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Abstract

The main results of this thesis fall in to two areas, firstly quantum reference frames

as a resource for quantum computations and secondly quantum algorithms. The

results relating to quantum references consider their scaling with a requirements to

perform measurements, operations and computations with a certain fidelity. For

the case of a directional frame, the central question considered is of how many

operations or measurements can be performed with it before its fidelity falls below

some threshold. This is found to scale as the square of the size of the reference

frame under for a range of physically interesting cases. To prove that result a new

general form for any rotationally invariant map. This could have many applications

is comparing and classifying rotationally invariant behaviour of quantum systems.

Phase references are also considered for the case of performing quantum computa-

tions under an energy conservation law. The restriction that the expected energy

be conserved for large quantum computations is shown to be manageable in many

different potential architectures. In the case of completing computations is an en-

ergy conserving subspace, the requirements for ancillas are sublinear in the number

of qubits, and even in a circuit model implementation, the errors due to phase ref-

erence imperfections are shown to not limit the apparent algorithmic improvements

of quantum computing over classical computing.

A quantum walk for the novel concept of two entangled walkers is proposed

and analyzed. A modest improvement is found in the scaling of the expected

separation of the walkers over the separable case. It illustrates the potential for

making use of particle statistic behaviour in algorithms. Lastly, the relation between

discrete and continuous time models of quantum computing is explored through the

analysis of a new algorithm for simulating the Hamiltonian behaviour of a black

box unitary operation. The scaling of the number of calls to the unitary required to

obtain a simulation correct to within a parameter ε is found, as is a case where the

efficiency of the algorithm is superior to directly applying the unitary repeatedly.

Applications of the algorithm are considered.

iii



Acknowledgements

I would like to thank my supervisor Michele Mosca for his guidance and wisdom

throughout our years of working together. I also thank Mike and Ophelia Lazaridis,

who gave me their support through the Mike and Ophelia Lazaridis Fellowship.

I thank my committee, Richard Cleve, Achim Kempf, Norbert Lütkenhaus,

Terry Ruldolf, my external examiner, and Raymond Laflamme, my co-supervisor,

for their constructive comments and questions.

For Chapter 3, I wish to acknowledge the contributions of my co-authors Jean-

Christian Boileau, Martin Laforest, and Stephen Bartlett, in particular to J.-C. for

inspiring the project and suggesting the form of the covariant map. Also, Terry

Rudolph for an insight in proving the first theorem. I also thank Giacomo Mauro

D’Ariano, Joseph Emerson, David Kribs, David Poulin and Peter Turner for helpful

discussions.

For Chaper 4, I acknowledge the collaboration of Michele Mosca and helpful

discussions with Raymond Laflamme and Norbert Lütkenhaus.

For Chapter 5, I acknowledge my co-authors Yasser Omar, Nikola Paunković,
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Chapter 1

Overview

1.1 Introduction

This thesis spans two main topic areas, quantum reference frames and quantum

algorithms. The work on reference frames stems from the question, what if the

physical system which defines the measurement convention for a quantum system

is itself quantized? This has implications not only for understanding the role of

conservation laws in quantum theory, but also for large-scale quantum computation

in which the scaling of the resources required for the computation are critical to

whether it is a practical enterprise. The reference system in this case becomes a

required resource necessary for maintaining coherence within the computer or for

performing accurate measurements on parts of the quantum system. The choice to

quantize the reference system is equivalent to moving the “Heisenberg cut” outward

to include another system in the quantum mechanical description. This system

might be used in measurement or defining operations that are normally chosen

to be classical. The intuitive attraction of doing this is that it gives a natural

interpretation of conservation laws in quantum systems: that conservation laws are

rigid and apply individually to every term in a superposition. Further, this allows

for reference information to be treated as a resource and a theory developed to

describe reference requirements in different scenarios.

The quantum algorithms results relate to two different problems. The first is

quantum walks. Random walks have long been of interest in a classical setting for

solving a wide range of problems including modelling share prices, genetic drift, and

Brownian motion. It is also used to sample at random from a set in Monte Carlo

techniques [GG84, RC04] and to estimate the size of a set [BYG06] and in search
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Chapter 1. Overview

algorithms [LCC+02]. Quantum walks are the extension of this concept to quantum

states of the walker and quantum operations for the evolution of the walk. The sec-

ond problem is of simulating continuous time quantum evolution using access only

to a discrete black box unitary operation. An algorithm is developed for achieving

this, with some constraints. This is of theoretical interest for understanding the

relation between the continuous and discrete models of quantum computing.

1.2 Summary of Work Presented

In Chapter 2 relevant background information is reviewed as a means of introduc-

ing the notation that will be used in the rest of this thesis. This falls into six

sections, quantum mechanics and information, quantum optics, quantum angular

momentum theory, an overview of relevant group theoretic concepts, applications of

them to reference frames and angular momentum symmetries, and a consideration

of reference frames as quantum systems and their relation to conservation laws and

superselection rules.

In Chaper 3, the problem of a finite size reference frame is considered. The

reference studied is a three-space direction reference. The reference is needed for

some quantum computation task — either to define a measurement that conserves

angular momentum, or to define an operation on a quantum system. It is treated

as a limited resource which is consumed in the course of performing these tasks.

Specifically, the effect of completing these tasks on a series of identical completely

mixed quantum states drawn from a reservoir is considered. It is an extension and

generalization of work by Bartlett et al. [BRST06]. A new general form is found

for expressing all rotationally covariant maps on density matrices in terms of the

angular momentum operators. This is used to derive relations that describe the

change of the expectation value of the angular momentum along the z-direction

for the quantum reference frame. There relations allow for the derivation of a set

of physically significant conditions under which the fidelity of a task performed

by a reference frame will decay with the square of the total angular momentum

of the reference, j2. Additionally, the definition of fidelity is generalized to show

that this behaviour is not an artifact of a choice of definitions. Some examples are

given to demonstrate the power of the proposed methods. Lastly, there is some

consideration of the limitations and potentials of the results.

In Chapter 4, a survey is undertaken of results relating to the analysis of quan-

tum reference frames and energy requirements. The aim is to explore what reference

2



Chapter 1. Overview

frame resources are required for quantum information and in what contexts. New

conclusions are drawn about how reference frames might be managed in a large

quantum computer. Various methods for implementing gates while maintaining

consistent definitions of relative phase are considered and compared for practicality

and efficiency. The problem of maintaining phase references, and hence coherent

qubits, is shown to be manageable and not a severe limitation to implementing

quantum computing.

Chapter 5 is a consideration of a quantum walk algorithm. The case of a discrete

time walk on a line is considered for the novel proposal of a pair of entangled

walkers. This slight modification to originally proposed quantum walks gives a rise

to a rich variety of interference effects that can be tuned based on the initial state of

the two walkers. In particular, in the case of the antisymmetric state the expected

coverage of the line is greater than for a pair of walkers in a product state. Potential

implementations of such a walk and its applications are considered.

In Chapter 6, the question of how some fraction of an unknown unitary gate

can be implemented on a quantum system is posed. Specifically, the goal is to

implement a unitary raised to any real number exponent. A new algorithm is given

for achieving this operation with a probability selected by the user and a number of

calls to the unitary that depends on the chosen probability of success. An example

is given where the exponent of the unitary to be applied is a positive integer, t,

but the new algorithm runs with less than t calls to the unitary. The algorithm is

considered in the context of different possible applications and the constraints that

they may impose. Also, the implications of this work for the relation of discrete to

continuous time models of quantum computing are discussed.

The final chapter summarizes the conclusions to be drawn from each chapter

and and appendix containing a proof of Theorem 3.1 from Chapter 3 and Lemma B

from Chapter 6.

3



Chapter 2

Background

2.1 Overview

In this chapter, notational conventions are introduced that are used in the remain-

der of this thesis through a brief review of relevant background material. First,

quantum mechanics and quantum information are outlined. The concept of states,

density operators, measurement operators, channels, qubits, and Pauli operations

are introduced. Second, some relevant quantum optics theory is presented begin-

ning with the quantum harmonic oscillator. Various useful relations involving cre-

ation and annihilation operators and coherent states are derived. This formalism

will be useful in conjunction with Chapter 4. Third, quantum angular momen-

tum and the notation commonly used by physicists to describe angular momentum

states is given. This is relevant to Chapter 3. A brief introduction to relevant group

theoretic concepts is provided. Lastly, some ideas regarding reference frames and

their behaviour in a quantum setting are introduced.

2.2 Quantum Mechanics and Quantum Informa-

tion

Quantum mechanics is a generalization of classical mechanics and can be arrived

at from a suitable correction to classical Hamiltonian Mechanics [Dir58, Kem04].

The Hamiltonian, H, of a system is the energy operator that specifies how energy

is distributed in a system. H is given by the sum of the kinetic, T , and potential,

4



Chapter 2. Background

V , energy contributions:1

H = T + V. (2.1)

The equations of motion of a system governed by a Hamiltonian, H can be deter-

mined from this quantity alone using the Poisson bracket (the Lie bracket for a

Poisson algebra).

The Poisson bracket {·, ·} for the positions and momenta is defined by the

following:

{xi, pj} = δi,j, {xi, xj} = {pi, pj} = 0

where the xi and pi are the position and momentum coordinates of a single particle

in the system, with the index i ∈ {1, 2, ...d}, where d is the number of dimensions

in the system (commonly, d = 3), and δi,j is the Kronecker delta. For the case of

many particles, the subscript can also index the individual particles.

In general, for functions of these coordinates, f(xi, pi, t) and g(xi, pi, t) the Pois-

son bracket is given by

{f, g} =
d∑
i

(
df

dxi

dg

dpi
− df

dpi

dg

dxi

)
. (2.2)

For any function f(x, p, t) which is polynomial in xi and pi the equations of

motion have the form:

d

dt
f(xi, pi, t) = {f(xi, pi, t), H}+

∂

∂t
f(xi, pi, t) (2.3)

The quantum mechanical equations of motion are obtained by a deformation of

the Poisson bracket to a modified Lie bracket [Gro46]:

df

dt
= − i

~
[f,H] +

∂f

∂t
, (2.4)

where for matrix group representations of the operators f,H, etc., the Lie bracket

[f,H] is simply the commutator [f,H] = fH − Hf . Now that f and H (and x

and p) can be matrices, this commutator is not zero in general. Planck’s constant,

h = 2π~ = 6.26× 10−34 Joules per second. In this thesis, subsequent chapters will

adopt the units convention such that ~ = 1.

This non-commutation has the consequence that there is a limited precision to

1This is usually true. It fails if the transformations defining the coordinate system depend on
time, t.

5



Chapter 2. Background

which one can know the simultaneous values of pairs of variables. This is called the

Uncertainty Principle. It can be expressed:

∆f∆g ≥ 1

2
|〈[f, g]〉| , (2.5)

where ∆f is the standard deviation of f , ∆f =
√
〈f 2〉 − 〈f〉2, 〈f〉 is the expectation

value of f , and likewise for ∆g. Conjugate pairs of variables are pairs that have

the largest magnitude value of the commutator, i~, and hence the largest joint

uncertainty. The variables x and p are one example, and another pair of such

variables is energy, E, and time, t.

States in quantum mechanical systems can be expressed as vectors in a Hilbert

space. A Hilbert space is an inner product space that is complete, meaning that

every Cauchy sequence converges, with respect to the norm induced by the inner

product, to a limit within the space. The evolution of quantum states in closed

systems is described by unitary matrices. Unitary matrices obey the equation

U †U = I. In this thesis, the notation of physicists is employed, so M † denotes the

Hermitian conjugate of M . Such matrices have the property that they preserve the

inner product between two vectors. This is easy to see. Two vectors |ψ〉 and |φ〉
have the inner product 〈φ|ψ〉. If the unitary operation U is applied to both vectors

then they are mapped to new vectors give by U |ψ〉 and U |φ〉 and the inner product

becomes 〈φ|U †U |ψ〉 = 〈φ|ψ〉.

Unitary evolution is not sufficient to describe what happens during the process

of measurement. The state vector can be interpreted as a probability distribution,

in the sense that the state vector is not observed directly, rather a measurement

operation is performed on it and there is a single outcome for each event. Over

many measurements of identically prepared systems, the state vector can be recon-

structed.

Observables are Hermitian operators (Λ̂ = Λ̂†) on the Hilbert space and rep-

resent possible measurements on the system. These measurement operators are

applied to the state vector of the system, |ψ〉. The operators take the form

Λ̂ =
∑

i λiΠi where Πi are projectors onto subspaces of the system’s vector space

such that
∑

i Πi = 1 and ΠiΠj = δi,jΠi. The final state is renormalized so that

after the measurement the state becomes

|ψ〉 measurement−−−−−−−−−→
outcome λi

Πi |ψ〉√
〈ψ|Πi |ψ〉

(2.6)

if the outcome seen is λi. The probability for the outcome λi to be seen is given by

6



Chapter 2. Background

P (λi) = 〈ψ|Πi |ψ〉. Operators have eigenvalues, λi, that are the possible outcomes

of the measurement, Λ̂, and the eigenvalues have corresponding eigenvectors, |λi〉:

Λ̂ |λi〉 = λi |λi〉 , (2.7)

which are the final states of the system after the measurement. Such operators’

eigenvalues are real numbers:

〈λi|
(
Λ̂ |λi〉

)
=

(
〈λi| Λ̂

)
|λi〉

〈λi|λi〉λi = λ∗i 〈λi|λi〉
λi = λ∗i . (2.8)

Also, (using equation (2.8)) the eigenvectors have the property:

〈λj|
(
Λ̂ |λi〉

)
=

(
〈λj| Λ̂

)
|λi〉

〈λj|λi〉λi = λj〈λj|λi〉
⇒ (λi − λj)〈λj|λi〉 = 0. (2.9)

This implies that for non-degenerate eigenvalues (λi 6= λj for i 6= j), 〈λj|λi〉 =

0 for all i 6= j, meaning that all eigenvectors corresponding to non-degenerate

eigenvalues of Hermitian operators are orthogonal. If the system is in an eigenstate

of a particular measurement operator it will have no projection into any other

eigenstate.

In the case of infinite dimensional Hilbert spaces, the state |ψ〉 can also be

expressed as a function of a continuous variable such as position x is 〈x|ψ〉 = ψ(x).

In this context, ψ(x) is often called the wavefunction of the system. Transforms

between continuous bases are accomplished by integrating. Note that:∫
x∈R

|x〉 〈x| dx = I. (2.10)

This simply implies that the basis change is unitary. So, to change from the position,

x, basis to the momentum, p, basis:

ψ(p) = 〈p|ψ〉 =

∫
〈p|x〉〈x|ψ〉dx (2.11)

=
1√
2π~

∫
e−

ipx
~ ψ(x)dx. (2.12)

7



Chapter 2. Background

We have also used 〈p|x〉 = 1√
2π~e

−ipx/~. Note that this is a Fourier transform

between x and p
~ = k. Continuous conjugate variables in quantum mechanics are

all related by Fourier transforms.

The same ideas hold in the discrete case: conjugate variables are related by

discrete Fourier transforms and all basis changes are described by unitary operators.

2.2.1 Quantum Information Conventions

Qubits are normalized two-vectors with complex elements. A qubit is one natural

extension of the concept of the digital bit to quantum mechanical systems. A

classical bit is a binary digit that can store the value 0 or the value 1. The next

extension of this is a p-bit or probabilistic bit which can take any value in the range

0 to 1. This was introduced to characterize probabilistic computation — a class of

computation that solves problems with some arbitrarily small constant probability

of error, ε. Many problems can currently be solved much more efficiently if the user

tolerates some small (and remember, ε can be chosen by the user) probability of

error. If the bit is considered to be one of two points and the p-bit to be a point on

a line between those points, then a qubit lives in and on a sphere whose poles are

the states |0〉 and |1〉, which can be written as the normalized complex two-element

vectors
(
1
0

)
and

(
0
1

)
. This large freedom for the qubit state occurs because terms in

the quantum state superpositions are allowed to have complex coefficients, i.e., in

general the matrix elements can be complex.

It can be seen that this mapping from normalized vectors in C2 ignoring global

phases2 to S2 the surface of the unit sphere in three dimensions. A point on the

sphere’s surface is given by a pair of Euler angles (φ, θ) (the radius of the sphere is

1) where φ ∈ [0, 2π) is an angle in the x, y plane and θ ∈ [0, π) is the declination

from the z axis. A qubit can also be fully specified by two angles (χ, ξ), since any

qubit state can be written: [
cos(χ/2)

sin(χ/2)eiξ

]
where ξ ∈ [0, 2π) and χ ∈ [0, π), so the mapping that takes qubit states to states

on the surface of the unit sphere is simply ξ 7→ φ and χ 7→ θ.

The extreme points on the sphere of the three axes (x, y, and z) are frequently

used as bases for measurement and the operators corresponding to these three bases

2Global phases are ignored because there is no physical measurement that will distinguish
them.
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Figure 2.1: The Bloch sphere.

are the Pauli operators and written X̂, Ŷ , Ẑ, or are sometimes defined with factors

of ~
2

and then called the Pauli spin matrices and denoted σ̂x, σ̂y, σ̂z. (σk = ~
2
K,

where k = {x, y, z}.)

The {|0〉 , |1〉}-basis is often called the “computational basis” and these two

states are the eigenstates of the Pauli Ẑ matrix:

Ẑ =

[
1 0

0 −1

]
(2.13)

Define

|0〉 =

[
1

0

]
and |1〉 =

[
0

1

]
. (2.14)

The eigenvalues are +1 and −1 respectively.

The Pauli Y matrix is

Ŷ =

[
0 −i
i 0

]
. (2.15)

The eigenvectors of Y are

|i+〉 =
1√
2
(|0〉+ i |1〉) =

1√
2

[
1

i

]
and (2.16)

|i−〉 =
1√
2
(|0〉 − i |1〉) =

1√
2

[
1

−i

]
. (2.17)

9
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These states form the sphere’s poles on the y-axis.

The states on the surface of the sphere along the x-axis are

|+〉 =
1√
2

(|0〉+ |1〉) and (2.18)

|−〉 =
1√
2

(|0〉 − |1〉) (2.19)

which are the eigenstates of the Pauli X matrix is given by:

X̂ =

[
0 1

1 0

]
. (2.20)

States on the surface of the sphere are called pure states and can be written as

a vector, |ψ〉. However, there are also valid states which are incoherent mixtures

of such pure states, called mixed state. These states are not on the surface of the

Bloch sphere, but describe the interior of the sphere. It is useful to have a means of

expressing both types of states with a single mathematical object. For this purpose,

the density matrix, ρ, is introduced. For a pure state |ψ〉, ρ is formed by taking the

outer product of |ψ〉 with itself: ρ = |ψ〉 〈ψ|.

Now consider the case where there is a 1
2

probability of being in the state |0〉
and a 1

2
probability of being in the state |1〉. This has the density matrix:

ρ̂ =
1

2

[
1 0

0 1

]
. (2.21)

The terms on the diagonals correspond to probabilities. The off-diagonal elements

have no corresponding physical interpretation in the classical world. The process

by which the off-diagonals become zero is called decoherence. For example, if we

perform a measurement and discard the outcome, then the pure state |ψ〉 is updated

to a mixed state to reflect our uncertainty of the outcome:

|ψ〉 −→ ρ =
∑
i

Πi |ψ〉 〈ψ|Πi. (2.22)

For any density matrix, pure or mixed, the trace is always 1. This ensures

that the total probability summed over all possible outcomes is 1. For a pure

state density matrix Tr[ρ2] = 1. All density matrices have the further properties

that they are Hermitian: ρ = ρ†, so that measurements on the state produce real-

10



Chapter 2. Background

number-valued outcomes, and they are positive-semidefinite: 〈v| ρ |v〉 ≥ 0 where

|v〉 is any normalized vector, so that the probability of any outcome occurring is

never negative.

Measurements and operations can also be generalized from the case described

in the previous section. Firstly, observable measurements, Λ, can be performed

on density operators, ρ. This is represented mathematically as
∑

i ΠiρΠi with

P (λi) = ΠiρΠi

Tr[Πiρ]
and the expectation value is given by 〈λ〉ρ = Tr[Λρ]. A more

general concept of measurement is the POVM or positive operator-valued measure.

A POVM has elements Ei which obey
∑

iEi = I and the probabilities of the various

outcomes of the POVM are P (λi) = Tr[Eiρ]. In the special case that the Ei are

projectors, this is an observable, but they need not be. There is no requirement of

orthogonality, they only must sum to the identity and each be positive semi-definite

operators so that the probabilities of the outcomes are always positive and sum to

one. Physically, a POVM can always be realized by coupling to another system

and performing a projective measurement over both systems where the dimension

of the ancilla system the equal to the number of elements describing the POVM.

This follows from Naimark’s Dilation Theorem [Nai43].

2.3 Quantum Optics

2.3.1 Quantum Harmonic Oscillator

An important model, which shall be used as a model for an optical cavity, is the

quantum harmonic oscillator. A vibrating spring is an example of such an oscillator.

The Hamiltonian is

H =
1

2
m

(
dx

dt

)2

+
1

2
kx2 (2.23)

where k is the spring constant. For our current purposes, we shall re-write this

in an entirely equivalent form (noting that p = m
(

dx
dt

)
, since momentum is the

generator of translations in position), now with quantum operators for x, p, and H:

H =
p2

2m
+

1

2
mω2x2 (2.24)

where ω is the circular frequency of oscillation. Such a system resides in a quadratic

potential well. This can be seen from the potential term of the Hamiltonian which

is the second term of equation (2.24), which is written in the form, H = T + V ,

11
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Figure 2.2: The form of the harmonic potential well and its energy eigenvalues.

where T is the kinetic energy and V is the potential energy. The shape of the

quadratic curve shown in Figure 2.2. The Schrödinger equation for this system is(
p2

2m
+

1

2
mω2x2

)
|n〉 = En |n〉 , (2.25)

where the |n〉 are the energy eigenstates and the En are the energy eigenvalues.

The eigenstates include a lowest-energy ground state |0〉 and all state |n〉 where n

is a positive integer. These states form a countably infinite orthonormal basis for

the Hilbert space, which is the space L2 of all square-integrable functions, and has

an inner product defined by 〈f |g〉 =
∫ (
f(x)

)∗
g(x)dµ(x). The forms of these states

as functions of the continuous variable for position of a particle in a Harmonic

potential will be considered later in this section.

The energy levels can be found by solving the Schrödinger equation, imposing a

parabolic potential, 1
2
mω2x2. However, it is easier, more useful, and more intuitively

helpful, to instead make a change of operators in the Hamiltonian. Let us define

a =

√
mω

2~

(
x+

ip

mω

)
(2.26)

a† =

√
mω

2~

(
x− ip

mω

)
(2.27)

noting that a† is the conjugate of a. Also note that x and p are measurement

operators, and therefore are Hermitian, so x = x† and p = p†. Consider the value

12
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of the commutator of these operators.

[a, a†] =
mω

2~

[
x+

ip

mω
, x− ip

mω

]
=

1

2~
(−i[x, p] + i[p, x])

=
1

2~
(−i(i~) + i(−i~))

= 1. (2.28)

From this it can be seen that for any eigenstate |n〉

〈n| [a, a†] |n〉 = 〈n| (aa† − a†a) |n〉 = 〈n|n〉 = 1, (2.29)

which implies

〈n| aa† |n〉 = 〈n| a†a |n〉+ 1. (2.30)

The operator a†a is called the number operator, N , and has a special property,

which shall be considered momentarily. Explicitly in terms of x and p, it is

N = a†a =
mω

2~

(
x2 +

( p

mω

)2
)

+
i

2~
[x, p]

=
1

~ω

(
p2

2m
+
mω2x2

2

)
+

i

2~
[x, p]

=
1

~ω
H − 1

2
. (2.31)

So, the Hamiltonian can be expressed as

H = ~ω
(
a†a+

1

2

)
. (2.32)

The form of this expression is very important. It implies that any eigenstates of H

(the |n〉) are also eigenstates of N = a†a. The eigenvalues of N are given by the

equation

N |n〉 = n |n〉 . (2.33)

Then the energy levels of this system are given by

En = ~ω
(
n+

1

2

)
. (2.34)

13
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Equation (2.30) can now be written as

〈n| aâ† |n〉 = n+ 1, (2.35)

which means that the state a† |n〉 must be of the form

a† |n〉 =
√
n+ 1 |φ〉 (2.36)

where |φ〉 is a normalized state that can now be found. Finding the expectation

value of the number operator N for the state
√
n+ 1 |φ〉 to determine if it is an

eigenstate and what its eigenvalue is:(
〈φ|

√
n+ 1

)
N
(√

n+ 1 |φ〉
)

= (〈n| a)
(
a†a
) (
a† |n〉

)
= 〈n|

(
aa†
) (
aa†
)
|n〉

= 〈n|
(
a†a+ 1

) (
a†a+ 1

)
|n〉

= 〈n|
(
a†a
)2 |n〉+ 2

(
〈n| a†a |n〉

)
+ 1

= n2 + 2n+ 1

(n+ 1) 〈φ|N |φ〉 = (n+ 1)2.

Therefore,

〈φ|N |φ〉 = (n+ 1) ⇒ |φ〉 = |n+ 1〉 (2.37)

(where superpositions of energy eigenstates with an expectation value of n+ 1 are

excluded because they could not give aa† |n〉 = (n + 1) |n〉 which equation (2.35)

asserts and we know〈n|n′〉 = 0 for n 6= n′ since N is Hermitian, see equation 2.9)

and we conclude

a† |n〉 =
√
n+ 1 |n+ 1〉 . (2.38)

Similar logic also gives

a |n〉 =
√
n |n− 1〉 . (2.39)

The operators a and a† are called the annihilation and creation operators re-

spectively. They have the useful property that they transfer the system from one

energy eigenstate to the one immediately above it (for the case of the creation op-

erator) or the one immediately below it (for the case of the annihilation operator).

Because of this property they are also sometimes called ladder operators. This can

be interpreted physically in the following way. Consider a laser cavity, which is a

tube with a nearly prefect reflecting mirror at each end. It may contain some fixed

number (assuming the cavity is lossless) of photons, which are understood to be

14
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electromagnetic field excitations, and the creation operator can be used to describe

mathematically adding a single photon to the cavity or the annihilation operator to

describe removing one. Alternatively, the harmonic oscillator can be thought of as

an abstract energy bath that changes its energy eigenstate by emitting or absorbing

photons. The harmonic oscillator is the most commonly used model for describing

the interaction of quantum fields with each other and with matter.

Assume that the harmonic potential has a finite minimum value, and therefore

there must be some ground energy state of the system, call it |0〉. Such a state

cannot evolve to another energy state under the action of the annihilation operator,

so it must be that:

a |0〉 = 0. (2.40)

The energy associated with this state is clearly

E0 = 〈0| ~ω
(
N +

1

2

)
|0〉 =

~ω
2
. (2.41)

Note that this is not zero. If one has an optical cavity with no photons in it, the

“vacuum field” within the cavity still contains non-zero energy.

The expectation values of observables are not the only quantities of interest.

The expected fluctuations – the variance – of these variables can also be found.

For an arbitrary operator A, the variance of the outcome of a measurement A for

a state ψ is denoted 〈(∆Â)2〉ψ and given by:

〈(∆A)2〉ψ = 〈ψ| Â2 |ψ〉 − 〈ψ| Â |ψ〉2 . (2.42)

Using an electric field of the form

E = λ(a+ a†), (2.43)

(where λ is just a constant) the fluctuation of this field operator for a state of |n〉
photons is

〈(∆E)2〉n = 〈n|E2 |n〉 − 〈n|E |n〉2 . (2.44)
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〈(∆E)2〉n = 〈n|E2 |n〉 − 〈n|E |n〉2

= λ2 〈n| (a+ a†)2 |n〉 − λ2 〈n| (a+ a†) |n〉2

= λ2 〈n| (a2 + aa† + a†a+ (a†)2) |n〉 − λ2
(
〈n| a |n〉+ 〈n| a† |n〉

)2
= λ2(0 + 〈n| aa† |n〉+ 〈n| a†a |n〉+ 0)− λ2(0 + 0)2

= λ2(n+ 1 + n)

= λ2(2n+ 1).

Notice that when n = 0

〈(∆E)2〉n=0 = λ2

Even in a vacuum electric field, the field fluctuations are non-zero. That is, a

measurement of the electric field sometimes finds that it has a non-zero value, even

though the field is in a ground state.

The energies of the excited states, En, are of course

En = 〈n|H |n〉 = 〈1| ~ω
(
N +

1

2

)
|1〉 =

(2n+ 1)~ω
2

. (2.45)

The form of the energy eigenstates can also be found in terms of the quadratures,

x and p. Using the Hamiltonian expressed in the form H = p2

2m
+ 1

2
mω2x2 and noting

that p = −i d
dx

, it can be re-expressed as a differential operator in x:

H =
1

2m

(
−i~ d

dx

)2

+
1

2
mω2x2

= − ~2

2m

d2

dx2
+

1

2
mω2x2.

For E = E0, ψ0(x) = 1
4√πe

−mω
2~ x

2
is the normalized ground eigenstate.

And, in general for E = En we obtain the equation

d2

dx2
fn(x)− 2xs

d

dx
fn(x) + 2nsfn(x) = 0 (2.46)

where s = m2ω2

~2 and let ψn(x) = fn(x)e
− s

2
x2

. This is the definition for the “physi-

cist” Hermite polynomials (with an extra factor of s, which is usually set to 1 by

choosing dimensionless parameters). The Hermite polynomials are also defined by:

Hn(x) = (−1)ne−x
2 dn

dxn
e−x

2

. (2.47)
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Including s, this makes the general eigenstates:

ψn(x) =

√
1

2nn!

√
s

π
Hn(

√
sx)e−

s
2
x2

. (2.48)

2.3.2 Coherent States

The energy eigenstates |n〉 are sometimes called Fock states. It is also possible to

define a state which is an eigenstate of the annihilation operator a.

a |α〉 = α |α〉 (2.49)

a |α〉 =
∑
n

cna |n〉

=
∑
n

cn
√
n |n− 1〉 = α

∑
cn |n〉

where the second equality follows from equation 2.49, which implies that

cn
√
n = cn−1α (2.50)

and solving this recurrence relation gives

cn =
αn√
n!
c0. (2.51)

So, |α〉 = c0
∑∞

n=0
αn
√
n!
|n〉 and c0 is a normalization constant. Since

∑∞
n=0

(|α|2)n

n!
=

e|α|
2

it must be that the value of c0 = e−
|α|2
2 . This means that the state can be

writen:

|α〉 = e−
|α|2
2

∞∑
n=0

αn√
n!
|n〉 = e−

n̄
2

∞∑
n=0

√
n̄n

n!
eiφn |n〉 (2.52)

where the second equality comes from defining α =
√
n̄eiφ where n̄ is a real number.

Noticing that n̄n

n!
is the form of the Poisson distribution with mean n̄ implies that

is the mean excitation number of the state is n̄. The argument φ is the phase of

the coherent state.

Coherent states have equal uncertainty in both quadratures, x and p, and

achieve the Heisenberg limit for joint uncertainty. (See Figure 2.3.) For conve-
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Figure 2.3: A phase space diagram of the coherent state, |α〉. Such a state has
a Gaussian profile and equal spread in position and momentum. The expectation
values of these quadrature observables, the projections of the magnitude of the state
onto the axes, is illustrated.

nience, consider the dimensionless definitions of the quadratures X =
√

mω
2~ x =√

1
2
(a+ a†) and P =

√
1

2~mω p =
√

i
2
(α− α∗)

〈α|X |α〉 = 〈α|
√

1

2
(a+ a†) |α〉

=

√
1

2
(〈α| a |α〉+ 〈α| a† |α〉)

=

√
1

2
(α+ α∗) (2.53)
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and similarly for P , 〈α|P |α〉 =
√

i
2
(α− α∗). Also,

〈α|X2 |α〉 = 〈α| 1
2
(a+ a†)2 |α〉

=
1

2
(〈α| aa |α〉+ 〈α| aa† |α〉+ 〈α| a†a |α〉+ 〈α| a†a† |α〉)

=
1

2
(α2 + 〈α| (a†a+ 1) |α〉+ |α|2 + (α∗)2)

=
1

2
(α2 + 1 + 2|α|2 + (α∗)2). (2.54)

Therefore,

∆X2 = 〈X2〉 − 〈X〉2 (2.55)

=
1

2
. (2.56)

And for P , 〈α|P 2 |α〉 = 1
2
(−α2 + 1 + 2|α|2 − (α∗)2):

∆P 2 = 〈P 2〉 − 〈P 〉2 (2.57)

=
1

2
. (2.58)

As already surmised, the mean number of excitations 〈α|N |α〉 is n̄ = |α|2. The

variance is

∆N2 = 〈N2〉 − 〈N〉2

= 〈α| a†aa†a |α〉 − (|α|2)2

= 〈α| a†(a†a+ 1)a |α〉 − |α|4

= |α|4 + |α|2 − |α|4

= |α|2 = n̄ (2.59)

meaning that the mean and the variance are equal, as should be the case for a

Poissonian distribution.

There is no observable operator for phase, φ, the variable conjugate to excita-

tion number, n. A observable operator should be Hermitian with real eigenvalues

corresponding to the measurement outcomes and associated eigenvectors that span

the state space. It is not possible to construct such an operator, but since a coher-

ent state is a minimum-uncertainty state, the variance should be 1
4n̄

– the inverse

of the variance for N times the Heisenberg limit (1
2
) squared, which in these units
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is 1
4
.

One other point to notice is that coherent states are also intuitive states for

indicating phase. Though true coherent states are states of infinite dimensional

Hilbert spaces, for large values of n̄ cropping the summation at some value of n,

say n = N , they are very close to states which are tensor products of qubits in

identical states of the form (|0〉+ eiφ |1〉). That is as n→∞ the state

(|0〉+ eiφ |1〉)⊗N

approaches an excitation distribution equivalent to

e−N/4
∞∑
n=0

√
(N/2)n

n!
einφ |n〉

where |n〉 denotes the symmetric bosonic state of n excitations and |1〉 denotes the

excited state of a single qubit. Here, n̄ = N/2. This result is due to the Central

Limit Theorem [Boa83] which gives the convergence of the Poisson distribution (the

distribution of the number of excitations in the coherent state) and the binomial

distribution (the distribution of the number of excitations in the tensor-product

state) to the Gaussian distribution as the number of samples and averages become

large.

2.4 Quantum Angular Momentum

Angular momentum is defined as the cross product between the momentum p and

r, the vector to the origin of the rotation:

L = p× r, (2.60)

so it is a momentum about a fixed point. Classical systems can have two kinds

of angular momentum: extrinsic, or orbital, angular momentum, which is due to a

massive object moving around a point in space, and intrinsic angular momentum,

which is the momentum a body with extent has by virtue of rotating about its centre

of mass. Like classical systems, quantum mechanical systems can have angular

momentum, and two different kinds: orbital angular momentum, and spin angular

momentum. Spin angular momentum is considered to be a form of intrinsic angular

momentum, but particles such as electrons have non-zero spin, despite the fact that

they are believed to be point particles. Specifically, the radius of the electron has
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been shown to be less than 10−3fm by high energy scattering experiments. A simple

analysis of orders of magnitude reveals that even if the electron had physical extent

on this scale or smaller, in order to have the value of intrinsic angular momentum it

is found to have, the electron would need to be rotating so rapidly that the outside

edges of the electron would travel faster than the speed of light, as is considered

presently:

The magnetic moment µ = 1
2
gs is proportional to the electron spin, s. The

electronic magnetic moment can also be written in terms of the Bohr magneton

µB = e~
2me

:

µe = ±1

2
gµB (2.61)

where g is the gyromagnetic ratio, which for electron spin is slightly greater than 2.

This means that we can use the Bohr magneton as the electron’s magnetic moment

in this rough calculation. The value of the Bohr magneton is

µB = 9.27× 10−24J T−1. (2.62)

The largest magnetic moment for a charged body occurs if the charge is all located

as far from the centre of mass (the centre of rotation) as possible. Therefore, to be as

permissive as possible, we shall suppose that the charge of the electron, rather than

being evenly distributed, is all located at the outer edge of the electron. Magnetic

moment of an orbiting charge, q, is given by the expression

µ=
1

2
qr× v. (2.63)

The radius is perpendicular to the direction of the velocity, so we find, for the

velocity of the electron’s outer edge, the rough expression

v ≈ 2µB
e

(2.64)

which gives v ≈ 11 × 1013m s−1. This is much greater than the speed of light,

c = 3.00× 108m s−1.

