomplished is by a front-facing
application-layer switch, which delegates requests to any number of connected web
servers. Another method is by Domain Name System (DNS) [35] round-robin which
returns different network identifiers for different requests to the same service. Load
balancing improves scalability, reliability and total capacity [34].

Traditional CDNs are generally content scalable but not user scalable. Content
providers incur costs for every piece of content distributed. Deploying a new CDNis
difficult, as it requires starting out with numerous servers at the same time. Content
is usually transferred to users in a timely manner. CDNs are extremely easy to
use for both providers and users. Traditional CDNs are quite robust to moderate
network changes. However, because they do not scale with the number of users,
flash crowds may cause problems. Data integrity is achieved by providing hashes
of files on a trusted server. Content, regardless of popularity is highly available
as long as the content provider deems necessary. Traditional CDNs are usually
distributed and do not have single points of failure. However, should one point fail
due to excessive traffic, it may cause the other mirrors to go down as well.

The majority of people access content and the Internet through web browsers.
One reason why traditional CDNs are useful is because the popular web browsers
do not have built-in mechanisms to connect to other browsers or other applications
and so it would be very difficult to implement a peer-to-peer network within a
browser.

2.1.2 Peer-to-Peer CDNs

Peer-to-Peer CDNs are systems where nodes (known as peers) download and up-
load content at the same time. The biggest benefit of P2P CDNs over traditional
CDNs is the ability to scale as the number of users increases. This means that
for content that become popular in a short period of time, P2P systems usually
perform better. Conversely, data that is not popular sometimes become unavailable
since nodes come and go as they please. Most peer-to-peer CDNs are standalone
applications that do not work inside a browser. However, there are some peer-to-
peer applications that make use of the Internet for locating content but rarely for
distribution purposes.

13

One event often experienced by P2P networks is this notion of flash crowds. This
is analogous to the more familiar event for websites known as the Slashdot effect
[36] or the Digg effect [37, 38]. This event occurs when a very popular website such
as Digg links to a not so popular website and the unexpected increase in traffic
causes the site to be very slow or unaccessible. Similarly, in P2P systems, a flash
crowd usually gathers when something extremely popular appears for the first time.
This could be the latest release of the Ubuntu [39] operating system or perhaps
bootleg media such as movies or music. When this occurs, the number of users
participating in the download and upload of this content increases very quickly.
Contrary to traditional CDNs, however, P2P systems experiencing flash crowds
actually benefits from the upload bandwidth of each node. Although initially, the
aggregate bandwidth achieved by the system may be low, the aggregate bandwidth
continues to grow as peers finish downloading the content or parts of the content,
as now these users begin uploading.

In any network requiring a specific topology, churn is an incredibly important
parameter. Churn describes the joining and leaving of nodes. Usually, peer-to-
peer networks experience high levels of churn that is also unpredictable. Networks
with rigid topologies experience high overhead costs associated with reconfiguration
when nodes are short-lived in the system. To this end, some peer-to-peer network
topologies are random, in the sense that there is no specific order required. This
has been shown to do well in content distribution network settings.

An in depth study of peer-to-peer CDNs is provided in Section 2.2 on page 15.

2.1.3 Other CDNs

Multicasting and CoopNet are examples of other content delivery systems.

Multicasting

Most CDNs rely on unicast data streams, where data is sent between pairs of nodes.
Multicasting on the other hand allows data to be sent between members of a larger
group simultaneously. Similar to peer-to-peer applications, there are numerous
application layer multicasting schemes [40, 41, 42]. There are also network layer
multicasting schemes [43].

Efficient multicasting usually requires a good network topology such as a short-
est path tree [27]. However, this suffers from high overhead in constructing the
topology. The system also suffers when nodes experience high churn, requiring the
network to reconfigure itself.

CoopNet

CoopNet [44] is an interesting academic CDN. Its intended application is in allowing
nodes to act as temporary caches for web sites. When a user visits a webpage, the

14

user is redirected to past users that have previously downloaded the file. One
limitation of CoopNet is requiring the web server to keep track of the past users
and the content that they may have. Also, only full file downloads are facilitated
which limits the size of files delivered.

2.2 Peer-to-Peer Systems

Peer-to-Peer (P2P) systems are an emerging area of research. Two excellent surveys
on the topic are presented in [45] and [46]. This section presents a discussion of
peer-to-peer systems and attempts to explain why a peer-to-peer scheme makes
sense for content distribution applications.

2.2.1 What is P2P?

Although numerous definitions have been proposed and are pliable in different
contexts, a good definition is provided by Androutsellis-Theotokis and Spinellis
[45].1 A less restrictive definition is employed by this manuscript: A peer-to-peer
system is a networked system of interconnected nodes which is capable of resource
exchange on a node-to-node basis without the assistance of other nodes. Note that
the only restriction of peer-to-peer systems over other networked systems is that
the resource exchange itself must be performed on a node to node basis without
any external help. Setting up the network, updating the network, or even finding
out where content is may be assisted by a central authority.

A major assumption of peer-to-peer systems is that nodes have excess, available
resources. The five major P2P resources are: bandwidth, content, computational,
storage and human.

Bandwidth: Each node has excess upload and, or, download network bandwidth.
The excess upload capabilities of nodes are a basic requirement of P2P systems.

Content : Each node has content that other nodes may not have. This is another
primary requirement of P2P systems in that nodes may have something that other
nodes want.

Computational : Each node has excess computational resources such as CPU
cycles. This is a secondary requirement since the computational requirements of a
basic P2P system is low. This may be used to segment files into pieces or calculating
hashes for data integrity.

1Peer-to-peer systems are distributed systems consisting of interconnected nodes able to self-
organize into network topologies with the purpose of sharing resources such as content, Central
Processing Unit (CPU) cycles, storage and bandwidth, capable of adapting to failures and accom-
modating transient populations of nodes while maintaining acceptable connectivity and perfor-
mance, without requiring the intermediation or support of a global centralized server or authority.
[45]

15

Storage: Each node has excess temporary and, or, long-term storage capabilities.
Short term storage may be used to store network state or pre-computed values.
Long-term storage can be used to store content which may be consumed at a later
time or uploaded to others.

Human: Each node usually consists of client software that is operated by a
human. A human may have out-of-band knowledge about the network. An ex-
ample is knowing that another node (perhaps a friend) is geographically closer, so
connecting to this node may provide a faster download. A human may also make
decisions where it may be difficult for computers. Security applications may use
mouse movements as a source of randomness.

Depending on the objectives of the P2P network, resource tradeoffs may be
possible to achieve those goals. By contrast, a user in a traditional CDN usually
only needs to use download bandwidth and temporary storage.

2.2.2 Classification of P2P Systems

Androutsellis-Theotokis et al in [45] classified P2P applications into five major cat-
egories: communication and collaboration, distributed computing, Internet service
support, database systems and content distribution.

Communication and Collaboration: These applications allow users to communi-
cate with each other. Examples include Internet Relay Chat (IRC) and Extensible
Messaging and Presence Protocol (XMPP). Skype [47] allows people to make calls
over the Internet via Voice over IP (VoIP).

Distributed Computing : These applications allow computations to take place
over many nodes all at once. Nodes may participate in delegating jobs, doing
computations and, or, combining results. Examples include protein folding (Fold-
ing@home [48]) and the Search for Extraterrestrial life (Seti@home) [49].

Internet Service Support : These applications provide infrastructure to support
various Internet services. Examples include peer-to-peer multicast systems [42],
security systems that protect against denial of service [50] or virus attacks, and
Internet search [51].

Database Systems : These applications act as a distributed storage system which
offers efficient search, modification and deletion. A good overview of peer to peer
database systems is provided by Ryeng et al [52].

Content Distribution: These applications allow nodes to deliver content to nodes
that desire the content. Content distribution is the focus of this manuscript and
will be discussed in the remainder of this chapter.

2.2.3 P2P CDN

Peer-to-peer content distribution networks are by far the most popular applications
of peer-to-peer technology. It is a system where the primary objectives are to

16

facilitate publishing, searching, and transfer of content by members of its network
[45]. All of these networks are application-level overlay networks. In other words,
these networks overlay a logical network on top of the existing web. Thus, two
nodes may be close in the P2P network and yet be far apart physically.

In [46], the network architecture is categorized as either structured or unstruc-
tured networks. Structured networks follow a specific set of rules when the network
is being setup or updated. Unstructured networks on the other hand, do not follow
such rules and usually exhibit a random graph. Structured networks usually place
pointers to content in nodes at deterministic locations. This way, queries for con-
tent can be efficiently routed [45]. In unstructured networks, however, there is no
relationship between content and node.

Peer-to-peer networks that utilize centralized servers are called hybrid networks
(Figure 2.1a). Networks where ordinary nodes may have centralized roles are called
partially centralized networks (Figure 2.1b). A network where all nodes are equal
and does not have a centralized component is purely decentralized (Figure 2.1c).
Unstructured networks usually employ a hybrid or partially decentralized architec-
ture to allow for efficient queries. Structured networks are usually used in purely
decentralized environments.

(a) hybrid (b) partial (c) pure

Figure 2.1: P2P CDN architectures. The black dots represent peers. The white
circle in (a) represents a centralized server. The white circle in (b) represents
superpeers.

2.2.4 Definitions

Some important P2P terms are described below. More terms are described in the
Glossary.

Peer : An endpoint in a P2P system which usually consists of a client application
connected to the network. A peer is usually capable of upload, download and
routing network information. Synonyms include: nodes, users, leaves and servents.

Leech: A peer which only participates for personal gain and does not contribute
to the network. A synonym of leech is freerider.

Seed : A peer which is only contributing to the network.

17

Superpeer : A peer with high bandwidth, disk space and processing power, that
have additional centralized responsibilities. Usually superpeers store network state
which allows search queries to be performed more efficiently. Synonyms include
supernodes, ultrapeers and hubs.

Neighbour : Peers usually keep a list of all the nodes it knows to be in the system.
These nodes make up the neighbours of that peer.

Churn: Churn refers to the dynamics in which nodes join and leave the network
[53]. A high rate of churn means that nodes stay in the system for only a short
period of time.

Flash Crowd : A flash crowd usually appears when a popular piece of content is
released. During a short period of time, the network needs to handle many more
nodes and an increase in bandwidth for the desired content.

DHT : A Distributed Hash Table is used to place pointers to content at deter-
ministic locations in a network. The aim is to efficiently route queries.

Pollution attack : Malicious nodes may perform a pollution attack by publishing
lots of seemingly authentic, but garbage content into a network with the hope of
making it difficult for users to determine the real content.

Poisoning attack : A poison attack is used to make downloaded content unusable
by modifying various aspects of the system. For example, by modifying the central
search index of a network, users may be redirected to malicious nodes.

Sybil attack : A Sybil attack can be deployed by having multiple nodes work
together to disrupt a network [54]. For example, malicious nodes can surround
a victim node and deny that node access to the network. It is not necessary to
perform the attack using multiple entities. Appearing to be multiple identities is
enough.

2.3 P2P CDN Applications

The following discussion presents a brief survey of some of the most popular P2P
CDN schemes of the past and present. The applications will be analyzed in terms
of system architecture, the actions of nodes, and how content is distributed. The
purpose of this chapter is to arrive at a set of basic requirements for a good P2P
CDN.

2.3.1 Napster

Napster [55] was one of the first peer-to-peer file sharing systems, and probably
the most notorious. It was created by Shawn Fanning while he was a student at
Northeastern University in June, 1999 [56].

18

The original Napster architecture was a hybrid decentralized network using a
central server to handle all nodes and queries. Users wanting to participate in
Napster had to download a Napster client application. To join the system, the
software would connect to the Napster servers which had known, static addresses.
Then, the software would tell the central server what files a user is sharing and
their contact information [57].

A user may search the central server to find out who had a desired file. Then,
the user can select a single node from the central server’s response and connect to
the node directly. Data transfer takes place peer-to-peer between the two nodes
independently of other nodes and the central directory. This is illustrated in Figure
2.2.

Peer

Peer

Peer

Peer

Peer Peer

PeerPeer

Napster
Central

Directory

Transfer

Search

Search

Transfer

Figure 2.2: Napster Architecture. The central directory keeps track of all the nodes
and their offered content. Search requests are sent to the central server. Transfer
takes place peer-to-peer.

Using Napster, a user had no way of verifying the authenticity of a file without
actually downloading it and many files labelled with the same file name could
have content ranging from the desired, to garbage, to malicious content. As such,
Napster suffered from pollution attacks.

One of the major flaws of Napster was that the central server was absolutely
required in the operation of the system and represented a single point of failure.
When the Recording Industry Association of America (RIAA) wanted to shut down
Napster due to copyright infringement of music content, all it had to do was shut
down its central servers. By late 2001, Napster was no more.

19

2.3.2 Gnutella

Gnutella [58], pronounced newtella, is a peer-to-peer protocol developed by Justin
Frankel and Tom Pepper in early 2000 while working at Nullsoft [59] and subse-
quently AOL [60]. The original Gnutella (version 0.4) in contrast to Napster, was
purely decentralized, meaning that all nodes could perform the same actions and
have the same responsibilities. There was no centralized server whatsoever.

The purely decentralized nature of Gnutella presents a problem for nodes that
want to join the network. Because nodes come and go, where would a new node
connect to? This process of finding at least one node to connect to is known as
bootstrapping [61]. Bootstrapping can be performed by acquiring a list of nodes
previously known to be in the system. This could be nodes that are known to stay
in the system for a long time, a list of nodes previously connected to, or a list of
nodes that others publish in a public area such as an online forum [62]. Once a
node has connected to a single node in the system, the node can query the network
to find the addresses of other nodes. Nodes may leave the system at any time. The
remaining nodes should detect the loss and update their neighbour lists accordingly.

Unlike Napster, users do not publish content to any other node. It only keeps a
list of files it is willing to share. Search is accomplished by broadcasting a query to
all neighbouring nodes. Each of these nodes continue to broadcast the query to all
of its neighbours. This process continues until a Time to Live (TTL) limit attached
to the query, goes to zero. The TTL is a value set by the initiating node which
each node must decrement when the query is received. This process of searching is
known as a flood.

Each node queried is required to respond if it has the requested content. The
responses come back in the same path that the query took in the reverse direction.
Once the responses come back to the original node, the user application makes a
direct connection to the node with the desired content. Data transfer takes place
peer-to-peer. An illustration of a file download is shown in Figure 2.3.

Because of its decentralized configuration, it would be much more difficult for
the RIAA or the government for that matter to take down the network. However,
Gnutella suffers from other shortcomings. A node that is not actively downloading
still needs to participate in search request propagation and the search mechanism
itself is very inefficient. In addition, due to the use of TTL, a search will stop before
querying the entire population of nodes which may prevent finding certain rare files.
To help alleviate these problems, version 0.6 of Gnutella introduced ultrapeers.

Ultrapeers are peers that have more resources than the average peer. Slower
peers, known as leaves in Gnutella, perform all of their actions through one or
many ultrapeers. Leaves let their ultrapeers know what they are sharing and all
queries are routed through the ultrapeers. This way, only ultrapeers participate in
the flooding mechanism [63]. Ultrapeers also keep a cache of nodes in the system
and search results.

