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Abstract

There is now ample evidence to support the notion that a lack of oxygen (hy-

poxia) within the tumour adversely affects the outcome of radiotherapy and whether

a patient is able to remain disease free. Thus, there is increasing interest in accu-

rately determining oxygen concentration levels within a tumour. Hypoxic regions

arise naturally in cancerous tumours because of their abnormal vasculature and it

is believed that oxygen is necessary in order for radiation to be effective in killing

cancer cells. One method of measuring oxygen concentration within a tumour is

the Eppendorf polarographic needle electrode; a method that is favored by many

clinical researchers because it is the only device that is inserted directly into the

tumour, and reports its findings in terms of oxygen partial pressure (PO2). Un-

fortunately, there are often anomalous readings in the Eppendorf measurements

(negative and extremely high values) and there is little consensus as to how best

to interpret the data. In this thesis, Bayesian methods are applied to estimate

two measures commonly used to quantify oxygen content within a tumour in the

current literature: the median PO2, and Hypoxic Proportion (HP5), the percent-

age of readings less than 5mmHg. The results will show that Bayesian methods of

parameter estimation are able to reproduce the standard estimate for HP5 while

providing an additional piece of information, the error bar, that quantifies how

uncertain we believe our estimate to be. Furthermore, using the principle of Max-

imum Entropy, we will estimate the true median PO2 of the distribution instead

of simply relying on the sample median, a value which may or may not be an ac-

curate indication of the actual median PO2 inside the tumour. The advantage of

the Bayesian method is that it takes advantage of probability theory and presents

its results in the form of probability density functions. These probability density

functions provide us with more information about the desired quantity than the

single number that is produced in the current literature and allows us to make

more accurate and informative statements about the measure of hypoxia that we

are trying to estimate.
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Chapter 1

Introduction

Until the computer became an affordable and prevalent tool for the average re-

searcher, Bayesian methods for analyzing data were often dismissed, ignored, and

relegated to obscurity because they required large amounts of computational power,

and because it was viewed (incorrectly) that Bayesian methods were vague and sub-

jective. With computers becoming cheaper and more powerful by the day, and the

advantages of the Bayesian method apparent, there is currently a renewed and esca-

lating interest in using Bayesian methods to analyze data in many diverse research

areas, including physics, chemistry, finance, computer science, and medicine. For

example, Bayesian methods are currently being used by Berry [4] and his colleagues

at the M.D. Anderson Cancer Center in Houston, Texas to design clinical trials;

in fact, the Food and Drug Administration in the United States have discussed

extensively in recent years how Bayesian methods might be adopted to improve the

efficacy of clinical trials in general [5][6]; Bretthorst [3] (a chemist) uses it to ana-

lyze spectral data; Sivia [2] (a physicist) describes in detail applications in image

processing in the latter chapters of his book; Jaynes [1] (also a physicist) builds

his book on Bayesian methods upon the premise of teaching a robot how to learn

(a field now known as machine learning); and in chapter 5 we will discuss how

Bayesian methods are currently being used in email spam filters. In this thesis,

the primary goal will be apply Bayesian methods to estimate two measures that

clinical researchers use to quantify the amount of oxygen present inside a cancer-

ous tumour. The need for accurate determination of oxygen content in tumors has

become more important in recent years because there is increasing evidence that

a lack of oxygen in tumours adversely affects the outcome of radiotherapy and in-

creases the likelihood of the cancer migrating to other areas of the body.

1



Probability theory is key in data analysis, and many objected to the Bayesian

interpretation of probability as a degree of belief or measure of uncertainty as they

felt it was a definition that was imprecise and subject to personal bias. Instead,

mathematicians developed what we will call orthodox or Frequentist statistics, the

‘ordinary’ statistics that is usually taught at the undergraduate level, where prob-

ability is defined as the frequency of occurrence of the event of interest over a large

number of (infinitely many) experimental trials. This interpretation of probabil-

ity is deemed to be both objective and measurable; probability is now an intrinsic

physical property of the system and there is no room for personal bias. However,

the frequency interpretation is also limited because not all problems involve events

that occur randomly in repeated experimental trials. Sivia [2], for instance, tells of

how Laplace was able to estimate the mass of Saturn to a high degree of accuracy

(modern estimates differ by just 0.63%), using orbital data and celestial mechanics,

by appealing to what we would call Bayesian methods. On its face value, Frequen-

tists would not be able to tackle such a problem since mass is constant and not a

random variable. Yet, we must be able to solve data analysis problems when the

quantity of interest is not a random variable, otherwise, we would be helpless in

many real life situations. So there needs to be some kind of resolution. One way

of resolving the conundrum is to imagine an infinite number of parallel universes

that were identical to our own except for the mass of Saturn and posit that our

data consists of random samples from this ensemble of parallel universes. In such

an alternate reality, mass would be a random variable and there is no contradiction

in using Frequentist methods but clearly such a proposition is absurd. Although

we are free to envision any scenario we wish to satisfy the frequency interpretation,

the mass of Saturn does not change each time we try to estimate it, so Frequen-

tist scholars usually do not resort to such intellectual games. Rather, they have

invented numerous ad hoc methods that remove the logical inconsistency on a case

by case, problem by problem basis.

For parameter estimation (such as in estimating the mass of Saturn) it is often

assumed that the random variable is the error incurred when making measurements

during repeated experimental trials. For most purposes, that is an acceptable com-

promise and makes sense logically, but in the case of Laplace, collecting orbital data

is not the same as performing repeated experiments in the lab, the positions of the

planets do not reset themselves so you can perform the same measurement again,

and so there is still a disconnect between real life and orthodox statistics. The

advantage of the Bayesian method is that we do not need to force ourselves into

2



giving every problem a frequency interpretation. Treating probability as a degree

of belief agrees with our intuition, it allows us to avoid the ad hoc methods that

are sensible for some situations but quite unintelligible for others, and we shall see

that such an interpretation is not subjective except under perverse, mathematically

unverifiable conditions.

To understand why Bayesians interpret probability as a degree of belief, we need

to realize that by data analysis what we really mean is logical inference: the ability

to make an informed conjecture about some quantity of interest based on observed

data and relevant previous knowledge. Suppose you were outdoors, relaxing on the

grass at a nearby park say, and nowhere near any radios, televisions, blackberries,

iphones etc that could give you an up to date weather report. How do you know

whether it will rain or not, and possibly ruin your day? The first thing that you

would probably do would be to look up at the sky, and see whether there are any

ominous dark clouds approaching; you might also consider the temperature, and

whether the air felt damp or not. Further, you might even try to see if any flocks

of birds are fleeing the area. Then, perhaps, you will remember the weather re-

port that you saw before leaving the house, or maybe you will wonder whether it

usually rains during this particular time of year or not. After taking into account

all this information, which includes observed data (the clouds, the temperature,

the birds) and previous knowledge (the earlier weather report, knowledge about

seasonal trends), you would be then able to make an educated guess by performing

some kind of logical reasoning in your mind (e.g. it will not rain because there is

not a cloud in the sky and because the weatherman said it would be nice and sunny

today). You might be wrong (dark clouds suddenly appear, you actually misheard

the weather report for a different city) but it would be an opinion formed using the

available information and we could not ask for more.

This act of making an estimate based on pertinent information is what we mean

by logical inference, and it is exactly what happens in data analysis. When CNN

collected poll data on how people felt about Obama before the election, they were

trying to guess whether Obama would be eventually elected. When the World

Health Organization collects data on the swine flu, they are trying to ascertain

whether it will turn into a pandemic. When you measure something with a ruler,

you are trying to estimate its length. The process of making an informed judge-

ment based on available observations and prior knowledge is in fact quite general

and prevalent in our everyday lives. The reality is that the nature of our existence

3



as humans precludes us from information other than what we can observe and what

we have observed already. Most of us have intractable probability measures in our

heads that allow us to take advantage of this information to make everyday de-

cisions, and Bayesian methods attempt to quantify that process in order to solve

data analysis problems.

Notice that in all the preceding examples the best we can do is offer a guess, a

probability if you will, and we are unable to say with absolutely certainty one way

or another (though we may be fairly convinced that we are correct). We will call

such a guess our degree of belief in whatever we are estimating because humans are

capable of believing certain propositions more than others, depending on the evi-

dence present. Returning to our rain example, we would be more likely to believe

that it would rain if we saw dark clouds in the sky than if we did not, so our degree

of belief in the proposition that it will rain today would be higher in the former

than in the latter. Intuitively, such reasoning is what we mean by probability, when

we see that clouds in the sky, we might remark that it will probably rain today, or

we might find it more plausible if one of our friends speculated as such, which is

why Bayesians interpret mathematical probability as a degree of belief, and not as

a frequency.

Frequentists object that interpreting probability as a degree of belief inherently

makes it subjective because one person may believe one thing while the next person

believes in another in the same situation. For instance, you might be convinced

that it will rain, while your friend insists that the clouds will pass. The possible

subjectivity of the Bayesian interpretation is certainly a valid concern, but if we

examine the situation more closely we will see that it is unfounded. The key is in

the information, by which we mean observable data and prior knowledge. Bayesians

demand that two people having the same information come to the same conclusion.

For example, in a data analysis setting, we require that objectivity mean that two

different researchers with the exact same information come to the same conclusion.

In particular, we will see in chapter 7 and Appendix E that Bayesians require in-

formation to be testable, which loosely means information that is (mathematically)

verifiable, so as to eliminate situations where subjectivity might be an issue.

The inability to make definitive conclusions is what separates induction from

deduction, and what makes induction more difficult. If we knew it was going to

rain, then we would deduce that there would certainly be dark clouds in the sky.
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However, if we observe that there are dark clouds in the sky, we would find it more

plausible that it would rain, but it might not, and we would not know for sure

unless we waited to find out. Orthodox statistics is deductive, it turns the problem

of induction around and asks what if? For example, in hypothesis testing, we ask

ourselves: what if the null hypothesis is true? What then is the probability of ob-

taining the observed data? Such a question is certainly a valid one, and we arrive

at nice concrete conclusions, but those conclusions tells us very little because they

ignore many other possible explanations. What happens when the null hypothesis

is false? Bayesian methods, on the other hand, are inductive, they take advan-

tage of probability theory - particularly Bayes’ theorem - and try to make as few

assumptions as possible about the underlying processes in producing a best guess

at the quantity of interest. The conclusions will seem more vague at first glance,

they will necessarily have to cover a wide range of possible answers, but they are

in fact more truthful and more accurate, and the methods will be more generally

applicable and more easily adaptable than ones in orthodox statistics.

