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Abstract

Testing concurrent programs remains a difficult task due to the non-deterministic
nature of concurrent execution. Many approaches have been proposed to tackle the
complexity of uncovering potential concurrency bugs. Static analysis tackles the problem
by analyzing a concurrent program looking for situations/patterns that might lead to
possible errors during execution. In general, static analysis cannot precisely locate all
possible concurrent errors. Dynamic testing examines and controls a program during its
execution also looking for situations/patterns that might lead to possible errors during
execution. In general, dynamic testing needs to examine all possible execution paths to
detect all errors, which is intractable.

Motivated by these observation, a new testing technique is developed that uses a col-
laboration between static analysis and dynamic testing to find the first potential error
but using less time and space. In the new collaboration scheme, static analysis and dy-
namic testing interact iteratively throughout the testing process. Static analysis provides
coarse-grained flow-information to guide the dynamic testing through the relevant search
space, while dynamic testing collects concrete runtime-information during the guided
exploration. The concrete runtime-information provides feedback to the static analy-
sis to refine its analysis, which is then feed forward to provide more precise guidance
of the dynamic testing. The new collaborative technique is able to uncover the first
concurrency-related bug in a program faster using less storage than the state-of-the-art
dynamic testing-tool Java PathFinder. The implementation of the collaborative tech-
nique consists of a static-analysis module based on Soot and a dynamic-analysis module
based on Java PathFinder.
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Chapter 1

Introduction

Concurrent programs are gaining importance because of the increasing availability of
multi-thread/core/processor computers. However, concurrent programs are much harder
to debug than sequential programs. First, concurrent semantics introduce new types
of bugs. For example, incorrect use of synchronization and mutual exclusion semantics
can lead to concurrency-related bugs such as a race condition [11] and a deadlock [11].
Second, these concurrent bugs are notoriously hard to locate and fix, because they may
only trigger an error under certain rarely-executed thread interleavings resulting from
nondeterministic execution. Traditional testing methods, such as systematically inserting
print statements, are no longer sufficient to pinpoint a bug because every run may follow
a different thread interleaving. Moreover, an inserted print statement can lead to a probe
effect [29] hiding the bug.

1.1 Problem Definition

The problems this thesis addresses are discussed in this section using the simple concur-
rent Java program in Figure 1.1, which has two concurrent threads. Each thread tries to
access some variables, e.g. object a and its field a.val are accessed by both threads. The
program generates a DivisionByZeroException if the read of a.val at line 2 for Thread2,
reads the value 0 given by the assignment statement at line 1 of Thread1.

One solution for identifying concurrency bugs is to analyze the program statically.
The advantage of static-analysis is the ability to bypass the nondeterminism. The static
analysis targets some programming patterns that generally indicate potential concurrency
bugs. For example, accesses to shared variables, such as a.val in the sample program,
should normally be protected by locks to ensure proper mutual exclusion. The static
analysis can report that all accesses to a.val in the sample program have no such protec-
tion and potentially produce errors. The disadvantage of static analysis is that it cannot
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Thread 1

1 a . va l = 0 ;
2 c . va l = 3 ;
3 a = b ;
4 a . va l = 0 ;

Thread 2

1 a . va l = 1 ;
2 s = a . va l ;
3 d = 3 / s ;

Figure 1.1: Simple Java Example

definitely indicate which situations actually lead to an error. Moreover, due to the coarse-
grained nature of static analysis, it produces false positives. For the sample program, a
static analysis using flow insensitive alias-analysis [68] reports the concurrent accesses
between the write of a.val at line 4 of Thread1 and all accesses to a.val in Thread2
should be protected by mutual exclusion because they are believed to access the same
memory address. However, the a.val accessed at line 4 of Thread1 is actually a different
variable from the a.val accessed in Thread2 because of the assignment to a of object b

at line 3 of Thread1.

To eliminate false positives from the analysis report, the program needs more detailed
analysis [67] or to be run concretely. This requirement is the major motivation behind
using dynamic testing over static analysis. A naive way of testing the program is to
run it just once. However, because concurrent programs execute nondeterministically at
runtime, it is possible that the execution follows an interleaving such as,

Thread1.1 → Thread2.1 → Thread2.2 → Thread2.3
in which the read of a.val in Thread2 reads in the value given at line 1 of Thread2. In
this interleaving, the program does not produce an error, and the hidden bug is missed.

Another approach is to run the program multiple times to expose hidden bugs. The
assumption is that given a sufficient number of runs, an interleaving that triggers a
concurrency error eventually occurs. However, there is no guarantee a concurrent program
follows all of the different interleavings. Therefore, it is possible that all the test runs
follow only error-free interleavings and miss the error. A more sophisticated approach tries
to manipulate the program execution in a way that an error-triggering interleaving has a
higher chance of being executed. Nevertheless, these approaches still offer no guarantee
that a bug-inducing interleaving is eventually tested.

A way to ensure the testing process does not miss any concurrency bug is to system-
atically derive and test all interleavings of a program. Given N concurrent threads, and
Bi atomic blocks in each thread i, the total number of possible thread interleavings is:

possible interleavings =
(
∑N

j=0 Bj)!∏N
i=0 Bi!

(1.1)

2



For the concurrent program in Figure 1.1, assuming every statement is an atomic op-
eration, 35 distinct interleavings are possible. It is important to note that the number of
possible interleavings grows factorially with respect to the number of atomic operations
in each thread. Therefore, for any practical program, the total number of possible inter-
leavings is beyond computation, making it impractical to derive and test all interleavings.

However, a closer examination of the problem shows that not all interleavings are
relevant for testing. Two interleavings that only differ in the execution order of the write
of c.val at line 2 in Thread1 and the read of a.val at line 2 in Thread2 are irrelevant
to the testing, because permutations on instructions accessing distinct variables produce
the same runtime state. In other words, for those two interleavings, after c.val = 3 of
Thread1 and s = a.val of Thread2 are executed, the program always has the same value
for the shared variable a.val. If a permutation triggers an interleaving that does not lead
to the testing of a new concurrent behaviour, both the permutation and triggered inter-
leaving are superfluous. However, two interleavings that differ in the order of the write of
a.val at line 1 of Thread1 and write of a.val at line 1 of Thread2 produce different pro-
gram states, because the order of conflicting accesses to the same variable are permuted.
Two instructions are in conflict if they access the same shared variable and at least one is
a write. Therefore, during systematic testing, it is essential to differentiate interleavings
that are relevant from those are not. Leaving out irrelevant interleavings significantly
reduces the computational cost of testing a concurrent program. In Figure 1.1, there
are 4 instructions in Thread1 and 3 in Thread2, leading to 35 different interleavings. If
accesses to disjoint variables are filtered out, only the permutations among instructions
from line 1 of Thread1, line 1 and 2 of Thread2 need to be considered. Hence, the number
of interleavings that need to be tested is reduced from 35 to 3.

Although static analysis generates an imprecise bug report that contains false posi-
tives, the potential bugs presented in the report are good indicators of possible errors in a
program. For example, the report of the lack of mutual-exclusion protection for accesses
on a.val by static analysis serves as a hint to the dynamic testing-tool that permutations
on accesses to a.val should be considered relevant. On the other hand, dynamic exe-
cution of the program should be able to determine that the access to a.val at line 4 of
Thread1 accesses a different variable from the accesses to a.val in Thread2. Therefore,
permutations between the read of a.val from line 4 of Thread1 and accesses to a.val from
Thread2 become irrelevant. Moreover, if static analysis shows that a program contains
additional accesses to other shared variables that are believed to be consistently protected
by a lock, it makes sense for a dynamic testing-tool to test permutations on unprotected
accesses to a.val first because they are more likely to produce errors than permutations
on the lock entries. Thus, static analysis can provide hints on how to prioritize the search
order for a dynamic testing-tool.

Based on these observations, this thesis address the problem of combining static and
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dynamic-testing techniques to improve the overall process of testing concurrent programs.
Static analysis can inform the dynamic testing-tool on instructions that should or should
not be considered for permutations. Static analysis can also help the dynamic testing-tool
to efficiently test these permutations at runtime, taking advantage of what has already
been tested. For example, coarse-grained alias-analysis can lead to permutations based
on incorrect assumptions of alias relationships. However, if static analysis can also in-
struct the dynamic testing-tool on how to validate those assumptions, many superfluous
interleavings can be pruned out.

1.2 Contributions and Scope

This thesis addresses the issues discussed in the previous section. A new collaboration
scheme is presented between static analysis and dynamic testing. This collaboration
scheme tries to leverage the strengths of static and dynamic techniques to mitigate their
respective weaknesses. Overall, the new technique aims to guide the testing process to
reach the first concurrency-related error in a program faster using less memory than the
current state-of-the-art dynamic model checking tool, such as Java PathFinder (JPF).

This thesis makes the following contributions:

• It introduces a static-analysis module that assists the dynamic model checker. This
module extracts May Happen in Parallel (MHP) instructions that are relevant to
permutations performed in later dynamic testing. The collected information in-
cludes MHP accesses to may-alias variables and other error-prone cases such as
barging and wait-notify pairs. This module then applies a sequence of static anal-
yses to refine the set of MHP instructions whose permutations are relevant for
uncovering concurrency bugs. Some of these static analyses have been customized
and extended to improve their applicability. Besides informing the dynamic testing-
tool about relevant instructions for testing, this static-analysis module also provides
guidance on how to validate the relevance of a permutation by incrementally com-
puting a set of interleavings that can be used to fulfill such a permutation.

• It introduces a novel accessibility-based partial-order reduction-technique. In this
technique, a dynamic testing-tool carries out permutations according to the MHP
alias-pairs computed from the static analysis. Limiting permutations to these MHP
instructions ensures that only instructions believed to access shared variables are
permuted. Value-schedule-based testing aborts the testing of superfluous interleav-
ings introduced because of imprecise static analysis, using the guidance provided
by static analysis.
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Figure 1.2: Scope of Work

• It introduces a novel search heuristic called prioritized permutation, to guide the
dynamic testing-tool to reach an error quickly. This heuristic guides testing to
check permutations that are most likely to trigger an error first. This technique is
implemented using the static analysis and value-schedule-based testing technique.
Different MHP pairs are prioritized according to the estimated likelihood they can
lead to an error. During testing, permutations are performed first on MHP pairs
that have a higher-priority value. Again, the relevance of such permutations is
checked using the value-schedule-based technique.

• A collaboration between static analysis and dynamic testing is implemented. Pre-
cise program facts collected during dynamic execution are used to refine the initial
static-analysis results. Then, these refined interleaving-specific static-analysis re-
sults are used by the dynamic testing-tool in further testing. The relevant informa-
tion exchanged between the static analysis and the dynamic testing-tool includes
runtime alias information and the precise type of the caller at a polymorphic-method
call-site.

The scope of this thesis is illustrated in Figure 1.2 by the dashed box. This work
centers on combining static analysis with dynamic-based explicit-state model
checkers to improve the efficiency of testing a concurrent program to uncover
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the first concurrency-related bug in the program. It is important to note that
the proposed testing technique depends on fixed inputs, so any results only apply for
this single case. This limitation is an inherited drawback of dynamic-based testing-tools.
There has been work, such as [74], that focuses on automatically deriving different test
inputs to increase the coverage of the dynamic testing. In this thesis, the generation
of test inputs is assumed to have been computed by other tools and/or given by users.
Moreover, for the program under testing, it is assumed that static analysis can always
determine the exact number of threads created at runtime.

The proposed techniques in the thesis are implemented and evaluated for concurrent
Java programs written without using the java.util.concurrent package introduced in Java
1.5. The static analyses used in testing employs various data and control-flow analyses,
such as alias analysis and MHP analysis. An explicit-state model-checker for concurrent
Java programs provides basic mechanisms for deriving and testing different interleavings.
Moreover, the explicit-state model-checker dictates the memory model that is used for
executing interleavings.

1.3 Thesis Organization

This thesis is organized as follows. Chapter 2 presents background knowledge for this
research. First, a background description of different concurrency bugs is presented.
Second, different techniques for testing concurrent programs are discussed. Chapter 3
explains the components used to implement the work presented in this thesis, and the
experimental setup used to evaluate the different techniques. Chapter 4 introduces the
static analysis that forms the starting point of the proposed testing technique. Chapter 5
presents the core of the new testing technique: value-schedule-based testing. The discus-
sion centers on how initial static-analysis results can be used to improve model checking.
Chapter 6 presents a practical implementation of the value-schedule-based testing that
uses precise runtime information to further improve testing. Finally, conclusions and
future work are given in Chapter 7.
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Chapter 2

Background and Related Work

This chapter has two parts. First, different types of concurrency bugs are reviewed.
Second, different existing techniques for uncovering concurrency bugs are discussed. The
main rationale behind the different techniques is presented. Moreover, emphasis is placed
on the strengths and weaknesses of each approach.

2.1 Concurrency Errors

This section presents concepts essential to concurrent-program testing. Definitions of
different concurrency errors are given and illustrated through examples. Finally, some
algorithmic limitations for debugging and verifying concurrent programs are discussed.
In the following discussion, the notation tx.y denotes statement y in thread x.

2.1.1 Deadlock

A deadlock occurs when one or more processes are waiting for an event that will not oc-
cur [11]. Deadlocks result from the incorrect use of a mutual exclusion and synchroniza-
tion mechanisms such as locks and wait/post. An example of mutual-exclusion deadlock
is given in Figure 2.1(a). In this example, if the locks are acquired in the interleaving
sequence, t1.1 → t2.1 → t2.2 → t1.2, neither Thread1 nor Thread2 can proceed be-
cause the second lock sought by each thread is held by the other thread. An example
of synchronization deadlock using wait/post is shown in Figure 2.1(b). In this example,
Thread1 cannot run to completion due to a logical error that missed the post, i.e., a is
always negative.
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Thread 1

1 lock ( a ) ;
2 l ock (b ) ;
3 // . . . . . .
4 unlock (b ) ;
5 l ock ( a ) ;

Thread 2

1 lock (b ) ;
2 l ock ( a ) ;
3 // . . . . . .
4 unlock ( a ) ;
5 unlock (b ) ;

(a) Mutual-Exclusion Deadlock

Thread 1

1 a . wait ( ) ;

Thread 2

1 i f ( a . va l > 0)
2 a . n o t i f y ( ) ;

(b) Synchronization Deadlock

Figure 2.1: Examples of Deadlock

2.1.2 Race Condition

A race condition occurs when there is missing mutual exclusion (data race) or synchro-
nization (general race), i.e., two or more tasks race along assuming that mutual exclusion
or synchronization has occurred [53, 33].

A data race happens when shared variables have unprotected accesses allowing a
value to be read/written before being completely modified. In Figure 2.2(a), all accesses
to variable a.val by Thread1 are protected by lock a, but a different lock, b, is used to
protect variable a.val by Thread2. The inconsistency in lock protection leads to a race
condition on the accesses to the variable a.val; e.g., Thread2 can read an inappropriate
intermediate value of a.val being calculated by Thread1.

A general race happens when there is insufficient synchronization to ensure the deter-
ministic execution order of statements predefined by the program specification. In Fig-
ure 2.2(b), if the program specification requires t1.1 to happen before t2.1, then Thread1
and Thread2 contain a general race on accesses to variable a.val because there is no syn-
chronization to enforce this ordering. Moreover, adding mutual exclusion locks around
t1.1 and t2.1 in Figure 2.2(b) does not enforce the required execution order of these two as-
signments; wait/post or a similar synchronization is needed. The main difference between
a data race and a general race is that data races capture violations of an atomic region
while general races capture violations of a particular execution order among statements.
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Thread 1

1 lock ( a ) ;
2 a . va l = a . va l ∗ 2 ;
3 i f ( a . va l < 0){
4 a . va l = 0 ;
5 }
6 a . va l = 3 ;
7 unlock ( a ) ;

Thread 2

1 lock (b ) ;
2 b . va l = a . va l ;
3 unlock (b ) ;

(a) Data Race

Thread 1

1 a . va l = 0 ;

Thread 2

1 a . va l = 1 ;

(b) General Race

Figure 2.2: Examples of Data Race

From a program’s execution-trace, it is possible to discover a data race by locating a
pair of concurrent accesses to a shared variable within multiple mutual-exclusion regions.
A mutual-exclusion region can be derived from the program by identifying locking mech-
anisms. Then, a shared variable accessed by multiple threads holding an inconsistent set
of locks at runtime indicates a potential data race.

A general race is harder to detect than a data race. It is impossible to precisely claim
that a pair of concurrent accesses constitutes a general race without knowing the program
specification on the execution order of those two accesses. It is unrealistic to assume
such specifications are always available. Therefore, every pair of accesses to a shared
variable from two threads may indicate a potential general race, even with proper mutual
exclusion. One possible solution is to derive all possible interleavings of a program to
identify the value assignments responsible for an error. However, such exhaustive testing
is usually infeasible.

A manifestation of a race condition is called an atomicity violation [50]. An atomicity
violation happens when a concurrent execution produces a sequence of read/write accesses
to shared variables that could never happen in any sequential execution of a concurrent
program, where sequential execution means no pre-emption or time-slicing, i.e., each
thread is started and runs until it blocks or terminates, but threads may start/restart in
any order. Both data and general races can lead to atomicity violations. For example, in
Figure 2.2(a), the read of a.val in Thread2 can potentially read in values given by any of

9



Thread 1

1 //a . v a l i n i t i a l i z e d to 0
2 lock ( a ) ;
3 a . va l = 1 ;
4 unlock ( a ) ;
5 l ock ( a ) ;
6 a . va l = a . va l + 1 ;
7 unlock ( a ) ;

Thread 2

1 lock ( a ) ;
2 r = a . va l ;
3 unlock ( a ) ;

Figure 2.3: Examples of Atomicity Violation

the three writes to a.val in Thread1 depending on the runtime interleaving. However, if
the program is executed sequentially and Thread1 starts first, it is impossible for Thread2
to read in the a.val assigned by the first or second write to a.val in Thread1.

An atomicity violation can also happen when accesses to shared variables are consis-
tently protected by the same lock. An example of such an atomicity violation is shown
in Figure 2.3. In this example, all accesses to shared variable a.val are consistently pro-
tected by lock a. However, the two writes to a.val in Thread1 are not carried out as a
single atomic operation. It is possible for Thread2 to execute in between the two mu-
tual exclusion blocks of Thread1, and read the intermediate value, 1, for a.val. Again,
if the program is executed sequentially and Thread1 starts first, Thread2 reads in the
value written by the second write to a.val in Thread1, but never the first write to a.val.
The atomicity violation in Figure 2.3 can be considered as a general race among lock
acquisition operations in Thread1 and Thread2.

A testing tool that is capable of detecting data races and general races should be able
to uncover atomicity violations as well.

2.1.3 Non-deterministic Execution

For a sequential program, given a fixed program input, the program always follows the
same execution path. However, because of the non-deterministic nature of concurrent
execution, concurrent programs might take different interleavings in different executions
even with the same input values. Therefore, an error caused by a concurrency bug might
not show up consistently across different runs. Traditional testing techniques, such as
running the program multiple times with various sets of input, are insufficient. Hence,
the ability to deal with the non-deterministic nature of concurrent execution becomes an
essential feature of any testing tool for concurrent programs.
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2.2 Concurrent Debugging Techniques

Because of the complexity of uncovering bugs, attempts have been made to restrict exist-
ing program languages to remove certain kinds of concurrency bugs, such as data races,
from programs [4, 75]. However, in this thesis, the work focuses on testing tools that
find concurrency bugs in programs written in existing program languages. The effective-
ness of a testing tool is measured by two metrics: soundness and precision. A testing
tool is sound if it guarantees all errors are found (no false negatives), otherwise it is
unsound. Precision measures the true bugs in the final bug-report. A testing tool has
higher precision if the percentage of false alarms is low (few false positives) in the report.

In general, existing techniques for uncovering concurrency bugs can be grouped into
two categories: static and dynamic based techniques. The static-based techniques rely
on various static analyses to identify potential concurrency bugs in a program. The
dynamic-based techniques require program execution to expose concurrency bugs. The
main advantage of static analysis is that it does not have to deal with the non-determinism
issue. Therefore, it is capable of locating subtle bugs that may only occur in some obscure
interleavings. However, it delivers a bug report with a high false-positive rate due to its
coarse-grained nature. On the other hand, dynamic techniques achieve high precision in
reporting concurrency bugs because dynamic techniques only report bugs that actually
happen. However, dynamic techniques may not trigger all behaviours of a concurrent
program, and thus tend to produce unsound reports. The strengths and limitations of
static and dynamic techniques have led researchers to propose testing tools that make
use of both approaches.

In this section, different existing testing-techniques are reviewed. Comparisons are
drawn when it is appropriate.

2.2.1 Static Analysis

In this section, static analysis methods for uncovering concurrency errors are presented.
Then, some existing static-analysis-based testing-techniques are discussed to illustrate
how different static analyses can efficiently collaborate with each other to uncover con-
currency bugs.

Alias analysis, also referred to as points-to analysis, is a data-flow analysis for de-
termining storage locations that may be accessed in two or more ways [48]. Concurrent
accesses to a shared-memory location are the source of many concurrency errors. There-
fore, it is essential to know which memory addresses are shared among threads. However,
the difficulty is that the same memory location may have different symbolic names in
different methods and threads. In Java, aliasing of the same memory location may be
the result of parameter passing for methods.
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Two commonly-used alias-analysis methods are the Steensgaard equivalent-based anal-
ysis [68] and the Andersen subset-based analysis [2]. In the equivalent-based approach,
two pointer-type variables are considered to be equivalent if they are associated by an
assignment edge. The equivalent-based approach makes no distinction on the direction
of alias assignments. In contrast, the subset-based approach makes this distinction. The
alias information is propagated and merged from the right side of an assignment to the
left. Therefore, the alias relationships of the operand on the left of the assignment op-
erator merges with the alias relationships of the operand on the right of the assignment
operator. Moreover, this subset relationship persists in all future modifications.

Alias analysis for concurrent programs with simple structures, such as parbegin/-
parend, was attempted in [62, 59]. The alias analysis for concurrent programs proposed
by these two papers is very similar to its sequential counterpart with an extension that
supports the propagation of alias information across fork/join edges. To cope with the
large number of alias relationships generated from the program analysis, BDD-style com-
pression can be used to reduce the space overhead [5].

Escape analysis is an extension of alias analysis. Escape analysis tries to locate vari-
ables that have become accessible outside of a method or a thread object. Escape analysis
is relevant for two reasons. First, a variable that does not escape a method is a local
variable; a local variable is never shared among threads. Therefore, accesses to a local
variable are safe from race conditions. Second, if a variable is accessed by only one thread,
it cannot be involved in any type of race condition. Escape analysis helps to identify the
set of variables that should be checked for possible race conditions.

There are some differences between escape and alias analysis. Alias analysis resolves
different pointers to the same node on the points-to graph if those pointers point to
the same memory location. On the other hand, escape analysis is only concerned with
whether a variable is referenced outside of the method or thread being analyzed (a yes/no
question). Equivalent-style escape analysis has been presented in [9, 61]. More precise
flow-sensitive escape-analyses are given in [76, 14].

The essential problem in testing concurrent programs is to determine which statements
from different threads may happen in parallel. Only the MHP statements can execute
in nondeterministic order and trigger concurrency-related errors. The task of identifying
MHP statements requires static analysis to analyze the control flow of the program while
taking into consideration the synchronization and mutual exclusion mechanisms. Alias
analysis also plays a role in this process by matching up mutual exclusion statements
that operate on the same object. For example, only mutual exclusion regions protected
by different locks are considered to be MHP regions.

The Control Flow Graph (CFG) for sequential programs is extended to facilitate MHP
analysis. A simple Parallel Execution Graph (PEG) [64] matches up the synchronization
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Figure 2.4: Testing based on Combined Static Analysis Methods [50]

statements to mark out the MHP regions. A more advanced Concurrent Control Flow
Graph (CCFG) was proposed to capture the interleavings among potential concurrent
accesses to shared variables by adding interference edges among accesses [41, 54].

Different types of static analyses identify a particular set of program statements that
may be relevant to testing concurrency. It makes sense to combine different types of
static analyses to improve the overall performance of bug detection.

Chord is a tool that detects data races using multiple phases of static analysis [50].
Each phase of analysis refines a given set of potential race-pairs to achieve better precision.
Figure 2.4 shows the architecture of Chord, which consists of four stages.

In the first stage, every two accesses to variables from different threads are placed
into a pair. Each of these pairs represents a possible data race. These accesses include
accesses to fields, static variables and array elements. The result of this pairing is a set
of access pairs. Each pair is made up of two accesses to a common field of the same class.
These pairs are conservatively considered by Chord as original race-pairs. In the second
stage, the original race-pairs are filtered using a simple alias analysis. Two accesses in
the original race-pair set can form a real data-race only if both events access the same
variable. Also in the second stage, a k-object sensitive alias-analysis [47] is performed to
further filter out race pairs that do not access the same object. In the third stage, escape
analysis is performed to filter out race pairs that contain thread-local variables. In the
fourth stage, the remaining race pairs are filtered using a lock-set based algorithm [50].
Race pairs that involve accesses to variables consistently protected by the same lock are
not a possible data-race set.

An extension to Chord is introduced in [49]. Another static analysis phase is added to
categorize alias references in the program into disjoint must-not-alias sets. For example,
if every element of an array of Object type is initialized to new objects in a loop, then
concurrent accesses to the fields of different elements of that array do not lead to data
races because the owner objects of those fields have been proven to must-not-alias.

There are also static analyses for identifying potential deadlocks in concurrent pro-
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grams. Jlint [3] performs control-flow analysis over a concurrent program to produce a
lock-order graph, in which locks are represented as nodes, and acquisitions of locks are
represented by edges labelled with the names of the threads that attempt the acquisitions.
Then, the graph is analyzed to uncover circular acquisitions in the lock-order graph. [77]
extends the deadlock analysis to accommodate deadlocks that may exist in library code
by merging the lock-order graphs of public methods in classes. Alias analysis is applied
in both [3] and [77] to prune out cycles formed by acquisitions of non-aliased locks. Nev-
ertheless, both techniques still report many false positives because of the imprecise CFG
and alias analysis. Moreover, to reduce the complexity of analysis, acquisition cycles
that only contain less than a certain number of nodes are identified. Therefore, both
approaches are unsound.

The precision of the static-based techniques depends on the precision of different
static analyses making up the tool. For example, the precision of alias analysis affects
the precision of escape and MHP analysis. Moreover, the precision of escape and MHP
analysis affects precision in the testing tool, such as Chord. However, many precise
static analyses are computational intractable. As shown in [40], precise path-sensitive
and alias analysis is undecidable. In addition, any path and synchronization-sensitive
analyses, either control-flow analysis such as MHP analysis or data-flow analysis such as
alias analysis, is undecidable [58]. As a result, static analyses have to introduce many
approximations. A conservative approximation introduces false positives, while an unsafe
approximation, such as those in deadlock analysis [77], introduces false negatives. The
approximations in individual analysis propagate and manifest as they are combined, and
affect the precision and soundness of testing tools.

To deal with the imprecision of static analysis, techniques have been proposed where
a programmer annotates a program with relevant program facts, such as the set of locks
that should be held at given program points [22, 26, 27, 28]. However, the need for manual
insertions of annotations can easily introduce human errors into the analysis. Other static
analyses include KISS [57], which translates a concurrent program into different sequential
programs. Each sequential program represents a particular runtime interleaving. Then,
the sequential programs are checked with a theorem prover for correctness. To make the
testing tractable, this technique only computes sequential programs for interleavings that
have less than two context switches.

2.2.2 Unsound Dynamic Testing

Dynamic testing-techniques uncover concurrency bugs by running programs. The chance
that a concurrency bug is uncovered during testing depends on whether an interleaving
with a runtime error is executed. Therefore, the soundness of a dynamic technique is
largely determined by its ability to trigger different thread interleavings of a program. A
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T1

1 b = 1 ;

T2

1 i f ( b !=1)
2 a = 1 ;

T3

1 b = 2 ;
2 a = 2 ;

Figure 2.5: Unsound Dynamic Testing

dynamic-testing technique is sound only if interleavings that trigger all possible concur-
rent behaviours are tested.

The task of triggering interleavings that cover all possible concurrent behaviours of
a program is non-trivial. When all possible interleavings are not tested, techniques have
been proposed to improve the coverage of all tested interleavings. The aim is to increase
the chance that an error-triggering interleaving is tested. Techniques have also been
proposed to identify concurrency bugs from a limited number of interleavings even if those
interleavings do not directly lead to runtime errors. The ability to identify concurrency
bugs from an error-free interleaving requires dynamic techniques to recognize patterns
that generally lead to bugs. After potential interleavings are derived, some additional
techniques, such as those in [51], can be used to determine whether the interleavings could
manifest into runtime errors. Nevertheless, these techniques are still unsound because
they cannot derive concurrency bugs that are only observable from interleavings. For
example, in Figure 2.5, three threads T1, T2 and T3, access two shared variable a and
b. A sequential run of the program in the order T1 → T2 → T3 exposes a data race
on b because b is accessed multiple times in different threads. However, examining the
trace of this interleaving cannot expose the potential data race on a because the branch
statement in T2 evaluates to false and skips the access to a. Thus, a is considered to
have no data race because it is accessed only once in the execution. On the other hand,
a sequential execution such as T3 → T2 → T1 enables the assignment to a in T2, and
exposes the data race on a.

In the following sections, unsound dynamic testing-techniques are discussed.

Capturing Execution Patterns

Eraser [65] is an on-the-fly dynamic testing-tool that detects data races that violate
mutual exclusion at runtime by capturing execution patterns that may lead to data
races. Eraser is based on a dynamic lockset-algorithm that requires every shared variable
to be consistently protected by the same set of locks at runtime to be free of data races.
Therefore, at runtime, Eraser is responsible for two tasks: identifying shared variables
and tracking the lockset of each shared variable. Eraser classifies a variable as a shared
variable if the following two conditions are met:
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• the variable has been accessed by at least two threads;

• there is at least one write access from a thread that is not the thread that first
accessed the variable.

After a variable is determined to be shared, Eraser tracks the locks that are held by
the accessing threads when that variable is accessed. A data-race error occurs when an
access is inconsistently protected by the same set of locks as previous accesses. In other
words, a data race occurs when a join operation on the current lockset and the locksets
from all previous accesses produces an empty set. It is important to note that Eraser
does not require error-triggering interleavings to uncover potential errors. Instead, Eraser
uncovers errors by monitoring error patterns, such as the inconsistent lockset, which may
lead to errors in some interleavings.

Eraser suffers from false positives. For example, an error is triggered for an unpro-
tected access to a shared variable when only one thread is active. This false positive is
caused by imprecision in the bug pattern. Different approaches, such as that in [78, 56],
have been suggested to recognize the execution context, such as the number of active
threads, to remedy the false-positive issues. However, this approach may lead to false
negatives, if an interleaving is not tested in which more than one thread is active during
the time that access occurs. Eraser is sensitive to conditional interleavings. For example,
an execution branch may be skipped due to a particular commit order of two concurrent
writes. Any potential data races in that branch are omitted as well, yielding a possible
false negative result. Despite these shortcomings, Eraser remains an easy to understand
but powerful tool for data-race detection. In [8], the AspectJ language is extended with
new pointcuts to capture lockset refinement at runtime. Combined with Lipton’s reduc-
tion theorem [45], Eraser can be used to detect more complicated atomicity violations on
the fly [24].

Improving Interleaving Coverage

ConTest was developed for testing concurrent Java programs [21]. ConTest inserts sleep
and yield statements at the bytecode level of the original program. By manipulating
the thread scheduling of the program being tested, ConTest increases the probability
of exposing potential errors that could only occur in some subtle interleaving. In its
implementation, ConTest instruments only those bytecodes that may produce or affect
concurrent events. Some examples of such bytecodes are: getfield/setfield to shared
variables, invocation of thread ordering-functions (such as join(), start(), wait() and
notify()), and bytecodes that manage monitor entry and exit. The delay instructions
can also be inserted at the source-code level using aspect-oriented programming [16]. At
runtime, every inserted instruction is invoked according to a predefined probability, and
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the lengths of wait times caused by these instructions are randomly decided. This mech-
anism is useful for detecting concurrent errors such as deadlocks. Despite the insertion
of delay instructions, there is no guarantee of triggering an interleaving. Therefore, in
order to obtain satisfactory coverage of program behaviours, ConTest would have to run
the program with all possible interleavings.

The value substitution proposed in [6] is an approach that randomly changes the
matching of concurrent read/write accesses of a shared variable to explore subtle inter-
leavings. During execution, every write event is saved along with the value written. The
value written by a write access w may potentially reach a read access r if it happens
before r. Intuitively, runtime value substitution is the process of selecting a value from
the many values written in the past and assigning one to a read access. At runtime, when
a read is encountered, value substitution randomly assigns a write value that may reach
the read. Therefore, runtime value substitution is also referred to as a way of “choosing
among alternative pasts”.

Runtime value-substitution provides a mechanism in which each possible interleaving
has an equal opportunity to be tested. However, the current implementation of runtime
value substitution in [6] provides no guarantee of finding all feasible interleavings. First,
runtime value substitution provides no mechanism to explore every possible write partner
for each read. Second, a write event that happens before a read event during execution
does not guarantee the existence of a feasible path where these two accesses match up.
Therefore, a runtime selection of a read/write pair without detailed knowledge of control
dependencies may produce a circular dependency error during variable assignments [6].
Third, runtime substitution can only match up a read access with writes that actually
happen before it at runtime. Therefore, runtime substitution cannot pair up a read access
to a write access that may happen in parallel with that read but actually happened after
it in the runtime due to the runtime scheduling.

Thread Interleavings and Value Schedules

Although neither the runtime delay insertion nor the value-substitution approach can
deliver complete coverage of all possible execution interleavings, the differences between
these two techniques underline important views of thread interleaving from the perspec-
tive of a testing tool. Delay insertion manipulates the execution flow (context switches)
of a program to explore runtime interleavings. Each distinct interleaving is viewed as a
schedule for executing instructions in threads. In contrast, the value substitution directly
manipulates concurrent variable assignments to simulate the effect of an interleaving. The
runtime value substitution technique treats each interleaving as a schedule that fulfills a
sequence of variable assignments.