It is clear from this that even though spin is an intrinsic degree of freedom of

quantum systems, it is not due to rotation of the body about its centre in the

classical sense.

Orbital, L, and spin, S, angular momenta are vector quantities which sum to

give the total angular momentum of the quantum system, J = L + S. All of these

angular momenta are quantized.
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We can also consider the direction of the total angular momentum relative to

a z axis defined by our measurement apparatus. The z-projection of the total

angular momentum, m, is also quantized and can take the 2J + 1 different values

m ∈ {−2J − 1,−2J + 1, ..., 0, ..., 2J − 1, 2J + 1}. Equally, the measurement device

could be configured to define an x or y axis. The operators associated with the x,

y, and z projections of angular momentum are typically denoted Jx, Jy, and Jz and

obey the commutation relations

[Ji, Jj] = iεi,j,kJk, (2.65)

where εi,j,k is the Levi-Civita symbol which is +1 for i = x, j = y, k = z and any

cyclic permutation of those, −1 for any other permutation of x, y, and z, and zero

if any of i, j, and k are equal. All of Jx, Jy, and Jz commute with the total angular

momentum operator J2 = J2
x + J2

y + J2
z , in particular

[J2, Jz] = [J2
x , Jz] + [J2

y , Jz] = Jx(−iJy) + Jy(iJx) + (−iJy)Jx + (iJx)Jy = 0. (2.66)

So, J2 and Jz are compatible observables, and we can express a joint eigenbasis for

them. Following standard notation, let us denote the eigenstates |J,m〉 which have

the eigenvalue equations:

Jz |J,m〉 = m |J,m〉 (2.67)

J2 |J,m〉 = j(j + 1) |J,m〉 , (2.68)

where j can take any non-negative integer or half-integer value.

In the same way that ladder operators are constructed for the energy levels of

a harmonic operator, it is useful to find raising and lowering operators for m for a

fixed value of j. We require

J+ |J,m〉 = kj,m |J,m+ 1〉 . (2.69)

The operator Jz does not change the state |J,m〉, but a combination of the

operators Jx and Jy can. Note that

[Jz, Jx + iJy] = Jx + iJy (2.70)

and

[Jx − iJy, Jz] = Jx − iJy. (2.71)
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From equation (2.70)

Jx + iJy |J,m〉 = [Jz, Jx + iJy] |J,m〉 (2.72)

= (Jz −m)(Jx + iJy) |J,m〉 (2.73)

so, for this equation to hold, (Jx + iJy) |J,m〉 must be an eigenstate of Jz with

eigenvalue m+ 1, which means

(Jx + iJy) |J,m〉 = kj,m |J,m+ 1〉 . (2.74)

The factor kj,m can be found by considering the inner product

〈J,m| (Jx− iJy)(Jx+ iJy) |J,m〉 = 〈J,m| (J2−J2
z −Jz) |J,m〉 = j(j+1)−m2−m.

(2.75)

So,

J+ |J,m〉 =
√

(j −m)(j +m+ 1 |J,m+ 1〉 . (2.76)

where

J+ = Jx + iJy. (2.77)

This is the raising operator that we hoped to find. A similar calculation from

equation (2.71) gives

(Jx − iJy) |J,m〉 =
√

(j +m)(j −m+ 1 |J,m− 1〉 , (2.78)

which gives the expression for the lowering operator:

J− = Jx − iJy. (2.79)

These expressions also indicate how Jx and Jy act on the state |J,m〉:

Jx |J,m〉 =
1

2
(J+ + J−) |J,m〉 =

1

2
(|J,m+ 1〉+ |J,m− 1〉) (2.80)

Jy |J,m〉 =
i

2
(J− − J+) |J,m〉 =

i

2
(|J,m− 1〉 − |J,m+ 1〉). (2.81)

Since the total angular momentum of a system is quantized, when two systems

of non-zero angular momentum combine there are rules governing how the angular

momentum vectors can add to produce a new system with new total angular mo-

mentum. For example consider a pair of systems with total angular momentum j1

and j2 which will be combined under the tensor product to give a single system of
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1
j

2
jJ

Figure 2.4: Combining two systems with angular momentum j1 and j2 to form a
joint system with total angular momentum J.

angular momentum J = j1 + j2 and let j1 = |j1| ≥ j2. The allowed values of the

outcome of a measurement of the total angular momentum of the joint system are

the integer or half-integer values:

J = {j1 − j2, j1 − j2 + 1, ..., j1 + j2}, (2.82)

where for k = {x, y, z}
Jk = j1k ⊗ I + I⊗ j2k. (2.83)

The amplitudes for each of these possible outcomes depends on the relative direc-

tions of the systems’ individual angular momentum vectors and are given by the

Clebsch-Gordan coefficients 〈j1m1, j2m2|JM〉 [CS51, Hec00]:

|j1m1, j2m2〉 =
∑
j

〈JM |j1m1, j2m2〉 |JM〉 (2.84)

and since the sum is only over j (M,m1, and m2 are fixed) these coefficients can

always be made real, and this is the universal convention. Then, in the case that

the direction of the total joint angular momentum defines the z axis, there is a
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general expression [Hec00]:

〈j1m1,j2(J −m1)2|JJ〉 = (−1)j1−m1×√
(j1 +m1)!(j2 + J −m1)!(j1 + j2 − J)!(2J + 1)!

(j1 −m1)!(j2 − J +m1)!(j2 − j1 + J)!(j1 − j2 + J)!(j1 + j2 + J + 1)!
.

(2.85)

In other cases, the particular expressions required can be calculated from recursion

relations derived by applying the raising operator J+ to both sides of equation 2.84.

2.5 Group Theory

Group theory is a powerful formalism for exploiting symmetries in the analysis of

physical systems. It will be used in this thesis to describe the symmetries that

result from lacking certain reference frames in Chapters 4 and 3.

A group is formed from a set and an operation that combines two element to

form a third. The set should be closed, associative, have an identity element, and

each element should have an inverse element.

Groups can consist of (or have representations as) sets of matrices.

A Lie group is a group that is also a differentiable manifold, so that it can

describe continuous symmetries, and the group operation and inverse map for an

element should be differentiable. A matrix Lie group is a closed subgroup of the

general linear matrix group, GL(n; C), the group of all n× n invertible matrices.

A unitary matrix is a matrix U such that UU † = I. The unitary group U(n)

is the group of all n × n unitary matrices. The group SU(n) is the subset of

U(n) such that all the elements have determinant one. The orthogonal group O(n)

contains all n × n matrices that are orthogonal, i.e., OOT = I and the subgroup

with determinant one is denoted SO(n). These are all matrix Lie groups.

A homomorphism is a map between two algebraic structures that preserves that

structure. Such a map is a Lie group homomorphism if it is a map from a Lie group

G to a Lie group H that is a group homomorphism and is continuous. If such a

map is also one-to-one and onto and its inverse map is continuous, then it is a Lie

group isomorphism, and the groups G and H can be written G ' H.

A Lie algebra, g, of a matrix Lie group, G, is the set of all matrices A, such that
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eiAt ∈ G for all t ∈ R. 3

For the case of the group SU(n), the group of all n × n unitary matrices with

determinate 1, it must be that

U−1 = U † ⇒ e−iAt = (eiAt)†. (2.86)

Expanding the exponential function as a Taylor series, since the operation of taking

the adjoint is additive, it can be seen that (eiAt)† = e−iA
†t, so

A = A†, (2.87)

which gives that the Lie algebra su(n) is composed of Hermitian matrices. In

the setting of quantum mechanics, this shows that Hamiltonians, which are the

generators of unitary transformations, are Hermitian operators.

A finite-dimensional matrix representation of a Lie group, G, is an homomor-

phism, Π from G to the general linear matrix group GL(n; C) on some dimension

n. If the mapping is one-to-one, then it is a faithful representation. A representa-

tion is irreducible if it has no non-trivial invariant subspaces. A subspace, S, of a

vector space, V , is non-trivial if S 6= {0} and S 6= V . Such a subspace is invariant

under the action of a group representation if the representations of all of the group

elements map all vectors from the subspace back into the subspace, i.e., Π(g)s ∈ S
for all s ∈ S and g ∈ G.

2.5.1 The Relation of SU(2) to SO(3)

The group SU(2) is the group of all unitary matrices with determinant one of

dimension two. The group SO(3) is the set of all rotations about some three-space

vector n̂, through an angle θ ∈ [0, 2π).

There is a homomorphism that takes the elements of SU(2) to SO(3) that is

two-to-one. This can be seen by observing that two elements of SO(3) are the same

if they are RO(n̂, θ) and RO(−n̂, 2π − θ). However, SU(2) can also be represented

as rotations RU(n̂, θ), however, rotations about an vector n̂ through an angle 2θ.

So for SU(2), RU(n̂, θ) 6= RU(−n̂, 2π − θ).

More explicitly, a basis for a three dimensional real vector space, i, j,k is a

set of three orthogonal unit vectors. We could chose to represent i = X, j = Y

3The imaginary unit i is included in this definition according to the convention used by physi-
cists.
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and k = Z (X,Y,Z are the Pauli matrices). Then v = vii + vjj + vkk becomes

V = viX + vjY + vkZ.

Following Hall [Hal06], operations that are representations of the orthogonal

group will will preserve the inner product of two vectors when the operation acts

on both vectors, that is, 〈w|OTO |v〉 = 〈w|v〉. In the new basis for R3, 〈w|v〉 =
1
2
Tr[W †V ]. So an orthogonal map on this representation, ΦU is one that

1

2
Tr[ΦU(W †)ΦU(V )] =

1

2
Tr[W †V ].

Such maps are unitary maps on the matrix representations:

ΦU(V ) = UV U †.

So there is a correspondence between the set of orthogonal operators on R3 (the

elements of SO(3)) and the unitary matrices on two dimensions SU(2). Notice that

the map ΦU = Φ−U , but U 6= −U . This implies the mapping from SU(2) to SO(3)

is two-to-one.

It is also possible to relate the Lie algebras of SU(2) and SO(3), su(2) and so(3).

It has been already shown that for unitary matrices the elements of the Lie algebra

should be Hermitian. Further, for a matrix with determinant one, det(U) = 1 ⇒
det(eiAt) = 1. Hermitian matrices are diagonalizable, so the trace of A is the sum of

its eigenvalues
∑

i ai and its determinant of eiA is the product of the exponentiated

eigenvalues
∏

i e
ai . Since e

P
i ai =

∏
i e
ai , therefore det(eiAt) = eiTr[A]t. This will

equal one for all real t if and only if Tr[A] = 0. So su(2) is the space of all 2 × 2

complex traceless Hermitian matrices.

Such matrices have the form:

A = a1X + a2Y + a3Z,

where |a1|2 + |a2|2 + |a3|2 = 1 and a1, a2, a3 ∈ R.

For so(3),

O−1 = OT ⇒ e−iBt = (eiBt)T . (2.88)

Again, from the Taylor series of the exponential function and additivity of taking

the transpose, (eiBt)† = eiB
Tt, so

−B = BT, (2.89)

27



Chapter 2. Background

and therefore, these are also a traceless matrices with elements

B =

 0 b12 b13

b21 0 b23

b31 b32 0

 .

Then b12 = −b21, b13 = −b31, and b23 = −b32 where |b12|2 + |b13|2 + |b23|2 = 1 so that

the inner product of a real 3-vector is preserved and all of the matrix elements are

real.

There are the same free parameters to define the elements of both Lie algebras.

This demonstrates that there can be a one-to-one and onto mapping from su(2) to

so(3) that takes a1 7→ b12, a2 7→ b13, and a3 7→ b23. Therefore, su(2) is isomorphic

to so(3).

2.5.2 Group Theory Applications to Reference Frames and

Angular Momentum

The symmetries that occur in the angular momentum states as spins are tensored

together are conveniently described in the framework of group theory.

A Hilbert space H, can be decomposed as a direct sum of spaces corresponding

to inequivalent representations of Πq of a Lie group, G,

H =
⊕
q

Hq. (2.90)

These spaces can each be written as the tensor product of a space that hold irre-

ducible representations of G, Πq, and a multiplicity space that hold trivial represen-

tations of G, Mq, Hq = Hq,irr⊗Mq. Trivial representations are the representation

equal to the identity for all group elements, Πtrivial(g) = I for all g. So, the mul-

tiplicity spaces have dimension equal to the number of copies of the irreducible

representation held by Hq. The irreducible representation space and the multi-

plicity space behave differently under the action of a map that destroys reference

information.

As an example, when two spin-1
2

systems are combined under the tensor product,

they can form a spin-1 system or a spin-0 system (J = 0 or J = 1, see equation 2.82).

This can be expressed in terms of the Hilbert spaces:

H1
2
⊗H1

2
= H1 ⊕H0, (2.91)
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and in terms of matrix representations
J = 1

0

0

0

0 0 0 J = 0


, (2.92)

where along the diagonal there is a irreducible representation of SU(2) on three

dimensions (all possible transformations on a spin-1 system) and an irreducible

representation of the spin-0 transformations which are just phases (i.e., in U(1)).

These both have multiplicity one.

Tensoring with another spin-1
2

system gives

H1
2
⊗H1

2
⊗H1

2
= H 3

2
⊕H 1

2
⊕H 1

2
, (2.93)

and 

J = 3
2

0 0

0 J = 1
2

0

0 0 J = 1
2


. (2.94)

Now the space is composed of an irreducible representation of SU(2) on four di-

mensions (spin-3
2

transformations) and two copies of the irreducible representation

of SU(2) on two dimensions. The multiplicity of the J = 1
2

space is therefore two.

H1
2

= H1
2
,irr
⊗ I2.

The lack of a reference frame can be described as a twirling operation on a state

ρRF over the elements of the group [BRS07] associated to the symmetry broken by

the reference:

ρnoRF = E(ρRF) =

∫
G

T (g)ρRFT (g)†, (2.95)

where g ∈ G and T (g) is an irreducible representation of G.
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Lemma 2.1 (of Schur). [Sch05, BRS07] 1. Any operation, X, with the property

that Π(g)XΠ(g)† = X for all g ∈ G where Π(g) is an irreducible representation of

G, is a multiple of the identity. X = cI.

2. Any operation X, with the property that Πq(g)XΠq′(g)
† = X for all g ∈

G where Πq is an irreducible representation and q 6= q′ so that Πq and Πq′ are

inequivalent representations of G, then X = 0.

This gives a restriction on how the map E can act. It must completely mix

states in the spaces of the irreducible representations, but will leave states on the

the multiplicity spaces intact. It can be expressed [BRS07] as:

E =
∑
q

(DHq,irr
⊗ IMq) ◦ Pq (2.96)

where D(ρ) = I
d

if ρ is any state with dimension d and Pq is a projection onto the

space Hq. Then the operations that are invariant under the action of the group G

are

A =
⊕
q

IHq,irr
⊗BMq (2.97)

where B is any operator on the space Mq.

Therefore, an operation which is invariant under the action of SU(2) can only act

non-trivially on the multiplicity spaces. In the example of the three spins tensored

together, there is a space which is invariant under SU(2). It is the multiplicity two

space of the H1
2

space. Since it is two dimensional, it can store a logical qubit,

even without a Cartesian frame (SU(2) invariance). That is, imagine a three-qubit

quantum state is prepared by Alice and sent to another Bob. If the Alice and

Bob do not agree on a Cartesian frame, this is equivalent to there being a channel

between them that applies a random rotation from SU(2). Even so, Alice can still

send one qubit of information to Bob. This will be referred to again in Chapter 4

Section 4.4.1 as an “energy conserving” subspace.

Also note that two spin-J systems tensored together have a Hilbert space that

can be decomposed as

HJ ⊗HJ = H2J ⊕H2J−1 ⊕ ...⊕H0, (2.98)

where each Hj is an irreducible representation that appears with multiplicity one.

Any operator on this Hilbert space that is invariant with respect to SU(2) rota-

tions, by Schur’s Lemma must take the form ρ =
⊕2J

j=0 cjIj, where the cj ∈ C are

30



Chapter 2. Background

constants. This provides intuition for the proof of Theorem 3.1 in from Chapter 3,

presented in Appendix A.

2.6 Reference frames

2.6.1 Introduction

Decoherence is the loss of quantum coherence, that is, the potential to observe

quantum interference effects, and has a destructive effect on attempts to imple-

ment a quantum computation because it reduces the strength of quantum inter-

ference effects which are required to obtain the apparent speed-up over classical

computation.

Decoherence can have many sources in an apparatus designed to exploit quan-

tum effects. It can come as a result of technical imperfections in the devices that

perform the operations on the qubits, or that perform the measurements, or from

background noise which adds unwanted and unknown Hamiltonians to all or some

qubits. In practice all of these effects will play a role, however, there are also fun-

damental sources of decoherence, which are the result of quantum theory itself and

is thus unavoidable no matter how well-made the physical apparatus is or what

implementation is selected.

One type of fundamental decoherence occurs when operations are completed by

interacting an external system with the quantum system performing the computa-

tion. Any system used to implement such an operation, when treated quantumly

may become entangled with the computation system. A quantum reference frame

is a system that is interacted with the quantum system in order to provide a con-

vention for measurements and operations. Normally, such reference systems are

treated classically because they tend to be large and in a state which has ther-

malized. Together, these facts make such an approximation very good. However,

if we believe that quantum mechanics is fundamental, then strictly speaking, this

reference system is a quantum system and it is most accurate to treat it as such.

The shortcomings of assuming it to be classical become apparent when conserva-

tion laws are considered and it seems that quantum mechanics leads to a paradox.

However, as we shall come to later, the paradox is instantly resolved when the

operating system is allowed to have quantum operators for its relevant degrees of

freedom.
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Treating the operating system classically prevents the consideration of any

“back-action” of the computation system on the reference system. It is this back-

action that causes the loss of coherence in the quantum system and for this reason,

this source of decoherence is often overlooked. The classical model also allows each

operation performed on the computation system to be modeled as a Hamiltonian

that is applied to the system. Whenever we describe an operation in this way,

we are implicitly assuming that there is a large classical, external system that is

coupling to the quantum system to effectively apply this Hamiltonian to it and

drive the new transitions in the system being treated quantumly. In this way, every

Hamiltonian is an approximation, albeit, generally a very accurate one.

A qubit is a two-state system that displays quantum coherence. For a qubit

to be useful for quantum information purposes it must be possible to perform a

measurement that distinguishes these two states. Ideally, they should be orthog-

onal and thus perfectly distinguishable under the measurement associated to the

operator of the degree of freedom that defines the two levels. This also requires

access to a reference frame for that degree of freedom to perform the measurement,

as is explained in the following.

In classical mechanics, a reference frame is a convention for describing the state

of a system mathematically. For example, it can provide an origin for a coordinate

system. In quantum mechanics, a classical reference frame is assumed when writing

a state: this provides the basis or coordinate system in which the state is expressed.

A case in point is that of a spin-1
2

system that is written in z basis. Without some

definition of the z axis (often assumed to be provided by the classical measuring

device) it is impossible to write a description of what the likelihoods of the out-

comes corresponding to each “z projection” will be in a “z axis” measurement. We

can relate one local reference frame to another reference frame by means of a trans-

formation between the two basis conventions. For example two offset Cartesian

frames can be transformed, one to the other via the appropriate SU(2) rotation.

This is a unitary basis change.

Suppose we have a directional reference frame, that is, a unit vector in three-

space. Such a frame defines an axis in three-space. Let us call this axis the z axis,

and assign values to projections of angular momentum mJ of spin states onto this

axis. We can write the state of a spin-J system in terms of the basis defined by the

system’s possible values of mJ . However, without an additional notion of either an

x or y axis, we cannot express a spin-J state as a superposition over different values

of mJ . Our ignorance of this convention is described mathematically by integrating

over all the possible directions the x (or y) axis might point in — that is, the whole
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plane perpendicular to z: ∫ 2π

0

Rz(φ)ρJRz(φ)†dφ, (2.99)

where Rz(φ) is a rotation about the z-axis through an angle φ. In effect we have

a superselection rule that prevents us from creating coherent superpositions over

different spin angular momentum z-direction values mJ . In addition, if we also lack

a reference frame to define z, then it is not possible to create coherent superpositions

of different values of total angular momentum, J . We say in this case that the

angular momentum of this individual quantum spin is conserved.

Now suppose this axis is defined by a real physical object, rather than a concep-

tual ideal, against which we will make measurements in order that we can describe

the relative state of other systems to this reference object. If the reference object

is classical, then we can measure its state without altering it. However, if the ref-

erence object is a quantum system, for example a spin with a large value of J ,

then measurements relating its state to that of smaller spin systems will have some

back-action on the reference state. Suppose we have both a classical and a quantum

reference which are initially aligned. If we use the quantum state as a measurement

reference repeatedly, eventually such measurements will cause a degradation of the

quantum reference system as an indicator of the direction of the classical system.

2.7 Superselection Rules and Restrictions on Mea-

surement

We can relate this to superselection rules imposed by conserved quantities. A degree

of freedom is said to be conserved if its associated operator A commutes with the

fixed Hamiltonian of the system. That is,

[A,H] = 0. (2.100)

In nonrelativistic quantum mechanics, conservation laws appear to restrict mea-

surements that can be performed on a quantum system and also the superpositions

that can be created over particular variables. Initially it was suggested that charge

conservation would impose a charge superselection rule [WWW52], implying that

no coherent superpositions of states with different charge could be created. Like-

wise, component-wise angular momentum conservation counter-intuitively seems to
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prevent a measurement of mj for any particle. We shall see why this is not a para-

dox. Consider: if it is possible for the x-component of the total angular momentum

to commute with a jz measurement on some subsystem, then both can have well

defined values at the same time and the measurement can be completed even under

the momentum conservation restriction.

Let us isolate a particular pair of systems so that we can conserve momentum

jointly within them. Note that by saying systems are isolated this means no other

external system can couple to them. If J is the angular momentum operator of our

reference system and j is the angular momentum of a spin system which we wish

to perform measurements on, then let J be the total angular momentum of both

systems together. For angular momentum to be conserved we have

[Jx, H] = [Jy, H] = [Jz, H] = 0

and for the conservation of total momentum we have

[J 2, H] = 0,

which in fact is a direct consequence of the first set of commutation relations. For

example, let us conserve the total momentum of both systems (which can interact

with each other, but are otherwise totally isolated) along the x-axis, Jx:

Ĵx = Ĵx + ĵx, (2.101)

but this will not commute with jz:

[Jx, jz] = [Jx + jx, jz] = −i~jy, (2.102)

therefore we might conclude that this projection measurement cannot be done,

because the total angular momentum should be conserved for all components of J

(Jx, Jy, and Jz) in any closed physical system. However, as our system is completely

isolated, we will only ever be able to relate the quantum spin’s direction to the large

reference spin’s direction. The measurement that it is possible to perform is J 2,

which is a measurement of the total angular momentum of both systems together.
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This does commute with the total angular momentum along the x-direction:

[Jx,J 2] = [Jx, (J 2
x + J 2

y + J 2
z )]

= i~(JyJz + JzJy − JzJy − JyJz)
= 0. (2.103)

If the two systems are completely isolated, it is not possible to speak about their

relation to an ideal z-axis, but the large reference system J we will use to define for

the smaller spin system a new, local z′-axis. The new total angular momentum J
will indicate whether j points in the same direction as J , in which case J 2 > J2 or

in the opposite direction (J 2 < J2). In fact it will give us a measurement of mj(z′),

the projection of the spin along the direction of the axis z′, for the small spin system

by virtue of the fact that J = J+j. This measurement can be completed. If we wish

to consider everything quantum mechanically, then we will always be encountering

this sort of restriction. We cannot define a z-direction except by means of the

orientation of a (possibly very large and approximately classical) quantum system.

When the reference system, which is the system employed to perform a oper-

ation, is quantized, then it is clear that the measurement being made is a relative

measurement, which means firstly that the measurement is imperfect, since the

limited size of the reference can only determine a measurement convention to a

finite accuracy, and secondly that the act of measurement degrades the reference

frame.
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The Degradation of a Quantum

Direction Reference

Contents
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3.1 Overview

In this chapter, a quantum spin is considered as a directional reference resource for

performing measurements and operations on other quantum spin systems. These

operations can be described by directionally covariant maps and a general form for

covariant maps is found. This allows the analysis of the evolution of the moments

of the angular momentum operator of the quantum reference system and from

this a theorem governing the longevity of a quantum directional reference frame is

discovered. Many examples then demonstrate how these results can be put to use

to analyze measurements of and rotations on a variety of quantum systems. The

work in this chapter has appeared in [BSLB08].

3.2 Introduction

In order to conserve angular momentum in a quantum system while performing

operations or measurements on it, access to a quantum system that serves as a
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direction reference is needed. A spin can be used in this way to indicate a direction

in three dimensional space. This quantum reference allows other quantum systems

to be rotated or measured projectively while the conservation law is upheld. How-

ever, as the reference spin is used in this capacity its usefulness for indicating a

direction is reduced. That is, the state of the spin will become increasingly mixed

and it contains less and less information about direction. In this sense the quantum

direction reference is a resource that is consumed when it is used as a measuring

apparatus or means of performing quantum operations on other systems.

The quantum operation describing the unitary rotation is then an operation

conditional on the state of the quantum reference frame. As a result of quantizing

the reference frame, there will be an inherent uncertainty in its direction and so

the conditional operation will not be identical to a classical conditional operation.

Further, as a result of the operation the state of the quantum reference will undergo

an unknown disturbance.

Consider the case that we wish to implement a unitary rotation operation on

a qubit. In this work, the qubit is assumed to be spin-1/2 system, but reference

frame restrictions will also apply to other kinds of qubit, where the basis states

are another type of degree of freedom that also obeys a conservation law. In the

usual implementations the apparatus employed to perform such a transformation

will use a system which can be described as a classical directional reference frame in

order to define an axis for the rotation. However, there could be constraints on the

system that make this model infeasible. For example, the apparatus performing the

measurement may need to be miniaturized in order to fit on a chip. Alternatively,

the device may need to be small in order to couple to a particular spin and not

the surrounding spins in a solid state architecture. If this occurs, then it is not

accurate to describe the system providing the reference direction classically, and

instead it should be treated quantumly, using a Hilbert space of finite size. The

quantum operation describing the unitary rotation is then an operation conditional

on the state of the quantum reference frame. However, there will be inherent

uncertainty in the direction of the quantum reference frame, so this conditional

operation cannot be perfect. Also, the state of the quantum reference frame will

experience back action from this operation, and experience decoherence as a result

of tracing over entanglement formed during the interaction between the reference

frame and system.

It should be noted that the constraints that lead to the requirement that the

reference system be treated quantumly are ones that are expected to arise in a

quantum computing architecture. For example, measuring devices for such a sys-
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tem must couple strongly to specific registers (subsystems), and this implies a very

small device so that coupling can be controlled and unwanted couplings to neigh-

bouring systems prevented. Ideally, a measuring apparatus should be well-modeled

classically, to reduce noise, however, that may not be compatible with the previous

requirement, since a very small device is better modeled quantumly. Therefore,

it is important to consider how a moderately sized system decoheres when being

used in this way. This work is directly applicable to the magnetic resonance force

microscopy (MRFM) proposal of [RBMC04, SGB+95]. In that scheme a magnet

on the scale of tens of nanometers in length is placed on tip of a nanomechanical

resonator, which at very low temperatures may allow single-spin measurements in

a solid state quantum computer. In this regime the assumption of classical behav-

ior of the device leads to a poor approximation. Similar problems would occur in

situations in which Hamiltonians must be applied to specific subsystems without

disturbing neighboring ones.

This type of scenario was considered previously by Bartlett, Rudolph, Spekkens,

and Turner [BRST06]. They considered the effect on the reference frame of its

repeated use measuring the direction of spin-1/2 particles. For a measure of the

quality of the reference frame, they defined the longevity of a reference frame as

the number of uses that can be made of it before the fidelity of the measurement

being made on a spin-1/2 system with the ideal, classical measurement falls below

a chosen threshold. This allowed them to study how the usefulness of the quantum

reference deteriorated with its use. They also made the assumption that all of the

spin-1/2 systems started in the completely mixed state. This is equivalent to saying

the systems were drawn from a reservoir composed of spin-1/2 systems in identical

states and overall the reservoir had no prior correlation to the quantum reference

system. By no prior correlation, what is meant is that no relative direction could be

defined between the reservoir and the reference initially. Under these circumstances,

the longevity of the reference scales with the square of its total angular momentum,

O(j)2.

Poulin and Yard [PY07] also considered this situation, except without the con-

straint that the spin-1/2 particles should be in a mixed state. Since all of the

particles are assumed to be interchangable, it this gives the reservoir an overall

polarization. In this case, for any non-zero polarization the longevity scales instead

as O(j).
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3.3 Mathematical Description and Physical Intu-

ition

This type of scenario can be described mathematically as follows. For the system to

be used as a directional reference, let us use a spin-j system, which has dimension

d = 2j+1. This system will begin in some initial state ρ(0), which will be chosen to

indicate a classical direction given by a real three-vector n̂. Therefore, to serve as a

directional reference, ρ(0) should be correlated with n̂. Following the ideas of [PY07],

the initial state in this analysis is permitted to be arbitrary, except that it is only

allowed to depend on the direction n̂: ρ
(0)
j (n̂) =

∫ 2π

0
Rj(φ)ρ

(0)
j (n̂)Rj(φ)dφ for the

spin-j quantum directional reference frame, where the integration is over rotations

about the axis n̂. This restricts the initial density matrix to be diagonal in the

particular basis that corresponds to n̂. That is, ρ
(0)
j (n̂) commutes with the angular

momentum operator Jn̂ in the n̂-direction. The quantum reference frame transforms

under rotations according to the spin-j representation of the group SU(2), Rj(Ω),

where Ω ∈ SU(2) denotes the various possible rotations, for example by indexing

a rotation axis, a rotation angle, and an inconsequential global phase.

Let σ⊗n be the state of a reservoir composed of n ordered subsystems on which

sequential operations will be performed using the same quantum reference frame.

A quantum operation χ is applied on the joint system of the reference and the first

reservoir subsystem ρ(0) ⊗ σ1. The map χ is required to be rotationally invariant,

meaning that it is independent of any specific direction in space. Formally, a map

χ is rotationally invariant if and only if χ
(
R(Ω)(·)R(Ω)†

)
= R(Ω)χ(·)R(Ω)† for

any rotation Ω ∈ SO(3) of the joint system (or more generally SU(2) which is the

double covering group of SO(3), that is, there is a homomorphism with kernel 2

that takes SU(2) to SO(3), so their Lie algebras are isomorphic; see Chapter 2,

Section 2.5.1). Here, R is the unitary representation of the rotation group SO(3)

on the joint system. This implies that all directions are treated equally by the map

so that rotating the state and then performing the map is equivalent to performing

the map on the state and then rotating its output. An example of a rotationally

invariant operation on two qubits would be the application of a Hamiltonian of the

form H = XX+Y Y +ZZ. This can be seen to be true by noting that an arbitrary

unitary U can be expressed as U = eiα
(
cos(β/2)I + i sin(β/2)(nxX + nyY + nzZ)

)
and that U ⊗ U commutes with H.

This restriction is made because if the map were not to be rotationally invariant,

this would imply the use of a classical reference in the action of the map and thus

39



Chapter 3. The Degradation of a Quantum Direction Reference

it would not be reasonable to consider the quantum reference as the only reference

resource available. Subsequent to the operation, the reduced state of quantum

reference frame is ρ(1) = Trσ1 [χ(ρ(0) ⊗ σ1)], where Trσi
denotes the partial trace

over the ith subsystem of the reservoir. The first subsystem of the reservoir is

then discarded, and the same operation is performed on the second subsystem,

but using the updated quantum reference frame ρ(1). These steps are repeated

with the following subsystems of the reservoir, always using the updated quantum

reference frame. The state of the quantum reference frame after the ith step is

ρ(i+1) = Trσi
[χ(ρ(i)⊗σi)]. By discarding the previous subsystems of the reservoir at

every step, it follows that the reservoir cannot be used to increase our knowledge

about the quantum reference frame.

As in [BRST06, PY07], a quantum directional reference frame could be used

to measure whether a series of spin-1
2

particles are parallel or anti-parallel to some

classical arrow. (See Figure 3.1.) However, there are a myriad of other possible

cases, including measuring the angular momentum of a series of spin-j′ systems

with j′ > 1
2
, or using the quantum reference spin to indicate an axis about which a

unitary rotation operation is performed.

Figure 3.1: The scenario studied by Bartlett et al. [BRST06]. The quantum ref-
erence spin is used to measure the direction of a series of spin-1

2
particles in the

completely mixed state by means of a projection onto the J− 1
2

or J+ 1
2

subspaces.
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3.3.1 Aside: Intuition from the Stern-Gerlach Arrange-

ment

A physical scenario that this can be related to for physical intuition is a modified

version of the Stern-Gerlach experiment. A diagram of the basic experimental setup

is shown in Figure 3.2. A beam of silver atoms (which are spin-1
2

systems for the

electron in the lowest energy S state) is sent through a magnet polarized in the

z-direction. In other words, the South pole of a horseshoe cross-section magnet

is directly above the North pole, such that there is a gap between them through

which the beam passes. The shape of the magnet is designed to make the field

inhomogeneous: the field lines have a higher density at the North pole than at the

South pole. The source of the silver atoms is an oven, which heated the atoms

to a particular temperature, imparting them with a corresponding kinetic energy

and velocity. After emerging from a small opening in the oven wall, the atoms

pass through collimating slits, in order to ensure that the beam is tightly focused,

but is also incoherent in the sense that the silver atoms’ spin directions are all

randomly oriented over the state space. A fluorescent screen placed behind the

magnet to detects where the beam strikes the screen. The magnet directs different

spin orientations in different directions according to the equation

Fz = − e

mec
sz
∂Bz

∂z
(3.1)

from electromagnetic theory, where −e is the charge of an electron, me is the mass

of the electron, c is the speed of light, sz is the z-component of the atom’s spin

vector s (think of this as indicating the direction that the atom’s own magnetic

field is oriented in), and ∂Bz

∂z
is the gradient of the inhomogeneous magnetic field,

B, along the z direction. This alludes to the fact that the magnetic moment of a

silver atom is mostly due to the spin of the single least-strongly-bound electron.

The Hamiltonian experienced by the atom will be

H =
p2

2m
+ µσ ·B (3.2)

where p is the linear momentum of the silver atom, µ = µσ is the electron’s

magnetic moment, and m is its mass.

The magnet has a sufficiently strong field to act as a classical measuring device

which couples strongly to the quantum systems, that is, the silver atoms. After

leaving the magnet, only two trajectories are followed by the electrons. These
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Figure 3.2: (a) The apparatus for a Stern-Gerlach experiment and (b) the resulting
pattern on the screen.

correspond to the two discrete states of spin, s = +1
2

and s = −1
2
. So the coupling

to the magnetic field projects the spins into being either aligned with the magnetic

field (and the z-axis) or anti-aligned.

Now imagine modifying this scheme. For convenience, consider an approxima-

tion that the magnetic field that the silver atom passes through is a homogeneous

magnetic field B = Bz ẑ (even though for such a field the Maxwell equation∇·B = 0

is violated, in this case the projection is of a von Neumann type [SLB87]) that leaves

the spin directed either along the field or against the field, in this case a simple

projection onto a state of well-defined z axis angular momentum:

Π↑ =

(
1 0

0 0

)
, Π↓ =

(
0 0

0 1

)
. (3.3)

As the source of such a field, replace the magnet with a large quantum system

that has a spin j (for example, a nucleus with a very large spin or a collection of

spins with total angular momentum j) and therefore an intrinsic magnetic moment

µj = g q
2m
j where g is a constant, q is the charge of the system, and m is its mass.

The coupling of this field with the magnetic moment of the spin-1
2

particle, the silver

atom, will project the silver atom’s spin to be either aligned with the moment of the

spin-j system or anti-aligned, by projecting the joint system of both spins together

onto a state of well-defined total angular momentum:

Π
j+

1
2
, Π

j−1
2
. (3.4)

However, since the magnetic field is now caused by a quantum system instead of

a classical bar magnet, the state of the quantum system, ρj will be altered by this

coupling to the state of the spin-1
2

system, σ. It is this process of altering with
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repeated interactions that we aim to describe.