Figure 1.1: A schematic drawing showing the difference between deductive and

inductive logic. The former is straightforward and concrete, given a definite set of

premises, we can determine the set of possible outcomes without any ambiguity.

However, if we are only given the outcomes, it is not so obvious what led to those

observations. Figure from Sivia [2]

Moreover, Bayesian methods place a strong emphasis on incorporating prior in-

formation, whereas in orthodox statistics prior information is often an afterthought

or footnote to be considered vaguely in explaining their results (hence the name ex-
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planatory variables), and that will lead to better and more comprehensive analyses.

A good example of this is sample size. In many areas of everyday life, baseball for

example, one will often read comments such as “due to the small sample size the

conclusions are not reliable” without much further qualification. We then might

naturally ask: how unreliable is the conclusion? What constitutes a large enough

sample size? In orthodox statistics, there is no clear answer to either of those ques-

tions; it is largely a matter of personal opinion. However, for Bayesian methods,

we will often be able to quantify the accuracy of our conclusions succinctly with a

measure called the error bar, a quantity that varies with sample size, so that there

is no confusion about the reliability of our conclusions. If the sample size is small,

the error bar will be large, but we will still be able to make definite statements

about the quantity of interest.

Unfortunately, the inclusiveness of the Bayesian methodology is what makes

it computationally expensive and devising algorithms to improve the efficiency of

the numerical computation for Bayesian methods is an active research area. The

deductive methods in orthodox statistics are designed to reduce to the same few

standard distributions, so they can avoid computation all together and simply look

up the values in tables of precalculated probabilities. This ease in computation is

what made Frequentist methods preferable and convenient before the widespread

use of computers.

It may seem in the preceding discussion that the Frequentist and Bayesian in-

terpretations of probability, and hence their methods, are incompatible but that is

not the case. Rather, the frequency interpretation is a special case of the Bayesian

interpretation, and often the Bayesian methods will look remarkably similar to the

Frequentist methods in situations where a frequency interpretation is valid and

useful. Least squares and maximum likelihood, for example, are techniques that

appear in both schemata but the interpretation of the results is different, and the

Bayesian versions yield more information. In particular, we will see in chapter

6 how the Bayesian version of maximum likelihood leads to the aforementioned

measure of accuracy known as the error bar; an extra tool that is not available in

orthodox statistics.

As mentioned earlier, this thesis will focus on the application of Bayesian meth-

ods to estimate tumour oxygenation. We have been working with Fyles et al [11],

a group of clinical researchers at Princess Margaret Hospital, and they have pro-
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vided data from a probe that purportedly measures oxygen concentration inside a

tumour. Specifically, we have oxygen partial pressure readings from various points

inside the tumour for 105 cervical cancer patients. Tumour vasculature is highly

irregular and that usually leads to a lack of oxygen, called hypoxia, in many areas

of the tumour. Chapter 2 will examine how this irregular vasculature comes about

and how hypoxia is believed to adversely affect radiotherapy.

The probe used to measure oxygen content in a tumour, is known to chemists as

a polarographic oxygen sensor. Most clinical researchers around the world use such

a probe made by the Eppendorf AG company [12][14][15][16][17][18]. The probe is

a device that was originally used to measure concentrations of oxygen and oxygen

reducible substances in chemical solutions and has since been adapted to be used

in tumours, with mixed results. Chapter 3 investigates the theoretical workings

behind the probe and potential issues that arise when using the probe in biological

tissue.

In chapter 4 we will closely examine the actual data and consider the way the

oxygen probe data is analyzed in the current literature. In particular, we will de-

fine a measure of oxygen content known as hypoxic proportion, the percentage of

readings under a certain threshold value, and see if that measure is able to predict

whether a patient will remain disease free. By disease free we mean the patient

surviving and not suffering a relapse of the original cancer. Methods of analyzing

survival, the Kaplan-Meier estimator and the log-rank test, will be presented in

detail.

We have discussed at length already how Bayesians interpret probability as a

degree of belief, and in chapter 5 we will see how that piece of insight is enough to

derive the mathematical framework necessary for logical induction. The discussion

will be grounded first by examining how Bayesian spam filters work to eliminate

spam emails from our inboxes and it will become clear how probability theory is

helpful in problems of data analysis and how it naturally arises from considerations

in logical inference. Appendix E extends the discussion of Bayesian methods by

presenting one of its more famous tenets: the idea of maximum entropy. We just

mentioned that Bayesians make use of probability theory, but how do we assign

these probabilities? Many scholars have argued that given some testable infor-

mation, maximum entropy is in some sense the best and most objective way of

assigning probabilities that reflect the given information and we will see a heuristic
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justification of the maximum entropy principle by considering a hypothetical team

of monkeys.

Chapter 6 is one of the main results of this thesis, the Bayesian estimate of

hypoxic proportion, and chapter 7 is the other: the maximum entropy estimate of

the median value of the distribution for the partial pressure of oxygen inside the

tumour. Although hypoxic proportion is now the most commonly used measure of

oxygen content, the median value is also almost always reported and compared to

the the hypoxic proportion as a way of confirming the validity of hypoxic proportion

as an indicator of tumour oxygenation, so it is of interest to estimate both quan-

tities and to see if and how the Bayesian estimate differs. Moreover, the median

value was the chief measure of oxygenation before researchers invented the notion

of hypoxic proportion, and the sample median is sometimes chosen as the threshold

value.

The final chapter, chapter 8, is a proposed preliminary alternative to the Kaplan-

Meier estimator in estimating survival probability using an inhomogeneous Poisson

process. Poisson processes are used in many practical situations where counting is

involved, such as the number of customers arriving at a store within a certain time

period, or the number of cracks over certain sections of a railway track, and, if we

count the number of death or relapses over time, then survival can also be modeled

under a Poisson process.

A comparison of my results to those of the existing literature will demonstrate

the advantages of the Bayesian method over orthodox statistics, and provides rea-

son why further work in this direction should be pursued. In particular my method

of estimating hypoxic proportion not only reproduces the standard result in the

literature but provides us with an estimate of how accurate that result may be.

Moreover, the simplicity of the Bayesian method and its emphasis on prior in-

formation allows us to refine that estimate if more data or information become

available. The maximum likelihood estimate of the median is more interesting, and

yields values that are completely different from the median in the data. That the

values are different is expected and welcome because the sample median is very

likely not the median of the actual distribution of oxygen inside the tumour.
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Chapter 2

Radiotherapy and The Role of

Oxygen

Radiotherapy is a commonly administered treatment option when faced with many

types of cancers. The American Society for Radiation Therapy estimates that

around two thirds of all cancer patients will receive radiotherapy of some form

during their treatment programs [43]; thus it is of interest to doctors and radiologists

to investigate any factors that compromise or enhance the effectiveness of radiation

therapy since even minor improvement in treatment strategies can benefit a large

number of patients. It has been observed since the beginning of the twentieth

century [9] that the oxygen concentration levels within a tumour have a significant

impact on the effectiveness of radiation. In fact, Harrison et al [10] claim that

oxygen may be “the most important determinant of response [to radiotherapy]

among tumors of the same type”. There is now an accepted theory as to why that

is the case [9] and much corroboratory evidence to support the notion that the

lack of oxygen in hypoxic tumours adversely affects the outcome of radiotherapy

[10][11][12][14][15][16][17][18], but analyses tend to be inconclusive because methods

used to measure the oxygen concentration only sample a small area of the tumour,

different researchers do no agree on how best to interpret the data, and because

conventional statistical methods used to study the data are inconclusive. Thus,

there is much work to be done in the area. For now, we will focus on the mechanisms

behind radiation therapy and how oxygen, or rather the lack of oxygen, in tumours

affects radiotherapy.
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2.1 Hypoxic Regions in Tumours

A basic question that needs to be addressed is why there are almost always regions

of low oxygen, known as hypoxic regions, in any kind of solid tumour. Malignant

tumours are marked by the rapid and uncontrolled proliferation of mutated cells.

These mutated cells, like any other cell, need oxygen and nutrients to survive and

so they will express pro-angiogenesis factors in an attempt to promote the growth of

new blood vessels towards themselves to supply the necessary materials. However,

because these cells are rapidly proliferating, they will cause an imbalance of pro- and

anti-angiogenesis factors that leads to growth of abnormal, poorly formed, leaky

blood vessels that do not do a good job of supplying well oxygenated blood to the

entire tumour. Moreover, because tumour cells tend to be tightly packed together,

blood vessels can become compressed and further impede the flow of blood to cer-

tain areas inside the tumour [41] (See figure 2.1). As a result, tumour vasculature

is highly heterogeneous, and there are likely to be regions where cells do not receive

adequate oxygen, causing them to become quiescent or inactive; and there may

even be regions, usually near the centre of the tumour, where cells have died be-

cause of the lack of oxygen, known as the necrotic core [42] (See figures 2.2 and 2.3).

The kind of hypoxia described in the previous paragraph is known as “chronic

hypoxia”; that is, it is persistent and long lasting. Another kind of hypoxia, called

“acute hypoxia” is caused by a temporary closing of blood vessels in the tumour,

and according to Hall [9] that happens because blood vessels in tumours apparently

randomly open and close. Such transient regions of hypoxia are difficult to track,

and it is not possible to make a distinction between the two from the data that we

will be analyzing.

2.2 General Overview of Radiotherapy

Radiotherapy functions by using ionizing radiation to kill cells (preferably just can-

cer cells). It can be used in combination with other treatments, such as chemother-

apy or surgery, or it may be the only prescribed course of treatment. How radiation

therapy is administered varies from patient to patient. There are many different

methods for focusing the radiation onto the tumour to minimize the side effects,

but the mechanism behind radiotherapy remains the same.
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Figure 2.1: A comparison between normal vasculature (a) and tumour vasculature

(b). Vasculature in normal tissue have regular networks that are made up of “ma-

ture” blood vessels, blood vessels that are in some sense ideally suitable for blood

transport and well maintained by a balance of pro- and anti-angiogenic factors.

Tumour vasculature is a chaotic network of blood vessels of varying diameters,

varying lengths, and varying composition caused by an imbalance of the pro- and

anti-angiogenic factors. This lack of regular structure causes some areas of the

tumour to not be able to access an adequate supply of blood, and hence oxygen.

Figure from [41]

Figure 2.2: A simple diagram illustrating how cells are generally distributed within

a tumour as a result of the abnormal vasculature. The appearance of both the

necrotic cells (dead cells), and the quiescent cells (inactive cells) in tumours are

due to the lack of oxygen reaching (usually) the centre of a solid tumour. Figure

from [42].
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Figure 2.3: One of the main reasons why there are hypoxic regions inside a tumour

with abnormal vascularture is because the cells are too far away from the blood

vessel. Figure from [9].