20

SearchP9

P7

P8

P6

P5P4

P3

P2

P1

Peers: P1 . . .P9

TTL: 3
Search queries:
Response queries:
Transfer:

Search starts with P1.
P7 has the requested item.

Response

Transfer

Figure 2.3: The Gnutella network uses a purely decentralized approach. In this
example, the search begins at P1 which sends out a search request to all of its
neighbours. The time-to-live is set to 3. P2 decrements the TTL to 2 and forwards
the search request to all of its neighbours. P2 also searches its own file list and can-
not find the file. This process continues until TTL is 0. The only node responding
is P7 and the response follows this same path as the requests. The data transfer
takes place peer-to-peer between P1 and P7.

Another improvement of version 0.6 was that search queries contained the IP
address and port of the node that initiated the request (or the ultrapeer that is
representing the node). Using this information, query responses can take a shortcut
on the way back so that responses go directly to the original node (or one of its
ultrapeer).

As with Napster, there is no way to verify the authenticity of a file without
downloading first. Also, like Napster, there is no incentive for users to offer any
files at all. However, unlike Napster, Gnutella has much better fault tolerance since
there is not a single point of failure. If a particular node goes down, the network
does not suffer too much.

Examples of software applications that operate on the Gnutella network in-
cludes: BearShare [64], Gnucleus [65], Limewire [66] and Morpheus [67].

2.3.3 FastTrack

The FastTrack [68] protocol and its software implementation, KaZaA [69] was cre-
ated by Niklas Zennström, Janus Friis, and a group of programmers headed by Jann

21

Tallinn in March, 2001 [68]. FastTrack is a hybrid decentralized, unstructured P2P
system very similar to Gnutella with ultrapeers. It uses a two-level hierarchy of
peers where the core is made up of a mesh of superpeers and the edges are nor-
mal peers. These superpeers together act similarly to Napster’s central directory;
they keep track of what files peers have and where the peers are. Normal peers
connect to the network through the superpeers. Superpeers can also query for, and
download content like a normal peer. This is illustrated in Figure 2.4.

Search
Transfer

S1

P1

P2

P3

P4

P5

P6

P7

P8

S2

S3

Peers: P1 . . .P8

Superpeers: S1 . . .S3

Peer-to-Superpeer:
Superpeer-to-Superpeer:
Search:
Response:
Transfer:

Response

Figure 2.4: FastTrack Architecture. Queries are sent to a superpeer which com-
municates with other superpeers to arrive at a response. Transfer takes place
peer-to-peer.

Using KaZaA or some other FastTrack application, a user can join the network
through a list of known supernodes. This list is created out-of-band; it could come
with the software, the software can keep track of previously connected superpeers,
or by some other method. Since this is an unstructured system, normal nodes
leaving the system does not affect the system much. When superpeers leave, its
peers must find other superpeers.

To publish content, nodes must inform the superpeers what files they are willing
to share. To perform a search, a peer must contact a superpeer. The superpeer
can then use a broadcast protocol to query the other superpeers. Once a response
comes back, data transfer takes place peer-to-peer.

FastTrack uses the UUHash [70] hash function to hash files. A hash provides
three benefits. First, a hash can be used to uniquely identify a file. Second, users
can download pieces of a file from multiple users which have files with the same
hash. This may shorten the download times. Finally, it can be used to verify a
download by computing the hash of the downloaded files. Unfortunately, UUHash
was a bad choice for a hash function because it was not collision resistant. In other

22

words, it was very easy to find two different files with the same hash so FastTrack
suffers from pollution attacks where fake or malicious files are mixed together with
desirable files.

Other than KaZaA, iMesh [71] and Grokster [71] also operated using the Fast-
Track network, although all three used incompatible versions of the protocol [68].
Grokster was shut down in late 2005 [72].

eDonkey

The eDonkey network is a hybrid decentralized, unstructured, peer-to-peer file shar-
ing network. Whereas previous peer-to-peer networks focused on downloading small
files from single users, eDonkey was designed for downloading large files from a lot
of users at the same time. The network used central servers to facilitate the sharing
of files among the peers, much like Napster. The eDonkey2000 client was created
by the MetaMachine Corporation in September, 2000 [73].

Each shared file on the eDonkey network was broken into 9500kB sized pieces
which allowed users to download pieces from many users simultaneously [73]. A
MD4 hash was computed for each piece to allow for piece-wise verification. Down-
loaded pieces can also be uploaded to other users.

A master, or root hash could then be computed by calculating the hash of the
concatenation of all the piece hashes. This was used as the unique identifier for
the file. Other secondary identifiers includes: file name, file size, extension, bitrate,
codec and so on. Although MD4 is no longer a secure cryptographic hash function,
it is still much better than the UUHash function in terms of being collision resistant.
For most practical purposes, creating collisions using MD4 is still very difficult.

Although it is difficult to create two files with the same identifier, it is quite easy
to name fake files with real-looking secondary identifiers. Many fake files can be
generated to deploy a pollution attack. To alleviate this problem, various websites
listed the root hash of files and by the help of its members, good identifiers could be
determined. Users can search the website for a file and receive an unique identifier
which can be used to search the actual eDonkey network for download. As long
as the website and its users are truthful, users can download files with very high
guarantees that the file is legitimate.

One of the major problems of the eDonkey network was the use of central
servers. Two new schemes were devised on top of the eDonkey network which
employed DHT technology. This allows a network to continue operating even when
central servers fail. MetaMachine created Overnet by implementing the Kademlia
algorithm. Furthermore, the eMule Project developed a Kademlia-like network
called Kad which was added in version 0.4. A discussion of the Kademlia DHT is
provided in §2.3.6.

By mid-2005, the eDonkey network had about two to three million users, 500
to two billion files and about 100 to 200 central servers [73]. Razorback2 was

23

one of the most popular servers which hosted about a million users but was shut
down in February, 2006 [73]. In September, 2006, MetaMachine discontinued the
eDonkey2000 user client due to RIAA pressure. However, by this time, eMule and
Shareaza [74] had already accounted for over 90% of the client software used and
so the network is still very popular today [73].

Some example of eDonkey user applications include eDonkey2000 and eMule.
MetaMachine originally wrote the first server software, which are not in use any-
more. Lugdunum’s eserver currently supports most eDonkey type networks [73].

2.3.4 eMule

eMule was created by someone with the alias Merkur (also known as s) in May of
2002 as an alternative to the eDonkey2000 client [75]. Using the same identification
scheme as eDonkey, the unique MD4 root hash and secondary attributes were saved
on both the eDonkey servers and the Kad network. Either of these networks could
be searched and a list of node addresses is returned. eMule can then request pieces
of the file from multiple nodes. Every node has a limited number of upload slots
and implements a queueing system so that downloaders must wait until an upload
slot becomes available [75] before being able to download. This is usually based on
a first-come first-serve basis.

Low ID

eMule makes a distinction between users that can accept incoming connections and
those that cannot. The users that cannot be reached by other nodes are given a Low
ID from the servers. These users cannot be notified when another node is ready
to upload to them, so they need to use periodic polling. This produces additional
strain on the network. In addition, other nodes cannot easily download from a Low
ID user and will need help from servers or other Kad clients.

A Credit System

eMule is one of the first peer-to-peer applications to consider a credit system which
provides incentives for nodes in the system to upload to other nodes. Prior to this,
a user can offer no files or bandwidth to a network and still be able to download.
By using a credit system, users who have uploaded and have contributed to the
network are given higher upload slot preference than users who are freeriding. The
credit system is peer-to-peer, so that if a node A is uploading to a node B, then,
node A will be given higher preference on node B’s upload queue.

The credit score of a node is calculated as follows. If the total uploaded is less
than 1 MB, then the ratio is fixed at 1. If the client uploads data but has not begun
downloading, the credit score will be 10. Otherwise, the credit score is the lowest
of Ratio1 and Ratio2. The credit is a value between 1 and 10.

24

Ratio1 =
2(UploadedTotal)

DownloadedTotal
(2.1)

Ratio2 =
√

UploadedTotal + 2 (2.2)

Trusted peers

eMule also takes into consideration trusted peers. One example of this is friends
who can be given a reserved upload slot. However, only one reserved slot is allowed
to prevent nodes from uploading only to friends.

2.3.5 BitTorrent

Architecture

BitTorrent [31] is another popular peer-to-peer file sharing system, typically used
to share large, popular files. By some estimates, BitTorrent accounts for about a
third of all Internet traffic [76]. It was created in 2001 by Bram Cohen and is now
maintained by BitTorrent Inc [31].

BitTorrent is a hybrid decentralized, unstructured file distribution network. A
typical BitTorrent network consists of three components: a web server that pub-
lishes .torrent files, trackers that keeps track of nodes in a swarm and individual
nodes that actually participate in the data transfer. The original BitTorrent archi-
tecture is shown in Figure 2.5. Nodes are grouped by the content they are sharing
into what are called swarms which is a key difference between BitTorrent and other
P2P networks. A user who is downloading two different files is a member of two
different swarms.

All nodes periodically poll one or more central trackers to find out the location
of other peers in the swarm. This way, a new node such as P1 in Figure 2.5 can
connect to existing nodes in the swarm. Among other things, the tracker’s location
is provided in a .torrent file which may be obtained from a website such as The
Pirate Bay [77]. A sample .torrent file is given in Appendix A. Once the .torrent
file has been downloaded, a BitTorrent client such as uTorrent [78] or Azureus [79]
handles all BitTorrent protocol related tasks and the data transfer.

Each piece of content, such as a file, is broken into many smaller equal-sized
pieces. However, unlike eDonkey, piece size is not fixed since it was determined that
there is a tradeoff between efficiency and overhead when choosing the size. Peers are
able to download and upload these pieces from multiple peers simultaneously and
data transfer takes place peer-to-peer. Seeds are those peers that have completed
the download and are offering their upload bandwidth to other peers.

25

P1

P2

P3

P4

P5

P6

P7

P8

.torrent

Tracker

node join

node join

update

update

transfer

transfer

Figure 2.5: Original BitTorrent Architecture. Peers sharing the same file are com-
bined into a swarm. To find other peers in the swarm, each peer must periodically
update with a central tracker. The location of the tracker is contained within a
.torrent file which a user may obtain from a website. Data transfer takes place
peer-to-peer and pieces of a file may be obtained from different peers simultane-
ously.

A snippet of a BitTorrent transfer is presented in Figures 2.6 and 2.7. In the
first round (Figure 2.6), peers P1 and P2 each download a different piece from seed
S1. In the second round (Figure 2.7), peers P1 and P2 are able to share pieces d1

and d2 with each other. However, because they both download the same piece d3

from the seed, they cannot share pieces with each other in the next round.

Publishing Files

To share a file, the initial seeder must create a .torrent file. In addition to the
tracker information, a .torrent file also contains metadata about the file. To prevent
corruption of data pieces, a SHA1 hash is calculated for each piece and stored in
the .torrent file. This way, a node can download a piece from any untrusted peer
and verify the validity of the piece. The initial seeder usually publishes the .torrent
file on a trusted website such as The Pirate Bay [77] and registers it with a tracker.

Unfortunately, this model suffers from the same fault tolerance issues as with
other centralized networks such as Napster. In 2005, to combat this issue, BitTor-
rent introduced trackerless torrents based on the Kademlia protocol [80]. Using
Kademlia, every node acts like a tracker and the network can operate even with-

26

S1 P1

P3P2

4-piece file

d1 d2 d3 d4 d1

d2

d2

d1

Figure 2.6: Example BitTorrent data transfer: Round 1. A particular file or group
of files is broken into pieces (in this example four pieces). Here, a seed S1, is
distributing content to peers P1 and P2. In particular, P1 receives piece d1 and P2

receives piece d2.

S1 P1

P3P2

4-piece file

d1 d2

d3

d4 d1

d2

d3

d3

d2

d1

d1

d3

d3d2

d1 d1

Figure 2.7: Example BitTorrent data transfer: Round 2. Peers P1 and P2 both
downloads d3 from the seed. In addition, the two peers transfer their unique pieces
to each other simultaneously. P1 also uploads to P3.

out a central tracker. More details about Kademlia and its use in BitTorrent are
given in §2.3.6. In addition to the DHT method, Peer Exchange (PEX) has been
implemented to allow peers to share peer lists.

Obtaining Files

To download a file, a user must first download the .torrent file. Then, the BitTorrent
client connects to the tracker or trackers found in the .torrent file. The tracker
returns a random subset of all nodes participating in the swarm. The client then
connects to these peers directly to begin data transfer.

All peers broadcast the pieces they have to their neighbours so that peers can
determine which pieces are available for download. A peer can choose to download
any piece that it does not already have. Once all the pieces have been obtained,
the original file is reconstructed by concatenating the individual pieces.

27

Incentive to Upload

To shorten downloads, BitTorrent aims to maximize the aggregate bandwidth used
in the network. This is accomplished by utilizing the maximum upload bandwidth
(or download bandwidth, depending on how you look at it) of each individual node.
However, a node only wants to maximize its own download bandwidth.

To provide an incentive for nodes to upload, BitTorrent implements a tit-for-tat
strategy in its clients. This is a rounds-based strategy which is often used in the
Iterated Prisoner’s Dilemma game theory problem.2 It is devised so that uploading
provides better chances for a faster download.

For a node participating in an exchange with another node, it will always upload
in the first round. On subsequent rounds, it will mimic the action taken by the
other node in the previous round. Thus, if two nodes upload to each other, they
will continue to upload to each other. If one node stops uploading, the other
will too. Periodically, a peer will offer to upload to a random peer. This is called
optimistic unchoking and allows search for more cooperating peers and give a chance
to previously non-cooperating peers [82].

Piece Distribution

BitTorrent is a bulk-content CDN, which means files are used after every piece has
been downloaded. From an availability point of view, it is necessary that every
unique piece is available. Otherwise, a node cannot complete a download.

Downloading rare pieces offer the best opportunity to upload to others since
most nodes will want the piece. This in turn allows nodes to utilize its download
bandwidth. This is known as the rarest-piece-first strategy.

Globally, rarest-piece-first reduces the number of rare pieces in the system so
that the distribution of pieces in the system becomes even. If rare pieces were part
of the system, it would severely damage the performance of the transfers, since a
lot of nodes will want to utilize the upload bandwidth of a few. Should certain
pieces totally disappear, the transfer would not be able to finish. Heterogeneity in
the system also makes the system robust in that peers can enter or leave as they

2The Prisoner’s Dilemma problem was first created by Merrill Flood and Melvin Dresher
working at RAND Corporation in 1950. It is usually presented as follows: Two suspects are
arrested by the police. The police have insufficient evidence for a conviction, and, having separated
both prisoners, visit each of them to offer the same deal. If one testifies (defects) for the prosecution
against the other and the other remains silent, the betrayer goes free and the silent accomplice
receives the full 10-year sentence. If both remain silent, both prisoners are sentenced to only six
months in jail for a minor charge. If each betrays the other, each receives a five-year sentence.
Each prisoner must choose to betray the other or to remain silent. Each one is assured that the
other would not know about the betrayal before the end of the investigation. How should the
prisoners act? [81] The iterated version of this problem has both suspects being arrested over and
over again and remembering what the other suspect did last time they were in jail.

