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Abstract

The research on optimal reinsurance design dated back to the 1960’s. For nearly

half a century, the quest for optimal reinsurance designs has remained a fascinating

subject, drawing significant interests from both academicians and practitioners.

Its fascination lies in its potential as an effective risk management tool for the

insurers. There are many ways of formulating the optimal design of reinsurance,

depending on the chosen objective and constraints. In this thesis, we address

the problem of optimal reinsurance designs from an insurer’s perspective. For

an insurer, an appropriate use of the reinsurance helps to reduce the adverse risk

exposure and improve the overall viability of the underlying business. On the other

hand, reinsurance incurs additional cost to the insurer in the form of reinsurance

premium. This implies a classical risk and reward tradeoff faced by the insurer.

The primary objective of the thesis is to develop theoretically sound and yet

practical solution in the quest for optimal reinsurance designs. In order to achieve

such an objective, this thesis is divided into two parts. In the first part, a num-

ber of reinsurance models are developed and their optimal reinsurance treaties are

derived explicitly. This part focuses on the risk measure minimization reinsurance

models and discusses the optimal reinsurance treaties by exploiting two of the most

common risk measures known as the Value-at-Risk (VaR) and the Conditional Tail

Expectation (CTE). Some additional important economic factors such as the rein-

surance premium budget, the insurer’s profitability are also considered. The second

part proposes an innovative method in formulating the reinsurance models, which

we refer as the empirical approach since it exploits explicitly the insurer’s empir-

ical loss data. The empirical approach has the advantage that it is practical and

intuitively appealing. This approach is motivated by the difficulty that the rein-

surance models are often infinite dimensional optimization problems and hence the
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explicit solutions are achievable only in some special cases. The empirical approach

effectively reformulates the optimal reinsurance problem into a finite dimensional

optimization problem. Furthermore, we demonstrate that the second-order conic

programming can be used to obtain the optimal solutions for a wide range of rein-

surance models formulated by the empirical approach.
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Chapter 1

Introduction

1.1 Background

The research on optimal reinsurance design dated back to the 1960’s (see Borch

(1960), Kahn (1961), and Ohlin (1969)). For nearly half a century, the quest for

optimal reinsurance designs has remained a fascinating subject, drawing significant

interests from both academicians and practitioners. Its fascination lies in its po-

tential as an effective risk management tool for insurer. The theme of this thesis

is to study the optimal reinsurance design. In particular, we will consider various

reinsurance models with the objective of deriving their solutions.

To introduce the concept of optimal reinsurance design, let us first recall the

concept of it reinsurance. Generally speaking, reinsurance is an insurance on in-

surance or an insurance for the insurers. It is a contractual agreement between

an insurer (cedent) and a reinsurer whereby, depending on the nature of the rein-

surance arrangement, the reinsurer indemnifies part of the losses incurred on the

insurer.

There are many reasons for the existence of the reinsurance. First, reinsurance
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can be employed by the insurance company to mitigate its risk exposure and hence

stabilize the underwriting (or earnings) volatilities. Second, the reinsurance might

be utilized by the insurer to avoid a large single loss, for example, claims resulting

from a catastrophic risk, which might lead to the insurer’s bankruptcy. Third, a

newly established insurance company can obtain the business expertise from some

reinsurance companies by relating to them through reinsurance contracts. Fourth,

reinsurance also provides a mechanism allowing an insurance company to increase

its capacity to accept risks.

In order to clarify the concept of optimal reinsurance design, let us further ana-

lyze the general effect of a reinsurance treaty on the insurer. Obviously, by spreading

some of the risks to a reinsurer, the insurer incurs additional cost in the form of

reinsurance premium which is payable to the reinsurer. Naturally, the higher the

expected risk transfers to a reinsurer, the more costly the reinsurance premium is.

Similarly, a cedent can lower the cost of reinsuring by exposing to higher expected

retained risk. This demonstrates the trade-off between risk spreading and risk re-

taining. Such a trade-off right leads to the topic of optimal reinsurance design.

It is a process of determining the optimal reinsurance contract according to some

optimality criteria along with some constraints if necessary. In the nutshell, it deals

with the optimal partitioning of a risk between insurer and reinsurer.

The optimal reinsurance design therefore entails specifying certain optimization

problems and solving them for the optimal reinsurance treaties. We will term

these optimization problems as reinsurance models and refer the risk on which the

reinsurance is applied as the underlying risk. The studies of the reinsurance models

therefore could provide important insights to the nature of the underlying risks to

which the insurer is exposed and could also help to develop sound and prudent risk

management tools for the insurance companies.

Let us now recall various types of reinsurance models that have been proposed

in the literature. It is convenient to first divide the models into two major classes

2



depending on the time periods. These are known as the static models and the

dynamic models. In the former models, we are only concerned with reinsuring risk

over a single time period and thus they are also called the single period models. The

latter models address reinsurance in a multi-period setting which typically involves

specifying a surplus process such as the classical compound Poisson model. We also

refer the latter model as the multi-period models.

Among these models, one can further classify into either the global models or

the local models depending on how reinsurance is structured. When reinsurance is

only applied to the risk in aggregate, we call such models as global, otherwise local.

Hence in the former case we only need to know the aggregate loss distribution while

in the latter case, we need to know the joint distribution of the risks and how the

reinsurance contract affects the resulting risk. Note that a substantial amount of

the existing literature discusses the global models, although the local models and

the combination of these two types models are common in practice. This thesis will

focus on the global models.

Further classification of the reinsurance models is possible depending on how

optimality is defined. For example in the insurer-reinsurer-oriented models, the

optimal reinsurance is determined in such a way that it reflects jointly the interests

of both insurer and reinsurer. In this case, the optimization is often formulated

as a game-theoretic problem between both players and then determine the Pareto

optimal reinsurance if it exists; see, for example, Borch (1960). On the other

hand there are models, which are referred as the insurer-oriented models, that

focus exclusively on the insurer in deriving the optimal reinsurance. The optimal

reinsurance is determined solely from the point of view of the insurer. Hence, the

insurer is the active player while the reinsurer is the passive counterpart. While

the assumption of the reinsurer being passive is debatable, one can argue that the

reinsurance market is competitive and the insurer can be demanding. Another

advantage of focusing on the insurer-oriented model is that from the point of view
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of the insurer, the optimal reinsurance can become a benchmark or a guideline for

the insurer, even if such optimal reinsurance contract may not be available from

the market. Much of the research in recent years is devoted to the insurer-oriented

models, which is also the focus of the present thesis.

We now list the following commonly-used reinsurance models, depending on the

nature of the goal function:

(1) variance minimization models: if the insurer were to minimize the variance

of its retained risk (or total risk);

(2) expected utility maximization models: if the insurer were to maximize its ex-

pected utility;

(3) (convex) risk measure minimization models: if the insurer were to minimize

a (convex) risk measure of its retained risk (or total risk);

(4) ruin probability minimization models: if the insurer were to minimize ruin

probability for its surplus process.

It should be noted that the first three models are nested in the sense that the

variance minimization models can be considered as subset of the expected utility

maximization models, which in turn is a special case of the risk measure minimiza-

tion models. Note also that in studying the above optimization models, constraints

such as the maximum premium budget or the minimum expected profits guarantee

are often imposed. In these cases, one is dealing with constrained optimization

models, as opposed to the unconstrained optimization models.

1.2 Literature Review

In this section, we provide a brief literature review and summarize some of the

major results on optimal reinsurance that are relevant to the thesis. In particular,
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we will emphasize on the static global models with occasional reference to other

models and techniques.

By examining the existing literature, there is a proliferate of research being

conducted on the insurer-oriented models, particularly the static global insurer-

oriented models. This type of model usually involves modelling the underlying risk

as a non-negative random variable, say X. Suppose f(X), with the conventional

assumption 0 ≤ f(x) ≤ x for all x ≥ 0, is the part of the underlying risk that is cov-

ered by the reinsurer, and Π denotes the premium principle adopted for determining

the reinsurance premium for a given reinsurance arrangement f ≡ f(X). Then the

insurer retains the risk of If ≡ If(X) := X − f(X) and pays Π(f) ≡ Π(f(X)) to

the reinsurer in the form of reinsurance premium; hence its total cost or total risk,

denoted by Tf ≡ Tf (X), is the sum of Π(f) and If , i.e., Tf (X) = If(X)+Π(f(X)).

Note that the function f(x) implies a partition of the initial risk X between insurer

and reinsurer. This function is known as the compensation function, indemnifi-

cation function, or ceded loss function, while If(x) is referred as the retained loss

function. It is reasonable to assume that the insurer has a preset reinsurance pre-

mium budget, say π. This implies that π is the maximum premium an insurer is

willing to pay for reinsuring its risk. This is equivalent to imposing the constraint

Π(f(X)) ≤ π in the reinsurance model.

Most of the static reinsurance models investigated to-date take either of the

following formulations:





min E
[
w
(
If (X)

)]
= E

[
w
(
X − f(X)

)]

s.t. 0 ≤ f(x) ≤ x, for all x ≥ 0, and Π(f(X)) = π,
(1.2.1)

and




min E
[
w
(
If(X)

)]
= E

[
w
(
X − f(X)

)]

s.t. 0 ≤ f(x) ≤ x, for all x ≥ 0, and Π(f(X)) = π,
(1.2.2)
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where w is a convex function and Y denotes Y −EY for a random variable Y . The

optimization models (1.2.1) and (1.2.2) are the general forms of the various rein-

surance models including, for example, the following expected utility maximization

model:




max E [u(W0 −X + f(X) − π)]

s.t. 0 ≤ I(x) ≤ x, for all x ≥ 0, and Π(f(X)) = π,
(1.2.3)

where W0 denotes the insurer’s initial wealth so that W0−X+f(X)−π represents

the insurer’s wealth after reinsurance arrangement. As the insurer is seeking a

risk transfer, it is reasonable to assume that it is risk averse with a concave utility

function. Suppose u(t) is the corresponding concave utility function, then u(−t +

W0 − π) is obviously convex as a function of t. Furthermore, by setting w(t) =

u(−t + W0 − π), one recovers (1.2.3) from (1.2.1). For an excellent review of

the utility function with respect to insurance applications, see Gerber and Pafumi

(1998). Another important class of reinsurance model is obtained by letting w(x) =

x2 in (1.2.2). This leads to the classical variance minimization model:




min Var
(
If (X)

)
= Var

(
X − f(X)

)

s.t. 0 ≤ f(x) ≤ x, for all x ≥ 0, and Π(f(X)) = π.
(1.2.4)

The most classical and the most fundamental result on optimal reinsurance is

that the stop-loss reinsurance treaty is the optimal solution that solves both ex-

pected utility maximization model (1.2.3) and variance minimization model (1.2.4).

This key result assumes that the reinsurance premium is determined by the expec-

tation premium principle. The result relevant to the utility is due to Arrow (1974);

see also Bowers et al. (1997), Gerber and Pafumi (1998, section 6). The Arrow’s re-

sult can be regarded as a generalization of the result established in earlier literature

including Borch (1960), Kahn (1961) and Ohlin (1969). For detailed discussion on

the variance minimization model (1.2.4), see, for example, Bowers, et al. (1997),

Kaas, et al. (2001) and Gerber (1979).
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In the 1980’s one also observes numerous generalizations of Arrow’s result. For

example, Deprez and Gerber (1985) generalized this result in the sense that they

established one sufficient and necessary condition for the optimal contract f ∗ under

convex and Gâteaux differentiable1 premium principle Π for reinsurance models

without the premium budget constraint π. That is, they established the sufficient

and necessary conditions for the solution to model (1.2.3) for convex and Gâteaux

differentiable premium principles excluding the constraint Π(f(X)) = π.

Heerwaarden et al. (1989) subsequently generalized Arrow’s result to the so-

called tail-averse decision criteria, which is a class of criteria including, for example,

maximizing the expected utility using a concave increasing utility function, min-

imizing variance, the zero-utility premium, or the mean-value premium for the

retained risk, maximizing the adjustment coefficient or the ruin probability in a

compound Poisson risk process, and so on. Young (1999) extended the work of

Deprez and Gerber (1985) to the case with Wang’s premium principle, which is

convex but not Gâteaux differentiable.

In recent years, there appears to have been a surge of interests in optimal rein-

surance, and many creative optimal reinsurance models have surfaced as a result.

In conjunction with this, elegant mathematical tools and innovative optimization

theories have also been used in deriving the optimal solutions to the proposed rein-

surance models. The main developments on the recently proposed static models

are as follows.

Gajeck and Zagrodny (2000) considered the variance minimization model (1.2.4)

by changing the binding budget condition Π(f(X)) = π to the unbinding constraint

Π(f(X)) ≤ π and the expected premium principle to the standard deviation pre-

mium principle. Although these modifications introduced additional complexity to

the optimization problems, they derived explicitly the optimal reinsurance contracts

1For a brief introduction to the concept of Gâteaux differentiability, see Subsection 4.4.1 in

Chapter 4.
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by relying on techniques that are based on the Lagrange multipliers method and the

Gâteaux derivatives. In response to the criticism of using variance as a risk measure

criterion, the same authors in their subsequent work (Gajeck and Zagrodny (2004))

developed a method for analyzing the optimal reinsurance contracts to model (1.2.2)

with w defined as one of the so-called pseudoconvex functions. The pseudoconvex

functions include a large class of asymmetric functions such as h(t) = max(0, t) and

h(t) = [max(0, t)]2. In their paper, explicit forms of optimal contracts were derived

in the case of absolute deviation and truncated variance risk measures. See also

Zagrodny (2003) for related works.

A series of papers published by Kaluszka (2001, 2004a, 2004b, 2005) made

undeniable important contributions to the optimal reinsurance design. In 2001,

Kaluszka developed a technique for deriving explicit forms of the optimal reinsur-

ance contract with the variance minimization model (1.2.4) for the mean-variance

principles, i.e., the principles under which the reinsurance premium only relies on

the expectation and variance of the ceded loss. Subsequently, based on his previous

paper, Kaluszka (2004a) developed a method for the solutions to the more general

model (1.2.2) under the same class of premium principles. The solutions under sev-

eral specific functions for u, such as u(x) = x2
+ and u(x) = x+, were explored. For

a specific function u, his method might turn out to be still very complicated, and

the optimal solutions are more likely to be expressed as the solutions to a system

of equations and hence needs to rely on numerical method to obtain the optimal

solutions.

In his more recent work, Kaluszka (2005) considered more general models (i.e.

the convex risk measure models) along with a wider class of premium principles

(mainly the convex principles). By a convex principle, we mean that the premium

amount p over a random loss Z can be determined through the equation g(p) =

H(Z), where g is an increasing function and H is a convex function. The author

first established several highly general theorems and then in turn identified, case by
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case, the solutions for models with a specific risk measure and a specific premium

principle. Although the results he obtained for each specific model are sufficiently

explicit to be of practical use, his method could still turn out to be very complicated

to identify the solutions for other models even if they are also based on a convex

risk measure and a convex premium principle.

Another important paper in optimal reinsurance design is attributed to Promis-

low and Young (2005). In this paper, the authors discussed the optimal insurance

purchase under a unifying framework with the criterion of minimizing a general

risk measure. Their model can be shifted to the reinsurance design setting. While

their results are applicable for a general Gâteaux differentiable risk measure mini-

mization model, their conclusion is restricted to only determining whether a ceded

loss function (or the corresponding retained loss) should have a deductible or not2.

More recently, Cai and Tan (2007)3 introduced two new reinsurance models.

They determined the optimal retention of stop-loss contracts by, respectively, mini-

mizing the risk measures VaR (Value-at-Risk) and CTE (Conditional Tail Expecta-

tion) of Tf(X) ≡ If(X)+Π(f(X)), the total risk exposure of an insurer. Later on,

Cai et al. (2008), which I coauthored, generalized the results of Cai and Tan (2007)

by considering the optimal reinsurance among all the increasing convex treaties.

Note that the ceded loss functions in the stop-loss reinsurance, quota-share rein-

surance, and their combination are all some special increasing convex functions.

While the results obtained in these two papers are explicit and elegant, the crit-

icism on their models relies on two aspects. First is that they only consider the

expectation principle for the reinsurance premium. Second is that their model is

only concerned with risk exposure minimization for the insurer, without taking into

2In some very specific cases Promislow and Young (2005) also identified the shape of the

optimal ceded loss functions
3The paper by Cai and Tan (2007) was awarded one of the best-papers submitted to the 2006

Stochastic Modeling Symposium, April 3-4, Toronto.
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account other important factors, such as the reinsurance premium budget or the

insurer’s profitability.

The models we have reviewed so far are all single-period global models. There

are results pertaining to local models, which I now briefly mention. For example,

Borch (1960), Deprez and Gerber (1985), and Aase (2002) discussed the conditions

for achieving Pareto optimality during a risk sharing among a group of financial

individuals. Another example is by Kaluszka (2004b) who discussed the optimal

reinsurance contracts when the mean-variance premium principle is applied to the

sum of the individual ceded losses with the criteria of minimizing the variance of

the insurer’s global retained loss while imposing the insurer’s expected gain. There

are also papers which are devoted to discussing the optimal contracts within several

common types of reinsurance, such as the quota-share, surplus, stop-loss, and their

combinations. See for example, Centeno (1985, 1986) or Verlaak and Beirlant (2003)

The dynamic optimal reinsurance design is also an area of active research in

recent years. Some recent works are due to Schmidli (2001), Hipp and Vogt (2003),

Hald and Schmidli (2004), Dickson and Waters (2006), and Kaishev and Dimitrova

(2006). Most of these results define the optimal reinsurance design with the crite-

rion of minimizing the ruin probabilities of the insurer’s surplus process. Kaishev

and Dimitrova (2006), on the other hand, derived the optimality by maximizing the

joint survival probability of the surplus processes of both the insurer and reinsurer.

In the dynamic setting, the problems are usually so complicated that one has to

compromise to consider some specific type of reinsurance so that the problem boils

down to determining several optimal parameters in the reinsurance models. For ex-

ample, Hipp and Vogt (2003) employed stochastic control methods to determine the

optimal excess-of-loss reinsurance under the assumption that the insurer’s surplus

follows a compound Poison process.

Finally, it is worth noting that the principle Π adopted for the reinsurance

premium assumes a critical role in the optimal design of reinsurance. The shape
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of optimal ceded loss function can be dramatically different for different types of

reinsurance premium principles. The complexity of solving the resulting reinsurance

models can also differ substantially for different reinsurance premium principles.

1.3 Mathematical Background

1.3.1 Insurance Company Risks and Risk Measures

“Risk is Opportunity.” – This has been a recent slogan of the Society of Actuaries

in reminding actuaries that risk is the core of our business; the management of

risk has been our expertise. In this thesis, we are concerned with effectively using

reinsurance as a risk management tool for an insurer. In particular, we assume that

the (aggregate) risk exposure of an insurer is denoted by the random variable X.

Associated with the risk random variable X, we can define appropriate measures

of measuring and quantifying X. This leads to the development of risk measure.

Usually, it is simply defined as a mapping ρ from X , a set of random variables

representing certain risks, to the real numbers R.

Premium principles used by insurance companies can be perceived as some kinds

of risk measures. Subsection 1.3.2 of this chapter lists some commonly adopted

premium principles. More broadly speaking, risk measures are used for setting

provisions and capital requirements of a financial institution to ensure solvency.

Value-at-Risk (VaR) and Conditional Tail Expectation (CTE) are two of the most

popular risk measures for this purpose.

Definition 1.1 The VaR of a loss random variable Z at a confidence level 1 − α,

0 < α < 1, is formally defined as

VaRα(Z) = inf{z ∈ R : Pr(Z ≤ z) ≥ 1 − α}. (1.3.5)
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In probabilistic terms, VaR is merely a quantile of the loss distribution of Z. In

practice, α is usually chosen such a small value as 5% or even 1%. Consequently,

VaRα(Z) can be interpreted as a level such that the loss Z is bounded by this level

from above with a large probability 1−α, or equivalently VaR is the level such that

the loss happens beyond this level with a small probability α. Moreover, VaRα(Z)

is nonincreasing and right continuous4 as a function of α on the interval (0, 1).

Note that the minimum in (1.3.5) is attained because Pr(Z ≤ z) is nondecreasing

and right-continuous in z as the cumulative distribution function of the random

variable Z. When Pr{Z ≤ z} is continuous and strictly increasing, z = VaRα(Z) is

the unique solution to the equation Pr(Z ≤ z) = 1−α. Moreover, it is also obvious

that VaRα(Z) is right continuous as a function of α.

The risk measure VaR possesses the following two properties:

Lemma 1.1 Let Z be a real-valued random variable, and 0 < α < 1.

(i) It holds that

VaRα(g(Z)) = g (VaRα(Z))

for any nondecreasing and left continuous function g such that VaRα(g(Z))

is well defined.

(ii) If additionally Z has finite expectation, then

E[Z] =

∫ 1

0

VaRu(Z)du.

4Note that in some literature, VaR is defined by VaRα(Z) = inf{z ∈ R : Pr(Z ≤ z) ≥ α} with

a large value for α, say 95% or 99%. In this case, VaR is nondecreasing and left continuous as a

function of α.
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Proof. See Dhaene et al. (2002) for proof of (i). Next we prove (ii). Denote

F−1
Z (u) = inf{ξ : Pr(Z ≤ ξ) ≥ u} for 0 < u < 1. Then F−1

Z (1 − U) = VaRU(Z)

and F−1
Z (1−U) has the same distribution as Z for a uniformly distributed random

variable U on the unit interval (0, 1). Thus,

E[Z] = E
[
F−1

Z (1 − U)
]

=

∫ 1

0

F−1
Z (1 − u)du =

∫ 1

0

VaRu(Z)du,

and we complete the proof. 2

In view of the fact that VaR corresponds to a quantile of a loss distribution,

it does not adequately reflect the potential catastrophic losses of the tail of the

distribution. This is one of the commonly criticized shortcomings for VaR despite

its prevalence as a risk measure among financial institutions. To overcome this

drawback, other risk measure such as the CTE is proposed. CTE is defined as the

expected loss given that the loss falls in the worst α part of the loss distribution.

Definition 1.2 The CTE of a random variable Z at a confidence level 1 − α,

0 < α < 1, is formally defined as the mean of its α-upper-tail distribution Ψα(ξ),

which is constructed based on the α-tail of the loss distribution of Z and given by

Ψα(ξ) =





0, for ξ < VaRα(Z),

Pr(Z ≤ ξ) − (1 − α)

α
, for ξ ≥ VaRα(Z).

(1.3.6)

At this point, we caution the readers that the literature itself on risk measures

can be quite confusing. One of the reasons is that different authors have adopted

different terminologies even though many of these risk measures are essentially mea-

suring the same quantity. For example, the term “Conditional Tail Expectation”

is coined by Wirch and Hardy (1999) while others have used names such as the

Tail Conditional Expectation (see Artzner et al. (1999)), Conditional Value-at-

Risk (CVaR) (see Rockafellar and Uryasev (2002)), Tail Value-at-Risk (TVaR) (see
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Dhaene et al. (2006) and Expected Shortfall (ES) (see Tasche (2002), McNeil et

al. (2005)). The formal definition of CTE is also another area that has led to some

confusions. For instance, many authors (see, for example, Dhaene et al. (2006))

have taken at face value that (1.3.10) defined below is the definition for CTE. This

is, however, not quite correct. Wirch and Hardy (1999) explicitly make it clear

that (1.3.10) is the definition for CTE only under the additional assumption that

the loss random variable is continuous. Because of this confusion, CTE has been

unfairly criticized as a relevant measure of risk.

To avoid any further confusion, we formally collect some of the properties asso-

ciated with the risk measure CTE in the Proposition 1.1 below. A detailed proof

of proposition is also provided.

Proposition 1.1 Let Z be a nonnegative loss random variable and 0 < α < 1.

(i) CTE and VaR of Z are related as

CTEα(Z) = VaRα(Z) +
1

α

∫ ∞

VaRα(Z)

SZ(x)dx, (1.3.7)

where SZ denotes the survival function of Z, i.e., SZ(x) = Pr{Z > x} for

any x ∈ R.

(ii) CTE can be equivalently defined as the average of VaR on the α-tail, i.e.,

CTEα(Z) =
1

α

∫ α

0

VaRq(Z)dq. (1.3.8)

(iii) Let β = inf{u : VaRu(Z) = VaRα(Z)}, or equivalently β = Pr{Z > VaRα(Z)},
then

CTEα(Z) =
1

α

(
(α− β)VaRα(Z) + βE

[
Z|Z > VaRα(Z)

])
, (1.3.9)

provided that {Z > VaRα(Z)} has nonzero probability.
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(iv) If Z is a continuous random variable, then CTE has the following simple

representation:

CTEα(Z) = E[Z|Z > VaRα(Z)]. (1.3.10)

Proof. Let Y be a random variable with distribution function Ψα defined in

(1.3.6), then

CTEα(Z) = E[Y ]

= −
∫ 0

−∞
Ψα(ξ)dξ +

∫ ∞

0

[1 − Ψα(ξ)] dξ

= 0 +

∫ VaRα(Z)

0

1 · dξ +

∫ ∞

VaRα(Z)

[
1 − Pr(Z ≤ ξ) − (1 − α)

α

]
dξ

= VaRα(Z) +
1

α

∫ ∞

VaRα(Z)

SZ(ξ)dξ,

which proves (i).

In order to prove (ii), first note that g(t) = (t − VaRα(Z))+ is nondecreasing

and continuous as a function of t, and thus it follows from (i) of Lemma 1.1 that

VaRu

(
[Z − VaRα(Z)]+

)
= [VaRu(Z) − VaRα(Z)]+

for any 0 < u < 1. Moreover, by (ii) of Lemma 1.1 we have

E
[
(Z − VaRα(Z))+

]
=

∫ 1

0

VaRu

(
[Z − VaRα(Z)]+

)
du.

Thus,
∫ ∞

VaRα(Z)

SZ(ξ) · dξ = E
[
(Z − VaRα(Z))+

]

=

∫ 1

0

VaRu

(
[Z − VaRα(Z)]+

)
du

=

∫ 1

0

[VaRu(Z) − VaRα(Z)]+ du

=

∫ α

0

[VaRu(Z) − VaRα(Z)] du

=

∫ α

0

VaRu(Z)du− α · VaRα(Z),
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which, together with (1.3.7), implies (1.3.8).

As for (iii), we will first show the identity inf{u : VaRu(Z) = VaRα(Z)} =

Pr{Z > VaRα(Z)}. Since Pr(Z ≤ ξ) is nondecreasing and right continuous as a

function of ξ, VaRu(Z) is nonincreasing and right continuous as a function of u

on the interval (0, 1), which in turn implies that inf{u : VaRu(Z) = VaRα(Z)}
is attainable. Thus, it is sufficient for us to show VaRγ(Z) = VaRα(Z) and

VaRγ−ε(Z) > VaRα(Z) for any ε ∈ (0, γ), where γ = Pr{Z > VaRα(Z)}. In-

deed, we have

VaRγ(Z) = inf{ξ : Pr(Z ≤ ξ) ≥ 1 − γ}

= inf{ξ : Pr(Z ≤ ξ) ≥ Pr(Z ≤ VaRα(Z))}

= VaRα(Z).

Moreover, if there exists an ε ∈ (0, γ) such that VaRγ−ε(Z) = VaRα(Z), then by

the definition of VaR, we obtain

Pr(Z ≤ VaRα(Z)) ≥ 1 − (γ − ε) = Pr(Z ≤ VaRα(Z)) + ε,

which is an obvious contradiction, and thus VaRγ−ε(Z) > VaRα(Z) for any ε ∈
(0, γ).

Now, we are ready to prove (1.3.9). Since β ≤ α and VaRu(Z) = VaRα(Z) for

u ∈ [β, α], it follows from (1.3.8) that

CTEα(Z) =
1

α

[
(α− β)VaRα(Z) +

∫ β

0

VaRu(Z)du

]
.

After comparing the above equation with (1.3.9), we only need to show

E[Z|Z > VaRα(Z)] =
1

β

∫ β

0

VaRu(Z)du.
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To prove this fact, we first note that

Pr[(Z|Z > VaRα(Z)) ≤ ξ] =
Pr(Z ≤ ξ, Z > VaRα(Z))

Pr(Z > VaRα(Z))

=





1

β
[Pr(Z ≤ ξ) − (1 − β)] , if ξ > VaRα(Z);

0, if ξ ≤ VaRα(Z).

Thus, for u ∈ (0, 1)

VaRu(S) = inf

{
ξ > VaRα(Z) :

1

β
[Pr(Z ≤ ξ) − (1 − β)]

}

= inf {ξ > VaRα(Z) : Pr(Z ≤ ξ) ≥ 1 − βu}

= VaRβu(Z),

and applying (ii) of Lemma 1.1, we obtain

E[Z|Z > VaRα(Z)] =

∫ 1

0

VaRu(S)du =

∫ 1

0

VaRβu(Z)du =
1

β

∫ β

0

VaRudu,

by which we prove (iii).

(iv) is trivial result by (iii), and thus the proof is complete. 2

Finally, we note that both VaR and CTE satisfy the property of Translation

Invariance. This property will be frequently used in the subsequent chapters, and

it is formally stated for a risk measure ρ as follows.

[A1] Translation Invariance: ρ(Z +m) = ρ(Z) +m for any scalar m ∈ R.

The discussion on VaR and CTE cannot be concluded without mentioning the

notion of “coherent risk measure”. A risk measure ρ is said to be coherent if it

satisfies property A1 defined above and the following three additional axioms for

any Y, Z ∈ X :

[A2] Subadditivity: ρ(Y + Z) ≤ ρ(Y ) + ρ(Z);
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[A3] Positive Homogeneity: ρ(λZ) = λρ(Z) for any scalar λ ≥ 0;

[A4] Monotonicity: ρ(Y ) ≥ ρ(Z) if Y (ω) ≥ Z(ω) for all ω ∈ Ω;

The concept of “coherent risk measure” was first introduced by Artzner et al.

(1999). For comprehensive review on risk measures, we refer the readers to Schied

(2006), Föllmer and Schied (2002), Dhaene et al. (2006), and many others. While

CTE is a coherent measure of risk in that it satisfies all of of the above four axioms

A1-A4, VaR is not coherent as the subadditivity property A2 is violated. For

further discussion on VaR and CTE, see also Rockafellar and Uryasev (2002) and

Section 2.2 of the monograph by McNeil et al. (2005).

1.3.2 Insurance Premium Principles

As mentioned in the previous section, insurance premium principles can be

viewed as some kinds of risk measures. These principles are used for determining

the premium of insurance contracts. There is a lot of discussion on the axioms

that a risk measure must satisfy to be an appropriate insurance premium principle;

see, for example, Wang et al. (1997). The following gives a list of the common

insurance premium principles.

P1 (Expectation principle): Π(Z) = (1 + θ)E[Z] with θ > 0;

P2 (Standard deviation principle): Π(Z) = E[Z] + β
√

D[Z], where β > 0 and

D[Z] denotes the variance of Z;

P3 (Mixed principle): Π(Z) = E[Z] + βD[Z]/E[Z], where β > 0;

P4 (Modified variation principle): Π(Z) = E[Z] + β
√

D[Z] + γD[Z]/E[Z], where

γ, β > 0;

P5 (Mean value principle): Π(Z) =
√

E[Z2] =
√

(E[Z])2 + D[Z];

P6 (p-mean value principle): Π(Z) = (E[Zp])1/p, where p > 1;
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P7 (Semi-deviation principle): Π(Z) = E[Z]+β
{
E(Z − E[Z])2

+

}1/2
with 0 < β <

1;

P8 (Dutch principle): Π(Z) = E[Z] + βE(Z − E[Z])+ with 0 < β ≤ 1;

P9 (Wang’s principle): Π(Z) =
∫∞
0

[Pr(Z ≥ t)]pdt with 0 < p < 1;

P10 (Gini principle): Π(Z) = E[Z] + βE|Z − Z
′|, where β > 0 and Z ′ is an

independent copy of Z;

P11 (Generalized percentile principle): Π(Z) = E[Z] + β{F−1
Z (1− p)−E[Z]} with

0 < β, p < 1;

P12 (CTE principle): Π(Z) = 1
p

∫ 1

1−p
F−1

Z (x)dx, where 0 < p < 1;

P13 (Variance principle): Π(Z) = E[Z] + βD[Z] with β > 0;

P14 (Semi-variance principle): Π(Z) = E[Z] + βE(Z − E[Z])2
+ with β > 0;

P15 (Quadratic utility principle): Π(Z) = E[Z] + γ−
√
γ2 − D[Z] with γ > 0 and

γ2 ≥ D[Z].

P16 (Covariance principle): Π(Z) = E[Z]+2βD[Z]−βCov(Z, Y ) where β > 0 and

Y is a random variable;

P17 (Exponential principle): Π(Z) = 1
β

log E[exp(βZ)] with β > 0.

1.3.3 Notation

• The following notation will be used throughout the whole thesis:

– X: the underlying risk to which the reinsurance is applied.

– a ∧ b = min{a, b}

– [a]+ = max[a, 0]

– FZ(·): the distribution function of a random variable Z.

– SZ(·): the survival function of a random variable Z.

– VaRα(Z): the Value-at-Risk at confident level 1 − α of the loss random

variable Z.
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– CTEα(Z): the Conditional Tail Expectation at confident level 1 − α of

the loss random variable Z.

– θ denotes the loading factor in the expectation principle.

– θ∗ = 1/(1 + θ).

– δθ∗ = S−1
X (θ∗) = S−1

X

(
1

1 + θ

)
.

– δα = S−1
X (α).

• Chapter 2:

– XRqs
(XRsl

): the ceded loss under quota-share (stop-loss) reinsurance.

– XIqs
( XIsl

): the retained loss under quota-share (stop-loss) reinsurance.

– XTqs
(XTsl

): the total loss of the insurer under quota-share (stop-loss)

reinsurance.

– uα = S−1
X (α) +

1

α

∫ ∞

S−1
X

(α)

SX(x)dx

– φα(d) = d+
1

α

∫ ∞

d

SX(x)dx, d ∈ R.

– G(d) = S−1
X (α) +

1

α

∫ d

S−1
X

(α)

SX(x)dx + Π([X − d]+), d ∈ R, where Π

denotes the reinsurance premium principle.

• Chapter 3:

– φ(t) = [VaRα(X) − t]+.

– ψ(t) = E[(X − t)+].

– β(d) =
B∫∞

d
SX(x)dx

, d ∈ R.

– κ(d) = d+ (1 + θ)

∫ ∞

d

SX(x)dx− δα, d ∈ R.

– λ(d) =

∫ ∞

d

SX(x)dx+ SX(d)[d− δα], d ∈ R.
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• Chapter 4:

– Ω dentes the set [0,∞) and F represents the Borel sigma field on Ω.

– Pr is one probability measure on Ω such that the underlying risk X has

a distribution function FX(t) = Pr[0, t).

– L2 ≡ L2(Ω,F ,Pr): the space of all the Pr-a.s. equivalence classes of

random variables with finite second moment.

– Qf =
{
f ∈ L2 : 0 ≤ f(x) ≤ x for x ≥ 0

}
.

– Qπ =
{
f ∈ L2 : 0 ≤ (1 + θ)E[f ] ≤ π

}
.

– Q = Qf

⋂
Qπ.

1.4 The Objective and Outline

1.4.1 Objective of the Thesis

The main objective of this thesis is to develop theoretically sound and yet prac-

tical solution in the quest for optimal reinsurance designs. In order to achieve such

an objective, this thesis broadly consists of two main parts. In the first part, a

series of reinsurance models are developed and their optimal reinsurance treaties

are derived explicitly. In the second part, we propose an innovative reinsurance

model, which we refer as the empirical model since it exploits explicitly the in-

surer’s loss empirical data. This model has the advantage of its practicality and

being intuitively appealing.

With respect to the research conducted in the first part, we focus on the

risk measure minimization reinsurance models and discuss the optimal reinsurance

treaties by exploiting two of the most common risk measures known as Value-at-

Risk (VaR) and Conditional Tail Expectation (CTE). Some additional important
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economic factors such as the reinsurance reinsurance premium budget, the insurer’s

profitability will be incorporated to analyze the optimal design of reinsurance.

There are several reasons addressing the optimal reinsurance designs involving

risk measures such as VaR and CTE. One is inspired by their prominent uses in

risk management among banks and insurance companies for risk assessment and

risk capital allocation, as well as their wide uses by the regulatory authorities

in regulating solvency requirement for banks and insurance companies. The other

reason is motivated by the optimal reinsurance models of Cai and Tan (2007) which

exploit explicitly VaR and CTE risk measures. It is worth noting that while Cai

and Tan (2007) adopts CTEα(Z) = E[Z|Z ≥ VaRα(Z)] for the definition of CTE,

this thesis will use the formal Definition 1.2 for the risk measure.

The empirical approach is motivated by the fact that the reinsurance models are

often infinite dimensional optimization problems and hence the explicit solutions

are achievable only in some special cases. This approach is proposed for deriving

practical solutions to the reinsurance models, of which the theoretical solutions are

difficult to obtain. The reinsurance models formulated using the empirical approach

are finite dimensional optimization problems and hence are much more tractable.

We will discuss the empirical approach in greater details in Chapters 5 and 6,

where we will also demonstrate many other advantages of the empirical approach

to optimal design of reinsurance.

1.4.2 Executive Summary of the Thesis Chapters

This subsection provides an executive summary to each of the subsequent chap-

ters.

Chapter 2: By formulating the reinsurance model using the criterion of mini-

mizing either VaR or CTE of the insurer’s total (or retained) risk, this chapter

separately investigates the optimality of reinsurance designs under as many as sev-
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enteen different reinsurance premium principles and by confining to two popular

reinsurance treaties: quota-share and stop-loss reinsurance. Our results illustrate

that the complexity of analysis highly depends on the adopted reinsurance premium

principle and hence highlight the critical role of the reinsurance premium principle

in the determination of the optimal design. In this chapter, sufficient and neces-

sary conditions (or just sufficient conditions for some cases) are established for the

existence of the nontrivial optimal reinsurance in each case.

Chapter 3: While the results obtained in Chapter 2 are explicit and elegant, there

are two critical restrictions. The first is that the optimal reinsurance is explored

only by restricting to some specific type of reinsurance. In practice, however, there

are many other important reinsurance treaties that have a ceded loss function not

as simple as those considered in Chapter 2. The second restriction is that the

reinsurance models considered in the last chapter focus entirely on minimizing the

risk exposure of the insurer. In practice, insurer is concerned with not only risk

minimization but also profitability maximization. In other words, a more desirable

reinsurance model should take into consideration the level of risk exposure in the

presence of reinsurance while also guarantee a minimum level of expected profit. In

light of these two aspects of restriction, this chapter incorporates a constraint into

the model to reflect an expected profit guarantee for the insurer and formulates

the reinsurance model as a VaR minimization problem with the ceded loss function

over the set of all the increasing convex functions. By reformulating the model into

an optimization problem over a space of positive measures, this chapter obtained

explicit solutions.