2.2.1 Ionizing Radiation

Ionizing radiation is radiation that has enough energy to cause one or more orbital

electrons to be ejected by the atom or molecule that absorbs the radiation. For

external beam radiotherapy, the most commonly used form of radiotherapy, the

radiation is usually generated by using a linear accelerator to excite a beam of

particles, such as photons, neutrons, or electrons, in the direction of the region that

is to be irradiated.

2.2.2 Cell Killing

Ionizing radiation kills cells by damaging their DNA. If the damage is severe enough

(more details can be found in [9]), the cells will no longer be able to divide and

proliferate so they simply die the next time they try to do so. However, cells do have

limited DNA repair mechanisms, so the radiation may not have any effect, or may

just slow down the rate of proliferation, possibly inducing damage to subsequent

daughter cells that make them more susceptible to radiation or more likely to die.

It is believed that cancer cells are less likely to be able to repair the DNA damage

caused by radiation than normal cells, one reason why there are usually minimal

side effects when undergoing radiotherapy.
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2.2.3 Direct and Indirect Action of Radiation

Radiation can damage DNA either directly or indirectly (see figure 2.4):

• Direct action means that the biological material (in our case the DNA)

is absorbing the radiation directly, creating ionized or excited atoms in the

material itself that eventually lead to biological change (e.g. mutation or

death).

• Indirect action means that the radiation is interacting with the surrounding

material and not the DNA itself. Such interactions can lead to the formation

of free radicals that are highly reactive and have extremely short lifetimes

(about 10−10s). These highly reactive particles can then travel over and cause

permanent damage to the DNA provided that they are produced within about

4nm of the DNA strands.

The indirect action of radiation tends to dominate for the types of radiation we

normally use for radiotherapy, such as x-rays and γ-rays, and Hall [9] claims that for

x-rays roughly two thirds of damage to DNA is caused by such indirect interactions.

2.2.4 The Oxygen Effect - Oxygen Fixation Hypothesis

As mentioned previously, cells are capable of limited DNA repair, so in order to

kill the cell we need the damage to be permanent and not repairable. For indirect

action, oxygen is said to “fix” the damage in place because it is believed that if, and

only if, oxygen is present in the cell then the free radicals created by the indirect

action of radiation will bond with the oxygen and create a product that is able to

cause the desired permanent damage. Thus, a well oxygenated tumour is crucial for

radiation therapy to be effective, and there is experimental evidence that hypoxic

cells are two to three times more resistant to radiotherapy [9].

2.2.5 Fractionation

Recall that in a tumour there are likely to be pockets of hypoxia where cells are

not well oxygenated because tumour vasculature is highly chaotic and irregular.

Thus, there is a somewhat paradoxical balance between cancer cells which are more

susceptible to radiation in general and hypoxic cancer cells that are more resilient

and able to counteract its effects. The presence of these hypoxic cells means that
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Figure 2.4: The direct and indirect action of radiation on DNA. For indirect action,

the most common free radical is the hydroxyl radical, OH·, because 80% of a cell

is water and that is the molecule that is produced when water is ionized. For any

free radical, R·, once it has diffused to the DNA molecule and caused damage, a

subsequent reaction with oxygen will then “fix” the damage in place, i.e. make it

permanent and not repairable, leading eventually to cell death. Diagram from [9].

a single large dose of radiation is not effective; it is more likely that healthy cells

will be damaged than the hypoxic cells, and hence likely to cause more harm to

the patient than desired. Rather, it is better to apply several small doses, called

fractions, killing off the well oxygenated cancer cells each time, and allowing the

hypoxic cells access to oxygen that that was not available previously. So that, after

some time, they will become well oxygenated, in a process called “reoxygenation”,

and become more susceptible to radiation for subsequent treatments. The more

hypoxic a tumour is, the less effective radiation will be, and that is why doctors

are interested in assessing oxygen concentration in tumours.
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Figure 2.5: Applying one large dose of radiation is extremely harmful to healthy

cells and unlikely to eliminate the tumour because the hypoxic cells in the tumour

will resist the radiation. So it is better to administer several small doses, allowing

the previously hypoxic cells to “reoxygenate” and become more susceptible to radi-

ation in subsequent treatments. Notice that we don’t care about the necrotic core

because those cells are dead already, so they make no difference. Diagram from [9].

2.3 Metastasis

Hypoxia has also been implicated in playing a role in metastasis, the spread of

cancer from the initial site to other areas of the body [10], [11]. In particular,

hypoxic tumours seem to preferentially select cells with mutated p53 genes, a gene

that normally suppresses tumour growth, so they become more aggressive and more

likely to metastasize [10]. For example, Fyles et al [11] found that a hypoxic

tumour for their cervical cancer patients was a good indication that the cancer

had metastasized to the pelvic lymph nodes. In short, accurately determining the

amount of oxygen in tumours is not only important for radiotherapy, but could

have other implications as well.
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2.4 Methods for measuring oxygen concentration

in tumours

There are two current ways to measure the amount of oxygen in a tumour: biomark-

ers (such as pimonidazole) and polarographic probes. Both only sample parts of

the tumour and give, either directly or indirectly, a measure of how much we believe

a tumour to be hypoxic. However, there seems to be little agreement between the

two [19], which is troubling. For the rest of this thesis, I will focus on how the po-

larographic probe works and how we might analyze and interpret the measurements

taken by the probe.
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Chapter 3

An Overview of The

Polarographic Oxygen Electrode

Physicians and medical researchers now routinely measure tumour oxygenation us-

ing a device known as a polarographic oxygen sensor. It is an instrument that was

originally developed to measure concentrations of oxidizable and reducible sub-

stances in solutions, and now has been adapted and miniaturized to measure the

partial pressure of oxygen in tissue. Most clinical researchers use a model made by

Eppendorf AG in Germany, so we will often refer to the probe simply as Eppendorf.

We will also sometimes refer to oxygen partial pressure as oxygen tension as that

is the common term in medical literature. Whether a polarographic probe actu-

ally measures partial pressures in tissue is debatable since the theoretical principles

upon which the probe is based rely on assumptions that probably do not hold in

tissue, but it is generally accepted that polarographic probes are able to measure

concentrations of dissolved ions that are oxygen reducible or oxidizable in solutions

[24]. When we examine the actual data in chapter 4 we will see that the probe gives

us many anomalous readings (such as negative or extremely high partial pressures)

that lends credence to the notion that the probe may not be reliable. However, it

is currently the only instrument that actually interacts with the tumour microenvi-

ronment directly, so it is still believed to be the best available method of assessing

tumour oxygen concentration despite some concerns.
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Figure 3.1: Simple circuit diagram of the idea behind a polarographic oxygen

sensor. Figure from [24].
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3.1 Chemical Basis of the Probe

Briefly, a polarographic oxygen sensor consists of two electrodes inserted into the

solution of interest with a potential difference applied across the electrodes. Oxygen

reduction (redox) reactions will then occur at the cathode, and both Fatt [24] and

Hahn [29] claim that the most likely one is the following (especially if the probe is

covered by a membrane):

O2 + 2H2O + 4e− = 4OH−. (3.1)

Gold or platinum is usually chosen for the cathode so as to avoid other reactions

that may occur that could affect the current and make it more likely that only the

above sequence occurs. To ensure that the above reaction does not depend on the

solution, a known reaction is chosen for the anode so that it acts as a “reference”

that fixes the voltage across the cathode [24]. The chosen reaction is usually silver-

silver chloride:

Ag + Cl− = AgCl + e−. (3.2)

Together, the above two reactions will generate a current that depends on the

amount of oxygen present in the solution. However, this current is also driven by

the potential difference between the two electrodes, so it is favourable to find a

region where the current is independent of the applied voltage, but is still enough

to drive the reduction reaction. Fortunately, such a region exists, and in this region

the electrode is said to be polarized because the current is largely unaffected by the

external voltage applied onto it (see figure 3.2).

3.2 Mathematical Modeling of the Probe

3.2.1 Diffusion

For a general polarographic probe, where we allow the probe to measure the con-

centrations of any reducible or oxidizable ions, there are two main ways for those

ions to reach the probe [26]:

1. Diffusion: If we assume that oxygen is immediately and completely consumed

at the surface of the probe, then there will be a concentration gradient near

the probe, driving more ions to enter the probe via diffusion.
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Figure 3.2: Notice between about -0.6V to -1.0V the current is approximately flat,

i.e. independent of the applied voltage. That flat plateau is known as the polarized

region. Figure from [24].
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2. Electromotive force: Since we are applying a potential difference across our

electrodes in order to drive the redox reaction, charged ions will also be af-

fected by the electric field, and drift towards one of the electrodes. This is

known as electrical migration.

In the case of charge neutral oxygen molecules, the second effect is negligible. Thus,

we will assume that oxygen only reaches the probe via diffusion, and focus on how

this relates to the current generated by the redox reaction. Some researchers, such

as Mancy [27], suggest that we should also correct for other factors, such as salt

concentrations that may be charged and affect the flow of oxygen molecules into

the probe. Further discussion on this matter follows in section 3.2.5; for now we

want to start with a simple model of the probe.

There are two main things to consider in our diffusion model:

1. How is current related to oxygen concentration/oxygen tension?

2. How quickly will the current reach a steady state?

The need to answer the first question is obvious. The second question is a matter

of reproducibility. If the current generated is time dependent, then we would have

to either take measurements at precisely the same instant each time we perform an

experiment, or have to keep track of when the measurement is taken in order to be

able to compare measurements later. Neither proposition is attractive as the first is

difficult to achieve, and the second would probably involve complicated equations

with many experimentally determined constants. To overcome this difficulty, recall

that solutions to the diffusion equation eventually reach a time independent steady

state, so it is in our interest to make the system reach this steady state as quickly

as possible.