28

please with minimal effect on the status of rare pieces because hopefully other peers
would have them.

In many situations, the original seeder of a file will at some point leave the
system. It is necessary that this seeder must upload a copy of the original file
before leaving. Once this is done, all the other peers must be able to share what
they have, and eventually distribute the data to everyone else in the system.

Freeriding

A universal problem with all peer-to-peer systems is the freeriding or leeching prob-
lem. This problem occurs when a node only wants to download. Tit-for-tat dis-
courages freeriders during downloads, however, as soon as the download is finished,
a user may quickly disconnect from the network. An attempt has been made by
private trackers such as Demonoid [83] to keep track of upload and download ratios
on a per user basis. This way, users who have low upload ratios can be punished.

Another strategy employed by seeders is to withhold pieces until peers have a
good enough upload ratio. Recently, there has been attempts to show that freerid-
ers can achieve a good download rate with new clients such as BitThief [84] and
BitTyrant [85].

Other applications

One novel enhancement of BitTorrent has been the attempts to bridge the gap
between the browser-based Internet and the standalone P2P client applications.
Web seeding allows content providers to source content from the Internet that can
be accessed through a traditional swarm. This allows websites to offload bandwidth
to downloaders to handle more traffic than otherwise possible. However, content
is downloaded by the BitTorrent client application and does not yet pose a serious
threat to traditional CDNs which work within the browser.

Another technique called broadcatching allows client applications to capture
RSS feeds which can then be used to initiate a torrent download automatically.
Miro [86] is an example of a client supporting broadcatching.

Besides traditional P2P client applications, BitTorrent is being increasingly used
in different ways. TorrentRelay [87] is a service that will download a torrent for a
user and then allow the user to download from it directly. It seems likely that Tor-
rentRelay will become an easy target for anti-piracy groups. Also, various hardware
devices such as routers have been designed to support BitTorrent natively.

Privacy

BitTorrent does not offer any anonymity. A tracker maintains a list of all Internet
addresses that is participating in a swarm. Anonymity comes at a great price since
it usually requires sacrificing performance.

29

To prevent eavesdroppers and malicious attackers from interfering with a Bit-
Torrent transfer, Protocol Header Encryption (PHE), Message Stream Encryption
(MSE) and Protocol Encryption (PE) can be used by BitTorrent clients. This
allows users to download content that may otherwise have varying consequences.
Recently, since BitTorrent traffic makes up a significant portion of Internet traffic,
Internet Service Providers (ISPs) such as Comcast has attempted to limit the band-
width used. Even though encryption can make it difficult to determine the exact
content being shared, it is still possible to use traffic analysis to discover BitTorrent
traffic.

2.3.6 Kademlia

Kademlia is a peer-to-peer distributed hash table. It was created in 2001 by May-
mounkov and Mazières [80] and is currently used in the popular BitTorrent and
eDonkey/eMule P2P networks. Distributed hash tables provide a decentralized
system to efficiently store and locate 〈key, value〉 pairs among the member nodes.
Usually, the key represents a unique identifier for some content, and the value repre-
sents a pointer, or a list of pointers to the nodes that have the content. This allows
P2P networks to be fully decentralized and is a way to ensure high availability,
robustness and improved fault tolerance.

System Architecture

A Kademlia network consists of nodes each with (for all practical purposes) unique
160-bit IDs. IDs are generated randomly by the nodes themselves. Logically, the
IDs represent leaves in a binary tree with the position determined by the shortest
unique prefix of its ID. Consider the example given in Figure 2.8 for the node with
unique prefix 0011 borrowed from Maymounkov’s paper [80].

To locate a particular node in O(logn), where n is the number of nodes, it is
necessary that every node knows of at least one node in each of its subtrees. This
way, searching for a particular node is similar to a binary search. Keep in mind
that each node will have a different partition of the binary tree.

Distance

In Kademlia, keys are also 160 bits in length. Therefore, keys and node IDs occupy
the same identifier space. In fact, 〈key, value〉 pairs are stored at nodes with
node IDs closest to the key. Therefore, searching for a particular key amounts
to searching for a node with the same identifier as the key. To measure distance
between two identifiers, Kademlia uses the exclusive-or (xor) bit-wise operation.
For two identifiers x and y, their distance d(x, y) interpreted as an integer is given
by:

30

1

1

1 1

1

1

0

0

0 0

0

0

1 0

0011...

1... 01... 000...

0010...

Figure 2.8: Kademlia system architecture as seen from the node with prefix 0011. . . .
The binary tree is partitioned into subtrees that do not contain the node. All nodes
with prefix 0010 do not contain the node with prefix 0011 since the fourth bit differs.
Also, all nodes with prefix 000 do not contain the node since the third bit differs,
and so on. Thus the subtrees for a node with unique prefix 0011 in this example
are those with prefix 1, 01, 000, and 0010.

d(x, y) = x ⊕ y (2.3)

Kademlia interprets keys as bigendian values [88]. Therefore, for a 20 byte key
B1B2 . . . B20, B1 represents the most significant byte. If two keys are close, then
the distance in bit format should start with a long string of 0s. In other words, if
two keys have a long common prefix, then they are close.

Node State

To route search queries, each node must keep track of all the contacts or peers it
knows about. For each 0 ≤ i < 160, a node keeps a list, Li of 〈IP address, UDP
port, Node ID〉 triplets for nodes between 2i and 2i+1 in distance from itself [80].
For small values of i, the possible nodes in Li is very small since the address space 2i

to 2i+1 is small. However, for large values of i, for instance, i = 159, the list can be
very large. For this reason, lists are usually limited to about 20 nodes. These lists
are also referred to as k-buckets where k is a system-wide parameter. k is chosen
such that it is unlikely that all k nodes will disappear from the system within an
hour. K is usually set to 20.

Figure 2.9 illustrates what the k-buckets for node P0 would look like. The
distance between node P0 and the other nodes are all quite far.

To determine what nodes to keep in the k-buckets, Kademlia uses a least-
recently seen eviction policy. Whenever a node receives a message from another
node it updates the k-bucket for that node. If the node is already in the list, it is
moved to the tail of the list. If the k-bucket is full, the node pings the head of the
list (least-recently seen node). If the least-recently seen node does not reply in a
timely manner, it is removed from the list and the new node is inserted at the end

31

1

1

1 1

1

1

0

0

0 0

0

0

1 0

0011...

1... 01... 000...

0010...

P1
P2

P3

P4 P5

P6

P7

L159 contains P1, P2, P3

L158 contains P4, P5

L157 contains P7

L156 contains P6

P0

Figure 2.9: A node keeps track of all the nodes it knows about in k-buckets. Here,
the k-buckets for node P0 is shown.

of the list. On the other hand, if it does reply, it is moved to the tail of the list and
the new node is discarded. This is illustrated in Figure 2.10.

〈IP,port,nid〉 〈IP,port,nid〉. . .

head (least recently seen) tail (most recently seen)

Figure 2.10: Each k-bucket is arranged so that the least recently seen node is at
the head and the most recently seen node is at the tail.

Protocol Primitives

The Kademlia protocol requires four primitive Remote Procedure Call (RPC) op-
erations: PING, STORE, FIND NODE, FIND VALUE.

PING : Probes a node to see if it is online.

STORE : Sends a 〈data, value〉 pair to a node for later retrieval.

FIND NODE : Sends a node ID. The node should return at most k 〈IPaddress,
UDPport, Node ID〉 triplets for the Node IDs closest to the request ID.

FIND VALUE : Sends a key. If the corresponding value is stored, the node
returns the value. Otherwise, FIND NODE is performed.

Node Lookup

A node lookup is performed whenever a Kademlia node wishes to find the k closest
nodes to a given node ID. Node lookups are performed in parallel where α denotes
the amount of parallelism. It is known that 3 is a good value [89]. The lookup is
performed in the following steps:

32

1. Pick α closest nodes from the set of nodes it knows about. Store closest node
in closestNode and store the α closest nodes in shortlist [88].

2. For α nodes in shortlist that have not yet been queried, call FIND NODE in
parallel.

3. On response, update shortlist with any new nodes found. If a closer node is
found, update closestNode. Nodes that do not respond in a timely fashion
are discarded.

4. If closestNode was not updated, call FIND NODE to the k closest nodes that
have not been queried. If responses have been received from k closest nodes,
stop the lookup. If closestNode was updated, go to step 2.

Operations

Operations in Kademlia use node lookups in conjunction with the primitive RPCs.
To store a 〈key, value〉 pair, a node lookup is performed followed by the STORE
RPC to all k closest nodes. To find a 〈key, value〉 pair, a node lookup is performed
using FIND VALUE instead of FIND NODE.

Kademlia in BitTorrent

Keys in BitTorrent are generated by calculating the hash of the .torrent file meta-
data. This is usually known as the info-hash [90]. The data stored is a list of all
the peers participating in the swarm. 〈key, value〉 pairs are stored at the 8 nodes
closest to info-hash [90]. 8 nodes is considered sufficient to minimize the probability
that all 8 nodes will leave the system within the announce interval.

To join a swarm, a peer must perform a lookup based on the info-hash of the
torrent. The 8 nodes closest to the info-hash should add the announcing peer to
their peer list. As well, the list of known peers in the swarm is returned to the
announcing peer.

Other Considerations

Queries in Kademlia contain the sender’s contact information. This way, nodes can
keep track of new and lost nodes in the system. However, if no queries have been
performed in the system for some time, Kademlia requires nodes to make dummy
queries to refresh the network. Similarly, when a node joins the network through a
single other node of the network, it can perform a node lookup for itself which will
refresh the system.

33

2.3.7 Other

Examples of other unstructured CDNs include Freenet. Some examples of struc-
tured CDNs include CAN, Chord, Pastry, Tapestry, etc.

2.4 Application to Online Video

A peer-to-peer system for online video would encounter some of the same require-
ments of other content distribution networks. These requirements are discussed
below.

2.4.1 Scalable

If a user contributes as much upload bandwidth as download bandwidth, then
as long as the original uploader uploads a single copy, any number of users can
download it. It is infinitely scalable.

Using a fixed number of centralized servers to keep track of content or users
such as in Napster, eDonkey and BitTorrent is unscalable. As the number of users
increase, the amount of centralized resources must also increase. However, although
BitTorrent trackers are used by peers, the trackers do not keep record what pieces
each peer has but merely that a peer is participating in a swarm. This differs
from Napster and eDonkey which keeps track of what each user is sharing. This
reduces the resource requirement of the centralized server. In YouTube’s case, the
central servers are massive and it may be worthwhile to keep a lot more information
centrally.

Gnutella has no centralized component, but its search mechanism is clearly
unscalable as flooding the network is extremely inefficient. By using partially de-
centralized architecture such as in new versions of Gnutella and FastTrack, the
search mechanism is made more efficient but is still unscalable since the core of
the network still uses flooding for search queries. In YouTube’s case, search can be
efficiently conducted centrally.

2.4.2 Cost

Costs will dramatically fall if a peer-to-peer system is implemented for online video.
This is the primary purpose of the rest of this study. This will allow YouTube to
improve the quality of videos, reduce advertisements and improve the overall user
experience.

34

2.4.3 Timeliness

Typically, downloading from P2P networks is slower than downloading from a tra-
ditional CDN. This is because downloading from P2P networks usually require a
ramp-up time for gathering other nodes and rare pieces (as in BitTorrent).

In YouTube’s case, some content is wildly popular whereas most content is not.
Thus, peer-to-peer activity can be very efficient in distributing popular content.
The unpopular content can be served by centralized means. As long as the peer-
to-peer architecture can fall back on YouTube’s servers to maintain downloading
at the video bit rate, users will not feel any delay in watching videos.

2.4.4 Usable

The current P2P systems rely on client applications to communicate with other
peers and deliver content. However, the majority of users access the Internet
through a browser. Using an additional client application presents an extra hurdle
for both content providers and their users.

Thus, one really important aspect of deploying a peer-to-peer system for online
video is easy installation and seamless integration with existing browsers. This
could be accomplished by a method similar to using Tor [91] in a browser such as
Firefox[92] [93].3 The P2P application could run a proxy server which communicates
over the P2P CDN network. The browser could then route requests through the
proxy server over to the P2P network. The proxy could be an add-on to the browser
itself or it could be a background application.

2.4.5 Easily Deployable

Users may participate in a P2P network simply by downloading the client applica-
tion. As this is a large cost-saving endeavour for YouTube, should YouTube want
to deploy this feature, many engineers can be hired with the expected cost savings
to create the system.

2.4.6 Robust

Networks that use centralized components are not as robust as fully decentralized
systems. However, centralized servers provide more efficient means of searching and
maintaining network state. Thus, it comes down to a tradeoff between the required
robustness and efficiency.

In particular, a combination of an unstructured system and a structured system
seems to work well as in the case of BitTorrent and eDonkey. In BitTorrent, the

3Tor is a privacy preserving network that..

35

unstructured system uses a central tracker and central websites to facilitate efficient
search and storage of network state. The additional Kademlia network, provides a
structured means of search and finding nodes. Should the central tracker fail, the
members of a swarm can continue to operate over the Kademlia network.

2.4.7 Data integrity

There are two requirements of data integrity. First, data received from any peer
should be the same as the original data of the content provider. Second, the meta-
data (file name, file size, author) of a file should be reliable.

Older P2P networks provided no guarantees on the quality of the data being
downloaded. BitTorrent, on the other hand, uses SHA1 to prove that any piece
received is an exact copy of the original piece. Using web sites where trusted users
can comment on specific files, a search for metadata should return reliable content.
eDonkey and BitTorrent use such approaches.

Unless network coding is used, data integrity should be very easy to accomplish
with a centralized server which hands out piece hashes.

2.4.8 Security

BitTorrent offers encryption functionality to try to prevent eavesdroppers or mali-
cious attackers from interfering with a transfer. For the majority of applications,
privacy is not a significant issue since users are accustomed to leaving behind a trail
of information when using the web. Privacy also requires additional resources and
foolproof methods are difficult. For instance, to prevent traffic analysis, something
like Tor would have to be used which would not only degrade the Tor network but
provide an extremely slow download.

2.4.9 Fairness

Fairness is achieved inn existing peer-to-peer systems on a node-to-node basis.
eMule has a credit system that keeps track of the amount uploaded by neighbouring
peers. BitTorrent uses tit-for-tat. It is possible to cheat these existing systems.
Fairness can be better achieved by a centralized system which YouTube can deploy.

2.4.10 Highly Available

Popular content is always highly available on P2P networks when a lot of users are
simultaneously downloading the same thing. Conversely, downloading rare content
is difficult. Searching for rare content is slow in purely decentralized and structured
networks, peers usually do not stay in the system forever and downloading from

36

a few peers takes a longer time. By having a large, existing centralized system,
YouTube can ensure that any peer-to-peer activity can always fall back on the
centralized system. This ensures that content is highly available.

