
Modeling of Brain Tumors:

Effects of Microenvironment and

Associated Therapeutic Strategies

by

Gibin George Powathil

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Applied Mathematics

Waterloo, Ontario, Canada, 2009

c© Gibin George Powathil 2009



I hereby declare that I am the sole author of this thesis. This is a true copy of the

thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Gibin George Powathil

ii



Abstract

Gliomas are the most common and aggressive primary brain tumors. The most

common treatment protocols for these brain tumors are combinations of surgery,

chemotherapy and radiotherapy. However, even with the most aggressive combina-

tion of surgery and radiotherapy and/or chemotherapy schedules, gliomas almost

always recur resulting in a median survival time for patients of not more than 12

months. This highly diffusive and invasive nature of brain tumors makes it very

important to study the effects of these combined therapeutic strategies in an effort

to improve the survival time of patients. It is also important to study the tumor

microenvironment, since the complex nature of the cerebral vasculature, including

the blood brain barrier and several other tumor-induced conditions such as hy-

poxia, high interstitial pressure, and cerebral edema affect drug delivery as well as

the effectiveness of radiotherapy. Recently, a novel strategy using antiangiogenic

therapy has been studied for the treatment of brain tumors. Antiangiogenic ther-

apy interferes with the development of tumor vasculature and indirectly helps in

the control of tumor growth. Recent clinical trials suggest that anti-angiogenic

therapy is usually more effective when given in combination with other therapeutic

strategies.

In an effort to study the effects of the aforementioned therapeutic strategies, a

spatio-temporal model is considered here that incorporates the tumor cell growth

and the effects of radiotherapy and chemotherapy. The effects of different sched-

ules of radiation therapy is then studied using a generalized linear quadratic model

and compared against the published clinical data. The model is then extended to

include the interactions of tumor vasculature and oxygen concentration, to explain

tumor hypoxia and to study various methods of hypoxia characterizations includ-
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ing biomarker estimates and needle electrode measurements. The model predicted

hypoxia is also used to analyze the effects of tumor oxygenation status on radiation

response as it is known that tumor hypoxia negatively influences the radiotherapy

outcome. This thesis also presents a detailed analysis of the effects of heterogenous

tumor vasculature on tumor interstitial fluid pressure and interstitial fluid veloc-

ity. A mathematical modeling approach is then used to analyze the changes in

interstitial fluid pressure with or without antiangiogenic therapy.
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Chapter 1

Introduction

1.1 Aim and Outline of the Thesis

The physiological and genetic processes underlying cancer are highly complex and

dynamic in nature; cancer cells undergo constant evolution and mutations, making

them extremely difficult to control and eliminate. The initiation of some cancers

may be due to various reasons such as environmental damage to DNA, exposure to

radiation and DNA damage by carcinogens. Although the causes of cancers are not

very well understood, the progression and evolution of these lethal diseases is mostly

due to the evolutionary and genetic advantages acquired by cancer cells over normal

cells [13, 137]. These somatic evolutionary changes underlying cancer often occur

as a result of the response of cancer cells toward their rapidly changing, unfavorable

microenvironment. Characteristic features of the tumor microenvironment that of-

ten help in creating the aggressive phenotype of cancer cells include tumor hypoxia,

interstitial fluid pressure and acidosis [132]. Hence, in order to better understand

cancer progression and to plan proper treatment protocols, one has to analyze the
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1.1. AIM AND OUTLINE OF THE THESIS

microenvironmental changes underlying tumorigenesis and study how they affect

various treatment strategies. Mathematical modeling is one of many ways through

which such understanding can be gained, by providing a robust framework in which

to study cancer progression and its relationship with the microenvironment.

The main focus of this thesis is primarily concerned with gliomas, which are at

once the most aggressive and most common primary brain tumors (constituting 50

% of all brain tumors) [76]. Studies are carried out with an underlying objective

of using available information from clinical images (such as CT scan and MRI)

to model various processes involved in glioma growth and invasion. A schematic

outline of the thesis is given in Figure 1.1. This thesis starts with mathematical

modeling of glioma growth and associated optimum therapeutic strategies, on a

macroscopic level [93]. As various microenvironmental factors are also involved in

the multiphase tumorigenesis of gliomas, subsequent studies are focused on exam-

ining the roles of hypoxia, vasculature, growth factors and interstitial fluid pressure

in determining the effects of cytotoxic and antiangiogenic therapies. With respect

to chapters, the thesis is structured in the following manner.

Chapter 2 starts with an introduction to cancer biology, discussing various bi-

ological aspects of tumor growth and evolution. Here, tumorigenesis is considered

as a multi-step process wherein various genetic and environmental changes occur,

giving rise to more aggressive and invasive phenotypes; the role of tumor angio-

genesis in cancer metastasis and its contributions towards a rapidly-evolving tumor

microenvironment are also discussed in this chapter. As a particular case, we have

considered various biological details of gliomas.

Chapter 3 presents a review of mathematical models that have been used in un-

derstanding various concepts associated with cancer progression. Here, we discuss

previous models that were used to study tumor growth and tumor angiogenesis,
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1.1. AIM AND OUTLINE OF THE THESIS

as well as different microenviromental factors such as hypoxia and interstitial fluid

pressure. To prepare the reader for the subsequent chapters, modeling details of

different therapeutic strategies are also discussed here.

Chapter 4 gives the general framework of our mathematical modeling of glioma

growth and invasion by considering a homogenous as well as heterogenous spatio-

temporal model. Here, we also discuss parameter estimation techniques and the

numerical scheme that is used to simulate the model.

Chapter 5 considers the aforementioned spatio-temporal mathematical model

based on proliferation and diffusion of cells and further modifies it by incorporat-

ing the effects of radio- and chemo-therapeutic treatments. The effects of different

schedules of radiation therapy, including fractionated and hyperfractionated exter-

nal beam radiatiotherapy, are studied using a generalized linear quadratic model.

The results are compared with published clinical data. The results of combination

therapy (radiotherapy with temozolomide, a novel chemotherapeutic agent) as pro-

posed in recent clinical trials are also discussed. The model is then used to predict

optimal sequencing of postoperative treatments in brain. This chapter is mainly

adapted from our paper [93].

Chapter 6 introduces a mathematical model to simulate tumor hypoxia using

a known spatial distribution of tumor vasculature obtained from image data. The

model is used to analyze the accuracy of polarographic needle electrode readings in

quantifying tumor hypoxia, and also to determine the minimum number of measure-

ments required to satisfactorily evaluate tumor oxygenation status and quantify the

effects of radiation on hypoxia. An article discussing various results of this chapter

is under review for publication [92].

Chapter 7 discusses the effects of heterogenous tumor vasculature in tumor

3



1.1. AIM AND OUTLINE OF THE THESIS

Figure 1.1: Schematic outline of the thesis

interstitial fluid pressure (IFP) and interstitial fluid velocity (IFV) by considering

the vascular distributions used in Chapter 6. A dynamic model for IFP is also

incorporated in the model to study possible mechanisms for altering tumor IFP.

This is achieved by introducing the effects of the surrounding vasculature using an

empirically-derived formula in such a way that the resulting profiles are consistent

with the experimental data. This work also aims to compare the effects of anti-

angiogenic therapy on cancer growth as well as on tumor IFP.

The thesis concludes with a brief discussion of the work and ideas presented, as

well as some suggestions of possible directions for the future work.
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Chapter 2

Introduction to Cancer Biology

2.1 Introduction

Cancer is one of the most deadly diseases to beset humanity and is often incurable.

It has always pushed our traditional medical knowledge to its limits and still remains

a challenge to humanity. While nearly everyone knows someone whose life has been

changed or ended by cancer, it is still relevant to ask, what is cancer? Cancer

may be viewed as a cellular disease since it represents the collapse of physiological

cellular functions normally maintained by a myriad of signaling pathways and cell

cycling checkpoints– naturally resulting in uncontrolled growth of cells within the

body [137]. It may also be viewed as a genetic disease, since the uncontrolled growth

of cells appears to be due the result of genetic alterations or mutations [42]. These

genetic changes may be caused by environmental factors, viral infection or other

external causes. Moreover, the emergence of clinically-diagnosable cancer through

the uncontrolled growth of neoplastic cells usually requires the accumulation of

a number of genetic mutations (thus this concept is often referred to as multi-
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2.1. INTRODUCTION

stage carcinogenesis [120]). Oncogenes and tumor suppressor genes are two main

classes of cancer-related genes, changes to which may lead to cancer initiation and

progression. Oncogenes are genes that if up-regulated, may lead to uncontrolled

cell proliferation and tumor growth. On the other hand, the inactivation by genetic

mutation of tumor suppressor genes that function as cellular “gatekeepers” (act

directly) or “caretakers” (indirectly) may cause the formation of a malignant cell

[137].

The most common types of cancers include those of the lung, colon, prostate,

breast, cervix/ovary and brain. The tumors can originate from epithelial cells (in

which case they are called carcinomas) or from bone, cartilage, muscle, fibrous con-

nective tissue or fatty tissue (called sarcomas). Cancer may also develop at the

blood or blood forming organs ( called leukemias) or within the lymphatic system

of the body (lymphomas). As suggested above the etiologies of tumor formation are

varied and are not completely understood. In some cases, tumors remain benign,

without causing life-threatening problems, while in malignant cases they invade

surrounding tissues (through a process called metastasis) by developing their own

blood vessels (angiogenesis). In the latter case, the interactions between the tu-

mor cells and their surrounding tumor microenvironment are extremely important

in cancer progression and metastasis [134]. This relationship might be explained

through the concept of somatic evolution of cancer where the process of cancer ini-

tiation and progression are illustrated through evolutionary theory and Darwinian

selection [42].

In the Darwinian selection process, the survival of a cell lineage depends on

how well it can adapt to its microenvironment [42]. Malignant cells created as

a result of multiple mutations have abnormal regulatory mechanisms that bestow

an advantage over normal cells. The more oncogenic mutations they acquire, the
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2.2. ANGIOGENESIS AND METASTASIS

better they adapt to their surrounding environments and as a result, cells that grow

best will be selected over the less-fit genotypes. Genetic instability, due to various

mutations, also plays a vital role in this selection process since the unstable cells

may be able to evolve faster and adapt to changing environments and selective

barriers more readily than stable cells [13]. In the following sections we will see

various microenvironmental factors that affect tumor progression and the ways

through which tumor cells adapt to these selective barriers.

2.2 Angiogenesis and Metastasis

Tumor angiogenesis is one of the critical steps in tumor development and cancer

progression. Through this process, the malignant tumor develops its own vascular

network in order to obtain oxygen and nutrients and to grow beyond a relatively

small radius of 1 mm. These new blood vessels can either be built from existing

local endothelial cells or from recruited endothelial progenitor cells. This creation

of new vasculature is determined by a shift in the balance of pro- and anti- angio-

genic factors such as vascular endothelial growth factor (VEGF), basic fibroblast

growth factor (bFGF), angiostatin and endostatin [52]. In normal tissues these

factors remain in balance, while tumor cells shift the balance away from inhibition

and in favor of promotion through the excess production of pro-angiogenic factors

[96]. Excess production of pro-angiogenic factors may also be due to the tumor

cell’s response to its abnormal microenvironment, which is often characterized by

hypoxia, high interstitial fluid pressure and acidosis. The tumor vascular networks

thus created are usually immature and abnormal in nature; this is mostly due to

the poor development of vessel walls, lack of pericyte coverage and irregular, struc-

turally abnormal basement membrane. Tumor blood vessels are also very chaotic,
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Figure 2.1: The process of angiogenesis (courtesy of Genentech biooncology)

featuring complex branching patterns and irregular vessel diameters. These ab-

normalities of tumor vasculature make it spatially and temporally heterogenous in

nature and structurally and functionally different from normal vessels [52].

One of the immediate consequences of tumor angiogenesis is the invasion of tu-

mor cells into various other organs of the body. This ability of cancer cells to break

away from the primary tumor and spread to other locations is termed “metastasis”.

Two major routes of this metastatic spread are the blood and lymphatic vessels.

Clinically, metastases are subdivided into two main categories: those in regional

lymph nodes that are spread through the local lymph nodes, and the those seen

in more distant regions that have usually spread via blood vessels [119]. In most

of the cases, an organ-site specificity is observed in the development of metastases

from particular types of primary tumors. For example, prostatic carcinoma usu-
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ally metastasizes to bone, whereas melanoma in the skin can metastasize to either

liver, brain or bowel [119]. The process of metastasis usually involves several steps

including the ability to invade into and out of blood vessels (intravasation and

extravasation, respectively) and to settle and grow in the new location. The devel-

opment of metastatic potential may be considered to be one of the late stages of

cancer progression and hence controlling angiogenesis may also help in preventing

metastasis of primary tumors [137].

2.3 Cancer and its Microenvironment

The microenvironment in which a tumor develops plays a key role in its initiation

and somatic evolution. The tumor microenvironment is often recognized as the

product of a developing relationship between various cell types such as cancer cells,

normal cells, various growth factors and extracellular matrix [133]. The actual

composition of this microenvironment is highly variable and is often altered further

as the disease progresses. The cooperation and communication between a tumor

and its microenvironment are very important in turning a benign tumor into an

advanced, life-threatening malignancy. The microenvironment usually provides the

necessary signals that turn on various transcription factors, that will help the cancer

cells to develop critical abilities such as the ability to move, the capacity to degrade

extracellular matrix, the ability to develop its own vascular system, the aptitude

to survive and ability to establish itself in another location [87, 137].

As the growing tumor develops its own microenvironment that is favorable to its

own existence and progression, the conditions within this tumor microenvironment

differ greatly from that of normal tissues. A tumor microenvironment is usually

characterized by hypoxia, acidity (low pH), and high interstitial fluid pressure.
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All these conditions may even be considered as consequences of structurally and

functionally abnormal blood vessels [52]. A detailed discussion of the microenvi-

ronmental effects on tumor progression is given below.

2.3.1 Hypoxia

Tumor hypoxia is often considered one of the key hallmarks of locally advanced solid

tumors, occurring due to the imbalance between oxygen consumption and supply

[48]. A few major consequences of a hypoxic microenvironment among many are

the production of metastatic phenotypes with increased mutation rates, increased

angiogenesis, decreased apoptosis and upregulation of various pathways involved in

the metastatic cascade [13]. Hypoxia can occur due to the cumulative effects of

many factors such as abnormal tumor vasculature, insufficient blood vessels within

the tumor, large intervascular distances and reduced capacity of oxygen transport

[133]. Figure 2.2 shows the relationship between hypoxia and blood vessels in a

tumor biopsy. It also shows the necrotic area with zero oxygen levels.

Hypoxia can be broadly classified as either diffusion limited (chronic) hypoxia

or perfusion limited (acute) hypoxia [120]. In the former case, oxygen is treated as

a limiting factor–as the tumor grows, the intervascular distances within the tumor

become larger than within normal tissue and consequently, cancer cells at greater

distances from the vasculature begin to be deprived of oxygen. Perfusion limited

hypoxia, the result of intermittent flow, mainly occurs because of the abnormality

of the tumor vascular architecture and transient changes in tumor blood flow [13].

As we discussed in the previous sections, the tumor microenvironment is a complex

dynamical system with abnormal vascular networks that vary both spatially and

temporally and is characterized by defective endothelium, basement membrane, and

10
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(a) A cervix cancer biopsy stained for hypoxia and blood vessels (Courtesy of Dr. M

Milosevic, Princess Margaret Hospital, Toronto, Canada)

(b) Pictorial representation of various characteristics of hypoxia

Figure 2.2: Tumor Hypoxia
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pericyte coverage, as well as interstitial hypertension and acidosis [52]. Due to this

irregular nature of the tumor microenvironment, the density of the vascular net-

works may not perfectly correlate with oxygen distribution – that is, acute and/or

chronic hypoxia may be present in tumor tissue regardless of the concentration of

blood vessels.

Estimation of Hypoxia

The role of hypoxia in treatment resistance to radiotherapy is well– documented

in the literature and thus it is often considered an important prognostic marker in

cancer treatments. The importance of hypoxia in determining radiation response

indicates the need for obtaining accurate estimates of clinically relevant hypoxia

(see Figure 2.2). Tissue hypoxia is usually measured by direct (invasive) measure-

ments of tumor oxygen tension using needle electrodes or through quantification

of intrinsic or extrinsic biomarkers [65]. In preclinical models, diffusion limited

hypoxia is usually quantified using the immunohistochemical analysis of biomark-

ers such as pimonidazole and EF5, whereas perfusion limited hypoxia is estimated

using two consecutively-injected perfusion markers, including Hoechst 33342 and

DiOC [129]. Some examples of clinically approved extrinsic biomarkers (drugs or

chemicals that accumulate after administration under hypoxic conditions) are pi-

monidazole, EF5 and F-MISO. On the other hand, some genes and proteins involved

in hypoxic response such as hypoxia inducable factor 1 (HIF1), carbonic anhydrases

- IX (CA-IX) osteopontin and glucose transporter 1 (GLUT1), are used as intrinsic

biomarkers to estimate hypoxia [65].

An example of direct estimation methods is the polarographic needle electrode

method. Here, tissue oxygen measurements are taken through a protocol usually

called the “pilgrim movement”. Here, the needle electrode is initially inserted 1 to
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2 mm into the tumor in order to adapt to the tissue environment. Then, the probe

is moved through the tissue in 1 mm steps in the forward direction followed by a

0.3 mm step retraction, giving a net step length of 0.7 mm between subsequent

measurements. The length of each track is usually determined according to the size

of the tumor. Ideally, five to six tracks of 20-30 measurements per tracks are taken

to quantify the oxygenation status of the tumor microenvironment [75].

Direct measurement through the needle electrode technique gives a rapid, real-

time measurement of tumor oxygen partial pressures [75]; however, its usefulness

is limited by the fact that it is a feasible technique only in the case of easily-

accessible tumor tissues. It is also found that, due to the invasive nature of the

procedure and the uncertainties that result from using linear track measurements

to sample a three-dimensional tumor volume, the needle electrode method alone

may not always give entirely reliable readings of the tumor oxygen status [75].

Hence, it is advisable to compare the results of two or more estimation meth-

ods to study the correlation between their respective hypoxic predictions. These

techniques may provide different or potentially complementary information about

tumor oxygenation in relation to oxygen levels and the time course of oxygen dy-

namics. In some experimental studies, hypoxia measurements obtained through

examining the biomarkers pimonidazole and EF5 have been compared with needle

electrode readings. Conclusions of such studies have been inconsistent, with one

showing a correlation between estimates of the hypoxic fraction of cells quantified

via biomarker binding and needle pO2 readings while others indicate no significant

relationship [57, 95, 56, 82]. These apparently contradictory results may be due to

a number of factors, including differences in method-specific definitions of hypoxia,

as well as differences in timing of the analysis. A detailed comparison and analysis

of various hypoxic estimations are given in Chapter 6.
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Figure 2.3: Mechanism of elevated IFP in tumor (Courtesy of Dr. M. Milosevic)

2.3.2 Interstitial Fluid Pressure (IFP)

In most normal tissues IFP is close to zero whereas most solid tumors show a signifi-

cantly elevated IFP nearly as high as the microvascular pressure, often ranging from

10 to 100 mm Hg [54]. This tumor IFP is observed to be uniform throughout the

centre of the tumor and to drop suddenly at its periphery. As with tumor hypoxia,

the main reasons behind high tumor IFP are the abnormal tumor vasculature that

arises from unregulated angiogenesis and the lack of a functional lymphatic system

within the tumor. The abnormalities of tumor vasculature lead to the leakage of

excess fluid that accumulates within the interstitial space and further distends the

elastic interstitial matrix, elevating the IFP (Figure 2.3) [75].
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Several experimental studies suggest that high IFP is often correlated with a

poor prognosis. It has also been considered as a marker of vascular ’normality’

[75] and a cause of poor drug delivery within the tumor. One of the reasons for

this impaired drug delivery is the decreased transvascular transport (convection or

diffusion) caused by relatively high IFP within the tumor, leading to a decreased

uptake of drugs or other therapeutic agents into the tumor. Hence, the estimation of

tumor IFP is important since it may help in planning various therapeutic strategies

such as antiangiogenic therapy and chemotherapy. A theoretical analysis of the

various dynamics of tumor IFP is further discussed in Chapter 7.

Estimation of IFP

Interstitial fluid pressure is usually measured using the “wick-in-needle” technique,

and it represents a simple and rapid method for measurements of interstitial fluid

pressure [39]. This technique consists of a hypodermic needle connected to a pres-

sure transducer via a saline filled tube. The needle is filled with wick (nylon fibers)

to allow a better contact between the probe and the tissue. The needle is then

placed in the tumor tissue where the pressure is to be measured and this pressure is

then converted into a voltage by transducer. This method is often used in clinical

settings to measure pressure deep in tissues such as the more central parts of the

tumor [75].

2.3.3 Acidosis and Glycolysis

Like hypoxia and high IFP, acidity also plays an important role in tumor develop-

ment and invasion. It is yet another direct consequence of the abnormal vasculature,

and the effects of acidosis are similar to hypoxia as they promote metastasis, inva-
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sion and mutation [43]. Under hypoxic conditions, tumor cells undergo glycolysis

(anaerobic respiration) in an effort to survive in these unfavorable conditions and

produce lactic acid, decreasing the tumor pH [43]. It has also been observed that

some tumor cells rely on glycolysis even in the presence of sufficient oxygen (aero-

bic glycolysis, or the Warburg effect) in order to produce energy. This may be due

to the adaptation of tumor cells to consistently hypoxic and acidic microenviron-

ment by developing cellular traits with constitutive upregulation of glycolysis and

resistance to acidic toxicity [43].

2.4 Brain Tumors

Primary tumors of the central nervous system represent about 3 % of all cancers.

Over 44,500 people in the United States and 10,000 people in Canada are diag-

nosed with brain tumors every year. The term “brain tumor” generally refers to a

collection of primary intracranial tumors, each with its own biology, pathophysiol-

ogy and prognosis [76]. Primary brain tumors are classified into over 100 different

types and the most common are astrocytomas, oligodendrogliomas, meningiomas

and mixed oligodendrogliomas [35]. Astrocytomas are further subdivided into dif-

fuse astrocytomas, Anaplastic astrocytomas (AA) and glioblastomas (GBM). These

distinctions are made mainly based on pathophysiological similarities between nor-

mal glial cells and tumor cells, as well as protein expression similarities observed

using immunohistochemistry.
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2.4.1 Brain Biology

The brain is the principal integrative area of the nervous system and is located

in the cranial cavity. It is classified into a number of functional parts, such as

the cerebrum, cerebellum and brainstem [76]. The cerebrum is the largest and

most developmentally advanced portion of the brain. It is divided into left and

right hemispheres, which are further subdivided into frontal, parietal, temporal

and occipital lobes which control a number of higher functions including speech,

the olfactory senses and intellectual and emotional functions. The brain is mainly

composed of two different types of tissues, generally called grey matter and white

matter (Figure 2.4). Grey matter consists of neural cell bodies, their dendrites,

axon terminals and glial cells. On the other hand, white matter contains mostly

long myelinated axons that connect the grey matter areas of the brain to each other

and carry sensory information between neurons [76]. The differences between these

two types of tissues play an important role in the progression of brain tumors since

the invasion capability of tumor cells is highly dependent on surrounding tissue

types, as will be discussed in later sections.