Chapter 4: By considering the CTE minimization reinsurance model, this chapter

devotes to deriving explicit optimal reinsurance among all the general reinsurance

treaties, instead of restricting to any specific class. By regarding each reinsurance

contract as an element in a Hilbert space and using the Lagrangian method based

on the directional derivative, this chapter obtained explicitly the optimal solutions.
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The result shows that the stop-loss treaties are optimal for models under CTE cri-

terion. This is a parallel result to the classic variance minimization with a different

risk measure.

Chapter 5: A key assumption with respect to the reinsurance models investigated

in Chapters 3 and 4 is that the reinsurance premium is calculated by the expecta-

tion principle. While it is tempting to generalize models in Chapters 3 and 4 to

other reinsurance premium principles, the resulting optimization problems become

not tractable due to the nonlinearity and infinite dimension. In view of these chal-

lenges, we propose a new method, which we refer as the “empirical approach”. The

proposed empirical approach allows us to address the optimal reinsurance designs

under nonlinear reinsurance premium principles and various optimality objectives.

By experimenting with many important reinsurance models, this approach turns

to be very effective in addressing the optimal solutions.

Chapter 6: This chapter addresses the stability and the consistency of the solu-

tions obtained from the empirical-based models proposed in Chapter 5. By stability,

we mean that the empirical solutions always generate the same functional form of

the optimal ceded loss function for independent random samples from the same loss

distribution and over the same set of parameter values. By consistency, we mean

that the empirical optimal ceded loss function converges to the true optimal ceded

loss function as we increase the sample size. While it is challenging to provide a

formal analysis on the stability and consistency of a general empirical-based rein-

surance model we proposed, we address these issues by resorting to some numerical

examples in this chapter. The numerical studies also allow us to gain important

insights on the behavior of our proposed empirical solutions for small sample size.

Chapter 7: This chapter concludes the thesis by listing some possible areas of

future research.
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Chapter 2

VaR and CTE Minimization

Models: Quota-Share and

Stop-Loss Reinsurance

2.1 Introduction

This chapter aims to exploit the optimality of two kinds of common reinsurance—

the quota-share and the stop-loss—by the criteria of minimizing, respectively, the

VaR and CTE of the insurer’s total risk for all of these seventeen premium principles

P1-P17 listed in Subsection 1.3.2.

Let X be the aggregate nonnegative loss random variable (in the absence of

reinsurance) on which the reinsurance is applied. Then under the quota-share

reinsurance with quota-share coefficient c ∈ [0, 1], the transformed losses to both

cedent and reinsurer can be expressed respectively as:

XIqs
= (1 − c)X, and XRqs

= cX, (2.1.1)
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where XIqs
is the loss retained by the cedent and XRqs

is the loss absorbed by the

reinsurer. In other words, the cedent transfers risk by retaining 1 − c proportion

of the aggregate loss while the reinsurer is liable for the remaining c proportion.

Note that c = 0 denotes the special case where the insurer retains all losses while

c = 1 represents the insurer transferring all losses to a reinsurer. Consequently, the

former case implies no reinsurance while the latter case leads to full reinsurance

protection. Under the stop-loss reinsurance, the corresponding losses to the cedent

and the reinsurer, denoted respectively by XIsl
and XRsl

, are represented as

XIsl
=





X, X ≤ d

d, X > d
= X ∧ d, (2.1.2)

and

XRsl
=





0, X ≤ d

X − d, X > d
= [X − d]+, (2.1.3)

where the parameter d ≥ 0 is known as the retention, a ∧ b = min[a, b], and

[a]+ = max[a, 0]. With this treaty, the risk exposure of the cedent is capped at

the retention while the reinsurer is liable for any losses in excess of the retention if

any. Note again that when d = 0 and d → ∞, these two special cases represent,

respectively, full reinsurance and no reinsurance.

Recall that the main objective of the chapter is to determine the optimal quota-

share reinsurance and optimal stop-loss reinsurance under various types of premium

principles. This implies that it boils down to determining the optimal quota-share

coefficient c∗ ∈ [0, 1] in the quota-share reinsurance and the optimal retention

d∗ ∈ [0,∞) in the stop-loss reinsurance. In terms of the solution to the optimal

reinsurance model studied in this paper, we classify the optimal reinsurance as either

trivial or nontrivial. By trivial optimal reinsurance we mean that it is optimal to

have either zero reinsurance or full reinsurance. In other words trivial optimal

reinsurance implies c∗ is ether 0 or 1 in the quota-share treaty while either d∗ = 0
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Quota Share Stop Loss

Premium Principle VaR CTE VaR CTE

(P1) Expectation principle T T NT NT*

(P2) Standard deviation principle T T - -

(P3) Mixed principle T T - -

(P4) Modified variation principle T T - -

(P5) Mean value principle T T T T

(P6) p-mean value principle T T T T

(P7) Semi-deviation principle T T T -

(P8) Dutch principle T T NT NT*

(P9) Wang’s principle T T T T

(P10) Gini principle T T - -

(P11) Generalized percentile principle T T T T

(P12) CTE principle T T T T

(P13) Variance principle NT NT NT NT*

(P14) Semi-variance principle NT NT NT NT*

(P15) Quadratic utility principle NT NT NT NT*

(P16) Covariance principle NT NT - -

(P17) Exponential principle NT NT T -

Table 2.1: Nontriviality of optimal reinsurance under VaR/CTE criterion.
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or d∗ → ∞ in the stop-loss treaty. On the other hand, the optimal quota-share

coefficient in the quota-share reinsurance is nontrivial if it lies on the open interval

(0, 1) and the optimal retention in the stop-loss reinsurance is nontrivial if it is a

real number in the open interval (0,∞).

The main results of the chapter lie in establishing Theorems 2.1, 2.2, 2.3 and

2.4 for the nontriviality (and triviality) of the optimal quota-share and the optimal

stop-loss reinsurance under general premium principle. Then by confining to specific

premium principle, these theorems enable us to effectively analyze in greater details

the conditions for the optimal quota-share coefficient c∗ and the optimal retention

d∗. Table 3.1 provides a sneak preview of our findings. In the table, the premium

principle and the criterion identified with a “T” implies that the optimal solution is

trivial. Similarly those with a “NT” means that sufficient and necessary conditions

for the existence of nontrivial optimal reinsurance are established. On the other

hand, “NT*” indicates that only the sufficient conditions are identified for the

existence of the nontrivial optimal reinsurance. Note also that because of the

complexity of the optimization problem for the stop-loss reinsurance, there are a

few premium principles for which we are unable to determine analytically whether

the optimal reinsurance exists or not for a general loss distribution. These cases

are indicated with the notation “-”. For these cases, additional numerical methods

need to be used to further investigate their optimality. Our findings also highlight

the importance of the reinsurance premium principle assumption. Depending on

the adopted reinsurance premium principles, there are cases for which optimal

reinsurance is nontrivial and there are other cases for which optimal reinsurance is

trivial.

The rest of the chapter is organized as follows. Section 2.2 introduces the

notation and provides some preliminary results. Sections 2.3 and 2.4 discuss, re-

spectively, the optimality for the quota-share reinsurance treaty and the optimal

stop-loss reinsurance treaty. Section 2.5 presents some numerical examples to illus-
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trate the results obtained in the preceding sections. Section 2.6 collects the proofs

of some results.

2.2 Preliminaries

Throughout this chapter, we use X exclusively to denote the random loss to

which the reinsurance treaty is applied. We further assume that X has a contin-

uous one-to-one distribution on (0,∞) but with a possible jump at 0 with finite

moment(s). We use XI and XR to denote, respectively, the retained loss and the

ceded loss random variables under a generic reinsurance arrangement. Note that

X = XI + XR so that XI and XR form a partition of X. When we need to dis-

tinguish between a quota-share reinsurance and a stop-loss reinsurance, we simply

subscript the notation with “sl” and “qs” as we do in (2.1.1), (2.1.2) and (2.1.3)

bellow.

Recall that, in presence of either of the quota-share and stop-loss reinsurance

arrangements, the total risk of the insurer is the sum of its retained loss XI and

the reinsurance premium amount Π(XR), i.e.,

XT = XI + Π(XR). (2.2.1)

Thus, it follows from the property of invariance translation for both VaR and

CTE (see Section 1.3.1) that

VaRα(XT ) = VaRα(XI) + Π(XR) (2.2.2)

CTEα(XT ) = CTEα(XI) + Π(XR). (2.2.3)

By the relation of VaR and CTE in (1.3.7), the CTE of the insurer’s retained loss

can further be decomposed as

CTEα(XI) = VaRα(XI) +
1

α

∫ ∞

VaRα(XI)

SXI
(x)dx, (2.2.4)
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which combining (2.2.3) leads to

CTEα(XT ) = VaRα(XI) +
1

α

∫ ∞

VaRα(XI )

SXI
(x)dx+ Π(XR). (2.2.5)

So far we have established some general relations for the risk measures associ-

ated with the retained loss random variable and the total cost random variable of

insuring risks in the presence of reinsurance. We now consider these relations in

greater details by examining these two specific reinsurance contracts: the quota-

share reinsurance and stop-loss reinsurance.

For the quota-share reinsurance, the survival function of the retained loss XIqs

is given by

SXIqs
(x) = Pr((1 − c)X > x) =





SX

(
x

1−c

)
, 0 ≤ c < 1,

0, c = 1
(2.2.6)

for x ≥ 0, and its VaR at confidence level 1−α, denoted by VaRα(XIqs
; c), is given

by

VaRα(XIqs
; c) = (1 − c)S−1

X (α). (2.2.7)

The above equation and together with (2.2.2) give us an expression for VaRα(XTqs
; c)

which represents the VaR of the total cost under the quota-share arrangement. We

state this formally in the following proposition:

Proposition 2.1 For 0 ≤ c ≤ 1 and 0 < α < SX(0),

VaRα(XTqs
; c) = (1 − c)S−1

X (α) + Π(cX). (2.2.8)

Similarly, it follows from (2.2.5) that the corresponding CTE of the total cost,

CTEα(XTqs
; c), under the quota-share arrangement can be represented in the fol-

lowing proposition:

30



Proposition 2.2 For 0 ≤ c ≤ 1 and 0 < α < SX(0),

CTEα(XTqs
; c) = (1 − c)S−1

X (α) +
1 − c

α

∫ ∞

S−1
X

(α)

SX(x)dx+ Π(cX). (2.2.9)

Note that in the above notation associated with risk measures, the quota-share

coefficient c is one of the arguments to emphasize the fact that under the quota-

share reinsurance, these risk measures depend explicitly on c.

Now let us consider the stop-loss reinsurance. In this case, the survival function

of the retained loss XIsl
is given by

SXIsl
(x) =





SX(x), 0 ≤ x < d,

0, x ≥ d,
(2.2.10)

so that its VaR can be represented as

VaRα(XIsl
) ≡ VaRα(XIsl

; d) =





d, 0 ≤ d ≤ S−1
X (α),

S−1
X (α), d > S−1

X (α).
(2.2.11)

Then together with (2.2.2), we obtain an expression for VaRα(XTsl
) ≡ VaRα(XTsl

; d)

as shown in the following proposition:

Proposition 2.3 For each d ≥ 0 and 0 < α < SX(0),

VaRα(XTsl
; d) =





d+ Π([X − d]+), 0 ≤ d ≤ S−1
X (α),

S−1
X (α) + Π([X − d]+), d > S−1

X (α).
(2.2.12)

Moreover, by (2.2.10), (2.2.11) and the fact 0 < VaRα(XIsl
; d) ≤ d, we have

∫ ∞

VaRα(XIsl
;d)

SXIsl
(x)dx =

∫ d

VaRα(XIsl
;d)

SX(x)dx

=





0, 0 ≤ d ≤ S−1
X (α),

∫ d

S−1
X

(α)
SX(x)dx, d > S−1

X (α).
(2.2.13)
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Thus, by defining

G(d) = S−1
X (α) +

1

α

∫ d

S−1
X

(α)

SX(x)dx+ Π([X − d]+) (2.2.14)

and together with (2.2.5), (2.2.11) and (2.2.13), we obtain the following expression

for CTEα(XTsl
) ≡ CTEα(XTsl

; d):

Proposition 2.4 For each d ≥ 0 and 0 < α < SX(0),

CTEα(XTsl
; d) =





d+ Π([X − d]+), 0 ≤ d ≤ S−1
X (α),

G(d), d > S−1
X (α).

(2.2.15)

Note again that these risk measures depend explicitly on the retention d under the

stop-loss reinsurance. Note also that Propositions 2.3 and 2.4 reduce, respectively,

to Propositions 2.1 and 3.1 of Cai and Tan (2007) under the special case that Π(·)
is the expectation premium principle.

We now revisit the decomposition (2.2.1) which highlights the dilemma faced by

the insurer. Note that, roughly speaking, the premium principle Π(XR) is expected

to be an increasing function in XR. This implies that the smaller the risk is ceded to

a reinsurer, the less costly the reinsurance premium is. On the other hand, a small

retained risk exposure can be achieved at the expense of higher reinsurance pre-

mium. Consequently, there is a trade-off between how much risk to retain and how

much risk to cede. The problem of optimal reinsurance essentially addresses the

optimal partitions XI and XR. When the reinsurance treaty is confined to either

quota-share type or stop-loss type, the problem then boils down to the determi-

nation of the optimal quota-share coefficient c∗ in the former case or the optimal

retention d∗ in the latter case. The explicit dependence of c and d (depending on

the type of reinsurance treaty) on the risk measures in Propositions 2.1-2.4 suggests

that one formulation of optimal reinsurance model is to seek optimal parameters

c∗ and d∗ that minimize the respective risk measure. More specifically, the optimal
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quota-share reinsurance models can be formulated as seeking the optimal quota-

share coefficients c∗ that are the solutions to the following optimization problems,

depending on the adopted risk measure:

VaR-optimization: VaRα(XTqs
; c∗) = min

c∈[0,1]

{
VaRα(XTqs

; c)
}
, (2.2.16)

CTE-optimization: CTEα(XTqs
; c∗) = min

c∈[0,1]

{
CTEα(XTqs

; c)
}
. (2.2.17)

Analogously, under the optimal stop-loss reinsurance models, the optimal retentions

d∗ are the solutions to the following optimization problems:

VaR-optimization: VaRα(XTsl
; d∗) = min

d∈[0,∞)

{
VaRα(XTsl

; d)
}
, (2.2.18)

CTE-optimization: CTEα(XTsl
; d∗) = min

d∈[0,∞)

{
CTEα(XTsl

; d)
}
. (2.2.19)

We now make the following three remarks with respect to the above optimal rein-

surance models. First, the models are relatively simple and intuitively appealing.

They exploit the basic thrust of a risk management practice that the insurer is

interested in risk minimization. Under the above optimization models, the optimal

reinsurance design ensures that the risk exposure of the insurer, as measured by

its risk measure of the total cost, is optimally minimized. Second, by confining to

stop-loss reinsurance and under the additional assumption of expectation premium

principle, optimization problems (2.2.18) and (2.2.19) reduce to the optimization

reinsurance models as analyzed in Cai and Tan (2007). Third, as pointed out in

the previous section that when optimal solutions to the above reinsurance models

are nontrivial, this implies that the optimal quota-share coefficient c∗ is strictly on

the interval (0, 1) and the optimal retention d∗ is finite and strictly greater than 0.

We conclude this section by introducing the following function φα and notation

uα:

φα(d) = d+
1

α

∫ ∞

d

SX(x)dx, uα = S−1
X (α) +

1

α

∫ ∞

S−1
X

(α)

SX(x)dx.
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As we will soon discover, these two functions play critical roles in deriving the

solutions to our optimal reinsurance models. Furthermore, it is also useful to point

out the following two relations: uα = φα

(
S−1

X (α)
)

and uα = lim
d→∞

G(d) provided

that limd→∞ Π([X−d]+) = 0, which are immediate consequence of their definitions.

Note that function G(d) is defined in (2.2.14).

2.3 Quota-share Reinsurance Optimization

In this section, we discuss the optimal quota-share reinsurance with respect to the

premium principles P1-P17 listed in Section 1.3.2. The key result of this section

is stated in Theorems 2.1 and 2.2 which provide the optimality of the quota-share

reinsurance under the general premium principle. The proof of the Theorem 2.1 is

collected in Section 2.6, while we omit the proof of Theorem 2.2 as it is similar to

the proof of Theorem 2.1.

Theorem 2.1 Consider the VaR-optimization (2.2.16).

(a) Assume the reinsurance premium Π(·) satisfies Π(0) = 0, and the property

of positive homogeneity, i.e., Π(cX) = cΠ(X) for constant c > 0. Then the

optimal quota-share reinsurance is trivial, and moreover, the optimal quota-

share coefficient depends on the relative magnitude between Π(X) and S−1
X (α)

as indicated below:

c∗ =





0, Π(X) > S−1
X (α),

any number in [0, 1], Π(X) = S−1
X (α),

1, Π(X) < S−1
X (α).

(2.3.1)

(b) If Π(cX) is strictly convex in c for 0 ≤ c ≤ 1, then the nontrivial optimal

quota-share reinsurance exists if and only if there exists a constant c∗ ∈ (0, 1)
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such that

Π′
c(c

∗X) − S−1
X (α) = 0, (2.3.2)

where Π′
c(·) denotes the derivative of Π(cX) with respect to c. Furthermore,

c∗ that satisfies (2.3.2) is the optimal quota-share coefficient.

Theorem 2.2 Consider the CTE-optimization (2.2.17).

(a) Assume that the reinsurance premium Π(·) satisfies Π(0) = 0, and positive ho-

mogeneity, i.e., Π(cX) = cΠ(X) for constant c > 0. Then the optimal quota-

share reinsurance is trivial, and moreover, the optimal quota-share coefficient

is determined depending on the quantities Π(X) and uα in the following way:

c∗ =





0, Π(X) > uα,

any number in [0, 1], Π(X) = uα,

1, Π(X) < uα.

(2.3.3)

(b) If Π(cX) is strictly convex in c for 0 ≤ c ≤ 1, then the optimal quota-share

reinsurance exists if and only if there exists a constant c∗ ∈ (0, 1) such that

Π′
c(c

∗X) − uα = 0, (2.3.4)

and in this case, c∗ determined by (2.3.4) is the optimal quota-share coeffi-

cient.

The above two theorems provide the optimality condition for the existence (or

non-existence) of the nontrivial optimal quota-share reinsurance under general pre-

mium principle. We now refine these results by explicitly considering the seventeen

premium principles. These results are shown the following sequences of three propo-

sitions. Proposition 2.5 states that the optimal quota-share reinsurance is trivial
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for premium principles P1-P12 while Propositions 2.6 and 2.7 study remaining pre-

mium principles for the VaR-optimization and CTE-optimization respectively. The

proof of the first proposition is trivial and it follows from part (a) of the above

two theorems (Theorems 2.1 and 2.2) and the fact that all the premium princi-

ples P1-P12 satisfy the property Π(0) = 0 and positive homogeneity. The proof of

Proposition 2.6 is relegated to Section 2.6 while we omit the proof of Proposition 2.7

as it is similar to the proof of Proposition 2.6.

Proposition 2.5 For both VaR-optimization (2.2.16) and CTE-optimization (2.2.17),

the optimal quota-share reinsurance is trivial for premium principles P1-P12, and

the optimal quota-share coefficient is determined according to (2.3.1) for VaR cri-

terion and (2.3.3) for CTE criterion.

Proposition 2.6 Consider the VaR-optimization (2.2.16).

(a) P13(variance principle): the optimal quota-share reinsurance is nontrivial if

and only if

E[X] < S−1
X (α) < E[X] + 2βD[X], (2.3.5)

in which case, the optimal quota-share coefficient is given by

c∗ =
S−1

X (α) − E[X]

2βD[X]
. (2.3.6)

(b) P14 (semi-variance principle): the optimal quota-share reinsurance is non-

trivial if and only if

E[X] < S−1
X (α) < E[X] + 2βE[X − EX]2+, (2.3.7)

in which case, the optimal quota-share coefficient is given by

c∗ =
S−1

X (α) − E[X]

2βE[X − EX]2+
. (2.3.8)
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(c) P15 (quadratic utility principle): the optimal quota-share reinsurance is non-

trivial if and only if

S−1
X (α) > E[X], and

(S−1
X (α) − E[X])γ√

D[X]{D[X] + (S−1
X (α) − E[X])2}

< 1, (2.3.9)

in which case, the optimal quota-share coefficient is given by

c∗ =
(S−1

X (α) − E[X])γ√
D[X]{D[X] + (S−1

X (α) − E[X])2}
. (2.3.10)

(d) P16 (covariance principle): Y being a random variable, the optimal quota-

share reinsurance exists if and only if

E[X] > βCov(X, Y ), (2.3.11)

and

E[X] − βCov(X, Y ) < S−1
X (α) < 4βD[X] + E[X] − βCov(X, Y ), (2.3.12)

in which case, the optimal quota-share coefficient is given by

c∗ =
S−1

X (α) − E[X] + βCov(X, Y )

4βD[x]
. (2.3.13)

(e) P17 (exponential principle): the optimal quota-share reinsurance is nontrivial

if and only if there exists a constant c∗ ∈ (0, 1) such that

E[X exp(c∗βX)] = S−1
X (α)E[exp(c∗βX)], (2.3.14)

in which case, the optimal quota-share coefficient c∗ is determined by (2.3.14).

Proposition 2.7 Consider the CTE-optimization (2.2.17).
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(a) P13 (variance principle): the optimal quota-share reinsurance is nontrivial if

and only if

E[X] < u(α) < E[X] + 2βD[X], (2.3.15)

in which case, the optimal quota-share coefficient is given by

c∗ =
u(α) − E[X]

2βD[X]
. (2.3.16)

(b) P14 (semi-variance principle): the optimal quota-share reinsurance is non-

trivial if and only if

E[X] < u(α) < E[X] + 2βE[X − EX]2+, (2.3.17)

in which case, the optimal quota-share coefficient is given by

c∗ =
u(α) − E[X]

2βE[X − EX]2+
. (2.3.18)

(c) P15 (quadratic utility principle): the optimal quota-share reinsurance is non-

trivial if and only if

u(α) > E[X], and
(u(α) − E[X])γ√

D[X]{D[X] + (u(α) − E[X])2}
< 1, (2.3.19)

in which case, the optimal quota-share coefficient is given by

c∗ =
(u(α) − E[X])γ√

D[X]{D[X] + (u(α) − E[X])2}
. (2.3.20)

(d) P16 (covariance principle): Y being a random variable, the optimal quota-

share reinsurance is nontrivial if and only if

E[X] > βCov(X, Y ), (2.3.21)

and

E[X] − βCov(X, Y ) < u(α) < 4βD[X] + E[X] − βCov(X, Y ), (2.3.22)
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in which case, the optimal quota-share coefficient is given by

c∗ =
u(α) − E[X] + βCov(X, Y )

4βD[X]
. (2.3.23)

(e) P17 (exponential principle): the optimal quota-share reinsurance is nontrivial

if and only if there exists a constant c∗ ∈ (0, 1) such that

E[X exp(c∗βX)] = u(α)E[exp(c∗βX)] (2.3.24)

in which case, the optimal quota-share coefficient c∗ is determined by (2.3.24).

2.4 Stop-loss Reinsurance Optimization

We now discuss the optimization problems (2.2.18) and (2.2.19) for the stop-

loss reinsurance contract. As we will see shortly, if the reinsurance is a stop-loss,

it is mathematically more challenging to analyze its optimality, particularly for

CTE-optimization with premium principles P2-P4, P10 and P16. Subsection 2.4.1

devotes to the VaR-optimization (2.2.18) while Subsection 2.4.2 focuses on the

CTE-optimization (2.2.19).

2.4.1 VaR-optimization for Stop-loss Reinsurance

We first present the following theorem, with its proof given in Section 2.6,

regarding the general reinsurance premium principle for the optimal stop-loss rein-

surance and VaR criterion.

Theorem 2.3 Consider the VaR-optimization (2.2.18). Suppose Π(·) is a pre-

mium principle such that Π([X − d]+) is decreasing in d.

(a) The optimal stop-loss reinsurance is trivial if either of the following conditions

is satisfied:
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(i) d+ Π([X − d]+) is an increasing function in d on [0, S−1
X (α)], or

(ii) there exists a constant d0 ∈ (0, S−1
X (α)) such that d + Π([X − d]+) is

increasing in d on [0, d0] while decreasing on [d0, S
−1
X (α)].

Moreover, in either of the above (i) and (ii), the trivial optimal retention

depends on the relative magnitude between Π(X) and S−1
X (α) as indicated

below:

d∗ =





0, if Π(X) < S−1
X (α);

0, or + ∞, if Π(X) = S−1
X (α);

+∞, if Π(X) > S−1
X (α).

(2.4.25)

(b) If the premium principle Π(·) satisfies limd→∞ Π([X − d]+) = 0, and there

exists a positive constant d0 such that d + Π([X − d]+) is decreasing in d on

[0, d0] while increasing on [d0,∞], then the optimal stop-loss reinsurance is

nontrivial if and only if the following condition is satisfied:

S−1
X (α) > d0 + Π([X − d0]+). (2.4.26)

Moreover, when the optimal stop-loss reinsurance is nontrivial, d0 is the op-

timal retention with the corresponding minimum value of VaRα(XTsl
; d)

min
d≥0

VaRα(XTsl
; d) = d0 + Π([X − d0]+). (2.4.27)

Remark 2.1 If the premium Π(·) satisfies the conditions stated in (b) of Theo-

rem 2.3 and d0 is the unique constant on interval [0, S−1
X (α)] such that d+ Π([X −

d]+) is decreasing in d on [0, d0] while increasing on [d0, S
−1
X (α)], then d0 is the

unique solution to VaR-optimization (2.2.18)

Relying on Theorem 2.3, we now demonstrate that optimal retention is trivial

for some of the premium principles, as shown in the following proposition:
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Proposition 2.8 Consider the VaR-optimization (2.2.18). The optimal stop-loss

reinsurance is trivial and the trivial optimal retention d∗ is determined as in (2.4.25)

for the following premium principles:

(a) P5 (mean value principle) Π(X) =
√

E[X2] =
√
E2[X] + D[X];

(b) P6 (p-mean value principle) Π(X) = (E[Xp])1/p, where p > 1;

(c) P7 (semi-deviation principle) Π(X) = E[X] + β
[
E[X − EX]2+

]1/2
, where 0 <

β < 1;

(d) P9 (Wang’s principle) Π(X) =
∫∞
0

[Pr(X ≥ t)]pdt, where 0 < p < 1;

(e) P11 (generalized percentile principle) Π(X) = E[X] + β(F−1
X (1 − p) − E[X]),

where 0 ≤ β ≤ 1;

(f) P12 (CTE principle) Π(X) = (1/p)
∫ 1

1−p
F−1

X (x)dx, where 0 < p < 1;

(g) P17 (exponential principle) Π(X) = 1
β

log E(βX) with β > 0.

See Section 2.6 for the proof of the above proposition. While the above propo-

sition demonstrates the premium principles for which the optimal stop-loss rein-

surance is trivial, the following proposition indicates that for some other premium

principles, the VaR-based optimal stop-loss reinsurance is nontrivial under some

mild conditions. We again relegate its proof to Section 2.6.

Proposition 2.9 Consider the VaR-optimization (2.2.18).

(a) P1 (expectation premium principle): the optimal stop-loss reinsurance is non-

trivial if and only if

S−1
X (α) ≥ d0 + (1 + θ)

∫ ∞

d0

SX(x)dx, (2.4.28)

where d0 = S−1
X

(
1

1 + θ

)
; moreover, in this case d0 is the unique optimal

retention.
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(b) P8 (Dutch principle): if there exists a positive constant d0 satisfying the equa-

tion βSX(d0 + E[X − d0]+) = 1, then the optimal stop-loss reinsurance is

nontrivial if and only if

S−1
X (α) ≥ d0 + E[X − d0]+ + βE

[
[X − d0]+ − E[X − d0]+

]
+
, (2.4.29)

where moreover d0 is the unique optimal retention.

(c) P13 (variance principle): if there exists a positive constant d0 satisfying the

equation 2βE[X−d0]+ = 1, then the optimal stop-loss reinsurance is nontrivial

if and only if

S−1
X (α) ≥ d0 + E[X − d0]+ + βD[X − d0]+, (2.4.30)

where moreover d0 is the unique optimal retention.

(d) P14 (semi-variance principle): if there exists a positive constant d0 satisfying

the equation 2βE
[
X − d0 − E[X − d0]+

]
+

= 1, then the optimal stop-loss

reinsurance is nontrivial if and only if

S−1
X (α) ≥ d0 + E[X − d0]+ + βE

[
[X − d0]+ − E[X − d0]+

]2
+
, (2.4.31)

where moreover d0 is the unique optimal retention.

(e) P15 (quadratic utility principle): if there exists a positive constant d0 satisfy-

ing the equation
E[X − d0]+√
γ2 − D[X − d0]+

= 1, then the optimal stop-loss reinsur-

ance is nontrivial if and only if

S−1
X (α) ≥ d0 + E[X − d0]+ + γ −

√
γ2 − D[X − d0]+, (2.4.32)

where moreover d0 is the unique optimal retention.

Remark 2.2 (i) Part (a) of the above proposition is equivalent to Theorem 2.1 of

Cai and Tan (2007).
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(ii) For these principles P2-P4, P10 and P16, other than those discussed in

Propositions 2.8 and 2.9, the goal function in the optimization problem (2.2.19) is

so complicated that general result about the optimality of the stop-loss reinsurance

have not been derived. For these, a numerical approach might have to be employed.

2.4.2 CTE-optimization for Stop-loss Reinsurance

Unlike the optimal stop-loss reinsurance under the VaR criterion, the analysis for

the corresponding CTE optimality is complicated by the fact that the optimal

retention can occur for d ∈
(
S−1

X (α),∞
)
. For further discussion, we first present

the following theorem. See Section 2.6 for its proof.

Theorem 2.4 Consider the CTE-optimization (2.2.19).

(a) If d+Π([X−d]+) is increasing in d on [0, S−1
X (α)] and either of the following

conditions holds, then the optimal stop-loss reinsurance is trivial.

(i) G(d) is concave for d ≥ S−1
X (α), or

(ii) there exists a constant d0 > S−1
X (α) such that G(d) is increasing for

d ∈ [S−1
X (α), d0] while decreasing for d ≥ d0.

Moreover, in either of the above (i) and (ii), the trivial optimal retention

depends on the relative magnitude between Π(X) and uα as indicated below:

d∗ =





0, if Π(X) < uα;

0, or ∞, if Π(X) = uα;

+∞, if Π(X) > uα.

(2.4.33)

(b) If both of the following conditions hold, then the optimal stop-loss reinsurance

is nontrivial.
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(i) there exists a constant d0 ∈ (0, S−1
X (α)) such that d + Π([X − d]+) is

decreasing in d on [0, d0] while increasing in d on [d0, S
−1
X (α)], and

(ii) S−1
X (α) ≥ d0 + Π([X − d0]+).

Furthermore, when (i) and (ii) hold the optimal retention d∗ = d0 with the

corresponding minimum value of CTETsl
(d, α)

min
d≥0

CTEα(XTsl
; d) = d0 + Π([X − d0]+). (2.4.34)

Based on Theorem 2.4, we now demonstrate that the optimal stop-loss reinsur-

ance is trivial under some premium principles as shown in the following proposition

with its proof collected in Section 2.6.

Proposition 2.10 Consider the CTE-optimization (2.2.19). The optimal stop-loss

reinsurance is trivial and the trivial optimal retention is determined as in (2.4.33)

for the following premium principles:

(a) P9 (Wang’s principle) Π(X) =
∫∞
0

[Pr(X ≥ t)]pdt, where 0 < p < 1;

(b) P11 (Generalized percentile principle) Π(X) = E[X] + β(F−1
X (1− p)− E[X]),

where 0 ≤ β, p ≤ 1.

(c) P12 (CTE principle) Π(X) = (1/p)
∫ 1

1−p
F−1

X (x)dx, where 0 < p < 1;

Based on (b) of Theorem 2.4, we find that the optimal contract with respect

to CTE-optimization (2.2.19) does exist for some premium principles under certain

conditions. The following Proposition 2.11 presents these principles along with

the corresponding sufficient conditions. Actually, we can find that the sufficient

conditions and the optimal retention for each principle with the CTE criterion are

the same as that with VaR criterion. Nevertheless, the corresponding conditions

are not only sufficient but also necessary for VaR criterion while just sufficient for
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the CTE criterion. Among these principles, however, the P1 (expectation principle)

is an exception, the conditions given out in Proposition 2.11 for the existence of

optimal stop-loss reinsurance is also necessary; see Cai and Tan (2007) for detail

interpretation. We omit the proof of the following Proposition 2.11, since it is

trivial by combining (b) of Theorem 2.4 and the proof of Proposition 2.9.

Proposition 2.11 Consider the CTE-optimization (2.2.19).

(a) Under P1 (expectation premium principle) Π(x) = (1 + θ)E[X] with θ > 0, if

both

d0 := S−1
X

(
1

1 + θ

)
∈ (0, S−1

X (α)) (2.4.35)

and

S−1
X (α) ≥ d0 + (1 + θ)

∫ ∞

d0

SX(x)dx (2.4.36)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d∗ = d0.

(b) Under P8 (Dutch principle) Π(X) = E[X]+βE[X−EX]+ with β > 0, if there

exists a constant d0 satisfying the equation βSX(d0 + E[X − d0]+) = 1 such

that both d0 ∈ (0, S−1
X (α)) and

S−1
X (α) ≥ d0 + E[X − d0]+) + βE

{
[X − d0]+ − E[(X − d0)+]

}
+

(2.4.37)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d∗ = d0

(c) Under P13 (variance principle) Π(X) = E[X] + βD[X] with β > 0, if there

exists a constant d0 satisfying the equation 2βE[X − d0]+ = 1 such that both
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d0 ∈ (0, S−1
X (α)) and

S−1
X (α) ≥ d0 + E[X − d0]+ + βD[X − d0]+ (2.4.38)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d∗ = d0.

(d) Under P14 (semi-variance principle) Π(X) = E[X] + βE[X − EX]2+ with

β > 0, if there exists a constant d0 satisfying the equation 2βE
{
X − d0 −

E[(X − d0)+]
}

+
= 1 such that both d0 ∈ (0, S−1

X (α)) and

S−1
X (α) ≥ d0 + E[X − d0]+ + βE[X − d0]

2
+ (2.4.39)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal re-

tention d∗ = d0.

(e) Under P15 (quadratic utility principle) Π(X) = E[X] + γ−
√
γ2 − D[X] with

γ > 0, if there exists a constant d0 satisfying the equation

E[X − d0]+√
γ2 − D[X − d0]+

= 1

such that both d0 ∈ (0, S−1
X (α)) and

S−1
X (α) ≥ d0 + E[X − d0]+ + γ −

√
γ2 − D[X − d0]+ (2.4.40)

hold, then the optimal stop-loss reinsurance is nontrivial with the optimal

retention d∗ = d0.

2.5 Examples

In this section, we assume that the loss random variable X has a distribu-

tion similar to exponential one with a jump at 0 and then discuss the specific
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conditions for the existence of optimal contract for both VaR-optimization and

CTE-optimization. Specifically, we suppose that the loss random variable X is

distributed with survival function

SX(x) = δe−λx, x ≥ 0. (2.5.1)

Hence, S−1
X (y) = −1

λ
ln
(y
δ

)
, y ∈ [0, 1], and Pr{X = 0} = 1 − SX(0) = 1 − δ.

Below we present three numerical examples based on the distributions specified

above corresponding to Propositions 2.6, 2.7, 2.9 and 2.11. Specifically, Example

2.1 corresponds to Proposition 2.6 for VaR-optimization (2.2.16), Example 2.2 ex-

ploits Proposition 2.7 for CTE-optimization (2.2.17), while Example 2.3 relates to

Proposition 2.9 and Proposition 2.11, respectively, for VaR-optimization (2.2.18)

and CTE-optimization (2.2.19).

Example 2.1 Consider VaR-optimization (2.2.16). The following conditions are

sufficient and necessary for the existence of the nontrivial optimal quota-share rein-

surance for each reinsurance premium principle. The optimal quota-share coefficient

c∗ is also given for each case below.

(1) P13 (variance principle) Π(X) = E[X] + βD[X] with β > 0.

(a) Conditions: δe−δ−2βδ(2−δ)/λ < α < δe−δ.

Optimal quota-share coefficient: c∗ = −
[
ln
(

α
δ

)
+ δ
]
λ

2βδ(2 − δ)
.

(b) By setting λ = 0.001, δ = 3/4 and β = 0.1, then the conditions for the

existence of the nontrivial optimal insurance is 1.3156 × 10−82 < α <

0.3543. Furthermore, α = 0.05 implies optimal quota-share coefficient

c∗ = −
[
ln( α

0.75
) + 0.75

]
/187.5 = 0.0104.

(2) P14 (semi-variance principle) Π(X) = E[X] + βE(X − E[X])2
+ with β > 0.
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(a) Conditions: δ exp{−δ − 4βδ

λ
e−δ} < α < δ exp{−δ}.

Optimal quota-share coefficient: c∗ = −
[
ln
(

α
δ

)
+ δ
]
λ

4βδe−δ
.

(b) By setting λ = 0.001, δ = 3/4 and β = 0.1, then the conditions for the

existence of the nontrivial optimal insurance is 1.0127 × 10−62 < α <

0.3543. Furthermore, α = 0.05 implies optimal quota-share coefficient

−
(
ln 4α

3
+ 0.75

)
e0.75/300 = 0.0138.

(3) P15 (quadratic utility principle ) Π(X) = E[X]+γ−
√
γ2 − D[X] with γ > 0.

(a) Conditions:





α < δe−δ

λ2γ2 − δ(2 − δ) ≤ 0,
or





δ exp{−δ − δ(2 − δ)[λ2γ2 − δ(2 − δ)]−1/2} < α < δe−δ

λ2γ2 − δ(2 − δ) > 0,

Optimal quota-share coefficient:

c∗ = − (ln α
δ

+ δ)λγ√
δ(2 − δ)

{
δ(2 − δ) + [ln(α/δ) + δ]2

} .