37

Chapter 3

System Model

3.1 Components

A web-based video-on-demand (VOD) peer-to-peer (P2P) system has three com-
ponents:

1. servers with infinite capacity

2. viewers; those peers who are watching as they are downloading videos

3. idlers ; peers who are not watching videos but are still in the system.

3.1.1 Servers

Existing VOD systems on the web like YouTube have essentially enough capacity to
handle any and all requests. There is also very little delay from when a user decides
to watch a video until when the video starts streaming. Therefore, a request for
service can be considered to be immediate.

3.1.2 Viewers

A peer who wishes to watch a video, downloads the video as the viewing is taking
place. The bitrate of a video is the rate at which data is being consumed. This
means a video with a constant bitrate of 300 Kbps will require a user to download
300 kilobits per second so that the video can be viewed without stuttering. If a
user downloads at the bitrate, then the user will finish watching at the same time
as when the user finishes downloading. If users downloads faster than the bitrate,
the download will be complete before the video has finished playing.

38

3.1.3 Idlers

A peer who has finished watching and downloading a video but is still in the system
is defined as an idler. These peers are able to upload videos that they have viewed
in the past. For example, a peer may be choosing the next video to go to, or
has paused the video at some point and will be on the web page longer than the
duration of the video. Idlers are very similar to seeds in a BitTorrent-like P2P
system. The difference is that idlers are assumed to not care about what video files
they keep in their temporary caches since any video is available on-demand.

3.2 Collaboration

Collaboration can take place between two peers if one peer has content that another
peer needs. Most existing peer-to-peer systems look at sharing of the same file
between peers who need it. In BitTorrent, peers connect in a swarm to download
the same torrent.

Single video collaboration (SVC) takes place when peers only upload the video
that they are currently watching and downloading. This is shown in Figure 3.1.

v1 v1 v1

v1 : d2v1 : d0 P1P2P3

Figure 3.1: Single video collaboration. A peer P2 is downloading data piece d2 of
video v1 from peer P1 and uploading d0 of the same video to P3.

On the other hand, multiple video collaboration (MVC) allows users to upload
videos different from the ones they are currently downloading. For example, one
peer may have one video and another peer has another video and they are able to
share these videos between each other. No peer wants to upload without the proper
incentives. Uploaders should receive something in return from the downloaders
such that the net bandwidth (uploaded versus downloaded) for any particular peer
should be 0 in the long run. See Figure 3.2.

v2 v1 v1

v1 : d2v2 : d1 P1P2P3

v2

Figure 3.2: Multiple video collaboration. A peer P2 is downloading data piece d2

of video v1 from peer P1. At the same time, this peer is uploading d1 of another
video v2 to peer P3.

So far, SVC has been more popular because it allows users to participate in
bartering and use tit-for-tat incentive schemes which has been shown to be very

39

efficient. MVC requires some sort of credit or incentive system so that a user
uploading a video, v1, is given credits to download another video, v2. This additional
overhead has not been broadly implemented.

3.3 Service Models

The aim for any collaborating P2P system is to decrease the bandwidth, computa-
tion and storage on servers. In other words, its aim is to maximize peer traffic by
having peers upload to other peers.

Single video collaboration allow peers that have pieces of a particular video to
upload to other peers. Since a participating peer helps reduce server costs, these
peers can be given priority over other peers for services. This may include higher
quality videos and a reduction in advertisements. In large enterprises, collaboration
may be mandatory when viewing videos to keep costs down for the company.

An earlier arriving peer can upload to peers arriving after. If peers leave the
system as soon as they finish downloading, the earliest arriving viewer still in the
system would have to download from the server. Figure 3.3 illustrates this situation.

v1 v1 v1

v1 : d2v1 : d1 P1P2P3

v1

v1 : d4 Server

Figure 3.3: SVC with immediate peer departure. Server must upload to earliest
arriving viewer.

Idlers are those peers that have finished downloading but are still in the system.
These idlers can substitute as servers for the earliest arriving viewer. This would
require peers to store videos that have already been watched in a cache. The
number of idlers is dependent on the popularity of the video. If a video is popular,
the number of viewers watching that video is high which means the number of idlers
for that video is probably also high. See Figure 3.4.

If the number of idlers is high for a particular video, then many of these idlers
will not be called upon to upload since only one is required to satisfy the download
of the earliest arriving viewer. Thus, it would be beneficial if these idlers can upload
a video that has no available idlers. See Figure 3.5.

One important observation to make is that the last arriving peer to a video does
not have to upload to any other peer. Thus, this peer can be considered a viewer
for the current watching video and an idler for any other videos that peer may have.
In this situation, this peer may be downloading one video and uploading another
video. However, it is assumed that this peer will remove its idler role as soon as
another peer arrives for the currently watching video.

It is assumed that peers can only download one video at a time from either the
server or from one peer. Also, it is assumed that peers can only upload one video at

40

v1 v1 v1

v1 : d2v1 : d1 P1P2P3

v1

v1 : d4 Pidler1

v1

Pidler2

v1

Server

Figure 3.4: SVC with idlers offering previously watched video. Server is not required
if an idler exists.

a time to one user. This restriction is to simplify the analysis and will be discussed
as a secondary property of the system.

v1 v1 v1

v1 : d2v1 : d1 P1P2P3

v1

v1 : d4 Pidler1

v1

Pidler2

v2

v2

P4 v2 : d1

Figure 3.5: MVC with idlers offering previously watched video. Server is not re-
quired if an idler exists for any video not just the previously watched video.

3.4 Single Video Collaboration

In single video collaboration, each video can be studied separately from all other
videos. To consider the server usage without any P2P assistance, the requests to
a video can be modelled as a M/G/∞ queue. Requests for videos arrive according
to a Poisson process with rate λ. The arrival process has been observed to be
Poisson-like during short intervals through local network traces collected at a large
university [26]. There are fluctuations depending on the time of day. However,
for the peak periods of each day when P2P would be most helpful, the traffic is
Poisson-like. The server uploads data according to a general distribution function
G. The service times are independent and independent of the arrival process. The
number of servers is infinite, so arrivals are serviced immediately.

Let ρ = λ/μ denote the mean number of busy servers. This is also the mean
number of users viewing a particular video. The necessary queueing theory back-
ground is available in Appendix C on page 78.

41

3.4.1 Viewer Queue

All peers wanting to watch a particular video can be modelled as arrivals to a
M/G/∞ queue. Because most users view and therefore download the video from
beginning to the end, it is difficult for a particular user to upload to those that
arrived before them. Therefore, it is assumed that users can only upload to those
that arrive after. In particular, a strict rule is in place which forces users to upload
to only the user that arrived immediately after. This is a modelling artifact and in
reality, users may upload an useful piece to any needy peer.

It is assumed that peers download at the bitrate of the video. That is, peers
download just fast enough to view the video without stuttering. This also means
that peers must download the videos in sequential order from beginning to the end.
Peers are also assumed to have enough upload bandwidth to upload at the bitrate
and so any user arriving to a non-empty queue can download from the user that
arrived immediately before it. The bitrate is assumed constant and 300 Kbps unless
otherwise noted.

The earliest arriving peer in the queue must download from the server, and the
rest of the peers can download from other peers. When the earliest arriving peer
leaves the queue, the next earliest arriving peer having lost its stream downloads
from the server. Therefore, with n > 1 users in the queue, the proportion of the
traffic that is served by peers is n−1

n
. Obviously, with n = 0, no peer traffic exists.

In reality, peers may share the video with a large number of peers at the same
time. Some peers may not be able to upload at the bitrate and some peers may
upload more than the bitrate. The same situation exists for downloading.

If no P2P is employed, the mean traffic sent per unit time by the server for a
video with parameter ρ is,

Tserver, no p2p(ρ) = b
∑
n≥0

npn

= bρ (3.1)

where b is the bitrate of the video. In other words, the traffic sent per unit time on
average is the mean number of users multiplied by the data rate required. ρ = λ/μ
where λ represents the arrival rate and 1/μ represents the amount of time the user
is in service. Since in this model users download at the bitrate, 1/μ is in fact the
length of the video. This is illustrated in Figure 3.6.

3.4.2 No Idlers

If P2P is employed without any help from idlers, then the system can be modelled
as a single M/G/∞ queue. Peers arrive to the queue at rate λ and leave at rate nμ
where n is the current number of users in the queue.

42

ρ

T
(ρ

)

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

Figure 3.6: Tserver, no p2p and b = 300 Kbps.

...λ nμ

n

Figure 3.7: M/G/∞ queue modelling arrivals of viewers.

For any given number of users more than 0, the server only needs to upload
one copy of the video to the earliest arriving peer. Therefore, in this situation, the
server sends,

Tserver, no idlers(ρ) = b
∑
n≥1

pn

= b(1 − p0)

= b(1 − e−ρ) (3.2)

Thus, the traffic distributed by peers is,

Tpeers, no idlers(ρ) = Tserver, no p2p(ρ) − Tserver, no idlers(ρ)

= b(ρ − (1 − e−ρ)) (3.3)

The traffic for this model are shown below in Figure 3.8.

43

ρ

T
(ρ

)

Tserver

Tpeer

0 1 2 3 4 5
0

200

400

600

800

1000

1200

1400

Figure 3.8: Tserver, no idlers and Tpeers, no idlers with b = 300 Kbps. As ρ approaches ∞,
Tserver approaches b.

The proportion of total traffic distributed by peers is,

Ppeers, no idlers(ρ) =
Tpeers, no idlers

Tserver, no p2p

=
b(ρ − (1 − e−ρ))

bρ

= 1 − 1 − e−ρ

ρ
(3.4)

This is shown below in Figure 3.9. When ρ is small, very little server traffic can be
saved with this model. However, when ρ is large, a big proportion of server traffic
can be saved. This all depends on the popularity of a particular video.

3.4.3 P2P with LRU Cache of Size 1

If idlers stay in the system for a period of time after viewing a video, then these
idlers can contribute their upload bandwidth. Here, it is assumed that each peer
maintains a copy of the last watched video and can offer to upload this video
to peers. This can be considered as a cache of size 1 with a Least Recently Used
(LRU) caching policy that keeps the most recently watched video. In this situation,
if a peer has a particular video, that peer can ensure that no server utilization is
required for that video since that peer can act as the server.

44

ρ

P
(ρ

)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.9: Ppeers, no idlers(ρ) with b = 300 Kbps. As ρ increases, Ppeers approaches
1.

To model this, consider a system of two M/G/∞ queues in series. The first
M/G/∞ queue, Qviewer, is for all the users that are currently downloading and
viewing a particular video. A second M/G/∞ queue, Qidler, is used to model
all those users who have finished downloading that video and are now idling in the
system. It is assumed that every user in the first queue, upon finishing the download
goes to the second queue. Users leave the system after idling in the second queue.

Let the arrival rate into the first queue be Poisson with rate λ. Because every
user is assumed to eventually go to the second queue, the arrival rate of the second
queue is also Poisson with rate λ. Let the mean service time of the first queue be
1/μviewer and the mean time spent in the second queue be 1/μidler. Let the average
number of users in each queue be denoted as ρviewer = λ/μviewer and ρidler = λ/μidler

for Qviewer and Qidler, respectively. Also, let the population probabilities be pviewer,i

and pidler,i for Qviewer and Qidler, respectively. Note that in the first queue, service
time refers to the time spent watching videos. In the second queue, server time
refers to the time spent not watching videos but still in the system right after
watching a video. See Figure 3.10.

Obviously, the more popular a video is, the more viewers and idlers it has.
Therefore, the number of idlers for a particular video should be proportional to the
number of viewers. Let 0 < η be a parameter which represents the proportion of

45

...λ

n

...λ

n

Qviewer Qidler

Figure 3.10: Qviewer and Qidler model. Although the arrival rates is the same for
both queues in steady-state, the service times are different. If users view videos
more than they idle, then Qviewer will usually be longer.

viewers that are expected to idle. Then,

1

μidler

= η
1

μviewer

(3.5)

ρidler = ηρviewer (3.6)

In steady state, assuming the two queues are independent, the probability that
no idlers in Qidler can substitute as the server is the probability that Qidler is empty:

P{Qidler empty} = pidler,0

= e−ρidler (3.7)

Thus, instead of uploading 1 video when there are users, the server only uploads
when Qidler is empty and the expected server upload is e−ρidler . Therefore, the
traffic per unit time distributed by the server is,

Tserver, with idlers and LRU cache(ρ) = b
∑
n≥1

pne
−ρidler

= b(1 − e−ρviewer)e−ρidler (3.8)

This is illustrated in Figure 3.11. For small values of η, it is as if no idlers are in
the system. For η = 1, the average number of users in Qidler is the same as Qviewer.
If users are enticed to stay in the system for a long time, which is represented by
a large η, then this is an extremely attractive P2P scheme since very little server
traffic will be needed.

The traffic per unit time distributed by peers is,

Tpeers, with idlers and LRU cache(ρ) = b(ρviewer − (1 − e−ρviewer)e−ρidler) (3.9)

This is shown in Figure 3.12. As η increases, Tpeers approaches bρviewer. This
means, as more users stay in the system, peer traffic dominates and server traffic
is minimized.

The proportion of total traffic distributed by peers is,

Ppeers, with idlers and LRU cache(ρ) =
b(ρviewer − (1 − e−ρviewer))e−ρidler

bρviewer

= 1 − (1 − e−ρviewer)e−ρidler

ρviewer
(3.10)

46

ρ

T
(ρ

)

η = 0
η = 0.1
η = 1
η = 10

0 1 2 3 4 5
0

50

100

150

200

250

300

Figure 3.11: Tserver, with idlers and LRU cache(ρ) with b = 300 Kbps for different values
of η. As η increases, Tserver decreases for all values of ρ.

ρ

T
(ρ

)

η = 0
η = 0.1
η = 1
η = 10

0 1 2 3 4 5
0

500

1000

1500

Figure 3.12: Tpeer, with idlers and LRU cache(ρ) with b = 300 Kbps for different values of
η. As η increases, Tpeer approaches a straight line.

47

This is illustrated in Figure 3.13. Of course, as peers stay in the system longer, the
proportion of peer traffic approaches 1.

ρ

P
(ρ

)

η = 0
η = 0.1
η = 1
η = 10

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.13: Ppeers, with idlers and LRU cache(ρ) with b = 300 Kbps for different values of
η.

48

Chapter 4

Results

4.1 SVC Numerical Examples

For a particular video with users, the server must upload to one viewer unless the
video is available from a seed in the idler queue. If the idler queue is considered
global. That is, there is a single queue for all of the idling peers. Then the global
optimization problem is to ensure that the idling peers as a whole can offload as
much of the server requirements as possible.