Each time the system couples to a silver atom’s spin, the system is given a

“kick” in an unknown direction. If the apparatus that performs the measurement

is considered to be in a closed box, that only reveals the outcomes “up” and “down”,

then the results of the measurement will become less and less useful with repeated

interactions with each silver atom, since eventually the direction of the quantum

system’s magnetic moment will be uncorrelated with the z-axis. By describing the

degradation of the quantum system’s state as an indicator of the direction z, we

also quantify its usefulness for subsequent measurements or operations.

3.3.2 Organization

In the remainder of this chapter the results of [BRST06, PY07] are generalized in

three different ways. First, performing operations on a reservoir of qudits (quantum

systems with d-dimensional Hilbert spaces) is considered instead of restricting to

the case of qubits (d = 2) as in [BRST06, PY07]. Second, all possible rotationally-

invariant quantum operations on the reference frame and the system are considered,

while the analyses in [BRST06, PY07] were restricted to very particular kind of in-

teraction (specifically, interactions describing measurements). Note that this joint

quantum operation could be a measurement, a conditional unitary, or any other

completely-positive map, provided that it is rotationally invariant. Third, the con-

cept of the quality function is generalized, and general conditions are placed on its

form and evolution. In addition to using the longevity of a reference as a measure

of usefulness of the reference, in this work a broader notion of a measure of the

quality of the quantum reference frame is defined and a consideration is made of

how it decreases with the number of times the reference frame is used. Defining

the quality of a quantum reference can be quite arbitrary and depends on how it

is intended to be used. In [BRST06, PY07], only a particular kind of quality func-

tion was considered, one which was based on the average probability of a correct

measurement given a known spin direction, while in this work any possible quality

function is considered. Here, the term quality function is used for any function F

that is meant to quantify the ability of the reference frame to perform a particular

task. General conditions are set on such functions, and how such functions evolve

with the number of uses of the quantum reference frame is analyzed.

This chapter is organized in the following way. In Section 3.4, a set of parame-

ters, called moments, are introduced for describing a quantum reference frame, and

it is demonstrated that any quality function must depend only on these moments.
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Then the central results are presented, Theorem 3.1, which provides a general form

of all rotationally-invariant maps and the evolution of the moments (Theorem 3.2)

is found to be described by a pair of recursive relations in the same section. In

Section 3.5, the longevity of a quantum reference frame for a general quality func-

tion under the repetitive application of a rotationally-invariant map is explored, by

analyzing the dependance of the evolution of its moments. Section 3.6 is dedicated

to a pair of examples intended to illustrate the power of the techniques developed in

the earlier sections of the paper, in particular the specific cases of measuring spin-1

particles relative to a quantum reference frame, as well as the use of a reference

frame to perform Pauli operations on qubits.

3.4 Moments and Fidelity Functions

Now consideration is given to how the state of the quantum reference frame is

updated through its use in repeated rotationally-invariant operations χ which act

on both the frame and the reservoir. It is assumed as in [BRST06] that the reservoir

is initially in a state that is invariant under rotations. (The completely mixed state

is one example of such a state, but there are other non-trivial states, for example

each σ could be a pair of qubits in the antisymmetric state.) The assumptions

that the initial state of the reservoir and the joint quantum operation are spatially

invariant imply that the map ξ used to update the state of the quantum directional

reference frame, ρ
(i+1)
j = ξ(ρ

(i)
j ) = Trri [χ(ρ

(i)
j ⊗ σi)], is also rotationally invariant:

R(j)(Ω)ξ(ρj)R
(j)(Ω)−1 = ξ(R(j)(θ)ρjR

(j)(Ω)−1). (3.5)

The restricted map is denoted ξ on the quantum directional reference and is here

called the disturbance map. It describes the back-action on the reference which

occurs as a result of the interaction.

Let Rn̂(θ) be the rotation by an angle θ around the vector n̂. Suppose that a

rotationally-invariant map ξ is applied to density matrix ρj that is diagonal in a

basis given by the eigenvectors of Jn̂. Recalling that the reference state is assumed

to define only one direction in space (along the vector n̂) and is thus invariant with

respect to rotations about the n̂ axis such that

Rn̂(θ)ξ(ρj)R
−1
n̂ (θ) = ξ(Rn̂(θ)ρjR

−1
n̂ (θ)) = ξ(ρj), (3.6)

then ξ(ρj) is also diagonal in the basis given by the eigenvectors of Jn̂. As a result,
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the evolution of the quantum reference frame under the repeated application of the

rotationally-invariant map ξ can be described by 2j + 1 equations, one for each

of the eigenvalues of ρj. A different set of parameters that are equivalent to the

eigenvalues is the set of moments given by

{Tr[ρjJ
`
n̂] | 1 6 ` 6 2j}, (3.7)

where J `n̂ is the `th power of the operator Jn̂. Note that only 2j moments are

necessary because the sum of the eigenvalues must be one. The use of moments

instead of eigenvalues is in order to simplify the analysis of the evolution of the

quantum reference frame.

The main motivation for studying the moments of the quantum reference frame

is that any quality function F will depend only on these moments. Consequently,

the behavior of the different moments will determine the behavior of the different

quality functions. To see why F depends only on the moments given by equation 3.7,

first note that any reasonable form of F depends only on the state of the quantum

reference, and that it must respect the relation F (ρj) = F (R(j)(Ω)ρjR
(j)(Ω)−1) for

all rotations Ω ∈ SU(2) and the state ρj is diagonal in the basis composed of the

eigenvectors of Jn̂. In other words, the quality measure should not be biased such

that it favors a quantum reference frame that is pointed in any particular direction

relative to some external frame. All directions must be equally valid. Therefore, F

does not depend on the direction of n̂, but only on the eigenvalues or the moments

of ρj. Note that the set of moments with respect to the direction n̂ can be written

as a function of the moments with respect to any other direction — this is simply

a change of basis.

Since the eigenvalues of the reference system convey the same information as the

moments, the quality function could also be written in terms of the eigenvalues.

However, in this problem the evolution of the quality function is more readily

expressed in terms of the moments. The idea behind this work is to restrict the

number of parameters needed to describe the behaviour of the reference. Working

in terms of eigenvalues, it would depend on the initial state of the reference. Using

moments as the parameters in the equations describing the evolution of the reference

frame allows the restriction of dependencies based only on the map in question, ξ. In

other words, the calculations can be simplified in the same way for any rotationally

symmetric initial reference state; what matters is the process for which the reference

is being used. For this reason, attention is directed to how the moments update as

the map ξ is applied repeatedly to the reference state, ρj.
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Recall that ρ
(k)
j is the state of the quantum reference frame after the kth joint

operation with a subsystem of the reservoir, and ρ
(0)
j as the initial state of the

quantum reference frame. For a map ξ, that is, for a given state σ⊗n of the reservoir

and particular joint quantum operation χ, the evolution of a frame under ξ must

be described by 2j + 1 explicit linear functions that take the moments of ρ
(k−1)
j to

the moments of the updated state ρ
(k)
j . These results lead to the general recursion

relation,

Tr[ρ
(k)
j J `n̂] =

2j∑
i=0

A
(`)
i Tr[ρ

(k−1)
j J in̂], (3.8)

where A
(`)
i are real coefficients.

It is possible to express and classify different rotationally-invariant maps in

terms of the generators of the Lie algebra, Jx, Jy, and Jz and such a form is now pre-

sented. For this purpose, an expression which is invariant with respect to 3−space

rotations is required. Such rotations are described by matrices belonging to the

matrix representation of the group SO(3). This group is isomorphic to the group

SU(2) up to a complex multiplicative phase factor. Employing the definition of

the exponential map that takes the matrix Lie algebra, g, to its associated matrix

Lie group, G as eiM : M ∈ g, the generators of the group SU(2) are the angu-

lar momentum operators Jx, Jy, and Jz. In this work the focus is on the case for

SU(2), however study has been made of how to obtain noiseless subsystems for

quantum channels constructed from generators of a Lie algebra, first in [LCW98],

and proprieties of Lie algebra channels were analyzed in [Rit05]. Therefore, let Jk

for k = x, y, z be the angular momentum operators for some arbitrary Cartesian

frame. On a spin-j system, define the map

ζ(ρj) =
1

j(j + 1)

∑
k∈{x,y,z}

JkρjJk, (3.9)

for ρj a density matrix of the spin-j system. Let ζ◦n denote the composition of ζ

with itself n times for n > 0, for example ζ◦2(ρ) = ζ(ζ(ρ)), and define ζ◦0(ρj) = ρj.

Theorem 3.1. Any map ξ which is invariant with respect to the spin-j irreducible

representation of SU(2) has the form

ξ(ρj) =

2j∑
n=0

qnζ
◦n(ρj), (3.10)

where {qn} are real coefficients.
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This series expansion is a valid expression for any rotationally invariant map

on a reference state. The parameters qn can be found by considering the action of

the process described by the map on a particular pure state, e.g. |j, j〉 〈j, j|. This

decomposition will allow the number of variables that are needed to describe the

evolution of the reference under the map ξ to be limited by using Theorem 3.2

The proof is provided in Appendix A.

Theorem 3.1 allows an immediate simplification by restricting the number of

coefficients A
(`)
i of equation (3.8) that are required to calculate the evolution of

the reference state. The following theorem limits the number of coefficients (A
(`)
i )

which determine the evolution of the Jn̂-moments of a spin-j under the action of a

general invariant channel, and can be very useful to study the behavior of moments

with low degree:

Theorem 3.2. If ` is even, then

Tr[ρ
(k)
j J `n̂] =

`/2∑
i=0

A
(`)
2i Tr[ρ

(k−1)
j J2i

n̂ ] (3.11)

and if ` is odd, then

Tr[ρ
(k)
j J `n̂] =

(`+1)/2∑
i=1

A
(`)
2i−1Tr[ρ

(k−1)
j J2i−1

n̂ ]. (3.12)

There are never more than 2j+1 moments required to describe any evolution of

a spin-j (2j + 1 dimensional) reference state. This theorem shows that low degree

moments after k applications of the map do not depend on moments of higher

degree from the (k − 1)th application of the map. Also, they only depend on half

of the lower degree moments - those with the same parity. An explicit example is

that of a third order moment, ` = 3. In that case, one would have Tr[ρ
(k)
j J3

n̂] =

A
(3)
1 Tr[ρ

(k−1)
j Jn̂] +A

(3)
3 Tr[ρ

(k−1)
j J3

n̂]. That is, the third degree moment only depends

on the previous first and third degree moments, and not all 2j + 1 moments. This

can simplify the analysis considerably, as will be shown in Section 3.6.

Proof. For notational convenience, define the z-axis so that it is parallel to the

vector n̂ which describes the classical directional reference frame. Consider any

rotationally-invariant map ξ. By Theorem 3.1, it is possible to write ξ(ρj) =
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k=0 qkζ

◦k(ρj) where the coefficients qk are real numbers and ζ is given by equa-

tion (3.9). Therefore,

Tr[ξ(ρj)J
`
z ] = Tr[ρjξ(J

`
z)] =

2j∑
n=0

qnTr[ρjζ
◦n(J `z)]. (3.13)

To prove this theorem, it is sufficient to show that ζ◦n(J `z) is a polynomial in Jz of

degree `, and where all the powers have the same parity as `. Define λ = j(j + 1)

and define the function

G(`) ≡ i

λ
(JxJ

`−1
z Jy − JyJ

`−1
z Jx). (3.14)

Using the commutation relations [Ja, Jb] = iεa,b,cJc, we can show that

ζ(J `z) = ζ(J `−1
z )Jz +G(`), (3.15)

and

G(`) = G(`− 1)Jz + ζ(J `−2
z )− J `z

λ
. (3.16)

By induction, it is easy to prove using those relations that ζ(J `z) is a polynomial in

Jz of degree ` where all the powers have the same parity as `.

First assume that ζ(J `z) for even ` can be expressed as ζ(J `z) =
∑`/2

s bsJ
2s
z and

ζ(J `−1
z ) =

∑`/2
s b′sJ

2s−1
z , and that G(`) =

∑`/2
t gtJ

2t
z and G(` − 1) =

∑`/2
t gtJ

2t−1
z ,

which is to say that they are polynomials of degree ` with terms in only even or

odd powers of Jz. From equations 3.15 and 3.16 it is clear that

ζ(J `+1
z ) = ζ(J `z)Jz +G(`)Jz + ζ(J `−1

z )− J `+1
z

λ
, (3.17)

so, all the terms on the right hand side of the equation have odd powers of Jz:

ζ(J `+1
z ) =

`/2∑
s

bsJ
2s+1
z +

`/2∑
t

gtJ
2t+1
z +

`/2∑
s

b′sJ
2s−1
z − J `+1

z

λ
. (3.18)

Also,

ζ(J `+2
z ) = ζ(J `+1

z )Jz +G(`+ 1)Jz + ζ(J `z)−
J `+2
z

λ
, (3.19)
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so all the terms on the right hand side of the equation have even powers of Jz:

ζ(J `+2
z ) =

`/2∑
s

bsJ
2s+2
z +

`/2∑
t

gtJ
2t+2
z +

`/2∑
s

b′sJ
2s
z − J `+2

z

λ
. (3.20)

Therefore, this oscillation between even and odd powers of Jz in the polynomial will

occur if for ` = 1 and ` = 2 the map and function G have only terms in powers of

Jz which are odd or even respectively. This is indeed the case. From equation 3.14:

G(1) =
i

λ
[JxJy] = −Jz

λ
, (3.21)

which has only an odd power, so, using equation 3.15 and noting that ζ(0) = 1:

ζ(J1
z ) =

(
1− 1

λ

)
Jz . (3.22)

Then, from equation 3.16

G(2) = 1− 2

λ
J2
z , (3.23)

and finally:

ζ(J2
z ) =

(
1− 3

λ

)
J2
z + 1 , (3.24)

both of which have only even powers. Since it is true for these first cases, it is true

for all integer values of `.

Now if ζ◦n(J `z) =
∑`/2

s=0 bsJ
2s
z for even `, then ζ◦n+1(J `z) = ζ(

∑`/2
s b′sJ

2s
z ) =∑

s bsζ(J
s
z ) since:

ζ◦n+1(J `z) =

`/2∑
s=0

bsζ(J
2s
z ) =

`/2∑
s=0

bs

s∑
t

ctJ
2t
z . (3.25)

Therefore additional applications of the map ζ do not change the parity of the

powers of Jz. This same is true if ` is odd. Since for n = 1 the series has only even

or odd powers of Jz depending on `, then by induction ζ◦n(J `z) is a polynomial in

Jz of degree ` where all the powers have same the parity as `.

3.5 Longevity of a Quantum Reference Frame

There are situations in which it is useful to be able to calculate how rapidly a

quantum reference state is decaying. For example, suppose there is a microscopic
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device for performing an operation or measurement on a quantum spin using a

quantum reference frame. After many uses, the quantum reference frame will need

to be realigned with the classical arrow n̂. However, it is desirable to make as many

uses of it as possible before performing this reinitialization, without allowing the

accuracy to fall below some preselected threshold. To define this accuracy some

quality function will be chosen that meets the particular needs of the protocol. It

has already been shown that any rotationally-covariant quality function F depends

only on the moments of the Jn̂ operator.

It is of interest to determine the scaling of how many times a quantum ref-

erence frame can be used before the value of its quality function falls below a

certain threshold with respect to Hilbert space dimension, d, or equivalently with

the total angular momentum of the reference state ρj (d = 2j + 1), as was done

in [BRST06, PY07]. This property is the longevity of a quantum reference frame.

There are three important features of this analysis to highlight. First, whereas

the work of [BRST06, PY07] restricts attention to one particular quality function,

here the behavior of arbitrary functions satisfying the invariance relation described

in Sec. 3.4 is investigated. Because any such function is considered, the longevity

of the reference frame can be arbitrary. However, some general statements can

be proven about the decay of the moments, and relationships amongst them, and

these results can then be used to infer the behavior of any particular quality func-

tion. Second, rather than considering only a particular state of the reference frame

(in [BRST06, PY07], they considered the state ρ
(0)
j = |j, j〉n̂ 〈j, j| because it was

optimal for the task at hand), in this work an arbitrary state is considered. As such,

the initial state ρ
(0)
j of the quantum reference frame, as specified by its moments,

can depend on j in a quite arbitrary way. Finally, arbitrary rotationally-invariant

joint quantum operations χ are considered. In [BRST06, PY07], the joint operation

was chosen to describe a particular measurement that was optimal for measuring

the direction of spin-1/2 particles. Recall that in [BRST06], it was shown that the

number of times a reference frame can be used before its fidelity (which in their

case depends only of the first moment) falls below a certain threshold value scales

as O(j2).

In the following, a general theorem is proven about the longevity of quantum

reference frames, using Theorem 3.1 as a starting point. Recall Theorem 3.1 states

that any rotationally-invariant disturbance map and concluding that in a very wide

range of cases the longevity goes as O(j2). However, if the range and values of the

coefficients qn can depend on j arbitrarily, it is impossible to make any general

statements about the longevity. On the other hand, making some well-motivated
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assumptions allows for this general statement about the longevity.

The first assumption is that the number of non-zero coefficients qn is bounded

independently of j. In the general case, the number of parameters qn describing a

map can increase with j. The form of the map allows 2j+1 parameters to determine

the evolution, and in the case of the completely depolarizing map χ(ρj ⊗ σ) =
1

2j+1
I2j+1 ⊗ 1

2
I1/2 for example, all qn 6= 0 for 0 ≤ n ≤ 2j. However, consider a map

χ on the systems ρj ⊗ σ for dim(σ) < 2j + 1 that conserves angular momentum

in the n̂ direction. Following an argument in [PY07], this implies that χ(Jn̂) = Jn̂

where Jn̂ is the total angular momentum operator in the n̂ direction. The change of

angular momentum of the quantum reference frame caused by such a disturbance

map ξ cannot be higher than the change in angular momentum of the subsystem

σ, which is in turn bounded by the subsystem’s dimension, dim(σ). Given that the

map ζ(·) = 1
λ

∑
k=x,y,z Jk(·)Jk cannot lower or increase the angular momentum in

any direction by more then one unit, the coefficients of the map ξ therefore satisfy

qn = 0 for all n > dim(σ). Thus, if a rotationally-invariant map conserves angular

momentum, the coefficients qn = 0 for n > dim(σ).

The second assumption restricts the form of the dependence of the coefficients

on j. If the parameters qn can depend on j arbitrarily, then we would not be

able to conclude anything about the longevity of the quantum reference frame. To

understand this, consider the general expression for the map on the reference state

ξ(ρj) =

2j∑
n=0

qnζ
◦n(ρj) . (3.26)

If the qn depend on j in a way that the qn will increase as j increases this will

determine directly the rate of the decay of the moments as a function of j, rather

than this decay being solely set by the factors that determine the evolution of the

moments A
(`)
i . If the dependence of qn on j can be arbitrary, then the rate of the

decay of the moments can also be an arbitrary function of j. For the following the-

orem, it is assumed that each coefficient qn converges to a constant when j → ∞.

An assumption is also needed about the rate of convergence: suppose that each qn

can be written as a quotient of two polynomials in j, such that the degree of the

denominator is at least the degree of the numerator (i.e., qn 6 O(1)). This assump-

tion ensures the appropriate behaviour of the measurement or rotation interaction

in the classical limit. As an example of what can go wrong, if some qn is a linear

function of j then as the reference increased in “size”, j, the decay with respect to

measuring or operating on small systems would be more pronounced, rather than
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less.

The third and final assumption concerns the initial state of the reference frame.

It is assumed that for ρ
(0)
j , Tr[ρ

(0)
j J `n̂] = Ω(j`). A sufficient condition for this to be

true is that there exists a β > 0 independent of j such that n̂ 〈j, j| ρ(0)
j |j, j〉n̂ > β.

This ensures that the quantum reference state is a reasonable indicator of the

direction n̂. For example, if it begins in the direction opposite to the desired axis,

it will still be rotationally invariant about that axis, but all the wrong conclusions

will be drawn from measurements using it.

Theorem 3.3 (Longevity). Consider a quantum reference frame, realised as a spin-

j system with initial state ρ
(0)
j , which is used for performing a rotationally-invariant

joint operation χ. If this operation induces a disturbance map ξ =
∑2j

n=0 qn(j)ζ
◦n

that satisfies the following assumptions:

1. there exists some nmax such that qn = 0 for all n > nmax ,

2. qn 6 O(1) ,

3. Tr[ρ
(0)
j J `n̂] = O(j`) ,

then the number of times, tc, that such a quantum reference frame can be used

before its `th moment falls below a certain threshold value scales as j2. That is,

tc = O(j2).

Proof. The Jk operators are Hermitian and so, using the cyclic property of the

trace, the map ζ has the property that

Tr[ζ(ρ)J `n̂] = Tr[ρ ζ(J `n̂)]. (3.27)

Therefore the moments of angular momentum in the n̂ direction after the map ξj

has been applied to the reference state ρ
(k)
j can be expressed as

Tr[ρ
(k+1)
j J `n̂] =

2j∑
n=0

qnTr[ρ
(k)
j ζ◦n(J `n̂)] (3.28)

Using the commutation relations, ζ◦n(J `n̂) can be expanded as a polynomial in Jn̂

of degree `, as shown in the proof of Theorem 3.2. Again, let λ = j(j + 1). Using

a proof by induction on equation (3.15) and observing that
∑

k∈{x,y,z} JkJn̂Jk =

(λ− 1)Jn̂, it is easy to show that the coefficient of the leading term will be A
(`)
` =

52



Chapter 3. The Degradation of a Quantum Direction Reference∑nmax

n=0 [qn(1−O( 1
λ
))] = 1−O

(
1
λ

)
where we used the normalization condition

∑
qn =

1, the assumption that each qn is O(1) and the fact that qn = 0 for n > 2j. The

coefficients of the non-vanishing lower terms will be A
(`)
i = O(1) for i < `.

Assume ζ(J `z) = (1 − O( 1
λ
))J `z +

∑`−1
i biJ

i
z and ζ(J `−1

z ) = (1 − O( 1
λ
))J `−1

z +∑`−2
i biJ

i
z and G(`) = O

(
J`

z

λ

)
+
∑

t gtJ
t−1
z . Then:

ζ(J `+1
z ) = (1−O(

1

λ
))J `+1

z +
∑̀
i

biJ
i+1
z +O

(
J `+1
z

λ

)
+
∑̀
t

gtJ
t
z +

∑̀
i

b′iJ
i−1
z − J `+1

z

λ

(3.29)

which implies that

ζ(J `+1
z ) = (1−O(

1

λ
))J `+1

z +
∑̀
i

ciJ
i+1
z . (3.30)

Also note that if G(`) = O
(
J`

z

λ

)
+
∑

t gtJ
t−1
z then G(`+ 1) = O

(
J`+1

z

λ

)
+
∑`

t gtJ
t
z.

So if these forms of the expressions hold for G(1), ζ(J1
z ), and ζ(J2

z ), then they

hold for all `. But this has already been found to be the case in the proof of

Theorem 3.2. Furthermore, this holds for all n since the leading term of ζ◦n(J `z)

is of the form (1 − O( 1
λ
))nJ `+1

z , then the leading term of ζ◦n+1(J `z) is of the form

(1−O( 1
λ
))n+1J `+1

z = (1−O( 1
λ
))J `+1

z .

So, A
(`)
` =

∑nmax

n=0 [qn(1−O( 1
λ
))] = 1−O

(
1
λ

)
, since qn is assumed to be of order

less that on equal to a constant with respect to j.

This reasoning about the constants A
(i)
k is sufficient to characterize the rate of

change of the moments with repeated application of the map. To demonstrate this,

let ` = 1. Now the minimum value of t is found such that Tr[ρ
(t)
j Jn̂] < c, for some

constant c. Using equation (3.12), solve

c = Tr[ρ
(0)
j Jn̂]

(
1−O

(
1

λ

))tc
, (3.31)

for tc. Therefore,

tc = O
(
j2
)
. (3.32)

To generalize to higher moments, observe that Tr[ρ
(0)
j J in̂] 6 O(ji) for i < `. Recall

that we assumed that Tr[ρ
(0)
j J `n̂] = O(j`). Using equation (3.12) (the facts that

A
(`)
` = 1 − O

(
1
λ

)
and A

(`)
i = O(1) for i < `), we can extend this result to higher

odd moments by using strong induction. Then the minimum value of t such that

Tr[ρ
(t)
j J

`
n̂] < c for a properly selected initial state ρ

(0)
j is O(j2). For even moments, a
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similar approach using equation (3.11) can be used to obtain an identical conclusion.

Note that if the assumptions of Theorem 3.3 fail, yet there is a specific depen-

dance on j of the map χ and the state ρ
(0)
j , equations (3.11) and (3.12) may still

be useful for studying the longevity on quantum reference frame. In the following

section the applicability of these assumptions is further explored in the context of

several examples.

3.6 Examples

3.6.1 Measuring Spin-1/2 Systems

In this section, the work of [BRST06] is revisited in the notation used in this work.

They considered the specific process of using a spin-j system, initially in an optimal

state, as a reference for repeatedly measuring spin-1/2 systems that began in the

completely mixed state to determine whether they are aligned with or against the

direction of the reference, using the map for this task that corresponds to the

optimal protocol. The resulting disturbance map that they considered is

ξ(ρj) =

(
1

2
+

1

2(2j + 1)2

)
ρj +

2j(j + 1)

(2j + 1)2
ζ(ρj) , (3.33)

where ζ(ρj) is given by equation (3.9). This form of covariant map was analyzed

in [Rit05]. This specific map corresponds to the process of projecting the joint

system of the spin-1/2 and the spin-j particles onto an eigenstate of well-defined

joint total angular momentum.

The fidelity is defined as the probability that the task is performed successfully.

If the reference frame used is classical (in the limit j →∞) then the measurement

always returns the correct result of the measurement: if the spin is projected from

the mixed state to the direction against the reference, the result is “down” and

if the spin is projected along the reference direction, the result is “up” and the

reference is not altered by this process. When a quantum reference with a finite

total angular momentum is used, this is not always the case. The fidelity after

being used k times is found by considering the projection onto the correct joint
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angular momentum state:

F
(k)
1
2

= Tr

1

2

∑
µ∈{−1

2
,
1
2
}

Πj+µ(ρ
(k)
j ⊗ |µ〉 〈µ|)

 (3.34)

=
1

2

∑
m

(
〈j,m|

〈
1
2

∣∣Π
j+

1
2
(ρ

(k)
j ⊗

∣∣1
2

〉 〈
1
2

∣∣)Π
j+

1
2
|j,m〉

∣∣1
2

〉
+ 〈j,m|

〈
−1

2

∣∣Π
j−1

2
(ρ

(k)
j ⊗

∣∣−1
2

〉 〈
−1

2

∣∣)Π
j−1

2
|j,m〉

∣∣−1
2

〉)
. (3.35)

The terms in this equation are given by the Clebsch-Gordan coefficients [CS51]:

〈j,m|
〈

1
2

∣∣Π
j+

1
2
|j,m〉

∣∣1
2

〉
=
√

j+m+1
2j+1

(3.36)

〈j,m|
〈
−1

2

∣∣Π
j−1

2
|j,m〉

∣∣−1
2

〉
=
√

j+m
2j+1

. (3.37)

Noting that the expectation value of the operator Jz is Tr[ρJz] = 〈m〉ρ, the

fidelity function can be expressed in terms of the first moment of the reference

frame as

F
(k)
1
2

= Tr

1

2

∑
µ∈{−1

2
,
1
2
}

Πj+µ(ρ
(k)
j ⊗ |µ〉 〈µ|)

 =
1

2
+

1

2

1

2j + 1
Tr[ρ

(k)
j Jz] . (3.38)

It is possible to express the fidelity in terms of the original value of the first moment,

i.e. in terms of the initial state of the reference frame. This requires the use of

Theorem 3.2 and a simple calculation to evaluate A
(1)
1 , as defined in equation (3.12).

First note that:

Tr[ρ
(k)
j Jn̂] = A

(1)
1 Tr[ρ

(k−1)
j Jn̂] =

(
A

(1)
1

)k
Tr[ρ

(0)
j Jn̂] . (3.39)

An expression for A
(1)
1 can be found by considering the action of ξ (the map de-

scribing the measurement of the spin-1/2 systems) on the state |j,m〉. Notice,

Tr[ξ(|j,m〉 〈j,m|)Jz] = A
(1)
1 m (3.40)

and that the effect of the map ξ after the trace is taken is given by a sum over the
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different ways of combining and separating a pair of spins:

Tr[ξ(|j,m〉 〈j,m|)Jz]

=
∑

µ′′,µ′,µ∈{−1
2
,
1
2
}

∣∣〈j,m− 1|
〈

1
2

∣∣Πj+µ′ |j,m〉
∣∣−1

2

〉∣∣2 (m− 1)

+ |〈j,m| 〈µ′′|Πj+µ′ |j,m〉 |µ〉|2m

+
∣∣〈j,m+ 1|

〈
−1

2

∣∣Πj+µ′ |j,m〉
∣∣1
2

〉∣∣2 (m+ 1). (3.41)

The terms in this equation are the products of Clebsch-Gordan coefficients, for

example the first term is:∣∣〈jm− 1; 1
2
|j − 1

2
m− 1

2
;−1

2
〉〈j − 1

2
m− 1

2
;−1

2
|jm;−1

2
〉
∣∣2(m− 1)

=

(
j +m

2j + 1

)(
j −m+ 1

2j + 1

)
(m− 1). (3.42)

Substituting all the appropriate Clebsch-Gordon coefficients gives the expression:

Tr[ξ(|j,m〉 〈j,m|)Jz] = 2

(
j +m

2j + 1

)(
j −m+ 1

2j + 1

)
(m− 1)

+

((
j +m

2j + 1

)
+

(
j −m+ 1

2j + 1

)
+

(
j +m+ 1

2j + 1

)
+

(
j −m

2j + 1

))
m

+ 2

(
j +m+ 1

2j + 1

)(
j −m

2j + 1

)
(m+ 1) (3.43)

= 2m

(
1− 2

(2j + 1)2

)
, (3.44)

which gives A
(1)
1 = 1− 2

(2j+1)2
. This is all the information needed to construct the

expression for the evolution of the fidelity:

F
(k)
1
2

=
1

2
+

Tr[ρ
(0)
j Jz]

2j + 1

(
1− 2

(2j + 1)2

)k
. (3.45)

All of the subsequent calculations of the coefficients A
(`)
i and the fidelities given in

this chapter can be performed in the same way, though the details are omitted for

brevity. Note that the fidelity function in this particular case depended only on the

first moment.

Figure 3.3 shows the decay of the fidelity of the measurement using the reference
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Figure 3.3: The fidelity of the measurement on spin-1
2

systems using the reference
system of size j = 20 after n uses of it.

system with the repeated action of the map for the choice of j = 20 and an initial

moment of Tr[ρ
(0)
j Jz] = j. It will not fall below 1

2
, since, if it did, this would indicate

that the state of the reference was becoming anti-correlated to the initial direction,

and thus could become useful again. Instead the state of the reference becomes

increasingly mixed until it does not provide a better measurement than a simple

guess of which direction the spin-1
2

system is pointing, with a probability of 1
2

of

being correct.

3.6.2 Measuring Spin-1 Systems

This type of measurement problem can be extended to measuring systems that

are not two dimensional. Now that the framework is developed, larger spins can

be handled via this same technique. Suppose that the reservoir consists of spin-s

systems which are initially in the completely mixed state. The quantum reference

direction is a spin-j system with j > s, aligned with some classical direction n̂.

The goal is to measure each spin to determine its component µ along the vector

n̂ by performing a joint measurement on both the system from the reservoir and

the reference system. The optimal rotationally-invariant joint operation for this

task [BRS04] is a POVM given by the projectors {Πj+µ|µ ∈ {−s, . . . , s}} where
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Πj+µ corresponds to a projection onto the subspace where the total angular mo-

mentum of the reference spin with the measured spin is j+µ. Define the fidelity Fs

as the probability that, when the reference is used to measure a system in a known

state |s, µ〉n̂ by means of the above POVM on the joint system the result it returns

is correct, assuming that all values of µ are equiprobable.

Now consider the new question of measuring the angular momentum of a spin-1

particle along some direction using a quantum direction reference frame. First, an

expression is determined for the fidelity in terms of the moments:

F
(k)
1 = Tr

[
1

3

∑
µ

Πj+µ(ρ
(k)
j ⊗ |µ〉 〈µ|)

]
, (3.46)

where µ ∈ {−1, 0, 1}. For this measurement, the disturbance map ξ is

ξ(ρ
(k)
j ) =

1

3

∑
µ′′,µ′,µ

〈µ′′|Πj+µ′ |µ〉 ρ(k)
j 〈µ|Πj+µ′ |µ′′〉 . (3.47)

Explicit expressions for the reduced operators on the reference system 〈µ′′|Πj+µ′ |µ〉
can be found from the Clebsch-Gordan coefficients. The expression for the fidelity

in terms of j and the moments is

F
(k)
1 =

1

6
+

[(2j + 1)2 − 2]

6j(j + 1)(2j + 1)
Tr[ρ

(k)
j Jz] +

1

2j(j + 1)
Tr[ρ

(k)
j J2

z ]. (3.48)

Note that the fidelity in this case depends on the second moment as well as the

first. Using Theorem 3.2:

Tr[ξ(ρ
(k)
j )Jz] = A

(1)
1 Tr[ρ

(k)
j Jz], (3.49)

Tr[ξ(ρ
(k)
j )J2

z ] = A
(2)
0 + A

(2)
2 Tr[ρ

(k)
j J2

z ]. (3.50)

Substituting some particular values of ρj (i.e., ρj = |j,m〉n̂ 〈j,m| form = j, j−1)

and solving the system of equations:

A
(1)
1 =

3j4 + 6j3 − j2 − 4j + 2

3j2(j + 1)2
= 1− 4

3j2
+O

(
1

j3

)
, (3.51)

A
(2)
0 =

2 (8j4 + 16j3 − 8j − 3)

3j(j + 1)(2j + 1)2
=

4

3
− 5

3j2
+O

(
1

j3

)
, (3.52)

A
(2)
2 =

4j6 + 12j5 − 3j4 − 26j3 + j2 + 16j + 6

j2(j + 1)2(2j + 1)2
= 1− 4

j2
+O

(
1

j3

)
. (3.53)
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Figure 3.4: The fidelity of the measurement of the direction of spin-1 systems using
reference systems of size j = 20, 50, and 100 after n uses of the reference.

(The series and bounds apply as j → ∞.) In terms of these constants, the fi-

delity evolves with k, the number of applications of the map corresponding to the

measurement of the z projection of the spin-1 system, as:

F
(k)
1 =

1

6
+

[(2j + 1)2 − 2]

6j(j + 1)(2J + 1)

(
A

(1)
1

)k
Tr[ρ

(0)
j Jz]

+
1

2j(j + 1)

A(2)
0

1−
(
A

(2)
2

)k
1− A

(2)
2

+
(
A

(2)
2

)k
Tr[ρ

(0)
j J2

z ]

 . (3.54)

The decay of this fidelity is illustrated in Figure 3.4, for three different values

of j: j = 20, 50, and 100. Notice that in this case the fidelity drops as low as
1
3
, asymptotically, since a random guess amongst three equally likely outcomes is

right 1
3

of the time. This also demonstrates that larger reference systems (those

with a higher value of j) are more robust to repeated use. That is, they should

have higher longevities. This is shown in Figure 3.5, where in plot A the logarithm

of the longevity is plotted against the logarithm of j.

Because the assumptions given in Section 3.5 are satisfied, the longevity of

the quantum reference frame must scale as O(j2). This result is easily verified

numerically. See Figure 3.5.
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Figure 3.5: A plot of the longevity, as defined in Section 3.5, against the reference
system of size j for, A, the scenario Section 3.6.2 measuring spin-1 systems (points
converging to the solid line of gradient 2), and, B, the case of qubit rotation, Method
1, measure and rotate (points converging to the solid line of gradient 1), Method 2,
filtering operation (circles converging to the dashed line of gradient 1), and Method
3, coupled spins (grey circles converging to grey dot-dashed line of gradient 2).
The points are found numerically. The gradients of the lines in A and B(3) are
2, indicating longevity scaling as O(j2), and the gradients of the lines in B(1) and
B(2) are 1, indicating a scaling of O(j).