(b) By setting λ = 0.001, δ = 3/4 and γ = 1000, then λ2γ2 − δ(2 − δ) =

1
16
> 0. This implies that the second set of conditions applies so that the

conditions for the existence of the nontrivial optimal insurance reduces

to 0.0083 < α < 0.3543. Furthermore, α = 0.05 implies optimal quota-

share coefficient

c∗ = − 2√
30

· 4 ln(4α/3) + 3√
2 ln2(4α/3) + 3 ln(4α/3) + 3

= 0.9258.

(4) P17 (exponential principle) Π(X) = 1
β

log E[exp{βX}] with β > 0.

(a) Conditions: α < δ.
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Optimal quota-share coefficient: c∗ =
λ

β
− λ

β
· 2δ

M
, with

M = −δ ln(α/δ) +

√
δ2 ln2(α/δ) − 4δ(1 − δ) ln(α/δ).

(b) By setting λ = 0.001, δ = 3/4 and β = 0.001, then the conditions for the

existence of the nontrivial optimal insurance is α < 0.75. Furthermore,

α = 0.05 implies optimal quota-share coefficient

c∗ = 1 − 6

−3 ln(4α/3) +
√

9 ln2(4α/3) − 12 ln(4α/3)
= 0.6676.

Example 2.2 Consider CTE-optimization (2.2.17). The following conditions are

sufficient and necessary for the existence of the nontrivial optimal quota-share rein-

surance for each reinsurance premium principle. The optimal quota-share coefficient

c∗ is also given for each case below.

(1) P13 (variance principle) Π(X) = E[X] + βD[X] with β > 0.

(a) Conditions: δe1−δ−2βδ(2−δ)/λ < α < δe1−δ.

Optimal quota-share coefficient: c∗ = −
[
ln
(

α
δ

)
+ δ − 1

]
λ

2βδ(2 − δ)
.

(b) By setting λ = 0.001, δ = 3/4 and β = 0.1, then the conditions for the

existence of the nontrivial optimal insurance is 3.5762 × 10−82 < α <

0.9630. Furthermore, α = 0.05 implies quota-share coefficient

c∗ = −2(ln
4α

3
− 0.25)/375 = 0.0158.

(2) P14 (semi-variance principle) Π(X) = E[X] + βE[X − E[X]]2+ with β > 0.

(a) Conditions: δ exp

{
1 − δ − 4βδ

λ
e−δ

}
< α < δ exp{1 − δ}.

Optimal quota-share coefficient: c∗ = −
[
ln
(

α
δ

)
+ δ − 1

]
λ

4βδe−δ
.
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(b) By setting λ = 0.001, δ = 3/4 and β = 0.1, then the conditions for

the existence of the nontrivial optimal insurance is 2.7528 × 10−62 <

α < 0.9630. Furthermore, α = 0.05 implies the optimal quota-share

coefficient

c∗ = −(ln
4α

3
− 0.25)e0.75/300 = 0.0209.

(3) P15 (quadratic utility principle ) Π(X) = E[X]+γ−
√
γ2 − D[X] with γ > 0.

(a) Conditions:





α < δe1−δ

λ2γ2 − δ(2 − δ) ≤ 0,

or




δ exp{1 − δ − δ(2 − δ)[λ2γ2 − δ(2 − δ)]−1/2} < α < δe1−δ

λ2γ2 − δ(2 − δ) > 0,

Optimal quota-share coefficient:

c∗ = −
[
ln
(

α
δ

)
+ δ − 1

]
λγ√

δ(2 − δ)
{
δ(2 − δ) + [ln(α/δ) + δ − 1]2

} .

(b) By setting λ = 0.001, δ = 3/4 and γ = 1000, then λ2γ2 − δ(2 − δ) =

1
16
> 0. This implies that the second set of conditions applies so that the

conditions for the existence of the nontrivial optimal insurance reduces

to 0.0226 < α < 0.9630. Furthermore, α = 0.05 implies the optimal

quota-share reinsurance coefficient

c∗ = − 2√
30

· 4 ln(4α/3) − 1√
2 ln2(4α/3) − ln(4α/3) + 2

= 0.9816.

(4) P17 (exponential principle) Π(X) = 1
β

log E[exp{βX}] with β > 0.

(a) Conditions: α < δ.
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Optimal quota-share coefficient: c∗ =
λ

β
− λ

β
· 2δ

M
, with

M = −δ[ln(α/δ) − 1] +
√
δ2[ln(α/δ) − 1]2 − 4δ(1 − δ)[ln(α/δ) − 1].

(b) By setting λ = 0.001, δ = 3/4, β = 0.2, then the conditions for the

existence of the nontrivial optimal insurance is α < 0.75. Furthermore,

α = 0.05 implies the optimal quota-share coefficient

c∗ = 1 − 6

−3
[
ln(4α

3
) − 1

]
+
√

9
[
ln(4α

3
) − 1

]2 − 12
[
ln(4α

3
) − 1

] = 0.7510.

Example 2.3 Consider VaR-optimization (2.2.18) and CTE-optimization (2.2.19).

The following conditions are sufficient and necessary for VaR-optimization (2.2.18),

while they are only sufficient for CTE-optimization (2.2.19). The optimal stop-loss

retention d∗ is also given for each reinsurance premium principle.

(1) P1 (expectation principle) Π(X) = (1 + θ)E[X] with θ > 0.

(a) Conditions: α ≤ 1

(1 + β)e
.

Optimal retention: d∗ = −1

λ
ln

1

δ(1 + β)
.

Note that if the probability that the loss random variable X takes the

value of 0 is large, the loading safety γ must be large enough to ensure

the existence of the nontrivial optimal stop-loss reinsurance. For example

if Pr{X = 0} = 1 − δ = 0.2, then the loading safety β must be larger

than 1.25.

(b) By setting λ = 0.001, δ = 4/5 and β = 0.3, then the condition for

the existence of the nontrivial optimal insurance is α < 0.2830 with the

optimal retention d∗ = 39.2207.

(2) P13 (variance principle) Π(X) = E[X] + βD[X] with β > 0.
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(a) Conditions: α ≤ λ

2β
exp{−(1 + λ/4β)}

Optimal retention: d∗ = −1

λ
ln

λ

2βδ
.

(b) By setting λ = β = 0.001 and δ = 3/4, then the condition for the

existence of the nontrivial optimal insurance is α < 0.1839 with the

optimal retention d∗ = 405.4651.

Remark 2.3 As shown in the above three examples, for some premium principles,

only when the tolerance probability is large enough can the existence of nontrivial

optimal reinsurance be guaranteed.

2.6 Appendix: Proofs

Proof of Theorem 2.1:

(a) If Π(cX) = cΠ(X) for c > 0, it follows from Propositions 2.1 that

VaRα(XTqs
; c) = (1 − c)S−1

X (α) + cΠ(X)

= S−1
X (α) + c

[
Π(X) − S−1

X (α)
]
, (2.6.2)

which is linear in c. Therefore, if Π(X) < S−1
X (α), VaRα(XTqs

; c) attains

its minimum value at c = 1. If Π(X) > S−1
X (α), with c going down to

0, VaRα(XTqs
; c) keeps decreasing to S−1

X (α), which is exactly VaRα(XTqs
; c)

evaluated at c = 0; thus the optimal quota-share coefficient c∗ = 0 in this

case. When Π(X) = S−1
X (α), VaRα(XTqs

; c) remains constant at S−1
X (α) for

all c ∈ [0, 1]. Combining the above, we can then conclude that the optimal

quota-share reinsurance is trivial and the optimal quota-share coefficient c∗

is determined as in (2.3.1).
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(b) If Π(cX) is strictly convex in c, it follows from Proposition 2.1 that VaRα(XTqs
; c)

is also strictly convex in c. Hence VaRα(XTqs
; c) attains its global minimum

value at c∗ that is the solution to

∂

∂c
VaRα(XTqs

; c)

∣∣∣∣
c=c∗

= Π′
c(c

∗X) − S−1
X (α) = 0,

which yields (2.3.2). 2

Proof of Proposition 2.6:

(a) Observe that under variance premium principle, the reinsurance premium

Π(cX) = cE[X] + c2βD[X] is strictly convex in c. Hence it follows from

Theorem 2.1(b) that the optimal quota-share reinsurance is nontrivial if and

only if there exists a constant c∗ ∈ (0, 1) such that

Π′
c(c

∗X) − S−1
X (α) = E[X] + 2c∗βD[X] − S−1

X (α) = 0. (2.6.3)

Consequently, the nontriviality of the optimal quota-share reinsurance is equiv-

alent to

0 < c∗ =
S−1

X (α) − E[X]

2βD[X]
< 1, (2.6.4)

which implies (2.3.5). Thus the proof follows.

(b)-(d) We omit the proofs of (b)-(d) for premium principles P14-P16 since they are

similar to (a).

(e) Under the exponential principle P17, we have Π(cX) = 1
β

log E[exp(cβX)]. It

is easy to verify that

Π
′

c(cX) =
E[X exp(cβX)]

E[exp(cβX)]
,

and

Π
′′

c (cX) =
β
{

E[X2 exp(cβX)]E[exp(cβX)] −
[
E[X exp(cβX)]

]2}

{
E[exp(cβX)]

}2 .
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Let

f(c) =
{

E[X2 exp(cβX)]E[exp(cβX)] −
[
E[X exp(cβX)]

]2}
,

then f(0) = Var[X] > 0, and

f ′
c(c) = βE[X3 exp(cβX)]E[exp(cβX)] − βE[X2 exp(cβX)]E[X exp(cβX)].

Moreover, it follows from the Hölder’s inequality that

E[X2 exp(cβX)] ≤ {E[X3 exp(cβX)]}2/3{E[exp(cβX)]}1/3

E[X exp(cβX)] ≤ {E[X3 exp(cβX)]}1/3{E[exp(cβX)]}2/3

Hence, f ′
c(c) is nondecreasing in c, and therefore f(c) > 0, Π

′′

c (cX) > 0,

for c ∈ [0, 1]. This implies that Π(cX) is strictly convex in c and using

Theorem 2.1(b), we conclude the proof. 2

Proof of Theorem 2.3: The proof of the theorem is trivial by first recognizing

that from Proposition 2.3, VaRα(XTsl
; d) is decreasing in d for d ∈ (S−1

X (α),∞) and

it tends to the limiting minimum S−1
X (α) as d → ∞ if limd→∞ Π([X − d]+) = 0.

This implies that to show the nontriviality (or the triviality) of the optimal stop-

loss reinsurance, we only need to focus on interval 0 < d < S−1
X (α) for which

VaRα(XTsl
; d) = d+ Π([X − d]+). Hence if either condition (i) or (ii) of Part (a) is

satisfied, then VaRα(XTsl
; d) attains its minimum value at either d = 0 or d = ∞,

which implies that the optimal stop-loss reinsurance is trivial. Indeed, (2.4.25)

follows immediately by comparing the values of VaRα(XTsl
; d) corresponding to d =

0 and d = ∞. Moreover, (2.4.26) implies that d0 ∈ (0, S−1
X (α)) since Π([X−d0]+) ≥

0. Hence, if d+Π([X−d]+) is decreasing for d ∈ [0, d0] while increasing on [d0,∞],

(2.4.26) ensures that VaRα(XTsl
; d) attains its global minimum at d = d0, which

means the optimal stop-loss reinsurance is nontrivial; conversely, if optimal stop-

loss reinsurance is nontrivial, d0 must be the global minimizer for VaRα(XTsl
; d),
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and hence (2.4.26) and (2.4.27) hold. 2

Before proving Proposition 2.8, let us first state the following relations which

will be used extensively in the proof:

∂

∂d
E[X − d]+ =

∂

∂d

∫ ∞

d

SX(x)dx = −SX(d), (2.6.5)

for m > 1

∂

∂d
E[X − d]m+ =

∂

∂d

{
m

∫ ∞

d

(x− d)m−1SX(x)dx
}

= −m(m − 1)

∫ ∞

d

(x− d)m−2SX(x)dx

= −mE[X − d]m−1
+ , (2.6.6)

and

∂

∂d
Var[X − d]+ =

∂

∂d

{
E[X − d]2+ − (E[X − d]+)2

}

= −2[1 − SX(d)]E[X − d]+. (2.6.7)

Proof of Proposition 2.8: Note that Π([X − d]+) is decreasing in d for all the

premium principles in the proposition. Hence it follows from Theorem 2.3(a) that

we only need to verify if d+Πd([X−d]+) is either increasing or first increasing than

decreasing for d ∈ [0, S−1
X (α)]. For the premium principles listed in the proposition,

d+Πd([X−d]+) is actually an increasing function in d (or equivalently 1+Π′
d([X−

d]+) > 0) as demonstrated below:

(a) This is a special case of (b) with p = 2.

(b) For p > 1 and d ≥ 0,

1 + Π′
d([X − d]+) = 1 +

∂

∂d

{
E[X − d]p+

}1/p

= 1 +
1

p

{
E[X − d]p+

} 1−p
p ∂

∂d
E[X − d]p+

= 1 −
{

E[X − d]p+

} 1−p
p

E[X − d]p−1
+

> 0,
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where the inequality follows from the Hölder’s inequality.

(c) First note that E
[
[X − d]+ − E[X − d]+

]2
+

= E
[
X − d − E[X − d]+

]2
+
. Then

under the semi-deviation premium principle, we have

1 + Π′
d([X − d]+) = 1 +

∂

∂d

{
E[X − d]+ + β

√
E
[
X − d− E[X − d]+

]2
+

}

= 1 − SX(d) − β
2[1 − SX(d)]

∫∞
d+E[X−d]+

SX(x)dx

2
√

E
[
X − d− E[X − d]+

]2
+

= (1 − SX(d))


1 − β

E[X − d− E[X − d]+]+√
E
[
X − d− E[X − d]+

]2
+




> [1 − SX(d)](1 − β) > 0,

where the first inequality follows from the simple relation that E[Y 2] > (E[Y ])2

and the second inequality is due to the constraint 0 < β < 1.

(d) For the Wang’s premium princple with 0 < p < 1 and d ≥ 0,

1 + Π′
d([X − d]+) = 1 +

∂

∂d

{∫ ∞

0

[Pr([X − d]+ ≥ t)]pdt

}

= 1 +
∂

∂d

{∫ ∞

d

[Pr(X ≥ t)]pdt

}

= 1 − [Pr(X ≥ d)]p > 0.

(e) Let us first note that

F−1
[X−d]+

(1 − p) =





0, p > SX(d),

F−1
X (1 − p) − d, otherwise.

(2.6.8)
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Then for 0 < β, p < 1 and d ≥ 0, we have

1 + Π′
d([X − d]+)

= 1 +
∂

∂d

{
E[X − d]+ + β

[
F−1

[X−d]+
(1 − p) − E[X − d]+

]}

=





1 + ∂
∂d

{
(1 − β)E[X − d]+

}
, p > SX(d),

1 + ∂
∂d

{
(1 − β)E[X − d]+ + β

[
F−1

X (1 − p) − d
]}
, otherwise.

=





1 − (1 − β)SX(d), p > SX(d),

(1 − β)(1 − SX(d)), otherwise.

Both the above expressions are positive and this concludes the proof.

(f) For 0 < p < 1 and d ≥ 0, we have

1 + Π′
d([X − d]+) = 1 +

∂

∂d

{
1

p

∫ 1

1−p

F−1
[X−d]+

(x)dx

}
.

It follows from (2.6.8) that the above expression is positive and hence con-

cludes the proof.

(g) First note that

E
[
exp

(
β[X − d]+

)]
=

∫ ∞

0

eβ[X−d]+dFX(x)

=

∫ d

0

dFX(x) +

∫ ∞

d

eβ(x−d)dFX(x)

=

∫ ∞

d

eβ(x−d)dFX(x) + FX(d),

and

∂

∂d
E
[
exp

(
β[X − d]+

)]
= −β

∫ ∞

d

eβ(x−d)dFX(x)
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Then for the exponential premium principle with 0 < β < 1 and d ≥ 0, we

have

1 + Π′
d([X − d]+)

= 1 +
{
βE
[
exp

(
β[X − d]+

)]}−1

· ∂
∂d

{
E
[
exp

(
β[X − d]+

)]}

= 1 −
∫∞

d
eβ(x−d)dFX(x)

FX(d) +
∫∞

d
eβ(x−d)dFX(x)

> 0.

2

Proof of Proposition 2.9: The results in the proposition can easily be verified

by resorting to Theorem 2.3(b) and also noticing that Π([X − d]+) is decreasing in

d along with limd→∞ Π([X − d]+) = 0 for the considered premium principles. Let

us illustrate by just considering the proof to (c) for the variance premium principle.

From Theorem 2.3, it suffices to verify d0 that solves 2βE[X−d0]+ = 1 is the unique

solution such that d+ Π([X − d]+) is decreasing for d ∈ [0, d0] while increasing for

d ∈ [d0,∞]. For this purpose, we investigate its derivative first:

1 + Π′
d([X − d])+ = 1 +

∂

∂d

{
E[X − d]+ + βD[X − d]+

}

= FX(d)
(
1 − 2βE[X − d]+

)
,

which is positive if E[X−d]+ < 1
2β

while negative if E[X−d]+ > 1
2β

. Now that X is

assumed to have a continuous one-to-one distribution function on [0,∞), E[X−d]+
is strictly decreasing in d and the equation E[X − d]+ = 1

2β
has a unique solution

d0 > 0. Hence, the proof is complete. 2

Proof of Theorem 2.4:

(a) When (i) or (ii) holds, it follows from Proposition 2.4 that CTEα(XTsl
; d) at-

tains its minimum either at d = S−1
X (α) or as d→ ∞ on interval [S−1

X (α),∞].

Therefore, when d+Π([X−d]+) is increasing for d ∈ [0, S−1
X (α)], CTEα(XTsl

; d)
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attains its global minimum either at d = 0 or as d→ ∞, which means the opti-

mal stop-loss reinsurance is trivial. In this case, (2.4.33) follows immediately

only by noticing that CTEα(XTsl
; 0) = Π(X) and limd→∞ CTEα(XTsl

; d) =

limd→∞G(d) = uα.

(b) With condition (i), we can conclude that d0 is the minimizer of CTEα(XTsl
; d)

for d on [0, S−1
X (α)] and the corresponding minimum of CTEα(XTsl

; d) is d0 +

Π([X−d0]+). Moreover, it follows from Proposition 2.4 that CTEα(XTsl
; d) >

S−1
X (α) for d > S−1

X (α). Therefore, when (ii) holds, d0 is the global minimizer

of CTEα(XTsl
; d), and hence we conclude the proof. 2

Proof of Proposition 2.10: Since Proposition 2.8 has already established the

increasing property of d + Π([X − d]+) for d on interval [0, S−1
X (α)], it suffices to

verify either (i) or (ii) of (a) in Theorem 2.4 for all of these premium principles.

Now we turn to verify one principle by another.

(a) For 0 < p < 1 and d ≥ 0,

G′(d) =
SX(d)

α
+ Π′

d((X − d)+)

=
SX(d)

α
+
{∫ ∞

0

[Pr((X − d)+ ≥ t)]pdt
}′

d

=
SX(d)

α
− [Pr(X ≥ d)]p

=
SX(d)

α

{
1 − α[SX(d)]p−1

}
(2.6.9)

Noticing that 1 − α[SX(d)]p−1 is continuous and decreasing in d and that

1 − α[SX(d)]p−1 > 0 when d = S−1
X (α), there must exist a constant d0 >

S−1
X (α) such that (ii) of (a) in Theorem 2.4 holds.
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(b) For 0 < β, p < 1 and d ≥ 0,

G′′(d)

= −fx(d)

α
+ Π′′

d((X − d)+)

= −fX(d)

α
+

∂2

∂d2

{
E[X − d]+ + β

(
F−1

(X−d)+
(1 − p) − E[X − d]+

)}

=





− fX(d)
α + ∂2

∂d2

{
E[X − d]+ − βE[X − d]+

}
, p > SX(d)

− fX(d)
α + ∂2

∂d2

{
E[X − d]+ + β

(
F−1

X (1 − p) − d − E[X − d]+

)}
, otherwise

=





− fX(d)
α − ∂

∂d

{
(1 − β)SX(d)

}
, p > SX(d)

− fX(d)
α − ∂

∂d

{
(1 − β)SX(d) + β

}
, otherwise

= fX(d)

[
(1 − β) − 1

α

]
< 0,

which means (i) of (a) in Theorem 2.4 holds.

(c) For 0 < p < 1 and d ≥ 0,

G′′(d) = −fX(d)

α
+ Π′′

d((X − d)+)

= −fX(d)

α
+

∂2

∂d2

{1

p

∫ 1

1−p

F−1
(X−d)+

(x)dx
}

=





−fX(d)
α
, p > SX(d)

−fX(d)
α

+ ∂2

∂d2

{
1
p

∫ 1

1−p
[F−1

X (x) − d]dx
}
, otherwise

= −fx(d)

α
< 0,

which means (i) of (a) in Theorem 2.4 holds. 2
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Chapter 3

VaR Minimization Model:

Increasing Convex Reinsurance

Treaties

3.1 Introduction and Reinsurance Model

The previous chapter analyzed two specific types of reinsurance: the quota-share

and the stop-loss. This chapter generalizes to analyze the optimal reinsurance

among all the increasing convex treaties. In doing so, we adopt the VaR mini-

mization model and consider a constrained reinsurance model with a reinsurance

premium budget constraint. We assume the expectation reinsurance premium prin-

ciple and in this case the reinsurance premium principle constraint can also be

interpreted as an expected profit guarantee for the insurer. By equivalently refor-

mulating the model into an optimization problem over a space of σ-finite positive

measures on certain measurable space, we derive the explicit optimal solutions.

To specify our model, let X denote the nonnegative random variable which
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represents the (aggregate) loss initially assumed by an insurer. To simplify our

discussions, we assume that X has finite mean and that X has a continuous strictly

increasing distribution function on (0,∞) with a possible jump at 0. Suppose now

the insurer were to manage its risk exposure via a reinsurance treaty. Under this

arrangement, the insurer cedes part of its loss, say f(X) satisfying 0 ≤ f(X) ≤ X,

to a reinsurer. The insurer thus retains loss If (X) = X−f(X), where the function

f(x) is known as the ceded loss function and If (x) = x − f(x) is referred as

the retained loss function. By transferring part of its losses to a reinsurer, the

insurer incurs a cost in the form of reinsurance premium, denoted by Π(f(X)),

that is payable to a reinsurer. This implies that the sum If(X) + Π(f(X)) can

be interpreted as the total risk (or the total cost) of the insurer in the presence of

reinsurance. Using Tf (X) to denote the total cost, we have

Tf (X) = If(X) + Π(f(X)). (3.1.1)

Therefore, if we exploit VaR as the risk measure, the optimal reinsurance model

can be formulated based on the insurer’s total cost Tf as follows.





min
f∈IC

VaRα(Tf (X))

s.t. Π[f ] ≤ π,
(3.1.2)

where IC denotes the class of all the increasing convex functions on [0,∞) such

that 0 ≤ f(x) ≤ x for all x ≥ 0. Also note that π in the above model is a preset

positive constant standing for the reinsurance premium budget so that Π[f ] ≤ π

implies the assumption that the insurer is willing to pay the reinsurance premium

no more than π.

Under the additional assumption that the reinsurance premium Π(f(X)) is

determined by the expectation premium principle; i.e.,

Π(f(X)) = (1 + θ)E[f(X)], (3.1.3)
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where θ > 0 is the safety loading factor, the reinsurance premium budget constraint

is equivalent to E[f ] ≤ E[X]/(1 + θ) and thus we end up with a reinsurance model

in a more explicit form as follows.





min
f∈IC

VaRα(Tf(X))

s.t. E[f(X)] ≤ B

0 ≤ f(x) ≤ x for all x ≥ 0,

(3.1.4)

where B denotes the constant π/(1 + θ).

The constraint E[f ] ≤ B can also be interpreted as an expected profit guarantee

for the insurer. This can be argued by taking into account the insurance premium

collected by the insurer from the policyholders and explained as follows. Let p0

denote the aggregate insurance premium charged. Reducing the total risk exposure

by the amount of the insurance premium received, we obtain the net cost or the

net risk of insuring risk X which will be denoted by NCf(X); i.e.

NCf (X) = Tf (X) − p0 = If(X) + Π(f(X)) − p0. (3.1.5)

Then, the quantity E[−NCf (X)] can be interpreted as the insurer’s expected profit

and the constraint condition E[−NCf (X)] ≥ P ensures that the expected profit of

the insurer under the ceded loss function f is at least P . Clearly, E[−NCf (X)] ≥ P

is equivalent to the condition E[f ] ≤ B with B = (p0 − P − E[X])/θ.

3.2 Model Reformulation

As pointed out in Gaivoronski and Pflug (Winter 2004-005), the optimization

problem associated with VaR, in general, is a non-trivial exercise even in the fi-

nite dimension case. To derive the solutions, we reformulate (3.1.4) as a linear

programming with respect to σ-finite positive measures on the Borel measurable
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space ([0,∞),B), where B := B([0,∞)) denotes the Borel sigma over the positive

half real line [0,∞). Then we obtain the solutions by an approximating procedure

which is a commonly-used technique for solving a linear programming regarding

positive measures on certain measurable space, and the critical point is to establish

a sequence of programming which are solvable and with solutions converging to the

original linear programming.

Before the reformulation, we need the following two lemmas; see Cardin and

Pacelli (2007) for the proof of Lemma 3.1, and Section 3.5 for proof of Lemma 3.2.

Lemma 3.1 An increasing convex function f defined on [0,∞) can be represented

as the following form:

f(x) = f(0) +

∫
[x− t]+dµ, for any fixed x ≥ 0, (3.2.6)

for some positive σ-additive measure µ on B.

Lemma 3.2 For any f(x) ∈ IC, If(x) = x−f(x) is increasing and concave in x.

Now we have the following important facts:

(i) Note that for any ceded loss function f ∈ IC, f(0) = 0 and hence by Lemma

3.1 the ceded loss function f has the following representation:

f(x) =

∫
(x− t)+dµ, for any fixed x ≥ 0. (3.2.7)

with a positive σ-finite measure µ on B. Furthermore, by Fubini theory,

E[f(X)] =

∫
E[(X − t)+]dµ. (3.2.8)

(ii) By Lemma 3.2, for any f ∈ IC, the function If (x) = x − f(x) is increasing

and concave, and hence also continuous. Consequently, it follows from (i) of

Lemma 1.1 in Chapter 1 that

VaRα(Tf (X)) = VaRα

(
X − f(X) + (1 + θ)E[f(X)]

)

= VaRα(X) − f
(
VaRα(X)

)
+ (1 + θ)E[f(X)]. (3.2.9)
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Note that when α ≥ SX(0), then VaRα(X) = 0, the goal function VaRα(Tf(X))

in model (3.1.4) only depends on the value of E[f(X)], and hence it will be optimal

for the insurer not to cede any risk. To avoid this trivial case, we assume 0 < α <

SX(0) hereafter.

Together with (3.2.7), (3.2.8) and setting φ(t) =
(
VaRα(X) − t

)
+

and ψ(t) =

E[(X − t)+] for t ≥ 0, (3.2.9) can be rewritten as

VaRα(Tf (X)) = VaRα(X) −
∫ [

φ(t) − (1 + θ)ψ(t)
]
dµ.

Consequently, our proposed optimal reinsurance model (3.1.4) is equivalent to the

following linear programming with respect to the positive measure µ:





min
µ∈M+

VaRα(X) −
∫ [

φ(t) − (1 + θ)ψ(t)
]
dµ

s.t.
∫
ψ(t)dµ ≤ B,

(3.2.10)

where M+ denotes the set of all σ-finite positive measure on the measurable space

([0,∞),B) such that 0 ≤
∫

(x− t)+dµ ≤ x for all x ≥ 0.

3.3 Optimal Solutions

Since models (3.1.4) and (3.2.10) are equivalent regarding their solutions, it suf-

fices for us to focus on model (3.2.10) for deriving the optimal ceded loss functions.

To identify the solutions to (3.2.10) is the objective of the present section. We

shall use the approximating approach, which is a routine approach regarding the

optimization over a measure space. To proceed, let us first introduce some notation

and define some functions as follows first:

θ∗ =
1

1 + θ
, δθ∗ = S−1

X (θ∗), δα = S−1
X (α). (3.3.11)
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β(d) =
B∫∞

d
SX(x)dx

, (3.3.12)

κ(d) = d+ (1 + θ)

∫ ∞

d

SX(x)dx− δα, (3.3.13)

λ(d) =

∫ ∞

d

SX(x)dx+ SX(d)[d− δα]. (3.3.14)

The following Lemma 3.3 collects some properties of functions κ(·) and λ(·) defined

above. These properties will be used frequently in the subsequent discussion; see

Section 3.5 for the its proof.

Lemma 3.3 (a) The continuous function κ(d) defined in (3.3.13) is convex for

d ≥ 0. Moreover, if θ∗ < SX(0), then κ(d) is decreasing on [0, δθ∗ ] while

increasing on [δθ∗ ,∞) and satisfies

min
0≤d≤a

{κ(d)} = κ(a) for 0 ≤ a ≤ δθ∗ , (3.3.15)

min
0≤d≤a

{κ(d)} = κ(δθ∗) for δθ∗ ≤ a; (3.3.16)

if θ∗ ≥ SX(0), then κ(d) is increasing on [0,∞) and satisfies

min
0≤d≤a

{κ(d)} = κ(0) for a ≥ 0. (3.3.17)

(b) The continuous function λ(d) defined in (3.3.14) is strictly increasing on

[0, δα]. Moreover, when α < θ∗, and λ(δθ∗) < 0, there exists a unique root

d = do to the equation λ(d) = 0 on (δθ∗ , δα).

The outline of our procedure for solving (3.2.10) is as follows. First of all, in

Subsection 3.3.1 we construct a series of linear programming (3.3.19) which are op-

timization problems over a set of discrete measures with a particular structure, and

then reformulate these programming into some equivalent models (3.3.23) which are

optimization problems over Euclidean space. In Subsection 3.3.2, we solve models

(3.3.23) with explicit solutions identified. The results show that the identified solu-

tions are common for all of these models (3.3.23). The solutions of (3.3.19) are then
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Case Conditions µ∗ f∗(x) VaR∗
α

(1) α ≥ θ∗ 0 0 δα

(2) α < θ∗, 0 0 δα

κ(δθ∗) > 0

(3) α < θ∗, c∗X (δθ∗ , ·) where c∗(x − δθ∗)+, for δα

κ(δθ∗) = 0 0 ≤ c∗ ≤ min{β(δθ∗), 1} 0 ≤ c∗ ≤ min{β(δθ∗), 1}
(4) α < θ∗,

κ(δθ∗) < 0, X (δθ∗ , ·) (x − δθ∗)+ δα + κ(δθ∗)

β(δθ∗) > 1

(5) α < θ∗,

κ(δθ∗) < 0, β(δθ∗)X (δθ∗ , ·) β(δθ∗)(x − δθ∗)+ δα + β(δθ∗) · κ(δθ∗)

β(δθ∗) ≤ 1,

λ(δθ∗) ≥ 0

(6) α < θ∗,

κ(δθ∗) < 0,

β(δθ∗) ≤ 1, β(do)X (do, ·) β(do)(x − do)+ δα − B
(

1
SX(do) −

1
θ∗

)

λ(δθ∗) < 0,

β(do) ≤ 1

(7) α < θ∗,

κ(δθ∗) < 0, X (dB , ·) where (x − dB)+, where δα + u(dB)

β(δθ∗) ≤ 1, B =
∫∞
dB

SX(x)dx B =
∫∞
dB

SX(x)dx

λ(δθ∗) < 0,

β(do) > 1

Table 3.1: Optimal ceded loss functions and minimal VaR.
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derived by its equivalence to models (3.3.23). Finally, in Subsection 3.3.3 we show

that these solutions also solve model (3.2.10), which are reported in Table 3.11.

3.3.1 Approximation Models

For integer n ≥ 1, let M+
n denote the set of all measures on ([0,∞),B) with the

following structure:

µn(·) =
n∑

j=1

cn,jX (dn,j, ·), (3.3.18)

where the coefficients cn,j ≥ 0 and dn,j ≥ 0, j = 1, · · · , n,
∑n

j=1 cn,j ≤ 1, and

X (dn,j, ·) denote the Dirac measure concentrated on the point dn,j. Without any

loss of generality, we assume 0 ≤ dn,1 ≤ dn,2 ≤ · · · ≤ dn,n for all n = 1, 2, · · · . Note

that M+
n ⊂ M+ for all n = 1, 2, · · · . Then, we consider the following problems:





min
µn∈M+

n

VaRα(X) −
∫ [

φ(t) − (1 + θ)ψ(t)
]
dµn

s.t.
∫
ψ(t)dµn ≤ B.

(3.3.19)

By defining coefficient vectors c := (cn,1, · · · , cn,n) and d := (dn,1, · · · , dn,n),

1This table reports the optimal solutions for all of the possible seven cases. Column 2 lists the

conditions used to define each case. Column 3 gives the optimal measure to model (3.2.10) while

Column 4 presents the corresponding optimal ceded loss function to model (3.1.4) for each case.

Column 4 can be recovered from Column 3 by formula (3.2.7). Finally, Column 5 tabulates the

minimal value of VaRα(Tf (X)) obtained under the optimal solutions.
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and using (3.3.18), the goal function in (3.3.19) can be expressed as follows.

VaRα(c,d) := VaRα(X) −
∫ [

φ(t) − (1 + θ)ψ(t)
]
dµn

= VaRα(X) −
n∑

j=1

cn,j

[
φ(dn,j) − (1 + θ)ψ(dn,j)

]

=





δα + Πµn
(X), δα ≤ dn,1,

An,i δα +Bn,i + Πµn
(X), dn,i ≤ δα ≤ dn,i+1,

i = 1, · · · , n− 1,

An,n δα +Bn,n + Πµn
(X), dn,n ≤ δα,

(3.3.20)

where

An,i = 1 −
i∑

j=1

cn,j, Bn,i =

i∑

j=1

cn,j dn,j, i = 1, · · · , n, (3.3.21)

and

Πµn
(X) = (1 + θ)

{
n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx

}
. (3.3.22)

Similarly, the constraint in the optimization problem (3.3.19) becomes

n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≤ B.

Note that the objective function and the constraint depend explicitly on the vari-

ables c and d. This explains the notation VaRα(c,d) with the arguments c and

d.

Let us now introduce the following sets:

Cn =

{
(cn,1, ..., cn,n) ∈ Rn : cn,j ≥ 0, j = 1, 2, · · · , n, and

n∑

j=1

cn,j ≤ 1

}
,

Dn = {(dn,1, ..., dn,n) ∈ Rn : 0 ≤ dn,1 ≤ · · · ≤ dn,n},

Sn =

{
(c,d) : c ∈ Cn, d ∈ Dn,

n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≤ B

}
.
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Then the coefficient vectors (c,d) defined in (3.3.18) must satisfy c ∈ Cn and

d ∈ Dn. Furthermore, the set Sn comprises both the feasible values of c and

d as well as their constrained condition of problem (3.3.19). Consequently, the

optimization problem (3.3.19) can be expressed more compactly as

min
(c,d)∈Sn

VaRα(c,d). (3.3.23)

It should be emphasized that the above formulation is a constrained optimization

problem as the constraint on c and d is embedded in the definition of Sn. We

make some remarks on two special cases with respect to the optimization problem

(3.3.23). First is when c = 0, where 0 is a zero vector (0, . . . , 0). In this case, the

objective function and the constraint in (3.3.23) are constant, independent of d.

When c = 0 is the optimal solution to (3.3.23), then it is never optimal to reinsure

the insurer’s risk. Second, when dn,j = d for j = 1, 2, · · · , n and a constant d,

both the objective function and the constraint in (3.3.23) depend only on d and

c :=
∑n

j=1 cn,j. This implies that the optimization problem (3.3.23) reduces to a

two-dimensional problem in terms of c and d, down from 2n dimensions. In the

sequel, we might simply denote (c, d) ∈ S for this situation for a set structured in

the same way as Sn.

3.3.2 Solutions to the Approximation Models

As pointed out earlier that the VaR-based optimization model, in general, is a

non-trivial problem; see Gaivoronski and Pflug (Winter 2004-2005). It is, therefore,

difficult to obtain the global minimizer of the constrained optimization problem

(3.3.23) directly. On the other hand, the fact that (3.3.23) is now formulated as

an optimization problem over the Euclidean space suggests that we can derive the

optimal solution via the following approach. To explain this approach, let us first
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note that for n = 1, 2, · · · , the sets Dn and Sn can be partitioned, respectively, as

D0
n = {(dn,1, ..., dn,n) ∈ Rn : δα ≤ dn,1 ≤ · · · ≤ dn,n},

Di
n = {(dn,1, ..., dn,n) ∈ Rn : 0 ≤ dn,1 ≤ · · · ≤ dn,i ≤ δα ≤ dn,i+1 ≤ · · · ≤ dn,n},

i = 1, ..., n− 1,

Dn
n = {(dn,1, ..., dn,n) ∈ Rn : 0 ≤ dn,1 ≤ · · · ≤ dn,n ≤ δα},

and

Si
n =

{
(c,d) : c ∈ Cn, d ∈ Di

n,

n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≤ B

}
, i = 0, 1, 2, · · · , n.

In other words, we have Dn =
⋃n

i=0D
i
n and Sn =

⋃n
i=0 S

i
n. The partition of Sn

into Si
n, i = 1, . . . , n enables us to analyze, case by case, the solution to (3.3.23)

with the feasible set replaced by Si
n, i = 0, . . . , n. The global solution to (3.3.23)

over the feasible set Sn is then given by the partition that yields the lowest VaR of

the insurer’s total risk among all partitions Si
n, i = 0, . . . , n. More specifically, let

VaR∗
α(S) denote the minimum value of VaRα(c,d) for (c,d) over the feasible set S

and let (c∗,d∗) ∈ S be the corresponding optimal vectors for which the minimum

is attained. Adopting this notation, VaR∗
α(Sn) with optimal vector (c∗,d∗) ∈ Sn

is the optimal solution to (3.3.23). The argument provided above implies that the

minimum value VaR∗
α(Sn) can be obtained indirectly via

VaR∗
α(Sn) = min{VaR∗

α(S0
n),VaR∗

α(S1
n), · · · ,VaR∗

α(Sn
n)}, (3.3.24)

with the optimal vector (c∗,d∗) corresponding to the partition that yields the lowest

VaR.