So far, only the simple LRU cache of size 1 has been looked at. In what follows,
this will be shown to be a sub-optimal strategy. For the purposes of demonstration,
suppose there are two videos, v1 and v2 that are of the same length, 1/μ = 1.
However, let v2 be ten times as popular as v1. Therefore, v1 is has a viewer queue
with parameter ρ1 = ρ and v2 has a viewer queue with parameter ρ2 = 10ρ. Assume
ρ = 1 and b = 1.

4.1.1 No P2P

Thus, by Equation 3.1, the total server utilization without P2P is:

Tv1,server, no p2p = bρ

= 1 (4.1)

Tv2,server, no p2p = b10ρ

= 10 (4.2)

49

4.1.2 P2P but No Idlers

If peers are allowed to help but no idlers are used, then by Equation 3.3,

Tv1,peers, no idlers = b(ρ − (1 − e−ρ))

= 1(1 − (1 − e−1))

= 0.368 (4.3)

Tv2,peers, no idlers = b(10ρ − (1 − e−10ρ))

= 1(10 − (1 − e−10))

= 9.0 (4.4)

The total peer utilization of this two video system with no idlers is 9.368 out of a
possible 11. Alternatively, the server load has been decreased from 11 to 1.632.

4.1.3 P2P with LRU Cache of Size 1

If users do not leave the system right away and instead idles for one-tenth of the
viewing time, then they can offer the previously watched video for upload. There-
fore, if the viewing parameters for the two videos are ρ1,viewer = 1 and ρ2,viewer = 10,
then the idling parameters for the two videos are ρ1,idler = 0.1 and ρ2,idler = 1. By
Equation 3.9,

Tv1,peers, with idlers and LRU cache = b(ρ1,viewer − (1 − e−ρ1,viewer)e−0.1ρ1,idler)

= 1(1 − (1 − e−1)e−0.1)

= 0.428 (4.5)

Tv2,peers, with idlers and LRU cache = b(ρ2,viewer − (1 − e−ρ2,viewer)e−0.1ρ2,idler)

= 1(10 − (1 − e−10)e−1)

= 9.632 (4.6)

Now, the server utilization has decreased from 1.632 in the no-idler case, to 0.94 if
viewers idle 10% of the time.

4.1.4 P2P with Arbitrary Cache of Size 1

Now, assume idling users can have any video in its cache. In other words, assume
users have watched both videos at some point in the past and can keep either video
in its cache. Therefore, the expected size of the global idling queue is Poisson
distributed with parameter 0.1ρ+ρ = 1.1ρ. Suppose, idlers with v1 in its cache are

50

distributed with parameter xρ whereas seeds with v2 are distributed with parameter
(1.1 − x)ρ. Then, the peer utilizations are as follows:

Tv1,peers, with general cache = b(ρ − (1 − e−ρ)e−xρ)

= 1(1 − (1 − e−1)e−x)

= 1 − 0.632e−x (4.7)

Tv2,peers, with general cache = b(10ρ − (1 − e−10ρ)e−(1.1−x)ρ)

= 1(10 − (1 − e−10)e−(1.1−x))

= 10 − e−(1.1−x) (4.8)

For maximum utilization, it is necessary to maximize the sum of the previous
two values: f(x) = 1 − 0.632e−x + 10 − e−1.1−x. Rudimentary optimization shows
that x = 0.32 is a maxima from which the two equations can be solved:

Tv1,peers, with optimal cache = 0.541 (4.9)

Tv2,peers, with optimal cache = 9.542 (4.10)

The total server utilization is 0.92 out of a possible 11. In this situation, it can be
seen that the unpopular video should be cached slightly more than possible from a
LRU scheme to be optimal. The make up of Tpeers can be seen in Figure 4.1. Please
keep in mind that the y-axis has been truncated to focus on the important areas.

4.2 Cache Parameters

In reality, a website holds millions if not billions of videos. It is assumed that users
can keep any video that they have watched in their local cache. The combination
of the local cache of all the users make up the global cache of videos at any time.
Idlers are able to seed these videos to any peer that requests the files. The goal of
the global cache is to minimize the total server bandwidth used for all the videos.
Therefore, this is a cache distribution problem which answers the question of what
videos peers should keep.

Based on the previous analysis, the cache distribution is dependent on a few
factors:

1. distribution of video popularity

2. number of idling peers

3. replacement strategy

4. cache size

The analysis is restricted to caches of size 1 and is left as an open problem to
optimize for larger cache sizes. Therefore, at any point in time, an idler can only
hold onto and seed a single video.

51

T
p
ee

r
s

v2

v1

no idlers LRU idlers opt idlers server8

8.5

9

9.5

10

10.5

11

Figure 4.1: Comparing the peer traffic for v1 and v2 for different P2P models.

4.2.1 Video Popularity

Video popularity refers to the mean number of viewers for a particular video. On
YouTube, video popularity follows a log-normal distribution. There are a few pop-
ular videos with many viewers and many unpopular videos with few viewers. A
log-normal distribution for ρ > 0 with parameters μ and σ has the following prob-
ability density function (PDF),

f(ρ; μ, σ) =
1

ρσ
√

2π
e

−(ln ρ−μ)2

2σ2 (4.11)

where μ and σ are the mean and standard deviation of the variable’s natural loga-
rithm [94].

The cumulative distribution function (CDF) is as follows,

F (ρ; μ, σ) =
1

2
+

1

2
erf

[
ln(ρ) − μ

σ
√

2

]
(4.12)

If X is a random variable denoting the number of users watching a particular
video, the expected value and variance are,

E(X) = eμ+σ2/2 (4.13)

Var(X) = (eσ2 − 1)e2μ+σ2

(4.14)

52

Given the mean and variance, the parameters μ and σ can also be calculated,

μ = ln(E(X)) − 1

2
ln

(
1 +

Var(X)

(E(X))2

)
(4.15)

σ =

√
ln

(
Var(X)

(E(X))2
+ 1

)
(4.16)

Depending on the distribution parameters, the log-normal distribution can take
many different shapes. Using data provided online1 from prior work [25], the two
parameters for a large (700 thousand) set of videos was calculated to be μ = −3.726
and σ = 2.237. Although inaccurate, henceforth, this data set will be assumed to
be a crude representation of YouTube as a whole. The trace data and capture
methodology are described in Appendix B.

Therefore, the mean and variance are,

E(X) = eμ+σ2/2 = 0.2945 (4.17)

Var(X) = (eσ2 − 1)e2μ+σ2

= 12.86 (4.18)

To see the effect on the distribution when the mean and variance are different,
consider means and variances ±50% from these values. See Table 4.1.

Table 4.1: Mean and variance of trace data.

Label Mean Variance μ σ
a E(X) Var(X) -3.726 2.237
b 0.5E(X) 0.5Var(X) -4.763 2.387
c 0.5E(X) 1.5Var(X) -5.312 2.606
d 1.5E(X) 0.5Var(X) -2.580 1.878
e 1.5E(X) 1.5Var(X) -3.119 2.146

The trace data and the best-fit lines are shown in Figure 4.2. Figure 4.3 rep-
resents the PDF of the trace data and Figure 4.4 represents the CDF of the trace
data.

To see which videos account for the most traffic, f(ρ)ρ is shown in Figure 4.5.
The majority of traffic is concentrated at ρ < 5. The video group with the most
traffic are those videos with ρ = 0.0241 which represents the peak in Figure 4.5.

Total YouTube traffic

Assume the bitrate (b) of all the videos are the same. Also, assume there are
i = 1, 2, . . . , N different videos with parameters ρi. Then the mean server traffic is,

TYouTube server, no p2p = b
N∑

i=1

ρi (4.19)

1http://netsg.cs.sfu.ca/youtubedata.html

53

ρ

P
ro

b
ab

il
it
y

trace data

a = best-fit

b

c

d

10−6 10−4 10−2 100 102 104

0.0001

0.05
0.1

0.25

0.5

0.75

0.9
0.95

0.99

0.999

0.9999

Figure 4.2: Probability plot showing trace data and best-fit.

ρ

f
(ρ

)

a
b
c
d
e

10−8 10−6 10−4 10−2 100 102
10−10

10−8

10−6

10−4

10−2

100

102

104

Figure 4.3: Log-normal probability density function for different means and vari-
ances.

54

ρ

F
(ρ

)

a
b
c
d
e

10−8 10−6 10−4 10−2 100 102
10−20

10−15

10−10

10−5

100

Figure 4.4: Log-normal cumulative distribution function for different means and
variances.

ρ

f
(ρ

)ρ

a
b
c
d
e

0 5 10 15 20
10−3

10−2

10−1

100

Figure 4.5: f(ρ)ρ for different means and variances.

55

If
∑N

ρ=1 ρi can be approximated by E[ρ]N , where E[ρ] is the mean value of ρi, then,

TYouTube server, no p2p = bNE[ρ]

= bN

∫ ∞

ρ>0

f(ρ)ρ (4.20)

= bNeμ+σ2/2 (4.21)

where E[ρ] = eμ+σ2/2 for a log-normal distribution.

For the trace obtained, N = 743308 and E[ρ] = 0.294483. Therefore, using the
log-normal model, the mean number of peers online at the same time is: 218891.
Without making any assumptions on the distribution of videos and simply summing
the ρ of all the videos yields: 231035. If arrivals to each video is Poisson, then
globally the arrivals to YouTube is Poisson with mean 218891 if video popularity
is log-normal distributed.

4.2.2 Number of Idlers

The prior analysis assumed the number of idling peers is a function of the total
number of peers in the system. The more peers there are watching videos, the more
peers there are idling. With well constructed incentives, it may be possible to hold
peers in the system longer. Obviously, the more seeds there are, the better the
cache performance.

A secondary effect not modelled is due to the last arriving peer to a viewer
queue. This peer does not have to upload to anyone until another peer arrives to
that viewer queue. This last arriving peer can then use its upload capacity as if it
were an idler. This technique would work better for less popular videos which is
less likely to receive more than 1 peer at a time.

Let there be i = 1, 2, . . . , N different videos with parameters ρi. Assuming the
view counts for videos are independent, then the total expected number of users in
the system is

∑N
i=1 ρi. Let 0 < η be a parameter which represents the proportion

of viewers that are idling in steady state. Then, the total number of idling users is,

E[Qcache] = η

N∑
i=1

ρi (4.22)

4.2.3 Replacement Strategy

A cache hit for video v occurs when at least one peer in the set of idling peers,
has v and is not currently uploading some other video. Let the number of peers
in the cache be defined by a Poisson distribution with parameter E[Qcache]. Let
the occurrence of videos vi, i = 1, 2, . . . , N in the cache be defined by a probability
distribution h. Thus, for a slot, Sj , in the cache, there exists a probability qi, such

56

that h(Sj = vi) = qi. In other words, let the probability that vi is in a particular
slot be qi. Let the set of all slots be defined by S = {S1, S2, . . . , Sj, . . .}, where |S|
represents the number of slots available.

For a cache size limited to a single video, each peer can upload to at most one
other peer at a time. There is no contention for upload bandwidth. Thus, by Bayes’
Theorem, the probability that a particular video vi does not exist in the system is,

P{vi not in cache} =

∞∑
k=0

P{vi not in S| |S| = k}P{|S| = k}

=

∞∑
k=0

[
k∏

j=1

P{vi not in Sj}
] [

E[Qcache]
k

k!
e−E[Qcache]

]

=

∞∑
k=0

[
k∏

j=1

(1 − qi)

] [
E[Qcache]

k

k!
e−E[Qcache]

]

=
∞∑

k=0

(1 − qi)
k

[
E[Qcache]

k

k!
e−E[Qcache]

]
, by independence

= e−E[Qcache]
∞∑

k=0

((1 − qi)E[Qcache])
k

k!

=
e−E[Qcache]

e−(1−qi)E[Qcache]

∞∑
k=0

((1 − qi)E[Qcache])
k

k!
e−(1−qi)E[Qcache]

=
e−E[Qcache]

e−(1−qi)E[Qcache]
, sum of a Poisson pdf

= e−qiE[Qcache] (4.23)

For example, using the two videos from Chapter 4.1 on page 49 with E[Qcache] =
1.1 and v2 ten times as popular as v1 it is possible to calculate the cache miss
probability. If the peers utilize a single cache using LRU, then the cache distribution
probabilities are: q1 = 1

11
and q2 = 10

11
. Therefore,

P{v1 not in cache} = e−
1
11

1.1 = e−0.1 (4.24)

P{v2 not in cache} = e−
10
11

1.1 = e−1 (4.25)

which are the same probabilities as before.

The probability of a cache hit is

P{vi is in cache} = 1 − e−qiE[Qcache] (4.26)

4.2.4 Cache Size

So far the analysis has focused on single video sized caches. In reality, a cache of
size C can be explored. This makes the analysis a lot more difficult, because then

57

there is contention for videos. Given that idlers each have C videos, which video
will the idler upload? Perhaps an idler can upload two videos at the same time.
Therefore, for modelling purposes, each peer can only upload one video at a time.
Modelling bigger caches may require careful simulation.

4.2.5 Global Cache Model

In this system model, each video has a viewing queue made up of all those peers
that are currently viewing a video. Let vi’s viewer queue be denoted by Qvi,viewer.
In addition, there is one large queue, Qcache, where all idling peers go to. This
model is illustrated below in Figure 4.6.

...λ1

Qv1,viewer

...λ2

Qv2,viewer

...
...λN

QvN ,viewer

...
∑N

i=1 λi

Qcache

Figure 4.6: Qvi,viewer and Qcache model. All viewers go from viewer queues to the
cache queue. Any user from the cache queue can become server for any video.

The probability that Qcache can substitute as the server for video vi is the prob-
ability that Qcache contains vi. Reproduced from the previous analysis,

P{vi not in cache} = e−qiE[Qcache] (4.27)

where

E[Qcache] = η
N∑

i=1

ρi (4.28)

Therefore, for a particular video vi, the mean traffic distributed per unit time
by the server is,

Tvi server, with p2p and general cache = bP{|Qvi,viewer| > 0}P{vi /∈ Qcache}
= b(1 − e−ρi)e−qiE[Qcache] (4.29)

58

where b represents the bitrate, ρi represents the mean number of viewers, and qi

represents the probability of a cache slot having vi.

For all videos in the system, the traffic distributed per unit time is the sum of
the traffic distributed by each individual video. Thus,

Tall servers, with p2p and general cache = b

N∑
i=1

(1 − e−ρi)e−qiE[Qcache] (4.30)

4.2.6 Limits

All videos are popular

If all of the videos are popular, then ρi is large and (1−e−ρi) → 1. Whether a video
has ρ = 10 or ρ = 100 does not really matter. In this situation, to make the best use
of the cache, it is obvious that each video should receive equal representation in the
cache so that qi = 1

N
. This can be implemented as a rarest-first cache replacement

strategy. Thus, Equation 4.30 can be simplified as follows,

Tserver,popular = b
N∑

i=1

(1 − e−ρi)e−qiE[Qcache]

= bNe−
1
N

E[Qcache] (4.31)

If E[Qcache] � N , then e−
1
N

E[Qcache] → 0 so that Tserver,popular → 0. In other
words, if all videos are popular and users idle for a long time, then the server
requirements approach 0.

