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Abstract

The research on optimal reinsurance design dated back to the 1960’s. For nearly
half a century, the quest for optimal reinsurance designs has remained a fascinating
subject, drawing significant interests from both academicians and practitioners.
Its fascination lies in its potential as an effective risk management tool for the
insurers. There are many ways of formulating the optimal design of reinsurance,
depending on the chosen objective and constraints. In this thesis, we address
the problem of optimal reinsurance designs from an insurer’s perspective. For
an insurer, an appropriate use of the reinsurance helps to reduce the adverse risk
exposure and improve the overall viability of the underlying business. On the other
hand, reinsurance incurs additional cost to the insurer in the form of reinsurance

premium. This implies a classical risk and reward tradeoff faced by the insurer.

The primary objective of the thesis is to develop theoretically sound and yet
practical solution in the quest for optimal reinsurance designs. In order to achieve
such an objective, this thesis is divided into two parts. In the first part, a num-
ber of reinsurance models are developed and their optimal reinsurance treaties are
derived explicitly. This part focuses on the risk measure minimization reinsurance
models and discusses the optimal reinsurance treaties by exploiting two of the most
common risk measures known as the Value-at-Risk (VaR) and the Conditional Tail
Expectation (CTE). Some additional important economic factors such as the rein-
surance premium budget, the insurer’s profitability are also considered. The second
part proposes an innovative method in formulating the reinsurance models, which
we refer as the empirical approach since it exploits explicitly the insurer’s empir-
ical loss data. The empirical approach has the advantage that it is practical and
intuitively appealing. This approach is motivated by the difficulty that the rein-

surance models are often infinite dimensional optimization problems and hence the
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explicit solutions are achievable only in some special cases. The empirical approach
effectively reformulates the optimal reinsurance problem into a finite dimensional
optimization problem. Furthermore, we demonstrate that the second-order conic
programming can be used to obtain the optimal solutions for a wide range of rein-

surance models formulated by the empirical approach.
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Chapter 1

Introduction

1.1 Background

The research on optimal reinsurance design dated back to the 1960’s (see Borch
(1960), Kahn (1961), and Ohlin (1969)). For nearly half a century, the quest for
optimal reinsurance designs has remained a fascinating subject, drawing significant
interests from both academicians and practitioners. Its fascination lies in its po-
tential as an effective risk management tool for insurer. The theme of this thesis
is to study the optimal reinsurance design. In particular, we will consider various

reinsurance models with the objective of deriving their solutions.

To introduce the concept of optimal reinsurance design, let us first recall the
concept of it reinsurance. Generally speaking, reinsurance is an insurance on in-
surance or an insurance for the insurers. It is a contractual agreement between
an insurer (cedent) and a reinsurer whereby, depending on the nature of the rein-
surance arrangement, the reinsurer indemnifies part of the losses incurred on the

msurer.

There are many reasons for the existence of the reinsurance. First, reinsurance



can be employed by the insurance company to mitigate its risk exposure and hence
stabilize the underwriting (or earnings) volatilities. Second, the reinsurance might
be utilized by the insurer to avoid a large single loss, for example, claims resulting
from a catastrophic risk, which might lead to the insurer’s bankruptcy. Third, a
newly established insurance company can obtain the business expertise from some
reinsurance companies by relating to them through reinsurance contracts. Fourth,
reinsurance also provides a mechanism allowing an insurance company to increase

its capacity to accept risks.

In order to clarify the concept of optimal reinsurance design, let us further ana-
lyze the general effect of a reinsurance treaty on the insurer. Obviously, by spreading
some of the risks to a reinsurer, the insurer incurs additional cost in the form of
reinsurance premium which is payable to the reinsurer. Naturally, the higher the
expected risk transfers to a reinsurer, the more costly the reinsurance premium is.
Similarly, a cedent can lower the cost of reinsuring by exposing to higher expected
retained risk. This demonstrates the trade-off between risk spreading and risk re-
taining. Such a trade-off right leads to the topic of optimal reinsurance design.
It is a process of determining the optimal reinsurance contract according to some
optimality criteria along with some constraints if necessary. In the nutshell, it deals

with the optimal partitioning of a risk between insurer and reinsurer.

The optimal reinsurance design therefore entails specifying certain optimization
problems and solving them for the optimal reinsurance treaties. We will term
these optimization problems as reinsurance models and refer the risk on which the
reinsurance is applied as the underlying risk. The studies of the reinsurance models
therefore could provide important insights to the nature of the underlying risks to
which the insurer is exposed and could also help to develop sound and prudent risk

management tools for the insurance companies.

Let us now recall various types of reinsurance models that have been proposed

in the literature. It is convenient to first divide the models into two major classes



depending on the time periods. These are known as the static models and the
dynamic models. In the former models, we are only concerned with reinsuring risk
over a single time period and thus they are also called the single period models. The
latter models address reinsurance in a multi-period setting which typically involves
specifying a surplus process such as the classical compound Poisson model. We also

refer the latter model as the multi-period models.

Among these models, one can further classify into either the global models or
the local models depending on how reinsurance is structured. When reinsurance is
only applied to the risk in aggregate, we call such models as global, otherwise local.
Hence in the former case we only need to know the aggregate loss distribution while
in the latter case, we need to know the joint distribution of the risks and how the
reinsurance contract affects the resulting risk. Note that a substantial amount of
the existing literature discusses the global models, although the local models and
the combination of these two types models are common in practice. This thesis will

focus on the global models.

Further classification of the reinsurance models is possible depending on how
optimality is defined. For example in the insurer-reinsurer-oriented models, the
optimal reinsurance is determined in such a way that it reflects jointly the interests
of both insurer and reinsurer. In this case, the optimization is often formulated
as a game-theoretic problem between both players and then determine the Pareto
optimal reinsurance if it exists; see, for example, Borch (1960). On the other
hand there are models, which are referred as the insurer-oriented models, that
focus exclusively on the insurer in deriving the optimal reinsurance. The optimal
reinsurance is determined solely from the point of view of the insurer. Hence, the
insurer is the active player while the reinsurer is the passive counterpart. While
the assumption of the reinsurer being passive is debatable, one can argue that the
reinsurance market is competitive and the insurer can be demanding. Another

advantage of focusing on the insurer-oriented model is that from the point of view



of the insurer, the optimal reinsurance can become a benchmark or a guideline for
the insurer, even if such optimal reinsurance contract may not be available from
the market. Much of the research in recent years is devoted to the insurer-oriented

models, which is also the focus of the present thesis.

We now list the following commonly-used reinsurance models, depending on the

nature of the goal function:

(1) wariance minimization models: if the insurer were to minimize the variance

of its retained risk (or total risk);

(2) expected utility mazimization models: if the insurer were to maximize its ex-

pected utility;

(3) (convex) risk measure minimization models: if the insurer were to minimize

a (convex) risk measure of its retained risk (or total risk);

(4) ruin probability minimization models: if the insurer were to minimize ruin

probability for its surplus process.

It should be noted that the first three models are nested in the sense that the
variance minimization models can be considered as subset of the expected utility
maximization models, which in turn is a special case of the risk measure minimiza-
tion models. Note also that in studying the above optimization models, constraints
such as the maximum premium budget or the minimum expected profits guarantee
are often imposed. In these cases, one is dealing with constrained optimization

models, as opposed to the unconstrained optimization models.

1.2 Literature Review

In this section, we provide a brief literature review and summarize some of the

major results on optimal reinsurance that are relevant to the thesis. In particular,

4



we will emphasize on the static global models with occasional reference to other

models and techniques.

By examining the existing literature, there is a proliferate of research being
conducted on the insurer-oriented models, particularly the static global insurer-
oriented models. This type of model usually involves modelling the underlying risk
as a non-negative random variable, say X. Suppose f(X), with the conventional
assumption 0 < f(x) < z for all x > 0, is the part of the underlying risk that is cov-
ered by the reinsurer, and II denotes the premium principle adopted for determining
the reinsurance premium for a given reinsurance arrangement f = f(X). Then the
insurer retains the risk of Iy = I;(X) := X — f(X) and pays II(f) = II(f(X)) to
the reinsurer in the form of reinsurance premium; hence its total cost or total risk,
denoted by Ty = T¢(X), is the sum of II(f) and Iy, i.e., Ty(X) = I;(X)+II(f(X)).
Note that the function f(x) implies a partition of the initial risk X between insurer
and reinsurer. This function is known as the compensation function, indemnifi-
cation function, or ceded loss function, while I;(z) is referred as the retained loss
function. It is reasonable to assume that the insurer has a preset reinsurance pre-
mium budget, say 7. This implies that 7 is the maximum premium an insurer is
willing to pay for reinsuring its risk. This is equivalent to imposing the constraint

II(f(X)) < 7 in the reinsurance model.

Most of the static reinsurance models investigated to-date take either of the

following formulations:

min E [w(]f(X))} =E [w(X - f(X))} (1.2.1)

st. 0< f(x) <z, forall x>0, and II(f(X)) =,

and

min € |w(I;(X)) | = € [w(X = [(X))]
st. 0< f(x) <z, forall x>0, and II(f(X)) =,

(1.2.2)



where w is a convex function and Y denotes Y — EY for a random variable Y. The
optimization models (1.2.1) and (1.2.2) are the general forms of the various rein-
surance models including, for example, the following expected utility maximization

model:

max E[u(Wy— X + f(X) —7)]
st. 0<I(x)<uz forall x>0, and II(f(X)) =,

(1.2.3)

where Wy denotes the insurer’s initial wealth so that Wy — X + f(X) — 7 represents
the insurer’s wealth after reinsurance arrangement. As the insurer is seeking a
risk transfer, it is reasonable to assume that it is risk averse with a concave utility
function. Suppose u(t) is the corresponding concave utility function, then u(—t +
Wy — m) is obviously convex as a function of t. Furthermore, by setting w(t) =
u(—t + Wy — m), one recovers (1.2.3) from (1.2.1). For an excellent review of
the utility function with respect to insurance applications, see Gerber and Pafumi
(1998). Another important class of reinsurance model is obtained by letting w(x) =

2? in (1.2.2). This leads to the classical variance minimization model:

min  Var(I;(X)) = Var(X — f(X))
st. 0< f(x) <z, forall x>0, and II(f(X)) =m.

(1.2.4)

The most classical and the most fundamental result on optimal reinsurance is
that the stop-loss reinsurance treaty is the optimal solution that solves both ex-
pected utility maximization model (1.2.3) and variance minimization model (1.2.4).
This key result assumes that the reinsurance premium is determined by the expec-
tation premium principle. The result relevant to the utility is due to Arrow (1974);
see also Bowers et al. (1997), Gerber and Pafumi (1998, section 6). The Arrow’s re-
sult can be regarded as a generalization of the result established in earlier literature
including Borch (1960), Kahn (1961) and Ohlin (1969). For detailed discussion on
the variance minimization model (1.2.4), see, for example, Bowers, et al. (1997),

Kaas, et al. (2001) and Gerber (1979).



In the 1980’s one also observes numerous generalizations of Arrow’s result. For
example, Deprez and Gerber (1985) generalized this result in the sense that they
established one sufficient and necessary condition for the optimal contract f* under
convex and Gateaux differentiable! premium principle II for reinsurance models
without the premium budget constraint 7. That is, they established the sufficient
and necessary conditions for the solution to model (1.2.3) for convex and Gateaux

differentiable premium principles excluding the constraint II(f(X)) = 7.

Heerwaarden et al. (1989) subsequently generalized Arrow’s result to the so-
called tail-averse decision criteria, which is a class of criteria including, for example,
maximizing the expected utility using a concave increasing utility function, min-
imizing variance, the zero-utility premium, or the mean-value premium for the
retained risk, maximizing the adjustment coefficient or the ruin probability in a
compound Poisson risk process, and so on. Young (1999) extended the work of
Deprez and Gerber (1985) to the case with Wang’s premium principle, which is

convex but not Gateaux differentiable.

In recent years, there appears to have been a surge of interests in optimal rein-
surance, and many creative optimal reinsurance models have surfaced as a result.
In conjunction with this, elegant mathematical tools and innovative optimization
theories have also been used in deriving the optimal solutions to the proposed rein-
surance models. The main developments on the recently proposed static models

are as follows.

Gajeck and Zagrodny (2000) considered the variance minimization model (1.2.4)
by changing the binding budget condition II(f(X)) = 7 to the unbinding constraint
II(f(X)) < 7 and the expected premium principle to the standard deviation pre-
mium principle. Although these modifications introduced additional complexity to

the optimization problems, they derived explicitly the optimal reinsurance contracts

!For a brief introduction to the concept of Gateaux differentiability, see Subsection 4.4.1 in

Chapter 4.



by relying on techniques that are based on the Lagrange multipliers method and the
Gateaux derivatives. In response to the criticism of using variance as a risk measure
criterion, the same authors in their subsequent work (Gajeck and Zagrodny (2004))
developed a method for analyzing the optimal reinsurance contracts to model (1.2.2)
with w defined as one of the so-called pseudoconvex functions. The pseudoconvex
functions include a large class of asymmetric functions such as h(t) = max(0,t) and
h(t) = [max(0,¢)]%. In their paper, explicit forms of optimal contracts were derived
in the case of absolute deviation and truncated variance risk measures. See also

Zagrodny (2003) for related works.

A series of papers published by Kaluszka (2001, 2004a, 2004b, 2005) made
undeniable important contributions to the optimal reinsurance design. In 2001,
Kaluszka developed a technique for deriving explicit forms of the optimal reinsur-
ance contract with the variance minimization model (1.2.4) for the mean-variance
principles, i.e., the principles under which the reinsurance premium only relies on
the expectation and variance of the ceded loss. Subsequently, based on his previous
paper, Kaluszka (2004a) developed a method for the solutions to the more general
model (1.2.2) under the same class of premium principles. The solutions under sev-
eral specific functions for u, such as u(z) = 2% and u(z) = z, were explored. For
a specific function u, his method might turn out to be still very complicated, and
the optimal solutions are more likely to be expressed as the solutions to a system
of equations and hence needs to rely on numerical method to obtain the optimal

solutions.

In his more recent work, Kaluszka (2005) considered more general models (i.e.
the convex risk measure models) along with a wider class of premium principles
(mainly the convex principles). By a convex principle, we mean that the premium
amount p over a random loss Z can be determined through the equation g(p) =
H(Z), where g is an increasing function and H is a convex function. The author

first established several highly general theorems and then in turn identified, case by



case, the solutions for models with a specific risk measure and a specific premium
principle. Although the results he obtained for each specific model are sufficiently
explicit to be of practical use, his method could still turn out to be very complicated
to identify the solutions for other models even if they are also based on a convex

risk measure and a convex premium principle.

Another important paper in optimal reinsurance design is attributed to Promis-
low and Young (2005). In this paper, the authors discussed the optimal insurance
purchase under a unifying framework with the criterion of minimizing a general
risk measure. Their model can be shifted to the reinsurance design setting. While
their results are applicable for a general Gateaux differentiable risk measure mini-
mization model, their conclusion is restricted to only determining whether a ceded

loss function (or the corresponding retained loss) should have a deductible or not?.

More recently, Cai and Tan (2007)® introduced two new reinsurance models.
They determined the optimal retention of stop-loss contracts by, respectively, mini-
mizing the risk measures VaR (Value-at-Risk) and CTE (Conditional Tail Expecta-
tion) of T¢(X) = I;(X) +1II(f(X)), the total risk exposure of an insurer. Later on,
Cai et al. (2008), which I coauthored, generalized the results of Cai and Tan (2007)
by considering the optimal reinsurance among all the increasing convex treaties.
Note that the ceded loss functions in the stop-loss reinsurance, quota-share rein-
surance, and their combination are all some special increasing convex functions.
While the results obtained in these two papers are explicit and elegant, the crit-
icism on their models relies on two aspects. First is that they only consider the
expectation principle for the reinsurance premium. Second is that their model is

only concerned with risk exposure minimization for the insurer, without taking into

2In some very specific cases Promislow and Young (2005) also identified the shape of the

optimal ceded loss functions
3The paper by Cai and Tan (2007) was awarded one of the best-papers submitted to the 2006

Stochastic Modeling Symposium, April 3-4, Toronto.



account other important factors, such as the reinsurance premium budget or the

insurer’s profitability.

The models we have reviewed so far are all single-period global models. There
are results pertaining to local models, which I now briefly mention. For example,
Borch (1960), Deprez and Gerber (1985), and Aase (2002) discussed the conditions
for achieving Pareto optimality during a risk sharing among a group of financial
individuals. Another example is by Kaluszka (2004b) who discussed the optimal
reinsurance contracts when the mean-variance premium principle is applied to the
sum of the individual ceded losses with the criteria of minimizing the variance of
the insurer’s global retained loss while imposing the insurer’s expected gain. There
are also papers which are devoted to discussing the optimal contracts within several
common types of reinsurance, such as the quota-share, surplus, stop-loss, and their

combinations. See for example, Centeno (1985, 1986) or Verlaak and Beirlant (2003)

The dynamic optimal reinsurance design is also an area of active research in
recent years. Some recent works are due to Schmidli (2001), Hipp and Vogt (2003),
Hald and Schmidli (2004), Dickson and Waters (2006), and Kaishev and Dimitrova
(2006). Most of these results define the optimal reinsurance design with the crite-
rion of minimizing the ruin probabilities of the insurer’s surplus process. Kaishev
and Dimitrova (2006), on the other hand, derived the optimality by maximizing the
joint survival probability of the surplus processes of both the insurer and reinsurer.
In the dynamic setting, the problems are usually so complicated that one has to
compromise to consider some specific type of reinsurance so that the problem boils
down to determining several optimal parameters in the reinsurance models. For ex-
ample, Hipp and Vogt (2003) employed stochastic control methods to determine the
optimal excess-of-loss reinsurance under the assumption that the insurer’s surplus

follows a compound Poison process.

Finally, it is worth noting that the principle II adopted for the reinsurance

premium assumes a critical role in the optimal design of reinsurance. The shape
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of optimal ceded loss function can be dramatically different for different types of
reinsurance premium principles. The complexity of solving the resulting reinsurance

models can also differ substantially for different reinsurance premium principles.

1.3 Mathematical Background

1.3.1 Insurance Company Risks and Risk Measures

“Risk is Opportunity.” — This has been a recent slogan of the Society of Actuaries
in reminding actuaries that risk is the core of our business; the management of
risk has been our expertise. In this thesis, we are concerned with effectively using
reinsurance as a risk management tool for an insurer. In particular, we assume that
the (aggregate) risk exposure of an insurer is denoted by the random variable X.
Associated with the risk random variable X, we can define appropriate measures
of measuring and quantifying X. This leads to the development of risk measure.
Usually, it is simply defined as a mapping p from X', a set of random variables

representing certain risks, to the real numbers R.

Premium principles used by insurance companies can be perceived as some kinds
of risk measures. Subsection 1.3.2 of this chapter lists some commonly adopted
premium principles. More broadly speaking, risk measures are used for setting
provisions and capital requirements of a financial institution to ensure solvency.
Value-at-Risk (VaR) and Conditional Tail Expectation (CTE) are two of the most

popular risk measures for this purpose.

Definition 1.1 The VaR of a loss random variable Z at a confidence level 1 — a,

0 < a<1, s formally defined as
VaR,(Z) =inf{z e R: Pr(Z <z) > 1—a}. (1.3.5)

11



In probabilistic terms, VaR is merely a quantile of the loss distribution of Z. In
practice, « is usually chosen such a small value as 5% or even 1%. Consequently,
VaR,(Z) can be interpreted as a level such that the loss Z is bounded by this level
from above with a large probability 1 —«, or equivalently VaR is the level such that
the loss happens beyond this level with a small probability a. Moreover, VaR,(Z)

4

is nonincreasing and right continuous® as a function of « on the interval (0,1).

Note that the minimum in (1.3.5) is attained because Pr(Z < z) is nondecreasing
and right-continuous in z as the cumulative distribution function of the random
variable Z. When Pr{Z < z} is continuous and strictly increasing, z = VaR,(Z) is
the unique solution to the equation Pr(Z < z) = 1—«. Moreover, it is also obvious

that VaR,(Z) is right continuous as a function of «.

The risk measure VaR possesses the following two properties:
Lemma 1.1 Let Z be a real-valued random variable, and 0 < v < 1.
(i) It holds that

VaRa(9(Z)) = g (VaRa(Z))

for any nondecreasing and left continuous function g such that VaR,(g(Z))
1s well defined.

(i1) If additionally Z has finite expectation, then

EZ] = /01 VaR,(Z)du.

4Note that in some literature, VaR is defined by VaR,(Z) = inf{z € R : Pr(Z < z) > a} with
a large value for «, say 95% or 99%. In this case, VaR is nondecreasing and left continuous as a

function of «.
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Proof. See Dhaene et al. (2002) for proof of (i). Next we prove (ii). Denote
Fy u) = inf{¢ : Pr(Z <€) > u} for 0 < u < 1. Then F,;*(1 — U) = VaRy(2)
and F,;'(1—U) has the same distribution as Z for a uniformly distributed random

variable U on the unit interval (0,1). Thus,

1 1
E[Z]| =E[F;'(1-U)] = / FU (1 —u)du = / VaR.,(Z)du,
0 0
and we complete the proof. O

In view of the fact that VaR corresponds to a quantile of a loss distribution,
it does not adequately reflect the potential catastrophic losses of the tail of the
distribution. This is one of the commonly criticized shortcomings for VaR despite
its prevalence as a risk measure among financial institutions. To overcome this
drawback, other risk measure such as the CTE is proposed. CTE is defined as the

expected loss given that the loss falls in the worst a part of the loss distribution.

Definition 1.2 The CTE of a random wvariable Z at a confidence level 1 — «a,
0 < o < 1, is formally defined as the mean of its a-upper-tail distribution ¥, (§),

which is constructed based on the a-tail of the loss distribution of Z and given by

0, for £ < VaR,(Z),

Val€) =3 Pr(Zz<¢)—(1—-a) for £ > VaRo(Z). (1.3.6)

At this point, we caution the readers that the literature itself on risk measures
can be quite confusing. One of the reasons is that different authors have adopted
different terminologies even though many of these risk measures are essentially mea-
suring the same quantity. For example, the term “Conditional Tail Expectation”
is coined by Wirch and Hardy (1999) while others have used names such as the
Tail Conditional Expectation (see Artzner et al. (1999)), Conditional Value-at-
Risk (CVaR) (see Rockafellar and Uryasev (2002)), Tail Value-at-Risk (TVaR) (see
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Dhaene et al. (2006) and Expected Shortfall (ES) (see Tasche (2002), McNeil et
al. (2005)). The formal definition of CTE is also another area that has led to some
confusions. For instance, many authors (see, for example, Dhaene et al. (2006))
have taken at face value that (1.3.10) defined below is the definition for CTE. This
is, however, not quite correct. Wirch and Hardy (1999) explicitly make it clear
that (1.3.10) is the definition for CTE only under the additional assumption that
the loss random variable is continuous. Because of this confusion, CTE has been

unfairly criticized as a relevant measure of risk.

To avoid any further confusion, we formally collect some of the properties asso-
ciated with the risk measure CTE in the Proposition 1.1 below. A detailed proof

of proposition is also provided.

Proposition 1.1 Let Z be a nonnegative loss random variable and 0 < o < 1.

(i) CTE and VaR of Z are related as

1 [e.e]
CTE.(Z) = VaR,(Z) + —/ Syz(z)dz, (1.3.7)
& JVaRa(2)

where Sz denotes the survival function of Z, i.e., Syz(x) = Pr{Z > z} for

any x € R.

(i) CTE can be equivalently defined as the average of VaR on the a-tail, i.e.,

CTE,(Z) = é / " VaR,(2)dg. (1.3.8)

(111) Let f = inf{u : VaR,(Z) = VaR,(Z)}, or equivalently f = Pr{Z > VaR,(Z)},
then

CTE,(Z) = é((a ~ B)VaR,(Z) + BE[Z|Z > VaRo(2)]).  (139)

provided that {Z > VaR,(Z)} has nonzero probability.
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() If Z is a continuous random wvariable, then CTE has the following simple

representation:
CTE.(Z) = E|Z|Z > VaR,(Z)]. (1.3.10)
Proof. Let Y be a random variable with distribution function ¥, defined in
(1.3.6), then
CTE.(Z) = E[Y]
=~ [ v [T vaenas

—00

VaRa(Z) 00 _ _
— 0+/ 1~d5+/ [1—PY(Z§§) U= e
0 )

VaRa(Z «Q

— VaR,(2)+ - / T s

& JVaRo(2)
which proves (i).
In order to prove (ii), first note that g(t) = (t — VaR,(Z))+ is nondecreasing

and continuous as a function of ¢, and thus it follows from (i) of Lemma 1.1 that
VaR, ([Z — VaR,(Z)],) = [VaR,(Z) — VaR.(Z)],.
for any 0 < u < 1. Moreover, by (ii) of Lemma 1.1 we have
E[(Z - VaRa(2)),] = / 1 VaR, ([Z — VaRa(Z)],) du.
Thus, 0

/OO S4(6)-de = E[(Z—VaRa(2)).]
VaRa (Z)

VaR, ([Z — VaRa(Z2)],) du

1

[VaR,(Z) — VaRa(Z2)], du

«

[VaR,(Z) — VaR,(Z)] du

«

VaR,(Z)du — a - VaR,(Z),

— — — S—
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which, together with (1.3.7), implies (1.3.8).

As for (iii), we will first show the identity inf{u : VaR,(Z) = VaR,(Z2)} =
Pr{Z > VaR,(Z)}. Since Pr(Z < ¢) is nondecreasing and right continuous as a
function of ¢, VaR,(Z) is nonincreasing and right continuous as a function of u
on the interval (0,1), which in turn implies that inf{u : VaR,(Z) = VaR,(Z)}
is attainable. Thus, it is sufficient for us to show VaR,(Z) = VaR,(Z) and
VaR,_.(Z) > VaR,(Z) for any ¢ € (0,7), where v = Pr{Z > VaR,(Z)}. In-

deed, we have

VaR,(Z) = inf{¢:Pr(Z <& >1-—+}
= inf{¢: Pr(Z <) > Pr(Z < VaRa(2))}
= VaR,(2).

Moreover, if there exists an € € (0,7) such that VaR,_.(Z) = VaR,(Z), then by
the definition of VaR, we obtain

Pr(Z <VaR.(Z)) >1— (y —¢) =Pr(Z < VaR,(2)) + ¢,

which is an obvious contradiction, and thus VaR,_.(Z) > VaR,(Z) for any ¢ €
(0,7).

Now, we are ready to prove (1.3.9). Since f < a and VaR,(Z) = VaR,(Z) for
u € [B,al, it follows from (1.3.8) that

CTE,(Z) = é [(a — B)VaRu(Z) + / ’ VaRu(Z)du} |

0

After comparing the above equation with (1.3.9), we only need to show

E[Z]Z > VaRu(Z)] % / " VaR,(2)du.
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To prove this fact, we first note that

Pr(Z <& Z > VaR.(2))
Pr(Z > VaR,(2))
% Pr(Z <¢&)—(1-70)], if € > VaR,(2);

Pr[(Z|Z > VaRa(2)) < €] =

0, if ¢ < VaRa(2).

Thus, for u € (0, 1)

VaR,(S) = inf {g > VaR,(Z) : % [Pr(Z <¢)— (1 - 6)]}

inf {{ > VaR,(Z2) : Pr(Z < &) > 1 — pu}
= VaRgu(Z),

and applying (ii) of Lemma 1.1, we obtain

1 1 B
E[Z|Z > VaRo(Z)] = / VaR,(S)du = / VaRgu(Z)du:% / VaR,du,
0 0 0

by which we prove (iii).

(iv) is trivial result by (iii), and thus the proof is complete.

Finally, we note that both VaR and CTE satisfy the property of Translation

Invariance. This property will be frequently used in the subsequent chapters, and

it is formally stated for a risk measure p as follows.

[A1] Translation Invariance: p(Z +m) = p(Z) + m for any scalar m € R.

The discussion on VaR and CTE cannot be concluded without mentioning the

notion of “coherent risk measure”. A risk measure p is said to be coherent if it

satisfies property A1l defined above and the following three additional axioms for

any Y, Z € X:

[A2] Subadditivity: p(Y + Z) < p(Y) + p(Z);
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[A3] Positive Homogeneity: p(AZ) = Ap(Z) for any scalar A > 0;

[A4] Monotonicity: p(Y) > p(Z) if Y(w) > Z(w) for all w € ;

The concept of “coherent risk measure” was first introduced by Artzner et al.
(1999). For comprehensive review on risk measures, we refer the readers to Schied
(2006), Follmer and Schied (2002), Dhaene et al. (2006), and many others. While
CTE is a coherent measure of risk in that it satisfies all of of the above four axioms
A1-A4, VaR is not coherent as the subadditivity property A2 is violated. For
further discussion on VaR and CTE, see also Rockafellar and Uryasev (2002) and
Section 2.2 of the monograph by McNeil et al. (2005).

1.3.2 Insurance Premium Principles

As mentioned in the previous section, insurance premium principles can be
viewed as some kinds of risk measures. These principles are used for determining
the premium of insurance contracts. There is a lot of discussion on the axioms
that a risk measure must satisfy to be an appropriate insurance premium principle;
see, for example, Wang et al. (1997). The following gives a list of the common

insurance premium principles.

P1 (Expectation principle): II(Z) = (1 + 0)E[Z] with § > 0;

P2 (Standard deviation principle): I1(Z) = E[Z] + B/D[Z], where 3 > 0 and
D|Z] denotes the variance of Z;

P3  (Mixed principle): II(Z) = E[Z] + D[Z]/E[Z], where 3 > 0;

P4 (Modified variation principle): I1(Z) = E[Z] + 8+/D[Z] + vD[Z]/E[Z], where
7,0 > 0;

P5 (Mean value principle): II(Z) = \/E[Z2] = \/(E[Z])2 + D[Z];

P6 (p-mean value principle): I1(Z) = (E[ZP])"/?, where p > 1;
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P7 (Semi-deviation principle): 1I(Z) = E[Z]+ 3 {E(Z — E[Z])%r}l/2 with 0 < 3 <

L

P8 (Dutch principle): II(Z) = E[Z] + SE(Z — E[Z])4+ with 0 < § < 1;

P9 (Wang’s principle): II(Z) = [;°[Pr(Z > t)]Pdt with 0 < p < 1;

P10 (Gini principle): II(Z) = E[Z] + BE|Z — Z'|, where 3 > 0 and Z’ is an
independent copy of Z;

P11 (Generalized percentile principle): 11(Z) = E[Z] + B{F, (1 — p) — E[Z]} with
0<pfB,p<l;

P12 (CTE principle): 11(Z) = [1 Fy ( )dz, where 0 < p < 1;

1
P13 (Variance principle): II(Z )p IE Z| + D[ Z] with 8 > 0;
P14 (Semi-variance principle): 1I(Z) = E[Z ] + 6E(Z E[Z])2 with 3 > 0;
P15 (Quadratic utility principle): II(Z) = +v—+/7% — D[Z] with v > 0 and
v? > D[Z].

P16 (Covariance principle): II(Z) = E[Z]+28D[Z] — 3Cov(Z,Y ) where # > 0 and
Y is a random variable;

P17 (Exponential principle): 11(Z) = %log Elexp(57)] with 5 > 0.

1.3.3 Notation

e The following notation will be used throughout the whole thesis:

— X: the underlying risk to which the reinsurance is applied.

— a Ab=min{a, b}

— [a]+ = max]a, 0]

— Fy(-): the distribution function of a random variable Z.

— Sz(+): the survival function of a random variable Z.

— VaR,(Z): the Value-at-Risk at confident level 1 — «v of the loss random

variable Z.
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— CTE,(Z): the Conditional Tail Expectation at confident level 1 — « of

the loss random variable Z.

— 0 denotes the loading factor in the expectation principle.

- 0*=1/(1+0).
1
_ . = §-lipx)y — g1
dg» = Sy (07) = S (—1+6)'
— 60 = Sx'(a).
e Chapter 2:

— Xg,, (Xg,,): the ceded loss under quota-share (stop-loss) reinsurance.
— X1, (X1,): the retained loss under quota-share (stop-loss) reinsurance.

— Xr,, (X7,): the total loss of the insurer under quota-share (stop-loss)

reinsurance.

— Uy = Sy (@) + l/ Sx(z)dx
s

@ JsMa)

— ¢a(d) :d+$/dOOSX(:c)da:, deR.

1 d
— G(d) = Sx'(a) + a/ Sx(z)dx + TI([X — d]y), d € R, where II
Sx'(a)
denotes the reinsurancexpremium principle.

e Chapter 3:

= ¢(t) = [VaRa(X) — 1],
— ¢(t) = E[(X = 1)4].

B
- p(d) = W’

— fi(d):d+(1—0—9)/OOSX(x)dx—5a, deR.

deR.

- )\(d):/dOOSX(x)derSX(d)[d—éa], deR.
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e Chapter 4:

— Q dentes the set [0,00) and F represents the Borel sigma field on (2.

— Pr is one probability measure on () such that the underlying risk X has

a distribution function Fx(t) = Pr|0, t).

— L% = L%(Q,F,Pr): the space of all the Pr-a.s. equivalence classes of

random variables with finite second moment.
- Qy={fel?:0< f(z) <z for  >0}.
- Q. ={feL’:0< (1 +0E[f] <}
- Q=92

1.4 The Objective and Outline

1.4.1 Objective of the Thesis

The main objective of this thesis is to develop theoretically sound and yet prac-
tical solution in the quest for optimal reinsurance designs. In order to achieve such
an objective, this thesis broadly consists of two main parts. In the first part, a
series of reinsurance models are developed and their optimal reinsurance treaties
are derived explicitly. In the second part, we propose an innovative reinsurance
model, which we refer as the empirical model since it exploits explicitly the in-
surer’s loss empirical data. This model has the advantage of its practicality and

being intuitively appealing.

With respect to the research conducted in the first part, we focus on the
risk measure minimization reinsurance models and discuss the optimal reinsurance
treaties by exploiting two of the most common risk measures known as Value-at-

Risk (VaR) and Conditional Tail Expectation (CTE). Some additional important
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economic factors such as the reinsurance reinsurance premium budget, the insurer’s

profitability will be incorporated to analyze the optimal design of reinsurance.