The rest of this section is devoted to analyzing the minimum value of VaRα(c,d)

for (c,d) over feasible set Si
n, i = 0, 1, 2, · · · , n. It turns out that the optimality

associated with the first n cases (i.e. for feasible set Si
n, i = 0, . . . , n−1) is relatively

straightforward to determine, as we demonstrate in Proposition 3.1. The optimal
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VaR∗
α(Sn

n), on the other hand, is more complicated and it requires us to consider

several additional subcases, as we will later elaborate.

Before presenting some key results, it is useful to give the following explicit

expressions for VaRα(c,d) pertaining a given confidence level 1 − α with 0 < α <

SX(0):

(i) When δα ≤ dn,1, i.e., (dn,1, ..., dn,n) ∈ D0
n,

VaRα(c,d) = δα + (1 + θ)
{ n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx
}

; (3.3.25)

(ii) When dn,i ≤ δα ≤ dn,i+1, i.e., (dn,1, ..., dn,n) ∈ Di
n, for i = 1, · · · , n− 1,

VaRα(c,d) = δα +

i∑

j=1

cn,j[dn,j − δα] + (1 + θ)
{ n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx
}

;(3.3.26)

(iii) When dn,n ≤ δα, i.e., (dn,1, ..., dn,n) ∈ Dn
n,

VaRα(c,d) = δα +

n∑

j=1

cn,jκ(dn,j). (3.3.27)

We now present the following proposition, which summarizes the optimality for

the first n partitions of Sn:

Proposition 3.1 (a) On S0
n, c

∗ = 0 is one optimal solution of VaR∗
α(S0

n) with

optimal minimum value VaR∗
α(S0

n) = δα.

(b) On Si
n, i = 1, 2, · · · , n − 1, the optimal solutions (c∗,d∗) of VaR∗

α(Si
n) must

satisfy either d∗n,j → ∞ for j = i + 1, · · · , n or equivalently c∗n,j = 0 for

j = i+ 1, · · · , n.

Proof. The proof is trivial by the expressions of VaRα(c,d) in (3.3.25) and

(3.3.26). 2

What remains is to consider the optimal solution on the final partition Sn
n .

As alluded earlier that the optimality associated with Sn
n is more complicated to
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analyze. It entails us to sub-partitioning the feasible set Sn
n into a few more subcases

depending on the relative magnitude of α and θ∗, the sign of κ(δθ∗), and whether

β(δθ∗) is greater or smaller than one. More specifically, there are seven subcases

in total to be considered and these are listed below. A flowchart of these subcases

is depicted in Figure 3.1. For ease of referencing, we also include the respective

proportions that deal with each of these subcases.

Case (i): α ≥ θ∗, see Proposition 3.2(a).

Case (ii): α < θ∗, κ(δθ∗) > 0, see Proposition 3.2(b).

Case (iii): α < θ∗, κ(δθ∗) = 0, see Proposition 3.3(a).

Case (iv): α < θ∗, κ(δθ∗) < 0, and β(δθ∗) > 1, see Proposition 3.3(b).

Case (v): α < θ∗, κ(δθ∗) < 0, β(δθ∗) ≤ 1, and λ(δθ∗) ≥ 0, see Proposi-

tion 3.4(a).

Case (vi): α < θ∗, κ(δθ∗) < 0, β(δθ∗) ≤ 1, λ(δθ∗) < 0, and β(do) ≤ 1, see

Proposition 3.4b(i).

Case (vii): α < θ∗, κ(δθ∗) < 0, β(δθ∗) ≤ 1, λ(δθ∗) < 0, and β(do) > 1, see

Proposition 3.4b(ii).

We first present the trivial cases where it is never optimal for the insurer to

reinsure its risk. These correspond to cases (i) α ≥ θ∗ and (ii) α < θ∗ with

κ(δθ∗) > 0, as we show in the following Proposition 3.2.

Proposition 3.2 Consider minimizing VaRα(c,d) with feasible set Sn
n . When (i)

α ≥ θ∗ or (ii) α < θ∗ and κ(δθ∗) > 0, c
∗ = 0 is one solution with VaR∗

α(Sn
n) = δα.

Proof. The condition α ≥ θ∗ implies δθ∗ ≥ δα and using part (a) of Lemma 3.3,

we have

min
d∈[0,δα]

κ(d) = u(δα) = (1 + θ)

∫ ∞

δα

SX(x)dx > 0.
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min
(c,d)∈Sn

n

VaRα(c,d)

(i) α ≥ θ∗

Proposition 3.2(a)
α < θ∗

κ(δθ∗) < 0
(iii) κ(δθ∗) = 0

Proposition 3.3(a)

(ii) κ(δθ∗) > 0

Proposition 3.2(b)

(iv) β(δθ∗) > 1

Proposition 3.3(b)
β(δθ∗) ≤ 1

(v) λ(δθ∗) ≥ 0

Proposition 3.4(a)
λ(δθ∗) < 0

(vi) β(do) ≤ 1

Proposition 3.4b(i)

(vii) β(do) > 1

Proposition 3.4b(ii)

Figure 3.1: Subcases of Sn
n .
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Thus, κ(d) > 0 for all d ∈ [0, δα]. Since on Sn
n we have dn,j ≤ δα for j = 1, 2, · · · , n,

it follows from (3.3.27) that VaRα(c,d) attains its minimum value when c = 0.

Hence VaR∗
α(Sn

n) = δα. The second case with α < θ∗ and κ(δθ∗) > 0 can be proved

similarly since from Lemma 3.3(a) we have

min
d∈[0,δα]

κ(d) = κ(δθ∗) > 0.

2

To discuss the optimal solutions corresponding to Cases (iii) and (iv), it is

essential to introduce the following sets:

T n
n := {(c,d) : (c,d) ∈ Sn

n , dn,1 ≥ δθ∗},

T≥
n :=

{
(c,d) : (c,d) ∈ T n

n ,
n∑

j=1

cn,j ≥ β(δθ∗)
}
,

T≤
n :=

{
(c,d) : (c,d) ∈ T n

n ,

n∑

j=1

cn,j ≤ β(δθ∗)
}
.

Recall that β(δθ∗) was defined through (3.3.11) and (3.3.12), and that T≥
n is an

empty set when β(δθ∗) > 1. Furthermore, T≥
n and T≤

n are the partitioned sets of

T n
n , i.e. T n

n = T≥
n

⋃
T≤

n . Exploiting the partitioning, Lemma 3.4 in Section 3.5

establishes the following relation for α < θ∗:

VaR∗
α(Sn

n) = VaR∗
α(T n

n ) (3.3.28)

The above result is useful in the sense that under the prescribed condition, for

identifying solution on Sn
n it is sufficient to focus the optimality on T n

n . This relation

is used explicitly in deriving the optimal solutions for cases (iii) and (iv), as we show

in the following proposition:

Proposition 3.3 Consider minimizing VaRα(c,d) with feasible set Sn
n .

(a) When α < θ∗ and κ(δθ∗) = 0, (c∗, δθ∗) such that 0 ≤ c∗ ≤ min{β(δθ∗), 1} is

one solution with VaR∗
α(Sn

n) = δα.
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(b) When α < θ∗, κ(δθ∗) < 0 and β(δθ∗) > 1, (1, δθ∗) is one solution with

VaR∗
α(Sn

n) = δα + κ(δθ∗) < δα.

Proof. Lemma 3.4 shows that VaR∗
α(Sn

n) = VaR∗
α(T n

n ) and for any vector (c,d) ∈
T n

n ,

VaRα(c,d) = δα +

n∑

j=1

cn,jκ(dn,j) ≥ δα + κ(δθ∗)

n∑

j=1

cn,j. (3.3.29)

(a) When α < θ∗ and κ(δθ∗) = 0, then (3.3.29) becomes VaRα(c,d) ≥ δα. The

lower bound corresponds to VaRα(c∗, δθ∗) with c∗ as defined in the proposition, and

the upper bound restriction on c∗ ensures that (c∗, δθ∗) ∈ T n
n ; hence the results

follow.

(b) To establish the optimality for α < θ∗, κ(δθ∗) < 0 and β(δθ∗) > 1, first recall

that T n
n = T≥

n

⋃
T≤

n and T≥
n is an empty set when β(δθ∗) > 1. Hence we only need

to show that (1, δθ∗) is optimal over T≤
n . It follows from the condition κ(δθ∗) < 0

that the lower bound (3.3.29) can further be reduced to δα + κ(δθ∗), which is equal

to VaRα(1, δθ∗). Since β(δθ∗) > 1, (1, δθ∗) is obviously within T≤
n and hence we

obtain the required results. 2

To analyze the remaining three cases pertaining to conditions α < θ∗, κ(δθ∗) < 0,

and β(δθ∗) ≤ 1, we again employ the same approach as above except that in these

cases, we consider the following set:

V :=
{

(c, d) ∈ R : δθ∗ ≤ d ≤ δα, c

∫ ∞

d

SX(x)dx = B, 0 ≤ c ≤ 1
}
. (3.3.30)

Note that V is well defined since δθ∗ ≤ δα due to the condition α < θ∗. Lemma 3.7

in Section 3.5 similarly shows that

VaR∗
α(Sn

n) = VaR∗
α(V ) (3.3.31)

and therefore it is sufficient to just focus on set V for the optimality on set Sn
n .

This is demonstrated in the following proposition and hence completes the analysis

for Cases (v), (vi) and (vii):
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Proposition 3.4 Suppose α < θ∗, κ(δθ∗) < 0, and β(δθ∗) ≤ 1, and consider mini-

mizing VaRα(c, d) with feasible set Sn
n .

(a) If λ(δθ∗) ≥ 0, then (β(δθ∗), δθ∗) is one solution with VaR∗
α(Sn

n) = δα + β(δθ∗) ·
κ(δθ∗) < δα.

(b) Suppose λ(δθ∗) < 0.

(i) If β(do) ≤ 1, then (β(do), do) is one solution with VaR∗
α(Sn

n) = δα −
B[ 1

SX(do)
− 1

θ∗
] < δα, where as defined in Lemma 3.3(b), do ∈ (δθ∗ , δα)

satisfies λ(do) = 0.

(ii) If β(do) > 1, then (1, dB) is one solution with VaR∗
α(Sn

n) = δα +κ(dB) <

δα, where dB is determined through the equation

B =

∫ ∞

dB

SX(x)dx.

Proof. First note that V can be regarded as a subset of Sn
n , since any coefficient

pair (c, d) ∈ V will lead to the same VaR value as a vector (c,d) ∈ Sn
n with dj = d

and cj = c/n for j = 1, 2, · · · , n. Thus, relation (3.3.31) implies that it is sufficient

for us to focus on set V for the optimal solutions on Sn
n .

For any coefficient pair (c, d) ∈ V , it follows from (3.3.27) that

VaRα(c, d) = δα + c(d− δα) + (1 + θ)c

∫ ∞

d

SX(x)dx

= δα + (1 + θ)B +
d− δα∫∞

d
SX(x)dx

B. (3.3.32)

Because of the condition c
∫∞

d
SX(x)dx = B, the coefficient c uniquely determines

d (and vice-versa) and hence VaRα(c, d) can be regarded as either a function of c

or d. For the sake of our analysis, we will express VaRα(c, d) as a function d as we

have shown in (3.3.32) and we will denote it by Γ(d). The derivative of Γ(d) with

respect to d is

Γ′(d) =
λ(d)

[
∫∞

d
SX(x)dx]2

B. (3.3.33)
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(a) When λ(δθ∗) ≥ 0, then Γ′(d) > 0 on (δθ∗ , δα] since λ(d) is strictly increasing

on [0, δα] by Lemma 3.3(b). Hence Γ(d) is strictly increasing on [δθ∗ , δα] and

it attains its minimum value at d = δθ∗ . This implies that VaR∗
α(V ) =

δα + β(δθ∗) · κ(δθ∗) < δα. The last strict inequality is due to κ(δθ∗) < 0.

(b) Under the assumption λ(δθ∗) < 0, Lemma 3.3(b) assures that Γ′(d) < 0 for

d ∈ [δθ∗ , do), and Γ′(d) > 0 for d ∈ (do, δα]. This in turn implies Γ(d) is strictly

decreasing on [δθ∗ , do] while strictly increasing on [do, δα], and it attains the

minimum value at d = do.

Recall that any coefficient pair (c, d) ∈ V must satisfy the constraint

c

∫ ∞

d

SX(x)dx = B

and 0 ≤ c ≤ 1. Hence when β(do) ≤ 1, (β(do), do) is one optimal solution on

V . Moreover because the minimum value of Γ(d) is attained at d = do, we

have

VaR∗
α(V ) = Γ(do) < Γ(δθ∗) = δα + β(δθ∗) · κ(δθ∗) < δα, (3.3.34)

and VaR∗
α(V ) is easily shown to be

VaR∗
α(V ) = δα + (1 + θ)B +B · do − δα∫∞

do
SX(x)dx

= δα − B

[
1

SX(do)
− 1

θ∗

]
, (3.3.35)

as claimed in Part (i).

For Part (ii) with the condition β(do) > 1, first note that (β(do), do) is no

longer in V . Second, the property that Γ(d) is strictly decreasing on [δθ∗ , do]

while strictly increasing on [do, δα] ensures that the minimum of VaRα(c, d)

over V while subject to the constraint 0 < c ≤ 1 must occur at dB. Finally,

it is also obvious that VaR∗
α(V ) = Γ(dB) ≤ Γ(δθ∗) < δα and this completes

the proof. 2
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Case Conditions (c∗,d∗) VaR∗
α

(i) α ≥ θ∗ (0, d), d ≥ 0 δα

(ii) α < θ∗,κ(δθ∗) > 0 (0, d), d ≥ 0 δα

(iii) α < θ∗, κ(δθ∗) = 0 (c∗, δθ∗)+, for δα

0 ≤ c∗ ≤ min{β(δθ∗), 1}
(iv) α < θ∗, κ(δθ∗) < 0, (1, δθ∗) δα + κ(δθ∗)

β(δθ∗) > 1

(v) α < θ∗, κ(δθ∗) < 0, (β(δθ∗), δθ∗) δα + β(δθ∗) · κ(δθ∗)
β(δθ∗) ≤ 1, λ(δθ∗) ≥ 0

(vi) α < θ∗, κ(δθ∗) < 0,

β(δθ∗) ≤ 1, λ(δθ∗) < 0, (β(do), do) δα −B
(

1
SX(do)

− 1
θ∗

)

β(do) ≤ 1

(vii) α < θ∗, κ(δθ∗) < 0,

β(δθ∗) ≤ 1, λ(δθ∗) < 0, (1, dB), where δα + u(dB)

β(do) > 1 B =
∫∞

dB
SX(x)dx

Table 3.2: Optimal ceded loss functions to the approximation models.
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Now we are ready to present the solution to models (3.3.23) and (3.3.19). Recall

that Sn =
⋃n

i=0 S
i
n, Sn is the feasible set to (3.3.23), and Propositions 3.1-3.4 hold

for any n = 1, 2, · · · . It follows from Proposition 3.1(b) that (c∗
n,d

∗
n) is one solution

to problem (3.3.23) if the following condition is satisfied:

VaRα{c∗
n,d

∗
n} = min

(
VaR∗

α(S0
n), VaR∗

α(Sn
n)
)

n = 1, 2, · · · . (3.3.36)

By Propositions 3.1(a), 3.4, and 3.3, we deduce that (c∗, δθ∗) such that 0 ≤ c∗ ≤
min{β(δθ∗), 1} are solutions to problem (3.3.23) when α < θ∗ and κ(δθ∗) = 0, and

that (1, δθ∗) is one solution to (3.3.23) when α < θ∗, κ(δθ∗) < 0 and β(δθ∗) > 1.

Moreover, after comparing VaR∗
α(V ) in Proposition 3.4 with VaR∗

α(S0
n) in Proposi-

tion 3.1, we conclude that the solutions over Sn
n solve problem (3.3.23) when α < θ∗,

κ(δθ∗) < 0 and β(δθ∗) ≤ 1. For the optimal solutions in the remaining cases, we

only need to compare Proposition 3.2 with Proposition 3.1. The results, together

with the corresponding propositions, are summarized in Table 3.2, where (c∗,d∗) is

the solution to model (3.3.23). Note that the solution is independent of the dimen-

sion n. Then by formula (3.3.18) we derive the solution to (3.3.19), which is also

independent of dimension n and is reported by the column entitled µ∗ in Table 3.1.

3.3.3 Optimal Solutions to VaR Minimization Model

This subsection serves to show that the solution derived in the previous subsec-

tion for models (3.3.19) also solves model (3.2.10). This is proved as in the following

proposition.

Proposition 3.5 The solution µ∗ summarized in Table 3.1 also solves model (3.2.10).

Proof. Recall that µ∗ in Table 3.1 solves models (3.3.19) for all n = 1, 2, · · · . Let

µ be any positive measure from the feasible set of problem (3.2.10), i.e., µ ∈ M+
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and
∫
γ(t)dµ ≤ B. We need to show VaRα(µ∗) ≤ VaRα(µ). Before we proceed, it

might be helpful for us to recall the notation φ(t) = (VaRα(X) − t)+ and ψ(t) =

E[(X − t)+].

By Lemma 3.8, there exists a sequence of measures {µn, n = 1, 2, · · · } in M+
n

such that
∫

(x− t)+dµn converges pointwisely to
∫

(x− t)+dµ from below. This fact

has two implications, which will end up the completeness of the proof. On the one

hand, we have
∫

(x − t)+dµn ≤ B and hence
∫
ψ(t)dµn ≤ B by Fubini’s Theorem

for each n = 1, 2, · · · . This implies that µn belongs to the feasible set of problem

(3.3.19) for each n = 1, 2, · · · , and consequently we have

VaRα(µ∗) ≤ VaRα(µn) for n = 1, 2, · · · . (3.3.37)

On the other hand, by Fubini’s Theorem and Lemma 3.8 we have
∫
φ(t)dµn =

∫
[VaRα(X) − t]+ dµn

→
∫

[VaRα(X) − t]+ dµ

=

∫
φ(t)dµn

and
∫
ψ(t)dµn =

∫
E (X − t)+ dµn

= E

[∫
(X − t)+ dµn

]

→ E

[∫
(X − t)+ dµ

]

=

∫
E (X − t)+ dµ

=

∫
ψ(t)dµ,

where the first convergence result is due to Lemma 3.8 and the second convergence

result is the combination of Lemma 3.8 and monotonic convergence theorem. These
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results in turn imply

VaRα(µn) = VaRα(X) −
∫

[φ(t) − (1 + θ)ψ(t)] dµn

→ VaRα(X) −
∫

[φ(t) − (1 + θ)ψ(t)] dµ

= VaRα(µ). (3.3.38)

Finally, by combining (3.3.37) and (3.3.38), we immediately have VaRα(µ∗) ≤
VaRα(µ), by which the proof is complete. 2

3.4 Some Remarks and Examples

As pointed out earlier that Cai et al. (2008) discusses the optimal reinsurance by

unconstrained reinsurance models which are only concerned on minimizing certain

risk measure of the insurer’s total risk exposure. The approach described in this

chapter, on the other hand, is a generalization of the VaR minimizing model in Cai

et al. (2008) in the sense that we impose a new constraint in addition to the usual

objective criterion for determining the optimal reinsurance. This new constraint can

be interpreted as either a reinsurance premium budget or a profitability guarantee

for the insurer. The present model is intuitively more appealing since it takes into

account both risk and reward. We now make the following remarks to compare and

contrast the results obtained in this paper with what derived in Cai et al. (2008)

regarding the VaR minimization model.

Remark 3.1 Except for the first two cases, the optimal ceded loss functions pre-

sented in Table 3.1 are all in the forms of stop-loss types. In fact, under certain

conditions they will reduce to the quota-share treaties. For example, if θ∗ > S(0),

then δθ∗ ≡ S−1
X (θ∗) = 0, which implies that the optimal ceded loss functions in Cases

(3), (4), and (5) collapse to the quota-share type.
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Remark 3.2 Recall that when B > E[X], the reinsurance premium budget con-

straint in the proposed constrained optimal reinsurance model (3.1.4) will have no

impact on the solution. Consequently, this special case reduces to the unconstrained

reinsurance model in Cai et al. (2008) for the VaR criterion. We can also exam

the range of the insurer’s expected profit P corresponding to this special case. Note

that when B > E[X], the inequality B >
∫∞

δθ∗
SX(x)dx (or equivalently β(δθ∗) > 1)

holds trivially. Furthermore, the condition B >
∫∞

δθ∗
SX(x)dx implies

P < p0 − E[X] − θ

∫ ∞

δθ∗

SX(x)dx. (3.4.39)

Hence if the expected profit P of the insurer is less than the quantity on the right-

hand-side of the above inequality, the profitability constraint becomes redundant. In

fact, in this situation, Case (4) of Table 3.1 recovers parts (a) and (c) of Theorem

3.1 in Cai et al. (2008), while Case (3) of Table 3.1 is equivalent to parts (b) and

(d) of Theorem 3.1 in Cai et al. (2008).

Remark 3.3 To understand the impact of imposing the profitability constraint on

the optimal reinsurance model, let us, say, compare Case (4) to Case (5) of Table 3.1

and assuming λ(δθ∗) ≥ 0. When an insurer becomes more aggressive so that it

requires an expected profit greater than the quantity on the right-hand-side of the

inequality (3.4.39) (i.e. β(δθ∗) < 1), the optimal ceded loss function is f ∗(x) =

β(δθ∗)(x − δθ∗)+ with VaR∗
α = δα + β(δθ∗) · κ(δθ∗). A contrast of these results to

the unconstrained model as in Case (4) of Table 3.1 imply that in the presence of

the profitability constraint, the optimal reinsurance design is to retain greater losses

while expose to a higher minimum attainable VaR∗
α. This is consistent with the

classical risk and reward tradeoff.

To conclude this section, we provide two examples to illustrate our results.

Example 3.1 Assume X is exponentially distributed with mean E[X] = 1,000.

Then SX(x) = e−0.001x, x ≥ 0 and SX(0) = 1. Assume further that the loading
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factors for the reinsurer and insurer are 20% and 15%, respectively. This implies

θ = 0.2 and δθ∗ = S−1
X (1/(1+ θ)) = 182.32. Under the additional assumption of the

expectation premium principle, we have p0 = 1.15E[X] = 1, 150 and Π(f(X)) =

1.2E[f(X)] for a given ceded loss function f . In practice it is to be expected that

the loading factor for the reinsurer is higher than the insurer’s. Consequently,

the achievable expected profits P are in the range [0, 150] so that B ∈ [0, 750].

Table 3.3 reports the VaR∗
α and the corresponding optimal ceded loss function (as

specified by c and d) for different combinations of P ∈ {148, 145, 140, 100, 50, 0}
and α ∈ {1%, 5%, 10%}. For these examples, conditions α < θ∗, κ(δθ∗) < 0 and

β(δθ∗) ≤ 1 are satisfied and hence Proposition 3.4 is used to determine the optimal

solutions. For example, at α = 10% the root of λ(d) occurs at do = 1302.6 with

β(do) depending on the level of B; see equation (3.3.12). If we were to guarantee

an expected profit of $145 (or equivalently B = 25), then the optimal ceded loss

function in the class IC is a combination of quota-share and stop-loss reinsurance

given by f(x) = c(x − d)+ where c = β(do) = 0.09, d = do = 1, 302.6 and with

minimum attainable VaR $2,240.6.

Note that when we increase the confidence level 1 − α, the minimum VaR, the

optimal values of c and d become larger as long as β(do) ≤ 1. This implies that the

higher level of confidence can be achieved at the expense of higher minimum VaR.

Furthermore, the optimal reinsurance contract and the minimum attainable VaR

are invariant to α as long as β(do) > 1.

The impact of the expected profit P (or equivalently B) on optimal reinsurance

is also clearly demonstrated. First, if we were to decrease the minimum level of

expected profits, the optimal retention d does not change as long as β(do) ≤ 1.

The optimal c, however, will increase accordingly as asserted by part (i) of Proposi-

tion 3.4(b) and also confirmed by our numerical results. Second, when the condition

β(do) > 1 is satisfied as we further decrease P , the optimal reinsurance design be-

comes a pure stop-loss contract with the optimal retention d that also declines with
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B P return α = 1% α = 5% α = 10%

VaR∗

α (c, d) VaR∗

α (c, d) VaR∗

α (c, d)

10 148 12.87% 4249.3 (0.37,3605.2) 2934.2 (0.07,1995.7) 2277.8 (0.04,1302.6)

25 145 12.61% 3715.5 (0.92,3605.2) 2841.8 (0.18,1995.7) 2240.6 (0.09,1302.6)

50 140 12.17% 3055.7 (1.00,2995.7) 2687.9 (0.37,1995.7) 2178.6 (0.18,1302.6)

250 100 8.70% 1686.3 (1.00,1386.3) 1686.3 (1.00,1386.3) 1682.9 (0.92,1302.6)

500 50 4.35% 1293.1 (1.00, 693.1) 1293.1 (1.00, 693.1) 1293.1 (1.00, 693.1)

750 0 0.00% 1187.7 (1.00, 287.7) 1187.7 (1.00, 287.7) 1187.7 (1.00, 287.7)

Unconstrained 1182.3 (1.00, 182.3) 1182.3 (1.00, 182.3) 1182.3 (1.00, 182.3)

Table 3.3: VaR∗
α and optimal ceded loss functions: Exponential risk.

P ; see equation (3.3.12). Third, the minimum attainable VaR is an increasing

function in P . This is the classical risk and reward tradeoff in the sense that higher

expected profit can be achieved at the expense of higher minimum risk exposure (as

measured by VaR); see Remark 3.3. Fourth, if we were to permit B to increase

beyond 833.33 (and P is negative), then β(δθ∗) > 1 since
∫∞

δθ∗
SX(x)dx = 833.33

and part (b) of Proposition 3.3 can be used to determine the optimal ceded loss

function. In this case, the upper constraint B has no impact on the optimization

problem and in fact it reduces to the unconstraint problem, as studied in Cai et

al. (2007). In our example, VaR∗
α is $1,182.3 with optimal retention δθ∗ = 182.3.

See also Remark 3.2. The unconstrained optimal reinsurance design also serves as

a benchmark to our proposed constrained optimization problem. For instance at

α = 1%, if the insurer were to seek an expected profit of $145, the insurer needs to

sustain more than three times the risk exposure relative to the unconstrained case

(compare $3,715.5 to 1,182.3).

Example 3.2 In this example, we assumeX has a Pareto distribution with SX(x) =(
2,000

x+2,000

)3

, x ≥ 0 so that its E[X] = 1, 000 is the same as the previous example.

We also assume θ = 0.2 and p0 = 1150. Table 3.4 produces the optimal reinsurance

85



B P return α = 1% α = 5% α = 10%

VaR∗

α (c, d) VaR∗

α (c, d) VaR∗

α (c, d)

10 148 12.87% 6998.9 (0.10,4188.8) 3381.6 (0.03,1619.2) 2291.2 (0.02, 872.6)

25 145 12.61% 6572.4 (0.24,4188.8) 3310.7 (0.08,1619.2) 2264.8 (0.05, 872.6)

50 140 12.17% 5861.7 (0.48,4188.8) 3192.5 (0.16,1619.2) 2220.7 (0.10, 872.6)

250 100 8.70% 2300.0 (1.00,2000.0) 2247.4 (0.82,1619.2) 1868.1 (0.52, 872.6)

500 50 4.35% 1428.4 (1.00, 828.4) 1428.4 (1.00, 828.4) 1428.4 (1.00, 828.4)

750 0 0.00% 1209.4 (1.00, 309.4) 1209.4 (1.00, 309.4) 1209.4 (1.00, 309.4)

Unconstrained 1188.0 (1.00, 125.3) 1188.0 (1.00, 125.3) 1188.0 (1.00, 125.3)

Table 3.4: VaR∗
α and optimal ceded loss functions: Pareto risk.

designs over the same set of parameter values as in the last example. Note that

for a given P and α, the minimum attainable VaR is larger for the Pareto risk.

This is to be expected since Pareto distribution is considered to be riskier than the

corresponding exponential distribution in the sense that it has a heavier tail. Other

than this, the discussions that we made earlier are equally applicable to the present

example.

3.5 Appendix: Some Lemmas and Proof

Proof of Lemma 3.2. The concavity of If(x) comes immediately from the fact

that f(x) is convex. Now suppose there exist two points x1 and x2 such that

0 ≤ x1 < x2 satisfying If(x1) − If(x2) > 0, i.e.,

f(x2) − f(x1)

x2 − x1
> 1. (3.5.40)

On the other hand, by the convexity of f(x) we have

f(x2) ≤
x− x2

x− x1
f(x1) +

x2 − x1

x− x1
f(x)
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for x ≥ x2, or equivalently

f(x) ≥ f(x2) − f(x1)

x2 − x1
x+

x2f(x1) − x1f(x2)

x2 − x1
.

Hence, it follows from (3.5.40) that there exists a constant x0 such that f(x0) > x0,

which contradicts to the assumption that f(x) ≤ x for all x ≥ 0. Therefore we

conclude that If (x) is increasing. 2

Proof of Lemma 3.3

(a). First note that the derivatives of κ(d), κ′(d) = 1 − (1 + θ)SX(d), and

κ′′(d) = (1 + θ)fX(d) ≥ 0 for d ≥ 0. Hence κ(d) is convex on [0,∞). Moreover, we

can easily verify that if θ∗ < SX(0), then κ′(d) < 0 for 0 < d < δθ∗ and κ′(d) > 0 for

d > δθ∗ , and that κ′(d) > 0 for d > 0 if θ∗ ≥ SX(0). This justifies (3.3.15)-(3.3.17).

(b). It follows from (3.3.14) that λ′(d) = [δα − d]fX(d). By the assumption

that X has strictly increasing distribution, we have fX(d) > 0 for d ≥ 0 so that

λ′(d) > 0 for d ∈ [0, δα). As a result, the function λ(d) is strictly increasing on

[0, δα]. Moreover, we have λ(δα) =
∫∞

δα
SX(x)dx > 0, and δθ∗ < δα as α < θ∗.

Hence, there must exist a unique root do to the equation λ(d) = 0 on (δθ∗ , δα) as

we have λ(δθ∗) < 0. 2

Lemma 3.4 If α < θ∗, then VaR∗
α(Sn

n) = VaR∗
α(T n

n ); i.e. (3.3.28) holds.

Proof. If θ∗ ≥ SX(0), then (3.3.28) holds trivially since δθ∗ = 0 so that Sn
n = T n

n .

Suppose θ∗ < SX(0). Let (c,d) be any vector in Sn
n satisfying dn,j < δθ∗ , j =

1, 2, · · · , i, for a fixed i ∈ {1, 2, · · · , n} and let (c,d′) be the corresponding vector

constructed from (c,d) by merely replacing dn,j with δθ∗ for all j = 1, 2, · · · , i.
Since

i∑

j=1

cn,j

∫ ∞

δθ∗

SX(x)dx+

n∑

j=i+1

cn,j

∫ ∞

dn,j

SX(x)dx ≤
n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≤ B,
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(c,d′) is in T n
n . Moreover,

VaRα(c,d) = δα +
n∑

j=1

cn,jκ(dn,j)

≥ δα +
i∑

j=1

cn,jκ(δθ∗) +
n∑

j=i+1

cn,jκ(dn,j)

= VaRα(c,d′), (3.5.41)

since the minimum value of the function κ(x) is κ(δθ∗) by part (a) of Lemma 3.3

and this completes the proof. 2

Lemma 3.5 If α < θ∗, κ(δθ∗) < 0 and β(δθ∗) ≤ 1, then the following relation holds

VaR∗
α(T≥

n ) = VaR∗
α(V ). (3.5.42)

Proof. We prove (3.5.42) via the following two-step procedure. First we establish

VaR∗
α(T≥

n ) = VaR∗
α(U), (3.5.43)

where U is a set defined as

U =
{

(c,d) : (c,d) ∈ T≥
n ,

n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx = B
}
. (3.5.44)

Then we show that

VaR∗
α(U) = VaR∗

α(V ) (3.5.45)

to complete the proof.

Now for the first part of the proof of showing (3.5.43), we demonstrate the

following two inequalities:

VaR∗
α(T≥

n ) ≤ VaR∗
α(U), (3.5.46)

VaR∗
α(T≥

n ) ≥ VaR∗
α(U). (3.5.47)
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The first inequality is straightforward as it follows immediately from the definition

that U ⊂ T≥
n . To justify the second inequality, first note that for any (c,d) ∈ T≥

n ,

we have dn,j ≥ δθ∗ for j = 1, 2, · · · , n and that both

n∑

j=1

cn,j

∫ ∞

δθ∗

SX(x)dx ≥ B (3.5.48)

and

n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≤ B (3.5.49)

hold simultaneously. The above two inequalities follow from the constraint on the

sets T≥
n and Sn

n , respectively. Moreover,
∑n

j=1 cn,j

∫∞
dn,j

SX(x)dx is continuous in

dn,j for j = 1, 2, · · · , n, since we assume X has a continuous distribution function

on [0,∞). Thus, for any (c,d) ∈ T≥
n satisfying (3.5.49), there exist constants

δθ∗ ≤ d′n,j ≤ dn,j, j = 1, 2, · · · , n such that
∑n

j=1 cn,j

∫∞
d′n,j

SX(x)dx = B. If a vector

(c,d′) is constructed by only replacing dn,j in (c,d) with d′n,j, then (c,d′) ∈ U .

Furthermore, since κ(x) is increasing on [δθ∗ ,∞) according to part (a) of Lemma

3.3, we have

VaRα(c,d) ≥ VaRα(c,d′), (3.5.50)

which in turn leads to (3.5.47) and together with (3.5.46), we prove (3.5.43).

For the second part of the proof of showing (3.5.45), we again use the same

technique as above by demonstrating the following two inequalities:

VaR∗
α(U) ≤ VaR∗

α(V ) (3.5.51)

VaR∗
α(U) ≥ VaR∗

α(V ). (3.5.52)

To justify inequality (3.5.51), we first note that every coefficient pair (c, d) ∈ V

is a special case of the vector (c,d) in T≥
n . This can be seen by setting cn,j = c

n

and dn,j = d, j = 1, 2, · · · , n. Note that the optimization problem in V becomes a
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two-dimensional problem, instead of 2n dimension as in the general case. Together

with (3.5.43), we have inequality (3.5.51).

To verify inequality (3.5.52), we proceed as follows. For any vector (c,d) ∈ U ,

let us denote cn :=
∑n

j=1 cn,j and dn :=
∑n

j=1
cn,j

cn
dn,j. By treating

∫∞
d
SX(x)dx as

a function of d, the convexity property ensures that

B =
n∑

j=1

cn,j

∫ ∞

dn,j

SX(x)dx ≥ cn

∫ ∞

dn

SX(x)dx.

Consequently there exists a coefficient pair (cn, d
′
n) satisfying δθ∗ ≤ d′n ≤ dn and

cn
∫∞

d′n
SX(x)dx = B. As U ⊂ T≥

n ⊂ T n
n ⊂ Dn

n, we see that dn,j ≤ δα for j =

1, 2, · · · , n, which together with the definition of dn leads to dn ≤ δα. Hence

(cn, d
′
n) ∈ V . Moreover,

VaRα(c,d) = δα +
n∑

j=1

cn,j

[
dn,j + (1 + θ)

∫ ∞

dn,j

SX(x)dx− δα

]

= δα + (1 + θ)B +

n∑

j=1

cn,jdn,j −
n∑

j=1

cn,jδα

= δα + (1 + θ)cn

∫ ∞

d′n

SX(x)dx+ cn · dn − cn · δα

≥ δα + (1 + θ)cn

∫ ∞

d′n

SX(x)dx+ cn · d′n − cn · δα

= δα + cnκ(d
′
n)

= VaRα(cn, d
′
n), (3.5.53)

Since (c,d) is an arbitrary vector from U , inequality (3.5.52) follows immediately

from (3.5.53) and this completes the proof. 2

Lemma 3.6 If α < θ∗, κ(δθ∗) < 0 and β(δθ∗) ≤ 1, then the following inequality is

true:

VaR∗
α(T≤

n ) ≥ VaR∗
α(V ). (3.5.54)
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Proof. For any vector (c,d) ∈ T≤
n , it follows from (3.3.27) and part (a) of Lemma

3.3 that

VaRα(c,d) = δα +
n∑

j=1

cn,jκ(dn,j)

≥ δα +

n∑

j=1

cn,j · κ(δθ∗)

≥ δα + β(δθ∗) · κ(δθ∗)

= VaRα(β(δθ∗), δθ∗). (3.5.55)

It is easy to see that (β(δθ∗), δθ∗) ∈ V , which, together with (3.5.55), implies in-

equality (3.5.54), as required. 2

Lemma 3.7 If α < θ∗, κ(δθ∗) < 0 and β(δθ∗) ≤ 1, then we have VaR∗
α(Sn

n) =

VaR∗
α(V ), i.e. equation (3.3.31) holds.

Proof. The required relation follows immediately from Lemmas 3.4, 3.5, 3.6 and

the partitioning that T n
n = T≥

n ∪ T≤
n . 2

Lemma 3.8 For any µ ∈ M+, there exists a sequence of measures {µn, n =

1, 2, · · · } in M+
n such that hn(x) converges pointwisely to f(x) from below, where

hn(x) =
∫

(x− t)+dµn and f(x) =
∫

(x− t)+dµ for x ≥ 0.

Proof. The proof is trivial when the measure µ is such that f(x) ≡ 0. Next, we

suppose f(x) ≡ 0 does not hold. It is well known that for any nonnegative increasing

convex function f defined on [0,∞), there exists a sequence of nonnegative functions

{hn, n = 1, 2, ...} defined on [0,∞) such that hn(x) =
∑n

j=1 cn,j(x− dn,j)+ for some

constants cn,j ≥ 0 and dn,j ≥ 0 and limn→∞ hn(x) = f(x) from below for any x ≥ 0.

This implies

hn(x) ≤ f(x) for all x ≥ 0 and n = 1, 2, · · · . (3.5.56)

91



See, for example, the proof to Case 1 of Theorem 1.5.7 of Müller and Stoyan (2002,

p18).