Blood Brain Barrier (BBB)

The blood brain barrier is both a metabolic and a physical barrier that restricts

the entry of potentially harmful chemicals into the brain while allowing the passage

of materials that are necessary for metabolic function. This barrier is mainly cre-

ated by the capillary networks that supply blood to the brain. The blood vessels

that maintain this BBB are mostly characterized by tight junctions (TJ), adherens

junctions (AJ), transfer proteins and high ionic resistance [138]. In brain tumors,

these BBB has usually deteriorated, contributing to the leakage of blood vessels
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(a) Axial view of the brain (b) Grey matter (c) White matter

Figure 2.4: Grey and white matter in the brain (Brainweb)

and thus increasing tumor IFP. However, this determined BBB may not necessarily

help in the drug delivery within the brain tumor since the increased size of drug

molecules reduces the movement across BBB [76].

2.4.2 Glioblastoma Multiforme (GBM)

Glioblastoma multiforme is the most common type of primary brain tumor in

adults, constituting 50% of all primary brain tumors. GBM can generally be di-

vided into two main subgroups: while primary gliomas most often occur in elderly

patients, secondary GBM arises in much younger populations [76]. These gliomas

are extremely aggressive and invasive in nature. It has been observed that glioma

cells diffuse more quickly in white matter than in grey matter and hence, the inva-

sive nature of gliomas is highly dependent on their locations within the brain. The

median survival time for glioma patients is about three months without any treat-

ment. After treatment with surgery, radiotherapy and/or chemotherapy, this life

expectancy may be increased up to 12 months [35]. Recently, postoperative radio-
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therapy combined with a chemotherapeutic drug called temozolomide was found

to be effective in treating GBM [114]. A mathematical model of GBM survival

analysis using various postoperative strategies is later given in Chapter 5.

2.5 Short Summary

In the present chapter, we have discussed various biological aspects of tumorigenesis

and its interactions with the surrounding microenvironment. From the discussion,

it can be clearly seen that the tumor microenvironment plays a key role in the

evolution of a benign tumor into a malignant tumor and hence it is important

to consider its effects in order to develop an accurate mathematical model with

predictive capability. We have also seen that the heterogenous nature of the brain

tissue may also affect the invasiveness of brain tumors, which will be later used

in our mathematical model to investigate brain tumor growth and invasion (see

Chapter 4,5).
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Chapter 3

Introduction to Mathematical

Oncology

3.1 Introduction

Although the interaction between mathematics and medical sciences has a long

history, it is only more recently that it has started to gain more importance and

acceptance because of its significant contributions towards many unsolved problems

in medicine and biology. Recently, many mathematical models have played impor-

tant roles in the area of clinical research with their good predictive capabilities

with respect to different trial outcomes. These models have the potential to help

clinicians to develop successful treatment plans for various diseases. Gatenby and

Gawlinski [42] comment, “it is clear from centuries of experience in the physical

sciences that the complex dynamics of systems dominated by non-linear phenom-

ena such as carcinogenesis cannot be determined by intuition and verbal reasoning

alone. Rather, they must be computed through interdisciplinary, interactive re-
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search in which mathematical models, informed by extant data and continuously

revised by new information, guide experimental design and interpretation”. This

realization by medical researchers has attracted the interest of many applied math-

ematicians and engineers in recent times. The result has been the emergence of the

new discipline of Mathematical Medicine, one aspect of which is the study of the

dynamics of tumor growth, which can be called “Mathematical Oncology”. This is

precisely the focus of this Thesis.

In general, a tumor starts with one or more gene mutations which trigger uncon-

trolled proliferation of cells (by suppressing cellular control mechanisms that nor-

mally exist); this can happen at any age and anywhere in the body. In some cases

tumors are benign, without any vasculature. Benign tumors are not life-threatening

although they can cause some health problems. Other tumors proliferate very fast,

invading organs and tissues nearby. They may also recruit their own blood vessels

to help them proliferate and migrate. The sheer complexity of these biological sys-

tems makes the study of the dynamics of tumor growth a daunting task. However,

the experience and success gained by scientists in the use of mathematical models

in the physical, chemical and engineering sciences makes it reasonable to expect

that similar accomplishments will soon be made in oncology as well.

Mathematical models have the virtue of being much simpler than actual real-

life systems. They are akin to a caricature of a person. But just like a caricature

stresses and exaggerates a particular characteristic of a person, while still leaving

the person recognizable, so a good mathematical model captures the essence of the

actual system and neglects all other minor aspects of reality. Once such a model

has been built it can be used, with the help of experimental data, to study and

simulate the growth of tumors, find possible optimum therapeutic strategies and

analyze various other aspects of cancer growth. The modeling strategies can be
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broadly classified into two categories: (a) stochastic modeling strategies and (b)

deterministic modeling strategies.

As already mentioned, tumor growth and invasion are a complex process mostly

governed by different intrinsic and extrinsic factors some of which are random in

nature. This inherent randomness involved in the processes of birth, death and

mutation events may be modeled as stochastic processes, either through various

discrete modeling approaches such as cellular automata or agent based methods,

or using stochastic differential equations. One of the earliest stochastic models

that describes the process of tumorigenesis is the model by Armitage and Doll, [6]

which investigates the age-specific incidence rates of various adult cancers. These

models that describe the multistage process of tumorigenesis were further modified

by various other researchers to investigate the differences between hereditary and

spontaneous cancers [58, 69], to study the effects of apoptosis [126] and to analyze

the effects of various mutation rates on tumorigenesis [127]. Recently, in a series of

stochastic models Nowak et al. [91] discussed the contribution of genetic mutations

to the DNA in the process of multistage carcinogenesis and how the architecture

of renewing epithelial tissues could affect the accumulation of these mutations [41].

On the other hand, there are several other models that have been developed to

study the intrinsic heterogeneity of interacting population and its influences on

the fluctuating microenvironment. Some of these include the models by Jansson

and Revesz [55], Michelson et al. [74] and Chen et al. [25]. Stochastic modeling

approaches have also been used in the literature to study the effects of various

therapeutic strategies and in particular radiation therapy [118, 102, 130]. In recent

work, Sachs et al. [102] introduced a stochastic model to investigate the role of

radiotherapy in the development of secondary cancers. Other recent examples of

stochastic models can be seen in the works of Komarova et al. [141].
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On the other hand, from even a cursory look at the literature, it can be seen that

the mathematical modeling of tumor growth has mainly focused on deterministic

approaches. Deterministic models can also be classified into many categories such as

ordinary differential equation (ODE) models or temporal models, partial differential

equation (PDE) models or spatio-temporal, etc. Mathematical analysis of solid

tumor growth using deterministic models started in the early 1950’s. Aruaujo et

al. [5] give a good review of the history and contribution of various mathematical

models by explaining different modeling strategies used in the literature.

Ordinary differential equations have been used to model tumor growth for many

years. Generally, it is simpler and easy to handle and at the same time, it can

provide early, useful results particularly when the spatial dependence plays a less

significant role. ODE models can be used to analyze various characteristics of tumor

growth, including growth dynamics [98, 86, 83, 62], various treatment strategies

[84, 85, 49, 101] as well as the role of different cell signalling pathways in cancer

initiation and growth [110, 97]. ODE models are also commonly used in studying

the pharmacokinetics and pharmacodynamics of various anti-cancer drugs and their

effects in cancer growth. Examples include the models by Panetta et al. [90] and

Chuang [26]. Recently, Sachs et al. [101] used a simple ODE model to investigate

the essential interactions between the tumor and angiogenesis during cancer growth

or therapy. Although these simple modeling approaches capture the essence of

complicated interactions, the spatial aspects of cancer that are of critical importance

often necessitate the use of PDEs or spatiotemporal models.

There are a variety of PDE models in the literature that aim at modeling vari-

ous aspects of tumorigenesis and most of them use the concept of reaction-diffusion

processes to achieve this. Early works include the modeling of avascular tumor as

homogenous/heterogenous populations that grow under the influence of various nu-
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trients such as oxygen [17, 45, 73, 2]. These models are further modified to include

various cell-cell interactions [19] as well as the interactions of the tumor with its

microenvironment such as tumor angiogenesis [21, 23, 4, 60], hypoxia [104, 125] and

interstitial fluid pressure [53]. In this thesis, we focus on the deterministic, or con-

tinuum approach to modeling brain tumor growth and associated therapies using

a spatio-temporal mathematical model and hence we refer readers to subsequent

chapters for further discussions of various PDE based models. Here, we also study

the effects of various factors associated with the tumor microenvironment on the

growth and control of brain tumors. In the following sections, we will see various

mathematical models that have been used in the literature to study different as-

pects of tumor growth, including tumor microenvironment effects and therapeutical

strategies.

3.2 Growth Dynamics

Over the past few decades, the most common approach to describing tumor growth

has been the use of a simple temporal model, which can be written as

dN

dt
= f(N) with N(0) = N0, (3.1)

where N is the total number of tumor cells and f(N) describes the tumor cell

growth dynamics.

The simplest approach to modeling the experimental data is using exponential

growth dynamics, where the cell doubling time remains the same through out the

growth period. For exponential growth, the function f(N) can be written as

f(N) = ρ N, (3.2)
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where ρ is the net proliferation rate. However, the exponential growth model re-

sults in the unlimited growth of the cancer cells and can only be applied for short

time scales. To ensure that the growth rate of the population decays as the cell

density approaches maximum capacity, one can either choose a logistic growth or

Gompertzian model [86, 83, 62, 98], which are given by

f(N) =

 −ρ N ln
(

N
N∞

)
: Gompertzian model

ρ N
(

1− N
N∞

)
: Logistic model

(3.3)

Here, N∞ denote the carrying capacity which the cancer growth asymptotically

approaches as its growth rate decreases over time.

A general form of growth pattern incorporating all the above growth laws can

be written as [60],

f(N) = α1N − α2(N)γ+1, (3.4)

with α1 and α2 being two different parameters. When α2 = 0, this general form

reduces to the above discussed exponential growth dynamics and when we set α1 =

ρ/γ and β2 = ρ/(γNγ
∞) (γ > 0), we will obtain a generalized logistic growth

function,

f(N) =

(
ρN

γ

)[
1−

(
N

N∞

)γ]
. (3.5)

This generalized logistic growth model can be used to derive the above discussed

simple logistic and Gompertzian models by choosing γ = 1 and γ << 1, respec-

tively.

Although there have been several attempts to formulate a universal growth law

for cancer growth [98, 140], it is rather difficult to prove the existence of a unique

growth law even for humans cancers [46]. For the purpose of this thesis, a logistic

growth dynamics is used to model tumor growth since it enforces a bounded growth
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pattern. However, in the time frame of interest, i.e. before the tumor becomes fatal

(the period when treatments are applied), exponential growth dynamics may also

be acceptable for modeling purposes.

3.3 Modeling Angiogenesis

Mathematical modeling of angiogenesis has become an active research field in recent

years, especially in the context of tumor growth and invasion. One of the early

works on the modeling of tumor-induced angiogenesis is by Balding and McElwain

[7], who studied the growth of capillary networks in terms of capillary tip densities

and capillary sprout densities in response to tumor angiogenic factors. Since then,

there have been many models considering the response of endothelial cells to various

angiogenesis promoting factors secreted by cancer cells of solid tumors. Examples

include models by Chaplain et al. [22, 20, 24], Byrne et al. [18], Levine et al.[64]

and Kohandel et al. [59]. Most of these models use a continuum modeling approach

where quantities such as tumor cell density, endothelial cell density and densities

of various angiogenic growth factors are dealt with a macroscopic scale through a

system of nonlinear PDEs. Later in Chapter 7, we will see a coarse grain modeling

approach for incorporating vasculature and its role in elevating tumor interstitial

fluid pressure (IFP).

The inability of macroscopic models to capture microscopic features of the an-

giogenic processes, as well as various other morphological properties of emerging

capillary networks, encouraged the formulation of discrete models of angiogenesis.

These often consider formation of individual capillary vessels, modeled at the level

of individual cells and thus provide more insights into the details of capillary forma-

tion [112, 131, 8]. Recently, Anderson and Chaplain [4] introduced a hybrid model

26



3.4. MODELING TUMOR HYPOXIA

for tumor angiogenesis through the discretization of a continuous model using the

concept of probabilistic branching. A good review of various mathematical model-

ing approaches to angiogenesis and capillary formation can be found in the review

paper of Mantzaris et al. [68].

3.4 Modeling Tumor Hypoxia

The importance of tumor hypoxia in determining patient response to various ther-

apeutic strategies, especially towards radiation therapy, indicates the necessity for

its accurate quantification. As explained in the previous chapter, tissue hypoxia

is usually measured either with the help of hypoxic markers (where a biopsy is

needed) or using needle electrode techniques. One of the main disadvantages of

both of these assays is that these measurement techniques are invasive and the

tumor must be accessible in order to get satisfactory measurements of the oxygena-

tion status. Some other less-invasive techniques such as MRI or PET scans exist,

however the resolution currently available is so poor that it may not be possible to

obtain detailed quantification of tumor hypoxia.

On the other hand, one can use theoretical simulations based on available pa-

rameters to obtain, non-invasively, quantitative as well as qualitative predictions

about the tumor oxygenation status. Mathematical modeling of oxygen transport

generally depends on the distribution of vasculature within the tumor. Conse-

quently, to model tumor hypoxia, one can either use a reaction diffusion equation

that accounts for the production, consumption and diffusion of oxygen within the

tumor tissue, or various other discrete models which analyze the oxygen transport

at cellular levels.

Among many, one of the most important factors affecting the temporal and spa-
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tial distribution of tumor hypoxia is the network of tumor vasculature. Theoretical

investigations have shown that microvascular heterogeneity can substantially affect

the distribution of hypoxia [104]. Early theoretical studies [123, 51, 119] that de-

scribe the tissue oxygenation process did not consider the effects of irregular tumor

vasculature. Dasu et al. [33] introduced a coarse grained model for vascular net-

works in developing a theoretical model of tumor oxygenation; the authors analyzed

different oxygenation dynamics based on a log-normal distribution of intervascular

distances and studied their relationships to chronic and acute hypoxic conditions

with the help of a diffusion model. Based on experimentally derived data and nu-

merical simulations, Dewhirst et al. [38] showed that O2 consumption is the most

important factor influencing the local pO2 distribution within the tumor. Kohandel

et al. [59] developed a mathematical model that incorporates tumor cells and the

vascular network, as well as oxygen concentration, and used it to study the opti-

mal combination of anti-angiogenic and radiotherapy treatments. To obtain the

vasculature, and subsequently the oxygen distribution, a random initial condition

for the blood vessels was used. However, it may be of greater clinical relevance if

patient-specific microvascular distributions, which can be obtained through novel

non-invasive imaging techniques, are incorporated in a model for tumor hypoxia-

the details of such a procedure will be discussed in Chapter 6.

3.5 Interstitial Fluid Pressure (IFP)

Most solid tumors show an increased interstitial fluid pressure which acts as a

barrier to the intercapillary transport of therapeutic drugs, affecting the treat-

ment response of cancer patients. Consequently, lowering high IFP within a tumor

through the application of various novel anti-cancer therapies might be a useful
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approach to improve drug delivery within the tumor. As previously explained, the

interstitial fluid pressure can be measured using invasive techniques such as the

wick-in-needle technique [39]. However, as in the case of hypoxia estimation, one

of the main disadvantages is that the tumor must be in an accessible location.

Recently, there have been several attempts to estimate tumor IFP using a mathe-

matical model that is supplemented by various parameter values obtained through

current imaging techniques (M. Milosevic, personal communication).

Most of the mathematical models in the literature that describe tumor IFP are

largely based on Baxter and Jain’s pressure model [9] given (under steady state

conditions) by:

∇2P = −α
2

R2
(P − Pe), (3.6)

where

Pe = Pv − σ(πv − πi) and α = R

√
LpS

KV
.

Here, Lp is the hydraulic conductivity of the microvascular wall, K is the hydraulic

conductivity of interstitium, S
V

is the surface area of vessel wall per volume of

tumor, Pv is vascular pressure, σ is the average osmotic reflection coefficient for

plasma proteins, πv is osmotic pressure for plasma and πi is osmotic pressure for

interstitial fluid. One can easily derive the above equation for IFP by considering

the tumor to be a porous medium and applying Darcy’s and Starling’s Laws for

fluid transport within this porous medium [9] (derivation and further details will

be discussed in Chapter 7). This model has been used widely in the literature,

especially to study the effect of abnormal tumor vasculature and to analyze the

results of various therapeutic strategies (including anti-angiogenic therapy) on the

tumor IFP [54]. However, in its present form this model ignores the changes within
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the tumor microenvironment (unless its parameters are changed manually). In

Chapter 7, we will see a modified version of this pressure model which considers

the dynamical changes in vascular networks due to the balance/imbalance in pro-

and anti-angiogenic growth factors.

3.6 Treatment Strategies

In most cases of cancer, patients receive standard medical therapies as soon as pos-

sible after the initial diagnosis. The choice of cancer treatment is often influenced

by several factors, including the type, grade and location of the cancer and the

patient’s overall condition. The most common treatment modalities are surgery,

chemotherapy, gene therapy and radiotherapy. Generally, more than one of these

treatments are used to achieve an effective survival rate. In the case of brain tu-

mors, surgery followed by radiotherapy and/or chemotherapy is often used, as will

be discussed in Chapter 5.

3.6.1 Surgery

Surgery is the oldest form of effective cancer therapy in treating benign and malig-

nant tumors. It may be used alone or in combination with other modalities. The

goal of surgery is to remove all of the visible tumor cells present in a given location,

thereby increasing the survival time of the patient. The expected success rate of

surgery depends on many factors, including size and location of the tumor, specific

tumor type, and type and extent of the surgical procedure. Surgery is generally

considered a primary treatment modality, especially in the case of solid tumors such

as brain tumors.
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Mathematically, the instantaneous effect of surgery can be incorporated into

the model (Equation 3.1) by assuming that it kills a fixed fraction (exp (−ks)) of

the tumor cells [60]. Here ks is the fraction of the removed tumor cells and its

value reflects the resection area. For instance smaller values of ks denote that the

resectional area is limited either due to a lack of accessibility or undetected tumor

cells. The surgery can be included in the simple temporal model as follows [60]:

dN

dt
= f(N)− ksI(t = tsurgery), (3.7)

where I(t = tsurgery) is the indicator function which takes the value one if t = tsurgery

and zero otherwise.

3.6.2 Chemotherapy

Chemotherapy plays an important role in most of the mutimodality treatment

protocols that are used to treat many tumor types. There are several chemothera-

peutic agents that target the tumor cells in various ways, and these include alky-

lating agents like Carmustine and Cisplatin, anti-metabolic inhibitors like Cytosine

and Arabinoside and mitotic inhibitors like taxoids and Teniposide. Most of these

chemotherapeutic drugs destroy cancer cells by targeting their DNA and prevent-

ing the cells from growing and dividing rapidly; unfortunately, these drugs may

also affect normal cells. Standard combination chemotherapy consists of drugs that

contain platinum agents such as cisplatin and carboplatin, and taxane compounds

such as paclitaxel and cyclophosphamide. For decades, investigators have exam-

ined the role of chemotherapy in the treatment of brain tumors; however, numerous

clinical trials of various chemotherapeutic agents administered in a variety of ways

have shown very different outcomes (see [66], for a review on major clinical trials
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and their conclusions). The choice of chemotherapies, dosage, and timing are de-

termined by many factors including patient response and the stage of the glioma.

Chemotherapy can be included into the mathematical model using several cell kill

hypotheses as discussed in the following section.

3.6.3 Modeling Chemotherapy

There have been several mathematical models that study the effects of chemother-

apy on tumor growth (see [60] and the references therein); however only a few

investigations have been carried out related to brain tumors. Cruywagen et al. [31]

and Tracqui et al. [128] studied the effects of chemotherapy on glioma growth as-

suming a reaction-diffusion model for growth and invasion and a log-kill hypothesis

for cell death due to chemotherapy. Since the single cell model was unsuccessful

in fitting the experimental data, they extended the model to a two-cell population

model. Swanson et al. [117] generalized the model to reconsider the effects of

chemotherapy in the case of heterogeneous brain tissue. Since there are a number

of factors (such as the pharmacokinetic and pharmacodynamics of the drugs, pa-

tient response and the grade of glioma) that affect the chemotherapeutic induced

cell death, it may be wise to choose a cell-kill model that accurately describes the

effect of a particular drug.

In the log-kill model, cell kill is assumed to be proportional to the tumor popula-

tion which means that a given dose of chemotherapeutic drug kills a fixed fraction of

surviving tumor cells. Another hypothesis, known as the Norton Simon (NS) model,

[84, 85] considers that the cell kill is proportional to the growth rate of the tumor.

A third hypothesis called the Emax model assumes that the cell kill is proportional

to a saturable function of the mass. This means certain chemotherapeutic drugs
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need to be metabolized by enzymes before being activated and since the amount of

these enzymes are fixed, they are assumed to follow Michaelis-Menton kinetics [49].

These effects of chemotherapeutic drug induced cell death can be included into the

mathematical model (Equation 3.1) by defining a cell kill term G(N, t) and thus,

the model can be written as

dN

dt
= f(N)−G(N, t), (3.8)

with

G(N, t) =


kc1(t)N : log − kill

kc2(t)N/(N + δ) : Emax

kc3(t)f(N) : NSmodel.

(3.9)

The function kci gives the temporal drug profile and it is proportional to the drug

concentration, kci = 0 denotes the absence of drug effect and kci > 0 gives the

amount or strength of the available drug.

3.6.4 Radiotherapy

Radiotherapy is one of the main treatment strategies that is used to treat most

common tumor types. It can be either used as a primary therapy or in combina-

tion with other therapeutic protocols. Radiotherapy is usually carried out using a

linear accelerator (LINAC) that produces high energy X-ray radiation. This radia-

tion deposits increasing doses with depth up to a few centimeters, and is absorbed

by tissues in an exponential manner. The radiation dosage is delivered in a com-

bination of several beams at various angles, so that it overlaps inside the tumor

volume (or gross tumor volume, GTV) with a maximum dose, sparing the normal

tissues. This GTV is determined through different diagnostic and planning pro-

tocols mainly using various imaging techniques like magnetic resonance imaging
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(MRI) or computed tomography (CT). After irradiation, cells are killed mainly due

to damage to DNA, leading to reproductive apoptosis. When high energy X-rays

are absorbed within target tissue, many fast high-energy electrons are produced

and some of these electrons interact directly with the DNA. This direct interaction

may be of either ionizing (Compton effect) or exciting (photoelectric) type, even-

tually damaging the DNA double strand (‘double strand breaks’ or DSB). On the

other hand, some of these electrons interact with other molecules in the tissue (for

example, water) producing hydroxyl radicals which in turn damage DNA, causing

an indirect effect. These radicals have a very short life time (several milliseconds)

and hence they cannot migrate distances longer than tens of angstroms along the

DNA. The indirect radiation damage caused by these free radicals can be increased

in the presence of oxygen or other radiosensitizers. This is because the oxygen re-

acts with the free radical making it more stable and thus fixing the radiation lesion

(“oxygen fixation hypothesis”). This is one of the reasons why hypoxic cells are

more radioresistant.