There are several reasons addressing the optimal reinsurance designs involving
risk measures such as VaR and CTE. One is inspired by their prominent uses in
risk management among banks and insurance companies for risk assessment and
risk capital allocation, as well as their wide uses by the regulatory authorities
in regulating solvency requirement for banks and insurance companies. The other
reason is motivated by the optimal reinsurance models of Cai and Tan (2007) which
exploit explicitly VaR and CTE risk measures. It is worth noting that while Cai
and Tan (2007) adopts CTE,(Z) = E[Z|Z > VaR,(Z)] for the definition of CTE,

this thesis will use the formal Definition 1.2 for the risk measure.

The empirical approach is motivated by the fact that the reinsurance models are
often infinite dimensional optimization problems and hence the explicit solutions
are achievable only in some special cases. This approach is proposed for deriving
practical solutions to the reinsurance models, of which the theoretical solutions are
difficult to obtain. The reinsurance models formulated using the empirical approach
are finite dimensional optimization problems and hence are much more tractable.
We will discuss the empirical approach in greater details in Chapters 5 and 6,
where we will also demonstrate many other advantages of the empirical approach

to optimal design of reinsurance.

1.4.2 Executive Summary of the Thesis Chapters

This subsection provides an executive summary to each of the subsequent chap-

ters.

Chapter 2: By formulating the reinsurance model using the criterion of mini-
mizing either VaR or CTE of the insurer’s total (or retained) risk, this chapter

separately investigates the optimality of reinsurance designs under as many as sev-
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enteen different reinsurance premium principles and by confining to two popular
reinsurance treaties: quota-share and stop-loss reinsurance. Our results illustrate
that the complexity of analysis highly depends on the adopted reinsurance premium
principle and hence highlight the critical role of the reinsurance premium principle
in the determination of the optimal design. In this chapter, sufficient and neces-
sary conditions (or just sufficient conditions for some cases) are established for the

existence of the nontrivial optimal reinsurance in each case.

Chapter 3: While the results obtained in Chapter 2 are explicit and elegant, there
are two critical restrictions. The first is that the optimal reinsurance is explored
only by restricting to some specific type of reinsurance. In practice, however, there
are many other important reinsurance treaties that have a ceded loss function not
as simple as those considered in Chapter 2. The second restriction is that the
reinsurance models considered in the last chapter focus entirely on minimizing the
risk exposure of the insurer. In practice, insurer is concerned with not only risk
minimization but also profitability maximization. In other words, a more desirable
reinsurance model should take into consideration the level of risk exposure in the
presence of reinsurance while also guarantee a minimum level of expected profit. In
light of these two aspects of restriction, this chapter incorporates a constraint into
the model to reflect an expected profit guarantee for the insurer and formulates
the reinsurance model as a VaR minimization problem with the ceded loss function
over the set of all the increasing convex functions. By reformulating the model into
an optimization problem over a space of positive measures, this chapter obtained

explicit solutions.

Chapter 4: By considering the CTE minimization reinsurance model, this chapter
devotes to deriving explicit optimal reinsurance among all the general reinsurance
treaties, instead of restricting to any specific class. By regarding each reinsurance
contract as an element in a Hilbert space and using the Lagrangian method based

on the directional derivative, this chapter obtained explicitly the optimal solutions.

23



The result shows that the stop-loss treaties are optimal for models under CTE cri-
terion. This is a parallel result to the classic variance minimization with a different

risk measure.

Chapter 5: A key assumption with respect to the reinsurance models investigated
in Chapters 3 and 4 is that the reinsurance premium is calculated by the expecta-
tion principle. While it is tempting to generalize models in Chapters 3 and 4 to
other reinsurance premium principles, the resulting optimization problems become
not tractable due to the nonlinearity and infinite dimension. In view of these chal-
lenges, we propose a new method, which we refer as the “empirical approach”. The
proposed empirical approach allows us to address the optimal reinsurance designs
under nonlinear reinsurance premium principles and various optimality objectives.
By experimenting with many important reinsurance models, this approach turns

to be very effective in addressing the optimal solutions.

Chapter 6: This chapter addresses the stability and the consistency of the solu-
tions obtained from the empirical-based models proposed in Chapter 5. By stability,
we mean that the empirical solutions always generate the same functional form of
the optimal ceded loss function for independent random samples from the same loss
distribution and over the same set of parameter values. By consistency, we mean
that the empirical optimal ceded loss function converges to the true optimal ceded
loss function as we increase the sample size. While it is challenging to provide a
formal analysis on the stability and consistency of a general empirical-based rein-
surance model we proposed, we address these issues by resorting to some numerical
examples in this chapter. The numerical studies also allow us to gain important

insights on the behavior of our proposed empirical solutions for small sample size.

Chapter 7: This chapter concludes the thesis by listing some possible areas of

future research.
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Chapter 2

VaR and CTE Minimization
Models: Quota-Share and

Stop-Loss Reinsurance

2.1 Introduction

This chapter aims to exploit the optimality of two kinds of common reinsurance—
the quota-share and the stop-loss—Dby the criteria of minimizing, respectively, the
VaR and CTE of the insurer’s total risk for all of these seventeen premium principles

P1-P17 listed in Subsection 1.3.2.

Let X be the aggregate nonnegative loss random variable (in the absence of
reinsurance) on which the reinsurance is applied. Then under the quota-share
reinsurance with quota-share coefficient ¢ € [0, 1], the transformed losses to both

cedent and reinsurer can be expressed respectively as:
X, =(1-¢X, and Xp, =cX, (2.1.1)
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where X7 is the loss retained by the cedent and Xg_, is the loss absorbed by the
reinsurer. In other words, the cedent transfers risk by retaining 1 — ¢ proportion
of the aggregate loss while the reinsurer is liable for the remaining ¢ proportion.
Note that ¢ = 0 denotes the special case where the insurer retains all losses while
¢ = 1 represents the insurer transferring all losses to a reinsurer. Consequently, the
former case implies no reinsurance while the latter case leads to full reinsurance
protection. Under the stop-loss reinsurance, the corresponding losses to the cedent

and the reinsurer, denoted respectively by X;, and Xp ,, are represented as

X, X<d
X, = =X Ad, (2.1.2)
d, X>d
and
0, X <d
Xr, = = [X —d],, (2.1.3)
X—-d, X>d

where the parameter d > 0 is known as the retention, a A b = min[a,b], and
[a]; = max]a,0]. With this treaty, the risk exposure of the cedent is capped at
the retention while the reinsurer is liable for any losses in excess of the retention if
any. Note again that when d = 0 and d — o0, these two special cases represent,

respectively, full reinsurance and no reinsurance.

Recall that the main objective of the chapter is to determine the optimal quota-
share reinsurance and optimal stop-loss reinsurance under various types of premium
principles. This implies that it boils down to determining the optimal quota-share
coefficient ¢* € [0,1] in the quota-share reinsurance and the optimal retention
d* € [0,00) in the stop-loss reinsurance. In terms of the solution to the optimal
reinsurance model studied in this paper, we classify the optimal reinsurance as either
trivial or nontrivial. By trivial optimal reinsurance we mean that it is optimal to
have either zero reinsurance or full reinsurance. In other words trivial optimal

reinsurance implies ¢* is ether 0 or 1 in the quota-share treaty while either d* = 0
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Quota Share | Stop Loss
Premium Principle VaR CTE | VaR CTE
(P1) Expectation principle T T NT NT*
(P2) Standard deviation principle T T - -
(P3) Mixed principle T T - -
(P4) Modified variation principle T T - -
(P5) Mean value principle T T T T
(P6) p-mean value principle T T T T
(P7) Semi-deviation principle T T T -
(P8) Dutch principle T T NT NT*
(P9) Wang’s principle T T T T
(P10) Gini principle T T - -
(P11) Generalized percentile principle | T T T T
(P12) CTE principle T T T T
(P13) Variance principle NT NT NT NT*
(P14) Semi-variance principle NT NT NT NT*
(P15) Quadratic utility principle NT NT NT NT*
(P16) Covariance principle NT NT - -
(P17) Exponential principle NT NT T -

Table 2.1: Nontriviality of optimal reinsurance under VaR/CTE criterion.
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or d* — oo in the stop-loss treaty. On the other hand, the optimal quota-share
coefficient in the quota-share reinsurance is nontrivial if it lies on the open interval
(0,1) and the optimal retention in the stop-loss reinsurance is nontrivial if it is a

real number in the open interval (0, co).

The main results of the chapter lie in establishing Theorems 2.1, 2.2, 2.3 and
2.4 for the nontriviality (and triviality) of the optimal quota-share and the optimal
stop-loss reinsurance under general premium principle. Then by confining to specific
premium principle, these theorems enable us to effectively analyze in greater details
the conditions for the optimal quota-share coefficient ¢* and the optimal retention
d*. Table 3.1 provides a sneak preview of our findings. In the table, the premium
principle and the criterion identified with a “T” implies that the optimal solution is
trivial. Similarly those with a “NT” means that sufficient and necessary conditions
for the existence of nontrivial optimal reinsurance are established. On the other
hand, “NT*” indicates that only the sufficient conditions are identified for the
existence of the nontrivial optimal reinsurance. Note also that because of the
complexity of the optimization problem for the stop-loss reinsurance, there are a
few premium principles for which we are unable to determine analytically whether
the optimal reinsurance exists or not for a general loss distribution. These cases

W

are indicated with the notation “-”. For these cases, additional numerical methods
need to be used to further investigate their optimality. Our findings also highlight
the importance of the reinsurance premium principle assumption. Depending on
the adopted reinsurance premium principles, there are cases for which optimal
reinsurance is nontrivial and there are other cases for which optimal reinsurance is

trivial.

The rest of the chapter is organized as follows. Section 2.2 introduces the
notation and provides some preliminary results. Sections 2.3 and 2.4 discuss, re-
spectively, the optimality for the quota-share reinsurance treaty and the optimal

stop-loss reinsurance treaty. Section 2.5 presents some numerical examples to illus-
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trate the results obtained in the preceding sections. Section 2.6 collects the proofs

of some results.

2.2 Preliminaries

Throughout this chapter, we use X exclusively to denote the random loss to
which the reinsurance treaty is applied. We further assume that X has a contin-
uous one-to-one distribution on (0,00) but with a possible jump at 0 with finite
moment(s). We use X; and Xp to denote, respectively, the retained loss and the
ceded loss random variables under a generic reinsurance arrangement. Note that
X = X7+ Xg so that X; and Xi form a partition of X. When we need to dis-
tinguish between a quota-share reinsurance and a stop-loss reinsurance, we simply
subscript the notation with “sl” and “qs” as we do in (2.1.1), (2.1.2) and (2.1.3)

bellow.

Recall that, in presence of either of the quota-share and stop-loss reinsurance
arrangements, the total risk of the insurer is the sum of its retained loss X; and

the reinsurance premium amount I1(Xg), i.e.,
Xr = X; +1(Xg). (2.2.1)

Thus, it follows from the property of invariance translation for both VaR and

CTE (see Section 1.3.1) that

VaRa(XT) = VaRa(X1)+H(XR) (222)
CTE.(X7) = CTE.(X;)+II(Xg). (2.2.3)

By the relation of VaR and CTE in (1.3.7), the CTE of the insurer’s retained loss

can further be decomposed as

[e.9]

CTEQ(X[) = VaRa(X[)—i-l/ SXI(SL’)dSL’, (224)

& JvaRa (X7)
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which combining (2.2.3) leads to

CTE.(X7) = VaR, (X)) + l / Sx,(z)dx + II(XR). (2.2.5)
Q' JVaRq (X))

So far we have established some general relations for the risk measures associ-
ated with the retained loss random variable and the total cost random variable of
insuring risks in the presence of reinsurance. We now consider these relations in
greater details by examining these two specific reinsurance contracts: the quota-

share reinsurance and stop-loss reinsurance.
For the quota-share reinsurance, the survival function of the retained loss Xj,

is given by

Sx(£), 0<c<1,

Sx1, (x)=Pr((1—c)X >z) =
0, c=1

(2.2.6)

for z > 0, and its VaR at confidence level 1 — o, denoted by VaR,(X7,,;¢), is given
by
VaR,(Xp,,;c) = (1 —¢)Sx'(a). (2.2.7)

The above equation and together with (2.2.2) give us an expression for VaR,(Xr,,;c)
which represents the VaR of the total cost under the quota-share arrangement. We

state this formally in the following proposition:

Proposition 2.1 For 0 <¢<1 and 0 < a < Sx(0),

VaR,(Xr,,;c) = (1 — ¢)Sy' (@) + (cX). (2.2.8)

Similarly, it follows from (2.2.5) that the corresponding CTE of the total cost,
CTE.(X7,,;c), under the quota-share arrangement can be represented in the fol-

lowing proposition:
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Proposition 2.2 For 0 <¢ <1 and 0 < a < Sx(0),

CTE.(Xr,;¢) = (1 —¢)Sx'(a) + L-c /OO Sx(z)dx +II(cX).  (2.2.9)

@ Jsil(a)
Note that in the above notation associated with risk measures, the quota-share

coefficient ¢ is one of the arguments to emphasize the fact that under the quota-

share reinsurance, these risk measures depend explicitly on c.

Now let us consider the stop-loss reinsurance. In this case, the survival function

of the retained loss X7, is given by

SX(:C>7 0 <z < dv
Sx,  (x) = (2.2.10)
0, r>d,

so that its VaR can be represented as

d, 0<d<Sx'(a),
VaRa(X[Sl) = VaRa(X[Sl; d) = (2211)
Sil(a), d> Sy (a).

Then together with (2.2.2), we obtain an expression for VaR, (Xr,,) = VaR,(Xr,; d)

as shown in the following proposition:

Proposition 2.3 For each d > 0 and 0 < a < Sx(0),

VaR,(Xr,;d) = d+ 0{X = dJ.), 0= ds 55 (), (2.2.12)
SxH(@) +I([X —d]y), d> Sy (a).

Moreover, by (2.2.10), (2.2.11) and the fact 0 < VaR,(X,;d) < d, we have

0 d
/ SXI (S(Z)dflf = / Sx(l’)dl’
VaRa (X7,,5d) ot VaRa (X7,,;d)

0 0<d< Sy (),

y : (2.2.13)
fs;{l(a) Sx(x)dx, d> Sy (o).
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Thus, by defining

(X®25;@J+aLiUSﬂ@mHJMX—ﬂQ (2.2.14)

and together with (2.2.5), (2.2.11) and (2.2.13), we obtain the following expression
for CTE,(Xr,) = CTE,(Xr,; d):

Proposition 2.4 For each d >0 and 0 < a < Sx(0),

d+1([X —d]y), 0<d< Sy (a),
CTE,(X7,;d) = ( k) x (@) (2.2.15)
G(d), d > Syl (a).
Note again that these risk measures depend explicitly on the retention d under the
stop-loss reinsurance. Note also that Propositions 2.3 and 2.4 reduce, respectively,

to Propositions 2.1 and 3.1 of Cai and Tan (2007) under the special case that I1(-)

is the expectation premium principle.

We now revisit the decomposition (2.2.1) which highlights the dilemma faced by
the insurer. Note that, roughly speaking, the premium principle I1(Xg) is expected
to be an increasing function in Xg. This implies that the smaller the risk is ceded to
a reinsurer, the less costly the reinsurance premium is. On the other hand, a small
retained risk exposure can be achieved at the expense of higher reinsurance pre-
mium. Consequently, there is a trade-off between how much risk to retain and how
much risk to cede. The problem of optimal reinsurance essentially addresses the
optimal partitions X; and Xgr. When the reinsurance treaty is confined to either
quota-share type or stop-loss type, the problem then boils down to the determi-
nation of the optimal quota-share coefficient ¢* in the former case or the optimal
retention d* in the latter case. The explicit dependence of ¢ and d (depending on
the type of reinsurance treaty) on the risk measures in Propositions 2.1-2.4 suggests
that one formulation of optimal reinsurance model is to seek optimal parameters

c¢* and d* that minimize the respective risk measure. More specifically, the optimal
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quota-share reinsurance models can be formulated as seeking the optimal quota-
share coefficients ¢* that are the solutions to the following optimization problems,
depending on the adopted risk measure:
VaR-optimization: ~ VaR,(X7,,;c") = Hfin] {VaRa(Xqu;c)}, (2.2.16)
cel0,1

CTE-optimization: CTE.(Xr,;c") = m[in} {CTEQ(XTQS;C)}. (2.2.17)
cel0,1

Analogously, under the optimal stop-loss reinsurance models, the optimal retentions
d* are the solutions to the following optimization problems:
VaR-optimization:  VaR,(Xr,;d") = drr[éin) {VaRa(XTsl; d)}, (2.2.18)
€(0,00

CTE-optimization: ~ CTE,(Xr,;d*) = dn[%]in) {CTEQ(XTsl; d)} (2.2.19)
€(0,00

We now make the following three remarks with respect to the above optimal rein-
surance models. First, the models are relatively simple and intuitively appealing.
They exploit the basic thrust of a risk management practice that the insurer is
interested in risk minimization. Under the above optimization models, the optimal
reinsurance design ensures that the risk exposure of the insurer, as measured by
its risk measure of the total cost, is optimally minimized. Second, by confining to
stop-loss reinsurance and under the additional assumption of expectation premium
principle, optimization problems (2.2.18) and (2.2.19) reduce to the optimization
reinsurance models as analyzed in Cai and Tan (2007). Third, as pointed out in
the previous section that when optimal solutions to the above reinsurance models
are nontrivial, this implies that the optimal quota-share coefficient ¢* is strictly on

the interval (0,1) and the optimal retention d* is finite and strictly greater than 0.

We conclude this section by introducing the following function ¢, and notation

Uy

1 [ 1 [
buld) = d 4 /d Sx(@)dz, e = S7Ha) + = /S Sy ().
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As we will soon discover, these two functions play critical roles in deriving the

solutions to our optimal reinsurance models. Furthermore, it is also useful to point

out the following two relations: u, = ¢, (S¥' (@) and u, = dlim G(d) provided

that limg_o II([X —d];) = 0, which are immediate consequence of their definitions.

Note that function G(d) is defined in (2.2.14).

2.3 Quota-share Reinsurance Optimization

In this section, we discuss the optimal quota-share reinsurance with respect to the

premium principles P1-P17 listed in Section 1.3.2. The key result of this section

is stated in Theorems 2.1 and 2.2 which provide the optimality of the quota-share

reinsurance under the general premium principle. The proof of the Theorem 2.1 is

collected in Section 2.6, while we omit the proof of Theorem 2.2 as it is similar to

the proof of Theorem 2.1.

Theorem 2.1 Consider the VaR-optimization (2.2.16).

(a) Assume the reinsurance premium I1(-) satisfies I1(0) = 0, and the property

(b)

of positive homogeneity, i.e., II(cX) = cIl(X) for constant ¢ > 0. Then the

optimal quota-share reinsurance is trivial, and moreover, the optimal quota-

share coefficient depends on the relative magnitude between T1(X) and Sy*(a)

as indicated below:

0, I(X) > Sy'(a),
" =< any number in [0,1], I(X) = Sx'(a),
1, I(X) < S¢'(a).

(2.3.1)

If TI(cX) is strictly convex in ¢ for 0 < ¢ < 1, then the nontrivial optimal

quota-share reinsurance ezists if and only if there exists a constant ¢* € (0,1)
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such that
I (c*X) — Sx'(a) =0, (2.3.2)

where II(-) denotes the derivative of II(cX) with respect to c. Furthermore,

c* that satisfies (2.3.2) is the optimal quota-share coefficient.

Theorem 2.2 Consider the CTE-optimization (2.2.17).

(a) Assume that the reinsurance premium I1(-) satisfies I1(0) = 0, and positive ho-
mogeneity, i.e., I1(cX) = cll(X) for constant ¢ > 0. Then the optimal quota-
share reinsurance is trivial, and moreover, the optimal quota-share coefficient

is determined depending on the quantities II(X) and u,, in the following way:

0, II(X) > uq,
¢ =4 any number in [0,1], I(X) = ug, (2.3.3)
1, II(X) < ug.

(b) If II(cX) s strictly convex in ¢ for 0 < ¢ < 1, then the optimal quota-share

reinsurance exists if and only if there exists a constant ¢* € (0,1) such that
I(*X) — u, =0, (2.34)

and in this case, c* determined by (2.3.4) is the optimal quota-share coeffi-

cient.

The above two theorems provide the optimality condition for the existence (or
non-existence) of the nontrivial optimal quota-share reinsurance under general pre-
mium principle. We now refine these results by explicitly considering the seventeen
premium principles. These results are shown the following sequences of three propo-

sitions. Proposition 2.5 states that the optimal quota-share reinsurance is trivial
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for premium principles P1-P12 while Propositions 2.6 and 2.7 study remaining pre-
mium principles for the VaR-optimization and CTE-optimization respectively. The
proof of the first proposition is trivial and it follows from part (a) of the above
two theorems (Theorems 2.1 and 2.2) and the fact that all the premium princi-
ples P1-P12 satisfy the property I1(0) = 0 and positive homogeneity. The proof of
Proposition 2.6 is relegated to Section 2.6 while we omit the proof of Proposition 2.7

as it is similar to the proof of Proposition 2.6.

Proposition 2.5 For both VaR-optimization (2.2.16) and CTE-optimization (2.2.17),
the optimal quota-share reinsurance is trivial for premium principles P1-P12, and

the optimal quota-share coefficient is determined according to (2.3.1) for VaR cri-

terion and (2.3.3) for CTE criterion.

Proposition 2.6 Consider the VaR-optimization (2.2.16).

(a) P13(variance principle): the optimal quota-share reinsurance is nontrivial if

and only if
E[X] < Sy (a) < E[X] +28D[X], (2.3.5)

in which case, the optimal quota-share coefficient is given by

. _ Sx'(a) — E[X]
¢ = 2w (2.3.6)

(b) P14 (semi-variance principle): the optimal quota-share reinsurance is non-

trivial if and only if
E[X] < S¥'(a) < E[X] + 2BEX — EX)2, (2.3.7)

in which case, the optimal quota-share coefficient is given by

o Sia) — EX]
26EX — EX]2"

(2.3.8)
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(¢) P15 (quadratic utility principle): the optimal quota-share reinsurance is non-

(d)

(¢)

trivial if and only if
(Sx' (@) — E[X])y

Syl(a) > E[X], and <1, (2.3.9)
V/ DIXI{DIX] + (S5 (a) — EIX))2)
in which case, the optimal quota-share coefficient is given by
-1 o

V/ DIXI{DIX] + (S5} (a) — EIX])?)

P16 (covariance principle): 'Y being a random wvariable, the optimal quota-

share reinsurance exists if and only if
E[X] > pCov(X,Y), (2.3.11)
and
E[X] - BCov(X,Y) < Sy'(a) < 48D[X] + E[X] — BCov(X,Y), (2.3.12)
in which case, the optimal quota-share coefficient is given by
Si'(a) — E[X] + BCov(X,Y)

¢ = 1D . (2.3.13)

P17 (exponential principle): the optimal quota-share reinsurance is nontrivial

if and only if there exists a constant ¢* € (0,1) such that
E[X exp(c*BX)] = Si'(a)Elexp(c*BX)], (2.3.14)

in which case, the optimal quota-share coefficient c¢* is determined by (2.3.14).

Proposition 2.7 Consider the CTE-optimization (2.2.17).
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(a) P13 (variance principle): the optimal quota-share reinsurance is nontrivial if

and only if
EX] < u(a) < E[X] 4+ 268D[X], (2.3.15)

in which case, the optimal quota-share coefficient is given by

u(o) — E[X]
26D[X]

- = (2.3.16)
(b) P14 (semi-variance principle): the optimal quota-share reinsurance is non-

trivial if and only if
EX] < u(e) < E[X] +2BEX — EX]?, (2.3.17)

in which case, the optimal quota-share coefficient is given by

. _ula) — EX]

¢ = SBEN EXE (2.3.18)

(c) P15 (quadratic utility principle): the optimal quota-share reinsurance is non-

trivial if and only if

w(e) > E[X], and (@) = BX])y <1, (2.3.19)

v DIX{DIX] + (u(a) — E[X])?}

in which case, the optimal quota-share coefficient is given by

o (u(a) — E[X])y ‘ (2.3.20)

v DIX{DIX] + (u(a) — E[X])*}

(d) P16 (covariance principle): Y being a random variable, the optimal quota-

share reinsurance is nontrivial if and only if
E[X] > pCov(X,Y), (2.3.21)
and
E[X] - BCov(X,Y) < u(a) < 46D[X]| + E[X] — fCov(X,Y), (2.3.22)

38



in which case, the optimal quota-share coefficient is given by
u(o) — E[X] + fCov(X,Y)
48D[X] '

*_

(2.3.23)
(e) P17 (exponential principle): the optimal quota-share reinsurance is nontrivial

if and only if there exists a constant ¢* € (0, 1) such that
E[X exp(c"fX)] = u(a) Elexp(c*8X)] (2.3.24)

in which case, the optimal quota-share coefficient c* is determined by (2.5.24).

2.4 Stop-loss Reinsurance Optimization

We now discuss the optimization problems (2.2.18) and (2.2.19) for the stop-
loss reinsurance contract. As we will see shortly, if the reinsurance is a stop-loss,
it is mathematically more challenging to analyze its optimality, particularly for
CTE-optimization with premium principles P2-P4, P10 and P16. Subsection 2.4.1
devotes to the VaR-optimization (2.2.18) while Subsection 2.4.2 focuses on the
CTE-optimization (2.2.19).

2.4.1 VaR-optimization for Stop-loss Reinsurance

We first present the following theorem, with its proof given in Section 2.6,
regarding the general reinsurance premium principle for the optimal stop-loss rein-

surance and VaR criterion.

Theorem 2.3 Consider the VaR-optimization (2.2.18). Suppose 11(-) is a pre-

mium principle such that II([X — d]4) is decreasing in d.

(a) The optimal stop-loss reinsurance is trivial if either of the following conditions

is satisfied:
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(b)

(i) d+TI([X — d]}) is an increasing function in d on [0, Sx'(a)], or
(ii) there exists a constant dy € (0,Syx () such that d + II([X — d],) is

increasing in d on [0, do] while decreasing on [do, Sx*(c)].

Moreover, in either of the above (i) and (i1), the trivial optimal retention

depends on the relative magnitude between 11(X) and Sy'(a) as indicated

below:
0, if TI(X) < S5 (a);
d"=14 0, or +oo, if II(X)=Sx"(a); (2.4.25)
+00, if TI(X) > S5 («).

If the premium principle 11(-) satisfies limg_oo II([X — d]+) = 0, and there
exists a positive constant dy such that d + II([X — d]+) is decreasing in d on
[0, do] while increasing on [dy, 00|, then the optimal stop-loss reinsurance is

nontrivial if and only if the following condition is satisfied:
Syt (@) > do + II([X — do)4). (2.4.26)

Moreover, when the optimal stop-loss reinsurance is nontrivial, do is the op-

timal retention with the corresponding minimum value of VaR.(Xr,;d)

min VaRa(Xr,; d) = do + TI([X — do)s). (2.4.27)

d>0

Remark 2.1 If the premium I1(-) satisfies the conditions stated in (b) of Theo-
rem 2.8 and dy is the unique constant on interval [0, Sy ()] such that d +TI([X —

d)y) is decreasing in d on [0,doy] while increasing on [dy, Sy'(a)], then dy is the

unique solution to VaR-optimization (2.2.18)

Relying on Theorem 2.3, we now demonstrate that optimal retention is trivial

for some of the premium principles, as shown in the following proposition:
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Proposition 2.8 Consider the VaR-optimization (2.2.18). The optimal stop-loss
reinsurance is trivial and the trivial optimal retention d* is determined as in (2.4.25)

for the following premium principles:

(a) P5 (mean value principle) I1(X) = \/E[X?] = /E?[X [(X];
(b) P6 (p-mean value principle) T1(X) = (E[XP))'/?, where p > 1;

(c) P7 (semi-deviation principle) I1(X) = E[X]| + 8 [E[X — EX]*] 1/2, where 0 <
<1

(d) P9 (Wang’s principle) TI(X) = [ [Pr(X > t)]Pdt, where 0 < p < 1;

(e) P11 (generalized percentile principle) II(X) = E[X] + B(F'(1 — p) — E[X]),
where 0 < 6 < 1;

(f) P12 (CTE principle) II(X) = (1/p) fl _, F'x (x)dz, where 0 <p < 1;
(9) P17 (exponential principle) II(X) = %log E(BX) with 8 > 0.

See Section 2.6 for the proof of the above proposition. While the above propo-
sition demonstrates the premium principles for which the optimal stop-loss rein-
surance is trivial, the following proposition indicates that for some other premium
principles, the VaR-based optimal stop-loss reinsurance is nontrivial under some

mild conditions. We again relegate its proof to Section 2.6.
Proposition 2.9 Consider the VaR-optimization (2.2.18).

(a) P1 (expectation premium principle): the optimal stop-loss reinsurance is non-

trivial if and only if

Syl() >do+ (1+60) [ Sx(x)dz, (2.4.28)
do
1 1 . . . : :
where dy = Sy 70 ; moreover, in this case dy is the unique optimal

retention.
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(b) P8 (Dutch principle): if there exists a positive constant dy satisfying the equa-
tion BSx(dy + E[X — do]y+) = 1, then the optimal stop-loss reinsurance is

nontrivial if and only if
Sx'(a) > do + E[X — doly + BE[[X — do]y — E[X —doly],, (2:4.29)
where moreover dy is the unique optimal retention.

(c) P13 (variance principle): if there exists a positive constant dy satisfying the
equation 26E[X —dy|, = 1, then the optimal stop-loss reinsurance is nontrivial

if and only if
St () > dy + E[X — do)y + BD[X — doly, (2.4.30)
where moreover dy is the unique optimal retention.

(d) P14 (semi-variance principle): if there exists a positive constant dy satisfying
the equation 26E[X —dy — E[X — d0]+]+ = 1, then the optimal stop-loss

reinsurance is nontrivial if and only if
Sx'(a) > do + E[X — do)4 + BE[[X — doly — E[X — doJ+] ., (2.4.31)
where moreover dy is the unique optimal retention.
(e) P15 (quadratic utility principle): if there exists a positive constant dy satisfy-

E[X — do|+

\/72 — DIX — do+
ance is nontriwvial if and only if

ing the equation =1, then the optimal stop-loss reinsur-

Sy' (@) = do + E[X = doly + 7 — /7? — DX —dyl, (2.4.32)

where moreover dy is the unique optimal retention.

Remark 2.2 (i) Part (a) of the above proposition is equivalent to Theorem 2.1 of
Cai and Tan (2007).
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(ii) For these principles P2-P4, P10 and P16, other than those discussed in
Propositions 2.8 and 2.9, the goal function in the optimization problem (2.2.19) is
so complicated that general result about the optimality of the stop-loss reinsurance

have not been derived. For these, a numerical approach might have to be employed.

2.4.2 CTE-optimization for Stop-loss Reinsurance

Unlike the optimal stop-loss reinsurance under the VaR criterion, the analysis for
the corresponding CTE optimality is complicated by the fact that the optimal
retention can occur for d € (S)_(l (), oo). For further discussion, we first present

the following theorem. See Section 2.6 for its proof.

Theorem 2.4 Consider the CTE-optimization (2.2.19).

(a) If d+T1([X —d],) is increasing in d on [0, Sx' ()] and either of the following
conditions holds, then the optimal stop-loss reinsurance s trivial.
(i) G(d) is concave for d > Sy'(a), or
(ii) there exists a constant dy > Sy'(a) such that G(d) is increasing for

d € [Sx' (), do) while decreasing for d > dy.

Moreover, in either of the above (i) and (ii), the trivial optimal retention

depends on the relative magnitude between 11(X) and u, as indicated below:

0, if THX) < a;
d"=14¢ 0, or oo, if II(X) = ugy; (2.4.33)
+o00, if TI(X) > ug.

(b) If both of the following conditions hold, then the optimal stop-loss reinsurance

18 nontrivial.
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(i) there exists a constant dy € (0,Sx' () such that d + I([X — d],) is

decreasing in d on [0, do] while increasing in d on [dy, Sx' ()], and

(ii) Sx'(a) > do+TI([X — do]4).
Furthermore, when (i) and (ii) hold the optimal retention d* = dy with the
corresponding minimum value of CTEr,(d, o)

min CTEy(Xz,;d) = do + TI([X — dol.). (2.4.34)

d>0

Based on Theorem 2.4, we now demonstrate that the optimal stop-loss reinsur-
ance is trivial under some premium principles as shown in the following proposition

with its proof collected in Section 2.6.

Proposition 2.10 Consider the CTE-optimization (2.2.19). The optimal stop-loss
reinsurance is trivial and the trivial optimal retention is determined as in (2.4.33)

for the following premium principles:

(a) P9 (Wang’s principle) II(X) = [ [Pr(X > t)]Pdt, where 0 <p < 1;

(b) P11 (Generalized percentile principle) II(X) = E[X] + B(Fx'(1 — p) — E[X]),
where 0 < B,p < 1.

(c¢) P12 (CTE principle) 11(X) = (1/p) fl _, F'x (z)dz, where 0 <p < 1;

Based on (b) of Theorem 2.4, we find that the optimal contract with respect
to CTE-optimization (2.2.19) does exist for some premium principles under certain
conditions. The following Proposition 2.11 presents these principles along with
the corresponding sufficient conditions. Actually, we can find that the sufficient
conditions and the optimal retention for each principle with the CTE criterion are
the same as that with VaR criterion. Nevertheless, the corresponding conditions

are not only sufficient but also necessary for VaR criterion while just sufficient for
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the CTE criterion. Among these principles, however, the P1 (expectation principle)

is an exception, the conditions given out in Proposition 2.11 for the existence of

optimal stop-loss reinsurance is also necessary; see Cai and Tan (2007) for detail

interpretation. We omit the proof of the following Proposition 2.11, since it is

trivial by combining (b) of Theorem 2.4 and the proof of Proposition 2.9.

Proposition 2.11 Consider the CTE-optimization (2.2.19).