3.6.3 Implementing a Pauli Operator on a Qubit

Another case in which a quantum reference frame could be used is to define a par-

ticular unitary gate. Since the reference state considered here only defines one axis,

it can only be used to implement the set of gates corresponding to rotations about

this axis. Suppose, for example, the desire is to implement a Pauli Z operation on

a qubit,

Z =

(
1 0

0 −1

)
, (3.55)

using a quantum reference direction ρj in the form of a spin-j system to define the

z-axis. To do this, a rotationally-invariant operation must be implemented on the

combined reference and system. Unlike the measurement considered in previous

examples, in this case the task is to implement a unitary operation on the system

that is conditioned on the state of the quantum reference direction, or alternatively,
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to perform a unitary rotation about a direction programmed by the state of the

reference frame. However, it is not possible to construct an ideal conditional unitary

because the size of the reference frame is bounded and the number of programmed

operations (possible directions) is continuous, which follows from the impossibility

of a “programmable quantum gate” [NC97]. It is possible to approximate it, as is

now demonstrated in the examples.

Three different operations for achieving this gate are proposed and studied. The

first is a measurement of the reference frame followed by the operation performed on

the qubit conditioned on the measurement outcome. The next is a joint operation

on the reference and the qubit in which the qubit is rotated coherently so that

the z-axis matches the direction of the reference spin. This is different from the

first case because the reference spin is never projected, so the range of angles about

which the definition of “z-axis” for the qubit is distributed according to amplitudes,

rather than a probability distribution over possible directions of the reference state

as in the first case. The result is a filtering operation which is not trace preserving.

The final one is also joint operation on the reference and the qubit, but one that is

completed by coupling the different angular momentum components of the reference

and the qubit. It is a trace preserving operation.

3.6.3.1 Method 1

One possible procedure for applying a rotation about the axis defined by the ref-

erence spin is to first measure the direction indicated by the reference and then

perform the appropriate rotation to the qubit system, discarding the measurement

result. The measurement result is discarded because the desire is to consider the

reference information as being stored in a system of finite size, rather than measured

once and then stored in an arbitrarily large classical system. Explicitly, consider

the following operation, to be performed on the joint state of a quantum reference

frame ρj and a single qubit σ:

χ(ρj ⊗ σ) =

∫
Ω

dµΩ

√
Λ(Ω)⊗ Z(Ω)(ρj ⊗ σ)

√
Λ(Ω)⊗ Z(Ω)† , (3.56)

where the covariant measurement on the spin-j reference frame is described by the

POVM

{Λ(Ω) = (2j + 1)R(Ω)|e〉〈e|R(Ω)† , Ω ∈ SU(2)} , (3.57)
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where |e〉 is a normalized state of a spin-j system. The measurement effects, Λ(Ω),

of this POVM satisfy the normalization condition∫
Ω

dµΩΛ(Ω) = Ij , (3.58)

where Ij is the identity on the spin-j Hilbert space and dµΩ represents the Haar

measure over SU(2). This measurement is performed on the quantum reference

frame state ρj, and then conditional upon obtaining the outcome Ω, the operation

Z(Ω) = R(Ω)ZR−1(Ω) is applied to the system. If subsequently the information

about the measurement result Λ is discarded, then the effective joint map (3.56) is

clearly invariant. The net operation on the system σ is given by the map

τ(σ) =

∫
Ω

dµΩTrj [Λ(Ω)ρj]Z(Ω)σZ−1(Ω) . (3.59)

Note that this operation τ is also rotationally invariant; although the measurement

and subsequent unitary appear to require an external spatial reference frame, the

net operation is invariant under changes of this frame. Also, because the operation

is constructed explicitly from a POVM measurement and a unitary operation con-

ditional on this classical result, followed by tracing out the state of the reference

frame, it is necessarily completely positive and trace preserving (CPTP). (This fact

is also clear by observation: the term Trj [Λ(Ω)ρj] is a normalized probability dis-

tribution weighting possible unitaries Z(Ω), and thus the map τ is a valid unital

CPTP map.)

This expression for τ explicitly gives a Kraus decomposition of this map (albeit

with a continuum of Kraus operators), τ(σ) =
∫

Ω
dµΩE(Ω)σE(Ω)†, where

E(Ω) =
√

Trj[Λ(Ω)ρj]Z(Ω) , (3.60)

are Kraus operators satisfying
∫

Ω
dµΩE(Ω)†E(Ω) = I. The ability of this operation

to approximate the Z operation on the system is defined using the gate fidelity

[HHH99, BOS+02, Nie02, EAZ05] given by

Fgate(Z, τ) ≡
∫

Ω
dµΩ

∣∣Tr[E(Ω)†Z]
∣∣2 + d

d2 + d
(3.61)

where d (the dimension of the system on which the gate is applied) is 2 in this case.

Suppose that quantum directional reference frame ρj is aligned with the z-

axis. Then ρj is a mixture of states |j,m〉z for −j 6 m 6 j. For simplicity,
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let ρj = |j,m〉z 〈j,m|. This is a pure state, but the analysis follows for convex

combinations. The state |e〉 that defines the POVM could be any state, but for

simplicity consider only the case where |e〉 = |j, j〉z. In this case, the rotationally-

invariant operation on the combined reference and system is

τ(σ, ρj) = (2j + 1)

∫
Ω

dµΩ

∣∣
z〈j,m|R(Ω)|j, j〉z

∣∣2Z(Ω)σZ−1(Ω) . (3.62)

The Kraus operators are then given by

E(Ω) =
√

(2j + 1)
∣∣
z〈j,m|R(Ω)|j, j〉z

∣∣Z(Ω) . (3.63)

The irreducible representations of SU(2) can be parameterized

R(Ω) = eiα

(
eiφ cos θ eiψ sin θ

−e−iψ sin θ e−iφ cos θ

)
(3.64)

where 0 ≤ α, ψ, φ ≤ 2π and 0 ≤ θ ≤ π
2
. So, the rotation R(Ω) can be rewritten

using Euler angles:

R(Ω) = eiαRz(−φ− ψ)Ry(−2θ)Rz(ψ − φ), (3.65)

where Rk(β) is a clockwise rotation of angle β around the k-axis. It follows that

Tr[R(Ω)ZR†(Ω)Z] = Tr[Ry(−2θ)ZRy(2θ)Z] = 2 cos 2θ. (3.66)

From [Ros57],

z 〈j,m|R(Ω) |j, j〉z = e−iα−im(φ+ψ)−ij(φ−ψ)

√(
2j

j +m

)
(cos θ)j+m(− sin θ)j−m.

(3.67)

Therefore,

|Tr[E(Ω)†Z]|2 = (2j + 1)

(
2j

j +m

)
(cos θ)2j+2m(sin θ)2j−2m

∣∣Tr[Ry(−2θ)ZRy(2θ)Z]
∣∣2

= 4(2j + 1)

(
2j

j +m

)
(cos θ)2j+2m(sin θ)2j−2m(cos 2θ)2, (3.68)

where, in the first step, the cyclic property of the trace was used. The Haar measure
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in these coordinates is dΩ(U(2)) = (2π)−32 sin θ cos θdθdαdφdψ.1 It follows that

Fgate(Z, τ) =
1

3
+

2(j + 1 + 2m2)

3(j + 1)(2j + 3)
(3.69)

which is a function of the second moment of the z projection of the reference frame.

The result easily generalizes to the case where ρj is a mixture of pure states of the

form |j,m〉z:

Fgate(Z, τ) =
1

3
+

2(j + 1 + 2Tr[ρjJ
2
z ])

3(j + 1)(2j + 3)
. (3.70)

This example is a case where the fidelity evolves with the expectation value of the

second moment, despite the fact that the reservoir is composed of spin-1
2

particles.

Notice that in Section 3.6.1, where measurements of spin-1
2

particles are consid-

ered, the fidelity only depends on the first moment. This indicates that rotation

operations decohere the reference system differently than measurement operations.

Specifically, in this particular case the fidelity does not depend on any odd moments

because the operation depends only on the axis defined by n̂, but not on the direc-

tion along this axis, since it is a rotation through an angle π. The rotations Rn̂(π)

and R−n̂(π) are equivalent transformations. Therefore, the sign of the J `z moments

cannot effect the fidelity, which will be the case if the fidelity only depends on the

even moments.

Now consider how the quantum reference frame degrades with repeated use in

performing this operation. Assume that the qubit systems (the reservoir) on which

the approximate phase gate is applied are all in the completely mixed state 1
2
I 1

2
,

so that the form of the map (3.10) for ξ(ρ) applies. With each application, the

reference frame evolves according to the invariant map ξ(ρj) = Trsχ(ρj ⊗ 1
2
I 1

2
),

where Trs is the partial trace of the qubit system on which the approximate phase

gate is applied. To calculate how the second moment evolves as a function of

the number of times the quantum reference frame has been used to perform the

approximate phase gate, Theorem 3.2 can be used:

Tr[ξ(ρj)J
2
z ] = A

(2)
0 + A

(2)
2 Tr[ρjJ

2
z ]. (3.71)

To find the values of the coefficients A
(2)
0 and A

(2)
2 , consider two possible initial

states of the quantum reference frame. First, suppose that ρj = 1
2j+1

Ij, which

1The integral is taken over the Haar measure for U(2) instead of SU(2) because this simplifies
the notation, however, it should be noted that in this case the integral over α (the global phase)
will not alter the result.
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yields ξ(ρj) = 1
2j+1

Ij. This evolution gives

j(j + 1)

3
= A

(2)
0 + A

(2)
2

j(j + 1)

3
. (3.72)

Second, using ρj = |j, j〉z 〈j, j|, a second equation can be obtained:

j(1 + j(3 + j + 2j2))

(1 + j)(3 + 2j)
= A

(2)
0 + A

(2)
2 j2. (3.73)

Solving those equations,

A
(2)
0 = j − 2j

2j + 3
= j − 1 +

3

2j
− 9

4j2
+O

(
1

j3

)
, (3.74)

and

A
(2)
2 = 1− 3(2j + 1)

(2j + 3)(j + 1)
= 1− 3

j
+O

(
1

j3

)
. (3.75)

From the above equations, it can be deduced that the longevity of the quantum

reference frame is O(j) by noting that the fidelity after k repetitions of the gate is

F
(k)
gate(Z, τ) =

1

3
+

2

3(j + 1)(2j + 3)

j + 1 + 2A
(2)
0

1−
(
A

(2)
2

)k
1− A

(2)
2

+ 2
(
A

(2)
2

)k
Tr[ρ

(0)
j J2

z ]

 .

(3.76)

The equations (3.74) and (3.75) imply that A
(2)
0 scales as O(j) and A

(2)
2 goes

as O(1). Looking at equation (3.76), the fidelity must scale as O(1
j
) and therefore

longevity goes as O(j). This is also seen in the numerical work shown in Figure 3.5.

This result appears to be in contradiction with Theorem 3.3, but this is resolved

by the fact that one of the assumptions of the theorem is not fulfilled. In this

case, even though the map χ is rotationally invariant, it does not conserve the total

angular momentum. In particular, note that 〈j,m|z ξj(|j, j〉z 〈j, j|) |j,m〉 > 0 for

all m in the range −j, . . . , j. Because ζ◦2j(|j, j〉z 〈j, j|) is the only map of the form

ζ◦n(|j, j〉z 〈j, j|) for 0 < n < 2j + 1 that has support in the state |j,−j〉z 〈j,−j|,
then q2j > 0. Therefore, there is no bound nmax independent of j such qn = 0 for

all n > nmax.
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3.6.3.2 Method 2

There are methods for approximating a Pauli Z operation using a quantum refer-

ence frame other than the one just investigated. Another possibility is to do a joint

operation on both the reference system and the qubit, such that the effective z axis

for the qubit is rotated to match the direction of the reference spin coherently. This

can be done using a filtering operation [Gis96], which is an operation related to a

measurement that is not unitary or trace preserving in general. It is a map that

distorts the state onto a subset of its Hilbert space. It could be represented, for

example, by a POVM element. In particular, consider the filtering operation

Γ = (2j + 1)

∫
Ω

dµΩRj(Ω)⊗R1/2(Ω)
[
|j, j〉z〈j, j| ⊗Z

]
Rj(Ω)−1⊗R1/2(Ω)−1. (3.77)

Observing that in spin notation

Z = |1
2
, 1

2
〉z〈1

2
, 1

2
| − |1

2
,−1

2
〉z〈1

2
,−1

2
|, (3.78)

it is possible to replace the operator Z in equation (3.77) with this expression.

Then, the tensor product written in the square brackets in equation (3.77) can

be reexpressed using the Clebsch-Gordan coefficients as a joint system with total

angular momentum having support on the j− 1
2

and j+ 1
2

subspaces. The operation

Γ is spatially-covariant and Schur’s lemma can be used to show that it will be block-

diagonal in the irreducible representations j+ 1
2

and j− 1
2
. Thus, it can be rewritten

Γ = (2j + 1)

∫
Ω

dµΩRj+1/2(Ω)
[
|j + 1

2
, j + 1

2
〉z〈j + 1

2
, j + 1

2
|

− 1
2j+1

|j + 1
2
, j − 1

2
〉z〈j + 1

2
, j − 1

2
|
]
Rj+1/2(Ω)−1

− (2j + 1)

∫
Ω

dµΩRj−1/2(Ω)
[

2j
2j+1

|j − 1
2
, j − 1

2
〉z〈j − 1

2
, j − 1

2
|
]
Rj−1/2(Ω)−1

= (2j + 1)
(

1
2j+2

(1− 1
2j+1

)Ij+1/2 − 1
2j

2j
2j+1

Ij−1/2

)
, (3.79)

which simplifies to

Γ = (
2j

2j + 2
Πj+1/2 − Πj−1/2), (3.80)

where Πj+k is a projection into the subspace of total angular momentum j + k.

Now define

χj(ρj ⊗ σ) = Γ(ρj ⊗ σ)Γ†, (3.81)
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However, this map is not trace preserving, nor does it conserve angular momentum.

As in method 1, let ρj = |j,m〉z 〈j,m|. In that case, the Kraus operators are of the

form

Em′ = z 〈j,m′|Γ |j,m〉z (3.82)

and, using the appropriate Clebsch-Gordan coefficients, an expression is found for

fidelity of the form

Fgate =
1

3
+

2

3

(
1

j + 1

)2

m2, (3.83)

which goes to 1 in the limit j → ∞, for the case m = j. For a general state ρj

(which must be diagonal in the basis {|j,m〉z | − j 6 m 6 j}),

Fgate =
1

3
+

2

3

(
1

j + 1

)2

Tr[ρjJ
2
z ]. (3.84)

Even though the map is not trace preserving, by Theorem 3.2:

Tr[ξ(ρj)J
2
z ] = A

(2)
0 + A

(2)
2 Tr[ρjJ

2
z ], (3.85)

and, by the same method as in the previous subsection, for this map

A
(2)
0 =

j

(j + 1)
= 1− 1

j
+

1

j2
+O

(
1

j3

)
, (3.86)

A
(2)
2 =

j

(j + 1)

(
1− 3

j(j + 1)

)
= 1− 1

j
− 2

j2
+O

(
1

j3

)
, (3.87)

where the series expansions are appropriate in the limit j →∞.

Again it is found that the scaling of longevity with j to be O(j). (See Fig-

ure 3.5.) However, the fidelity is higher than by using Method 1 for small numbers

of repetitions of the map.

3.6.3.3 Method 3

Another idea to consider is performing an operation similar to the previous case,

but in which trace is preserved on the map. Such a map could be realized through

a coupling between the spins of the form seen in nuclear magnetic resonance:

H = w

(
J
( 1

2)
x J (j)

x + J
( 1

2)
y J (j)

y + J
( 1

2)
z J (j)

z

)
=
w

2
J 2 − ω

2

(
j(j + 1) +

3

4

)
I (3.88)
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where w is a constant, the operator J
( 1

2)
x = X is the Jx operator on a spin-

half system and the operator J 2 is the total angular momentum operator on the

joint system of the reference and the spin-half system. Recalling equation (2.68),

J 2 =
(
j + 1

2

) (
j + 3

2

)
Πj+ 1

2
+
(
j − 1

2

) (
j + 1

2

)
Πj− 1

2
. This allows the unitary as-

sociated with this Hamiltonian U = ei
w
2

(J 2−(j2+j+ 3
4
)I)t to be defined. Choosing

t = 2π
w(2j+1)

gives the appropriate phase shift of the spin-half system relative to the

spin-j reference system.

This can be readily related to the work of the previous subsection by now

defining Γ as

Γ = U ∼= (Ij+1/2 − Ij−1/2), (3.89)

up to a global phase. This differs from equation (3.80) by the factor on the Ij+1/2

term.

In this case, the fidelity is given by

Fgate =
1

3
+

2

3

(
2

2j + 1

)2

Tr[ρjJ
2
z ], (3.90)

which, when Tr[ρjJ
2
z ] = j2, also tends to 1 in the limit j →∞.

For this map

A
(2)
0 = 1− 1

(2j + 1)2
= 1− 1

4j2
+O

(
1

j3

)
, (3.91)

A
(2)
2 = 1− 12

(2j + 1)2
= 1− 3

j2
+O

(
1

j3

)
, (3.92)

where, again, the series expansions are appropriate in the limit j → ∞. Observe

that in this case these parameters lack any terms in 1
j
.

The scaling of longevity with j are found to be O(j2), as depicted in Figure 3.5.

Figure 3.6 compares the fidelities for the three methods for constant j. These last

three examples demonstrate the importance of choosing the gate carefully to match

the objectives of the given task.

3.7 Conclusion

This study has considered how a quantum directional reference frame state evolves

under the action of maps invariant with respect to rotations in space. These maps
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Figure 3.6: A plot of the fidelity with number of repetitions, n, for j = 8 for
the three methods of qubit rotation, B(1) Section 3.6.3.1 measure and rotate
(dot-dashed line), B(2) Section 3.6.3.2 filtering map (dashed line), and B(3) Sec-
tion 3.6.3.3 coupled spins (solid line). This behavior of this value of j is represen-
tative.

are of physical interest because they describe the situation that occurs when an

external, classical reference direction is lacking and there is rotational symmetry of

the quantum system on which the quantum reference is to be used. The concept

of quality of a quantum directional reference frame introduced by [BRST06] has

been generalized. It has been demonstrated that the quality of a reference frame

must be represented by a function that depends only on the eigenvalues of the

quantum reference frame or an equivalent set of parameters called the moments.

Equations (Theorem 3.2) are found that, used recursively, give expressions for how

the moments evolve with the number of uses of the quantum reference frame. Some

sufficient conditions (Theorem 3.3) for the longevity of a quantum reference frame

to scale by a factor proportional to square the dimension of the quantum reference

frame are given. Finally, the results are applied to different examples such as the

use of a quantum directional reference frame to measure a spin-1 particle or to

implement a Pauli operator on a qubit. The framework developed here can be used

to compare different methods to perform some operation using a quantum reference

frame and an example of such a case where this might be of interest is studied in
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the final section.

Theorem 3.2 follows from Theorem 3.1, a theorem which implies that maps

invariant with respect to SU(2) can be written as a polynomial function of the Lie

algebra generators of rotations. It would be interesting to investigate if a similar

theorem could be applied to other Lie groups. One obvious case to consider is the

group of U(1) rotations, since invariance with respect to U(1) describes the lack

of a phase reference. However in this case, the group structure is not as rich as

for SU(2) since the representations of U(1) are all one dimensional (i.e., complex

numbers z such that |z| = 1). This restricts the applicability of the methods used

here to find constraints.

It is assumed in this analysis that the state of the reservoir is invariant under

rotations. This is not the most general physical situation, since it is possible that

the reservoir could be polarized, as is considered in [PY07]. It is an open question

whether this theorem might be generalized in some way to the case where the

rotational symmetry of the quantum system is broken.
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4.1 Overview

In this chapter, results regarding requirements on reference frames in quantum

computing, particularly for conserving energy, and the scaling of energy with error

in a computation, are surveyed and combined. They are considered in conjunction

with results from work on decoherence free subspaces, quantum cellular automata,

and error correction to draw general conclusions about what restrictions the need

for reference frames imposes and what are the resource requirements for quantum

information processing.

4.2 Introduction

In the final section of the previous chapter, the concept that quantizing additional

systems, such as measuring devices, allows for adherence to conservation laws was

introduced. The same is true for performing operations on a quantum system.

Every gate performed on a qubit or collection of qubits requires an interaction of

those qubits with an external system. Since these external systems are required for

quantum computation, it is important to consider them as a necessary resource in

contemplating the practicality of quantum information processing.

For quantum computation, a system or collection of systems with physically

distinguishable states is required. For example, a single qubit must have a state

|0〉 and an orthogonal state |1〉. These states must be distinguished by some de-

gree of freedom which differs in the two states. This degree of freedom could be

(and typically is) energy. The physical difference between |0〉 and |1〉 allows mea-

surements to distinguish the two states and operations to act in different ways

on each state. This requirement implies there must be some Hamiltonian which

breaks the symmetry between the two states by awarding one more energy than

the other, causing the two states to have different Schrödinger evolution phases,

e.g., H = E0 |0〉 〈0| + E1 |1〉 〈1| (note this is a rescaling of the Z operation). This

allows for z-axis measurements and z-axis rotations, but this Hamiltonian will not

mix the two states by transferring amplitude from one state to the other.

This degree of freedom will be associated to an operator that is considered a

conserved quantity in classical physics. For example, in classical physics, energy is
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strictly conserved, and likewise, the expected value of energy in a realistic model of

quantum computation should be conserved so that a quantum computer together

with its supporting apparatus is does not violate the first law of thermodynamics.

However, the Hamiltonian associated with the degree of freedom does not give rise

to all of the transformations that could be performed on a qubit. For example, we

might wish to take the state |0〉 to |1〉 by means of an X operation. It is desirable

to introduce a new Hamiltonian that can take the state |0〉 to the state |1〉, but

that commutes with the Hamiltonian (e.g., H = E0 |0〉 〈0|+E1 |1〉 〈1|) that breaks

the symmetry.

This is possible if we introduce another system, which will be the reference

frame. The reference frame can serve as a resource that allows for measurement

or a near unitary state change to occur, as viewed by the qubit. This reference

can exchange energy (or another degree of freedom) with the qubit and this will

allow changes of amplitude between |0〉 and |1〉, while still maintaining constant

energy overall. For example, consider the state of the reference to be |ΦE〉 where E

denotes the expectation value for the energy of the state. Then consider the joint

evolution of the system and the reference together:

|0〉 ⊗ |ΦE〉 7→ |1〉 ⊗ |ΦE−1〉 (4.1)

where one unit of energy is transfered from the reference to the qubit. If the state

of the reference is almost unchanged by gaining or losing and excitation (by virtue

of having a large expected energy and an appropriate state, that is, one that is close

to a classical state, not, for example, a large cat state), then the operation on the

qubit can be approximately unitary because the coherence between states |0〉 and

|1〉 can be preserved in the qubit when the reference is traced out. In other words, if

we wish the interaction with the external quantum reference system to approximate

well the case of an interaction with a classical system, the initial and final states of

the reference should be close: 〈ΦE−1|ΦE〉 ≈ 1. In order to consider explicitly how

this can work, we choose a particular physical system to explore, which is the qubits

modeled as two-level atoms coupled to reference systems that are electromagnetic

fields. The reason for this is that in most current implementations of quantum

information processing the effects of the errors induced on the qubits by having

a finite size reference system are negligible, because quantum computers currently

have only a few coherent qubits run for several operations and the systems used to

manipulate them are often composed of billions of atoms or excitations which are

described exceptionally well classically. One practical scenario where it has been
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suggested that this error might cause problems in the near future is the interaction

of laser pulses with atomic qubits, where the pulses serve as a phase reference for

the atomic qubits [BW99, KGBO09, GB02] due to finite laser coherence times,

which are currently on the order of a few minutes, at the most.

The physical model of the world in which quantum systems can be employed

for quantum computing is one which seemingly has contradictory requirements. It

must be possible to model large systems classically, and yet, at the same time,

there also must be no fundamental limit on how large a quantum system could be,

so that they can be scaled up as needed. The first point is important because it

allows the quantum computation system to undergo unitary evolution, as opposed

to decohering when it is manipulated by external control systems. The second is

desirable because the apparent speed up over classical processing in solving cer-

tain BQP problems becomes more pronounced as the input size of the problems

increases. Superficially, these appear to be conflicting requirements. What is really

necessary is that the systems which are modeled as classical are large compared to

the quantum computation system. This leads to the question of how large do the

classical systems need to be? If they must always be larger, but only by a linear or

polynomial factor, this does not alter the problems which can be efficiently solved

on a quantum processor. However, should this overhead grow superpolynomially in

the input size to the problem, then finding the solutions would no longer be efficient

in the total required resources.

It has been known for some time that conservation laws ought to impose restric-

tions on measurements and operations. Aharonov and Susskind [AS67] explicitly

constructed a reference system for preparing a charge superposition state. For the

case of performing a NOT gate on an atomic qubit using a Gaussian field state

(coherent state), van Enk and Kimble [vEK01] found that such a gate could be

performed up to an error of O( 1
n̄
) where n̄ is the expected number of photons in the

Gaussian field. (See Section 4.6) Gea-Banacloche and Ozawa [GBO06] found that

re-using such a field caused the fidelity to decrease with the square of the number of

uses, k, so that the error on the kth gate is O(k
2

n̄
). Though they define n̄ to be the

total reference size across all k gates, therefore, their scaling agrees with van Enk

and Kimble’s result. Note that seems to imply that asymptotically the apparent

speed up of algorithms such as Grover search would be negated, since a quadratic

increase in the consumption of another resource is required.

It is possible to deduce fundamental restrictions on the fidelity of operations on

quantum systems from commutation relations between the ideal operation and the

operator associated with the quantity to be conserved. This has been done for gates
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on one qubit [KGBO09], CNOT gates [Oza02], and multiplicative conservation

laws [KMO08] as well as additive ones. Lower bounds for “gate infidelity” were

found, and for arbitrary single qubit gates, the error must be greater than Ω
(

1
N2

)
where N is the dimension of the ancilla system.

4.3 Energy Conservation

It is desirable for several reasons to have a model of quantum computing that

conserves energy. For one, the expectation value of the energy should obey the

correspondence principle so that classical thermodynamics is upheld, i.e., a large

quantum system, such as a computer should not be an engine that can generate

energy from nothing. This is what appears to happen when a quantum system

consisting of a string of qubits in the |0〉 ground state that has X gates applied

to each qubit via unitary operations implemented by classical systems and all the

qubits are mapped to excited states. Also, a quantum computer should not require

an amount of energy to run that scales badly with the input size. Further, these

interactions are no longer perfect unitary operations on the computation system,

so it makes sense to consider how interactions with external systems alters the

standard view of quantum computing. In particular, the error that occurs because

the operations on the qubits will not be unitary is explored. First, however, we

consider the definition of energy conservation.

This is important to consider because in order to find an appropriate scaling of

this reference resource it is necessary to appreciate what systems must be quantized.

The separation between quantum and classical must exist in all models of quantum

computing, since the problem submitted to the computer is a classical question and

the answer will also in the end be classical. This is simply the result of modeling

the observer (who submits the input and obtains the output) classically. We would

like to discover where is a good place to put this separation (the Heisenberg cut)

so that necessary resources are not being neglected.

Hamiltonians cause states to evolve by altering the energy eigenstates, which

causes different phases eiEit over a time t to be applied to the different eigen-

states according to their different eigenvalues. The evolution is described by the

Schrödinger equation:

H
∑
i

αi |Ei〉 =
∑

αiEi |Ei〉 (4.2)

where H is the applied Hamiltonian, |Ei〉 is the ith eigenstate of H, and Ei is its
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eigenvalue. Any input state |ψ〉 =
∑

i αi |Ei〉 can be expressed in this way as a

superposition of eigenvectors of H. Under a constant Hamiltonian, the expected

energy of the state |ψ〉, given by 〈E〉ψ = Tr[E |ψ〉 〈ψ|] =
∑

i |αi|2Ei, is fixed. How-

ever, changing the Hamiltonian on a state can cause a change in the expected

energy of the state. An example of this is the X gate. Consider starting from the

state |0〉 and moving to the state |1〉. Let the energy of the state |0〉 be zero and

|1〉 be one by defining HZ = 1
2
(I − Z). Clearly, the expectation value of energy

has changed from the beginning to the end of this procedure since 〈0|H |0〉 = 0

and 〈1|H |1〉 = 1, but also there is an immediate change in the expected energy

of the system as a result of applying the Hamiltonian which will implement the X

gate, HX = 1
2
(I −X). The eigenvectors of this Hamiltonian are |+〉 and |−〉 with

eigenvalues 0 and 1 respectively. However, |0〉 can be written |0〉 = 1√
2
(|+〉+ |−〉).

The expected energy of the state |0〉 under this Hamiltonian then is no longer 0,

but 1
2
.

If an operator, A, commutes with the Hamiltonian then its expectation value

〈A〉 is preserved by the action of the Hamiltonian and the expectation value of a is

said to be conserved during the time that this constant Hamiltonian is applied.

[A,H] = 0 ⇒ 〈A〉 is conserved. (4.3)

It is easy to see that this must be the case. Consider the system initially to be

in a state |ψ〉. If a quantity is conserved over a time 0 ≤ t ≤ T then that means

a(0) = a(t) for all t in the specified range. The expectation value of the operator

A is given by

〈A〉ψ(0) = 〈ψ(0)|A |ψ(0)〉

〈A〉ψ(t) = 〈ψ(t)|A |ψ(t)〉 = 〈ψ(0)|U(t)†AU(t) |ψ(0)〉 .

Using a Taylor expansion, the time evolution operator U(t) is

U(t) = e−iHt =
∞∑
m=0

(−iHt)m

m!
,
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so that if an operator commutes with H it also commutes with U :

[A,H] = 0 ⇒ [A,U(t)] = [A,
∑
m

(−iHt)m

m!
]

=
∑
m

m−1∑
k=0

(−it)m

m!
Hk[A,H]Hm−k−1

= 0.

Then we can rearrange the expression for the expectation value as

〈A〉ψ(t) = 〈ψ(0)|U(t)†U(t)A |ψ(0)〉 = 〈ψ(0)|A |ψ(0)〉
= 〈A〉ψ(0). (4.4)

Therefore, the expectation value of that degree of freedom associated with any

operator that commutes with the Hamiltonian is conserved under the action of

that Hamiltonian.

It is possible to keep the expected energy in a system constant by employing

a reference system to restrict to using operators that commute with H. The use

of such a system will keep the number of excitations constant, as in Figure 4.1.

Then the evolution on the joint system can be unitary. Consider the situation

proposed in the previous section to use a qubit of reference together with a qubit

of computation and let it start in the state |01〉.

Reference system

Computation system

Figure 4.1: Fixing the total number of excitations in the joint system composed of
the computation system and the reference system.
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Then a X gate on the qubit will be accomplished by swapping the states of

the computation qubit and reference qubit. The eigenstates of the swap operation,

S, are |Ψ±〉 = 1√
2
(|01〉 ± |10〉), but the expected energy of the state |01〉 does not

change under this new Hamiltonian. Initially it has an energy 1 and under the

swapping Hamiltonian |01〉 = 1√
2

(
|Ψ+〉 + |Ψ−〉

)
and the average energy of these

terms is 1.

Notice that in the example of applying an X gate [HZ , HX ] = i 6= 0. However,

we can do a gate which serves as an effective X gate using the swap operation. In

this case the two Hamiltonians do commute. Recall

S =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (4.5)

and

eiSt = cos(t)I + i sin(t)S. (4.6)

So, let HS = 1
2
(I− S). Then

[HZ ⊗ I + I⊗HZ , HS] = 0. (4.7)

If two measurement operators A and B commute with one another, then the two

operators can have simultaneous well defined outcomes. That is, the system being

measured can be in a state |ψ〉 such that A |ψ〉 = a |ψ〉 and B |ψ〉 = b |ψ〉 then

AB |ψ〉 = BA |ψ〉 = ab |ψ〉 and the minimum possible joint uncertainty of these

variables is zero, ∆a∆b ≥ 0. In addition, if two operators commute then they

have joint eigenstates. In the case of the second example, the joint eigenstates are

|00〉 , |11〉 , |Ψ+〉 , and |Ψ−〉.

Then, any operations that commute with the total energy operator for a given

system can be performed without disturbing the result of a measurement of total

energy in the system. However, consider what happens within the E = 1 subspace

that is spanned by the states 1√
2
(|01〉 + |10〉) and 1√

2
(|01〉 − |10〉). Under the

Schrödinger evolution

eiHZt(
∣∣Ψ+

〉
+
∣∣Ψ−〉) = eit(

∣∣Ψ+
〉

+
∣∣Ψ−〉) (4.8)

with the two states both acquiring the phase eit. However, under the action of the
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swap Hamiltonian this is not the case, rather

eiHSt(
∣∣Ψ+

〉
+
∣∣Ψ−〉) = eit

∣∣Ψ−〉+ e0
∣∣Ψ+

〉
. (4.9)

The states now have a relative phase.

This example demonstrates that even though the degree of freedom associated

to the operator defined to be the “total energy operator”, Htotal = HZ⊗ I+ I⊗HZ ,

is conserved by the operation eiHSt, the act of applying HS to the system must

alter the relative energies of the states on that system. This is because HS has

different energy eigenstates than Htotal. So the expected energy of the system

〈HS〉 under HS may differ from that of Htotal. As an example of this consider

the state α |Ψ−〉 + β |Ψ+〉. The expectation 〈Htotal〉 = 1, but the expectation

〈HS〉 = 1|α|2 − 0|β|2 6= 1 unless |α| = 1. The operators Htotal and HS commute,

but their expectation values will not be the same for all states.

Therefore the “energy” of the system’s state as defined by the Hamiltonian op-

erator dictating the Schrödinger equation changes with each new operation during

a quantum computation. However, the “total energy” as defined by the consistent

operator Htotal can be conserved throughout.

Now we argue that a change of Hamiltonian is a requirement for quantum infor-

mation processing. For quantum computation it does not suffice to prepare a state

that is an eigenstate of the total energy, e.g., the ground state, evolve it solely un-

der this Hamiltonian, and measure it according to this same Hamiltonian operator.

The state can acquire a global phase, but this cannot be detected physically, so it

may as well be considered not to have evolved at all.

|0〉 HZ
2534HZ 0

So, in order for there to be a non-trivial computation taking place, at the least a

state must be prepared using one Hamiltonian, evolved according to a different one,

and measured according to a third. In principle, the first and third Hamiltonians

could be the same, but if the first and second or second and third are the same this

is equivalent to preparing the state and measuring it immediately.

|0〉 X 2534HZ 1

In this diagram the preparation is according to HZ , the evolution is according to

eiXt and the measurement is again according to HZ .
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This implies that energy conservation in the strict sense of Noether’s theorem,

which arises from time-invariance does not lead to any detectable evolution quan-

tum mechanically. This is logical, since if the system were evolving detectably,

then this evolution should be able to serve as a clock which will break the time

invariance.

Under the less strict definition that a particular operator which we shall call “to-

tal energy” must be conserved interesting evolutions can occur. This is illustrated

in the diagram below.

|0〉
HS

2534HZ 1

|1〉 2534HZ 0

Preparation and measurement are according to HZ⊗HZ which produces state that

are eigenstates of Htotal, and the evolution is according to HS, but HS preserves

HZ .

What we have just done when we replaced the X gate with the swap operation is

move the Heisenberg cut, the conceptual line in the theory which separates systems

considered classical and systems treated as quantum. In the case that a qubit is

taken from |0〉 to |1〉 by the Hamiltonian eiXt, some classical field is assumed to

couple to the qubit. Being classical, it is treated mathematically as though it is

unchanged by the coupling, even though it is clear that it has altered a property

of the qubit: its expected energy. By adding an additional qubit the value 〈Htotal〉
can be kept constant; the Heisenberg cut is moved so that the additional qubit is

now included on the “quantum” side of the line. Note that the observer, and the

observer’s inputs, and the final measurement outcomes, are always on the “classical”

side of the line.