To answer the first question, we consider the usual diffusion equation,

∂C

∂t
= D∇2C, (3.3)

where C is the oxygen concentration and D is the diffusion constant. Then, we will

apply Henry’s Law,

C = kP, (3.4)
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to derive an equation that involves the partial pressure of oxygen instead of con-

centration. Substituting (3.4) into (3.3) yields:

∂P

∂t
= D∇2P. (3.5)

Many researchers, including Fatt [24], Hudson [30], and Albanese [28], simply as-

sume that this law holds and use it without qualification. In reality, the above

version of Henry’s Law (3.4) holds only at thermal equilibrium, at a certain fixed

temperature, and for low pressures (P<200kPa) and low concentrations (mole frac-

tions of <0.01). Whether these conditions are satisfied in the context of biological

tissues is debatable; for this section we will assume that the law holds so that we

can work in partial pressures instead of concentrations. More discussion on why

we want to work with partial pressures follows in section 3.3.3; in short, it is the

convention to do so. Further details of modern corrections to Henry’s Law are given

in Appendix A. The diffusion equation will be solved subject to certain initial and

boundary conditions depending on the situation we are trying to model, and these

will become clear in the succeeding sections.

3.2.2 Equation for the Current

Once we solve for the partial pressure, we will need an equation that relates the

partial pressure to the current. Fatt [24] proposes the following:

I = nFAf, (3.6)

where

n = amount of electricity required for the redox reaction (in number of faradays)

F = the Faraday constant1

A = electrode area

f = the flux of oxygen into the electrode

1 The Faraday constant is an old unit of charge that is frequently used in electrochemistry. It
is defined as the charge per mole of electrons:

F = NAe (3.7)

where NA is Avogadro’s number, and e is the charge of an electron. F has a currently accepted
value of 96 485.3399 C/mol.
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Flux is given by Fick’s law:

j = −D∂C
∂x

= −Dk∂P
∂x

, (3.8)

where C is the concentration of oxygen, D is the diffusion constant, and k is the

Henry’s Law constant. It is not clear in any of the texts where Fick’s law is men-

tioned [24][26][28] how j relates to f , but it appears that f in the current equation is

set equal to either−j or |j| so that the flux, and hence current, is a positive quantity.

Although the equation makes sense intuitively, it is worth checking the dimen-

sions of the quantities in the equation to ensure dimensional consistency:

[I]= Q/T

[n]= 1

[F ]= Q/mol

[A]= L2

[f ]= mol/L2/T

Thus, the equation is dimensionally consistent as expected.

3.2.3 Bare Spherical Electrode

For the partial pressure, we will simplify the problem by assuming spherical sym-

metry. Although most probes are not spheres, Davies [25] claims that the sphere is

a good approximation because the “the diffusion field rapidly approaches spherical

symmetry with distance from the tip”. To begin, we will consider the situation

where the probe is “bare” which simply means we will insert the probe directly

into the tissue, as opposed to covering it first with a membrane to help protect it

from unwanted chemical reactions (covered in the next section).

In spherical coordinates, assuming spherical symmetry, the diffusion equation

becomes:

∂P

∂t
=
D

r2

∂

∂r

(
r2∂P

∂r

)
, r ≥ a. (3.9)

The equation only holds for r ≥ a because we assume that the probe has radius a.

We will solve the above equation subject to the following conditions:
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Figure 3.3: A schematic diagram of a spherical probe in tissue. We will assume

for both the bare and membrane covered electrodes that the shaft is negligibly

thin. This diagram is for the case of the membrane covered electrode; for the bare

electrode, there is no membrane layer and we make no assumptions about the size

of the tissue. Figure from [28]
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• Initial condition: P (r, 0) = P0, for r ≥ a.

• Boundary condition: P (a, t) = 0.

Clearly, the distribution of oxygen within normal biological tissue is not uniform,

so the initial condition represents a sort of averaging of the actual conditions in

tissue that we approximate to be constant so that the problem is easier to solve.

The boundary condition at the surface of the probe reflects our idealization that

oxygen is immediately and completely consumed as soon as it enters the cathode.

To solve for the partial pressure P , using techniques from Carslaw and Jaeger

[33] appropriate for our problem, we make the change of variable u(r, t) = rP (r, t)

to transform (3.9) into:

∂u

∂t
= D

∂2u

∂r2
, r ≥ a, (3.10)

subject to:

u(r, 0) = rP0, r ≥ a, (3.11)

u(a, t) = 0. (3.12)

Now shift the axis: Let x = r − a, and U(x, t) = u(r, t), then we have:

∂U

∂t
= D

∂2U

∂x2
, x ≥ 0, (3.13)

subject to:

U(x, 0) = P0(x+ a), x ≥ 0, (3.14)

U(x, t) = 0. (3.15)

Equation 3.13 is simply the semi-infinite rod problem where the end at x = 0 is

kept in a cold bath, with initial condition U(x, 0) = f(x) = P0(x+ a). So to solve

we make an odd extension:

fodd(x) =

f(x) = P0(x+ a), x ≥ 0,

−f(−x) = P0(x− a), x < 0.
(3.16)

Then, using the Fourier transform method and applying the diffusion kernel we get:

U(x, t) =

∞∫
−∞

1√
4πDt

e
−(x−s)2

4Dt fodd(s)ds, x ≥ 0. (3.17)
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We can simplify (3.17) into a more manageable expression as follows:

∞∫
−∞

1√
4πDt

e
−(x−s)2

4Dt fodd(s)ds =

∞∫
0

1√
4πDt

e
−(x−s)2

4Dt P0(s+ a)ds,

+

0∫
−∞

1√
4πDt

e
−(x−s)2

4Dt PO(s− a)ds

= P0

∞∫
−∞

1√
4πDt

se
−(x−s)2

4Dt ds

+
P0a√
4πDt

∞∫
0

[
e
−(x−s)2

4Dt − e
−(x+s)2

4Dt

]
ds.

Here we made a change of variable s → −s and reversed limits to get the second

term in the second integral. The first integral is simply the expected value of a

Gaussian:

P0

∞∫
−∞

1√
4πDt

se
−(x−s)2

4Dt ds = P0

∞∫
−∞

1√
4πDt

se
−(s−x)2

4Dt ds = P0x. (3.18)

The second integral is trickier and requires a change of variable z = (s−x)/
√

4DT

in the first part and z = (s+ x)/
√

4DT in the second part:

1√
4πDt

∞∫
0

[
e
−(x−s)2

4Dt − e
−(x+s)2

4Dt

]
ds =

1√
π


∞∫
−x√
4Dt

e−z
2

dz −
∞∫
x√
4Dt

e−z
2

dz

 ,

=
1√
π

x√
4Dt∫

− x√
4Dt

e−z
2

dz,

=
2√
π

x√
4Dt∫

0

e−z
2

dz,

= erf

(
x√
4Dt

)
.

Putting them together, we get:

U(x, t) = P0x+ P0a · erf
(

x√
4Dt

)
, x ≥ 0. (3.19)
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Thus the solution to the original problem, (3.9), is:

P (r, t) = P0

(
1− a

r

)
+
P0a

r
erf

(
r − a√

4Dt

)
, r ≥ a, (3.20)

where

• a is the radius of the electrode,

• r is the distance from the center of the electrode,

• erf is the error function.

Now that we have an expression for P (r, t) we can solve for the current by using

(3.6), where the flux is given by f = Dk(∂P/∂r)|r=a. Using (3.20) we get

∂P

∂r

∣∣∣∣
r=a

= P0

(
1

a
+

1√
πDt

)
. (3.21)

Since we assumed the electrode was spherical, we have A = 4πa2, so the current is:

I = 4nπFDkP0a

(
1 +

a√
πDt

)
. (3.22)

Thus in the steady state we have

I = 4nFDkP0πa. (3.23)

This linear relationship between the partial pressure and current in the steady state

is the key to all of polarography. It is only because of the linearity assumption that

researchers can calibrate oxygen electrodes simply by using two different solutions

of known concentration and not worry about having to find approximate values for

all the constants (more on this later).

Notice that the only variable we have control over is the radius of the electrode a.

According to Fatt [24], using a typical value of D = 2x10−5cm2/s, an electrode with

a 0.5mm radius will reach within 10% of its steady state in about 4000s, whereas

an electrode with radius 5µm will reach within 10% of its steady state in 0.4s. So a

small probe is necessary for a reasonable response time, and luckily that is exactly
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what we want in a needle electrode small enough to be inserted into human tissue.

Several researchers also claim that a small probe reduces “stirring effects” which

are anomalous currents caused by the solution moving past the probe [24], [26],

[29], [31].

3.2.4 Membrane Covered Spherical Electrode

In biological tissue there are often a number of substances that can have an adverse

effect on the probe, so in practise it is covered by an oxygen permeable membrane

to try and ensure that only oxygen passes through to the cathode and to protect the

electrode from other unwanted reactions. For the Eppendorf probe, the membrane

is made of teflon [12].

To begin, we will assume that the probe, with radius a, has a layer of membrane

surrounding it of radius b, and that the tissue surrounding the probe is homoge-

neous, with radius R. Since oxygen dissolves differently in each material, we will

have to take solubility into consideration, and we will also attempt to model the

fact that cells inside the tissue consume oxygen by adding a constant consumption

term. Solving the diffusion equation for multiple layers is difficult, so we will only

consider the steady state:

αMDM
1

r2

∂

∂r

(
r2∂P

∂r

)
= 0, a ≤ r ≤ b, (3.24)

αTDT
1

r2

∂

∂r

(
r2∂P

∂r

)
−QT = 0, b ≤ r ≤ R, (3.25)

where αM , αT are the solubility coefficients for oxygen in the membrane and tissue

respectively; DM , DT are the diffusion coefficients of the membrane and tissue, and

QT is the oxygen consumption rate of the tissue.

To solve equations 3.24 and 3.25 we follow the approach of Albanese [28] with

slightly different notation. We begin by analyzing the situation before the poten-

tial is applied; this means that the electrode is not consuming any oxygen. The

boundary conditions in this case are:

• ∂P
∂r

∣∣
r=a

= 0,

• αMDM
∂P
∂r

∣∣
r→b− = αTDT

∂P
∂r

∣∣
r→b+,
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• P (r)|r→b− = P (r)|r→b+,

• P (R) = PR, where PR is known.

The first condition is a no flux boundary condition that tells us no oxygen is passing

through into the electrode. The middle two constraints give matching conditions to

ensure continuity of the solution, and the third is simply a fixed value of pressure

at the other boundary that is assumed to be known.