(a)

(b)

(c)

Under P1 (expectation premium principle) I(x) = (1 + 0)E[X]| with 6 > 0, if
both

do == S%' <1—i9) € (0, Sx' () (2.4.35)
and
Sit(a) >do+ (1+6) /00 Sx (z)dx (2.4.36)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d* = d.

Under P8 (Dutch principle) I1(X) = E[X |+ BE[X — EX] with § > 0, if there
exists a constant dy satisfying the equation BSx(dy + E[X — do)+) = 1 such
that both dy € (0, Sx'()) and

Sx'(a) > do + E[X — do]y) + BE{[X — do] — E[(X —do)1]}, (2:4.37)

+

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d* = dy

Under P13 (variance principle) II(X) = E[X]| + BD[X] with 8 > 0, if there
exists a constant dy satisfying the equation 2BE[X — do|; = 1 such that both
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do € (0,85 () and
Sx'(a) > dy + E[X — do)s + BD[X — do+ (2.4.38)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d* = dy.

(d) Under P1j (semi-variance principle) II(X) = E[X] + BE[X — EX]% with
B > 0, if there exists a constant dy satisfying the equation 25E{X —dy —
E(X —do)4]}, =1 such that both dy € (0, Sx'()) and

Syt (a) > do + E[X — do]s + BEX — do]*. (2.4.39)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d* = d.

(e) Under P15 (quadratic utility principle) II(X) = E[X]+ v — /72 — D[X] with
v > 0, if there exists a constant dy satisfying the equation
BX —d)e
V72— DIX —dol,
such that both dy € (0, Sx'(a)) and

Sxt(@) > do + E[X —do]y +7 — /72 — DIX — dol (2.4.40)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal

retention d* = d,.

2.5 Examples

In this section, we assume that the loss random variable X has a distribu-

tion similar to exponential one with a jump at 0 and then discuss the specific
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conditions for the existence of optimal contract for both VaR-optimization and
CTE-optimization. Specifically, we suppose that the loss random variable X is

distributed with survival function
Sx(z) =6e™, x>0. (2.5.1)

Hence, Sy'(y) = —iln (%) ,y €10,1], and Pr{X =0} =1 - Sx(0) =1—94.

Below we present three numerical examples based on the distributions specified
above corresponding to Propositions 2.6, 2.7, 2.9 and 2.11. Specifically, Example
2.1 corresponds to Proposition 2.6 for VaR-optimization (2.2.16), Example 2.2 ex-
ploits Proposition 2.7 for CTE-optimization (2.2.17), while Example 2.3 relates to
Proposition 2.9 and Proposition 2.11, respectively, for VaR-optimization (2.2.18)
and CTE-optimization (2.2.19).

Example 2.1 Consider VaR-optimization (2.2.16). The following conditions are
sufficient and necessary for the existence of the nontrivial optimal quota-share rein-
surance for each reinsurance premium principle. The optimal quota-share coefficient

c* s also given for each case below.
(1) P13 (variance principle) II(X) = E[X]| 4+ GD[X] with 5 > 0.

(a) Conditions: 5 0"2PC=/X < o < §e.
[In (%) +6] A
266(2 —9)
(b) By setting A\ = 0.001, § = 3/4 and B = 0.1, then the conditions for the

existence of the nontrivial optimal insurance is 1.3156 x 10752 < o <

Optimal quota-share coefficient: ¢ = —

0.3543. Furthermore, o = 0.05 implies optimal quota-share coefficient

¢ = — [In(3%) +0.75] /187.5 = 0.0104.

0.75

(2) P14 (semi-variance principle) II(X) = E[X] + BE(X — E[X])% with 5 > 0.
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(a) Conditions: § exp{—39 — 4—656_6} <o < dexp{—d}.

A
[In (%) +6] A
4350
(b) By setting A = 0.001, § = 3/4 and B = 0.1, then the conditions for the

ezistence of the montrivial optimal insurance is 1.0127 x 107 < a <

Optimal quota-share coefficient: ¢ = —

0.3543. Furthermore, a = 0.05 implies optimal quota-share coefficient
— (In42 +0.75) €™ /300 = 0.0138.

(3) P15 (quadratic utility principle ) II(X) = E[X |4+~ —+/7% — D|X] with v > 0.

a < ded

(a) Conditions:
Ny?2—45(2-6) <0,

or
Fexp{—0 — 6(2 — §)\292 — 8(2 — 6)] 72} < a < G
ANy2 —5(2—6) >0,
Optimal quota-share coefficient:
(In§ + ) Ay
32— 6){8(2 - 8) + [In(a/s) + 82}

y setting A = 0.001, 0 = and v = , then A=y — —0) =
b) B mg A\ = 0.001, § = 3/4 and 1000, then A24% —6(2 — 8
% > 0. This implies that the second set of conditions applies so that the

¢t =-

conditions for the existence of the nontrivial optimal insurance reduces
to 0.0083 < o < 0.3543. Furthermore, o = 0.05 implies optimal quota-
share coefficient
2 41n(4
A n(da/3) +3 = 0.9258.
V30 21 (da/3) + 3In(4a/3) + 3

(4) P17 (exponential principle) I1(X) = %log Elexp{8X}| with 8 > 0.
(a) Conditions: o < 4.
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AN 20
Optimal quota-share coefficient: ¢* = — — — - —, with

3 B M

M = —§In(a/s) + /02 In(a/8) — 45(1 - §) In(a/9).

(b) By setting A = 0.001, § = 3/4 and = 0.001, then the conditions for the
existence of the nontrivial optimal insurance is o < 0.75. Furthermore,

a = 0.05 implies optimal quota-share coefficient

cf=1- 0 = 0.6676.

~3In(4a/3) + 1/91n*(4a/3) — 12In(4a/3)

Example 2.2 Consider CTE-optimization (2.2.17). The following conditions are
sufficient and necessary for the existence of the nontrivial optimal quota-share rein-
surance for each reinsurance premium principle. The optimal quota-share coefficient

c* is also given for each case below.

(1) P13 (variance principle) II(X) = E[X]| 4+ BD[X] with 5 > 0.

(a) Conditions: §e'=07200C=0/A < o < §el =,
(%) +6—1] A
266(2—9)
(b) By setting A\ = 0.001, § = 3/4 and 8 = 0.1, then the conditions for the

Optimal quota-share coefficient: ¢ = —

existence of the nontrivial optimal insurance is 3.5762 x 1072 < a <

0.9630. Furthermore, o = 0.05 implies quota-share coefficient

4o

“ = 91
c (n3

0.25)/375 = 0.0158.

(2) P14 (semi-variance principle) II(X) = E[X] + SE[X — E[X]]2 with 3 > 0.

(a) Conditions: 6 exp {1 —— 4—?\56_5} <a < dexp{l —d}.

In(2)+5—1]A
435e—0

Optimal quota-share coefficient: ¢ = —

49



(b) By setting A = 0.001, 6 = 3/4 and § = 0.1, then the conditions for
the ezistence of the montrivial optimal insurance is 2.7528 x 10762 <
a < 0.9630. Furthermore, a = 0.05 implies the optimal quota-share

coefficient

4
¢ = —(In FO‘ —0.25)¢"7 /300 = 0.0200.

(3) P15 (quadratic utility principle ) II(X) = E[X]+~—+/7? — D[X] with v > 0.

a < et

(a) Conditions:
Ny2 —5(2—6) <0,

or

Sexp{l — 6 — 8(2 — §)[\242 — 8(2— 672} < a < 60
A2 = §(2—6) > 0,

Optimal quota-share coefficient:

. I (2) +6—1] Ay |
V02— 0){6(2 = 6) + [n(a/d) + 0 — 112}

(b) By setting A\ = 0.001, 6 = 3/4 and v = 1000, then \*4* — §(2 — §) =
16 > 0. This implies that the second set of conditions applies so that the
conditions for the existence of the nontrivial optimal insurance reduces
to 0.0226 < a < 0.9630. Furthermore, o = 0.05 implies the optimal

quota-share reinsurance coefficient

2 Aln(4a/3) — 1
o = n(4a/3) — 0.9816.

VB V21 (40/3) — In(da/3) + 2

(4) P17 (exponential principle) I1(X) = %log Elexp{5X}| with 5 > 0.

(a) Conditions: o < 0.
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(b)

20

| >
@ >

Optimal quota-share coefficient: ¢* =

M = —§[In(a/8) — 1] + /62[In(ar/8) — 1]2 — 46(1 — &) [In(ar/8) — 1].

By setting A = 0.001, 06 = 3/4, § = 0.2, then the conditions for the

existence of the nontrivial optimal insurance is a < 0.75. Furthermore,

a = 0.05 implies the optimal quota-share coefficient

6

c=1- = 0.7510.

~3[In(%) — 1] +1/9[In(%2) - 1) — 12[In(%) 1]

Example 2.3 Consider VaR-optimization (2.2.18) and CTE-optimization (2.2.19).

The following conditions are sufficient and necessary for VaR-optimization (2.2.18),

while they are only sufficient for CTE-optimization (2.2.19). The optimal stop-loss

retention d* is also given for each reinsurance premium principle.

(1) P1 (expectation principle) I1(X) = (1 + 0)E[X] with 6 > 0.

(a)

(b)

Conditions: o <

1
(1+0)e’
Optimal retention: d* L 1 L

imal retention: d* = ——In ———.

b X3+ B)

Note that if the probability that the loss random wvariable X takes the
value of 0 is large, the loading safety v must be large enough to ensure
the existence of the nontrivial optimal stop-loss reinsurance. For example
if Pr{X =0} =1 -9 = 0.2, then the loading safety 5 must be larger

than 1.25.

By setting A\ = 0.001, § = 4/5 and f = 0.3, then the condition for
the existence of the nontrivial optimal insurance is o < 0.2830 with the

optimal retention d* = 39.2207.

(2) P13 (variance principle) II(X) = E[X]| 4+ BD[X] with 5 > 0.
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(a) Conditions: a < % exp{—(1+\/40)}

1 A
Optimal retention: d* = ——In ——.

A 2060
(b) By setting A = [ = 0.001 and § = 3/4, then the condition for the
existence of the nmontrivial optimal insurance is o < 0.1839 with the

optimal retention d* = 405.4651.

Remark 2.3 As shown in the above three examples, for some premium principles,
only when the tolerance probability is large enough can the existence of nontrivial

optimal reinsurance be guaranteed.

2.6 Appendix: Proofs
Proof of Theorem 2.1:

(a) If II(cX) = clI(X) for ¢ > 0, it follows from Propositions 2.1 that

VaR,(X7,,;¢) = (1—0¢)Sy' (@) + cII(X)
Sy (@) + ¢ [II(X) — S¥'(a)] (2.6.2)

which is linear in c. Therefore, if II(X) < S¢'(a), VaRa(Xr,,;c) attains
its minimum value at ¢ = 1. If II(X) > Sy'(a), with ¢ going down to
0, VaR,(Xr,,; ¢) keeps decreasing to Sy'(a), which is exactly VaR,(Xr,,;c)
evaluated at ¢ = 0; thus the optimal quota-share coefficient ¢* = 0 in this
case. When II(X) = Sy'(a), VaR4(X7,,; c) remains constant at Sy'(a) for
all ¢ € [0,1]. Combining the above, we can then conclude that the optimal
quota-share reinsurance is trivial and the optimal quota-share coefficient ¢*

is determined as in (2.3.1).
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(b)

If II(cX) is strictly convex in ¢, it follows from Proposition 2.1 that VaR,(X7,,; c)
is also strictly convex in c¢. Hence VaR, (X7, ;c) attains its global minimum
value at ¢* that is the solution to

0
8—VaRa(Xqu; c) =/ (c*X) — Sy (a) =0,

¢ c=c*

which yields (2.3.2). O

Proof of Proposition 2.6:

(a)

Observe that under variance premium principle, the reinsurance premium
I(cX) = cE[X] + ¢*8D[X] is strictly convex in ¢. Hence it follows from
Theorem 2.1(b) that the optimal quota-share reinsurance is nontrivial if and

only if there exists a constant ¢* € (0, 1) such that
I (c*X) — Si'(a) = E[X] + 2¢*BD[X] — Si'(a) = 0. (2.6.3)

Consequently, the nontriviality of the optimal quota-share reinsurance is equiv-

alent to

Sx'(a) — E[X]
24D[X]

which implies (2.3.5). Thus the proof follows.

*

O0<c =

<1, (2.6.4)

We omit the proofs of (b)-(d) for premium principles P14-P16 since they are

similar to (a).

Under the exponential principle P17, we have I1(cX) = %log Elexp(c6X)]. It
is easy to verify that
, _ E[X exp(c8X)]
M) = Efep(ean)]
and
) B{ELX2 exp(caX)|Elexp(¢4X)] — [E[X exp(csX)]]* |
I (eX) = .

{Elexp(cf X))}
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Let
1) = {E[X? exp(cX) Elexp(c8X)] — [E[X exp(e5X)]]*},

then f(0) = Var[X] > 0, and
fi(e) = BELX? exp(cX) Elexp(cBX)] — BELX? exp(cfX)|ELX exp(cfX)].
Moreover, it follows from the Holder’s inequality that

E[X exp(efX)] < {E[X? exp(eX)]}/*{Elexp(cf X))}/

E[X exp(cfX)] < {E[X® exp(cAX)]}/*{E[exp(cfX)]}*/°

Hence, f/(c) is nondecreasing in ¢, and therefore f(c) > 0, IL (¢X) > 0,
for ¢ € [0,1]. This implies that II(cX) is strictly convex in ¢ and using
Theorem 2.1(b), we conclude the proof. O

Proof of Theorem 2.3: The proof of the theorem is trivial by first recognizing
that from Proposition 2.3, VaR, (Xr,,; d) is decreasing in d for d € (Sy'(a), o0) and
it tends to the limiting minimum Sy3'(a) as d — oo if limy_. II([X — d],) = 0.
This implies that to show the nontriviality (or the triviality) of the optimal stop-
loss reinsurance, we only need to focus on interval 0 < d < Sy'(a) for which
VaR,(Xr,;d) = d+1I([X — d];). Hence if either condition (i) or (ii) of Part (a) is
satisfied, then VaR,(X7,;d) attains its minimum value at either d = 0 or d = oo,
which implies that the optimal stop-loss reinsurance is trivial. Indeed, (2.4.25)
follows immediately by comparing the values of VaR,(Xr,; d) corresponding to d =
0 and d = co. Moreover, (2.4.26) implies that dy € (0, Sx' () since II([X —dg]4) >
0. Hence, if d+II([X —d];) is decreasing for d € [0, dy] while increasing on [dy, 0o,
(2.4.26) ensures that VaR,(Xr,;d) attains its global minimum at d = dy, which
means the optimal stop-loss reinsurance is nontrivial; conversely, if optimal stop-

loss reinsurance is nontrivial, dy must be the global minimizer for VaR,(Xr,;d),
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and hence (2.4.26) and (2.4.27) hold. O

Before proving Proposition 2.8, let us first state the following relations which

will be used extensively in the proof:

B o [
Dex—d.= 2 /d Sx(@)dz = —Sx(d), (2.6.5)
form>1
0 m 0 > m_1
gatl X — A = %{m/d (2 = d)" " Sx(a)i
~ m(m—1) /d (z — d)™ 28 (x)dx
— —mE[X —d]", (2.6.6)
and
8 a 2 2
SVarlX —d, %{E[X — 2 — (E[X — d]s) }
— 91 — Sx(d)E[X — d].. (2.6.7)

Proof of Proposition 2.8: Note that II([X — d],) is decreasing in d for all the
premium principles in the proposition. Hence it follows from Theorem 2.3(a) that
we only need to verify if d+1I1;([X —d]) is either increasing or first increasing than
decreasing for d € [0, Sy'(a)]. For the premium principles listed in the proposition,
d+114([X —d]4) is actually an increasing function in d (or equivalently 1+II/,([X —
d]+) > 0) as demonstrated below:

(a) This is a special case of (b) with p = 2.
(b) For p>1and d > 0,

LRIGX —d)) = 14 S {EX -y

_ 1 p\ 7 9 P
- 1+];{E[X—d]+} —EX —d}

1-p

- 1—{E[X—d]{;} PEX —dp!

> 0,
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where the inequality follows from the Holder’s inequality:.

(c) First note that E[[X — d], — E[X — d];]] = E[X —d — E[X —d],]}. Then

under the semi-deviation premium principle, we have

1+ I0(X —d)y) = ng{ax-ﬂ++ﬁ¢qX-d-aX—ﬂgi}

ad
2[1 — Sx(d)] fd?E[X—d}Jr Sx(l')dl'
2\/E[X —d—E[X —d,]’

= 1-Sx(d)—-p

— (1 Sx(d) {1—5 ELX —d ZEX —dl)s ]

VE[X —d—E[X —a),]}
> 1= Sx(d)](1-8) >0,

where the first inequality follows from the simple relation that E[Y?] > (E[Y])?

and the second inequality is due to the constraint 0 < g < 1.

(d) For the Wang’s premium princple with 0 < p < 1 and d > 0,

VX - d) = 1 [T - dz oper

:]ﬁ7%{AmEdX2ﬂPﬁ}
= 1-[Pr(X >d)f >0.

(e) Let us first note that

ﬂfﬂglz»{o’ P> x o6

Fi'(1—p) —d, otherwise.
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Then for 0 < B,p < 1 and d > 0, we have

1+ G ([X = d]y)

— 1+ %{E[X —d)y + B[FRL, (1 - p) — EX - d.]}
(14 2{0 - gEX - d,}, p> Sx(d),

|1+ %{(1 — BEIX —d], + B[F5'(1 —p) — d } otherwise.

(1= (1=3)Sx(d), p> Sx(d),

\ (1 —-05)(1—Sx(d)), otherwise.
Both the above expressions are positive and this concludes the proof.

(f) For 0 <p < 1andd >0, we have

o (1 4
L+ (X —dy) = 1+%{Z—9/1_pF[Xl_d]+(:c)d:c}.

It follows from (2.6.8) that the above expression is positive and hence con-

cludes the proof.

(g) First note that
E[exp (B[X —d]})] = /Ooo Sl 4Py ()
B /Od dF (@) + /doo P@=D gy ()
= /d N e’ =Ny (x) + Fy(d),
and

%E[exp(g[x_d]+)] = —ﬂ/dooeﬁ(m—d)dFX(x)
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Then for the exponential premium principle with 0 < 8 < 1 and d > 0, we

have

L IT(X — d].)
v (o -]} el - 0.

od
[ e dFy (v)

- 1- _
Fy(d) + [° PaddFy(x)

Proof of Proposition 2.9: The results in the proposition can easily be verified
by resorting to Theorem 2.3(b) and also noticing that II([X — d].) is decreasing in
d along with limg_, II([X — d];) = 0 for the considered premium principles. Let
us illustrate by just considering the proof to (c) for the variance premium principle.
From Theorem 2.3, it suffices to verify dj that solves 26E[X —d,], = 1 is the unique
solution such that d + II([X — d]) is decreasing for d € [0, dp] while increasing for

d € [dy, o0]. For this purpose, we investigate its derivative first:

L+ I([X —d)y = 1+ %{E[X —d]+ + DX — d]+}

= Fx(d)(1— 206X — d],),
which is positive if E[X —d]; < % while negative if E[X —d], > % Now that X is
assumed to have a continuous one-to-one distribution function on [0, c0), E[X —d];

is strictly decreasing in d and the equation E[X — d], = % has a unique solution

dy > 0. Hence, the proof is complete. O

Proof of Theorem 2.4:

(a) When (i) or (ii) holds, it follows from Proposition 2.4 that CTE,(Xr,;d) at-
tains its minimum either at d = Sx'(a) or as d — oo on interval [Sy'(a), 00].

Therefore, when d+I1([X —d], ) is increasing for d € [0, Sx' ()], CTE, (X7, ; d)
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attains its global minimum either at d = 0 or as d — oo, which means the opti-
mal stop-loss reinsurance is trivial. In this case, (2.4.33) follows immediately
only by noticing that CTE,(Xr,;0) = II(X) and limg_,o CTEL(X7,;d) =
limg o G(d) = ug.

With condition (i), we can conclude that dy is the minimizer of CTE,(Xr,; d)
for d on [0, Sy*(a)] and the corresponding minimum of CTE, (X7, ;d) is dy +
II([X —dp]+). Moreover, it follows from Proposition 2.4 that CTE, (Xr,,;d) >
Si!(a) for d > Sy (). Therefore, when (ii) holds, dy is the global minimizer
of CTE,(Xr,;d), and hence we conclude the proof. O

Proof of Proposition 2.10: Since Proposition 2.8 has already established the

increasing property of d + II([X — d];) for d on interval [0, Sy'(a)], it suffices to

verify either (i) or (ii) of (a) in Theorem 2.4 for all of these premium principles.

Now we turn to verify one principle by another.

(a)

ForO<p<1landd>D0,

) = 2D yx - ay)
- SXad) + { /OOO[Pr((X —d)y > t)]pdt};
= HD (x> ay
_ chfd) {1 _ a[sx(d)]p—l} (2.6.9)

Noticing that 1 — a[Sx(d)P~! is continuous and decreasing in d and that
1 — a[Sx(d)]P"* > 0 when d = Sy'(a), there must exist a constant dy >
Si' () such that (ii) of (a) in Theorem 2.4 holds.
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(b) For 0 < 8,p<1andd >0,

G//(d)
= D
2
— _fXTM)Jr%{E[X d]++6( g, (L=D)— E[X—d]+>}
@ o o {EIX — d)y — BELX - d]4 |, p> Sx(d)

_onEd) + %{E[X —d; —|—ﬁ<F§1(1 —p)—d—E[X - d]+>}, otherwise

o o fa-psc@},  p>Sx(d)

_ix(@) _ %{(1 — 8)Sx(d) +ﬁ} otherwise

which means (i) of (a) in Theorem 2.4 holds.

(¢c) ForO<p<1landd?>D0,

d
gy = D —ay
_Jx(d) [ A
= 1 8d2{ . F(X_d)+(x)dx}
_fXTw)> D> SX(d)
f ) 4+ 8d2{ f o p d]dx}, otherwise
+(d
__Jal ) <0,
a
which means (i) of (a) in Theorem 2.4 holds. O
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Chapter 3

VaR Minimization Model:
Increasing Convex Reinsurance

Treaties

3.1 Introduction and Reinsurance Model

The previous chapter analyzed two specific types of reinsurance: the quota-share
and the stop-loss. This chapter generalizes to analyze the optimal reinsurance
among all the increasing convex treaties. In doing so, we adopt the VaR mini-
mization model and consider a constrained reinsurance model with a reinsurance
premium budget constraint. We assume the expectation reinsurance premium prin-
ciple and in this case the reinsurance premium principle constraint can also be
interpreted as an expected profit guarantee for the insurer. By equivalently refor-
mulating the model into an optimization problem over a space of o-finite positive

measures on certain measurable space, we derive the explicit optimal solutions.

To specify our model, let X denote the nonnegative random variable which
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represents the (aggregate) loss initially assumed by an insurer. To simplify our
discussions, we assume that X has finite mean and that X has a continuous strictly
increasing distribution function on (0, c0) with a possible jump at 0. Suppose now
the insurer were to manage its risk exposure via a reinsurance treaty. Under this
arrangement, the insurer cedes part of its loss, say f(X) satisfying 0 < f(X) < X,
to a reinsurer. The insurer thus retains loss I;(X) = X — f(X), where the function
f(x) is known as the ceded loss function and If(x) = x — f(z) is referred as
the retained loss function. By transferring part of its losses to a reinsurer, the
insurer incurs a cost in the form of reinsurance premium, denoted by II(f(X)),
that is payable to a reinsurer. This implies that the sum I;(X) + II(f(X)) can
be interpreted as the total risk (or the total cost) of the insurer in the presence of

reinsurance. Using T¢(X) to denote the total cost, we have

Tr(X) = Ip(X) + II(f(X)). (3.1.1)

Therefore, if we exploit VaR as the risk measure, the optimal reinsurance model
can be formulated based on the insurer’s total cost T as follows.

min  VaRa(Ty(X)) (3.1.2)

st I[f] <,
where ZC denotes the class of all the increasing convex functions on [0,00) such
that 0 < f(z) < x for all z > 0. Also note that 7 in the above model is a preset
positive constant standing for the reinsurance premium budget so that II[f] < 7
implies the assumption that the insurer is willing to pay the reinsurance premium

no more than .

Under the additional assumption that the reinsurance premium II(f(X)) is

determined by the expectation premium principle; i.e.,
I(f(X)) = (1 + O)E[f(X)], (3.1.3)
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where 6 > 0 is the safety loading factor, the reinsurance premium budget constraint
is equivalent to E[f] < E[X]/(1 + #) and thus we end up with a reinsurance model
in a more explicit form as follows.

min VaR,(T¢(X))

st. E[f(X) <B (3.1.4)

0< f(z) <z forall x>0,

where B denotes the constant 7/(1 + 6).

The constraint E[f] < B can also be interpreted as an expected profit guarantee
for the insurer. This can be argued by taking into account the insurance premium
collected by the insurer from the policyholders and explained as follows. Let pg
denote the aggregate insurance premium charged. Reducing the total risk exposure
by the amount of the insurance premium received, we obtain the net cost or the

net risk of insuring risk X which will be denoted by NC¢(X); i.e.
NCH(X) = Ty(X) — po = I;(X) + TI(£(X)) — po. (3.1.5)

Then, the quantity E[-NC(X)] can be interpreted as the insurer’s expected profit
and the constraint condition E[-NC(X)] > P ensures that the expected profit of
the insurer under the ceded loss function f is at least P. Clearly, E[-NC{(X)| > P
is equivalent to the condition E[f] < B with B = (py — P — E[X])/#.

3.2 Model Reformulation

As pointed out in Gaivoronski and Pflug (Winter 2004-005), the optimization
problem associated with VaR, in general, is a non-trivial exercise even in the fi-
nite dimension case. To derive the solutions, we reformulate (3.1.4) as a linear

programming with respect to o-finite positive measures on the Borel measurable
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space ([0, 00), B), where B := B([0,00)) denotes the Borel sigma over the positive
half real line [0, 00). Then we obtain the solutions by an approximating procedure
which is a commonly-used technique for solving a linear programming regarding
positive measures on certain measurable space, and the critical point is to establish
a sequence of programming which are solvable and with solutions converging to the

original linear programming.

Before the reformulation, we need the following two lemmas; see Cardin and

Pacelli (2007) for the proof of Lemma 3.1, and Section 3.5 for proof of Lemma 3.2.

Lemma 3.1 An increasing convex function f defined on [0,00) can be represented

as the following form:

f(z) = f(0) + /[SL’ — t]du, for any fivzed x > 0, (3.2.6)

for some positive o-additive measure i on B.

Lemma 3.2 For any f(x) € IC, If(x) = x— f(x) is increasing and concave in x.
Now we have the following important facts:

(i) Note that for any ceded loss function f € ZC, f(0) = 0 and hence by Lemma

3.1 the ceded loss function f has the following representation:
flz) = /(m —t)4du, for any fixed x > 0. (3.2.7)
with a positive o-finite measure p on B. Furthermore, by Fubini theory,

E[/(X)] = / E[(X — ), ]d. (3.2.8)

(i) By Lemma 3.2, for any f € ZC, the function [;(z) = x — f(x) is increasing
and concave, and hence also continuous. Consequently, it follows from (i) of

Lemma 1.1 in Chapter 1 that
VaRa(Ty(X)) = VaRa(X = f(X) + (1 +0E[/(X)])
E

= VaRo(X) — f(VaRa (X)) + (1 + 0)E[f(X)]. (3.2.9)
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Note that when a > Sx(0), then VaR,(X) = 0, the goal function VaR, (7+(X))
in model (3.1.4) only depends on the value of E[f(X)], and hence it will be optimal
for the insurer not to cede any risk. To avoid this trivial case, we assume 0 < a <

Sx(0) hereafter.
Together with (3.2.7), (3.2.8) and setting ¢(t) = (VaRa(X) — t) and ¥ (t) =

+
E[(X —t)4] for ¢t > 0, (3.2.9) can be rewritten as

VaR,(17(X)) = VaRa () = [ [o(0) = (14 8)u(0)]
Consequently, our proposed optimal reinsurance model (3.1.4) is equivalent to the
following linear programming with respect to the positive measure p:

min  VaR(X) — / [6(t) — (14 0)v(t)]du

HEMT

st.  [9Y(t)dp < B,

(3.2.10)

where M™ denotes the set of all o-finite positive measure on the measurable space

([0, 00), B) such that 0 < /(93 —t)pdp < x for all z > 0.

3.3 Optimal Solutions

Since models (3.1.4) and (3.2.10) are equivalent regarding their solutions, it suf-
fices for us to focus on model (3.2.10) for deriving the optimal ceded loss functions.
To identify the solutions to (3.2.10) is the objective of the present section. We
shall use the approximating approach, which is a routine approach regarding the
optimization over a measure space. To proceed, let us first introduce some notation
and define some functions as follows first:

1

= ——
1+6°

So- = S (0%), 00 = Sx'(a). (3.3.11)
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B

Bld) = T~ Sy (@)ds’ (3.3.12)
d x\r)axr

k(d) = d+(1+86) /OO Sx(z)dr — b4, (3.3.13)

Ad) = /OO Sx(x)dx 4+ Sx(d)[d — da). (3.3.14)
d

The following Lemma 3.3 collects some properties of functions (-) and A(-) defined
above. These properties will be used frequently in the subsequent discussion; see

Section 3.5 for the its proof.

Lemma 3.3 (a) The continuous function k(d) defined in (3.3.13) is convex for
d > 0. Moreover, if 0* < Sx(0), then k(d) is decreasing on [0, dg+] while

increasing on [0g«, 00) and satisfies

0r<ndi£1 {k(d)} = k(a) for 0<a <y, (3.3.15)
OI;ndiil (k(d)} = w(Sp) for 8o < a: (3.3.16)

if 0* > Sx(0), then k(d) is increasing on [0,00) and satisfies

min {k(d)} = k(0) for a>0. (3.3.17)

0<d<a

(b) The continuous function A(d) defined in (3.3.14) is strictly increasing on
[0,64]. Moreover, when a < 0*, and \(dp«) < 0, there exists a unique root

d =d, to the equation A(d) =0 on (dp+,04).

The outline of our procedure for solving (3.2.10) is as follows. First of all, in
Subsection 3.3.1 we construct a series of linear programming (3.3.19) which are op-
timization problems over a set of discrete measures with a particular structure, and
then reformulate these programming into some equivalent models (3.3.23) which are
optimization problems over FEuclidean space. In Subsection 3.3.2, we solve models
(3.3.23) with explicit solutions identified. The results show that the identified solu-

tions are common for all of these models (3.3.23). The solutions of (3.3.19) are then
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Conditions | p* f(x) VaR;,

(67

a < 0%, c* X (g~ ,-) where c*(x — dg+) 4, for Oa
K(0p+) =0 | 0<c* <min{B(dp),1} | 0 < c* < min{B(dg~),1}

K(dp+) <0, | X(dp~,") (z — 0o )+ da + K(0p+)

K(0g+) <0, | B(dg)X (dg+,-) B¢+ ) (z — g+ )+ o+ B(00+) - K(dg+)

B(de+) <1, | B(do)X(do,") B(do)(x — do) + bo—B(stay —

0, | X(dp,-) where (r —dp)4+, where 0o +u(dp)
1, B:fdozSX(x)dx B:fdozSX(x)dm

Table 3.1: Optimal ceded loss functions and minimal VaR.
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derived by its equivalence to models (3.3.23). Finally, in Subsection 3.3.3 we show
that these solutions also solve model (3.2.10), which are reported in Table 3.1

3.3.1 Approximation Models

For integer n > 1, let M denote the set of all measures on ([0, c0), B) with the
following structure:

n

pn() = X (dnj. ), (3.3.18)

J=1

where the coefficients ¢,; > 0 and dp,; > 0, j = 1,---,n, 37 o5 < 1, and
X(dyj,-) denote the Dirac measure concentrated on the point d, ;. Without any
loss of generality, we assume 0 < d, 1 < d,2 <---<d,, foralln=1,2,---. Note
that M}t € M™ for all n =1,2,---. Then, we consider the following problems:

min  VaR,(X) — / [¢(t)—(1+9)¢(t) djin

e M (3.3.19)
s.t. [ w(t)du, < B.
By defining coefficient vectors ¢ := (cp1, -, cup) and d == (dp 1, -+, dpn),

IThis table reports the optimal solutions for all of the possible seven cases. Column 2 lists the
conditions used to define each case. Column 3 gives the optimal measure to model (3.2.10) while
Column 4 presents the corresponding optimal ceded loss function to model (3.1.4) for each case.
Column 4 can be recovered from Column 3 by formula (3.2.7). Finally, Column 5 tabulates the

minimal value of VaR,(Tt(X)) obtained under the optimal solutions.

68



and using (3.3.18), the goal function in (3.3.19) can be expressed as follows.
VaRa(e.d) = VaRa(X) = [ [o(t) = (1+6)u(t)]dn,

= VaRo(X) = 3 e [6(dny) = (1+ 0)(dy)]

(
601 + Hun(X)? 604 S dn,la
Aniéa_‘_Bni_l'HnXa dnzgéagdnz )
_ : it (X)), dn, 1 (3.3.20)
i=1,---,n—1,
L An,n 604 + Bn,n + H,un (X>7 dn,n S 5047
where
Ang=1= cnj, Bui=Y Cnjdnj, i=1,-n, (3.3.21)
j=1 j=1
and

I, (X)=(1+0) {i Cnj /doo. Sx([E)dZE} . (3.3.22)

Similarly, the constraint in the optimization problem (3.3.19) becomes

ZC”J/ Sx(z)dx < B.
j=1 dn.j

Note that the objective function and the constraint depend explicitly on the vari-
ables ¢ and d. This explains the notation VaR, (e, d) with the arguments ¢ and
d.