Several other biological processes such as repair of cellular damage, reoxygena-

tion of the tissue, redistribution within the cell cycle and repopulation of cells (“the

4 R’s of radiation biology” [47]) also affect the number of surviving tumor cells af-

ter the radiation. Hence the effect of the irradiation strongly depends on the time

course and the various methods of delivery. However, it is also important to reduce

normal tissue damage due to the radiation, although normal cells have better repair

mechanisms and their division rates are much slower than tumor cells. This makes it

necessary to use various fractionation protocols for delivering a biologically effective

dose over treatment period of longer duration. Fractionation spares normal tissues

because of repair and cellular repopulation and increases tumor damage because of

reoxygenation and redistribution. In the following sections, we will discuss various
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fractionation schemes, and different methods through which they are delivered to

the tumor volume.

External Beam Radiation Therapy

External beam radiation therapy (EBRT) is one of the most common and con-

ventional ways of delivering the radiation dosage. In EBRT, an external source of

radiation (high energy X-ray beams, cobalt irradiation or particle beams such as

protons and ions) is used to direct the radiation beams from outside the body to

the organ of interest. These beams are usually given in a 360 degree fashion so

that they are directed at the target for the entire treatment time but pass through

other parts of the brain only momentarily, thus making it possible to deliver a max-

imum dose to the area of interest while sparing the normal tissues from the risk of

high radiation exposure. Figure 3.1(a) shows a schematic representation of EBRT.

There are mainly two types of EBRT available: 3D conformal radiation therapy

and intensity modulated radiotherapy; their details are given below.

3D Conformal Radiation Therapy

In conformal radiotherapy, the radiotherapy machine shapes the radiation beams

to fit the size and shape of the tumor area with the help of advanced imaging

techniques (Figure 3.1(b)). Usually, radiation-impermeable metal blocks are used to

change the shape of the beam so that the irradiated area looks similar to the shape

of the tumor. This results in a better radiation induced cell death by delivering

a higher dose of radiation straight to the tumor area; hence, less healthy tissue is

included in the radiotherapy field resulting in fewer long term side effects.
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(a) EBRT (b) Conformal RT

(c) IMRT

Figure 3.1: Schematic representation of various radiation delivery methods
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Intensity Modulated Radiation Therapy (IMRT)

Intensity modulated radiation therapy or IMRT, is an advanced radiation delivery

method that utilizes computer-controlled x-ray accelerators to deliver precise ra-

diation doses to a malignant tumor or specific areas within the tumor. It works

in a similar fashion to that of conformal radiotherapy by delivering the radiation

dose more precisely to the three-dimensional (3-D) shape of the tumor by modu-

lating/controlling the intensity of the radiation beam. In addition to the precise

shape of delivery, IMRT also allows one to change the intensity of the radiation fo-

cusing within the tumor while minimizing the dose to surrounding normal critical

structures (Figure 3.1(c)). Typically, combinations of several intensity-modulated

fields coming from different beam directions produce a custom tailored radiation

dose that maximizes tumor dose.

Stereotactic Radiosurgery/Radiation Therapy

Stereotactic radiosurgery is a highly accurate form of radiotherapy with a precise

delivery of a single, high dose of radiation to a small intracranial target while

minimizing the absorbed dose in the surrounding tissue. It is sometimes considered

as an alternative to invasive surgery, especially when a tumor is inaccessible due

to its location or other complications. Although stereotactic radiosurgery is often

completed in a single day, sometimes it is given in a fractionated dose (often termed

a “stereotactic radiotherapy”).

Brachytherapy

The surgical implantation of radioactive isotopes into a tumor is known as brachyther-

apy. It is mostly used in the case of solid tumors such as brain tumors since the
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implanted isotope can deliver high doses of radiation to a well-defined area causing

minimal damage to the surrounding normal tissue. Brachytherapy is divided into

two main categories: interstitial brachytherapy and intracavity brachytherapy. In

interstitial brachytherapy, either low dose rate or high dose rate radioactive sources

are placed in catheters spaced evenly within the tumor or in the center of the tumor.

On the other hand, intracavity brachytherapy involves placing radioactive isotopes

into a body cavity close to a tumor. While brachytherapy gives an advantage over

hypoxic tumors due to its continuous effect, it can be useful only when the tar-

get tumor is accessible invasively. A number of novel radioactive isotopes such as

Iodine-125 and Iridium-192 are being considered for brachytherapy. Most of these

isotopes emit low-energy photons, which reduce the risk of radiation damage to

normal tissues [47].

3.6.5 Fractionation and Dosage

The ideal goal of radiotherapy is to maximize the radiation induced damage of

tumor cells while minimizing the injury to normal cells and this is mainly achieved

through the use of fractionation of the total dose. In simple terms, fractionation

means breaking down the total radiotherapy dose into small doses which are given

according to an appropriate schedule for a certain duration.

Tumor cells are often termed “early responding” since they have a low repair rate

and accelerated repopulation which makes them very sensitive to damage causing

reproductive cell death. Normal cells, on the other hand, are termed “late respond-

ing” since their repair time is broader than their tumor counterparts. It has also

been observed that cells are more sensitive to radiation while they are in the G2

or M phases of their cell cycle as compared to other phases. The percentage of the
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population at each of these phases is often determined by their cell growth kinetics

(tumor cells have a faster growth rate). Following radiation, these percentages are

redistributed within 1-2 cell cycles, thus improving the chances of radiation-induced

cell death in the next fractionation. Another important factor that determines the

extent of radiation damage is the oxygenation status of the tumor tissue, due to the

so called “oxygen fixation hypothesis”. While normal tissues are well oxygenated

due to well-distributed normal healthy vasculature, their tumor counterparts are

often hypoxic (except near vessels) due to the presence of abnormal vasculature and

rapid proliferation (as discussed in previous sections). Radiation exposure usually

kills the oxygenated tumor cells while sparing most of the hypoxic cells. However,

if sufficient time is allowed before the next radiation dose, the process of reoxy-

genation will restore some proportion of hypoxic cells to a state of sensitivity to

subsequent radiation fractions.

In the fractional delivery of radiotherapy, fraction size and total dosage also play

key roles in sparing the normal tissue while increasing damage to the tumor. While

fraction size is a dominant factor affecting late-responding tissues like normal tissue,

the overall treatment duration has less effect. On the other hand, early-responding

tissues like tumor cells are more sensitive towards both fraction size and total

treatment time. Various common fractionation schemes used in clinical practice

are listed below.

Conventional Fractionation

Conventional radiotherapy is usually delivered with a fraction size of 1.8 to 2 Gy

(1 Gy = 1 Joule/kg = 1 m2s−2) daily 5 days a week up to a total dose of 60 Gy to

70 Gy.
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Hyperfractionation

Hyperfractionation is often used to further reduce the late effects (damage to normal

tissue) while slightly increasing the radiation damage to early responding tumor

tissue and thus achieving a better tumor control. In hyperfractionation, the overall

treatment time remains the same as conventional but instead of one fraction, two

or more fractions are given per day. The increase in the number of fraction and

the decrease in the dose per fraction allow the delivery of higher total dosage of

radiation to the tumor tissue. Generally a fractional dose of 1 to 1.2 Gy twice a

day, 5 days a week and up to a total dose of 65 to 80 Gy is used in most of the

clinical trials.

Accelerated Fractionation

Accelerated fractionation is used to reduce overall treatment time in order to reduce

the repopulation in rapidly-proliferating tumors. It involves approximately the

same fraction size and total dosage as that of conventional fractionation but is

given twice a day to reduce the total treatment time. The usual delivery protocol

for accelerated fractionation is 1.5 to 2 Gy twice a day, 5 days a week and up to a

total dose of 50 to 70 Gy.

3.6.6 Modeling Radiation Therapy

There are numerous mathematical models describing the effects of radiotherapy

on tumor cells [122]. As we discussed in the previous sections, the main radiation

damage to cells is assumed to be through DNA double strand breaks. Most damage

of this nature is repaired, but some DSBs are incorrectly repaired leading to mitotic
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cell death [67]. The most commonly used model for studying the survival response

to radiotherapy is the linear quadratic (LQ) model [122, 40, 106, 101, 103]. The

LQ model considers the effects of both irreparable damage and repairable damage

susceptible to misrepair. Several studies have extended the model to include other

effects such as cellular proliferation, cell cycle redistribution and reoxygenation

during fractionated radiotherapy [12, 88, 136]. The LQ model and its extension,

the incomplete repair (IR) model are common tools for studying fractionation and

dose-rate effects in radiotherapy [121, 80].

One of the basic assumptions of the LQ model is that the cell is damaged through

double strand breaks of its DNA, leading to reproductive cell death. This damage to

DNA can happen in two different ways, which are captured in the LQ model through

its linear and quadratic terms (Figure 3.2). The linear term accounts for the DSBs

due to one single hit of radiation whereas the quadratic term represents the effects

of two separate ionizing events that eventually cause DNA DSBs [47]. Assuming

that the probability of one interaction causing a DSB is linearly proportional to the

dose D, the survival fraction in the LQ model can be written as

S = N = exp (−αD − βD2), (3.10)

where α and β are radiation sensitivity parameters.

This simple LQ model can be further generalized to include the effects of frac-

tionation protocols as well as the late and early effects (through the choice of various

α/β). Considering the generalized version of the LQ model; given by,

1

N(t)

dN(t)

dt
= −αd(t)− 2βd(t)

∫ t

0

d(t′)e−µ(t−t′)dt′, (3.11)

the survival fraction S(T ) at time T can be rewritten as,
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Figure 3.2: Linear quadratic model: Relationship between chromosome aberrations

and cell survival

S(T ) = exp

[
−α
∫ T

0

d(t)dt− 2β

∫ T

0

d(t)

(∫ t

0

d(t′)e−µ(t−t′)dt′
)
dt

]
. (3.12)

Here, d(t) is the dose fraction at time t, N(t) is the total number of tumor cells

at time t and µ is the repair half rate. Other simplifications of this generalized

model are the incomplete repair model of continuous fractionation and incomplete

repair mode for acute fractionation. A detailed analysis of this model under various

fractionation schedules is given in Chapter 5.
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3.6.7 Antiangiogenic therapy

It is a well known fact that a solid tumor cannot grow more than a few millime-

ters unless it forms new vascular networks, through the process of angiogenesis.

These vessels, formed as a result of the tumor’s response to its own need for oxygen

and other nutrients, are structurally and functionally abnormal [52]. Hence, tumor

vessels which are abnormal, leaky, tortuous and less perfused often result in poor

delivery of both oxygen as well as therapeutic drugs to the tumor. The rationale

behind the use of a novel anti-cancer therapeutic strategy called anti-angiogenic

therapy is that it should destroy tumor vasculature, thereby depriving tumors of

oxygen and nutrients. It was recently hypothesized by Jain [52] that judicious appli-

cation of these anti-angiogenic drugs can also transiently “normalize” the abnormal

structure and function of tumor vasculature, resulting in a more efficient pathway

for delivery of drugs and oxygen to the targeted tumor cells.

Recently there has been major advances in the development of antiangiogenic

therapeutic strategies due to the identification of several molecular mediators and

inhibitors of angiogenesis. Many anti-angiogenic drugs are now undergoing various

stages of clinical trials and these include endothelial cell inhibitors like TNP-470,

Thalidomide and Endostatin, and angiogenic factor inhibitors like SU5416, So-

rafinib and Imatinib. Although these antiangiogenic treatments have the potential

to complement conventional treatments, several clinical and pre-clinical trials have

suggested that currently available anti-angiogenic strategies are unlikely to produce

significant results unless they are combined with conventional therapies. Alterna-

tively, effects of these combination therapies are often determined by various factors

such as fractional dosage of the maximum tolerated dose, schedules and sequencing

of various modalities. One of the most cost-effective ways through which optimal
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treatment might be achieved is through a carefully devised, patient-specific math-

ematical model that is supplemented with clinically-relevant parameters.

There have been several mathematical models of tumor angiogenesis, mainly fo-

cusing on capillary formation in response to several molecular signals [22, 20, 24, 18,

64, 44]. But much more recently, researchers have started to look into blood-flow

modeling in a tumor-induced micro-capillary network in order to study the appli-

cation of anti-angiogenic and chemotherapeutic effects within the tumor [72, 111].

Kohandel et al. [59] considered a continuum- based approach to generate vascu-

lature and to study optimal treatment strategies for cytotoxic and anti-angiogenic

treatments. Although these mathematical models might be useful in studying the

qualitative effects of anti-angiogenic drug therapy, it may be useful to develop more

quantitative models by incorporating the pharmacokinetic and pharmacodynamic

details of the specific drug into the model. It may also be helpful to compare vari-

ous drug delivery mechanisms such as liposome delivery and nano-particle delivery

in seeking to optimize the treatment effects of combination modalities.

3.7 Short Summary

Mathematical modeling of tumorigenesis, including the tumor microenvironment,

is a fast- growing area of research. This chapter reviews common mathematical

approaches used to model various aspects of cancer growth including growth dy-

namics, microenvironmental factors such as hypoxia and interstitial fluid pressure,

angiogenesis and different treatment modalities. Following chapters will illustrate

each of these characteristics of tumorigenesis in detail.
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Chapter 4

Glioma Growth and Invasion:

Mathematical Model

4.1 Introduction

Mathematical models usually serve as a tool for the prediction and development

of experimental or clinical strategies, wherein it helps to understand the important

parameters that can guide accurate analysis. For the past several years mathe-

matical models have been used to understand glioma growth and invasion from

a theoretical point-of-view [77, 117, 28]. In the following sections, we discuss the

framework of different models used to study glioma growth and invasion.

4.2 Spatially-Homogenous Models

Gliomas, the most common primary brain tumors, are highly diffusive and invasive

[35, 63, 11, 10, 66, 36]. Simple temporal mathematical models of tumor growth
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involve only the total number of tumor cells subject to either exponential or Gom-

pertzian growth laws [62, 86, 83]. However, gliomas consist of motile cells that

can migrate as well as proliferate, and thus spatial aspects seem to be crucial in

their theoretical modeling. Recent mathematical models formulated the problem

of brain tumor growth as a reaction-diffusion process (for a review see [77]), in

which the rate of change of tumor cells is given in terms of the net proliferation and

diffusion of tumor cells. The proliferation component usually corresponds to the

active part of the tumor and is mainly represented using one of the suitable growth

laws while the diffusion component is generally associated with external factors

associated with the tumor and is represented using a diffusion law. Cruywagen et

al. [31], and later Cook et al. [30], Woodward et al. [144], and Burgess et al. [16],

considered a simple reaction-diffusion equation to study diffusive tumors and the

effects of surgical resection and chemotherapy. If c(x, t) denotes the cell density at

position x and time t, then the model can be expressed in mathematical form as

∂c(x, t)

∂t︸ ︷︷ ︸
Rate of change of tumor cell density

= D∇2c(x, t)︸ ︷︷ ︸
Diffusion of cells

+ f(c)︸︷︷︸
Cell proliferation

, (4.1)

where D is the diffusion coefficient and f(c) describes the growth dynamics of the

tumor. Here, the diffusion coefficient is considered to be a constant since we assume

that the brain is spatially homogenous (an assumption which is not necessarily

accurate and will be relaxed in the following section). Tumor growth kinetics

can be mathematically described through a number of previously-proposed models

(discussed in Chapter 3). The commonly-used models are based on exponential,

logistic and Gompertzian growth laws and each of these approaches can be justified

under various growth conditions. In the time frame of interest, i.e. before the

tumor becomes fatal, exponential growth could be used; however the more general
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case of logistic growth is assumed in this thesis.

4.3 Spatially-Heterogenous Model

Although gliomas can be modeled using a simple spatially-homogenous model, it

is clinically useful to include more detail in the model. As discussed in Chapter 2

(Section 2.3), the human brain is composed of different types of tissues and hence

the infiltration capabilities of different types of tumors are not uniform or symmetric

along these tissues. In the homogenous model discussed above, we have ignored

this asymmetric nature of brain tissues.

Keeping this in mind, Swanson et al. [116] introduced an improved model

for glioma growth with spatial heterogeneity considering two different diffusion

coefficients for grey and white matter tissues. This mathematical model can be

written as

∂c(x, t)

∂t
= ∇. (D(x)∇c(x, t)) + f(c). (4.2)

Here, f(c) is again the growth dynamics (assumed to be a logistic growth model)

and D(x) is the diffusion coefficient with two different values for grey and white

matter, given by

D(x) =

 DG, x ∈ Grey matter

DW , x ∈White matter,
(4.3)

and DW > DG, since experimental studies show that glioma invasion in white

matter is much faster than in grey matter. In order to ensure that the growth

rate of the population decays as the cell numbers approach a maximum capacity,
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all the simulations herein are done using a logistic growth model. The model

formulation is completed by the initial condition c(x, 0) = c0(x), where c0(x)defines

the initial spatial cell distribution, and no-flux boundary conditions which impose

no migration beyond the brain boundary denoted by

∇c.n = 0 for x on ∂B, (4.4)

where n is the unit normal vector to the brain boundary ∂B of B. The implemen-

tation details of the model on a realistic domain are given in the following sections.

This spatially-heterogeneous model can be further modified by incorporating

various other information such as the anisotropic diffusion along white fibers or by

coupling it to the mechanistic equations to study the properties of the tissue [27].

However, herein we use the above simple heterogenous model to study brain tumor

growth and its response to various therapies.

4.4 Parameter Estimation

Clearly, the estimation of realistic parameter values is very important if the model

is to be useful in understanding the behavior of real gliomas. The parameter values

related to tumor growth are mainly chosen from previous mathematical models

([77], and the references therein). For cell proliferation, the parameter ρ is assumed

to be 0.012 (1/day), which corresponds to a volume doubling time of 2 months

(for exponential growth). It is observed that the margin of a detectable tumor

grows about 1.5 cm in 180 days [128, 144]. One should note that if we replace

logistic growth with the exponential term and integrate both sides of Equation 4.1

with respect to x (assuming a constant diffusion coefficient), we obtain a simple

48



4.4. PARAMETER ESTIMATION

exponential growth model for the total number of cells given by N(t) = N0 exp(ρt).[∫
B

∂c(x, t)

∂t
dA =

∫
B

∇. (D(x)∇c(x, t)) dA+

∫
B

ρc(x, t)dx

]
(4.5)

Now by assuming that the total number of tumor cells is proportional to the tumor

volume and assuming a simple spherical geometry, we can obtain similar kinetics

for the detectable margin expansion as illustrated below.

πr2
1 − πr2

2 = eρt1 − eρt2 (4.6)

π(1.5)2 − π(0)2 = eρt1 − 1

t1 =
ln(1 + π(1.5)2)

ρ
.

Assuming ρ = 0.012 (see Table 4.1), this leads to t1 = 174 days. Finally, the

aforementioned kinetics and Fisher’s approximation D = v2/4ρ [77], can be used

to give an average diffusion coefficient of approximately D = 0.0013 cm2/day. Note

that, the proliferation and diffusion constants may be varied depending on the type

and grade of the brain tumor and its values are assumed to be in the range of 0.0012

to 0.012 and 0.00013 to 0.0013, respectively [116].

Following Swanson et al. [116] the obtained value for D is defined to be the

diffusion coefficient for the gray matter, and we assume a five-fold difference in

the diffusion coefficients for gray and white matters (i.e. DW = 5DG). A typical

section of the brain image [61, 1, 29] is used for the computational domain and to

describe the gray and white matter distributions. It is assumed that tumor cells first

proliferate in the initial phase without any diffusion, and that in the second phase,

diffusion starts when the number of cells is approximately 105 [77]. A tumor is

detectable in CT scans only if the cell density is above a threshold level, and hence,

only a portion of the entire tumor is visible in a medical image. This threshold value
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is taken to be 400 cells/mm2 [116]. The radius of the tumor at the time of detection

is usually about 1.5 cm, thus tumor visibility is another criterion (in addition to the

minimum threshold). Finally, it is assumed that clim ≈ N0ρ/Dw ≈ 105 cells/cm2.

Note that the value of N0, and consequently clim, is chosen such that tumor growth

is compatible with clinical observations.

4.5 Implementation of Mathematical Model

Once we choose an appropriate mathematical model to study the growth and in-

vasion of gliomas, the next step is to implement the model using analytical and/or

numerical methods. In this section, we discuss the implementation of the spatially-

heterogeneous model formulated above using a numerical approach.

4.5.1 Non-dimensionalization and Numerical Scheme

Non-dimensionalization is useful at many stages in model implementation. It in-

creases insight about the key parameters by scaling them into appropriate mag-

nitudes and at the same time helps in decreasing the number of free parameters.

Here, we seek to non-dimensionalize the governing Equation 4.2 (tumor growth is

assumed to be logistic with a limiting cell density clim), with the diffusion coefficient

given by Equation 4.3, boundary condition (Equation 4.4) and the initial condition

c0(x).

Introducing the dimensionless variables (x̃, t̃, c̃(x̃, t̃)) for distance x, time t and

cells c(x, t) defined by

x̃ =

√
ρ

D
x t̃ = ρt c̃(x̃, t̃) =

c(x, t)

clim
,
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the above heterogeneous mathematical model can be written in the following di-

mensionless form (substituting these into Equations 4.2, 4.3, and 4.4 and dropping

the tildes for x, t and c for notational convenience):

∂c(x, t)

∂t
= ∇. (D(x)∇c(x, t)) + c(1− c), (4.7)

where

D(x) =

 1 x ∈White matter

DG

Dw
x ∈White matter,

(4.8)

with the boundary condition

∇c.n = 0 for x on ∂B, (4.9)

and initial condition (assumed to be Gaussian with a maximum cell density a at

the centre of the tumor x0)

c0(x) = a exp

(
−|x− x0|2

b

)
, (4.10)

where a = 1√
2πσ2

and b = 2πσ2 (for a two dimensional model).

The above dimensionless mathematical model (Equations 4.7 and 4.8), with the

estimated parameters (Table 4.1), no-flux boundary condition 4.9 and a Gaussian

initial distribution for tumor cells (4.10), is then implemented in MATLAB (as well

as in C) using a finite difference method [109] as explained below.

Here, for simplicity, we use an explicit numerical scheme (forward Euler) with

conditional stability although implicit schemes are unconditionally stable. For il-

lustrative purposes, consider a one dimensional version of the above Equation 4.7

given by
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Table 4.1: A list of parameter values

Parameters Symbol Value Reference

Growth rate ρ 0.012 (1/day) [30]

Diffusion Coefficient DG 0.0013 (cm2/day) [128]

(Gray matter)

Diffusion Coefficient DW 5DG (cm2/day) [116]

(White matter)

Initial number of N0 105 (cells) [77, 144]
tumor cells

CT threshold density 400 (cells/mm2) [116]

CT threshold radius 1.5 (cm) [30, 128]

Gaussian variance σ 0.35 [93]

∂c(x, t)

∂t
=

∂

∂x

(
D(x)

∂

∂x
c(x, t)

)
+ c(1− c). (4.11)

In order to solve this numerically, one should discretize the system in time and

space. Thus, the domain will become a grid of size N (with a space step size ∆x

and temporal time step size ∆t). Redefining c(x, t) on this grid, we obtain,

c(x, t)← cki , 0 < i < N, (4.12)

where i and k are integer indices and N is the dimension of the grid.