Solving (3.24) and (3.25) is fairly straightforward and gives:

P (r) =
A

r
+B, a ≤ r ≤ b, (3.26)

P (r) =
QT

6αTDT

r2 +
C

r
+D, b ≤ r ≤ R. (3.27)

Applying the first boundary condition determines the first constant A:

∂P

∂r

∣∣∣∣
r=a

= −A
a2

= 0 ⇒ A = 0. (3.28)

Since A = 0, P (r) = B for the inner region, so the second condition now determines

C:

αMDM
∂P

∂r

∣∣∣∣
r→b−

= 0 = αTDT
∂P

∂r

∣∣∣∣
r→b+

, (3.29)

⇒ QT

3αTDT

b− C

b2
= 0, ⇒ C =

QT

3αTDT

b3. (3.30)

Plugging this value of C into the fourth condition gives us D:

D = PR −
QT

6αTDT

R2 − QT

3αTDT

b3

R
. (3.31)

Putting these all together into the matching condition at r = b allows us to calculate

B, which we will relabel as Pb, because this constant will show up again in the next

derivation:

Pb := B = − QT

6αTDT

(
R2 − b2

)
+

QT

3αTDT

b3

(
1

b
− 1

R

)
+ PR. (3.32)

Physically, this is the steady state partial pressure at the surface of the membrane,

r = b, before a potential is applied on the electrode.

Once the probe is switched on, the first boundary condition changes as we

assume all the oxygen is immediately consumed at the surface of the electrode:
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• P (a) = 0,

• αMDM
∂P
∂r

∣∣
r→b− = αTDT

∂P
∂r

∣∣
r→b+,

• P (r)|r→b− = P (r)|r→b+,

• P (R) = PR, where PR is known.

Since our end goal is to obtain an expression for the current, which is proportional

to the flux at the electrode surface, αMDMK
∂P
∂r

∣∣
r=a

= −αMDMK
A
a2 , we need only

determine A explicitly.

Substituting equations (3.26) and (3.27) into the four boundary conditions above

yields

• A
a

+B = 0,

• −αMDM
A
b2

= αTDT

(
QT

3αTDT
b− c

b2

)
,

• A
b

+B = QT
6αTDT

b2 + C
b

+D,

• QT
6αTDT

R2 + C
R

+D = PR.

After some algebra we obtain

A =
Pb(

1
b
− 1

a

)
− αMDM

αTDT

(
1
b
− 1

R

) , (3.33)

where Pb is as defined in (3.32). Thus, using the fact that the flux is αMDMK
∂P
∂r

∣∣
r=a

=

−αMDMK
A
a2 , and substituting the expression into (3.6), the current is

I =
nFA∗αMDTPb

a
[
DT (b−a)
DM b

+ αM
αT

(
a
b
− a

R

)] , (3.34)

where A∗ in this equation is the electrode area (A∗ = 4πa2).

Although this equation for the current preserves the linear relationship that we

desire, it is a complicated expression that involves both the tissue and membrane

properties. Albanese [28] notes that if

DT (b− a)

DMb
� αM

αT

(a
b
− a

R

)
, (3.35)
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then the current simplifies to

I =
nFAαMDMbPb

a(b− a)
, (3.36)

which is independent of the tissue properties. Unfortunately this does not hold in

general, so calibration is difficult because the constants depend on tissue properties,

meaning a simple calibration procedure involving two solutions of known oxygen

concentration in the lab would not give the correct slope or intercept in the linear

relationship for a particular biological tissue.

Real tissue is not homogeneous, so Albanese goes on to consider the same spher-

ical probe with an extra layer to demonstrate how difficult it is to remove the depen-

dence on tissue properties for even just a slightly more complex model (Albanese

suggests that this new layer might physically represent a clot around the electrode

or some collagenous fibers). Equations (3.24) and (3.25) are now replaced by

αMDM
1

r2

∂

∂r

(
r2∂P

∂r

)
= 0, a ≤ r ≤ b, (3.37)

αiDi
1

r2

∂

∂r

(
r2∂P

∂r

)
= 0, b ≤ r ≤ c, (3.38)

αoDo
1

r2

∂

∂r

(
r2∂P

∂r

)
−Q = 0, c ≤ r ≤ R, (3.39)

where the subscript i denotes the inner layer, b ≤ r ≤ c, and the subscript o denotes

the outer layer, c ≤ r ≤ R. The current in this case is

I =
nFAαMD0Pb

a
[
D0(b−a)
DM b

+ αMDo
αiDi

(
a
b
− a

c

)
+ αM

α0

(
a
c
− a

R

)] . (3.40)

We could make a similar argument as before to simplify the denominator, but the

expression is fairly complicated and difficult to satisfy physically. In general, the

idea is that whilst we do have a linear relationship between current and pressure, the

proportionality “constant” depends explicitly on tissue properties, so a calibration

procedure to determine the constant experimentally will not work unless it is done

in the tissue, which is either extremely difficult or impossible. The best we can say

in this case is that we can detect relative changes, that is, increases or decreases in

pressure with regard to other measured values, and that we do not determine the

actual value of the pressure.
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3.2.5 What is diffusing?

Short and Shell [32] claim that there is confusion in the literature over how to

interpret the quantity C that appears in the diffusion equation:

∂C

∂t
= D∇2C. (3.41)

In most instances, such as Fatt [24], Albanese [28], and Kolthoff and Lingane [26],

the quantity C is simply taken as the concentration, and no further justification is

required because there is a clear concentration gradient caused by the probe that

would lead to oxygen diffusing into the electrode. However, Mancy [27] claims that

he only treats C as concentration in order to simplify the discussion, and that C

should really be the chemical potential. The reason being that in solutions with

high salt concentrations, the current generated by the probe is higher than it should

be, indicating a higher oxygen concentration than is actually physically present. He

says that we should correct for the activity of oxygen, because it is the activity that

drives the redox reaction, and this is higher than the oxygen concentration in high

salt concentrations; but Short and Snell [32] disagree, saying that it only makes

sense for C to mean concentration because only concentration is a physical quan-

tity that can diffuse.

Also, when we use Henry’s law to convert from concentration to partial pressure,

we get a diffusion equation for the partial pressure P :

∂P

∂t
= D∇2P. (3.42)

Physically, pressure is not a quantity that can diffuse, so the equation is misleading

in the sense that pressure is not what is diffusing, it is the concentration that is

diffusing, but since we assume that Henry’s Law, C = kP , holds, the pressure must

be varying at the same rate as the concentration, so mathematically the expression

we get for pressure satisfies the same diffusion equation as for the concentration.

3.3 Practical Aspects of Polarography

3.3.1 Original uses in Chemistry

Polarography was first invented by Heyrovsky at Charles University in Prague in

the 1920s [31], [26]. He used what is called a dripping mercury electrode in which
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Figure 3.4: A diagram of one of the first kinds of polarographic probe. Figure from

[31]

one electrode consisted of a glass tube that allowed tiny drops of mercury to fall

onto the solution of interest connected to another electrode. Heyrovsky found that

he got unique current-voltage curves for each electro-oxidizable or electro-reducible

ion in the solution, and that it depended on the concentration of each substance.

With this discovery, Heyrovsky and future chemists were able to determine the

concentrations of different substances within a solution of unknown composition by

examining the current-voltage curve generated by that substance and identifying

the different curves for each substance.

Further developments would follow, starting with Heyrovsky himself and Shikata

in 1925 when they designed an improved version of the dripping mercury electrode,

which they called the polarograph, that recorded the results automatically. Later,

the solid electrodes shown in figure 3.5 would follow, allowing for biological applica-

tions as it removed the use of mercury, which is poisonous to humans and harmful

to biological tissue. According to Hahn [29], Clark type polarographic electrodes

(see figure 3.5) are now used in food, alcohol, aircraft and space industries, and in

soil chemistry, waste water, and sewage management.

3.3.2 Medical Applications

The polarographic probe is considered the “gold standard” for measuring tumour

hypoxia by many medical researchers because it directly sample the tissue in vivo

[11], [12]. However, Hahn [29], a researcher who uses similar probes for determining
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Figure 3.5: Diagram of various types of polarographic electrodes. Of interest is

the “Clark” type electrode, (f), named after its inventor Leyland Clark [29], where

the anode and cathode are encased together in the same electrode covered with an

oxygen permeable membrane to try and ensure that only oxygen is diffusing into

the probe. Clark type electrodes are usually the ones used in medical and biological

applications. Figure taken from [31].
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blood gas contents, disagrees and claims that “it is not unusual to find differences

of [more than] 20%” between different models of polarographic probe when mea-

suring the amount of oxygen dissolved in blood and that the question of accuracy

of measurements is “controversial” . In other words, there is significant debate as

to whether a polarographic probe is actually useful in determining oxygen concen-

tration in human tissue (or biological tissue in general).

For medical purposes, a needle micro-electrode is used. Typically, this means

that the cathode and anode will be made small enough so that they can be encased

together behind an oxygen permeable membrane and put in a hypodermic needle

suitable for insertion into biological tissue, known as a “Clark type” electrode [31]

(see figure 3.5). For instance, Wong et al [12] describes the needle electrode they

used as a gold wire 0.012mm in diameter encased in a steel probe 0.3mm in diam-

eter with a teflon membrane at its tip. Vaupel [15] uses a similar instrument, and

also notes that the probe has sharply ground tips, and that the gold wire cathode is

contained with a recess. As discussed in the mathematical modeling section (3.2),

the small size of the probe ensures that the current reaches its steady state quickly:

both Wong and Vaupel note that their probes have quick “response times”, and

Vaupel in particular claims that his had a response time of less than 500ms.

To measure the oxygen tension in a human tumour, the location of the tumour

must first be identified. Then under anaesthesia, the needle probe is directly in-

serted into the predetermined area. Next, a computer automatically advances the

probe into the tumour in steps of 1mm forwards and 0.3mm backwards, in what is

known as the “pilgrim step” movement. The backward step is to try to alleviate

any extra pressure the probe may have caused before taking the oxygen partial

pressure readings. In total 20-30 measurements are usually made, and the probe

is then retracted and possibly inserted into another location for another track of

measurements. Wong [12] claims that it is best to take about 5 tracks of 20-30

measurements each, and that track position does not matter too much, though it

is obvious that we should try and spread out the locations of the measurements.

Interpretation of Measurements

To classify the patients based on oxygen tension readings, many measures have

been proposed, the one used most often is called hypoxic proportion and it is the

one used by Fyles et al at PMH [11]. Hypoxic proportion is defined as the percent-
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age of readings under a certain value, usually 5mmHg (abbreviated as HP5), and

medical researchers will then use this value instead of the actual oxygen tension

measurements to quantify how hypoxic a tumour is. HP5 values usually have a

strong correlation to the median oxygen tension measurement [11], [12].

Stadler et al [14] proposes that we multiply the HP5 by the volume of the

tumour to get a measure called hypoxic subvolume. He argues that the hypoxic

subvolume, which gives us an indication of the number of hypoxic cells, is a better

prognostic indicator because the more hypoxic cells there are, the more difficult

it is to eliminate them using radiotherapy, and the more likely that there will be

therapy resistant mutations.