It is straightforward to observe that many thread interleavings generated by the delay

17



insertion technique contain the same set of reads and writes such that a particular read
access always matches up with the same write event. These interleavings are considered
to be equivalent because they always bring the program into the same state. Such a set
of equivalent thread interleavings is referred to as an equivalence class with respect to a
distinct value-schedule. A value schedule is formally defined as “a set (equivalence class)
of all thread interleavings such that 1) all schedules in the class agree on the set of critical
events, and 2) the value consumed by any critical read event is generated by the same
critical write event for all the schedules in the class.” [6]

2.2.3 Sound Dynamic-Testing

In this section, theoretically sound dynamic-testing techniques are introduced. These
techniques systematically trigger thread interleavings that cover all possible concurrent
behaviours or value schedules of a program. However, they are not “practically sound”
because the exhaustive testing of all concurrent interleavings is impractical (see Equa-
tion 1.1 in Chapter 1).

As discussed, many distinct interleavings may correspond to a single value-schedule.
Therefore, the testing tool still preserves soundness by only testing one interleaving for
each value schedule. Various dynamic testing-tools make different attempts to reduce
the number of redundant interleavings tested for each value schedule. Even with these
reductions, the attempt to cover all value schedules remains an impractical task for most
programs. To increase the chance that a concurrency bug is found before computational
resources run out, dynamic tools make use of various program facts to guide the testing
tool to trigger value schedules that are more likely to induce errors first.

Richtest introduces an algorithm called reachability testing [12, 42, 36, 43] that can
derive a complete set of relevant and feasible execution sequences starting from any arbi-
trary execution trace. Richtest consists of the following phases: collecting an execution
trace in which each event is time-stamped with a Lamport clock; collecting potential write
partners for the read events from the trace; deriving a set of variance sequences for each
trace; and a prefixed-point replay on every newly derived variance sequence before letting
the program run nondeterministically to its completion. Intuitively, Richtest discovers a
new value schedule by changing the write partner of a read access in an existing execution
trace, and replaying the execution trace until the point where the change occurs. A pair
of read/write accesses may potentially match up if the Lamport timestamps indicate a
partial (may happen in parallel) ordering between two accesses, and they operate on the
same memory location. After the prefix is replayed and changes are applied, the program
is run nondeterministically beyond the point of modification. Note that each run tests a
distinct value schedule that differs from the original trace by a least one read/write pair.

Richtest has three main problems that prevent it from scaling up to large programs.
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First, instrumentation, post-execution analysis, and derivation for every value sched-
ule requires a prohibitive amount of computational resources for any practical program.
Second, Richtest offers no mechanism to prioritize the testing of interleavings. Every
interleaving is tested in the same order as it is discovered. In the worst case, an error
that dominates a large number of accesses to shared variables could be left undiscovered
for a long time while Richtest spends resources testing other error-free value-schedules.
Third, two interleavings are run independently even if the most of orderings fulfilled by
them are the same.

Model checking is another way to test for soundness in concurrent programs. The
interest in model checking comes from the success of model checking in the field of hard-
ware design. The main idea behind model-checking software is to construct a model of
the software and perform exhaustive checking on this model to ensure the absence of error
states. The model of a program is usually presented using state automaton. The possible
program states are represented as nodes in the automata, while the possible program-
state changes are represented as transition edges between nodes. Different model checkers
represent the program states and transitions in different detail. For example, in the tra-
ditional approach, only the specification of the program is abstracted. In contrast, some
new model checkers allow modelling of a program at the program-statement level. Dif-
ferences between those approaches are presented along with their application in testing
concurrent programs.

Abstract Model-Checkers

Traditional model checking requires the creation of an abstract model of a program. The
abstract model consists of a set of high-level program states and transitions among these
states. For example, if a programmer wants to verify that a variable may have a value
greater than 0, the states of the variable can be modelled as positive, negative, and zero
instead of all integer numbers. In this example, three high-level states represent all possi-
ble states of that variable of interest. Moreover, programmers can create a model only for
a particular set of variables and program behaviours of interest. It is the responsibility of
the programmer to ensure the abstract model is complete and correct for the behaviours
being checked. For example, all possible transitions of a variable under investigation
must be captured in the model and all possible states must be identified. In most cases,
a model of a program has to be specified in some kind of modelling language, such as
Promela in SPIN [35], SMV in NuSMV [15], or BIR in Bogus [60]. The state transi-
tions specified in these languages translate to an equivalent Buchi finite-state automata.
All possible transitions are exhaustively traversed to find possible violations of a set of
specified properties. These properties are generally specified in Linear or Computational
Temporal Logic [46]. Programmers can specify a statement such as “lock z should be
acquired before a write to x” in temporal logic. The temporal logic property is also
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translated into an automaton. Transitions in the program model trigger transitions in
the temporal-logic model.

There are a few significant disadvantages of abstract-model checking. First, it is hard
to extract a correct model out of a real-world-sized program. Furthermore, it is hard to
ensure the extracted model correctly represents the original source code. Second, after
the model is extracted, it is still difficult to translate these specifications into the re-
quired modelling language correctly. It takes a large amount of training for programmers
to extract a model and apply the modelling language efficiently. Sophisticated model
checkers, such as Bandera [17] and Zing [70], provide a way to automatically extract a
model out of a program through slicing [37] and translate it into the appropriate target
modelling language. However, Bandera is limited by the types of abstractions it can
perform automatically. Currently, Bandera can only recognize a few simple abstractions
such as whether a variable is positive. Third, there are some runtime operations, such as
dynamic heap allocation, that cannot be specified in existing modelling languages, which
further limits the applicability of abstract-model checking. Fourth, it is also hard to keep
the model up-to-date as the program evolves.

Explicit-State Model-Checkers

Due to the complexity of correctly extracting a program model and specifying it in a
proper model-checking language, model checkers such as JPF (Java PathFinder) [72] and
Verisoft [30] perform model checking directly on the original program. Moreover, because
JPF and Verisoft explore the program state by actually running the program, such model
checkers are also called dynamic model-checkers.

JPF is a dynamic model-checker for concurrent Java programs. It is implemented
as an independent virtual machine, that in turn runs on top of a local Java Virtual
Machine. A program is checked by running it in JPF. Only the native method calls
are delegated to the underlying Java Virtual Machine. Because program execution is
controlled and monitored by JPF’s thread scheduler, JPF can systematically explore all
possible execution sequences of a program. Consequently, JPF is capable of detecting
any kind of error that results from nondeterministic execution.

JPF achieves full interleaving coverage through two main mechanisms: backtracking
and state matching. After every state transition, such as executing a bytecode, a snapshot
of the program state is taken. A state includes the thread stack information and the data
on the heap. Each state also maintains a candidate list that contains the program counter
of all ready threads. The instructions indicated by these program counters are generally
referred to as the co-enabled transitions of a state in model checking. JPF discovers a new
program state by arbitrarily selecting one transition from the candidate list and executing
it. This depth-first exploration continues until the program completes. Then, JPF starts
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a backtracking process on the exploration path to a visited program state in which the
candidate list has unexplored co-enabled transitions. JPF selects an available transition
from the candidate list and performs another depth-first exploration from that transition.
This recursive exploration continues until all possible interleavings are explored. Because
JPF saves all encountered program states during exploration, it is referred to as a stateful
explicit-state model-checker.

Verisoft offers stateless state-exploration in a fashion similar to JPF. Verisoft is a
model checker for C programs with support for concurrent libraries such as pthread.
Like JPF, Verisoft controls the execution of a C program by providing a custom thread-
scheduler. A recursive depth-first search is performed on each program state with multiple
co-enabled transitions. Stateless exploration is achieved by saving each executed transi-
tion on a stack instead of the program state that results from executing that transition.
Then, when backtracking is required, Verisoft undoes instructions on the stack to bring
the system back to the desired state. A stateless exploration reduces the amount of mem-
ory consumed by the model checker, but undo operations during backtracking require
more computation than stateful approaches. Therefore, there is the classical trade-off
between stateful and stateless exploration in terms of time and space.

However, both stateful and stateless approaches share a problem, called state-space
explosion, where the number of states a model checker has to check can exceed the storage
and computational capacity of the testing environment. With respect to a concurrent
program, the state-space explosion is caused by an excessive number of interleavings in
the program. To cope with the excessive consumption of memory and computational
resources, solutions have been proposed to distribute the state exploration to multiple
computers and process them in parallel [19].

Partial-Order Reduction

As discussed, only one interleaving is needed to test each equivalence class of interleavings
for a value schedule. In other words, a testing tool should only explore transitions that
could lead to new value schedules at each backtracking point. Sen [66] proposes a new ap-
proach to randomize the selection of the next-to-explore transition to improve the chance
that a newly derived interleaving will cover a new value schedule. A more systematic way
of identifying which transitions are relevant to generate new value schedules is referred
as Partial Order Reduction (POR) [31].

POR aims to prune out permutations of transitions that can only lead to redundant
tests of the same value schedule. There are two types of POR: sleep-set and persistent-
set. The sleep-set ensures two co-enabled transitions are permuted if they access the
same shared variables, and at least one of them is a write. The persistent-set ensures two
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Figure 2.6: Illustration of Partial-Order Reduction

co-enabled transitions are permuted if one of the two transitions may access the same
shared variable as a successor of a co-enabled transition.

For example, in Figure 2.6, there are five labelled transitions: t1, t2, t3, t4 and t5.
Assume t1, t2, t3 and t4 are co-enabled transitions, and t1, t3 and t5 access the same
shared variable enclosed in squares in Figure 2.6, and t2 and t4 access only local variables.
Moreover, t1 and t3 have an access conflict with t5 that succeeds t2 in the future. The goal
of POR is to determine which permutations among co-enabled transitions are necessary.
The general rule is that any two transitions should be permuted if they are conflicting
accesses or their permutations may lead to permutations of conflicting transitions. Two
transitions conflict if they access the same shared variable, and at least one of them
is a write. Sleep-set reduction reports the permutation between t1 and t3 are necessary
because they access the same variable and have an access conflict. Persistent-set reduction
adds t2 into the permutation list along with t1 and t3, even though t2 does not directly
conflict with either t1 or t3. The addition of t2 is necessary because t2 is followed by
transition t5 that is in conflict with t1 and t3. By yielding the execution of t1 and t3 for
t2, and its succeeding transitions until t5 becomes co-enabled with t1 and t3 enables t5
to permute with t1 and t3 leading to new program states. Moreover, in practice, sleep-set
reductions are generally used to complement persistent-set reduction. For example, after
persistent-set enables permutations between t1 and t2, sleep-set ensures that t1 does not
permute with any intermediate transitions between t2 and t5 because t1 operates on a
different memory address from all of them. To summarize, two co-enabled transitions
from two threads are permuted if either their permutations could produce a new value
schedule locally or at some point in the future. Any permutation that does not satisfy
sleep-set or persistent-set is considered as redundant and pruned out.

Sleep-set is easy to implement. It is straightforward to determine whether two co-
enabled transitions access the same shared variable by comparing the target memory
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addresses. Persistent-set is harder to implement because it requires knowledge about
future execution. The knowledge of the future can only be approximated using vari-
ous means. Hence, the effectiveness of persistent-set POR is largely determined by the
accuracy of these approximations. Some approximation techniques are presented.

JPF simulates persistent-set reduction using on-the-fly heap-based reachability-
analysis [72]. Two co-enabled transitions are permuted if one of them accesses a variable
that is reachable from multiple threads. A variable is reachable from a thread if there is
a reference path from the thread object to that variable on heap. It is important to note
that the existence of a reference path to a variable does not necessarily mean that vari-
able is actually accessed in the program. The assumption is that if a transition accesses
a variable reachable by multiple threads, then there are probably other MHP accesses
to the same variable following the co-enabled transitions. Therefore, the permutation of
these co-enabled transitions might be allowed by the persistent-set. The advantage of this
approach is that it is straightforward to implement. The reachability analysis based on
the heap can be directly adapted from the garbage collection mechanisms implemented
in various Java Virtual-Machines. The disadvantage of this technique is that it is coarse-
grained. An object can be reachable from a thread object but never actually accessed by
that thread. Thus, a permutation based on the heap reachability alone leads to testing
of redundant interleavings if the expected accesses do not occur in the future execution.

Verisoft uses static analysis to assist the persistent-set reduction. Static alias-analysis
is used to determine whether a future transition in another thread may conflict with a
currently enabled transition. The may-alias analysis discussed in Section 2.2.1 is used
to compute the conflicting access-set for each instruction. At model-checking time, two
transitions are added to the persistent-set if one of them has a successor that may access
the same shared variable as another transition. However, due to the coarse-grained nature
of the static analysis, many instructions believed to access the same variable turn out
to access non-aliased variables in the concrete execution. Thus, a significant number of
superfluous permutations are carried out leading to many redundant interleavings.

Verisoft has another way to implement persistent-set reduction that is called Dynamic
Partial Order Reduction (DPOR) [25]. Instead of relying on heap-based reachability anal-
ysis, runtime information is incrementally collected to determine the existence of an MHP
access to a shared variable that could happen in the future. First, a program is allowed
to run nondeterministically to completion. The program trace of the execution is saved.
Each executed instruction is recorded with a Lamport-style time-stamp [39] to determine
the may-happen-before relationship among them, and the memory address accessed by
that instruction. Then, post-mortem processing determines which instructions may hap-
pen in parallel and access the same memory address. The program is instrumented with
those instructions marked as backtracking points. After that, the program is rerun until
the last backtracking point identified in the previous trace. That instruction is permuted

23



Thread 1

1 b . va l = 1 ;
2 s = a . va l ;
3 b . va l = −1;

Thread 2

1 i f ( b . va l < 0){
2 a . va l = 0 ;
3 }

Figure 2.7: Example where DPOR is not Optimal

with all co-enabled transitions from other threads that have been determined to have
MHP accesses to the same shared variable later in their execution. Moreover, new MHP
accesses discovered in the execution of the permuted interleaving are added to the back-
tracking list. The advantage of DPOR is that persistent-set reduction only performs a
permutation if a conflicting access has been shown to exist in the previous executions. If
a variable is only reachable but never accessed by a thread, then transitions from that
thread are never considered in a persistent-set involving accesses to that variable. Thus,
DPOR is more precise than the heap reachability and static analysis reduction. In an
extension of Java PathFinder(JPF) [10], a coarser but similar technique is implemented.
A program statement is considered to be unsafe if it is shown to access a shared variable.
A transition representing that program statement is always permuted regardless of the
program context. This may produce a large number of superfluous permutations because
different instances of a program statement, such as an array element access in a loop,
may access different memory addresses.

However, DPOR still leaves room for further improvement. A conflicting access that
exists for a transition in one interleaving might not exist in another interleaving. Some
intermediate permutations among accesses to other variables might block the expected
access. For example, in Figure 2.7, if the initial execution of the program follows the
interleaving t1.1→ t1.2→t1.3→t2.1→ t2.2, DPOR identifies t1.2 as a conflicting access,
with t2.2, in Thread2. Thus, DPOR permutes t1.2 with another co-enabled instruction,
such as t2.1 from Thread2, to try to get to t2.2. However, the interleaving spawned
from this permutation cannot enable the instruction t2.2, because if t2.1 happens before
t1.3, the branch statement skips the write to a. Therefore, testing this interleaving is
superfluous.

Heuristic Guided Testing

Besides POR, another set of important techniques to improve the efficiency of model
checking for concurrent programs is to use heuristics to test interleavings that are sus-
pected to contain errors earlier in the testing process. Testing suspicious interleavings
first improves the chances that an error is exposed before computational resources run
out.
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The essence of heuristic-guided model-checking for concurrent programs is to have a
function that evaluates the likelihood that further explorations along different threads
reaches an error state. A transition from a thread that is believed to be more likely
to produce an error is considered to be more relevant. From the list of next-to-explore
transitions, the model checker visits transitions that have most relevant values first. This
technique is generally referred to as best-first search [32]. There are variations of best-first
search, such as beam search, that only explore a fixed number, k, of the next-to-explore
states from a given state. In general, they all follow the same philosophy of prioritizing
the computational resources to test more relevant interleavings first.

It is important to note that the error states sought by an explicit-state model-checker
are unknown during testing. Moreover, the state-transition graph is computed incremen-
tally. With the target unknown and transition graph only partially known, a precise
evaluation of the relevance of a transition with respect to a potential error becomes dif-
ficult. Therefore, heuristic functions need to make various assumptions when evaluating
the relevance of a transition. One approach plans future searches based on results from
previous ones [32]. Heuristic functions that use information collected from explored states
are: branch, most-blocked, and interleaving. The branch heuristic gives higher relevance
to transitions that improve branch coverage. The assumption is that an interleaving
that covers more branches is more likely to trigger an error. An extended version of the
branch heuristic measures the percentage of branches that can be covered if a given state
is visited next, using a simple syntactic scan of the program to compute the total number
of branches in the program. The most-blocked heuristic assigns higher relevance to the
states that produce more blocked threads. The assumption is that an interleaving with
a higher number of blocked threads is more likely to produce concurrency errors such as
deadlock. The interleaving heuristic assigns higher relevance to interleavings that pro-
duce more context switches. The assumption is that an interleaving that contains more
context switches is more likely to trigger errors.

The effectiveness of heuristic-guided testing is determined by the accuracy of the
heuristic function. Looking for an error with an incomplete state-transition graph is sim-
ilar to the situation of looking for a house with an incomplete map. When the instructions
that have already executed are used to predict future testing, heuristic functions can only
offer imprecise guidance. Experimental results from [32] show that the proposed heuris-
tic functions report mixed performance across test suites. To produce better guidance,
heuristic functions need to have a better understanding of further exploration. For ex-
ample, if an accurate transition graph cannot be obtained, then other constructs like
a statically-generated CFG could provide a coarse-grained view on what might execute
during further exploration.
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Combining Static and Dynamic Testing

Due to their respective strengths and limitations, many existing techniques combine static
and dynamic techniques to leverage the advantages of both.

The most common collaboration scheme is to have the static tool identify a set of
relevant artefacts that help guide the dynamic tool during testing. For example, static
analysis provides a set of instructions that access variables shared by multiple threads
using alias and MHP analysis. In Verisoft, this statically generated information is used
by the persistent-set POR to determine whether an enabled transition accesses a variable
shared across threads. This information is also used by [55, 75] to select a set of in-
structions that are instrumented for permutation at runtime. For the atomicity checking
in [1], MHP and alias analysis are applied to identify a set of instructions irrelevant for
atomicity checking. Then, the runtime checking focuses on those instructions not pruned
out by the static phase.

Static techniques can also be combined with dynamic techniques to provide better
heuristic guidance on searches. Rungta et al. [63] introduce a search heuristic that gives
higher priority to transitions with the shortest path to the next possible program error-
checking point, such as an assertion or any user-specified program statement. The compu-
tation of a path to an error-checking program-point requires a statically computed CFG
to be traversed. It is important to note in this case that the coarse-grained CFG is used
to complement the imprecise transition graph to predict future testing. However, due to
the coarse-grained nature of the CFG, such paths are always imprecise. For example, it
is difficult for static analysis to determine which concrete method is actually dispatched
from a polymorphic call-site. Moreover, it is difficult to determine the number of itera-
tions a loop executes dynamically. Thus, the number of instructions in a path does not
always reflect the distance between a transition and the error-checking point at runtime.
Therefore, this problem raises an interesting possibility of using precise dynamic infor-
mation to correct the imprecision of CFG and improve the overall precision of heuristic
functions. In this arrangement, the collaboration requires information to be exchanged
both ways between static analysis and the dynamic testing-tool.

2.3 Summary

In this chapter discusses different types of concurrency bugs, along with a review of ex-
isting techniques for detecting concurrency bugs are reviewed that attempt to deal with
nondeterministic execution. Static-analysis testing-techniques bypass the nondetermin-
ism issue. However, due to their coarse-grained nature, static-based techniques produce
many false positives in a bug report. Dynamic testing-techniques try to execute as many
different interleavings as possible to uncover hidden bugs. Depending on the techniques
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used, dynamic testing can be either unsound or sound. However, soundness requires test-
ing all possible interleavings, which is often intractable. Model checking stands out as a
technique that, at least theoretically, could test all concurrent interleavings of a program.
Explicit-state model-checking is easier to use than abstract model-checking because it
works directly on the program instead of its high-level abstraction. The performance
of dynamic testing-tools, especially model checkers, can be improved using POR and
heuristic search. POR techniques reduce the total number of interleavings that need to
be checked to cover all possible concurrent-value schedules. Heuristic search attempts to
guide the dynamic testing-tool to the error-triggering interleavings first. Attempts have
been made to combine static and dynamic techniques to improve the overall efficiency
of the testing tool. In following chapters, a new testing technique that combines static
analysis and a dynamic explicit-state model-checker is presented.
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Chapter 3

Overview

This chapter gives a high-level view of value-schedule-based testing using a simple exam-
ple. Then, an overview of the components that make up the new value-schedule testing-
technique is presented. The existing technologies that these components are built upon
are discussed. Finally, a suite of test programs used to evaluate the various techniques is
presented.

3.1 A Motivating Example

In this section, a motivating example, shown in Figure 3.1, illustrates the workflow and
some of the main features of value-schedule-based testing. Later chapters describes the
implementation of these features in detail.

Value-schedule-based testing starts with a static analysis of the program to identify
points of interests, such as concurrent accesses to shared variables. In Figure 3.1, there are
four shared objects, v1, v2, v3 and v4, accessed by two threads Thread1 and Thread2.
The static analysis reports four concurrent accesses to the fields of shared objects, as
shown in Table 3.1. Of the four pairs of concurrent accesses, three of them have read-
/write conflicts on the contents of shared variables, and one of them is a race on monitor
acquisition. Moreover, it is important to note that accesses on v3.val from both threads
are not included in the table because static analysis can determine they are consistently
protected by the same monitor object v3, so there is no write conflict.

Permuting the ordering of execution for accesses in each entry leads the program into
two different states if the two accesses operate on the same memory address. However,
due to the coarse-grained nature of static analysis, this assumption is not always true.
Among these four pairs, only two are true positives. For example, the concurrent accesses
on v1.val is a false positive because the write to v1.val from Thread2 cannot happen since
the branch statement always skips the write. As well, the concurrent accesses on v2[i]
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Shared Variables

1 class T{ int va l ;}
2 T v1 , v3 , v4 ;
3 int [ ] v2 = new int [ 2 0 ] ;

Thread 1

1 run ( ){
2 int id = 1 ;
3 int l o c a l = 0 ;
4 int q = 0 ;
5
6 l o c a l = v1 . va l ;
7
8 l o c a l += v2 [ id ] ;
9 synchronized ( v3 ){

10 v3 . va l = 1 ;
11 }
12 q = l o c a l / v4 . va l ;
13 }

Thread 2

1 run ( ){
2 int id = 2 ;
3 int l o c a l = 0 ;
4
5 i f ( l o c a l > id ) {
6 v1 . va l = 3 ;
7 }
8 v2 [ id ] = 2 ;
9 synchronized ( v3 ){

10 v3 . va l = 1 ;
11 }
12 v4 . va l ∗= l o c a l ;
13 }

Figure 3.1: Motivating Example
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Variable Thread1 Thread2

v1 read of v1.val at line 6 write of v1.val at line 6
v2 read of v2[i] at line 8 write of v2[i] at line 8
v3 monitor acquisition of v3 at line 9 monitor acquisition of v3 at line 9
v4 read of v4.val at line 12 write of v4.val at line 12

Table 3.1: Concurrent Accesses to Shared Variables from Figure 3.1

turns out to be a false positive because Thread1 and Thread2 access different elements
of v2.

For the true race-conditions, it is unknown if they are benign races [51] or can lead to
real errors. For example, the general race on the monitor acquisition of the shared object
v3 does not cause any error because of the common protection by the monitors on v3,
while the race on the concurrent accesses to v4.val may lead to a division by zero error
because of the multiplication by zero.

The second part of value-schedule-based testing is to use static-analysis results to
guide dynamic testing to check the program correctness under the different execution
orderings implied by each pair of concurrent accesses. At the same time, concrete runtime
information is collected and is used to filter out those race conditions that are either false
positives or benign.

This guided testing consists of two subtasks. First, for a particular execution ordering
implied by a pair of concurrent accesses, a static module computes a set of interleavings.
The pair of concurrent accesses that triggers the interleavings is referred to as the per-
mutation assumption of those interleavings. Second, the dynamic testing-tool is used to
force the program to execute according to the computed interleavings. If at least one of
these interleavings is successfully executed, then the permutation assumption is consid-
ered to be feasible under that ordering. For example, conditional branching can result in
no successful interleavings.

The concept of guided testing is demonstrated using pairs of concurrent accesses from
Table 3.1. Every instruction in the interleaving is denoted in the form of ty.x, which
stands for the statement at line x of thread y. An interleaving is broken into multiple
lines at the context-switch points. For example, for the concurrent accesses on v1.val

shown in Table 3.1, the interleaving:

t1.2→t1.3→t1.4→

t2.2→t2.3→t2.5→t2.6→

t1.6
enables the access of v1.val written by Thread2 at line 6. In this case, the dynamic
testing-tool is unable to fulfill this interleaving because the branch statement at line 5
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takes the false branch and skips the write statement contained within. This interleaving
is the only interleaving that generates the identified concurrent accesses on v1.val. Thus,
the concurrent access partner on v1.val from Thread2 is said to be inaccessible, and the
race condition implied by this concurrent access-pair is a false positive. This interleaving
is explored no further.

For the concurrent accesses on v2 in Table 3.1, an interleaving such as:

t1.2→t1.3→t1.4→t1.6→

t2.2→t2.3→ t2.5→t2.6→t2.8→

t1.8
enables Thread1 to read in the value written by Thread2 at line 8. This interleaving can
be successfully executed by the dynamic testing-tool. However, a runtime check reveals
two different memory addresses are referenced by the two instructions. Therefore, the
race condition implied by that pair of concurrent accesses is a false positive as well, and
the interleaving is explored no further.

The branching and alias information obtained in the previous two examples is used for
all further testing of the programs. In both cases, the dynamic testing-tool can suspend
testing and feed this information back into the static module to refine its results, which
then reduces the scope of the dynamic testing.

For the concurrent accesses on v3 in Table 3.1, an interleaving such as:

t1.2→t1.3→t1.4→t1.6→t1.8→

t2.2→t2.3→t2.5→t2.8→t2.9→t2.10→ t2.11→

t1.9
fulfills the concurrent monitor acquisitions on v3. Note that t2.11 corresponds to the
‘}’ representing the monitor exit instruction. This interleaving is also feasible and can
be executed by the dynamic testing-tool. Because the permutation assumption of this
interleaving is shown to be valid, this interleaving is explored for further testing. If the
interleaving is allowed to be extended sequentially, first all remaining instructions from
Thread1 are explored, followed by all remaining instructions from Thread2. For these
tests, the program produces no errors at all. Thus, the implied race on the monitor entries
is benign.

An interleaving such as:

t1.2→t1.3→t1.4→ t1.6→t1.8→t1.9→ t1.10→t1.11→

t2.2→t2.3→t2.5→ t2.8→t2.9→ t2.10→t2.11→t2.12→

t1.12
is computed to fulfill the concurrent accesses on v4.val such that the read of v4.val
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from Thread1 reads in the value written by Thread2. The controlled execution of this
interleaving leads the program to a DivsionByZero error. In the end, the value-schedule-
based testing-tool reports only one harmful race on the shared variable v4.val.

The testing process illustrates the main feature of value-schedule-based testing: using
a collaboration between static and dynamic testing where the information flows bidirec-
tionally between the two modules. The static module instructs the dynamic module on
where to permute instructions and how the order of concurrent accesses implied by that
permutation can be fulfilled. The dynamic module informs the static module on the
validity of a permutation assumption, such as whether concurrent accesses are actually
accessible at runtime or accesses are actually operating on the same memory address.
Through this collaboration, value-schedule-based testing performs an aggressive POR
such that 1) permutations only happen on an instruction that may have concurrent ac-
cess partners, and 2) the testing of the interleaving is aborted as soon as the permutation
assumption on which it is based is shown to be invalid. Moreover, the collaboration is
an iterative process. For every pair of concurrent accesses, the static module computes
the fulfilling interleaving followed by a validity check in the dynamic module. The same
process is repeated for the next pair of concurrent accesses.

Because the static module produces a set of points of interest at the beginning of
testing, it is possible for a value-schedule-based testing-tool to prioritize the checking of
permutations on concurrent accesses. For example, general races on monitor entries are
more likely to be the effect of desirable synchronization to protect critical sections than
an error-triggering bug. On the other hand, a data race is generally considered to be
bad programming practice that tends to lead to errors. Thus, the value-schedule-based
testing can prioritize the checking of permutations to consider concurrent reads/writes
to shared variables before concurrent acquisitions of monitors.

Using both aggressive POR and prioritized testing, value-schedule-based testing aims
to locate error-triggering concurrency-bugs more effectively. The pairs of concurrent
accesses extracted from the sample program are relatively simple, and do not represent
all types of conflicting concurrent accesses that may exist in a program. Moreover, the
example uses only two threads that have no dependencies between them. Also, only
limited types of dynamic information are used for validity checking.

3.2 Overview of Components

This section briefly introduces the existing tools and techniques used to implement the
value-schedule-based testing.

As shown in Figure 3.2, value-schedule-based testing-technique consists of two main
modules: static and dynamic analysis. The static-analysis module consists of two sub-
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Figure 3.2: Overview of Components

modules: Concurrent Access-Pair Generator and Value-Schedule Generator. The Con-
current Access-Pair Generator produces pairs of concurrent accesses to shared variables
in the program. The Value-Schedule Generator computes fulfilling interleavings for con-
current access-pairs. Both modules use the Soot analysis-package [71] for Java. Soot
can extract useful information about a program, such as alias analysis [1], call graph
analysis [69] and MHP analysis [52].

Unfortunately, the MHP analysis provided by Soot has several limitations. First, it
cannot process call edges across polymorphic call-sites. Second, it cannot perform MHP
analysis over monitor accesses that may operate on multiple monitor-objects. A moni-
tor access may operate on different objects if the variable through which the monitor is
referred points to multiple objects. Third, the MHP analysis reports the MHP relation-
ships among all instructions. Many of the reported MHP instructions operate on local
variables and are irrelevant to uncovering concurrent bugs. Some of my work extends
the existing MHP analysis to handle various program constructs, along with a filtering
scheme to extract MHP instructions that are relevant to concurrent testing.

The dynamic module is a customized version of the explicit-state model-checker,
JPF [73]. The implementation is built upon JPF 3.1.2 because this work began before
the release of JPF 4.1. The dynamic information obtained from the controlled execution
of a program is fed back into the Value Schedule Generator to help further value-schedule
discovery.

3.3 Test Suite

The test programs used to evaluate the various techniques presented in this thesis are
listed in Table 3.2. These test programs are either categorized as kernel (K), real (R) or
benchmark (B), as in [20, 18]. The kernel programs are relatively simple and designed
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Kind Program # Threads SLOC Error(bugs)

K

twostage 2 52 Exception (Race)
wronglock 2 4 Exception (Race)

producerconsumer 7 87 Exception (Race)
blockbarrier 4 120 Exception (Barging)

reorder 2 44 Exception (Atomicity)
deadlock.d1 2 24 Deadlock
deadlock.d2 2 24 Deadlock

diningphilosopher 5 25 Deadlock
losenotify 2 41 Deadlock

clean 2 51 Deadlock
nestedmonitor 2 53 Deadlock

R

alarmclock 3 125 NullException (Race)
raxextend 11 103 Exception (Race)

daisy 2 744 Exception (Race)
RW-deadlock 4 103 Deadlock (Race)

RW-exception 4 103 Exception (Race)
replicatedworker 5 304 Deadlock (Race)

boundedbuffer 8 65 Deadlock

B

linkedlist 2 117 Exception (Race)
piper 32 71 Deadlock (Barging)

account-race 5 66 Exception (Race)
account-deadlock 5 66 Deadlock
account-subtype 5 91 Exception (Race)

Table 3.2: Test Cases

to illustrate different types of concurrency bugs. The real and benchmark programs are
taken from real-world applications, e.g., daisy is a disk simulator. Source code for these
test cases can be downloaded from http://sir.unl.edu. The #Threads column specifies
the number of concurrent threads used in each program excluding the main thread. The
SLOC column specifies the lines of code in the source program. The Error(bugs) column
specifies the type of concurrency error in the program followed in parenthesis by the way
the program fails as the result of the error. Some programs, such as RW, may produce
more than one type of error, and are separated into multiple test cases, one for each
possible error. For example, an unprotected access of a shared variable in test program
RW, may cause the program to produce either a runtime exception or a deadlock under
different interleavings.
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3.4 Summary

This chapter gives a brief overview of the proposed new testing technique. This tech-
nique combines both static analysis and dynamic testing to identify concurrency bugs in
concurrent programs. Finally, the test suite used to evaluate this new testing technique
is presented.
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Chapter 4

Concurrent Access-Pair

Generation

A concurrent access-pair consists of two concurrent instructions that have conflicting
accesses to the same shared variable. Two accesses conflict if the permutation of their
execution orders brings the program into different states. In Java, a pair of conflicting
accesses could either be concurrent reads/writes to fields of shared objects or contention
on acquiring the same monitor object. The goal of concurrent access-pair generation is
to extract all such pairs from the program. These pairs provide the dynamic testing-tool
with two pieces of relevant information: 1) a set of instructions or accesses that should
be considered for permutations when encountered during testing, 2) and for each access,
which accesses in other threads are conflicts. The former piece of information is given
by the distinct instructions that make up the concurrent access-pairs. The latter piece
of information is given by accesses that form concurrent access-pairs with it. These two
pieces of information forms the basis for a novel POR technique that is introduced in later
chapters. This chapter introduces different types of concurrent access-pairs and various
techniques used to extract these pairs.

4.1 Concurrent Access-Pairs

There are five types of concurrent access-pairs: Concurrent Read-Write Pairs (RW ),
Concurrent Monitor-Entry Pairs (MM ), Concurrent Wait-Notify Pairs (WN), Concur-
rent Wait/Monitor-Entry Pairs (WM ) and Concurrent Wait/Wait Pair (WW ). The con-
tention caused by each type of concurrent access-pairs is discussed in detail.

Two concurrent accesses to a shared variable form a RW pair if at least one of the
two accesses is a write access. In Java, a shared variable can be accessed as a field of an
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Figure 4.1: Contention on Monitor Entry

instance variable or a static field of a class. A RW pair indicates a potential data race in
the program.

In Java, contention for monitor acquisition happens among threads that are waiting at
the monitor entry-point outside of the monitor and those waiting on a ready or urgent [34]
list inside the monitor. Two concurrent attempts to acquire a monitor from its entry
point form a MM concurrent access-pair. In Java, an acquisition of a monitor from its
entry occurs by either executing a synchronized method or a synchronized statement. In
Figure 4.1, the threads T1 and T2 are attempting to simultaneously acquire the same
monitor. Every pair of acquisitions among all tasks form a MM concurrent access-pair.