By the definition of M+, for any µ ∈ M+, we have 0 ≤ f(x) =
∫

(x−t)+dµ ≤ x,

which together with (3.5.56), in return, implies that for any x > 0 and n = 1, 2, ...,

we have

0 ≤ hn(x)

x
=

n∑

j=1

cn,j
(x− dn,j)+

x
≤ 1. (3.5.57)

Consequently, by letting x→ ∞ in (3.5.57) we have 0 ≤
∑n

j=1 cn,j ≤ 1 for all n =

1, 2, · · · . Thus, the sequence of the measures {µn, n ≥ n0} of the form (3.3.18) with

these coefficients cn,j, dn,j, j = 1, 2, · · · , n satisfies the requirements of the lemma

and hence the proof is complete. 2
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Chapter 4

CTE Minimization Model:

General Reinsurance Contracts

4.1 Introduction and Reinsurance Models

In the previous chapters, the optimal ceded loss function is either assumed

to have certain specific form or confined to some special class. For example, we

considered the stop-loss or quota-share treaties in Chapter 2 and analyzed the class

of increasing convex functions in Chapter 3. In this chapter we will extend our

results by considering the optimality among all the possible ceded loss functions

using the criterion of minimizing the CTE of the insurer’s total risk. Because of the

generality of the model, this significantly increases the mathematical complexity on

identifying the optimal solutions. As we will soon present, our formulation of the

optimal reinsurance model entails us to solve some convex optimization problem

in a Hilbert space with a goal function which is directionally differentiable but

not Gâteaux differentiable. Hence, the Lagrangian method based on the concept

of directional derivative will be employed in searching for the optimal ceded loss
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functions.

Before specifying our reinsurance model, let us recall the general setup in a

static reinsurance design and make some technical assumptions. Let X denote

the (aggregate) loss initially assumed by an insurer. Suppose X is a nonnegative

random variable, and identify it by a probability measure Pr on the measurable

space (Ω,F) with Ω = [0,∞) and F being the Borel σ-field on Ω, such that the

distribution function of the underlying risk X is defined by FX(t) := Pr{[0, t]} for

t ≥ 0. Denote by f(X) the part of loss transferred from the insurer to a reinsurer in

the presence of the reinsurance. f can be identified as such a function f : [0,∞) 7→
[0,∞), and it is called the ceded loss function, or the indemnification function. A

conventional assumption for the ceded loss function f is that 0 ≤ f(x) ≤ x for all

x ≥ 0. With the ceded loss f(X), the insurer will retain a loss of If(X) := X−f(X).

Similarly, If can also be recognized as a function If : [0,∞) 7→ [0,∞), called

retained loss function. On the other hand, by transferring part of its loss to the

reinsurer, the insurer is obligated to pay the reinsurance premium Π(f(X)) to the

reinsurer according to a given premium principle Π. Consequently, the total cost

or the total risk for the insurer in the presence of reinsurance, denoted by Tf(X),

is the sum of the retained loss and the reinsurance premium 1, i.e.,

Tf(X) = If(X) + Π(f(X)) = X − f(X) + Π(f(X)). (4.1.1)

In what follows, we might omit “(X)” in notation like f(X), If(X) and Tf(X),

and simply use f , If and Tf to denote these random variables if it is clear in the

corresponding context.

1Actually, the total loss random variable for the insurer in the business involving the risk

X is the amount of Tf − p0, where p0 is the insurance premium payable to the insurer by the

policyholders. However, p0 is a constant; hence, by the property of translation invariance of the

risk measure CTE, we can consider the optimal reinsurance design problem directly based on the

random quantity Tf defined as in (4.1.1).
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Suppose that the reinsurance premium uses the expectation principle with a

safety loading θ > 0, i.e., Π(f) = (1 + θ)E[f ], and assume that the insurer is

seeking the optimal reinsurance by minimizing the risk measure CTE based on its

total risk Tf . Then the insurer’s problem can be formulated as follows:

(P′
0
)





minf CTEα(Tf ) = CTEα

(
X − f(X) + (1 + θ)E[f ]

)

s.t. 0 ≤ f(x) ≤ x for all x ≥ 0, E[f(X)] ∈ [0, π/(1 + θ)].
(4.1.2)

Note that the above optimal reinsurance model is very similar to those that we

have analyzed before. The significant difference is that the minimization in model

(P′
0
) is taken with respect to all possible ceded loss functions, instead of restricting

to some special class.

Remark 4.1 The constraint E[f(X)] ≤ π/(1+ θ) for the ceded loss function f has

at least the following two economic interpretations:

(i) The constraint can be interpreted as the reinsurance premium budget; i.e., the

reinsurance premium that the insurer is willing to pay is no greater than π.

(ii) The constraint can also be understood as a minimum expected profitability

guarantee. To see this, let p0 denote the insurance premium received by the

insurer for underwriting an insurance on the risk X and let B denote the

insurer’s net profit in the presence of the reinsurance. Then we have

B(f) = p0 − Tf(X) = p0 −X + f(X) − (1 + θ)E[f ],

so that the expected profit, b(f) := E[B], is given by

b(f) = E[B(f)] = p0 − E[X] − θE[f ].

Consequently, a profitability constraint such that b ≥ l for a certain preset

level b can be equivalently formulated as E[f ] ≤ π

1 + θ
where π =

1 + θ

θ

(
p0 −

E[X] − l
)
.
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We now continue to addressing the optimization problem (P′
0
). For mathemat-

ical convenience, we suppose that X has finite first two moments so that we can

restrict to the space L2 := L2(Ω,F , P ) for the optimal ceded loss functions. Let

Q = Qf

⋂
Qπ where

Qf := {f ∈ L2 : 0 ≤ f(x) ≤ x for x ≥ 0}, (4.1.3)

and

Qπ := {f ∈ L2 : 0 ≤ (1 + θ)E[f ] ≤ π}, (4.1.4)

respectively. Then the reinsurance model (P′
0
) can be equivalently reformulated as

(P0) min
f∈Q

CTEα(Tf ) = CTEα

(
X − f(X) + (1 + θ)E[f ]

)
(4.1.5)

4.2 Optimal Reinsurance Treaties

The objective of this section is to discuss the optimal solutions to the reinsurance

model (P0) defined in (4.1.5). The mathematical challenges of solving this problem

directly lie on at least two aspects. First, the model is obviously an optimization

problem of infinite dimension, involving searching for an optimal function instead

of the optimal values of a finite number of parameters. Second, for a general

feasible ceded loss function f there is no analytical expression for the goal function

CTEα(Tf). Recognizing that solving (P0) directly can be very challenging, we

resolve this by first introducing an auxiliary model (PT) (as defined in (4.2.10)).

Then we will demonstrate shortly that model (PT) is more tractable. Furthermore,

a key result in Rockafellar and Uryasev (2002) asserts that the solution to (PT)

regarding the decision variable f is also the solution to (P0).
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4.2.1 Auxiliary Model and the Optimality Conditions

To describe the auxiliary model (PT), it is convenient to introduce the mapping

Gα(ξ, f) : R ×L2 7→ R such that

Gα(ξ, f) := ξ +
1

α
E

[(
X − f + (1 + θ)E[f ] − ξ

)
+

]
(4.2.6)

with the same α > 0 as the one associated with the risk measure CTE in model

(P0). The significance of introducing Gα(ξ, f) can be deduced from the lemma

below, which is a direction consequence of Rockafellar and Uryasev (2002, Theorem

14):

Lemma 4.1 Minimizing CTEα(Tf) with respect to f ∈ Q is equivalent to mini-

mizing Gα(ξ, f) over all (ξ, f) ∈ R ×Q, in the sense that

min
f∈Q

CTEα(Tf) = min
(ξ,f)∈R×Q

Gα(ξ, f), (4.2.7)

where moreover,

(ξ∗, f ∗) ∈ arg min(ξ,f)∈R×QGα(ξ, f) (4.2.8)

if and only if

f ∗ ∈ arg minf∈QCTEα(Tf ), ξ
∗ ∈ arg minξ∈R

Gα(ξ, f ∗). (4.2.9)

The above lemma formally states that minimizing CTEα(Tf ) over Q is equiv-

alent to minimizing the function Gα(ξ, f) over the product space R × Q. More

importantly, this permits us to reformulate (P0) as follows.

(PT)





min
(ξ,f)∈R×Qf

Gα(ξ, f) ≡ ξ +
1

α
E

[(
X − f + (1 + θ)E[f ] − ξ

)
+

]

s.t. E[f ] ∈ [0, π/(1 + θ)].

(4.2.10)

By Lemma 4.1, if (ξ∗, f ∗) is one solution to problem PT, then f ∗ solves the rein-

surance model P0, i.e., f ∗ is one optimal ceded loss function.
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While (PT) is equivalent to our original problem (P0), we have yet to solve

(PT). Compared to problem (P0), one obvious advantage of model (PT) is that

the goal function of the latter problem has analytical expression. However, it will

be still quite mathematical involved in solving problem (PT). The challenge is that

it is still an infinite dimensional optimization problem and the goal function is not

Gâteaux differentiable, which implies that the widely-used Karush-Kuhn-Tucker

Theorem is not helpful to tackle this problem.

As we will demonstrate in Section 4.4 the appendix of this chapter, (PT) is a

convex problem. Moreover, its goal function Gα(ξ, f) is directionally differentiable

with respect to (ξ, f) over its feasible set. This motivates us to use the Lagrangian-

based directional derivatives method to solve problem (PT). In fact, by defining g∗

and V as

g∗ = X − f ∗ + (1 + θ)E[f ∗] − ξ∗ (4.2.11)

and

V = (1 + θ)E[f ] − ξ − f, (4.2.12)

respectively, Section 4.4 formally establishes the optimality conditions for problem

(PT) as shown in the following proposition:

Proposition 4.1 An element (ξ∗, f ∗) ∈ R ×Q solves problem (PT) if and only if

there exist a constant r ∈ R and a random variable λ ∈ L2 such that the following

three conditions are satisfied:

C1. A(ξ, f) ≡ α
[
ξ + r(1 + θ)E[f ] + E[λf ]

]
+ E[V 1{g∗>0}] + E[V+1{g∗=0}] ≥ 0,

∀ (ξ, f) ∈ R × L2;

C2. E[λ(f − f ∗)] ≤ 0, f ∈ Qf ;

C3. r
(
E[f ] − E[f ∗]

)
≤ 0 for every f ∈ Qπ.
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Proof. See Section 4.4.3.

Armed with the above optimality conditions, we obtain an optimal solution to

problem (PT) using the following strategy. First, we select some potential candi-

date. Second, we show that the candidate is indeed an optimal solution by verifying

it with conditions C1, C2 and C3. We emphasize that the above procedure of de-

riving an optimal solution is a non-trivial exercise, as confirmed by the theorems

below.

4.2.2 Optimal Ceded Loss Functions

Throughout this subsection, we assume α(1 + θ) ≤ 1. We use the notation πα

to denote

πα = (1 + θ)E
[
(X − dα)+

]
(4.2.13)

where

dα = inf {d : Pr[X > d] ≤ α} . (4.2.14)

The notation πθ and dθ are defined analogously as

πθ = (1 + θ)E
[
(X − dθ)+

]
(4.2.15)

where

dθ = inf

{
d : Pr[X > d] ≤ 1

1 + θ

}
. (4.2.16)

We emphasize that the condition α(1 + θ) ≤ 1 is quite mild as in practice both

α and θ are typically much smaller than one. The same condition also implies that

dα ≥ dθ so that πα ≤ πθ.

We now address the optimal solutions to problem (PT). We present the solu-

tions depending on the level of the reinsurance premium budget. In particular, we

consider the following three cases:
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Case (i): π ∈ (0, πα);

Case (ii): π ∈ [πα, πθ]; and

Case (iii): π ∈ [πθ,∞).

The solutions to these cases are formally stated in Theorems 4.1, 4.2, and 4.3,

respectively.

Case (i): π ∈ (0, πα)

Theorem 4.1 Suppose α(1 + θ) ≤ 1. Then all the ceded loss functions f ∗ of the

following form are the optimal solutions to problem (PT):

f ∗(x) =





0, x < d̂,

l(x), x ≥ d̂

(4.2.17)

where the function l(x) satisfies

0 ≤ l(x) < x− dα, for x ≥ d̂, (4.2.18)

and the retention d̂ > 0 is the solution to

E[f ∗] =
π

(1 + θ)
. (4.2.19)

Proof. To show that f ∗ defined in (4.2.17), with retention d̂ and function l sat-

isfying (4.2.18) and (4.2.19), is indeed an optimal solution to problem (PT), it is

sufficient to verify conditions C1, C2, C3 in Proposition 4.1 for appropriately cho-

sen constants ξ∗, r ∈ R, and random variable λ ∈ L2. Let us first focus on condition

C3. By setting

r =
1

α(1 + θ)
− 1, (4.2.20)
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we have r ≥ 0 since α(1+θ) ≤ 1. This implies that condition C3 holds immediately.

To verify the remaining conditions, we notice that dα < d̂ (see Remark 4.2

below) and choose ξ∗ = π + dα. Then, (4.2.11) becomes

g∗(x) =





x− dα < 0, x < dα,

x− dα ≥ 0, dα ≤ x < d̂,

x− l(x) − dα > 0, x ≥ d̂.

(4.2.21)

Clearly, we have

1{g∗<0} = 1{X<dα} (4.2.22)

and

1{g∗=0} = 1{X=dα}. (4.2.23)

Let us now define

βα =





α− Pr{X > dα}
Pr{X = dα}

, if Pr{X = dα} 6= 0;

0, if Pr{X = dα} = 0.

(4.2.24)

Note that 0 ≤ βα ≤ 1 since from the definition of dα in (4.2.14), we have

Pr{X > dα} ≤ α, and Pr{X ≥ dα} ≥ α.

Note also Pr{X = dα} = 0 provided that Pr{X > dα} = α. Furthermore, by

setting

λ = − 1

α

(
1{X<dα} + (1 − βα)1{X=dα}

)
, (4.2.25)

so that together with (4.2.24), we obtain

E[λ] = − 1

α

[
Pr{X < dα} + (1 − βα) Pr{X = dα}

]
= −1 − α

α
.
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The above result in turn leads to

E[1 + αλ] = α. (4.2.26)

Accordingly, for any f ∈ Qf we have

αE[λ(f − f ∗)] = −E
[(

1{X<dα} + (1 − βα)1{X=dα}
)
(f − f ∗)

]

= −E
[
f
(
1{X<dα} + (1 − βα)1{X=dα}

)]

≤ 0, (4.2.27)

where the second equality follows from the definition that f ∗(x) = 0 for x ≤ dα.

Hence, condition C2 is satisfied.

To demonstrate condition C1, we first establish the following relation:

E
[
V 1{g∗>0} + V+1{g∗=0}

]
= E

[
V 1{X>dα} + V+1{X=dα}

]

≥ E
[
V 1{X>dα} + βαV+1{X=dα}

]

≥ E
[
V
(
1{X>dα} + βα1{X=dα}

)]

= E[V (1 + αλ)], (4.2.28)

where the equality in the last step follows from (4.2.25). The above result, together

with (4.2.20), (4.2.25), and (4.2.26) assert condition C1 as shown below:

A(ξ, f) ≥ α
[
ξ + r(1 + θ)E[f ] + E(λf)

]
+ E[V (1 + αλ)]

= α
[
ξ + r(1 + θ)E[f ] + E(λf)

]
+ E
[(

(1 + θ)E[f ] − f − ξ
)
(1 + αλ)

]

= ξ
(
α− E[1 + αλ]

)
+ E[f ]

(
α(1 + θ)(1 + r) − 1

)

= 0.

Since conditions C1, C2 and C3 hold with constants ξ∗ = π + dα and r as

defined in (4.2.20), and the random variable λ ∈ L2 as defined in (4.2.25), f ∗
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defined in (4.2.17) is indeed the optimal ceded loss function and hence the proof is

complete. 2

We now make the following two remarks with respect to the above theorem.

Remark 4.2 The constraint (4.2.18) states that for x ≥ d̂, the function l(x) ≥ 0 is

bounded from above by x−dα. Furthermore, when x = d̂, we have d̂ > l(d̂)+dα ≥ dα.

Consequently, the function (4.2.17) satisfying (4.2.18) and (4.2.19) defines a class

of ceded loss functions which have a shape underneath the line f(x) = x− dα with

a retention larger than dα and a resulting reinsurance premium exactly equal to the

preset budget π. In Figure 4.1, the three lower curves (dashed lines) depict three

samples of such cede ceded loss functions that are optimal.
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Figure 4.1: Three typical optimal ceded loss functions.
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Remark 4.3 We reiterate that Theorem 4.1 only provides solution, if it exists,

for π ∈ (0, πα). This is an immediate consequence of the conditions (4.2.18) and

(4.2.19). More explicitly, suppose f ∗ is the optimal ceded loss function identified by

Theorem 4.1, then we must have π ∈ (0, πα) as can be justified as follows:

π = (1 + θ)E[f ∗(X)]

= (1 + θ)E[l(X) · 1{X≥d̂}]

< (1 + θ)E[(X − dα)1{X≥dα}]

= (1 + θ)E[(X − dα)+]

= πα.

Case (ii): πα ≤ π ≤ πθ

Theorem 4.2 For a given underlying loss random variable X, if there exists a

positive constant d∗ such that

(1 + θ)E[(X − d∗)+] = π, (4.2.29)

Pr{X ≥ d∗} ≤ 1

1 + θ
, (4.2.30)

Pr{X ≥ d∗} ≥ α, (4.2.31)

then f ∗ = (X − d∗)+ is one optimal ceded loss function to the problem (PT).

Proof. Similar to the proof of Theorem 4.1, we need to show that the ceded loss

function of the form f ∗ = (X − d∗)+ satisfies the three sufficient conditions C1,

C2 and C3 in Proposition 4.1 for appropriately chosen constants ξ∗, r ∈ R, and

random variable λ ∈ L2.

We begin by choosing ξ∗ = d∗ + (1 + θ)E[f ∗] so that (4.2.11) simplifies to

g∗(x) =





x− d∗, x < d∗;

0, x ≥ d∗.
(4.2.32)
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This implies that {g∗ > 0} is an empty set and that {g∗ = 0} = {X ≥ d∗}. For

any constant δ such that 0 < δ ≤ 1, we define λ = − δ

α
1{X<d∗}. Then, with the

selected ξ∗ and λ, we obtain the following fact regarding condition C1:

A(ξ, f) = α
[
ξ + r(1 + θ)E[f ] + E[λf ]

]
+ E[V+ · 1{g∗=0}]

≥ α
[
ξ + r(1 + θ)E[f ] + E[λf ]

]
+ δE[V+ · 1{g∗=0}]

≥ α
[
ξ + r(1 + θ)E[f ]

]
− δE[f · 1{X<d∗}]

+δE
[(

(1 + θ)E[f ] − ξ − f
)
· 1{X≥d∗}

]

= ξ[α− δ · Pr(X ≥ d∗)] + E[f ]
[
αr(1 + θ) − δ + δ(1 + θ) · Pr(X ≥ d∗)

]

= 0, (4.2.33)

provided that

Pr{X ≥ d∗} =
α

δ
, (4.2.34)

and

r =
δ

α

[ 1

1 + θ
− Pr{X ≥ d∗}

]
. (4.2.35)

Moreover, for any f ∈ Qf we have

αE[λ(f − f ∗)] = −δE[1{X<d∗})(f − f ∗)]

= −δE[f1{X<d∗}]

≤ 0 (4.2.36)

so that condition C2 is satisfied with the chosen ξ∗ and λ. Because of (4.2.29),

condition C3 is trivially true for every f ∈ Qπ if r ≥ 0.

In summary, the above analysis suggests that in order to fulfill all the optimality

conditions C1, C2 and C3, we need to verify that there exists a constant δ ∈ (0, 1]

such that conditions (4.2.34), (4.2.35) and r ≥ 0 are satisfied. From (4.2.35),
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condition r ≥ 0 is equivalent to Pr{X ≥ d∗} ≤ 1/(1 + θ) which corresponds to the

assumption (4.2.30) in the theorem. Moreover, the condition (4.2.31) guarantees

the existence of δ satisfying (4.2.34) and 0 < δ ≤ 1. Hence, the proof is complete.

2

Remark 4.4 The conditions (4.2.29), (4.2.30) and (4.2.31) in Theorem 4.2 imply

that the following two conditions must hold to make the theorem applicable:

(a) α(1 + θ) ≤ 1;

(b) dα ≥ d∗ ≥ dθ, where dα and dθ are defined in (4.2.14) and (4.2.16), respec-

tively.

The last condition, in turn, implies that the reinsurance premium budget π must

satisfy πα ≤ π ≤ πθ.

Case (iii): π ∈ [πθ,∞)

Theorem 4.3 Suppose α(1 + θ) ≤ 1 and π ≥ πθ. Then f ∗ = (X − dθ)+ is an

optimal ceded loss function to the problem (PT).

Proof. The proof is very similar to that of Theorem 4.1. We will show that the

stop-loss treaties f ∗ satisfies the conditions C1, C2 and C3 in Proposition 4.1 for

appropriately chosen constants ξ∗, r ∈ R, and random variable λ ∈ L2. We proceed

by first introducing the variable βθ, which is formally defined as follows:

βθ =





1/(1 + θ) − Pr{X > dθ}
Pr{X = dθ}

, if Pr{X = dθ} 6= 0;

0, if Pr{X = dθ} = 0.

(4.2.37)

Note that if follows from the definition of dθ in (4.2.16) that

Pr{X > dθ} ≤ 1/(1 + θ), and Pr{X ≥ dθ} ≥ 1/(1 + θ).
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Thus, 0 ≤ βθ ≤ 1. Moreover, we also have Pr{X = dθ} = 0 provided that

Pr{X > dθ} = 1/(1 + θ).

By setting ξ∗ = dθ + (1 + θ)E[f ∗], then (4.2.11) becomes

g∗(x) =





x− dθ, x < dθ;

0, x ≥ dθ.
(4.2.38)

Hence, {g∗(X) > 0} is an empty set and {g∗(X) = 0} = {X ≥ dθ}.

Now set r = 0, then condition C3 is trivially satisfied. Define the random

variable λ as

λ = −(1 + θ)
{
1{X<dθ} + (1 − βθ)1{X=dθ}

}
. (4.2.39)

Then we have

1

1 + θ
E[λ(f − f ∗)] = −E

[
(f − f ∗)

(
1{X<dθ} + (1 − βθ)1{X=dθ}

)]

= −E
[
f
(
1{X<dθ} + (1 − βθ)1{X=dθ}

)]

≤ 0 for any f ∈ Qf ,

where the second equality is due to the fact that f ∗(x) = 0 for x ≤ dα. Thus,

condition C2 is satisfied with random variable λ as defined in (4.2.39).

To verify condition C1, first note that it follows from (4.2.37) and (4.2.39) that

E[λ] = −θ,

which in turn implies

E

[(
1 +

λ

1 + θ

)]
=

1

1 + θ
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and that

E[V+1{g∗=0}] ≥ α(1 + θ)E[V+1{g∗=0}]

= α(1 + θ)E[V+1{X≥dθ}]

= α(1 + θ)E[V+(1 − 1{X<dθ})]

≥ α(1 + θ)E[V (1 − 1{X<dθ} − (1 − βθ)1{X=dθ})]

= α(1 + θ)E

[
V

(
1 +

λ

1 + θ

)]

= α(1 + θ)E

[(
(1 + θ)E[f ] − f − ξ

)(
1 +

λ

1 + θ

)]

= α(1 + θ)

[
E[f ] − E[f ] − E

(
fλ

1 + θ

)
− ξ

1 + θ

]

= −α
(
E[fλ] + ξ

)
.

The above result implies that A(ξ, f) ≥ 0, i.e. condition C1 is satisfied with the

chosen constants ξ∗ and r, and random variable λ. Hence the proof is complete. 2

Remark 4.5 Suppose π ≤ πα and there exists a constant d∗ such that (1+θ)E[(X−
d∗)+] = π. Then Theorem 4.1 asserts that the stop loss treaty f ∗(x) = (x−d∗)+ is an

optimal ceded loss function. Hence, combining this fact with Theorems 4.2 and 4.3,

we see that a stop-loss treaty f ∗(X) = (X−d∗)+ is optimal for a general reinsurance

premium budget π, where the retention d∗ is determined by (1 + θ)E[(X − d∗)+] =

min{π, πθ}.

Remark 4.6 Suppose an insurer is willing to spend up to π with π ≥ πθ, to transfer

part of its risk to a reinsurer. Theorem 4.3 asserts that the insurer should only be

optimally spending a reinsurance premium budget of πθ. It is not possible to reduce

its risk (in terms of smaller CTE) by spending more than πθ.
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4.2.3 Some Numerical Examples

In this section, we present some numerical examples to illustrate the results

obtained in the previous section. More specifically, Example 4.1 draws results from

Theorem 4.1, Example 4.2 is based on Theorem 4.2, and Example 4.3 uses results

from both Theorems 4.2 and 4.3.

Example 4.1 Assume the loss random variable X is exponentially distributed with

mean µ = 1,000, so that it has a survival function SX and a probability density

function fX as follows.

SX(x) = e−
x
µ , fX(x) =

1

µ
e−

x
µ , for x ≥ 0.

Thus, it follows from the definition in (4.2.14) that

dα = S−1
X (α) = −µ lnα, for 0 < α ≤ 1.

Consequently, it is easy to verify that

πα = (1 + θ)E[(X − dα)+] = (1 + θ)µα,

which represents the maximum level of the reinsurance premium budget for Theorem

4.1 to be applicable. We further assume that θ = 0.2 and α ∈ {0.01, 0.05, 0.10}.
With these values, the corresponding πα and dα are:





πα = 12 and dα = 4, 605.170, for α = 1%

πα = 60 and dα = 2, 995.732, for α = 5%

πα = 120 and dα = 2, 302.585, for α = 10%.

Since Theorem 4.1 applies to the case π ≤ πα, we therefore set π = 10 so that the

condition π ≤ πα is satisfied for all these three levels α. To illustrate Theorem 4.1,

seven reinsurance treaties are considered. The first three treaties are

Tr1 : f(x) = c∗(x− dα)+,

Tr2 : f(x) = (x− d̂)+,

Tr3 : f(x) = (x− dα)+ ∧ lα,
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α = 1% α = 5% α = 10%

dα 4,605.170 2,995.732 2,302.585

πα 12 60 120

Minimal CTE 4,781.837 3,839.066 3,229.252

Tr1: f(x) = c∗(x − dα)+ c∗ = 10
12 c∗ = 2

12 c∗ = 1
12

Tr2: f(x) = (x − d̂)+ d̂ = 4, 787.492 d̂ = 4, 787.492 d̂ = 4, 787.492

Tr3: f(x) = (x − dα)+ ∧ lα lα = 1, 791.760 lα = 182.322 lα = 87.011

Tr4: f(x) = cx,
CTE=5,568.460 CTE=3,972.435 CTE=3,285.064

c = 1/120

Tr5: f(x) = c(x − 1, 000)+,
CTE=5,568.674 CTE=3,977.465 CTE=3,292.169

c = 0.01132617

Tr6: f(x) = c(x − 1, 500)+,
CTE=5,553.843 CTE=3,968.449 CTE=3,285.656

c = 0.01493896

Tr7: f(x) = c(x − 2, 000)+,
CTE=5,530.911 CTE=3,954.507 CTE=3,275.587

c = 0.02052516

Table 4.1: CTE of some typical reinsurance treaties with π = 10 < πα.

The remaining four treaties take the form: f(x) = c(x− d)+, for d = 0, 1000, 1500

and 2000 and these treaties are labeled, respectively, as Tr4-Tr7. For the reinsurance

treaty to be well-defined, we have yet to specify its parameter value (such as c in

Tr1, d̂ in Tr2, . . ..) The required parameter is determined in such a way that the

loaded reinsurance premium coincides exactly with the reinsurance premium budget;

i.e.

(1 + θ)E[f(X)] = π.

Applying Theorem 4.1, we see that treaties Tr1, Tr2 and Tr3 are all optimal rein-

surance treaties, while Tr4–Tr7 may not be. We have reported the CTE value of

the resulting total loss in presence of each treaty in Table 4.1. From this table, we

see that the values of CTE for these optimal treaties Tr1*, Tr2* and Tr3* are less

than those for the treaties Tr4—Tr7. This implies that the treaties Tr4—Tr7 are
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not optimal reinsurance solutions according to the CTE minimization criterion.

Example 4.2 In this part of the exercise, we use the same setup as in the previous

example except that we increase the reinsurance premium budget to π = 400. This

is to ensure that Theorem 4.2 applies with πα < π < πθ.

Assume X is also exponential distributed with mean µ = 1000 and the loading

factor θ = 0.2 as in the previous example, and consider the three confidence levels of

α = 1%, 5% and 10% as well. With such a setting, we have dα = S−1
X (1/(1 + θ)) =

µ ln(1+θ), and hence πθ = (1+θ)E[(X−dθ)+] = µ = 1000. Note that in the previous

example, we have derived the values of πα as shown in the Table 4.1, which we also

report in Table 4.2 for each α.

In order to apply the results of Theorem 4.2, the reinsurance budget π must

satisfy the condition πα ≤ π ≤ πθ. Hence, we take π = 400. By Theorem 4.2, the

stop-loss reinsurance f(x) = (x − d∗) satisfying (1 + θ)E[(X − d∗)+] = π is one of

the optimal treaties. We reported the value of retention d∗ in Table 4.2, as well as

the minimal CTE of the insurer’s total loss in presence of this stop-loss reinsurance

treaty. Moreover, we also considered other eight insurance treaties Tr1—Tr8 ( as

shown in Table 4.2) with coefficients such that the reinsurance premium for them

are all 400. The CTE of insurer’s total loss in presence of these treaties are also

reported in Table 4.2. Clearly, the CTE value of these treaties Tr1—Tr8 are higher

than that of the stop-loss treaty. Moreover, with the retention d in treaties Tr1—

Tr8 increasing to the retorsion for the optimal stop-loss, the CTE decreasing to a

value close the CTE for the stop-loss treaty Tr1*.

Example 4.3 Let X be a Pareto random loss variable with survival function SX(x) =(
2,000

x+2,000

)3

for x ≥ 0 so that its mean E[X] = 1, 000 is the same as the previous

two examples. Assume the loading factor θ = 0.2 and confident level 1 − α = 95%.

Thus,

dα = 2, 000(α−1/3 − 1) = 3, 428.8352, πα = (1 + θ)E[(X − dα)+] = 162.8651,
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α = 1% α = 5% α = 10%

dα 4,605.170 2,995.732 2,302.585

πα 12 60 120

Tr1*: f(x) = (x − d∗)+,
CTE=1,498.612 CTE=1,498.612 CTE=1,498.612

d∗ = 1, 098.612

Tr2: f(x) = cx,
CTE=4,136.780 CTE=3,063.822 CTE=2,601.723

c = 0.3333333

Tr3: f(x) = c(x − 200)+,
CTE=3,804.540 CTE=2,850.360 CTE=2,439.416

c = 0.4071343

Tr4: f(x) = c(x − 400)+,
CTE=3,416.770 CTE=2,607.665 CTE=2,259.202

c = 0.4972749

Tr5: f(x) = c(x − 600)+,
CTE=2,965.165 CTE=2,333.256 CTE=2,061.108

c = 0.6073729

Tr6: f(x) = c(x − 800)+,
CTE=2,440.469 CTE=2,024.988 CTE=1,846.050

c = 0.7418470

Tr7: f(x) = c(x − 1, 000)+,
CTE=1,832.453 CTE=1,681.317 CTE=1,616.227

c = 0.9060939

Tr8: f(x) = (x − d)+ ∧ l,
CTE=3,639.71 CTE=2,090.922 CTE=3,090.922

d = 1, 000, l = 2, 365.460

Table 4.2: CTE of some typical reinsurance treaties with πα ≤ π = 400 ≤ πθ.
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and

dθ = 2, 000

[(
1

1 + θ

)−1/3

− 1

]
= 125.3171, πθ = (1 + θ)E[(X − d∗θ)+] = 1, 062.659.

By Theorem 4.2, we know that the stop-loss treaty f ∗(x) = (x − d∗) with d∗

determined by (1+ θ)E[f ∗] = π is optimal provided the reinsurance premium budget

π ∈ [162.8651, 1, 062.6586]. However, if the reinsurance premium budget π ≥
1, 062.6586, it follows from Theorem 4.3 the stop-loss reinsurance f ∗(x) = (x−d∗)+

with retention d∗ determined by (1 + θ)E[(X − d∗)+] = 1, 062.6586 is optimal. In

fact, in this case, it is impossible for stop-loss treaties with reinsurance premium

larger than πθ to be optimal. This is because the stop-loss treaty will have a retention

d less than dθ and the total loss Tf = X ∧ d+ (1 + θ)E[(X − d)+], which implies

CTEα(Tf ) = d+ (1 + θ)

∫ ∞

d

SX(x)dx.

Clearly, by the above expression, CTEα(Tf ), as a function of d, is decreasing on

[0, dθ] while increasing on [dθ,∞).

4.3 Optimal Reinsurance Model: Binding Case

To complete our analysis on the optimal reinsurance model, this section focuses

on the following optimization problem:

(Q0)





minf∈Qf
CTEα(Tf),

s.t. (1 + θ)E[f ] = π.
(4.3.40)

As in the previously considered optimal reinsurance models, the notation Qf de-

notes the set of feasible ceded loss functions, i.e. Qf = {f ∈ L2 : 0 ≤ f(x) ≤
x for x ≥ 0}, and π is an exogenous variable representing the reinsurance pre-

mium budget. The only difference between problem (P0) defined in (4.1.5) and
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problem (Q0) lies on how we interpret the reinsurance premium budget π. In the

former case, the insurer is willing to spend up to π while in the latter case, the

constraint is binding in that the reinsurance premium of the optimal ceded loss

function is strictly equal to π. Hence problem (Q0) is more restrictive and we are

interested in its solution for π ∈ (0, πX) where πX = (1 + θ)E[X].

One motivation for considering the above optimization problem (Q0) is that it

allows us to address more explicitly the tradeoff between risk and reward. To see

this, we will first focus on the objective function in model (Q0) and then on its

constraint condition. Recall that the notation Γ(f) was introduced at the beginning

of the chapter to denote an insurer’s net risk of insuring risk X which takes into

consideration the premium that the insurer receives from the policyholders and the

reinsurance premium the insurer is obligated to pay for reinsuring its risk X; i.e.

Γ(f) = Tf −p0 = X−f(X)+(1+θ)E[f ]−p0. Because of the translation invariance

property, we have CTEα(Γ(f)) = CTEα(Tf ) − p0. Since p0 is a constant for a

given X, this implies that if f ∗ is a minimizer of CTEα(Tf), it is also a minimizer

of CTEα(Γ(f)). In other words, using CTE as the relevant measure of risk, if

f ∗ minimizes the CTE of the insurer’s total risk Tf , then it also minimizes the

corresponding CTE of the insurer’s net risk.

We now shift our attention to the constraint condition in model (Q0). The term

b(f) ≡ −E[Γ(f)] = p0 − E[X] − θE[f ] captures the insurer’s expected net profit in

the presence of reinsurance. Note that the insurer’s expected net profit depends

on the choice of the ceded loss function. Furthermore, the constraint E[f ] = π
1+θ

,

where π = 1+θ
θ

(p0−E[X]−b(f)), can be interpreted as the profitability requirement

in that once the condition is attained, the resulting optimal ceded loss function f ∗

ensures a certain prescribed level of expected net profit b(f ∗). Consequently, f ∗

that solves model (Q0) represents the insurer’s least risk exposure (as measured

by the CTE) for a given level of expected profitability. Hence if model (Q0) is

solved repeatedly for each π ∈ (0, πX), where πX = (1 + θ)E[X], then we trace out
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pairs of
(
CTEα(Γ(f ∗)), b(f ∗)

)
that give the best possible risk and reward tradeoff.

This is analogous to the efficient frontier of the Markowitz portfolio mean-variance

analysis. For this reason, we refer the curve represented by
(
CTEα(Γ(f ∗)), b(f ∗)

)

as the insurer’s reinsurance efficient frontier. Depending on the risk tolerance of

an insurer, the reinsurance efficient frontier facilitates the insurer on its optimal

selection of ceded loss function.

The mathematical technique used to solve problem (P0) can similarly be used

to derive the optimal solution for problem (Q0). This entails reformulating problem

(Q0) as

(QT)





min
(ξ,f)∈R×Qf

Gα(ξ, f) ≡ ξ +
1

α
E

[(
X − f + (1 + θ)E[f ] − ξ

)
+

]

s.t. (1 + θ)E[f ] = π.

(4.3.41)

If (ξ∗, f ∗) are the optimal solutions to (QT), then f ∗ is also the optimal solution to

(Q0) (see Lemma 4.1). Moreover, the problem (QT) is convex and thus a ceded loss

function f ∗ is a solution to (QT) if and only if there exist constants ξ∗ and r, and

the random variable λ ∈ L2 such that the three optimality conditions C1, C2 and

C3 in Proposition 4.1 are satisfied except with the binding condition (1+θ)E[f ] = π

in defining the set Qπ. To avoid any confusion, we will define Q′
π as Q′

π = {f ∈
L2 : (1 + θ)E[f ] = π} while we reserve Qπ for Qπ = {f ∈ L2 : (1 + θ)E[f ] = π}.

Remark 4.7 The results in Theorems 4.1 and 4.2 indicate that for any given rein-

surance premium budget π ∈ (0, πθ], the pure stop-loss treaty f ∗(x) = (X − d∗)+,

where (1 + θ)E[f ∗] = π, is an optimal reinsurance solution to problem (P0). Note

that the optimal retention d∗ is determined such that the resulting reinsurance pre-

mium coincides with the reinsurance premium budget π. In other words, the optimal

ceded loss function is attained at the reinsurance premium budget. Theorem 4.3,

on the other hand, reinforces that even if an insurer is willing to spend π ≥ πθ,

the stop-loss treaty is still one possible optimal reinsurance treaty, except that the
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solution is no longer binding. More specifically for π ≥ πθ, the optimal retention

d∗ is dθ and the optimal reinsurance budget is πθ ≤ π even though the insurer is

willing to spend more. In view of this result, it is therefore never rational for an

insurer to spend more than πθ to reinsure its risk. Nevertheless, it is of theoretical

interest to examine the solution to our optimal reinsurance model under the binding

reinsurance premium budget constraint, as we establish in the following theorem for

π ∈ (0, πX).

Theorem 4.4 Assume α(1 + θ) ≤ 1 and there exists a constant d∗ such that (1 +

θ)E[(X−d∗)+] = π for each π ∈ (0, πX ]. Then the stop-loss treaty f ∗(x) = (x−d∗)+

is an optimal solution to problem (Q0).