What this demonstrates is that it is possible to replace a Hamiltonian in the

quantum system by an interaction with an additional quantum system governed by

a new Hamiltonian and further, that this can be used for the purpose of conserving

the degree of freedom associated to an operator. This shift of the Heisenberg cut can

clearly be repeated. The new Hamiltonian can itself be replaced by an interaction

with yet another quantum system, governed by yet another Hamiltonian. Following

the previous examples, this would allow the quantity HS ⊗ I2 + I2 ⊗HS to also be

conserved (as well asHtotal = HZ⊗I⊗I⊗I+I⊗HZ⊗I⊗I+I⊗I⊗HZ⊗I+I⊗I⊗I⊗HZ)

by including two more qubits and making the effective X operation consist of a pair

of swaps mapping |0011〉 7→ |1100〉.
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However, since the observer remains classical, there will never be completely

quantum description of the evolution. It is better to place the Heisenberg cut

somewhere convenient for the calculation. The intention in this work is to move the

cut far enough to provide a rigorous accounting of what is required for a reference

frame to be maintained so that quantum computation can occur. Therefore, we

find the energy resources required to conserve Htotal on the computation system

and its reference state.

If a quantum computation were to require either overly large amounts of energy,

even at a fundamental theoretical level, or else require a reference frame whose

size scales superpolynomially, this would constitute a threat to the feasibility of

quantum computation or a restriction on the class of problems a quantum computer

could be expected to solve efficiently.

Fact 1. For every new gate Hamiltonian applied to a quantum system an interaction

between the qubit(s) that the gate acts on and an external system is required.

Usually, the external system is modeled as classical, but here we will treat it

as quantum mechanical, to properly assess its value as a resource. Gates can be

separated into two kinds:

1. gates that do not commute with the total energy operator, Htotal, and,

2. gates that do commute with Htotal.

where now Htotal is the total energy operator on the computation system only.

Both of these type of gates will require interaction with an externals system,

which can be quantized. In the implementation setting of qubits being two-level

atoms, both kinds of gate can be implemented using fields. However, the form of

the interaction will be different in these two cases and the resource requirements

for them are very different. For the first type of gate, non-commuting gates, the

interaction exchanges excitations between the field (the reference) and the atom

(the computation system). The external system in this case we consider to be a

reference frame, since it will be necessary to keep coherence between the different

energy states |0〉 and |1〉 of a qubit, as is explored in the next section. The second

kind of gate, the commuting gates, require energy to be performed, but do not need

to be kept coherent or correlated to the computation. They will be addressed in

Section 4.9.
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4.4 Coupling of the Computation System to the

Reference

In the picture of energy conservation under which operations must commute with

Htotal this is equivalent to fixing the total number of excitations in the reference

state and the qubits and then carrying the computation out according to the circuit

model picture.

For example, gates such as Z, control-Z, phase gates, or fractional SWAPs,

which commute with Htotal, are assumed to be feasible without a phase reference

system because they do not change the total number of excitations in the compu-

tation system, C. The reference is required for any gate that can alter the expected

number of excitations in computer system, such as an X, Y , or Hadamard, H,

gate, which will not commute with Htotal, and need to be replaced with encoded

operations on the joint reference-computation system.

The reference system, R, will couple to the computation qubits and serve to

preserve total energy while also providing a definition of phase, in the sense that

it preserves coherences between states of different energy. Consider applying a

Hadamard gate to a qubit in the |0〉 state:

H |0〉 =
1√
2

(
|0〉+ |1〉

)
. (4.10)

Now suppose that the Hadamard gate is performed via a mapping on the joint state

of the reference and the computation systems, so that the number of excitations is

conserved, where the reference is presumed to have n excitations:

|0〉 |n〉 “H”7−→ 1√
2

(
|0〉 |n〉+ |1〉 |n− 1〉

)
. (4.11)

In the case of atomic qubits interacting with laser fields the Jaynes-Cummings

Hamiltonian run for a time t = 2
√
n

πg
will realize this interaction. If the reference

state is traced out at this stage, the remaining state on the qubit is

TrR
[1
2
(|0〉 |n〉+ |1〉 |n− 1〉)(〈0| 〈n|+ 〈1| 〈n− 1|)

]
=

1

2

(
|0〉 〈0|+ |1〉 〈1|

)
(4.12)

so all coherence is lost. It is possible to prepare a reference in a state that is

close to the state of a classical field so that if can be traced out with limited

decoherence effects. If the system R is in a coherent state |α〉 containing a mean

number of photons n̄ and having a phase φ so that α =
√
n̄eiφ, then after an effective
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Hadamard operation on the qubit the reference can be traced out to leave the qubit

in the state 1√
2

(
|0〉 + eiφ |1〉

)
up to an error of O( 1

n̄
). This is considered in detail

in Section 4.6. The reference can now be considered to be classically correlated to

the qubit rather than entangled (with high fidelity). Notice that still, in this case,

because the state of the qubit is correlated to that of the reference, if the reference

system is discarded, even if it is classical, the state of the qubit will need to be

represented as the completely mixed state.

Fact 2. If all two-qubit interactions within a computation system are ZZ couplings

then the qubits do not require a common phase reference.

In other words, a separate unentangled, uncorrelated reference system could be

used in association with each qubit in the computation system so long as all two

qubit interactions are for example, controlled-Z gates.

As an example, consider the circuit:

|0〉 H • H |1〉

|0〉 X • |1〉

that takes input |00〉 to |11〉 by a phase kickback. An energy conserving implemen-

tation of this circuit using the encoding |0L〉 = |01〉 , |1L〉 = |10〉 is:

|0〉 √
SWAP

• √
SWAP

|1〉

|1〉 |0〉

|0〉
SWAP

• |1〉

|1〉 |0〉

where the ancilla qubits can be thought of as reference systems for the first and sec-

ond qubit. Equivalently, independent coherent states that are not phase correlated

could be used as references for each qubit:
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|0〉
HI(tπ/2)

“ 1√
2
(|0〉+eiφ|1〉)”

•
HI(tπ/2)

|1〉∣∣√n̄eiφ〉 ∣∣√n̄eiφ〉

|0〉
HI(tπ)

eiθ|1〉
•

1√
2
(|00〉+eiθ|01〉
−eiφeiθ|11〉)

|1〉∣∣√n̄eiθ〉 ∣∣√n̄eiθ〉

Note that all single qubit gates with any two qubit entangling gate is universal

for quantum computation. All single qubit gates that do not commute with Z

can be accomplished by interactions between each reference system and each qubit.

Also, each reference could begin in a state of fixed excitation number and since

each interacts with only one qubit, the total number of excitations is fixed between

that reference the that particular qubit. This means that there is no fundamental

error in the application of the Jaynes-Cummings interaction, as is the case when a

reference in a coherent state is used. In fact, the reference state could be reduced

down to a system that contains a single excitation to be as economical with energy

as possible. Now two physical qubits (one from the “computation system” and one

from the “reference system”) are required to simulate a single physical qubit and

the computation takes place in the subspace of fixed excitation number. In this

picture, if the computation system begins in the ground state, so that all qubits

are initialized to |0〉 and the reference system begins in the state all qubits excited,

|1〉, and the ideal final state on the computation qubits is a binary string, then

this method should have no error at all due to the restriction that energy must be

conserved.

A reason that large reference systems tend to be used in practice is that they are

more robust. If the reference system is reduced to being a single excitation, then it

is another qubit that an experimentalist must keep coherent. The field excitation

may be trapped in a cavity, but there is some chance that it could leak from an

imperfect cavity. If n excitations are used instead, and if one leaks from the cavity,

this does not completely destroy the entanglement of the remaining excitations with

the qubit:

Na
1√
2

(
|0〉 |n〉+ |1〉 |n− 1〉

)
=

1√
n− 1/2

(√
n |0〉 |n− 1〉+

√
n− 1 |1〉 |n− 2〉

)
,

(4.13)
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where N is some normalization, but this will result in an error of choosing the

interaction time to achieve a particular rotation, e.g., to implement Rx(θ/2) choose

t = θ
g
√
n
, as well as shifting the relative amplitudes of |0〉 and |1〉. In general, the

leakage will not be known to have occurred so the number of excitations in the

cavity will not be n and the incorrect choice of t will be made. The result will be

that the intended gate will not be precisely applied. However, if n is sufficiently

large, due to the mis-timing error will be very small. This is considered in more

detail in Section 4.6. In addition, the error caused by the shift of amplitude will be

of order ε = O( 1
n2 ).

Notice that even though different Hamiltonians must be switched off and on

in this arrangement and that this will change the relative energy of the different

sets of eigenvalues, this will not change the expected energy of the total system

R ⊗ C. If it begins in a state of well defined energy, e.g., all computation qubits

in the state |0〉 and all reference qubits in the state |1〉, then the joint system will

also end in this well-defined-energy state. In this arrangement it is clear that the

number of logical qubits is equal to the number of excitations required to complete

the calculation, and further, that this energy input is effectively returned at the

end of the calculation. That is the required energy scales linearly with the space

requirement of the problem, not including the energy required to implement the

gates that commute with the total energy operator.

There are then several approaches that might be taken to this problem of what

to use as a reference system, which have different advantages and drawbacks.

1. Use an encoding for the qubits that keeps them in an energy-conserving sub-

space. This is considered in more detail in the next section. The advantage

of this is that it is the most economical in terms of energy required in the

reference state and in principle has no fundamental error due to reference

concerns. The disadvantage is that it is not robust against photon loss.

2. Use an energy-conserving subspace, but allow the reference system to be a

large photon number Fock state |n〉. These systems will be more robust, and

will have faster interactions with the computation qubits, but will require

more energy to construct.

3. Use coherent states as reference systems, one for each qubit. This has some

error, but it is limited, and the coherent states need not be correlated, how-

ever, it requires maintaining as many cavities as qubits, each one containing

a coherent reference state.
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4. Use repeatedly the same coherent state for every non-commuting gate with

every qubit. This is economical, only requiring one cavity, but the error

scaling is worse.

5. Use as the reference a series of states each for one gate only that are mixtures

of coherent states over phase, but phase correlated with each other. In other

words the reference states are of the form∫ ∣∣√n̄eiφ〉
1

〈√
n̄eiφ

∣∣⊗ ∣∣√n̄eiφ〉
2

〈√
n̄eiφ

∣∣⊗ . . .⊗
∣∣√n̄eiφ〉

G

〈√
n̄eiφ

∣∣ dφ
where the subscript refers to which non-commutative gate each state will

be used for 1, 2, ...G. This is a model for what is usually currently done in

practice. A single laser emits a series of Gaussian state pulses which are used

to enact rotations on the qubits.

The first scheme is considered in the following sections, 4.4.1 and 4.5. It has

already been contrasted with the second proposal in this section. The last three

schemes are analyzed in Section 4.6 and compared in Section 4.6.1.

4.4.1 The Relation to Decoherence Free Subspaces

Note that the implementation which conserves the expectation of Htotal uses an

encoding that operates only in a subspace of the total Hilbert space R ⊗ C, the

subspace containing a constant number of excitations distributed among the qubits.

Such a proposal was suggested by Kempe et al. [KBLW01]. They propose a scheme

for combating “strong collective decoherence” in a logical qubit by encoding it in

three physical qubits, where all logical qubit operations are performed by SWAP

gates between the physical qubits. This conserves excitation number in the logical

qubit. Also, extending a “conservative” encoding to many qubits becomes increas-

ingly efficient. In the limit as the number of physical qubits n → ∞, the ratio of

the size of the largest decoherence-free subspace, k, which conserves energy, to n

goes as:

lim
n→∞

k

n
= 1− 3

2

log n

n
. (4.14)

Note the relation between this and Bartlett et al. [BRS07] for communication

without a shared reference. The above formula also applies to the number of qubits

of quantum information, k, that can be communicated between two parties that do

not share a cartesian coordinate system using a transmission of n qubits. They also
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find that the amount of classical information (k bits) that can be sent over such a

quantum channel behaves as

lim
n→∞

k

n
= 1− 1

2

log n

n
, (4.15)

which is the number of irreducible SU(2) representations in the direct sum de-

composition of the Hilbert space of n tensored qubits. However, in the case that

the quantum channel also destroys ordering information on the transmitted qubits,

that is, the receiver obtains all of the qubits but does not know the Cartesian frame

of the sender or the order in which the sender transmitted the qubits, then com-

munication is not possible. This is due to the fact that this restricts the parties to

a symmetric subspace even before imposing the SU(2) rotational invariance. This

leads to the multiplicities of the spaces of different excitation number all being one

and therefore there are no subspaces preserved under this channel as a consequence

of Schur’s first lemma.

Schur’s first lemma (see Chapter 2, Section 2.5.2) states that, for matrix repre-

sentations of a group G, closed under matrix multiplication and inversion and R(g)

are the group elements of an irreducible representation of G, then if a matrix A is

commutes with R(g) for all g then A is a scalar matrix, i.e. A = cI where c is a

constant. [Sch05, Hal06]

This implies that the channel that destroys ordering information also cannot pre-

serve any quantum information because destroying ordering information by twirling

over all possible permutations

T (ρ) =
∑
i

πiρπ
†
i (4.16)

restricts the preserved states to the symmetric ones. That is, the states

ρ =

(∑
k

ak |k〉

)(∑
k′

b′k 〈k′|

)
(4.17)

where |k〉 represents and equal superposition of all n-qubit strings with k qubits

in the state |1〉. This is isomorphic to the states of each possible total angular

momentum of n qubits. Then the irreducible representations of the group of all

SU(2) rotations is
⊕n/2

k=0Hk if n is even or
⊕n/2

k=1/2Hk if n is odd where Hk is

the Hilbert space of dimension 2k + 1. Note that each space has multiplicity one.

Schur’s lemma implies that these spaces are not preserved and since there are no

87



Chapter 4. Quantum Reference Frames and Information Processing

multiplicity spaces, no quantum information can be transmitted by such a channel.

Note however, that the number of classical bits that can be sent is just the logarithm

of the number of different total angular momentum states for n qubits:⌊
log
(⌊n

2

⌋
+ 1
)⌋

. (4.18)

4.5 Quantum Computation with Only Commut-

ing Gates

It is possible to do universal quantum computation using only SWAP and fractional-

SWAP operations, as demonstrated by Kempe et al. [KBLW01]. In this picture,

it is possible to calculate what the cost in reference frame will be, where here, the

“reference frame” is any additional systems required to realize an energy conserving

implementation beyond the number of required logical qubits. In other words the

size of the reference is n− k, where n is the number of physical qubits and k is the

number of logical qubits. In this case, k = log
(
n
n/2

)
. For each pair of qubits to be

either prepared initially or measured finally, a singlet state must be formed, which

requires at least one applied Hamiltonian to be formed by the ground state of the

input qubits |00〉. More conventionally, in the circuit model, the circuit:

|0〉
√
SWAP

|1〉 T

will prepare the state 1√
2
(|01〉 − |10〉), where the gate T : α |0〉 + β |1〉 7→ α |0〉 +

e−iπ/2β |1〉. Thus, the number of excitations can be conserved in this procedure.

In terms of logical qubits, k, the number of physical qubits required as n → ∞ is

sub-linear, as can readily be seen using Stirling’s Approximation:

n! =
√

2πn
(n
e

)n
+O

(
1

n

)
. (4.19)

This gives
(
n
n/2

)
=
√

2
πn

2n

lim
n→∞

k

n
= 1−O (log n/n) . (4.20)
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Therefore, as the number of logical qubits desired increases, the overhead per qubit

decreases. Also, since one logical qubit can be encoded in three physical qubits un-

der this scheme, there will never be worse than a factor of three increase, therefore,

Fact 3. For a k qubit computation in a subspace that conserves energy, if suffices

to have a reference system of o(k) qubits.

However, since the Hamiltonians for the square root of SWAP gates and the T

gate will need to be switched on and off, which will be done in practice using an

external field or similar interaction with a system (see Section 4.9.2), the require-

ments for an external field to construct the initial entangled pairs and perform the

quantum computation can be accounted for. This requirement is philosophically

different than a phase reference system requirement, however, and will be further

considered in Section 4.9 and subsequent sections.

4.6 Decoherence due to Tracing Out the Refer-

ence System

We will now explore explicitly what is anticipated to occur when a coherent state

is used to manipulate a two level atomic qubit. This has also been explored with

different analysis by van Enk and Kimble [vEK01].

Consider the qubit initially in the state |0〉 and the reference initially in the

state |α〉, where |α〉 is a coherent state. A coherent state is selected because it

has the property that a |α〉 = α |α〉, i.e. the state is unchanged by the action of

the annihilation operator, which means that losing an excitation should not alter

it much.

|ψini〉 = |α(0)〉 ⊗ |0〉 (4.21)

=

(
e−n̄/2

∞∑
n=0

√
n̄n

n!
eiφn |n〉

)
⊗ |0〉 (4.22)

We will entangle the two systems of this product state under the action of the

Jaynes-Cummings Hamiltonian in the rotating wave approximation, which is the

standard way of modelling atom-field interactions:

Ĥ =
1

2
~ω0(I− Z) + ~ω`

(
a†a+

1

2

)
+ ~g

(
σ+ae

−i∆t + σ−a
†ei∆t

)
(4.23)
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where ω0 is the resonant frequency of the atomic transition, ω` is the cavity’s

frequency, g is a coupling constant, and σ± are the energy raising and lowering

operators on the atom. Note that each term commutes with the operator Ne =

a†a+ |1〉 〈1|, which measures the total number of excitations on both subsystems.

We now split this Hamiltonian into three parts: (1) HI , the interaction, or

“interesting” term, (2) HII , a term which applies a different phase to terms with

different total energies, and (3) HIII , a phase term which is global, so shall be

ignored.

H = HI +HII +HIII (4.24)

HI = ~∆a†a+ ~g
(
σ+a+ σ−a

†) (4.25)

HII = ~ω0N̂e (4.26)

HIII =
1

2
~ω`I (4.27)

where ∆ ≡ ω` − ω0. For an on-resonance, energy conserving interaction ∆ = 0.

As explained in the introduction, the degree of freedom that will distinguish |0〉
from |1〉 in the atom, which is the energy, should have an associated Hamiltonian

that conserves the expectation value of this quantity. This Hamiltonian is HII .

Any other Hamiltonians that are used to control the system should commute with

this Hamiltonian. This is the case. Firstly, [HII , I] = 0 follows trivially. Also,

Ne commutes with HII , [HII , Ne] = 0, because each term in H independently

commutes with Ne:

[HII , HI ] =
[
~ω0N̂e , ~∆a†a+ ~g

(
σ+a+ σ−a

†)]
= ~2ω0∆

[
a†a+ |1〉 〈1| , a†a

]
+ ~2ω0g

[
a†a+ |1〉 〈1| , σ+a+ σ−a

†]
= ~2ω0∆(0) + ~2ω0g

(
[a†a , σ+a+ σ−a

†] + [|1〉 〈1| , σ+a+ σ−a
†]
)

= ~2ω0g
(
σ+[a†, a]a+ a†σ−[a, a†] + [|1〉 〈1| , σ+]a+ [|1〉 〈1| , σ−]a†

)
= ~2ω0g(−σ+a+ a†σ− + σ+a− σ−a

†)

= 0.

Now, consider the evolution that occurs on the reference state and the qubit

under the action of the Hamiltonian HI + HII (HIII is neglected because it only
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contributes a global phase):

|ψini〉
HI+HII−→

(
e−n̄/2

∞∑
n=0

√
n̄n

n!
eiφneiω0tn cos(g

√
nt) |n〉

)
|0〉

+

(
e−n̄/2

∞∑
n=1

√
n̄n

n!
eiφneiω0tni sin(g

√
nt) |n− 1〉

)
|1〉

=

(
e−n̄/2

∞∑
n=0

√
n̄n

n!
eiφneiω0tn cos(gt

√
n) |n〉

)
|0〉

+

(
e−n̄/2

∞∑
n′+1=1

√
n̄(n′+1)

(n′ + 1)!
eiφeiω0teiφn

′
eiω0tn′ sin(gt

√
(n′ + 1)) |n′〉

)
|1〉

=

(
e−n̄/2

∞∑
n=0

√
n̄n

n!
eiφneiω0tn cos(gt

√
n) |n〉

)
|0〉

+

(
e−n̄/2

∞∑
n′=0

√
n̄n′

n′!

√
n̄

n+ 1
eiφeiω0teiφn

′
eiω0tn′ sin(gt

√
(n′ + 1)) |n′〉

)
|1〉

= e−n̄/2
∞∑
n=0

√
n̄n

n!
eiφneiω0tn |n〉

⊗
(

cos(gt
√
n) |0〉+ i

√
n̄

n+ 1
eiφeiω0t sin(gt

√
n+ 1) |1〉

)

Notice that this state is still slightly entangled, because of the
√

n̄
n+1

factor

on the |1〉 term and the dependency of the sine and cosine factors on n. This

prevents us from extricating the sum over n from the qubit state and forming a

tensor product state between the two systems.

In the case that n → ∞, then we have n+1
n

→ 1 and the only terms that

contribute significantly to the sum are the ones for which e−n̄/2
√

n̄n

n!
is large, that is

the states where n ≈ n̄. That will mean that the factor
√

n̄
n+1

≈ 1, and by choosing

the interaction time t = 1
g
√
n̄
θ, we can remove the dependence on n from the qubit

subsystem and only incur an error of size O( 1
n̄
). In this case we can approximate

the state as a tensor product:

α

(
θ

g
√
n̄

)
⊗
(
cos(θ) |0〉+ ieiφeiω0θ/gn̄ sin(θ) |1〉

)
(4.28)
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For finite n̄, let us consider the density matrix of the qubit state. For t = 1
g
√
n̄
θ:

ρ′q = e−n̄
∞∑
n=0

n̄n

n!

(
cos2(

√
n

n̄
θ) |0〉 〈0|

−ie−iφe−iω0t

√
n̄

n+ 1
cos(

√
n

n̄
θ) sin(

√
n+ 1

n̄
θ) |0〉 〈1|

+ieiφeiω0t

√
n̄

n+ 1
cos(

√
n

n̄
θ) sin(

√
n+ 1

n̄
θ) |1〉 〈0|

+
n̄

n+ 1
sin2(

√
n+ 1

n̄
θ) |1〉 〈1|

)
(4.29)

Consider the fidelity between this state and the ideal final state ρq:

F (ρq, ρ
′
q) = Tr

(√√
ρqρ′q

√
ρq

)
(4.30)

because ρq is pure, we can write this as:

F (ρq, ρ
′
q) =

√
〈ψq| ρ′q |ψq〉 (4.31)

Then, noting that cos(θ(1−δ)) = cos(θ)+O(δ) and sin(θ(1−δ)) = sin(θ)+O(δ)

for −1 < δ < 1, the fidelity of the actual density matrix of the qubit for finite n̄

with the ideal pure final state is

F =

[
e−n̄

∞∑
n=0

n̄n

n!

(
cos4(θ) + 2 cos2(θ) sin2(θ) + sin4(θ) +O

(
1− n+ 1

n̄

))]1/2

.

(4.32)

Evaluating the sum

e−n̄
∞∑
n=0

n̄n

n!
O

(
1− n+ 1

n̄

)
= O

(
1

n̄

)
(4.33)

recovers

F =

[
1−O

(
1

n̄

)]1/2

∈ 1−O

(
1

n̄

)
, (4.34)

using Bernoulli’s inequality, and the channel that describes this transformation is

a depolarizing channel.

In addition, note that the optimal phase estimation state, a phase squeezed state

of the form [CW05] |ψ〉 = 1√
(N+1)/2

∑N−1
n=0 sin

(
(n+1)π
N+1

)
where the dimension of the
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reference Hilbert space is not infinite, but is N , will only be a linear improvement

on this, so the error will still be ε ∈ O
(

1
n̄

)
.

4.6.1 Error Scaling

Consider once more the three proposals for reference frame management that in-

volved coherent states. The first of the three was to use coherent states as references,

each paired with a qubit. In contrast to the second proposal, which was to use a

Fock state |n〉, as seen in the last section, interaction with a coherent state causes

decoherence on the qubit depending on the mean number of excitations, n̄, in the

coherent state as O
(

1
n̄

)
. The advantage is that the coherent state is stable under

photon loss: it is an eigenstate of the annihilation operator. Further, even though

there is error due to the uncertain number of excitations, the mean number of total

excitations does not change, since the coherent state exchanges only with its one

qubit and all two qubit operations are assumed to be controlled-Z gates, so the

error due to mis-timing the pulse (t = θ
g
√
n̄
) does not get worse with repeated use

of each reference.

For the scheme that use the same single coherent state repeatedly for all gates,

Gea-Banacloche and Ozawa in [GBO06] suggest that the size of the reference will

need to increase as the square of the number of times it will be used. It will be

used each time an operation that does not commute with the total energy operator

needs to be performed. This was demonstrated by the case of a coherent state

reference being used repeatedly to create a large cat state 1√
2

(
|0〉⊗` + |1〉⊗`

)
. In

order to create this state from the state |0〉⊗`, the reference will need to enter a

superposition with the qubits,

1√
2

(
|0〉⊗`

∣∣√n̄eiφ〉+ |1〉⊗`
∣∣∣∣√(n− `)eiφ

〉)
(4.35)

with each term having a different expected number of excitations. In this case, the

mistiming errors will grow: for subsequent operations t = θ

g
√
n̄−`/2

could be chosen,

but in the case of a large cat state, this will induce incorrect rotations, and tracing

out the reference immediately also causes decoherence between the states. The

error goes as O
(
`2

n̄

)
, where in the worst case, ` could be all of the qubits involved

in the calculation.

This type of resource scaling would negate the benefits achieved by the square

root improvement of many quantum algorithms, including Grover’s search algo-
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rithm [Gro96].

The last proposal was for the computation to be carried out directly as accord-

ing to the circuit model, using a series of phase-correlated coherent states as the

reference system. This reflects what is currently done in practice for implementa-

tions involving atoms manipulated by laser fields. A similar scaling to the proposed

by Gea-Banacloche and Ozawa is expected naively. Diverging from their argument,

if there is a coherent state containing a mean number of excitations n̄ it can be

divided by an appropriately chosen beamsplitter operation (which creates phase

correlated states) into ` coherent states in separate modes, each containing a mean

number of photons n̄
`
. Then the error on each gate will be O( `

n̄
). In the worst

case, these errors can add, so then the total error εtotal = O( `
2

n̄
). Fortunately, this

is the scaling that is to be expected without active error correction. As discussed

in detail in Section 4.7, active error correction can reduce this additive error below

any constant threshold of O(ε), where ε is the expected error on a step of error

correction, a gate, and another active error correction step together.

Therefore in this set up, the required reference size will scale as the number of

gates in the circuit, G, times the required reference to do a single gate with accuracy

ε, therefore O(G × n̄). For problems with polynomial sized circuits, G must not

increase with input size faster than as a polynomial function of input size, k.

4.7 Error Correction

It has been suggested [KGBO09, GB02] that the finite laser coherence time could

pose a problem for maintaining a phase reference for quantum computation in a

system where the qubits are atoms manipulated by laser pulses.

Consider a quantum computer which is implemented on a system of atoms

manipulated with a series of coherent states of the electromagnetic field. The phase

of the coherent states will provide a reference frame for the computation. Over time

the phase of the successive coherent states will drift with the net result that the

definition of the reference frame drifts during the course of the computation. This

implies that a Hadamard gate, i.e., a π
2

gate, applied early in the computation will

not be identical to one applied later. If one laser is used to control all of the atoms,

which serve as the qubits, this is equivalent to a global drift of the relative phase on

all qubits. Under these conditions, the deterioration of the reference, if sufficiently

slow, can be addressed using error correction techniques.
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There are two sources of noise in this situation. The first is a depolarizing effect

due to the coherent state having a mean number of excitations which is finite. The

second is the dephasing effect of the drifting reference frame.

The first effect occurs when the coherent state of the laser is treated as a quan-

tum system, which is disturbed by its interaction with the qubit during an opera-

tion, as was analyzed in Section 4.6. Commonly, the laser is treated as a classical

system, so that the operations it performs on the qubit will be unitary. Treating

the laser quantum mechanically causes an operation on the qubit to be decohering,

so it must be described by a more general map.

The second effect is caused by the imperfect phase correlation of the series of

states emitted by the laser. Imagine that the state |α〉 =
∣∣n̄eiφ〉 is emitted by the

laser in one time step and then a state with a slightly different phase
∣∣n̄ei(φ+δ)

〉
.

This will lead to the phase of the reference being “out of synch” with the phase of

the qubit.

The dephasing due to the phase drift of the laser can be managed using a quan-

tum error correcting code. It can be corrected for together with the depolarizing

effect studied in the previous section using a code which corrects both bit and phase

errors, such as Shor’s nine-qubit code, the seven-qubit Steane code, or the five-qubit

code, which can correct one X, Y, or Z error.

Alternatively, to allow for fewer error correction operations and higher thresh-

olds, the depolarizing effect can be countered using the five-qubit error correcting

code or the seven-qubit Steane code [Ste96], which also corrects one error and has

a proven threshold of 2.73 × 10−5 [AGP06, Rei06], while the dephasing effect can

be countered using the three-qubit phase error correcting code. Estimated and

simulated error thresholds for the seven-qubit code can be much higher, ranging

between 10−3 – 10−7 [Zal98, Pre98, KLZ98], with the higher estimates being more

recent. A simulation gave the threshold for the three-qubit code as 1.2 × 10−3 for

memory errors and 2.1 × 10−2 for gate errors [CS05]. Here, only noise due to the

reference effect is considered so memory noise will be free of the depolarizing effect,

but it will include the dephasing, since the phase of the laser is assumed to drift

continuously, regardless of whether an operation is occurring on the qubit. The

dephasing will also occur during every gate operation.

In most realistic arrangements, the average number of photons in a laser pulse

will be large, so the depolarization effect will be small; smaller than the dephasing

effect. However, it seems that the threshold for the three-qubit code is 10 – 100

times larger for the three-qubit code that will correct the dephasing.

95



Chapter 4. Quantum Reference Frames and Information Processing

The following circuit could be used to correct the phase drift:

|+φ0〉 Hφt • Hφt+δ

|+φ0〉 Hφt • Hφt+δ

|+φ0〉 Hφt • • Hφt+δ

|0〉 Hφt • • Hφt+δ NM





|0〉 Hφt • • Hφt+δ NM





This makes use of controlled-Z gates, which commute with the constant Hamil-

tonian because they do not change the weight of the energy eigenstates only the

phase. The Hadamard gates are performed using the coherent states, which are

phase references. It is assumed that the state |0〉 can be prepared without the

reference.

The encoding of the logical state chosen is |ψL〉 = α |+L〉+β |−L〉 = α |+ + +〉+
β |− − −〉. For simplicity, assume that the state |+ + +〉 was prepared at time t = 0

and at some later time t the correction map will take place and that the drift that

takes place during the correction is negligable. During this time, the phase of the

coherent states will have drifted from φ0 to φt. Let δ = φt−φ0 and let Hφt |0〉 → |+〉
and |+t〉 = |0〉 + e−iδ |1〉. Then Hφt |+t〉 → 1+e−iδ

2
|0〉 + 1−e−iδ

2
|1〉, so after the Hφt

operations the state in the circuit is:(
1 + e−iδ

2

)3

|000〉 |++〉

+

(
1 + e−iδ

2

)2(
1− e−iδ

2

)
(|001〉 |+−〉+ |010〉 |−−〉+ |100〉 |−+〉)

+

(
1 + e−iδ

2

)(
1− e−iδ

2

)2

(|011〉 |−+〉+ |101〉 |−−〉+ |110〉 |+−〉)

+

(
1− e−iδ

2

)3

|111〉 |++〉 . (4.36)
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The probability that the state |+t〉 is interpreted as |−〉 is the inner product

between these states is:

p =

∣∣∣∣ 1√
2
〈−| (|0〉+ e−iδ |1〉)

∣∣∣∣2
= 〈0|0〉 − e−iδ〈1|1〉

=

∣∣∣∣12(1− e−iδ)

∣∣∣∣2
=

1

2
− 1

2
cos(δ).

And the probability that the state is not corrected by the circuit is

p′ = 3

∣∣∣∣∣
(

1− e−iδ

2

)2(
1 + e−iδ

2

)∣∣∣∣∣
2

+

∣∣∣∣∣
(

1− e−iδ

2

)3
∣∣∣∣∣
2

= 3p2(1− p) + p3

= 3p2 − 2p3.

So, as long as 3p2 − 2p3 < p this is a reduction in the error. In this case, in line

with the threshold theorem [AGP06], this is ensured for p < 1
2

Note also that logical qubits do not have to share a reference for this to work,

the same reduction is true for independent phase references on each physical qubit,

since again, the only gates that will be used to couple qubits are control-Z gates.

Note that if the drift in the laser is one in which a coherent state |α〉 =
∣∣n̄eiφ〉

is drifting to a mixture over states of mean photon number n̄ with different phases,

this is still corrected for by the procedure described above. Suppose the state of the

laser drifts from
∣∣n̄eiφ〉 to the mixture 1

2

∣∣n̄ei(φ+δ)
〉 〈
n̄ei(φ+δ)

∣∣+ 1
2

∣∣n̄ei(φ−δ)〉 〈n̄ei(φ−δ)∣∣.
Then after the correction the computation qubits will be in an entangled state with

the reference. If the reference were to be traced out, then the qubits would move to

the mixed state 1
2
|+δ +δ +δ〉 〈+δ +δ +δ| + 1

2
|−δ −δ −δ〉 〈−δ −δ −δ|. Crucially, the

reference will not be discarded. It must continue to be used until at the end, the

qubits are all returned to the computational basis.

In fact, it does not hurt the operation of such a quantum computer if the

reference state starts in a mixed state over phase ρ =
∫
φ
P (n̄)

∣∣n̄eiφ〉 〈n̄eiφ∣∣ dφ so

long as the same reference is used throughout the computation, from start to finish.

The caveat is that the qubits must be initially in (or have very high fidelity to) a

classical input bit string state for which each qubit is in one of the two energy
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eigenstates |0〉 or |1〉 and must finally be measured in that same basis. It does

not suffice to start with an input quantum state |ψ〉 prepared according to some

other phase reference convention or to output some final quantum states |ψ′〉 which

would be used later with another phase reference. These operations will decohere

the states |ψ〉 and |ψ′〉 as the phase reference is lost. A reference of sufficient size n̄

for the computation needs to be kept from the beginning of a computation, where

the classical input specifies the instance of the problem to be solved, until the final

measurement of the classical solution.

Error correction can also be completed in the other two bases by suitably adapt-

ing the circuit drawn above. This will similarly reduce the depolarizing error due

to the uncertain number of excitations in the field. This means that like any other

expected source of error in quantum information processing, reference errors can

be suppressed by error correction.

The threshold theorem gives a bound on the required resources for implementing

such a scheme. In the case a distance-three code, for example, [AGP06]

Theorem 4.1 (of Aliferis, Gottesman, and Preskill). Quantum accuracy threshold

for independent stochastic noise. Suppose that fault-tolerant gadgets can be con-

structed such that all 1-exRecs obey the property exRec-Cor, and such that ` is the

maximal number of locations in a 1-Rec, d is the maximal depth of a 1-Rec, and ε−1
th

is the maximal number of pairs of locations in a 1-exRec. Suppose that independent

stochastic faults occur with probability ε < εth at each location in a noisy quantum

circuit. Then for any fixed δ, any ideal circuit with L locations and depth D can be

simulated with error δ or better by a noisy circuit with L∗ locations and depth D∗,

where

L∗ = O(L(logL)log `), D∗ = O(D(logL)log d). (4.37)

Notice that the overhead in operations is only a logarithmic increase, raised

to a power which will be a constant for a particular implementation, and for this

increase in operations and depth, the error can be suppressed below a constant

chosen by the user.

To allow for the possibility of coherent errors in such a system we can work in

terms of error amplitudes
√
ε. In terms of what can be achieved using concatenated

codes, a number of layers of concatenated encoding, m, is required to reduce an

error amplitude
√
εg where εg is the error on one gate down to

√
ε
G

for a computation

that will require G logical gates. For convenience let us chose ε = εg, though we can

choose a much smaller threshold if we like, provided that the threshold condition
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is met. This choice will keep the error constant through the computation. Then, if

the threshold for the code being used is εth, m must be chosen so that:

1

εth

(
1

εth

√
ε

)2m

<

√
ε

G

2m
(

log
1

εth
+

1

2
log ε

)
+ log

1

εth
<

1

2
log ε+ log

1

G

2m
(

log εth +
1

2
log

1

ε

)
>

1

2
log

1

ε
+ logG

m > c′ log logG+ c

where in the final line comes from noticing that εth and ε are constants (εth is

determined by the code and ε is chosen by the user to match the individual gate

error in this analysis). Then requiring some number of qubits q per encoding, then

in total for m-levels, the number of required gates is Gqm = Gpoly logG.