Using the difference schemes, Equation 4.11 can be discretized as
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ck+1
i − cki

∆t
=

∂

∂x

(
Dk
i

[
cki+1/2 − cki−1/2

∆x

])
+ cki (1− cki ) +O(∆t) +O(∆x)

=
1

∆x

(
Dk
i−1/2

[
cki+1 − cki

∆x

]
+Dk

i+1/2

[
cki−1 − cki

∆x

])
+ cki (1− cki )

+O(∆t) +O((∆x)2). (4.13)

Note that if we treat the diffusion coefficient as a constant (homogenous case),

the right-hand-side of Equation 4.13 simply represents a central difference approx-

imation whereas the left-hand-side follows a forward difference approximation. By

rearranging Equation 4.13, we obtain

ck+1
i = cki +

∆t

(∆x)2

(
Dk
i−1/2

[
cki+1 − cki

]
+Dk

i+1/2

[
cki+1 − cki

])
+ cki (1− cki )

+O(∆t) +O((∆x)2), (4.14)

where the right-hand side of the equation is fully known (starting from the initial

condition) to compute the value of c at subsequent time steps. Following similar

steps, the boundary condition 4.9 also can be discretized as given below

cki−1 = cki , when i = 0, (4.15)

and

cki+1 = cki , when i = N. (4.16)

It can be shown that this finite difference scheme is stable and convergent as long

as ∆t
(∆x)2

≤ 1
2

[109].
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(a) At the time of diagnosis

(b) At the time of death

Figure 4.1: The simulation of high grade glioma growth at diagnosis and patient

death (Position 1). The colors indicate the gradient of malignant cell density
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(a) At the time of diagnosis

(b) At the time of death

Figure 4.2: The simulation of high grade glioma growth at diagnosis and patient

death (Position 2)
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(a) Coronal view

(b) Transaxial view

Figure 4.3: The simulation of high grade glioma growth in a three dimensional

domain (axis corresponds to the non-dimensional grid points). The vessels shown

are taken from the brain web [1]
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4.5.2 Simulation Results

The following figures show simple two dimensional (Figures 4.1, 4.2) as well as a

three dimensional (Figure 4.3) simulations of high-grade glioma in different loca-

tions in the human brain. The simulations are carried by considering real tumor

boundaries as well as the properties of grey and white matter discussed in previous

sections. It is assumed that the tumor is visible in CT scans when it reaches an

area corresponding to 1.5 cm radius with a specific threshold density. At position 1

(Figure 4.1), the tumor is diagnosed around the 215th day after initiation whereas

at position 2 (Figure 4.2), this happens around the 205th day. Death is assumed to

occur when the radius of the detectable tumor reaches 3 cm; at position 1, this hap-

pens on the 474th day after the initiation of the tumor, with a survival period of 37

weeks after diagnosis (consistent with survival rates seen in clinical situations). At

position 2, this survival period is around 31 weeks since the tumor becomes lethal

within 424 days after initiation. This indicates the significance of tumor location in

the total survival time of the patient. Figure 4.3 shows a similar three-dimensional

simulation of the tumor growth. Blood vessels are shown for illustrative purposes

to indicate the possibility of extending the model further to include vasculature.

4.6 Short Summary

This chapter discusses the mathematical framework of glioma growth and invasion

by considering the effects of various anatomical structures within the human brain.

The details of numerical schemes and implementation methods are also explained.

This heterogenous mathematical model for glioma growth and invasion is further

used in the following chapters to study various treatment protocols and their effects
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on patient survival.
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Chapter 5

Brain Tumor: Modeling

Treatment Strategies

5.1 Introduction

Surgery and radiotherapy constitute the initial treatments for malignant gliomas.

Numerous studies have also attempted to demonstrate a better outcome with the

addition of chemotherapy [37, 66, 36, 115, 114, 70]. Even with aggressive surgical

resection and radiotherapy and/or chemotherapy, gliomas almost always recur, with

fatal consequences. The median survival for patients diagnosed with glioblastoma

multiforme (the highest grade glioma) has remained almost unchanged over the

last few decades, at 6 to 12 months [66, 36]. Thus, due to their highly invasive

and recurrent behavior, effective therapeutic strategies for gliomas are extremely

important for improving survival time.

Several factors play important roles in the effectiveness of these treatments,

such as the radius of resection, optimum dosing and scheduling of radiotherapy and
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chemotherapy as well as their sequencing (concurrent, adjuvant or neo-adjuvant).

Although more clinical trials are necessary to determine optimal treatment strate-

gies, the development of mathematical models to address these questions is ap-

propriate and timely. Carefully-devised and validated mathematical models may

be useful for developing hypotheses to be tested in future clinical trials, and for

optimizing the design of future trials.

There are a large number of mathematical models to study the effects of various

treatment strategies; however, only a few of them have discussed the issues related

to the optimal scheduling and sequencing of combination treatments (see for exam-

ple, [60], and the references therein). In this chapter, we discuss the application of

a spatio-temporal, reaction-diffusion model to study brain tumor growth and the

effects of various treatments scenarios [93].

5.2 Surgery

Most patients will first undergo a surgical procedure for diagnostic and treatment

purposes. Because gliomas are known to be infiltrating brain tumors and typically

recur in spite of surgical resection, more extensive surgical resections may lead to

an improved rate of survival [143, 11].

The surgical resection of a tumor can be mathematically incorporated into the

simulations by removing all tumor cells within a definite location or above a certain

threshold of detection (above which the tumor is visible in the CT/MRI scan)

[144, 30]. We assume that the tumor is fatal when the total number of tumor cells

reaches a specific critical number obtained through the analysis of clinical data

[135] (details are discussed in the following sections). The survival status of various

different grades of gliomas also can be modeled by changing the invasion (diffusion
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Figure 5.1: MRI scans of a patient with a right temporal GBM illustrating the

spread of the disease (A) Presurgical scan, GBM (arrow) is surrounded with edema

(B) Scan after surgery and radiation therapy showing gross total resection and

clear resection cavity, and (C) six months later, showing recurrence not only at the

resection margin (arrow) but a second focus of GBM across the Sylvian fissure in

the frontal lobe (arrow) (D) Postresection scans of both recurrent tumors (E) Scan

3 months later, showing the tumor recurring at the resection margin and crossing

the corpus callosum to the other hemisphere (arrow) [50] (Courtesy of PNAS)

61



5.2. SURGERY

(a) Before surgery (b) One day after surgery

(c) 100 days after surgery

Figure 5.2: Numerical simulation of tumor growth and surgical resection
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constant) and proliferation (growth rate) parameters [144]. Previous works [144, 30]

also showed that by increasing the resectional radius (up to a maximum of 2.5-3 cm)

patient survival times may increase, although the tumor will eventually reappear

with fatal consequences.

Figure 5.2 shows the numerical simulation of tumor growth before, one day after

and 100 days after the surgery (Figure 5.1 shows the MRIs of brain tumor before

and after surgery). It can be seen from the figures that even after gross resection,

the tumor reappeared in multiple positions as often observed in clinical scenarios.

The recurrence of the tumor makes postoperative therapeutic strategies such as

radiotherapy and chemotherapy a necessity to reduce tumor progression, which we

discuss in the following sections.

5.3 Modeling Chemotherapy

In addition to surgery and radiation therapy (which will be discussed in Section 5.4),

chemotherapy may also be beneficial for some patients with high-grade gliomas.

Chemotherapy can be administered before (neo-adjuvant), during (concurrent) or

after radiotherapy (adjuvant) [66]. The chemotherapeutic effects can be included

into the mathematical model using various cell kill hypotheses, which are discussed

in detail in Chapter 3. With the aim of understanding how these cell-kill models

behave in the case of gliomas, here we first compare the effects of chemotherapy

using a log-kill and Emax model for drug induced cell death. As explained previously,

this effect of chemotherapy is included in the mathematical model (Equation 4.2)

by the cell-kill term G(c, t),

∂c(x, t)

∂t
= ∇. (D(x)∇c(x, t)) + f(c)−G(c, t), (5.1)
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together with the previously formulated initial and boundary conditions. Here,

G(c, t) =

 k1(t)c(x, t) : log − kill

k2(t)c(x, t)/(c(x, t) + δ) : Emax

(5.2)

where ki(t) is proportional to the drug concentration, ki(t) = 0 implies no drug

effect is present and ki(t) = ki means the chemotherapy is on (note that k1 and k2

have different units). Following Tracqui et al. [128], k1 is taken as 0.0552 (1/day).

For the Emax model, two parameters k2 and δ are fixed so that, both log-kill and Emax

models kill the same number of cells at the end of chemotherapy: k2 = 1.275× 105

(cells/day cm2) and δ = 1.936× 106 (cells/cm2).

Figure 5.3 shows the results of numerical simulations, for both the total number

of cells and the detectable area of tumor cells, obtained from log-kill and Emax

models. We assumed that chemotherapy is applied in six courses of length 15 days

with an interval of 42 days [128]. In the log-kill model, cell-kill is proportional to

the tumor cell density (or the total number of tumor cells). Thus chemotherapy is

more effective on larger tumors. In the Emax model, more drug is required to have

the same effect on the total number of tumor cells as the log-kill model. Although

the total number of tumor cells after treatment remains the same (note that the

parameters for the Emax model are estimated by assuming similar effects as the

log-kill model), the Emax model gives a better result in reducing the visible tumor

area.

5.3.1 Temozolomide - An Effective Chemotherapeutic Agent

In the case of gliomas, conventional drugs often result in poor survival response; this

poor response has been attributed in part to low brain vascular permeability (the

“blood-brain barrier”) and limited penetration of drugs into the tumor and adjacent
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(a) Total number of cells

(b) Detectable area

Figure 5.3: The effect of chemotherapy on the total number of tumor cells and

visible area of tumor
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brain tissue [108]. However, recent phase III clinical trials [36, 115, 113, 70] have

identified a survival advantage associated with the combination of postoperative

radiotherapy and the cytotoxic agent temozolomide relative to radiotherapy alone

(Figure 5.4).

Temozolomide is an orally-ingested alkylating agent that acts by causing lethal

DNA damage in cancer cells. It is rapidly absorbed after oral dosing and easily

crosses the blood-brain barrier [113]. Temozolomide shows a complete and rapid

gastrointestinal absorption, although it varies between individuals [113]. Temozolo-

mide is usually given in a daily dose of 200 mg/m2 for 5 days a week over 4 weeks

and several other dosing schedules are also undergoing clinical trials. Table 5.1

shows various schedules which are being investigated in clinical trials.

Table 5.1: Schedule and dosing of temozolomide (adapted from [113])

Schedule Dose Dose intensity

(mg/m2) (mg/m2/week)

Daily × 5 days, every 28 days 200 250

Daily × 7 days, every 14 days 150 525

Daily × 21 days, every 28 days 100 250

Daily × 42 days, every 70 days 75 315

It has been also observed that temozolomide shows linear pharmacokinetics,

with the area under the plasma concentration time curve (AUC) increasing in pro-

portion to the dose. Hence, the temozolomide-induced cell kill can be studied math-

ematically by using a simple log-kill hypothesis (discussed in the previous section)

in our previously-developed mathematical model (Equation 5.1). The clinical data

of Stupp et al. [114] were used to estimate the parameter k, which represents the cell
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(a) Pre-treatment MRI

(b) Response following 2 five-day cycles of Temozolomide

Figure 5.4: The effect of temozolomide on brain tumor growth. GBM is shown

within red circles (Courtesy of Dr. Susan Chang, Department of Neurological

Surgery, UCSF)
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death rate caused by chemotherapy (temozolomide); we take k = 0.0196(1/day).

The details of the parameter estimation techniques are given in Section 5.6

5.4 Modeling Radiation Therapy

Radiation therapy is known to be an effective postoperative treatment for malignant

gliomas, as it increases the survival time for patients compared to surgery alone [63,

10]. Most commonly, a radiation dose of 60 Gy in 2 Gy daily fractions is delivered

using external high energy beams to a volume that encompasses the primary tumor

(or resection cavity) and a margin of adjacent normal brain deemed at high risk of

harboring subclinical disease [66]. Alternate schemes, including hyperfractionated

radiation and accelerated-hyperfractionated radiotherapy have also been explored

[135, 32, 139, 107, 78].

Similar to chemotherapy, the effect of radiotherapy is included in the spatio-

temporal glioma model (Equation 4.7) using another cell kill term, R(c, t), in the

following fashion:

∂c(x, t)

∂t
= ∇. (D(x)∇c(x, t)) + f(c)−R(c, t). (5.3)

Here, the radiation induced cell kill term R(c, t) can be expressed using a number

of mathematical models that are explained in detail in Chapter 3. However, to

our knowledge none of these mathematical models has compared the effects of

different fractionation protocols, especially when more than one fraction is used

per day. Most of the theoretical studies in the literature have been using a simple

linear quadratic model (Equation 3.10) [100], which cannot distinguish between the

effects of a single fraction and multiple fractions per day, in particular if the total

dosage remains the same.
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Recognizing this gap in the literature, one of the main aims of this study is

to compare the survival results of various fractionation schemes that are used in

current clinical practice. Here, for low-dose-rate and fractionated radiotherapy

(Equation 5.5), in which there is incomplete repair between fractions and significant

repair during fractions, the cell kill term R(c, t) can be expressed as

R(c, t) = ReffkR(t)c(x, t), (5.4)

where Reff [80] is the effect of n fractions per day given by (derivation follows in

the next section),

Reff = α(nd) + βnd2

[
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
hn(φ)

]
, (5.5)

and kR(t) represents the temporal profile of the radiation schedule. Here, α and β

are the sensitivity parameters, dt is the dose rate at time t, and µ is the half time

for repair of radiation-induced DNA damage (µ = ln 2/Th, where Th is the repair

half time). Since Equation 5.5 incorporates the effect of n fractions per day, we can

simply use a time step of one day in the simulations. Thus kR is simply one on the

day of radiotherapy application and zero otherwise. In Equation 5.5, as mentioned,

n is the number of fractions per day, τ is the irradiation duration, the function

φ = exp (−µ(τ + ∆τ)), where ∆τ is the time interval between fractions, and g(µτ)

and hn(φ) are defined as

g(µτ) = 2

(
µτ − 1 + exp(−µτ)

(µτ)2

)
, (5.6)

and

hn(φ) = 2

(
nφ− nφ2 − φ+ φn+1

n(1− φ)2

)
. (5.7)
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Table 5.2: A list of parameter values - treatment scenarios

Parameters Symbol Value Reference

Cell death rate k 0.0196 (1/day) Fitting to data[115]

(Chemotherapy)

Number of n 1 - conventional [135][139]

fractions/ day 2- hyperfractionated

Time interval ∆τ 1 day -conventional [107][78]
6 h - hyperfractionated

Sensitivity ratio α/β 10 (Gy) [94]

Sensitivity α 0.027 (Gy−1) Fitting to data from
parameter [135, 139, 107, 78]

Repair half rate µ 0.46 (1 h−1) Fitting to data from

[135, 139, 107, 78]

To estimate the radiobiologic parameters α, α/β and µ, as well as other ra-

diotherapy parameters, we use published clinical data for malignant brain tumors

involving different schedules of radiation therapy (see Section 5.5). The number

of fractions per day, n, is one for conventional fractionation and usually two for

hyperfractionated treatment. The time interval between fractions ∆τ is therefore

one day for the former and 6 hours for the latter. The duration of irradiation per

fraction is usually very small, and we assume a value of 0.2 hours. The dose-rate (or

total dose) and total treatment period vary for different clinical studies (see Section

5.5 and Table 5.2). The ratio of the sensitivity parameters α/β is characteristic of

different types of tissues [122] and, for glioma, we consider α/β = 10 Gy [94]. The

parameters α and µ are derived in the following sections by comparing the model
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Figure 5.5: Schematic diagram of the treatment schedule for the generalized LQ

model

predictions for median survival to published clinical data.

5.4.1 Derivation of Reff (radiation effect for n fractions per

day)

Considering a generalized linear-quadratic model (GLQ) (Equation 3.11, the final

survival fraction (s.f.) of irradiated tumor cells after the completion of one day’s

therapy is given by,

ln(s.f.) =

∫ tf

0

[
−αdt − 2βdt

(∫ t

0

d′te
−µ(t−t′)dt′

)]
dt, (5.8)

where the parameters are as explained in the previous section and tf is the final

treatment time. In low-dose fractionated radiotherapy, since each fraction of size d

is delivered with a duration of τ time, the dose rate dt of each fraction is given by

dt = d/τ . Following the fractionation schedule in Figure 5.5, the dose rate can be
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written as

dt =

 d
τ

t ∈ Ik+1 = [(k(τ + ∆τ), kτ + (k − 1)∆τ ] , k = 0...n− 1

0 t /∈ Ik+1.
(5.9)

Following Thames et al. [122], we assume that the level of underlying biological

effect after the irradiation is uniquely determined by the surviving fraction of the

irradiated tissue and this level of radiation effect (Reff ) is related to the survival

fraction by [122]

Reff = −ln(s.f.), (5.10)

or

Reff = −ln(s.f)

=

∫ tf

0

[
αdt + 2βdt

(∫ t

0

d′te
−µ(t−t′)dt′

)]
dt

=

∫ tf

0

[
α
d

τ
+ 2β

d

τ
Deff

]
dt, (5.11)

where

Deff =
d

τ

∫ t

0

e−µ(t−t′)dt′ (5.12)

gives the secondary effects of fractionation due to incomplete repair during n frac-

tions of size d (per day) and is calculated for each irradiation fraction. For an

interval of Ik+1, this Deff can be calculated as follows:
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Dk
eff (t) =

d

τ

∫ t

0

e−µ(t−t′)dt′

=
d

τ

[∫ τ

0

+

∫ 2τ+∆τ

τ+∆τ

+ · · ·+
∫ kτ+(k−1)∆τ

(k−1)(τ+∆τ)

+

∫ t

(k−1)(τ+∆τ)

]
e−µ(t−t′)dt′

=
d

τ

[
k−1∑
i=0

∫ (i+1)τ+i∆τ

i(τ+∆τ)

e−µ(t−t′)dt′ +

∫ t

(k−1)(τ+∆τ)

e−µ(t−t′)dt′

]

=
d

τµ

[
k−1∑
i=0

(
e−µ(t−(i+1)τ−i∆τ) − e−µ(t−iτ−i∆τ)

)
+
(
1− e−µ(t−kτ−k∆τ)

)]
.

(5.13)

Consequently, the resulting biological effect Reff after n number of doses is given

by

Reff =

∫ tf

0

(
α
d

τ
+

2βd

τ
Deff

)
dt

=

[∫ τ

0

+

∫ 2τ+∆τ

τ+∆τ

+ · · ·+
∫ nτ+(n−1)∆τ)

(n−1)(τ+∆τ)

](
α
d

τ
+

2βd

τ
Deff (t)

)
dt

= αnd+
2βd

τ

[∫ τ

0

+

∫ 2τ+∆τ

τ+∆τ

+ · · ·+
∫ nτ+(n−1)∆τ)

(n−1)(τ+∆τ)

]
Deff (t)dt

= αnd+
2βd

τ

n−1∑
k=0

∫ (k+1)τ+k∆τ)

(k)(τ+∆τ)

Dk
effdt. (5.14)

Now substituting Equation 5.13 in to Equation 5.14, we get

Reff = αnd+
2βd2

µτ 2

{
n−1∑
k=0

∫ (k+1)τ+k∆τ)

(k)(τ+∆τ)

(
1− e−µ(t−kτ−k∆τ)

)
dt (5.15)

+
n−1∑
k=0

k−1∑
i=0

∫ (k+1)τ+k∆τ)

(k)(τ+∆τ)

(
e−µ(t−(i+1)τ−i∆τ) − e−µ(t−iτ−i∆τ)

)
dt

}
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which gives

Reff = αnd+
2βd2

(µτ)2

{
n−1∑
k=0

(
µτ + e−µτ − 1

)
+

n−1∑
k=0

k−1∑
i=0

(−e−µ(k−i)(τ+∆τ) (5.16)

+e−µ(k−i)(τ+∆τ)e−µτ + e−µ(k−i)(τ+∆τ)eµτ − e−µ(k−i)(τ+∆τ))
}
,

or

Reff = αnd+ 2βd2

{
n

(
µτ + e−µτ − 1

(µτ)2

)
(5.17)

+
1

(µτ)2

n−1∑
k=0

k−1∑
i=0

(eµτ + e−µτ − 2)e−µ(k−i)(τ+∆τ)

}
.

Define φ, g(µτ) and hn(φ) as follows (these definitions are given in Section 5.4 as

well; however, for the sake of clarity it is repeated here):

φ = e−µ(τ+∆τ) (5.18)

g(µτ) = 2

(
µτ − 1 + e−µτ

(µτ)2

)
hn(φ) =

2

n

(
φ

1− φ

)(
n− 1− φn

1− φ

)
.

Using these definitions, Equation 5.17 can be rewritten as,

Reff = αnd+ 2βd2

{
n

2
g(µτ) +

1

(µτ)2

n−1∑
k=0

k−1∑
i=0

(2 cosh(µτ)− 2)φ(k−i)

}

= αnd+ 2βd2

{
n

2
g(µτ) + 2

(
cosh(µτ)− 1)

(µτ)2

) n−1∑
k=0

k−1∑
i=0

φ(k−i)

}
. (5.19)

Using the following simplification,
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n−1∑
k=0

k−1∑
i=0

φ(k−i) =
n−1∑
k=0

k∑
j=1

φj

=
n−1∑
k=0

k−1∑
l=0

φlφ

= φ

n−1∑
k=0

(
1− φk

1− φ

)
=

φ

1− φ

(
n− 1− φn

1− φ

)
=
n

2
hn(φ). (5.20)

Equation 5.19 can be expressed as

Reff = αnd+ 2βd2

{
n

2
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
n

2
hn(φ)

}
. (5.21)

By rearranging Equation 5.21, we obtain the following required simplified form of

Reff as given in the main radiation induced cell-kill model Equation 5.11:

Reff = αnd+ βnd2

{
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
hn(φ)

}
. (5.22)

Although a few similar derivations can be found in the literature [122, 80], none of

them have used this in the context of hyperfractionated/accelerated fractionated

radiotherapy. Some of the limiting cases of this GLQ model are given below.

Limiting Cases of GLQ Model

1. Incomplete repair (IR) model for acute fractionated exposure

Consider the case of n number of acute fractions of dose d, where the frac-
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tionation time τ approaches zero, i.e. as τ → 0

lim
τ→0

g(µτ) = lim
τ→0

2

(
µτ − 1 + e−µτ

(µτ)2

)
= 1 (5.23)

and

lim
τ→0

2

(
cosh(µτ)− 1

(µτ)2

)
= 1. (5.24)

Using these approximations, the GLQ model (Equation 5.22) can be reduced

to,

Reff = αnd+ βnd2 {1 + hn(φ)} , (5.25)

which has the form of the incomplete repair model for acute fractionations.

2. Incomplete repair (IR) model for continuous exposure

As opposed to the above limiting case, now consider a continuous exposure to

radiation beams for a duration of τ where the interval between the fractions

∆τ , approaches zero.

Consider the Equation 5.21,

Reff = αnd+ 2βd2

{
n

2
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
n

2
hn(φ)

}
= αnd+ 2βd2

{
n

2
2

(
µτ − 1 + e−µτ

(µτ)2

)
+2

(
cosh(µτ)− 1

(µτ)2

)
n

2

2

n

(
e−µ(τ+∆τ)

1− e−µ(τ+∆τ)

)(
n− 1− e−µn(τ+∆τ)

1− e−µ(τ+∆τ)

)}
.