Proof. In view of Remark 4.7, we only need to consider the case with π ∈ (πθ, πX ].

Moreover, it suffices to demonstrate that f ∗(x) = (x − d∗)+ satisfies the three

optimality conditions C1, C2 and C3 in Proposition 4.1 with Qπ replaced by

Q′
π = {f ∈ L2 : (1 + θ)E[f ] = π}.

Before we proceed, we fix a π ≥ πθ and denote δ = Pr{X ≥ d∗}. Then,

(1 + θ)E[(X − d∗)+] ≡ π > πθ ≡ (1 + θ)E[(X − dθ)+]

implies d∗ ≤ dθ, and hence δ ≥ Pr{X ≥ dθ}, which, together with the fact Pr{X ≥
dθ} ≥ 1

1+θ
and the assumption α(1 + θ) ≤ 1, further implies that δ ≥ α.

Note that we only need to verify conditions C1 and C2 since under the binding

condition f ∈ Q′
π, condition C3 holds trivially for any constant r ∈ R. By choosing

ξ∗ = d∗ + (1 + θ)E[f ∗], we have

g∗(x) =





x− d∗, x < d∗;

0, x ≥ d∗.
(4.3.42)

This implies {g∗ > 0} is an empty set and {g∗ = 0} = {X ≥ d∗}. If we further set

r =
1

δ(1 + θ)
− 1 and λ = −1

δ
1{X<d∗}, (4.3.43)
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then for any f ∈ Q′
f ,

δE[λ(f − f ∗)] = −E
[
(f − f ∗)1{X<d∗}

]
= −E

[
f1{X<d∗}

]
≤ 0,

where the second equality is due to the fact that f ∗(x) = 0 for x ≤ dα. Thus,

condition C2 is satisfied with the chosen constants ξ∗ and r, as well as the random

variable λ.

To verify condition C1, let us first note that the condition δ ≥ α implies

E[V+1{g∗=0}] ≥
α

δ
E
[
V+1{g∗=0}

]
≥ α

δ
E[V 1{X≥d∗}] =

α

δ
E[V (1 + δλ)].

The above result, in turn, leads to

A(ξ, f) ≥ α
[
ξ + r(1 + θ)E[f ] + E[λf ]

]
+
α

δ
E[V (1 + δλ)]

= α
[
ξ + r(1 + θ)E[f ] + E[λf ]

]
+
α

δ
E
[(

(1 + θ)E[f ] − f − ξ
)

(1 + δλ)
]

= ξ
(
α− α

δ
E [1 + δλ]

)
+ αE[λf ] − α

δ
E [f (1 + δλ)]

+E[f ]
(
αr(1 + θ) +

α

δ
(1 + θ)E [1 + δλ]

)
. (4.3.44)

Moreover, by (4.3.43) we have E [(1 + δλ)] = δ. Thus, (4.3.44) implies that

A(ξ, f) ≥ ξ(α− α) + E[f ]
(
αr(1 + θ) + α(1 + θ) − α

δ

)
= 0,

and hence condition C1 is also satisfied. This completes the proof. 2

Remark 4.8 From the above theorem, the ceded loss function f ∗(x) = (x − d∗)+

with (1 + θ)E[f ∗] = π solves model Q0 if α(1 + θ) ≤ 1 and the underlying risk X is

a continuous random variable. Thus the reinsurance efficient frontier is given by

{(
CTEα(Γ(f ∗)), b(f ∗)

)
: f ∗ = (X − d∗)+, (1 + θ)E[f ∗] = π, and π ∈ (0, πX ]

}
,

where Γ(f ∗) = (X ∧ d∗) + π − p0, and b(f ∗) = p0 − E[X] − θ
1+θ

π.

117



Example 4.4 As in Example 4.1, we similarly assume that the underlying risk X

is exponentially distributed with mean µ = 1000. The expectation premium principle

is adopted by both the insurer and reinsurer in setting the insurance premium with

respective safety loading factor η = 0.1 and θ = 0.2. We are interested in the

reinsurance efficient frontier α = 5%.

Based on the above setting, we have dα = 2995.73, dθ = 182.32, πα = 60, πθ =

1000 and πx = (1 + θ)E[X] = 1200. Theorem 4.4 asserts that to obtain the optimal

ceded loss function, we merely need to determine the retention level d∗ that satisfies

(1 + θ)E[(X − d∗)+] = π for each π ∈ (0, πX ]. Under the exponential distribution

with mean µ, it is easy to show that

d∗ = µ ln

(
µ(1 + θ)

π

)
.

Furthermore, it is clear that CTEα(X∧d) = d for d ≤ dα ≡ −µ lnα, or equivalently

π ≥ πα For d ≥ dα, i.e., π ≤ πα,

CTEα(X ∧ d) = dα +
1

α

∫ ∞

dα

Pr{X ∧ d > x}dx

= dα +
µ

α

[
e−dα/µ − e−d/µ

]

= µ(1 − lnα) − π

α(1 + θ)
.

Thus the reinsurance efficient frontier,
(
CTEα(Γ(f ∗)), b(f ∗)

)
, is given by

CTEα(Γ(f ∗)) = CTEα(X ∧ d∗) + π − p0

=





µ(1 − lnα) − p0 + π

[
1 − 1

α(1 + θ)

]
, π ≤ πα,

µ ln

(
µ(1 + θ)

π

)
+ π − p0, π ≥ πα,

=





−47

3
π + 2895.732, π ≤ 60,

1000 ln

(
1200

π

)
+ π − 1100, π ≥ 60,

(4.3.45)
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Figure 4.2: Risk reward under optimal reinsurance arrangement.

and

b(f ∗) = p0 − E[X] − θ

1 + θ
π = 100 − 1

6
π. (4.3.46)

Figure 4.2 plots the resulting reinsurance efficient frontier for π ∈ [0, πX ]. We now

conclude the example with the following remarks:

(i) It is striking to note that the reinsurance efficient frontier has a tremendous

resemblance to the classical Markowitz mean-variance efficient frontier even

though the risk in our reinsurance model is captured by the CTE.

(ii) Without reinsurance, the insurer retains the entire amount of the insurance

premium and hence its expected profit margin is 100.2 This is not surprising

since we have assumed that the insurer’s loading factor is η = 10%. More-

over, the insurer’s risk exposure in term of CTE reaches its peak at 2895.72.

2In practice, the profit margin will be less than 100 since this amount also includes expenses,

adminstration charges, in addition to profits. In our analysis, we ignore these charges for simplicity.
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These values can be obtained by setting π = 0 in (4.3.45) and (4.3.46). How-

ever, as the insurer becomes more risk averse and is willing to spend more on

purchasing reinsurance, its expected profit declines but its CTE risk exposure

also decreases. This is the classical risk and reward tradeoff. More precisely,

as the reinsurance premium budget π increases from 0 to 60, both the expected

profit and the CTE declines linearly at the rate of 1
6

and 152
3

from 100 and

2895.72, respectively. The dot dashed line in Figure 4.2 depicts the tradeoff

for π ∈ [0, 60].

(iii) When the reinsurance premium budget increases beyond 60, the insurer’s ex-

pected profit continues to drop linearly. The CTE, on the other hand, continue

to decrease but it reaches its minimum at π = πθ = 1000. When π > 1000, the

CTE actually increases even though the expected profit is still declining. Con-

sequently, it is never rational to spend more than 1000 in reinsuring its risk as

already noted in Theorem 4.3. To distinguish these two parts of the frontier,

we denote the portion with π ≤ 1000 as the efficient frontier while the portion

with π > 1000 as the inefficient frontier, in analogous to the Markowitz model.

The efficient and inefficient reinsurance frontiers are depicted in Figure 4.2.

(iv) We point out that while π ≤ 1000 yields a reinsurance frontier that is efficient,

we also note that for π > 600, the expected profit of the insurer is negative

(see (4.3.46)). Hence under ordinary circumstances, the insurer will not be

spending more than 600 on reinsurance, otherwise it would be prudent of not

insuring the risk at all.
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4.4 Appendix: Mathematical Background and Op-

timality Conditions

The main objective of this appendix is to formally prove Proposition 4.1, i.e., to

establish the optimality conditions for optimization problem (PT). The technical

details are described in Subsections 4.4.3 and 4.4.4. For completeness, we also col-

lect some key concepts and results associated with convex analysis and directional

derivatives in Subsections 4.4.1 and 4.4.2. For a comprehensive review on these

aspects, we refer to Bonnans and Shapiro (2000).

4.4.1 Directional Differentiability

Throughout this subsection, let E and F denote two vector linear normed spaces

and consider a mapping g : E 7→ F .

Definition 4.1 (1) g is said to be directionally differentiable at a point x ∈ E in a

direction h ∈ E if the limit

g′(x)[h] := lim
t→0+

g(x+ th) − g(x)

t

exists, and in this case, g′(x)[h] is called the directional derivative of g at point x

in direction h.

(2) If g is directionally differentiable at x in every direction h ∈ E , then g is

said to be directionally differentiable at x.

(3) g is said to be Gâteaux differentiable at x if g is directionally differentiable

at x and the directional derivative g′(x)[h] is linear and continuous in h.

Remark 4.9 By the above definition, g is directionally differentiable at x in a

direction h if and only if

g(x+ th) = g(x) + tw + o+(t)
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for t ≥ 0, where o+(t) denotes a function such that o+(t)/t→ 0 as t→ 0+, and w is

a vector in E , which indeed is identified as the corresponding directional derivative.

4.4.2 Optimization in Banach Spaces

Throughout this subsection, we assume E and F to be two Banach spaces with

dual spaces E∗ and F∗. Note that the dual space consists of all the linear and

continuous operator which mapping the Banach space into the real line. For any

operator L ∈ E∗ (or F∗), we use < L, x > to denote L(x) for x ∈ E (correspondingly

F).

Now let Q and K denote, respectively, two nonempty subsets of E and F , and

consider the following program:

(P )





minx∈Q H0(x),

s.t. H1(x) ∈ K,

where H0 and H1 are two mappings such that H0 : E → R and H1 : E → F . Note

that the feasible set of Problem (P) is

Φ := {x ∈ Q : H1(x) ∈ K} = Q ∩H−1
1 (K),

where H−1
1 (K) = {x ∈ E : H1(x) ∈ K}.

Definition 4.2 A mapping Ψ : E → 2F is called a multifunction, where 2F denotes

the power set of F , i.e., the collection of all the subsets of F . Its graph is defined

as

gph(Ψ) := {(x, y) ∈ E × F : y ∈ Ψ(x)}, x ∈ E ,

and its (graph) inverse Ψ−1 : F → 2E is defined as

Ψ−1(y) := {x ∈ E : y ∈ Ψ(x)}.
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Definition 4.3 (1) A multifunction Ψ : E → 2F is said to be convex, if its graph

grh(Ψ) is a convex subset of E × F , or equivalently

tΨ(x1) + (1 − t)Ψ(x2) ⊂ Ψ(tx1 + (1 − t)x2)

for any x1, x2 ∈ E and t ∈ [0, 1].

(2)We say that a mapping H1 : E → F is convex with respect to a convex closed

set C ⊂ F , or simply that H1 is C-convex, if the corresponding multifunction

MH1(x) = H1(x) + C is convex, where H1(x) + C denotes {H1(x) + y : y ∈ C}.

Remark 4.10 By the above definition, if H0(x) is linear then it is convex with

respect to any convex subset of F .

Definition 4.4 Problem (P) is called convex, if it satisfies these three conditions:

(i) H0(x) is convex, (ii) H1(x) is convex with respect to the set (−K), and (iii) both

Q and K are convex and closed subsets.

Definition 4.5 (1) A function x∗ ∈ E∗ is said to be a subgradient of a function

H0 : E → R at a point x ∈ E , if H0(x) is finite and

H0(y) −H0(x) ≥< x∗, y − x > for all y ∈ E .

(2) The collection of all subgradients of H0 at x, denoted as ∂H0(x), is called

the subdifferential of H0 at x, i.e.,

∂H0(x) = {x∗ ∈ E∗ : H0(y) −H0(x) ≥< x∗, y − x > holds for all y ∈ E}.

(3) H0 is said to be subdifferentiable at x if H0(x) is finite and ∂H0(x) 6= ∅.

Definition 4.6 The normal cone of the closed convex subset K of F at point y0, de-

noted as NK(y0), is defined as the set {λ ∈ F∗ :< λ, y−y0) >≤ 0, holds for all y ∈
K}.
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Lemma 4.2 Assume that problem (P) is convex. Then one sufficient and necessary

condition for a feasible point x0 to solve problem (P) is as follows: There exists

λ ∈ F∗ such that

0 ∈ ∂xL(x0, λ) +NQ(x0), and λ ∈ NK(H1(x0)). (4.4.47)

Here, L(x, λ) denotes the Lagrangian function of problem (P ), which is defined as

L(x, λ) = H0(x)+ < λ,H1(x) >, (x, λ) ∈ E × F∗;

NK(H1(x0)) and NQ(x0) respectively denote the normal cones of the closed convex

sets K and Q at corresponding point H1(x0) or x0.

Proof. See Bonnans and Shapiro (2000, p148).

Lemma 4.3 Suppose X is a linear vector space, and let f be a convex functional

from X to the extended real line R taking a finite value at a point x ∈ X , and let

ψ(·) denote the directional derivative f ′(x)[·] of f . Then ∂f(x) = ∂ψ(0).

Proof. See Proposition 2.15 of Bonnans and Shapiro (2000, p86). 2

4.4.3 Proof of Proposition 4.1 (Optimality Conditions)

The goal function Gα(ξ, f) in problem (PT) is a functional defined on the prod-

uct space H := R×L2. It is clear that H is a Hilbert space if we equip it with the

inner product ≪ ·, · ≫ defined by ≪ u1, u2 ≫= E[ξ1ξ2 + f1f2] = ξ1ξ2 + E[f1f2] for

ui = (ξi, fi) ∈ H and i = 1, 2. Therefore, we can discuss our problem (PT) as an

optimization problem over the Hilbert space (H, ≪ ·, ·,≫). Recall that we have

summarized some key results about optimization on Banach space in Subsection

4.4.2 and note that a Hilbert space is a special Banach space. We will show that

(PT) is a convex problem and then complete the proof by applying Lemma 4.2.
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To show the convexity of the problem (PT)3, we first note that the feasible set

Q ≡ Qf

⋂
Qπ of the problem is clearly a closed convex subset of H . Moreover, for

any u1 = (ξ1, f1) and u2 = (ξ2, f2) from Q, and any scalar b ∈ [0, 1], we have

bGα(ξ1, f1) + (1 − b)Gα(ξ2, f2)

= bξ1 + b
1

α
E

[(
X − f1 + (1 + θ)E[f1] − ξ1

)
+

]

+(1 − b)ξ2 + (1 − b)
1

α
E

[(
X − f2 + (1 + θ)E[f2] − ξ2

)
+

]

≥ [bξ1 + (1 − b)ξ2] +
1

α
E
{[
b
(
X − f1 + (1 + θ)E[f1] − ξ1

)

+(1 − b)
(
X − f2 + (1 + θ)E[f2] − ξ2

)]
+

}

= Gα

(
bξ1 + (1 − b)ξ2, bf1 + (1 − b)f2

)
, (4.4.48)

which implies the convexity of the functional Gα(ξ, f). Finally, E(f) is clearly linear

as a functional mapping L2 into R, and hence, in light of Remark 4.10 in Subsection

4.4.2, it is clearly convex with respect to the interval [0, π]. Therefore, (PT) is a

convex problem.

To proceed, it is worth emphasizing a fact about the Hilbert space H resulted

from the Riez representation theorem: For any linear mapping M ∈ H∗4, there

exists a unique element (r, λ) ∈ H such that

〈M, (ξ, f)〉 =≪ (r, λ), (ξ, f) ≫≡ rξ + E[λf ]

for all (ξ, f) ∈ H . Therefore, the Lagrangian function for Problem (PT) takes the

following form:

L(ξ, f ; r) = Gα(ξ, f) + r(1 + θ)E[f ], (4.4.49)

3Refer to Definition 4.4 in Subsection 4.4.2 for the definition of a convex optimization problem

on a Banach space.
4Here, H∗ denotes the dual space of the Hilbert space H . The dual space consists of all the

bounded linear functional defined on the Hilbert space H .

125



for ξ ∈ R, f ∈ L2 and r ∈ R. Denote Kπ = [0, π]. Then, applying Lemma 4.2, we

see that the optimality conditions for u∗ ≡ (ξ∗, f ∗) to solve problem (PT) are as

follows: There exists constant r ∈ R such that

r ∈ NKπ
(E[f ∗]) (4.4.50)

and

0 ∈ ∂(ξ,f)L(ξ∗, f ∗; r) +NR×Qf
(ξ∗, f ∗) (4.4.51)

are satisfied. Here, ∂(ξ,f)L(ξ∗, f ∗; r) denotes the subdifferential of L(ξ, f ; r) at

point (ξ∗, f ∗), NKπ
(E[f ∗]) is the normal cone to the convex set Kπ at E[f ∗], and

NR×Qf
(ξ∗, f ∗) denotes the normal cone to R ×Qf at point (ξ∗, f ∗).

Clearly, it follows from the definition of the normal cone that (4.4.50) is equiv-

alent to r(m− E[f ∗]) ≤ 0 for all m ∈ Kπ, or equivalently

r(E[f ] − E[f ∗]) ≤ 0 for all f ∈ Qf , (4.4.52)

which is condition C3 in the Proposition. To analyze condition (4.4.51), let us in-

vestigate NR×Qf
(ξ∗, f ∗) first. Suppose (ζ, λ) ∈ NR×Qf

(ξ∗, f ∗), then by the definition

of NR×Qf
(ξ∗, f ∗), we see

ζ(ξ − ξ∗) ≤ 0, and E[λ(f − f ∗)] ≤ 0 for all (ξ, f) ∈ R ×Qf ;

thus ζ = 0, and (4.4.51) is equivalent to the condition that there exists a random

variable λ ∈ L2 such that

E[λ(f − f ∗)] ≤ 0 for all f ∈ Qf , (4.4.53)

and

(0,−λ) ∈ ∂(ξ,f)L(ξ∗, f ∗; r). (4.4.54)
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Note that (4.4.53) is exactly condition C2 in the proposition, and therefore the

proof will be complete if we would show the equivalence between (4.4.54) and con-

dition C1 in the proposition. For this purpose, we derive the directional derivative

of L(· , · ; r) as follows:

Ψ(ξ, f) := L′(ξ∗, f ∗; r)[ξ, f ]

= ξ +
1

α

{
E[V 1{g∗>0}] + E[V+1{g∗=0}]

}
+ r(1 + θ)E[f ], (4.4.55)

where g∗ and V are defined, respectively, in (4.2.11) and (4.2.12). It is worth noting

that it is quite non-trivial in establishing the directional derivative of L(· , · ; r).

Subsection 4.4.4 provides the details of deriving the directional derivative Ψ(ξ, f),

where some approximation results in probability are employed.

Finally, by applying Lemma 4.3 to the established directional derivative Ψ, it is

clear that condition (4.4.54) is equivalent to

(0,−λ) ∈ ∂Ψ(0, 0),

which is further equivalent to condition C1 in the proposition since Ψ(0, 0) = 0.

Therefore, the proof of Proposition 4.1 is complete.

4.4.4 Directional Derivative of the Lagrangian Function

In this subsection, we shall discuss the directional derivative of the lagrangian

function L(ξ, f ; r) : R × L2 × R 7→ R such that

L(ξ, f ; r) = Gα(ξ, f) + r
[
(1 + θ)E[f ] − π

]
, (4.4.56)

which is defined in (4.4.49) with

Gα(ξ, f) = ξ +
1

α
E

[(
X − f + (1 + θ)E[f ] − ξ

)
+

]
. (4.4.57)
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Let g(ξ, f) = X − f + (1 + θ)E[f ] − ξ, h(Y ) = Y+, and e(Y ) = E[h(Y )], then

Gα(ξ, f) = ξ + 1
α
(e ◦ g)(ξ, f), where “e ◦ g” denotes the composition of functions g

and e. We shall take several steps to obtain the directional directive of E[h(Y )] at

Y ∈ L2 in a direction Z ∈ L2, and then obtain the corresponding result for function

Gα. Also, recall that the sample space Ω = [0,∞) for all random variables in this

chapter.

Step 1: Let Z be an indicator random variable such that Z(x) = a1[δl,δr)(x) for all

x ∈ Ω, where a, δl and δr are nonnegative constants and δl < δr. Then, it follows

from the definition of the directional derivative that

h′(Y )[Z](x) = lim
t→0+

1

t
[(Y + tZ)+ − Y+] (x)

=





a · 1[δl,δr)(x), Y (x) ≥ 0,

0, otherwise.

= Z(x) · 1{Y ≥0}(x). (4.4.58)

Step 2: Suppose Z is a nonnegative simple random variable such that Z(x) =
∑n

i=1 aiZi(x) for all x ∈ Ω, where n is some positive integer, {Zi, i = 1, 2, · · · , n}
are indicator random variables of the form 1[δl,δr) with disjoint domains [δl, δr), and

{ai}n
i=1 is a sequence of positive real numbers. Then,

h′(Y )[Z] = lim
t→0+

1

t
{(Y + tZ)+ − Y+}

= lim
t→0+

1

t

{[
Y + t

n∑

i=1

aiZi

]

+

− Y+

}

= lim
t→0+

1

t

{
n∑

i=1

[
(Y + taiZi)+ − Y+

]
}

=

n∑

i=1

lim
t→0+

1

t

{[
(Y + taiZi)+ − Y+

]}

=
n∑

i=1

aiZi · 1{Y ≥0}

= Z · 1{Y ≥0}, (4.4.59)
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where the third equality is resulted from the assumption that Zi, i = 1, 2, · · · , n
have disjoint domains, and the last second equality is due to the result obtained in

Step 1.

Step 3: Assume Z is a general nonnegative random variable from L2 and consider

e′(Y )[Z], the derivative of e(·) at Y in direction Z, which is defined as

e′(Y )[Z] = lim
t→0+

E

{
1

t

[
(Y + tZ)+ − Y+

]}
.

Clearly, on {x : Y (x) < 0} we have
∣∣∣∣
1

t

[
(Y + tZ)+ − Y+

]∣∣∣∣ =

∣∣∣∣
(
Y

t
+ Z

)

+

−
(
Y

t

)

+

∣∣∣∣ ≤ Z,

and on {x : Y (x) ≥ 0} we have
∣∣∣∣
1

t

[
(Y + tZ)+ − Y+

]∣∣∣∣ =

∣∣∣∣
(
Y

t
+ Z

)
−
(
Y

t

)∣∣∣∣ = Z.

Combining the above, we know that

∣∣∣∣
1

t

[
(Y + tZ)+ − Y+

]∣∣∣∣ is uniformly dominated

by the integrable random variable Z, and hence it follows from the dominated

convergence theorem that

e′(Y )[Z] = E

{
lim

t→0+

1

t

[
(Y + tZ)+ − Y+

]}
.

On the other hand, it is well known that there exists a nondecreasing sequence of

nonnegative simple random variable {Zn, n ≥ 1} such that Zn → Z almost surely;

thus

e′(Y )[Z] = E

{
lim

t→0+
lim

n→∞

1

t

[
(Y + tZn)+ − Y+

]}
.

To proceed, we denote M(t, n) =
1

t

[
(Y + tZn)+ − Y+

]
as a function of the variables

t and n. Clearly we know thatM(t, n) is nondecreasing in n for any fixed t > 0. Now

fix n and consider the monotonicity of M(t, n) as a function of t. Note that Zn is a

nonnegative random variable. Thus, on {x : Y (x) ≥ 0}, M(t, n) is uniformly equal
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to Zn for all t ≥ 0. On {x : Y (x) < 0}, for 0 < t ≤ −Y/Zn,M(t, n) = 0−(Y/t)+ = 0

and for t ≥ −Y/Zn, M(t, n) = Y/t + Zn, which is monotonically decreasing to 0

as t decreases to −Y/Zn. Therefore, for any sample point in Ω and any fixed n,

M(t, n) is decreasing as t decreases to 0. This implies that the two limits in the

above expression of e′(Y )[Z] are exchangeable and thus

e′(Y )[Z] = E

{
lim

t→0+
lim

n→∞

1

t

[
(Y + tZn)+ − Y+

]}

= E

{
lim

n→∞
lim

t→0+

1

t

[
(Y + tZn)+ − Y+

]}

= E
[

lim
n→∞

Zn · 1Y ≥0

]

= E [Z · 1Y ≥0] , (4.4.60)

where the third equality follows from the result obtained in Step 2.

Step 4: Suppose Z(x) = −b1[δl,δr)(x) for all x ∈ Ω, where b, δl and δr are nonneg-

ative real numbers such that δl < δr. Clearly, we have

h′(Y )[Z](x) = lim
t→0+

1

t
[(Y + tZ)+ − Y+] (x)

= lim
t→0+

1

t
{(Y − t(−Z))+ − Y+}(x)

= − lim
s→0−

1

s
{(Y + s(−Z))+ − Y+}(x)

=





−b · 1[δl,δr)(x), Y (x) > 0,

0, otherwise.

= Z(x) · 1{Y >0}(x). (4.4.61)

Step 5: Suppose Z is a nonnegative simple random variable such that Z(x) =

−
∑n

i=1 biZi(x) for all x ∈ Ω, where n is some positive integer, {Zi, i = 1, 2, · · · , n}
are indicator random variables of the form 1[δl,δr) with disjoint domains [δl, δr), and
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{bi}n
i=1 is a sequence of positive real numbers. Then,

h′(Y )[Z] = lim
t→0+

1

t

[
(Y + tZ)+ − Y+

]

= lim
t→0+

1

t

{[
Y − t

n∑

i=1

biZi

]
+
− Y+

}

= lim
t→0+

1

t

{
n∑

i=1

[
(Y − tbiZi)+ − Y+

]}

=

n∑

i=1

lim
t→0+

1

t
[(Y − tbiZi)+ − Y+]

=
n∑

i=1

[−biZi · 1{Y >0}]

= Z · 1{Y >0}, (4.4.62)

where the third equality is resulted from the assumption that Zi, i = 1, 2, · · · , n
have disjoint domains, and the last second equality is due to the result obtained in

Step 4.

Step 6: Assume Z is a general negative random variable from L2 and consider

e′(Y )[Z], the derivative of e(·) at Y in direction Z, which is defined as

e′(Y )[Z] = lim
t→0+

E

{
1

t

[
(Y + tZ)+ − Y+

]}
.

Clearly, on {x : Y (x) < 0},
∣∣∣∣
1

t

[
(Y + tZ)+ − Y+

]∣∣∣∣ =

∣∣∣∣
(
Y

t
+ Z

)

+

−
(
Y

t

)

+

∣∣∣∣ = 0,

and on {x : Y (x) ≥ 0},
∣∣∣∣
1

t

[
(Y + tZ)+ − Y+

]∣∣∣∣ =

∣∣∣∣
(
Y

t
+ Z

)

+

−
(
Y

t

)∣∣∣∣ ≤ −Z.

Combining the above, we know that 1
t

[
(Y + tZ)+ − Y+

]
is uniformly dominated

by the integrable random variable −Z, and hence it follows from the dominated

convergence theorem that

e′(Y )[Z] = E

{
lim

t→0+

1

t

[
(Y + tZ)+ − Y+

]}
.
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On the other hand, it is well known that there exists a decreasing sequence of

negative simple random variable {Zn, n ≥ 1} such that Zn → Z almost surely; thus

e′(Y )[Z] = E

{
lim

t→0+
lim

n→∞

1

t

[
(Y + tZn)+ − Y+

]}
.

To proceed, we denote M(t, n) =
1

t

[
(Y + tZn)+ − Y+

]
as a function of the variables

t and n. It is clear that M(t, n) is decreasing in n for any fixed t > 0. Now fix

n and consider the monotonicity of M(t, n) as a function of t. Note that Zn is a

negative random variable. Thus, on {x : Y (x) < 0}, M(t, n) = 0 uniformly for all

t ≥ 0. On {x : Y (x) ≥ 0}, for 0 < t ≤ −Y/Zn, M(t, n) = (Y/t+Zn)− (Y/t)+ = Zn

and for t ≥ −Y/Zn, M(t, n) = 0 − Y/t, which is monotonically decreasing to Zn

as t decreases to −Y/Zn. Therefore, for any sample path in Ω and any fixed n,

M(t, n) is decreasing as t decreases to 0. This implies that the two limits in the

above expression of e′(Y )[Z] are exchangeable and thus

e′(Y )[Z] = E

{
lim

t→0+
lim

n→∞

1

t

[
(Y + tZn)+ − Y+

]}

= E

{
lim

n→∞
lim

t→0+

1

t

[
(Y + tZn)+ − Y+

]}

= E
[

lim
n→∞

Zn · 1Y >0

]

= E [Z · 1Y >0] , (4.4.63)

where the third equality follows from the result obtained in Step 5.

Step 7: Now consider the directional derivative of e(Y ) ≡ E[h(Y )] in the direction

of a general random variable Z ∈ L2.

Denote N = {x : Z(x) < 0}, N = {x : Z(x) ≥ 0} and Z− = max{0,−Z}, then
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we have

e′(Y )[Z] = lim
t→0+

1

t
E
[
(Y + tZ)+ − Y+

]

= lim
t→0+

1

t
E
[
(Y 1N + Y 1N + tZ+1N − tZ−1N )+ − (Y+1N + Y+1N)

]

= lim
t→0+

1

t
E
{
1N

[
(Y + tZ+)+ − Y+

]}

+ lim
t→0+

1

t
E
{
1N

[
(Y − tZ−)+ − Y+

]}

= lim
t→0+

1

t
E
{[

(Y + tZ+)+ − Y+

]}
+ lim

t→0+

1

t
E
{[

(Y − tZ−)+ − Y+

]}

= e′(Y )[Z+] + e′(Y )[−Z−]. (4.4.64)

Applying the results (4.4.60) and (4.4.63) derived in Step 3 and Step 4 respectively,

we can immediately obtain the derivative of function e(·) at Y in a direction Z as

follows.

e′(Y )[Z] = E[1{Y ≥0}Z+] − E[1{Y >0}Z−]. (4.4.65)

Step 8: Now let us consider the directional derivative of the Lagrangian function

L(·, ·; r1, r2) at u0 := (ξ0, f0) ∈ R × L2 in direction u := (ξ, f) ∈ R × L2. Within

this step, all the equalities can be understood as t → 0+ if necessary. Recall that

g(ξ, f) = X − f + (1 + θ)E[f ] − ξ. Hence,

g(ξ0 + tξ, f0 + tf) = X − (f0 + tf) + (1 + θ)E[f0 + tf ] − (ξ0 + tξ)

= g(ξ0, f0) + t
[
(1 + θ)E[f ] − f − ξ

]
.

Thus, in light of the directional derivative of e obtained in (4.4.65), we have

(e ◦ g)(u0 + tu)

= e
(
g(ξ0, f0) + t

[
(1 + θ)E[f ] − f − ξ

])

= E
{(
g(ξ0, f0) + t

[
(1 + θ)E[f ] − f − ξ

])
+

}

= E
{[
g(ξ0, f0)

]
+

}
+ tE

{
(Z0)+1{g0≥0} − (Z0)−1{g0>0}

}
+ o+(t),

133



where g0 = X − f0 + (1 + θ)E[f0]− ξ0, Z0 = (1 + θ)E[f ]− f − ξ, and o+(t) denotes

a function such that o+(t)/t→ 0 as t→ o+. Hence, by the definition of directional

derivative, we obtain

(
e ◦ g

)′
(ξ0, f0)[(ξ, f)] = E[(Z0)+1{g0≥0} − (Z0)−1{g0>0}]

= E[Z01{g0>0} + (Z0)+1{g0=0}],

and therefore,

L′(ξ0, f0)[(ξ, f)] =
1

α

[
E{Z01{g0>0} + (Z0)+1{g0=0}}

]
+ ξ + r(1 + θ)E[f ].
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Chapter 5

Empirical-based Reinsurance

Models

5.1 Introduction

In the last few chapters, we have been focusing on a number of reinsurance

models with various degrees of generality. The primary aim of those chapters was

to derive analytically the optimal ceded loss functions for the proposed models.

We have observed that the tractability of the optimization models highly depends

on the model specifications and assumptions and it is non-trivial to derive analyt-

ical solutions in many of these cases. In this chapter, we propose a new approach

of analyzing optimal reinsurance by explicitly exploiting the loss data that is ex-

perienced by the insurance company. Because our proposed optimal reinsurance

model is based directly on the empirically observed data, we term this model as

the empirical-based reinsurance model, or simply the empirical reinsurance model.

We will argue shortly that there is a number of advantages associated with our

proposed empirical reinsurance model including its simplicity and tractability.

135



Recall that a general formulation of an optimal reinsurance model can be ex-

pressed as follows:




minf ρ(X, f)

s.t. 0 ≤ f(x) ≤ x,

Π(f(X)) ≤ π,

(5.1.1)

where ρ(X, f) is an appropriately chosen risk measure, the first constraint is the

conventional assumption on the ceded loss function f and the second constraint

represents the premium budget. Note that ρ(X, f) depends on the assumed loss

distribution X and the ceded loss function f . Furthermore, the optimization is

carried over all possible functions f so that the above problem is an infinite di-

mensional optimization problem. Unless additional simplifying assumptions are

imposed (such as confining f to a class of increasing convex function and Π is an

expectation premium principle), it can be extremely challenging to deriving the

analytic solutions to model (5.1.1).

In considering model (5.1.1), an implicit assumption is the availability of the

loss distribution X. In practice this is estimated empirically from the observed

data. The estimated distribution of X is then incorporated into model (5.1.1) to

derive the desired solutions. Instead of using such a two-step process, a natural

question to ask is that if we can reformulate an optimal reinsurance model which

directly exploits the observed empirical data. If this is possible, then such a model

will be of greater interest. It will be intuitively appealing and practical in that it

provides a direct linkage between the optimal ceded loss functions and the loss data

experienced by an insurer. More importantly, we do not need to make any explicit

assumption on the underlying risk. In order to distinguish between the reinsurance

model (5.1.1) and our proposed empirical-based reinsurance model, we refer the

former model as the theoretical model while the latter model as the empirical model.

Analogously, the optimal solution to the former model is referred as the theoretical

solution while the optimal solution to the latter model as the empirical solution.
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The rest of the chapter is organized as follows. Section 5.2 describes the general

formulation of our proposed empirical-based reinsurance model. Section 5.3 pro-

vides a brief introduction to the second-order cone (SOC) programming. It turns

out that many of the empirical reinsurance models can be cast as the SOC program-

ming as we establish in Section 5.4 for the variance minimization, CTE minimization

and VaR minimization reinsurance models. Sections 5.5, 5.6 and 5.7, respectively,

discuss the solutions to the three empirical models introduced in Section 5.4. Fi-

nally, Section 5.8 concludes the chapter by commenting on the pros and cons of the

empirical-based reinsurance model.

5.2 General Empirical Reinsurance Models

In this section, we describe our proposed empirical-based reinsurance model.

We begin by denoting xi as the i-th loss (or claim amount) data (before any

application of reinsurance) empirically observed by the insurance company. Let

xT := (x1, x2, · · · , xN) be a vector which collects all the N empirical data. Based

on these experienced data, our objective is to determine an optimal reinsurance

coverage fi corresponds to each loss observation xi. Obviously fi is the decision

variable and we use the vector fT := (f1, f2, · · · , fN) to represent all the N opti-

mization variables. The principle underling the empirical-based reinsurance model

is to formulate the optimization model involving both x and f directly. More

specifically, corresponding to the theoretical model (5.1.1), our proposed empirical

reinsurance model can be formulated in the following symbolic form:





min
f

ρ̂(x, f)

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
Π̂(f) ≤ π.

(5.2.2)
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Comparing to model (5.1.1), the above objective value ρ̂(x, f) depends explicitly on

x and f and hence can be interpreted as the empirical estimate of ρ(X, f). Similarly,

Π̂(f) can be interpreted as the empirical estimate of Π(f(X)) given the decision

vector f .

By construction, the above empirical model (5.2.2) is an N -dimensional opti-

mization problem in that it requires to optimally determine fi for each empirical

data xi, i = 1, · · · , N . Let f∗T = (f ∗
1 , · · · , f ∗

N) denote the resulting empirical so-

lutions to model (5.2.2). Note that the empirical reinsurance model effectively

transforms an infinite dimensional optimization model (5.1.1) into a reinsurance

optimization model that is of N -dimension. Furthermore, the optimal ceded loss

function is now represented by a set of finite points (xi, f
∗
i ), i = 1, · · · , N , in-

stead of a smooth ceded loss function f(x) in terms of x. However, some standard

smoothing techniques such as spline interpolation can always be used if we were

interested in a smooth ceded loss function. In our examples to be discussed in

later sections, we will represent the solution by simply showing the scatter plots

of the pairs {(xi, f
∗
i ), i = 1, 2, . . . , N} and then inferring the shape of the optimal

ceded loss function. As we will shortly discover, the scatter plots reveal that the

optimal ceded functions admit some interesting shapes depending on the actual

specification of the empirical models.

To conclude this section, we point out that when implementing our proposed

empirical-based reinsurance models, the optimal solutions can depend on how we

formally define the empirical estimators of the objective function and the constraints

in the empirical models. In our numerical examples, we estimate these quantities

using the empirical distribution; i.e., assigning equal probability 1/N to each pair

(xi, fi) for i = 1, 2, · · · , N .
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5.3 Second-Order Cone (SOC) Programming

In the last section, we argue that one of the advantages of the proposed empirical-

based approach is that it transforms an infinite-dimensional optimization problem

into a finite-dimensional problem. However, we have yet to address how to deter-

mine the optimal solution f∗ of the resulting empirical models. It turns out that

many of our proposed empirical reinsurance models can be cast as a SOC program-

ming and hence numerical techniques associated with solving SOC programming

can be used to derive the solutions to our proposed empirical models. Detailed

discussion on SOC programming can be found in Alizadeh and Goldfarb (2003),

Ben-Tal and Nemirovski (2001), and Lobo, et al. (1998). Below we provide a brief

introduction to SOC programming and we draw most of these materials from the

references mentioned above.