Now the required energy goes as O
(
Gpoly (logG)

ε

)
. This is an improvement over

the previous scaling that went with G2 in the asymptotic limit. In order to achieve

this however, we had the restriction that the gates must have sufficiently low error

that the error per gate ε < ε2th. This will mean that to ensure this scaling a reference

of size O
(

1
ε2th

)
will need to be used for each gate. However for a given code, εth is

a constant: once it is achieved the scaling as O
(
Gpoly (logG)

ε

)
will take over. This

converts a requirement that the error be lower per gate than some threshold, to an

energy must exceed some threshold per gate E > Eth.

What this implies is that it is not necessary to increase the reference size with

the square of the number of the operations in order to keep the error below some

threshold. This should hold for all three of the schemes which show error due

to reference effects, however the codes for which each is optimized will likely be

very different. The critical point is that this scaling does not eliminate the ap-

parent quantum speed up of algorithms that show a square root improvement in

run time over classical algorithms in the asymptotic limit. Although, without error

correction, this would be the behaviour of these effects.

4.8 Modeling Phase Reference Drift

There will be drift in a phase reference source based on a laser-type device that is

treated quantum mechanically for information theoretic reasons, including the no
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cloning theorem for quantum states. Consider the laser cavity to contain a very

large quantum state. Quantum subsystems are emitted from the cavity in a series

of time-bin modes. As the energy from the cavity is being emitted as a laser beam,

the energy is being resupplied from an optical pump field.

Lasers operate by creating a population inversion in the gain medium. That

means that within the laser cavity are atoms or molecules, most of which are in

the excited state of the lasing transition. This state of affairs is maintained though

constant pumping of energy from another optical source into the cavity. That source

is not coherent with the laser. It serves only to excite the particles in the gain

medium. The process by which the coherent laser beam is established is stimulated

emission. A photon interacts with an atom in the excited state and causes it

to emit a second photon with the same phase as it decays to the ground state.

This reinforces the photon beam, creating more coherent excitations. However,

spontaneous emission also occurs in the cavity. In this process the excited atom

decays without interacting with a photon and will have a random phase.

input optical pump energy

emitted laser beam

partially reflective mirrorfully reflective mirror

input optical pump energy

laser cavity

gain medium

Figure 4.2: Schematic of a laser.

º h = 1E { 2E

hº

2E

1E

hº

hº

2E

1E

hº

spontaneous emissionstimulated emission

Figure 4.3: Stimulated and spontaneous emission from an excited two-level system.

However, this process does not and cannot perfectly preserve the state in the
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cavity. We can consider, however, a model in which a number, N , of identical Gaus-

sian field states are input to an optimal quantum cloning device, which produces

N + 1 identical states, each as close as possible to the input states. This type of

situation was studied by Cerf and Iblisdir [CI00]. They found that the states after

this procedure should be described by the expression

ρ
(`)
1 = TrN(ρN+1) (4.38)

=
1

2πσ2
N,N−1

∫
e
− |β|2

σ2
N,N+1D(β)ρ

(`−1)
1 D(β)d2β (4.39)

where the integral is over all β in the complex plane and D(β) is the displacement

operator. The Gaussian noise this introduces leads to an increase in the variance

of x, p, and n by σ2
N,N+1. They find a lower bound for σ2

N,M = M−N
MN

which in the

case we are interested in gives σ2
N,N+1 = 1

N(N+1)
.

This increases the variance on the phase also, so that the error on the qubit op-

eration is also increased from O
(

1
n̄

)
to O

(
1
n̄

(
1 + `

N(N+1)

))
, where ` is the number

of times the copying has occured. In the worst case the errors on each qubit can

add, so in total ε = O
(
`
n̄

(
1 + `

N(N+1)

))
. For a fixed n̄, to achieve an error ε on

the `th gate, N = O
(
√̀
ε

)
.

4.9 Gates that Commute with the Total Energy

Even when the operation induced by the new Hamiltonian commutes with the total

energy operator, switching on different Hamiltonians requires energy in the form of

an applied field which will break the energy symmetry between two states. This is

a separate issue from the need to maintain a reference frame. Phase references are

required to keep coherence between different states in a superposition by providing

a measurement convention (the way a coherent state’s phase gives a definition of

the x-axis), or by being the purification of the computation qubits. This is not

required for gates that commute with the energy. However, energy must still be

supplied to the qubits during the operation

For example, consider the controlled-Z gate. Symmetry under the Schrödinger

equation must be broken between the state |11〉 and the states |00〉 , |01〉 , and |10〉,
so that there is a relative phase acquired by |11〉:

H = E1 |11〉 〈11|+ E0

(
|00〉 〈00|+ |01〉 〈01|+ |10〉 〈10|

)
(4.40)
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Applying such a Hamiltonian for a time t = π
(E1−E0)

will give a phase flip on the

state |11〉 〈11| since the phase factor applied to |11〉 〈11| will be eiHt and we require

the relative phase to be (E1 − E0)t = π.

Following Gea-Banacloche [GB02], consider again a Jaynes-Cummings model of

a two level system interacting with a field.

Ĥ =
1

2
~ω0(I−c−Z)+~ω`

(
a†a+

1

2

)
+~g

(
σ+ae

−i∆t + σ−a
†ei∆t

)
(I−c−Z) (4.41)

Now ω0 = 0. The coupling Hamiltonian for a single mode of the form:

HI = g(ae−iωt + a†eiωt) |11〉 〈11| . (4.42)

If the field being coupled to is a coherent state, there will be uncertainty in the

excitation number. For such a field we want:

π =
√
n̄g

∫ τ

0

(e−iωt+iφ + eiωt−iφ)dt, (4.43)

but since there is a distribution over n, there will be fluctuations around this value

of the exponent. They must be small for this procedure to work with high fidelity.

Evaluating the integral

π =
√
n̄g

sin(ωτ − φ)

ω
, (4.44)

we see that it is desirable for g sin(ωτ−φ)
ω

to be small because we need(√
n̄−

√
n̄−

√
n̄

)
g
sin(ωτ − φ)

ω
≈ 1

2
g
sin(ωτ − φ)

ω
, (4.45)

to be small (where
√
n̄ is the standard deviation of the Poisson distribution over

n). So choose g and ω such that∣∣∣∣g sin(ωτ − φ)

ω

∣∣∣∣2 < ε (4.46)

Then, for equation (4.44) to be true, that means that n̄ = π2

ε
. In general this may

be done over a many modes of different frequencies, ωk, in which case it is the total

photon number that must be this large. This means that the photon number of

the field must go as the inverse of the desired error, or, for some chosen error ε, the

number of excitation is O(1
ε
).

This is a linear trade-off between energy needed and time taken to accomplish
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a gate if frequency is fixed. The error in this process can also be maintained below

a threshold of O(ε) using error correction.

Fact 4. The energy required for a quantum computation consisting only of opera-

tions that commute with the total energy operator for a fixed mean frequency should

scale linearly in the number of gates required to execute the computation, and should

be scale with 1
ε
, where ε is the error in one gate.

The energy required will scale with the square of number of gates required and

as one over the error in the operations, E = O
(
G2

ε

)
, if each time the field is

generated it is discarded. However, in principle, there is no reason in principle why

this energy could not be recycled from one gate to the next. The coherent state

field is disturbed by the interaction with the qubits, but it does not need to be kept

coherent. The energy from field in principle could be returned to a battery and

used for a later gate with only minimal loss. In such a case, E = O(G
ε
) energy will

be necessary. In practice, however, this could be quite difficult.

4.9.1 A Stricter Energy Conservation Restriction: Quan-

tum Computation with a Single Time-Invariant Hamil-

tonian

There are strategies for implementing universal quantum computations that con-

serve energy automatically. In the strictest sense, Noether’s Theorem implies that

energy conservation within a system is a time invariance of the Hamiltonian govern-

ing the evolution of that system. It is possible to achieve a quantum computation

under a fixed Hamiltonian, as is illustrated, for example in a proposal for pro-

grammable quantum cellular automata by Nagaj and Wocjan [NW08]. In their

scheme a portion of the inputs encodes the program and a portion encodes the

particular instance to be solved (the traditional input of a problem) and a constant

Hamiltonian is applied. After an amount of time that depends on the problem,

the output of the computation is produced with high probability and is flagged as

completed by a single bit value that is measured. Of course in this case, in order to

complete a non-trivial calculation, the input state cannot be an eigenstate of the

constant Hamiltonian.

In particular, in this scheme a chain of ten-dimensional qudits is used, which is

thought of as being decomposed into a tensor product of a program register on a

five dimensional Hilbert space and and data register on a two dimensional space.
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The initial state can be prepared in the computational basis (that is the initial state

for each qudit can be one element along the diagonal of the 10×10 matrix), and the

measurement of the flag qubit to check the completion of the program, which occurs

with high probability after a polynomial amount of time in the size of the equivalent

quantum circuit for the computation, can also be in this basis. This is the basis that

we have been calling the basis of well-defined energy up to this point. However, for

the duration of the quantum calculation, the definition of energy will be according

to the eigenstates of the fixed Hamiltonian. The Hamiltonian suggested is a sum

of translationally invariant terms,

H10 =
∑
j

(Rj,j+1 +R†
j,j+1) (4.47)

where

Rj,j+1 =
∑

A∈{W,S,I}

|A, ·〉 〈·, A|pj ,pj+1
⊗ Idj ,dj+1

+ |A,B〉 〈B, A|pj ,pj+1
⊗ Adj ,dj+1

(4.48)

where A is one of three two-qubit operations: controlled-Hadamard, SWAP, or the

identity, and the program registers pj, have five orthogonal states which denote

the three operations, ·, which is just signaling “do nothing”, and a pointer state B

which indicates that the operation in register pj+1 should be applied to the data

qubits dj and dj+i.

This means the preparation will not be energy conserving, under the definition

of energy supplied by this Hamiltonian. This is an example of a problem that has

a quantum input and a quantum output, but that has no fundamental error due to

the energy conservation during the computation itself. However, the preparation of

the initial quantum input and the measurement of the flag qubit and (if required)

of the final quantum output will suffer from this fundamental error due to the finite

size of the preparation and measurement apparatus.

Finding a preparation for the initial state in this scheme that even commutes

with the constant Hamiltonian used for the computation would be quite difficult,

since the Hamiltonian can entangle all neighboring qubits.

A very similar scheme was proposed by Chase and Landahl [CL08] that uses

a chain of eight-dimensional systems, but the Hamiltonian for that case is not

translationally invariant. Nevertheless, it demonstrates that constant Hamiltonians

can be universal on even smaller systems.
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4.9.2 Hamiltonians and Time in a Quantum Computation

If a state is prepared as an eigenstate of a Hamiltonian, evolved under that Hamil-

tonian, and measured according to that Hamiltonian, no change will be observed in

the state. Using a sequence of different Hamiltonians, as in the circuit model, even

if they all commute with the total energy operator, breaks the symmetry of the

static situation of the preceding sentence and give an arrow for time in the compu-

tation, in the sense that the quantum computation system becomes correlated to

the classical observer’s clock. Notice that in the scenario presented in Section 4.9.1

of a single Hamiltonian which is universal for computation, the arrow for time does

not come from the Hamiltonian itself: if it were applied in discrete intervals it is

clear that at each step it could undo the previous step, since it is composed of

an operation and its Hermitian conjugate. In that case, the asymmetry for time

is supplied by the initial input state which contains, after the programmed oper-

ations desired for the calculation, many identity operations, which correspond to

a large amplitude after a certain time for the computation to be finished. In the

standard circuit model the changing series of Hamiltonians supply the asymmetry

with respect to time in order to shepherd the initial state to the final one.

4.10 Conclusion

Reference frames are a critical resource for accomplishing state transformations

and measurements in quantum information and there has been concern that this

resource has not properly been accounted for when assessing the potential of quan-

tum computers.

This work demonstrates that even in the circuit model style implementation

of quantum computation, where correlated phase references are employed and dis-

carded, the overhead required in the reference frame will not need to be more than

O(Gpoly logG
ε

), where G is the number of gates required to be implemented, so G

is polynomial in the input size to the problem for a problem, where ε is the error

tolerated in the computation, assuming active error correction is employed. This is

a resource requirement which is polynomial in the input size of the problem.

However, in principle, the reference requirement can be reduced further than

this to be as small as o(k) qubits, where k the number of logical qubits required for

the computation, and requiring k
2

excitations distributed amongst all the qubits.

This is the case if a subspace that conserves the excitation number is used and
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active error correction is employed during preparations and measurements. Note

that there is no fundamental error here due to the reference requirements. This

is very efficient in principle, but could cause implementation difficulties since it

requires many extra qubits be kept coherent when k is small. As k increases, this

becomes a less taxing restriction. Also, there are certain to be errors from other

sources that arise when implementing this scheme.

If a collection of atoms are paired with references that are Fock states |n〉
trapped in cavities, this is more robust against photon loss, but also requires addi-

tional excitations: for q physical qubits, q cavities are required and nq excitations

are needed. There is no error due to reference frame requirements in this scheme

either, but in practice maintaining many separate cavities, preparing perfect Fock

states, and executing perfect timing will not be possible, so there will be many

errors due to these other factors.

If the two-level atoms are paired with coherent state references that are trapped

in cavities, this is even more robust against photon loss, since the coherent state

is an eigenvector of the annihilation operator, but in this case, the timing of the

interaction cannot be chosen to perform the desired operations free of error. The

terms in the superposition of Fock states that make up the coherent state will each

couple differently to the qubit and as a result, the time chosen for the interaction to

run is t = θ
g
√
n

for a rotation though θ where n̄ is the coherent state’s mean photon

number, but this results in some decoherence which is small for large n̄. Therefore,

the number of cavities required is still q, but the number of excitations needed is

O( qD
ε

), where D is the average number of gates needing to be performed on any

one qubit. Still, this system is easy to error correct, as has been demonstrated, and

this could help manage errors from other sources also.

Note that in all of these cases there will be errors related to the need to per-

form gates that commute with the total energy. This is separate from a reference

requirement, but it still implies that a number of excitations O(G
ε
) is required to

perform G gates that commute with the total energy.

Treating the reference frame as classical does not mask a restriction on quantum

computation, in the sense that in theory quantum computers do not require a

superpolynomial reference resource to implement polynomial sized circuits. That

said, if one desires to complete a very large quantum computation and energy is

at a premium, then using a method that operates in a DFS for excitation number

is superior. However, these methods require more qubits to be kept coherent,

and so are less robust in many circumstances and the analysis does not include
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the requirements for the error correction of non-reference errors, including errors

incurred from commuting gates.
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5.1 Overview

Here, a quantum walk algorithm is given in which a speed up over traditional

quantum walks is achieved through the novel idea of using two entangled walkers.

The idea of a quantum walk with two particles is developed and studied for the case
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of a discrete time walk on a line [SPOB06, OPSB06]. Both separable and maximally

entangled initial conditions are considered, and it is shown how the entanglement

and the relative phase between the states describing the coin degree of freedom

of each particle will influence the evolution of the quantum walk. In particular,

these factors will have consequences on the distance between the particles and the

probability to find them at a given point, yielding results that cannot be obtained

from a separable initial state, be it pure or mixed. Finally, there is a brief review of

proposals for implementations. The work in this chapter has appeared in [OPSB06]

and [SPOB06].

5.2 Introduction

Quantum walks, first proposed in 1993 [ADZ93], are the quantum analogue of clas-

sical random walks. Quantum walks (for an overview, see [Kem03]) have generated

much interest, in particular because they are proving to be a very useful technique

for the construction of quantum algorithms, just as random walks are for classi-

cal algorithms. Several quantum algorithms based on quantum walks have been

shown to be optimal [SKW03, Amb07], and an oracle algorithm that offers an ex-

ponential speed-up with respect to its classical counterpart [CCD+03] is based on

a (continuous time) quantum walk.

The crucial difference between quantum and random walks is that the former

allow for quantum superpositions of the walker states and explore the interference

of the terms in these superpositions. The resulting probability distributions after

N steps are very different, as can be seen in Figure 5.1. Furthermore, a quantum

walk exhibits a variance proportional to N , which represents a quadratic speed-up

over the classical case, where the variance goes as
√
N .

There are several variants of quantum walks. Walks can evolve in discrete time

or continuous time, and can take place on arbitrary graphs, with varying transition

probabilities. Szegedy [Sze04] proposed a Markov chain walk model based on the

diffusion operator, following a formalism presented by Watrous in [Wat01]. That

model works even on directed graphs where each transition probability for each

edge can be set individually and the walk evolution operator is a pair of reflections.

The states of the walk are given by the tensor product of two copies of the vertex

space of the graph V × V :

|ψu〉 = |u〉 ⊗
∑

v∈N(u)

av→u |v〉 , (5.1)
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where u and v denote vertices so that the first part of the product can denote

a current position and the second the previous location, av→u is the amplitude

corresponding to the square root of the probability of moving from vertex v to u,
√
pv→u, possibly with a phase, and N(u) are all the vertices adjacent to u. (If there

is a non-zero probability of remaining in the same location, i.e. au→u 6= 0, then

instead the closed neighbourhood of u should be used, which includes u, N [u].)

This large Hilbert space to describe the evolution of the walk allows the evolution

to be very general, since there can be a probability of transition from any vertex of

the walk graph to any other vertex. The two reflections that together, one applied

after the other make up two steps in the evolution of the walk are then defined by

R1 = 2Π− I and R2 = 2SΠS − I (5.2)

where S is the operator that swaps the two registers in the tensor product and

Π =
∑

u∈V |ψu〉 〈ψu|. Then the operator that completes two steps of the walk is

W = R2R1 or, one step of the walk is given by SR1, that is, there is a reflection

about the equal superposition of all states of well-defined current position |ψu〉 and

then the two registers that hold the current and previous positions of the walkers

are swapped. This is repeated for each step of the walk.

Note however, that the diffusion operator is chosen to be as far as possible from

the identity [MR02], which in the case of a graph with each vertex having only two

adjacent vertices will give the behaviour of a coin that is the X operator.

2 |+〉 〈+| − I = X (5.3)

This is not the approach taken here. We consider a walk on a line and wish to make

a model analogous to the behaviour of a classical random walk on a line. Therefore,

a Hadamard coin is used to ensure that there is a probability of one half for moving

either left or right for a walker localized at a particular vertex. We next introduce

the variations we propose to the standard quantum walk on a line.

5.3 The Multiparticle Walk

The new concept being introduced in this work is the idea of using multiple walkers

— quantum particles — simultaneously in the same quantum walk. This idea has

been used classically, where k walkers traversing the same graph are equivalent to

k independent random walks. These additional resources can be used, for instance,
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to improve the time to hit a certain node of the graph. In the quantum case though,

the multiple-walker situation becomes even more interesting, because the particles

can be entangled, which results in final probability distributions which cannot be

described by multiple independent single-particle walks. It is demonstrated that

the entanglement in a quantum walk on a line can be tuned to cover more space.

5.4 The Quantum Walk Formalism

First consider a single-particle discrete time quantum walk on a line. A single step

of the walk comprises two operations: the coin flip C and the conditional shift S.

The coin degree of freedom is encoded by a qubit, whose states will be denoted

|↑〉 and |↓〉, and the coin flip is a unitary operator that sets a basis state into a

superposition over that basis. The qubit system C acts on the coin Hilbert space

HC . The most commonly used example is the Hadamard transformation, and this

shall be used here throughout as the coin:

H =
1√
2

(
1 1

1 −1

)
. (5.4)

This coin is said to be unbiased in the sense that an initial state |↑〉 will be set into

an equal superposition of “up” and “down”, 1√
2
(|↑〉 + |↓〉), after being acted upon

by the coin. This corresponds to equal probabilities of the particle being found in

the state |↑〉 or |↓〉 if measured after one operation. The second part of a single step

of the walk is the shift operation S, acting on HP — the Hilbert space encoding

the possible positions of a particle on an infinite discrete line. The basis vectors of

HP will be denoted |i〉, where i ∈ Z. Thus the total Hilbert space of the walk is

given by:

H = HC ⊗HP , (5.5)

and the states of the quantum walk will be described by vectors in H.

Consider the following shift operator:

S =
∑
i

(|↑〉 〈↑| ⊗ |i+ 1〉 〈i|+ |↓〉 〈↓| ⊗ |i− 1〉 〈i|) . (5.6)

This has the effect of moving a particle in the “up” state one unit to the right and

a particle in the “down” state one unit to the left. If the particle in question is in

some superposition of “up” and “down”, the terms evolve accordingly. C acts on
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a. Classical

b. Quantum

Figure 5.1: Probability distributions for discrete time random walks on a line after
N = 100 steps: (a) the classical walk, (b) the quantum walk with a Hadamard coin
and initial state |0〉 ⊗ |↑〉. The asymmetry in the quantum case is the result of the
initial state of the coin register. The shape of the interference pattern is symmetric
when the initial state |0〉 ⊗ 1√

2
(|↑〉+ |↓〉) is chosen.

the coin state space and S acts on both the position state space and coin space

together. The total operator for each step is unitary and will have the form:

U = S(IP ⊗ C). (5.7)

where IP is the identity operator on the position space. So, for example, if the

initial state is |↑〉 ⊗ |0〉, the first step of the walk gives:

U(|↑〉 ⊗ |0〉) =
1√
2
(|↑〉 ⊗ |1〉+ |↓〉 ⊗ |−1〉). (5.8)

If a measurement is performed at this point, then the walk agrees with its classical

counterpart: there is a probability of one half for the particle being found at position

+1 and a probability of one half for the particle being found at position −1. Yet,

after the first two steps of the walk, the progression of the quantum and classical

walks begin to diverge. This becomes particularly clear after a few dozen steps. In

Figure 5.1 the probability distributions are presented for both the classical random

walk and the quantum walk for N = 100.

Note that the quantum walk shows a relatively low probability associated with

the walker being found close to the origin: rather, the peaks of the distribution

correspond to the particle being found a considerable distance away. On the other
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hand, in the classical case, the origin is precisely the point where the probability

for the particle to be found is maximal. There is a
√
N speed-up of the quantum

walk over the classical in terms of expected deviation of the walker from the origin.

5.5 Quantum Walk with two Particles

Now generalize this definition of the discrete time quantum walk on a line to the

case of two walkers. Consider two particles, 1 and 2, simultaneously completing

quantum walks on the same line. Let the joint Hilbert space of the two-particles

system be H12. Then,

H12 = H1 ⊗H2, (5.9)

where H1 and H2 are the Hilbert spaces of particles 1 and 2 respectively. Both H1

and H2 are isomorphic to H, as defined in equation (5.5). Similarly, the new walk

operator will be U12, given by:

U12 = U ⊗ U. (5.10)

Suppose that two distinguishable particles are set into the walk in a pure separable

initial state, for example:

|Ψsep
0 〉 = |0, ↓〉1 |0, ↑〉2 . (5.11)

In this case, the two particles evolve throughout the walk simultaneously, but in-

dependently, so that after N steps:

|Ψsep
N 〉 = UN

12 |Ψ
sep
0 〉 = UN |0, ↓〉1 U

N |0, ↑〉2 .

This is equivalent to two separate walks being completed on two different lines

at the same time. The probability distributions are both identical (though one is

inverted in the position coordinate relative to the other) and independent.

However, it is also possible for a pair of particles to be set into the walk in

a joint state which is entangled. For example, consider two maximally entangled

states:

|ψ±0 〉12 =
1√
2
(|0, ↓〉1|0, ↑〉2 ± |0, ↑〉1|0, ↓〉2), (5.12)

Note that these also describe the cases of a pair of identical particles on the same

vertex, either bosons (the “+” state) or fermions (the “−” state). Now the evolution

of the walk cannot be described as two separate walks progressing independently.
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The joint state of the particles’ evolution after N steps is:

∣∣ψ±N〉12
= UN

12

∣∣ψ±0 〉12
=

1√
2

(
UN |0, ↓〉1 U

N |0, ↑〉2 ± UN |0, ↑〉1 UN |0, ↓〉2
)
.

These two scenarios correspond to very different final joint probability distributions.

Let P12(i, j, N) denote a joint probability over the two particles of finding particle

1 in position i and particle 2 in position j after N steps of the walk. In the case of

the separable initial conditions, |Ψsep
0 〉 = |0, ↓〉1 |0, ↑〉2,

P sep
12 (i, j;N) = P sep

1 (i;N)× P sep
2 (j;N), (5.13)

which is just the product of two independent distributions for single-particle walks

after N steps. This is in agreement with the observation that the two particles in

the walks proceed independently, and without reference to each other, into the final

state given in equation (5.12). However, this equation does not describe the case of

entangled particles, which have walk evolutions which depend on the existence of the

other particle in the walk. The joint probability distribution must be symmetric

under exchange of the labels 1 and 2 for the “+” case and, for the “−” case,

the distribution must remain unchanged when both the labels of the particles are

exchanged and the position axes are reflected. These distributions are presented

graphically in Figure 5.2 for the case N = 60.

In the case of the separable initial conditions, the plot in Figure 5.2(a) is just

the product of two distributions like the one in Figure 5.1(b). The initial state is

|Ψsep
0 〉 = |0, ↓〉1 |0, ↑〉2, so the distribution for particle 2 is biased towards the right

(as shown in Figure 5.1(b)) and the distribution for particle 1 is biased towards the

left — a mirror image of the distribution for particle 2. Figure 5.2(b) shows the

distribution for P+
12 and Figure 5.2(c) shows the distribution for P−

12.

In all three distributions the maxima occur around i, j ' 42, but the effect of

the entanglement is dramatic. Entanglement can induce the walk to explore cer-

tain configurations with relatively high probability that for a walk beginning in a

separable state would be very unlikely. For example, the higher maxima of the dis-

tribution for the symmetric entangled state (“+” state) correspond to the particles

being found on the same side of the origin and both near |i|, |j| ' 42. Conversely,

in the antisymmetric, “−”, case, there are a whole set of configurations that have

probability zero associated with their occurrence. These are the configurations

along the line i = j, which implies that the two particles are never in the same

position on the line. Note that a pair of identical fermions conducting a quantum
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Figure 5.2: Two-particles probability distributions after N = 60 steps for different
initial conditions: (a) separable state |ψS0 〉12; (b) |ψ+

0 〉12 state; and (c) |ψ−0 〉12 state.
Note that the peak of the distribution in (a) has been cropped.

walk will follow this distribution (Figure 5.2(c)), in which the particles have high

probability of being found at opposite ends of the line. A pair of identical bosons

will follow the symmetric distribution shown in Figure 5.2(b).

The behaviors of the individual particles in the quantum walk for entangled ini-

tial conditions also exhibit interesting features. Tracing over the degrees of freedom

of one of the particles leaves a reduced density matrix:

ρ1 = Tr2

(∣∣ψ±N〉12

〈
ψ±N
∣∣
12

)
=

1

2
UN |0, ↓〉 〈0, ↓|U †N +

1

2
UN |0, ↑〉 〈0, ↑|U †N . (5.14)

which is an equal mixture or the states UN |0, ↓〉 and UN |0, ↑〉. These are simply

the evolution states after N steps for a walk starting from the state |0, ↓〉 and the

state |0, ↑〉. Therefore the marginal probability distribution for finding one of the

particles in position i after N steps is given by

P±
1 (i;N) =

1

2
[P↓(i;N) + P↑(i;N)] = P±

2 (i;N). (5.15)

Note that P↓(i;N) and P↑(i;N) are the probability distributions of a single-particle

walk initialized in the state |0, ↓〉 and |0, ↑〉. Again compare this situation to the case

of separable states. The separable initial condition given in equation (5.11) gener-
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ates the marginal probability distributions P sep
1 (i;N) = P↓(i;N) and P sep

2 (i;N) =

P↑(i;N), giving a joint probability distribution which is just the product of these

(equation (5.13)). This is not the case for the entangled state, where the joint

probability distribution contains information about the correlations between the

positions of the two particles, which will become apparent on measurement of the

two particles’ positions.

One can also demonstrate that no mixed separable state diagonal in the {|0, ↓
〉1|0, ↑〉2, |0, ↑〉1|0, ↓〉2} basis can exhibit the same properties between the two par-

ticles as entangled states. Consider the following mixed state, a weighted mixture

of two alternatives described by the states |0, ↓〉1|0, ↑〉2 and |0, ↑〉1|0, ↓〉2, as a new

initial state for the two particles quantum walk:

ρMS
12 (0) = a|0, ↓〉〈0, ↓ |1 ⊗ |0, ↑〉〈0, ↑ |2 + b|0, ↑〉〈0, ↑ |1 ⊗ |0, ↓〉〈0, ↓ |2, (5.16)

where a, b ∈ R+ such that a + b = 1. After N steps of the quantum walk, the

system will be in the state ρMS
12 (N) = UNρMS

12 (0)U †N , and the marginal probability

distributions will be:

PMS
1 (i;N) = aP↓(i;N) + bP↑(i;N),

PMS
2 (i;N) = aP↑(i;N) + bP↓(i;N). (5.17)

For a = b, these marginal distributions are identical to the the marginal distribu-

tions in the case of entangled particles. In general for (a 6= b) they are biased,

and

〈x1〉 =
N∑

i=−N

iPMS
1 (i;N) = a〈x↓〉+ b〈x↑〉 = (a− b)〈x↓〉 = −〈x2〉. (5.18)

Here, use has been made of the expression 〈x↓,↑〉 ≡
∑N

i=−N iP↓,↑(i;N), with P↓,↑(i;N),

for the probability distributions after N steps for initial states |0, ↓〉 and |0, ↑〉, and

the fact that 〈x↓〉 = −〈x↑〉.

However a difference comes in the joint probability distribution after N steps,

as seen from equation (5.16), for the mixed state it is given by:

PMS
12 (i, j;N) = aP↓(i;N)P↑(j;N) + bP↑(i;N)P↓(j;N), (5.19)

which is distinct from the joint probability distributions for the entangled states,

but also not the product of two one-particle marginal distributions P↓(i;N) and
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P↑(j;N). It is the appropriately weighted sum of the distribution for separable

initial conditions given in Figure 5.2(a) with the same distribution, but with the

particles 1 and 2 reversed.

There are further joint properties of the two particles which are of interest.

Define the distance ∆sep,±
12 between the two particles’ final (independently) measured

positions, x1 and x2, after N steps:

∆sep,±
12 ≡ |x1 − x2|, (5.20)

where x1, x2 ∈ [−N, . . . , 0, . . . , N ]. Table 5.1 presents the expectation value of this

distance for the three different initial conditions, and for different N . From this

data, it is evident that the particles are more likely to remain closer together for

the “+”-entangled initial conditions than for the separable initial state, and more

likely to remain farther apart in the case of the “−”-entangled initial state than for

the separable state. In fact, an even stronger statement can be made; for a given

N we always have:

〈∆−
12〉 − 〈∆

sep
12 〉 = 〈∆sep

12 〉 − 〈∆+
12〉 (5.21)

Consider now the correlation function between the spatial distribution of each

of the two particles:

Csep,MS,±(x1, x2) ≡ 〈x1x2〉 − 〈x1〉〈x2〉. (5.22)

Clearly, in the case of the separable initial condition (5.11), this correlation is

always zero. For the other cases, the values of C±(x1, x2) are presented in Table

5.2 for different N . Given the symmetry of the P±
12 distributions, in those cases

〈x1〉 = 〈x2〉 = 0. Thus, the sign difference in the correlation function expresses the

tendency for the two particles in the “−” case to end the quantum walk on different

sides of the line (with respect to the origin, 0), and on the same side for the “+”

case.

The correlation function for the mixed state ρMS
12 (N), CMS(x1, x2) is not zero,

as can be seen using 〈x1x2〉 = −〈x↓〉2:

CMS(x1, x2) = −
[
1− (a− b)2

]
〈x↓〉2. (5.23)

The values of CMS(x1, x2) for the case a = b = 1
2

are presented in Table 5.2. Since

the function [1− (a− b)2] ∈ [0, 1], therefore ρMS
12 (N) is always less correlated than

a singlet entangled state. Actually, ρMS
12 (N) is only a classically correlated state,
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Expectation value 〈∆sep,±
12 〉 after N steps

No. of steps N 10 20 30 40 60 100
Init. cond. |ψ−0 〉12 8.8 17.5 26.0 34.9 52.2 87.0
Init. cond. |ψsep

0 〉12 7.1 14.7 21.9 29.5 44.3 73.9
Init. cond. |ψ+

0 〉12 5.5 11.9 17.8 24.1 36.3 60.8

Table 5.1: Average distance 〈∆sep,±
12 〉 after N steps.

and when compared with entangled states |ψ±N〉12, it exhibits the same features as

the pure separable state |ψPSN 〉12. Namely, the expectation value of the distance is

the same for both pure and mixed separable states, 〈∆MS
12 〉 = 〈∆sep

12 〉, as seen from

the probability distribution (5.19).

Finally, for the different initial conditions, the probability of finding at least one

particle in position i after N steps can be calculated: Psep,MS,±(i;N). This is a

joint property as it depends on both one-particle outcomes:

Psep,±(i;N) =
N∑

j=−N

[
P sep,±

12 (i, j;N) + P sep,±
12 (j, i;N)

]
− P sep,±

12 (i, i;N)

= [P↓(i;N) + P↑(i;N)]− P sep,±
12 (i, i;N). (5.24)

Similarly, the probability of finding at least one particle in position i after N steps is

the same for both pure separable and mixed separable case: Psep(i;N) = PMS(i;N).

Given a one-particle probability distribution, say P↓(i;N) (note that we have

P↑(i;N) = P↓(−i;N)), the probability Psep,±(i;N) decreases with the joint proba-

bility P sep,±
12 (i, i;N) and is maximal in the “−” case, since P−

12(i, i;N) = 0. In fact,

around the points (40, 40) and (−40,−40) in Figure 5.2 it can be seen that:

P−(i;N) > Psep(i;N) > P+(i;N). (5.25)

By introducing entanglement in the initial conditions of the two-particles quantum

walk, the probability of finding at least one particle in a particular position on the

line can be greater or less than in the case where the two particles are independent

and note that in this case where both states considered are are maximally entangled

the probability depends on the form of symmetry (symmetric or antisymmetric) in

the state.
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Correlation function Csep,MS,±(x1, x2) after N steps

No. of steps N 10 20 30 40 60 100
Init. c. |ψ−0 〉12 -16.8 -69.8 -153.5 -276.2 -619.7 -1718.3
Init. c. ρMS

12 (0) -6.0 -31.4 -70.6 -130.4 -299.3 -839.3
Init. c. |ψsep

0 〉12 0 0 0 0 0 0
Init. c. |ψ+

0 〉12 4.8 7.3 13.7 15.1 23.1 39.1

Table 5.2: Correlation function Csep,MS,±(x1, x2) after N steps.
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Figure 5.3: The data is taken from Table 5.1 and shows the expectation of the
particles separation 〈∆sep,−

12 〉 against the number of steps of the walk taken, N , for
the separable initial condition (grey line and points) and the antisymmetric initial
condition (black line and points). This shows that there is a linear speed up in the
entangled case over separable initial condition.

5.6 Conclusions, Further Study, and Implemen-

tations

In this article the concept of a quantum walk with two particles was introduced

and studied for the case of a discrete time walk on a line. Having more than one

particle allowed the addition of a new feature to the walk: entanglement between

the particles. In particular, initial states that are maximally entangled in the coin

degrees of freedom and with opposite symmetries were considered, and compared

to the case where the two particles were initially in a pure or mixed separable state

(the particles being then independent or only classically correlated, respectively). It

was found that the entanglement in the coin states introduced spatial correlations
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between the particles, and that their average distance is larger in the “-” case than

in the separable case, and is smaller in the “+” case. This could benefit algorithmic

applications which require two marked sites to be reached which are known a priori

to be on the opposite or on the same sides of a line. It was also found that the

introduction of entanglement could increase or decrease the probability of finding at

least one particle on a given point of the line. This increase could allow us to reach

a marked site faster than with two unentangled quantum walkers. In particular,

the speed up of the expected separation of the walkers for the “-” entangled case

was a linear improvement over the separable case. The entanglement in the initial

conditions thus appears as a resource that can be tuned according to the specific

needs for enhancement of a given application (algorithmic or other) based on a

quantum walk.