A single MM concurrent access-pair does not directly indicate a potential bug. How-
ever, the contentions on the monitor involving multiple MM concurrent access-pairs can
lead to deadlocks or atomicity violations. The code in Figure 4.2(a) can produce a
deadlock because the acquisition of monitors occurs in the opposite order. The code in
Figure 4.2(b) shows an atomicity violation if the synchronized block from Thread2 is
executed in between two synchronized blocks from Thread1.

Another type of concurrent access-pair is the WN pair. A WN pair forms when a
thread waits in the monitor, and another thread enters the monitor and signals the waiting
thread. In Java, a thread waits (blocks) by calling to the monitor’s wait() method; a
waiting thread is signalled by calling the monitor notify() or notifyAll() method by some
other thread. Collectively, the two signalling methods are referred to as notify/All(). WN
differs from MM concurrent access-pairs in that there is no contention of execution order
in between the instructions because a thread is required to hold a monitor before a call
is made on the wait() or notify/All() methods. In other words, the execution order of
the wait() and the notify/All() element of a WM pair is determined by the contention of
the monitor entry enclosing the wait() and notify/All(). Figure 4.3 shows an example of
a WN concurrent access-pair. Figure 4.3(a) shows T1 entering the monitor and blocking
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   }

}

   synchronized(o2){

   }

synchronized (o1) {

   synchronized(o2){
synchronized (o1) {

   }

Thread1 Thread2

(a) Deadlock Error

}

synchronized(o1){

}

synchronized(o1){

}

synchronized(o1){

a = a + 1;

a = a + 1;

c = a;

Thread1 Thread2

(b) Atomicity Violation

Figure 4.2: Possible Concurrency Errors Caused by Contentions on Monitor Entry

by calling the wait() method. Figure 4.3(b) shows either T2 or T3 can enter and call
to notify(), which unblocks T1. Therefore, a WN concurrent access-pair is made up of
a wait() method call and a notify() method call. In Figure 4.3(c), T1 is signalled and
moved to the ready list by the notify() method invoked by T2. It is important to note
that these two choices can also be captured using a MM concurrent access-pair on the
monitor acquisitions for T2 and T3. Nevertheless, the WN pair is treated as a special case
because it is relevant to uncovering deadlock. For example, if a program has invocations
of wait() but no notify/All() to form a WN pair with that wait() statement, then that
program may have a potential deadlock. Moreover, combined with an MM pair, a WN
pair can indicate a potential deadlock caused by a LostNotify [23] where the notify()
procedes the wait().

The contention for monitor acquisitions between a thread waiting at the monitor
entry-point and a thread waiting on the ready list is captured by a WM concurrent
access-pair. Therefore, a WM concurrent access-pair is made up a wait() method and
a monitor entry statement. An example of a WM pair is shown in Figure 4.4, which
continues from Figure 4.3 by assuming T2 exits the monitor, and so T1 is waiting on the
ready list while T3 is waiting on the monitor entry list. The contention between T1 and
T3 form the WM concurrent access-pair. A WM pair may indicate a potential barging
problem in a program. In general, a thread blocks inside of a monitor if some condition
is unsatisfied, and made ready again by another thread when the condition is satisfied. It
is possible that before the newly-ready thread is able to reacquire the monitor, another
thread at the monitor entry-point barges in and acquires the monitor. Thus, when the
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Figure 4.3: Contention on Wait-Notify
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thread from the ready list finally acquires the monitor, the condition may no longer be
satisfied.

Finally, there is another type of contention on monitor acquisition that can happen to
threads on the ready list, forming an additional kind of barging. This type of contention
consists of two wait() method calls and is referred to as a WW pair. An example of WW
pair is shown in Figure 4.5, which continued from Figure 4.4. As shown in Figure 4.5(a),
T3 enters the monitor and blocks by calling wait(), and T4 arrives and blocks on the
entry list while the monitor is occupied by T3. In Figure 4.5(b), T4 enters the monitor
and notifies T3, which is moved to the ready list. In Figure 4.5(c), T4 exits the monitor,
and the ready list has two threads T1 and T3 that can acquire the monitor next. The
contention between T1 and T3 is captured by a WW pair. It is important to note that
WW pair always depends on contentions captured by some other MM, WM and WN
pairs. For example, the WW contention depicted in Figure 4.5 is a result of choices
made on the MM contentions from Figure 4.1, WN contentions from Figure 4.3 and WM
contentions from Figure 4.4. In other words, threads that form WW pairs in the ready list
of a particular monitor can be determined by choices made on other types of contentions
on the same monitor. Thus, it is impossible to compute WW pairs statically, so the
analysis of WW contentions is delayed until runtime. At runtime, it is straightforward
to extract threads from the ready list from the JVM to compute WW pairs, thus static
computation of WW pairs is unnecessary.

4.1.1 Concurrent Access-Pairs

A concurrent access-pair is defined by

(accessi, accessj) = < (Ti, Ii, Ci), (Tj , Ij , Cj) >
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Figure 4.5: Contention on Ready List

CAccess = FieldAccess
⋃

MonitorEntry
⋃

WaitNotifyInvc

F ieldAccess = all accesses to fields, instance or static
MonitorEntry = all accesses trying to acquire monitors
WaitNotifyInvc = WaitMethodInvc

⋃
NotifyMethodInvc

WaitMethodInvc = all monitor accesses that contain invocations of the wait() method
NotifyMethodInvc = all monitor accesses that contain invocations of the notify/All() method

Figure 4.6: Types of Accesses Forming Concurrent Access-Pairs
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Thread 1

1 void f 1 ( ){
2 f2 ( ) ;
3 }

1 void f 2 ( ){
2 o . va l = 1 ;
3 synchronized ( o ){
4 o . wait ( ) ;
5 }
6 }

Thread 2

1 void f a ( ){
2 fb ( ) ;
3 }

1 void fb ( ){
2 l = o . va l ;
3 synchronized ( o ){
4 o . n o t i f yA l l ( ) ;
5 }
6 }

Figure 4.7: Sample Code Illustrating Concurrent Access-Pairs

Type Concurrent Access-Pairs
RW <(t1, f2.(w(o.val), line 2), f1.(f2(), line 2)), (t2, fb.(r(o.val), line 2), fa.(fb(), line 2)) >

MM <(t1, f2.(monenter, line 3), f1.(f2(), line 2)), (t2, fb.(monenter, line 3), fa.(fb(), line 2)) >

MW <(t1, f2.(o.wait(), line 4), f1.(f2(), line 2)), (t2, fb.(monenter, line 3), fa.(fb(), line 2)) >

WN <(t1, f2.(o.wait(), line 4), f1.(f2(), line 2)), (t2, fb.(o.notifyAll(), line 4), fa.(fb(), line 2)) >

Table 4.1: Concurrent Access-Pairs from Program in Figure 4.7

where T is the thread id executing the instruction, I is the instruction that performs
the access, and C is the call-graph context under which this instruction is executed.
Different types of relevant accesses that might be used to form concurrent access-pairs
are summarized in Figure 4.6. These accesses include: FieldAccess representing accesses
to fields of objects, MonitorEntry representing monitor entries, and WaitMethodInvc

and NotifyMethodInvc representing method calls on the monitors.

Some sample concurrent access-pairs extracted from Figure 4.7 are shown in Table 4.1.
The first row of Table 4.1 reports a RW pair: <(t1, f2.(w(o.val), line 2), f1.(f2(), line 2)),
(t2, fb.(r(o.val), line 2), fa.(fb, line 2)) >. It states the write access to o.val at line 2
of function f2() called from line 2 of function f1() by Thread1 conflicts with the read
access of o.val at line 2 of function fb() called from line 2 of function fa() of Thread2.
Note that the instructions in Table 4.1 are specified in a pseudo-code manner for the
simplicity. A Java implementation uses bytecodes and their offsets into methods to rep-
resent instructions. For example, the instruction f1.(w(o.val), line 2) is internally stored
as f1.(PUTFIELD #2, 2).

This new approach extends existing techniques, such as [50, 49], which only identify
concurrent reads and writes to shared variables for detecting data races, to cover con-
current accesses among higher-level program constructs, such as monitor acquisitions. In
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Figure 4.8: Stages in Generating Concurrent Access-Pairs

later chapters, these high-level concurrent access-pairs are shown to facilitate the uncov-
ering of concurrency bugs involving subtle contention on monitor acquisitions.

4.2 Concurrent Access-Pairs Generation

In this section, the discussion centers on various techniques that are used to compute
concurrent access-pairs. In essence, concurrent access-pairs are identified in two steps
as shown in Figure 4.8: identifying pairs of MHP instructions using MHP analysis and
filtering out pairs of MHP instructions that do not have conflicting accesses on shared
variables. The MHP analysis is driven by the construction of a PEG for a concurrent
program, then performing lockset analysis over it. The filtering process consists of alias,
escape and disjoint analysis. The details of these steps are explained in the following
sections.

4.2.1 May Happen in Parallel (MHP) Analysis

In this section, a brief overview of MHP analysis is given. The MHP analysis of a
concurrent program starts with constructing a PEG of the program. The relationship
between the MHP analysis and concurrent access-pairs is addressed.

The details of PEG construction and lockset analysis are given in [52]. The process
starts by constructing the intra-thread CFG. Then, inter-thread edges are created between
synchronization and mutual exclusion among threads. Figure 4.9 shows a PEG of the
program in Figure 4.7. In the graph, an interprocedural CFG is generated for both
threads with each statement represented as a node in the graph. Each node consists of a
triple <monitor-object, type, thread>. The monitor-object represents the monitor object
this node operates on. If a node does not operate on a monitor, the monitor-object field
has a ‘∗’. The type represents the operation this node performs. Some types relevant
to synchronization and mutual exclusion are: entry for monitor entry, exit for monitor
exit, notify/All for signaling methods, and wait() which is represented with three types
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Thread2

(o, entry, t1) (o, entry, t2)

(o, wait, t1)

(o, waiting, t1) (o, exit, t2)

(o, notify−entry, t1)

(o, exit, t1)

(*, read, t2)(*, write, t1)

(*, call(fb()), t2)(*, call(f2()), t1)

Thread1

(o, notifyAll, t2)

Figure 4.9: PEG for Sample Program in Figure 4.7

of nodes: wait, waiting and notify-entry. The wait stands for the program point where
a wait() is called. waiting represents the program point when a thread is waiting for
signalling. The notify-entry stands for the program point when a thread is moved to the
ready list after signalling. Finally, the thread field represents which thread a node belongs
to.

In Figure 4.9, a synchronization dependency edge is drawn as a dashed line, e.g.,
from (o, notifyAll, t2) to (o, notify-entry, t1), which implies Thread1 depends on the
execution of (o, notifyAll, t2) to proceed beyond (o, waiting, t1). Mutually excluded
nodes are shaded, and a control flow line is dotted when a task is blocked.

After the PEG is computed, a flow-sensitive lockset analysis is applied. Nodes from
different threads that are not protected by the same set of monitors and not blocked by
synchronization dependency edges are marked as MHP. Synchronization constructs such
as notifyAll and join are used to indicate the must-happen-before relationships among
nodes. Moreover, the MHP analysis keeps track of recursive entry of monitors when
computing MHP relationships.

The different types of concurrent access-pairs discussed in Section 4.1 can be de-
rived from a PEG. For example, the (o, entry, t1) and (o, entry, t2) are shown to have
MHP relationships. Moreover, they may form a MM pair because they operate on the
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Thread 1

1 f1 ( ){
2 i f ( f . va l > 1 ) {
3 //a sub type o f F
4 f = new FSub ( ) ;
5 } else {
6 f = new F ( ) ;
7 }
8 f . f 2 ( ) ;
9 }

Callees

1 class F{
2 f2 ( ){
3 //as in Figure 4.7
4 }
5 }
6 class SubF extends F{
7 f2 ( ){
8 synchronized ( o ){
9 o . va l = 1 ;

10 }
11 }
12 }

Figure 4.10: Sample Code with Polymorphic Calls

same object o according to static analysis. The synchronization dependency edge can be
transformed into a WN pair.

Finally, by splitting a wait() call into three nodes, PEG exposes the concurrency that
happens between wait() and other statements accessing the same monitor. As shown
in Figure 4.9, the (o, wait, t1) node representing the invocation of wait() is mutually
exclusive with the entry and exit nodes in Thread2. On the other hand, the (o, waiting,
t1) node and (o, notify-entry, t1) nodes are not shown to have any mutually exclusive
relationships with nodes in Thread2. More importantly, the (o, notify-entry, t1) node is
shown to have an MHP relationship with the (o, notifyAll, t2) node, so the wait() and
monitor entry form a WN pair.

4.2.2 Customizing Existing MHP Analysis

Existing PEG generation and MHP analysis [44] have some limitations. PEG construction
tends to make conservative approximations when extended over unresolved polymorphic
call-sites or monitor entries. A call site is considered unresolved if the exact runtime type
of a callee cannot be resolved by static analysis. A monitor entry becomes unresolved if
static analysis believes it may point to more than one runtime object. Implementation
in [3] requires the precise type and points-to information on nodes that are relevant
to inter-procedural and inter-thread analysis. These limitations are intentional and are
designed to reduce the complexity of the MHP analysis.

In the original MHP analysis given in [52], a cloning technique is used to create extra
branches in the CFG to handle ambiguous type and points-to relationships. For example,
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(o, entry, t1)

(*, write, t1)

(o, exit, t1)

Thread2

(o, entry, t1) (o, entry, t2)

(o, wait, t1)

(o, waiting, t1) (o, exit, t2)

(o, notify−entry, t1)

(o, exit, t1)

(*, write, t1)

Thread1

(*, read, t2)

(*, call(fb()), t2)

(*, call(f2()), t1)

(*, call(f2()), t1)

F.f2()FSub.f2()

(o, notifyAll, t2)

Figure 4.11: Polymorphic PEG for Code in Figure 4.7 and 4.10

if a callee of a method invocation can be resolved to two different types, then two method
calls, one for each possible type of the callee, are added into the CFG. The same cloning
approach is applied for entries on monitors that may point to more than one runtime
object.

An example of cloning is shown using the sample code in Figure 4.10, which modifies
the f1() method in Thread1 of Figure 4.7 to initialize f to one of two possible types
depending on the branch taken at runtime. The static type analysis resolves the type of
the callee at line 8 to either F or SubF . A sound PEG construction should always take
both cases into consideration.

The clone technique produces a separate node for each possible type of callee in the
caller’s CFG as in [52]. For example, the call to f2() in Figure 4.10 is resolved to two
sequential nodes: F.f2() and SubF.f2(). Thus, each of the two method calls is extended
separately. Moreover, the MHP analysis will be performed as if there are two consecutive
calls in Thread1, one to F.f2() and another to SubF.f2(). The resulting PEG for the
code in Figure 4.10 is shown in Figure 4.11. The same cloning technique is applied to an
unresolved monitor entry to clone all entry nodes for each possible object type.
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Thread 1

1 f1 ( ){
2 i f ( va l > 1 ) {
3 o = o1 ;
4 } else {
5 o = o2 ;
6 }
7 f2 ( ) ;
8 }

Thread 2

1 fa ( ){
2 i f ( va l > 1 ) {
3 o = o2 ;
4 } else {
5 o = o1 ;
6 }
7 fb ( ) ;
8 }

Figure 4.12: Aliasing of Monitor Operations

As reported by [44], the cloning method leads to a significant increase in the size of
the PEG, and limits the applicability and scalability of the MHP analysis. Thus, [44]
proposes the use of Class Hierarchy Analysis to resolve as many polymorphic call-sites and
monitor entries as possible. The analysis aborts if the program has unresolved call sites
or monitor entries. The argument is that in the presence of many unresolved program
facts, the cloning technique produces many superfluous nodes in the PEG. Thus, the
MHP analysis is unable to finish or produces too many false positives. Either way, little
useful information can be obtained using MHP analysis.

A MHP analysis that produces no report is useless to the proposed collaboration
between static and dynamic analyses. Therefore, I propose a compromise between the
approach taken by [52, 44]. In my approach, the cloning technique is applied only on
unresolved polymorphic call-sites, but not the unresolved monitor-entries. My technique
conservatively treats nodes guarded by unresolved monitor entries as if they are protected
by no monitor entry at all, for the following reason. The cloning due to polymorphism is
necessary to preserve the completeness of the PEG. If a possible target method of a poly-
morphic call is not included in the graph, relevant MHP relationships among nodes are
missed, thus rendering the analysis incomplete. On the other hand, treating unresolved
monitor entries as if they offer no protection produces false positives in the MHP pairs
only if two unresolved monitor entries turn out to hold the same monitor at runtime.
However, this conservative approximation does not produce any false negatives, which is
safe. Moreover, different dynamic mechanisms can identify these false positives caused by
unresolved monitor entries. Compared to [52], the new technique reduces the workload
of MHP analysis but produces more false positives. Compared to [44], the new technique
is more complete because it allows MHP analysis to produce useful information in the
presence of unresolved call-sites, but might run more slowly if many cloned polymorphic
calls exist in the program.

For example, Figure 4.12 shows a modified version of f1() and fa() from Figure 4.7
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Thread1 Thread2

(*, write, t1) (*, read, t2)

(o1o2−1, entry, t1) (o1o2−2, entry, t2)

(o1o2−1, waiting, t1)

(o1o2−1, notify−entry, t1)

(o1o2−1, exit, t1)

(*, call(f2()), t1) (*, call(fb()), t2)

(o1o2−2, notifyAll, t2)(o1o2−1, wait, t1)

(o1o2−2, exit, t2)

Figure 4.13: PEG for Code in Figure 4.7 and 4.12

which initializes the shared variable o to one of two variables if another shared variable
val is greater than 1. Multiple assignments lead the static alias-analysis to report the
monitor entries on o in methods f2() and fb() point-to multiple objects. The analysis
in [52] clones the monitor entry for the two possible monitor objects, while analysis
from [44] aborts when this case is encountered.

In my solution, when an unresolved monitor entry is encountered, a distinct artificial
object is created for that monitor entry. For example, if a monitor entry is believed to
operate on two possible objects, such as o1 and o2 for the monitor entry in Figure 4.7
called from the code in Figure 4.12, a distinct object with a name formed by concatenating
the names of the possible points-to objects and a special sequence id is created. The
sequence id is always incremented by one whenever an unresolved monitor entry node
with the same set of aliasing objects is encountered. The aim of this naming convention
is to make this artificial object unique throughout the program, so the names of may-alias
objects forms a key for that particular alias relationship. Thus, every unresolved monitor
entry is considered by the MHP analysis to operate on a unique object, so that all nodes
enclosed by this unresolved monitor entry are considered to be free of mutual exclusion
with all other nodes in the program.

Figure 4.13 shows the new PEG for the program constructed using the code given
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in Figure 4.7 and Figure 4.12. The monitor entry nodes from both threads now have
distinct object names o1o2 − 1 and o1o2 − 3. Note this special naming scheme is used
instead of ’*’ because the underlying MHP analysis must distinguish between monitor and
non-monitor objects. This approach enables the MHP analysis to be carried out across
a synchronization clause on a may-alias monitor object without cloning the synchronized
region. As a result, the shaded mutual exclusive regions in Figure 4.9 no longer exist, and
no nodes are not considered to be mutual exclusive by the MHP analysis. However, this
approach may result in superfluous MHP pairs if the may-alias monitor-entries actually
access the same shared variable.

4.2.3 Extracting Relevant MHP Pairs

In the previous section, the MHP analysis was customized to uniquely identify MHP
instructions in a program with unresolved monitor entries. In this section, the discussion
examines techniques used to filter out irrelevant MHP instruction pairs, such as accesses
to local variables, and produce a report that contains only the types of MHP pairs outlined
in Section 4.1. All five types of concurrent access-pairs identified in Section 4.1 require
concurrent instructions that operate on the same shared variables. The two key criteria
here are “same” and “shared”. Intuitively, if two concurrent instructions operate on the
same variable, then the variable is “shared”. In this case, an analysis, such as alias
analysis, should be sufficient to identify relevant MHP pairs. However, in practice, due
to the imprecision of alias analyses, these two criteria have to be validated with different
static analyses.

The filtering process is arranged in a similar fashion as that in [50]. The first stage is to
filter out MHP pairs that could never operate on the same variable using alias analysis.
For example, accesses on primitive-type variables declared within methods are filtered
out. Then, concurrent accesses that operate on must-not-alias variables are filtered out.
The remaining pairs are those believed to at least operate on may-alias variables.

Because coarse-grained alias-analyses, including that implemented for the Spark pack-
age of Soot, do not offer context sensitivity during analysis, two may-alias variable-
accesses from two threads might be local to the individual thread. In Figure 4.14, a
context-insensitive analysis reports write accesses to the variable o.val from both threads
through the calling sequence f1() → f2(), because the o accessed in f2() always resolves
to the object instantiated in f1(). However, because f1() → f2() is invoked by different
threads, each thread is actually accessing a different instance of o. One solution is to
use context-sensitive alias-analyses, such as [5], but this requires more computational re-
sources than context-insensitive analysis. Moreover, depending on the level of sensitivity,
false positives may still be reported. Or, an escape analysis [14, 7] can be used to deter-
mine that the objects instantiated in function f1() never escape the thread scope. Thus,
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Thread 1

1 run ( ){
2 f1 ( ) ;
3 }

Thread 2

1 run ( ){
2 f1 ( ) ;
3 }

Functions

1 //assume g l o b a l l y de f ined
2 void f 1 ( ){
3 o = new O( ) ;
4 f2 ( o ) ;
5 }
6 void f 2 (O o ){
7 o . va l = 2 ;
8 }

Figure 4.14: Combining Alias and Escape Analysis

no concurrent accesses to the object allocated in the function f1() operate on the same
object even though a coarse-grained alias-analysis may report it. Currently, the escape
analysis from [17] is used in my implementation.

As discussed in Section 4.2.2, the monitor protection offered by an unresolved monitor-
entry is deliberately removed from the PEG to compute a safe set of MHP relationships.
This approach unavoidably introduces many false positives into the report if two unre-
solved monitor entries turn out to operate on the same monitor. Therefore, it makes sense
to minimize the impact of this technique. In Figure 4.15, the synchronized function f2()
of class O is invoked in both Thread1 and Thread2. Moreover, the exact identity of O for
the invocation of f2() cannot be resolved using alias analysis. Thus, monitor entries on
the synchronized f2() are artificially hidden away during the MHP analysis, and f2() is
considered to be executed concurrently by the two threads. Hence, the variable accesses
in f2() are considered to form concurrent access-pairs if they operate on the same object.
A closer inspection of the program reveals that accesses to the val fields in f2() cannot
form any relevant concurrent access-pairs, for the following reason. If f2() is invoked on
two different instances of o by two threads, then the access of val at line 3 operates on
different objects. On the other hand, if callees of f2() use the same object at runtime,
then accesses at line 3 have mutual exclusion anyway. Thus, concurrent accesses on val

at line 3 can always be safely excluded.

The must-alias relationship between an object access within a synchronized region
and the monitor object that protects the synchronized region provides new opportuni-
ties for pruning out irrelevant MHP pairs. The must-alias relationship can always be
established between this object-references in a synchronized method and the callee of
that method. However, such a must-alias relationship is harder to establish between a
protecting monitor object and objects accessed in the protected region if the monitor is
acquired using a synchronized statement, such as “synchronized(o){}”. For example, it
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1 class O{
2 public synchronized void f 2 ( ){
3 va l = va l + 1 ;
4 }
5 int va l ;

Thread 1

1 f1 ( ){
2 i f ( va l > 1 ) {
3 o = o1 ;
4 } else {
5 o = o2 ;
6 }
7 o . f 2 ( ) ;
8 }

Thread 2

1 fa ( ){
2 i f ( va l > 1 ) {
3 o = o2 ;
4 } else {
5 o = o1 ;
6 }
7 o . f 2 ( ) ;
8 }

Figure 4.15: Aliasing of Monitor Operations

is possible to change o after the monitor for o is acquired. Therefore, in the current im-
plementation, only accesses protected by synchronized methods are considered for such
filtering. The remaining false positives are identified using the collaboration between
static and dynamic testing techniques discussed later. This filtering technique is similar
to that introduced in [49], where MHP accesses to fields of array-elements do not con-
tribute to data races if elements of the array are instantiated with different objects. My
technique recognizes that the concurrent accesses to fields referenced by this are always
conflict free if methods enclosing them are synchronized, called disjoint filtering.

The program artifacts and constructs used in the rules for computing concurrent
access-pairs are given in Figure 4.16. The most relevant constructs are: mhp(a1, a2),
mayAlias(ref1, ref2), escape(ref) and disjoint(a1, a2). The mhp(a1, a2) determines
MHP relationship between two program statements stmt1 and stmt2. The mayAlias(ref1, ref2)
determines whether two object references are to the same object. The escape(ref) de-
termines whether any object referenced by ref is thread global. The escape status of a
reference to an object is conservatively estimated as the disjunction of the escape status
of all objects that may be pointed to by that reference. The disjoint(a1, a2) determines
whether two accesses a1 and a2 can be filtered out using disjoint analysis.

Figure 4.17 summarizes the rules for computing different types of concurrent access-
pairs. Rule 1 specifies steps for computing RW pairs from accesses to instance and static
fields. The MHP analysis is used to determine whether any two accesses may happen
in parallel. After that, filtering determines whether the references to base objects in the
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P = program under analysis O = objects allocated in P
T = all threads in P CAccess = relevant accesses as defined in Figure 4.6
SM = all static/instance synchronized methods in P
Refinstance = all references to instance variables in P
Refstatic = all references to static variables in P
W = all write accesses in P

decl(a) = {m | m ∈ SM, a ∈ CAccess
∧

a is defined in m}
ref(a) = base reference of a field access, where a ∈ CAcess

field(a) = field referenced by an access, where a ∈ CAcess

method(a) = method referenced by an access, where a ∈ CAcess

pointsTo(ref) = objects that may be pointed to by ref where ref ∈ Refinst
⋃

Refstatic

mhp(a1, a2) =

true, if a1 may execute concurrently with a2

false, otherwise;

where a1, a2 ∈ CAccess

mayAlias(ref1, ref2) =

true, if pointsTo(ref1)
⋂

pointsTo(ref2) 6= ∅

false, otherwise;

where ref1, ref2 ∈ (Refinst
⋃

Refstatic)

escape(o) =


true, if ∃(a1 ∈ t1

∧
a2 ∈ t2)where

o ∈ pointsTo(ref(a1))
∧

o ∈ pointsTo(ref(a2))

false, otherwise;

where o ∈ O, a1, a2 ∈ CAccess, t1, t2 ∈ T

escape(r) =


true, if ∃o ∈ pointsTo(r) such that escape(o) = true

o ∈ pointsTo(ref(a1))
∧

o ∈ pointsTo(ref(a2))

false, otherwise;

where r ∈ (Refinst
⋃

Refstatic)

disjoint(a1, a2) =


true, if ref(a1) = this

∧
ref(a2) = this∧

decl(a1) ∈ SM
∧

decl(a2) ∈ SM;

false, otherwise;

where a1, a2 ∈ CAccess

Figure 4.16: Constructs for Filtering
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Rule 1 : (a1, a2) where a1, a2 ∈ FieldAccess

∈ RW IF
mhp(a1, a2)

∧
mayAlias(ref(a1), ref(a2))

∧
field(a1) = field(a2)

∧
escape(ref(a1))

∧
escape(ref(a2))

∧
¬ disjoint(a1, a2)

∧
(a1 ∈ W

∨
a2 ∈ W)

Rule 2 : (a1, a2) where a1, a2 ∈ MonitorEntry

∈ MM IF
mhp(a1, a2)

∧
mayAlias(ref(a1), ref(a2))

Rule 3 : (a1, a2) where a1 ∈ WaitMethodInvc
∧

a2 ∈ MonitorEntry

∈ WM IF
mhp(a1, a2)

∧
mayAlias(ref(a1), ref(a2))

Rule 4 : (a1, a2) where a1, a2 ∈ WaitNotifyInvc

∈ WN IF
((a1 ∈ WaitMethodInvc

∨
a2 ∈ WaitMethodInvc)∧

(a1 ∈ NotifyMethodInvc
∨

a2 ∈ NotifyMethodInvc))∧
mhp(a1, a2)

∧
mayAlias(ref(a1), ref(a2))

Figure 4.17: Rules for Computing Concurrent Access-Pairs
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accesses have a may-alias relationship and that the referenced field names are the same.
It is important to note that an access to an element of an array is treated as an access to
an instance field of that array object. Due to the coarse-grained nature of alias analysis, if
the references to the base objects of two array element accesses may-alias, then elements
accessed from those array objects are considered to have alias relationships as well. After
the alias analysis, the escape analysis determines whether the base objects escape the
thread scope. Last, the disjoint analysis is used to determine whether two accesses can
be made irrelevant. For accesses to static fields, the names of classes and fields referenced
are checked. A RW pair is formed if the access happens on the same static field of the
same class. Notes that the escape filtering is unnecessary for static accesses because static
fields are always visible from other classes as well.

Rule 2 specifies rules for computing MM pairs. The monitor entry can be attempted
using a synchronized method invocation or a synchronized statement. The references to
monitors are checked for alias relationships.

Rule 3 and 4 specify rules for computing WM and WN pairs. In Rule 3, the reference
to the receiving object of the wait() method-call and the reference of the monitor object
in the monitor-entry statement are checked for a possible alias relationship. A WM pair
is created if such a may-alias relationship exists. In Rule 4, the receiver of the wait()
and notify/All() method calls are checked for alias relationships. A WN pair is created
if such a may-alias relationship is held. Note that there is no rule for computing WW
pairs because they are intended to be computed at runtime.

To summarize, the MHP analysis is applied across all rules. Alias filtering and escape
filtering are always applied for concurrent access-pairs that involve references to instance
objects. The disjoint filtering is only applied for filtering RW pairs that make up accesses
to field instances.

4.3 Evaluation

Table 4.2 reports the concurrent access-pairs extracted from the test programs listed in
Table 3.2 of Chapter 3. All tests are performed using a Java 1.5 runtime on a Dual Core
AMD Opteron(tm) Processor 885 with 1.0 GHZ CPU and 16GB of memory, and 2.0
GB of JVM heap. Column Nodes reports the number of nodes that make up the PEG.
The cloning of polymorphic call-sites only occurred for the test program account-subtype.
The disabling of unresolved monitor-entries only occurred for test programs: deadlock.d2,
diningphilosopher, account-deadlock, account-race and account-subtype.

Column MHP Pairs reports the number of MHP pairs computed directly for the MHP
analysis using [44]. The RW, MM, WM and WN columns report the number of pairs
computed for each type of concurrent access-pair using the filtering process consisting
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of alias, escape and disjoint pruning. Column Time reports the time taken to complete
the extraction of concurrent access-pairs. In general, the time spent on each program is
directly proportional to the number of nodes in that program’s PEG. The algorithmic
complexity of the MHP analysis is O(N3) [52] where N is the number of PEG nodes. Ta-
ble 4.2 reports time out (TO) for three test programs: piper, daisy and replicatedworkers,
when performing the MHP analysis, where the time out limit is 1 hour. It is important
to note that these three test programs have the highest number of PEG nodes in the test
suite. This result is consistent with the experimental results reported in [52] and [44].
In [52], all test cases have less than 500 PEG nodes. In [44], time outs are reported for
test programs with more than 1000 nodes. For example, a program with 2173 PEG nodes
takes 44553 seconds to complete on a Pentium 4 1.8 GHZ machine and 1.5 GB of JVM
heap. While these previous numbers were collected under different environments, they
do serve as an indication of the limitations of the existing MHP analysis techniques.

For the three test programs that time out, the MHP analysis is relaxed to reduce
the complexity by ignoring the synchronization constructs, reducing the complexity to
O(N2). Because this coarse-grained MHP analysis does not consider any synchronization
and mutual exclusion in program, it is referred to as unsync MHP analysis. Moreover,
because it does not require the program facts such as mutual exclusion and synchroniza-
tion dependencies to be maintained and propagated through nodes in the PEG, it tends
to complete much faster but generates a far less precise report. Table 4.3 shows the
experiment output for those three programs that timed out.

Next, the effectiveness of the different filtering techniques is evaluated. The alias
filtering achieves reduction in all 23 test programs. The escape and disjoint filtering
achieves improvements in only the test programs listed in Table 4.4 and Table 4.5.

The two test programs where escape filtering achieves an improvement are listed in
Table 4.4. The escape analysis reduces the number of RW pairs 95 to 41 for Producer-
Consumer program and from 272 to 1 in daisy. The escape-analysis filtering has no effect
on the number of monitor related pairs generated because attempts to acquire a monitor
for an object that is not shared are rare in practice. The escape-analysis filtering does
slightly increase overall computation time.

The four test programs where the disjoint analysis achieves reduction are listed in
Table 4.5. In the account-race test program, the disjoint filtering reduces the number of
RW pairs from 4320 to 1890, and in the account-subtype test program disjoint filtering
reduces the number of RW pairs from 4590 to 2040. In both cases, two fold reductions
are achieved. These two test programs contain code that attempts to acquire monitor
entries on some elements of an array, then call synchronized methods on those objects
to update their fields. The disjoint-analysis filtering is ideal for recognizing whether
synchronized methods are invoked. The concurrent updating of the this referenced fields
in the method is considered to be safe by the disjoint-analysis filtering. The piper and
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Program Nodes MHP Alias + Escape + Disjoint Time
Pairs RW MM WM WN (sec.)

twostage 84 1255 0 2 0 0 4.54

wronglock 79 863 5 0 0 0 3.72

producerconsumer 380 26354 41 44 54 54 23.97

blockbarrier 226 6196 0 6 12 12 7.54

reorder 77 1082 20 0 0 0 3.62

deadlock.d1 63 672 0 2 0 0 4.09

deadlock.d2 45 435 0 4 0 0 3.37

diningphilosopher 108 3225 0 40 0 0 5.02

losenotify 77 713 0 1 1 1 3.53

clean 71 912 7 2 2 2 4.45

nestedmonitor 75 923 0 2 2 2 3.97

alarmclock 263 13948 16 6 4 2 16.61

raxextend 218 16159 10 35 0 0 15.83

daisy 957 TO

RW-deadlock 415 31063 51 52 36 12 27.27

RW-exception 415 31063 51 52 36 12 26.27

replicatedworker 1650 TO

boundedbuffer 349 41325 0 28 56 56 38.51

linkedlist 272 8432 144 0 0 0 9.97

piper 1133 TO

account-race 314 33825 1890 1210 0 0 86.48

account-deadlock 269 24150 0 1210 0 0 57.83

account-subtype 256 18440 2040 490 0 0 29.10

Table 4.2: Concurrent Access-Pairs Computed with Precise MHP Analysis

Program Nodes MHP Alias + Escape + Disjoint Time
Pairs RW MM WM WN (sec)

piper 1133 104281 0 496 992 992 11.84

replicatedworker 1650 28901 545 1100 640 295 18.90

daisy 957 202531 1 45 12 2 16.90

Table 4.3: Concurrent Access-Pairs Computed with Coarse MHP Analysis
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Program Alias + Disjoint Time
RW MM WM WN (sec.)

producerconsumer 95 44 54 54 23.82

daisy 272 45 12 2 16.24

Alias + Escape + Disjoint

producerconsumer 41 44 54 54 23.97

daisy 1 45 12 2 16.90

Table 4.4: Test Programs Improved by Escape Analysis

Program Alias + Escape Time
RW MM WM WN (sec.)

account-race 4320 1210 0 0 83.00

account-subtype 4590 490 0 0 26.16

piper 2208 496 992 992 11.04

replicatedworker 1025 1390 640 295 18.37

Alias + Escape + Disjoint

account-race 1890 1210 0 0 86.48

account-subtype 2040 490 0 0 29.10

piper 0 496 992 992 11.84

replicatedworker 545 1100 640 295 18.90

Table 4.5: Test Programs Improved by Disjoint Analysis

replicatedworkers programs are computed with the coarse-grained MHP analysis without
considering synchronization. However, by recognizing the synchronized method that an
access to a shared variable is enclosed in and the callee objects of that synchronized
method, the disjoint analysis can filter out concurrent access-pairs that are irrelevant if
the enclosing synchronizated methods are invoked on different objects. Again, the disjoint
analysis filtering leads to some small computational overhead.