The most explicit form of a SOC programming is as follows:




min
x∈Rn

cTx

s.t. ‖Dix − di‖ ≤ pT
i x − qi, i = 1, 2, · · · , k,

(5.3.3)

where x ∈ Rn is the optimization variable, and the problem parameters are c ∈ Rn,

Di ∈ R(ni−1)×n, di ∈ Rni−1, pi ∈ Rn, and qi ∈ R. The norm appearing in the

constraints is the standard Euclidean norm, i.e., ‖u‖ = (uT u)1/2. The constraint

‖Dix − di‖ ≤ pT
i x − qi

is called a second-order cone constraint (of dimension n). This is because the

standard or unit second-order (convex) cone of dimension n is defined as

En =






 u

t


 : u ∈ Rn−1, t ∈ R, ‖u‖ ≤ t



 .

The above set En is also called the quadratic, ice-cream, or Lorentz cone. Some

literature call the SOC programming as the “Conic Quadratic Programming” and
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accordingly the corresponding constraints as the “Conic Quadratic Constraints”.

The set of points satisfying a second-order cone constraint is the inverse image of

the unit second-order cone under an affine mapping:

‖Dix − di‖ ≤ pT
i x − qi ⇐⇒


 Di

pT
i


x −


 di

qi


 ∈ Eni

and hence is convex. Thus, the SOC programming (5.3.3) is a convex program-

ming problem since the objective is a convex function and the constraints define

a convex set. Indeed, SOC programming includes a wide class of common convex

optimization problems. Linear programs, convex quadratic programs and quadrat-

ically constrained convex quadratic programs can all be regarded as special cases

of SOC programming problems, as can many other problems that do not fall into

these categories. The SOC programming problems can be solved efficiently using

several available solvers based on the interior-point method. These softwares in-

clude SeDuMi (see Sturm(1999)), SDPT3 (see Tütüncü et al. (2003)) and CVX

(see Grant and Boyd (2008)). In this thesis, we will use CVX, which is available

for free download on the author’s homepage and it is a Matlab based package.

To discuss which type of problems can be cast as the SOC programming prob-

lem, it is helpful to introduce the concepts of second-order cone representable (ab-

breviated SOC-representable) sets and functions. We say a convex set S ⊂ Rn

SOC-representable if it can be represented by finitely many second-order cone

constraints, possibly after introducing some auxiliary variables, i.e., there exists

Di ∈ R(ni−1)×(n+m), di ∈ Rni−1, pi ∈ Rn+m and scalar qi ∈ R such that

x ∈ S ⇐⇒ ∃ vector u ∈ Rm such that

∥∥∥∥∥∥
Di


 x

u


− di

∥∥∥∥∥∥
≤ pT

i


 x

u


− qi,

i = 1, 2, · · · , k.

We say a function g(·) is SOC-representable if its graph {(x, t) : g(x) ≤ t} is a

SOC-representable set. Alizadeh and Goldfarb (2003), Ben-Tal and Nemirovski
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(2001) and Lobo, et al. (1998) summarized many important SOC-representable

sets/functions, as well as many operations under which the SOC-representability

preserves for these sets/functions.

Below are some examples of the SOC-representable functions which will be used

extensively throughout this chapter:

(A1) Affine function g(x) = aTx + b;

(A2) Convex quadratic function g(x) = xT Qx + qTx + r, where Q is a positive

semidefinite matrix;

(A3) The Lp-norm g(x) = ‖x‖p = (
∑n

i=1 x
p
i )

1/p
(p ≥ 1 a rational number).

Note that if g(x) is SOC-representable, then the constraint g(x) ≤ aT x + b is also

SOC-representable for any vector a with appropriate dimension and scalar b. This

can be explained by the following equivalence:

g(x) ≤ aT x + b ⇐⇒





g(x) ≤ t

t ≤ aT x + b

of which both inequalities on the right hand side are SOC-representable constraints.

A consequence of the SOC-representability of functions g(x), h(x) and set S is

that the optimization problem



minx g(x)

s.t. x ∈ S
h(x) ≤ 0

can be cast as a SOC programming.

To discuss what kinds of empirical reinsurance models can be cast as the SOC

programming problems, we focus on the general empirical model (5.2.2) and con-

sider two cases. If the goal function ρ̂(x, f) is linear, then the resulting em-

pirical model is SOC programming provided that the reinsurance premium bud-

get constraint Π̂(f) ≤ π is SOC-representable since the conventional constraints
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0 ≤ fi ≤ xi, i = 1, 2, · · · , N are linear. On the other hand, if the goal function is

nonlinear, then we can reformulate (5.2.2) into an equivalent optimization problem

of the following:





min
f ,t

t

s.t. 0 ≤ fi ≤ xi, i = 1, 2, ·, N,
Π̂(f) ≤ π,

ρ̂(x, f) ≤ t.

(5.3.4)

Clearly, (f∗, t∗) solves (5.3.4) if and only if f∗ solves model (5.2.2). Thus, both

Π̂(f) ≤ π and ρ̂(x, f) ≤ t are required to be SOC-representable in order that the

empirical reinsurance model is a SOC programming problem.

5.4 SOC Programming and Empirical Reinsur-

ance Models

In this section, we discuss the connection between the empirical reinsurance

models and the SOC programming. In particular, Subsection 5.4.1 first shows

that the empirical reinsurance premium budget constraint Π̂(f) ≤ π is SOC-

representable for as many as ten reinsurance premium principles. Then in subse-

quent subsections 5.4.2-5.4.4, we consider three specific empirical reinsurance mod-

els, namely the variance minimization model, the CTE minimization model, and

the VaR minimization model. For each model, we will demonstrate how to refor-

mulate the optimization problem as the SOC programming so that the solutions to

these problems can obtained efficiently.
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5.4.1 SOC-Representable Reinsurance Premium Constraint

In this subsection, we analyze one by one the premium principle for which the

empirical reinsurance premium budget constraint Π̂(f) ≤ π is SOC-representable.

The following notation is used extensively in the subsequent discussions.

• e denotes an N -dimensional vector with all elements equal to 1.

• E denotes an N ×N matrix with all elements equal to 1.

• For given vectors xT = (x1, . . . , xN ) and fT = (f1, . . . , fN), we let x̄ and f̄ be

their respective average; i.e. x̄ = 1
N

∑N
i=1 xi = 1

N
eTx and f̄ = 1

N

∑N
i=1 fi =

1
N
eT f .

• Q is an N ×N matrix with the following specification:

Q =




qT
1

...

qT
N


 =




1 − 1
N

− 1
N

· · · − 1
N

− 1
N

1 − 1
N

· · · − 1
N

...
...

. . .
...

− 1
N

− 1
N

· · · 1 − 1
N



. (5.4.5)

In the above definition of Q, qi is an N -dimensional vector with its i-th

element equals to 1− 1
N

and the remaining entries assign to −1/N . It is also

easy to verify the following relationship:

N∑

i=1

(fi − f̄)2 = ‖f − f̄e‖2 = fT Qf .

In the following discussion of the SOC-representability of the constraint Π̂(f) ≤
π, we recall that the empirical estimator will be constructed based on the empirical

distribution.
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Q1. Expectation principle: Π(f) = (1 + θ)E[f ] with θ > 0.

Π̂(f) ≤ π ⇐⇒ (1 + θ)f̄ ≤ π ⇐⇒ eT f ≤ 1 + θ

N
π,

which is a linear constraint and hence is SOC-representable.

Q2. Standard deviation principle : Π(f) = E[f ] + β
√

D[f ], where β > 0.

Π̂(f) ≤ π ⇐⇒ f̄ + β
1√
N
‖f − f̄e‖ ≤ π

⇐⇒ ‖Qf‖ ≤ − 1

β
√
N

eT f +

√
N

β
π,

which is clearly a second-order cone constraint.

Q3. Mixed principle: Π(f) = E[f ] + βD[f ]/E[f ], where β > 0.

Π̂(f) ≤ π ⇐⇒ f̄ +
β

f̄

‖f − f̄e‖2

N
≤ π

⇐⇒
(
f̄
)2

+ β
‖f − f̄e‖2

N
≤ πf̄

⇐⇒ fT

(
1

N
E + βQ

)
f ≤ πeT f ,

which is a convex quadratic constraint, since the matrix
(

1
N
E + βQ

)
is pos-

itive semi-definite. Thus, Π̂(f) ≤ π is SOC-representable for mixed principle

Π.
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Q4. Modified variation principle: Π(f) = E[f ]+β
√

D[f ]+γD[f ]/E[f ] with γ, β > 0.

Π̂(f) ≤ π ⇐⇒ f̄ + β
1√
N
‖f − f̄e‖ + γ

‖f − f̄e‖2

Nf̄
≤ π

⇐⇒





f̄ +
β√
N
‖f − ef̄‖ ≤ t1

γ

N
‖f − ef̄‖2/f̄ ≤ t2

t1 + t2 ≤ π

⇐⇒





‖Qf‖ ≤ − 1
β
√

N
eT f +

√
N
β
t1∥∥∥∥∥∥


 Qf

N
γ
· f̄−t2

2



∥∥∥∥∥∥
≤ N

γ
f̄+t2

2

t2 ≥ 0

t1 + t2 ≤ π

which are second-order cone constraints with two auxiliary decision variables

t1 and t2.

Q5. p-mean value principle: Π(f) = (E[f p])1/p, where p > 1, a rational number.

Π̂(f) ≤ π ⇐⇒
(

1

N

)1/p

‖f‖p ≤ π,

which is a second-order cone constraint.

Q6. Semi-deviation principle: Π(f) = E[f ] + β
{
E(f − E[f ])2

+

}1/2
with 0 < β < 1.

Π̂(f) ≤ π ⇐⇒ f̄ +
β√
N

(
N∑

i=1

(fi − f̄)2
+

)1/2

≤ π

⇐⇒





∥∥(y1, · · · , yN)T
∥∥ ≤ − 1

β
√
N

eT f +

√
N

β
π,

yi ≥ 0, yi ≥ fi −
1

N
eT f , i = 1, 2, · · · , N,

which, by definition, are second-order cone constraints with auxiliary variables

y1, · · · , yN .
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Q7. Dutch principle: Π(f) = E[f ] + βE(f − E[f ])+ with 0 < β ≤ 1.

Π̂(f) ≤ π ⇐⇒ f̄ +
β

N

N∑

i=1

(
fi − f̄

)
+
≤ π

⇐⇒





f̄ +
β

N

N∑

i=1

ui ≤ π,

ui ≥ 0, ui ≥ fi − f̄ , i = 1, 2, · · · , N,

which are linear constraints and hence second-order cone constraints.

Q8. Variance principle: Π(f) = E[f ] + βD[f ] with β > 0

Π̂(f) ≤ π ⇐⇒ f̄ +
β

N
‖f − ef̄‖2 ≤ π

⇐⇒ fTQf +
1

β
eT f − N

β
π ≤ 0,

which is a convex quadratic constraint and hence a second-order cone con-

straint.

Q9. Semi-variance principle: Π(f) = E[f ] + βE (f − E[f ])2
+ with β > 0.

Π̂(f) ≤ π ⇐⇒ f̄ +
β

N

N∑

i=1

(fi − f̄)2
+ ≤ π

⇐⇒





f̄ +
β

N

N∑

i=1

y2
i ≤ π,

yi ≥ 0, yi ≥ fi − f̄ , i = 1, 2, · · · , N

which, by definition, are clearly second-order cone constraints with auxiliary

decision variables y1, · · · , yN .

Q10. Quadratic utility principle: Π(f) = E[f ] + γ −
√
γ2 − D[f ] with γ > 0 and
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γ2 ≥ D[f ].

Π̂(f) ≤ π ⇐⇒ f̄ + γ −
√
γ2 − 1

N
fTQf ≤ π

⇐⇒





1

N
fT Qf ≤ γ2

f̄ + γ − π ≤ 0

or





1

N
fT Qf ≤ γ2

f̄ + γ − π ≥ 0
(
f̄ + γ − π

)2 ≤ γ2 − 1

N
fTQf

⇐⇒





fTQf ≤ Nγ2

eT f ≤ N(π − γ)

or





fTQf ≤ Nγ2

eT f ≥ N(π − γ)

fT

(
1

N2
E +

1

N
Q

)
f + 2

γ − π

N
eT f + π2 − 2γπ ≤ 0

The constraints in the above two systems are either linear or convex quadratic.

Hence, Π̂(f) ≤ π can be cast as the union of two SOC-representable sets.

5.4.2 Empirical Reinsurance Model: Variance Minimiza-

tion

Recall that for the variance minimization model, the objective is to minimize

the variance of the insurer’s retained loss (or equivalently the total loss). More

formally, the theoretical formulation of the reinsurance model can be described as:




minf Var(Rf ) = Var(X − f(X))

s.t. 0 ≤ f(x) ≤ x,

Π(f) ≤ π.

(5.4.6)
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To consider its empirical counterpart, first note that given x and f , a sample esti-

mate of the objective function Var(X − f(X)) is given by1

V̂ar(Rf ) =
1

N

N∑

i=1

[(
xi − fi) − (x̄− f̄

)]2
, (5.4.7)

where x̄ and f̄ denotes the sample mean of the observed data x and the decision

variable f , respectively. Similarly, the empirical analog of the constraints are

0 ≤ fi ≤ xi, i = 1, 2, · · · , N, and Π̂(x) ≤ π.

Consequently, we obtain the following empirical variance minimization model:





min
f∈RN

V̂ar(Rf) =
1

N

N∑

i=1

[(
xi − fi) − (x̄− f̄

)]2

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N, and Π̂(x) ≤ π.

(5.4.8)

Furthermore, by rewriting (5.4.7) as

V̂ar(Rf ) =
1

N
(x − f)TQ(x − f)

=
1

N

[
fT Qf − 2xTQf + xTQx

]
.

The empirical reinsurance model (5.4.8) can be equivalently reformulated as





min
f∈RN

fTQf − 2xTQf

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
Π̂(f) ≤ π.

(5.4.9)

Note that the goal function is a convex quadratic function of f and hence is SOC-

representable. Furthermore, we have demonstrated in Subsection 5.4.1 that the

1Alternatively, we could have used the unbiased estimator 1
N−1

∑N

i=1

[(
xi − fi) − (x̄ − f̄

)]2
for

̂Var(Rf ). Here we continue to use (5.4.7) in order to be consistent with all other estimators that

are based on empirical distribution.
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empirical reinsurance premium constraint Π̂(f) ≤ π is SOC-representative for as

many as ten premium principles. This implies that the above reinsurance model

(5.4.9) can be cast as a SOC programming for the premium principles discussed in

Subsection 5.4.1. Section 5.5 will provide a numerical example demonstrating how

to solve the re-formulated SOC programming via the CVX software.

5.4.3 Empirical Reinsurance Model: CTE Minimization

Recall that the theoretical CTE minimization model takes the following form:




minf CTEα(Tf ) = CTEα

(
X − f(X) + Π[f(X)]

)

s.t. 0 ≤ f(x) ≤ x, Π[f(X)] ≤ π,
(5.4.10)

where Π is the reinsurance premium principle, Tf ≡ X − f(X) + Π[f(X)] denotes

the total loss of the insurer in the presence of the reinsurance with a ceded loss

function f , and π is a preset reinsurance premium budget. As we argued in Chapter

4, instead of considering the reinsurance model (5.4.10), it is more tractable to

consider the following equivalent optimization model:




min
(ξ,f)

Gα(ξ, f) = ξ +
1

α
E

[(
X − f(X) + Π(f(X)) − ξ

)
+

]

s.t. 0 ≤ f(x) ≤ x, Π(f(X)) ≤ π.

(5.4.11)

These two models (5.4.10) and (5.4.11) are equivalent in the sense that (ξ∗, f ∗)

solves (5.4.11) if and only if f ∗ solves (5.4.10) and ξ∗ minimizes Gα(ξ, f ∗). This

result is due to Rockafellar and Uryasev (2002, Theorem 14).

Because of the tractability of latter model, we similarly focus on the empirical

version of model (5.4.11), instead of model (5.4.10). Consequently, the empirical

counterpart of model (5.4.11) is simply given by




min
(ξ,f)

Ĝα(ξ, f) = ξ +
1

αN

N∑

i=1

[(
xi − fi + Π̂(f) − ξ

)
+

]

s.t. Π̂(f) ≤ π, and 0 ≤ fi ≤ xi for i = 1, 2, · · · , N,
(5.4.12)
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where we have taken the “sample average” as the estimator for the expectation

E

[(
X − f(X) + Π(f(X)) − ξ

)
+

]
in the theoretical model (5.4.11).

In order to demonstrate the linkage between the above model (5.4.12) and the

SOC programming, it is convenient to introduce the auxiliary decision vector z =

(z1, · · · , zN)T , and reformulate model (5.4.12) as follows:




min
(ξ,f ,z)

ξ +
1

αN

N∑

i=1

zi

s.t. Π̂(f) ≤ π,

0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
zi ≥ 0 and zi ≥ xi − fi + Π̂(f) − ξ, i = 1, 2, · · · , N.

(5.4.13)

Clearly, model (5.4.13) is equivalent to (5.4.12) in the sense such that (ξ∗, f∗) solves

model (5.4.12) if and only if (ξ∗, f∗, z∗) solves (5.4.13) with an appropriately chosen

constant vector z∗. The remaining task is to verify that model (5.4.13) can be

cast as a SOC programming. To ensure that the above optimization model is SOC

programming, we only need to verify both constraints zi ≥ xi − fi + Π̂(f) − ξ and

Π̂(f) ≤ π are SOC-representable since the remaining constraints as well as the

objective function are linear in the optimization variables. In Subsection 5.4.1 we

have already established that there are at least ten premium principles for which the

reinsurance premium budget Π̂(f) ≤ π is SOC-representable. Hence, it remains to

verify the SOC-representability of zi ≥ xi−fi+Π̂(f)−ξ. To do this, it is convenient

to first denote gi(ξ, f , z) = Π̂(f) − fi − ξ − zi + xi for i = 1, 2, · · · , N . Then we

need to show {gi(ξ, f , z) ≤ 0, i = 1, 2, · · · , N} are SOC-representable under each

premium principle. The discussion below confirms that these constraints indeed

attain SOC-representability for the same set of ten premium principles.

Q1. Expectation principle: Π(f) = (1 + θ)E[f ] with θ > 0.

gi(ξ, f , z) ≤ 0 ⇐⇒ (1 + θ)f̄ − fi − ξ − zi + xi ≤ 0

⇐⇒ 1 + θ

N
eT f − fi − ξ − zi + xi ≤ 0,
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which is a linear constraint and hence is SOC-representable.

Q2. Standard deviation principle : Π(f) = E[f ] + β
√

D[f ], where β > 0.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β√
N
‖f − f̄e‖ − fi − ξ − zi + xi ≤ 0

⇐⇒ ‖Qf‖ ≤ − 1

β
√
N

eT f +

√
N

β
(fi + ξ + zi − xi),

which, by definition, is clearly a second-order cone constraint and SOC-

representable.

Q3. Mixed principle: Π(f) = E[f ] + βD[f ]/E[f ], where β > 0.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β

f̄

‖f − f̄e‖2

N
− fi − ξ − zi + xi ≤ 0

⇐⇒ ‖Qf‖2

f̄
≤ N

β
(fi + ξ + zi − xi − f̄)

⇐⇒





N∑

j=1

uj ≤
N

β
(fi + ξ + zi − xi − f̄)

w2
j ≤ ujvj , j = 1, 2 · · · , N

vj = f̄ ≥ 0, j = 1, 2 · · · , N
wj = qT

j f , j = 1, 2 · · · , N,

where qj denotes the jth row in the matrix Q. It is clear that all the above

constraints are linear except w2
j ≤ uivi, which can be cast as a second-order

cone constraint such that

∥∥∥∥∥

(
wj,

uj − vj

2

)T
∥∥∥∥∥ ≤ uj + vj

2
. Thus, gi(ξ, f , z) ≤ 0

are SOC-representable.

Q4. Modified variation principle: Π(f) = E[f ] + β
√

D[f ] + γD[f ]/E[f ], where con-
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stants γ, β > 0.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β√
N
‖f − f̄e‖ + γ

‖f − f̄e‖2

Nf̄
− fi − ξ − zi + xi ≤ 0

⇐⇒





f̄ + β
1√
N
‖Qf‖ ≤ t1

‖Qf‖2/f̄ ≤ N

γ
t2

t1 + t2 ≤ fi + ξ + zi − xi,

⇐⇒





‖Qf‖ ≤
√
N

β
t1 −

1

β
√
N

eT f

N∑

j=1

uj ≤
N − 1

γ
t2

w2
j ≤ ujvj , j = 1, 2, · · · , N

vj = f̄ ≥ 0, j = 1, 2, · · · , N
wj = qT

j f , j = 1, 2, · · · , N
t1 + t2 ≤ fi + ξ + zi − xi,

which are second-order cone constraints with two auxiliary decision variables

t1 and t2.

Q5. p-mean value principle: Π(f) = (E[f p])1/p, where p > 1 a rational number.

gi(ξ, f , z) ≤ 0 ⇐⇒
(

1

N

)1/p

‖f‖p − fi − ξ − zi + xi ≤ 0,

which is clearly a second-order cone constraint.

Q6. Semi-deviation principle: Π(f) = E[f ] + β
{
E(f − E[f ])2

+

}1/2
with 0 < β < 1.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β√
N

(
N∑

j=1

(fj − f̄)2
+

)1/2

− fi − ξ − zi + xi ≤ 0

⇐⇒





∥∥(y1, · · · , yN)T
∥∥ ≤

√
N
β

(fi + ξ + zi − xi − f̄)

yj ≥ 0, yj ≥ fj − 1
N
eT f , j = 1, 2, · · · , N,
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which are second-order cone constraints.

Q7. Dutch principle: Π(f) = E[f ] + βE([f − E[f ])+ with 0 < β ≤ 1.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β

N

N∑

i=1

(
fi − f̄

)
+
− fi − ξ − zi + xi ≤ 0

⇐⇒





f̄ +
β

N

N∑

j=1

uj − fi − ξ − zi + xi ≤ 0

uj ≥ 0, uj ≥ fj − f̄ , j = 1, 2, · · · , N,

which are linear constraints.

Q8. Variance principle: Π(f) = E[f ] + βD[f ] with β > 0

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β

N
‖f − ef̄‖2 − fi − ξ − zi + xi ≤ 0

⇐⇒ fT Qf +
1

β
eT f − N

β
(fi + ξ + zi − xi) ≤ 0,

which is a convex quadratic constraint and hence a second-order cone con-

straint.

Q9. Semi-variance principle: Π(f) = E[f ] + βE (f − E[f ])2
+ with β > 0.

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ +
β

N

N∑

j=1

[fj − f̄ ]2+ − fi − ξ − zi + xi ≤ 0

⇐⇒





f̄ + β
N

∑N
j=1 y

2
j − fi − ξ − zi + xi ≤ 0

yj ≥ 0, yj ≥ fj − f̄ , j = 1, 2, · · · , N,

which, by definition, are clearly second-order cone constraints with auxiliary

decision variables y1, · · · , yN .
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Q10. Quadratic utility principle: Π(f) = E[f ] + γ −
√
γ2 − D[f ] with γ > 0 and

γ2 ≥ D[f ].

gi(ξ, f , z) ≤ 0 ⇐⇒ f̄ + γ −
√
γ2 − 1

N
fTQf − fi − ξ − zi + xi ≤ 0

⇐⇒





1
N
fTQf ≤ γ2

f̄ + γ − fi − ξ − zi + xi ≤ 0,

or





1
N
fTQf ≤ γ2

f̄ + γ − fi − ξ − zi + xi ≥ 0
(
f̄ + γ − fi − ξ − zi + xi

)2 ≤ γ2 − 1
N
fTQf .

The constraints in the above two systems are either linear or convex quadratic.

Hence, gi(ξ, f , z) ≤ 0 can be cast as the union of two SOC-representable sets.

5.4.4 Empirical Reinsurance Model: VaR Minimization

Recall that if the objective were to minimize the VaR of the insurer’s total risk

in the presence of reinsurance, then the optimal reinsurance model can be written

as:




min
f

VaRα(Tf ) = VaRα(X − f(X)) + Π(f)

s.t. 0 ≤ f(x) ≤ x, Π[f(X)] ≤ π.
(5.4.14)

To construct the empirical version of the above VaR minimization model (5.4.14),

first note that the quantity VaRα(X − f(X)) with ceded loss function f is defined

as

VaRα(X − f(X)) = min {ξ ∈ R : Pr (X − f(X) ≤ ξ) ≥ α} ,

and thus its empirical estimate is given by

VaRα(f) = max
1≤i≤N

⌊αN⌋+1(xi − fi),
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where ⌊·⌋ denotes the integer part and max
1≤i≤N

k denotes the kth biggest element.

Consequently, we obtain the following empirical VaR minimization model





min
f

max1≤j≤N
⌊αN⌋+1 xi − fi + Π̂(f)

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
Π̂(f) ≤ π.

(5.4.15)

It should be emphasized that the above empirical VaR minimization model is no

longer a convex optimization problem since generally VaR is not convex. Despite

the lack of convexity and hence its posing additional challenge in obtaining the

optimal solution, Section 5.7 will demonstrate how a solution can be obtained by

using some heuristic algorithms.

5.5 Empirical Solutions to the Variance Minimiza-

tion Model

We have illustrated how to develop the empirical model based on the theoretical

variance minimization model in the last section. The resulting empirical model

is shown in (5.4.9) where a convex quadratic function is minimized. Thus, model

(5.4.9) can be cast as a SOC programming for premium principles Q1-Q10 discussed

in Subsection 5.4.1. In this section, we provide some numerical illustrations of our

proposed empirical variance minimization model by focusing on two reinsurance

premium principles; i.e., Q1 (expectation principle) and Q2 (standard deviation

principle). We also demonstrate that the solutions can be obtained efficiently using

some existing SOC programming softwares such as the CVX.
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5.5.1 Expectation Principle

Under the expectation premium principle, the reinsurance premium budget con-

straint becomes (1+ θ)f̄ ≤ π. Clearly, this is a linear constraint and hence the em-

pirical variance minimization model remains to be a convex quadratic programming

(it is also a SOC programming) even if we were to replace the budget constraint

with a binding one, i.e., (1+ θ)f̄ = π. With such modification, the empirical model

revises to




min
f∈RN

fTQf − 2xTQf

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
(1 + θ)

1

N
eT f = π.

(5.5.16)

The above reinsurance model is of theoretical interest in that it can be considered

as the empirical version of the classical variance minimization reinsurance model.

Recall that the classical variance minimization reinsurance model seeks optimal

reinsurance by minimizing the insurer’s total loss subject to the binding insurance

premium. It is also well-known that the optimal reinsurance design for the classical

model is the stop-loss reinsurance. See, for example, Bowers, et al. (1997), Kaas,

et al. (2001) and Gerber (1979). Such theoretic result, therefore, can be used

to benchmark against the optimal solution f∗ obtained from the empirical model

(5.5.16). This explains why we focus on the empirical model with a binding, instead

of unbinding, reinsurance premium constraint.

We now present two numerical examples to illustrate the applicability of our

proposed empirical-based variance minimization reinsurance models. The numeri-

cal illustrations consist of the following steps:

Step 1: Simulate random samples xi, i = 1, . . . , N from an appropriately chosen loss

distribution. The simulated N samples are assumed to be the empirically
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observed loss data. In our examples, we simulate N = 300 random samples

from exponential and Pareto distributions restrictively.

Step 2: Predetermine the loading factor θ and the reinsurance premium budget π. In

our examples, we set θ = 0.2 and π = 400, 600, 800, and 1000.

Step 3: Use CVX to obtain solutions f∗ = (f ∗
1 , . . . , f

∗
N).

Step 4: Depict the resulting solutions using scatter plots for (xi, f
∗
i ), i = 1, 2, · · · , N .

As pointed out earlier that the optimal ceded loss function is a stop-loss for the the-

oretical variance minimization model. This implies that the scatter plot produced

from Step 4 of the above empirical solutions should mimic the shape of a stop-loss

reinsurance.

Example 5.1 Variance Minimization Model with the Expectation Prin-

ciple and Exponential Loss Distribution

In this example, we carry out the above Steps 1-4 by drawing random samples from

an exponential distribution with mean µ = 1,000, i.e,

FX(x) = 1 − e−
x
µ , x ≥ 0.

The scatter plots of the solutions for π = 400, 600, 800, and 1000 are shown in

Figure 5.1. It is reassuring that the resulting shape of the empirical solutions looks

like a stop-loss function, which is consistent with the classical result. Furthermore,

as the insurer is willing to spend more on the reinsurance premium, more risk is

transferred to a reinsurer as indicated by the lower stop-loss retention with higher

π.

Example 5.2 Variance Minimization Model with the Expectation Prin-

ciple and Pareto Loss Distribution

This example is similar to the last example except that the empirical samples are
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Figure 5.1: Empirical solutions to the variance minimization model with expecta-

tion principle and exponential loss distribution.
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drawn from a Pareto distribution with mean µ = 1, 000, i.e., FX(x) = 1−
(

2,000
x+2,000

)3

,

x ≥ 0. The solutions are presented in Figure 5.2 and the scatter plots are also con-

sistently revealing that the shape of the optimal ceded loss function behave like a

stop-loss, in accordance with the theoretical results.

5.5.2 Standard Deviation Premium Principle

As we have established in Subsection 5.4.1, the reinsurance premium budget

under the standard deviation principle is equivalent to ‖Qf‖ ≤ − 1
β
√

N
eT f +

√
N
β
π.

This suggests that the empirical variance minimization model reduces to





min
f∈RN

fTQf − 2xTQf

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N,
‖Qf‖ ≤ − 1

β
√

N
eT f +

√
N
β
π.

(5.5.17)

We study the empirical solutions of the above reinsurance model through the fol-

lowing two numerical examples 5.3 and 5.4.

Example 5.3 Variance Minimization Model with the Standard Deviation

Principle and Exponential Loss Distribution

The setup of this example is similar to Example 5.1 in that the same exponential

loss distribution is used to generate the empirical loss data and the CVX is also used

to solve the resulting SOC programming. The only difference is that the reinsurance

premium is determined by the standard deviation premium principle with loading

factor β = 0.2. The four scatter plots in Figure 5.3 depict the optimal reinsurance

treaty f∗ for different levels of reinsurance premium budget. These scatter plots

still indicate that the stop-loss reinsurance treaty is optimal even when we mod-

ify the premium principle from the expectation principle to the standard deviation

principle.
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Figure 5.2: Empirical solutions to the variance minimization model with expecta-

tion principle and Pareto loss distribution.
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Figure 5.3: Empirical solutions to the variance minimization model with standard

deviation principle and exponential loss distribution.
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Example 5.4 Variance Minimization Model with the Standard Deviation

Principle and Pareto Loss Distribution

This example is again similar to Example 5.3 except that Pareto distribution is

employed. The results obtained by using CVX to the resulting programming problem

are presented by the four scatter plots in Figure 5.4. Similar to the exponentially

distributed case, the scatter plots suggest that stop-loss reinsurance is optimal.

5.6 Empirical Solutions to the CTE Minimiza-

tion Model

Recall that in Subsection 5.4.3 we have established for many of the premium

principles that are of interest to us, that the resulting empirical CTE minimization

model can be cast as a SOC programming. The aim of this section is to provide an

additional insight to our empirical CTE minimization model by confining to two

specific premium principles: Q1 (the expectation principle) and Q2 (the standard

deviation principle). This is elaborated in greater details in the following two

subsections.

5.6.1 Expectation Reinsurance Premium Principle

In this subsection, we assume that the reinsurance premium is calculated ac-

cording to the expectation principle with a safety loading θ > 0 and we shall discuss

the optimal reinsurance treaties to the empirical CTE minimization model (5.4.13).

Before doing so, let us first recall the result we established in the previous chapter,

which states that a stop-loss reinsurance solves the theoretical model (5.4.10) un-

der the expectation reinsurance premium principle. Thus, for the empirical model

(5.4.13), we should also expect to derive a solution consistent to the stop-loss treaty.
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Figure 5.4: Empirical solutions to the variance minimization model with standard

deviation principle and Pareto loss distribution.
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By consistency, we mean that the empirical solutions have the same functional shape

as the theoretical solutions. We will further discuss the consistency of the empirical

solutions in the next chapter.

With the expectation principle and a safety loading factor θ, the empirical

version of Π(f(X)) becomes Π̂(f) = (1 + θ)f̄ and thus model (5.4.13) reduces to




min(ξ,f ,z) ξ + 1
αN

∑N
i=1 zi,

s.t. f̄ ≤ π/(1 + θ),

0 ≤ fi ≤ xi, i = 1, 2, · · · , N
zi ≥ 0, zi ≥ xi − fi + (1 + θ)f̄ − ξ, i = 1, 2, · · · , N,

(5.6.18)

which is obviously a linear programming problem and thus it can be solved by

simplex method or interior-point method in polynomial time. Parallel to Examples

5.1 and 5.2 in Subsection 5.5.1 for the variance minimization model, Examples 5.5

and 5.6 repeat the same analysis except for the empirical CTE minimization model

(5.4.13). These examples suggest that the stop-loss reinsurance treaties are optimal

for these models as we demonstrate below.

Example 5.5 CTE Minimization Model with the Expectation Principle

and Exponential Loss Distribution

Similar to the previous examples, we create N = 300 empirical loss data by first

sampling from an exponential distribution with mean µ = 1, 000. Then together with

parameter values α = 5% and θ = 0.2, the CVX is used to solve the resulting empir-

ical CTE minimization model (5.6.18) over various reinsurance premium budgets:

π ∈ {200, 400, 600, 800, 1000, 1500}. The scatter plots of the solutions are shown in

Figure 5.5. It is first interesting to note that the stop-loss reinsurance can still be

optimal even when we change the optimality objective from minimizing variance to

minimizing CTE. Second, when an insurer is willing to increase its premium budget

on reinsuring its risk, more risks can be transferred to a reinsurer as indicated by

the lower levels of retention. Third, as the reinsurance premium budget increases
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beyond 1000, the stop-loss retention seems to remain unchanged. This phenomenon

in fact is consistent with the theoretical results established in the last chapter. In

particular, Remark 4.5 asserts that the stop-loss treaty f ∗(x) = (x− d∗)+ with the

retention d∗ satisfying (1+θ)E[(x−d∗)+] = min{π, πθ} is an optimal solution to the

theoretical CTE minimization model. In our numerical setting, it is easy to verify

that πθ = 1000 which suggests the optimal retention will not change for any pre-

mium budget greater than 1000. Hence our empirical solutions appear to be aligned

with the theoretical results. In the next chapter, we will provide an in-depth analysis

addressing the stability and consistency of the empirical solutions.

Example 5.6 CTE Minimization Model with the Expectation Principle

and Pareto Loss Distribution

The setup for this example is identical to the last example except that we use the

Pareto distribution with mean µ = 1,000 and we assume π ∈ {200, 400, 600, 800,

1062, 1500}. The solutions in Figure 5.6 again suggest that the optimal ceded loss

function has the same structure as the exponential case. Hence the observations

and conclusion that we made for the exponential case are similarly applied to the

Pareto case. Note however that in this example, πθ = 1062 and this explains why

we consider this particular reinsurance premium budget in this example.

5.6.2 Standard Deviation Reinsurance Premium Principle

Let us now assume that the reinsurance premium is determined by the standard

deviation principle. Under this special case, the empirical reinsurance premium

budget constraint Π̂(f) ≤ π reduces to ‖Qf‖ ≤ − 1
β
√

N
eT f +

√
N
β
π (see Subsection

5.4.1), and the constraint Π̂(f)− fi − ξ− zi + xi ≤ 0 becomes ‖Qf‖ ≤ − 1
β
√

N
eT f +

√
N
β

(fi + ξ + zi − xi) for i = 1, . . . , N (see Subsection 5.4.3). Furthermore, the
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Figure 5.5: Empirical solutions to the CTE minimization model with expectation

principle and exponential loss distribution.
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Figure 5.6: Empirical solutions to the CTE minimization model with expectation

principle and Pareto loss distribution.
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empirical CTE minimization model (5.4.13 is formulated as




min(ξ,f ,z) ξ + 1
αN

∑N
i=1 zi,

s.t. 0 ≤ fi ≤ xi, i = 1, 2, · · · , N
‖Qf‖ ≤ − 1

β
√

N
eT f +

√
N
β
π

zi ≥ 0, i = 1, 2, · · · , N
‖Qf‖ ≤ − 1

β
√

N
eT f +

√
N
β

(fi + ξ + zi − xi), i = 1, 2, · · · , N.

(5.6.19)

The solutions to the above model will be explored in the following two examples.

Example 5.7 CTE Minimization Model with the Standard Deviation

Principle and Exponential Loss Distribution

In this example, we use loss data simulated from the same distribution as in Exam-

ple 5.5 to solve model (5.6.19) with β = 0.2 and for reinsurance premium π ranging

from as low as 50 to as high as 2000. For this particular reinsurance model specifi-

cation, the scatter plots of the solutions shown in Figure 5.8 reveal some interesting

structures of the optimal reinsurance treaties. For instance, for higher reinsurance

premium budget (say π ≥ 120) the optimal treaty is a typical stop-loss reinsurance.

On the other hand, for lower reinsurance premium (say π ≤ 100), the optimal treaty

becomes a capped stop-loss reinsurance implying that the insurer no longer has an

unlimited coverage from the reinsurer. In these situations, the reinsurer has a max-

imum capped payout and hence the insurer assumes any residual risk exposure for

any loss exceeding the upper limit.

Example 5.8 Consider the optimal solutions to model (5.6.19) with β = 0.2 and

using loss data simulated from the same loss distribution as in Example 5.6. The

scatter plots in Figure 5.8 present the solutions for twelve different levels of rein-

surance premium budget π in the range [50, 2000]. Based on these scatter plots,

a similar conclusion can be obtained as in Example 5.7. The optimal reinsurance

treaty is the capped stop-loss reinsurance for reinsurance budget π ≤ 200 while the

optimal reinsurance is a stop-loss treaty for π ≥ 200.
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Figure 5.7: Empirical solutions to the CTE minimization model with standard

deviation principle and exponential loss distribution.

169



0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

1) π = 50

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

2) π = 80

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

3) π = 100

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4) π = 120

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

5) π = 150

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

6) π = 200

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7) π = 400

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

8) π = 600

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

9) π = 800

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

10) π = 1000

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11) π = 1500

0 2000 4000 6000 8000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

12) π = 1500

Figure 5.8: Empirical solutions to the CTE minimization model with standard

deviation principle and Pareto loss distribution.
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5.7 Empirical Solutions to the VaR Minimization

Model

In this section, we shall investigate the solutions to the empirical VaR mini-

mization model (5.4.15). In contrast to the variance minimization and CTE mini-

mization models, the VaR minimization model is no longer a convex programming

problem even under the simplest expectation reinsurance principle. For this reason

it is considerably more challenging to deduce the optimal solution for the VaR min-

imization model. Nevertheless, we will demonstrate that an empirical solution to

the VaR minimization model can still be deduced using some heuristic approaches

such as those in Larsen et al. (2002) and Gaivoronski and Pflug (Winter 2004-

2005). In these two papers, the authors proposed several algorithms for the VaR

optimization problems in the context of the portfolio selection.