Notice
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lim
τ→0

{
n

2
2

(
µτ − 1 + e−µτ

(µτ)2

)
+2

(
cosh(µτ)− 1

(µτ)2

)
n

2

2

n

(
e−µ(τ+∆τ)

1− e−µ(τ+∆τ)

)(
n− 1− e−µn(τ+∆τ)

1− e−µ(τ+∆τ)

)}
=

(
nµτ − n+ ne−µτ

(µτ)2

)
+

(
eµτ + e−µτ − 2

(µτ)2

)(
e−µτ

1− e−µτ

)(
n− 1− e−µnτ

1− e−µτ

)
=

(
nµτ − n+ ne−µτ

(µτ)2

)
+

(
(1− e−µτ )2

(µτ)2

)(
1

1− e−µτ

)(
n− ne−µτ − 1 + e−µnτ

1− e−µτ

)
= n2

(
nµτ − 1 + e−µnτ

(nµτ)2

)
=
n2

2
g(µnτ). (5.26)

Thus,

Reff = αnd+ β(nd)2g(µnτ), (5.27)

which has the form of an IR model for continuous exposure of a total dose of

nd given in a duration of nτ time.

3. Simple linear quadratic model

The above two cases of IR models can be further simplified to obtain a simple

form of the commonly used linear quadratic model.

(a) From the IR model of acute exposure

Consider the Equation 5.25

Reff = αnd+ βnd2 {1 + hn(φ)} ,

when n=1, i.e., when a radiation of dose d is given in a single fraction,

the term h1 = 0 (this term accounts for the repair between the fractions)

and hence, the above equation is reduced to a simple LQ model,

Reff = αd+ βd2, (5.28)
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(b) From the IR model for continuous exposure

The term g(µnτ), denotes the repair of radiation damage within each

fractionation period and if we assume that this repair rate is very small

or µτ < 1, the function g(nµτ) becomes,

g(nµτ) = 2

(
nµτ − 1 + e−µnτ

(nµτ)2

)
= 1 +O(nµτ)3. (5.29)

Using this approximation, Equation 5.27 can be written as,

Reff = α(nd) + β(nd)2, (5.30)

which is again the simple LQ model for a total radiation dose of nd.

5.5 Estimation of Radiobiologic Parameters and

Survival Results

The effects of radiation therapy and resulting survival status are studied here with

the help of Equations 5.3-5.7 using a number of simulations (simulation details are

given in chapter 4).

The treatment of brain tumors with radiation therapy has been an area of in-

tense research activity over the past several decades. Several clinical trials have

been performed to study different radiotherapy strategies on patients with gliomas

(for a review see [10]). Walker et al. [135], analyzed the radiation dose-response

relationship among patients with malignant glioma participating in three succes-

sive Brain Tumor Study Group trials. Radiation doses between 45 and 62 Gy were

administered in 1.7-2 Gy daily fractions, 5 days per week. They reported the sur-

vival curve of patients, demonstrating strong dose dependence. Werner-Waslik et
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al. [139] reported the results of hyperfractionated and accelerated hyperfraction-

ated radiation therapy for patients with malignant gliomas. Radiation therapy was

delivered in two daily fractions, separated by 4-8 hours, 5 days per week. Patients

received either 81.6 Gy in 1.2 Gy fractions, or 54.4 Gy in 1.6 Gy fractions, although

the best survival was obtained for 72 Gy in 2 Gy fractions. Shibamoto et al. [107]

and Nieder et al. [78] also compared hyperfractionated (1.3 or 1.5 Gy, twice a day)

and conventional (1.8 or 2 Gy, daily dose) radiotherapy. The survival results for

these clinical trials are given in Table 5.3. The clinical data from these studies was

used to estimate the radiobiological parameters α and µ and validate the model

predictions.

Using the clinical data of Walker et al. [135], the model is used to simulate

treatment of a malignant glioma with conventionally fractionated radiotherapy up

to a total dose of 60 Gy in 2 Gy daily fractions administered 5 days per week. Firstly

the upper limit of the total number of tumor cells (beyond which the tumor is fatal)

was fixed so that the treatment-free survival was 18 weeks without radiotherapy

[135]. Radiotherapy was assumed to extend survival by 24 weeks [135]. Other

aforementioned clinical data, as well as the details of their radiotherapy schedule

were then used to repeat the same procedure (the upper limit of Ntot is fixed from

Walker et al. [135] data). The numerical simulations are performed to obtain the

best fitted values for the parameters α and µ (α= 0.027 Gy and µ = 0.46 h−1).

The estimated values for α and µ are of the same order as previous estimates

(α = 0.06 ± 0.05 Gy−1 and µ = 0.5 h−1)[94]. However, one should note that this

model is based on the spatio-temporal evolution of tumor cells and, in addition,

incorporates a radiotherapy contribution that has a more general form, applicable to

both conventional and hyperfractionated treatment. As an example, following the

clinical data of Walker et al. [135], the effect of radiotherapy on the total number
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No Paper Fractionation Survival

in months

(Clinical)

Survival

months

(Model)

No of pa-

tients (me-

dian age)

1 Werner-

Wasik

1996

[139]

Hyperfractionated (HF)

1.2 Gy/fr, 2 fr/day, to

A : 64.8 Gy (54 fr)

B: 72.0 Gy (60 fr)

C: 76.8 Gy (64 fr)

D: 81.6 Gy (68 fr)

11.4

12.7

12.0

11.7

10.42

11.13

11.15

12.03

78(53.2)

158(21.2)

86(51.7)

120(51.1)

Accelerated HF

1.6 Gy/fr, 2 fr/day, to

A: 48.0 Gy (30 fr)

B: 54.4 Gy (34 fr)

11.9

10.8

9.03

9.68

168(53.2)

137(53.1)

2 Nieder et

al. 1999

[78]

Conventional fraction

A: 2.0 Gy/fr, 5 fr/w

to 60 Gy

8.0 10.20 32(57)

Hyperfractionation

A: 1.3 Gy/fr,2rac/d,

5day/w to 78 Gy (60 fr)

7.0 11.77 34(57)

Accelerated HF

A:1.5 Gy/fr, 2 fr/d, 5d/w

to 60 Gy (40 fr)

10.0 10.16 92(59)

3 Shibamoto

1997

[107]

Conventional fraction

A: 1.8 Gy/fr to 64.8 Gy

(36 fr)

13.0 10.77 34(53)

Accelerated HF

A: 1.5 Gy/fr, 2 fr/d to

9 Gy (46 fr)

12.5 10.97 33(52)

4 Walker

1979

[135]

Conventional fraction

A : 2 Gy/fr 5d/w to 60 Gy 9.50 10.20 270(54)

Table 5.3: Clinical results and model predictions for survival time
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of cells and the tumor detectable area were simulated and given in the Figure 5.6.

This figure shows that with the administration of radiotherapy it takes about 45.2

weeks for tumor cells to reach the upper limit. On the other hand, since there is a

threshold for detecting the tumor, the visible area reaches fatality in about 22.85

weeks (compared to 24.5 weeks, when the total number of cells is monitored). The

comparison of clinical data and the model predictions is summarized in Table 5.3.

Clearly, there is reasonable agreement between the survival time from clinical data

and numerical simulations.

In agreement with the clinical data, the model predicts that there is no differ-

ence in patient survival between conventional and hyperfractionated radiotherapy

techniques, if the same total dose is administrated (see Tables 5.3 and 5.4). How-

ever, as mentioned in chapter 2, an advantage of hyperfractionated radiotherapy

may be less (late) normal tissue toxicity, thereby allowing higher total doses to be

safely administered. Recent clinical studies have shown that dose escalation up to

81.6 in 1.2 Gy fractions is feasible; however, no statistically significant improve-

ment was observed, compared to the conventional radiotherapy schedule [139, 79].

The given model predicts that administration of a total dose of 81.6 Gy in 1.2 Gy

fractions twice per day (see Table 5.3) should produce the best median survival of

about 12 months (a median survival of 11.7 was observed in the clinical data of

Werner-Wasik [139]). However, the conventional strategy is still the main radio-

therapy schedule used in the treatment of most patients with brain gliomas. More

randomized clinical studies are required to confirm if the use of hyperfractionated

radiotherapy leads to longer survival times for patients with high-grade malignant

gliomas.

Another useful concept in modeling radiation effect, that briefly we discussed

in Chapter 3 is the concept of biological effective dose (BED). This allows an easy
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(a) Total number of tumor cells

(b) Visible area

Figure 5.6: The effect of radiotherapy on the total number of tumor cells and the

visible area of tumor, compared to the control tumor growth (no treatment); t1

and t2 are beginning and ending time of the radiotherapy, respectively
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No Fractionation Dose rate D BED BEDG

1 Conventional A. 2.0Gy/30 frac 60.0 Gy 72.0 Gy 71.64 Gy

B. 1.8Gy/36 frac 64.8 Gy 76.5 Gy 76.11 Gy

2 Hyperfraction A. 1.2Gy/54 frac 64.8 Gy 72.6 Gy 72.79 Gy

B. 1.2Gy/60 frac 72.0 Gy 80.6 Gy 80.87 Gy

C. 1.2Gy/64 frac 76.8 Gy 86.0 Gy 86.26 Gy

D. 1.2Gy/68 frac 81.6 Gy 91.4 Gy 91.66 Gy

E. 1.3Gy/60 frac 78.0 Gy 88.1 Gy 88.41 Gy

3 Accelerated HF A. 1.6Gy/30 frac 48.0 Gy 55.7 Gy 55.89 Gy

B. 1.6Gy/34 frac 54.4 Gy 63.1 Gy 63.34 Gy

C. 1.5Gy/40 frac 60.0 Gy 69.0 Gy 69.24 Gy

D. 1.5Gy/46 frac 69.0 Gy 79.4 Gy 79.63 Gy

Table 5.4: Calculated values for BED and BEDG

comparison of different radiation schedules. If we hypothesize that the biological

effect in tissues is determined by the survival fraction (s.f.) of target tumor cells,

then BED = −ln(s.f.)/α = D(1 + d/(α/β)) for the simple LQ model [40]. A

generalization of BED for the fractionated low-dose-rate radiotherapy, also called

”extrapolated tolerance dose”, is then given by [80],

BEDG = D

{
1 +

d

(α/β)

[
g(µτ) + 2

(
cosh(µτ)− 1

(µτ)2

)
hn(φ)

]}
. (5.31)

An equivalent formulation is also given in Thames and Hendry [122]. For easier

comparison of different radiotherapy schedules, the values ofBEDG are summarized
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Figure 5.7: Comparison of the results for the total number of cells for no-treatment,

temporal targeting, and spatial (GTV and CTV) irradiation

in Table 5.4. The difference between BED and BEDG depends on n and µ. The

estimated value of µ, corresponds to a repair half-time of 1.5 h, the difference, and

hence the effect of fractionated radiotherapy, becomes more significant for higher n.

The use of hyperfractionated radiotherapy without any change in overall treatment

time (for the same total dose) can produce equivalent tumor control but a lower

risk of late toxicity.

In radiotherapy treatments, magnetic resonance imaging is often used to pro-

duce high quality images and locate the gross tumor volume (GTV), or visible

tumor region. In conformal radiotherapy, the radiation is used to kill the cells

within usually a 1-2 cm margin around this GTV. In practice, this clinical tar-

get volume (CTV) usually includes the gross tumor (GTV) plus the surrounding

edema, which is felt to be the region of highest subclinical clonogen density. To

analyze this, the model is used to compare the effects of radiotherapy when applied
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in three different cases: (a) only to the detectable portion of the tumor, (b) an

extended detectable portion (with an extra 2 cm margin), and (c) as temporal (i.e.

no-spatial dependence, where radiotherapy kills all the cells inside or outside the

GTV) targeting. As shown in Figure 5.7, there is a significant difference between

temporal targeting and irradiating only the visible tumor. However, the difference

significantly reduces if radiotherapy is applied to the extended detectable portion

(obtained from numerical simulations by increasing the detectable threshold, see

the section on parameter estimation). This indicates the importance of an ade-

quate consideration of spatial distribution in order to achieve efficient radiotherapy

treatment. This also helps to reduce damage to healthy tissue due to irradiation.

5.6 Combination Therapy

Many of the commonly used chemotherapy drugs have limited activity in malignant

gliomas. However, recent clinical trials indicate that the combination of radiother-

apy and temozolomide have better survival outcomes compared to radiotherapy

alone [115, 114]. Mathematically, the effects of this combination therapy can be

studied by incorporating the radiation induced cell death, R(c, t) and chemothera-

peutic drug, Temozolomide induced cell death, G(c, t) into the heterogenous growth

and invasion model (Equations 4.7-4.10) and hence the model becomes,

∂c(x, t)

∂t
= ∇. (D(x)∇c(x, t)) + f(c)−G(c, t)−R(c, t) (5.32)

with previously defined parameters, initial and boundary conditions.

In one of the clinical trials, Stupp et al. [115] compared patients who received

standard focal radiotherapy alone or standard radiotherapy plus concomitant daily
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Figure 5.8: The clinical (and model) schedule for combination of radiotherapy and

(concurrent and adjuvant) chemotherapy

temozolomide, followed by adjuvant temozolomide. Radiotherapy was given at a

dose of 2 Gy per fraction per day, five days per week over a period of six weeks

(total dose of 60 Gy). In their study, radiotherapy was delivered to the gross

tumor volume with a 2-3 cm margin for the clinical target volume. Concurrent

chemotherapy consisted of temozolomide, given 7 days per week (75 mg/m2 per

day) from the first day to the last day of radiotherapy. Patients then received up

to six cycles of adjuvant temozolomide 5 days a week every 28 days (the dose was

150 mg/m2 for the first cycle and was increased to 200 mg/m2), see Figure 5.8 .

They observed that the addition of temozolomide significantly prolongs the median

survival from 12.1 months (for radiotherapy alone) to 14.6 months.

In the clinical study of Stupp et al. [115] radiotherapy was delivered to the

detectable tumor with a 2-3 cm margin, resulting in a median survival time of 12.1

months for patients who received radiotherapy alone. The reported median survival

time is better than the results of previous clinical trials (for example 9.5 months

in Walker et al. [135]) with the same radiotherapy schedule and better than our

model predictions. This could be because of different densities of tumor cells (for

example in most studies surgery is carried out first, and there may be differences in
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Figure 5.9: The effect of radiotherapy and its combination with (concurrent and

adjuvant) chemotherapy on the total number of tumor cells

the time gap between surgery and postoperative treatments). The difference could

also be due to selection of more favorable patients for inclusion in this study of

combined treatment with radiotherapy and temozolomide. Nevertheless, for simu-

lation proposes, the previously estimated parameters were used and the radiation

therapy was considered to be given conventionally (2×30 Gy), where irradiation is

now only applied to the clinical target volume (detectable tumor with a margin of

about 2 cm, corresponding to a threshold of 30 cells/mm2).

As explained in Section 5.3.1, Temozolomide shows linear pharmacokinetics with

the area under the concentration time curve (AUC) increasing in proportion to

the dose. Hence, a simple log-kill model is used here to model the the effect of

temozolomide on cancer cells and the parameter k is fixed in such a way that the

addition of chemotherapy (given in exactly the same schedule as Stupp et al. [115],

see Figure 5.8) produces a benefit of a 2.5 months increase in the median survival
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Figure 5.10: Comparing combination of radiotherapy and the concurrent/adjuvant

chemotherapy with combination of radiotherapy and neo-adjuvant/adjuvan

chemotherapy

time. Since the dosages are not the same for concurrent and adjuvant chemotherapy

in the clinical study, we assume that the killing rate k is proportional to 200 mg/m2

dosage, then the other dosages are the appropriate fractions of k. The result of

simulations for the total number of cells is given in Figure 5.9. A single course of

fractionated radiotherapy produced a delay of 9.7 months (this is different from the

model prediction reported in Table 5.3, because irradiation was applied temporally,

i.e. no-spatial dependence for the irradiation, compared to the current case where

irradiation is only applied to the CTV). The addition of temozolomide increases

the median survival to 12.2 months, i.e. a benefit of 2.5 months as observed in the

clinical study.

The results of recent clinical trials have proposed the combination of radiother-

apy and chemotherapy (temozolomide) as the new standard postoperative treat-
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ment for most patients with brain tumor [36, 115, 114, 70]. However, the optimal

sequencings of these treatments is not yet clear. Thus, in the next stage, the model

is used to study the results for different sequencing of treatments. To compare the

results, the same doses of radiotherapy and chemotherapy are applied by changing

their order of applications.

The simulations were then performed for combinations of radiotherapy and neo-

adjuvant plus adjuvant chemotherapy and these results were compared against the

previous case of concurrent plus adjuvant chemotherapy. As shown in Figure 5.10,

the model predicts that sequencing neo-adjuvant chemotherapy, and radiotherapy

followed by adjuvant chemotherapy is a better strategy than the case when the

first course of chemotherapy is given concurrently. A possible reason is that ra-

diotherapy kills most of the cells in the target tumor volume, and hence, concur-

rent chemotherapy mainly affects invasive cells. On the other hand, neo-adjuvant

chemotherapy affects (temporally) all the cells and then radiotherapy can kill the

remaining cells in the target area. Although the model prediction does not show a

significant difference, the combination of radiotherapy with neo-adjuvant and ad-

juvant chemotherapy produces less toxicity than the combination of radiotherapy

with concurrent and adjuvant chemotherapy. More clinical studies are required to

validate this prediction.

5.7 Short Summary

In this chapter, we used a spatio-temporal mathematical model, based on reaction-

diffusion processes, and used the logistic growth function for the tumor growth ki-

netics. Radiotherapy was included as a generalized linear quadratic model, and the

log-kill hypothesis was used to study the effects of chemotherapy [93]. The model
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is then used to study fractionated and hyperfractionated radiotherapy schedules.

The results of numerical simulation were compared to available clinical data to

estimate radiobiologic parameters and to validate model predictions. The spatio-

temporal nature of the model is used to study the effects of radiotherapy when

applied to a tumor site with different margins. The results showed that there is

a significant difference between irradiation of the detectable portion and the ex-

tended portion, where the effect of the latter is comparable with temporal target-

ing (giving radiation to the whole tumor). Finally, the combination of radiotherapy

and (neo-adjuvant, concurrent, and adjuvant chemotherapy) were also analyzed us-

ing the mathematical model. The results of numerical simulations showed that

neo-adjuvant chemotherapy, then radiotherapy followed by adjuvant chemotherapy

could be a better strategy (producing less toxicity) than the concurrent application

of radiotherapy and chemotherapy followed by adjuvant chemotherapy. More clini-

cal studies are required to compare different schedules of combined therapy and to

validate the model predictions.

Although this spatio-temporal model gives satisfactory agreement with respect

to the clinical data, one of the main drawback of this model is that it ignores the

details of the tumor microenvironment. In the literature, there is much experi-

mental evidence that shows the importance of tumor microenvironmental factors

in the successful application of various therapeutic strategies, especially radiation

therapy. Among many, the most prominent aspects of the tumor microenvironment

that influence the treatment and hence, the survival rates of patients are: hypoxia

and high interstitial fluid pressure. In the following chapters, we will consider these

microenvironmental factors and study how they affect therapeutic response.
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Chapter 6

Hypoxia: Modeling, Estimation

and its Effects on Cancer

Treatments

6.1 Introduction

Tumor hypoxia is considered to be an important factor in tumor progression, which

may affect the aggressiveness of tumors as well as metastatic and invasive poten-

tial of cancer cells [120, 132, 13]. It is also well-documented that the oxygenation

dynamics in tumors strongly influences the response of cancer cells to treatments,

particularly radiation therapy, to which hypoxic cells are more resistant than their

normoxic counterparts [120]. A proper assessment of the distribution of hypoxia

within a particular tumor before beginning therapy can highly affect the treatment

outcome. Although there are several clinical protocols in practice to estimate the

oxygenation status of tumors, most of these methods are invasive and their accuracy
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might be limited by a number of factors such as location, stage, tumor heterogene-

ity, sampling strategy etc. An alternative approach to estimate tumor hypoxia

is through theoretical simulations that incorporate knowledge of various measur-

able parameters supplemented by data obtained from other non-invasive clinical

protocols. The formulation of one such theoretical method, with possible clinical

applications, to quantify the hypoxia within a tumor and to study its influence on

the response of radiotherapy is the main aim of this chapter [92].

In particular, this chapter has the following objectives. 1) to model tumor

hypoxic conditions using a simple mathematical model which takes into account

known spatial distributions of tumor vasculature (to this end, we use two-dimensional

images of eight human glioma xenograft cross sections, which have been stained for

the markers of perfusion, hypoxia and vasculature [99]); 2) to quantify hypoxia

using simulated needle electrode measurements and compare results to the hypoxic

fraction of cells as determined by calculating the hypoxic area; 3) to study the ef-

fects of needle electrode probe positions and probe directions using three different

approaches (uniform, random, and radial); 4) to define the optimum number of

needle measurement tracks in order to effectively quantify hypoxia in tumor tissues

and 5) to evaluate the effects of hypoxia on radiation response.

6.2 Modeling Hypoxia

In the literature, there have been numerous theoretical approaches to model hy-

poxia and its effects on growth and control of tumors. A detailed discussion about

these previous models are given in Section 3.3. Most of these approaches have

modeled hypoxia by ignoring significant information, hence making it difficult, if

not impossible to apply these models in clinical scenarios. Among many, one of

92



6.2. MODELING HYPOXIA

the more important factors that has been neglected to date in many models in

determining the oxygenation status is the application of patient (tissue)-specific

vascular distributions, which might be obtainable non-invasively through various

current imaging techniques.

6.2.1 Computational Domain and Initial Distributions

To illustrate the usefulness of imaging techniques in the quest to satisfactorily model

tumor hypoxia, we have used eight, two dimensional binary images of human glioma

xenograft cross sections as computational domains on which a system of partial

differential equations governing tumor growth and oxygen distribution are solved.

These images, capturing perfusion, vascular structures and hypoxic regions (see

Figures 6.1 - 6.2), serve as typical examples of tumor microenvironments. Rijken et

al. [99] processed (details, as well as similar images, are presented in [99]) each of the

eight cross sections through multiple staining and functional microscopic imaging

techniques; sequential scanning of these processed tumor sections was then used

to obtain the binary images on perfusion, vascular structures and hypoxic regions.

They used these images to quantify and study the spatial relationship between

perfused vessels and hypoxia [99].

Tumor hypoxia is often characterized by the existence of an abnormally struc-

tured and malfunctioning vascular distribution within the tumor [133]. There is

experimental as well as theoretical evidence which supports the idea of this interde-

pendence between the spatial distribution of the vasculature, perfused vasculature

and tumor hypoxia [99, 104]. In the present model, the perfused vascular network

is assumed to be correlated with the heterogenous distribution of hypoxia. Hence,

the perfused vasculature is considered to be the source of oxygen supply and thus
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(a) Vessels (b) Perfusion

(c) Hypoxia (d) Tumor mask

Figure 6.1: Binary images of a glioma xenographt cross section, illustrating tumor

blood vessels, perfused vessels, hypoxic area and total tumor area respectively (set

1)
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(a) Vessels (b) Perfusion

(c) Hypoxia (d) Tumor mask

Figure 6.2: Binary images of a glioma xenographt cross section, illustrating tumor

blood vessels, perfused vessels, hypoxic area and total tumor area respectively (set

2)
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gives the initial spatial distribution of oxygen concentration. Along this perfused

vasculature, the initial oxygen distribution is also varied to analyze its effects on

intra-vascular hypoxia. This perfused vascular network (at a fixed point in time)

is obtained by combining the images of perfused areas (Figure 6.1b) and vascular

structures (Figure 6.1a) using the logical ”AND” operation [99] (Figure 6.3). The

images of hypoxic regions (Figure 6.1c) are later used to compare the simulated

hypoxic area and thus to validate the mathematical model. The total tumor area

is estimated from the binary image representing the tumor mask (Figure 6.1d).