Let us now introduce the following sets:

C, = {(cn,l,...,cnvn)ER“:anzO,j:l,Q,...,n, and ch—gl},

J=1

Dn - {(dn,la "'adn,n) € R":0 S dn,l S e S dn,n}y

Sn = {(C,d):CECn, dEDn, ch,j/ SX(,Z‘)d,Z‘SB}
dn,j

J=1
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Then the coefficient vectors (¢, d) defined in (3.3.18) must satisfy ¢ € C,, and
d € D,. Furthermore, the set S, comprises both the feasible values of ¢ and
d as well as their constrained condition of problem (3.3.19). Consequently, the
optimization problem (3.3.19) can be expressed more compactly as

min VaR,(c,d). (3.3.23)
(e,d)eSh

It should be emphasized that the above formulation is a constrained optimization
problem as the constraint on ¢ and d is embedded in the definition of S,,. We
make some remarks on two special cases with respect to the optimization problem
(3.3.23). First is when ¢ = 0, where 0 is a zero vector (0,...,0). In this case, the
objective function and the constraint in (3.3.23) are constant, independent of d.
When ¢ = 0 is the optimal solution to (3.3.23), then it is never optimal to reinsure
the insurer’s risk. Second, when d,; = d for j = 1,2,--- ,n and a constant d,
both the objective function and the constraint in (3.3.23) depend only on d and
¢ := Y Cnj. This implies that the optimization problem (3.3.23) reduces to a
two-dimensional problem in terms of ¢ and d, down from 2n dimensions. In the
sequel, we might simply denote (¢, d) € S for this situation for a set structured in

the same way as .S,,.

3.3.2 Solutions to the Approximation Models

As pointed out earlier that the VaR-based optimization model, in general, is a
non-trivial problem; see Gaivoronski and Pflug (Winter 2004-2005). It is, therefore,
difficult to obtain the global minimizer of the constrained optimization problem
(3.3.23) directly. On the other hand, the fact that (3.3.23) is now formulated as
an optimization problem over the Euclidean space suggests that we can derive the

optimal solution via the following approach. To explain this approach, let us first
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note that for n =1,2,---, the sets D,, and 5,, can be partitioned, respectively, as

Dg = {(dn,lv sy n,n) € R™: 50{ S dn,l S T S dn,n}7

d
D;L - {(dn,la adn n) S Rn . 0 S dn,l S e S dn,i S 501 S dn,i—i—l S e S dn,n}a

DZ = {(dn,la "'adn,n) S Rn . 0 S dn,l S Tt S dn,n S 5&}7

St = {(c,d) ccecC,, de D, ch,j/doo Sx(x)dx < B}, 1=0,1,2,---,n.
j=1 n,j
In other words, we have D, = (J;_, D}, and S,, = J;_,S,. The partition of S,
into S¢,7 = 1,...,n enables us to analyze, case by case, the solution to (3.3.23)
with the feasible set replaced by S i = 0,...,n. The global solution to (3.3.23)
over the feasible set S, is then given by the partition that yields the lowest VaR of
the insurer’s total risk among all partitions S°,7 = 0,...,n. More specifically, let
VaR},(S) denote the minimum value of VaR, (¢, d) for (¢, d) over the feasible set S
and let (¢*,d*) € S be the corresponding optimal vectors for which the minimum
is attained. Adopting this notation, VaR}(S,) with optimal vector (¢*,d*) € S,
is the optimal solution to (3.3.23). The argument provided above implies that the

minimum value VaR[ (S,,) can be obtained indirectly via
VaR?(S,) = min{VaR(S%), VaR%(S}), - -, VaR%(S™}, (3.3.24)
with the optimal vector (¢*, d*) corresponding to the partition that yields the lowest

VaR.

The rest of this section is devoted to analyzing the minimum value of VaR, (¢, d)
for (c,d) over feasible set St i = 0,1,2,---,n. It turns out that the optimality
associated with the first n cases (i.e. for feasible set S%,i = 0,...,n—1) is relatively

straightforward to determine, as we demonstrate in Proposition 3.1. The optimal
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VaR? (S!"), on the other hand, is more complicated and it requires us to consider

several additional subcases, as we will later elaborate.

Before presenting some key results, it is useful to give the following explicit

expressions for VaR, (¢, d) pertaining a given confidence level 1 — a with 0 < a <

Sx(O)Z

(i) When 6, < dp1, ie., (dp1, ..., dnn) € DY,

n,j

VaR,(e,d) = 0, + (1 + 9){2 cw-/ SX(z)d:E}; (3.3.25)
j=1 d
(i) When d,,; < 64 < dpir1, 16, (dpay ey dpy) € D fori=1,--- ,n—1,

VaR,(c,d) = 0, + Z Cnjldn; — 6a) + (1 + 9){2 cw-/ SX(x)dz};(B.B.QG)
j=1 Jj=1 d

n,j

(i) When d,,, < dq, i.€., (dp, ..., dpn) € DI,

VaRa(c, d) = 0o + Y _ cnjhildn;). (3.3.27)
j=1

We now present the following proposition, which summarizes the optimality for

the first n partitions of S,,:

Proposition 3.1 (a) On S°, ¢* = 0 is one optimal solution of VaR:(SY) with
optimal minimum value VaR!(SY) = 4.

(b) On Sk, i =1,2,--- ,n—1, the optimal solutions (c*,d") of VaR}(S!) must
satisfy either dy, ; — oo for j = i+ 1,--- ,n or equivalently c;, ; = 0 for
j=it 1, n.

Proof. The proof is trivial by the expressions of VaR,(e,d) in (3.3.25) and
(3.3.26). 0

What remains is to consider the optimal solution on the final partition S)'.

As alluded earlier that the optimality associated with S is more complicated to
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analyze. It entails us to sub-partitioning the feasible set S into a few more subcases
depending on the relative magnitude of a and 6*, the sign of x(dg+), and whether
[(0g+) is greater or smaller than one. More specifically, there are seven subcases
in total to be considered and these are listed below. A flowchart of these subcases
is depicted in Figure 3.1. For ease of referencing, we also include the respective

proportions that deal with each of these subcases.
Case (i): a > 6*, see Proposition 3.2(a).
Case (ii): a < 0%, k(dp+) > 0, see Proposition 3.2(b).
Case (iil): o < 0%, k(dg+) = 0, see Proposition 3.3(a).
Case (iv): a < 0*, k(dg+) < 0, and (3(dg+) > 1, see Proposition 3.3(b).
Case (v): a < 0%, k(dp-) < 0, B(dg«) < 1, and A(dg+) > 0, see Proposi-
tion 3.4(a).
Case (vi): a < 6%, Kk(dg«) < 0, B(dg«) < 1, A(dp+) < 0, and 5(d,) < 1, see
Proposition 3.4b(i).
Case (vil): a < 0%, k(dp«) < 0, B(dg) < 1, A(dp+) < 0, and S(d,) > 1, see

Proposition 3.4b(ii).

We first present the trivial cases where it is never optimal for the insurer to
reinsure its risk. These correspond to cases (i) v > 6* and (ii) @ < 6* with

K(dg+) > 0, as we show in the following Proposition 3.2.

Proposition 3.2 Consider minimizing VaR,(c,d) with feasible set S}'. When (i)
a >0 or (i) a < 0" and k(dp«) > 0, ¢* = 0 is one solution with VaR,(S}') = d,.

Proof. The condition o > #* implies dyp- > 0, and using part (a) of Lemma 3.3,

we have
o0

min x(d) = u(d,) = (1+6) Sx(z)dxz > 0.
de[O,éa] St
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min VaR,(c,d)

(e, d)eSr

(i) a > 6"

Proposition 3.2(a)

a < 0*

(iv) B(0g) > 1
Proposition 3.3(b)

(iii) K(5g+) = 0

Proposition 3.3(a)

Proposition 3.2(b)

(v) A(dg-) = 0
Proposition 3.4(a)

(vi) B(do) <1
Proposition 3.4b(i)

Figure 3.1: Subcases of S}
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Proposition 3.4b(ii)




Thus, x(d) > 0 for all d € [0, ,]. Since on S} we have d,, ; <, for j =1,2,--- ,n,
it follows from (3.3.27) that VaR,(c, d) attains its minimum value when ¢ = 0.
Hence VaR} (S") = d,. The second case with o < 6* and k(dp+) > 0 can be proved
similarly since from Lemma 3.3(a) we have

d?[%)l,?a} k(d) = k(dg+) > 0.

O

To discuss the optimal solutions corresponding to Cases (iii) and (iv), it is

essential to introduce the following sets:
" = {(c,d):(c,d) €S, dy1> 0},

7> = {(c,d) (c,d) € T, ch]>659*}

n

T o= {ed) (e d) e Ty Y ey <800}

j=1
Recall that 3(dg«) was defined through (3.3.11) and (3.3.12), and that 7= is an
empty set when 3(dg«) > 1. Furthermore, T= and T= are the partitioned sets of
Tr, ie. T = T=Z|JT=. Exploiting the partitioning, Lemma 3.4 in Section 3.5

establishes the following relation for a < 6*:
VaR? (S)) = VaR.(T)}) (3.3.28)

The above result is useful in the sense that under the prescribed condition, for
identifying solution on S it is sufficient to focus the optimality on 7. This relation
is used explicitly in deriving the optimal solutions for cases (iii) and (iv), as we show

in the following proposition:
Proposition 3.3 Consider minimizing VaR, (¢, d) with feasible set S

(a) When a < 6% and k(dg-) = 0, (c*,0g+) such that 0 < ¢* < min{3(dg+), 1} is
one solution with VaR},(S}') = 4.

75



(b) When a < 0*, k(dp«) < 0 and B(dg-) > 1, (1,0¢+) is one solution with
VaR: (S") = 6o + £(0g+) < dq4-

Proof. Lemma 3.4 shows that VaR} (S") = VaR} (T") and for any vector (¢, d) €
",
VaRg(c,d) = 0o + Y cnjhi(dn;) > 6o + K(0p:) Y Cnje (3.3.29)
j=1 j=1
(a) When o < 0* and k() = 0, then (3.3.29) becomes VaR,(c,d) > 6,. The
lower bound corresponds to VaR,, (¢, dg«) with ¢* as defined in the proposition, and
the upper bound restriction on ¢* ensures that (c¢*,dg) € T"; hence the results

follow.

(b) To establish the optimality for o < 0%, k(dp+) < 0 and (5(dg+) > 1, first recall
that T" = T=JT= and TZ is an empty set when 3(dg-) > 1. Hence we only need
to show that (1,d¢+) is optimal over T'=. Tt follows from the condition x(dp) < 0
that the lower bound (3.3.29) can further be reduced to d, + x(dg+), which is equal
to VaR4(1,dp+). Since B(dp<) > 1, (1,8p+) is obviously within 7= and hence we
obtain the required results. O

To analyze the remaining three cases pertaining to conditions o < 0*, k(dg+) < 0,

and [(dg+) < 1, we again employ the same approach as above except that in these

cases, we consider the following set:

Vo= {(c,d)E]R: Spr < d < 0, c/ Sx(z)dz = B, ogc§1}. (3.3.30)
d

Note that V' is well defined since dyp- < 9, due to the condition ov < 6*. Lemma 3.7

in Section 3.5 similarly shows that
VaR} (S]) = VaR} (V) (3.3.31)

and therefore it is sufficient to just focus on set V' for the optimality on set S
This is demonstrated in the following proposition and hence completes the analysis

for Cases (v), (vi) and (vii):
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Proposition 3.4 Suppose a < 0%, k(dg+) < 0, and F(0g+) < 1, and consider mini-
mizing VaR,(c,d) with feasible set S)'.

(a) If X(dg«) > 0, then (B(0p+), 0p«) is one solution with VaR.,(S)) = 04 + B(0g+) -
KJ((S@*) < 5(1-

(b) Suppose A(dg+) < 0

(1) If B(d,) < 1, then (B(d,),d,) is one solution with VaR,(S}) = o —
B[m — 77) < 0a, where as defined in Lemma 3.3(b), d, € (0p+,04)
satisfies A(d,) = 0.

(11) If B(d,) > 1, then (1,dp) is one solution with VaR}(S") = 64+ k(dp) <

0a, where dg 1s determined through the equation

B = Sx(z)dx

dp
Proof. First note that V' can be regarded as a subset of S, since any coefficient
pair (c,d) € V will lead to the same VaR value as a vector (¢,d) € S with d; =d
and ¢; = ¢/n for j =1,2,--- ,n. Thus, relation (3.3.31) implies that it is sufficient

for us to focus on set V' for the optimal solutions on .S}

For any coefficient pair (¢,d) € V, it follows from (3.3.27) that

VaR,(c,d) = dq+c(d—6a)+ (1+6)c / Sx(z

= a4 (1+6)B+ (3.3.32)

Because of the condition ¢ [° Sy (z)dz = B, the coefficient ¢ uniquely determines
d (and vice-versa) and hence VaR,(c,d) can be regarded as either a function of ¢
or d. For the sake of our analysis, we will express VaR,(c, d) as a function d as we
have shown in (3.3.32) and we will denote it by I'(d). The derivative of I'(d) with

respect to d is
A(d)

M) = [ 5y (w)daP

B. (3.3.33)
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(a)

When A(dg<) > 0, then I7(d) > 0 on (dp+, d4] since A(d) is strictly increasing
on [0,0,] by Lemma 3.3(b). Hence I'(d) is strictly increasing on [dg+, d,] and
it attains its minimum value at d = dp«. This implies that VaR} (V) =

0o + B(dp+) - K(0p+) < d4. The last strict inequality is due to k(dp«) < 0.

Under the assumption A(dp«) < 0, Lemma 3.3(b) assures that I''(d) < 0 for
d € [0g+,d,), and I"(d) > 0 for d € (d,, d,]. This in turn implies I'(d) is strictly
decreasing on [dy+, d,] while strictly increasing on [d,, J,], and it attains the

minimum value at d = d,,.

Recall that any coefficient pair (c,d) € V must satisfy the constraint

c/ Sx(x)dx = B
d

and 0 < ¢ < 1. Hence when (3(d,) <1, (5(d,),d,) is one optimal solution on
V. Moreover because the minimum value of I'(d) is attained at d = d,, we

have
VaR? (V) = ['(dy) < ['(dg+) = da + B(d6+) - £:(d6+) < b, (3.3.34)

and VaR[ (V) is easily shown to be

d, — 6
VaR:(V) = 0o+ (1+0)B+ B+ o
( ) ( ) fdo SX(I’)CZ[L’
1 1
= 0,—B ——1, 3.3.35
{SX(do) 9*] ( )

as claimed in Part (i).

For Part (ii) with the condition £(d,) > 1, first note that (3(d,),d,) is no
longer in V. Second, the property that I'(d) is strictly decreasing on [dg«, d,]
while strictly increasing on [d,, d,] ensures that the minimum of VaR,(c, d)
over V while subject to the constraint 0 < ¢ < 1 must occur at dg. Finally,
it is also obvious that VaR} (V) = I'(dg) < I'(dp+) < d, and this completes
the proof. O
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Case | Conditions (c*,d") VaR’

(i) |a>6* (0,d),d>0 dar

(i) | a < 6*Kk(dg<) >0 (0,d), d>0 o

(ili) | a < 0", K(dg=) =0 (c*, dg+) 4, for o

0 < c¢* <min{H(dy),1}

(iv) | a< 0% k(o) <O (1, g+) do + K(dg+)
B(dg<) > 1

(v) | <07, Kk(d) <O, (8(06+), dp+) do + B(dg+) - k(dp~)
B(dg+) <1, AM(dg+) >0

(vi) | a < 0, (9)<0,
B(50) < 1, Mép) <0, | (5(d,), do) b0~ Bl — &)
Bldo) <1

(vil) | o < 0%, K(dp+) <O
B(0g+) < 1, Mdg+) <0, | (1,dp), where S + u(dp)

Bldo) > 1

B = fd SX

)dx

Table 3.2: Optimal ceded loss functions to the approximation models.
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Now we are ready to present the solution to models (3.3.23) and (3.3.19). Recall
that S, = J—, Ss, Sy is the feasible set to (3.3.23), and Propositions 3.1-3.4 hold
for any n =1,2,---. It follows from Proposition 3.1(b) that (¢, d) is one solution

to problem (3.3.23) if the following condition is satisfied:
VaR.{c},d}} = min (VaR%(S}), VaR(S))) n=12---. (3.3.36)

By Propositions 3.1(a), 3.4, and 3.3, we deduce that (c*,d+) such that 0 < ¢* <
min{/(de«), 1} are solutions to problem (3.3.23) when a < 6* and k(dp«) = 0, and
that (1,0p+) is one solution to (3.3.23) when a < 6*, k(dp+) < 0 and [(dp«) > 1.
Moreover, after comparing VaR}, (V') in Proposition 3.4 with VaR? (S?) in Proposi-
tion 3.1, we conclude that the solutions over S} solve problem (3.3.23) when o < 0",
K(dg+) < 0 and [3(dg+) < 1. For the optimal solutions in the remaining cases, we
only need to compare Proposition 3.2 with Proposition 3.1. The results, together
with the corresponding propositions, are summarized in Table 3.2, where (c*, d") is
the solution to model (3.3.23). Note that the solution is independent of the dimen-
sion n. Then by formula (3.3.18) we derive the solution to (3.3.19), which is also

independent of dimension n and is reported by the column entitled p* in Table 3.1.

3.3.3 Optimal Solutions to VaR Minimization Model

This subsection serves to show that the solution derived in the previous subsec-
tion for models (3.3.19) also solves model (3.2.10). This is proved as in the following

proposition.

Proposition 3.5 The solution p* summarized in Table 3.1 also solves model (3.2.10).

Proof. Recall that x* in Table 3.1 solves models (3.3.19) for all n = 1,2,---. Let
p be any positive measure from the feasible set of problem (3.2.10), i.e., u € MT
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and [ v(t)du < B. We need to show VaR,(p*) < VaR,(u). Before we proceed, it
might be helpful for us to recall the notation ¢(t) = (VaRq(X) — 1), and 9(t) =
E[(X —1)4].

By Lemma 3.8, there exists a sequence of measures {fi,,n = 1,2,---} in M}
such that [(z—t);du, converges pointwisely to [(z—t);du from below. This fact
has two implications, which will end up the completeness of the proof. On the one
hand, we have [(z — t)+du, < B and hence [ 4(t)du, < B by Fubini’s Theorem
for each n = 1,2, ---. This implies that u, belongs to the feasible set of problem

(3.3.19) for each n =1,2,-- -, and consequently we have
VaR, (1) < VaR,(p,) for n=1,2,---. (3.3.37)
On the other hand, by Fubini’s Theorem and Lemma 3.8 we have
[otaun, = [ VaRa(x) =, di,
. / [VaRa(X) — ], dy
= [ otodn,

and

where the first convergence result is due to Lemma 3.8 and the second convergence

result is the combination of Lemma 3.8 and monotonic convergence theorem. These
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results in turn imply

VaRa(in) = VaRa(X) = [ [6(0) = (1+0)0(0)) dn

. VaRa(X) - / 6(t) — (1+ 6)(t)] dp
= VaR.(u). (3.3.38)

Finally, by combining (3.3.37) and (3.3.38), we immediately have VaR,(u*) <
VaR, (i), by which the proof is complete. O

3.4 Some Remarks and Examples

As pointed out earlier that Cai et al. (2008) discusses the optimal reinsurance by
unconstrained reinsurance models which are only concerned on minimizing certain
risk measure of the insurer’s total risk exposure. The approach described in this
chapter, on the other hand, is a generalization of the VaR minimizing model in Cai
et al. (2008) in the sense that we impose a new constraint in addition to the usual
objective criterion for determining the optimal reinsurance. This new constraint can
be interpreted as either a reinsurance premium budget or a profitability guarantee
for the insurer. The present model is intuitively more appealing since it takes into
account both risk and reward. We now make the following remarks to compare and
contrast the results obtained in this paper with what derived in Cai et al. (2008)

regarding the VaR minimization model.

Remark 3.1 FExcept for the first two cases, the optimal ceded loss functions pre-
sented in Table 3.1 are all in the forms of stop-loss types. In fact, under certain
conditions they will reduce to the quota-share treaties. For example, if 6* > S(0),
then 8- = S (0*) = 0, which implies that the optimal ceded loss functions in Cases

(3), (4), and (5) collapse to the quota-share type.
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Remark 3.2 Recall that when B > E[X], the reinsurance premium budget con-
straint in the proposed constrained optimal reinsurance model (3.1.4) will have no
impact on the solution. Consequently, this special case reduces to the unconstrained
reinsurance model in Cai et al. (2008) for the VaR criterion. We can also exam
the range of the insurer’s expected profit P corresponding to this special case. Note
that when B > E[X], the inequality B > f;; Sx(z)dx (or equivalently B3(0p«) > 1)
holds trivially. Furthermore, the condition B > fg;i Sx(x)dx implies

P<po—EX]—0[ Sx(x)d. (3.4.39)
Son

Hence if the expected profit P of the insurer is less than the quantity on the right-
hand-side of the above inequality, the profitability constraint becomes redundant. In
fact, in this situation, Case (4) of Table 3.1 recovers parts (a) and (c) of Theorem
3.1 in Cai et al. (2008), while Case (3) of Table 3.1 is equivalent to parts (b) and
(d) of Theorem 3.1 in Cai et al. (2008).

Remark 3.3 To understand the impact of imposing the profitability constraint on
the optimal reinsurance model, let us, say, compare Case (4) to Case (5) of Table 3.1
and assuming A(0g<) > 0. When an insurer becomes more aggressive so that it
requires an expected profit greater than the quantity on the right-hand-side of the
inequality (3.4.39) (i.e. [B(0g+) < 1), the optimal ceded loss function is f*(x) =
B(0p+)(x — g« )4 with VaR), = 04 + B(6p«) - k(dg+). A contrast of these results to
the unconstrained model as in Case (4) of Table 3.1 imply that in the presence of
the profitability constraint, the optimal reinsurance design is to retain greater losses
while expose to a higher minimum attainable VaR,,. This is consistent with the

classical risk and reward tradeoff.

To conclude this section, we provide two examples to illustrate our results.

Example 3.1 Assume X is exponentially distributed with mean E[X] = 1,000.
Then Sx(z) = e %% 2 > 0 and Sx(0) = 1. Assume further that the loading
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factors for the reinsurer and insurer are 20% and 15%, respectively. This implies
0 = 0.2 and 6 = Sy (1/(1+0)) = 182.32. Under the additional assumption of the
expectation premium principle, we have py = 1.15E[X]| = 1,150 and II(f(X)) =
1.2E[f(X)] for a given ceded loss function f. In practice it is to be expected that
the loading factor for the reinsurer is higher than the insurer’s. Consequently,
the achievable expected profits P are in the range [0,150] so that B € [0,750].
Table 3.3 reports the VaR;, and the corresponding optimal ceded loss function (as
specified by ¢ and d) for different combinations of P € {148,145,140,100,50,0}
and o € {1%,5%,10%}. For these examples, conditions o < 6* k(dg+) < 0 and
B(0g+) < 1 are satisfied and hence Proposition 3.4 is used to determine the optimal
solutions. For example, at o = 10% the root of \(d) occurs at d, = 1302.6 with
B(d,) depending on the level of B; see equation (3.3.12). If we were to guarantee
an expected profit of $145 (or equivalently B = 25), then the optimal ceded loss
function in the class IC is a combination of quota-share and stop-loss reinsurance
given by f(z) = c(r — d)y where ¢ = ((d,) = 0.09, d = d, = 1,302.6 and with
manimum attainable VaR $2,240.6.

Note that when we increase the confidence level 1 — «, the minimum VaR, the
optimal values of ¢ and d become larger as long as 5(d,) < 1. This implies that the
higher level of confidence can be achieved at the expense of higher minimum VaR.
Furthermore, the optimal reinsurance contract and the minimum attainable VaR

are invariant to a as long as $(d,) > 1.

The impact of the expected profit P (or equivalently B) on optimal reinsurance
i1s also clearly demonstrated. First, if we were to decrease the minimum level of
expected profits, the optimal retention d does not change as long as B(d,) < 1.
The optimal ¢, however, will increase accordingly as asserted by part (i) of Proposi-
tion 3.4(b) and also confirmed by our numerical results. Second, when the condition
B(d,) > 1 is satisfied as we further decrease P, the optimal reinsurance design be-

comes a pure stop-loss contract with the optimal retention d that also declines with
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B P return a=1% a=5% o= 10%
VaR}, d) VaR}, (¢, d) VaR}, (¢, d)
10 148 12.87% | 4249.3 (0.37,3605.2 2934.2 (0.07,1995.7

) ) | 2277.8 (0.04,1302.6
25 145 12.61% | 3715.5 (0.92,3605.2) | 2841.8 (0.18,1995.7) | 2240.6 (0.09,1302.6
) )

(c,
(
(
(
250 100  8.70% | 1686.3 (1.00,1386.3) | 1686.3
(
(
(

)

)

50 140 12.17% | 3055.7 (1.00,2995.7) | 2687.9 (0.37,1995.7) | 2178.6 (0.18,1302.6)
(1.00,1386.3) | 1682.9 (0.92,1302.6)

500 50  4.35% | 1293.1 (1.00, 693.1) | 1293.1 (1.00, 693.1) | 1293.1 (1.00, 693.1)
750 0 0.00% | 1187.7 (1.00, 287.7) | 1187.7 (1.00, 287.7) | 1187.7 (1.00, 287.7)
Unconstrained 1182.3 (1.00, 182.3) | 1182.3 (1.00, 182.3) | 1182.3 (1.00, 182.3)

Table 3.3: VaR}, and optimal ceded loss functions: Exponential risk.

P; see equation (3.3.12). Third, the minimum attainable VaR is an increasing
function in P. This is the classical risk and reward tradeoff in the sense that higher
expected profit can be achieved at the expense of higher minimum risk exposure (as
measured by VaR); see Remark 3.3. Fourth, if we were to permit B to increase
beyond 833.33 (and P is negative), then [((dg<) > 1 since f(;; Sx(x)dxr = 833.33
and part (b) of Proposition 3.3 can be used to determine the optimal ceded loss
function. In this case, the upper constraint B has no impact on the optimization
problem and in fact it reduces to the unconstraint problem, as studied in Cai et
al. (2007). In our example, VaR., is $1,182.3 with optimal retention dp« = 182.3.
See also Remark 3.2. The unconstrained optimal reinsurance design also serves as
a benchmark to our proposed constrained optimization problem. For instance at
a = 1%, if the insurer were to seek an expected profit of $145, the insurer needs to
sustain more than three times the risk exposure relative to the unconstrained case

(compare $3,715.5 to 1,182.3).

Example 3.2 In this example, we assume X has a Pareto distribution with Sx(x) =

3
(:ci’goo%o) , © >0 so that its E[X] = 1,000 is the same as the previous example.

We also assume 0 = 0.2 and py = 1150. Table 3.4 produces the optimal reinsurance
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B P return a=1% 04:75% a=10%
VaR}, (c,d) R: (c,d) VaR}, (c,d)

10 148 12.87% | 6998.9 (0.10,4188.8) | 3381.6 (0.03,1619.2) | 2291.2 (0.02, 872.6)

25 145 12.61% | 6572.4 (0.24,4188.8) | 3310.7 (0.08,1619.2) | 2264.8 (0.05, 872.6)

50 140 12.17% | 5861.7 (0.48,4188.8) | 3192.5 (0.16,1619.2) | 2220.7 (0.10, 872.6)
250 100  8.70% | 2300.0 (1.00,2000.0) | 2247.4 (0.82,1619.2) | 1868.1 (0.52, 872.6)
500 50 4.35% | 1428.4 (1.00, 828.4) | 1428.4 (1.00, 828.4) | 1428.4 (1.00, 828.4)
750 0 0.00% | 1209.4 (1.00, 309.4) | 1209.4 (1.00, 309.4) | 1209.4 (1.00, 309.4)
Unconstrained 1188.0 (1.00, 125.3) | 1188.0 (1.00, 125.3) | 1188.0 (1.00, 125.3)

Table 3.4: VaR}, and optimal ceded loss functions: Pareto risk.

designs over the same set of parameter values as in the last example. Note that
for a given P and «, the minimum attainable VaR is larger for the Pareto risk.
This is to be expected since Pareto distribution is considered to be riskier than the
corresponding exponential distribution in the sense that it has a heavier tail. Other
than this, the discussions that we made earlier are equally applicable to the present

example.

3.5 Appendix: Some Lemmas and Proof

Proof of Lemma 3.2. The concavity of I;(x) comes immediately from the fact

that f(x) is convex. Now suppose there exist two points x; and x5 such that

0 < @1 < w satisfying I;(z1) — If(z2) > 0, ie.,
fx2) —

f(x1)

> 1. (3.5.40)

On the other hand, by the convexity of f(z) we have

f(x2) <

T — X9

r — T

flz) +

Lo — X1

()

r — I
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for x > x4, or equivalently

f(l’) > f(l’2) B f(iUl)x X LUQf(LL’l) — ;L’lf(x2) .

To — T1 To — I

Hence, it follows from (3.5.40) that there exists a constant xy such that f(zq) > zo,
which contradicts to the assumption that f(z) < x for all z > 0. Therefore we

conclude that [;(x) is increasing. 0
Proof of Lemma 3.3

(a). First note that the derivatives of x(d), x'(d) = 1 — (1 4+ 0)Sx(d), and
K'(d) = (1+0)fx(d) >0 for d > 0. Hence (d) is convex on [0, c0). Moreover, we
can easily verify that if * < Sx(0), then x'(d) < 0 for 0 < d < dp~ and £’(d) > 0 for
d > 0+, and that x'(d) > 0 for d > 0 if 6* > Sx(0). This justifies (3.3.15)-(3.3.17).

(b). It follows from (3.3.14) that N'(d) = [0, — d]fx(d). By the assumption
that X has strictly increasing distribution, we have fx(d) > 0 for d > 0 so that
N(d) > 0 for d € [0,0,). As a result, the function A(d) is strictly increasing on
[0,64). Moreover, we have A\(d,) = f(;j Sx(x)dxr > 0, and dg« < 0, as o < 0*.
Hence, there must exist a unique root d, to the equation \(d) = 0 on (dg+, d,) as

we have A(dg+) < 0. O

Lemma 3.4 If a < 0*, then VaR.(S!) = VaR, (T7); i.e. (3.3.28) holds.

Proof. If 8* > Sx(0), then (3.3.28) holds trivially since dg» = 0 so that S}' =T
Suppose 6 < Sx(0). Let (c,d) be any vector in S satisfying d,, ; < g+, j =
1,2,---,i, for a fixed 7+ € {1,2,---,n} and let (¢, d’) be the corresponding vector
constructed from (e¢,d) by merely replacing d,, ; with dp« for all j = 1,2,--- 4.

Since
ch,j/ Sx(z)dz + Z c,m/ Sx(z)dzr < ch,j/ Sx(z)dz < B,
j=1 96+ j=it1 dn,j =1 dp,;
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(c,d') is in T". Moreover,

VaR,(e,d) = d,+ Z Cn,jk(dn. ;)

> ot D> cnkil0e) + Y cnjildny)
j=1 j=i+1

= VaR,(e,d), (3.5.41)

since the minimum value of the function x(x) is k(dp+) by part (a) of Lemma 3.3

and this completes the proof. O

Lemma 3.5 Ifa < 6%, k(0p+) < 0 and B(dg+) < 1, then the following relation holds

VaR:(TZ) = VaR: (V). (3.5.42)

Proof. We prove (3.5.42) via the following two-step procedure. First we establish
VaR:(T>) = VaR:(U), (3.5.43)
where U is a set defined as

U:{(c,d) (c,d) € T, Zcm/ dg::B}. (3.5.44)

5

Then we show that
VaR} (U) = VaR.(V) (3.5.45)

to complete the proof.

Now for the first part of the proof of showing (3.5.43), we demonstrate the

following two inequalities:

VaR! (TZ) < VaR:(U), (3.5.46)
VaR!(TZ) > VaR:(U). (3.5.47)



The first inequality is straightforward as it follows immediately from the definition
that U C TZ. To justify the second inequality, first note that for any (e, d) € T2,
we have d,, ; > dp« for j =1,2,--- ,n and that both

> cny / Sx(z)dz > B (3.5.48)
59*

and

> ny / Sx(z)dz < B (3.5.49)

- dy

hold simultaneously. The above two inequalities follow from the constraint on the
sets 7,7 and Sy, respectively. Moreover, Y " ¢, | dO:j Sx(z)dz is continuous in
d,; for j =1,2,--- ,n, since we assume X has a continuous distribution function
on [0,00). Thus, for any (¢,d) € TZ satisfying (3.5.49), there exist constants
g < dyp; <y, j=1,2,--- ,nsuch that Y7 ¢, de’:j Sx(z)dxr = B. If a vector
then (e, d’) € U.

Furthermore, since x(z) is increasing on [dg-, 00) according to part (a) of Lemma

(e,d') is constructed by only replacing d, ; in (¢,d) with d]

n7] ’

3.3, we have
VaR,(c,d) > VaR,(c, d), (3.5.50)

which in turn leads to (3.5.47) and together with (3.5.46), we prove (3.5.43).

For the second part of the proof of showing (3.5.45), we again use the same

technique as above by demonstrating the following two inequalities:

VaR:(U) < VaR:(V) (3.5.51)
VaR:(U) > VaR%(V). (3.5.52)

To justify inequality (3.5.51), we first note that every coefficient pair (¢,d) € V
is a special case of the vector (¢, d) in T7. This can be seen by setting ¢, ; = £

and d,,; =d, j =1,2,--- ,n. Note that the optimization problem in V' becomes a
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two-dimensional problem, instead of 2n dimension as in the general case. Together

with (3.5.43), we have inequality (3.5.51).