4.4 Summary

This chapter introduces static analyses used in computing different types of concurrent
access-pairs that may potentially contribute to different types of concurrency bugs. These
concurrent access-pairs include: RW, MM, WM, WW and WN. Then, an extension to the
existing PEG generation technique is introduced. The new extension aims to preserve the
completeness of the PEG by cloning the polymorphic call-edges while avoiding generating
too many spurious PEG nodes by treating unresolved monitor-entries as an acquisition
of a unique monitor. After that, different filtering techniques are introduced to extract
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relevant concurrent access-pairs from the program. These filtering techniques make use of
static analyses such as alias, escape and disjoint analysis. Finally, the generation process
for concurrent access-pairs is applied over the test programs presented in Chapter 3.
The experimental results confirm that the various techniques discussed in this chapter do
improve the effectiveness of the concurrent access-pair generation.
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Chapter 5

Value-Schedule-Based Testing

This chapter examines how value-schedule-based testing makes use of statically computed
information, such as concurrent access-pairs, to guide dynamic testing. The original def-
inition of value schedule from [6] is extended to give a more precise specification of the
ordering of concurrent accesses to shared variables, followed by a straightforward im-
plementation of value-schedule-based testing. The value schedules and their fulfilling
interleavings are computed and executed for testing. The testing process illustrates how
the two main features of value-schedule-based testing, accessibility-based POR and prior-
itized testing, are achieved. Finally, value schedules and their fulfilling interleavings are
derived for different program constructs in a concurrent Java program, along with proofs
to show the completeness of the derivation with a distinct set of concurrent accesses.

5.1 Motivation

The sample program in Figure 5.1 is used to demonstrate several important concepts. The
sample program has two threads that deposit and withdraw money from two accounts,
accX and accY . If the two threads execute sequentially, i.e., one after another, then both
accounts have a value of zero at the end, and the assertion at line 11 of the sample program
evaluates to true. However, when the program is run concurrently, the implementation
of Thread2 leads to a data race because it mistakenly acquires monitor accY instead of
accX when updating account accX. For example, it is possible that both threads read
in the original values of accX.val and write them out concurrently. In the end, accX.val

may have a non-zero value when the threads join. In this case, the assertion evaluates to
false and fails. It is the task of the testing tool to uncover such an interleaving efficiently.
As well, the if statement at line 4 of Thread2 can never be true, because accY.val is
always greater than or equal to 0. In this simple case, static analysis might discover this
dead code; in general, static analysis cannot always detect dead code precisely. For this
discussion, it is assumed the static analysis did not detect the dead code.
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Main Thread

1 main ( St r ing [ ] a rgs ){
2 Account accX = new Account ( 1 ) ;
3 Account accY = new Account ( 2 ) ;
4 Thread1 t1 =
5 new Thread1 ( accX , accY ) ;
6 Thread2 t2 =
7 new Thread2 ( accX , accY ) ;
8 t1 . s t a r t ( ) ; t2 . s t a r t ( ) ;
9 t1 . j o i n ( ) ; t2 . j o i n ( ) ;

10
11 a s s e r t ( accX . va l == accY . va l ) ;
12 }
13
14 class Account{
15 Account ( int id ){
16 this . id = id ;
17 this . va l = 0 ;
18 }
19 int va l ;
20 int id ;
21 public stat ic int amt = 10 ;
22 }

Thread 1

1 run ( ){
2 synchronized ( accX ){
3 accX . va l += Account . amt ;
4 }
5 synchronized ( accY ){
6 accY . va l += Account . amt ;
7 }
8 }

Thread 2

1 run ( ){ // shou ld be accX & accY
2 synchronized ( accY ){
3 accX . va l −= Account . amt ;
4 i f ( accY . va l < 0){
5 accX . va l = 0 ;
6 }
7 }
8 synchronized ( accY ){
9 accY . va l −= Account . amt ;

10 }
11 }

Figure 5.1: Sample Program

60



As discussed in Chapter 2, a dynamic testing-tool, such as a model checker, may test
all concurrent behaviours of a program by running at least one interleaving for every
distinct partial ordering of accesses to shared variables. However, the task of generating
an interleaving for each distinct partial ordering is nontrivial. In general, it requires the
dynamic testing-tool to know whether a permutation of execution orders should be taken
before executing an instruction, and which threads are runnable after the instruction is
executed. The first issue is to determine whether an instruction accesses a shared variable
that is concurrently accessed by other threads. The second issue tries to determine which
threads execute the concurrent conflicting-accesses to the shared variable.

In many existing dynamic testing-tools, these two issues are evaluated using a coarse-
grained estimate. Thus, it is possible that a context switch is taken based on some
incorrect assumptions, and the resulting interleaving does not lead to the testing of any
new partial ordering among concurrent accesses. For example, the sample program in
Figure 5.1 is supposed to have two threads deposit and withdraw money from two ac-
counts, accX and accY . The partial interleaving 5.1 is a possible interleaving of the
sample program.

read of accX.val at line 3 of Thread1 →
read of accX.val at line 3 of Thread2 →
write of accX.val at line 3 of Thread2 →
compare of accY.val at line 4 of Thread2 →
write of accX.val at line 5 of Thread2 →
write of accX.val at line 3 of Thread1

(5.1)

As shown in Figure 5.2, the context switch may be forced on the read of accX.val at
line 3 of Thread1 because the static analysis might report the existence of a conflicting
write to accX.val at line 5 of Thread2. The assumption of the context switch is that it
leads to an interleaving where the write at line 5 of Thread2 happens before the read at
line 3 of Thread1. However, because the write in Thread2 is not reachable at runtime, this
context switch is not necessary. To identify such a superfluous interleaving, the dynamic
testing-tool has to keep track of the assumption of the context switch from which the
interleaving is spawned. Moreover, the dynamic testing-tool should be able to determine
when the assumption of a context switch becomes infeasible an this interleaving, and abort
further extension of that interleaving promptly. In this example, the dynamic testing-tool
should remember that this context switch is intended to reach line 5 of Thread2. When
the statement is bypassed by the condition at line 4 because accY.val is initialized to
zero, further extension of this interleaving can be abandoned.

Moreover, existing testing techniques do not offer mechanisms for prioritizing the
testing of more relevant permutations on the execution orders between an access and
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r(accX.val, 3)

acq(accY, 2)

w(accX.val, 3)

Thread2Thread1

rel(acqX, 4)

switch
context

w(accX.val, 5)

cmp(accY.val, 4)

acq(accX, 2)

r(accX.val, 3)

w(accX.val, 3)

Figure 5.2: Illustration of Interleaving 5.1

its conflicting concurrent accesses, either by programmers or by some heuristic estimate.
Prioritizing is important because exhaustive testing of all partial orderings of shared
variables is often impossible due to constraints on computational resources as discussed
in Chapter 2. Dynamic testing-tools, such as [72, 25], cannot achieve complete coverage
because they require exhaustive testing to ensure all possible permutations between an
access and its concurrent conflicting-accesses be covered. An essential requirement for
such testing is to be aware of conflicting accesses when encountered, and explicitly guide
further testing to fulfill the orderings between an access and its concurrent conflicting-
accesses.

In value-schedule-based testing, the testing process is driven by deriving and fulfilling
value schedules of a program. A value schedule defines a partial ordering of concurrent
accesses to shared variables and is constructed from concurrent access-pairs discussed
in Chapter 4. From the value schedule, the dynamic testing-tool knows two important
pieces of information: 1) accesses where context switches should take place, and 2) concur-
rent conflicting-accesses of a given instruction. For an access i, all threads that contain
accesses forming concurrent access-pairs with i are considered for context switches in
value-schedule-based testing. Moreover, from the concurrent access-pairs associated with
a concurrent access, it is possible to derive all possible orderings between that access and
its concurrent conflicting-accesses. All such orderings are considered to be potentially
fulfillable by performing a context switch before i. In other words, in the value-schedule-
based testing, a context switch is always taken with the knowledge of the new orderings
that might be fulfilled with this context switch.
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Using this information, for each new ordering of concurrent accesses implied by a con-
text switch, value-schedule-based testing tries to compute a feasible fulfilling-execution-
path. An extension of an interleaving spawned from a context switch is aborted when
value-schedule-based testing determines there is no feasible execution-path to fulfill the
new order of accesses implied by the context switch. The process of determining the
existence of a fulfilling execution-path for the access order implied by a context switch
is a mechanism that helps to remove superfluous interleavings introduced by imprecise
program information.

In interleaving 5.1, value-schedule-based testing might initially consider the read at
line 3 of Thread1 for a context switch because it forms a concurrent access-pair with the
other accesses to accX.val, such as the write to accX.val at line 5 in Thread2. How-
ever, through the computation of fulfilling execution-paths, value-schedule-based testing
determines that there is no feasible execution-path that leads to any more concurrent ac-
cesses to accX.val in Thread2 because the branch statement at line 4 of Thread2 always
evaluates to false. Thus, any interleavings derived from this context switch are aborted
for further testing.

Because value-schedule-based testing is aware of all possible concurrent conflicting-
accesses of a given access, it can guide the dynamic testing-tool to test some relevant
orderings associated with a particular access by explicitly computing execution paths that
fulfill these orderings before others. For example, programmers might want to evaluate
the effects of permuting the execution order between the write to accX.val from Thread1
with all of its concurrent accesses in Thread2. Value-schedule-based testing can derive
and mark the fulfilling interleavings to be tested before others.

5.2 Value Schedules of a Concurrent Program

The value schedule defined in [6] is expanded to cover orderings of different types of
concurrent accesses other than those between reads and writes to the same shared variable.
The goal of the modification is to have the value schedule provide sufficiently detailed
ordering constraints on concurrent accesses to guide the dynamic testing.

5.2.1 Extension

The original definition of value schedule is given as follows in [6]:

A value schedule is the set (equivalence class) of all thread schedules that
agree, for every critical read event r, on the critical write event that produced
the value read by r.
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w1 r

w2

Figure 5.3: Ordering of Reads/Writes in Value Schedule

For my purpose, a write event in a value schedule that produces a value read by a read
event is a visible write event. A visible write event forms a def-use pair with each read
event that reads in the value in the value schedule. Thus, a value schedule consists of a
sequence of def-use pairs. However, a program can also have invisible write events that
are not read by any read event. An important property of the above definition is that a
value schedule does not define the order of invisible writes as they do not affect the set
of def-use pairs in a value schedule and thus cannot affect the state of the program. For
example, consider the sequence of events shown in Figure 5.3. There are two concurrent
writes (w1, w2) and one concurrent read (r) to a shared variable, where the read event
could read either value. The value schedule only specifies one def-use pair indicating
which of w1 or w2 produces the value read by r; the other write event does not introduce
a second def-use pair and thus is irrelevant. One valid value schedule for Figure 5.3 is
that r reads in the value of w1, making w2 invisible. The value schedule does not specify
if w2 happens before w1 or after r.

However, to guide the testing-tool to test a def-use relationship, the tool has to know
the desired ordering of the visible read/write accesses as well as orderings among invisible
concurrent writes that may interfere with the def-use relationship. For example, the
dynamic testing-tool has to guide the program to follow an interleaving such that w1
happens before r, and w2 does not happen in between w1 and r. However, the orderings
of w2 with respect to w1 and r are not present in the original definition of a value-
schedule. Therefore, the original definition of the value schedule is expanded to cover
orderings among all concurrent read and write accesses such as those among concurrent
writes.

The original definition of the value schedule is also expanded to cover the ordering
of concurrent accesses on higher-level concurrent constructs such as monitor entry. The
benefit of specifying the order among higher-level constructs is two-fold. First, although
monitor operations, such as acquiring and releasing a monitor, could be expressed as a
set of reads/writes to the monitor object’s internal fields, this process breaks the ab-
straction provided by the programming language or the underlying virtual machine, and
exposes accesses that were originally hidden away from programmers. Thus, I believe it
is necessary for the value schedule to be specified at a level that can be understood by
programmers. The second benefit to specifying orderings on high-level concurrent con-
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Figure 5.4: Extending Value Schedules over High-Level Constructs

structs is that it can reduce the size of a value schedule. For example, in Figure 5.4(a),
two orderings have to be specified for the reads/writes of variables x and y separately. If
a value schedule specifies the order of monitor entries, then the read/write ordering of x

and y is resolved to the order of the enclosing monitor entries as shown in Figure 5.4(b).
Thus, the number of orderings that need to be specified for the same set of reads/writes
is reduced from two to one.

As a result, a value schedule is extended to cover partial orderings among concur-
rent writes, among concurrent reads and writes, and among monitor acquisitions. The
definition of the extended value schedule is given below.

Definition 5.1. The new value schedule corresponds to a set (equivalent class) of in-
terleavings that 1) agree on the same set of accesses, both reads/writes and higher-level
monitor acquisitions, to shared variables and 2) where all conflicting concurrent-accesses
to shared variables follow the same partial order.

The first criterion defines the relevant concurrent accesses in the program. The second
criterion defines the total ordering among conflicting concurrent accesses for any particu-
lar shared variable. The new value schedule augments the partial ordering of concurrent
accesses from [6] to include read/write access and write/write accesses. This extension
allows the dynamic testing-tool to perform more aggressive POR and prioritized testing
as detailed in subsequent sections. In the rest of this dissertation, this extended definition
for a value schedule is used unless otherwise noted.

For example, Figure 5.5 shows another possible interleaving that fulfills the same
partial ordering as that from Figure 5.2. In both interleavings, the read of accX.val

from Thread1 happens before all its conflicting accesses from Thread2, and the write
of accX.val from line 3 of Thread1 happens after the write of accX.val from line 5 of
Thread2. Hence, both interleavings fulfil the same value-schedule because they agree on
the same set of accesses, and all conflicting concurrent-accesses to accX.val follow the
same partial order. Therefore, two interleavings correspond to one value schedule. This
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r(accX.val, 3)

w(accX.val, 3)

r(accX.val, 3)

Figure 5.5: An Equivalent interleaving of Interleaving 5.1

equivalence class is subsequently used to reduce the number of interleavings that need to
be tested.

5.2.2 Constructs

To specify a value schedule for a program, two pieces of relevant information are needed:
1) the conflicting accesses in the program, and 2) the ordering among conflicting accesses.
The concurrent access-pairs defined in Chapter 4 provide the conflicting accesses in a
program. The representation of a concurrent access-pair consists of a tuple, (ai, aj),
where ai and aj are conflicting accesses. The information missing from a concurrent
access-pair is the ordering between these two conflicting accesses.

To represent the ordering relationship between two conflicting accesses, the ordering
symbol→ is used to represent the happens-before relationship as defined by Lamport [39],
called an ordered concurrent-access-pair. For example, to represent that access aj happens
before ai, the ordered concurrent-access-pair is written as (aj → ai). To ensure the value
written by aj reaches ai, the execution order of other concurrent accesses that conflict
with aj and ai need to be defined. For example, if aj has another concurrent conflicting
write ak, an ordering such as ak → aj or ai → ak must also exist in the same value schedule
to ensure the value given by aj is read by ai. When defining an ordering that directly

results in an assignment relationship, a special happens-before symbol,
def−→, is used.

Thus, aj
def−→ ai implies that aj happens before ai and its value is read by ai. Similarly,

for concurrent access-pairs associated with monitor acquisitions, in the cases that the
immediate happens-before ordering is not required for conflicting monitor acquisitions,
the symbol → is used. The symbol

acq−→ is used to define the immediate happens-before
ordering of monitor acquisitions such that no other conflicting monitor acquisition may
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Figure 5.6: Ordering implied by Sequential Dependencies

happen in between.

As discussed, the ordered concurrent-access-pairs act as the basic blocks for a value
schedule. The ordering among accesses to a shared variable is given by the happens-before
relationships directly or transitively specified in the ordered concurrent-accesses involv-
ing this shared variable and the dependencies of accesses from the threads forming those
ordered concurrent-access-pairs. These orderings are always transitive; therefore, two or-
dered concurrent-access-pairs (ai → aj) and (aj → ak) imply (ai → ak). The dependencies
among accesses for a thread become relevant if two ordered concurrent-access-pairs in-
volve at least two accesses from the same thread. In that case, the dependencies among
accesses from a thread imply orderings in addition to those defined in the two ordered
concurrent-access-pairs. For example, assume there are four concurrent accesses, ai, aj ,
as and at, to the same shared variable. ai and as are from Thread1, while aj and at are
from Thread2. Assume (aj → ai) and (as → at) for Thread1. These concurrent access-
pairs imply an additional ordering (ai → at) following the sequential dependency between
ai and as. As shown in Figure 5.6, the orderings specified by the ordered concurrent-
access-pairs are given in solid lines while the orderings implied by sequential dependencies
are given in the dashed line.

Table 5.1 shows that the static concurrent access-pair generation discussed in Chap-
ter 4 produces five concurrent access-pairs of type RW , and two of type MM for the
program in Figure 5.1. Because all accesses to shared variables happen in the run()
method of the threads, the contexts of the accesses are considered to be empty because
there is no direct caller, and thus they are omitted from all future references to the
concurrent access-pairs for this sample program.

The possible value schedule in Figure 5.7 illustrates the use of ordered concurrent-
access-pairs to define the orderings among concurrent accesses. This value schedule con-
sists of three concurrent access-pairs. The first ordered concurrent-access-pair states that
the read from line 3 in Thread1 happens before the first write to accX.val at line 3 in
Thread2. This ordering ensures that Thread1 reads in the default value of accX.val.
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Pair Type Concurrent Access-Pairs

RW ((t1, run.(r(accX.val), line 3)), (t2, run.(w(accX.val), line 3)))

RW ((t1, run.(r(accX.val), line 3)), (t2, run.(w(accX.val), line 5)))

RW ((t1, run.(w(accX.val), line 3)), (t2, run.(r(accX.val), line 3)))

RW ((t1, run.(w(accX.val), line 3)), (t2, run.(w(accX.val), line 3)))

RW ((t1, run.(w(accX.val), line 3)), (t2, run.(w(accX.val), line 5)))

MM ((t1, run.(acq(accY), line 5)), (t2, run.(acq(accY), line 2)))

MM ((t1, run.(acq(accY), line 5)), (t2, run.(acq(accY), line 8)))

Table 5.1: Concurrent Access-Pairs for Program in Figure 5.1

(t1, run.(r(accX.val), line 3))−→ (t2, run.(w(accX.val), line 3))
(t1, run.(w(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 5))
(t1, run.(acq(accY)), line 5)

acq−→ (t2, run.(acq(accY), line 2))

Figure 5.7: Sample Concurrent Access-Pairs and Value Schedules from Figure 5.1

The second ordered concurrent-access-pair states that the write to accX.val from line 3
of Thread1 happens before the write to accX.val from line 5 of Thread2. Thus, the
write to accX.val from line 5 of Thread2 is the last write to accX.val before the threads
join. The third ordered concurrent-access-pair states that Thread1 acquires the monitor
of accY at line 5 before Thread2 acquires the same monitor at line 2. This ordering on
monitor entry implies the reads enclosed in the synchronization clauses of Thread2 read
the value given by the writes enclosed in the synchronized clauses of Thread1. The de-
duction drawn from this value schedule might be used to refine both static and dynamic
analysis.

5.2.3 Implications

A value schedule is suitable for guiding dynamic testing because it captures two impor-
tant pieces of information about concurrent execution before the program is run: 1) the
accesses where permutations or context switches should take place, and 2) the orderings
intended by each permutation. For example, for a concurrent access-pair, w

def−→r, the first
piece of information given by this pair is that w and r should be considered for context
switching when encountered. If r is encountered during the execution and r forms con-
current access-pairs with w, the execution of r should yield to let w execute first. After w

is executed, the execution should resume with the execution of r. Moreover, the concur-
rent access-pair makes the intended ordering triggered by the context switches visible to
the testing tool. This information is particularly important because it gives the dynamic
testing-tool the necessary information to drive the interleavings spawned off by a context
switch. When the value-schedule-based testing determines an interleaving cannot fulfill
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the ordering of concurrent accesses implied by the context switch that had originally
spawned it, value-schedule-based testing aborts further execution along that interleaving
and saves computational resources. In the above example, if value-schedule-based testing
determines that control flow prevents w from being executed, the concurrent access-pair
cannot be fulfilled and the execution of the interleaving can be stopped. In contrast, ex-
isting dynamic testing-tools do not associate a particular ordering with a context switch.
Therefore, they cannot detect when a desired access is no longer reachable and continue
to explore the program, unaware that the test case cannot be fulfilled.

Moreover, with the knowledge of the exact identities of concurrent conflicting-accesses,
it is possible to guide the dynamic testing-tool to check permutations of execution orders
between a particular access and its concurrent accesses before checking other orderings.
For example, a programmer might want to know what happens if a particular read access
retrieves different values given by its concurrent writes.

In following sections, the discussion centers on showing how the derivation of value
schedules of a concurrent program could be used to drive dynamic testing. In this process,
the interleavings that could fulfill value schedules are computed, and the dynamic testing-
tool is instructed to execute those computed interleavings to test the correctness of the
program execution under corresponding value schedules. Because the testing process is
driven by the derivation of value schedules, it is called value-schedule-based testing.

5.3 Generating Value Schedules and Fulfilling Interleavings

This section introduces a simple implementation of value-schedule-based testing. The
sample program in Figure 5.1 is used to illustrate the general workflow of the value-
schedule-based testing. It is important to note that the implementation presented in this
section is not efficient; a practical implementation of value-schedule-based testing is given
in Chapter 6. However, this simple implementation is sufficient to illustrate the core con-
cept of value-schedule-based testing. Moreover, by applying this simple implementation
to the sample program in Figure 5.1, the improvement offered by the value-schedule-based
testing over a traditional dynamic testing-tool is illustrated. The dynamic testing-tool
used for the implementation of value-schedule-based testing is JPF, an explicit model
checker. In the remaining part of this chapter, the dynamic testing-tool is always re-
ferred to as JPF.

The main idea of value-schedule-based testing is to have the dynamic testing-tool
execute one interleaving for each value schedule of the program. Thus, the value-schedule-
based testing has three parts: 1) deriving the value schedules of a program, 2) deriving
the fulfilling interleavings of the value schedules, and 3) executing fulfilling interleavings
of value schedules to uncover bugs. Note that a fulfilling interleaving of a value schedule
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is an interleaving that executes the accesses to shared variables in the order given by the
value schedule.

The first two tasks are accomplished by traversing the CFG of the program. An
ordered concurrent-access-pair is added to a value schedule when one of its member
accesses is encountered during the traversal. As an ordered concurrent-access-pair is
added, its fulfilling interleaving is also computed from the CFG. The third task is fulfilled
by executing the generated fulfilling interleavings in JPF.

5.3.1 Two-Stage Testing

Figure 5.8 shows the two-staged implementation of value-schedule-based testing. First,
the value schedules and their fulfilling interleavings are statically computed. Second, each
fulfilling interleaving is run by the dynamic testing-tool. The algorithm is first illustrated
using the sample program in Figure 5.1. Then, the sample program is extended with
three threads to show the general applicability of this approach.

CFG Traversal

The algorithm for computing value schedules and their fulfilling interleavings is imple-
mented using a worklist algorithm that repeatly calls the search() procedure. The testing
process starts by selecting a random thread to start the CFG traversal. The algorithm
for computing value schedules and their fulfilling interleavings is implemented using a
working algorithm that repeatedly calls the search() procedure. The search() function
adds new search paths to the work list, where these new paths are formed by extending
its partial input path with a successor CFG node. A CFG node that may form a concur-
rent access-pair with other nodes contains a value-schedule-relevant access. A stack in
the search-path object is used to track the fulfilling of concurrent access-pairs involving
each value-schedule-relevant access as it is encountered during the CFG traversal. This
processing of value-schedule-relevant accesses produces value schedules and their fulfill-
ing interleavings that cover all possible orderings between each access and its concurrent
conflicting-accesses.

For example, for the sample program in Figure 5.1, assume the exploration starts with
Thread1. Then, the read access of accX.val at line 3 is the first value-schedule-relevant
access encountered during the traversal. Recall that in Table 5.1, this read access forms
two concurrent access-pairs with two other writes from Thread2. These three accesses
of accX.val produce three distinct orderings as shown in Figure 5.9. The three orderings
represent the cases where 1) the read happens before the two writes in Thread2, 2) the
read happens in between the two writes in Thread2, 3) the read happens after the two
writes in Thread2. The first ordering is captured by the ordered concurrent access-pair
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1 main ( )
2 S e l e c t random thread t and c r ea t e a SearchPath p

3 I n i t i a l i z e p with the entry node o f t

4 Push p onto wo rk l i s t
5 while work l i s t has more SearchPath p

6 Set p as the SearchPath removed from the f r on t o f wo rk l i s t
7 search ( p, worklist )
8 v e r i f y ( ) ;
9 search ( SearchPath p, List worklist)

10 Let c be CFG node at end o f path
11 Set S to a s e t o f s u c c e s s o r s o f c

12 i f (S == empty && p . s tack == empty && hasOnlyOneThreadLeft (p ) ){
13 f u l f i l l i n g . add (p ) ;
14 }
15 Foreach s in S
16 Append s to p

17 I f s i s s earch ta r g e t ( top o f the f u l f i l l m e n t s tack o f p)
18 Pop head o f the f u l f i l l m e n t s tack o f p

19 Add extended p to the f r on t o f worklist

20
21 I f s i s in any concurrent access−pa i r s
22 Foreach i n s t r u c t i o n i in such a pa i r
23 Set newpath as a c lone o f p

24 Push i onto the f u l f i l l m e n t s tack o f newpath

25 Add newpath as the 2nd element o f worklist

26 v e r i f y ( )
27 Foreach p in f u l f i l l i n g
28 s t a tu s = Dynamic . execute (p ) ;
29 i f ( s t a tu s == i n f e a s i b l e )
30 pruning ( ) ;
31 else i f ( s t a tu s == e r r o r )
32 r epor t ( ) ;

Figure 5.8: Overview of Search Algorithm
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Figure 5.9: Possible Orderings of the Read at Line 3

(t1, run.(r(accX.val), line 3))−→ (t2, run.(w(accX.val), line 3)). The second ordering is
captured by the ordered concurrent-access-pair (t2, run.(w(accX.val), line 3))

def−→ (t1,
run.(r(accX.val), line 3)). The third ordering is captured by the ordered concurrent-
access-pair (t2, run.(w(accX.val), line 5))

def−→ (t1, run.(r(accX.val), line 3)). Thus, the
processing of the current value-schedule-relevant node derives three different partial value-
schedules of length 1, which are added to the search path.

The fulfilling interleavings for these ordered concurrent-access-pairs are computed as
follows. For the first case, the read access is appended to the existing interleaving, en-
suring the read is executed before both writes from Thread1. The computed interleaving
is added to the end of the worklist for future expansion. By explicitly adding the read
access to the interleaving, this interleaving ensures that this read access happen before
all of its concurrent accesses.

To derive interleavings for the second and third partial-value schedules, the original
interleaving is cloned without the read access appended at line 23 of Figure 5.8. Moreover,
each cloned interleaving takes one of the two writes from Thread2 as the search target
that is pushed onto a stack in the path. A search target is a concurrent conflicting-access
intended to happen before the current access, in this case the read of accX.val at line 3
of Thread1. Each cloned interleaving is expanded to derive a path that leads to the
execution to the specified search target. Then, these two interleavings are added to the
worklist, at line 25 of Figure 5.8, as the second and third items, while the first item on
the worklist is the fulfilling interleaving of the first partial value-schedule. This approach
ensures a depth-first search of the CFG.

When an interleaving with a search target attached is removed from the worklist, it
is processed with the goal of traversing the CFG to reach the search target. Assume
the interleaving for the second case, with the first write to accX.val as the search target
removed from the worklist. Then, the CFG traversal starts with Thread2 to compute
a possible execution path that reaches the first write to accX.val in Thread2. During
the traversal, every node is added to the interleaving until the node corresponding to the
search target is encountered (lines 16 to 18 of Figure 5.8). Then, the original node that
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Rule-1 A default value-schedule is derived and fulfilled by directly appending
the value-schedule-relevant instruction to the interleaving.

Rule-2 For each concurrent access, at, which forms a concurrent access-pair with
this value-schedule-relevant instruction, a value schedule is derived and
fulfilled such that at happens before the value-schedule-relevant instruction
being processed.

Figure 5.10: General Derivation Rules

triggered this search (the read of accX.val at line 3 of Thread1) is appended to the path
after the search target. In the end, the partial value-schedule and its fulfilling interleaving
is computed as given in value schedule 5.2.

Value Schedule:
(t2, run.(w(accX.val), line 3))

def−→ (t1, run.(r(accX.val), line 3))

Interleaving :
t1.(acq(accX, 2)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3))→ t2.(w(accX.val, 3)) →
t1.(r(accX.val, 3));

(5.2)

If this interleaving is executed, it fulfills the intended ordered concurrent-access-pair.
Then, this generated path is added to the front of the worklist for further extension as
shown at line 19 of Figure 5.8.

A similar target search and interleaving computation is carried out for the third case
with the second write to accX.val by Thread2 as the search target. The fulfillment of
this ordered concurrent-access-pair results in one interleaving. So, when the processing
of the value-schedule-relevant node of the read access to accX.val from line 3 of Thread1
is done, three partial value-schedules and their fulfilling interleavings are generated.

In general, when a value-schedule-relevant access is encountered during the traversal,
the derivation rules in Figure 5.10 are applied to derive and fulfill new value schedules.
Similar to dynamic testing-techniques such as model checking, these two rules capture
possible context-switch decisions that might be made by a dynamic testing-tool when
an access to a shared variable is encountered during testing. Rule 1 corresponds to the
dynamic testing-tool’s decision to not yield for other threads, while Rule 2 corresponds
to the decision to yield for other threads that may contain conflicting accesses. However,
the main difference is that a traditional dynamic-testing-tool yields for threads while
the value-schedule-based testing yields for specific accesses. This difference enables the
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Figure 5.11: Processing of the Write Access at Line 3 of Thread1

accessibility-based POR and prioritized testing. In Figure 5.8, the code at lines 16 to 19
handles Rule 1, while the code at lines 21 to 25 handles Rule 2.

After the processing of a value-schedule-relevant access is completed, the interleaving
is added back to the worklist. Interleavings are repeatedly removed from the front of
the worklist for processing until the worklist is exhausted. Any further processing of
an interleaving starts from the previous value-schedule-relevant access in the CFG and
is extended to reach the next value-schedule-relevant access. Following this process,
additional ordered concurrent-access-pairs are fulfilled and added to the partial value-
schedule. When the algorithm determines no further extension is possible, the interleaving
has fulfilled a complete value-schedule of the program. Then, the fulfilling interleavings of
this value schedule are set aside for feasibility and correctness checking using the dynamic
testing-tool.

Illustration of Derivation Process

To illustrate the task of deriving a complete value-schedule, assume an ordered concurrent-
access-pair, (t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3)), has been
added into a value schedule by applying Rule 1 on the read to accX.val at line 3 of
Thread1. After that, the exploration continues on Thread1 from the program point after
t1.(r(accX.val, 3)). Then, the next value-schedule-relevant access encountered during the
traversal is the write access to accX.val from line 3 of Thread1, t1.(w(accX.val, 3)).
From Table 5.1, this node forms concurrent access-pairs with three other accesses from
Thread2.