There are a number of natural extensions to this work on discrete time quan-

tum walks on a line with two entangled particles, starting with the study of other

initial entangled states and the introduction of more particles. It would also be

interesting to consider other graphs for the walks, as well as less standard coins,

such as unbalanced or even entangling ones [HBF03, BB04]. There have been a

number of studies in recent years considering the effect of multiple coins and their

entanglement with a single walker [PA07]. Another direction worth exploring would

be a multiparticle quantum walk in continuous time, which does not use a coin,

and which could be a relevant model to study the evolution of dilute quantum

gases. These ideas may find use for particular applications or the design of quan-

tum algorithms. Random walks have been employed in such tasks as estimating the

volume of a convex body [DFK91] and the connectivity in P2P networks [LCC+02].

Quantum algorithms based on walks could be useful in these problems. This pro-

posal demonstrates that there are further quantum behaviours other than simply

allowing superpositions of the walker that remain to be exploited in these types of

algorithms.

There have been several proposals to implement a single-particle quantum walk,

using cavity QED [SBTK03], optical lattices [DRKB03] and ion traps [TM02]. An-

other possibility is to send two photons through a tree of balanced beam splitters

which implement both the coin flipping and the conditional shift, again general-

izing a scheme proposed for a single particle [HBF03, JPK04]. A similar scheme

was implemented by Bouwmeester et al. [BMK+99]. Note that this could be im-

plemented with other particles as well, e.g. electrons, using a device equivalent to

a beam splitter [LOYT98]. Finally, observe that by considering indistinguishable

bosons or fermions, the effects of quantum statistics can be used to prepare the ini-
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tial entangled states, thus appearing again as a resource for quantum information

processing [OPBV02, POBV02]. Indeed, since this work was first made public, a

scheme for interfering two photons on a tree of polarizing beam splitters and phase

shifting plates has been proposed and analyzed that also make use of the statistics

of identical particles to generate entanglement [PA07].
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6.1 Overview

In this chapter the relationship between continuous and discrete unitary evolution

is studied by the construction of a new algorithm to simulate continuous evolution

with discrete applications of a unitary oracle. Specifically, an algorithm is presented

for approximating arbitrary powers of a black box unitary operation, U t, where t

is a real number, and U is a black box implementing an unknown unitary. The

complexity of this algorithm is calculated in terms of the number of calls to the

black box and the errors in the approximation. For general U and large t, one

should apply U a total of btc times followed by our procedure for approximating

the fractional power U t−btc. An example is also given where for large integers t

this method is more efficient than direct application of t copies of U . Further

applications and related algorithms are also discussed. 5

6.2 Introduction

If a unitary operation is presented as a resource for running algorithms, but its

description is not provided, this is a less general resource than if access is given to

the unspecified Hamiltonian that generates this unitary in a particular amount of

time. While it is clear how to implement a unitary operation from a Hamiltonian,

exponentiating a unitary oracle is not so straightforward.

An n-qubit unitary U can be implemented by evolving (or simulating the evo-

lution of) a time-independent Hamiltonian H for a period of time τ = 1, that is,

U = e−iH . Then for any t ∈ R+, one can implement U t by simply evolving the

Hamiltonian for a period of time t. For example, if t = 1
2
, then a square root of U ,

e−i
1
2
H , could be implemented in this way, and in such model of computation the

cost would be half of the cost of implementing U .

In this work, the question what can be done if U is realized in some other

way, such as a non-trivial sequence of time-dependent Hamiltonians, or a quantum

circuit is explored. In other words, consider the situation when U is given in the

form of a black box. The goal is to implement real valued powers t of this unitary

operation by making use of the multiple copies of the black box implementing U .

The complexity of such a procedure is measured in terms of the total number of

calls to the unitary.

It is possible to find the tth power of an unknown unitary by first performing a

sufficiently precise complete quantum process tomography of a 2n× 2n dimensional
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unitary U , which uses O(4n) calls to the unitary with various input states [CN97,

NC00] and measurements to achieve U with constant precision. The exponential

scaling with n is necessary. In particular, a lower bound on the number of calls to

the unitary can be derived from constructing an ε−net over unitaries 1. If the space

of unitary operations is divided up into balls of radius ε then the total number of

unitaries that can be specified up to this resolution is
(
c
ε

)4n

, where c is a constant.

To specify each of these requires 4n log( c
ε
) bits. To discover information about U

one might supply states to the unitary tensored with the identity operation of the

same dimension (a larger dimension does not help) and perform measurements on

the output states. The states will have dimension 4n, and by Holevo’s bound one

could hope to obtain no more than 2n bits of information for each of these calls to

U (in general it will be less than this). Therefore, it is not possible by tomography

to use fewer than Ω
(

4n

2n
log( c

ε
)
)

calls to U . Even allowing for error in some fraction

δ of the basis states, this still cannot reduce the required number of calls to any

function polynomial in n [Aar07].

In this study a more efficient approach to implementing powers is described.

In particular, an algorithm is presented for approximating any constant power of

an unknown unitary using only O(1
ε
log 1

ε
) calls to the unitary itself, with error ε

calculated using the trace norm. Note that this complexity is independent of the

number of qubits n that U acts on.

The relation between discrete and continuous oracles for various problems has

been the subject of numerous previous studies. Farhi and Gutmann [FG98] in-

troduced the concept of (continuous) Hamiltonian black box oracles for quantum

computing. Ioannou [Ioa02], and Roland and Cerf [RC03] consider the problem

of simulating a Hamiltonian for Grover search [Gro96] on a discrete computer.

Mochon [Moc07] extends this to a more general setting where he is concerned with

finding lower bounds for discrete oracle problems by considering them in the Hamil-

tonian setting and mapping them to the problem of finding geodesics in manifolds.

In particular, he considers one-item Grover search and oracle interrogation, high-

lighting the case of computing the XOR function on a hidden bit string. In these

cases, he is able to exploit symmetries in the oracle problems to solve what is

otherwise a very difficult problem. The focus in this work is different. Firstly,

an oracle is allowed to be applied only an integer number of times and not for a

fractional amount of time. Secondly, the new algorithm presented here has a focus

on (constructive) upper bounds. Thirdly, symmetry assumptions are not made on

the oracles. Lastly, the eigenvalues of these unitaries are not restricted to ±1 as

1We thank P. Hayden for this observation.
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in the Grover search and XOR case, or the work in [CGM+08] which shows how

to simulate a general continuous Boolean oracle evolving for a total of time T with

O( T log T
log log T

) discrete oracle queries. Since this work was completed, Harrow, Has-

sidim, and Lloyd [HHL08] found an algorithm for finding the expectation value

of a vector which is a solution to a system of linear equations which is based on

eigenvalue estimation in a similar way to the one proposed here. That algorithm

shows exponential speed up over the classical approach and is discussed further in

the conclusion.

The remainder of this chapter is organized as follows. In Section 6.4 the basic

construction is described for efficient computation of the powers of U , the assump-

tions and constraints are discussed, the complexity of the computation is given,

and the precision of the approximate solution is given. The full calculation of these

results is included in Section 6.5. An example of a special case in which t is a large

positive integer and the new algorithm is more efficient than direct application of

the t copies of the unitary is given in Section 6.9. Related applications of this algo-

rithm to computing fractional Fourier transform and noise filtering are explored in

Section 6.10. Finally, the implications of this work are discussed in the concluding

section.

6.3 A Brief Review of the Eigenvalue Estimation

Algorithm

The new algorithm makes use of the Eigenvalue Estimation algorithm as a sub-

routine, so it is convenient to review it now. The algorithm in its traditional form

accepts as inputs a unitary operator, U , and one of its eigenvectors, |ψk〉, and

determines the eigenvalue, λk, associated with this eigenvector. It does this by

making use of the quantum fourier transform acting on m ancilla qubits to call in

equal superposition each integer power of the controlled unitary operator U j for

0 ≤ j ≤ 2m − 1, where m is the parameter that determines the accuracy of the

estimate. The same superposition can be made using the Hadamard operator ap-

plied to each ancilla qubit. This causes each term in the superposition to acquire

a phase term e2πi
j`k
2m .
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|0〉 / QFT2m • QFT−1
2m |`k〉

|ψk〉 / U j |ψk〉

where `k
2m = λk ∈ [0, 1) and U |ψk〉 = e2πiλk |ψk〉. The algorithm proceeds in three

steps:

1. The QFT2m takes |0〉 to 1√
2m

∑2m−1
j=0 |j〉.

2. The c−Uj gates takes |j〉 |ψk〉 to |j〉 U j |ψk〉 = e2πi
j`k
2m |j〉 |ψk〉 by the principle

of phase kick-back.

3. The QFT−1
2m takes the system to 1

2m

∑2m−1
j,j′=0 e

2πij
(`k−j′)

2m |j′〉 |ψk〉 = |`k〉 |ψk〉.

The input to the algorithm need not be an eigenstate, |ψk〉. This can be done

in superposition over eigenstates indexed by k:∑
k

αk |0〉 |ψk〉 7→
∑
k

αk |`k〉 |ψk〉 ,

and our goal is to perform the operation U t on the state |Ψ〉, U t |Ψ〉:

U t |Ψ〉 =
∑
k

αkU t |ψk〉 =
∑
k

αke
2πiλkt |ψk〉 .

6.4 The Algorithm

In this section, the basic construction of the algorithm is described. For any unitary

U on a finite dimensional state space, consider its spectral decomposition U =

PΛP †, where P is a unitary matrix composed of the eigenvectors of U , and Λ is a

diagonal matrix containing the eigenvalues of U . For such a decomposition, powers

of U may be computed as follows:

U t = PΛtP †. (6.1)

For a black box unitary oracle U , the eigenvector matrix P will be unknown. How-

ever, an important observation is that one does not need to actually implement
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the basis change operators P and P † in order to exploit the above feature of the

spectral decomposition – that the tth power of a unitary is equivalent to finding the

tth power of each eigenvalue and multiplying each associated eigenspace by it.

For now, let t be real number between 0 and 1.

The algorithm is described in three stages. In the first stage, approximations

to the eigenvalues of U are calculated using an eigenvalue estimation algorithm.

Initially, assume that the eigenvalues are of the form e2πiλk with λk = `k
2m for some

integer `k ∈ {0, 1, . . . , 2m− 1} (so that the effect of precision errors can initially be

ignored). In the second stage, phase shifts are applied to the eigenstates of U . The

third stage uncomputes the eigenvalue estimation. Refer to Figure 6.1 for details.

|0〉 / QFT2m • QFT−1
2m

R(tλk)

QFT2m • QFT−1
2m

|Ψ〉 / U j U−j

︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸
Stage I Stage II Stage III

Figure 6.1: The quantum circuit diagram outlining the implementation of the al-
gorithm that raises an unknown unitary U to some power t. Stage I performs
eigenvalue estimation, where value l in the first register corresponds to the eigen-
value parameter estimate λ = l/2m. Stage II then uses this eigenvalue estimate to
induce a corresponding phase shift e2πilt/2

m
. Stage III uncomputes the eigenvalue

estimation step. In the case that the eigenvalue parameters λk are of the form
lk/2

m, the eigenvalue estimation is exact and the uncomputation step returns the
control register back to the initial all-zeroes state. In general, when this assumption
on the form of the eigenvalues is not valid, a slightly more complicated eigenvalue
estimation algorithm is performed that gives an estimate with error at most 1/2m

with probability in 1−O(1/2m).

Suppose |Ψ〉 is a quantum state on which the transformation U t is to be per-

formed. Note that any state |Ψ〉 is a superposition of eigenvectors, |ψk〉, of U ,

|Ψ〉 =
∑

k αk |ψk〉. Prepare m ancilla qubits in the “all-zeros” state, where m is a

user chosen parameter that characterizes the complexity of and errors in the algo-

rithm; its role is discussed in more detail in Section 6.5. These ancilla are input
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to the Quantum Fourier Transform (QFT) circuit [KLM07] (or equivalently, since

applied to the all-zeros state, a circuit consisting of only Hadamard operations

on each qubit) and later they are used as the controls for controlled-U opera-

tors, while the state |Ψ〉 is the target. The notation c − U j denotes the operation

|j〉 |φ〉 7→ |j〉 U j |φ〉. Using the eigenstate expansion of |Ψ〉 in the target, it can

be shown that such a controlled operation causes a phase kick-back to the control

register, so that the total state becomes
∑

k

∑
j αke

2πiλk |j〉 |ψk〉. Next, an inverse

QFT operation is performed on the ancilla register. The result left on the ancilla

register are estimates of the eigenvalue parameter, λk, specifically `k = 2mλk, in

superposition (as dictated by the input vector |Ψ〉). For a more detailed description

of the eigenvalue estimation algorithm see [KLM07].

For stage two, the controlled operation c−R(2π`t/2m) is applied to induce the

phase shift e2πi`t/2
m

when the eigenvalue parameter estimate ` is in the control reg-

ister. This computation corresponds to the exponentiation of the diagonal matrix

in the spectral decomposition formula. There are a few natural ways to implement

this step, as shown in [CEMM98] or [Zal98].

Finally, the state of the control register (containing the `k values) is uncomputed

back to the all-zeros (input ancilla) state. This completes the third and final stage

of the computation.

This leaves the registers in the final state |0〉⊗
∑

k αke
2πiλkt |ψk〉, which is simply

the result of the application of U t to the state |Ψ〉. When the assumption that the

eigenvalue parameters λk are exact ratios of some integers `k divided by 2m is

dropped, in general precision errors will appear in the eigenvalue estimation. This

imprecision in the resolution of λk means the phases applied to the state are not

exact, which further implies that the uncomputation step does not return the ancilla

register precisely to all zeroes. Still, by a proper choice of parameters, and a “gap”

assumption discussed below, the errors can be managed—in particular, it is proven

that they are exponentially small in the parameter m. This error reduction is done

by choosing an eigenvalue estimation algorithm that outputs an estimate with error

at most 1
2m with probability in 1−O( 1

2m ). This can be done with O(m) repetitions

of the standard QFT-based eigenvalue estimation algorithm [KLM07] and applying

the Chernoff bound. This uses O(m2m) calls to the black box. Relevant calculations

may be found in Section 6.5.

The algorithm closely parallels a strategy employed by Klappenecker and Rötteler

in [KR03], where they address the different problem of how to simulate a known

unitary matrix A given other operators that generate an algebra containing A.
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They conclude that their method is related to the Eigenvalue Estimation algorithm

for a special case of their work. They, however, consider the case that U has a

known efficient quantum circuit, and so, do not consider errors in their algorithm.

Here, we wish to consider the case that U is unknown and we are attempting to

simulate some function of it to a particular accuracy, with a certain number of calls.

Errors will occur as a matter of course in our case since in general we cannot know

a priori what the order of U is. In cases where we can, errors can be eliminated,

and in particular, in the case of U being the QFT, considered in Section 6.10 the

order is only four. This special case was also considered in [KR03] where they reach

the same conclusions as presented here.

6.4.1 Underlying Assumptions

As formulated in the previous section, the algorithm requires in addition to the black

box implementation of U itself, that access is also given to a black box implementing

controlled-U and a black box implementing U−1. It is also necessary to assume, as

discussed in more detail in the following section, that spectrum of matrix U has

a small gap, in particular, that U has no eigenvalue λ = eiφ, where φ ∈ (2π(1 −
g), 2π) for some value g. For simplicity, assume that g ≥ 1

2m ; otherwise, it would

be necessary to replace some of the O(2m) terms with O(max{2m, 1
g
}) since the

eigenvalue estimation must be done to within a higher precision than the size of

the gap size with high probability. In this case, an approximation with error in

O( 1
2m ) is achieved. Note that there are no other assumptions about gaps elsewhere

in the spectrum. Furthermore, an assumption of this form is essentially necessary

in the case of worst-case complexity (as is explained in Section 6.4.2). Average-case

performance is discussed more in Section 6.8.

Not all of the above restrictions are necessary, but they facilitate a clear and

transparent description of the algorithm and its analysis. In some cases of interest,

the individual restrictions may be dropped. In particular, in cases where only

the black box implementation of U is given (and not the controlled-U), one can

exploit the technique for implementing a controlled-e−iφU , where eiφ is a random

eigenvalue of U , and use it in the algorithm to find arbitrary powers, as outlined

in [Kit95] (see Section 6.6 for details). In some special cases, it is possible to

remove the assumption of having a black box for U−1. For example, for non-

integer values of t ≥ 2m, U t can be approximated with error in O(1
t
) using O(t)

calls to the controlled-U , without any use of a black box for U−1 (see Section 6.7).

Note that the above restriction on the form of the spectrum is naturally satisfied
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in many practical unitaries, including the quantum Fourier transform, standard

oracles |j〉 7→ (−1)f(j) |j〉 for computing Boolean functions f(·), and oracles such

as those implicitly used in the adiabatic algorithms of Farhi et al. [FGG00] that

reversibly compute a function with a finite discrete spectrum.

It is also worth noting that, for non-integer values of the power t, U t is not

unique; there are many operators that one might reasonably call the tth power of

U . In other words, for any given U , there are many Hamiltonians H such that

U = e−iH , and thus one could naturally define U t as e−iHt for any one of these

Hamiltonians. For instance, consider t = 1
2

and the identity matrix I =
(

1 0
0 1

)
. We

can find all unitary matrices B such that BB = I where each such B is a possible

square root of I and this is instructive for providing intuition for the general case.

Firstly, matrices I and
(−1 0

0 −1

)
are both square roots of I. This happens because

there are two possible square roots of the complex number 1, which is the eigenvalue

of I. In addition, each eigenspace of a unitary matrix may be broken into subspaces

such that different square roots of the corresponding eigenvalue may be used to

construct square roots of a given matrix. In our case, this helps to construct two

more square roots of the form ±
(

1 0
0 −1

)
. Furthermore, every matrix of the form

±
(

cos a eb sin a
e−b sin a −cos a

)
, and its transpose, where a and b are real valued parameters is

a square root of the operator I. For the choice of parameters a = π
2

and b = 0

this allows to construct root
(

0 1
1 0

)
, also known as the Pauli-X matrix. Roots of

the identity matrix in higher dimensions get more complicated. Thus, the problem

of finding fractional powers is not completely straightforward to define. In this

solution, fractional powers are constructed based on the spectral decomposition,

choosing the primitive complex fractional power of every eigenvalue (though, in

principle our method allows us to break the eigenspaces into subspaces and take

different roots of the eigenvalue for each subspace). Thus, in a sense, the fractional

power constructed is the most natural one, and also, it is the fractional power

of a matrix most commonly defined in linear algebra textbooks. With the above

example, our algorithm implements the I root of I, though modifications are possible

that would allow us to explore a wider range of square roots of I.

6.4.2 Optimality and the Necessity of a Gap Assumption

in the General Case

This algorithm is optimal in terms of the number of calls made to U in order

to compute U t. It is not possible to compute U 1
2 with constant error with fewer

130



Chapter 6. Approximating Fractional Time Quantum Evolution

than Ω(2m) calls to U , for a general black box, but with a spectral gap of size

g = 1
2m . If U 1

2 can be calculated with fewer calls then this method could be used

to distinguish a pair of unitaries U = I and U = U1−1/2m = |0〉 〈0|+ e−2πi/2m |1〉 〈1|
that are close in the trace norm simply by effectively “amplifying” their difference.

In particular, consider the square root of these two unitaries. The square root of

the identity matrix given by this method is the identity, and the square root of

U1−1/2m is |0〉 〈0| + e2πi(2
m−1)/2m |1〉 〈1| ≈ |0〉 〈0| − |1〉 〈1|. These two unitaries can

be distinguished with high probability with only one call.

The following simple lemma show that Ω(2m) calls to U are necessary to cor-

rectly guess which U we were given with probability greater than 2
3
.

Lemma 6.1. Suppose we are given a black box U that implements either I or

U1−δ = |0〉 〈0| + e−iδ |1〉 〈1|, for some small δ > 0. Any algorithm that correctly

guesses the identity of U with probability at least 2
3
, for any prior distribution of the

two possible values of U , must make Ω(1
δ
) evaluations of U .

A short proof of this lemma is given in Appendix B.

Since the root U
1
2

1−1/2m acting on the state 1√
2
(|0〉 + |1〉) is almost perfectly

distinguishable from I 1
2 , the power finding algorithm must take Ω(2m) calls to U in

order to compute U 1
2 with (small) constant error. The same holds for any power

t ∈ (0, 1) that is bounded away from from both 0 and 1.

Thus, while more efficient ways to compute fractional powers of U are possible

in special cases, in general one cannot do much better than what has been described

here. In the case when 1
2m < g < π, it is still possible to obtain a lower bound of

Ω(2m) queries by letting U be either Z or |0〉 〈0| − e−2πi/2m |1〉 〈1|, and computing

square roots of U2 as a means of distinguishing the two cases.

This same argument also shows why a gap assumption is necessary. Without the

gap assumption, there is no upper bound on the worst-case complexity of computing

the square root of a black box unitary, since such a black box could be used to

distinguish I from U1−δ = |0〉 〈0|+ e−iδ |1〉 〈1| for arbitarily small values of δ.

As pointed out earlier, if we have a known gap g without a promise that g ∈
Ω(ε) = Ω(1/2m), then a complexity of O(1

ε
log 1

ε
) suffices, and the example above

shows that Ω(1
g
) queries are necessary. If g is unknown then there are several cases

one might consider. If we are promised a lower bound 0 < gmin ≤ g, then in

the worst case, we must use O( 1
gmin

log 1
ε
) calls to the unitary. If instead we have

an means of reliably recognizing when the algorithm has succeeded, then trying a
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sequence of lower bounds that decreases exponentially until the algorithm succeeds

will also give a complexity in O( 1
min{g,ε} log 1

ε
), which is the same complexity as

when g is known. If, however, we do not know g and have no means of recognizing

when the algorithm has succeeded, then no upper bound is possible.

6.5 Complexity and Error Analysis

Here the upper bounds on the precision of the algorithm are found, which are

constrained by the lack of perfect precision in computing the eigenvalue estimates.

This analysis is for t = 1
2
, however the same final bound applies for any t ∈ (0, 1).

This is because for t in this range, t = 1
2

gives the largest error. This can be seen

visually in Figure 6.2.

Stage 1 computes a near-optimal eigenvalue estimation (in the sense of nearly

optimizing the chance of obtaining an estimate with error at most 1
22m ). This is

done by repeating the “standard” eigenvalue estimation algorithm [CEMM98] a

total of r ∈ O(m) times and take the majority answer, with the constant chosen

so that each eigenvalue estimate e2πi
fλk of e2πiλk satisfies |e2πifλk − e2πiλk | ≤ 1

2m with

probability in 1 − O( 1
22m ). One can fine-tune the optimal eigenvalue estimation

procedure further (e.g., [vDDE+07]), however, this procedure is sufficient.

This eigenvalue estimation procedure is described by the transformation

|0〉
∑
k

αk |ψk〉 7→
∑
k

αk

(∑
y

βy,k |y〉 |λy〉

)
|ψk〉 (6.2)

where βy,k = 1
2m

∏r
i=1

∑2m−1
x=0 e2πix(λk−

yi
2m ) and the values y ∈ Zr

2m (where Z2m =

{0, 1, . . . , 2m − 1}) are r-tuples of integers y = (y1, y2, ...yr), and λy is the value

obtained by taking the most commonly occurring integer ymode in the r-tuple of

integers y (with some convention for breaking ties) and letting λy = ymode/2
m.

In Stage II, the intention is to enact the following map, which applies the ap-

propriate eigenvalue phases to each eigenvector:

∑
k

αk

(∑
y

βy,k |y〉 |λy〉

)
|ψk〉 7→

∑
k

αk

(∑
y

βy,k |y〉 |λy〉

)
e2πiλk/2 |ψk〉 , (6.3)
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but we actually implement the unitary

∑
k

αk

(∑
y

βy,k |y〉 |λy〉

)
|ψk〉 7→

∑
k

αk
∑
y

βy,k |y〉 |λy〉 e2πiλy/2 |ψk〉 . (6.4)

Then Stage III uncomputes the eigenvalue estimation, but imperfectly since in

Stage II, there is coupling of the control registers with the target registers, leaving

not the ideal output, ∑
k

αk |00 . . . 0〉 e2πiλk/2 |ψk〉 , (6.5)

but instead, as state close to it (assuming the eigenvalue gap):∑
k

∑
x′

αk |x′〉 f(k, x′)e2πiλy |ψk〉 , (6.6)

where f(k, x′) = 1
22m

∑
x e

2πix(λk− y
2m ) 1

2m

∑
x′ e

2πix′( y
2m−λk). Post-selecting on the out-

come x′ = 0 gives f(k, 0) = 1
22m

sin2(2mπδ)

sin2(πδ)
, which approaches a delta function as

m→∞.

The probability that |e2πiλy/2−e2πiλk/2| > 1
2m is in O( 1

2m ) because the probability

that an individual eigenvalue estimate λy is within 1
2m of the actual eigenvalue λk

is 8
π2 [KLM07]. Since this is greater than 1

2
, repeating the algorithm r times and

applying the Chernoff bound improves the probability of the estimate being this

accurate to O( 1
2m ).

So it makes sense to write the state in Stage II as

|Φ〉 =
∑
k

αk
∑
y∈S

βy,k |y〉 |λy〉 e2πiλy/2 |ψk〉+
∑
k

αk
∑
y∈S′

βy,k |y〉 |λy〉 e2πiλy/2 |ψk〉 ,

(6.7)

where the values of y ∈ S include the “good” values of y that produce estimates

λy satisfying |e2πiλy − e2πiλk | ≤ 1
2m , and the “bad” values, y ∈ S′, are the rest. The

norm of the bad part of the state is in O( 1
22m ) and the norm of the “good” part is

1−O( 1
22m ).

Since the algorithm is unitary, the errors will propagate linearly through Stage

III and the sets S and S ′ will not mix. Therefore, consider the error introduced in

Stage II. Let Λ denote the ideal phase shift operator, and Λ̃ be the actual operator.
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Thus

Λ |Φ〉 − Λ̃ |Φ〉 =
∑
k

αk
∑
y∈S

βy,k |y〉 |λy〉 (e2πiλk/2 − e2πiλy/2) |ψk〉

+
∑
k

αk
∑
y∈S′

βy,k |y〉 |λy〉 (e2πiλk/2 − e2πiλy/2) |ψk〉 .

The norm of this difference can be bounded by the triangle inequality

||Λ |Φ〉 − Λ̃ |Φ〉 ||2 ≤
∑
k

∑
y∈S

|αkβy,k|2|δk,y|2 +
∑
k

∑
y∈S′

|αkβy,k|2|δk,y|2, (6.8)

where |δk,y|2 = |eiλk/2 − eiλy/2|2.

Noting that
∑

k |αk|2 = 1, from the previous Chernoff-bounding argument,∑
y∈S

∑
k |αkβy,k|2 ∈ 1 − O( 1

22m ),
∑

y∈S′
∑

k |αkβy,k|2 ∈ O( 1
22m ), and that |δk,y|2 ∈

O( 1
22m ) for the good values, and is at most 1 for the bad values.

Thus

||Λ |Φ〉 − Λ̃ |Φ〉 ||2 ∈ O
(

1

22m

)
. (6.9)

Noticing that

|| |u〉 − |v〉 ||22 = (〈u| − 〈v|)(|u〉 − |v〉) ≥ 2(1− |〈u|v〉|) (6.10)

and using the equality

|| |u〉 〈u| − |v〉 〈v| ||Tr = 2
√

1− |〈u|v〉|2, (6.11)

which implies that

|| |u〉 〈u| − |v〉 〈v| ||Tr ≤ 2|| |u〉 − |v〉 ||2, (6.12)

so ||Λ(|Φ〉 〈Φ|)Λ − Λ̃(|Φ〉 〈Φ|)Λ̃||Tr ∈ O( 1
2m ). The trace norm of the difference be-

tween the two unitary superoperators is simply given by taking the maximization

over states |Φ〉. Since this holds for any state |Φ〉, we have

||Λ− Λ̃||Tr ∈ O
(

1

2m

)
. (6.13)

This is the case after Stage II of the algorithm. Note that Stage III is a unitary

operation that is the same for both the ideal and the actual case. The trace norm is
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invariant under unitary transformations, so the trace norm of the unitary operators

for the full ideal and actual algorithms have the same bound. In the case of unitary

operators this is equivalent to the diamond norm.

6.6 Controlled Unitaries

Note that the eigenvalue estimation algorithm requires the use of a controlled uni-

tary c− U . If an eigenvector of U with eigenvalue +1 is provided, then this trans-

formation can be implemented using a controlled-SWAP (equivalently, a series of

Fredkin gates [FT82]), as was shown by Kitaev [Kit95] and is illustrated in the

following circuit diagram:

|q1〉control • •

|q2〉target

SWAP SWAP

|ψk〉 U

It is easy to verify that the above circuit implements

|0〉control |q2〉target |ψk〉 7→ e2πiλk |0〉control |q2〉target |ψk〉

|1〉control |q2〉target |ψk〉 7→ |1〉control (U |q2〉target) |ψk〉 .

In other words, up to a global phase, this implements the controlled-(e−2πiλkU).

If λk = 0, i.e., |ψk〉 has eigenvalue +1, then the c − U has been implemented.

Otherwise, one obtains a very similar operation, which may or may not be sufficient,

depending on the application. If, for example, any c − (eiφU) will suffice, that is,

(eiφU)t is what is calculated for some arbitrary global phase eiφ, then as long as the

same one is used consistently, this is easy to achieve.

It is not necessary to assume that the eigenvectors {|ψk〉} of U are known or that

a specific eigenvector is given. Instead, any state will do. For simplicity, consider

the completely mixed state, which can be decomposed as an equal mixture over the

eigenstates. Provided the state that is in the target register is kept, and the resulting

state is re-used every time a controlled-U is constructed between these two registers,

the phase (though random) will be the same for the entire computation. This is

equivalent to implementing a c− (eiφU) consistently throughout the computation,
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where φ is an unknown random value (whose distribution depends on the weight

of the eigenspace of e−iφ in the initial mixed state). In essence, the target system

serves as a phase reference.

6.7 Inverses

The algorithm for generating U t uses U−1 when the eigenvalue estimates need to

be uncomputed. More specifically, is starts with |0〉 |ψk〉, and (QFT−1
2m ⊗ I)c −

U j(QFT2m ⊗ I) is applied to compute

∑
j

(
QFT−1

2m

e2πijλk

√
2m

|j〉
)
|ψk〉 . (6.14)

Then, the values in the first register are used to control the phase shift corresponding

to |ψk〉. For simplicity, assume that no phase shift is performed (Stage II is omitted),

but we still perform Stage III to uncompute the eigenvalue estimates. This is trivial

if access is provided to c−U−1 (which can be implemented with a c−U and U−1),

since we just apply (QFT−1
2m ⊗ I)c− U−j(QFT2m ⊗ I) to get back |0〉 |ψk〉.

However, in some cases, the U−1 operations are not necessary. The unitary U−1

could be simulated by applying (QFT2m ⊗ I)c− U j(QFT−1
2m ⊗ I) to yield

(QFT2m ⊗ I)c− U j(QFT−1
2m ⊗ I)(QFT−1

2m ⊗ I)c− U j(QFT2m ⊗ I) |0〉 |ψk〉
= (QFT2m ⊗ I)c− U j(M ⊗ I)c− U j(QFT2m ⊗ I) |0〉 |ψk〉 (6.15)

where M = QFT−2
2m , which implies M |x〉 = |2m − x mod 2m〉.

It is easy to verify that (M ⊗ I)c − U j(M ⊗ I) = c − U2m−j mod 2m
, and thus

the above state equals

= (QFT2m ⊗ I)(M ⊗ I)c− U2m−j mod 2m

(c− U j(QFT2m ⊗ I) |0〉 |ψk〉
= (QFT−1

2m ⊗ I)c− U2m

(QFT2m ⊗ I) |0〉 |ψk〉 . (6.16)

Note that since the c−U2m
no longer depends on the value of the first register,

it can be commuted through the QFT operations to get

c− U2m

(QFT−1
2m ⊗ I)(QFT2m ⊗ I) |0〉 |ψk〉 = c− U2m |0〉 |ψk〉 (6.17)

= e2πi2
mλk |0〉 |ψk〉 . (6.18)
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This phase factor of e2πi2
mλk is in general a problem when the target register is

in a superposition of eigenstates, since different eigenstates will pick up a different

phase factor.

However, in some cases, it is not a problem. One observation, is that such a

transformation is equivalent to applying U2m
. Thus, if the goal is to apply U t for

t = btc + δ, 0 ≤ δ < 1, where t ≥ 2m, the algorithm for implementing U δ can be

applied, but instead with the above modification. This yields an approximation to

U2m+δ with error in O( 1
2m ) without the use of inverse U operations. Then U t−2m

can be applied to complete the approximation of U t with error in O(1
t
) ⊆ O( 1

2m ).

Also note that, if λk = lk
2m for an integer lk, then the phase factors e2πi2

mλk = 1

all equal 1.

This problem can also be remedied in any other cases where λk can be deter-

mined exactly (or much more precisely than error 1
2m ), since before uncomputing

λk, one can add an additional phase shift of e−2πi2mλk conditional on the value of

λk. This will eliminate the final unwanted phase factor of e2πi2
mλk associated with

the eigenvector |ψk〉.

6.8 Coping with No Gap Assumption

m
2={1

m
= 2¸

+1m2
|||1 { ¼

= 0¸

Figure 6.2: An illustration of the ambiguity of dividing a phase angle that is between
2πi2

m−1
2m and 0. In the first case, dividing by 2 changes the phase by nearly π and

in the second case, dividing by 2 leaves the state unchanged. The circles show the
regions that each of the two eigenvalues are mapped to by the operation. Note that
they are on nearly opposite sides of the circle.

In general, the gap between the largest and smallest eigenvalues modulo 2π could

be arbitrarily small. In such cases there is no value of φ where φ ∈ (2π(1− g), 2π)
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for g ≥ 1
2m , or if the available resources are limited so that g ≤ 1

2m for the value

of m chosen, then the average-case performance can be bounded if there is some

freedom allowed when defining the root of U .

If one is only interested in the average-case performance (e.g., averaging over

all possible input states to U 1
2 according to the Haar measure), one is still faced

with the potential problem that most or all of the spectrum of U might be located

in the difficult region (see Section 6.4.2) of eiφ ≈ 1, π < φ ≤ 2π. But, if all that

is required is a square root of eiθU for a random θ ∈ [0, 2π), then the average-case

error (for any input distribution) is still in O( 1
2m ) for an algorithm that only uses

the square root of eiθU simulated by the algorithm once.

For an algorithm that uses (eiθU)
1
2 a total of k times, the error could get mag-

nified to O( k
2

2m ). Thus, m′ = m+ d2 log ke could be selected for each simulation of

(eiθU)
1
2 .

To illustrate why the factor in the error is k2 instead of k, consider the following

algorithm where substituting an exact square root with the approximate square

root exhibits a Grover-search-type amplitude amplification and thereby yields an

error in Ω( k
2

2m ). Consider an operator U that has every 2mth root of unity e2πi`/2
m

as

an eigenvalue with equal multiplicities. Consider an algorithm that does eigenvalue

estimation on the identity operator with precision in Θ(1/2m), and uses quantum

searching to find an eigenvector with eigenvalue −1. Clearly, this algorithm should

not find such an eigenvalue since all the eigenvalues are +1. Contrast this with

the situation that occurs when U1 = (eiθU)−
1
2 and let U2 be our approximation to

(eiθU)
1
2 for the same θ. (For simplicity, assume it is unitary, even though in practice

it will be a map that is almost unitary.) The value θ can be expressed in the form

2π`/2m − ε, for some integer ` and non-negative value ε ≤ 1/2m. Note that

U1(e
iθU)

1
2 = I, but U1U2 will have most eigenvalues near +1, and proportion 1/2m

of the eigenvalues near −1. A −1 eigenvalue occurs with probability greater than

O( 1
2m ) if an eigenvalue phase being estimated falls in the range 2π

(
1− 3

2m+2

)
<

λk < 2π. If λk ≤ 3
2m+2 , the probability that an eigenvalue which should be mapped

by the square-root operation to a value near π will instead be estimated to be 0 and

mapped to 0 is, for a single eigenvalue estimation, less than one half. Repeating

this m times reduces this probability to O
(

1
2m

)
by the Chernoff bound. Because θ

is distributed randomly in the range [0, 2π), the error happens to a fraction of the

eigenvalues
1

2π

(
2π − 2π

(
1− 3

2m+2

))
= O

(
1

2m

)
. (6.19)

Thus, a generalized version of quantum searching given in the next section will
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generate these near −1 eigenvectors with an amplitude in O( k√
2m ) using only k

evaluations of U1U2. Recall that with the ideal (eiθU)
1
2 (instead of U2), there would

be no such eigenvectors for the search algorithm to find, thus the part of the wave

function that found these −1 eigenvalues is an error. This implies an error with

probability in O( k
2

2m ).