If E[Qcache] N , then e−
1
N

E[Qcache] → 1 and Tserver,popular → bN . Therefore, if
videos are popular but users do not idle, then the server must upload at the bitrate
for each video all the time. This is because popular videos will usually have at least
one viewer at all times.

All videos are unpopular

If all of the videos are unpopular, then ρi is small and (1 − e−ρi) → ρi. Thus,
Equation 4.30 can be simplified as follows,

Tserver,unpopular = b

N∑
i=1

(1 − e−ρi)e−qiE[Qcache]

= b
N∑

i=1

ρie
−qiE[Qcache] (4.32)

59

If qiE[Qcache] � 1, then e−qiE[Qcache] → 0 so that Tserver,unpopular → 0. Therefore,
as long as the idling queue is large, it does not matter what caching strategy is
used or what video popularity is involved.

However, if there are not many idlers, then qiE[Qcache] 1 and e−qiE[Qcache] → 1.
Now, Tserver,unpopular → b

∑N
i=1 ρi.

4.3 Global Cache Optimization

In a real setting, there are both popular and unpopular videos and choosing qi

will be dependent on both E[Qcache] and ρi. The goal is to minimize the following
equation:

Tall servers, with p2p and general cache = b
N∑

i=1

(1 − e−ρi)e−qiE[Qcache]

Tall servers, with p2p and general cache

b
=

N∑
i=1

(1 − e−ρi)e−qiE[Qcache]

f(q1, q2, . . . , qN) =
N∑

i=1

kie
−qiE[Qcache] (4.33)

where ki = (1− e−ρi) and E[Qcache]. For a particular {ki, E[Qcache]} there exists an
optimum set of qis.

In general, for videos vi ranked by ρi such that ρ1 ≥ ρ2 ≥ . . . ≥ ρN where ρ1 is
the most popular, qi has the following properties,

1.
∑N

i=1 qi = 1

2. q1 ≥ q2 ≥ . . . ≥ qN , since more popular videos will require more server
utilization and should be represented as such in the cache.

3. After some cutoff, c, qc+1 = qc+2 = . . . = qN = 0, since it may not be optimal
to cache some unpopular videos at all. This is dependent on the size of the
cache, E[Qcache].

4.3.1 Solving for qi

For some cutoff c, let,

q1 = 1 −
c∑

i=2

qi (4.34)

60

Then, Equation 4.33 becomes,

f(q1, q2, . . . , qN) =

N∑
i=1

kie
−qiE[Qcache]

f(q2, . . . , qN) = k1e
−(1−∑c

i=2 qi)E[Qcache] +
N∑

i=2

kie
−qiE[Qcache]

= k1e
−(1−∑c

i=2 qi)E[Qcache] +
c∑

i=2

kie
−qiE[Qcache] +

N∑
i=c+1

kie
−qiE[Qcache]

= k1e
−(1−∑c

i=2 qi)E[Qcache] +

c∑
i=2

kie
−qiE[Qcache] +

N∑
i=c+1

ki (4.35)

where qc+1 = qc+2 = · · · = qN = 0.

Theorem 1 Let x∗ be an interior point of a domain D in Rn and assume that f
is twice continuously differentiable on D. It is necessary for a local extrema of f at
x∗ that [95]

∇f(x∗) = 0 (4.36)

which implies that ∀xi,

∂f(x∗)
∂xi

= 0 (4.37)

Using Theorem 1 and Equation 4.35, ∀qi, 2≤i≤c,

∂f

∂qi
= E[Qcache]k1e

−(1−∑c
i=2 qi)E[Qcache] − E[Qcache]kie

−qiE[Qcache]

0 = k1e
−(1−∑c

i=2 qi)E[Qcache] − kie
−qiE[Qcache]

kie
−qiE[Qcache] = k1e

−(1−∑c
i=2 qi)E[Qcache]

kie
−qiE[Qcache] = k1e

−q1E[Qcache] , since q1 = 1 −
c∑

i=2

qi

e−qiE[Qcache]

e−q1E[Qcache]
=

k1

ki

−qiE[Qcache] + q1E[Qcache] = ln

(
k1

ki

)

q1 − qi =
1

E[Qcache]
ln

(
k1

ki

)
(4.38)

Thus, using Equation 4.38 and
∑c

i=1 qi = 1 for i = 2, 3, . . . , c yields c equations
and c unknowns. The choice of the cutoff c depends on the distribution and values

61

of ki. For some c, the following is true,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 · · · 0
1 0 −1 0 · · · 0
...

...
. . .

...
...

...
. . .

...
1 0 0 · · · 0 −1
1 1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

q3

q4
...
qc

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E[Qcache]

ln
(

k1

k2

)
1

E[Qcache]
ln
(

k1

k3

)
1

E[Qcache]
ln
(

k1

k4

)
...

1
E[Qcache]

ln
(

k1

kc

)
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.39)

4.3.2 q1

q1 can be solved by summing up the left hand side and equating it to the sum of
the right hand side.

cq1 =

(
1

E[Qcache]

c∑
i=2

ln

(
k1

ki

))
+ 1

= 1 +
1

E[Qcache]

(
(c − 1) ln(k1) −

c∑
i=2

ln(ki)

)

= 1 +
(c − 1) ln(k1)

E[Qcache]
− 1

E[Qcache]

c∑
i=2

ln(ki)

q1 =
1

c
− 1

cE[Qcache]

c∑
i=2

ln(ki)︸ ︷︷ ︸+
(c − 1) ln(k1)

cE[Qcache]︸ ︷︷ ︸ (4.40)

positive negative

Since ki ≤ 1, ln ki is negative. q1 is valid if 0 ≤ q1 ≤ 1. Therefore, q1 is valid if,

0 ≤
(

1

c
− 1

cE[Qcache]

c∑
i=2

ln(ki)

)
+

(c − 1) ln(k1)

cE[Qcache]

≤ E[Qcache] −
c∑

i=2

ln(ki) + (c − 1) ln(k1)

c∑
i=2

ln(ki) − (c − 1) ln(k1) ≤ E[Qcache] (4.41)

62

and, (
1

c
− 1

cE[Qcache]

c∑
i=2

ln(ki)

)
+

(c − 1) ln(k1)

cE[Qcache]
≤ 1

E[Qcache] −
c∑

i=2

ln(ki) + (c − 1) ln(k1) ≤ cE[Qcache]

−
c∑

i=2

ln(ki) + (c − 1) ln(k1) ≤ (c − 1)E[Qcache]

− 1

c − 1

c∑
i=2

ln(ki) + ln(k1) ≤ E[Qcache]

ln(k1) − 1

c − 1

c∑
i=2

ln(ki) ≤ E[Qcache] (4.42)

If q1 is not valid by Equations 4.41 and 4.42 for any value of c > 1, then c = 1,
q1 = 1 and qi≥2 = 0. In practise, this is should never be the case if there are a
reasonable number of idlers. Usually, there may be many popular videos with high
arrival rates such that ki ≈ 1 for these videos. Suppose there are ck=1 videos with
k = 1 and ln(k) = 0. If the cutoff is chosen to be ck=1, then Equations 4.41 and
4.42 becomes,

0 ≤ 1

ck=1
− 1

ck=1E[Qcache]

ck=1∑
i=2

ln(ki) +
(ck=1 − 1) ln(k1)

ck=1E[Qcache]
≤ 1

0 ≤ 1

ck=1

≤ 1 (4.43)

In fact, if there are many videos with the same arrival rate and the cache only
includes these videos, then naturally, these videos should receive equal probability
to be in the cache. Therefore, q1 = q2 = · · · = qck=1

= 1
ck=1

.

63

4.3.3 qj, 2≤j≤c

If q1 is valid, then from Equation 4.38 for ∀qj, 2≤j≤c,

qj = q1 −
ln k1

kj

E[Qcache]

= q1 − ln k1

E[Qcache]
+

ln kj

E[Qcache]

=
1

c
+

(c − 1) ln(k1)

cE[Qcache]
− 1

cE[Qcache]

c∑
i=2

ln(ki) − ln k1

E[Qcache]
+

ln kj

E[Qcache]

=
1

c
− ln(k1)

cE[Qcache]
− 1

cE[Qcache]

c∑
i=2

ln(ki) +
ln kj

E[Qcache]

=
1

c
− 1

cE[Qcache]

c∑
i=1

ln(ki) +
ln kj

E[Qcache]
(4.44)

Again, for qj to be valid, 0 ≤ qj ≤ 1.

0 ≤ 1

c
− 1

cE[Qcache]

c∑
i=1

ln(ki) +
ln kj

E[Qcache]
≤ 1

0 ≤ E[Qcache] −
c∑

i=1

ln(ki) + c ln(kj) ≤ cE[Qcache]

−E[Qcache] ≤ −
c∑

i=1

ln(ki) + c ln(kj) ≤ (c − 1)E[Qcache] (4.45)

4.3.4 Cutoff

In general, the cutoff c is dependent on ki and E[Qcache]. If q1 is valid, then
Equation 4.45 can be used to validate all qjs up to qc. A cutoff can be used if
∀qj, 1≤j≤c, 0 ≤ qj ≤ 1.

−E[Qcache] ≤ −
c∑

i=1

ln(ki)︸ ︷︷ ︸+ c ln(kj)︸ ︷︷ ︸ ≤ (c − 1)E[Qcache]

positive negative

Let

Zc(j) = −
c∑

i=1

ln(ki) + c ln(kj) (4.46)

where the first term is constant for some c and kis and the second term is dependent
on kj. If Equation 4.45 is to be valid for all j, then the maximum and minimum
values of Zc(j) must be valid. Then, everything in between will also be valid.

64

For some c, Zc(j) is maximum when c ln(kj) is the smallest negative number.
This occurs when j = 2, since k2 is the largest kj ≤ 1. Also, Zc(j) is minimum
when c ln(kj) is the largest negative value. This occurs when j = c. Therefore, for
a given c, the two following requirements must be met,

Zc(2) ≤ (c − 1)E[Qcache] (4.47)

−E[Qcache] ≤ Zc(c) (4.48)

Optimal cutoff

For a particular {ki} and E[Qcache], the optimal cutoff occurs for the largest c such
that Equations 4.47 and 4.48 are valid. However, since {ki} and E[Qcache] may
change over time and even during the same day, choosing c may be a difficult open
problem.

4.4 Single Video Cache for YouTube

The total number of views on the date of data scrape is shown in Figure 4.7.

Rank

T
ot

al
v
ie

w
s

100 102 104 106
100

102

104

106

108

Figure 4.7: Total views by rank.

The mean arrival rate of requests is shown in Figure 4.8. This is the number of
views divided by the amount of time the video has been on the site.

65

Rank

λ
in

[v
ie

w
s/

se
co

n
d
]

100 102 104 106
10−8

10−6

10−4

10−2

100

102

Figure 4.8: Arrival rate by rank.

Duration [second]

P
D

F

0 100 200 300 400 500 600 700
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Figure 4.9: Video length distribution.

The distribution of video lengths is shown in Figure 4.9. Fortunately, this is
very similar to Figure 3 of [25].

66

The distribution of ρ is shown in Figure 4.10. The distribution is logarithmically
centered at about 0.03.

ρ

D
is

tr
ib

u
ti

on
[%

]

10−6 10−4 10−2 100 102 104
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.10: Distribution of ρ for trace data. 10 logarithmically spaced bins were
used per decade.

Let ki = 1− e−ρi . Then the distribution of ki is given in Figure 4.11. The spike
at k = 1 represents videos that receive 0 or very few views.

ln(k) is the most important parameter for caching purposes. The distribution
of ln(k) is given in Figure 4.12.

Based on the data for ln(k), it is possible to find a suitable cutoff c for var-
ious values of E[Qcache]. From Equation 4.28, E[Qcache] = η

∑N
i=1 ρi. Also from

Equations 4.47 and 4.48, the bounds on Zc is given as,

Zc(2) ≤ (c − 1)E[Qcache]

−E[Qcache] ≤ Zc(c)

where,

Zc(j) = −
c∑

i=1

ln(ki) + c ln(kj)

67

k

D
is

tr
ib

u
ti

on
[%

]

10−6 10−4 10−2 100 102
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 4.11: Distribution of k for trace data. 10 logarithmically spaced bins were
used per decade.

ln(k)

D
is

tr
ib

u
ti

on
[%

]

-15 -10 -5 0 5
0

1

2

3

4

5

6

7

8

9

10

Figure 4.12: Distribution of ln(k).

68

Substituting and rearranging these equations yields the following two necessary
conditions:

Condition 1.

Zc(2) ≤ (c − 1)E[Qcache]

Zc(2)

c − 1
≤ E[Qcache]

Zc(2)

c − 1
≤ η

N∑
i=1

ρi

1∑N
i=1 ρi

Zc(2)

c − 1
≤ η (4.49)

Condition 2.

−E[Qcache] ≤ Zc(c)

−Zc(c) ≤ E[Qcache]

−Zc(c)∑N
i=1 ρi

≤ η

(4.50)

Plotting these conditions using empirical data produces Figure 4.13. It can be
seen that as η, or the amount of idlers in the system increases, more videos should
be cached globally. It can also be seen that Condition 2 is dominant, meaning that
if Condition 2 is satisfied, Condition 1 is automatically satisfied for this data set.
As such, the optimal c occurs when −Zc(c)∑N

i=1 ρi
= η.

If no users seed, then η = 0. This is the worst case scenario. Another scenario
is if users seed until they make a decision to go to another web page. According to
[96], users tend to wait about 9 to 12 seconds before choosing another video. This
is due to the time for thumbnails of related videos to show up. For the trace, the
mean duration of videos is 208 seconds. Therefore, an idling time of 10 seconds
amounts to η = 10

208
≈ 0.05. A 2009 Nielsen report [97] suggests that on average,

users spend 29 hours and 15 minutes per month on the Internet. Of this, 3 hours
is spent watching videos. Therefore, if users kindly seed for the whole time on the
Internet while not spent watching videos, this would translate to η = 29.25−3

3
= 8.75.

This is essentially the best case scenario. Table 4.2 shows the optimal c for some
values of η. The total number of videos in this data set is 743308.

For each {η, c} pair, it is possible to calculate the optimal qis using Equations
4.40 and 4.44. The resulting qis which together represent the probability density
function are shown in Figure 4.14.

Finally, it is possible to calculate the expected server traffic per unit time from
Equation 4.30. Normalizing by the server traffic when no P2P traffic is allowed,
the result gives the expected server usage.

69

c

η

Condition 1
Condition 2

102 103 104 105 106
10−25

10−20

10−15

10−10

10−5

100

105

Figure 4.13: Conditions on Zc for η by c.

Table 4.2: η and optimal c

η c % of total videos
0 0 0

0.05 35797 4.8
1 211819 28.5
2 328218 44.2
4 482974 65.0

8.75 655740 88.2

This data suggests that server usage can be dramatically reduced when peers
upload to others.