These concurrent access-pairs imply four possible extensions to the partial-value
schedule, in which the write to accX.val from Thread1 and its concurrent accesses might
happen in any of four orders shown in Figure 5.11. Like the previously discussed cases,
the first ordering has the write from Thread1 happen before all of its possible concurrent
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partners, which is easily fulfilled by directly appending the current CFG node to the ex-
isting interleaving. The second and third orderings have the read access of accX.val from
line 3, and the write accesses to accX.val from line 3 by Thread2 happen before the write
to accX.val from Thread1, respectively. The fourth ordering specifies that case where
the write to accX.val happens after all conflicting accesses to accX.val from Thread2.
Fulfillment of these orderings is similar to that of value schedule 5.2. The four partial
value-schedules and their fulfilling interleavings computed from processing the write ac-
cess to accX.val from line 3 of Thread1 are represented by partial value-schedules 5.3,
5.4, 5.5 and 5.6 below.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t1, run.(w(accX.val), line 3)) −→ (t2, run.(r(accX.val), line 3));

(5.3)

Interleaving:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) → t1.(w(accX.val, 3));

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(r(accX.val), line 3)) −→ (t1, run.(w(accX.val), line 3));

(5.4)

Interleaving:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) →
t1.(w(accX.val, 3));

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(w(accX.val), line 3) −→ (t1, run.(w(accX.val), line 3));

(5.5)
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Interleaving:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t1.(w(accX.val, 3));

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(w(accX.val), line 5) −→ (t1, run.(w(accX.val), line 3));

(5.6)

Interleaving:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t2.(cmp(accY.val, 4)) → t2.(w(accX.val, 5))→

t1.(w(accX.val, 3));

Continuing the exploration of value schedule 5.3 further, the next value-schedule-
relevant access encountered in the traversal of the CFG of Thread1 is the monitor entry of
accY at line 5. A direct insertion of this monitor entry into the value schedule and fulfilling
interleaving ensures Thread1 always acquires the monitor of accY before concurrent
conflicting-monitor-entries from Thread2, and produces partial value-schedule 5.7, with
a graphical representation of the fulfilling interleaving shown in Figure 5.12.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t1, run.(w(accX.val), line 3) −→ (t2, run.(r(accX.val), line 3)))
(t1, run.(monenter, line 5)) −→ (t2, run.(monenter, line 2));

(5.7)

Interleaving:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) → t1.(w(accX.val, 3)) →
t1.(rel(accX, 4))→
t1.(acq(accY, 5));
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r(accX.val, 3)
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rel(accY, 7)
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w(accY.val, 6)

r(accY.val, 6)

rel(accY, 8)

acq(accY, 8)

r(accY.val, 9)

w(accY.val, 9)

Figure 5.12: Value Schedules 5.7 and 5.8
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The monitor acquisition at line 5 of Thread1 also forms concurrent access-pairs with
monitor entries on the same object at line 2 and line 8 of Thread2 as shown in Table 5.1.
For example, the partial value-schedule 5.8 extends the partial value-schedule 5.3 so that
the monitor entry of accY at line 2 of Thread2 happens before that from Thread1 by
applying Rule 2 from Figure 5.10 on the monitor entry at line 5 of Thread1. Using
static analysis alone, it is difficult to determine which branch is actually taken at runtime
by Thread2, so two execution paths are conservatively considered to fulfill the partial
value-schedule. As shown at line 15 of Figure 5.8, the exploration of the CFG is carried
over all possible successors of a node. Hence, the ordered concurrent-access-pair, (t2,
run.(monenter, line 2))

acq−→ (t1, run.(monenter, line 5)) can be decomposed into two
interleavings for value schedule 5.8. A graphical illustration of the fulfilling interleavings
of partial value-schedule 5.8 are shown in Figure 5.12.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t1, run.(w(accX.val), line 3)) −→ (t2, run.(r(accX.val), line 3))
(t2, run.(monenter, line 2))

acq−→ (t1, run.(monenter, line 5));

(5.8)

Interleaving 1:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) → t1.(w(accX.val, 3)) →
t1.(rel(accX, 4)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t2.(cmp(accY.val, 4)) → t2.(w(accX.val, 5)) →

t2.(rel(accY, 7))→
t1.(acq(accY, 5));

Interleaving 2:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) → t1.(w(accX.val, 3)) →
t1.(rel(accX, 4)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) → t2.(cmp(accY.val, 4)) →
t2.(rel(accY, 7))→
t1.(acq(accY, 5));

Now, consider a further extension of the partial value-schedule 5.4. The next value-
schedule-relevant access encountered in the traversal of the CFG of Thread1 is also the
monitor entry of accY at line 5 following the fulfilling interleaving given in value sched-
ule 5.4. Again, as shown in Table 5.1, this monitor entry forms concurrent access-pairs
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Figure 5.13: Value Schedule 5.9
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with two other accesses from Thread2. The processing of this monitor entry node shows
how different dependencies among ordered concurrent-access-pairs are resolved by the
CFG traversal.

The direct insertion of the monitor acquisition at line 5 of Thread1 into the already-
generated fulfilling interleaving of value schedule 5.4 extends the original partial value-
schedule with another ordered concurrent-access-pair in which the monitor entry on accY

at line 5 of Thread1 happens before the monitor entry to the same object at line 8 of
Thread2. A closer inspection of the fulfilling interleaving of value schedule 5.4 shows that
appending the monitor entry statement on accY from Thread1 to the existing fulfilling
interleaving does not work because Thread2 still holds the monitor at line 3. Thus, an
execution path that releases the monitor on accY must be computed first. However, the
computation for the monitor exit-path also produces two fulfilling interleavings, because of
the split in the control flow caused by the branch statement at line 4 of Thread2. Thus,
adding the concurrent access-pair (t1, run.(monenter, line 5))

acq−→ (t2, run.(monenter,
line 8)) to value schedule produces the value schedule 5.9 with two possible fulfilling
interleavings shown in Figure 5.13.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(r(accX.val), line 3)) −→ (t1, run.(w(accX.val), line 3))
(t1, run.(monenter, line 5)) −→ (t2, run.(monenter, line 8));

(5.9)

Interleaving 1:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3))
t1.(w(accX.val, 3))→
t1.(rel(accX, 4))→

t2.(w(accX.val, 3)) → t2.(cmp(accY.val, 4)) → t2.(w(accX.val, 5)) →
t2.(rel(accY, 7)) →
t1.(acq(accY, 5));
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Interleaving 2:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) →
t1.(w(accX.val, 3))→

t1.(rel(accX, 4))→
t2.(w(accX.val, 3)) → t2.(cmp(accY.val, 4)) →

t2.(rel(accY, 7))→
t1.(acq(accY, 5));

Moreover, because the monitor acquisition from line 5 of Thread1 forms concurrent
access-pairs with two monitor acquisitions on accY from Thread2, the derivation algo-
rithm applies Rule 2 from Figure 5.10 to fulfill additional ordered concurrent-access-pairs
so that both the monitor acquisitions from Thread2 happen before that of Thread1.
These two ordered concurrent-access-pairs are: (t2, run.(monenter, line 2))

acq−→ (t1,
run.(monenter, line 5)) and (t2, run.(monenter, line 8))

acq−→ (t1, run.(monenter, line 5)).
However, only the latter of these two ordered concurrent-access-pairs needs to be explicitly
fulfilled at this point because the former has already been implicitly fulfilled by the pre-
vious fulfillment of (t2, run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 3)) in par-
tial value-schedule 5.4. In this fulfillment, the monitor acquisition of accY from line 2 of
Thread2 has been added to the fulfilling interleaving already. At this point, its execution
order with respect to its concurrent conflicting-accesses is determined and happens before
the conflicting monitor entry from Thread1. Thus, as the monitor acquisition on accY is
encountered following the partial value-schedule 5.4, it is unnecessary to fulfill the ordered
concurrent-access-pair (t2, run.(monenter, line 2))

acq−→ (t1, run.(monenter, line 5)). On
the other hand, the ordered concurrent-access-pair (t2, run.(monenter, line 8))

acq−→(t1,
run.(monenter, line 5)), can be added to the partial value-schedule 5.4 because the mon-
itor acquisition at line 8 of Thread2 has not yet been added to the fulfilling interleaving.
Fulfillment of this ordered concurrent-access-pair forms the new value schedule 5.10 with
two fulfilling interleavings due to the split in control flow from the branch as shown in
Figure 5.14.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(r(accX.val), line 3)) −→ (t1, run.(w(accX.val), line 3))
(t2, run.(monenter, line 8))

acq−→(t1, run.(monenter, line 5));

(5.10)
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Interleaving 1:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) →
t1.(w(accX.val, 3))→

t1.(rel(accX, 4)) →
t2.(w(accX.val, 3)) → t2.(cmp(accY.val, 4)) → t2.(w(accX.val, 5)) →

t2.(rel(accY, 7))→
t2.(acq(accY, 8)) →

t2.(r(accX.val, 9)) → t2.(w(accX.val, 9)) →
t2.(rel(accY, 10)) →
t1.(acq(accY, 5));

Interleaving 2:
t1.(acq(accX, 2)) →

t1.(r(accX.val, 3)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) →
t1.(w(accX.val, 3))→

t1.(rel(accX, 4)) →
t2.(w(accX.val, 3)) → t2.(cmp(accY.val, 4)) →

t2.(rel(accY, 7)) →
t2.(acq(accY, 8)) →

t2.(r(accX.val, 9)) → t2.(w(accX.val, 9)) →
t2.(rel(accY, 10))→
t1.(acq(accY, 5));

Further processing of the partial value-schedules 5.5 and 5.6 is done in a similar fashion
as that of value schedule 5.4. For example, the value schedule and fulfilling interleavings
derived from the direct insertion of the monitor entry for accY in Thread1 to partial
value schedule 5.6 is shown as value schedule 5.11, and the value schedule derived from
deferring this monitor entry for that at line 8 in Thread2 is shown as value schedule 5.12.
The fulfilling interleavings for these two value schedules are computed in the same way
as those presented so far and are not written out, but they are shown graphically in
Figure 5.15.

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3))
(t1, run.(monenter, line 5))

acq−→ (t2, run.(monenter, line 8));

(5.11)
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Figure 5.14: Value Schedule 5.10
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Figure 5.15: Value Schedule 5.11 and 5.12

Value Schedule:
(t1, run.(r(accX.val), line 3)) −→ (t2, run.(w(accX.val), line 3))
(t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3))
(t2, run.(monenter, line 8))

acq−→ (t1, run.(monenter, line 5));

(5.12)

Further exploration of the CFG of Thread1 following the fulfilling interleavings for
value schedules 5.7, 5.8, 5.9, 5.10, 5.11 and 5.12 lead the traversal to the end of the run()
method without encountering any new value-schedule-relevant CFG accesses. When the
CFG of Thread1 is exhausted, the remaining nodes from the CFG of Thread2 do not trig-
ger any additional concurrent accesses. This termination is because the concurrent access
partners are all from Thread1 and have been incorporated into the fulfilling interleav-
ings of the already-generated value schedules. At this point, the fulfilling interleaving is
not added back to the worklist, but stored for dynamic testing. The generation of value
schedules and their fulfilling interleavings continues until the worklist becomes empty.
The conditional statement at line 12 of Figure 5.8 corresponds to detecting the end of
exploration condition for a value schedule.

Once the worklist becomes exhausted, a set of potential fulfilling interleavings of the
possible value schedules of the program is generated. A fulfilling interleaving of a value
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schedule follows the ordering of concurrent accesses dictated by the ordered concurrent-
access-pairs of the value schedule and the sequential dependencies among accesses dictated
by the CFGs of concurrently running threads. Despite observing these constraints, a
fulfilling interleaving of a value schedule may still be an infeasible path, because the
static analysis cannot determine dynamic dependencies, like the exact branch a program
takes at runtime. Then, the derivation algorithm conservatively assumes all nodes along
every branch are accessible. Thus, it is possible that a derived value-schedule may contain
an ordered concurrent-access-pair that involves inaccessible accesses from a branch that
is not executed at runtime. In the case that all fulfilling interleavings of a value schedule
do not reflect the control flow taken at runtime, that value schedule is infeasible. Finally,
note that the feasibility property of a computed value schedule is defined in the context
of a fixed set of program inputs. A value schedule that is infeasible under one set of
program input might be feasible in another.

Feasibility and Correctness Checking

After value schedules and their fulfilling interleavings are computed, testing enters the
dynamic stage. This stage has two main goals. First, it tries to determine whether a
computed value schedule is feasible in a concrete execution. Second, if a value schedule
is feasible, then it is important to know whether a program execution that satisfies this
value schedule may expose a harmful concurrency bug. Through the feasibility checking
of value schedules, dynamic testing can identify superfluous interleavings spawned to
fulfill an infeasible ordered concurrent-access-pair. The process of checking the feasibility
and correctness properties is illustrated using the value schedules 5.7-5.12 derived in the
previous section. The code for the dynamic testing corresponds to line 28 in Figure 5.8.

It is important to note that the interleavings presented in this section only show
instructions that operate on shared variables. The instructions that operate on local
variables and the program stack are removed for clarity. In practice, every bytecode of a
Java class is represented by Soot as a CFG node in Baf intermediate representation. Thus,
the fulfilling interleaving computed from the CFG traversal includes all of the bytecodes
encountered and is ready for execution by a dynamic testing-tool.

During the dynamic testing, the computed fulfilling interleavings of each value sched-
ule are fed into the dynamic testing-tool for execution. From Chapter 2, the dynamic
testing-tool used in the implementation of value-schedule-based testing is based on JPF.
It explores the program state-space of a concurrent program by treating the execution
of a bytecode in a Java program as a transition in the program state-space, and an ex-
ecution of an instruction is yielded for other co-enabled instructions if it operates on
an object that is reachable from the heap by more than one thread. Because the dy-
namic testing-tool actually executes each bytecode in the Java program, it is possible
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to take advantage of this mechanism to instruct the dynamic testing-tool to execute the
program in the order specified by a given interleaving. For example, among co-enabled
transitions, the dynamic testing-tool always selects the transition that corresponds to the
next-to-execute instruction in the fulfilling interleaving. If the next-to-execute instruction
specified by the fulfilling interleaving does not appear as a co-enabled transition in the
dynamic testing-tool, then this fulfilling interleaving cannot be used to fulfill the expected
value schedule.

In the case of testing the fulfilling interleaving for value schedule 5.7, the dynamic
testing-tool always selects the next-to-explore transition from Thread1 until all instruc-
tions in the fulfilling interleaving are executed. Because this interleaving is generated by
traversing the CFG of Thread1, which contains no branch statement, every instruction
specified by the fulfilling interleaving appears as a co-enabled transition when needed.
After the fulfilling interleaving is executed, the dynamic testing-tool is allowed to run the
rest of program freely to the end. The execution of the interleaving for value schedule 5.7
shows that it is feasible and produces no error or warning message.

Value schedule 5.8 has two fulfilling interleavings, each following a different branch
for the branch statement at line 4 of Thread2. Assume the fulfilling interleaving that
follows the true branch is checked first. The controlled-execution starts from Thread1
until the monitor entry accY appears as the next-to-execute transition of Thread1. Then,
execution starts executing instructions from Thread2 as specified by the fulfilling inter-
leaving. When the instruction corresponding to the branch statement is executed, the
next-to-execute instruction specified by the fulfilling interleaving is the write to accX.val

at line 5 of Thread2. However, this expected instruction does not appear as the next-to-
execute instruction in Thread2. Therefore, this fulfilling interleaving is infeasible. Then,
the other fulfilling interleaving of this value schedule that takes the false branch is tested.
The execution of the second interleaving is successful, such that every instruction spec-
ified by the fulfilling interleaving appears as expected. Therefore, value schedule 5.8 is
feasible, and the execution produces no error.

Value schedule 5.9 also has two fulfilling interleavings because of the branch statement
at line 4 of Thread2. The execution of the fulfilling interleaving that follows the true
branch is infeasible for the same reason as for value schedule 5.8. So only the value
schedule for the false branch is feasible. After the fulfilling interleaving is completely
executed, the execution of the rest of the program causes the assertion at line 11 to
evaluate to false because, for in this interleaving accX.val has the value 10 and accY.val

has the value 0. The successful execution of this fulfilling interleaving presents a feasible
value schedule that brings the program execution into an undesirable state. The code at
lines 31 and 32 of Figure 5.8 capture the handling of such a situation.

Both value schedules 5.11 and 5.12 have only one fulfilling interleaving. Both inter-
leavings require the write to accX.val enclosed by the branch statement of Thread2 to
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be executed, and the value written by the enclosed write retrieved by the read access
from Thread1. However, as the dynamic testing-tool executes the fulfilling interleavings
up to the instruction corresponding to the branch statement, it determines that this in-
terleaving is infeasible because the concrete execution takes a different branch. Because
both value schedules have only one fulfilling interleaving, these two value schedules are
infeasible.

Once an infeasible value schedule is identified, all other untested value schedules
which share the same infeasible partial-value schedule are pruned out. For example,
assume the value schedule 5.11 is tested first and shown to be infeasible. Because value
schedule 5.12 shares the same infeasible partial value-schedule with value schedule 5.11,
value schedule 5.12 can be immediately considered as infeasible without additional testing.
The code at lines 29 and 30 of Figure 5.8 captures the infeasible value schedules and
performs pruning.

In summary, value-schedule-based testing identifies infeasible value-schedules by de-
riving and testing their fulfilling interleavings. An infeasible value-schedule contains at
least one infeasible ordering among concurrent conflicting-accesses. In other words, the
fulfilling interleaving of an infeasible value-schedule contains a permutation that does not
lead to the testing of a new ordering among concurrent-accesses. Value-schedule-based
testing is able to identify such an interleaving and abort any further testing along this
interleaving.

5.3.2 Features of Value-Schedule-based Testing

In previous sections, the value schedules are computed and tested using the value-schedule-
based testing. In this section, the two main features of value-schedule-based testing,
accessibility-based POR and prioritized testing, are incorporated into the two-stage test-
ing process.

Accessibility-based POR

As discussed in Chapter 2, the model checker yields the execution of an access if it believes
there are conflicting concurrent accesses from other threads. However, these conflicting
accesses may not always occur at runtime. Accessibility-based POR is designed to rec-
ognize and prune out interleavings that are derived because of the incorrect assumptions
about the availability of conflicting accesses to shared variables at runtime. The goal is
to reduce the computational cost of testing.

Consider the following partial interleaving, derived by a model-checker-based dynamic
testing-tool, to test the ordering such that the write to accX.val at line 3 of Thread2
happens before the read of accX.val from line 3 of Thread1:
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t1.(acq(accX, 2)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t1.(r(accX.val, 3));

After following this partial interleaving, the dynamic testing-tool splits the exploration
of the current interleaving into two interleavings when the write access, w(accX.val, 3)
in Thread1 is encountered. Figure 5.16 displays the subsequent interleavings starting at
t1.(r(accX.val, 3)) above. One of the two interleavings continues executing instructions
from Thread1, while the other interleaving yields the execution of Thread1 before the
write for Thread2. In the former case, the dynamic testing-tool triggers another two new
interleavings at the monitor acquisition, acq(accY, 5) for Thread1 to test the race on the
monitor acquisition of accY . These two interleavings are denoted as d1 and d2. In the
latter case, the dynamic testing-tool yields, t1.w(accX.val, 3), because the remaining ex-
ecution of Thread2 contains conflicting concurrent accesses to accX.val, such as the write
at line 5 of Thread2. However, as shown from the testing of fulfilling interleaving 5.11 in
the previous section, the continued execution of the interleaving along Thread2 does not
lead to any access to accX.val in Thread2. Thus, this yielding produces a superfluous
interleaving annotated with p1 in Figure 5.16. Moreover, this superfluous interleaving
leads the program into the same state as d2.

With the accessibility-based-POR, the value-schedule-based testing tool is able to rec-
ognize the interleaving spawned from yielding at t1.w(accX.val, 3) cannot lead to any
access on accX.val in Thread2 as soon as the branch statement at line 4 of Thread2 is
executed. Then, the execution of the rest of this superfluous interleaving is abandoned.
Moreover, by pruning out all value schedules that are spawned based on the same assump-
tion, the accessibility-based-POR can achieve better savings in computational resource.
This saving is illustrated by introducing a new thread, Thread3, into the sample program.
Thread3 contains a simple synchronized clause on accY :

Thread3

1 run ( ){
2 synchronized ( accY ){
3 . . .
4 }
5 }

As before, the dynamic testing-tool spawns an interleaving to look for a conflicting
access to accX.val in Thread2, even though the access is never reached by Thread2.
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Figure 5.16: Testing without Accessability POR

When the tool reaches the monitor entry to accY at line 8 of Thread2, it tries to spawn
a new interleaving to permute the monitor acquisitions on accY between Thread2 and
Thread3 as shown in the dashed cloud of Figure 5.17. Thus, the original superfluous as-
sumption on the availability of accX.val on Thread2 produces another new superfluous
interleaving. The number of superfluous interleaving increases further as more accesses
to shared variables are encountered during the execution of those superfluous interleav-
ings. This problem is especially serious for model checkers that record various program
states during execution for backtracking. As the number of superfluous interleavings
increases, the amount of testing time and the memory costs spent on irrelevant inter-
leavings increases. As shown in Figure 5.17, extensions along the interleavings in the
cloud are always superfluous because the original interleaving spawning them is already
superfluous. However, with the support of accessibility-based-POR, the value-schedule-
based testing stops the execution as the original superfluous interleaving and prunes out
all value schedules whose fulfilling interleavings share the same prefix of the identified
superfluous interleaving; hence, no additional superfluous interleavings are executed.

To summarize, the value-schedule-based testing provides accessibility-based POR
through the dynamic execution of the fulfilling interleaving. It ensures that the per-
mutations based on imprecise static information, such as the control flow, are actively
identified. As a result, derived interleavings that fulfill an ordered concurrent-access-pair
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Figure 5.17: Testing Without Accessability POR

that contains an inaccessible access are not run and tested.

Prioritized Testing

It is now possible to illustrate the implementation of prioritized testing of permutations
concerning a particular value-schedule-relevant access. In practice, due to the limitations
on computational resources and time, exhaustive testing of all value schedules is infeasible.
The goal of the prioritized testing is to prioritize the evaluation of a selected set of ordered
concurrent access-pairs before others. For example, if a developer suspects a particular
read access might read in a value given by multiple concurrent writes, the value-schedule-
based testing offers a mechanism to prioritize the testing of the concurrent accesses for
that variable during the testing process.

Given an access of interest, the first step of the value-schedule-based testing is to
identify a set of value schedules in which the effect of different ordered concurrent-access-
pairs related to the access of interest is evaluated. An ordered concurrent-access-pair is
related to an access of interest if 1) the access of interest is a member of the pair or 2) this
ordered concurrent-access-pair is formed from the direct insertion of an access that may
form some concurrent access-pairs with the access of interest. The first criteria deals with
the situation when the execution order of the access of interest is explicitly fulfilled. The
second criteria deals with the situation when the execution order between the access of
interest and one of its conflicting accesses is implied by the dependencies among existing
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ordered concurrent-accesses in the partial value-schedule.

The second step is to select a set of value schedules that is sufficient to evaluate these
concurrent access-pairs related to the access of interest for prioritized testing. The deriva-
tion of value schedules are carried out using the same approach introduced in previous
sections. As the access of interest is inserted into the fulfilling interleaving of a partial
value-schedule, the value-schedule-based testing applies a marker to the value schedule
extended from this partial value-schedule such that only Rule 1 (direct insertion) from
Figure 5.10 is applied on all subsequently-encountered value-schedule-relevant accesses.
It is straightforward to see that once an access of interest is inserted into a fulfilling in-
terleaving, the runtime execution orders between this access and its conflicting accesses
have been determined. Execution of such value schedules are sufficient to show the feasi-
bility and correctness properties of different ordered concurrent-access-pairs related to an
access of interest. Moreover, value schedules with additional ordered concurrent-access-
pairs whose fulfillment require context switches after the access of interest are excluded.
Therefore, the number of value schedules that need to be prioritized in testing is signifi-
cantly narrowed down.

For the sample program in Figure 5.1, if the access of interest is the write to accX.val

at line 3 for Thread1, then, value schedules 5.7 and 5.11 are marked and tested first
because their fulfilling interleaving includes no additional fulfillment of other ordered
concurrent-access-pairs requiring the direct insertion of encountered value-schedule-relevant
accesses after the access of interest is added to the fulfilling interleaving. The execution
of the fulfilling interleavings of these value schedules triggers the assertion and exposes a
concurrency bug.

5.3.3 Recursive Derivation

Previous discussion focused on the computation of value schedules and their fulfilling
interleavings for programs where the accesses to shared variables happen in two threads.
The implication is that when a fulfilling interleaving of an ordered concurrent-access-
pair is being computed, the CFG traversal does not encounter a value-schedule-relevant
access that may trigger the fulfillment of an ordered concurrent-access-pair where this new
ordered concurrent-access-pair requires the traversal of the CFG of a different thread.

The following shows how a value schedule involving concurrent accesses from more
than two threads can be derived and fulfilled. Moreover, it shows how the recursive
derivation and fulfillment of ordered concurrent-access-pairs may help to identify feasible
fulfilling-interleavings for value schedules. The sample program in Figure 5.1 is augmented
with a new thread, Thread3, having an unprotected write-access to accY.val as shown in
Figure 5.18. This unprotected access to accY.val contributes additional concurrent access-
pairs to the program. For example, the read access on accY.val at line 4 of Thread2 forms
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Main Thread

1 main ( St r ing [ ] a rgs ){
2 Account accX = new Account ( 1 ) ;
3 Account accY = new Account ( 2 ) ;
4 Thread1 t1 =
5 new Thread1 ( accX , accY ) ;
6 Thread2 t2 =
7 new Thread2 ( accX , accY ) ;
8 Thread2 t3 =
9 new Thread3 ( accX , accY ) ;

10 t1 . s t a r t ( ) ; t2 . s t a r t ( ) ; t3 . s t a r t ( ) ;
11 t1 . j o i n ( ) ; t2 . j o i n ( ) ; t3 . j o i n ( ) ;
12
13 a s s e r t ( accX . va l == accY . va l ) ;
14 }
15
16 class Account{
17 Account ( int id ){
18 this . id = id ;
19 this . va lue = 0 ;
20 }
21 int va l ;
22 int id ;
23 public stat ic int amt = 10 ;
24 }

Thread 1

1 run ( ){
2 synchronized ( accX ){
3 accX . va l += amt ;
4 }
5 synchronized ( accY ){
6 accY . va l += amt ;
7 }
8 }

Thread 2

1 run ( ){
2 synchronized ( accY ){
3 accX . va l −= amt ;
4 i f ( accY . va l < 0){
5 accX . va l = 0 ;
6 }
7 }
8 synchronized ( accY ){
9 accY . va l −= amt ;

10 }
11 }

Thread3

1 run ( ){
2 accY . va l = −999;
3 }

Figure 5.18: Extended Sample Program
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a concurrent access-pair with the write access from Thread3.

As shown in the previous sections, the partial value-schedule 5.6 and its extended
value-schedule 5.12, are infeasible for the sample program in Figure 5.1 because the
write access to accX.val at line 5 of Thread2 is always inaccessible following its fulfilling
interleavings. Moreover, because the branch at line 4 never takes the true branch, all de-
rived value schedules including the ordered concurrent-access-pair, (t2, run.(w(accX.val),
line 5)) −→ (t1, run.(w(accX.val), line 3)) are infeasible. However, the introduction of
the new write access to accY.val in Thread3 produces a new value schedule in which the
ordered concurrent-access-pair (t3, run.(w(accY.val), line 2))

def−→ (t2, run.(r(accY.val),
line 4)) is fulfilled. Moreover, the fulfillment of this new ordered concurrent-access-pair
leads to the derivation of a new value schedule in which the ordered concurrent access-pair
(t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3)) is feasible. The deriva-
tion of such a value schedule is used to illustrate the recursive expansion of value schedules
that involve concurrent accesses to shared variables from more than two threads.

Assume the CFG traversal has already generated a fulfilling interleaving that fulfills
the ordered concurrent access-pair.

(t2, run.(w(accX.val), line 3))
def−→ (t1, run.(r(accX.val), line 3))

with the interleaving,

t1.(acq(accX, 2)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t1.(r(accX.val, 3))

As the traversal encounters the write to accX.val at line 3 of Thread1, the fulfillment
process for the ordered concurrent-access-pair ((t2, run.(w(accX.val), line 5)) −→ (t1,
run.(w(accX.val), line 3)) is triggered. Then, the traversal switches to Thread2 for the
write access on accX.val. As the read of accY.val is encountered at line 4 of Thread2,
the derivation process recognizes this read access is value-schedule-relevant because it is
part of the concurrent access-pair (t2, run.(r(accY.val), line 4))−→ (t3, run.(w(accY.val),
line 2)). This concurrent access-pair implies that an ordered current-access-pair on
accY.val might take place while Thread1 waits to write to accX.val at line 3 and before
the write of accX.val at line 5 of Thread2 is executed.

The processing of this read access to accY.val at line 4 of Thread2 produces two partial
value-schedules. In the first case, the ordered concurrent-access-pair (t2, run.(r(accY.val),
line 4)) → (t3, run.(w(accY.val), line 2)) is fulfilled by adding the read access directly
to the fulfilling interleaving and continuing the search for the write to accX.val along
the CFG of Thread2. In the second case, the partial value-schedule is extended with the
ordered concurrent-access-pair (t3, run.(w(accY.val), line 2))

def−→ (t2, run.(r(accY.val),
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line 4)). If the partial value schedule is extended with the first case, the value of accY.val

retrieved at the branch statement leads to the false branch at runtime. Therefore, no
fulfilling interleaving extended from this interleaving is feasible. If the partial value-
schedule is extended with the second case, the traversal of the CFG of Thread3 first
computes a path to the write of accY.val from Thread3. After that, the traversal restarts
Thread2 to complete the fulfillment of the original ordered concurrent-access-pair. The
value given by the write to accY.val from Thread3 means the program takes the true
branch for the conditional branch at line 4 of Thread2. The second partial value-schedule
and its fulfilling interleaving for the second case are shown in value schedule 5.13.

Value Schedules:
(t2, run.(w(accX.val), line 3))

def−→ (t1, run.(r(accX.val), line 3))
(t3, run.(w(accY.val), line 2))

def−→ (t2, run.(r(accY.val), line 4))
(t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3));

Interleaving:
t1.(acq(accX, 2)) →
t2.(acq(accY, 2)) →

t2.(r(accX.val, 3)) → t2.(w(accX.val, 3)) →
t1.(r(accX.val, 3)) →

t3.(w(accY.val, 2)) →
t2.(cmp(accY.val, 4))→
t2.(w(accX.val, 5))→

t1.(w(accX.val, 3));

(5.13)

Figure 5.19 illustrates the implementation of the recursive value schedule genera-
tion using interleaving 5.13. The implementation keeps track of the ordered concurrent
accesses triggered during the fulfillment process using a stack. As an ordered concurrent-
access-pair is set to be fulfilled, the desired target access is pushed onto a stack referred
as the fulfilling stack. For example, as shown in Figure 5.19, the fulfillment of (t2,
run.(w(accX.val), line 3))

def−→ (t1, run.(r(accX.val), line 3)), pushes w(accX.val, 3) from
Thread2 onto the fulfilling stack (box 1). Line 24 of the algorithm in Figure 5.8 captures
such an update of the stack for each new search target. When the search target is found,
the stack is popped (box 2). This operation is shown at line 18 of Figure 5.8. As the
traversal on Thread1 continues, the fulfillment process for the ordered concurrent-access-
pair (t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3)) pushes another
search target, w(accX.val, 5) from Thread2, onto the fulfilling stack (box 3). As the read
of accY.val at line 4 is encountered, the fulfillment of the ordered concurrent-access-pair
(t3, run.(w(accY.val), line 2))

def−→ (t2, run.(r(accY.val), line 4)) is recursively triggered,
while the previous ordered concurrent-access-pair remains unfulfilled. This new fulfill-
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Figure 5.19: Recursive Expansion of Value Schedules

ment process pushes the search target, w(accY.val, 2) from Thread3, onto the stack
(box 4) and switches to Thread3. Now, the fulfilling stack has two elements. After the
write to accY.val by Thread3, the stack is popped (box 5). Then, the algorithm starts
searching for the target access stored at the top of the stack, which is w(accX.val, 5)
from Thread2. As the write access is located, the stack is popped again and becomes
empty(box 6). After that, the CFG traversal switches to Thread1.

Continuing the traversal of the CFG of Thread1 generates value schedules that cover
the permutation of monitor entries on accY from Thread1 and Thread2 as discussed in
the previous section. The only difference is that each fulfilling interleaving is extended
until both Thread1 and Thread2 exhaust all nodes in their CFGs.

5.3.4 Detailed Derivation and Fulfilling Rules

Previous discussion concerned the general rules for deriving and fulfilling different ordered
concurrent-access-pairs. This section presents detailed rules concerning the derivation and
fulfillment of different types of ordered concurrent-access-pairs in the context of the Java
programming-language.

95



T1 T2 T3

w

r

r

(a)

r

r

T1 T2 T3

w

(b)

Figure 5.20: Deriving Value Schedules over Concurrent Reads

RW Pairs

The derivation of ordered concurrent-access-pairs for value-schedule-relevant read or write
accesses is largely the same as those defined by the general derivation-rules. The exception
happens when processing a value-schedule-relevant write access that has more than one
concurrent read from more than one other thread.

As a value-schedule-relevant read or write access is encountered, the two derivation
rules are always applied to compute interleavings that capture different orderings among
the current access and each of its concurrent conflicting-accesses. As discussed before, the
potential concurrent conflicting-accesses of an access are those with which it can form a
concurrent access-pair. Because a read access does not form a concurrent access-pair with
another read access, no new ordered concurrent access-pair is derived for two reads of the
same shared variable. This is equivalent to stating that permuting the execution orders
of two concurrent read accesses of the same shared variable does not lead the program
into a new state, and therefore, all such accesses are ignored.

The following discusses how the recursive-derivation algorithm handles the permuta-
tions among write accesses with different sets of its concurrent conflicting-read-accesses.
Without this, the derivation algorithm misses many feasible value schedules based on the
discussed recursive derivation algorithm. For instance, as shown in Figure 5.20, assume
a write by T1 triggers the traversal of T2 to have a read of T2 happen before the write
from T1. As the read from T2 is encountered, the derivation and fulfillment algorithm
determines it forms no concurrent access-pair with other accesses besides that from T1,
as shown in Figure 5.20(a). However, without the recursive derivation on the read from
T1 for the read from T3, the derivation rules miss the ordering where both reads from
T2 and T3 happen before the write from T1 as shown in Figure 5.20(b). Hence, T3 could
either read the value before or after the write by T1.

A simple observation shows that it is not the permutations among concurrent reads
that lead to new value schedules, but rather it is the distinct sets of concurrent reads that
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happen before and after a write access that leads to the derivation of new value schedules.
For n concurrent reads, the number of distinct subsets is given by

∑n
k=0

(
n
k

)
= 2n. For

example, if both the reads from T2 and T3 happen before the write from T1, permuting
the execution order of those two reads does not produce any new value schedule. The
number of distinct subsets of concurrent reads is

∑2
k=0

(
n
k

)
= 22 = 4. This result cor-

rectly gives the number of relevant orderings among these three accesses. Those relevant
ordering are: only the read from T2 misses the value given by the write; only the read
from T3 misses the value given by the write; both reads miss the value given by the write;
and both reads retrieve the value given by the write.

Thus, a write access has to permute not only with each individual concurrent conflict-
ing write but also different subsets of its concurrent conflicting reads. This task consists of
two steps. First, the derivation algorithm has to dynamically compute all concurrent reads
for an encountered write access because concurrent read-pairs are not collected during the
computation of concurrent access-pairs. This computation is done as follows. Because an
encountered read is value-schedule-relevant, it has to form concurrent access-pairs with
some concurrent write. By combining all reads that form concurrent access-pairs with
the same write into a set, the derivation algorithm can compute concurrent reads for a
read access on the fly. Second, all possible subsets of concurrent conflicting-reads are
collected using the combinadics technique from [38]. Basically, each concurrent read is
tagged with a unique lexical identifier. During the derivation, if a value-schedule-relevant
read access is needed for the recursive derivation because of a conflicting write already
in the fulfilling stack, then that read only yields for concurrent reads from threads with
higher lexical-order. This ensures that every distinct subset is derived exactly once. In
the end, all partial value-schedules, where a write access yields for k concurrent reads,
are collected by applying the direct insertion after the kth recursive expansion on the
concurrent conflicting-reads from the write access.