6.8.1 A Generalization of Quantum Search

In the quantum search algorithm, the first step is to take the initial state, usually

denoted |000...0〉 and map it to a state that has an inner product of size 1√
N

with the

state being searched for. In the original presentation, the elements being searched

over are computational basis states (binary strings) so, for example, the operator

that performs a single qubit Hadamard on each qubit will do this. If this inner

product is much smaller than 1√
N

the algorithm will not run in O(
√
N) calls to the

oracle. If is is zero, the algorithm will fail.

In cases where it is not promised that the solution is a computational basis state,

ensuring that the algorithm proceeds using an operation which creates overlap with

the solution state requires additional thought. Here an appropriate operator for this

task, A, is given.

Suppose a black box Oφ is given that flags an unknown quantum state |φ〉 ∈
HN . In other words, Oφ |φ〉 |b〉 = |φ〉 |b⊕ 1〉 and Oφ |φ′〉 |b〉 = |φ′〉 |b〉 for any |φ′〉
orthogonal to |φ〉. For brevity, let us directly use the phase flip version of this black

box Oφ |φ〉 = − |φ〉 and Oφ |φ′〉 = |φ′〉 for 〈φ′|φ〉 = 0 (see Section 8.1 of [KLM07] for

a more detailed discussion of th.e relationship between these black boxes). This is

the oracle that “marks” the solution state.

If, as in ordinary quantum searching, one is given a unitary operation A that

maps |00 . . . 0〉 7→ sin(θ) |φ〉 + cos(θ) |φ′〉 where 〈φ|φ′〉 = 0, then it is possible

immediately to define the slight generalization of a quantum search iterate,

Q = −AU00...0A
−1Oφ, (6.20)

where U00...0 = I − 2 |00 . . . 0〉 〈00 . . . 0| and note that Qk |00 . . . 0〉 = cos((2k +

1)θ) |φ〉+ sin((2k + 1)θ) |φ′〉. Thus, if with an algorithm A that “guesses” |φ〉 with

probability p = sin2(θ), then after O( 1√
p
) calls to Q, one obtains |φ〉 with probability

very close to 1.

In the standard description of the quantum searching algorithm, the marked
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state is some computational basis state, so it is easy to produce a unitary with this

property A such that | 〈φ|A |00 . . . 0〉 | = 1√
N

, in particular, any operator that maps

|00 . . . 0〉 7→
∑

x
1√
N
|x〉 will work.

However, for an arbitrary quantum state |φ〉, it is non-trivial to produce such

an initial state if one is not given such an A. A maximally mixed state will have

the required overlap, but since amplitude amplification requires the inverse of the

preparation operation A, this is not a possibility. Generating pure states that for

practical purposes are “random” (e.g., [AE07]) to use as the initial state could

work, however, in this case it is not necessary because there is another approach

that will work.

Let A act on an N2 dimensional Hilbert space and maps |00 . . . 0〉 |00 . . . 0〉 7→∑
x

1√
N
|x〉 |x〉. Note that for any basis {|φj〉}, this maximally entangled state can

be rewritten as
∑

j
1√
N
|φj〉

∣∣φ∗j〉 (where the coefficients of
∣∣φ∗j〉 are the complex

conjugates of those of |φ〉). Notice that the maximally entangled state has equal

support for every eigenvector in the basis of eigenvalues of the black box unitary,

thus ensuring that the required inner product with the final state is obtained. As-

sume, without loss of generality, that |φ0〉 = |φ〉. Applying amplitude amplification,

and using Q = −AU00...0,0...0A
−1(Oφ ⊗ I), then it is easy to verify that

Qk |00 . . . 0〉 |00 . . . 0〉

= sin((2k + 1)θ) |φ0〉 |φ∗0〉+ cos((2k + 1)θ)

(
N−1∑
j=1

1√
N − 1

|φj〉
∣∣φ∗j〉

)
, (6.21)

where sin(θ) = 1√
N

. Thus, by choosing k ≈ π
4θ
∈ O( 1√

p
), one obtains |φ0〉 |φ∗0〉 with

high fidelity. For applications where the extra |φ∗〉 system will pose a problem, this

approach will not work, and techniques for generating pure states that behave like

random quantum states could be used instead.

This technique also works if the black box flags a subspace of dimension d.

Again, assume without loss of generality that this subspace is spanned by the

vectors |φ0〉 , |φ1〉 , . . . , |φd−1〉. Then the maximally entangled state can be rewritten

as

sin(θ)

(
d−1∑
j=0

1√
d
|φj〉

∣∣φ∗j〉
)

+ cos(θ)

(
N−1∑
j=d

1√
N − d

|φj〉
∣∣φ∗j〉

)
(6.22)

where sin2(θ) = d
N

.

Thus Qk |00 . . . 0〉 |00 . . . 0〉 ≈
∑d−1

j=0
1√
d
|φj〉

∣∣φ∗j〉 for k ≈ π
4

√
N
d
, assuming

√
d
N

is

much less than one.

140



Chapter 6. Approximating Fractional Time Quantum Evolution

6.9 Large Powers and an Example of Exponential

Improvement

In general, when computing larger powers of U such that t > 1, the method pro-

posed in the preceding sections is not the most accurate or efficient approach.

Rather, it is better to first apply U directly a total of btc times, and then use the

algorithm introduced in Section 6.4 in order to compute any remaining fractional

power of U . This is because the imprecision in the eigenvalue estimates is magnified

when t is large. If, instead of the exact eigenvalue e2πiλk , the algorithm finds an

estimate e2πi
fλk , where |λ̃k − λk| = ε, then mapping |ψk〉 7→ e2πi

fλkt |ψk〉 will lead to

an error in the phase parameter of size tε. For arbitrary U , it takes O(1
ε
) calls to

U in order to get an estimate with error at most ε with high probability. Thus to

achieve an error of δ = tε in the application of U t, we need ε = δ/t precision in the

estimate, amounting to O( t
δ
) calls to U , whereas applying the operation U directly

as many times as possible only requires btc+O(1
δ
) uses of the oracle for U .

Somewhat counterintuitively, however, for some special conditions on the oracle

U , proceeding by determining the eigenvalues and applying the rotations in the

algorithm only, with no direct applications of U , can be more efficient. In fact,

there can be values of t > 1 such that it is possible to determine U t in even fewer

than btc calls. This happens when the oracle allows for more accuracy in the

eigenvalue estimates. For example, for black boxes that map |j〉 7→ (−1)Xj |j〉 for

some j ∈ {0, 1}n and X1X2 . . . Xj . . . XN ∈ {0, 1}N , the eigenvalue parameter Xj

can be exactly determined with only one call to the black box. As discussed later

is Section 6.10, it is easy to exactly determine the eigenvalue of an eigenvector of

the quantum Fourier transform, since the QFT has order four (QFT 4 = I). In

both of these examples, the technique of the previous sections does not help is not

the most efficient way of computing higher integer powers of U since U has very

low order, say r, and so computing U t is equivalent to computing U t mod r, where

t mod r is the unique element of t − rZ that lies in in the interval [0, r). For the

second example, QFT 3 = QFT 7 = QFT 11 etc., so if t = 4n − 1 where n is an

integer, the most efficient approach is to make three direct calls to U . However it

is possible to construct an example where U has very high order, but one can still

compute precise estimates of its eigenvalues with relatively few calls to U , and thus

exponentiate U with much fewer than t calls, even for t less than the order of U .

Suppose the eigenvalues of the desired unitary U are all of the form e
2πi

`k
pk , for

k ∈ {1, 2, . . . , b}, where `k is an integer, pk ∈ {p1 = 2, p2 = 3, p3 = 5, ..., pb|pi =
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ith prime}, and b is a natural number. Then UB = I, where B =
∏b

k=1 pk, and

(assuming that each pk occurs at least once with a non-zero lk) no lower power

of U is equal to the identity. If t is on the order of B, then the number of

calls to the unitary required for the straightforward implementation of U t is in

O(B) = O(
∏b

k=1 k log k). This product is called a primorial [FMRC62], and it is in

O(e(1+o(1))b log b) = O(b(1+o(1))b). Suppose also that access is not given to U inverse

in this case: since the .

Now it is demonstrated how the basic algorithm introduced in Section 6.4 may

be updated to find approximate U t with exponentially fewer calls to U than the

number of calls it takes to find U t via a direct application of t unitaries.

The method used for this problem employs the continued fraction algorithm,

which was also used in the order-finding part of Shor’s algorithm [Sho97]. The

eigenvalue estimation algorithm will return an estimate h
2m of the eigenvalue pa-

rameter `k
pk

to within an error at most 1
2m with probability at least 8

π2 . The error

probability can be amplified down to 1
2m by repeating the estimation O(m) times

and taking the majority vote. If m is chosen such that m ∈ O(log b), so that

2m > 2pbpb−1, then the fraction `k
pk

will be the only fraction, or convergent, in the

continued fraction expansion of h
2m that has distance at most 1

2m from h
2m and has

a denominator at most pb.

k
p
|k
`

m2
||
+1h

m2
||
h

m2
||
{1h

Figure 6.3: A diagram illustrating the procedure. The estimate is h
2m . The smallest

gap between any two eigenvalues is 1
pbpb−1

and this must be larger than 2
2m to ensure

that only one rational fraction with denominator no greater than pb will be found
in the region h−1

2m to h+1
2m .

This convergent `k
pk

can be found with O(m) arithmetic operations over integer

numbers with at most logm bits each (e.g., no more than O(m3) binary operations

using trivial algorithms for division and multiplication) using the continued fraction

algorithm. Once we have the exact value of the eigenvalue parameter `k
pk

, with

probability 1
2m , we can correctly compute any positive power t of U with error in

O( 1
2m ) using poly(b, log t) calls to U and other elementary operations. This is done

by mapping, in superposition, |`k〉 |pk〉 |ψk〉 7→ e
2πit

`k
pk

+O( 1
2m ) |`k〉 |pk〉 |ψk〉, which can

be done by standard reversible computing methods and m-bit arithmetic operations
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(the O( 1
2m ) error is due to precision in the arithmetic operations). Then, as usual,

one uncomputes the computation of |`k〉 |pk〉. As alluded to before, this gives an

overall complexity of O(m2m) = O(b log b) to perform the operation up to error

O( 1
2m ). This follows from equation (6.13) in Section 6.5.

This complexity is polynomial in log t (vs poly(t)) because we only need to

compute an m-bit approximation to t`k
pk

. This also allows us to uncompute the

eigenvalue estimates found in the first stage of the algorithm without ever needing

to use the operation U−1. Note that t could be very large, for example t ∼ B/2 =

2b−1. In this case, we can apply U t to any state of the appropriate dimension with

the output state containing an error term with probability amplitude O(1
b
) with

only O(b log b) << t ∈ O(2b) calls. The error probability can efficiently be made

exponentially small by repeating the phase estimation part.

6.10 Fractional Quantum Fourier Transform

In classical computation, roots of the Fourier transform are used for efficient filtering

of the frequency noise that is some non-constant function of a conjugate variable,

such as time [Alm94]. Given the role the QFT plays in the quantum computation,

and the importance of roots of Fourier transforms in classical computation, there

may as well be other interesting techniques based on the fractional powers of the

quantum Fourier transform.

Note that QFT 4 = I. This symmetry of the eigenvalues allows the algorithm

to be very efficient in the case U = QFT . To find a fractional power t, t < 1 of the

QFT using the algorithm introduced in Section 6.4, observe the fact that the QFT

has four eigenvalues that are all of the form e2πi
`
22 where ` is an integer: +1, i, −1

and −i. This means that only two ancilla bits are required for the eigenvalue

estimation part of the exponentiation algorithm, and such estimation results in the

exact values. During the eigenvalue estimation algorithm, the number of calls to

the controlled-QFT is three. The uncomputation requires another three calls to the

controlled-QFT. This means that the query complexity of the computation of a

fractional power of the QFT is exactly six queries to the controlled-QFT. Moreover,

during such computation we introduced no errors due to the approximations of

eigenvalues, and thus, given all gates are perfect, the computed fractional power is

exact.
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6.11 Conclusions

In this work the connection between continuous time black boxes (i.e., “Hamiltonian

oracles”) and their discrete counterparts, unitary black boxes, has been further

developed. Previous work has mostly focused on important special cases of this

relationship. Our work pushes the boundary in a new direction, where the unknown

U is a unitary acting on an arbitrarily large Hilbert space. It also demonstrates

constructively that an algorithm that makes use of a continuous oracle can also be

implemented using only a discrete oracle that that is equivalent to the continuous

oracle for some fixed time, assuming that if the eigenvalues of the Hamiltonian

implemented by the oracle are between 0 and Emax, then the fixed time interval

should be bounded below 2π/Emax so that the gap assumption is satisfied.

For the case that t is a positive non-integer, and there are no assumptions on the

eigenvalues of U other than the gap assumption, the complexity of this algorithm

is substantially higher than that in the continuous setting, where one has access

to a Hamiltonian H satisfying U = e−iH . If access to the unknown Hamiltonian,

H, itself is given then in principle it is easy to perform any unitary of the form

e−iHt with a cost t in terms of calls to the Hamiltonian. For an algorithm with

total query complexity t < 1 in the Hamiltonian black box model, it is hard to

imagine a reasonable way to effect e−iHt with fewer than one evaluation of U , and

indeed, the new algorithm makes O(1
ε
log 1

ε
) calls to U to effect e−iHt with precision

ε (a lower bound for this is shown in Section 6.4.2), which is notably lower than

the number of calls required in the obvious approach of doing process tomography

on U , approximating U t, and then synthesizing a circuit to implement such an

approximation. In particular, this approach does not depend on the dimension of

the Hilbert space that U acts on.

An algorithm has been presented for finding the powers of unknown unitary

operations raised to any real power t > 0. The complexity of the algorithm was

found to be in O(btc + 2mm) where the error is in O( 1
2m ). For large integers t

we presented a non-trivial example where the new method is exponentially more

efficient than the direct repeated application of U a total of t times. Note that the

same exponential speed-up is possible also in the continuous case if the Hamilto-

nian has some structure that enables eigenvalue estimation much better than the

standard worst-case limits; in such cases, this procedure, using a modest amount of

ancilla workspace, can simulate the evolution of H for a time τ in time polynomial

in log(τ).

This algorithm could be of practical use in a situation where there is very
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precise clocks and control, with error less than a very small positive ε, but for

some technical reason the unknown Hamiltonian must be run for a minimum time

Tmin >> ε. Conceivably, this might occur if there is a minimum reset time on a

of apparatus used to simulate or execute the Hamiltonian, and Tmin is still smaller

than 2π/Emax (assuming the energies are non-negative). In this case, there is a

smallest amount of time for which a given Hamiltonian can be run in practice. If

there is a need to run the Hamiltonian for less than that amount of time, then the

method presented here could be used.

Further, if the Hamiltonian that solves some problem is time dependent, as is

in general the case in quantum circuits or in models based on the permutation or

braiding of particles on a surface, it may be of interest to apply some fraction of

this total transformation to turn the solution to the problem into a subroutine of a

larger algorithm. The method we propose provides a general way of obtaining this

fractional application.

This algorithm could serve as a useful subroutine in other discrete time model

quantum programs. This technique may also be applied to compute other functions

of U , by replacing each eigenvalue eiλk with eif(λk) for any function f(·). This may

be useful in contexts such as Childs’ method [Chi08] for simulating continuous

time quantum walk Hamiltonians with discrete time walks. This requires applying

phases that are the sines or arcsines of the eigenvalues of the original Hamiltonian.

The method proposed here could achieve this for an unknown Hamiltonian to be

simulated. The properties of the function f(·) will determine the efficiency as a

function of the precision. Also, in the case when f(·) is continuous with bounded

first derivative, and 2π-periodic, then we can also drop the assumption that there

must be a gap in the spectrum, since this assumption was only needed to avoid

the consequences of small errors in the eigenvalue estimation becoming large ones

when the function of U which transforms the eigenvalues has a discontinuity.

In addition, this algorithm provides some intuition about a potential strategy

for constructing a quantum public key cryptography scheme. There are a num-

ber of classical cryptography schemes that rely on the computational difficulty of

finding roots modulo some number, such as RSA. One might attempt to construct

quantum cryptography schemes where knowledge of the “secret key” corresponds

to the ability to compute a fractional power (i.e., a root) of some unitary operator.

However, since this algorithm provides a way of implementing such roots, it seems

that such an approach would be unlikely to yield a secure quantum cryptography

scheme.
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Harrow, Hassidim, and Lloyd [HHL08] investigated a similar technique to attack

the problem of solving linear systems of equations in a more narrow setting and

were able to obtain an exponential improvement over the best classical algorithm

in that case. Specifically, they wanted to find and expectation value of the vector

x, x†Mx such that x is the solution to the equation Ax = b where b is a vector

given in the problem and A is a sparse matrix of largest dimension N with a

suitably small condition number κ whose description is also provided. Their optimal

algorithm takes poly(logN) time, as opposed to O(N), the time required classically,

if the condition number κ, which is the ratio of the largest eigenvalue of A to the

smallest, is poly(logN). The complexity of the algorithm goes with κ2 (assumed to

be poly(logN)) and an intuition for why this should be is that as κ increases the

matrix A becomes more difficult to invert.

This condition number constraint does relate somewhat to the need for a gap

assumption in this work. The reason the gap is required is to ensure that errors

do not occur too close to the vicinity of the discontinuity in the function f(θ) :

θ 7→ θ mod 2π
2

at zero. Likewise, if κ is very large then the renormalizing so that the

largest eigenvalue does not exceed one makes the smallest eigenvalue very close to

zero. However, the function of the eigenvalues Harrow et al. implement is f(λ) = 1
λ
,

which is indeterminate at zero. Thus in both cases, there is an need to avoid small

errors made in the eigenvalue estimation steps from becoming unduly magnified

through constraining assumptions.

Note that one important difference between their work and ours is that they

have a description of A and it is sparse and either Hermitian or adapted to be

Hermitian in the algorithm so that it is easy to implement eiAt. In the problem

presented here there is no such description and this complicates the problem and

in general prevents the exponential speed up seen in Harrow et al.’s work.
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7.1 Summary of Results

The results given here bring together ideas from the theory of quantum information

processing, particularly reference frames, conservation laws, and symmetries, and

algorithms.

For the use of phase references to maintain coherence within qubits in a quantum

computation, as considered in Chapter 4, different requirements were laid out and

methods suggested. The main important points to be realized are that systems

used for quantum references need not be large - in fact for the proper choice of

encoding, they can add a sublinear ancilliary system overhead, in terms of the

space requirement of the quantum computation. Also, there are many ways of

managing reference systems in a quantum computer, and some will be superior to

others based on technological constraints, but some are definitely inferior in terms

of reducing error in the computation. Error correction can be used against errors
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caused by imperfect gate implementations due to imperfect references. Assuming

the proper choice of strategy for managing the reference(s), these errors can be

independent and stochastic, so standard error correction procedures will work. All

gates will require energy to be performed, but these fields need not be kept coherent,

and there is no reason in principle this energy could not be recycled from one

gate to the next. Therefore, the energy for such gates is expected to be inversely

proportional to the choice of error parameter to first order. These requirements,

while presenting some technical challenges, do not present more serious problems

to quantum computing than other known technical obstacles.

While references managed in the proper way with the use of error correction,

can preserve information in a quantum setting, a quantum directional reference

which is isolated except for being used for measurement or quantum operational

tasks will degrade with use. A system such as this could be part of a device

for measuring individual spin states in a solid state nuclear magnetic resonance

quantum computer. The investigation in Chapter 3 sheds light on the behaviour

of spin systems used repeatedly as directional references and gives bounds on their

longevity as references before they need to be replenished. This is done though

the means of studying the evolution of the moments of the angular momentum

operator Jz. This gives expressions for fidelity for the reference state after many

uses. A general expression is found for all rotationally invariant maps in terms

of a limited number of parameters. These parameters are sufficient to study the

action of the repeated map and draw some general conclusions about the longevity

of the reference if the map and reference meet three conditions. The conditions are

satisfied by many cases of physical interest, and if they are obeyed the number of

times the reference can be used before it falls below and error threshold for a task is

of order j2 where the reference system is a spin-j system (that is, is described by a

2j + 1 dimensional density matrix). Various example cases are explicitly explored.

In the vein of quantum algorithms, in Chapter 5, a new form of the discrete

time walk on a line was proposed and explored: a quantum walk with a pair

of entangled walkers. This provided the opportunity to explore new dynamics

in a simple quantum walk. The correlation functions, expected separations and

probabilities for being found at a particular vertex and explored and compared to

the case of walkers with a separable initial state. The use of antisymmetric initial

conditions is found to give a linear increase in the expected separation of the walkers

over a separable initial condition for two walkers.

The relation between continuous and discrete time quantum evolutions was

considered in Chapter 6 and a new algorithm was developed for simulating fractional

148



Chapter 7. Conclusions

evolution of a unitary based on eigenvalue estimation. The algorithm applies an

approximation of the operation U t for any real t where U is a black box. The

algorithm is found to require O
(

1
ε
log 1

ε

)
calls to the unitary U , provided a gap

condition is fulfilled. An example where this algorithm could give an exponential

speed up over the naive application of U to a system repeatedly was explored. The

success of this hinged on a promise on the eigenvalues. The result is particularly

interesting in the context of other recent results [CGM+08, HHL08], as it seems

to indicate that the complexity of inverting or taking roots of unitary matrices

depends on the form of their eigenvalues, but not on their eigenvectors. Potential

applications in cryptography and simulations were proposed.
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Proof of Theorem 3.1

The proof of Theorem 3.1 is inspired by ideas from [KW99, D’A04] and is shown

through three lemmas, which together demonstrate that all rotationally covariant

maps can be expressed in the form ξ(ρj) =
∑2j

n=0 qnζ
◦n(ρj). First it is shown that

the map ζ is covariant with respect to the representations of the group SU(2)

on 2j + 1 dimensions, recalling that the group SO(3) of space rotations and the

group SU(2) of unitary transformations are locally isomorphic up to a phase, so

that the spatial covariance condition can be replaced by covariance with respect

to SU(2). This implies that ξ is a rotationally covariant map. The second lemma

indicates the general form that any covariant map must take and shows that there

are 2j + 1 independent parameters required to specify such a map. The third and

final lemma demonstrates that the proposed expression for the map ξ is composed

of 2j + 1 linearly-independent operators, each with a coefficient qn. Lastly it is

argued that these coefficients must be real and therefore, the 2j + 1 parameters

required to express any covariant map can be expressed as the 2j + 1 independent

real coefficients qn. Together, these facts imply that any rotationally covariant

map can be written ξ(ρj) =
∑2j

n=0 qnζ
◦n(ρj) with the appropriate choice of real

parameters qn.

First, let ρj be a density operator on the Hilbert space of a spin-j system.

Consider the map

ζ(ρj) =
1

λ
(JxρJx + JyρJy + JzρJz), [3.9]

where λ = j(j + 1), and Jx, Jy and Jz are the angular momentum operators in

the x, y and z directions for some arbitrary Cartesian frame. First, notice that the
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map is unital, i.e.

ζ(Ij) =
1

λ

3∑
i=1

J†i Ji =
1

λ
J2 = Ij, (A.1)

where J is the total angular momentum operator.

Lemma A.1. The map ζ is covariant with respect to the spin-j irreducible repre-

sentation Rj of SU(2).

Proof. If Rj is the d = 2j + 1 dimensional irreducible representation (irrep) of the

group SU(2) generated by {Jx, Jy, Jz}, then it can be expressed in the form

Rj(Ω) = e−iθ1Jze−iθ2Jye−iθ3Jz , (A.2)

for some real parameters θ1, θ2 and θ3 (which are strongly related to the Eulers

angles). By the symmetry of ζ with respect to the y and z-axes, if it is proved that

Rz(θ)
−1ζ(Rz(θ)ρjRz(θ)

−1)Rz(θ) = ζ(ρj), ∀ θ ∈ [0, 2π), (A.3)

for any rotations around the z-axis only, then (A.3) with any rotations around

the y-axis follows immediately. From (A.2), deduce that (A.3) is satisfied for any

rotations. Such z rotations will map

Jx → cos θJx + sin θJy (A.4)

Jy → − sin θJx + cos θJy, (A.5)

and inserting the transformed operators into equation 3.9 it can be readily computed

that ζ is invariant with respect to z rotations. Therefore,

Rj(Ω)−1ζ(Rj(Ω)ρjRj(Ω)−1)Rj(Ω) = ζ(ρj) ∀ Ω ∈ SU(2). (A.6)

The map ζ is therefore invariant.

Because a composition of invariant maps is also invariant, then any map of the

form

ξ(ρ) = q0ρ+

2j∑
k=1

qkζ
◦k(ρ), (A.7)

where the values qi are real numbers and ζ◦k = ζ ◦ ζ ◦ . . . ◦ ζ, is also invariant with

respect to SU(2). It remains to show that any invariant map with respect to SU(2)

can be written on the form (A.7) .
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To prove that every invariant map can be written as above, use is made of the

Liouville representation of a superoperator [Hav03]. Upon representing a d × d

density matrix ρ into a d2 long column vector |ρ〉〉 by stacking the columns of the

density matrix, the action of any superoperator ξ can be represented as a d2 × d2

matrix K(ξ), such that

|ξ(ρ)〉〉 = K(ξ)|ρ〉〉. (A.8)

This representation is necessarily basis dependent. If a given process has Kraus

operators {Ek}, the Liouville representation takes the form

K(ξ) =
∑
k

E∗
k ⊗ Ek (A.9)

where ∗ represents the complex conjugate with respect to the chosen basis.

Lemma A.2. The Liouville representation of any map that is invariant with respect

to SU(2) has the form

K(ξ) = (e−iπJy ⊗ I)
2j∑
k=0

ckΠk(e
iπJy ⊗ I), (A.10)

where ck ∈ C and Πk is the projector into the 2k + 1 dimensional subspace of total

angular momentum k.

Proof. The condition on a map to be invariant can thus be expressed as

(R∗
j (Ω)⊗Rj(Ω))K(ξ) = K(ξ)(R∗

j (Ω)⊗Rj(Ω)), ∀ Ω ∈ SU(2), (A.11)

so the condition on the operators in this new representation is that K(ξ) must

commute with R∗
j ⊗ Rj. If the group SU(2) is represented in the {|j,m〉z} basis

(i.e. the eigenstates of Jz), using equation A.2 and noting the way rotations about

one axis update other operators as in equations A.4 and A.5, then due to the

fact that e−iπJye−iθ1JzeiπJy = eiθ1Jz (note the similarly to spin-echo techniques),

R∗
j (Ω) = e−iπJyR(Ω)eiπJy . This implies

(Rj(Ω)⊗Rj(Ω))(eiπJy ⊗ I)K(ξ)(e−iπJy ⊗ I)

= (eiπJy ⊗ I)K(ξ)(e−iπJy ⊗ I)(Rj(Ω)⊗Rj(Ω)) ∀ Ω ∈ SU(2). (A.12)

Note that (Rj(Ω)⊗ Rj(Ω)) is the collective representation of SU(2) on two spin-j

systems. A Clebsch-Gordan decomposition gives the irreducible representation of
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the group of all collective rotations G(Rj ⊗Rj) which take the form

G(Rj ⊗Rj)(Ω) '
2j⊕
k=0

Rk(Ω), ∀ Ω ∈ SU(2)b, (A.13)

where “'” denotes “unitarily equivalent” and Rk is the spin-k irreducible repre-

sentation of SU(2) which has multiplicity one.

Because K(ξ) is required to commute with Rj(Ω)⊗Rj(Ω) for any Ω ∈ SU(2), it

must then commute with all irreducible representations of G(Rj ⊗Rj). By Schur’s

lemma,

(eiπJy ⊗ I)K(ξ)(e−iπJy ⊗ I) '
2j⊕
k=0

ckIk =

2j∑
k=0

ckΠk, (A.14)

where ck ∈ C, Ik is the 2k+1 dimensional identity operator, and Πk is the projector

into the 2k + 1 dimensional subspace of total angular momentum k.

Thus Lemma A.2 shows that there are 2j + 1 independent projectors forming

K(ξ). To characterize every possible invariant mapping, 2j + 1 independent opera-

tors are required. Lemma A.3 demonstrates that this is true for the expression A.7.

Lemma A.3. The matrices (
∑

i J
∗
i ⊗ Ji)

k for 0 6 k 6 2j are linearly independent

and form a complete basis to represent any invariant map of the form (A.10).

Proof. Rewriting equation (A.7) in the Liouville representation, the map becomes

K(ξ) =
n∑
k=0

qk
λk

 ∑
i∈{x,y,z}

J∗i ⊗ Ji

k

. (A.15)

The Hermitian matrices (
∑

i J
∗
i ⊗ Ji)

k are diagonal in the same basis, and the

eigenvalues of (
∑

i J
∗
i ⊗ Ji)

k are νkl , where νl is an eigenvalue of
∑

i J
∗
i ⊗ Ji .

To find all of the eigenvalues {νl}, expand the total angular momentum oper-

ator for two spin-j systems J 2 =
∑

i (Ji ⊗ I + I⊗ Ji)
2 to get a new expression for∑

i Ji ⊗ Ji:∑
i

Ji ⊗ Ji =
1

2
(
∑
i

(Ji ⊗ I + I⊗ Ji)
2 −

∑
i

J2
i ⊗ I− I⊗

∑
i

J2
i )

=
1

2
(J 2 − J2 ⊗ I− I⊗ J2)

=
1

2
(J 2 − 2j(j + 1)I) (A.16)
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With the relation
∑

i J
∗
i ⊗ Ji = −e−iπJy ⊗ I (

∑
i Ji ⊗ Ji) e

iπJy ⊗ I, this implies that∑
i J

∗
i ⊗ Ji and

∑
i Ji ⊗ Ji will have the same eigenvalues up to a negative sign.

From equation (A.16), it can be shown that

νl = −1

2
(l(l + 1)− 2j(j + 1)) , (A.17)

where l(l+1) is the eigenvalue resulting from the vector addition of the two spin-J

systems, which implies that l can range from 0 to 2j and has multiplicity 2l + 1.

There are 2j + 1 different values of l, so there is 2j + 1 different eigenvalues. By

the fundamental theorem of algebra, this implies that there are no polynomials

of degree 2j that have the eigenvalues {vl} as roots. This implies the matrices

(
∑

i J
∗
i ⊗ Ji)

k for 0 6 k 6 2j are linearly independent. By counting the number

free parameters, it is proven that the operators (
∑

i J
∗
i ⊗Ji)k form a complete basis

to represent any map represented by equation (A.10).

The last requirement necessary to show that the equation (A.7) is a representa-

tion of all possible invariant maps on a spin-j system, it is necessary to show that

the coefficients qi are real — that there are 2j+1 parameters in this representation

and not 4j + 2, which would be the case if there were a real and an imaginary

parameter for each coefficient. First, note that

ζ(ρj) =
1

2λ
(2JzρjJz + J+ρjJ

†
+ + J−ρjJ

†
−), (A.18)

where J± = Jx ± iJy. Also, from equation (A.18), the only contribution to

n̂ 〈j,−j| ξ(|j, j〉n̂n̂ 〈j, j|) |j,−j〉n̂ is from q2jζ
◦2j(|j, j〉n̂n̂ 〈j, j|). So,

n̂ 〈j,−j| ξ(|j, j〉n̂n̂ 〈j, j|) |j,−j〉n̂ = q2j n̂ 〈j,−j| ζ◦2j(|j, j〉n̂n̂ 〈j, j|) |j,−j〉n̂ . (A.19)

Since ξ(ρj) and ζ◦2j must be positive, then q2j is a non-negative real number.

The contributions to n̂ 〈j,−j + 1| ξ(|j, j〉n̂n̂ 〈j, j|) |j,−j + 1〉n̂ are from the terms

q2jζ
◦2j(|j, j〉n̂n̂ 〈j, j|) and q2j−1ζ

◦2j−1(|j, j〉n̂n̂ 〈j, j|). And since ξ(ρj) is positive and

q2j is real, then q2j−1 must also be real. Note that q2j−1 could be negative. The

rest of the argument follows this same chain. By induction, it is clear that all the

coefficients qi must be real if ξ is to be a valid map on density matrices.
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Proof of Lemma 6.1

Proof that Ω
(

1
δ

)
calls are required to distinguish I from U1−δ with high probability,

where U ∈ {U1−δ = |0〉 〈0|+ e−iδ |1〉 〈1| | δ ∈ [0, π)}:

The probability of distinguishing two admissible superoperators (that is, super-

operators Φ(ρ) =
∑n

1 AiρA
†
i for some positive integer n where the Kraus operators

obey
∑n

i=1A
†
iAi = Iρ) is:

1

2
+

1

4
‖Φ0 − Φ1‖♦. (B.1)

For unitary superoperators, Φ0(ρ) = UρU † and Φ1(ρ) = V ρV †:

‖Φ0 − Φ1‖♦ = max
u
{‖Φ0(uu

†)− Φ1(uu
†)‖Tr : u ∈ S(X )} = min

u
2
√

1− |u†U †V u|2

where S(X ) = {u ∈ X : |u| = 1} and X is a Hilbert space.

So the probability of distinguishing I from U1−δ with k calls is

1

2
+

1

4
min

a
2
√

1− |a†I†F (U1−δ)a|2 =
1

2
+

1

4
min

a
2
√

1− |a†U1−δa|2

where F (U) is some function of k applications of U on any number of qubits. So

we need to discover the value of

min
a
|a†F (U1−δ)a|.

Consider first the case where k = 1. Then it suffices to consider one qubit as the

input to either I or U1−δ and F (U) = U1−δ. We need to find values a1, a2 such that
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the following is minimized∣∣∣∣∣( a∗1 a∗2 )

(
1 0

0 e−iδ

)(
a1

a2

)∣∣∣∣∣ =
∣∣(|a1|2 + e−iδ|a2|2)

∣∣
The right hand side is smallest when |a1|2 = |a2|2 = 1

2
, so that the phase is relative

rather than global. In that case the probability of distinguishing these operators is

equal to

1

2
+

1

4
× 2

√
1−

∣∣∣∣12 + e−iδ
1

2

∣∣∣∣2 =
1

2
+

1

2

√
1− cos2

(
δ

2

)
=

1

2

(
1 + sin

(
δ

2

))
.

The solution oscillates between one half and one depending on the choice of δ
2
.

If we now consider k applications of U , there are many ways of arranging the k

applications on some number of qubits ranging from 1 to k. Additional qubits

beyond k will not help since U contains a relative phase compared to I rather than

just a global one.

Consider how repeated applications of ΦU , the map which is a single application

of the unitary, alter the diamond norm. We have just found that:

‖ΦU − ΦI‖ = 2 sin

(
δ

2

)
(B.2)

And so applying a second map ΦU :

‖ΦU ◦ ΦU − ΦI ◦ ΦI‖ = ‖ΦU ◦ ΦU − ΦU ◦ ΦI + ΦU ◦ ΦI − ΦI ◦ ΦI‖ (B.3)

And by the triangle inequality

‖ΦU ◦ ΦU − ΦI ◦ ΦI‖ ≤ ‖ΦU ◦ ΦU − ΦU ◦ ΦI‖+ ‖ΦU ◦ ΦI − ΦI ◦ ΦI‖ (B.4)

≤ 4 sin

(
δ

2

)
(B.5)

Repeating this k times, the probability of distinguishing the operations is less

than:
1

2

(
1 + 2k sin

(
δ

2

))
,

which is greater than some fixed constant when k = Ω
(

1
δ

)
. Therefore, in order to

distinguish the operations I and U1−δ with high probability, we require Ω(1
δ
) calls

to U1−δ.
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