In an earlier study by Vaupel et al (1991), as opposed to Fyles et al (2002)

and Stadler et al (1999), using needle electrodes in breast tumours [15], the actual

distribution of oxygen partial pressures were analyzed and compared between nor-

mal and malignant tissue, with the median PO2 being the simplest and clearest

indicator of tumour hypoxia.

3.3.3 Why Partial Pressure?

One question that arises from the mathematical discussion is: Why do we want

the final answer to be in the form of partial pressures? Why apply Henry’s law at

all? It certainly doesn’t make sense to change concentrations to partial pressures

in the chemistry applications. The answer seems to come from one of the first uses

of polarographic sensors in humans: blood gas analysis. In blood gas analysis, we

wish to not only measure the oxygen content in blood, but also in inspired and

expired gases, because we want to determine whether machines such as artificial

ventilators are working, or whether gaseous anaesthetic agents are having an effect.

So it makes sense to talk about partial pressures because we measure the amount

of gas in respirators and anaesthetic agents in terms of partial pressures [29].

The idea is that Clark type polarographic probes can actually be used to measure

the oxygen partial pressure of gases because there is electrolyte within the sensor

itself, which means that oxygen in gaseous form can diffuse into the sensor, dissolve,

and become electrolyzed as before. In this case, and similarly with the measurement

of other gases, such as anaesthetic agents in inspired and expired gases, we have to
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convert back to partial pressures otherwise it wouldn’t make sense. Furthermore,

despite the fact that most oxygen in blood is chemically bound to haemoglobin and

not actually dissolved, Hahn [29] claims the partial pressure of oxygen in blood is

an important indication of lung function, and that the partial pressure of inhaled

anaesthetic agents determines how much is able to pass through the blood brain

barrier .

The point here is that it seems to have become the convention to measure tissue

oxygenation in terms of partial pressures so that we can compare the amount of

oxygen in tissue to other measurements, such as the amount of oxygen they are

inhaling. Indeed, medical researchers such as Fyles [11], Wong [12], and Vaupel

[15], all make sure that their patients are breathing in air with a fixed oxygen

concentration in an effort to control factors that may affect tumour oxygenation.

3.3.4 Calibration

According to Wong et al [12] at PMH, calibration is performed by placing the

probe in sterile 0.9% NaCl solution“though which sterile pure nitrogen and room

air flowed alternately”. Vaupel [15] describes a similar procedure of immersing the

probe in a sterile saline solution, and then calibrating by using pure nitrogen and

air. Hahn [29] also uses two liquids with known PO2 concentrations for calibration,

with the condition that one of them must have zero PO2.

In all cases, a two point calibration procedure is used assuming that the current

is linearly related to oxygen tension as predicted by our diffusion models, allowing

the determination of the slope and intercept of the curve so that we can convert

current to partial pressure. Hahn states that one of the calibration fluids must be

at zero PO2 (both Wong and Vaupel follow this convention when they use pure

nitrogen) because he claims that there is a “quiescent current” present in the in-

strument that is comparable to the output generated by the redox reaction, so he

wants to set the zero explicitly in order to adjust the readings appropriately.

As outlined in the section on the membrane covered electrode, Albanese [28]

argues that this type of calibration procedure is not adequate as we must account

for the different tissue properties. Fatt [24] concurs and claims that such calibration

procedures will, at best, give a relative value of oxygen partial pressure. The
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natural question, then, that one might ask here is whether the absolute values of the

measurements are required, or whether relative changes are sufficient? Silver [31]

asserts that relative changes are sufficient for some applications, citing specifically

that relative changes are useful in determining the effectiveness of agents designed

to raise or lower oxygen tension in tumours in preparation for radiotherapy.

3.3.5 Potential Issues

Several problems with the theory and use of polarographic probes have arisen during

the course of the preceding discussion. I wish to reiterate them and raise a couple

more here:

1. Does Henry’s Law hold in tissue? This is a question that may or may not be

important depending on whether it is crucial for us to actually determine the

partial pressure. If it is, we may need to revise our models and use a more

complex form of Henry’s law since the simple form, C = kP , that is used

only holds under certain ideal conditions (further details on other forms of

Henry’s Law can be found in Appendix A).

2. When solving for the relationship between pressure and current we made

several simplifications, such as the assumption of spherical symmetry of the

probe, and the uniform initial distribution. More complicated geometries have

been used in the literature, (see [24], [29], [30]) but the current always ends

up linearly related to pressure when we assume the simple initial condition.

3. What is diffusing? Physically, it doesn’t make sense to say pressure is diffus-

ing, or chemical potential is diffusing, so the quantity in the diffusion equation

must be concentration. The fact that we write our diffusion equation with

pressure as the variable is misleading, and is only a mathematical expression

that holds because we assume the simple form of Henry’s Law holds. Mancy’s

claim that we should correct for activity in higher salt concentrations is not

supported by any other researcher.

4. Calibration issues: We have discussed at length the problem of calibrating

the probe correctly in tissue. In the next chapter we will see clearly that

calibration must be an issue, as there are impossible negative partial pressures

in our data. Only Stüben [16] makes any mention of negative values in his

results, but he disregards them, and assumes that the readings are in the

range 0-2.5mmHg. Other medical researchers such as Wong [12] and Fyles
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[11] claim that results are “generally reproducible between different centres”

[11] but do not explain what they mean.

5. It is not hard to imagine that inserting a needle into tissue will damage it

and potentially affect the polarographic measurements. Toma-daşu [20], [21],

briefly mentions the problem in her papers that numerically simulate the

polarographic probe, and as discussed previously, doctors use a special move-

ment pattern to try and minimize the damage caused by the probe, but little

else has been done. Perhaps of more importance is whether tissue damage

caused by the probe affects treatment outcome, and a study by Stüben [16]

found that there was no difference between rats that had three needle tracks

and rats with eight needle tracks subsequently treated with radiotherapy.

6. Hahn [29] points out that for blood, much of the oxygen is chemically bound to

haemoglobin and not dissolved, so for a better indication of oxygen content in

tissue we must also consider other factors such as haemoglobin concentration

and the affinity of haemoglobin for oxygen .
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Figure 3.6: A diagram showing the difference in size between the needle electrode

(300µm) and a typical cell (7-15µm). The problem here is that, ultimately, we

would like to measure the oxygen content of each individual cell because it is the

amount oxygen within the cell that determines whether radiation therapy will be

effective. Clearly, the probe is much too large to measure each individual cell, and

what it is probably doing is actually measuring the average oxygen content of the

cells near the probe. Toma-daşu, [20], [21], has run some computer simulations to

show how this effect might come about. Figure from [20]
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3.4 Summary

• Oxygen diffuses into the cathode because of the concentration gradient cre-

ated by the consumption of oxygen at the surface of the cathode: ∂C
∂t

=

D∇2C.

• We assume Henry’s Law, C = kP , holds to get an equation for pressure:
∂P
∂t

= D∇2P .

• An oxygen reduction reaction then occurs at the cathode

O2 + 2H2O + 4e− = 4OH−

, that produces a current proportional to the amount of oxygen present I =

nFAf .

• The flux f is given by Fick’s law j = −Dk(∂P/∂x), and we set f equal to

either −j or |j| to obtain a positive current.

• Modern needle electrodes reach the steady state current in less than 500ms.

• The Cathode (typically gold) is usually about 12µm in diameter, incased in a

needle about 300µm in diameter, and covered by a membrane (usually teflon).

• The Anode, usually silver-silver chloride, Ag+Cl− = AgCl+e−, is a controlled

reaction designed to fix the voltage in the cathode so that it stays in the

desirable “polarized region”.

• To quantify the amount of hypoxia, a measure, HP5, the percentage of read-

ings less than 5mmHg, is often used instead of the actual measurements.
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Chapter 4

The Data and Standard

(Orthodox) Techniques For

Analyzing It

As I mentioned briefly in the introduction, I will be analyzing data from a study

conducted the PMH group [11]. The main aim of their study was to consider the

effects of hypoxia on patients who had just been diagnosed with malignant cervical

cancer and for whom radiation therapy was the only prescribed treatment. The

plan was that all of these patients would receive similar dosages and fractionation

(45-50 Gy in 1.8-2 Gy daily fractions with 16-25 MeV photons) in similar positions

around the pelvis using the same techniques to mimimize side effects (four-field

box technique). Once the treatment was administered, the patient was considered

disease free, and the idea was to chart the time at which these patients suffered a

relapse, or worse, death, and to see whether there was any correlation between the

amount of hypoxia and the length of time that a patient managed to stay healthy

(known as disease free survival, DFS).

4.1 PO2 in Normal Tissue

In order to understand the Eppendorf data we first need a sense of what the oxygen

partial pressure is in normal tissue. Oxygen tension in blood is normally measured

using polarographic probes [29], and it is accepted that blood PO2 is about 75-100

mmHg [51] depending on factors such as age and health, so we would expect the

oxygen tension in tissue to be roughly comparable. I mention the accepted range
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for blood specifically because those measurements were taken after the blood was

extracted from the body and hence should be reliable as many of the issues men-

tioned in the previous chapter have to do with inserting the probe into the tissue.

The only reference to my knowledge that gives values for normal tissue PO2 are

the “transcutaneous oxygen monitor” measurements of oxygen tension by Bartlett

[52]. Despite its name, it is actually just a Clark-type polarographic probe modified

so that it can measure PO2 in tissue simply by attaching it to the skin (hence the

name transcutaneous, which means under the skin). Hypoxia is a factor that affects

how fast or well wounds heal, and often it is used to help determine whether a

patient needs an amputation [52]. From Bartlett’s table (figure 4.1) it is reasonable

to estimate the oxygen tension in normal tissue to be about 50-70 mmHg; certainly

it must be between roughly 30-90 mmHg. Although it is not clear whether readings

taken near the skin remain constant further inside the tissue, Bartlett does mention

that they were able to use the system to help patients with ulcers, so it would appear

that the readings are good for the whole tissue.

4.2 The Data

Two sets of data were received from the PMH group: Oxygen tension data, which

is simply a large number of readings from the Eppendorf probe (given in mmHg)

and survival or DFS data, which is a list of times that indicate whether the patient

had a relapse of cancer after the initial radiation treatment, or whether they were

healthy on last examination. In this thesis I will primarily be analyzing the first set

of data, though the ultimate goal is to see if there is any correlation between the two.