MM Pairs

The derivation of ordered concurrent-access-pairs for a value-schedule-relevant monitor
entry is exactly the same as the general derivation-rules. Two new ordered concurrent-
accesses are derived: one acquires the monitor immediately, while the other yields for the
other concurrent monitor-entry.

The fulfillment of an ordered concurrent-access-pair of MM type requires extra oper-
ations over a RW pair. Assume a concurrent monitor-entry is located in target thread Tj

and has been added to the fulfilling interleaving. The CFG traversal cannot resume imme-
diately on the thread Ti that yielded to Tj because thread Tj is still holding the monitor
and Ti tries to acquire the monitor in its next instruction. The traversal can continue on
Ti only after Tj has released the monitor. Therefore, after the target concurrent monitor
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entry is found by Tj , the traversal needs to continue on Tj until a monitor release on
the same monitor object is reached. A monitor release can either be a monexit bytecode
or an invocation of wait() the monitor. As shown by the fulfilling interleaving for value
schedule 5.10 for the sample program in Figure 5.1, the ordered concurrent-access-pair,
(t2, run.(monenter, line 8))

acq−→ (t1, run.(monenter, line 5)), is fulfilled by instructions
leading to the monitor entry at line 5 of Thread1, the instructions in the synchronized
block starting at line 8 of Thread2, and the release of the monitor by Thread2 at line 10.

In Java, a thread releases a monitor after the same number of monitor entry and
exit instructions have been encountered for a given monitor object or when the wait()
method on the same monitor is invoked. The former case deals with the reentrant locking
mechanism in Java. That is, a thread is allowed to repeatedly acquire a monitor that
it already holds, and the monitor is released after the same number of monitor exits
occurs. Thus, the fulfilling interleaving always keeps track of the number of times a
thread acquires and releases a monitor. An ordered concurrent-access-pair of type MM
is fulfilled when the number of times a monitor is released equals the number of times the
same monitor is acquired in the fulfilling interleaving. For the latter case, the fulfilling
interleaving considers the monitor is released by its owner when the wait() method on
the same monitor is encountered.

It is important to note that searching for a monitor exit-path does not push a specific
access on the fulfilling stack. Instead, an artificial search target representing the monitor
object is pushed onto the stack. All monitor release operations on that monitor object
encountered during the traversal are processed to determine whether a monitor exit-path
has been computed.

WN Pairs

As discussed in Chapter 4, the execution order for member accesses of a WN pair cannot
be permuted because a notify on an empty condition is lost. The only partial ordering
implied by an ordered concurrent-access-pair of type WN, such as (wi, ni), is wi −→ ni.
However, its fulfillment is necessary for further extensions of a fulfilling interleaving that
is blocked by a wait() invocation.

There are three scenarios in which a wait() call may be encountered within a particular
monitor. In the first case, a wait() is encountered when the CFG is traversing for the
next value-schedule-relevant access, such as r, as shown in Figure 5.21(a). In this case,
the derivation of a value schedule continues on T1 until a wait() is encountered. Then,
the interleaving is instructed to explore T2 to unblock T1. In the second case, a wait() is
encountered when the traversal is trying to fulfill some ordered concurrent-access-pairs,
such as that between r and w, as shown in Figure 5.21(b). In this case, the interleaving
is context switched from T1 to T2 to reach w. When the wait() is encountered by T2,
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Figure 5.21: Three Scenarios in which wait() is Encountered

the interleaving is instructed to execute T3 to unblock T2. In the third case, a wait() is
encountered while a thread is completing a monitor exit-path and context switches back
to the original yielding thread. As shown in Figure 5.21(c), T1 attempts to enter the
critical section, but it yields the execution for T2 because the monitor entries in both
threads forms a MM pair. The path from the monitor entry to the wait() in T2 is a
monitor exiting path. Hence, when wait() is encountered by T2, the execution is switched
back to T1. T2 remains blocked until the notify() from T3 is executed. The difference
between these three scenarios is that in the first and the second case the wait() form
a WN pair because the notify is required to fulfill the ordered concurrent-access-pair.
However, the third case only forms a MM pair because the wait() only contributes to the
monitor-exit pair without using the notify. Therefore, the fulfillment of a WN pair can
only be triggered for the first and second cases.

The computation of a fulfilling interleaving for a WN pair happens after a wait()
invocation is added to the fulfilling interleaving. The traversal of the CFG of the owner
thread performs a wait and computes a path leading to a target notify. Java supports two
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types of notify method. The notify() method makes ready a single thread blocked on a
monitor’s waiting list, while the notifyAll() method makes ready all threads blocked on
the waiting list. The implementation always keeps track of which threads are waiting in
which monitors in the current fulfilling-interleaving.

After the path leading to the notify/All() node is added to the fulfilling interleaving,
the thread containing the target notify/All() still holds ownership of the monitor. Thus,
the CFG traversal continues on the signalling thread to compute a path that releases the
monitor. Only after that can the traversal be resumed for a blocked thread.
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Figure 5.22: wait() with Multiple Notifiers

As discussed before, fulfilling an ordered concurrent-access-pair of type WN does not
directly produce any new value schedule. However, in the case when a wait() forms WN
pairs with multiple notify/All() statements, different value schedules can be triggered by
having different notify/All() statements unblock the wait(). The process of deriving and
fulfilling different value schedules for each possible WN pair is implemented as a process
of deriving and fulfilling ordered concurrent accesses for the enclosing monitor entries
of each notify/All() statement. An example of such a derivation process is shown in
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Figure 5.22. T1 is woken by one of two notify() statements in T2 and T3. Assuming the
notify() in T2 is randomly selected to unblock T1, then the CFG traversal on T2 finds
a path to reach that statement in T2. At the monitor entry of T2, two value schedules
are produced. In the first value schedule shown in Figure 5.22(a), T2 enters the monitor
first and runs its notify() statement to unblock T1. In the second value schedule shown
in Figure 5.22(b), a recursive derivation on the monitor entry from T2 selects T3 to
enter the monitor before T2. During the computation of the monitor exit-path for T3, a
notify() is encountered. This notify() wakes T1 as a side-effect of computing a monitor
exit-path from T3. The traversal returns to T2 after T3 exits the critical section. Then,
T2 executes its critical section before the execution finally returns to T1. In this case, the
notify() from T2 is still executed but with no effect, which may lead to a concurrency
error.

Recall from Chapter 4, the analysis splits a wait() invocation into a blocked wait-
ing node and an unblocked notify-entry node, which the notify-entry node represents a
notified wait() in the program. The derivation and fulfillment of WN pairs of a wait()
invocation covers the processing of the waiting node in the CFG. During the fulfilling of a
WN pair, recursive derivation is carried out whenever a value-schedule-relevant access is
encountered. However, the complication comes after the notify/All() wakes the blocked
thread. This step introduces a new ready thread that contends for the monitor. The
contention between a notified wait() and monitor entries is captured next using WM
concurrent access-pairs.

WM Pairs

After a fulfilling interleaving is computed to unblock a thread Ti, Ti is in the ready
list after the fulfilling interleaving is executed. At the end of the interleaving, Ti is
ready to reacquire the monitor and proceed. However, if the currently-notified wait()
being processed forms WM pairs with other threads awaiting entry on the same monitor
object, these WM pairs imply additional contention for monitor acquisitions between Ti

and these other threads.

As shown in Figure 5.23, thread T1 is blocked by a wait() and may be unblocked
by the notifyAll() in T2. Because of the recursive derivation on the monitor entry
by T2, two fulfilling interleavings are generated from the fulfillment of a WN pair. In
first interleaving, shown in Figure 5.23(a), the critical section in T1 is executed without
yielding to T3. This example shows the fulfillment of an ordered concurrent-access-pair,
(T1.wait()) → (T3.acq()), of type WM by default insertion (Rule 1). Moreover, the next
value-schedule-relevant access encountered in the traversal of T1 is the notified wait()
node. Hence, an ordered concurrent-access-pair of (T2, acq()) → (T3, acq()) is implicitly
fulfilled by not yielding on the monitor entry for T2.
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Figure 5.23: Derivation and Fulfillment over a WM Pair

In the second interleaving, shown in Figure 5.23(b), two ordered concurrent-access-
pairs could be fulfilled between the notified wait() on T1 and the monitor entry from
T3. The direct insertion of the notified wait() node into the fulfilling interleaving has
T1 acquire the monitor first. Yielding before T1, by inserting the acquisition of the
monitor in T3 into the interleaving, causes T3 to acquire the monitor first. As a result,
an ordered concurrent-access-pair, (T3.acq()) → (T1.wait()), is fulfilled by yielding (Rule
2). The derivation and fulfillment of the ordered concurrent-access-pair on the notified
wait() node captures the contention between threads on the ready list and entry list of a
monitor, showing an example of barging, which may be a concurrency error.

It is possible for the fulfillment of an ordered concurrent-access-pair of type WM to
be triggered at monitor entry. This case is possible when a wait() method is added to the
fulfilling interleaving to compute a monitor exit-path to fulfill some ordered concurrent-
access-pair of type MM. If during further traversal, a notifyAll() on the same monitor is
added to the interleaving either in the process of searching for the next value-schedule-
relevant access or in the process of fulfilling some other ordered concurrent-access-pair,
then all threads blocked on that monitor are unblocked. Then, the next monitor entry
encountered on the same monitor object triggers the fulfillment of an ordered concurrent-
access-pair of type WM. However, as discussed in Section 5.4, the derivation process
always computes the same set of value schedules from a given set of concurrent accesses
regardless of which access starts the derivation process.

For example, in Figure 5.24, if a monitor entry for T1 yields to T3, a monitor exit-path
is computed for T3. Then, the execution returns to T1, and triggers a notifyAll(). This
notifyAll() unblocks T3. After the critical section on T1 is completed, exploration starts
in T2. Upon encountering the acquisition of the monitor by T2, the derivation algorithm
knows there is another previously blocked thread, T3, that is on the ready list, and may
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Figure 5.24: Concurrently Unblocked wait()s

acquire the monitor before T2. Hence, the derivation process proceeds to compute an
interleaving to fulfill an ordered concurrent-access-pair of WM type that allows T3 to
acquire the monitor before T2.

WW Pairs

The fulfillment of an ordered concurrent-access-pair of type WW is triggered when a no-
tified wait() is the next value-schedule-relevant access encountered during CFG traversal
and there are other threads that are also ready to acquire the same monitor from their
respective notified wait(). It is important to note that during the concurrent access-pair
generation, concurrent access-pairs that consist of two notified wait()s are not computed.
Instead, the derivation algorithm is responsible for identifying competing notified wait()s
at derivation time. The derivation algorithm keeps track of which threads are blocked
when wait()s are encountered during the traversal, and transitions a blocked thread to a
ready thread when a notify/All() is encountered. Thus, when a notified wait() is encoun-
tered during the traversal, the derivation module knows the other threads on the ready
list for the same monitor.

A common scenario in which multiple ready threads contend for a monitor is captured
by a producer/consumer problem. Multiple producers and consumers compete to add
and remove items in a shared buffer. When the buffer limit is reached, all the producer
threads attempting to insert more items are blocked by wait(). The producers are un-
blocked when a consumer thread takes an item out of the buffer and calls the notifyAll()
method. Then, the unblocked producers compete for monitor ownership from the ready
list. This scenario is shown in Figure 5.25, where two producer threads are made ready
by a consumer thread. Assume the buffer is already full when the monitor entry on
Consumer is encountered. Then, the derivation algorithm recursively computes ordered
concurrent-access-pairs on concurrent monitor entries from Producer1 and Producer2.
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Figure 5.25: Derivation and Fulfillment over a WW Pair

Supposing Consumer yields for Producer1, and Producer1 yields for Producer2, then
both Producer1 and Producer2 become blocked by the wait() invocations due to the full
buffer. When the traversal returns to Consumer, it acquires the monitor and performs
the notifyAll() in the critical section to make both T2 and T3 ready. Now, suppose
the continued exploration of the consumer thread reaches its end, and that the traversal
continues from the notified wait() node in Producer1. Because the derivation algorithm
knows that Producer2 is ready to acquire the same monitor, it computes two ordered
concurrent-access-pairs of type WW. In one partial value-schedule, the notified wait()
from T2 is immediately added to the fulfilling interleaving as shown in Figure 5.25(a),
while in the other interleaving the remaining instructions in the critical section of T3 are
added to the fulfilling interleaving before those from T2 as shown in Figure 5.25(b).
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Figure 5.26: An Example of Deriving Rules with n = 3

5.4 Completeness

In this section, the derivation rules are shown to derive all value schedules in a program.
That is, for a set of independent conflicting-concurrent-accesses, the derivation rules
compute all value schedules.

Figure 5.26 illustrates the general derivation rules. A default insertion of a node
derived from Rule 1 is illustrated by a dashed line, while yielding the insertion of a node
into a value schedule derived from Rule 2 is shown as a solid line. The proof of the
correctness of the derivation rules follows.

Proposition 1. Given a set of independent conflicting accesses of size n, the derivation
rules compute all possible orderings of those accesses.

Proof. By counting.

For a set of independent conflicting accesses, the number of different orderings is n!
because n! distinct permutations exists for any set of size n. A derivation can start with
an arbitrary access. Processing of each node computes n − k different value schedules
where n is the total number of conflicting accesses in the set, and k is the number of nodes
that are considered during the derivation. Among these value schedules, n−k−1 of them
represent possible ordered concurrent-access-pairs that can be formed with accesses from
other threads, and one of them represents the ordered concurrent-access-pair implied
by the default insertion of the access. Thus, the whole derivation process computes∏n−1

k=0 n− k = n! different value schedules.

The presented derivation rules are correct if they also compute n! distinct orderings.
As shown in the previous discussion, the derivation rules always compute n! orderings.
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Moreover, because each yielding and default insertion from any value-schedule-relevant
access always fulfills a different ordering among conflicting accesses, every value schedule
derived from the derivation rules on each access is distinct. Thus, the derivation rules
derive all orderings among independent conflicting accesses, and it does not matter from
which thread the derivation starts.

Figure 5.26 gives an example of deriving value schedules over a set of concurrent
conflicting-accesses of size 3, such as a, b and c. For example, the line between a and b

implies a permutation such that a yields for b. Moreover, the dashed line between b and c

represents the direct insertion of b, then c is added afterward. In the end, the derivation
rules produces six different orderings, which is 3!.

Now, in the presence of the dependencies among accesses, the derivation rules still
derive all value schedules.

Proposition 2. Given

1. a set of distinct concurrent accesses to shared variables,

2. all possible concurrent access-pairs that can be constructed from these accesses, and

3. CFGs corresponding to the participating threads of the program,

the recursive value-schedule derivation derives all possible value schedules and their ful-
filling interleavings of these accesses. Note, the program being tested is assumed to be
finite; thus, all value schedules referred in the proof are also finite.

Proof. By contradiction.

Assume there is a feasible value schedule vs1 such that vs1 is not derived by the deriva-
tion algorithm, and a feasible value schedule vs2 derived by the derivation algorithm.
Because both value schedules are feasible, each has at least one fulfilling interleaving. Let
int1 and int2 be the fulfilling interleavings of vs1 and vs2 respectively. Because vs1 and
vs2 are different, there is at least one ordered concurrent-access-pair that is fulfilled in
vs1 but not in vs2. This proof shows these assumption always lead to contradictions.

Stepping through int1, for each access to a shared variable, its partial order with
its concurrent conflicting-accesses can be determined by examining its relative position
with its conflicting accesses in int1. As discussed earlier, every pair of orderings between
two conflicting accesses is an ordered concurrent-access-pair. Hence, a set of ordered
concurrent-access-pairs for each access to shared variables fulfilled by vs1 can be de-
termined. Similarly, stepping through int2, it can be determined if the same ordered
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concurrent-access-pairs are fulfilled in vs2. Let this mapping process continue until an
ordered concurrent-access-pair is determined to be fulfilled in vs1, but not in vs2. Let
those ordered concurrent-access-pairs that have been mapped until this point be referred
to as the common-prefix of vs1 and vs2, and the identified ordered concurrent-access-pair
that is fulfilled in vs1 but not in vs2 as the diverging pair of vs1 and vs2. Now, let vsj be
a value schedule derived by the derivation algorithm that has the longest common-prefix
with vs1, let am → an be the diverging pair, and intj define the fulfilling interleavings
of vsj . There are three possible reasons that this ordered concurrent-access-pair is not
fulfilled in vsj ,

1. am does not exist in intj

2. an → am is fulfilled vsj

3. am exist in intj but an does not

Case 1: In the case when am does not exist in intj , this implies there is some ordered
concurrent-access-pair in vsj that is fulfilled before am that made am unreachable. In
other words, there is a branch, br, in the owner thread of am that reads in a value given
by some concurrent writes and skips am in the following execution. The read access in
br is referred to as the dominating access of am because it determines the accessibility of
am. This scenario is the only way am can appear in int1 but not in intj .

Now, because am exists in int1, then the read access in br in int1 should have read
in a value that leads to am. The read access in br must read in a different value in int1

and intj . This implies that int1 has fulfilled a different ordered concurrent-access-pair
for the read in br than the one fulfilled for the same read access in intj . Furthermore,
because br always happens before am, this implies the diverging pair of vs1 and vsj is an
ordered concurrent-access-pair related the read access in br. This contradicts the claim
that am → an is the diverging pair.

Thus, am should always exist in intj . If an also exists in intj and happens after am,
then vsj cannot be the derived value-schedule that shares the longest common-prefix with
vs1, and leads to a contradiction. If an happens before am in intj , then the proof for
Case 2) is needed. If an does not exist in intj , the proof for Case 3) is needed.

Case 2: In the case where an −→ am is fulfilled in vsj , consider the different orders in
which an and am can be encountered during derivation of vsj . If am is encountered first
during the CFG traversal of the derivation process, then a direct insertion (Rule 1) always
adds am before an. Thus, am −→ an is automatically implied if an also exists in intj .
Clearly, this contradicts to the claim that an −→ am is the diverging pair. Otherwise,
the proof for Case 3) is needed.

If an is encountered first during the derivation process, then a search of the CFG for
the owner thread of am produces an interleaving where am is inserted into vsj first. As
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proven in Case 1), am should always be reachable given the fact that am → an is the
diverging pair. Thus, the derivation algorithm can always generate a value schedule vsk

that not only fulfills the common prefix between vs1 and vsj but also contains am −→ an.
Thus, vsk shares a longer common prefix with vs1 than vsj . This contradicts the claim
that vsj is the longest such value schedule.

Case 3: In the case that an does not exist in intj , an is made unreachable by some
other ordered concurrent-access-pairs. For example, a read access, ri, in a branch clause
enclosing an may read in the value from a concurrent write and force the execution to skip
an altogether. Moreover, this ordered concurrent-access-pair involving ri cannot be an
ordered concurrent-access-pair fulfilled before am is added in int1. Otherwise, am −→ an

is not the diverging pair between vs1 and vsj .

On the other hand, the ordered concurrent-access-pair involving ri can happen after
am in int1, and then an becomes unreachable. Let wi be a concurrent write to ri that
allows access to an. Assume wi exists in int1, too. If wi is encountered first during the
traversal, it recursively yields to other concurrent writes based on Rule 2 in Figure 5.10,
so these writes occurs before wi. Continuing after wi, ri reads in its value and executes
access to an. If ri is encountered first, Rule 2 ensures wi happens before ri. Thus, ri

reads in the value of wi and executes an.

If either wi or ri is missed from intj , then it is disabled by some other ordered
concurrent-access-pair. It is always possible to backtrack along intj to locate accesses
that dominate the accessibility of wi and ri respectively, and to have the dominating access
form the same ordered concurrent-access-pairs with its conflicting accesses as in vs1. This
process can be applied recursively backwards along inti until an becomes accessible. It is
important to note that such a backward reconciliation process cannot disable accesses in
the common prefix of vs1 and vsj , because an is accessible in vs1. Thus, the execution
ordering implied by the common prefix is not responsible for disabling of an. This further
implies that the derivation algorithm should produce a value schedule vst that fulfills all
ordered concurrent-access-pairs in the common prefix of vs1 and vsj and am → an. Thus,
vst has the longest common prefix with vs1 instead vsj , which leads to a contradiction.

Thus, vsj cannot be the derived value-schedule that shares the longest common-
prefix with vs1. Moreover, it is possible to reconcile the diverging pair between vs1 and a
derived value-schedule to make vsj the longest common-prefix by backtracking to the RW
pair that disabled the ordered concurrent-access-pair. As a result, vs1 should have been
derived and fulfilled by the derivation algorithm, which contradicts the original premise.
Therefore, all possible value schedules and their fulfilling-interleavings can be generated.
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5.5 Limitations

The discussion on two-staged value-schedule-based testing demonstrates how value sched-
ules of a program are tested by deriving their fulfilling interleavings from the CFG of the
program. More importantly, through this value-schedule derivation and testing process,
the accessibility-based POR and prioritized testing of certain permutations can be applied
to improve efficiency.

However, there are some limitations that the two-stage approach needs to overcome
to be applicable for real programs. These limitations are mainly due to the coarse-
grained nature of the static analysis used in value-schedule-based testing. First, this
simple implementation of value-schedule-based testing assumes that all distinct concur-
rent conflicting-accesses are given. However, the set of complete distinct accesses to
shared variables might not be statically computable. An access defined in a concurrent
access-pair may correspond to multiple instances of that access at runtime because of
iteration. Therefore, this simple implementation of value-schedule-based testing is un-
sound. Second, two interleavings are always generated to cover both possible branches in
a conditional statement. Assuming a thread has 20 conditional statements in its CFG,
the traversal of the CFG of that thread produces at least 220 execution paths to cover
all possible branches while only one out of 220 paths correctly captures a specific path
through the branches taken by that thread at runtime. Moreover, all generated inter-
leavings need to be stored for testing. Third, when a program contains polymorphic call
sites, it is difficult to predict which concrete method executes at runtime. A conserva-
tive estimate computes fulfilling interleavings along all possible implementation methods.
Thus, many infeasible paths are generated. Fourth, besides the reachability analysis on
the CFG, the statically computed concurrent access-pairs might turn out to operate on
different objects due to aliasing, which are irrelevant for testing purposes. All interleav-
ings computed based on this false concurrent access-pair are superfluous interleavings
since they do not correspond to distinct value schedules.

To resolve these issues, the next chapter introduces an improved version of value-
schedule-based testing. In the improved approach, value schedules are derived and tested
incrementally as the CFG is traversed. More importantly, intermediate dynamic infor-
mation is combined with the static information to improve the testing process.

5.6 Summary

This chapter presents the main concepts of value-schedule-based testing. A value sched-
ule defines the partial ordering of conflicting accesses to shared variables in an execu-
tion. Thus, only one interleaving needs to be tested for each distinct value schedule.
Value-schedule-based testing is used to guide dynamic testing by deriving value schedules
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of a program and executing their fulfilling interleavings. More importantly, the value
schedule explicitly uses the conflicting relationships among accesses to compute ordered
concurrent-access-pairs. A permutation and context switch of transitions is taken in the
fulfilling interleaving only if static analysis can compute a path to fulfill a new ordering
of two conflicting accesses. Thus, value-schedule-based testing performs POR based on
the accessibility of conflicting accesses instead of less-precise flow-insensitive availabil-
ity of conflicting accesses in concurrent threads. As a result, the value-schedule-based
testing can deliver more aggressive POR than existing techniques. Moreover, because
value-schedule-based testing is aware of all concurrent conflicting-accesses of a particu-
lar access and is capable of fulfilling them individually, value-schedule-based testing can
prioritize testing of permutations of concurrent accesses to evaluate their effects first.
The general implementation concepts of value-schedule-based techniques are applied over
various program constructs. Despite its promising improvements, the static two-stage
derivation algorithm presented in this section cannot be applied to real programs due to
its conservative approximations to variable access and control-flow branches.
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Chapter 6

Practical Value-Schedule-Based

Testing

The previous chapter showed how statically-computed information can help dynamic
testing-tools avoid executing irrelevant interleavings. This chapter presents a practical
implementation of the value-schedule-based technique composed of two main features.
First, this implementation derives and tests value schedules incrementally. The feasibil-
ity and correctness of a value schedule is evaluated one ordered concurrent-access-pair at
a time. This incremental fulfillment allows value-schedule-based testing to identify in-
feasible value schedules and fulfilling interleavings early in the derivation stage to reduce
superfluous traversal of the CFG. Thus, the accessibility-based reduction is more effi-
cient. Moreover, the incremental testing allows value-schedule-based testing to prioritize
the testing of some partial value-schedules and extend from ordered concurrent-access-
pairs that are closely identified with harmful concurrency bugs. Thus, harmful bugs can
be detected earlier in testing. Second, the incremental testing opens up various opportu-
nities for value-schedule-based testing to make use of the dynamic information collected
during testing to refine and improve the original guidance given by the static module.
For example, the branch-decision on a CFG node is resolved using dynamic information.
Hence, only one fulfilling interleaving is computed for each ordered concurrent-access-
pair. Moreover, for more complicated situations such as the ambiguity of the callee type
at a polymorphic callsite, the callee type can be dynamically resolved using runtime
information to reduce the search space.

6.1 Incrementally Deriving and Testing Value Schedules

The algorithm for incremental testing has three features. First, it makes uses of saved ex-
ecution states, called backtracking points, that serve as restore points. Different ordered
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concurrent-access-pairs of a value-schedule-relevant access can be attempted without re-
executing the common interleaving leading to that access. Second, the feasibility of an
ordered concurrent-access-pair is checked before being added to a partial value-schedule.
Thus, the accessibility-based-POR can immediately prune out a superfluous value sched-
ule. Third, the incremental approach automates the prioritized testing by assigning
heuristic relevance to the ordered concurrent-access-pairs.

6.1.1 Incremental Derivation with Backtracking

The incremental deriving and testing of value schedules using backtracking during the
derivation process is shown in Figure 6.1. The initial explanation of the algorithm is
presented using a simpler version of the sample program in Figure 5.1 from page 60 by
removing two synchronized statements on accY (see Figure 6.2).

The derivation again starts from a random thread as shown at the line 2 of Fig-
ure 6.1. Assume Thread1 is again selected. A backtracking point is created, when a
value-schedule-relevant access is encountered along the CFG of Thread1. For example,
the processing of the read of accX.val at line 3 produces a backtracking point, bpt1,
as shown in Figure 6.3(a). A backtracking point contains the execution state computed
from executing the interleaving leading to that value-schedule-relevant access, not includ-
ing that access. A cached backtracking-point can be later reloaded to reset the program
execution. More importantly, unique to value-schedule-based testing, each backtracking
point includes the set of accesses that are in conflict with the value-schedule-relevant
access, one of which triggered the creation of this backtracking point. An access that
triggers the creation of a backtracking point is called a triggering access. Note that
the conflicting accesses associated with the backtracking point are accesses forming con-
current access-pairs with the triggering access. From the conflicting accesses associated
with each backtracking point, the value-schedule-based testing can determine possible or-
dered concurrent-access-pairs that can be derived and tested from this backtracking point
without re-executing the interleaving leading to it. For example, deriving and testing the
ordered concurrent-access-pairs, (t2, run.(w(accX.val), line 3)) → (t1, run.(r(accX.val),
line 3)) and (t2, run.(w(accX.val), line 5)) → (t1, run.(r(accX.val), line 3)), does not
require re-executing the interleaving leading to the read of accX.val at line 3. Instead, a
simple reloading of bpt1 is sufficient.

The creation of backtracking points are shown at line 23 and 34 of Figure 6.1. After
a backtracking point is created, the triggering access is always explored first, while other
possible ordered concurrent-access-pairs are cached for later processing. This approach
ensures a depth-first search of the program CFG. In Figure 6.1, this operation is shown
at line 38. As the path is extended, each triggering access is added to the front of the
worklist and is processed first in the next iteration. Note that the worklist is always

112



1 main ( )
2 S e l e c t a r i b i t r a r y thread t and c r ea t e a SearchPath p

3 I n i t i a l i z e p with the entry node o f t

4 Add p i n t o wo rk l i s t
5 while work l i s t i s not empty
6 item = p r i o r i t i z e (worklist ) ;
7 p = dispatch (worklist , item ) ;
8 search ( p )
9

10 search ( SearchPath p)
11 Let c be CFG node at end o f path
12 i f ( c . ha sMul t ip l eSucce s so r s ( ) )
13 i f ( c i s BranchStmt ) s = reso lveBranch (c , p ) ;
14 else i f ( c i s C a l l s i t e ) s = r e s o l v eCa l l S i t e (c , p ) ;
15 r = r e a c h ab i l i t y (s , p . t a r g e t ) ;
16 i f ( ! r ) return ; else s = suc c e s s o r (c ) ;
17
18 i f ( s == null && p . s tack == empty
19 && hasOnlyOneThreadLeft (p ) )
20 complete (p ) ;
21
22 I f ( s . i sRe l evant () && p . mode != PRIORITY)
23 bp = createBacktrack ingPo int (p , s ) ;
24 Add bp to the f r on t o f wo rk l i s t
25
26 Append s to p

27 I f s i s the search ta r g e t ( top o f the f u l f i l l m e n t s tack o f p)
28 Pop the f u l f i l l m e n t s tack o f p

29 f u l f i l l (p ) ;
30 va l i d = a l i a sCheck ing ( ) ;
31 i f ( ! v a l i d && ! r e a c h ab i l i t y (s , p . t a r g e t ) ) return ;
32 resume (p ) ;
33 i f ( r e a c h a b i l i t y (s , p . t a r g e t ) )
34 bp = createBacktrack ingPo int (p , p . t r i g g e r , p . t a r g e t )
35 Add bp to the f r on t o f wo rk l i s t
36 Append p . t r i g g e r to p ;
37 i f ( p . mode == PRIORITY) complete (p ) ;
38 Add p to the f r on t o f wo rk l i s t //DFS

Figure 6.1: Overview of Incremental Search Algorithm
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Shared Variables

1 accX . va l = 0 ;
2 Account . amt = 10 ;
3 accY . va l = 0 ;

Thread 1

1 run ( ){
2 synchronized ( accX ){
3 accX . va l += Account . amt ;
4 }
5 }

Thread 2

1 run ( ){
2 synchronized ( accY ){
3 accX . va l −= Account . amt ;
4 i f ( accY . va l < 0){
5 accX . va l = 0 ;
6 }
7 }
8 }

Figure 6.2: Simpler Sample-Program

headed by a path and followed by a sequence of backtracking points. The dispatch()
method at line 7 of Figure 6.1 is responsible for disambiguating different types of objects
on the worklist and returns an interleaving to be processed further.

In the example, when the traversal of Thread1 reaches the end of the run() method,
the first fulfilled complete-value-schedule consists of all accesses to shared variables from
Thread1 happening before all of their concurrent conflicting-accesses from Thread2.
Moreover, the derivation process of the first value-schedule produces two backtracking
points corresponding to the value-schedule-relevant accesses for Thread1 as shown in Fig-
ure 6.3(a). The conflicting accesses associated with each backtracking point are shown in
the boxes, and the triggering access is shown in bold.

A cached backtracking-point is processed in the reverse order of its creation. The
first backtracking point to be processed corresponds to the write to accX.val at line 3 of
Thread1. It is shown as backtracking point bpt2 in Figure 6.3(a). This access has three
concurrent conflicting-accesses from Thread2. The derivation algorithm tries to fulfill
these three ordered concurrent-access-pairs using the derivation technique discussed for
RW concurrent-access-pairs discussed in Chapter 5. Assume the ordered concurrent-
access-pair, (t2, run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 3)) is chosen to
be fulfilled first. The program is restored to the execution state saved in bpt2. The
restoration resets Thread1 to the program point right before the write to accX.val at
line 3 is executed, and sets Thread2 to the program point at entry of its run() method.
Then, the CFG of Thread2 is traversed to compute an interleaving to the read of accX.val

at line 3 as discussed in Chapter 5. As the interleaving is computed, it is executed directly
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t1.w(accX.val, 3)

t1.r(accX.val, 3)

bpt2

bpt1
t1.r(accX.val, 3)

t2.w(accX.val, 5)

t2.w(accX.val, 3)

t2.r(accX.val, 3)

t2.w(accX.val, 3)

t2.w(accX.val, 5)

t1.w(accX.val, 3)

Conflicting Accesses

(a)

bpt1
t1.r(accX.val, 3)

t2.w(accX.val, 3)

t2.w(accX.val, 5)

t1.r(accX.val, 3) t1.w(accX.val, 3)

t2.w(accX.val, 3)

t2.w(accX.val, 5)

t2.r(accX.val, 3)
bpt2

t2.r(accX.val, 3)

t1.w(accX.val, 3)

Conflicting Accesses

(b)

t1.w(accX.val, 3)

bpt1
t1.r(accX.val, 3)

t2.w(accX.val, 5)

t2.w(accX.val, 3)

t2.w(accX.val, 3)

t2.w(accX.val, 5)

t1.w(accX.val, 3)

t2.w(accX.val, 3)

t1.r(accX.val, 3)

bpt3

Conflicting Accesses

(c)

Figure 6.3: Backtracking Points from Simple Sample-Program
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from the current program state, bpt2, to verify the feasibility of this interleaving as shown
in Figure 6.3(b). In this case, the interleaving to the read of accX.val at line 3 of Thread2
is feasible. Finally, execution along Thread1 reaches the end of its run() method again.
Then, the next backtracking point is still bpt2, which contains two unfulfilled ordered
concurrent-access-pairs.

The next ordered concurrent-access-pair to be processed from bpt2 is (t2, run.(w(accX.val),
line 3)) → (t1, run.(w(accX.val), line 3)) and it is fulfilled and tested in the same way
as that of (t2, run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 3)). This ordered
concurrent-access-pair is also feasible. The last pair for bpt2 is (t2, run.(w(accX.val),
line 5)) → (t1, run.(w(accX.val), line 3)). After the fulfilling interleaving is computed
for this ordered concurrent-access-pair, the feasibility testing determines its only fulfilling
interleaving is infeasible because the branch statement in Thread2 does not take the true
branch. Thus, no traversal is carried out along this infeasible partial value-schedule to
include the permutation on the monitor entries of accY . This example shows how the
accessibility-based-POR incrementally prunes out superfluous partial value-schedules.

As all possible ordered concurrent-access-pairs from bpt2 have been derived, the back-
tracking returns to bpt1, which has two conflicting accesses from Thread2. The pro-
cessing of the ordered concurrent-access-pair, (t2, run.(w(accX.val), line 3))

def−→ (t1,
run.(r(accX.val), line 3)), produces a new backtracking point bpt3 as shown in Fig-
ure 6.3(c). Th is processed identically to bpt2, and does not lead to any error.