In this section, we will use the approach proposed by Larsen et al. (2002) to

obtain the empirical solution to our empirical-based VaR reinsurance model. The

procedure is summarized in Algorithm A below. The general idea underlying this

type of algorithms is to construct upper bounds for VaR and then minimize these

bounds. The following Algorithm A adopts the CTE as the upper bound to be

minimized, and then split the scenarios into two groups (represented by the set Hi

and its complement) depending on whether the losses exceed VaRα, and “discard”

the upper portion of these scenarios. The number of scenarios that are discarded is

determined by a preset parameter ξ (e.g., if ξ is equal to 0.5, then the upper half is

discarded). Then, a new α1 is calculated in such a way that the CTEα1 calculated

based on the remaining losses is an upper bound for VaRα of the original problem.

Then, we minimize this upper bound, and so on. To summarize, we would con-

struct a series of upper bounds and minimize them until we do not have anymore

scenarios to discard.
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Algorithm A

Step 0. Initialization

i) Set α0 = α, i = 0, H0 = {j : j = 1, 2, · · · , N}, v0 = 1/(αN)

ii) Assign a value for the constant ζ , 0 < ζ < 1, say ζ = 0.75

Step 1. Optimization subproblem

i) Minimize CTEαi





min(γ,ξ,z,f) ξ + vi

∑
j∈Hi

zj

s.t. 0 ≤ fj ≤ xj , j = 1, 2, · · · , N,
Π̂(f) ≤ π,

zj ≥ 0 and zj ≥ xj − fj + Π̂(f) − ξ,

xj − fj + Π̂(f) ≤ γ, j ∈ Hi,

xj − fj + Π̂(f) ≥ γ, j /∈ Hi,

Let (γ∗i , ξ
∗
i , z

∗, f∗) denote the solution to the above CTEαi
minimization

problem, where z∗ = {z∗1 , z∗2 , · · · , z∗N} and f∗ = {f ∗
1 , f

∗
2 , · · · , f ∗

N}.

ii) Rearrange {xj − f ∗
j + Π̂(f∗), j = 1, 2, · · · , N} in an ascending order, and

denote the ordered scenarios by jl, l = 1, 2, · · · , N .

Step 2. Estimate VaR

Vi = xjl(α)
− fjl(α)

+ Π̂(f∗), where l(α) = min{l : l/N ≥ 1 − α}

Step 3. Stopping the algorithm

If Hi = Hi−1, then stop the algorithm and f∗ is the estimate of the optimal

solution and set the minimal VaR as Vi.

Step 4. Re-initialization
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i) i = i+ 1

ii) bi = (1 − α) + α(1 − ζ)i and 1 − αi = (1 − α)/bi

iii) Hi = {jl ∈ Hi−1 : l/N ≤ bi}

iv) vi = (αi × the number of elements in Hi)
−1

v) Go back to step 1.

In Example 5.9 below, we will consider the empirical VaR minimization model

(5.4.15) with the expectation reinsurance premium principle and obtain the solu-

tions by using Algorithm A. Before we proceed, let us recall some related theoretical

results established by Wang, et al. (2005) and Bernard and Tian (2009). In Wang,

et al. (2005), the authors discussed the problem in the context of optimal insur-

ance, but their results are applicable to the optimal reinsurance design. Here, we

rephrase their results to tailor to the reinsurance context. In their paper, the op-

timal reinsurance treaties are explored by maximizing the insurer’s expected final

wealth resulting from the reinsurance treaty starting from an initial wealth W0 and

a loss X on which the reinsurance is applied. They considered a reinsurance model

with a solvency constraint as follows:





maxf W = W0 − P − E[X] + E[f(X)],

s.t. Pr{W ≥W − v} ≥ 1 − α, and P = (1 + θ)E[f(X)],

0 ≤ f(x) ≤ x for all x ≥ 0,

(5.7.20)

where P is the reinsurance premium calculated according to the expectation prin-

ciple with a loading factor θ > 0, W = W0 − P − X + f(X) is the insurer’s final

wealth resulted from the reinsurance treaty, and v is an exogenously preset positive

constant representing the VaR level. Wang, et al. (2005) proved that, under some

mild conditions, the optimal treaty to model (5.7.20) is of the following form with
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two appropriately chosen constants d, l > 0:

f(x) =





0, x ≤ d;

x− d, d < x < l;

0, x ≥ l.

(5.7.21)

Clearly, the constraint Pr{W ≥W −v} ≥ 1−α in model (5.7.20) can be viewed as

a VaR constraint VaRα(W −W ) ≤ v, and hence loosely speaking, the model can

be regarded as the dual problem to our VaR minimization model (5.4.14).

While Wang, et al. (2005) just take Pr{W ≥ W − v} ≥ 1 − α as a constraint

in their reinsurance model, Bernard and Tian (2009) consider a reinsurance model

which directly minimizes the ruin probability Pr{W ≥W −v} subject to the other

two constraints as in model (5.7.20). The optimal ceded loss function obtained

by them has the same functional form as the one in (5.7.21). In light of these

two results, it is reasonable for us to expect that the empirical solutions to model

(5.4.15) should have a deductable at certain loss level, then increase linearly, and

eventually reduce to zero for loss exceeding a higher threshold level. The results

demonstrated in Example 5.9 highly support such an assertion.

Example 5.9 VaR Minimization Model with the Expectation Principle

and Exponential Loss Distribution

By setting α = 0.05, using the same set of exponentially simulated empirical data,

and applying Algorithm A in CVX, Figures 5.9 and 5.10 display the solutions to

model (5.4.15) for various levels of reinsurance premium. These results are con-

sistent with the solutions obtained in Wang, et al. (2005) and Bernard and Tian

(2009); i.e. they have the same functional form as in (5.7.21).

Remark 5.1 It is worthy noting that Algorithm A might not be efficient if we were

to change the expectation premium principle to other premium principles. This

is because in the subproblem embedded in the algorithm involves the constraints
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Figure 5.9: Empirical solutions to the VaR minimization model with expectation

principle and exponential loss distribution (1).
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Figure 5.10: Empirical solutions to the VaR minimization model with expectation

principle and exponential loss distribution (2).
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xj − fj + Π̂(f) ≥ γ, j /∈ Hi, which might not be SOC-representable for a nonlinear

premium principle Π. Thus, for VaR minimization model, other algorithms are

demanded in order to obtain the solutions for more reinsurance premium principles.

5.8 Conclusion

Due to the inherent infinite dimension nature of the optimization problem, most

reinsurance models turn to be too mathematically challenging to be solved effi-

ciently, and thus the insurer is tremendously restricted in exploring the optimal

reinsurance treaties in their decision-making. To overcome such a restriction, this

chapter proposes an innovative method to address the optimal solutions——the

empirical approach. By experimenting with the variance minimization model, the

CTE minimization model, and the VaR minimization model, this chapter shows

that our empirical approach is strongly effective in the sense that the empirical

solutions derived by the empirical approach are highly consistent to the theoretical

solutions whenever they exist.

Next, let us remark on the pros and cons of our proposed empirical approach.

Focus on its advantages first. The empirical models are completely empirical data

based, and hence using this empirical approach we need not make any explicit

assumption on the distribution of the underlying risk. The empirical models are

finite dimensional optimization problems and hence they are much more tractable

than their theoretical counterparts, which are usually infinite dimensional prob-

lems. Therefore, the empirical approach allows much more flexibility of the opti-

mality objective as well as the reinsurance premium principle in the reinsurance

models, compared with the theoretical models. For examples, with the CTE mini-

mization criterion, we are unable to derive the solutions to the theoretical models

if the reinsurance premiums principles are other than the expectation principle for

which we discussed in the last chapter. However, using the empirical approach we
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derived the solutions to the theoretical models for the standard deviation principle.

Following the same procedure as we did for the standard deviation principle, we

can derive the solutions to the empirical CTE minimization model for all the other

principles involved in this chapter with labels Q1-Q10. Finally, recall that in order

to find the solutions to the theoretical CTE minimization model, we first establish

some sufficient and necessary conditions which an optimal solution must satisfy and

then identify the solutions by trying some candidates with these conditions. The

choice of the candidates for this purpose can be quite non-trivial. Hence, once we

derive the empirical solutions, they will provide valuable insights on how to choose

an appropriate candidate in searching for the theoretical optimal solutions.

One obvious limitation of the empirical approach lies on the fact that the em-

pirical model will turn out to be a large scale programming when the sample size is

extremely large, and hence issues such as computational time and requirement for a

substantial computer’s memory will arise. Another issue on the empirical approach

is that the general theoretical relationship between the empirical solutions and the

theoretical solutions are unknown and it demands future research. It seems that

we have to establish the uniform convergence of the goal function in the empirical

models to the goal function in the theoretical model over all feasible ceded loss

functions.
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Chapter 6

Additional Analysis on the

Empirical-based Reinsurance

Models

6.1 Introduction

In the last chapter, we developed an empirical-based approach for optimal rein-

surance design. This approach has several appealing features relative to the theo-

retical reinsurance model. First, the proposed approach is very intuitive. It deter-

mines the optimal reinsurance by directly exploiting the empirically observed loss

data. Second, we do not need to make any explicit assumption on the underlying

distribution of losses. Third, the resulting empirical model is of finite dimensions.

Lastly, the proposed approach is much more versatile, practical and tractable. By

resorting to SOC programming, optimal solutions can be obtained in a wide range

of reinsurance models.

Let us now recall the empirical-based CTE minimization model. This particular
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reinsurance model is formulated as follows:




min
(ξ,f ,z)

ξ + 1
αN

∑N
i=1 zi,

s.t. Π̂(f) ≤ π,

0 ≤ fi ≤ xi, i = 1, 2, · · · , N
zi ≥ 0, zi ≥ xi − fi + Π̂(f) − ξ, i = 1, 2, · · · , N,

(6.1.1)

where x := {x1, · · · , xN} denotes the empirical loss data of sizeN , f := {f1, · · · , fN}
stands for the reinsurance coverage corresponding to the empirical data, Π̂(f) is the

empirical version of the reinsurance premium, and π represents the preset level of

the reinsurance premium budget. Parallel to the empirical model, the standard

theoretical model is formulated as




minf CTEα(Tf ) = CTEα

(
X − f(X) + Π[f(X)]

)

s.t. 0 ≤ f(x) ≤ x, Π[f(X)] ≤ π,
(6.1.2)

where X is the underlying loss random variable with nonnegative support, f is the

ceded loss function, and Π is the adopted reinsurance premium principle.

The main objective of this chapter is to provide an in-depth analysis of the

solutions generated from the empirical reinsurance models. Recall that the em-

pirical reinsurance model produces optimal ceded loss value for each data point.

More specifically, when we solve model (6.1.1) based upon an input data x :=

{x1, · · · , xN} consisting of N sample points, the output will be N corresponding

optimal ceded values f∗ := {f ∗
1 , · · · , f ∗

N}. This is also the reason for displaying the

empirical solutions in the form of scatter plots for the examples considered in the

last chapter.

In this chapter, we are interested in the following issue: the stability and consis-

tency of the empirical solutions. By stability, we mean that the empirical solutions

always generate the same functional form of the optimal ceded loss function for

independent random samples from the same loss distribution and over the same
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set of parameter values. By consistency, we mean that the empirical optimal ceded

loss function converges to the theoretically true optimal ceded loss function as we

increase the sample size N . While it is challenging to provide a formal analysis

on the stability and consistency of our proposed empirical reinsurance models, we

address these issues by resorting to some numerical experiments on the CTE mini-

mization model. The numerical studies also allow us to gain important insights on

the behavior of our proposed empirical solutions, particularly for small sample size.

The remaining chapter is organized as follows. Section 6.2 discusses the stability

and consistency issues under the assumption of the expectation premium principle.

This example is useful since in this special case, we know analytically the optimal

ceded loss function based on the results developed in Chapter 4. Hence the analytic

solution can be used as a benchmark against the solutions generated from the

empirical models. Section 6.3 considers an example with the standard deviation

premium principle. This example is even more interesting in that its optimal ceded

loss function is unknown. Section 6.4 concludes the chapter.

6.2 Expectation Premium Principle Example

In this section, we consider an example with the following characteristics:

(i) reinsurance premium is determined by the expectation premium principle

with loading factor θ = 0.2;

(ii) the reinsurance premium budget π = 300;

(iii) α = 0.05;

(iv) the loss random variable X has an exponential distribution or a Pareto dis-

tribution with mean µ = 1, 000.
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Note that the exponential distribution are usually thought of as a light-tailed distri-

bution while the Pareto distribution is often regraded as a heavy-tailed distribution.

The reason we include both of them in the numerical example is that we hope to

gain certain insights regarding the stability and consistency for both the light and

heavy tailed loss distributions.

Let us further remark that under the setup of the above example, the solution to

theoretical model (6.1.2) can be solved analytically. In particular, we can resort to

Theorem 4.2 in Chapter 4 to determine an optimal ceded loss function f ∗. Consider

the exponential loss distribution first. In this case, we have

dα = inf {d : Pr[X > d] ≤ α} = −µ ln(0.05) = 2, 995.73

and

dθ = inf

{
d :,Pr[X > d] ≤ 1

1 + θ

}
= −µ ln

(
1

1 + 0.2

)
= 1, 823.22.

This in turn leads to πα = (1 + θ)E[(X − dα)+] = 60 and πθ = (1 + θ)E[(X −
dθ)+ = 1, 000 so that under reinsurance premium budget of π = 300, the condition

πα < π < πθ is satisfied. Hence Theorem 4.2 in Chapter 4 asserts that the stop-loss

treaty f = (x−d∗)+ with retention d∗ determined through (1+θ)E[(x−d∗)+] = 300

is an optimal solution to problem (6.1.2). It is then easy to derive the corresponding

optimal retention value; i.e. d∗ = µ ln(4) = 1, 386.29.

If the loss random variable X is Pareto distributed with mean 1,000, we have

dα = 2, 000
(
α−1/3 − 1

)
= 3, 428.84

and

dθ = inf

{
d :,Pr[X > d] ≤ 1

1 + θ

}
= −µ ln

(
1

1 + 0.2

)
= 125.32.

This in turn leads to πα = (1 + θ)E[(X − dα)+] = 162.86 and πθ = (1 + θ)E[(X −
dθ)+ = 1, 062.66 so that under reinsurance premium budget of π = 300, the con-

dition πα < π < πθ is satisfied. Hence Theorem 4.2 in Chapter 4 is also ap-

plicable, and again the stop-loss treaty f = (x − d∗)+ is an optimal solution
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to problem (6.1.2) with d∗ determined through (1 + θ)E[(x − d∗)+] = 300, i.e.,

d∗ = 2, 000
(√

4 − 1
)

= 2, 000.

In our present setting, we are interested in analyzing the solutions to model

(6.1.1). Our numerical experiment involves first drawing samples from the assumed

loss distribution and then applying the random samples as input to model (6.1.1) to

determine the shape of the optimal ceded loss function. Since model (6.1.2) yields

an analytical solution of the ceded loss function, this implies that its solution can be

used as a benchmark in numerically assessing the accuracy of the empirical solution

of model (6.1.1). It is reassuring that the numerical evidence to be presented shortly

indicates that the solutions to model (6.1.1) is in concordance with that to model

(6.1.2), even for relatively small sample size.

Recall that we have observed in Examples 5.5 and 5.6 that for both exponen-

tial loss distribution and Pareto loss distribution, the scatter plots of the optimal

ceded values resemble the shape of stop-loss functions. For this reason, we con-

sider to fit the empirical solutions with the form of the more general change-loss

function f(x) = c(x − d)+, where parameters c and d are obtained by fitting to

{(x1, f
∗
1 ), (x2, f

∗
2 ), · · · , (xN , f

∗
N)}. Here f∗ = (f ∗

1 , f
∗
2 , · · · , f ∗

N) corresponds to the so-

lutions derived by solving model (6.1.1). If the empirical solution is converging to

the analytical solution, then we expect that the fitted value of c and d, denoted

by ĉ and d̂, respectively, converge to 1 and d∗, as we increase the sample size N .

Recall that d∗ denotes the retention in the theoretical solutions, which is equal to

1, 386.29 for the exponential case and 2, 000 for the Pareto case.

There exists a number of ways of fitting c(x − d)+ to the optimal ceded loss

values. The key of our fitting algorithm is first to determine (approximately) the

retention d and then fit c(x − d) to those data points that exceed the determined

value for d. Let ε be the error tolerance parameter of our fitting algorithm, then

our procedure can be described as follows:
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[F1]. Sort the pairs {(x1, f1), (x2, f2), · · · , (xN , fN)} in an ascending order in xi,

and relabel the ordered pairs as {(x(1), f(1)), (x(2), f(2)), · · · , (x(N), f(N))}.

[F2]. Set n0 to be the smallest i among {1, . . . , N} such that |f(i)| ≥ ε.1

[F3]. Fit f(x) = c(x− d) to the subset of the data {(x(n0), f(n0)), (x(n0)+1, f(n0)+1),

· · · , (x(N), f(N))} to obtain the fitted ĉ and d̂ using the ordinary least squares.

In summary, our numerical experiment consists of the following three steps.

In Step 1, we generate a random sample x := {x1, · · · , xN} from the underlying

loss distribution. Then in Step 2, we solve model (6.1.1) to obtain the empirical

solutions f := {f1, · · · , fN}. Finally in Step 3, we fit c(x− d)+ to {x, f} to deduce

the fitted ĉ and d̂. This implies that for each independent sample of x, we obtain

a fitted pair ĉ and d̂. Furthermore, we also distinguish if the fitted pair ĉ and d̂ is

admissible or inadmissible. The fitted pair ĉ and d̂ is said to be admissible if the

following conditions are satisfied:





|f(i)| < ε for i = 1, . . . , n0 − 1,∣∣∣f(i) − ĉ
(
x(i) − d̂

)∣∣∣ < ε for i = n0, . . . , N.
(6.2.3)

If any of the above conditions is violated, then we refer the resulting fitted pair ĉ

and d̂ as inadmissible. The admissibility criterion enforces the goodness of fit by

ensuring that the residual values (i.e. difference between the fitted ceded loss value

and the optimal empirical ceded loss value) at all data points are less than the error

tolerance ε. Consequently, for an admissible solution, the smaller the ε, the better

the fit.

In our numerical studies, we consider nine different sample sizes, ranging from

N = 150 to N = 390 in multiple of 30. Note that we have intentionally chosen a

rather small sample size in order to have a better understanding of the performance

1If |f(i)| < ε for all i = 1, 2 · · · , N , then it is reasonable to take f∗(x) = 0 for all x ≥ 0. We

ignore this trivial case.
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N Admissibility mean of ĉ mean of d̂ mean of x

150 100% 1.00 (≈ 0) 1,386.68 (7.04) 999.77 (2.66)

180 100% 1.00 (≈ 0) 1,386.73 (6.10) 1,000.50 (2.31)

210 100% 1.00 (≈ 0) 1,379.63 (5.59) 996.60 (2.18)

240 100% 1.00 (≈ 0) 1,381.87 (5.34) 997.04 (2.06)

270 100% 1.00 (≈ 0) 1,384.98 (5.11) 999.12 (1.94)

300 100% 1.00 (≈ 0) 1,391.44 (4.65) 1,003.14 (1.76)

330 100% 1.00 (≈ 0) 1,384.16 (4.62) 998.87 (1.75)

360 100% 1.00 (≈ 0) 1,392.36 (4.40) 1,001.15 (1.64)

390 100% 1.00 (≈ 0) 1,385.55 (4.12) 1,000.58 (1.57)

Table 6.1: Empirical solutions based on 1,000 independent replications of an ex-

ponential loss distribution for the expectation premium principle. Column 1 gives

the sample size of each replication. Column 2 gives the proportion of the solutions

that are admissible. Columns 3, 4 and 5 tabulate the average of the fitted ĉ, fitted

d̂, and simulated random samples, respectively, over all admissible solutions. The

standard errors of the estimates are given in parentheses.

of the proposed empirical solution. For each sample size N , we replicate the random

samples for M = 1, 000 times independently to obtain 1,000 independent estimates

of ĉ and d̂ using ε = 0.1. Of the fitted pair ĉ and d̂, we also keep track of the

proportion of admissibility and we report only the mean and standard errors of

the admissible fitted ĉ and d̂. We analyze the results for both the exponential loss

distribution and the Pareto loss distribution. The results for the exponential loss

distribution are summarized in Table 6.1 and the boxplots in Figures 6.1 (for ĉ) and

6.2 (for d̂). The corresponding results for the Pareto loss distribution are reported

in Table 6.2 and the boxplots in Figures 6.3 and 6.4. Based on these results, we
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N Admissibility mean of ĉ mean of d̂ mean of x

150 93.8% 1.00 (≈ 0) 1,981.75 (23.71) 1,003.08 (4.52)

180 93.2% 1.00 (≈ 0) 1,945.92 (20.85) 1,001.70 (3.97)

210 95.0% 1.00 (≈ 0) 1,948.37 (19.96) 994.39 (3.59)

240 94.7% 1.00 (≈ 0) 2,005.88 (19.83) 1,003.36 (3.48)

270 95.0% 1.00 (≈ 0) 1,982.12 (18.17) 1,001.89 (3.30)

300 96.1% 1.00 (≈ 0) 1,983.13 (18.31) 997.00 (3.11)

330 96.2% 1.00 (≈ 0) 1,995.64 (17.43) 998.98 (3.03)

360 96.9% 1.00 (≈ 0) 1,994.08 (16.49) 998.04 (2.74)

390 97.6% 1.00 (≈ 0) 1,990.33 (14.99) 999.84 (2.62)

Table 6.2: Empirical solutions based on 1,000 independent replications of a Pareto

loss distribution for the expectation premium principle.

draw the following remarks:

• Regarding the exponential loss distribution, the simulated results suggest that

the empirical solutions are strongly stable and consistent. We now elaborate

further on these observations. First, the empirical solutions are very stable

with respect to the shape of the stop-loss function. This can be deduced from

the 100% admissibility and the fact that all the fitted values of ĉ are almost

one with negligible standard error (see also its boxplot in Figure 6.1). This

implies that all the empirical solutions consistently yield the shape of the stop-

loss function to within 0.1 error tolerance level, even for sample size as small

as N = 150. Second, the empirical solutions are consistent with the analytical

solution. This can be concluded by the fact that both the theoretical solutions

and empirical solutions take the same form as a stop-loss function. Moreover,

the fitted values of d̂ also demonstrate a strong concordance with the retention
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in the theoretical solution. As the sample sizeN increases, the fitted d̂ appears

to be converging consistently to d∗ = 1, 386.29 with a decreasing standard

error. For example, even with only a sample size N = 390, the average of

d̂ = 1, 385.55 is very close to d∗ with a tiny standard error 4.12.

• For the heavy-tailed Pareto distribution, the simulated results also imply that

the empirical solutions are stable and consistent with the theoretically optimal

stop-loss solution, although the results are not as perfect as that for the light-

tailed exponential distribution. As shown in Table 6.2, the admissibility is

more than 93% for all the considered sample size and in particular it reaches

as high as 97.6% when sample size N = 390. Moreover, of those admissible

solutions, all the fitted values of ĉ are almost one with negligible standard

error (see also its boxplot in Figures 6.3) and the average of the fitted values

of d̂ is close to the theoretical retention d∗ = 2, 000.

• For comparison, the last column of Tables 6.1 and 6.2 demonstrate the quality

of the random samples by reporting the average of the randomly generated

samples (together with its standard error). The reported values are consistent

with the true value of µ = 1, 000 for both exponential loss distribution and

Pareto loss distribution.

6.3 Standard Deviation Premium Principle Ex-

ample

In this section, we use the same numerical setup as in the last section except that

the reinsurance principle is the standard deviation premium principle with loading

factor β = 0.2. In other words, the reinsurance premium constraint Π̂(f) ≤ π
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Figure 6.1: Boxplot of the admissible ĉ under expectation premium principle and

exponential loss distribution.
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Figure 6.2: Boxplot of the admissible retention d̂ under expectation premium prin-

ciple and exponential loss distribution.
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Figure 6.3: Boxplot of the admissible ĉ under expectation premium principle and

Pareto loss distribution.
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Figure 6.4: Boxplot of the admissible retention d̂ under expectation premium prin-

ciple and Pareto loss distribution.
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becomes

‖Qf‖ ≤ − 1

β
√
N

eT f +

√
N

β
π.

Furthermore, the reinsurance premium budget is revised to π = 100, instead of

π = 300 as in the previous case.

This example is considerably more challenging for two reasons. First, unlike the

expectation premium principle, analytical solution under the standard deviation

premium principle is no longer available. Second, the scatter plots in Examples 5.7

and 5.8 suggest that the functional form of the optimal ceded loss function depends

on the magnitude of the reinsurance premium budget π. In particular when π is

high, the scatter plots reveal that the stop-loss functions are optimal. On the other

hand, as we reduce the budget, say to π = 100, the optimal ceded loss function

changes from a stop-loss function to a capped stop-loss function. Henceforth, we

assume that the optimal ceded loss function is of the form capped change-loss func-

tion for which the capped stop-loss function is a special case. The same numerical

analysis as we have conducted in the last section is used to assess the stability of

our proposed empirical method.

The general form of a capped change-loss function involves three parameters

c, d, and m with the representation f(x) = min{c(x − d)+, m}. We now describe

in details the fitting of this function to the optimal ceded loss values derived from

the empirical model. As we did in the last section, we begin with ordered pairs

{(x(1), f(1)), (x(2), f(2)), · · · , (x(N), f(N))} (arrange in ascending order in xi). The key

of fitting these points to a capped change-loss function is, for a prespecified error

tolerance ε, to identify the subset of the ordered pairs {(x(nl), f(nl)), (x(nl+1), f(nl+1)),

· · · , (x(nu), f(nu))} that will be fitted to c(x− d). Here both nl and nu are integers

satisfying nu − nl > 1. Furthermore, nl corresponds to the smallest integer i such
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that |f(i)| ≥ ε while nu is the largest k such that2

∣∣∣∣∣f(k) −
1

N − k + 1

N∑

j=k

f(j)

∣∣∣∣∣ ≥ ε.

Accordingly, a reasonable estimate of the upper limit m, denoted by m̂, is given by

the average 1
N−nu

∑N
j=nu+1 f(j). Also, the linear function f(x) = c(x − d) can now

be fitted to the ordered pairs {(x(nl), f(nl)), (x(nl+1), f(nl+1)), · · · , (x(nu), f(nu))} to

determine the fitted ĉ and d̂. Similar to the example in the previous section, the

fitted values ĉ, d̂, and m̂ are said to be inadmissible if at least one of the following

conditions is satisfied:

nu − nl ≤ 1, (6.3.4)
∣∣∣f(i) − ĉ

(
x(i) − d̂

)∣∣∣ ≥ ε for at least one i ∈ {nl, · · · , nu }, (6.3.5)

max{f(i) : i = nl, . . . , nu} ≥ m̂, (6.3.6)
∣∣∣f(N) − ĉ

(
x(N) − d̂

)∣∣∣ ≥ ε. (6.3.7)

Otherwise, the fitted values ĉ, d̂, and m̂ are admissible. Condition (6.3.7) pre-

cludes the possibility that an ordinary change-loss function (i.e. without a cap) is

incorrectly identified as a capped change-loss function.

As in the previous section, we consider both the exponential and Pareto dis-

tributions with tolerance error ε = 0.1 and nine sample sizes N = 130 to 390 in

multiple of 30. Tables 6.3 and 6.4 depict, respectively, for the exponential and

Pareto distribution cases, the results of the fits for the standard deviation premium

principle examples with 1,000 independent replications. The boxplots for all the

admissible ĉ, d̂, and m̂ are also produced. Figures 6.5, 6.6 and 6.7 are, respectively,

the boxplots of ĉ, d̂ and m̂ for the exponential distribution while Figures 6.8, 6.9

and 6.10 are the results for the Pareto distribution. Based on these results, we

make the following remarks:

2If
∣∣∣f(k) − 1

N−k+1

∑N

j=k f(j)

∣∣∣ < ε for all k = 1, 2 · · · , N , then we set nu = 0 and we ignore this

trivial case.
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N Admissibility mean of ĉ mean of d̂ mean of m̂ mean of x

150 89.7% 1.00 (≈ 0) 2,694.13 (11.45) 1,502.85 (6.90) 1,002.62 (2.75)

180 93.8% 1.00 (≈ 0) 2,686.45 (10.04) 1,505.36 (6.51) 1,001.31 (2.42)

210 95.8% 1.00 (≈ 0) 2,686.67 (9.17) 1,509.18 (5.99) 1,001.31 (2.21)

240 97.1% 1.00 (≈ 0) 2,679.99 (8.51) 1,509.82 (5.94) 999.59 (2.06)

270 97.9% 1.00 (≈ 0) 2,677.78 (7.97) 1,507.24 (5.71) 999.08 (1.95)

300 98.8% 1.00 (≈ 0) 2,676.32 (7.58) 1,507.23 (5.36) 998.94 (1.84)

330 98.9% 1.00 (≈ 0) 2,673.58 (7.17) 1,499.80 (4.97) 999.17 (1.76)

360 99.8% 1.00 (≈ 0) 2,672.89 (6.61) 1,504.78 (4.71) 1,000.20 (1.65)

390 99.9% 1.00 (≈ 0) 2,677.89 (6.55) 1,501.04 (4.80) 999.56 (1.60)

Table 6.3: Empirical-based solutions based on 1000 independent replications of an

exponential distribution for the standard deviation premium principle.

• Under our admissibility criteria specified above, not all of the fitted values

are considered as admissible in both cases of the exponential and Pareto loss

distributions. However, it is still reassuring that the empirical solutions are

stable in that predominantly high proportion of the fitted values are iden-

tified as admissible. The worst case, which corresponds to N = 150 in the

exponential distribution case, still suggests that 89.7% of the solutions are

identified as the capped change-loss function. In the Pareto distribution case,

the admissibility reaches as high as 97.1% in the worst case and it attains

100% when the sample size N is larger than 270.

• Of the admissible solutions, the fitted ĉ is virtually equal to 1 (with negligible

standard errors3) for both loss distributions. This strongly suggests that

the optimal ceded loss function is a capped stop-loss function, rather than a

capped change-loss function.

• The fitted values of d̂, and m̂ appear to be reasonable in that their standard

3The estimated standard errors are in the order of 10−8.
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N Admissibility mean of ĉ mean of d̂ mean of m̂ mean of x

150 97.1% 1.00 (≈ 0) 3,211.22 (23.19) 1,295.76 (4.65) 1,003.52 (4.58)

180 98.5% 1.00 (≈ 0) 3,168.34 (18.72) 1,291.44 (4.23) 1,000.20 (3.91)

210 99.5% 1.00 (≈ 0) 3,188.90 (17.09) 1,284.84 (3.69) 999.37 (3.67)

240 99.6% 1.00 (≈ 0) 3,155.74 (14.75) 1,281.42 (3.48) 993.46 (3.42)

270 99.7% 1.00 (≈ 0) 3,181.36 (15.40) 1,281.70 (3.27) 999.26 (3.28)

300 100% 1.00 (≈ 0) 3,161.11 (13.94) 1,278.89 (3.10) 997.82 (3.06)

330 100% 1.00 (≈ 0) 3,162.77 (13.82) 1,270.64 (2.77) 1,000.89 (3.06)

360 100% 1.00 (≈ 0) 3,157.03 (12.27) 1,270.78 (2.76) 998.10 (2.77)

390 100% 1.00 (≈ 0) 3,153.93 (12.09) 1,269.64 (2.59) 997.59 (2.97)

Table 6.4: Empirical-based solutions based on 1000 independent replications of a

Pareto distribution for the standard deviation premium principle.

errors decrease as we increase the sample size. This is also supported by the

boxplots in Figures 6.6, 6.7, 6.9 and 6.10.

• The last column of Tables 6.3 and 6.4 tabulates the sample mean of the

simulated random samples. Again these estimates are consistent with the

true value, which is 1,000.

6.4 Conclusion

In this chapter, an extensive numerical studies have been provided in addressing

the stability and consistency of our proposed empirical reinsurance models. The

focus is on the small sample size. For the examples where we know the analytic

solutions, we observe that the empirical solutions are very stable and converge

quickly to the theoretically true solution. For the examples where we do not know

the theoretical solution, our results are still very encouraging even for small sample

195



N=150 N=180 N=210 N=240 N=270 N=300 N=330 N=360 N=390

0.99993

0.99994

0.99995

0.99996

0.99997

0.99998

0.99999

va
lu

e
s

sample size

Figure 6.5: Boxplot of the admissible ĉ under standard deviation premium principle

and exponential loss distribution.
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Figure 6.6: Boxplot of the admissible d̂ under standard deviation premium principle

and exponential loss distribution.
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Figure 6.7: Boxplot of the admissible m̂ under standard deviation premium princi-

ple and exponential loss distribution.
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Figure 6.8: Boxplot of the admissible ĉ under standard deviation premium principle

and Pareto loss distribution.
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Figure 6.9: Boxplot of the admissible d̂ under standard deviation premium principle

and Pareto loss distribution.
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Figure 6.10: Boxplot of the admissible m̂ under standard deviation premium prin-

ciple and Pareto loss distribution.
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size with respect to the stability of the empirical solutions. We emphasize that

the ultimate advantage of our proposed empirical reinsurance models lies in its

flexibility. It can be used to derive optimal ceded loss functions over a variety of

premium principles where analytic solutions are typically not available.
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Chapter 7

Concluding Remarks and Further

Research

7.1 Achievements of the Thesis

In this thesis, I have established a series of reinsurance models and analyzed

their optimal solutions. These reinsurance models have the following characteris-

tics. First, the optimality objectives exploit commonly used risk measures such

as VaR, CTE, and Variance. Second, the considered reinsurance premium prin-

ciples encompass the expectation principle, the standard deviation principle and

many others. Third, the feasible ceded loss functions are assumed to have different

degree of generality. In some models, we confined our analysis to some specific

functional forms of the ceded loss functions (such as quota-share, stop-loss or class

of increasing convex functions) while in other models, the ceded loss function can

be very general. Fourth, the incorporated constraints can be interpreted as either

the insurer’s profitability guarantee or the insurer’s reinsurance premium budget.

Finally, depending on the specific type of formulation, the optimal reinsurance de-
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signs can be of the form: quota-share, stop-loss, change-loss, or even non-convex

type (such as stop-loss with an upper limit).

While the entire thesis was concerned with issues related to optimal reinsurance,

we could further classify our results into two broad areas. First few chapters of the

thesis focused on analytic results. We observed that in some reinsurance models

it was relatively easy to analyze while in other cases the mathematical tools used

to derive the optimal solutions can be quite tedious. In the last two chapters

(i.e. Chapters 5 and 6), the reinsurance models are formulated directly based

on the empirical data. We pointed out that there are a number of advantages

associated with this approach. In particular, this method is intuitively appealing,

distribution free, and flexible. The proposed reinsurance models can be formulated

as SOC programming problems, which in turns facilitate us in obtaining the optimal

solutions over a wide range of cases. Hence this approach is more practical and more

tractable.

7.2 Future Research

Because of the research that we have been conducting on this thesis, we are

very familiar with the tools and methodologies used on problems related to optimal

reinsurance. Based upon our knowledge and experience, here we produce a list of

possible research topics for future exploration:

• Extend the results of the VaR/CTE minimization criteria to other optimality

criteria. For example, the primary goal of reinsurance for many insurers is to

maintain, at an acceptable level, the random fluctuations of the business op-

eration of the insurers. Motivated by this argument, an alternate formulation

of the reinsurance model is to minimize the earning volatilities of the insurer

via some reasonable measures. As another example, by noticing the tradeoff
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between the risk and reward, it is also of interest to consider the reinsurance

designs by minimizing the objectives such as return on risk-adjusted capital

(RORAC).

• Extend the results for the expectation principle to other premium principles.

Recall that the explicit solutions are derived only for the expectation principle

when we were analyzing the parametric models without assuming a specific

functional form for the feasible ceded loss functions; see Chapters 3 and 4.

In Chapters 5 and 6 on the empirical approach to optimal reinsurance, we

only analyzed the optimal solutions (to the VaR/CTE/Variance minimization

models) for the expectation principle and the standard deviation principle,

although we have shown that the resulting empirical reinsurance models can

be equivalently cast as the SOC programming for as many as ten princi-

ples. Thus, further exploration of the optimal reinsurance under principles

other than the expectation and standard deviation is a a natural future area

of research. In particular, it will be great interesting to have a better un-

derstanding on how the shape of the optimal reinsurance would be affected

on more elaborate premium principles. Recall that in the CTE minimiza-

tion model, the optimal reinsurance changes from a stop-loss to a capped

stop-loss when the premium principle changes from the expectation to the

standard deviation for low reinsurance premium budget.

• Apply the empirical approach to real data. The tractability of the empirical

models enables us to analyze the optimal reinsurance strategy from various

angles in terms of different model formulations. The analysis based on the

real data will make our research results more practical and applicable.

• Establish convergence results of the empirical solutions derived by the em-

pirical approach. Recall that in Chapter 6, we conducted an analysis on the

consistency and stability of the empirical solutions, where we concluded a
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strong stability and consistency by some numerical experiments on the CTE

minimization model. We have not achieved any theoretical conclusion on the

consistency and stability of the empirical solutions. Thus, it is theoretically

significant to explore the convergence issues of the empirical solutions.

• Analyze the optimal reinsurance under the local models. Recall that in a lo-

cal model, the reinsurance is applied to individual risk, instead of the overall

aggregate risk as in the global model which are the main focus in my thesis.

Due to multiple lines of products and the multiple risk exposures, it may be

more prudent for an insurer to have the reinsurance coverage on each of these

lines of products or each of these risks, instead of just reinsuring the risk

in aggregate. Research on this topic is very limited. Kaluszka(2004b) and

Cheung (2007) are two of the few related research papers. Since in a local

model the reinsurance is applied to individual risk, the dependence structure

of these risks therefore take a critical role in determining the optimal reinsur-

ance. Thus, it is of interest to incorporate the copula method or stochastic

ordering approach to describe the dependence among the individual risks or to

compare the resulting risks in the presence of different reinsurance contracts.
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