To verify inequality (3.5.52), we proceed as follows. For any vector (¢,d) € U,
let us denote ¢, := > ¢, and d,, == 377, CC”—:dn,j. By treating [, Sx(z)dz as

a function of d, the convexity property ensures that

o

B:Zc,m/d .SX(x)dm > Sx(z)dx.
i1 n.j

dn

Consequently there exists a coefficient pair (c,,d.,) satisfying dp» < d, < d,, and
cnfdo,:SX(a:)dz = B. AsU Cc Tz C T" C D", we see that d,; < d, for j =
1,2,---,n, which together with the definition of d, leads to d, < ¢,. Hence
(cn,d)) € V. Moreover,

VaR,(c,d) = 6, + Cnjldn; + (14 6) Sx(x)dx — i,
»J sJ

j=1 dn,j

= 50{ + (1 + 9)3 + Z Cn,jdn,j — Z ijéa
j=1 j=1

oo

= 5a+(1+9)cn/ Sx(x)dx + ¢, - dyy — ¢y - o
d

/
n
[e.e]

> 5a+(1+9)cn/ Sx(x)dx + ¢, - dj, — ¢ ba
d

U
n

= 04 + cuk(d)
— VaRu(cn,d.), (3.5.53)

Since (e, d) is an arbitrary vector from U, inequality (3.5.52) follows immediately

from (3.5.53) and this completes the proof. a

Lemma 3.6 If a < 0%, k(=) < 0 and B(dg+) < 1, then the following inequality is

true:
VaRi(TS) > VaRL(V). (3.5.54)
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Proof. For any vector (¢, d) € TS, it follows from (3.3.27) and part (a) of Lemma
3.3 that

VaRa(e,d) = da+ Y coykildn)
j=1

> 5o¢ + Z Cn,j - "{(59*)
=1

> 5t B(0) - K(00)
— VaRa(3(d:), 5-). (3.5.55)

It is easy to see that (3(dg+),dp«) € V, which, together with (3.5.55), implies in-
equality (3.5.54), as required. O

Lemma 3.7 If a < 0%, k(dp+) < 0 and (5(dp-) < 1, then we have VaR}(SI) =
VaR,(V), i.e. equation (3.3.31) holds.

Proof. The required relation follows immediately from Lemmas 3.4, 3.5, 3.6 and

the partitioning that 7" = T= U T=. O

Lemma 3.8 For any p € MT™, there exists a sequence of measures {p,,n =
1,2,---} in M} such that h,(x) converges pointwisely to f(z) from below, where
ho(z) = [(z —t)+dp, and f(z) = [(x — t)+dp for x > 0.

Proof. The proof is trivial when the measure u is such that f(x) = 0. Next, we
suppose f(z) = 0 does not hold. It is well known that for any nonnegative increasing
convex function f defined on [0, 00), there exists a sequence of nonnegative functions
{hn,n =1,2,...} defined on [0, 00) such that h,(z) =3 7, ¢, (¥ — dy ;)4 for some
constants ¢, ; > 0 and d,,; > 0 and lim,,_, h,(x) = f(z) from below for any x > 0.

This implies
ho(x) < f(z) forall x>0 and n=1,2,---. (3.5.56)
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See, for example, the proof to Case 1 of Theorem 1.5.7 of Miiller and Stoyan (2002,
pl8).

By the definition of M, for any pp € M*, we have 0 < f(z) = [(z—1)+du < z,
which together with (3.5.56), in return, implies that for any x > 0 and n = 1,2, ...,

we have

T =

hn(2) . (z — dn,')
0< = Zlcn,j f” <1. (3.5.57)
p=

Consequently, by letting x — oo in (3.5.57) we have 0 < Z?:l Cn; <1 forall n=
1,2,--- . Thus, the sequence of the measures {j,,n > ng} of the form (3.3.18) with
these coefficients ¢, ;,dy ;,7 = 1,2,--- ,n satisfies the requirements of the lemma

and hence the proof is complete. O
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Chapter 4

CTE Minimization Model:

General Reinsurance Contracts

4.1 Introduction and Reinsurance Models

In the previous chapters, the optimal ceded loss function is either assumed
to have certain specific form or confined to some special class. For example, we
considered the stop-loss or quota-share treaties in Chapter 2 and analyzed the class
of increasing convex functions in Chapter 3. In this chapter we will extend our
results by considering the optimality among all the possible ceded loss functions
using the criterion of minimizing the CTE of the insurer’s total risk. Because of the
generality of the model, this significantly increases the mathematical complexity on
identifying the optimal solutions. As we will soon present, our formulation of the
optimal reinsurance model entails us to solve some convex optimization problem
in a Hilbert space with a goal function which is directionally differentiable but
not Gateaux differentiable. Hence, the Lagrangian method based on the concept

of directional derivative will be employed in searching for the optimal ceded loss
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functions.

Before specifying our reinsurance model, let us recall the general setup in a
static reinsurance design and make some technical assumptions. Let X denote
the (aggregate) loss initially assumed by an insurer. Suppose X is a nonnegative
random variable, and identify it by a probability measure Pr on the measurable
space (§2, F) with = [0,00) and F being the Borel o-field on 2, such that the
distribution function of the underlying risk X is defined by Fx(t) := Pr{[0,¢]} for
t > 0. Denote by f(X) the part of loss transferred from the insurer to a reinsurer in
the presence of the reinsurance. f can be identified as such a function f : [0, c0) —
[0,00), and it is called the ceded loss function, or the indemnification function. A
conventional assumption for the ceded loss function f is that 0 < f(z) < z for all
x > 0. With the ceded loss f(X), the insurer will retain a loss of (X)) := X — f(X).
Similarly, Iy can also be recognized as a function Iy : [0,00) — [0,00), called
retained loss function. On the other hand, by transferring part of its loss to the
reinsurer, the insurer is obligated to pay the reinsurance premium II(f(X)) to the
reinsurer according to a given premium principle II. Consequently, the total cost
or the total risk for the insurer in the presence of reinsurance, denoted by T (X),

is the sum of the retained loss and the reinsurance premium 1, i.e.,
Tp(X) = Ip(X) + I(f (X)) = X = f(X) + II(f(X)). (4.1.1)

In what follows, we might omit “(X)” in notation like f(X), I;(X) and T}(X),
and simply use f, Iy and T} to denote these random variables if it is clear in the

corresponding context.

! Actually, the total loss random variable for the insurer in the business involving the risk
X is the amount of Ty — pg, where pg is the insurance premium payable to the insurer by the
policyholders. However, pg is a constant; hence, by the property of translation invariance of the
risk measure CTE, we can consider the optimal reinsurance design problem directly based on the

random quantity Ty defined as in (4.1.1).
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Suppose that the reinsurance premium uses the expectation principle with a
safety loading 6 > 0, ie., II(f) = (1 4+ 0)E[f], and assume that the insurer is
seeking the optimal reinsurance by minimizing the risk measure CTE based on its

total risk Tt. Then the insurer’s problem can be formulated as follows:

min; CTE.(T}) = CTE, (X X))+ (14 H)E[f])
st.  0< f(x) <z forall x>0, E[f(X)] €[0,7/(1+0)].

(Pg) (4.1.2)
Note that the above optimal reinsurance model is very similar to those that we
have analyzed before. The significant difference is that the minimization in model
(Pyg) is taken with respect to all possible ceded loss functions, instead of restricting

to some special class.

Remark 4.1 The constraint E[f(X)] < w/(1+46) for the ceded loss function f has

at least the following two economic interpretations:

(i) The constraint can be interpreted as the reinsurance premium budget; i.e., the

reinsurance premium that the insurer is willing to pay is no greater than .

(i) The constraint can also be understood as a minimum expected profitability
guarantee. To see this, let py denote the insurance premium received by the
insurer for underwriting an insurance on the risk X and let B denote the

insurer’s net profit in the presence of the reinsurance. Then we have
B(f) =po—Ty(X) =po — X + f(X) = (1 + O)E[f],
so that the expected profit, b(f) := E[B], is given by
b(f) = EIB(f)] = po — E[X] — OE[f].

Consequently, a profitability constraint such that b > 1 for a certain preset

1
level b can be equivalently formulated as E[f] < " where w = ﬂ(po —

146 0
E[X]—1).
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We now continue to addressing the optimization problem (Py). For mathemat-
ical convenience, we suppose that X has finite first two moments so that we can
restrict to the space £2 := L*(Q, F, P) for the optimal ceded loss functions. Let
Q = Qs () Qr where

Q; = {feLl?:0< f(x) <z for x>0}, (4.1.3)

and
Q. = {feL?:0<(1+0)E[f] <7}, (4.1.4)
respectively. Then the reinsurance model (Py) can be equivalently reformulated as

(Po) min CTE,(T)) = CTE, (X — fX) + (1 + e)E[f]) (4.1.5)

4.2 Optimal Reinsurance Treaties

The objective of this section is to discuss the optimal solutions to the reinsurance
model (Pg) defined in (4.1.5). The mathematical challenges of solving this problem
directly lie on at least two aspects. First, the model is obviously an optimization
problem of infinite dimension, involving searching for an optimal function instead
of the optimal values of a finite number of parameters. Second, for a general
feasible ceded loss function f there is no analytical expression for the goal function
CTE,(Ty). Recognizing that solving (Pg) directly can be very challenging, we
resolve this by first introducing an auxiliary model (Pr) (as defined in (4.2.10)).
Then we will demonstrate shortly that model (Pr) is more tractable. Furthermore,
a key result in Rockafellar and Uryasev (2002) asserts that the solution to (Pr)

regarding the decision variable f is also the solution to (Pj).
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4.2.1 Auxiliary Model and the Optimality Conditions

To describe the auxiliary model (Pr), it is convenient to introduce the mapping
Go(&, f) : R x L* — R such that

Go(E, f) ::§+éE [(X—f+(1+9)E[f] —g)J (4.2.6)

with the same a > 0 as the one associated with the risk measure CTE in model
(Po). The significance of introducing G, (&, f) can be deduced from the lemma
below, which is a direction consequence of Rockafellar and Uryasev (2002, Theorem

14):

Lemma 4.1 Minimizing CTE,(Ty) with respect to f € Q is equivalent to mini-
mizing Go (&, f) over all (£, f) € R x Q, in the sense that

1;{23 CTE,(Ty) = (gvfr;aeiﬂglnga(f, ), (4.2.7)
where moreover,
(&7, f7) € arg ming perx0GalS, f) (4.2.8)
if and only iof
[ € arg min; .o CTEL(Ty), £ € arg minggGa(§, 7). (4.2.9)

The above lemma formally states that minimizing CTE,(T) over Q is equiv-
alent to minimizing the function G, (&, f) over the product space R x Q. More

importantly, this permits us to reformulate (Pg) as follows.

min _ Ga(6, f) =€+ éE [(X — f 4 (14 OE[S] —g)J

(Pp){ (&NerRxQy
s.t. E[f] € [0,7/(1+ 0)].

(4.2.10)

By Lemma 4.1, if (£*, f*) is one solution to problem P, then f* solves the rein-

surance model Py, i.e., f* is one optimal ceded loss function.
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While (Pt) is equivalent to our original problem (Pg), we have yet to solve
(Pr). Compared to problem (Pg), one obvious advantage of model (Pr) is that
the goal function of the latter problem has analytical expression. However, it will
be still quite mathematical involved in solving problem (Pt). The challenge is that
it is still an infinite dimensional optimization problem and the goal function is not
Gateaux differentiable, which implies that the widely-used Karush-Kuhn-Tucker
Theorem is not helpful to tackle this problem.

As we will demonstrate in Section 4.4 the appendix of this chapter, (Pr) is a
convex problem. Moreover, its goal function G, (¢, f) is directionally differentiable
with respect to (&, f) over its feasible set. This motivates us to use the Lagrangian-
based directional derivatives method to solve problem (Pr). In fact, by defining g*
and V' as

g=X—-f"+1+0E[f]—-¢& (4.2.11)
and
V=(1+0E[f]-¢—f, (4.2.12)

respectively, Section 4.4 formally establishes the optimality conditions for problem

(Pt) as shown in the following proposition:

Proposition 4.1 An element (£, f*) € R x Q solves problem (Pt) if and only if
there exist a constant r € R and a random variable X € L£? such that the following

three conditions are satisfied:

Cl. AL, f) = a[f + (1 + 0)E[f] + ENf]]| + E[V1gsy] + E[Vil{g=gy] > O,
V(& f) eRx L%

C2. E]Nf - /)] <0, feQy:
C3. r(E[f] — E[f*]) <0 for every f € Q.
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Proof. See Section 4.4.3.

Armed with the above optimality conditions, we obtain an optimal solution to
problem (Pr) using the following strategy. First, we select some potential candi-
date. Second, we show that the candidate is indeed an optimal solution by verifying
it with conditions C1, C2 and C3. We emphasize that the above procedure of de-
riving an optimal solution is a non-trivial exercise, as confirmed by the theorems

below.

4.2.2 Optimal Ceded Loss Functions

Throughout this subsection, we assume «(1 + #) < 1. We use the notation 7,

to denote
To=(1+0)E[(X —da),] (4.2.13)
where
do = inf{d: Pr[X > d] < a}. (4.2.14)

The notation 7y and dy are defined analogously as

mo = (1+0)E[(X —dp), ] (4.2.15)
where
dy — inf {d PrX > d] < 1%} | (4.2.16)

We emphasize that the condition a1+ ) < 1 is quite mild as in practice both
« and 0 are typically much smaller than one. The same condition also implies that

d, > dg so that 7, < mp.

We now address the optimal solutions to problem (Pt). We present the solu-
tions depending on the level of the reinsurance premium budget. In particular, we

consider the following three cases:
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Case (1): m € (0,74);
Case (ii): 7 € |74, mg); and

Case (iii): 7 € [mg, 00).

The solutions to these cases are formally stated in Theorems 4.1, 4.2, and 4.3,

respectively.

Case (i): m € (0,7,)

Theorem 4.1 Suppose a(1 + 0) < 1. Then all the ceded loss functions f* of the

following form are the optimal solutions to problem (Pr):

0, T < aAl,
[ (x) = ) (4.2.17)
l(x), x>d
where the function l(x) satisfies
0<l(z) <z—d,, for x> d, (4.2.18)

and the retention d > 0 is the solution to

Ef] = : (4.2.19)

Proof. To show that f* defined in (4.2.17), with retention d and function I sat-
isfying (4.2.18) and (4.2.19), is indeed an optimal solution to problem (Pr), it is
sufficient to verify conditions C1, C2, C3 in Proposition 4.1 for appropriately cho-
sen constants £*, 7 € R, and random variable A € £2. Let us first focus on condition

C3. By setting

1
=—-1 4.2.2
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we have r > 0 since «(14-6) < 1. This implies that condition C3 holds immediately.

To verify the remaining conditions, we notice that d, < d (see Remark 4.2
below) and choose {* = m + d,. Then, (4.2.11) becomes
r—d, <0, T < dg,

g (@)= x—da >0, do < w < d, (4.2.21)

x—1(z)—dy >0, z>d.

Clearly, we have

Lig <oy = 1{x<da} (4.2.22)
and
Lige=0y = 1{x=da} (4.2.23)
Let us now define
OK—PI'{X>da}’ i Pr{X —d,} £0:
Ba=1 Pr{X =da} (4.2.24)

Note that 0 < §, < 1 since from the definition of d,, in (4.2.14), we have
Pr{X >d,} <a, and Pr{X >d,} > a.

Note also Pr{X = d,} = 0 provided that Pr{X > d,} = a. Furthermore, by
setting

1
A= =~ (Lpxeu + (L= Ba)Lixmany ). (4.2.25)

so that together with (4.2.24), we obtain

1 -«

E[\] =

1 [Pr{X <d}+(1—B)Pr{X = da}] __

(0% (0%
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The above result in turn leads to

E[l+ o) =a. (4.2.26)

Accordingly, for any f € Q; we have

aEN(f = /)] = —E[(1gxeday + (1= Ba)Llix=any) (f = f7)]
= —E[f (Txeday + (1= Ba)lix=d})]
< 0, (4.2.27)

where the second equality follows from the definition that f*(z) = 0 for x < d,.
Hence, condition C2 is satisfied.

To demonstrate condition C1, we first establish the following relation:

E\V1{so + V+1{g*:0}] = E|V1ixsa,y + V—l—l{X:da}}
E|V1ixsq.) + /5aV+1{X:da}]

E :V<1{X>da} + ﬁal{X:da}):|
E[V(1+ a))], (4.2.28)

v

v

where the equality in the last step follows from (4.2.25). The above result, together
with (4.2.20), (4.2.25), and (4.2.26) assert condition C1 as shown below:

A f) > a[g+r(1+9)E[f]+E(Af)} FE[V(L+ a))]
— a[g+r(1+e)5[f] +E(Af)} +E[((1+0)Em —f—g)(1+aw
= ¢(a—E[1t+an) +Ef)(at+0)1+1)—1)

= 0.

Since conditions C1, C2 and C3 hold with constants £&* = 7© + d, and r as
defined in (4.2.20), and the random variable A € L? as defined in (4.2.25), f*
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defined in (4.2.17) is indeed the optimal ceded loss function and hence the proof is

complete. O

We now make the following two remarks with respect to the above theorem.

Remark 4.2 The constraint (4.2.18) states that for x > d, the function I(x) > 0 is
bounded from above by x—d,. Furthermore, when x = CZ, we have d > l(cZ)+da > d,.
Consequently, the function (4.2.17) satisfying (4.2.18) and (4.2.19) defines a class
of ceded loss functions which have a shape underneath the line f(x) = x — d, with
a retention larger than d, and a resulting reinsurance premium ezxactly equal to the
preset budget w. In Figure 4.1, the three lower curves (dashed lines) depict three

samples of such cede ceded loss functions that are optimal.

f(x)
600 800 1000
1 1

400
|

200
|

x

Figure 4.1: Three typical optimal ceded loss functions.
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Remark 4.3 We reiterate that Theorem 4.1 only provides solution, if it exists,
for m € (0,7,). This is an immediate consequence of the conditions (4.2.18) and
(4.2.19). More explicitly, suppose f* is the optimal ceded loss function identified by

Theorem 4.1, then we must have m € (0,7,) as can be justified as follows:

Case (ii): mo < m < Ty

Theorem 4.2 For a given underlying loss random variable X, if there exists a

positive constant d* such that

(14 0)E(X —d)y] = 7, (4.2.29)
) 1
Pr{X > d*} > a, (4.2.31)

then f* = (X — d*); is one optimal ceded loss function to the problem (Pr).

Proof. Similar to the proof of Theorem 4.1, we need to show that the ceded loss
function of the form f* = (X — d*), satisfies the three sufficient conditions C1,
C2 and C3 in Proposition 4.1 for appropriately chosen constants £*,r € R, and

random variable \ € £2.

We begin by choosing £* = d* + (1 + §)E[f*] so that (4.2.11) simplifies to

r—d, x<d
g (z) = (4.2.32)
0, x> d*.
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This implies that {g* > 0} is an empty set and that {¢* = 0} = {X > d*}. For
any constant ¢ such that 0 < < 1, we define A = ——1;x_4-y. Then, with the
a

selected £* and A, we obtain the following fact regarding condition C1:

A&, f)

A%

v

a :5 +r(1+0)E[f] + EP\f]] + E[Vy - 1{ge—oy]
ale+r(1+ OS] + EN]] + 0BV, - 1y

a :5 +r(1+ Q)E[f]] —OE[f - Lix<ay]

+0E| (1 +OELf) = € = f) - Lorsary

= 0,

provided that

Pr{XZd*}:%,
and
5r o1
S P > J* .
r==l17 Pr{X_d}]

Moreover, for any f € Q; we have

OB~ 1) =

<

—0E[1x<ay)(f — f7)]
—0E[f1{x<q+y]
0

Ela— 6 Pr(X > d)] + E[f] [am 1 0)— 6+ 8(1+0) Pr(X > d*)]

(4.2.33)

(4.2.34)

(4.2.35)

(4.2.36)

so that condition C2 is satisfied with the chosen &* and A. Because of (4.2.29),

condition C3 is trivially true for every f € Q, if r > 0.

In summary, the above analysis suggests that in order to fulfill all the optimality

conditions C1, C2 and C3, we need to verify that there exists a constant ¢ € (0, 1]
such that conditions (4.2.34), (4.2.35) and r > 0 are satisfied. From (4.2.35),
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condition r > 0 is equivalent to Pr{X > d*} < 1/(1 + ) which corresponds to the
assumption (4.2.30) in the theorem. Moreover, the condition (4.2.31) guarantees
the existence of ¢ satisfying (4.2.34) and 0 < § < 1. Hence, the proof is complete.
|

Remark 4.4 The conditions (4.2.29), (4.2.30) and (4.2.31) in Theorem 4.2 imply

that the following two conditions must hold to make the theorem applicable:

(a) a(140) <1;

(b) do > d* > dp, where d,, and dy are defined in (4.2.14) and (4.2.16), respec-
tively.

The last condition, in turn, implies that the reinsurance premium budget ™ must

satisfy o, < ™ < M.

Case (iii): m € [mg,00)

Theorem 4.3 Suppose a(l +0) < 1 and 7 > mg. Then f* = (X — dy)+ is an

optimal ceded loss function to the problem (Pr).

Proof. The proof is very similar to that of Theorem 4.1. We will show that the
stop-loss treaties f* satisfies the conditions C1, C2 and C3 in Proposition 4.1 for
appropriately chosen constants £*, 7 € R, and random variable A\ € £2. We proceed

by first introducing the variable 3y, which is formally defined as follows:

1/(1+9)—Pr{X>d9}’ i Pr{X = dy} £ 0:
By = Pr{X = dy} (4.2.37)
0, if Pr{X =d} = 0.
Note that if follows from the definition of dy in (4.2.16) that

Pr{X >dy} <1/(1+6), and Pr{X >ds} > 1/(1+6).
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Thus, 0 < By < 1. Moreover, we also have Pr{X = dy} = 0 provided that
Pr{X > dy} = 1/(1 +0).

By setting £* = dy + (1 + 0)E[f*], then (4.2.11) becomes

T — dg, T < dg;
7 (x) = (4.2.38)
O, T > dg.

Hence, {g*(X) > 0} is an empty set and {¢*(X) =0} = {X > dp}.

Now set » = 0, then condition C3 is trivially satisfied. Define the random

variable \ as

A= —(1+ 9){1{X<d0} +(1- 59)1{X:d9}}. (4.2.39)

Then we have

LENG ) = B[ — S (pxean + (1 — o)L xay)]

1+0
= —E[f (Lx<any + (1= Bo)Lix=ap)]
< 0 for any f € Qy,

where the second equality is due to the fact that f*(z) = 0 for x < d,. Thus,
condition C2 is satisfied with random variable A as defined in (4.2.39).

To verify condition C1, first note that it follows from (4.2.37) and (4.2.39) that

which in turn implies
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and that

E[V+1{g*:0}] > 1+9 E 1{g* 0}]

a(l +0)E 1{X>d@}]

(1+0)E[V.

(1+6)E[VS
a(l+0)EVi(1 = 1ix<ay)]

(14 O)E[V(

(1+9)

v

a1+ 0)E[V (1 — Lix<ayy — (1 — Bo)Lix=dy})]

o(1+ 0 [V (”m)]

— a(l+0)E 1+9 —f- g)( 119)}
_ JA 3

= al+9) {E (1+9) m]
GRS

The above result implies that A(&, f) > 0, i.e. condition C1 is satisfied with the

chosen constants £* and r, and random variable A. Hence the proof is complete. O

Remark 4.5 Suppose m < 7, and there exists a constant d* such that (1+0)E[(X —
d*)] = m. Then Theorem 4.1 asserts that the stop loss treaty f*(x) = (z—d*)4 is an
optimal ceded loss function. Hence, combining this fact with Theorems 4.2 and 4.3,
we see that a stop-loss treaty f*(X) = (X —d*), is optimal for a general reinsurance
premium budget 7, where the retention d* is determined by (1 + 0)E[(X — d*)4]| =

min{m, my}.

Remark 4.6 Suppose an insurer is willing to spend up to m with ™ > my, to transfer
part of its risk to a reinsurer. Theorem 4.3 asserts that the insurer should only be
optimally spending a reinsurance premium budget of my. It is not possible to reduce

its risk (in terms of smaller CTE) by spending more than my.
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4.2.3 Some Numerical Examples

In this section, we present some numerical examples to illustrate the results
obtained in the previous section. More specifically, Example 4.1 draws results from
Theorem 4.1, Example 4.2 is based on Theorem 4.2, and Example 4.3 uses results

from both Theorems 4.2 and 4.3.

Example 4.1 Assume the loss random variable X is exponentially distributed with
mean p = 1,000, so that it has a survival function Sx and a probability density
function fx as follows.
Sx(z)=e"®, fx(x)=—e w, for x>0.
1

Thus, it follows from the definition in (4.2.14) that

do = Sy'(a) = —plna, for 0<a <1
Consequently, it is easy to verify that

To = (L+ 0)E[(X — da)4] = (1 +O)pa,

which represents the maximum level of the reinsurance premium budget for Theorem
4.1 to be applicable. We further assume that 6 = 0.2 and o € {0.01,0.05,0.10}.
With these values, the corresponding w, and d, are:
To = 12 and d, = 4,605.170, for a = 1%
o = 60 and d, = 2,995.732, for a = 5%
o = 120 and d, = 2,302.585, for a = 10%.
Since Theorem 4.1 applies to the case m < 7, we therefore set m = 10 so that the

condition ™ < 7, 18 satisfied for all these three levels . To illustrate Theorem 4.1,

seven reinsurance treaties are considered. The first three treaties are



a=1% a=5% a = 10%

do 4,605.170 2,995.732 2,302.585

T 12 60 120
Minimal CTE 4,781.837 3,839.066 3,229.252
Trl: f(z) = c*(x — do)+ ct = % o % = %
T2 f(z) = (x —d)y d=14,787.492 | d=4,787.492 | d=4,787.492
Te3: f(z) = (x —do)y Ao | Lo =1,791.760 | I, = 182.322 lo = 87.011
Trd: f(x) = cz,

6= 1/120 CTE=5,568.460 | CTE=3,972.435 | CTE=3,285.064

Tr5: f(z) = ¢(x — 1,000),
c=0.01132617

Tr6: f(z) = c¢(x — 1,500),
c = 0.01493896

Tr7: f(x) = c¢(x — 2,000),
c = 0.02052516

CTE=5,568.674 | CTE=3,977.465 | CTE=3,292.169

CTE=5,553.843 | CTE=3,968.449 | CTE=3,285.656

CTE=5,530.911 | CTE=3,954.507 | CTE=3,275.587

Table 4.1: CTE of some typical reinsurance treaties with 7 = 10 < 7.

The remaining four treaties take the form: f(x) = c(x —d),, for d =0, 1000, 1500
and 2000 and these treaties are labeled, respectively, as Tr4-Tr7. For the reinsurance
treaty to be well-defined, we have yet to specify its parameter value (such as ¢ in
Tri, d in Tr2, ....) The required parameter is determined in such a way that the
loaded reinsurance premium coincides exactly with the reinsurance premium budget;

(1+0)E[f(X)] = .

Applying Theorem 4.1, we see that treaties Trl, Tr2 and Tr3 are all optimal rein-
surance treaties, while Tr4—Tr7 may not be. We have reported the CTE value of
the resulting total loss in presence of each treaty in Table 4.1. From this table, we
see that the values of CTE for these optimal treaties Tri1*, Tr2* and Tr3* are less
than those for the treaties Trj—Tr7. This implies that the treaties Trj—Tr7 are
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not optimal reinsurance solutions according to the C'TE minimization criterion.

Example 4.2 In this part of the exercise, we use the same setup as in the previous
example except that we increase the reinsurance premium budget to m = 400. This

15 to ensure that Theorem 4.2 applies with m, < m < 7.

Assume X is also exponential distributed with mean p = 1000 and the loading
factor 8 = 0.2 as in the previous example, and consider the three confidence levels of
a = 1%, 5% and 10% as well. With such a setting, we have d, = Sy* (1/(1+0)) =
pln(1+6), and hence mg = (140) E[(X —dy)+] = p = 1000. Note that in the previous
example, we have derived the values of m, as shown in the Table 4.1, which we also

report in Table 4.2 for each .

In order to apply the results of Theorem 4.2, the reinsurance budget m must
satisfy the condition m, < m < my. Hence, we take m = 400. By Theorem 4.2, the
stop-loss reinsurance f(x) = (x — d*) satisfying (1 + 0)E[(X — d*)4] = 7 is one of
the optimal treaties. We reported the value of retention d* in Table 4.2, as well as
the minimal CTE of the insurer’s total loss in presence of this stop-loss reinsurance
treaty. Moreover, we also considered other eight insurance treaties Tr1—Tr8 ( as
shown in Table 4.2) with coefficients such that the reinsurance premium for them
are all 400. The CTE of insurer’s total loss in presence of these treaties are also
reported in Table 4.2. Clearly, the C'TE value of these treaties Tr1—Tr8 are higher
than that of the stop-loss treaty. Moreover, with the retention d in treaties Trl1—
Tr8 increasing to the retorsion for the optimal stop-loss, the CTE decreasing to a

value close the CTE for the stop-loss treaty Tr1*.

Example 4.3 Let X be a Pareto random loss variable with survival function Sx(x) =

3
(:ci’goo%o) for x>0 so that its mean E[X] = 1,000 is the same as the previous

two examples. Assume the loading factor § = 0.2 and confident level 1 — a = 95%.
Thus,

dy = 2,000(a" Y3 — 1) = 3,428.8352, 7, = (14 0)E[(X — da)4] = 162.8651,
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a=1% a=5% a=10%
do 4,605.170 2,995.732 2,302.585
Mo 12 60 120
Tri*: f(l') = (‘T - d*)+a
CTE=1,498.612 | CTE=1,498.612 | CTE=1,498.612
d* = 1,098.612
Tr2: f(x) = cz,
CTE=4,136.780 | CTE=3,063.822 | CTE=2,601.723
c=0.3333333
Tr3: f(x) = e(x — 200) 4,
CTE=3,804.540 | CTE=2,850.360 | CTE=2,439.416
c=0.4071343
Trd: f(x) = c(x — 400) 4,
CTE=3,416.770 | CTE=2,607.665 | CTE=2,259.202
c=0.4972749
Tr5: f(x) = e(x — 600) 4,
CTE=2,965.165 | CTE=2,333.256 | CTE=2,061.108
c=0.6073729
Tr6: f(x) = c¢(x — 800)4,
CTE=2,440.469 | CTE=2,024.988 | CTE=1,846.050
c=0.7418470
Tr7: f(z) = ¢z — 1,000),
CTE=1,832.453 | CTE=1,681.317 | CTE=1,616.227
c =0.9060939
Tr8: f(x) = (z —d)+ A,
CTE=3,639.71 | CTE=2,090.922 | CTE=3,090.922
d=1,000,1 = 2,365.460

Table 4.2: CTE of some typical reinsurance treaties with 7, < 7 =400 < 7.
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and

1 -1/3
dp = 2,000 [(1—+9) - 1] = 125.3171, w9 = (1 + ) E[(X — d),] = 1,062.659.

By Theorem 4.2, we know that the stop-loss treaty f*(z) = (v — d*) with d*
determined by (1+0)E[f*]| = m is optimal provided the reinsurance premium budget
m € [162.8651, 1,062.6586]. However, if the reinsurance premium budget m >
1,062.6586, it follows from Theorem 4.3 the stop-loss reinsurance f*(z) = (x —d*)4
with retention d* determined by (1 + 0)E[(X — d*)+] = 1,062.6586 is optimal. In
fact, in this case, it is impossible for stop-loss treaties with reinsurance premium

larger than mg to be optimal. This is because the stop-loss treaty will have a retention

d less than dy and the total loss Ty = X Nd+ (1 4+ 0)E[(X — d)4], which implies
CTEOC(Tf) :d+(1+9)/ Sx(l')dl'
d

Clearly, by the above expression, CTE,(T}), as a function of d, is decreasing on

[0, dp] while increasing on [dg, c0).

4.3 Optimal Reinsurance Model: Binding Case
To complete our analysis on the optimal reinsurance model, this section focuses
on the following optimization problem:

minfegf CTEOC(Tf),
s.t. (14+0)E[f] = .

(Qo) (4.3.40)
As in the previously considered optimal reinsurance models, the notation Qy de-
notes the set of feasible ceded loss functions, i.e. Q; = {f € £*:0 < f(z) <
x for x > 0}, and 7 is an exogenous variable representing the reinsurance pre-

mium budget. The only difference between problem (Pg) defined in (4.1.5) and
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problem (Qp) lies on how we interpret the reinsurance premium budget 7. In the
former case, the insurer is willing to spend up to 7w while in the latter case, the
constraint is binding in that the reinsurance premium of the optimal ceded loss
function is strictly equal to w. Hence problem (Qp) is more restrictive and we are

interested in its solution for = € (0, 7x) where mx = (14 0)E[X].

One motivation for considering the above optimization problem (Qpg) is that it
allows us to address more explicitly the tradeoff between risk and reward. To see
this, we will first focus on the objective function in model (Qg) and then on its
constraint condition. Recall that the notation I'(f) was introduced at the beginning
of the chapter to denote an insurer’s net risk of insuring risk X which takes into
consideration the premium that the insurer receives from the policyholders and the
reinsurance premium the insurer is obligated to pay for reinsuring its risk X; i.e.
I'(f)=Tr—po=X— f(X)+ (14+0)E[f] — po. Because of the translation invariance
property, we have CTE,(I'(f)) = CTE.(Ty) — po. Since po is a constant for a
given X, this implies that if f* is a minimizer of CTE, (7Y}), it is also a minimizer
of CTEL(I'(f)). In other words, using CTE as the relevant measure of risk, if
f* minimizes the CTE of the insurer’s total risk 7%, then it also minimizes the

corresponding CTE of the insurer’s net risk.

We now shift our attention to the constraint condition in model (Qg). The term
b(f) = —E[['(f)] = po — E[X] — OE[f] captures the insurer’s expected net profit in
the presence of reinsurance. Note that the insurer’s expected net profit depends
on the choice of the ceded loss function. Furthermore, the constraint E[f] = 7,
where m = 12 (p, —E[X] —b(f)), can be interpreted as the profitability requirement
in that once the condition is attained, the resulting optimal ceded loss function f*
ensures a certain prescribed level of expected net profit b(f*). Consequently, f*
that solves model (Qp) represents the insurer’s least risk exposure (as measured
by the CTE) for a given level of expected profitability. Hence if model (Qg) is

solved repeatedly for each 7 € (0, 7x), where mx = (1 + 6)E[X], then we trace out
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pairs of (CTE,(I'(f*)),b(f*)) that give the best possible risk and reward tradeoff.
This is analogous to the efficient frontier of the Markowitz portfolio mean-variance
analysis. For this reason, we refer the curve represented by (CTE.(I'(f*)),b(f*))
as the insurer’s reinsurance efficient frontier. Depending on the risk tolerance of
an insurer, the reinsurance efficient frontier facilitates the insurer on its optimal

selection of ceded loss function.