As the backtracking point returns to bpt1, the ordered concurrent-access-pair, (t2,
run.(w(accX.val), line 5))

def−→ (t1, run.(r(accX.val), line 3)), is dispatched to be fulfilled
next. Similarly, the fulfilling interleaving computed for this ordered concurrent-access-
pair is infeasible because the true branch at line 4 of Thread2 is never taken. The
incremental feasibility testing of this interleaving instructs the value-schedule-based test-
ing not to carry out any further derivation from the superfluous partial value-schedule
(t2, run.(w(accX.val), line 5))

def−→ (t1, run.(r(accX.val), line 3)). Therefore, superfluous
value schedules such as,

(t2, run.(w(accX.val), line 5))
def−→ (t1, run.(r(accX.val), line 3))

(t2, run.(w(accX.val), line 5)) −→ (t1, run.(w(accX.val), line 3))

are never derived because the first ordered concurrent-access-pair in the partial value-
schedule is infeasible. This example shows how the incremental testing helps to identify
superfluous ordered concurrent-access-pairs before the superfluous ordered concurrent-
access-pairs are appended to partial value-schedules for further derivations. As all pos-
sible permutations from bpt1 have been attempted, there is no backtracking point left in
the worklist, and the testing process terminates.

Now, returning to the original sample program in Figure 5.1, after the testing process
finishes deriving and testing the first value schedule, there are three backtracking points
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that need to be processed instead of two, as shown in Figure 6.4. Two of them, bpt1
and bpt2, contain concurrent-access-pairs of type RW, while the third one, bpt3, contains
concurrent-access-pairs of MM type. As discussed in Chapter 4, a RW pair always im-
plies the possible existence of an unprotected access to a shared variable if it is shown to
be feasible, while a MM pair may imply a possible general race. Therefore, it makes more
sense to process the backtracking points that contain RW pairs first. A straightforward
depth-first testing processes the backtracking point bpt3 first before it proceeds to the
backtracking points that may contain error-generating concurrent-access-pairs. For exam-
ple, if the backtracking point bpt2 is processed out of order, the testing of the fulfillment
of any one of its two feasible ordered concurrent-access-pairs compute an interleaving
that triggers an assertion failure. Thus, prioritizing the testing of backtracking points
containing concurrent-access-pairs that are more correlated with potential concurrency
errors can lead the testing process to check potential incorrect interleavings more quickly.

However, such out-of-order testing runs the risk of turning a depth-first testing process
into something similar to breadth-first testing. For example, the out-of-order processing
of the backtracking point corresponding to the write to accX.val at line 3 of Thread1
creates two new feasible value schedules, and each of these value schedules contributes
new backtracking points on the monitor acquisition on accY . Moreover, the processing
does not return to the original three backtracking points until the new backtracking points
computed in the out-of-order testing are completely processed. As a result, the dynamic
testing-tool has to store backtracking points as well as the fulfilling interleavings from
more than one value schedule at the same time. Out-of-order testing might thus negatively
affect both the computational and memory use if the digression does not quickly lead to
the discovery of a concurrency bug. Therefore, if out-of-order testing cannot uncover a
bug within a reasonable time, the testing tool should abandon the out-of-order testing to
reduce the negative effects. A practical implementation of prioritized testing is given in
the following section.

6.1.2 Prioritizing the Testing

This section shows how the prioritized testing introduced in Chapter 5 can be imple-
mented within incremental value-schedule-based testing. First, instead of relying on
a specification from programmers, the prioritized testing introduced in this section es-
timates the relevance of an ordered concurrent-access-pair based on a heuristic value.
Moreover, by leveraging some existing features of value-schedule-based testing, the out-
of-order testing of cached ordered concurrent-access-pairs can be performed without turn-
ing the depth-first processing into a breadth-first one. This practical implementation of
prioritized testing is illustrated by continuing the testing process from the point when
the first value schedule from the original sample-program is fulfilled and tested as shown
in Figure 6.4.
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t1.w(accX.val, 3)

t1.r(accX.val, 3)

bpt2

bpt1

bpt3

t2.acq(accY, 2)

t1.r(accX.val, 3)

t2.acq(accY, 8)

t2.w(accX.val, 5)

t2.w(accX.val, 3)

t2.r(accX.val, 3)

t2.w(accX.val, 3)

t2.w(accX.val, 5)

t1.w(accX.val, 3)

t1.acq(accY, 5)

t1.acq(accY, 5)

Conflicting Accesses

Figure 6.4: Backtracking Points from Original Sample-Program (From Figure 5.1)

First, the heuristic scheme for evaluating the relevance of a backtracking point is
presented. In general, the backtracking points that contain the types of concurrent access-
pairs that are more commonly related with concurrency bugs are processed first. As
discussed in Chapter 4, different types of concurrent access-pairs correspond to different
types of concurrency bugs. An ordered concurrent-access-pair derived from a pair of type
RW is a clear indication of a data race if it can be fulfilled. Moreover, if no WN pairs
associated with a backtracking point can be fulfilled, it is a good indication that there is a
deadlock in the program. On the other hand, a concurrent-access-pair of type MM, WM
or WW may or may not contribute to a harmful general race. In most cases, it may just
serve to provide the desired synchronization for the program. Among these three types of
concurrent access-pairs, types WM and WW may indicate possible barging behaviours.
Thus, concurrent access-pairs of type WM and WW are considered more likely to lead to
errors than those of type MM. In the end, the different types of concurrent access-pairs
are heuristically assigned the following priorities:

RW > WN > WM ≥ WW > MM (6.1)

When backtracking, backtracking points that contain concurrent access-pairs with higher
priority are candidates for prioritized processing (see Figure 6.5). The prioritized selection
of backtracking points access by the prioritize(worklist) procedure is called at line 6 of
Figure 6.1. The code between lines 6 and line 13 of Figure 6.5 iterates through the
worklist to find the backtracking point with the most relevant access type.

After a backtracking point is selected, the next step is to monitor the interleavings
derived from the out-of-order processing. The goal is to fulfill the ordered concurrent-
access-pairs associated with each selected backtracking point with the fewest side-effects.
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1 p r i o r i t i z e (worklist)
2 item = null ;
3 i f ( wo rk l i s t . f r on t ( ) i s Path )
4 return work l i s t . f r on t ( ) ;
5
6 fo r each BacktrackingPoint bpt in wo rk l i s t
7 i f ( item == null )
8 i f ( ! bpt . OutofOrderOnce )
9 item = bpt ;

10
11 i f ( bpt . r e l evance > item . r e l evance ) // f i nd h i g h e s t p r i o r i t y
12 i f ( ! bpt . OutofOrderOnce ) // item
13 item = bpt ;
14
15 i f ( item != null )
16 i f ( item . numOfPairsLeft ( ) == 1) // the l a s t pa i r
17 bpt . OutofOrderOnce = true ;
18 return item ;
19 else
20 return work l i s t . f r on t ( ) ;

Figure 6.5: Prioritizing Procedure
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The value-schedule-based testing achieves this by disabling the generation of backtrack-
ing points during the out-of-order processing, which also prevents the fulfillment process
from performing the recursive expansion of value schedules. This restriction is shown by
the branch statement at line 22 of Figure 6.1. The goal is to limit the out-of-order pro-
cessing on each ordered concurrent access-pair to exactly one fulfillment, so no additional
backtracking point is introduced. After the ordered concurrent access-pair is fulfilled, the
value-schedule-based testing checks for an error by completing the remaining instructions
in each active thread. The evaluation is done by running the program “sequentially”
to completion, following the interleaving for the just-fulfilled ordered concurrent-access-
pair. For example, all instructions in Thread1 are completed first, then those from
Thread2, etc. This execution determines whether an out-of-order fulfillment of an or-
dered concurrent-access-pair is sufficient to lead the program to a hidden concurrency
bug in a single fulfillment.

Because the value-schedule-based testing only commits one context-switch for an out-
of-order processing of an ordered concurrent-access-pair, an ordered concurrent-access-
pair that requires more than one fulfillment through recursive expansion is not tested.
Thus, the out-of-order processing does not remove the backtracking point from the work-
list. Instead, such a backtracking point is marked so it is not processed out-of-order
again. The setting of flag OutofOrderOnce is shown at line 16 of Figure 6.5 as the last
ordered concurrent-access-pair associated with a backtracking point is issued for testing.
The checking of this flag is carried out for each backtracking point on the worklist as
shown at lines 8 and 12 in Figure 6.5. A marked backtracking-point is processed without
any limitation on the number of fulfillments when it is encountered again.

The controlled derivation and evaluation of an selected ordered concurrent-access-pair
is possible because the value-schedule-based testing has full control over the derivation
and testing of value schedules. In particular, it controls the order in which value-schedule-
relevant accesses are executed and can monitor the execution to detect when an inter-
leaving can fulfill its intended order. Using these mechanisms, the value-schedule-based
testing offers the necessary control to exploit the benefit of the out-of-order testing while
reducing the side effects.

For example, instead of processing the ordered concurrent-access-pairs correspond-
ing to the monitor acquisition on accY from the backtracking point bpt3 in Figure 6.4
due to the depth-first search, the out-of-order processing starts fulfilling the ordered
concurrent-access-pairs corresponding to the write of accX.val at line 3 by Thread1 at
bpt2 as shown in Figure 6.4. The fulfillment process for the ordered concurrent-access-
pair (t2, run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 3)) starts by computing
its fulfilling interleavings over the CFG of Thread2 as discussed in Chapter 5. Clearly,
this fulfilling interleaving is feasible. Moreover, the execution of this fulfilling interleaving
advances the execution to a new program state. To evaluate the effects of this partial
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value-schedule, the program is directed to finish sequentially from this new program state.
This execution triggers the assertion because the read of accX.val in Thread2 misses the
value updated by Thread1.

At this point, a user can choose to stop further testing and fix the bug or continue test-
ing. If testing continues, the out-of-order processing continues by selecting the ordered
concurrent-access-pair (t2, run.(w(accX.val), line 3)) → (t1, run.(w(accX.val), line 3))
next from backtracking point bpt2. The fulfilling interleaving of this ordered concurrent-
access-pair is computed and dynamically checked. The “sequential” run from the result-
ing program state also triggers the assertion. After all ordered concurrent-access-pairs
associated with the current backtracking point are evaluated, the ordered concurrent-
access-pairs corresponding to the read of accX.val at the line 3 of Thread1 as shown by
bpt1 is processed out-of-order. Note that out-of-order processing from this backtracking
point does not trigger the assertion. After all of the selected prioritized backtracking
points are processed out-of-order, testing resumes using normal backtracking along the
depth-first path from backtracking point bpt3 in Figure 6.4.

Discussion

Backtracking of accesses to shared variables encountered during testing is commonly used
by many existing testing techniques [72, 25, 30] to reduce memory overhead during test-
ing. The contribution of value-schedule-based testing is its ability to make use of the
incremental accessibility-based-POR to verify the validity of ordered concurrent-access-
pairs incrementally and perform prioritized testing. As discussed in Chapter 5, a pure
dynamic-based testing tool, such as [72, 25], cannot easily perform such testing because
it does not know the conflicting accesses of a particular access to a shared variable when
attempting an interleaving. Therefore, it is difficult to evaluate concurrent behaviours be-
tween a given access and its conflicting accesses as thoroughly as the value-schedule-based
approach. Even for tools that use static alias-information to locate a permutation [30],
out-of-order testing can turn depth-first testing into breadth-first testing if it cannot de-
termine when an interleaving’s goal is achieved to allow the tool to return the normal flow
of testing. Moreover, if a statically-located concurrent-conflicting-access is not reachable
at runtime, then out-of-order testing may increase testing time by running irrelevant in-
terleavings. The ability to know all conflicting accesses and keep track of the fulfillment
process allows value-schedule-based testing to perform the out-of-order testing of some
concurrent behaviours while preserving the benefit of low memory consumption offered
by depth-first testing.

To summarize, the incremental value-schedule-based testing can dynamically perform
accessibility-based POR to prune out superfluous interleavings that cannot be detected in
other dynamic testing-tools. The prioritized testing makes use of the accessibility-based
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Figure 6.6: Combining Static and Dynamic Information

POR to facilitate the detection of the most likely concurrency bugs, while minimizing the
possible negative side-effects of out-of-order testing. In the previous section, the emphasis
was placed on the incremental derivation and testing of a value schedule. However,
the value-schedule-based approach still suffers from imprecision caused by limitations
in static analysis. For example, multiple fulfilling interleavings are computed for an
ordered concurrent-access-pair but only one of them is feasible. Moreover, concurrent
accesses formed by superfluous alias-relationships may still cause the value-schedule-based
approach to fulfill superfluous value-schedules. In the next section, dynamic information
collected during testing is used to refine the coarse-grained statically-derived information.

6.2 Combining Static and Dynamic Information

In the naive implementation of value-schedule-based testings presented in Chapter 5,
only static information is used to guide the dynamic testing. However, due to the coarse-
grained nature of static analysis, the guidance provided by the static derivation is impre-
cise. For example, a partial value-schedule may be further extended even if it includes
infeasible ordered concurrent-access-pairs. Moreover, more than one fulfilling interleaving
is computed for an ordered concurrent-access-pair but at most one of them is feasible at
runtime. Essentially, the dynamic information only serves to differentiate the correctness
and feasibility of value schedules after all potentially-relevant fulfilling-interleavings are
statically computed.
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On the other hand, in the incremental technique, dynamic information such as the
feasibility of a partial-fulfilling interleaving for an ordered concurrent-access-pair can be
used by the static derivation-module to determine which fulfilling interleaving of which
a partial value-schedule should be further derived to guide testing. In this collaboration
scheme, the static and dynamic-testing techniques are tightly coupled to each other.
The static technique incrementally determines the next interleavings to test by using
statically-computed information, while the dynamic testing determines the correctness of
the static derivations to improve its precision in further derivation.

In addition, the incremental nature of the testing opens up various opportunities for
the static module to make use of different kinds of dynamic information collected during
the fulfillment of ordered concurrent-access-pairs (see Figure 6.6). This section introduces
three types of dynamic information which improve static derivation: branching decisions,
callee type from a polymorphic callsite, and the validity of aliasing relationships captured
in an ordered concurrent-access-pair. The first two types of dynamic information help to
reduce the number of superfluous interleavings computed, and the third type of dynamic
information helps the static derivation-module to identify the concurrent access-pairs
constructed based on imprecise aliasing relationships. The sample program in Figure 5.1
and its variations are used to show how each type of dynamic information improves the
precision of the static-derivation tool.

6.2.1 Dynamic Branching Resolution

In the previous analysis, the processing of the backtracking point corresponding to the
monitor entry at line 2 of Thread2 triggers the computation of a fulfilling-interleaving for
the ordered concurrent-access-pair (t2, run.(monenter, line 8))

acq−→ (t1, run.(monenter,
line 5). Because of the branch statement at line 4 of Thread2, two fulfilling interleavings
were computed. Thus, the feasibility testing, in the worst case, runs two interleavings to
determine the feasible fulfilling-interleaving for the ordered concurrent-access-pair. Now,
if the static derivation-module knows which branch the program takes, then it knows
which CFG edge to follow and can compute only the feasible fulfilling interleaving for
that ordered concurrent-access-pair. However, the precise branch taken by a branch
statement cannot always be known until the statement is executed at runtime. When a
fulfilling interleaving leading to a branch statement is dynamically executed, its branching
target is the next-to-run instruction for that thread. The dynamic testing-tool can then
feed the dynamic branching-decision back to the static derivation-module. The static
derivation-module maps the next instruction to a successor node in the CFG and the
search continues for the target node following that successor node.

The dynamic testing-tool used in the implementation of value-schedule-based testing
is JPF, which provides a mechanism for exporting various types of runtime information
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Branch Resolving

1 reso lveBranch (CFGNode pred , INTERLEAVING i n t e r l e a v i n g )
2 exec ( i n t e r l e a v i n g ) ;
3 programCounter = extractProgramCounter ( ) ;
4 f o r each succ o f s u c c e s s o r s ( pred )
5 i f ( succ . o f f s e t == programCounter )
6 i n t e r l e a v i n g . append ( succ ) ;

Figure 6.7: Overview of Branch Resolving

from the underlying JVM. When the CFG traversal continues from a node that has
more than one successor as shown at line 13 of Figure 6.1, resolveBranch() is called,
(see Figure 6.7). The partial fulfilling-interleaving and the CFG node corresponding to
the branch statement are passed into resolveBranch(). The existing partial fulfilling
interleaving is executed by the dynamic-testing module. Then, the program counter is
extracted in the form of its bytecode offset. Because the Soot package keeps track of the
corresponding bytecode offset of each CFG node in the original class-file, the mapping
of the next instruction after the branch and its CFG node is accomplished by comparing
their bytecode offsets. The CFG node for the successor instruction is appended to the
partial fulfilling-interleavings.

Reachability Refinement

During the computation of a fulfilling interleaving for an ordered concurrent-access-pair,
every CFG node encountered during the search is added to the fulfilling interleaving. An
interleaving is only abandoned if an access cannot be reached after the CFG is exhaus-
tively traversed. However, such an interleaving may grow very long before it is abandoned.
Moreover, if the traversal encounters many branch statements, the resolveBranch() func-
tion is called frequently and slows down the overall testing process. Thus, it is important
to precisely determine the reachability of the target access and abandon the traversal as
early as possible. The solution I implemented is to use the dynamic branching-decision
obtained during the traversal to incrementally refine the reachability status of the tar-
get access as captured by the call to the reachability() procedure at line 15 and 33 of
Figure 6.1.

Before the fulfilling process for an ordered concurrent-access-pair is started after a
branch is resolved, a flow-sensitive reachability-analysis is performed on the owner thread
of that target access to determine the reachability of the target access from the next node
to run. The flow-sensitive analysis summarizes the reachability result along different
control flows to produce a safe estimate. If the target node is not reachable, then the
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1 i f ( cond i t i on ) // outer i f
2 i f ( cond i t i on ) // inner i f
3 // t a r g e t

Figure 6.8: Branching over Nested Loops

fulfilling traversal does not start. The result of the reachability analysis is saved in a
hashtable that acts as a cache for future queries. The key of a HashMap entry is a pair of
CFG nodes (ns, nt) from the owner thread of the target access. ns is the starting CFG
node of the analysis, and nt is the target access-node used in the reachability analysis.
The value of the entry is the result of the analysis.

In this static-reachability analysis, it is possible the target access is determined to be
reachable but not accessible at runtime. For example, a target access might be enclosed
by two if clauses as shown in Figure 6.8. Assume the true branch is taken for the first
outer if clause, and the false branch is taken for the inner if clause. A reachability
analysis from the outer if reports the target access to be reachable without the branch
decision for the inner if statement. However, the target access node is only determined to
be inaccessible after the reachability analysis is performed on the immediately enclosing
if statement. This process shows how a reachability analysis is incrementally turned into
an accessibility analysis by performing branch resolving on each branch node encountered
during CFG traversal.

Concurrent Access-Pairs with Multiple Instances

Until now, an assumption made during the derivation process is that every value-schedule-
relevant access computed by the initial concurrent access-pair generation is distinct. How-
ever, this is generally not the case for a real program. For example, the same access may
be enclosed by a loop. Thus, an instance of an ordered concurrent-access-pairs can be
formed for the different iterations of the loop. Moreover, because the concurrent-access-
pair computation discussed in Chapter 4 only uses one level of context-sensitivity, it
cannot distinguish accesses with more than one level of call sensitivity. Therefore, a
statically-computed concurrent access-pair may correspond to multiple instances of a
concurrent access-pair at runtime.

The processing of an ordered concurrent-access-pair that may have multiple runtime
instances is presented using the branch resolution and reachability refinement processes
for the new sample programs shown in Figures 6.9 and 6.10. In both examples, the ac-
cesses to accX.val in Thread1 are enclosed in a loop that iterates twice; in the second
example, the accesses to accX.val in Thread2 are enclosed in a loop. Thus, an ordered
concurrent-access-pair that involves conflicting accesses on accX.val from Thread1 or
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Thread 1

1 run ( ){
2 // two in s t ance s o f t r i g g e r
3 for ( int i =0; i <2; i ++){
4 accX . va l −= Account . amt ;
5 }
6 }

Thread 2

1 run ( ){
2 // one c o n f l i c t i n g acces s
3 accX . va l += Account . amt ;
4 }

Figure 6.9: Multiple Instances of Target Access

Thread 1

1 run ( ){
2 // two in s t ance s o f t r i g g e r
3 for ( int i =0; i <2; i ++){ {
4 accX . va l −= Account . amt ;
5 }
6 }

Thread 2

1 run ( ){
2 // two c o n f l i c t i n g acce s s e s
3 for ( int i =0; i <2; i ++){
4 accX . va l += Account . amt ;
5 }
6 }

Figure 6.10: Multiple Instances of Triggering Access

Thread2 may have more than one instance. Now, consider the case of the sample pro-
gram in Figure 6.9, in which only Thread1 contains accesses with multiple instances.
This example illustrates how the value-schedule-based technique incrementally derives
different instances of an ordered concurrent-access-pair caused by the existence of multi-
ple instances of the triggering access. When the write to accX.val at line 4 of Thread1
is encountered in the traversal of its CFG, a backtracking point, bpt1, is created with the
encountered write access to accX.val as its triggering access as shown in Figure 6.11. A
direct extension of this backtracking point for the write to accX.val at line 3 of Thread1
completes the fulfillment of the ordered concurrent-access-pair (t1, run.(w(accX.val),
line 4)) → (t2, run.(r(accX.val), line 3)). This ordered concurrent-access-pair implies
that the first write to accX.val at line 4 of Thread1 happens before the read of accX.val

at line 3 in Thread2.

By continuing the extension of the partial value-schedule resulting from the direct
insertion, the traversal of the CFG of Thread1 reaches the end of the loop. The branch
resolution technique is then used to compute the next-to-run instruction following the end
of the first loop iteration. The branch statement at the end of the loop brings the CFG
traversal back to the second iteration of the loop and reaches the (t1, run.(w(accX.val),
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bpt1
t1.r(accX.val, 3)

t2.w(accX.val, 3)

t1.w(accX.val, 3)

t2.r(accX.val, 3)

t2.w(accX.val, 3)

t2.r(accX.val, 3)

.......

t1.w(accX.val, 3)
.......

t1.w(accX.val, 3)

bpt2

Conflicting Accesses

Figure 6.11: Backtracking Points for Sample Code in Figure 6.9

line 4)), and generates backtracking point bpt2 in Figure 6.11. The processing of bpt2 ful-
fills the ordered concurrent-access-pair (t2, run.(r(accX.val), line 3)→ (t1, run.(w(accX.val),
line 4)) in which the second instance of (t1, run.(w(accX.val), line 4)) is the triggering
access. This instance of (t2, run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 4))
ensures the read of accX.val from Thread2 happen after the first instance and before
the second instance of the write to accX.val in Thread1. As the backtracking point
bpt2 is processed, a fulfillment process for another ordered concurrent-access-pair ((t2,
run.(r(accX.val), line 3)) → (t1, run.(w(accX.val), line 4)) is carried out again. This in-
stance of the ordered concurrent-access-pair ensures both instances of the read to accX.val

from Thread1 happens after the write to accX.val in Thread2.

This simple example shows how multiple instances of a triggering access can lead
to multiple instances of ordered concurrent-access-pairs that are derived incrementally
by traversing the CFG using the branch-resolution techniques. It is also necessary to
show how the incremental value-schedule-based technique handles ordered concurrent-
access-pairs caused by multiple instances of its target access using the sample program
in Figure 6.10.

The second version of the example program has both members access the ordered
concurrent-access-pair (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4)) in
loops. Therefore, this ordered concurrent-access-pair has five instances. When the write
to accX.val is first encountered during the traversal of the CFG of Thread1, the back-
tracking point, bpt1, is created while the DFS traversal continues on (see Figure 6.12(a)).
Further traversal of the CFG of Thread1 leads to the second iteration of the loop after
dynamically resolving the branching instruction at line 3 of Thread1. When the write to
accX.val in Thread1 is encountered again, another backtracking point is created, bpt1.1.
For clarity, if a backtracking point A is derived from the processing of another backtrack-
ing point B, the name of A is extended from the label of B. For example, the name
bpt1.1 implies this backtracking point is derived from bpt1. Continuing the traversal of
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the CFG for Thread1 causes the loop to exit, so the write at line 4 of Thread1 is no longer
reachable. This deals with the case where both writes from Thread1 happen before those
from Thread2.

Both the backtracking points trigger the fulfillment of the ordered concurrent-access-
pair, (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4)), because the write to
accX.val from line 4 of Thread1 is their triggering access. Processing of these two back-
tracking points triggers the fulfillment of two instances of (t2, run.(r(accX.val), line 4))
→ (t1, run.(w(accX.val), line 4)). The partial value-schedule where the first read of
accX.val in Thread2 happens before the second write to accX.val in Thread1 is marked
as vs1, and the partial value-schedule where both the first and second read of accX.val

in Thread2 happens before the second write to accX.val in Thread1 are marked as vs2.

vs1 is generated from processing the backtracking point bpt1.1. At bpt1.1, the next
instruction to run from Thread1 is the second instance of (t1, run.(w(accX.val), line 4)).
Thus, the fulfillment of (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4)) is
triggered. Fulfillment of this ordered concurrent-access-pair includes all value-schedule-
relevant accesses from Thread1 in the fulfilling interleaving. During the processing of
the ordered concurrent-access-pair, another backtracking point bpt1.1.2 is produced. The
processing of bpt1.1.2 starts another search in Thread2 for (t2, run.(r(accX.val), line 4)),
which enables the second instance of (t1, run.(w(accX.val), line 4)) to happen after the
second instance of (t2, run.(w(accX.val), line 4)), and produce partial value-schedule
vs2. The fulfillment of this ordered concurrent-access-pair produces another backtrack-
ing point bpt1.1.2.2. However, the attempt to fulfill (t2, run.(w(accX.val), line 4)) → (t1,
run.(w(accX.val), line 4)) from bpt1.1.2.2 fails because the branch-resolution mechanism
indicates Thread2 exits the loop after its second iteration. Then, the reachability refine-
ment mechanism reports the target access is no longer reachable and abandons further
traversal.

During the derivation, backtracking point bpt1.1.2 is a special type of backtracking
points constructed to tackle ordered concurrent-access-pairs caused by a target access
with multiple instances. This type of backtracking point has two characteristics. First, it
is constructed after an ordered concurrent-access-pair is fulfilled when another instance
of a target access is still considered to be reachable from the CFG. Second, the triggering
access of such a backtracking point is not the target access of recursive derivation, but
rather the triggering access that originally started the fulfillment process. Thus, this
backtracking point is dedicated to handle another instance of a just-fulfilled ordered
concurrent-access-pair.

In the case of the sample program, bpt1.1.2 is created because the reachability analysis
determines (t2, run.(r(accX.val), line 4)) is still reachable from the CFG of Thread2 after
the fulfillment of the previous ordered concurrent-access-pair. Moreover, this backtrack-
ing point is explicitly dedicated to fulfill an ordered concurrent-access-pair between the

128



bpt 1.1

bpt 1.1.2
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(c)

Figure 6.12: Fulfillment of Multiple Instances of an Ordered Concurrent-Access-Pair
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instance of (t1, run.(w(accX.val), line 4)) that triggered the current fulfillment process
and the next instance of (t2, run.(r(accX.val), line 4)). This operation is captured by
the code between line 33 and line 35 in Figure 6.1. In Figure 6.12, a backtracking point
created to handle multiple instances of a search target is shown as a solid circle.

The backtracking processing returns to bpt1 to enable the both instances of (t1,
run.(w(accX.val), line 4)) to happen after the first instance of (t2, run.(r(accX.val),
line 4)). The partial value-schedule resulting from this ordered concurrent-access-pair
is marked as vs3 in Figure 6.12(b). The new backtracking points constructed in fulfilling
vs3 are marked as bpt1.2 and bpt1.2.1. bpt1.2 is specially generated for the first in-
stance of (t1, run.(w(accX.val), line 4)) because the reachability analysis determines (t2,
run.(r(accX.val), line 4)) is still reachable after the first instance of (t2, run.(r(accX.val),
line 4)) has been added to the interleaving leading to bpt1.2. bpt1.2.1 is generated when
the second instance of (t1, run.(w(accX.val), line 4)) is encountered in the second itera-
tion of loop in Thread1. The backtracked processing of bpt1.2.1 fulfills another instance
of (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4)) and produces a new
partial value-schedule vs4. The special backtracking point bpt1.2.1.2 in Figure 6.12(b)
does not lead to any additional instances of its dedicated ordered concurrent-access-pair
because (t2, run.(r(accX.val), line 4)) is no longer accessible.

Finally, the backtracked processing of bpt1.2 fulfills another instance of (t2, run.(r(accX.val),
line 4)) → (t1, run.(w(accX.val), line 4)). This instance enables the second instance of
(t1, run.(w(accX.val), line 4)) to happen after the second instance of (t2, run.(r(accX.val),
line 4)). This instance is marked as vs5 in Figure 6.12(c). The derivation of vs5 produces
another special backtracking point bpt1.2.2. Similar to bpt1.1.2.2, the branch resolution
and reachability refinement mechanism show that extension of bpt1.2.2 does not fulfill a
new instance of (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4)). At the
end, all five instances of (t2, run.(r(accX.val), line 4)) → (t1, run.(w(accX.val), line 4))
are fulfilled.

6.2.2 Dynamic Polymorphism Call Site Resolution

In an object-oriented language, a CFG may also contain branches caused by polymor-
phic calls. This section discusses how branches caused by polymorphic call-sites can
be resolved dynamically using the sample program from Figure 6.13, modified from the
original sample program in Figure 5.1. This program introduces polymorphism by en-
capsulating the updates to accX.val in Thread2 into a polymorphic method of the two
types, Manager and its subtype ManagerB. At runtime, the static choose() method
in the Manager class uses the val field of an account to create a different concrete
type, which is assigned to the variable m for updating accX.val in Thread2. Therefore,
the m.withdraw() method invoked at lines 3 and 5 of Thread2 may invoke withdraw()
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Manager Classes

1 class Manager{
2 public void withdraw ( Account x ){
3 x . va l −= Amount . amt ;
4 }
5
6 public stat ic Manager choose ( Account x ){
7 i f ( x . va l >= 0){
8 return new Manager ( ) ;
9 } else {

10 return new ManagerB ( ) ;
11 }
12 }
13 }
14 class ManagerB extends Manager{
15 public void withdraw ( Account x ){
16 p r i n t l n ( ‘ ‘ AccountFrozen” ) ;
17 }
18 }

Thread 1

1 run ( ){
2 synchronized ( accX ){
3 accX . va l += Amount . amt ;
4 }
5 synchronized ( accY ){
6 accY . va l −= Amount . amt ;
7 }
8 }

Thread 2

1 run ( ){
2 Manager m = Manager . choose ( accX ) ;
3 m. withdraw ( accX ) ;
4 m = Manager . choose ( accX ) ;
5 m. withdraw ( accX ) ;
6
7 synchronized ( accY ){
8 accY . va l −= Amount . amt ;
9 }

10 }

Figure 6.13: Polymorphic Call Example
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from either Manager or ManagerB. Due to the coarse-grained nature of static analy-
sis, two out-edges are produced for each call to withdraw() in Thread2. As discussed
in Chapters 2 and 5, imprecise static analysis results lead to the testing of superfluous
interleavings in a model checker such as JPF [72]. In value-schedule-based testing, the
superfluous call edges lead to the unnecessary traversal of CFG edges to fulfill infeasible
ordered concurrent-access-pairs.

For example, consider a backtracking point corresponding to the read of accX.val at
line 3 of Thread1 with the interleaving:

t1.(acq(accX, 2)) →

The concurrent access-pair generation-module determines that this read access may form
concurrent access-pairs with the write accesses to accX.val reachable from both invoca-
tions of withdraw() in Thread2 because it always considers Manager.withdraw() as a
possible target. Examples of such concurrent access-pairs are shown in Table 6.1. Note,
the member accesses from Thread2 in these concurrent access-pairs are annotated with
the context information that represents the different callsites of the withdraw() method.

Assume the processing of this backtracking point triggers the fulfillment process for
the ordered concurrent-access-pair (t2, withdraw.(w(accX.val), line 3), run:3) → (t1,
run.(r(accX.val), line 3)). The fulfillment process traverses the CFG of Thread2 to the
node corresponding to the invocation of m.withdraw() at line 3. From this CFG node,
there are two call edges leading to different implementations of withdraw(). If the fulfill-
ment process follows both out-edges to search for the target access, then feasibility testing
on the interleavings filters out the one that follows the superfluous call-edge. However, a
more efficient way is to have the dynamic testing-tool execute the already-computed par-
tial interleaving until the instruction corresponding to the invocation is loaded into the
program counter. At this point, the concrete target of the call is resolved by the under-
lying virtual machine, and the method jump is computed as well. Thus, by accessing the
dynamic information computed by the dynamic testing-tool, the static derivation-module
is able to determine which implementation of withdraw() is called at runtime and only
traverse the CFG nodes for that implementation. Moreover, the reachability analysis is
performed again after the polymorphic method-call is resolved to refine the accessibility
prediction of the search target. These operations are shown in lines 14 and 15 in Fig-
ure 6.1. When Manager.withdraw() is called, the reachability analysis reconfirms the
reachability of the target access.

The fulfillment of this ordered concurrent-access-pair advances the testing process
to the next value-schedule-relevant access, which is the write to accX.val at line 3 of
Thread1. Again, this access forms concurrent access-pairs with accesses to accX.val from
Thread2. For example, the processing of this value-schedule-relevant access eventually
triggers the fulfillment of the ordered concurrent-access-pair (t2, withdraw.(w(accX.val),
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Pair Type Concurrent Access-Pairs

RW <(t1, run.(r(accX.val), line 3)), (t2, withdraw.(w(accX.val), line 3), run:3)>

RW <(t1, run.(r(accX.val), line 3)), (t2, withdraw.(w(accX.val), line 3), run:5)>

Table 6.1: Concurrent Access-Pairs for the Code in Figure 6.13

line 3), run:5)→ (t1, run.(w(accX.val), line 3)). However, the dynamic method-resolution
for the call to withdraw() at line 5 reveals the concrete runtime-type of the callee is
ManagerB, which contains no access to accX.val. The reachability analysis after the
branch resolution reports the target access is no longer reachable. Thus, no further
traversal is carried out along Thread2. Moreover, the dynamic method-resolution for
withdraw() shows there is no ordered concurrent-access-pair formed with the write to
accX.val from Thread1 and all conflicting accesses from Thread2 are actually fulfilled
under this partial value-schedule.