6.2.2 Mathematical Model for Hypoxia

Mathematically, most of the attempts to simulate hypoxia were mainly done by

using a simple reaction-diffusion equation for oxygen distribution that represent

the temporal and spatial changes in the oxygen and tumor cell concentrations [59,

33, 104]. If K(x, t) denotes the oxygen concentration at x position and time t, then

its rate of change can be expressed as [59],

∂K(x, t)

∂t
= ∇. (Dk(x)∇K(x, t)) + rmp(x, t)− ηK(x, t)− φc(x, t), (6.1)

where Dk(x) is the diffusion coefficient (for simplicity as well as due to the lack of

information from the biopsies, the tissue is considered to be homogenous in terms of

its tendency to permit diffusion and thus we take Dk(x) as constant), φ is the rate

of oxygen consumption by cells and η denote the rate of decay (assumed to be zero

in the numerical simulations). Here, mp(x, t) stands for the density of the perfused

vessels (in simulations, after the discretization of Equation 6.1, mp considered to be

equal to 1 where the perfused vessels are present and zero otherwise); thus the term

rmp(x, t) describes the production or supply of oxygen, where r gives the supply

rate. The formulation of the model is completed by prescribing boundary conditions
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(a) Vessels (b) Perfusion

(c) Perfused vessels

Figure 6.3: Combining the images of vessels and perfusion to obtain perfused vas-

culature
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and an initial condition (the initial spatial distribution of oxygen as determined

from the image of perfused vasculature where the assumed intravascular oxygen

distribution was prescribed only within this perfused vascular network). Here, since

the focus is on simulating an instantaneous oxygen distribution map for a given

vascular distribution, the real time evolution of the equations is not considered but

rather a computational time that allows one to reach a steady state-like condition

for oxygen distribution is used (details are give in following sections).

Similarly the temporal and spatial rate of change of cell concentration is con-

sidered to be the a net result of diffusion and proliferation. If c(x, t) denotes the

the density of the cells at position x at time t then,

∂c(x, t)

∂t
= ∇. (Dc(x)∇c(x, t)) + f(c) + γmp(x, t)c(x, t). (6.2)

Here, Dc(x, t) is the diffusion coefficient of tumor cells and f(c) describes their

growth given by the more general case of logistic growth, i.e. f(c) = ρc(x, t)(1 −

c(x, t)/clim), with clim denoting the carrying capacity. The third term denotes

the effect of the vascular network on the growth of the cells. As above, a no-

flux boundary condition and an initial condition which defines the initial spatial

distribution of tumor cells (assumed to be a Gaussian distribution) are used to

complete the model formulation. The parameters are given in Table 6.1.

To generate the tissue-specific oxygen distribution, numerical simulations for

each cross section are performed in MATLAB, using explicit finite difference meth-

ods (details are given in Section 4.5). Firstly, the simulation is carried out using

Equation 6.2 over the image of the tumor cross section (tumor mask) (Figure 1d).

This is done without the oxygen profile in order to obtain a distribution of tu-

mor cells across the entire boundary. Once the tissue is generated, simulations are
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Parameters Symbol Value Reference

Diffusion constant for oxygen Dk 2.5× 10−5 (cm2s−1) [71]

Rate of oxygen supply r 8.2× 10−3 (O2s−1) [71]

Cellular oxygen consumption∗ φ 3.8× 10−13 (cm2 O2s−1(cells)−1) [105]

Diffusion constant for cells Dc 4.05× 10−9 (cm2s−1) [59]

Proliferation rate ρ 1.85× 10−6 (s−1) [59]

Carrying capacity clim 2.1× 1011 (cells s−1) [92]

Cellular growth rate γ 2.96× 10−6 (s−1) [59]

(effect of vasculature)

Table 6.1: Numerical values of the parameters used in hypoxia model (∗ Assuming

mass of 1 cell = 10−9 grams)

again carried out after coupling it with the model for oxygen concentration (Equa-

tion 6.1) to obtain the spatial map of oxygen concentration. One can then estimate

the tissue hypoxia using this spatial distribution of oxygen concentration. The fol-

lowing sections in this chapter will illustrate various ways by which the hypoxia is

quantified.

6.3 Estimation of Hypoxia

The oxygenation status of a heterogeneous tumor is often quantified using polaro-

graphic electrode measurements or through nitroimidazole binding and biopsies.

These invasive techniques often have varying accuracy due to the restricted sam-

pling space as well as limited accessibility. Here, hypoxia is quantified from the

simulated model using two different methods: by calculating the percentage of
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(a) Oxygen distribution (Color bar indicates the percentage

of oxygen )

(b) Hypoxia distribution

Figure 6.4: Model simulated oxygen distribution as well as hypoxia
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the total tumor section area that is hypoxic, and through needle electrode mea-

surements (both simulated). These results are then compared to the measured

percentage of hypoxic area as determined by pimonidazole staining (see Figure 6.1c

for an example) – it should be noted that such data are used for the purposes of

comparison and validation only and are not required by the model.

6.3.1 Percentage of Hypoxic Area

Standard clinical definitions used in quantifying hypoxia involve measuring the

percentage of total biopsy area that falls below some specific staining threshold.

This staining threshold usually depends on a number of different factors such as

the binding properties of the hypoxia marker, intensity of staining detection, image

capturing and processing techniques, and image noise [57]. However, for comparison

purposes, it is assumed that these staining thresholds correspond to that of 10 mm

Hg, 5 mm Hg and 2.5 mm Hg.

Percentage of hypoxic area =
Hypoxic area (area ≤ threshold)

Total area
100.

Our interest lies in finding the spatial distribution of hypoxia at a snapshot in time

that will result from a particular distribution of perfused vessels and intravascular

O2 concentrations, rather than tracking the time-evolution of hypoxia. Yet it takes

some computational (dimensionless) ‘time’ to arrive at this snapshot from our initial

domain (recall that we begin the computation on a domain in which only the

vasculature has non-zero oxygen concentration). As computational time proceeds

(that is, as the number of iterations increases), the local oxygen concentrations

increase and thus, in order to avoid dependence of our hypoxia quantification on

computational time, we require a definition of hypoxia that considers relative, rather

than absolute, quantities.
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Figure 6.5: Comparison of hypoxic proportions (HP10) at three different time levels

Since the blood vessels act as the source of oxygen, it is assumed that (for

computational convenience), at any time t, the maximum oxygen concentration

value among all grid points represents the hundred-percent oxic condition in that

tumor microenvironment. A square grid area is defined as hypoxic with a threshold

level of 10 mm Hg (HP10), if its average oxygen content is below 10 percent of the

maximum oxygen concentration value, i.e;

Threshold level of HP10 = max
x

(K(x, t))
10

100
. (6.3)

This definition yields a consistent hypoxic fraction at any computational time once

the oxygen concentration in the model is reasonably diffused. In other words, this

quantity achieves a steady state condition for oxygen concentration, which is what

we require since we are estimating hypoxia according to a fixed spatial distribution

of vasculature. Similar definitions hold for the remaining two threshold levels. The
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sensitivity of this hypoxic criterion is analyzed by comparing the values of HP10

at different computational times (non-dimensional) and it is found that, for both

theoretical measurement approaches, the hypoxic proportions estimated are similar

for each time (Figure 6.5). This supports the validity of our hypoxic definition,

since a given tumor microenvironment with a fixed vascular network (fixed in the

sense that we consider timescales too small to permit changes in perfused vascular

geometry) should yield an approximately fixed hypoxic proportion over these small

time intervals.

6.3.2 Simulated Needle Electrode Readings

In clinical settings, a polarographic needle electrode is often used to measure the

oxygen partial pressure. To estimate oxygen tension, the electrode needle is moved

through the tissue to take a series of measurements along linear tracks 2-3 cm in

length. Usually, 2-6 tracks of 20-30 measurements are performed to sample the

oxygenation status of the entire tumor [142]. Due to the relatively large diameter

of the needle, the values collected by such measurements usually account for the

collective oxygen concentration of a certain volume of tumor cells around the tip of

the electrode rather than a single cell. Taking this into consideration, Toma-Dasu

et al. [125] developed a mathematical model that describes the response function

of the electrode due to this measuring volume which is approximately 6 cell layers

in radius. However, in the present model, the average diameter of the tumor cross

sections is 6 mm, which is larger than the domain considered by Toma-Dasu et al.

[125] to illustrate the response function. Therefore, for simplicity it is assumed that

(i) each electrode measuring point in the computational domain represents a group

of cells (5 to 6 cells with a diameter of 10- 12 µm, each) rather than a single cell

and (ii) the value of oxygen concentration at the point of measurement represents
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the average oxygenation status of the group of cells constituting that point.

In practice, the oxygen partial pressure measurements are taken using a needle

electrode by moving it 1 mm forwards followed by 0.3 mm backwards to relieve the

tissue pressure on the sensor membrane that might falsely indicate hypoxia. How-

ever, here, the needle electrode measurements are made by reading the simulated

oxygen concentration value at 0.2 mm intervals along the track since our domain

of simulations is a square grid of the size 6 mm. Six tracks of 20-30 measurements

each are performed and the percentage of readings less than the threshold levels

HP10, HP5 and HP2.5 (with the thresholds described in the previous section) are

calculated for each of these six tracks,

Percentage of hypoxia =
No. of readings less than the threshold

Total number of readings
100.

(for electrode)

In order to study the spatial variation of oxygen readings within each tumor, these

measurements are repeated by choosing the needle track uniformly (needle tracks

are equidistant and parallel to each other), randomly or radially (tracks are selected

in a clockwise manner but only between 10 o’clock and 2 o’clock), based on the

assumption that the tumor is accessible only from one side (Figure 6.6). The

results of simulated needle electrode measurements as well as previously explained

percentage of hypoxic area are analyzed and compared in detail in the following

sections.

6.3.3 Comparison of Simulated Hypoxia Estimates

Herein, the discussions are made by considering definitions of hypoxia corresponding

to three different commonly considered threshold levels, i.e. mild (HP10), moderate
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(a) Uniform (b) Random

(c) Radial

Figure 6.6: Different needle electrode reading methods (for random approach, only

one realization is shown)
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Figure 6.7: Comparison of hypoxic proportions at mild (HP10), moderate (HP5)

and severe (HP 2.5) hypoxic levels

(HP5) and severe (HP2.5) hypoxic conditions. The percentage of total area that

is hypoxic and the percentage of hypoxic readings (as determined by simulated

needle electrode measurement) are then calculated with respect to these hypoxic

thresholds and are compared against the known hypoxic proportions to study the

accuracy of both the mathematical model and the probing techniques. The HP10,

HP5 and HP2.5 hypoxic fractions for one tumor cross section are shown as box

plots in Figure 6.7.

The hypoxic proportion as estimated from the original image is shown in yellow;

note that it is same for all the three threshold values (since the data is available only

as binary images). The red and green boxes represent hypoxia simulated by the

computational model, which is quantified by estimating the percentage of the total

area that is hypoxic and through simulated needle electrode measurements, respec-
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Figure 6.8: The graph shows HP5 estimations for eight tumor cross sections using

three different needle measurement approaches. (Yellow - percentage of hypoxic

area from the original image, red- percentage of hypoxic area from model and green

- HP5 estimation using needle electrode)
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Sample Vessel Hypoxic Threshold Simulated Polarographic electrode

area (%) area (%) area (%) Uniform Radial Random

45.2698

10 mm Hg 74.4811 76.4479 77.0833 82.9545

1 8.1581 5 mm Hg 62.9988 67.5676 66.1458 67.6136

2.5 mm Hg 52.2262 57.1429 56.7708 57.3864

46.4672

10 mm Hg 52.747 55.4217 60 57.8035

2 15.4913 5 mm Hg 38.1339 38.1526 49.2308 45.0867

2.5 mm Hg 27.6017 25.3012 42.0513 29.4798

52.0705

10 mm Hg 37.9127 42.5197 44.4444 43.9759

3 20.1725 5 mm Hg 24.1618 27.9528 27.2727 28.3133

2.5 mm Hg 15.1108 18.5039 17.6768 19.8795

40.7278

10 mm Hg 49.531 53.4188 59.6685 61.6352

4 15.6967 5 mm Hg 30.6814 38.0342 41.4365 45.283

2.5 mm Hg 18.8948 27.3504 26.5193 28.9308

61.5296

10 mm Hg 78.0461 79.7414 82.0652 81.6456

5 7.4916 5 mm Hg 67.4953 70.6897 71.1957 73.4177

2.5 mm Hg 58.236 61.6379 61.413 65.8228

30.6596

10 mm Hg 58.5982 61.4108 67.3575 57.8035

6 12.3227 5 mm Hg 44.3564 47.3029 54.9223 45.6647

2.5 mm Hg 33.3875 34.8548 44.0415 35.2601

46.0116

10 mm Hg 67.8908 72.6496 70.5882 74.0506

7 10.0978 5 mm Hg 55.286 60.2564 58.2888 62.6582

2.5 mm Hg 45.0228 48.7179 49.7326 49.3671

45.9818

10 mm Hg 57.7553 63.7405 61.6915 62.7119

8 13.3327 5 mm Hg 41.0636 48.855 44.2786 40.113

2.5 mm Hg 28.7652 33.2061 28.8557 28.8136

Table 6.2: Simulated and experimental hypoxic estimations
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tively. It can be seen from figure (Figure 6.7) that, in the case of HP2.5, the pro-

portion of model-generated hypoxia is in reasonable agreement with the proportion

determined from the original images (a result that is consistent across the remain-

ing samples of tumor cross sections). It should be noted that the available binary

image of hypoxic area (Figure 6.1c) corresponding to our computational domain

(obtained through biomarker staining and sequential scanning) allows us to esti-

mate hypoxia (for comparison purposes) only at a single threshold level and hence

we do not expect to see agreement across all three threshold levels in Figure 6.7.

As mentioned earlier, these binary images of the hypoxic area reflect a number of

factors relating to tissue preparation, staining absorption, staining threshold, image

acquisition and image brightness, and in many experimental studies [57, 95, 56, 65]

it has been observed that the intensity of hypoxic marker binding increases with in-

creasing levels of hypoxia. According to Raleigh et al. [95], pimonidazole bindings

usually occur at levels less than 10 mm Hg, and the half-maximal pimonidazole

binding occurs around 2 mm Hg. Raleigh et al. [95] also showed that HP10 mea-

surements with pO2 needle electrodes correlate with pimonidazole binding surface

area with a systematic offset of 36%, and this offset is smallest for HP2.5 (18%),

which is consistent with this vasculature specific model predictions.

Table 6.2 shows the comparison between simulated and experimental hypoxic

estimations at three different threshold levels. Overall, the best agreement between

the simulated and measured values is for a simulation threshold of 5 mm Hg. How-

ever, a 5 mm Hg threshold significantly over-estimated hypoxia in some samples

and under-estimates it in others. On the other hand, a threshold of 2.5 mm Hg

provides very good correlation with measured values in four of the eight tumors

samples and underestimates hypoxia in the other four. This difference between

the simulated and higher measured values may be either due to 1) a component of
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Figure 6.9: Changes in hypoxic proportions due to the variations in initial intra

oxygen distributions (Here, the X- axis represents the initial oxygen distribution:

1) zero everywhere, 2) uniformly distributed along the perfused vessels (100 mm

Hg), 3) random perfusion with O2=100 mm Hg along perfused vessels 4) randomly

distributed (ranges from 0 to 100 mm Hg) along the perfused vessels and 5) random

perfusion with random distribution of O2 along the perfused vessels, see Table 6.3)

superimposed acute hypoxia, and/or 2) higher oxygen consumption than used in

the simulations. Moreover, the samples (Sample 2, 3, 4 and 8) that underestimate

hypoxic area have a relatively higher vascular area, as compared to the other four

samples. This indicates the presence of acute hypoxia, which we might not be able

to quantify using this present model.

Intra-vascular Hypoxia

To study intra-vascular hypoxia, five different initial oxygen configurations are used

to simulate the tumor hypoxia. They are; (a) zero everywhere, (b) uniformly high
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Table 6.3: Initial O2 along perfused vasculature

Cases (X axis) Initial O2 along perfused vasculature

Initial Value Spatial distribution

1 0 mm Hg Uniformly distributed

2 100 mm Hg Uniformly distributed

3 0 or 100 mm Hg Randomly distributed

4 0 mm Hg<O2≤100 mm Hg Randomly distributed

5 0 mm Hg≤O2≤100 mm Hg Randomly distributed

pO2 along the perfused vessels (100 mm Hg), (c) randomly distributed (ranges from

0 to 100 mm Hg) along the perfused vessels. The effects of random perfusion is also

included in estimating hypoxia by randomly closing the vessels in the cases (b) and

(c) (see Table 6.3).

The change in hypoxic proportions (HP10, HP5 and HP2.5) due to the variations

in oxygen concentration and intra-vascular distribution is shown in Figure 6.9. The

results (Figure 6.9) show that these changes in the hypoxic proportions are within

a comparable range with an overall error of 6.5 % . Thus, the model is (to some

extent) robust, in that it does not produce large variations in the final distribution

of hypoxia by varying the initial intra-vascular oxygen distribution. However, a

sensitivity analysis of the parameters that denote the production or supply (r )

and consumption (φ ) of oxygen concentration showed that the consumption as

well as perfusion of oxygen plays a vital role in defining local tissue oxygenation

as compared to the oxygen supply (thus justifying the invariant results of intra-

vascular hypoxia), which is consistent with the results of Dewhirst et al. [38] (see

Figures 6.10, 6.11 and 6.12). Furthermore, this is an inherent feature of the present
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Figure 6.10: Change in hypoxia as a function of supply rates of oxygen

model which can be easily deduced mathematically through a steady state analysis

of the equation governing oxygen concentration (Equation 6.1).

Under steady state conditions, oxygen concentration K(x, t) can be written as,

rmp(x, t)− ηK(x, t)− φc(x, t) = 0

=⇒ K(x, t) =
rmp(x, t)− φc(x, t)

η
(6.4)

K(x, t) =

Delivery︷ ︸︸ ︷
rmp(x, t)−

Consumption︷ ︸︸ ︷
φc(x, t)

η
(6.5)

Here, the consumption of oxygen is a function of the density of tumor cells

while the delivery is a function of the density of perfused vasculature. Since the

concentration and distribution of tumor cells is much higher than that of vascu-
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Figure 6.11: Change in hypoxia as a function of consumption rates of oxygen

Figure 6.12: Change in hypoxia as a function of consumption and production rates

of oxygen
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lar distribution, the consumption rate plays a vital role in determining the tissue

oxygenation status, as shown in Figure 6.12.

Spatial Correlation of Hypoxic Area

The accuracy of the simulated hypoxic distribution is analyzed by calculating its

spatial correlation with respect to the biomarker estimated hypoxia. Here, the

spatial correlations are obtained by comparing the pixel by pixel values of the

original binary images of hypoxia with the binary images of simulated hypoxic area

(see Figure 6.13). The results given in Table 6.4 show that the model gives a

satisfactory prediction of the spatial distribution of hypoxia since the correlation

factor lies within the rage of 75 to 85 %.

Figure 6.8 illustrates model-obtained hypoxia estimates with the HP5 threshold

for eight different tumor cross sections, using three different methods of simulated

needle electrode tracking (namely, the uniform, radial, and random methods, de-

picted in Figure 6.6). As can be seen from the graph, these three methods of needle

tracking give similar results and all are in good agreement with the simulated es-

timates of hypoxia found by calculating the percentage of the total area that is

hypoxic. This supports the general opinion that polarographic electrodes give rea-

sonable estimates of tumor oxygen status, and in fact, many researchers consider

this to be the “gold standard” method for characterizing hypoxia in human tu-

mors [75, 89]. However, it should be noted that these simulated needle electrode

measurements are not subject to instrumental error, which is inherent in practice.
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Table 6.4: Spatial correlations of hypoxic area

Sample HP 2.5 HP 5 HP 10

Sample 1 77.6738 73.8076 68.3374

Sample 2 81.1242 79.7579 74.8348

Sample 3 80.701 83.1489 81.847

Sample 4 87.6884 85.6093 78.3471

Sample 5 73.3323 71.2458 68.0627

Sample 6 80.498 74.8546 66.3771

Sample 7 75.8521 71.6368 65.637

Sample 8 76.2209 73.0056 66.1667

(a) Simulated hypoxia (b) Original hypoxia

Figure 6.13: Spatial correlation of hypoxic area at HP 2.5 level
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6.4 Statistical Analysis - Analysis of Variance

The total variance in sampling the oxygenation status is the combined effect of

within tumor variance and between tumor variance. While the difference in the

tumor samples (patients) contributes to the between tumor variance (a more het-

erogenous sample may result in more variation in group means), the difference in

the location of the probe and hence, the measurements determine the variations

within each tumor sample. Measurement of tumor pO2 is considered to be a pre-

dictive outcome assay only when the within-tumor pO2 variability is smaller than

the variability among different tumors [15]. This variability is usually analyzed

using a statistical method known as “analysis of variance (ANOVA)” (or variance

components analysis) and this can be studied with respect to the number of nee-

dle tracks or various hypoxia estimation techniques. Since the differences between

three different needle tracking approaches are not clearly evident from the above

results (Figure 6.8), a variance components analysis (ANOVA) is performed here to

compute the within- and between- tumor variability of needle electrode measure-

ments.

Similar analysis comparing the variability of different oxygen measurements

have been carried out in numerous experimental studies [14, 15, 142, 81]. One may

use this kind of analysis when the assumption that the error terms are normally

distributed holds; hence, before using this method to estimate the variances, the

simulated data was analyzed to confirm that the errors approximately follow a nor-

mal distribution (Figure 6.14). The variances were then calculated using statistical

software (MATLAB/SAS), and variability expressed in terms of percentage of total

variance.