The Eppendorf data contains the track number, and the position along the track

where the measurement was taken (see figure 4.2). There are many anomalous read-

ings, such as negative values for pressure, extremely high values (>100mmHg) that

we would not expect in a tumour (figure 4.3), and sometimes large oscillations be-

tween each reading (figure 4.5) that may be due to the extreme conditions in a

tumour or may be noise in the measurements. However, most of the readings are

in the low PO2 range (0-10 mmHg), which is what we would expect in a tumour

(figure 4.4).

As mentioned before, for reasons that aren’t entirely clear, researchers prefer
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Figure 4.1: Table of PO2 values for normal tissue under different inspired PO2. The

measurements are labeled as “transcutaneous” (under the skin) because they were

taken using a device that measures PO2 by attaching several probes onto the skin.

The point here is that, under normal conditions, oxygen tension in tissue should

be about 50-70 mmHg, depending on the particular part of the body. Figure from

[52]

not to use the actual readings, but a measure called hypoxic proportion. We will

define them more explicitly here for reference later:

• Hypoxic Proportion is defined as the percentage of readings under a certain

threshold value.

Many papers choose 5mmHg as their threshold [11][17], so it is convenient to ab-

breviate:

• HP5 is defined to be the percentage of readings under 5mmHg.

In particular, the PMH group chose 5 mmHg because the median PO2 in their case

was about 5 mmHg. However, not all researchers choose 5mmHg; some choose 10

mmHg (HP10) [19], or even 2.5 mmHg (HP2.5) [18]. These three values (2.5, 5,and

10 mmHg) seem to be the standard choices, although there appears to be no reason

why one couldn’t choose 3 mmHg or 7 mmHg or some other arbitrary value. In
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Figure 4.2: Here are some of the oxygen tension data. There are over 13000 mea-

surements in total. PO2 values are given in mmHg. Notice the impossible negative

value for partial pressure right at the beginning.

Figure 4.3: Here are some anomalous values. As mentioned, normal PO2 in human

tissue is about 50-70 mmHg so these values are abnormally high even for normal

tissue (higher than even PO2 in air, which is 159 mmHg according to the table on

the previous page), or impossibly negative.
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Figure 4.4: Histogram of all the PO2 data. There were 105 patients, each with

about 3-4 tracks of data, and 20-30 measurements per track, amounting to over

13000 measurements. The maximum value was 212.8mmHg, and the minimum

value was -4.3mmHg. From the histogram we can clearly see that most of the data

is between 0-10mmHg and that a surprisingly large portion is negative.
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Figure 4.5: Some plots of oxygen tension versus position. Note the large oscillations

between readings physically millimeters apart that would indicate some kind of

noise or extreme conditions.
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most cases, the choice seems to depend on which will give the lower p-value in the

log-rank test. I have chosen to report HP5 in subsequent chapters as a decimal

(e.g. 0.56) as opposed to a percentage (56%) for convenience in typesetting.

4.3 Correlation between HP5 and Median PO2

Fyles et al [11] find a strong correlation between HP5 and median PO2, based on

the calculation of the Spearman coefficient of rank correlation, which is given by

R = 1−
6

n∑
i=1

D2
i

n(n2 − 1)
. (4.1)

Briefly, to calculate the Spearman coefficient, for a measured set of paired data

(xi, yi) (in our case the HP5 and median PO2 for each patient), the first step is to

rank each xi and yi in either ascending or descending order (doesn’t matter which

as long as you do the same to both) to get a new set of ranked data (Xi, Yi). Then,

this set of paired ranked data are used as an approximation of the true correlation

coefficient ρ, instead of the actual data, using the formula for R above - see Ap-

pendix B for a full derivation of equation 4.1.

The Spearman correlation coefficient, with −1 ≤ R ≤ 1, gives us a sense of

whether the pairs (xi, yi) vary together, that is, whether if the increase in one

will have any effect on the increase or decrease of the other. Fyles et al obtain

R = −0.91 for HP5 and median PO2 and, using what should be the same data, I

obtain R = −0.92. Thus, this means that it is very likely that as the median PO2

increases HP5 will decrease.

For comparison, consider the usual correlation coefficient in standard orthodox

statistics [47]

r =

n∑
i=1

(xi − x̄)(yi − ȳ)[
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

] 1
2

, (4.2)

which is often written as

r =

n∑
i=1

xiyi − nx̄ȳ

(n− 1)sxsy
, (4.3)
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Figure 4.6: To calculate the Spearman correlation coefficient between two sets of

values, we first rank each set in order, calculate the square of the difference in ranks,

then plug them into the formula 4.1, with Di = Xi − Yi.

where x̄, ȳ are the sample means, and sx, sy are the sample standard deviations,

given by

sx =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2, (4.4)

and similarly for sy. Using this measure of correlation we get r = −0.74, which

still indicates negative correlation, though not as strong. The difference between

the two measures of correlation is that for the standard correlation we are testing

for linear dependence between the two variables, whereas for Spearman we do not

make any assumptions about the form of the population distribution.

In my opinion, real question here is why one even uses HP5 or median PO2 in

the first place? There is no real mathematical or biological justification for either

choice in any of the medical literature (e.g. [11][12][14][15][16][17][18][19]) and we

will see shortly that it is not completely clear whether there is any correlation

between HP5 and survival.

4.4 Survival Data and its Analysis

The survival data is simply a list of two numbers for each patient (see figure 4.7).

“Event” indicates whether the patient has suffered a relapse or death (labeled as

1), or whether he or she was alive and healthy during the last checkup (labeled as

0). The column labeled “Time” is known as the study time, and it is the time from

when that particular patient entered the study to the time of relapse or death, or

the time of last checkup.
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Figure 4.7: Here is some of the survival data. Event indicates whether the patient

has suffered a death or relapse (1) or whether he was disease free at time of last

checkup (0). Time is in years.

Since the event that we want to consider is relapse of the cancer or death due

to the cancer, the survival data will often be incomplete because not all patients

will have encountered that event at the time of analysis. For example, a patient

could have stayed healthy and so we do not know when (or if) he or she will have

a relapse, or, another patient might move out of the country and not return for

regular checkups so we lose contact with them, or, yet another patient might have

died in a car crash and not because of the cancer, so again, the relapse time is

uncertain. In any case where we do not have information as to when exactly the

patient suffered a relapse all we know is that the time to the event is at least as

much as what we have recorded. In survival analysis this kind of incomplete data

is called right censored because if we think of time as the x-axis, then we do not

know what happens past a certain point to the right of the graph.

Both Collet[45] and Pintilie [46] mention that it is important that the mecha-

nism that caused the patient to be censored must be independent of the survival

time t, called “non-informative censoring”, so that a censored patient is just as

representative of a patient who survived up to time t as any other patient. For

instance, a patient who died because of catastrophic liver failure due to the can-

cer metastasizing would be “informative censoring” because the cause of death is

related to the event we are interested in. Whereas dying in a car crash due to a

drunken driver would be non-informative. We will assume, or make sure, that all

the censoring in our data is non-informative to simplify the analysis.

In survival analysis we wish to estimate the survival probability, or survival
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function, of the patients over time. Mathematically, following Collet [45], let T

be a random variable that represents the survival time of the patient. We define

the survival function, S(t), as the probability that the patient will have survived

at least up to time t:

S(t) = P (T ≥ t) = 1− F (t), (4.5)

where F (t) is cumulative probability distribution function of T

F (t) = P (T < t) =

∫ t

0

f(u)du, (4.6)

and f(u) is the probability density function for T . In many cases, researchers prefer

to express their result in terms of the hazard function, which is the instantaneous

death (or relapse) rate at time t, provided he or she has survived up to that time:

h(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
. (4.7)

In other words, h(t)δt is the probability that a patient dies (or suffers a relapse)

in the interval (t, t + δt) conditioned on that person having survived to time t.

For instance, if we measure time in days, then h(t) is approximately the time the

patient will die the next day if he or she were alive on day t. Using the product

rule, we can rewrite the hazard function in the following way:

h(t) = lim
δt→0

{
P (t ≤ T < t+ δt|T ≥ t)

δt

}
,

= lim
δt→0

{
P (t ≤ T < t+ δt)

δtP (T ≥ t)

}
,

= lim
δt→0

{
F (t+ δt)− F (t)

δt

}
1

S(t)
,

=
f(t)

S(t)
.

Comparing this to 4.5 and 4.6 we get

h(t) = − d

dt
{log S(t)}. (4.8)

If we define the cumulative hazard function H(t) as

H(t) =

∫ t

0

h(u)du, (4.9)

then the survival function can be written as

S(t) = exp{−H(t)}. (4.10)
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Depending on the situation, one might want to express the probability of survival in

terms of any one of these functions. In any case, the idea is that if we can estimate

one of S(t), h(t), or H(t) from our data then we can derive the others as desired.

For some insight on how to estimate survival, first consider the simple case

where there are no censored patients. In that case, an obvious choice would be the

empirical estimate:

Ŝ(t) =
Number of individuals with survival times ≥ t

Number of individuals in the data set
. (4.11)

Notice that the estimated probability of survival is exactly 1 before any patients

die, and is exactly 0 after all patients have died. We assume Ŝ(t) to be constant

between deaths, so it is simply a step function that drops down every time there is

a death.

Example. Following Collet [45], suppose we have the following list of survival times

for something that eventually fails, say the time at which light bulbs burn out:

11 13 13 13 13 13 14 14 15 15 17 (4.12)

The empirical survival function will be constant between the failure times 11, 13,

14, 15, and 17, and the value in those intervals are respectively 0.909, 0.455, 0.273,

and 0.091, attained by using equation 4.11. See figure 4.8.

For censored data, the Kaplan-Meier estimator is the most commonly used

method for estimating the survival function. It was first proposed by Kaplan and

Meier in 1958 [48] and actually reduces to the empirical estimate in the case where

there are no censored data.

Suppose that we have survival times for n patients, t1, t2, ..., tn. Some of these

may be right censored, so we suppose that we have r unique death times (i.e. more

than one patient may die at that time), with r ≤ n, and order those death times

in ascending order t(1) < t(2) < ... < t(r). Let nj, j = 1, 2, ..., r, be the number of

individuals who survive up until time t(j) (known as the number at risk at t(j)), and

dj be the number who die at this time. Now consider the time interval [t(j), t(j+1)).

As before, we assume that the probability of survival is constant between events, so

from the way we have constructed the intervals, the probability of survival in this

interval is the probability of surviving the event at t(j), and that is estimated by
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Figure 4.8: A plot of the estimated survival function from example 4.4.