6.2.3 Dynamic Alias-Refinement

Previous discussion assumed the alias relationships that form concurrent access-pairs
remain valid at runtime. However, in practice, a concurrent access-pair can also become
superfluous if the may-alias relationship that originally established the pair turns out
to be false at runtime. Using a technique similar to the one for polymorphic call-site
resolution, it is possible to check if two object references in a concurrent access-pair are
still aliases at runtime, and abandon testing if they are not.

The dynamic alias refinement process is demonstrated using the sample program in
Figure 6.14. Thread2 has a branch statement at line 4 to adjust which account instance
is updated at line 9. A coarse-grained static analysis, which conservatively estimates the
data flows of both branches, reports the object referenced by s at line 9 can be either
accX or accY . Thus, the value-schedule-based testing-tool concludes the accesses on
s.val in Thread2 form concurrent access-pairs with those accesses on accY.val at line 6
in Thread1.

Consider processing a backtracking point corresponding to the write access to accY.val

at line 6 from Thread1, where that backtracking point contains the interleaving,

t1.(acq(accX, 2)) →
t1.(r(accX.val, 3)) → t1.(w(accX.val, 3)) →

t1.(rel(accX, 4)) →
t1.(acq(accY, 5)) →

t1.(r(accY.val, 6))

The derivation process now tries to fulfill the ordered concurrent-access-pair (t2, run.(r(s.val),
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Thread 1

1 run ( ){
2 synchronized ( accX ){
3 accX . va l += Account . amt ;
4 }
5 synchronized ( accY ){
6 accY . va l −= Account . amt ;
7 }
8 }

Thread 2

1 run ( ){
2 Account s = null ;
3 synchronized ( accX ){
4 i f ( accX . va l >= 0){
5 s = accX ;
6 } else {
7 s = accY ;
8 }
9 s . va l −= Account . amt ;

10 }
11 synchronized ( accY ){
12 accY . va l += Account . amt ;
13 }
14 }

Figure 6.14: Exploiting Precise Alias Relationships - I

line 9))→ (t1, run.(w(accX.val), line 6)). Following the same fulfilling technique discussed
in this chapter, a fulfilling interleaving that leads to the execution of the instruction cor-
responding to the read of s.val is computed. After this fulfilling interleaving is statically
computed, it is executed and generates a new backtracking point. Ideally, an execu-
tion along Thread1 from this new backtracking point should complete the fulfillment
in the ordered concurrent-access-pair. Moreover, this new backtracking point serves as
a starting point to derive and test new value schedules. However, in the presence of
superfluous alias-relationships, the validity of the alias relationship between accesses in
an ordered concurrent-access-pair must be verified dynamically. At runtime, the par-
tial value-schedules derived from a newly computed backtracking point are superfluous if
the ordered concurrent-access-pair that produces this backtracking point is based on an
invalid alias relationship. The validity checking is done by executing the fulfilling inter-
leaving and comparing the precise memory-references of the instructions corresponding
to the conflicting accesses defined in the concurrent access-pair. The call to the alias
checking is shown at line 30 of Figure 6.1.

Obtaining the precise runtime memory-reference of the two instructions is carried out
as follows. When all but the last instruction in the fulfilling interleaving are dynamically
executed, the instruction in the program counter of the owner thread is the instruction
corresponding to the target access, and the instruction in the program counter of the
triggering thread is the access that triggered the fulfillment process. The dynamic testing-
tool can export the memory-address referenced by the instruction in the program counter.
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Main Thread

1 main ( St r ing [ ] a rgs ){
2 . . . . .
3 Account [ ] accs = {accX , accY } ;
4 Thread1 t1 = new Thread1 ( accs [ 0 ] ) ;
5 Thread1 t2 = new Thread2 ( accs [ 1 ] ) ;
6 . . . . .
7 }

Thread 1

1 Thread1 ( Account acc ){
2 this . a l o c a l = acc ;
3 }
4 run ( ){
5 synchronized ( this . a l o c a l ){
6 a l o c a l . va l += Account . amt ;
7 }
8 Account a l o c a l ;
9 }

Thread 2

1 Thread2 ( Account acc ){
2 this . a l o c a l = acc ;
3 }
4 run ( ){
5 synchronized ( this . a l o c a l ){
6 a l o c a l . va l −= Account . amt ;
7 }
8 Account a l o c a l ;
9 }

Figure 6.15: Exploiting Precise Alias Relationship - II

Therefore, the precise memory address referenced by the instructions corresponding to
the accesses defined in an ordered concurrent-access-pair can be retrieved and compared.
If they do not match, the newly computed backtracking point is abandoned.

For example, the execution of the fulfilling interleaving of the ordered concurrent-
access-pair (t2, run.(w(s.val), line 9)) → (t1, run.(r(accX.val), line 3)) indicates that
these two accesses are actually operating on accX and accY at runtime because accX.val

is 10. Therefore, the new backtracking point computed from the fulfillment process of
this ordered concurrent-access-pair is abandoned. In both [72, 30], the execution of the
instruction corresponding to the write of accY.val at line 3 by Thread1 causes a yield
to Thread2 because of the superfluous conflict. This yielding leads to the testing of
superfluous interleavings because they provide no mechanism to check the validity of the
permutation assumption.

So far, the precise alias-information reported by the dynamic testing-tool can be used
to determine the superfluous instances of an ordered concurrent-access-pair. Moreover, it
can be used to invalidate some concurrent access-pairs altogether, if the member accesses
of that pair can be shown to reference different objects throughout the lifetime of their
owner thread. Now consider the sample program in Figure 6.15, where accX and accY are

135



passed into Thread1 and Thread2 as an array element and assigned to field alocal of each
thread. Because static analysis has difficulty in tracking object references across arrays, it
reports that the alocal field in each thread may refer to the same object. Thus, concurrent
accesses to the objects referenced by the alocal fields from both threads form concurrent
access-pairs. However, any fulfillment of an ordered concurrent access-pair consisting
of accesses to objects referenced by Thread1.alocal and Thread2.alocal invalidates the
assumed alias-relationships. A flow-insensitive constant-analysis can easily determine
the objects referenced by the fields Thread1.alocal and Thread2.alocal remain constant
after the thread initialization. Therefore, it is safe to remove all statically-computed
concurrent access-pairs that are formed with conflicting accesses to the objects pointed
by Thread1.alocal and Thread2.alocal. In the end, all concurrent access-pairs computed
for the sample program in Figure 6.15 can be safely removed after attempting to fulfill a
single value-schedule.

6.3 Completeness

In this section, the incremental algorithm presented in Figure 6.1 is shown to remove the
incompleteness in the algorithm shown in Figure 5.8. Namely, the algorithm in Figure 5.8
is incomplete because it cannot handle concurrent access-pairs with multiple instances.
Moreover, the incremental-derivation algorithm presented in Figure 6.1 is shown to always
derive all value schedules of the program. Thus, given a sufficient amount of memory,
the value-schedule-based testing implemented in the incremental derivation algorithm
discovers all feasible deadlocks and race conditions in the program under a given set of
inputs.

Lemma 6.3.1. A partial value-schedule is always extended with all feasible instances of
an ordered concurrent-access-pair.

Proof. Let an → am be the next ordered concurrent-access-pair to be added to a par-
tial value-schedule. Without loss of generality, there are three cases where an ordered
concurrent-access-pair may have multiple instances:
1) an has k instances where k ≥ 1; am has 1 instance,
2) am has k instances where k ≥ 1; an has 1 instance,
3) both an and am have k instances where k ≥ 1
where an and am have a single instance, the proof in Section 5.4 is sufficient.

Case 1) If an is encountered as the triggering access, then Rule 1 (see Section 5.3.1,
page 73) is applied to every k instances of an. For example, applying Rule 1 on the ith

instance of an derives a partial value-schedule in which i instances of an happen before
am. In the end, k instances of an → am are fulfilled.
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If am is encountered first, Rule 2 derives a partial value-schedule where the first an

happens before am by fulfilling an → am with am as the triggering access. If the Rule
1 is applied afterward, then one an is selected to happen before am. Then, because the
reachability analysis happens after the fulfillment of the first an → am determines that
an is still reachable, then the incremental derivation tries to fulfill the second instance of
an → am. . This process continues until the reachability analysis determines an is no
longer reachable, i.e., when all k instances of an have been inserted before am. Thus, the
partial value-schedule is extended with all k possible instances of an → am.

Case 2) If an is encountered as the triggering access, then directly applying Rule 1
extends the partial value-schedule to have an happen before all instances of am. The
derivation for the ordered concurrent-access-pair, in which an only happens before the
kth instance of am, is shown.

When an is encountered, if an ordered concurrent-access-pair, am → an, is derived
and added to the partial value-schedule first by applying Rule 2, then directly applying
Rule 1 after this fulfillment derives a partial value-schedule in which an happens before
all but the first instance of am. Thus, the kth instance of an → am can be fulfilled by
applying Rule 2 on an to derive am → an k times, followed by applying Rule 1 on an.
Every fulfillment of am → an produces a partial value-schedule in which the number of
am happens after an is reduced by one. As the incremental derivation fulfills am → an,
where am is the second last instance, the direct insertion of an afterward derives a partial
schedule in which an happens before only the last instance of am.

On the other hand, if am is encountered as the triggering access, every direct insertion
of am by Rule 1 reduces an instance of am that happens after an. Assuming there are k

instances of am, applying Rule 2 on the ith instance of am derives a partial value-schedule
in which an happens before (k − i + 1) instances of an.

In the end, the partial value-schedule can be extended with k instances of an→am.

Case 3) Proof by contradiction.

Assume the incremental derivation process fails to extend a partial value-schedule
with a feasible instance of ani → amj , where ani and amj are the ith and jth instance of
an and am respectively. This assumption is shown to lead to a contradiction.

Assume ani is the triggering access. As shown in Case 1), for a given value-schedule
relevant-access, ani, the incremental derivation fulfills all possible instances of ani → am,
which includes ani → amj , if amj is still reachable following the current partial value-
schedule. Thus, a contradiction arises.

Assume amj is the triggering access. As shown in Case 2), for a given value-schedule
relevant access, amj , the incremental derivation fulfills all possible instances of an → amj ,
which includes ani → amj , if ani is still reachable following current partial value-schedule.
Thus, a contradiction arises.
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Thus, a partial value-schedule is always extended with all feasible instances of an
ordered concurrent-access-pair.

Lemma 6.3.2. Dynamic branch-resolution, polymorphic callsite-resolution and alias prun-
ing do not prevent a feasible ordered concurrent-access-pair from being added to a partial
value-schedule.

Proof. The dynamic branch and polymorphic callsite resolution only prunes out infeasible
paths. Thus, no feasible ordered concurrent-access-pair can be fulfilled along an infeasible
path.

The alias-pruning only abandons the extension of superfluous partial value-schedules
that try to fulfill ordered concurrent-access-pairs based on a false alias relationship. Thus,
alias-pruning does not prevent the extension of a feasible ordered concurrent-access-pair.

Theorem 6.3.3. Given a program P, the incremental derivation-algorithm derives and
tests all feasible value schedules.

Proof. The proof in Section 5.4 shows that the derivation algorithm in Figure 5.8 al-
ways derives all value-schedules given a distinct set of concurrent access-pairs of the
program. In other words, the derivation algorithm, namely Rule 1 and 2, ensures that all
value-schedules of the program are derived if all distinct concurrent access-pairs associ-
ated with each value-schedule-relevant access are present during derivation. As shown in
Lemma 6.3.1, the incremental derivation always derives all feasible instances of an ordered
concurrent-access-pair. Thus, when processing a value-schedule relevant access, all dis-
tinct instances of concurrent access-pairs are available for further derivation. Rules 1 and
2 derive and fulfill all ordered concurrent access-pairs from those concurrent access-pairs
according to the proof in Section 5.4.

Moreover, the incremental algorithm differs from that in Figure 5.8 by introducing
runtime pruning of superfluous interleavings and dynamic derivation of feasible instances
of an ordered concurrent-access-pair. The same derivation rules are still applied to each
value-schedule relevant access. As shown in Lemma 6.3.2, the pruning process does not
disable the extension of a feasible partial value-schedule.

Thus, incremental derivation algorithm always derives all possible value schedules of
the program.

6.4 Evaluation

An evaluation of the new practical implementation for value-schedule-based testing is
presented by testing the programs listed in Table 3.2 of Chapter 3. Moreover, these
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results are compared with the results obtained from running the same test suites on JPF,
and analyzed to demonstrate strengthens and limitations of the value-schedule-based
testing technique.

6.4.1 Setup and Test Suite

JPF 4.1 is compared with my implementation built using JPF 3.1.2 because this work
began before JPF 4.1 was released. JPF 4.1 incorporates better state-matching mecha-
nisms, such as canonical heap symmetry and faster state-hashing. During the test, JPF
4.1 was run with all default properties enabled, which includes DFS and on-the-fly POR.
For both implementations, the Java heap-size is set to 2GB. All tests are performed using
a Java 1.5 runtime on a Dual Core AMD Opteron(tm) Processor 885 with a 1.0 GHz CPU
and 16GB of memory.

The test programs used are listed in Table 3.2 of Chapter 3. Most of these test
programs contain complicated control flows. Branch statements and loops are present in
all of the test cases. Some test cases, such as account-subtype, make use of polymorphic
calls. The prioritized testing only had an effect for the 14 test cases annotated with race
or barging as the source of error in Table 3.2. Finally, aliasing among shared variables is
present in most of the programs.

6.4.2 Results and Analysis

The results are summarized in four tables capturing the relevant data points: New States
(Table 6.2), Instructions (Table 6.3), Overall time (Table 6.4), and MC time (Table 6.5).
New States and Instructions measure the number of program states generated and the
number of bytecodes executed by the model checker during the exploration before en-
countering an error. Note that New States are stored in JPF for the purpose of stating
matching. A technique that generates fewer program states and executes fewer bytecodes
before finding an error is considered better in tackling the program state-space explosion
problem. The Overall time for JPF 4.1 measures the time taken by the model checker
to uncover an error, while the Overall time for the value-schedule-based testing includes
the time spent on performing initial MHP pair generation and the time spent exploring
the program state-space using collaborating static and dynamic analysis. The time spent
by value-schedule-based testing excluding the initial static-MHP-pair computation is pre-
sented as the MC time. For each test case, data points collected from value-schedule-based
testing are headed by value schedule, while results from JPF 4.1 are headed by jpf 4.1.
The test cases from Kernel, Real, and Benchmark groups are separated with double-lines
in each table. For each data point, the improvement is computed as follows:

Improvement Ratio =
JPF4 .1

value-schedule-based testing
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Program States and Instructions

As shown in Table 6.2, the value-schedule-based testing creates fewer new states than JPF
4.1 for all test programs. On average, the improvement ratio for the program state-space
is 33.89 for the Kernel group, 118.89 for the Real group, 59.46 for the Benchmark group.
These savings are expected because the value-schedule-based testing uses a program-
state based on more precise information than JPF. Recall that the value-schedule-based
testing produces a cached program state for backtracking if that access has statically-
reachable conflicting-accesses in other threads from the current program point. JPF
produces program states for all accesses to variables that can be reached by multiple
threads from the heap. As discussed earlier, reachability from the heap by multiple
threads does not imply an object is accessed by multiple threads. The accessibility-based
POR provided by value-schedule-based testing handles such cases. For example, in the
diningphilospher test cases, every fork is accessed by at least two threads. Therefore,
every access to a fork always triggers n − 1 permutations where n is the number of
philosophers. However, through the computation of ordered concurrent-access-pairs, the
value-schedule-based testing can easily reduce the number of permutations for each fork
access to 2 because every fork is only accessed by two adjacent philosophers. Moreover,
after a philosopher exits, all the remaining accesses to its fork, no longer produce any new
backtracking points because these forks can be exclusively held by adjacent philosophers
from this point on. The accessibility-based-POR can determine such a safe state by
examining accessibility of the conflicting access through the static-reachability analysis.

Several test cases in each group showed exceptional improvements. These test cases
are raxextend and RW-deadlock cases in the Real group, and account-subtype in the
Benchmark group, and their average improvement are not included in the above averages.
These test cases are marked with ’*’ in Tables 6.2, 6.3, 6.4 and 6.5.

For the raxextend test case, JPF 4.1 times out after an hour. This test case poses
difficulties for JPF4.1 because it dispatches a large number of threads and only two
of them contain conflicting RW pairs that can produce errors. JPF4.1 spends a large
amount of time trying out permutations on monitor acquisitions that do not lead to
any fruitful results. Prioritized testing tests the conflicting RW pairs first. A similar
situation happens in RW-deadlock and account-subtype. In the RW-deadlock, there are
four threads: two readers and two writers. The data race is caused by conflicting RW
accesses on a reader and a writer, while the permutations caused by MM pairs among
writers and readers are benign. In the account-subtype test case, there is a large number
of different types of conflicting accesses as indicated in Table 4.4, both RW and MM.
Only threads that access some types of accounts cause data races. In all three cases,
the value-schedule-based testing outperforms JPF4.1 by its ability to narrow down the
testing of relevant permutations among relevant threads and prioritize their testing.

140



Fewer program states implies fewer interleavings are actually explored. As seen in
Table 6.3, the improvement in instructions bytecode executed by the model checker is
strongly correlated to that of program states. On average, the improvement ratio for
instruction execution is 8.90 for Kernel group,of 50.23 for Real group, and 58.48 for
Benchmark group. Note that all these averages have excluded the exceptional test-cases.

Running Time

The improvements in program-state and instruction execution come at the cost of doing
initial static analysis, and runtime value-schedule derivation. The latter includes the
computation of fulfilling interleaving to perform accessibility-base POR. As shown in
Table 6.4, many test cases report improvement ratio with value less than 1, which indicates
a slow down in overall testing time.

In total, only 6 out of 23 test cases achieve speedup. On average, the improvement
ratio for the overall (real time) speedup is 0.4 for the Kernel group, 1.33 for the Real
group, and 3.11 for the Benchmark group, with the exceptional test-cases excluded. A
closer look reveals that many programs in the test suite require less than 5 seconds
of testing time by JPF4.1. For these programs, the cost of the initial static analysis
cannot be made up by a decrease in dynamic analysis-time. However, Table 6.5 shows
that when the initial time spent on static analysis is excluded, the number of test cases
achieving speedup increases to 10 in the Kernel group, 5 in the Real group, and 4 in
the Benchmark group. Overall, 19 out of 23 test cases report speedup if the initial static
analysis time is excluded. The improvement ratio on the running time for the Kernel, Real
and Benchmark group rises to 4.44, 6.24 and 4.19, respectively. Despite the overhead,
the value-schedule-based testing reduces the dynamic analysis time for several programs
even with the initial static-analysis included. These programs are significantly larger
and more complicated, and demonstrates that initial static-analysis does pay off as the
accessibility-based POR prunes out more superfluous interleavings in these programs.

Another observation is that the quality of the initial static-analysis does have a sig-
nificant effect on the testing. Some of the test cases had a slowdown largely because of
the imprecision of the initial static-analysis. A specific example is the daisy program
from the Real group, which runs 5 times slower using the value-schedule-based technique.
Excluding the initial static-analysis, the dynamic analysis still takes about 3 times longer
than JPF 4.1. This slowdown is mainly due to a pair of superfluous concurrent conflicting
read/write accesses that are enclosed in a loop that write to an array. The concurrent
read/writes actually happen on different elements of the array. Because the array escapes
the thread scope, so does all of its elements. Thus, every time an array-element access
is encountered in one thread, value-schedule-based testing tries to fulfill a new instance
of a superfluous ordered concurrent access-pair. Although the dynamic alias-checking
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value-schedule jpf4.1 Improvement

twostage 7 82 11.71

wronglock 5 42 8.40

producerconsumer 30 121 4.03

blockbarrier 24 896 37.33

reorder 16 722 45.13

deadlock.d1 4 70 17.50

deadlock.d2 8 24 3.00

diningphilosopher 367 1927 5.25

losenotify 7 13 1.86

clean 3 614 204.67

nestedmonitor 19 33 1.74

Average 33.89

alarmclock 48 987 20.56

∗ raxextend 11 TO

daisy 6477 50222 7.75

∗ RW-deadlock 28 65681652 2345773.29

RW-exception 6090 439092 72.10

replicatedworker 1206 614842 509.82

boundedbuffer 71876 344720 4.80

Average 118.89

linkedlist 197 42137 213.89

piper 15 224 14.93

account-race 124 344 2.77

account-deadlock 49991 314118 6.28

∗ account-subtype 332 2132349 6422.74

Average 59.46

Table 6.2: Comparison on States Generated
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value-schedule jpf4.1 Improvement

twostage 695 3541 5.09

wronglock 682 2545 3.73

producerconsumer 3568 5341 1.50

blockbarrier 1760 17463 9.92

reorder 1581 14767 9.34

deadlock.d1 532 3172 5.96

deadlock.d2 528 2664 5.05

diningphilosopher 2057 56749 27.59

losenotify 556 2519 4.53

clean 575 9383 16.32

nestedmonitor 677 2690 3.97

Average 8.90

alarmclock 2207 18329 8.30

∗ raxextend 3843756 TO

daisy 411742 11792715 28.64

∗ RW-deadlock 125847 1390833819 11051.78

RW-exception 1555447 43843944 28.19

replicatedworker 184464 34381953 186.39

boundedbuffer 3130349 24847425 7.94

Average 50.23

linkedlist 299293 67193304 224.51

piper 7539 8741 1.16

account-race 12388 10310 0.83

account-deadlock 1119633 8308060 7.42

∗ account-subtype 17699 68951390 3895.78

Average 58.48

Table 6.3: Comparison on number of Instructions Executed
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value-schedule jpf4.1 Improvement

twostage 5.50 1.00 0.18

wronglock 5.01 1.00 0.20

producerconsumer 24.11 3.00 0.12

blockbarrier 8.50 4.00 0.47

reorder 5.22 3.00 0.57

deadlock.d1 4.95 1.00 0.20

deadlock.d2 4.33 1.00 0.23

diningphilosopher 6.52 7.80 1.20

losenotify 4.40 1.00 0.23

clean 4.90 3.00 0.61

nestedmonitor 4.72 1.00 0.21

Average 0.4

alarmclock 17.184 3.74 0.22

∗ raxextend 85.034 TO

daisy 89.639 21.88 0.24

∗ RW-deadlock 27.01 416538.66 15421.65

RW-exception 218.383 439.09 2.01

replicatedworker 34.63 437.15 12.62

boundedbuffer 243.665 166.82 0.68

Average 1.33

linkedlist 20.53 91.00 4.43

piper 11.80 4.41 0.41

account-race 88.83 4.09 0.05

account-deadlock 333.127 160.73 0.48

∗ account-subtype 29.575 1125.44 38.05

Average 3.11

Table 6.4: Comparison on Overall Time Taken (in seconds)
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Value-Schedule jpf4.1 Improvement
MHP MC MC vs. jpf 4.1

twostage 4.54 0.96 1.00 1.04

wronglock 3.72 1.29 1.00 0.78

producerconsumer 23.97 0.14 3.00 21.28

blockbarrier 7.54 0.96 4.00 4.18

reorder 3.62 1.60 3.00 1.87

deadlock.d1 4.09 0.86 1.00 1.16

deadlock.d2 3.37 0.96 1.00 1.04

diningphilosopher 5.02 1.50 7.80 5.20

losenotify 3.53 0.88 1.00 1.14

clean 4.45 0.45 3.00 6.67

nestedmonitor 3.97 0.93 1.00 1.08

Average 4.44

alarmclock 16.61 0.57 3.74 6.50

∗ raxextend 15.83 69.21 TO

daisy 16.90 70.74 21.88 0.31

∗ RW-deadlock 26.27 0.74 416538.66 565949.27

RW-exception 27.27 191.11 439.09 2.30

replicatedworker 18.90 15.73 437.15 27.79

boundedbuffer 38.51 205.16 166.82 0.81

Average 6.24

linkedlist 9.97 10.56 91.00 8.62

piper 11.04 0.76 4.41 5.80

account-race 86.48 2.35 4.09 1.74

account-deadlock 57.83 275.30 160.73 0.58

∗ account-subtype 29.10 0.47 1125.44 2389.46

Average 4.19

Table 6.5: Comparison on Overall Time Taken on Model Checking (in seconds)
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discussed earlier can determine such a pair is superfluous, it cannot safely conclude the
next instance of this same pair, which consists of array accesses from the next iteration of
the loop, is also superfluous. A similar situation happens in account-deadlock as well. As
shown in Table 4.2 from Chapter 4, account-deadlock has 1210 concurrent access-pairs of
MM type. However, most of these concurrent access-pairs are superfluous because these
monitor acquisitions are performed on the elements of a shared array, and MHP analysis
conservatively treats them as accessing the same monitor.

There are a few solutions to this problem. One is to use better static analysis that
tracks aliasing across an array as in [49]. Or, the value-schedule-based testing can pri-
oritize the testing of concurrent access-pairs, i.e., a concurrent access-pair of must-alias
relationship is given higher priority than one based on a may-alias relationship.

6.4.3 Effectiveness of Techniques

Overall, the experimental results show the value-schedule-based technique does deliver
improvements over the explicit model checker in many aspects, as promised in Chapter 1.
The numbers of program states generated is consistently reduced in all test cases. This
implies the value-schedule-based testing reduces the program state-space required for the
model checking. As discussed in Chapter 2, the reduction in the program state-space
implies the reduction on the memory consumption for model checkers. Moreover, the
numbers of instructions (bytecodes) executed from the test programs are also consistently
reduced. These savings imply the accessibility-based POR does prune out a large number
of superfluous interleavings during the testing process.

Improvement on the overall running time is less significant, which is mainly due to two
reasons: the initial static analysis to compute concurrent access-pairs, and accessibility-
based POR at model-checking time. The initial static analysis has significant impact
on smaller programs. Excluding initial static analysis, speedups are achieved in most of
the test cases. This benefit shows the accessibility-based POR and prioritized testing
do cut down the time spent on uncovering an error by the model checker. Even with
the time spent on the initial static analysis included, several of the test cases achieved
speedup. This benefit also supports the claim that the value-schedule-based testing does
deliver savings in both program state and testing time, even with the extra overhead of
performing accessibility-based POR.

A major limitation revealed through the experiments is that the cost of computing ful-
filling interleavings to carry out the accessibility-based POR incurs significant overheads.
In general, a 4 or 5 fold saving in program states and instructions only translates into a
1 or 2 fold saving in overall testing time. Moreover, if the initial static analysis produces
a large number of superfluous concurrent access-pairs which cannot be pruned out by
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dynamic information, the overhead incurred by accessibility-based POR can out-weight
the benefits, slowing down the model-checking process.

6.5 Summary

A practical implementation of value-schedule-based testing is presented. This implemen-
tation derives and tests value schedules incrementally in a depth-first fashion. At any
given time, only one value schedule is derived, and each value schedule extends and tests
only one ordered concurrent-access-pair. Moreover, the prioritized testing within value-
schedule-based testing is implemented by the controlled out-of-order testing of backtrack-
ing points that contain concurrent access-pairs more likely to expose concurrency bugs.
A heuristic is proposed to evaluate the relevance of a concurrent access-pair based on its
type. The main contribution is the different techniques to leverage the precise dynamic-
information gathered during the incremental testing to improve the applicability and
efficiency of the value-schedule-based testing in uncovering the first concurrency-related
bug in the program. Namely, the dynamic-branch resolution and reachability analy-
sis helped value-schedule-based testing disambiguate the different instances of a value-
schedule-relevant access that is statically-computed with limited context-sensitivity. The
dynamic resolution of polymorphic calls refined the statically-computed call-graph. The
dynamic alias checking for a fulfilled ordered concurrent-access-pair pruned out superflu-
ous value-schedules resulting from imprecise static-alias analysis. Finally, this practical
implementation of value-schedule-based testing, when applied to a suite of concurrent
programs, shows it is possible to achieve significant improvement over JPF in both test-
ing time and memory consumption resulting from a reduction in the number of program
states generated.
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Chapter 7

Conclusions and Future Work

In this chapter, the contributions made in this thesis are presented, along with the benefits
and limitations of my approach, and suggestions for future research.

7.1 Contribution

In this thesis, a new value-schedule-based testing technique is presented for uncover-
ing concurrency-related bugs. This technique guides the testing to uncover the first
concurrency-related bug in the program faster and with less memory by combining the
strengths of both static and dynamic based testing-techniques when compared to the
state-of-the-art dynamic testing-tool JPF.

The value-schedule-based technique computes a set of concurrent conflicting read-
write pairs for shared variables to expose possible orderings that could lead to concurrency
errors. Moreover, these pairs are categorized into different types based on their relation-
ships to certain kinds of concurrency bugs. The concept of a value schedule is introduced
to represent a distinct partial-ordering of accesses to shared variables for a program, con-
sisting of the statically-computed ordered concurrent-access-pairs. The derivation and
fulfillment of a value schedule is carried out by traversing a program’s CFG and pro-
cessing different types of concurrent access-pairs. The fulfilling interleavings of value
schedules are dynamically tested to determine the feasibility and correctness properties
of a computed value-schedule. A value schedule is feasible if at least one of its fulfilling in-
terleavings runs to completion. Through feasibility testing, value-schedule-based testing
aims to identify superfluous interleavings and abort further execution of them on-the-fly.
Moreover, running a feasible fulfilling-interleaving checks the correctness of the program
under the partial ordering corresponding to that value schedule.

A practical implementation of value-schedule-based testing is given. In this imple-
mentation, a value schedule is derived and checked incrementally, while making use of
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dynamic information collected during testing. The CFG is traversed in a depth-first
fashion. Moreover, the value schedule is derived and fulfilled one ordered concurrent
access-pair at a time. Thus, infeasible ordered concurrent-access-pairs are identified, and
no infeasible partial value-schedules are extended. Moreover, a partial value-schedule is
always extended along its feasible interleaving. During backtracking, a controlled out-
of-order processing is applied to backtracking points that contain ordered concurrent
access-pairs that are more likely to expose concurrency bugs. This improves the effi-
ciency of uncovering the first concurrency-related bug in the program, while preserving
the memory efficiency offered by the depth-first traversal.

Moreover, the practical implementation of the value-schedule-based testing discussed
makes uses of the dynamic information collected during the testing to help the static
derivation-module derive and fulfill value schedules. The dynamic branch-resolution
technique is used to resolve control-flow branches encountered during the CFG traversal.
Then, the static reachability-analysis, with the support of the dynamic branch-resolution,
helps the static derivation-module distinguish multiple instances of the same ordered
concurrent-access-pair. Finally, the dynamic callsite-resolution helps the static derivation-
module follow polymorphic call-edges at runtime, and the dynamic alias-refinement helps
to identify concurrent access-pairs that are constructed based on imprecise alias informa-
tion.

The value-schedule-based testing technique offers the following benefits. First, it only
derives and tests interleavings that might cover a new partial-ordering of accesses to
shared variables. Second, the accessibility-based POR enables the testing tool to identify
superfluous interleavings that result from imprecise static or dynamic analysis, such as the
analyses in [30] and [72]. By not executing the superfluous interleavings, the search space
is reduced. Third, through incremental testing, prioritized testing is supported to first test
concurrent conflicting-accesses that are more closely related to concurrency bugs. Fourth,
the collaboration scheme between the static and dynamic testing opens a new way to make
use of the concrete information offered by the dynamic testing-tool to refine the guidance
offered by static analysis-tools. This collaboration scheme could lead to many different
ways of combining static and dynamic-testing techniques. Last, experimental results
confirm that value-schedule-based testing consistently reduces the number of program
states needed for dynamic analysis, and often reduces the computational costs needed to
uncover concurrency bugs.

In summary, the value-schedule-based testing-technique is an attempt to combine
static and dynamic methods for uncovering concurrency bugs faster with less memory.
It strives to use static methods to guide dynamic testing by providing value-schedule
derivation, fulfillment and priority-based testing. As well, the dynamic testing verifies
and improves the statically-computed guidance using feedback from the accessibility-
based POR.
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Figure 7.1: Simple Slicing-Example

7.2 Limitations

The newly developed implementation of value-schedule-based testing has the follow-
ing limitations. First, it does not support the java.util.concurrent concurrent libraries
supported by Java 1.5. Second, the current MHP analysis cannot handle dynamically
spawned threads. For example, it cannot distinguish different instances of a thread
spawned from statements enclosed in a loop. Thus, I have manually unrolled the loops
in this work to expose different instances of threads.

7.3 Future Work

The first task in the future is to tackle the limitations of my implementation for value-
schedule-based testing. Derivation and fulfillment rules could be introduced to deal with
high-level constructs like semaphores and barriers introduced in java.util.concurrent in
the Java 1.5 library. As well, the dynamic profiling could be employed to determine
the number of different instances of a thread spawned from a static statement. More-
over, further research on value-schedule-based testing could proceed in two directions:
1) improving static and dynamic methods used in testing, and 2) applying the value-
schedule-based testing to debugging.

First, one possible research direction for improving static analysis is to introduce more
sophisticated analysis into the value-schedule-based testing. For example, better context-
sensitive analysis [5] could be introduced to improve the MHP analysis and alias analysis.
This information would help to improve the precision of the CFG and alias relationships
among concurrent accesses. Moreover, it could reduce the ambiguity between multiple
instances of the same concurrent access-pair. As well, static program-slicing [79] [37]
or dependency analysis [13] could be introduced into value-schedule-based testing. By
recognizing that context switches between concurrent accesses to variables in one program
slice do not affect those in another slice, value-schedule-based testing could derive and test
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value schedules for one program slice at a time. In the end, fewer value schedules would
need to be tested. For example, consider a program with two slices spanning two threads
where each slice contains accesses to a distinct shared variable as shown in Figure 7.1. A
traditional model-checker tests all six possible value schedules according to Equation 1.1.
However, by recognizing that permuting the execution order of concurrent accesses to a

has no effect on accesses of b and vice versa, permutations of accesses on a and b could
be tested independently. In the end, only four value schedules need to be derived and
tested.

Second, one possible research direction is to construct a debugger for concurrent
programs using the value-schedule-based technique. For example, after a concurrent
program produces a runtime error during execution, a programmer may hypothesize the
cause of this error to be data races on a shared variable, sv. In order to confirm this
hypothesis, the programmer uses the value-schedule-based testing to generate concurrent
access-pairs for accesses to the shared variable sv. Among all possible pairs, a set of
“suspicious” concurrent access-pairs may be identified. Then, the value-schedule-based
testing can be used to derive and test all value schedules that fulfill those suspicious
concurrent access-pairs. The result of the controlled execution reveals the feasibility of
those suspicious concurrent access-pairs and their effects on program correctness.
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