Here, this statistical analysis is used with two purposes in mind. Firstly, to
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Figure 6.14: An example of QQ plot through which the normality of the data is

analyzed

consider the fraction of within-tumor variance (relative to total variance) associ-

ated with each additional needle needle tracks in an effort to predict the optimum

number of tracks required for satisfactory estimation. This is done by computing

the ratio of within tumor variance over the total variance for each reading method

(uniform, random and radial) [142] and is repeated for each additional track to

compare the effects of the number of tracks on simulated pO2 estimates. Secondly,

to determine the best tracking pattern by considering the fraction of variability be-

tween two different estimation methods of hypoxia (simulated percentage hypoxic

area and needle electrode measurements) among the tumor samples (relative to

total variance). Note that, here, the simulated hypoxic area estimate is assumed

to give an accurate description of hypoxic status since it gives an exact area under

a certain threshold.
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Percentage of total variance
Needle measurements

=
Var(Within tumor)

Var(Between tumor) +Var (Within tumor)
100

Percentage of total variance
Estimation methods

=
Var(Between methods)

Var(Between tumor) +Var (Between methods)
100

6.4.1 Needle Electrode Measurements -An Optimum Strat-

egy

The variance analysis (Figure 6.15a) shows that the percentage of total variance

due to the variance within a tumor is small for the random approach compared

to radial and uniform approaches, whereas the uniform method of tracking has

the maximum contribution of within variance to the total variance. However, this

analysis may not necessarily permit one to conclude that the random approach

is better than the other methods for estimating hypoxia, but rather may just be

representative of the fact that this tracking method produces less spatial variation

among electrode tracks. Moreover, this minimal variation in the case of the random

approach is mainly due to the fact that the readings represent the average of a large

number of realizations. The differences among the three different needle tracking

approaches are further studied with variance analysis by calculating the percentage

of total variance (between estimation methods plus between tumor sections) due

to the variations between two different estimation methods (i.e. by finding the

hypoxic area and through the needle electrode method). This is repeated for all

three sample electrode tracking approaches and the results are shown in Figure

6.15b.

It is clear from Figure 6.15b that the contribution of variations between two dif-

ferent methods of quantifying hypoxia (specifically, the area approach and electrode
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(a) The percentage of total variance due to within tumor variance, as a

function of number of tracks

(b) The percentage of total variance due to the variance between two

methods of hypoxia estimation for three different electrode measurements

approaches

Figure 6.15: The variance analysis of electrode measurements
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sampling method) to the total percentage of variations is much higher in the case

of the radial method than for other tracking strategies. This implies that the radial

method of electrode sampling is less accurate in sampling hypoxia than the other

two approaches even though it has only small variations in within-tumor measure-

ments (Figure 6.15b). This may be due to the manner in which the needle tracks

are selected in the radial position: here, it is assumed that the tumor is accessible

only from one side of the sample (as would likely be the case in situ), reaching the

whole tumor (Figure 6.6c), and so all six tracks are situated between the 10 o’clock

and 2 o’clock positions. This dictates that the needle tracks be close to each other,

resulting in a smaller effective sampling area which in turn makes the variations

within the tumor smaller and variation between the estimation methods higher. To

verify this inference, another theoretical tracking approach has been introduced,

for which it is assumed that the tumor is accessible from all the o’clock directions

(Figure 6.6d), from 9 to 3 o’clock positions, which is named as radial (full circle),

and compared this against the above results of the radial approach (Figure 6.16).

It can be seen from the figure that when the sampling area is increased by spread-

ing the tracks across a greater proportion of the ‘circle’, the percentage of total

variance due to the variance of within-tumor measurements is also increased while

the contribution of between-methods variance to the percentage of total variance

decreased - although it did not decrease to a value as low as that for the uni-

form approach. Hence, it might be reasonable to conclude that a uniform spacing

of electrode tracks gives a good sampling of the hypoxic proportion of the tumor

cross-section compared to the other methods considered.

The variance analysis of needle electrode measurements (Figure 6.15a) also

shows that the percentage of total variance due to within-tumor variance is de-

creased with an increase in the number of needle tracks and that this decrease is
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Figure 6.16: Variance comparison between two different types of radial approaches

minimal when the number of tracks is increased from four to five. Thus, the (minor)

statistical benefits of increasing the number of tracks beyond this point are likely

to be offset by the disadvantages of increased invasiveness. This indeed brings us

to the same conclusion rached by Wong et al. [142] for the case of cervical cancers

– with polarographic measurement data, the authors determined that “five mea-

surements with 20-30 measurements per track is optimal to sample a cervix cancer

to obtain a reliable and reproducible oxygenation status of the tumor”[142].

6.5 Effect of Hypoxia on Radiation Response

The oxygenation status of a tumor is generally considered to be an important

intrinsic factor in determining radiation response, where viable hypoxic cells are

121



6.5. EFFECT OF HYPOXIA ON RADIATION RESPONSE

more resistant to radiation than well-oxygenated cancer cells [120]. It has been

observed that the hypoxia usually acts as a dose limiting factor in the case of

radiation therapy, requiring a higher radiation dose to obtain the same radiation

damage as that of a well oxygenated tumor. In a tumor, spatial distribution of

the vasculature, as well as the diffusion and consumption process make the oxygen

distribution very heterogeneous (spatially and temporally) in nature, resulting in a

wide range of radiation sensitivities. Hence, the hypoxia-dependent limitations of

radiotherapy necessitate consideration of the spatial distribution of hypoxia within

a tumor in order to estimate cancer cell survival fraction due to irradiation. Here,

this effect of heterogenous oxygen distribution is analyzed using a modified linear

quadratic model (MLQ) by considering the tissue specific hypoxia, simulated and

quantified in previous sections (by calculating the percentage of area).

6.5.1 Mathematical Model

As explained in the introductory chapter, the linear quadratic (LQ) model is the

most commonly used approach for studying the survival response of tumor cells

to radiotherapy and the concomitant clinical results [122]. In the LQ model, the

survival fraction of cells after a single radiation dose of D (Gy) is given by,

S = exp
(
−αD − βD2

)
, (6.6)

where α and β are the radiosensitivity parameters chosen from Titz and Jeraj

[124]. This choice of parameters (Table 6.5) gives a survival fraction of 48% at

a dose D = 2 Gy, under well-oxygenated (normoxic) conditions. However, this

radiosensitivity may vary based on the oxygenation status of the cell, in which

hypoxic cells are considered to be more resistant to radiation [120]. This effect of

122



6.5. EFFECT OF HYPOXIA ON RADIATION RESPONSE

various oxygen levels on the radiosensitivity can be quantified in a LQ model using

the concept of “oxygen enhancement ratio (OER)” or “oxygen modification factor

(OMF )” [3, 145, 34, 124], defined as,

OMF =
1

OERm

OER(pO2)

=
1

OERm

[
(OERmpO2(x) +Km)

(pO2(x) +Km)

]
, (6.7)

where pO2(x) is the oxygen concentration at position x, OERm is the maximum

value under well-oxygenated conditions and Km is the pO2 at which half maximum

ratio is achieved) [124] (see Table 6.5 for parameter values). Consequently, the

modified LQ (MLQ) model that incorporates the oxygenation effects can be written

as,

Sox = exp
(
−α ·OMF ·D − β(OMF ·D)2

)
. (6.8)

In general, the OER can be a function of radiation dose, and in fact, there is

experimental evidence indicating that maximal oxygen enhancement varies in the

range 2.5 to 3 with differences in radiation dosage [145, 34]. This can be simply

included in the MLQ model by considering different OERs for the radiosensitivity

parameters α and β, i.e. OERα and OERβ. However, since a normalized OER

(OMF ) is considered here, the introduction of these separate functions will not

produce a significant difference in the final survival fraction. Thus, an assumption

of OERα = OERβ is made in the current simulations (Please note that the in-

troduction of OERα and OERβ will not make any significant changes in the final

result).

Here, this MLQ model is used to study the effects of heterogeneous distribution

of oxygen on radiotherapy outcome. To this end, the cell survival fraction is calcu-

lated while varying the dosage D for different oxygen profiles. The comparisons are

made for six different cases, assuming: (a) the entire tumor is normoxic (pO2=60
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Table 6.5: Numerical values of the parameters used MLQ model [124]

Parameters Symbol Value

Radiosensitivity α (Gy−1) 0.3

Radiosensitivity β (Gy−2) 0.03

pO2 at which half Km (mm Hg) 3

maximum ratio is achieved

Maximum OER OERm 3

mm Hg), (b) the entire tumor is anoxic (pO2=0 mm Hg), (c) the entire tumor is

moderately hypoxic (pO2=5 mm Hg), (d) a twofold profile, either hypoxic or nor-

moxic at each grid point (pO2 ≤5 mm Hg and pO2 >5 mm Hg), (e) a histogram of

oxygen distribution with a bin width of 5 mm Hg (5(i− 1) ≤ pO2 ≤ 5i, i=1, 2, 3,

..., 20), see Figure 6.17, and (f) fully heterogeneous oxygen distribution (the value

of pO2 at each grid point). For the cases (d) to (f), where the oxygen distribution is

not uniform, the final survival fraction is calculated by taking the weighted average

of the survival fractions at each compartment or grid points [34],

SFox =
Σi,jwi,jSox(pO2(i, j))

Σi,jwi,j
. (6.9)

Although the focus of this study is to analyze the effects of heterogenous oxygen

concentration on the total radiation dosage, various fractionation schemes as well

as temporal changes in hypoxia can be also studied by introducing this OMF factor

into the generalized linear quadratic model (see Chapter 5).
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6.5.2 Radiation Response

Here, the survival fractions are calculated using the MLQ model (Equation 6.9) by

considering various profiles of oxygen distributions as given in the above section.

Figure 6.17 shows the results of the MLQ model (iii), the oxygenation profiles

as histograms of width 5 mm Hg (i), and the oxygen modification factor (OMR) as

a function of the oxygen concentration (ii). These results indicate that the oxygen

concentration significantly affects the OER; this is due to the fact that OMF

increases rapidly to its normalized value (one) as the partial pressure of oxygen is

increased from zero to about 30 mm Hg (most of the cells in the tumor are under

30 mm Hg). Hence, considering the sensitivity of the heterogeneous distribution

of oxygen at each grid point (or each cell), a much higher dosage is required to

get the same survival fraction of cells compared to the other four cases (Figure

6.17-iii). One should note that this level of dosage is even higher than the case of

a fully hypoxic tumor. However, this may be due to the assumption that the fully

hypoxic tumor has a uniform oxygen distribution of 5 mm Hg (moderate hypoxia),

while for the heterogeneous case most of the cells have an oxygen concentration

less than 5 mm Hg. Furthermore, this is clear from the figure where the dosage

level curve for a heterogeneous distribution is almost coincident with the curve for

complete anoxia (but lying slightly below). The reason for this similarity is due to

the radio-resistance of severe hypoxic cells (cells with less than 5 mm Hg), which

is theoretically quantified using the OMF curve (Figure 4 b). This OMF curve

increases to its peak value with a relatively small increase in oxygen concentration

(0-10 mm Hg) and hence cells with severe hypoxia give rise to similar survival

effects as that of anoxic cells. These results indicate the importance of the effects

of the oxygenation status in estimating the radiation response of the tumor cells.
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Figure 6.17: (a) Simulated oxygen distribution as histograms of width 5 mm Hg

(for a representative case), (b) oxygen modification factor (OMR) as a function of

the oxygen concentration, and (c) Survival fraction for different cases of oxygen

profiles considering the oxygen distribution of a representative case
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Moreover, the accuracy of this estimation is closely dependent on the detailed

quantification of oxygen distribution inside the tumor rather than classifying it

into hypoxic or non-hypoxic compartments.

6.6 Short Summary

In this chapter, we discuss a simple diffusion model which can satisfactorily estimate

the oxygenation maps of a heterogeneous tumor with a given vascular network.

Using this mathematical model it was shown that an estimate can be made of

average tumor hypoxia which appears to be less sensitive to the characteristics of the

vascular network and initial intravascular pO2 values as compared to the variations

in O2 consumption. Thus this approach can be used to quantify average tumor

hypoxia knowing only the distribution of tumor vessels. With the help of variance

components analysis, it was found that the polarographic electrode measurements

accurately quantify the oxygenation status of the tumor microenvironment. The

studies show that five uniformly distributed equidistant, measurement tracks with

20-30 measurements per track give the optimum balance between accuracy and

invasiveness. The radiation response under various oxygenation conditions has also

been analyzed using a simple model for the radiation effect and the results show

that, consideration of the heterogeneous distribution of oxygen plays an important

role in the accurate prescription of radiation dosage. This type of theoretical study

may be used to provide an alternative method of estimating hypoxia distribution in

solid tumors which may help in the prediction of therapeutic responses in order to

avoid over and under treatment, and help in the design of optimal, patient-specific

and accurate invasive estimation methods.
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Chapter 7

Interstitial Fluid Pressure: Effects

of Heterogenous Vascular

Distributions

7.1 Introduction

The success of cancer detection and treatments highly depends on the effective

delivery of pharmacological or immunological substances into the tumor. Normally,

these substances are delivered through the vascular system and reach the tumor

tissue by penetrating through the vessel wall, which occurs by both convection and

diffusion. They then move through the tumor interstitial space to the target site,

also driven by convection and diffusion [53]. However, in the case of solid tumors, it

has been observed that this delivery of drug molecules (or even nutrients) is limited

by several pathophysiological and microenvironmental barriers [53]. As we have

seen in the Introduction, one of the most important microenvironmental factors
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that affects drug delivery within solid tumors is elevated interstitial fluid pressure

(IFP) [53], which arises as a result of abnormal tumor vasculature and lack of

functional lymphatics. In previous works, it has been shown that in a uniformly

perfused tumor, the IFP is uniformly elevated throughout the tumor except near

the boundary, where the pressure drops down to that of the normal tissue, and that

this hinders the delivery therapeutic drug molecules [53].

This chapter aims to analyze the effects of a heterogenous vascular distribution

on tumor IFP and IFV (interstitial fluid velocity) profiles by using the vascular

distributions obtained from stained biopsy samples. It is evident that the spatial

and temporal evolution of tumor vasculature also affect various transport properties

of the tissue, resulting in an increase or decrease in tumor IFP [52]. Here, we also

seek to include the dynamics of tumor vasculature and its effects on the tumor

IFP, both with and without antiangiogenic therapy using a simple mathematical

framework.

7.2 Modeling Interstitial Fluid Pressure and Ve-

locity

Interstitial fluid pressure is found to be elevated in most solid tumors. This elevated

IFP is usually a result of the abnormal structure and function of tumor blood

vessels and lymphatic system. The elevated IFP serves as barrier to the delivery of

anti-cancer drugs [54], and therefore is a significant impediment to the successful

treatment of the tumor. Due to its clinical importance and also to gain insights into

the mechanism and implications of elevated IFP, researchers like Jain and Baxter

[53] have developed mathematical models to simulate the IFP as well as the fluid
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and macromolecular transport within solid tumors.

The mathematical model proposed by Jain and Baxter [53] studies the variation

of IFP with respect to different transport properties of the vessel wall and intersti-

tium. The movement of fluid or solute within any tissue is usually composed of two

main components – the transport through the vessel wall, and the flow within the

interstitial matrix. The movement across the vessel wall is governed by Starling’s

principle, which states that the forces responsible for filtration or absorption of

fluid are the hydrostatic and osmotic pressure gradients between the capillary and

interstitial space. Mathematically, we write an equation for the volume flux, which

is given by

Jv = LpS (pc − pi − σT (πc − πi)) , (7.1)

where Lp is the hydraulic conductivity of the capillary wall, S is the surface area

of the vessel, pc and pi are capillary and interstitial hydrostatic pressures, πc and

πi are capillary and interstitial osmotic pressures and σT is the osmotic reflection

coefficient of plasma protein. In tumor tissues, it is usually assumed that the

osmotic pressure of capillary and interstitium are almost equal (i.e. πc ≈ πi) [54]

and hence the volume flux can be rewritten as a function of capillary pressure (or

microvascular pressure (MVP)) as simply

Jv = LpS (pc − pi) . (7.2)

In normal tissues the excess fluid that filter through the capillary wall is re-

absorbed by the lymphatic system. However, in tumors the lymphatics are struc-

turally and functionally degraded or sometimes even absent [53] and hence the

excess fluid that leaks out of the abnormal blood vessels remains trapped within

the tumor. This fluid buildup within the tumor eventually increases the interstitial
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fluid pressure until it reaches an equilibrium with the capillary pressure. Now, as-

suming flow through the interstitial matrix can be treated as a flow through porous

media, the interstitial fluid velocity (IFV) can be defined using Darcy’s law. Darcy’s

law states that the fluid velocity ui is proportional to the applied pressure gradient

and hence IFV can be written as:

ui = −K∇pi, (7.3)

where K is the hydraulic conductivity of the interstitial matrix. Since Starling’s

law gives a source of fluid, and there is no sink due to the lack of lymphatics,

conservation of mass takes the following form:

∇ · ui =
Jv
V
, (7.4)

where V is the volume of the tumor. Substituting Equation 7.3 and Equation 7.2

into Equation 7.4 leads to:

∇2pi =
LpS

KV
(pi − pc). (7.5)

Using the previous rescaling parameters (Section 7.1.2) x = Lx̃ ( for example,

L = R is the radius of the tumor) and pi = pcp̃i, the above equation for IFP can

be rewritten in a non-dimensionalized form as:

∇2p̃i = α2
m(p̃i − 1), (7.6)

where αm = L
√

LpS

KV
, represents the ratio of vascular permeability to the interstitial

permeability or, in other words, it is the ratio of rate of fluid movement across the

vessel wall to the rate of flow through the interstitial matrix. This equation for

pressure is then solved with a zero boundary condition at the periphery using the

parameter values given in Table 7.1.
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(a) Radial profile of interstitial fluid pressure

(b) Radial profile of interstitial fluid velocity

Figure 7.1: Radial profiles of interstitial fluid pressure and interstitial fluid velocity
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Table 7.1: Parameter values for the model

Symbol Value Reference

R (cm) 0.4 see text

Lp (cm s−1mmHg−1) 1.86×10−6 [54]

K(cm2 s−1mmHg−1) 2.5×10−7 [54]

S/V (cm−1) 200 [54]

MVP (pc) (mm Hg) 5 - 34 [54]

σT 0.82 [9]

σ 0.91 [9]

P (cm s−1) 5.73×10−7 [9]

DL (cm2s) 1.3×10−8 [9]

Figure 7.1 shows the radial profiles of IFP and IFV for different values of αm

in the case of a homogenous tumor. The ratio αm may increase (decrease) due

to a decrease (increase) in hydraulic conductivity of the interstitial matrix and/or

an increase (decrease) in tumor radius, hydraulic conductivity of the vessel wall or

exchange surface area per unit volume. It can be seen that for low values of αm, the

IFP profiles are flat due to the low filtration through the vessel walls. As the values

of αm increase, the IFP within the tumor increases, resulting in a sudden drop near

the boundary. Consequently, IFV remains low and uniform for small values of αm

and increases to a higher value near the boundary of the tumor [53], leading to an

outward convective flow which acts as a barrier to drug delivery.
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7.3 Effects of Vascular Distribution on IFP and

IFV

Here, we consider the effects of a heterogenous vascular distribution on the profiles

of tumor IFP and IFV. To obtain the heterogenous vasculature, we have used the

biopsy images of glioma xenografts stained for perfused vasculature which were

earlier (Chapter 6) used to study the spatial distribution of hypoxia [92]. To in-

clude this heterogeneity into the IFP profiles, the equation for the pressure profile

(Equation 7.6) is further modified by assuming that the fluid filtration occurs only

at vascular regions. Hence, the modified equation can be written as

∇2p̃i = M(x)α2
m(p̃i − 1), (7.7)

where M(x) represents the spatial distribution of vasculature obtained from the

stained images. After the discretization, the matrix M is composed of two values,

namely 1 and 0, denoting the presence and absence of the vasculature, respectively

[146].

Figure 7.2 shows the distribution of IFP and IFV for three different heteroge-

nous vascular distributions. It can be clearly seen from the figure that the spatial

distribution of vasculature plays a vital role in the shape and values of IFP and IFV

profiles making them heterogenous in nature as well. As one observes, the areas

with high vascular density contribute more to the pressure profile and even deter-

mine the shape of the profile. This difference in the IFP and IFV profiles due to

different vascular distributions is illustrated in Figure 7.3, which shows the average

radial profiles for three different samples. On the other hand, the variation of αm,

the ratio of vascular permeability to the interstitial permeability, gives a similar

trend as that of the homogenous case and is shown in Figure 7.4 for Sample 1. The
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(a) Vessel distribution (b) Pressure profile (c) Velocity profile

(d) Vessel distribution (e) Pressure profile (f) Velocity profile

(g) Vessel distribution (h) Pressure profile (i) Velocity profile

Figure 7.2: Profiles of IFP and IFV with heterogenous vasculature (samples 1-3)
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Figure 7.3: IFP and IFV profiles for various vascular distributions (Samples 1-3)

Figure 7.4: IFP and IFV profiles as a function of αm
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differences in the magnitude of predicted IFP and IFV from the previous models

[53] as well as the above homogenous case is mainly due to the consideration of

regions with low vascular density and hence low filtration, which is often the case

for tumors seen in patents and in vivo experiments.

Evidently, it is clear from the above results that the heterogenous nature of tu-

mor vasculature changes the IFP and IFV profiles, both qualitatively and quantita-

tively. At the same time, these changes in IFP also affect the transport properties of

the tumor which in turn will affect the delivery of drugs and other pharmacological

molecules into the tumor, which will be discussed in future works.

7.4 Modeling the Dynamics of Tumor Vascula-

ture

In reality, the heterogenous nature of tumor vasculature significantly influences tu-

mor IFP, IFV and the distribution of drugs within the tumor. This is mainly due

to the abnormal tumor vascular distribution, which results in the spatial and tem-

poral dependence of various transport parameters. Mathematically, the influence

of tumor vessels is usually characterized using a single parameter αm. In the above

steady state analysis of biopsy data, we have incorporated this spatial dependence

of the parameter αm by assuming it to be nonzero only in the areas of blood vessels.

However, it might be more meaningful if it also depends on the nature of the blood

vessels as it is known that tumor vessels are generally structurally and functionally

abnormal thus making αm functionally heterogenous [54]. Unfortunately, at this

moment we do not have any functional information of tumor blood vessels to study

the variation of these parameters and their effects on IFP or IFV. Nevertheless, an
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alternative approach to analyze this concept is through a comprehensive mathe-

matical model, which could accommodate evolution of tumor vasculature and their

role in changing tumor IFP. One of such mathematical model is proposed here in

this section.

Several models have appeared in the literature to describe the process of an-

giogenesis and the distribution of vascular networks [4, 68, 22, 20]. Most of these

models study the interactions among endothelial cells, cancer cells and the extra-

cellular matrix through a set of partial differential equations. These interactions

may be due to a direct relationship or through various tactic components such as

chemotactic or haptotactic influences by angiogenic factors or fibronectin gradients

and the extracellular matrix. Here, the vascular networks are modeled using a phe-

nomenological model proposed by Kohandel et al. [59] and in accordance with the

model, we assume that the tumor vessels grow in response to the pro-angiogenic

cytokines secreted by the cancer cells under the influence of a changing tumor

microenvironment.

In the coarse-grain model developed by Kohandel et al. [59], the heterogenous

vascular structures are represented by islands of vascular and non vascular net-

works with specific values. Typically these values measure the degree of normality

of blood vessels within the tissue. As observed experimentally, most of the tumor

vessels are structurally and functionally abnormal resulting in spatially and tem-

porally heterogenous networks with poor delivery of oxygen and other nutrients

[52]. In the present model, the delivery capability of the blood vessels are also

phenomenologically modeled through the values taken by the vessel structures. If

we denote the average blood vessel distribution by m(x, t), the governing equation
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for local vessel density can be written as,

∂m(x, t)

∂t
= Dm∇2m(x, t) + g(m), (7.8)

where Dm is the diffusion constant and g(m) denotes the local vessel growth.