The mathematical technique used to solve problem (Pg) can similarly be used

to derive the optimal solution for problem (Qg). This entails reformulating problem

(Qo) as

Q] i, Gel&N=Ex E {(X — [+ (4O - g)J

s.t. (14 0)E[f] = .

(4.3.41)

If (¢*, f*) are the optimal solutions to (Qr), then f* is also the optimal solution to
(Qo) (see Lemma 4.1). Moreover, the problem (Qr) is convex and thus a ceded loss
function f* is a solution to (Qr) if and only if there exist constants £* and r, and
the random variable A € £2? such that the three optimality conditions C1, C2 and
C3 in Proposition 4.1 are satisfied except with the binding condition (1+0)E[f] = 7
in defining the set Q,. To avoid any confusion, we will define @ as Q' = {f €
L?: (14 0)E[f] = '} while we reserve Q, for Q. = {f € L?: (1 + 0)E[f] = 7}.

Remark 4.7 The results in Theorems 4.1 and 4.2 indicate that for any given rein-
surance premium budget m € (0, 7], the pure stop-loss treaty f*(z) = (X — d*)4,
where (14 0)E[f*] = =, is an optimal reinsurance solution to problem (Pg). Note
that the optimal retention d* is determined such that the resulting reinsurance pre-
mium coincides with the reinsurance premium budget w. In other words, the optimal
ceded loss function is attained at the reinsurance premium budget. Theorem 4.3,
on the other hand, reinforces that even if an insurer is willing to spend © > my,

the stop-loss treaty is still one possible optimal reinsurance treaty, except that the
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solution is no longer binding. More specifically for m > my, the optimal retention
d* is dg and the optimal reinsurance budget is 1y < 7 even though the insurer is
willing to spend more. In view of this result, it is therefore never rational for an
insurer to spend more than wy to reinsure its risk. Nevertheless, it is of theoretical
interest to examine the solution to our optimal reinsurance model under the binding
reinsurance premium budget constraint, as we establish in the following theorem for

T E (0, 7TX).

Theorem 4.4 Assume a(1+60) <1 and there exists a constant d* such that (1 +
O)E[(X —d*)4] = 7 for each w € (0,mx]. Then the stop-loss treaty f*(x) = (x—d*)4
is an optimal solution to problem (Qg).

Proof. In view of Remark 4.7, we only need to consider the case with 7 € (mg, 7x].
Moreover, it suffices to demonstrate that f*(x) = (z — d*), satisfies the three
optimality conditions C1, C2 and C3 in Proposition 4.1 with Q. replaced by
Q ={feLl?: (1+0E[f]=r}

Before we proceed, we fix a m > 7y and denote § = Pr{X > d*}. Then,
(I+0E(X —d)y]=m>m=(14+0)E[(X — dy)4]

implies d* < dy, and hence 6 > Pr{X > dy}, which, together with the fact Pr{X >
dg} > Fle and the assumption a(1 + ) < 1, further implies that 6 > a.

Note that we only need to verify conditions C1 and C2 since under the binding
condition f € @/, condition C3 holds trivially for any constant » € R. By choosing
& =d" + (1 + 0)E[f*], we have

g () = (4.3.42)
0, T > d*.

This implies {g* > 0} is an empty set and {g* = 0} = {X > d*}. If we further set

1 1
T = m -1 and )\ = —51{X<d*}, (4343)
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then for any f € O/,

SEN(f = f)] = —E[(f = /") Lix<ary] = —E [flix<ay] <0,

where the second equality is due to the fact that f*(z) = 0 for x < d,. Thus,
condition C2 is satisfied with the chosen constants £x and r, as well as the random

variable \.

To verify condition C1, let us first note that the condition 0 > « implies

o
E[Viligeoy] > 5

(%

| 2

The above result, in turn, leads to

A€ ) = a[ + (L4 O)ELf] + ] + SEV(1+ 6]
+r(1+ O[]+ ED]] + SE[(1+ OELA = =€) 1+ o]
- 5(@—%E[1+5)\]>+aE[)\f]—%E[f(1+5>\)]

FE[f] (ar(l +0) + %(1 T OEN +5>\]>. (4.3.44)

= @

Moreover, by (4.3.43) we have E[(1 + 0A)] = 6. Thus, (4.3.44) implies that

A€, f) > €(a —a) + E[f] <ar(1 1 0)+a(l+6)— %) _0,

and hence condition C1 is also satisfied. This completes the proof. O

Remark 4.8 From the above theorem, the ceded loss function f*(x) = (z — d*),
with (14 0)E[f*] = m solves model Qo if a(146) <1 and the underlying risk X is

a continuous random variable. Thus the reinsurance efficient frontier is given by
{(CTET().BUM) + /= (X = &)y, (14 O)Ef ) =7, and 7 € (0,7x]},

where T'(f*) = (X Ad*) + 7 — po, and b(f*) = po — E[X] — %

el
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Example 4.4 As in FExample 4.1, we similarly assume that the underlying risk X
15 exponentially distributed with mean p = 1000. The expectation premium principle
15 adopted by both the insurer and reinsurer in setting the insurance premium with
respective safety loading factor n = 0.1 and 8 = 0.2. We are interested in the

reinsurance efficient frontier o = 5%.

Based on the above setting, we have d, = 2995.73,dy = 182.32, 1, = 60,79 =
1000 and 7, = (1 + 0)E[X] = 1200. Theorem 4.4 asserts that to obtain the optimal
ceded loss function, we merely need to determine the retention level d* that satisfies
(14+0)E[(X —d")4] = 7 for each m € (0,7x]. Under the exponential distribution
with mean p, it 1s easy to show that

A

™

Furthermore, it is clear that CTEL(X Nd) = d ford < d, = —pln«a, or equivalently
T >m, Ford>d,, i.e., m < 7,,

1 [e.e]
CTEL,(X Nd) = du+ —/ Pr{X ANd > z}dx
(0%

= d,+ H [e—da/u _ e—d/u}
o
T

= pu(l—Ina)— a1 o)

Thus the reinsurance efficient frontier, (CTEL(L(f*)),b(f*)), is given by

CTELT(f*)) = CTE,(XAd")+7—po

( 1
1-1 — 1— < T,
o 1+6
uln(w)—l-ﬂ—po, T > Ma,
L 70
(47
—Eﬂ' + 2895.732, m < 60,
= 12 (4.3.45)
1000 In (ﬂ) 4+ m — 1100, 7 > 60,
L 70
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Figure 4.2: Risk reward under optimal reinsurance arrangement.
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Figure 4.2 plots the resulting reinsurance efficient frontier for m € [0, 7x]. We now

b(f*) = po — E[X] —

conclude the example with the following remarks:

(i) It is striking to note that the reinsurance efficient frontier has a tremendous
resemblance to the classical Markowitz mean-variance efficient frontier even

though the risk in our reinsurance model is captured by the CTE.

(i) Without reinsurance, the insurer retains the entire amount of the insurance
premium and hence its expected profit margin is 100.> This is not surprising
since we have assumed that the insurer’s loading factor is n = 10%. More-

over, the insurer’s risk exposure in term of CTE reaches its peak at 2895.72.

2In practice, the profit margin will be less than 100 since this amount also includes expenses,

adminstration charges, in addition to profits. In our analysis, we ignore these charges for simplicity.
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(iii)

()

These values can be obtained by setting m = 0 in (4.3.45) and (4.3.46). How-
ever, as the insurer becomes more risk averse and is willing to spend more on
purchasing reinsurance, its expected profit declines but its CTE risk exposure
also decreases. This is the classical risk and reward tradeoff. More precisely,
as the reinsurance premium budget m increases from 0 to 60, both the expected
profit and the CTE declines linearly at the rate of% and 15% from 100 and
2895.72, respectively. The dot dashed line in Figure 4.2 depicts the tradeoff
for m € [0,60].

When the reinsurance premium budget increases beyond 60, the insurer’s ex-
pected profit continues to drop linearly. The CTE, on the other hand, continue
to decrease but it reaches its minimum at m = mg = 1000. When m > 1000, the
CTE actually increases even though the expected profit is still declining. Con-
sequently, it is never rational to spend more than 1000 in reinsuring its risk as
already noted in Theorem 4.3. To distinguish these two parts of the frontier,
we denote the portion with m < 1000 as the efficient frontier while the portion
with m > 1000 as the inefficient frontier, in analogous to the Markowitz model.

The efficient and inefficient reinsurance frontiers are depicted in Figure 4.2.

We point out that while m < 1000 yields a reinsurance frontier that is efficient,
we also note that for m > 600, the expected profit of the insurer is negative
(see (4.83.46)). Hence under ordinary circumstances, the insurer will not be
spending more than 600 on reinsurance, otherwise it would be prudent of not

insuring the risk at all.
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4.4 Appendix: Mathematical Background and Op-

timality Conditions

The main objective of this appendix is to formally prove Proposition 4.1, i.e., to
establish the optimality conditions for optimization problem (Pr). The technical
details are described in Subsections 4.4.3 and 4.4.4. For completeness, we also col-
lect some key concepts and results associated with convex analysis and directional
derivatives in Subsections 4.4.1 and 4.4.2. For a comprehensive review on these

aspects, we refer to Bonnans and Shapiro (2000).

4.4.1 Directional Differentiability

Throughout this subsection, let £ and F denote two vector linear normed spaces

and consider a mapping g : £ — F.

Definition 4.1 (1) g is said to be directionally differentiable at a point x € € in a
direction h € £ if the limit

¢ (@)[h] = lim 2 (z +th) — g(x)

t—0t t
exists, and in this case, g'(x)[h] is called the directional derivative of g at point x

i direction h.

(2) If g is directionally differentiable at x in every direction h € &, then g is

said to be directionally differentiable at x.

(8) g is said to be Gateauz differentiable at x if g is directionally differentiable

at x and the directional derivative g'(x)[h] is linear and continuous in h.

Remark 4.9 By the above definition, g s directionally differentiable at x in a
direction h if and only if

g(z +th) = g(x) + tw + o™ (¢)
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ort >0, where o7 (t) denotes a function such that o™ (t)/t — 0 ast — 07, and w is
f ) J

a vector in &€, which indeed is identified as the corresponding directional derivative.

4.4.2 Optimization in Banach Spaces

Throughout this subsection, we assume £ and F to be two Banach spaces with
dual spaces £* and F*. Note that the dual space consists of all the linear and
continuous operator which mapping the Banach space into the real line. For any
operator L € £* (or F*), we use < L,z > to denote L(x) for z € £ (correspondingly
F).

Now let @) and K denote, respectively, two nonempty subsets of £ and F, and

consider the following program:

mianQ Ho(llf),

s.t. Hi(z) € K,

(P)
where Hy and H, are two mappings such that Hy : £ — R and H; : £ — F. Note
that the feasible set of Problem (P) is

d:={recQ:H(x)e K}=QnH ' K),

where H;'(K) = {r € £ : H\(z) € K}.

Definition 4.2 A mapping ¥ : € — 27 is called a multifunction, where 27 denotes
the power set of F, i.e., the collection of all the subsets of F. Its graph is defined

as
gph(V) = {(z,y) €E X F 1y € ¥(z)},x € E,
and its (graph) inverse W=t : F — 2¢ is defined as
Ui (y) = {r e €y e V(x)}.
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Definition 4.3 (1) A multifunction ¥ : € — 27 is said to be convex, if its graph

grh(W) is a convex subset of £ x F, or equivalently
t\If(SL’l) + (1 — t)\II(LL’Q) C \If(txl + (1 — t)l’g)

for any x1,z2 € € and t € [0, 1].

(2)We say that a mapping Hy : £ — F is convex with respect to a convex closed
set C C F, or simply that Hy is C-convex, if the corresponding multifunction
My, (x) = Hi(x) 4+ C is convex, where Hi(x) + C denotes {Hy(x) +y:y € C}.

Remark 4.10 By the above definition, if Ho(x) is linear then it is conver with

respect to any convexr subset of F.

Definition 4.4 Problem (P) is called convez, if it satisfies these three conditions:
(i) Ho(x) is convez, (ii) Hy(z) is convex with respect to the set (—K), and (iii) both

Q@ and K are convex and closed subsets.

Definition 4.5 (1) A function x* € £* is said to be a subgradient of a function
Hy: € — R at a point x € &, if Hy(x) is finite and

Ho(y) — Ho(x) >< a2,y —x > forall y € €.

(2) The collection of all subgradients of Hy at x, denoted as OHy(x), is called
the subdifferential of Hy at x, i.e.,

OHy(z) ={a" € & : Hy(y) — Ho(z) >< 2",y —x > holds for all y € E}.
(3) Hy is said to be subdifferentiable at x if Hyo(x) is finite and OHy(x) # @.

Definition 4.6 The normal cone of the closed convex subset K of F at point yg, de-
noted as Nk (yo), is defined as the set {\ € F* :< X\,y—yo) >< 0, holds for all y €
K}.
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Lemma 4.2 Assume that problem (P) is convex. Then one sufficient and necessary

condition for a feasible point xo to solve problem (P) is as follows: There exists

A € F* such that
0 € 0, L(zo, \) + Ng(xo), and X € Ng(Hy(xp)). (4.4.47)
Here, L(x,\) denotes the Lagrangian function of problem (P), which is defined as
L(z,\) = Ho(z)+ < X\, Hi(z) >, (x2,\) € & X F

Ng(Hq(zo)) and Ng(zo) respectively denote the normal cones of the closed convex

sets K and Q) at corresponding point Hy(xo) or xg.

Proof. See Bonnans and Shapiro (2000, p148).

Lemma 4.3 Suppose X is a linear vector space, and let f be a convexr functional
from X to the extended real line R taking a finite value at a point x € X, and let
Y(-) denote the directional derivative f'(x)[-] of f. Then 0f(z) = 0¥(0).

Proof. See Proposition 2.15 of Bonnans and Shapiro (2000, p86). O

4.4.3 Proof of Proposition 4.1 (Optimality Conditions)

The goal function G, (¢, f) in problem (Pr) is a functional defined on the prod-
uct space H := R x £2. It is clear that H is a Hilbert space if we equip it with the
inner product < -, - > defined by < uy,us >= E[{1& + f1f2] = &1& + E[f1 /2] for
w; = (&, f;) € H and i = 1,2. Therefore, we can discuss our problem (Pr) as an
optimization problem over the Hilbert space (H, < -,-,>>). Recall that we have
summarized some key results about optimization on Banach space in Subsection
4.4.2 and note that a Hilbert space is a special Banach space. We will show that
(P) is a convex problem and then complete the proof by applying Lemma 4.2.
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To show the convexity of the problem (Pr)3, we first note that the feasible set
Q = Qs () Qx of the problem is clearly a closed convex subset of H. Moreover, for
any u; = (&1, f1) and ugy = (&, f2) from Q, and any scalar b € [0, 1], we have

bGa(&, fl) + (1 - b>Ga(£2a f2>

— b +b$E {(X — fi+ (1+0)E[fi] —51)J

=06+ (102 | (X - o+ 1+ 0L - &) ]

> [bE + (1= b)) +éE{[b<X—f1 + (1 + O)E[f] —gl>
HL=0(X — o+ 1+ 0] - )] |

- Ga(b§1+(1—b)§2,bf1+(1—b)f2>, (4.4.48)

which implies the convexity of the functional G, (&, f). Finally, E(f) is clearly linear
as a functional mapping £2 into R, and hence, in light of Remark 4.10 in Subsection
4.4.2, it is clearly convex with respect to the interval [0,7]. Therefore, (P) is a

convex problem.

To proceed, it is worth emphasizing a fact about the Hilbert space H resulted
from the Riez representation theorem: For any linear mapping M € H** there

exists a unique element (r, \) € H such that

(M, (€, f)) =< (r,A), (&, [) >=r&{ + E[M]

for all (¢, f) € H. Therefore, the Lagrangian function for Problem (Pr) takes the

following form:

L(&, f;7) = Ga(&, f) +r(1+ O)E[f], (4.4.49)

3Refer to Definition 4.4 in Subsection 4.4.2 for the definition of a convex optimization problem

on a Banach space.
“Here, H* denotes the dual space of the Hilbert space H. The dual space consists of all the

bounded linear functional defined on the Hilbert space H.
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for £ € R, f € £L? and r € R. Denote K, = [0, 7]. Then, applying Lemma 4.2, we
see that the optimality conditions for u* = (£*, f*) to solve problem (Pr) are as

follows: There exists constant r € R such that
r € Ni, (E[f*]) (4.4.50)
and
0 € e L(E", [7i7m) + Nrxo, (€7, f7) (4.4.51)

are satisfied. Here, O p)L(£*, f*;7) denotes the subdifferential of L(¢, f;r) at
point (&%, f*), Ni.(E[f*]) is the normal cone to the convex set K, at E[f*], and
Nrxg, (£, f*) denotes the normal cone to R x Q; at point (£, f*).

Clearly, it follows from the definition of the normal cone that (4.4.50) is equiv-
alent to r(m — E[f*]) < 0 for all m € I, or equivalently

r(E[f] —E[f*]) <0 for all f€ Qy, (4.4.52)

which is condition C3 in the Proposition. To analyze condition (4.4.51), let us in-
vestigate Nrx o, (€%, f*) first. Suppose (¢, \) € Nrxo,(£*, f*), then by the definition
of Nrxg, (&, f*), we see

C(§—¢") <0, and E[N(f — f)] <0 for all (£, f) € R x Qy;

thus ¢ = 0, and (4.4.51) is equivalent to the condition that there exists a random

variable \ € £? such that
EN(f — )] <0 forall fe Qy, (4.4.53)
and

(0,=A) € Oe.p) L(E™, f757). (4.4.54)
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Note that (4.4.53) is exactly condition C2 in the proposition, and therefore the
proof will be complete if we would show the equivalence between (4.4.54) and con-
dition C1 in the proposition. For this purpose, we derive the directional derivative

of L(- ,-;r) as follows:

Ve f) = L(E FE
= o {EV L]+ EV g} + (L4 0L, (4455)

where ¢g* and V' are defined, respectively, in (4.2.11) and (4.2.12). It is worth noting
that it is quite non-trivial in establishing the directional derivative of L(- ,- ;7).
Subsection 4.4.4 provides the details of deriving the directional derivative W (¢, f),

where some approximation results in probability are employed.

Finally, by applying Lemma 4.3 to the established directional derivative W, it is

clear that condition (4.4.54) is equivalent to
(07 _)\) S 8\11(07 0)7

which is further equivalent to condition C1 in the proposition since W(0,0) = 0.

Therefore, the proof of Proposition 4.1 is complete.

4.4.4 Directional Derivative of the Lagrangian Function

In this subsection, we shall discuss the directional derivative of the lagrangian

function L(&, f;7) : R x L2 x R — R such that

L(E, ;1) = Gal€, f) —I—r[(l +O)E[f] —w}, (4.4.56)

which is defined in (4.4.49) with

Gal€, f) :£+éE l(X—f+(1+9)E[f] —g)J. (4.4.57)
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Let (&, f) = X — f+ (L +0)E[f] = & h(Y) =Y, and e(Y) = E[A(Y)], then
Go(&, ) =&+ Z(eog)(&, f), where “eo g” denotes the composition of functions g
and e. We shall take several steps to obtain the directional directive of E[h(Y)] at
Y € £?in a direction Z € £?, and then obtain the corresponding result for function
Go. Also, recall that the sample space Q = [0, 00) for all random variables in this

chapter.

Step 1: Let Z be an indicator random variable such that Z(x) = alj;,5,)(x) for all
x € (), where a, ¢; and J, are nonnegative constants and ¢; < d,. Then, it follows

from the definition of the directional derivative that

HY)Z)() = lim [V +12)s - Vi) (2)

t—0t
a-1g,59(x), Y(r) >0,
0, otherwise.
= Z(z) liyso(x). (4.4.58)

Step 2: Suppose Z is a nonnegative simple random variable such that Z(z) =
Yo a;Zi(x) for all x € Q, where n is some positive integer, {Z;,i = 1,2,--- ,n}

are indicator random variables of the form 15, 5,) with disjoint domains [0;, 6,), and

_Y+}
J’_

{a;}"_, is a sequence of positive real numbers. Then,

HOY)Z] = lim S {(Y +12), — Y.}

t—ot t

. 1{
= lim -
t—0t t

1=1

= Z-1ys0), (4.4.59)



where the third equality is resulted from the assumption that Z;,i = 1,2,--- ,n
have disjoint domains, and the last second equality is due to the result obtained in

Step 1.

Step 3: Assume Z is a general nonnegative random variable from £2 and consider

¢/ (Y)[Z], the derivative of e(-) at Y in direction Z, which is defined as

¢(Y)[Z] :tlirélE{% (Y +t2), —m}.
AG2) G-
GORGIE

1
Combining the above, we know that l— [(Y +tZ), — Y+} is uniformly dominated

Clearly, on {z : Y(z) < 0} we have

‘% (¥ +12), —Y,]

and on {z : Y (z) > 0} we have

‘% (Y +12), —Y,]

t

by the integrable random variable Z, and hence it follows from the dominated

convergence theorem that

¢(Y)[Z] = E {t% % (Y +tZ), — V] } .

On the other hand, it is well known that there exists a nondecreasing sequence of
nonnegative simple random variable {Z,,n > 1} such that Z, — Z almost surely;
thus
. .1
dY)Z] = E {tl_l)IOI}r 711520— (Y +tZ,), — YJJ} :
1

To proceed, we denote M (t,n) = n (Y +tZ,), — Y] as a function of the variables
t and n. Clearly we know that M (¢, n) is nondecreasing in n for any fixed ¢ > 0. Now

fix n and consider the monotonicity of M(t,n) as a function of ¢. Note that Z, is a

nonnegative random variable. Thus, on {z : Y (z) > 0}, M(¢,n) is uniformly equal
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to Z, forallt > 0. On{x:Y(z) <0},for0 <t < -=Y/Z,, M(t,n) =0—(Y/t)+ =0
and for t > =Y/Z,, M(t,n) = Y/t + Z,, which is monotonically decreasing to 0
as t decreases to —Y/Z,. Therefore, for any sample point in 2 and any fixed n,
M(t,n) is decreasing as ¢ decreases to 0. This implies that the two limits in the
above expression of €/'(Y')[Z] are exchangeable and thus

e(Y)Z] = E { lim lim (Y +Z,), — YJ}

t—0+t n—oo

= E { lim lim % (Y +tZ,), — Y+]}

n—oo t—0+

- E [lim Z - 1Y20]

n—0o0

= E[Z 1y, (4.4.60)

where the third equality follows from the result obtained in Step 2.

Step 4: Suppose Z(x) = —bljs,5,)(x) for all x € ), where b, §; and ¢, are nonneg-
ative real numbers such that §; < ¢,.. Clearly, we have
1
WY)[Z)(z) = lim —[(Y +12); = Yi](2)

— lim (Y —#(~2). — Vi) ()

t—0+ ¢

— lim (Y £ 5(=2))s — Vi)

5—0~ S
—b- 15,59 (x), Y(z) >0,
0, otherwise.
= Z(x) - lyso(x). (4.4.61)

Step 5: Suppose Z is a nonnegative simple random variable such that Z(z) =

— >0 biZi(x) for all z € Q, where n is some positive integer, {Z;,i =1,2,---,n}

are indicator random variables of the form 15, 5,) with disjoint domains [0;, ), and
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{b;}I_; is a sequence of positive real numbers. Then,

WY)[Z] = lim 3[(1/ Y tZ), — YJ

t—0t

TR e

= lim % {2:; (v —:2), = V] }

_ ZLIOH O~ iz, Vi

_ i[—biZi ST

- Z: : 1iys0;. (4.4.62)

where the third equality is resulted from the assumption that Z;,i = 1,2,--- n
have disjoint domains, and the last second equality is due to the result obtained in

Step 4.

Step 6: Assume Z is a general negative random variable from £2 and consider

¢/ (Y)[Z], the derivative of e(-) at Y in direction Z, which is defined as

¢ (Y)[Z] = lim E {% (Y +t2), - Y] } .

152,63,
(59,52
i

(Y +tZ), — Yy] is uniformly dominated

Clearly, on {z : Y(z) < 0},

1
SV +12), Y] =0,

and on {z : Y(z) > 0},

1
)t (Y +tZ), —Y,]

Combining the above, we know that
by the integrable random variable —Z, and hence it follows from the dominated

convergence theorem that
1
/ 3 - _
e(Y)Z]=E {tli:%l+ " [(Y +t7)., Y+] } .
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On the other hand, it is well known that there exists a decreasing sequence of

negative simple random variable {Z,,,n > 1} such that Z,, — Z almost surely; thus

t—0+T n—oo

¢(Y)[Z] = E{ lim lim 1 (Y +tZ,), — YJJ} :

To proceed, we denote M (t,n) = % (Y +tZ,), — Y] as a function of the variables
t and n. It is clear that M(t,n) is decreasing in n for any fixed ¢t > 0. Now fix
n and consider the monotonicity of M(¢,n) as a function of t. Note that Z, is a
negative random variable. Thus, on {z : Y(x) < 0}, M(¢,n) = 0 uniformly for all
t>0.On{z:Y(x) >0}, for0<t<-Y/Z, M(t,n)= (Y/t+2,)—(Y/t), = Z,
and for t > —~Y/Z,, M(t,n) = 0 — Y/t, which is monotonically decreasing to Z,
as t decreases to —Y/Z,. Therefore, for any sample path in Q and any fixed n,
M((t,n) is decreasing as t decreases to 0. This implies that the two limits in the

above expression of €/'(Y')[Z] are exchangeable and thus

t—0+t n—oo

d(Y)Z] = E { lim lim 1 (Y +tZ,), — YJJ}

n—oo t—0+

= E{ lim lim ! [(Y—i—th)Jr—YJr}}
— E [lim Zn-1y>0]

= E[Z 1ysq, (4.4.63)

where the third equality follows from the result obtained in Step 5.

Step 7: Now consider the directional derivative of e(Y') = E[h(Y)] in the direction

of a general random variable Z € £2.

Denote N = {z : Z(z) < 0}, N = {z: Z(z) > 0} and Z_ = max{0, —Z}, then

132



we have

(Y7 = dim v viz), -]
— th:%l le (Yig+ Y1y +tZ,1y —tZ 1y), — (Yily + Yily)]
+t1i%1+ E{1N (Y —tz), —Y.]}

. o1
= Jlim ;E {{Y +tZy), - Y]} + lim —E {[(v —tz_), - Y{]}
= W[Z ) +(Y)-Z_]. (4.4.64)
Applying the results (4.4.60) and (4.4.63) derived in Step 3 and Step 4 respectively,

we can immediately obtain the derivative of function e(-) at Y in a direction Z as

follows.

6/(Y)[Z] = E[l{yzo}Z+] - E[l{y>0}Z_]. (4465)

Step 8: Now let us consider the directional derivative of the Lagrangian function
L(-,5m1,m9) at ug == (&, fo) € R x L2 in direction u := (£, f) € R x £2. Within
this step, all the equalities can be understood as ¢ — 07 if necessary. Recall that

9(&, f) = X = f+ (1 + 0)E[f] — & Hence,

9+t fo+tf) = X—(fo+tf)+Q+0OE[fo+1f] — (& + L&)
= g(&. fo) +t[(1+ O[] - f —¢].

Thus, in light of the directional derivative of e obtained in (4.4.65), we have

(e 0 9)(uo + tu)
= (g6 fo) + {1+ 0)ELf] - F —¢])
= E{(gc0. fo) + |1+ 0L - £ ~¢]) }
= E{[9(60. )]} +1E{(Z0)+ Laoz0r = (Z0)-Lguor | + 0¥ (1),
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where go = X — fo+ (1 + 0)E[fo] — &0, Zo = (1 +0)E[f] — f — &, and oT(t) denotes
a function such that o™ (¢)/t — 0 as t — o™. Hence, by the definition of directional

derivative, we obtain

(¢09) (0 PN = EllZo): Tz — (Z0)- L]
= E[Zo1ygy>0y + (Z0)+1ig=0}];

and therefore,

1
o

L'(&, fo)l(&, f)] = [E{Z01{90>0} + (Zo)+1igo=0y }| + & + (1 4+ O)E[f].
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Chapter 5

Empirical-based Reinsurance

Models

5.1 Introduction

In the last few chapters, we have been focusing on a number of reinsurance
models with various degrees of generality. The primary aim of those chapters was
to derive analytically the optimal ceded loss functions for the proposed models.
We have observed that the tractability of the optimization models highly depends
on the model specifications and assumptions and it is non-trivial to derive analyt-
ical solutions in many of these cases. In this chapter, we propose a new approach
of analyzing optimal reinsurance by explicitly exploiting the loss data that is ex-
perienced by the insurance company. Because our proposed optimal reinsurance
model is based directly on the empirically observed data, we term this model as
the empirical-based reinsurance model, or simply the empirical reinsurance model.
We will argue shortly that there is a number of advantages associated with our

proposed empirical reinsurance model including its simplicity and tractability.
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Recall that a general formulation of an optimal reinsurance model can be ex-

pressed as follows:

mins  p(X, f)
st. 0< f(z) <z, (5.1.1)
II(f(X)) <,

where p(X, f) is an appropriately chosen risk measure, the first constraint is the
conventional assumption on the ceded loss function f and the second constraint
represents the premium budget. Note that p(X, f) depends on the assumed loss
distribution X and the ceded loss function f. Furthermore, the optimization is
carried over all possible functions f so that the above problem is an infinite di-
mensional optimization problem. Unless additional simplifying assumptions are
imposed (such as confining f to a class of increasing convex function and II is an
expectation premium principle), it can be extremely challenging to deriving the

analytic solutions to model (5.1.1).

In considering model (5.1.1), an implicit assumption is the availability of the
loss distribution X. In practice this is estimated empirically from the observed
data. The estimated distribution of X is then incorporated into model (5.1.1) to
derive the desired solutions. Instead of using such a two-step process, a natural
question to ask is that if we can reformulate an optimal reinsurance model which
directly exploits the observed empirical data. If this is possible, then such a model
will be of greater interest. It will be intuitively appealing and practical in that it
provides a direct linkage between the optimal ceded loss functions and the loss data
experienced by an insurer. More importantly, we do not need to make any explicit
assumption on the underlying risk. In order to distinguish between the reinsurance
model (5.1.1) and our proposed empirical-based reinsurance model, we refer the
former model as the theoretical model while the latter model as the empirical model.
Analogously, the optimal solution to the former model is referred as the theoretical

solution while the optimal solution to the latter model as the empirical solution.
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The rest of the chapter is organized as follows. Section 5.2 describes the general
formulation of our proposed empirical-based reinsurance model. Section 5.3 pro-
vides a brief introduction to the second-order cone (SOC) programming. It turns
out that many of the empirical reinsurance models can be cast as the SOC program-
ming as we establish in Section 5.4 for the variance minimization, CTE minimization
and VaR minimization reinsurance models. Sections 5.5, 5.6 and 5.7, respectively,
discuss the solutions to the three empirical models introduced in Section 5.4. Fi-
nally, Section 5.8 concludes the chapter by commenting on the pros and cons of the

empirical-based reinsurance model.

5.2 General Empirical Reinsurance Models

In this section, we describe our proposed empirical-based reinsurance model.
We begin by denoting z; as the i-th loss (or claim amount) data (before any
application of reinsurance) empirically observed by the insurance company. Let
xT := (x1,79, - ,xn) be a vector which collects all the N empirical data. Based
on these experienced data, our objective is to determine an optimal reinsurance
coverage f; corresponds to each loss observation z;. Obviously f; is the decision
variable and we use the vector f7 := (f1, f,---, fn) to represent all the N opti-
mization variables. The principle underling the empirical-based reinsurance model
is to formulate the optimization model involving both x and f directly. More

specifically, corresponding to the theoretical model (5.1.1), our proposed empirical

reinsurance model can be formulated in the following symbolic form:

mfin p(x, f)
st. 0< fi<wmy i=1,2,--- N, (5.2.2)
lf(?) T
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Comparing to model (5.1.1), the above objective value @ depends explicitly on
x and f and hence can be interpreted as the empirical estimate of p(X, f). Similarly,

II(f) can be interpreted as the empirical estimate of II(f(X)) given the decision

vector f.

By construction, the above empirical model (5.2.2) is an N-dimensional opti-
mization problem in that it requires to optimally determine f; for each empirical
data z;, 4 = 1,--- ,N. Let £*7 = (fs,---, f%) denote the resulting empirical so-
lutions to model (5.2.2). Note that the empirical reinsurance model effectively
transforms an infinite dimensional optimization model (5.1.1) into a reinsurance
optimization model that is of N-dimension. Furthermore, the optimal ceded loss
function is now represented by a set of finite points (z;, ), ¢ = 1,--- | N, in-
stead of a smooth ceded loss function f(x) in terms of z. However, some standard
smoothing techniques such as spline interpolation can always be used if we were
interested in a smooth ceded loss function. In our examples to be discussed in
later sections, we will represent the solution by simply showing the scatter plots
of the pairs {(z;, fF),i = 1,2,..., N} and then inferring the shape of the optimal
ceded loss function. As we will shortly discover, the scatter plots reveal that the
optimal ceded functions admit some interesting shapes depending on the actual

specification of the empirical models.

To conclude this section, we point out that when implementing our proposed
empirical-based reinsurance models, the optimal solutions can depend on how we
formally define the empirical estimators of the objective function and the constraints
in the empirical models. In our numerical examples, we estimate these quantities
using the empirical distribution; i.e., assigning equal probability 1/N to each pair

(l’l,fl) fori:1,2,~-~ ,N.
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5.3 Second-Order Cone (SOC) Programming

In the last section, we argue that one of the advantages of the proposed empirical-
based approach is that it transforms an infinite-dimensional optimization problem
into a finite-dimensional problem. However, we have yet to address how to deter-
mine the optimal solution f* of the resulting empirical models. It turns out that
many of our proposed empirical reinsurance models can be cast as a SOC program-
ming and hence numerical techniques associated with solving SOC programming
can be used to derive the solutions to our proposed empirical models. Detailed
discussion on SOC programming can be found in Alizadeh and Goldfarb (2003),
Ben-Tal and Nemirovski (2001), and Lobo, et al. (1998). Below we provide a brief
introduction to SOC programming and we draw most of these materials from the

references mentioned above.