70

Video rank

P
D

F

η = 0.05
η = 1
η = 2
η = 4
η = 8.75

0 1x105 2x105 3x105 4x105 5x105 6x105 7x105
0

1x10−5

2x10−5

3x10−5

4x10−5

5x10−5

Figure 4.14: Video probability density for different proportion of idlers.

34.3
30.7

12.1
6.8

2.8 0.5

Scenarios

S
er

ve
r

u
sa

ge
[%

]

no p2p η = 0 η = 0.05 η = 1 η = 2 η = 4 η = 8.75
0

10

20

30

40

50

60

70

80

90

100

Figure 4.15: Server usage for different idler proportions.

71

Chapter 5

Summary

A model for peer-to-peer transfers of short online videos was discussed. Currently,
YouTube is the most popular online video web site today. By some estimates, the
bandwidth cost of YouTube will be $362 million in 2009 [4]. Therefore, offloading
the server requirements to the users would be helpful. Existing peer-to-peer systems
such as BitTorrent focuses on transferring files in bulk, where files can only be
used after it has been entirely downloaded. By contrast, YouTube videos can be
downloaded as it is being watched without any waiting.

The system model consists of three components: servers, viewers and idlers.
Servers have infinite capacity. Viewers are peers who are currently viewing, and thus
downloading a particular video. Idlers are those peers who are still in the system
but are not actively downloading or watching a video. The model assumes that
viewers can download and upload at the bitrate. Each new viewer of a particular
video downloads from the viewer that arrived before it or the server if no such viewer
exists. This new viewer in turn supplies the next viewer that arrives. Viewers stop
uploading as soon as they finish downloading the video. Therefore, regardless of
the number of users watching a particular video, the server must supply only one
copy of the video.

An improvement of this model uses idling peers. Idlers are assumed to have
a finite cache to store videos. To minimize the server traffic, the aim is to utilize
idlers as much as possible. The model assumes a cache of size one to simplify
the analysis and arrives at an optimum global cache distribution for videos based
on their probability of being watched at any given time. Popular videos are well
represented and extremely unpopular videos are never cached. It is shown that it
is not optimal for idlers to cache their last watched video.

The results show that by using the peer-to-peer model without idlers, server
bandwidth is reduced by 66%. If the average user idles for half the time while
on YouTube and contributes their bandwidth, the server bandwidth is reduced by
88% as compared to no peer-to-peer. These are lower bounds on cost savings since
server costs are usually attributed to peak traffic which happens to be the time
when peer-to-peer systems usually perform the best.

72

Chapter 6

Future Work

There are many possible opportunities for future work. By using simulations, it
would be possible to validate the model and to incorporate second order effects.
One approach can look at the effect of heterogenous bandwidth capacities and bit
rates. The bit rate was fixed in the analysis and it was assumed users uploads and
downloads at the bit rate. In reality, most users can download at or above the bit
rate. However, some may not be able to upload at the bit rate.

Churn occurs when users join or exit the system which usually has a detrimental
effect on the efficiency of the peer-to-peer system. The effect of churn can be
studied. The effect of users who do not finish viewing a video or watches multiple
videos at the same time can also be studied.

This study limited the cache size to a single video. One problem with multi-
ple videos is in determining how to properly allocate a user’s upload bandwidth.
Caching parts of a video can also be considered to increase the variety of videos
cached. Of course the current caching scheme may no longer apply. Another con-
sideration is the replacement strategy.

In a practical setting, users may download from any peer that has a piece that
is useful instead of the immediately preceding user. This would require similar
considerations as BitTorrent. However, the difference is that videos are watched as
they are being downloaded so a rarest first piece selection strategy will not work.

Users may watch multiple videos in sequence during a visit. For a particular
video, there may exist a list of other videos which users are likely to view next.
This information would be useful in prefetching other videos and acquiring peers
that have those videos.

There is an inherent incentive for viewers of the same video to upload to others
because they are receiving data from other peers. However, in order for idlers to
participate, an incentive system may be required. With YouTube, a large central
server will likely exist which is quite different from existing peer-to-peer system
which have limited server resources. Any credits gained can be used to access
higher quality videos or a faster download rate from the server.

73

Searching for peers and videos are very important aspects of a peer-to-peer sys-
tem. From a user experience point of view, both are more effectively implemented
in a centralized fashion. However, some techniques from Kademlia may be use-
ful. In addition, YouTube or copyright holders may want to put limits on whether
videos can be obtained in a peer-to-peer fashion so the central servers can act as a
security mechanism.

The peer-to-peer system must consider users who do not wish to participate in
the peer-to-peer activity. Older browsers or users who do not wish to download
additional software should be able to at least achieve the current level of service.

Since it takes some time to find suitable and willing peers to download from in a
P2P network, it would be worthwhile to download the beginning of the video from
the central server. Thereafter, the majority of the transfer should be from peers. In
case peers leave unexpectedly, the server needs to help immediately. Generations
and source coding may be useful. All of these practical considerations may yield
interesting results.

74

Appendix A

BitTorrent .torrent file

A.1 BitTorrent specification

Although BitTorrent is now closed source, the protocol specification is available
online. Two good sources are [98] and [99].

A.2 ubuntu-8.04.2-desktop-i386.iso.torrent

The following sample .torrent file contains a single image file for the open source
Ubuntu Operating System 8.04.2 LTS (Hardy Heron) [100]:
d8:announce
39:http://torrent.ubuntu.com:6969/announce
7:comment
29:Ubuntu CD releases.ubuntu.com
13:creation datei1232655717e
4:info
d6:lengthi731869184e
4:name
30:ubuntu-8.04.2-desktop-i386.iso
12:piece lengthi524288e
6:pieces 27920:file hashes

The file hashes have been omitted.

75

Appendix B

Cheng et al YouTube trace

The data set for Cheng et al’s paper, ”Statistics and Social Network of YouTube
Videos” [25] is available at http://netsg.cs.sfu.ca/youtubedata/.

B.1 Methodology

The following description is taken from the webpage: We consider all the YouTube
videos to form a directed graph, where each video is a node in the graph. If a video
b is in the related video list (first 20 only) of a video a, then there is a directed edge
from a to b. Our crawler uses a breadth-first search to find videos in the graph. We
define the initial set of 0-depth video IDs, which the crawler reads in to a queue at
the beginning of the crawl. When processing each video, it checks the list of related
videos and adds any new ones to the queue.

Given a video ID, the crawler first extracts information from the YouTube API,
which contains all the meta-data except age, category and related videos. The
crawler then scrapes the video’s webpage to obtain the remaining information.We
record the following information of a YouTube video in order; they are divided by
’\t’ in the data file.

Our first crawl was on February 22nd, 2007, and started with the initial set
of videos from the list of ”Recently Featured”, ”Most Viewed”, ”Top Rated” and
”Most Discussed”, for ”Today”, ”This Week”, ”This Month” and ”All Time”, which
totalled 189 unique videos on that day. The crawl went to more than four depths,
finding approximately 750 thousand videos in about five days. In the following
weeks we ran the the crawler every two to three days, each time defining the initial
set of videos from the list of ”Most Viewed”, ”Top Rated”, and ”Most Discussed”,
for ”Today” and ”This Week”, which is about 200 to 300 videos. On average, the
crawl finds 73 thousand distinct videos each time in less than 9 hours.

All the 35 datasets can be downloaded from here. In each package, there are:
(1) ”0.txt”, ”1.txt”, ”2.txt” and ”3.txt” (and ”4.txt” in ”0222.zip”), storing the

76

Table B.1: Cheng et al data set schema.

Data Description
video ID an 11-digit string, which is unique
uploader a string of the video uploader’s username

age an integer number of days between the date when the video
was uploaded and Feb.15, 2007 (YouTube’s establishment)

category a string of the video category chosen by the uploader
length an integer number of the video length
views an integer number of the views
rate a float number of the video rate

ratings an integer number of the ratings
comments an integer number of the comments
related IDs up to 20 strings of the related video IDs

video data of depth 0, 1, 2 and 3 respectively; (2) ”log.txt”, a log file indicating the
start and finsh time, number of videos crawled and the duration of each depth.

B.2 Trace used

For the purpose of this study, the largest trace file from February 22, 2007 was
used. It had a total of 749361 videos. The age column was used to calculate the
number of days the video has been online as of February 22, 2007. The number
of views together with this value was used to calculate the average video request
rate.

77

Appendix C

Queueing Theory Background

C.1 M/M/∞ queue

A simple case of the M/G/∞ queue is the M/M/∞ queue. The only difference
between the two is the distribution of the service times. With the M/M/∞ queue,
service times are exponentially distributed with mean 1/μ. The flow diagram for
the M/M/∞ queue is shown in Figure C.1 [6]. This system is represented as a birth-
death process, where each state is the number of users. If a new arrival occurs, the
number of users in the system ρ increases by one. The probability of this happening
is a Poisson distribution with parameter λ. When there are n users in the system,
the rate at which they leave is an exponential distribution with rate nμ.

ρ = 0 ρ = 1 ρ = 2
ρ =

n − 1
ρ = n· · · · · ·

λ λ λ

μ 2μ nμ

Figure C.1: Flow diagram for M/M/∞ model [6].

Let the probability that there are n viewers in the system be specified by pn.
In steady-state, queueing theory specifies that the flow from state n − 1 to n and
the flow from n to n − 1 is equal [6]. Thus,

p0λ = μp1

p1λ = 2μp2

. . .

pn−2λ = (n − 1)μpn−1

pn−1λ = nμpn (C.1)

78

Setting ρ = λ
μ

and solving for pn gives,

pn =
λ

nμ
pn−1

=
ρ

n
pn−1

=
ρ

n

(
ρ

n − 1
pn−2

)

=
ρ2

n(n − 1)
pn−2

. . .

=
ρn

n!
p0 (C.2)

Since the probabilities pn add up to 1, it is possible to solve for p0,

1 =
∞∑

n=0

pn

=
∞∑

n=0

ρn

n!
p0

1

p0
=

∞∑
n=0

ρn

n!

= eρ (C.3)

Thus,

p0 = e−ρ (C.4)

and

pn =
ρn

n!
e−ρ (C.5)

Therefore, the number of viewers watching a particular video has a Poisson distri-
bution with mean ρ.

C.2 M/G/∞ queue

If the service times follow an arbitrary distribution, then this distribution can be
described with service times bi and probabilities qi, such that the probability of the
service time, B, being bi is qi [6].

P (B = bi) = qi, i = 1, 2, . . . , N (C.6)

79

A Poisson arrival process with rate λ can be split into independent Poisson
streams i = 1, 2, . . . , N so that the intensity of stream i is λqi. Then, the viewers
arriving at each of these streams then see a constant service time bi.

For a constant service time bi, the probability that there is exactly n customers
at time t is equal to the probability that between t − bi and t exactly n customers
arrived. Because the number of customers arriving in a time interval of length bi is
Poisson distributed with mean λqibi,

pn(t) =
(λqibi)

n

n!
e−λqibi (C.7)

which is valid for all t > b, and so is valid in steady-state [6].

Because the sum of independent Poisson random variables is also Poisson, the
total number of customers in the system is Poisson distributed with mean ρ,

ρ =

N∑
i=0

λqibi (C.8)

Therefore, for any given service distribution, M/G/∞, with mean service time
1/μ, the number of viewers in the system is Poisson distributed with ρ:

pn =
ρn

n!
e−ρ (C.9)

where ρ = λ/μ. This is the same as the M/M/∞ case.

80

n

p n

ρ = 0.1
ρ = 1
ρ = 5
ρ = 10

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure C.2: pn for different ρ. It can be seen that for ρ less than 1, pn is dominated
by small values of n. For larger ρ, p0 and p1 is very small.

81

References

[1] Ipoque, “Internet study 2008/2009,” 2009, [Online; accessed 6-March-2009].
[Online]. Available: http://www.ipoque.com/resources/internet-studies/
internet-study-2008 2009

[2] N. Anderson, “The youtube effect: Http traffic now eclipses p2p,” 2007, [On-
line; accessed 6-March-2009]. [Online]. Available: http://arstechnica.com/
old/content/2007/06/the-youtube-effect-http-traffic-now-eclipses-p2p.ars

[3] Business Wire, “Ellacoya data shows web traffic overtakes
peer-to-peer (p2p) as largest percentage of bandwidth on
the network,” 2007, [Online; accessed 6-March-2009]. [On-
line]. Available: http://www.businesswire.com/portal/site/google/index.
jsp?ndmViewId=news view&newsId=20070618005912&newsLang=en

[4] T. Spangler, “Youtube may lose $470 million in 2009: Analysts,” 2009, [On-
line; accessed 6-March-2009]. [Online]. Available: http://www.multichannel.
com/article/191223-YouTube May Lose 470 Million In 2009 Analysts.php

[5] IMDb.com Inc, “Imdb statistics,” 2009, [Online; accessed 6-March-2009].
[Online]. Available: http://www.imdb.com/database statistics

[6] I. Adan and J. Resing, “Queueing theory,” 2001, [Online; accessed 25-May-
2009]. [Online]. Available: http://www.cs.duke.edu/∼fishhai/misc/queue.pdf

[7] Arbor Networks, “Ddos protection — deep packet inspection — ip flow
analysis — arbor networks,” 2009, [Online; accessed 6-March-2009]. [Online].
Available: http://www.arbornetworks.com

[8] E. Palm, “Net traffic down on first day of swedish antipiracy
law,” 2009, [Online; accessed 6-March-2009]. [Online]. Available: http:
//news.cnet.com/8301-1023 3-10209544-93.html

[9] Y. Adegoke, “Youtube and universal talk on music video site,” 2009,
[Online; accessed 6-March-2009]. [Online]. Available: http://www.reuters.
com/article/technologyNews/idUSTRE5240AZ20090305

82

[10] Wikipedia, “Youtube — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 6-April-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=YouTube&oldid=281978317

[11] USA Today, “Youtube serves up 100 million videos a day online,” 2009,
[Online; accessed 6-March-2009]. [Online]. Available: http://www.usatoday.
com/tech/news/2006-07-16-youtube-views x.htm

[12] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characterization:
a view from the edge,” in IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. New York, NY, USA: ACM, 2007, pp.
15–28.

[13] Adobe Systems Incorporated, “Adobe flash player version penetration,”
2009, [Online; accessed 6-March-2009]. [Online]. Available: http://www.
adobe.com/products/player census/flashplayer/version penetration.html

[14] ——, “Video learning guide for flash: Progressive and streaming
video,” 2009, [Online; accessed 6-March-2009]. [Online]. Available:
http://www.adobe.com/devnet/flash/articles/video guide 02.html

[15] T. Jacobs, “Foxtorrent::add-ons for firefox,” 2009, [Online; accessed
3-July-2009]. [Online]. Available: https://addons.mozilla.org/en-US/firefox/
addon/4844

[16] Opera Software ASA, “Opera integrates bittorrent in upcoming browser,”
2009, [Online; accessed 3-July-2009]. [Online]. Available: http://www.opera.
com/press/releases/2006/02/06/

[17] Little Shoot, “P2p file sharing browser plugin littleshoot bittorrent
gnutella,” 2009, [Online; accessed 3-July-2009]. [Online]. Available:
http://www.littleshoot.org/

[18] N. Gonzalez, “Slapvid: Peer to peer video in your browser,” 2007, [Online;
accessed 3-July-2009]. [Online]. Available: http://www.techcrunch.com/
2007/06/25/slapvid-peer-to-peer-video-in-your-browser/

[19] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you tube,
everybody tubes: analyzing the world’s largest user generated content video
system,” in IMC ’07: Proceedings of the 7th ACM SIGCOMM conference on
Internet measurement. New York, NY, USA: ACM, 2007, pp. 1–14.