Following Kohandel et al. [59], g(m) is chosen to be g(m) = αm+ βm2 + γm3

with α = −I, β = 3I and γ = −2I; where I is a positive constant. This set

of values allows the above vessel Equation 7.8 to have two stable fixed points 0

and 1, representing the the islands of non-vascular and normal vascular structures,

respectively. Here, the simulations are done taking a random initial configuration

for vascular density with values ranging from 0 to 1. A detailed stability analysis

of the vessel equation is given in Section 7.3.2.

7.4.1 Interaction with cancer cells

As previously discussed, the uncontrolled growth of cancer cells often requires a

constant supply of oxygen and other nutrients. This is achieved through the up-

regulation of tumor angiogenesis by an excess production of pro-angiogenic factors.

There is also substantial evidence that the tumor vessels thus created have higher

vascular density than in corresponding normal tissue [134]. In the model (Equa-

tion 7.8) by Kohandel et al. [59], this effect is incorporated through the tactic and

direct interactions between tumor vessels and cancer cells. Consequently, equation

7.8 can be reformulated as,

∂m(x, t)

∂t
= Dm∇2m+m(α+ βm+ γm2) + α2c(x, t)m+ β2∇ · (m∇c(x, t)). (7.9)

Here, α2 and β2 are positive constants and c(x, t) denotes the density of cancer

cells. The third term on the right hand side represents upregulation of tumor
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angiogenesis in response to the increasing demand of cancer cells and the last term

denotes the directed movement of blood vessels. As a result of the increased tumor

angiogenesis due to the increase in cancer cell density (third term), this reformulated

vessel equation 7.9 has higher stable fixed points than the normal case, indicating

an increase in tumor vascular density (details are given in the stability analysis

section). Thus in the present model, the abnormal tumor vessels are distinguished

from normal vessels using their density values.

The cancer cell density, c(x, t) is governed by another reaction-diffusion equation

given by,

∂c(x, t)

∂t
= Dc∇2c+ ρc

(
1− c

clim

)
+ α1cm(x, t) + β1∇ · (c∇m(x, t)), (7.10)

where Dc is the diffusion constant for cell density, ρ is the growth rate and α1

and β1 are positive constants. Here, the second term represents the logistic growth

dynamics (which have been discussed in detail in Chapter 3) and the third term

represents the increased cell growth as a result of tumor angiogenesis. Finally, the

fourth term in this equation represents the directed movements of tumor cells [59].

7.4.2 Stability Analysis

In the present coarse-grain model for vasculature (Equations 7.8– 7.10), the steady

state values of m generally denote the nature of blood vessels within the tissue.

While the values of m close to one indicate a normal blood vessel, less perfused,

abnormal tumor vessels are usually denoted using much higher values ranging from

1.2 to 1.8 [59].

Consider the following dimensionless equations for the vascular distribution un-
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Symbol α̃1 β̃1 D̃m α̃ β̃ γ̃ α̃2 β̃2 Ãi

Value 1.2 0.02 0.005 -1 3 -2 0.7 0.8 0.3

Table 7.2: Numerical values of the (nondimensionalized) parameters (Dc = 0.035

mm2/day and ρ = 0.16 (1/day)) [59]

der steady state:

c (1− c) + α̃1cm(x, t) = 0, (7.11)

m(α̃ + β̃m+ γ̃m2) + α̃2c(x, t)m = 0,

which has a trivial fixed point c∗ = 0 and the nontrivial fixed point

c∗ = 1 + α̃1m, (7.12)

which we associate with the tumor case. For this value of c∗, and setting α̃ = −1,

β̃ = 3 and γ̃ = −2, we obtain a trivial fixed point m∗ = 0 and following nontrivial

fixed points,

m∗ =
(3 + α̃1α̃2)±

√
8(α̃2 − 1) + (3 + α̃1α̃2)2

4
. (7.13)

For the parameter values α̃1 = 1.2 and α̃2 = 0.7 [59], this reduces to

m∗ = 1.83, 0.08 (7.14)

where the value 1.83 represent the case of a tumor.

7.4.3 Anti-angiogenic Therapy: Effects on IFP

We have already seen that the IFP is elevated in most solid tumors due to the

presence of irregular vasculature and the absence of functional lymphatics [54].
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This elevated IFP as well as the spatially and temporally heterogenous nature

of tumor vasculature further reduce the successful delivery of oxygen and anti-

cancer drugs, contributing to the failure of cancer therapies which results in the

tumor cells developing a more aggressive phenotype. Recent preclinical evidence

shows that antiangiogenic therapy can lower the tumor IFP by changing tumor

vessel transport properties through the passive pruning of leaky vessels and active

remodeling of the tumor vasculature [52]. It is also observed that these lower IFP

will further increase the interstitial convection within the tumor, creating a window

of opportunity for the better delivery of various anti-cancer drugs. The primary

aim of this section is to study these dynamic changes in IFP after treatment with

antiangiogenic therapy by using the above mathematical model.

Modeling Antiangiogenic Therapy

Although the delivery of antiangiogenic therapeutic agents occurs through a com-

plex transport mechanism, for the purpose of the present study (to analyze the

dynamics of IFP) we simply assume that at the time of treatment these agents are

homogenously present within the tumor. As the antiangiogenic therapy destroys or

remodels tumor blood vessels, its effects can be incorporated into the mathematical

model by adding a term −A(t)m(x, t) to the equation for evolution of blood vessels

m(x,t), Equation 7.9 [59]. Mathematically, the addition of this term changes the

stable fixed points of the system to a lower value. If this value is close to one,

it denotes the presence of normal vasculature, however if it is close to zero (for

stronger dosage), it indicates the disappearance blood vessels. The equation now

reads:

∂m(x, t)

∂t
= Dm∇2m+m(α+ βm+ γm2) +α2c(x, t)m+ β2∇(m.∇c(x, t))−A(t)m.

(7.15)
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where A(t) =
∑
Aif

(
t−ti
τa

)
is the temporal profile of the therapy with τa = 2 days.

To study the effects of antiangiogenic therapy, it is given as three doses with an

interval of 2 days, starting on day six (when the radius reaches around 1 mm).

For computational convenience the system of equations governing the dynamics

of tumor cell density, and the vascular distributions are nondimensionalized in the

following manner. Time and space are rescaled as t = t̃/ρ and x =
√
Dc/ρx̃,

respectively, and the cell density is rescaled as c = climc̃ (note that m is already a

dimensionless variable which represents the average distribution of blood vessels).

The system of equations after nondimensionalization is given below (after dropping

tildes in x, t and c).

∂c(x, t)

∂t
= ∇2c+ c (1− c) + α̃1cm(x, t) + β̃1∇ · (c∇m(x, t)), (7.16)

∂m(x, t)

∂t
= D̃m∇2m+m(α̃ + β̃m+ γ̃m2) + α̃2c(x, t)m+ β̃2∇ · (m∇c(x, t))− Ã(t)m,

where α1, α, β, γ and Ai are scaled with ρ (shown in tildes), β1 and Dm are scaled

with Dc and β̃2 = β2clim/ρ, α̃2 = α2clim/ρ (once again we will drop the tildes in

the subsequent steps for notational convenience).

Finally, the formulation of the model for system of equations (Equation 7.16) is

completed be prescribing proper initial and boundary conditions. While simulation

of the cell density equation is carried out using a Gaussian initial condition and a

no-flux boundary condition, the equation for vascular density starts with a random

initial configuration and a no-flux boundary condition. The parameters for this

analysis are taken from Kohandel et al. [59] and are listed in Table 7.2.
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A Dynamic Model for Tumor IFP

In previous work [53, 54], it has been shown that the ratio αm controls the shape of

both IFP and IFV profiles and that it depends more on the variation in hydraulic

conductivity, Lp than on any other parameters. The model also considers Lp to be

homogeneous and constant over the entire tumor, which is not an accurate assump-

tion since there is experimental evidence that clearly shows that Lp is spatially

and temporally heterogenous [54], resulting in a heterogeneous αm. We seek to

include this spatial and temporal variation in our dynamical model by using the

following empirical formulae for the dimensionless variable αm, which depend on

the distribution of the vasculature.

αm(x, t) = φ1m(x, t) exp (φ2(m(x, t)− 1))︸ ︷︷ ︸
Implicit time dependence

, (7.17)

where φ1 (φ1 = 2.5) and φ2 (φ2 = 5) are estimated in such a way that the parameter

αm lies within the range of the experimental values of αm [54].

The justification for having a functional dependence of αm on m(x, t) (the av-

erage vessel distribution) is as follows: when m is increased above some baseline

value, this represents the case of a tumor, and so Lp (and hence αm) should corre-

spondingly increase. The experimental values suggests Lp is about 50 times higher

in tumor vessels than normal vessels, and that during anti-angiogenic therapy Lp

is reduced 5 fold [54]. We simply use these experimental estimates to make an “ed-

ucated guess” at a formula that fits with the values of αm for the different cases.

The formula must give αm = 0 when m = 0 (no blood vessels and hence no source),

and monotonically increase, such that the values of m corresponding to the tumor

case should give values of αm in the range of 7- 20 [54]; thus making it as a function

of space and time.
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(a) Cell density (no treatment) (b) Vascular profile (no treatment)

(c) Cell density (after treatment) (d) Vascular profile (after treatment)

Figure 7.5: Effects of antiangiogenic therapy on cell density and vascular profile
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(a) IFP (without treatment) (b) IFP (after treatment)

(c) IFP (radial profile) (d) Change in cells and vessel

Figure 7.6: Effects of antiangiogenic therapy on IFP
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Effects on Tumor IFP

Here, we present a mathematical model that studies the evolution of tumor vascu-

lature and tumor cells and their relationship with the change in IFP. The equations

for vasculature phenomenologically represents the nature of tumor vessels [52]. The

abnormality in the tumor vessels is incorporated into the present model through

the values that m take, where higher values of vascular density are associated with

tumor vasculature than with normal vascular distribution.

Figure 7.5 shows the spatial distribution of cancer cells (Figure 7.5 (a))and

vasculature (Figure 7.5(b)) without any treatment. The dynamics of cell density,

vasculature, as well as oxygen distribution has already been discussed by Kohandel

et al. [59] in a recent publication. However, here we have included additional terms

(β2∇· (m∇c)) and (β2∇· (c∇m)) which were previously assumed to be zero. These

terms represent the spatiotemporal and directed movement of tumor vessels and

tumor cells within the tumor [96]. This directed movement moves the blood vessels

towards the tumor boundary and is usually seen in experimental solid tumors where

the tumor starts recruiting new vessels through angiogenesis. From Figure 7.5 (b),

it can be seen that the vessels located near the boundary of the tumor are of

higher density than other spatial locations, especially the central part of the solid

tumor. As a result of thism the tumor cells at the center are starved for oxygen

and often develop hypoxic regions, which in turn promotes increased angiogenesis,

creating leaky and tortuous tumor vessels. This abnormal structure of the tumor

vasculature with irregular and leaky blood vessels often accounts for its abnormal

function, which results in increased the tumor IFP to much higher values than seen

in the normal tissues (Jain 2007).

Figure 7.6 (a) and (c) show the spatial distribution of IFP within and around
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the tumor boundary and the change in IFP with radial distance from the center

of the tumor volume, respectively. Note that, we have used an empirical formula

for αm which is a function of the vessel density m(x, t) and is thus a heterogeneous

variable throughout the spatial domain contrary to Jain et al. [54]. Since αm is

a function of m, this will also account for changes in various transport properties

that arise with changes in the tumor microenvironment. Here, the values for αm

vary from 0 to 9.6, depending on the spatial location. It can be seen from Figure

7.6 (a) and (c) that the IFP is uniformly high within the tumor (of radius 1.5 to 2

mm approximately) and then drops suddenly near the boundary towards zero when

it reaches normal tissue. These are consistent with the results obtained by various

other researchers by using different values of αm for normal and tumor tissues [54].

The effect of antiangiogenic therapy on tumor cells and vascular distribution is

shown in Figures 7.5 (c) and (d). Note that the color bar indicates the cell and

vessel density in the figure and is different from the no treatment case (Figure 7.5

(a) and (b)). In general, the administration of antiangiogenic therapy partially

reduces the vessel density m, leading to a minor delay in the tumor growth as

shown in Figure 7.3 (d). Here, lowering the values of m corresponds to pruning the

abnormal vessels and functionally normalizing them. However, since the application

of antiangiogenic therapy also affects the normal vessels (density close to 1), care

should be taken in prescribing the accurate amount of dosage so as to obtain a

balance between the normal vessels and normalized vessels (or a “normalization

window”) [52]. Here, the dosage parameter Ai is fixed in such a way that the total

vessel density is reduced by about 50% of that of the untreated case, as is usually

observed in experimental settings [54].

As the antiangiogenic therapy decreases overall vessel density which is dis-

tributed heterogeneously throughout the tumor, it also changes the transport prop-
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erties within the tumor. The functional dependence of the parameter αm through

the empirical equation, Equation 7.17, successfully incorporates these changes into

the present mathematical model. After the therapy, a decrease in the values of

vessel density lowers the parameter αm to a range of 0 to 2, which represents the

case of a normal tissue [54]. This change in αm lowers IFP within the tumor by

up to 75%, and is consistent with clinical findings [54] (data from PMH). Figures

7.3 (a), (b), and (c) show these changes in IFP with and without the application

of antiangiogenic therapy.

7.5 A Short Summary

Recently, there have been much experimental and clinical findings suggesting var-

ious prognostic and therapeutic implications of elevated IFP within solid tumors

[54, 75, 52]. As elevated tumor IFP negatively affects most of the diagnostic and

therapeutic strategies in controlling a growing tumor; analysis of IFP and other

possible methods through which this might be lowered, is of critical importance. In

this chapter, we have used a mathematical model to gain insight into the various

mechanisms that contribute to the elevation of tumor IFP. Most of the transport

properties that affect IFP are directly or indirectly related to the abnormal tumor

vasculature that is created as a result of upregulated angiogenesis. Since these

vascular networks are spatially and temporally heterogenous in nature, the mathe-

matical model is modified accordingly to simulate accurate tissue specific pressure

and velocity profiles. Here, we have also presented a simple mathematical model

for the evolution of tumor cells and vasculature and proposed an empirically de-

rived model for IFP that implicitly incorporates the spatial and temporal changes

in the vascular network. This updated mathematical model is then used to study
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the role of antiangiogenic therapy in lowering IFP, and we observe the creation of

a “normalization window” for effective drug delivery.
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Chapter 8

Conclusions and Future Directions

8.1 Concluding Remarks

The incorporation of necessary biological or clinical information regarding the evo-

lution of cancer and its treatments play a vital role in the accuracy of related

mathematical models and their predictive capabilities. The success of a sensible

mathematical model also depends on the modeling strategies through this impor-

tant information included. In this thesis, we have presented a simple and novel

contribution to the rapidly growing area of Mathematical Oncology by improving

the predictive capability of the traditional mathematical models using appropriate

and relevant data obtained through various imaging modalities.

Brain tumors are one of the most aggressive and devastating types of tumors

with a minimal survival rate, even after treatment with multilevel therapeutic

strategies which include surgery, radiotherapy, chemotherapy and/or antiangiogenic

therapy. However, as it has been observed in various clinical trials, careful planning

and optimal scheduling of these aforementioned multi-modality treatment strategies
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may further increase the survival rates of patients with brain tumors. In light of the

need for a well established, cost effective methodology for testing hypothesis and

drawing relevant conclusions and making well grounded conjectures, we presented

a simple mathematical model in Chapter 5 that studies the effects of radiotherapy

with/without sequencing with a chemotherapeutic drug named Temozolomide. In

the case of radiation therapy, previous mathematical models in the literature have

tended to neglect the spatial factor in determining the cell survival status, which is

often an important issue. Using previously developed radiotherapeutic models, it is

also very difficult or rather impossible to compare the effects of various fractionation

schedules and doses, in order to determine better treatment protocols under various

different circumstances. The mathematical model presented here has succeeded in

incorporating the spatial effects as well as the effects of various dosage schedules

with the help of a generalized linear quadratic model. The developed model is then

used to estimate the clinically relevant radiotherapeutic parameters and the model

predictions are further validated with the help of a series of clinical trial data taken

from the literature. Using this model, we have also attempted to make some sug-

gestions and draw conclusions regarding different sequencing options, which might

need further experimental confirmation.

While the above model has provided some clinically relevant understanding of

radio- and chemotherapeutic effects, it would be more beneficial and accurate if we

could incorporate the effects of other significant microenvironmental factors such as

hypoxia and interstitial fluid pressure, which negatively impact these therapeutic

outcomes. Chapters 6 and 7 mainly focused on the modeling of these microenvi-

ronmental factors independently in order to gain more insight into their interaction

with the tumor cells and treatment strategies.

The analysis and estimation of tissue specific hypoxia, one of the typical and
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critical hallmarks of advanced tumors are carried out in Chapter 6. Here, the de-

veloped model successfully generated the oxygenation maps of various tumor cross

sections by using its corresponding heterogenous vascular distribution. Images of

these vascular distributions were previously obtained through a series of staining

and immunohistochemical analysis of the tumor tissue. The simulated oxygen dis-

tribution is then quantified using two different estimation approaches with the aim

of comparing these techniques; and the obtained values are further validated against

the available biomarker findings. The results of these analyses were highly consis-

tent with the previously published clinical studies in the literature. The successful

implementation of this image based modeling approach reveals that it is possible

to estimate average hypoxia without any invasive or expensive techniques but by

simply knowing the distribution of vasculature within the area of interest. The

implications of hypoxia in calculating overall survival results is also discussed here

based on the estimated oxygenation mappings, and it was found that consideration

of the heterogeneous distribution of oxygen plays an important role in the accurate

prescription of radiation dosage.

While hypoxia increases the radio-resistance of cancer cells, elevated tumor IFP

decreases the delivery of anticancer drugs into the tumor tissue. In the literature,

there are a variety of studies that have analyzed the issue of elevated IFP and the

effects of its relative changes, but mostly by assuming the tissue to be a homoge-

nous. However, since the structurally and functionally abnormal vasculature has

a very significant effect in elevating tumor IFP, Chapter 7 aimed at incorporat-

ing this heterogeneity into the homogeneous mathematical model. The resulting

IFP profiles generated using the known vascular distribution obtained from biopsy

images, clearly showed that the tumor IFP varies depending on the distribution

of vasculature and in each case it is spatially heterogenous. Moreover, the tumor
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vasculature evolves over time, depending on the increasing demands of rapidly pro-

liferating cancer cells resulting in a temporal change in IFP within the tumor. In

Chapter 7, we also presented a phenomenological mathematical modeling approach,

using which we discussed these temporal changes in tumor vasculature as well as in

tumor IFP. Using this model, we have provided a theoretical explanation of the ex-

perimental finding of more efficient drug delivery to the tumor after administration

antiangiogenic therapy.

In conclusion, we have presented a mathematical model for the evolution of

brain tumors and used it to study the effects of chemotherapy and radiotherapy.

Although, we discussed the modeling of microenvironmental factors independently

in Chapters 6 and 7, the ultimate goal of this brain tumor project is to incorpo-

rate these and various other effects (discussed below) into the main growth model,

which will be the final step of this ongoing project. Moreover, once such a model is

developed, it can also be used to predict the survival status of individual patients

by incorporating the patient-specific parameters, which could be obtained through

various diagnostic protocols such as image analysis of patient biopsies and sequence

analysis of MRIs or CT scans. Developing this comprehensive, individualized math-

ematical model that is supplemented with patient-specific data would greatly help

clinicians to provide the best possible treatment protocol to individual patients.

8.2 Future Possibilities

The refinement of mathematical models is an ongoing process through which we

include more and more relevant details into the model which further increases its

predictive capability, taking us few more steps closer to the clinical findings. The

models presented in this thesis can also be modified further in various ways and a
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few of these future modifications may be of following types.

One of the important modifications which is worthwhile incorporating is the

modeling of clinically relevant vascular networks which vary spatially as well as

temporally. The inclusion of these vascular networks will allow one to incorporate

the blood flow into the current model which will be further helpful in various

theoretical and clinical contexts such as in the prediction of the temporal evolution

of tumor hypoxia and tumor IFP. It will also help in quantifying variations in

interstitial and intravascular transport of nutrients and anti-cancer drugs, and in the

planning of optimal delivery (conventional as well as carrier mediated) of anticancer

drugs. Another concept that might be useful to incorporate while modeling these

vascular networks is the effect of pro-angiogenic and anti-angiogenic growth factors

in the upregulation of tumor angiogenesis, which is one of the ongoing project that

we are currently involved.

In Chapter 6, we have seen a simple mathematical model for simulating the

tissue oxygenation map, where due to the lack of necessary details we were unable

to consider the tissue heterogeneity in the intra-tumor transport of oxygen. How-

ever, this can be modified easily by considering the diffusion coefficient for oxygen

molecules to be a function of the spatial variable. It might be also of interest

to include heterogeneity in considering tumor cells, since every tumor consists of

cells with several phenotypic and genotypic characteristics, which may have vary-

ing effects on proliferation, migration, or even on the tumor response to different

anticancer treatments [48]. As we have seen, cancer is a heterogeneous disease of-

ten requiring complex alterations of a normal cell to drive it to malignancy and

ultimately to a metastatic state. These alterations are largely due to aberrant ex-

pression of a set of genes or pathways such as p53 pathways and hypoxia pathways

rather than a single gene and thus it might be helpful to incorporate these details
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into the current mathematical models to understand various mechanisms involved

in the regulation and deregulation of these pathways and how they relate to tumor

progression.

Another possible direction is to consider tumor growth from a cancer stem cell

point of view. Recently, there has been mounting evidence that suggests the involve-

ment of cancer stem like cells in initiating and maintaining brain tumors. According

to this hypothesis, the failure of chemotherapy and radiotherapy could be partially

due to the resistance of cancer stemlike cells to these treatments. From a modeling

perspective, gliomas can be considered to be heterogeneous tumors consisting of

different populations of cancer stem like, progenitor and fully differentiated cells

with varying sensitivities towards cytotoxic therapies. A spatio-temporal mathe-

matical model can be developed similar to the one we presented in Chapter 5 to

study the effects of cell heterogeneity on the outcome of various treatment protocols,

including antiangiogenic therapy.

One of the major issues in incorporating all these details into a single mathemat-

ical model is the complexity of various spatial and temporal scales. This multi-scale

complexity of cancer progression warrants a multi-scale modeling approach to pro-

duce truly predictive mathematical models. In order to capture all the dynamics

of tumor progression, we need to couple processes that are occurring at widely

disparate length and time scales. There are several articles in the literature that

provide frameworks for building multi-scale cancer progression models. Following

these earlier works, it would be possible to develop a detailed mathematical model

capable of studying the variations in vascular density, blood flow, IFP, nutrient

supply (in particular, oxygen distribution) within and around a growing tumor,

under the appropriate length and time scales. It would be also very interesting to

examine the changes in tumor microenvironment during the course of delivery of
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various anticancer drugs through different delivery schemes. This type of approach

could be useful in modeling cancer stem cell heterogeneity. The nature of this in-

terdisciplinary area of mathematics necessitates an effective way of communication

between the experts in different areas of science, such as biology, medicine and

mathematics. A clear and efficient visualization platform is one of various ways

through which this can be achieved. It also gives an effective way to analyze and

study the results of our multi-scale analysis at specific time points, especially when

we are dealing with simulations involving three or more dimensions.
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