The most explicit form of a SOC programming is as follows:

min c¢’'x

xR (5.3.3)
s.t. HDZX—dZH SI)ZTX—q27 1=1,2,--- k,

where x € R" is the optimization variable, and the problem parameters are c € R",
D; € Rm=xn g, € R%"! p; € R”, and ¢; € R. The norm appearing in the

constraints is the standard Euclidean norm, i.e., |u|| = (u’u)2. The constraint
IDix — dif| < p{x —g;

is called a second-order cone constraint (of dimension n). This is because the

standard or unit second-order (convex) cone of dimension n is defined as

u 1
En = :ueRn_>t€R> ||u||§t
t

The above set &, is also called the quadratic, ice-cream, or Lorentz cone. Some

literature call the SOC programming as the “Conic Quadratic Programming” and
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accordingly the corresponding constraints as the “Conic Quadratic Constraints”.
The set of points satisfying a second-order cone constraint is the inverse image of
the unit second-order cone under an affine mapping;:
IDx—df <pix—g e | 2 |x= | ¥ ) ec.
PiT d;

and hence is convex. Thus, the SOC programming (5.3.3) is a convex program-
ming problem since the objective is a convex function and the constraints define
a convex set. Indeed, SOC programming includes a wide class of common convex
optimization problems. Linear programs, convex quadratic programs and quadrat-
ically constrained convex quadratic programs can all be regarded as special cases
of SOC programming problems, as can many other problems that do not fall into
these categories. The SOC programming problems can be solved efficiently using
several available solvers based on the interior-point method. These softwares in-
clude SeDuMi (see Sturm(1999)), SDPT3 (see Tiitiincii et al. (2003)) and CVX
(see Grant and Boyd (2008)). In this thesis, we will use CVX, which is available

for free download on the author’s homepage and it is a Matlab based package.

To discuss which type of problems can be cast as the SOC programming prob-
lem, it is helpful to introduce the concepts of second-order cone representable (ab-
breviated SOC-representable) sets and functions. We say a convex set S C R”
SOC-representable if it can be represented by finitely many second-order cone
constraints, possibly after introducing some auxiliary variables, i.e., there exists
D, € Rm=Dx(ndm) g, c R%~1 p, € R™™ and scalar ¢; € R such that

X

b
x€eS <— 3 vector u € R™ such that ||D; —d,|| < p! — ¢,
u u

i=1,2,-- k.

We say a function g(-) is SOC-representable if its graph {(z,t) : g(x) < t} is a
SOC-representable set. Alizadeh and Goldfarb (2003), Ben-Tal and Nemirovski
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(2001) and Lobo, et al. (1998) summarized many important SOC-representable
sets/functions, as well as many operations under which the SOC-representability

preserves for these sets/functions.

Below are some examples of the SOC-representable functions which will be used

extensively throughout this chapter:
(A1) Affine function g(x) = a’x + b;

(A2) Convex quadratic function g(x) = x*Qx + q'x + r, where Q is a positive

semidefinite matrix;
(A3) The LP-norm g(x) = ||x[|, = > i, 2")'? (p > 1 a rational number).

Note that if g(x) is SOC-representable, then the constraint g(x) < a’x + b is also
SOC-representable for any vector a with appropriate dimension and scalar b. This

can be explained by the following equivalence:

x)<t
gx)<alx+b — glx) <
t<alx+b

of which both inequalities on the right hand side are SOC-representable constraints.

A consequence of the SOC-representability of functions g(x), h(x) and set S is

that the optimization problem

min, g(x)
st. zes$
h(z) <0

can be cast as a SOC programming.

To discuss what kinds of empirical reinsurance models can be cast as the SOC
programming problems, we focus on the general empirical model (5.2.2) and con-
sider two cases. If the goal function m is linear, then the resulting em-
pirical model is SOC programming provided that the reinsurance premium bud-

—_—

get constraint II(f) < 7 is SOC-representable since the conventional constraints
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0< fi<umxy,1=1,2,--- N are linear. On the other hand, if the goal function is
nonlinear, then we can reformulate (5.2.2) into an equivalent optimization problem

of the following:

ST, ’ (5.3.4)

\ p(x,f) <t.

Clearly, (f*,t*) solves (5.3.4) if and only if f* solves model (5.2.2). Thus, both
H/(?) < 7 and @ < t are required to be SOC-representable in order that the

empirical reinsurance model is a SOC programming problem.

5.4 SOC Programming and Empirical Reinsur-

ance Models

In this section, we discuss the connection between the empirical reinsurance
models and the SOC programming. In particular, Subsection 5.4.1 first shows
that the empirical reinsurance premium budget constraint ﬁ(?) < 7w is SOC-
representable for as many as ten reinsurance premium principles. Then in subse-
quent subsections 5.4.2-5.4.4, we consider three specific empirical reinsurance mod-
els, namely the variance minimization model, the CTE minimization model, and
the VaR minimization model. For each model, we will demonstrate how to refor-

mulate the optimization problem as the SOC programming so that the solutions to

these problems can obtained efficiently.
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5.4.1 SOC-Representable Reinsurance Premium Constraint

In this subsection, we analyze one by one the premium principle for which the

empirical reinsurance premium budget constraint II(f) < 7 is SOC-representable.

The following notation is used extensively in the subsequent discussions.

e e denotes an N-dimensional vector with all elements equal to 1.
e E denotes an N x N matrix with all elements equal to 1.

e For given vectors x! = (zy,...,2x) and fT = (fy,

..., fn), we let T and f be
: ; . = _ 1NN _ 1.7 F_ 1NN —
their respective average; ie. T = > ;.17 = e xand f = 5> ., fi =
1.7

~ve' f.

e Qis an N x N matrix with the following specification:

1—1 _1 ... _1
T N N N
& S
Q=| : |= R N N (5.4.5)
T
ay N S O e |
N N N

In the above definition of Q, q; is an N-dimensional vector with its i-th

element equals to 1 — % and the remaining entries assign to —1/N. It is also

easy to verify the following relationship:

N

S (fi— F)P=|f - fel> =f"Qf.

i=1
In the following discussion of the SOC-representability of the constraint H/(?) <

m, we recall that the empirical estimator will be constructed based on the empirical
distribution.
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Q1. Expectation principle: II(f) = (1 + 0)E[f] with 6 > 0.

_— _ 1+6
) <7 <= (1+0)f <71 <= eng%w,

which is a linear constraint and hence is SOC-representable.

Q2. Standard deviation principle : TI(f) = E[f] + 5+/D][f], where 5 > 0.

—_

If)y <r <— f—l—ﬁ\/_||f—fe|| <7
L g, O
= | ﬂ\/ﬁe f+ 3 T,
which is clearly a second-order cone constraint.
Q3. Mixed principle: II(f) = E[f] + 6D[f]/E[f], where § > 0.
M) <n < f+§3||f—]\fe||2
f H2
— (f) +ﬁ nf

= f7 (%E + ﬁQ) f < we'f,

which is a convex quadratic constraint, since the matrix (%E + 6Q) is pos-

itive semi-definite. Thus, II(f) < 7 is SOC-representable for mixed principle
II.
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Q4. Modified variation principle: TI(f) = E[f]+3+/D[f]+~DI[f]/E[f] with v, G > 0.

s If = el _
ih<r f+6f!|f fell + 7 <

— ef|| < tl

\/—IIf

— NHf—efH [ <ty

L t1—|—t2§ﬂ'
(
1QE| < —55ef + Yy
Qf ﬂf—i—b
— N f-t2 - 2
¥ 2
1o >0
L t1—|—t2§ﬂ'

which are second-order cone constraints with two auxiliary decision variables

t1 and to.
Q5. p-mean value principle: TI(f) = (E[f?])*/?, where p > 1, a rational number.

— 1 1/p
I(f) <7 <= (N) I£[l, < .

which is a second-order cone constraint.

Q6. Semi-deviation principle: TI(f) = E[f] + 8 {E(f — E[f])2}"* with 0 < 8 < 1.

N 1/2
) <7 <« f+%<;(fi—f)i> <

1
T <« —
yzZO, infi_NeTfa i:172>"'aN7

which, by definition, are second-order cone constraints with auxiliary variables

Y, H YN
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Q7. Dutch principle: II(f) = E[f] + BE(f — E[f])+ with 0 < 5 < 1.

—

N
I[If) <nm <« f+%2(f,-—f)+§7r
=1
=, D
— f+ﬁ;u2§m
ui207ui_fi_.fai:]->2a"'aN>

which are linear constraints and hence second-order cone constraints.

Q8. Variance principle: TI(f) = E[f] + 8D[f] with § > 0

—

M0 <7 < [+off—efl?<n

1 N
— fIQf+ —ef— =7 <0,
B

g

which is a convex quadratic constraint and hence a second-order cone con-

straint.

Q9. Semi-variance principle: TI(f) = E[f] + SE (f — E[f])i with 5 > 0.

which, by definition, are clearly second-order cone constraints with auxiliary

decision variables y1,- -+, yn.

Q10. Quadratic utility principle: TI(f) = E[f] + v — /7> — D[f] with v > 0 and
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— 1
) <7 <— +7—\/72—NfTQf§7T

1
—fTQf < ~?
NQ_V

f+y—-m<0

f
ifTQf < ~?
N <7
or f+y—-7>0

(f—i—v—w)z Sf—%fTQf

f7Qf < NA2
<
elf < N(m—~)
F7Qf < N2
or e’f > N(m — )
1 1 _
£7 <WE+ NQ) f+2%e7“f+7r2 oy <0

The constraints in the above two systems are either linear or convex quadratic.

—

Hence, II(f) < 7w can be cast as the union of two SOC-representable sets.

5.4.2 Empirical Reinsurance Model: Variance Minimiza-
tion
Recall that for the variance minimization model, the objective is to minimize

the variance of the insurer’s retained loss (or equivalently the total loss). More

formally, the theoretical formulation of the reinsurance model can be described as:

min; Var(Ry) = Var(X — f(X))
st.  0< f(z) <u, (5.4.6)
I(f) <.
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To consider its empirical counterpart, first note that given x and f, a sample esti-

mate of the objective function Var(X — f(X)) is given by!

Var = %Z (z — f)} (5.4.7)

i=1

where Z and f denotes the sample mean of the observed data x and the decision

variable f, respectively. Similarly, the empirical analog of the constraints are
0<fi<azy, i=1,2,--- N, and II(x) <

Consequently, we obtain the following empirical variance minimization model:

N

min Var(Ry) = — x,— ;) — (z — 2

i Var(Rp) = 72 [wi = )= @ = 5)] (5.45)
st. 0< fi<w, i=1,2,--- N, andl_T(;)Sﬂ

Furthermore, by rewriting (5.4.7) as

Var(Ry) = —(x—£)Q(x—f)

[£7Qf — 2x"Qf + x"Qx] .

2|H2|H

ot

The empirical reinsurance model (5.4.8) can be equivalently reformulated as

min f7Qf — 2x7 Qf

feRN
st. 0< fi<uz;, i=1,2,---,N, (5.4.9)
H/(?) <.
Note that the goal function is a convex quadratic function of f and hence is SOC-

representable. Furthermore, we have demonstrated in Subsection 5.4.1 that the

! Alternatively, we could have used the unbiased estimator Zi\il [(zi = fi) — (@ = [)] ? for
Var(Ry). Here we continue to use (5.4.7) in order to be consistent with all other estimators that

are based on empirical distribution.
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empirical reinsurance premium constraint II(f) < 7 is SOC-representative for as
many as ten premium principles. This implies that the above reinsurance model
(5.4.9) can be cast as a SOC programming for the premium principles discussed in
Subsection 5.4.1. Section 5.5 will provide a numerical example demonstrating how

to solve the re-formulated SOC programming via the CVX software.

5.4.3 Empirical Reinsurance Model: CTE Minimization

Recall that the theoretical CTE minimization model takes the following form:
min; CTE.(T}) = CTE, (X ~ f(X) +10] f(X)])
st. 0< f(z) <z, Of(X)] <,

(5.4.10)

where II is the reinsurance premium principle, 7y = X — f(X) + II[f(X)] denotes
the total loss of the insurer in the presence of the reinsurance with a ceded loss
function f, and 7 is a preset reinsurance premium budget. As we argued in Chapter
4, instead of considering the reinsurance model (5.4.10), it is more tractable to
consider the following equivalent optimization model:

min Ga(6.f) =€+ 1€ | (X — 100 +11(7x) - €) |

st. 0< f(x) <z, I(f(X)) <m.

(5.4.11)

These two models (5.4.10) and (5.4.11) are equivalent in the sense that (£*, f*)
solves (5.4.11) if and only if f* solves (5.4.10) and &* minimizes G, (&, f*). This
result is due to Rockafellar and Uryasev (2002, Theorem 14).

Because of the tractability of latter model, we similarly focus on the empirical
version of model (5.4.11), instead of model (5.4.10). Consequently, the empirical
counterpart of model (5.4.11) is simply given by

o RS =
:Ergnfr)l Ga(f,f)=§+a—N; [(Ii—fri‘ﬂ(f)_f)J

—

st. I(f)<m, and 0< f; <a; for i=1,2,--- N,

(5.4.12)
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where we have taken the “sample average” as the estimator for the expectation
E [(X — f(X)+1I(f(X)) — 5) } in the theoretical model (5.4.11).
+

In order to demonstrate the linkage between the above model (5.4.12) and the
SOC programming, it is convenient to introduce the auxiliary decision vector z =

(21, ,2n)7, and reformulate model (5.4.12) as follows:
( 1 N
min + —= Z;
(&.f.2) StoN ;

—

st TI(f) <7, (5.4.13)
O§f1§x17121727 7N7

—

z>0and z; >z — f; +10(f) =&, i=1,2,---, N.

0
Clearly, model (5.4.13) is equivalent to (5.4.12) in the sense such that (£*, f*) solves
model (5.4.12) if and only if (*, £*, z*) solves (5.4.13) with an appropriately chosen
constant vector z*. The remaining task is to verify that model (5.4.13) can be
cast as a SOC programming. To ensure that the above optimization model is SOC
programming, we only need to verify both constraints z; > x; — f; + H/(B — & and
lf(?) < m are SOC-representable since the remaining constraints as well as the
objective function are linear in the optimization variables. In Subsection 5.4.1 we
have already established that there are at least ten premium principles for which the

—

reinsurance premium budget II(f) < 7 is SOC-representable. Hence, it remains to

verify the SOC-representability of z; > x; — f; +1_T(?) —&. To do this, it is convenient
to first denote g;(&,f,z) = lf(?) —fi—-&—z+wxfori =1,2,---,N. Then we
need to show {g;(¢,f,z) < 0,i = 1,2,---, N} are SOC-representable under each
premium principle. The discussion below confirms that these constraints indeed

attain SOC-representability for the same set of ten premium principles.

Q1. Expectation principle: II(f) = (1 + 0)E[f] with 6§ > 0.

9i(§,£,2) <0 = (1+0)f—fi-&—z+x<0
< I—J_I\—feeTf—fl—g—Zl—i-IZSO,
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Q2.

Q3.

which is a linear constraint and hence is SOC-representable.

Standard deviation principle : II(f) = E[f] + 8+/D|[f], where 8 > 0.

|f—fe|| —2zi+2; <0
1

eTfjL£

BVN 3

which, by definition, is clearly a second-order cone constraint and SOC-

— |Qf] <

(fi+&+ 2 —xy),

representable.

Mixed principle: II(f) = E[f] + 5D[f]/E[f], where 3 > 0.

Bf — fel?
f N
lQt)2 _ N
f -0
Zug_ (fi+E+z—a—f)

gi(6.£,2) <0 = [f+= —fi=&{—2z+2,<0

(f2+§+zz_xz f)

—

(

!

wjgujvj, j=12--- N
=f>0, j=1,2--- N
w; =q;f, j=1,2--- N,

\

where q; denotes the jth row in the matrix Q. It is clear that all the above

constraints are linear except wf- < w;v;, which can be cast as a second-order

T

< U; — Uj) < U + U

wj, _—
2

: ThU_S, gi(€7faz) S 0

cone constraint such that

are SOC-representable.

Q4. Modified variation principle: TI(f) f1+ B+/DIf] +D[f , where con-
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stants v, 3 > 0.

aet <0 = Joff—fol+o I e iin <o

P+ ﬁ%NHQNfH <1,
= St/

i+t < fi+ &+ 2z — x,

4

N 1

Qe < YN - L or
B BVN

N N—1

D < &

=1 v

— wjz-gujvj,jzl,2,~-~,]\7

UJ:.f_Z(]? j:1727"'7N
wj:q?fa j:172a"'>N

b+t < fi+&+ 2 — ay,

\

which are second-order cone constraints with two auxiliary decision variables

tl and t2.

Q5. p-mean value principle: TI(f) = (E[f?])*/?, where p > 1 a rational number.

1 1/17
gi(§.£,2) <0 <= (N) \fll, = fi =& — 2z +2; <0,

which is clearly a second-order cone constraint.

Q6. Semi-deviation principle: II(f) = E[f] + 8 {E(f — E[j'"])%r}l/2 with 0 < 8 < 1.

VN

ij(],y]ij—%eTf, j:1727"'7N7

N 1/2
g2<£,f,Z)§O <~ f+i<z<f]_f>3-) _fi_g_zi+xi§0

J=1
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which are second-order cone constraints.
Q7. Dutch principle: II(f) = E[f] + BE([f — E[f])+ with 0 < 8 < 1.

gi(§,f,2) <0 = (fi—f)+—fi—§—2i+93i§0

which are linear constraints.

Q8. Variance principle: II(f) = E[f] + 8D[f] with 8 > 0

HERD SO = [HLlf-efl -~ fi-g—ata<0
L N

— fIQf + Be 3

which is a convex quadratic constraint and hence a second-order cone con-

(fi+&+2z—x) <0,

straint.
Q9. Semi-variance principle: II(f) = E[f] + BE(f — E[f])i with > 0.

N
gi(€.f,2) <0 = f+ Z[fj—f]i—fi—f—szl'iSU
=1

==

r N
f+ 8- fi—¢—2+2,<0

yj207 yjzfj_fa j:1>2a"'aN>

which, by definition, are clearly second-order cone constraints with auxiliary

decision variables yi,- -+, yn.
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Q10. Quadratic utility principle: TI(f) = E[f] + v — \/7? — D[f] with v > 0 and

v* > D[f].
- 1
g:;(&,£,2) <0 <~ f+7—\/VQ—NfTQf—fi—£—zi+xiSO

ITQf <42

— v
fHy—fi—&—z+x <0,
LITQf < 42

or fry—fi—&—zi+2,>0

3 2
(f+r—fi—€—zi+m) <= FTQf.
The constraints in the above two systems are either linear or convex quadratic.

Hence, ¢;(¢,f,2z) < 0 can be cast as the union of two SOC-representable sets.

5.4.4 Empirical Reinsurance Model: VaR Minimization

Recall that if the objective were to minimize the VaR of the insurer’s total risk
in the presence of reinsurance, then the optimal reinsurance model can be written

mfin VaR,(Tf) = VaR, (X — f(X)) + II(f)
(5.4.14)
st. 0< f(x) <z, Hf(X)] <.

To construct the empirical version of the above VaR minimization model (5.4.14),
first note that the quantity VaR, (X — f(X)) with ceded loss function f is defined

as
VaR,(X — f(X)) =min{{ e R: Pr(X — f(X) <&) > a},
and thus its empirical estimate is given by

VaR,(f) = max [N+ (g, — £),

1<i<N
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where |:| denotes the integer part and max * denotes the kth biggest element.
AN
Consequently, we obtain the following empirical VaR minimization model

—_

mfin max;<j<y M 2, — fi + TI(F)

st. 0< fi<a, i=1,2-- N, (5.4.15)

(f) < 7.
It should be emphasized that the above empirical VaR minimization model is no
longer a convex optimization problem since generally VaR is not convex. Despite
the lack of convexity and hence its posing additional challenge in obtaining the
optimal solution, Section 5.7 will demonstrate how a solution can be obtained by

using some heuristic algorithms.

5.5 Empirical Solutions to the Variance Minimiza-

tion Model

We have illustrated how to develop the empirical model based on the theoretical
variance minimization model in the last section. The resulting empirical model
is shown in (5.4.9) where a convex quadratic function is minimized. Thus, model
(5.4.9) can be cast as a SOC programming for premium principles Q1-Q10 discussed
in Subsection 5.4.1. In this section, we provide some numerical illustrations of our
proposed empirical variance minimization model by focusing on two reinsurance
premium principles; i.e., Q1 (expectation principle) and Q2 (standard deviation
principle). We also demonstrate that the solutions can be obtained efficiently using

some existing SOC programming softwares such as the CVX.
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5.5.1 Expectation Principle

Under the expectation premium principle, the reinsurance premium budget con-
straint becomes (1+6)f < 7. Clearly, this is a linear constraint and hence the em-
pirical variance minimization model remains to be a convex quadratic programming
(it is also a SOC programming) even if we were to replace the budget constraint
with a binding one, i.e., (146)f = 7. With such modification, the empirical model
revises to

min fTQf — 2xTQf

feRN

1
(1+‘9)N8Tf:77'

The above reinsurance model is of theoretical interest in that it can be considered
as the empirical version of the classical variance minimization reinsurance model.
Recall that the classical variance minimization reinsurance model seeks optimal
reinsurance by minimizing the insurer’s total loss subject to the binding insurance
premium. It is also well-known that the optimal reinsurance design for the classical
model is the stop-loss reinsurance. See, for example, Bowers, et al. (1997), Kaas,
et al. (2001) and Gerber (1979). Such theoretic result, therefore, can be used
to benchmark against the optimal solution f* obtained from the empirical model
(5.5.16). This explains why we focus on the empirical model with a binding, instead

of unbinding, reinsurance premium constraint.

We now present two numerical examples to illustrate the applicability of our
proposed empirical-based variance minimization reinsurance models. The numeri-

cal illustrations consist of the following steps:

Step 1: Simulate random samples x;,7 = 1,..., N from an appropriately chosen loss

distribution. The simulated N samples are assumed to be the empirically
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observed loss data. In our examples, we simulate N = 300 random samples

from exponential and Pareto distributions restrictively.

Step 2: Predetermine the loading factor € and the reinsurance premium budget 7. In

our examples, we set § = 0.2 and © = 400, 600, 800, and 1000.
Step 3: Use CVX to obtain solutions f* = (f,..., fX).

Step 4: Depict the resulting solutions using scatter plots for (z;, fF),i=1,2,---, N.

As pointed out earlier that the optimal ceded loss function is a stop-loss for the the-
oretical variance minimization model. This implies that the scatter plot produced
from Step 4 of the above empirical solutions should mimic the shape of a stop-loss

reinsurance.

Example 5.1 Variance Minimization Model with the Expectation Prin-
ciple and Exponential Loss Distribution
In this example, we carry out the above Steps 1-4 by drawing random samples from

an exponential distribution with mean p = 1,000, i.e,
Fx(z)=1—¢n, z>0.

The scatter plots of the solutions for m = 400, 600, 800, and 1000 are shown in
Figure 5.1. It is reassuring that the resulting shape of the empirical solutions looks
like a stop-loss function, which is consistent with the classical result. Furthermore,
as the insurer is willing to spend more on the reinsurance premium, more risk is
transferred to a reinsurer as indicated by the lower stop-loss retention with higher

.

Example 5.2 Variance Minimization Model with the Expectation Prin-
ciple and Pareto Loss Distribution

This example is similar to the last example except that the empirical samples are
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3
drawn from a Pareto distribution with mean p = 1,000, i.e., Fx(x) = 1— (;ﬁ%%» ,
x > 0. The solutions are presented in Figure 5.2 and the scatter plots are also con-
sistently revealing that the shape of the optimal ceded loss function behave like a

stop-loss, in accordance with the theoretical results.

5.5.2 Standard Deviation Premium Principle

As we have established in Subsection 5.4.1, the reinsurance premium budget
under the standard deviation principle is equivalent to ||Qf|| < —ﬁﬁeTf + ‘/—BNW.
This suggests that the empirical variance minimization model reduces to

min T Qf — 2xTQf

feRN
st. 0<fi<uax, i=1,2,--- N, (5.5.17)

1T VN

We study the empirical solutions of the above reinsurance model through the fol-

lowing two numerical examples 5.3 and 5.4.

Example 5.3 Variance Minimization Model with the Standard Deviation
Principle and Exponential Loss Distribution

The setup of this example is similar to Example 5.1 in that the same exponential
loss distribution is used to generate the empirical loss data and the CVX is also used
to solve the resulting SOC programming. The only difference is that the reinsurance
premium is determined by the standard deviation premium principle with loading
factor B = 0.2. The four scatter plots in Figure 5.3 depict the optimal reinsurance
treaty £* for different levels of reinsurance premium budget. These scatter plots
still indicate that the stop-loss reinsurance treaty is optimal even when we mod-
ify the premium principle from the expectation principle to the standard deviation

principle.

159



7000 - 7000

6000} 60001 o°
(]
o o
5000 4 5000( o
o
o
4000 ° 4000+ &P
&P o
3000} o 3000} £

2000 - 2000

1000 - 1000

0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

1)7‘(‘:400 2)71':600
7000} 7000}
o
o° o
6000} & 6000} 4
)
)
5000} 5000}
)
&° &
4000} 4000} o
)
3000} & 3000 &
2000} 2000
1000} 1000
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000

3) ™= 800 4) = 1,000
Figure 5.2: Empirical solutions to the variance minimization model with expecta-
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Example 5.4 Variance Minimization Model with the Standard Deviation
Principle and Pareto Loss Distribution

This example is again similar to Fxample 5.3 except that Pareto distribution is
employed. The results obtained by using CVX to the resulting programming problem
are presented by the four scatter plots in Figure 5.4. Similar to the exponentially

distributed case, the scatter plots suggest that stop-loss reinsurance is optimal.

5.6 Empirical Solutions to the CTE Minimiza-
tion Model

Recall that in Subsection 5.4.3 we have established for many of the premium
principles that are of interest to us, that the resulting empirical CTE minimization
model can be cast as a SOC programming. The aim of this section is to provide an
additional insight to our empirical CTE minimization model by confining to two
specific premium principles: Q1 (the expectation principle) and Q2 (the standard
deviation principle). This is elaborated in greater details in the following two

subsections.

5.6.1 Expectation Reinsurance Premium Principle

In this subsection, we assume that the reinsurance premium is calculated ac-
cording to the expectation principle with a safety loading # > 0 and we shall discuss
the optimal reinsurance treaties to the empirical CTE minimization model (5.4.13).
Before doing so, let us first recall the result we established in the previous chapter,
which states that a stop-loss reinsurance solves the theoretical model (5.4.10) un-
der the expectation reinsurance premium principle. Thus, for the empirical model

(5.4.13), we should also expect to derive a solution consistent to the stop-loss treaty.
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By consistency, we mean that the empirical solutions have the same functional shape
as the theoretical solutions. We will further discuss the consistency of the empirical

solutions in the next chapter.

With the expectation principle and a safety loading factor 6, the empirical
version of II(f(X)) becomes I_T(?) = (1+0)f and thus model (5.4.13) reduces to

(
. N
Mine e &+ = Ding i)

nglgxz, i:1’2’...’N
220, >z —fi+(1+0)f—-¢& i=1,2,--- N,

(5.6.18)

3
which is obviously a linear programming problem and thus it can be solved by
simplex method or interior-point method in polynomial time. Parallel to Examples
5.1 and 5.2 in Subsection 5.5.1 for the variance minimization model, Examples 5.5
and 5.6 repeat the same analysis except for the empirical CTE minimization model
(5.4.13). These examples suggest that the stop-loss reinsurance treaties are optimal

for these models as we demonstrate below.

Example 5.5 CTE Minimization Model with the Expectation Principle
and Exponential Loss Distribution

Similar to the previous examples, we create N = 300 empirical loss data by first
sampling from an exponential distribution with mean p = 1,000. Then together with
parameter values o = 5% and 6 = 0.2, the CVX is used to solve the resulting empir-
ical CTE minimization model (5.6.18) over various reinsurance premium budgets:
7 € {200, 400, 600, 800, 1000, 1500}. The scatter plots of the solutions are shown in
Figure 5.5. It is first interesting to note that the stop-loss reinsurance can still be
optimal even when we change the optimality objective from minimizing variance to
minimizing CTE. Second, when an insurer is willing to increase its premium budget
on reinsuring its risk, more risks can be transferred to a reinsurer as indicated by

the lower levels of retention. Third, as the reinsurance premium budget increases
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beyond 1000, the stop-loss retention seems to remain unchanged. This phenomenon
in fact is consistent with the theoretical results established in the last chapter. In
particular, Remark 4.5 asserts that the stop-loss treaty f*(x) = (z — d*)+ with the
retention d* satisfying (14 0)E[(x —d*)+] = min{m, my} is an optimal solution to the
theoretical CTE minimization model. In our numerical setting, it is easy to verify
that mg = 1000 which suggests the optimal retention will not change for any pre-
maum budget greater than 1000. Hence our empirical solutions appear to be aligned
with the theoretical results. In the next chapter, we will provide an in-depth analysis

addressing the stability and consistency of the empirical solutions.

Example 5.6 CTE Minimization Model with the Expectation Principle
and Pareto Loss Distribution

The setup for this example is identical to the last example except that we use the
Pareto distribution with mean p = 1,000 and we assume m € {200,400, 600, 800,
1062, 1500}. The solutions in Figure 5.6 again suggest that the optimal ceded loss
function has the same structure as the exponential case. Hence the observations
and conclusion that we made for the exponential case are similarly applied to the
Pareto case. Note however that in this example, my = 1062 and this explains why

we consider this particular reinsurance premium budget in this example.

5.6.2 Standard Deviation Reinsurance Premium Principle

Let us now assume that the reinsurance premium is determined by the standard

deviation principle. Under this special case, the empirical reinsurance premium

—_

budget constraint I1(f) < ir\educes to | Qf|| < —ﬁeTf + %w (see Subsection

5.4.1), and the constraint II(f) — fi — & — z; +x; < 0 becomes || Qf]| < —ﬁ%ﬁeTij

\/T?(fz + &4 2 —uax;) fori = 1,...,N (see Subsection 5.4.3). Furthermore, the
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empirical CTE minimization model (5.4.13 is formulated as

(

mine ey €+ 2y Lict %
s.t. OSfZSxZ,Z:l,Q,,N
Q]| < —53=e™f + Lin (5.6.19)

2z>0,i=1,2,---,N
Q|| < —5 5e"f + N(fi+ etz —a), i=1,2,-- N,
The solutions to the above model will be explored in the following two examples.

\

Example 5.7 CTE Minimization Model with the Standard Deviation
Principle and Exponential Loss Distribution

In this example, we use loss data simulated from the same distribution as in Exam-
ple 5.5 to solve model (5.6.19) with 3 = 0.2 and for reinsurance premium m ranging
from as low as 50 to as high as 2000. For this particular reinsurance model specifi-
cation, the scatter plots of the solutions shown in Figure 5.8 reveal some interesting
structures of the optimal reinsurance treaties. For instance, for higher reinsurance
premium budget (say m > 120) the optimal treaty is a typical stop-loss reinsurance.
On the other hand, for lower reinsurance premium (say m < 100 ), the optimal treaty
becomes a capped stop-loss reinsurance implying that the insurer no longer has an
unlimited coverage from the reinsurer. In these situations, the reinsurer has a max-
imum capped payout and hence the insurer assumes any residual risk exposure for

any loss exceeding the upper limit.

Example 5.8 Consider the optimal solutions to model (5.6.19) with 5 = 0.2 and
using loss data simulated from the same loss distribution as in Example 5.6. The
scatter plots in Figure 5.8 present the solutions for twelve different levels of rein-
surance premium budget m in the range [50,2000]. Based on these scatter plots,
a similar conclusion can be obtained as in Example 5.7. The optimal reinsurance
treaty is the capped stop-loss reinsurance for reinsurance budget m < 200 while the

optimal reinsurance is a stop-loss treaty for m > 200.
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5.7 Empirical Solutions to the VaR Minimization

Model

In this section, we shall investigate the solutions to the empirical VaR mini-
mization model (5.4.15). In contrast to the variance minimization and CTE mini-
mization models, the VaR minimization model is no longer a convex programming
problem even under the simplest expectation reinsurance principle. For this reason
it is considerably more challenging to deduce the optimal solution for the VaR min-
imization model. Nevertheless, we will demonstrate that an empirical solution to
the VaR minimization model can still be deduced using some heuristic approaches
such as those in Larsen et al. (2002) and Gaivoronski and Pflug (Winter 2004-
2005). In these two papers, the authors proposed several algorithms for the VaR

optimization problems in the context of the portfolio selection.

In this section, we will use the approach proposed by Larsen et al. (2002) to
obtain the empirical solution to our empirical-based VaR reinsurance model. The
procedure is summarized in Algorithm A below. The general idea underlying this
type of algorithms is to construct upper bounds for VaR and then minimize these
bounds. The following Algorithm A adopts the CTE as the upper bound to be
minimized, and then split the scenarios into two groups (represented by the set H;
and its complement) depending on whether the losses exceed VaR,, and “discard”
the upper portion of these scenarios. The number of scenarios that are discarded is
determined by a preset parameter £ (e.g., if £ is equal to 0.5, then the upper half is
discarded). Then, a new ay is calculated in such a way that the CTE,, calculated
based on the remaining losses is an upper bound for VaR,, of the original problem.
Then, we minimize this upper bound, and so on. To summarize, we would con-
struct a series of upper bounds and minimize them until we do not have anymore

scenarios to discard.