[20] YouTube Inc., “Youtube - broadcast yourself.” 2009, [Online; accessed
6-March-2009]. [Online]. Available: http://www.youtube.com/browse

[21] Blockbuster Inc, “Blockbuster online - gifts,” 2009, [Online; accessed
6-March-2009]. [Online]. Available: http://www.blockbuster.com/gifts

83

[22] Zip.ca Inc., “Zip.ca,” 2009, [Online; accessed 6-March-2009]. [Online].
Available: http://www.zip.ca/dvd/index.aspx

[23] Netflix Inc., “Netflix: Action, blu-ray, comedy, drama, romance,” 2009,
[Online; accessed 6-March-2009]. [Online]. Available: http://www.netflix.
com/BrowseSelection

[24] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube, you
tube, everybody tubes,” 2007, [Online; accessed 6-March-2009]. [Online].
Available: http://an.kaist.ac.kr/traces/IMC2007.html

[25] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of youtube
videos,” in Quality of Service, 2008. IWQoS 2008. 16th International Work-
shop on, June 2008, pp. 229–238.

[26] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of youtube network
traffic at a campus network - measurements, models, and implications,”
Computer Networks, vol. 53, no. 4, pp. 501 – 514, 2009, content
Distribution Infrastructures for Community Networks. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6VRG-4TVJNT3-2/
2/7b9613c14704145d8647ceeeea233d77

[27] R. Sherwood, R. Braud, and B. Bhattacharjee, “Slurpie: a cooperative bulk
data transfer protocol,” INFOCOM 2004, vol. 2, pp. 941–951, March 2004.

[28] Akamai Technologies, “Akamai: The leader in web application acceleration
and performance management, streaming media services and content
delivery,” 2009, [Online; accessed 20-June-2009]. [Online]. Available:
http://www.akamai.com

[29] Limelight Networks, “Limelight networks,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://www.limelightnetworks.com

[30] CDNetworks, “Cdnetworks :: Global cdn service leader,” 2009, [Online;
accessed 20-June-2009]. [Online]. Available: http://www.us.cdnetworks.com

[31] B. Cohen, “Bittorrent,” 2009, [Online; accessed 20-June-2009]. [Online].
Available: http://www.bittorrent.com

[32] Octoshape, “Octoshape - large scale live streaming solutions,” 2009, [Online;
accessed 20-June-2009]. [Online]. Available: http://www.octoshape.com

[33] Wikipedia, “Application service provider — wikipedia, the free ency-
clopedia,” 2009, [Online; accessed 9-February-2009]. [Online]. Available:
http://en.wikipedia.org/wiki/Application service provider

[34] ——, “Content delivery network — wikipedia, the free encyclopedia,”
2009, [Online; accessed 9-February-2009]. [Online]. Available: http:
//en.wikipedia.org/wiki/Content Delivery Network

84

[35] ——, “Domain name system — wikipedia, the free encyclopedia,”
2009, [Online; accessed 9-February-2009]. [Online]. Available: http:
//en.wikipedia.org/wiki/Domain name system

[36] Slashdot, “Slashdot - news for nerds, stuff that matters,” 2009, [Online;
accessed 20-June-2009]. [Online]. Available: http://www.slashdot.org

[37] Digg Inc., “Digg - all news, videos, & images,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://www.digg.com

[38] Wikipedia, “Slashdot effect — wikipedia, the free encyclopedia,” 2009,
[Online; accessed 9-February-2009]. [Online]. Available: http://en.wikipedia.
org/wiki/Slash dot effect

[39] Canonical Ltd., “Ubuntu home page — ubuntu,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://www.ubuntu.com

[40] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application
layer multicast,” SIGCOMM Computer Communication Review, vol. 32,
no. 4, pp. 205–217, 2002.

[41] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast
(keynote address),” in Proceedings of the 2000 ACM SIGMETRICS interna-
tional conference on Measurement and modeling of computer systems, New
York, NY, USA, 2000, pp. 1–12.

[42] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron, “Scribe: a large-
scale and decentralized application-level multicast infrastructure,” Selected
Areas in Communications, IEEE Journal on, vol. 20, no. 8, pp. 1489–1499,
Oct 2002.

[43] S. E. Deering and D. R. Cheriton, “Multicast routing in datagram internet-
works and extended lans,” ACM Transactions on Computer Systems, vol. 8,
no. 2, pp. 85–110, 1990.

[44] V. N. Padmanabhan and K. Sripanidkulchai, “The case for cooperative net-
working,” in Revised Papers from the First International Workshop on Peer-
to-Peer Systems. London, UK: Springer-Verlag, 2002, pp. 178–190.

[45] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer content
distribution technologies,” ACM Computer Surveys, vol. 36, no. 4, pp. 335–
371, 2004.

[46] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Communications
Surveys and Tutorials, vol. 7, no. 2, pp. 72–93, 2005.

85

[47] eBay, “Skype official website - download skype free now for free calls and
internet calls,” 2009, [Online; accessed 20-June-2009]. [Online]. Available:
http://www.skype.com

[48] Stanford University, “Folding@home - main,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://folding.stanford.edu

[49] University of California at Berkeley, “Seti@home,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://setiathome.berkeley.edu/

[50] A. D. Keromytis, V. Misra, and D. Rubenstein, “Sos: An architecture for mit-
igating ddos attacks,” IEEE Journal on Selected Areas of Communications,
vol. 22, pp. 176–188, 2004.

[51] M. Christen, “Kit search engine initiative,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://sciencenet.fzk.de

[52] N. H. Ryeng and K. Nørv̊ag, “Robust aggregation in peer-to-peer database
systems,” in IDEAS ’08: Proceedings of the 2008 international symposium on
Database engineering and applications. New York, NY, USA: ACM, 2008,
pp. 29–37.

[53] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer networks,”
in IMC ’06: Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement. New York, NY, USA: ACM, 2006, pp. 189–202.

[54] J. R. Douceur, “The sybil attack,” in IPTPS ’01: Revised Papers from
the First International Workshop on Peer-to-Peer Systems. London, UK:
Springer-Verlag, 2002, pp. 251–260.

[55] Napster LLC, “Napster.com - all the music you want. any way you
want it.” 2009, [Online; accessed 20-June-2009]. [Online]. Available:
http://www.napster.com

[56] Wikipedia, “Napster — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 22-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Napster&oldid=271488033

[57] Howstuffworks, “How the old napster worked,” 2009, [Online; accessed
22-February-2009]. [Online]. Available: http://computer.howstuffworks.com/
napster.htm/printable

[58] Limewire, “Gnutella protocol specification (gdf),” 2009, [Online; accessed 20-
June-2009]. [Online]. Available: http://wiki.limewire.org/index.php?title=
GDF

[59] Nullsoft, “nullsoft.com,” 2009, [Online; accessed 20-June-2009]. [Online].
Available: http://www.nullsoft.com

86

[60] AOL LLC, “Aol.com - welcome to aol,” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://www.aol.com

[61] Wikipedia, “Gnutella — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 23-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Gnutella&oldid=272390898

[62] Gnutelliums, LLC, “Gnutella forums,” 2009, [Online; accessed 20-June-2009].
[Online]. Available: www.gnutellaforums.com

[63] Limewire, “Ultrapeers - limewire,” 2009, [Online; accessed 20-June-2009].
[Online]. Available: http://wiki.limewire.org/index.php?title=Ultrapeers

[64] Musiclab LLC, “Free music downloads, download free mp3 music -
bearshare.com music,” 2009, [Online; accessed 20-June-2009]. [Online].
Available: http://www.bearshare.com

[65] Gnucleus, “Gnucleus,” 2009, [Online; accessed 20-June-2009]. [Online].
Available: http://www.gnucleus.com

[66] Limewire, “Limewire official website & free download, bittorrent,” 2009,
[Online; accessed 20-June-2009]. [Online]. Available: http://www.limewire.
com

[67] Streamcast Networks, “Morpheus (offline),” 2009, [Online; accessed
20-June-2009]. [Online]. Available: www.morpheus.com

[68] Wikipedia, “Fasttrack — wikipedia, the free encyclopedia,” 2008, [Online;
accessed 22-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=FastTrack&oldid=259345190

[69] Sharman Networks Ltd, “The anticipated next version kazaa releases this
christmas 2008 download music 100% legal. get access to millions of songs.
www.kazaa.com.” 2009, [Online; accessed 20-June-2009]. [Online]. Available:
http://www.kazaa.com/us/

[70] Wikipedia, “Uuhash — wikipedia, the free encyclopedia,” 2008, [Online;
accessed 22-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=UUHash&oldid=222639704

[71] Grokster Ltd., “Grokster (offline),” 2009, [Online; accessed 20-June-2009].
[Online]. Available: http://www.grokster.com

[72] Wikipedia, “Grokster — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 22-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Grokster&oldid=264116833

[73] ——, “Edonkey network — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 24-February-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=EDonkey network&oldid=272107387

87

[74] ——, “Shareaza — wikipedia, the free encyclopedia,” 2009, [Online; accessed
25-February-2009]. [Online]. Available: http://en.wikipedia.org/w/index.
php?title=Shareaza&oldid=272942869

[75] ——, “Emule — wikipedia, the free encyclopedia,” 2009, [Online; accessed
25-February-2009]. [Online]. Available: http://en.wikipedia.org/w/index.
php?title=EMule&oldid=272625759

[76] Ernesto, “Bittorrent: The one third of all internet traffic myth,”
2006, [Online; accessed 26-February-2009]. [Online]. Available: http:
//torrentfreak.com/bittorrent-the-one-third-of-all-internet-traffic-myth

[77] The Pirate Bay, “Download music, movies, games, software! the pirate
bay - the world’s largest bittorrent tracker,” 2009, [Online; accessed
25-February-2009]. [Online]. Available: http://www.thepiratebay.org

[78] BitTorrent Inc., “utorrent - a (very) tiny bittorrent client,” 2009, [Online;
accessed 3-July-2009]. [Online]. Available: http://www.utorrent.com/

[79] Vuze, “Azureus, now called vuze:bittorrent client,” 2009, [Online; accessed
3-July-2009]. [Online]. Available: http://azureus.sourceforge.net/

[80] P. Maymounkov and D. Mazières, “Kademlia: A peer-to-peer information
system based on the xor metric,” in IPTPS ’01: Revised Papers from the First
International Workshop on Peer-to-Peer Systems. London, UK: Springer-
Verlag, 2002, pp. 53–65.

[81] Wikipedia, “Prisoner’s dilemma — wikipedia, the free encyclopedia,” 2009,
[Online; accessed 6-March-2009]. [Online]. Available: http://en.wikipedia.
org/w/index.php?title=Prisoner%27s dilemma&oldid=274374109

[82] ——, “Tit for tat — wikipedia, the free encyclopedia,” 2009, [Online;
accessed 6-March-2009]. [Online]. Available: http://en.wikipedia.org/w/
index.php?title=Tit for tat&oldid=267921348

[83] Demonoid, “Demonoid.com,” 2009, [Online; accessed 6-March-2009].
[Online]. Available: http://www.demonoid.com/

[84] T. Locher, P. Moor, S. Schmid, and R.Wattenhofer, “Free riding in bittorrent
is cheap,” in Proc. of HotNets-V, Irvine, CA, USA, November 2006.

[85] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and A. Venkataramani,
“Do incentives build robustness in bittorrent,” in In NSDI07, 2007.

[86] Participatory Culture Foundation, “Miro hd video player — free internet tv
and video podcast player.” 2009, [Online; accessed 6-March-2009]. [Online].
Available: http://www.getmiro.com/

88

[87] Torrent Relay, “Torrent relay - downloads torrents online (web client),”
2009, [Online; accessed 6-March-2009]. [Online]. Available: http://www1.
torrentrelay.com/fresh/web.pl?d=

[88] The XLattice Project, “Kademlia: A design specification,” 2009, [Online;
accessed 25-February-2009]. [Online]. Available: http://xlattice.sourceforge.
net/components/protocol/kademlia/specs.pdf

[89] D. Stutzbach and R. Rejaie, “Improving lookup performance over a widely-
deployed dht,” INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, pp. 1–12, April 2006.

[90] A. Norberg, “Introduction to bittorrent,” 2009, [Online; accessed 6-March-
2009]. [Online]. Available: http://www.rasterbar.com/products/libtorrent/
bittorrent.pdf

[91] The Tor Project, “Tor: anonymity online,” 2009, [Online; accessed
3-July-2009]. [Online]. Available: http://www.torproject.org/

[92] Mozilla Foundation, “Firefox web browser — faster, more secure, &
customizable,” 2009, [Online; accessed 3-July-2009]. [Online]. Available:
http://www.mozilla.com/en-US/firefox/ie.html

[93] The Tor Project, “Torbutton - quickly toggle firefox’s use of the
tor network,” 2009, [Online; accessed 3-July-2009]. [Online]. Available:
http://www.torproject.org/torbutton/index.html.en

[94] Wikipedia, “Log-normal distribution — wikipedia, the free
encyclopedia,” 2009, [Online; accessed 18-May-2009]. [On-
line]. Available: http://en.wikipedia.org/w/index.php?title=Log-normal
distribution&oldid=290409533

[95] A. Hallam, “Simple multivariate optimization,” 2005, [Online; accessed
25-May-2009]. [Online]. Available: http://www.econ.iastate.edu/classes/
econ500/hallam/documents/Opt Simple Multi 000.pdf

[96] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Characterizing user sessions on
youtube,” in Fifteenth Annual Multimedia Computing and Networking Con-
ference (MMCN), 2008.

[97] The Nielsen Company, “A2/m2 three screen report - 1st quarter
2009,” 2009, [Online; accessed 3-June-2009]. [Online]. Available: http:
//it.nielsen.com/site/documents/A2M2 3Screens 1Q09 FINAL.pdf

[98] B. Cohen, “The bittorrent protocol specification,” 2008, [Online; accessed
3-July-2009]. [Online]. Available: http://www.bittorrent.org/beps/bep 0003.
html

89

[99] TheoryOrg, “Bitorrent protocol specification v1.0,” 2006, [On-
line; accessed 3-July-2009]. [Online]. Available: http://wiki.theory.org/
BitTorrentSpecification

[100] Ubuntu, “Ubuntu 8.0.4.2 lts (hardy heron),” 2009, [Online; accessed
20-June-2009]. [Online]. Available: http://releases.ubuntu.com/8.04/

90