171



Algorithm A

Step 0. Initialization

i) Set agp=a,i=0,Hy={j:j=1,2,--- ,N}, vg = 1/(aN)

ii) Assign a value for the constant ¢, 0 < ¢ < 1, say ¢ =0.75

Step 1. Optimization subproblem

i) Minimize CTE,,

(
Min(yeqp) &+ 0 ZjEHi Zj

S.t. ngjgl'j,]:]_,2,,N,

II(f) <,
ZjZO and ZjZl’j—fj—i-l_T(?)—g,

z]_f]+ﬁ{?)§7> jeHi>

\
Let (v7,&F, 2%, ) denote the solution to the above CTE,, minimization

problem, where z* = {z],25,--- , 25} and £* = {f, f5,- -, fx )}

ii) Rearrange {x; — f; +1I(f*),j = 1,2,---, N} in an ascending order, and
denote the ordered scenarios by 7;, [ =1,2,---, N.

Step 2. Estimate VaR

—

Vi=j,, — fiy, + H(E*), where I(a) =min{l:[/N >1—a}

Step 3. Stopping the algorithm
If H; = H;_1, then stop the algorithm and f* is the estimate of the optimal

solution and set the minimal VaR as V.
Step 4. Re-initialization
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1) t=1+1

i) h=1—a)+a(l—Cand 1 —a; = (1 —a)/b;

iv) v; = (a; x the number of elements in H;)™*

v) Go back to step 1.

)
)
)
)

In Example 5.9 below, we will consider the empirical VaR minimization model
(5.4.15) with the expectation reinsurance premium principle and obtain the solu-
tions by using Algorithm A. Before we proceed, let us recall some related theoretical
results established by Wang, et al. (2005) and Bernard and Tian (2009). In Wang,
et al. (2005), the authors discussed the problem in the context of optimal insur-
ance, but their results are applicable to the optimal reinsurance design. Here, we
rephrase their results to tailor to the reinsurance context. In their paper, the op-
timal reinsurance treaties are explored by maximizing the insurer’s expected final
wealth resulting from the reinsurance treaty starting from an initial wealth W, and
a loss X on which the reinsurance is applied. They considered a reinsurance model

with a solvency constraint as follows:

max; W =W, — P —E[X]+E[f(X)],
st. Pr{W>W—0v}>1-a, and P=(1+0)E[f(X)], (5.7.20)

0< f(x) <z forall x>0,

where P is the reinsurance premium calculated according to the expectation prin-
ciple with a loading factor > 0, W = W, — P — X + f(X) is the insurer’s final
wealth resulted from the reinsurance treaty, and v is an exogenously preset positive
constant representing the VaR level. Wang, et al. (2005) proved that, under some
mild conditions, the optimal treaty to model (5.7.20) is of the following form with
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two appropriately chosen constants d, [ > 0:

0, r < d;
fl@)=q z—d, d<z<l (5.7.21)
0, x> 1.

Clearly, the constraint Pr{WW > W —v} > 1 —« in model (5.7.20) can be viewed as
a VaR constraint VaR,(W — W) < v, and hence loosely speaking, the model can

be regarded as the dual problem to our VaR minimization model (5.4.14).

While Wang, et al. (2005) just take Pr{W > W — v} > 1 — « as a constraint
in their reinsurance model, Bernard and Tian (2009) consider a reinsurance model
which directly minimizes the ruin probability Pr{IW" > W —wv} subject to the other
two constraints as in model (5.7.20). The optimal ceded loss function obtained
by them has the same functional form as the one in (5.7.21). In light of these
two results, it is reasonable for us to expect that the empirical solutions to model
(5.4.15) should have a deductable at certain loss level, then increase linearly, and
eventually reduce to zero for loss exceeding a higher threshold level. The results

demonstrated in Example 5.9 highly support such an assertion.

Example 5.9 VaR Minimization Model with the Expectation Principle
and Exponential Loss Distribution

By setting o = 0.05, using the same set of exponentially simulated empirical data,
and applying Algorithm A in CVX, Figures 5.9 and 5.10 display the solutions to
model (5.4.15) for various levels of reinsurance premium. These results are con-
sistent with the solutions obtained in Wang, et al. (2005) and Bernard and Tian
(2009); i.e. they have the same functional form as in (5.7.21).

Remark 5.1 [t is worthy noting that Algorithm A might not be efficient if we were
to change the expectation premium principle to other premium principles. This

15 because in the subproblem embedded in the algorithm involves the constraints
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—_

x;— f; +1(f) >, j & H;, which might not be SOC-representable for a nonlinear
premium principle 1I.  Thus, for VaR minimization model, other algorithms are

demanded in order to obtain the solutions for more reinsurance premium principles.

5.8 Conclusion

Due to the inherent infinite dimension nature of the optimization problem, most
reinsurance models turn to be too mathematically challenging to be solved effi-
ciently, and thus the insurer is tremendously restricted in exploring the optimal
reinsurance treaties in their decision-making. To overcome such a restriction, this

the

chapter proposes an innovative method to address the optimal solutions
empirical approach. By experimenting with the variance minimization model, the
CTE minimization model, and the VaR minimization model, this chapter shows
that our empirical approach is strongly effective in the sense that the empirical
solutions derived by the empirical approach are highly consistent to the theoretical

solutions whenever they exist.

Next, let us remark on the pros and cons of our proposed empirical approach.
Focus on its advantages first. The empirical models are completely empirical data
based, and hence using this empirical approach we need not make any explicit
assumption on the distribution of the underlying risk. The empirical models are
finite dimensional optimization problems and hence they are much more tractable
than their theoretical counterparts, which are usually infinite dimensional prob-
lems. Therefore, the empirical approach allows much more flexibility of the opti-
mality objective as well as the reinsurance premium principle in the reinsurance
models, compared with the theoretical models. For examples, with the CTE mini-
mization criterion, we are unable to derive the solutions to the theoretical models
if the reinsurance premiums principles are other than the expectation principle for

which we discussed in the last chapter. However, using the empirical approach we
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derived the solutions to the theoretical models for the standard deviation principle.
Following the same procedure as we did for the standard deviation principle, we
can derive the solutions to the empirical CTE minimization model for all the other
principles involved in this chapter with labels Q1-Q10. Finally, recall that in order
to find the solutions to the theoretical CTE minimization model, we first establish
some sufficient and necessary conditions which an optimal solution must satisfy and
then identify the solutions by trying some candidates with these conditions. The
choice of the candidates for this purpose can be quite non-trivial. Hence, once we
derive the empirical solutions, they will provide valuable insights on how to choose

an appropriate candidate in searching for the theoretical optimal solutions.

One obvious limitation of the empirical approach lies on the fact that the em-
pirical model will turn out to be a large scale programming when the sample size is
extremely large, and hence issues such as computational time and requirement for a
substantial computer’s memory will arise. Another issue on the empirical approach
is that the general theoretical relationship between the empirical solutions and the
theoretical solutions are unknown and it demands future research. It seems that
we have to establish the uniform convergence of the goal function in the empirical
models to the goal function in the theoretical model over all feasible ceded loss

functions.
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Chapter 6

Additional Analysis on the

Empirical-based Reinsurance

Models

6.1 Introduction

In the last chapter, we developed an empirical-based approach for optimal rein-
surance design. This approach has several appealing features relative to the theo-
retical reinsurance model. First, the proposed approach is very intuitive. It deter-
mines the optimal reinsurance by directly exploiting the empirically observed loss
data. Second, we do not need to make any explicit assumption on the underlying
distribution of losses. Third, the resulting empirical model is of finite dimensions.
Lastly, the proposed approach is much more versatile, practical and tractable. By
resorting to SOC programming, optimal solutions can be obtained in a wide range

of reinsurance models.

Let us now recall the empirical-based CTE minimization model. This particular

179



reinsurance model is formulated as follows:

;

i 1Ny
(Iglfl’rzl) €+ alN Zz:l Zis
st I(f) <m, 611)
0§f2§$2’221’2’ ’N
ZzZO,ZZZLUZ—fZ—Fl_T(?)—g, 7,:1’27 ’N7
where x := {1, -+ , zx} denotes the empirical loss data of size N, f := {f1, -+, fx}

stands for the reinsurance coverage corresponding to the empirical data, II(f) is the
empirical version of the reinsurance premium, and 7 represents the preset level of
the reinsurance premium budget. Parallel to the empirical model, the standard

theoretical model is formulated as

min; CTEq(T}) = CTE, (X — f(X) +10[ f(X)])
st.  0< f(z) <z, H[f(X)] <m,

(6.1.2)

where X is the underlying loss random variable with nonnegative support, f is the

ceded loss function, and II is the adopted reinsurance premium principle.

The main objective of this chapter is to provide an in-depth analysis of the
solutions generated from the empirical reinsurance models. Recall that the em-
pirical reinsurance model produces optimal ceded loss value for each data point.
More specifically, when we solve model (6.1.1) based upon an input data x :=
{x1, -+ ,zn} consisting of N sample points, the output will be N corresponding
optimal ceded values f* := {f;,---, f&}. This is also the reason for displaying the
empirical solutions in the form of scatter plots for the examples considered in the

last chapter.

In this chapter, we are interested in the following issue: the stability and consis-
tency of the empirical solutions. By stability, we mean that the empirical solutions
always generate the same functional form of the optimal ceded loss function for

independent random samples from the same loss distribution and over the same
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set of parameter values. By consistency, we mean that the empirical optimal ceded
loss function converges to the theoretically true optimal ceded loss function as we
increase the sample size N. While it is challenging to provide a formal analysis
on the stability and consistency of our proposed empirical reinsurance models, we
address these issues by resorting to some numerical experiments on the CTE mini-
mization model. The numerical studies also allow us to gain important insights on

the behavior of our proposed empirical solutions, particularly for small sample size.

The remaining chapter is organized as follows. Section 6.2 discusses the stability
and consistency issues under the assumption of the expectation premium principle.
This example is useful since in this special case, we know analytically the optimal
ceded loss function based on the results developed in Chapter 4. Hence the analytic
solution can be used as a benchmark against the solutions generated from the
empirical models. Section 6.3 considers an example with the standard deviation
premium principle. This example is even more interesting in that its optimal ceded

loss function is unknown. Section 6.4 concludes the chapter.

6.2 Expectation Premium Principle Example

In this section, we consider an example with the following characteristics:

(i) reinsurance premium is determined by the expectation premium principle

with loading factor 8 = 0.2;
(ii) the reinsurance premium budget m = 300;
(iii) o= 0.05;
(iv) the loss random variable X has an exponential distribution or a Pareto dis-

tribution with mean p = 1, 000.
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Note that the exponential distribution are usually thought of as a light-tailed distri-
bution while the Pareto distribution is often regraded as a heavy-tailed distribution.
The reason we include both of them in the numerical example is that we hope to
gain certain insights regarding the stability and consistency for both the light and

heavy tailed loss distributions.

Let us further remark that under the setup of the above example, the solution to
theoretical model (6.1.2) can be solved analytically. In particular, we can resort to
Theorem 4.2 in Chapter 4 to determine an optimal ceded loss function f*. Consider

the exponential loss distribution first. In this case, we have
do, =1inf{d : Pr[X > d| < a} = —pIn(0.05) = 2,995.73

and

1
= : <— = —
dp mf{d L PriX > d] < T } Mln(l—l—O.Q

=1,823.22.
7 ) , 823
This in turn leads to m, = (1 + 0)E[(X — d,)+] = 60 and mp = (1 + O)E[(X —

dg)+ = 1,000 so that under reinsurance premium budget of 7 = 300, the condition
T < T < my is satisfied. Hence Theorem 4.2 in Chapter 4 asserts that the stop-loss
treaty f = (z—d*), with retention d* determined through (1+460)E[(z—d*).] = 300
is an optimal solution to problem (6.1.2). It is then easy to derive the corresponding

optimal retention value; i.e. d* = pln(4) = 1, 386.29.
If the loss random variable X is Pareto distributed with mean 1,000, we have
do = 2,000 (o713 — 1) = 3,428.84

and

1+0 14+0.2
This in turn leads to m, = (14 0)E[(X — da)+] = 162.86 and mp = (1 + 0)E[(X —

dg)+ = 1,062.66 so that under reinsurance premium budget of 7 = 300, the con-

dy = inf{d L PriX >d] < ! } = —puln ( ) = 125.32.

dition 7w, < ™ < my is satisfied. Hence Theorem 4.2 in Chapter 4 is also ap-

plicable, and again the stop-loss treaty f = (x — d*); is an optimal solution
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to problem (6.1.2) with d* determined through (1 + 0)E[(z — d*);] = 300, i.e.,
d* =2,000 (v4 —1) = 2,000.

In our present setting, we are interested in analyzing the solutions to model
(6.1.1). Our numerical experiment involves first drawing samples from the assumed
loss distribution and then applying the random samples as input to model (6.1.1) to
determine the shape of the optimal ceded loss function. Since model (6.1.2) yields
an analytical solution of the ceded loss function, this implies that its solution can be
used as a benchmark in numerically assessing the accuracy of the empirical solution
of model (6.1.1). It is reassuring that the numerical evidence to be presented shortly
indicates that the solutions to model (6.1.1) is in concordance with that to model

(6.1.2), even for relatively small sample size.

Recall that we have observed in Examples 5.5 and 5.6 that for both exponen-
tial loss distribution and Pareto loss distribution, the scatter plots of the optimal
ceded values resemble the shape of stop-loss functions. For this reason, we con-
sider to fit the empirical solutions with the form of the more general change-loss
function f(x) = c(z — d),, where parameters ¢ and d are obtained by fitting to
{(z1, 1), (z2, f5)s -+, (xN, [X)}. Here £ = (f], f5,- -+, f%) corresponds to the so-
lutions derived by solving model (6.1.1). If the empirical solution is converging to
the analytical solution, then we expect that the fitted value of ¢ and d, denoted
by ¢ and OZ, respectively, converge to 1 and d*, as we increase the sample size V.
Recall that d* denotes the retention in the theoretical solutions, which is equal to

1, 386.29 for the exponential case and 2,000 for the Pareto case.

There exists a number of ways of fitting c(z — d), to the optimal ceded loss
values. The key of our fitting algorithm is first to determine (approximately) the
retention d and then fit ¢(z — d) to those data points that exceed the determined
value for d. Let € be the error tolerance parameter of our fitting algorithm, then

our procedure can be described as follows:
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[F1]. Sort the pairs {(z1, f1), (22, f2), -+, (xn, fy)} in an ascending order in xz;,
and relabel the ordered pairs as {(x), f(1)), (), f2), -5 (@), fovy) }-

[F2]. Set ng to be the smallest ¢ among {1,..., N} such that |f;| > e.!

[F3]. Fit f(z) = c¢(x — d) to the subset of the data {(Z(ng); fino))s (Z(no)+1, fno)+1),
-+, (x(ny, fivy)} to obtain the fitted ¢ and d using the ordinary least squares.

In summary, our numerical experiment consists of the following three steps.
In Step 1, we generate a random sample x := {x1,--- ,zy} from the underlying
loss distribution. Then in Step 2, we solve model (6.1.1) to obtain the empirical
solutions f := {fi,---, fy}. Finally in Step 3, we fit ¢(x — d) to {x,f} to deduce
the fitted ¢ and d. This implies that for each independent sample of x, we obtain
a fitted pair ¢ and d. Furthermore, we also distinguish if the fitted pair ¢ and d is
admissible or inadmissible. The fitted pair ¢ and d is said to be admissible if the

following conditions are satisfied:

|fy] <e fori=1,...,n9—1,

] (6.2.3)
‘f(i) —é(:c(i) —d)’ <e fori=ngp,...,N.

If any of the above conditions is violated, then we refer the resulting fitted pair ¢
and d as inadmissible. The admissibility criterion enforces the goodness of fit by
ensuring that the residual values (i.e. difference between the fitted ceded loss value
and the optimal empirical ceded loss value) at all data points are less than the error

tolerance €. Consequently, for an admissible solution, the smaller the ¢, the better
the fit.

In our numerical studies, we consider nine different sample sizes, ranging from
N = 150 to N = 390 in multiple of 30. Note that we have intentionally chosen a

rather small sample size in order to have a better understanding of the performance

Yf |f] < eforalli=1,2--- N, then it is reasonable to take f*(z) = 0 for all z > 0. We

ignore this trivial case.
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N | Admissibility | mean of ¢ mean of d mean of x

150 100% 1.00 (= 0) | 1,386.68 (7.04) | 999.77 (2.66)
180 100% 1.00 (=~ 0) | 1,386.73 (6.10) | 1,000.50 (2.31)
210 100% 1.00 (= 0) | 1,379.63 (5.59) | 996.60 (2.18)
240 100% 1.00 (= 0) | 1,381.87 (5.34) | 997.04 (2.06)
270 100% 1.00 (=~ 0) | 1,384.98 (5.11) | 999.12 (1.94)
300 100% 1.00 (=~ 0) | 1,391.44 (4.65) | 1,003.14 (1.76)
330 100% 1.00 (=~ 0) | 1,384.16 (4.62) | 998.87 (1.75)
360 100% 1.00 (=~ 0) | 1,392.36 (4.40) | 1,001.15 (1.64)
390 100% 1.00 (=~ 0) | 1,385.55 (4.12) | 1,000.58 (1.57)

Table 6.1: Empirical solutions based on 1,000 independent replications of an ex-
ponential loss distribution for the expectation premium principle. Column 1 gives
the sample size of each replication. Column 2 gives the proportion of the solutions
that are admissible. Columns 3, 4 and 5 tabulate the average of the fitted ¢, fitted
CZ, and simulated random samples, respectively, over all admissible solutions. The

standard errors of the estimates are given in parentheses.

of the proposed empirical solution. For each sample size N, we replicate the random
samples for M = 1,000 times independently to obtain 1,000 independent estimates
of ¢ and d using € = 0.1. Of the fitted pair ¢ and OZ, we also keep track of the
proportion of admissibility and we report only the mean and standard errors of
the admissible fitted é and d. We analyze the results for both the exponential loss
distribution and the Pareto loss distribution. The results for the exponential loss
distribution are summarized in Table 6.1 and the boxplots in Figures 6.1 (for ¢) and
6.2 (for d). The corresponding results for the Pareto loss distribution are reported

in Table 6.2 and the boxplots in Figures 6.3 and 6.4. Based on these results, we
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N | Admissibility | mean of ¢ mean of d mean of x

150 93.8% 1.00 (= 0) | 1,981.75 (23.71) | 1,003.08 (4.52)
180 93.2% 1.00 (=~ 0) | 1,945.92 (20.85) | 1,001.70 (3.97)
210 95.0% 1.00 (=~ 0) | 1,948.37 (19.96) | 994.39 (3.59)
240 94.7% 1.00 (= 0) | 2,005.88 (19.83) | 1,003.36 (3.48)
270 95.0% 1.00 (=~ 0) | 1,982.12 (18.17) | 1,001.89 (3.30)
300 96.1% 1.00 (=~ 0) | 1,983.13 (18.31) | 997.00 (3.11)
330 96.2% 1.00 (=~ 0) | 1,995.64 (17.43) | 998.98 (3.03)
360 96.9% 1.00 (= 0) | 1,994.08 (16.49) | 998.04 (2.74)
390 97.6% 1.00 (=~ 0) | 1,990.33 (14.99) | 999.84 (2.62)

Table 6.2: Empirical solutions based on 1,000 independent replications of a Pareto

loss distribution for the expectation premium principle.

draw the following remarks:

e Regarding the exponential loss distribution, the simulated results suggest that
the empirical solutions are strongly stable and consistent. We now elaborate
further on these observations. First, the empirical solutions are very stable
with respect to the shape of the stop-loss function. This can be deduced from
the 100% admissibility and the fact that all the fitted values of ¢ are almost
one with negligible standard error (see also its boxplot in Figure 6.1). This
implies that all the empirical solutions consistently yield the shape of the stop-
loss function to within 0.1 error tolerance level, even for sample size as small
as NV = 150. Second, the empirical solutions are consistent with the analytical
solution. This can be concluded by the fact that both the theoretical solutions
and empirical solutions take the same form as a stop-loss function. Moreover,

the fitted values of d also demonstrate a strong concordance with the retention
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in the theoretical solution. As the sample size N increases, the fitted d appears
to be converging consistently to d* = 1,386.29 with a decreasing standard
error. For example, even with only a sample size N = 390, the average of

~

d =1,385.55 is very close to d* with a tiny standard error 4.12.

e For the heavy-tailed Pareto distribution, the simulated results also imply that
the empirical solutions are stable and consistent with the theoretically optimal
stop-loss solution, although the results are not as perfect as that for the light-
tailed exponential distribution. As shown in Table 6.2, the admissibility is
more than 93% for all the considered sample size and in particular it reaches
as high as 97.6% when sample size N = 390. Moreover, of those admissible
solutions, all the fitted values of ¢ are almost one with negligible standard
error (see also its boxplot in Figures 6.3) and the average of the fitted values

of d is close to the theoretical retention d* = 2,000.

e For comparison, the last column of Tables 6.1 and 6.2 demonstrate the quality
of the random samples by reporting the average of the randomly generated
samples (together with its standard error). The reported values are consistent
with the true value of © = 1,000 for both exponential loss distribution and

Pareto loss distribution.

6.3 Standard Deviation Premium Principle Ex-

ample

In this section, we use the same numerical setup as in the last section except that
the reinsurance principle is the standard deviation premium principle with loading

—_

factor # = 0.2. In other words, the reinsurance premium constraint II(f) < 7
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Figure 6.4: Boxplot of the admissible retention d under expectation premium prin-

ciple and Pareto loss distribution.
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becomes

N
el'f + £7r.

1
BVN s

Furthermore, the reinsurance premium budget is revised to m = 100, instead of

IQf|| < -

7 = 300 as in the previous case.

This example is considerably more challenging for two reasons. First, unlike the
expectation premium principle, analytical solution under the standard deviation
premium principle is no longer available. Second, the scatter plots in Examples 5.7
and 5.8 suggest that the functional form of the optimal ceded loss function depends
on the magnitude of the reinsurance premium budget 7. In particular when 7 is
high, the scatter plots reveal that the stop-loss functions are optimal. On the other
hand, as we reduce the budget, say to m = 100, the optimal ceded loss function
changes from a stop-loss function to a capped stop-loss function. Henceforth, we
assume that the optimal ceded loss function is of the form capped change-loss func-
tion for which the capped stop-loss function is a special case. The same numerical
analysis as we have conducted in the last section is used to assess the stability of

our proposed empirical method.

The general form of a capped change-loss function involves three parameters
¢, d, and m with the representation f(z) = min{c(x — d);, m}. We now describe
in details the fitting of this function to the optimal ceded loss values derived from
the empirical model. As we did in the last section, we begin with ordered pairs
{(xz@), fa)), (@@, f2), -+, (@@, finy)} (arrange in ascending order in ;). The key
of fitting these points to a capped change-loss function is, for a prespecified error
tolerance €, to identify the subset of the ordered pairs {(@(n,), f(n))s (Z(m+1)s frut1)),

“, (T(nw)s finw)) } that will be fitted to c(x — d). Here both n; and n, are integers

satisfying n, — n; > 1. Furthermore, n; corresponds to the smallest integer ¢ such
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that |f(;)| > e while n, is the largest k such that?

N
1
S > e
T N—k—l—le:kf(]) > e

Accordingly, a reasonable estimate of the upper limit m, denoted by m, is given by

N

1
the average x——> /", 1

fj)- Also, the linear function f(z) = c¢(x — d) can now
be fitted to the ordered pairs {(z(m,), fin))s (@+1)s fous1)s = 5 (Tna), fin)} tO
determine the fitted ¢ and d. Similar to the example in the previous section, the
fitted values ¢, CZ, and m are said to be inadmissible if at least one of the following

conditions is satisfied:

ny—mn <1 (6.3.4)

‘f(i) —¢c (x(i) — CZ)’ > ¢ for at least one i € {n;, -+ ,n, }, (6.3.5)
max{ fu : i ="mn;,...,N,} > m, (6.3.6)
‘f(N) —c (x(N) - CZ) ’ > e (6.3.7)

Otherwise, the fitted values ¢, d, and 7 are admissible. Condition (6.3.7) pre-
cludes the possibility that an ordinary change-loss function (i.e. without a cap) is

incorrectly identified as a capped change-loss function.

As in the previous section, we consider both the exponential and Pareto dis-
tributions with tolerance error ¢ = 0.1 and nine sample sizes N = 130 to 390 in
multiple of 30. Tables 6.3 and 6.4 depict, respectively, for the exponential and
Pareto distribution cases, the results of the fits for the standard deviation premium
principle examples with 1,000 independent replications. The boxplots for all the
admissible ¢, CZ, and m are also produced. Figures 6.5, 6.6 and 6.7 are, respectively,
the boxplots of ¢, d and 1 for the exponential distribution while Figures 6.8, 6.9
and 6.10 are the results for the Pareto distribution. Based on these results, we

make the following remarks:

21f Ty — N+k+1 Zj\[:k | <eforallk=1,2--- N, then we set n, = 0 and we ignore this

trivial case.
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N | Admissibility | mean of ¢ mean of d mean of m mean of x
150 89.7% 1.00 (=~ 0) | 2,694.13 (11.45) | 1,502.85 (6.90) | 1,002.62 (2.75)
180 93.8% 1.00 (= 0) | 2,686.45 (10.04) | 1,505.36 (6.51) | 1,001.31 (2.42)
210 95.8% 1.00 (= 0) | 2,686.67 (9.17) | 1,509.18 (5.99) | 1,001.31 (2.21)
240 97.1% 1.00 (= 0) | 2,679.99 (8.51) | 1,509.82 (5.94) | 999.59 (2.06)
270 97.9% 1.00 (= 0) | 2,677.78 (7.97) | 1,507.24 (5.71) | 999.08 (1.95)
300 98.8% 1.00 (= 0) | 2,676.32 (7.58) | 1,507.23 (5.36) | 998.94 (1.84)
330 98.9% 1.00 (= 0) | 2,673.58 (7.17) | 1,499.80 (4.97) | 999.17 (1.76)
360 99.8% 1.00 (= 0) | 2,672.89 (6.61) | 1,504.78 (4.71) | 1,000.20 (1.65)
390 99.9% 1.00 (= 0) | 2,677.89 (6.55) | 1,501.04 (4.80) | 999.56 (1.60)

Table 6.3: Empirical-based solutions based on 1000 independent replications of an

exponential distribution for the standard deviation premium principle.

e Under our admissibility criteria specified above, not all of the fitted values
are considered as admissible in both cases of the exponential and Pareto loss
distributions. However, it is still reassuring that the empirical solutions are
stable in that predominantly high proportion of the fitted values are iden-
tified as admissible. The worst case, which corresponds to N = 150 in the
exponential distribution case, still suggests that 89.7% of the solutions are
identified as the capped change-loss function. In the Pareto distribution case,
the admissibility reaches as high as 97.1% in the worst case and it attains

100% when the sample size N is larger than 270.

e Of the admissible solutions, the fitted ¢ is virtually equal to 1 (with negligible
standard errors®) for both loss distributions. This strongly suggests that
the optimal ceded loss function is a capped stop-loss function, rather than a

capped change-loss function.

e The fitted values of J, and m appear to be reasonable in that their standard

3The estimated standard errors are in the order of 10~8.
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N | Admissibility | mean of ¢ mean of d mean of m mean of x
150 97.1% 1.00 (=~ 0) | 3,211.22 (23.19) | 1,295.76 (4.65) | 1,003.52 (4.58)
180 98.5% 1.00 (=~ 0) | 3,168.34 (18.72) | 1,291.44 (4.23) | 1,000.20 (3.91)
210 99.5% 1.00 (= 0) | 3,188.90 (17.09) | 1,284.84 (3.69) | 999.37 (3.67)
240 99.6% 1.00 (= 0) | 3,155.74 (14.75) | 1,281.42 (3.48) | 993.46 (3.42)
270 99.7% 1.00 (= 0) | 3,181.36 (15.40) | 1,281.70 (3.27) | 999.26 (3.28)
300 100% 1.00 (= 0) | 3,161.11 (13.94) | 1,278.89 (3.10) | 997.82 (3.06)
330 100% 1.00 (= 0) | 3,162.77 (13.82) | 1,270.64 (2.77) | 1,000.89 (3.06)
360 100% 1.00 (= 0) | 3,157.03 (12.27) | 1,270.78 (2.76) | 998.10 (2.77)
390 100% 1.00 (= 0) | 3,153.93 (12.09) | 1,269.64 (2.59) | 997.59 (2.97)

Table 6.4: Empirical-based solutions based on 1000 independent replications of a

Pareto distribution for the standard deviation premium principle.

errors decrease as we increase the sample size. This is also supported by the

boxplots in Figures 6.6, 6.7, 6.9 and 6.10.

e The last column of Tables 6.3 and 6.4 tabulates the sample mean of the
simulated random samples. Again these estimates are consistent with the

true value, which is 1,000.

6.4 Conclusion

In this chapter, an extensive numerical studies have been provided in addressing
the stability and consistency of our proposed empirical reinsurance models. The
focus is on the small sample size. For the examples where we know the analytic
solutions, we observe that the empirical solutions are very stable and converge
quickly to the theoretically true solution. For the examples where we do not know

the theoretical solution, our results are still very encouraging even for small sample
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Figure 6.5: Boxplot of the admissible ¢ under standard deviation premium principle

and exponential loss distribution.
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Figure 6.6: Boxplot of the admissible d under standard deviation premium principle
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Figure 6.9: Boxplot of the admissible d under standard deviation premium principle

and Pareto loss distribution.
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size with respect to the stability of the empirical solutions. We emphasize that
the ultimate advantage of our proposed empirical reinsurance models lies in its
flexibility. It can be used to derive optimal ceded loss functions over a variety of

premium principles where analytic solutions are typically not available.
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Chapter 7

Concluding Remarks and Further

Research

7.1 Achievements of the Thesis

In this thesis, I have established a series of reinsurance models and analyzed
their optimal solutions. These reinsurance models have the following characteris-
tics. First, the optimality objectives exploit commonly used risk measures such
as VaR, CTE, and Variance. Second, the considered reinsurance premium prin-
ciples encompass the expectation principle, the standard deviation principle and
many others. Third, the feasible ceded loss functions are assumed to have different
degree of generality. In some models, we confined our analysis to some specific
functional forms of the ceded loss functions (such as quota-share, stop-loss or class
of increasing convex functions) while in other models, the ceded loss function can
be very general. Fourth, the incorporated constraints can be interpreted as either
the insurer’s profitability guarantee or the insurer’s reinsurance premium budget.

Finally, depending on the specific type of formulation, the optimal reinsurance de-
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signs can be of the form: quota-share, stop-loss, change-loss, or even non-convex

type (such as stop-loss with an upper limit).

While the entire thesis was concerned with issues related to optimal reinsurance,
we could further classify our results into two broad areas. First few chapters of the
thesis focused on analytic results. We observed that in some reinsurance models
it was relatively easy to analyze while in other cases the mathematical tools used
to derive the optimal solutions can be quite tedious. In the last two chapters
(i.e. Chapters 5 and 6), the reinsurance models are formulated directly based
on the empirical data. We pointed out that there are a number of advantages
associated with this approach. In particular, this method is intuitively appealing,
distribution free, and flexible. The proposed reinsurance models can be formulated
as SOC programming problems, which in turns facilitate us in obtaining the optimal
solutions over a wide range of cases. Hence this approach is more practical and more

tractable.

7.2 Future Research

Because of the research that we have been conducting on this thesis, we are
very familiar with the tools and methodologies used on problems related to optimal
reinsurance. Based upon our knowledge and experience, here we produce a list of

possible research topics for future exploration:

e Extend the results of the VaR/CTE minimization criteria to other optimality
criteria. For example, the primary goal of reinsurance for many insurers is to
maintain, at an acceptable level, the random fluctuations of the business op-
eration of the insurers. Motivated by this argument, an alternate formulation
of the reinsurance model is to minimize the earning volatilities of the insurer

via some reasonable measures. As another example, by noticing the tradeoff
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between the risk and reward, it is also of interest to consider the reinsurance

designs by minimizing the objectives such as return on risk-adjusted capital

(RORAC).

Extend the results for the expectation principle to other premium principles.
Recall that the explicit solutions are derived only for the expectation principle
when we were analyzing the parametric models without assuming a specific
functional form for the feasible ceded loss functions; see Chapters 3 and 4.
In Chapters 5 and 6 on the empirical approach to optimal reinsurance, we
only analyzed the optimal solutions (to the VaR /CTE/Variance minimization
models) for the expectation principle and the standard deviation principle,
although we have shown that the resulting empirical reinsurance models can
be equivalently cast as the SOC programming for as many as ten princi-
ples. Thus, further exploration of the optimal reinsurance under principles
other than the expectation and standard deviation is a a natural future area
of research. In particular, it will be great interesting to have a better un-
derstanding on how the shape of the optimal reinsurance would be affected
on more elaborate premium principles. Recall that in the CTE minimiza-
tion model, the optimal reinsurance changes from a stop-loss to a capped
stop-loss when the premium principle changes from the expectation to the

standard deviation for low reinsurance premium budget.

Apply the empirical approach to real data. The tractability of the empirical
models enables us to analyze the optimal reinsurance strategy from various
angles in terms of different model formulations. The analysis based on the

real data will make our research results more practical and applicable.

Establish convergence results of the empirical solutions derived by the em-
pirical approach. Recall that in Chapter 6, we conducted an analysis on the

consistency and stability of the empirical solutions, where we concluded a
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strong stability and consistency by some numerical experiments on the CTE
minimization model. We have not achieved any theoretical conclusion on the
consistency and stability of the empirical solutions. Thus, it is theoretically

significant to explore the convergence issues of the empirical solutions.

Analyze the optimal reinsurance under the local models. Recall that in a lo-
cal model, the reinsurance is applied to individual risk, instead of the overall
aggregate risk as in the global model which are the main focus in my thesis.
Due to multiple lines of products and the multiple risk exposures, it may be
more prudent for an insurer to have the reinsurance coverage on each of these
lines of products or each of these risks, instead of just reinsuring the risk
in aggregate. Research on this topic is very limited. Kaluszka(2004b) and
Cheung (2007) are two of the few related research papers. Since in a local
model the reinsurance is applied to individual risk, the dependence structure
of these risks therefore take a critical role in determining the optimal reinsur-
ance. Thus, it is of interest to incorporate the copula method or stochastic
ordering approach to describe the dependence among the individual risks or to

compare the resulting risks in the presence of different reinsurance contracts.
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