(nj−dj)/nj. Assuming that deaths occur independently, we get that the estimated

survival function is given by

Ŝ(t) =
k∏
j=1

(
nj − dj
nj

)
, (4.13)

for t(k) ≤ t < t(k+1), with k = 1, 2, ..., r, and t(r+1) taken to be ∞. Notice that

Ŝ(t) = 1 for t < t(1) as before, and Ŝ(t) = 0 for t > t(r) if t(r) is an actual death

time and not a censored time. Also when there are no censored patients, nj would

be equal to nj−1 − dj−1 for all j, thus:

Ŝ(t) =
k∏
j=1

(
nj − dj
nj

)
,

=
nk − dk
nk

· nk−1 − dk−1

nk−1

· · · n1 − d1

n1

,

=
nk − dk
n1

.

Since n1 = n and nk−dk would be the number of survivors at time t, this is exactly

the empirical survival estimate 4.11. In other words, the Kaplan-Meier estimate

is simply a more sophisticated version of the empirical estimate that takes into
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account right censored patients.

The preceding was a somewhat heuristic justification for the Kaplan-Meier esti-

mator modified from Collett [45] and it can actually be derived using maximum like-

lihood as follows from Pintilie [46]. In the discrete case where the random variable

for survival time T can only take on discrete values t1, t2, ..., with 0 ≤ t1 < t2 < ...,

the survival function is given by

S(t) = P (T > t) =
∑
tj>t

P (T = tj). (4.14)

The hazard function is

h(tj) = P (T = tj|T > tj−1) =
P (T = tj)

S(tj−1)
,

= 1− S(tj)

S(tj−1)
, (4.15)

and so induction yields

S(t) =
∏
tj≤t

[1− h(tj)] . (4.16)

Now let mj be the number of individuals censored in the interval [t(j−1), t(j)). The

likelihood function is

L =
r∏
j=1

[
S(t(j−1))− S(t(j))

]dj S(t(j−1))
mj , (4.17)

then, substituting S(t) for the hazard h(t) using equation 4.16, and using the short
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hand hj = h(tj), provides the following simplification:

L =
r∏
j=1


[
j−1∏
i=1

(1− hi)−
j∏
i=1

(1− hi)

]dj [j−1∏
i=1

(1− hi)

]mj ,

=
r∏
j=1


[
j−1∏
i=1

(1− hi)

]dj
[1− 1 + hj]

dj

[
j−1∏
i=1

(1− hi)

]mj ,

=
r∏
j=1

hdjj
[
j−1∏
i=1

(1− hi)

]dj+mj ,

=

{
r∏
j=1

h
dj
j

}{
r∏
j=1

j−1∏
i=1

(1− hi)dj+mj
}
,

=

{
r∏
j=1

h
dj
j

}{
r∏
i=1

r∏
j=i+1

(1− hi)dj+mj
}
,

=

{
r∏
j=1

h
dj
j

}{
r∏
i=1

(1− hi)
r∏

j=i+1
(dj+mj)

}
,

=

{
r∏
j=1

h
dj
j

}{
r∏
i=1

(1− hi)ni−di
}
,

=
r∏
j=1

h
dj
j (1− hj)nj−dj .

Taking logarithms of both sides and differentiating with respect to hj gives

∂log L

∂hj
=
dj
hj
− nj − dj

1− hj
. (4.18)

So the maximum occurs when

ĥj =
dj
nj
, (4.19)

and hence the maximum likelihood estimate of the survival function S(t) occurs

when this value of h(t) is plugged into equation 4.16 to get

Ŝ(t) =
∏
tj≤t

(
1− dj

nj

)
=
∏
tj≤t

(
nj − dj
nj

)
, (4.20)

which is exactly equation 4.13 but with slightly different notation. For information

on how to calculate and derive quantities such as the variance and 95% confidence

interval for the Kaplan-Meier estimator, the reader is referred to Collett [45] or

Pintilie [46]. The results of applying the Kaplan-Meier estimator to the data from
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Figure 4.9: This is what R, a commonly used free statistical computation program,

gives when calculating the first few Kaplan-Meier estimates. The first entry is

peculiar because the data I got had 17 patients all dying or suffering a relapse at

t=0.003. This would suggest that these 17 entries are actually left censored, that

is, the actual time of event is less than 0.003 but was only discovered then because

that is when they had a routine check up. However, we will assume that is not the

case. R uses slightly different notation than I have in the text: time are the event

times t(j), n.risk is nj, and n.event is dj. More information on how the standard

error and confidence intervals are calculated can be found in [45] and [46].

the PMH group are shown in figures 4.9 and 4.10.

A further analysis of the survival data was done in order to test whether HP5

has any effect on survival. Fyles et al split the patients into two groups based on

their HP5: they classify patients with HP5>.5 as hypoxic (i.e. badly oxygenated)

and patients with HP5<.5 as oxic (i.e. well oxygenated), and the survival prob-

ability of the two groups were compared. Similar to the choice of 5mmHg as the

threshold for hypoxic proportion, the choice of 50% as the threshold for splitting

is also arbitrary and is again because the median HP5 is about 50% [11]. The

idea is that, based on our discussion on the oxygen fixation hypothesis and how

hypoxia adversely affects radiotherapy, we would expect the hypoxic group to fare

much worse than the oxic group, and using the Kaplan-Meier estimator and log-

rank test (reviewed in Appendix C) we would like to see if that is actually the case.
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Figure 4.10: This is a Kaplan-Meier plot of the survival data from the PMH group.

The solid curve in the middle is the Kaplan-Meier estimate of the survival function,

the vertical dashes on the curve indicate places where patients were censored out

of the study, and the dotted lines indicate the 95% confidence interval about the

Kaplan-Meier estimate. Care must be taken when interpreting survival plots such

as these because we have assumed that the survival probability is constant between

events. Peto [44] warns us that “any conclusion based on the fine detail of such

a graph is likely to be wrong” and that it is only the general shape of the curve

that is informative. Despite this warning, these graphs are often used to estimate,

say, the “three year survival rate” which from my plot is roughly 54%, in broad

agreement with the 53% reported in Fyles et al [11].
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To begin, it is often quite informative to simply compute and plot the Kaplan-

Meier curves for each group. As we can see in the plot of our data in figure 4.11,

the hypoxic group clearly has a much lower survival probability, and from that we

can surmise that there is probably some correlation between HP5 and survival. In

particular, we might conjecture that patients with high HP5 (i.e. more hypoxic

tumours) are less likely to survive.

Figure 4.11: A plot of the data stratified by HP5 into two groups. It is fairly clear

from this plot that one group has a higher chance of survival, at least for the first

8 or 9 years or so.

Simply making observations from a plot is fairly vague, so we turn to the log-

rank test to try to quantify how much worse the patients with hypoxic tumours

are doing compared to the oxic group. For the data that I received, I obtained

a log-rank p-value of 0.063 when comparing the survival of the oxic group to the

survival of the hypoxic group. However Fyles et al [11] report that they obtained

p=0.004, so there is a (rather large) discrepancy between our results. The most

likely explanation is that the survival data that I received in 2006 had been up-

dated since the original publication in 2001. Indeed, the PMH group themselves
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published a revised paper in 2006 [13] in which their log-rank p-value for HP5 was

now 0.05, which is in much closer agreement with my calculation.

4.5 Some Critical Comments

The discrepancy between the Fyles et al’s initial result and the other two results

is important because in orthodox statistics it is conventional to consider a p-value

of less than 0.05 to be “statistically significant”. That is, we normally require a p-

value of (much) less than 0.05 to reject the null hypothesis, and the later results do

not allow us to do so, seemingly indicating that the updated data undermines the

result of their earlier study. However, the choice of 0.05 for statistical significance

is once again completely arbitrary, so we might still find that the null hypothesis is

not plausible given the higher, but still very low, p-values. Further, not being able

to reject the null hypothesis may seem like a problem at first glance, but in reality,

it is only marginally less informative than if we had been able to reject it.

Figure 4.12: Here is what R outputs when computing the log-rank test. As men-

tioned earlier, all we need are the total number of observed deaths and the total

number of expected deaths in order to compute the log-rank statistic, shown in the

column on the far right.

The issue here is whether “statistically significant” is the same as practical sig-

nificance, and whether we require the result of the log-rank test to validate our

claim that patients with more hypoxic tumours are less likely to survive. Arm-

strong [22][23] argues that the answer is no to both those questions. He claims

that there is a large body of evidence to show that, in many cases, significance

tests such as the log-rank test are misleading and misinterpreted [22], that matters
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which are statistically significant are often not physically relevant, and conversely

that factors that are practically important are often discounted by significance test-

ing. Moreover, he asserts that there is absolutely no empirical evidence to support

that significance testing actually helps researchers under any circumstance at all

and has in no way advanced scientific understanding in any area [22][23]. Thus,

Armstrong calls for scientific journals, especially those in the social sciences, to

stop requiring that researchers include results of significance testing as (erroneous)

evidence to support their claims.

The main problem with significance testing is the null hypothesis. The null

hypothesis is often chosen for its simplicity, and Armstrong [22] remarks that some

researchers mockingly call it the “nil hypothesis” because often a rejection of such

a simple hypothesis tells us nothing new. In our case, the rejection of the null

hypothesis simply tells us that the survival probability of the two groups are dif-

ferent, not how or why they are different, just that they are different, and we knew

that already from the Kaplan-Meier curves. Rejection of the null hypothesis only

eliminates one possibility out of a large number of potential explanations and does

not shed any light on any of these other explanations.
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Chapter 5

Bayesian Data Analysis - The

Basics

Before we consider in depth what it means to analyze data from a Bayesian per-

spective, perhaps it is best to consider a concrete example. With the widespread

use of the internet and email these days, much of the email that we receive is junk,

or spam, and we depend on spam filters to eliminate these potentially harmful

(virus ridden) emails from our inboxes. It may come as a surprise that spam filters

actually make use of probability theory to determine what is and isn’t worth our

time. To determine whether an email is spam, we need to consider its contents. For

instance, how do we know if an email is spam if it contains the word “free”? The

email in question could very well be spam, trying to trick its recipients by offering

free trips or gifts and so on, or it may be an email from a colleague about “free

form solutions” and “free energy systems”, or it may even be a legitimate email

from a friend who actually got a gift and is telling you how he got it. How do you

know? A human would be able to deduce, to a great degree of certainty, whether

the email was spam simply by reading it. He or she would be able to tell by noting

who the sender was, how the email was written, what tone of voice was used, and

so on, but a computer doesn’t posses the cognitive ability to distinguish spam from

legitimate emails, it doesn’t understand how to decipher meaning from prose (since

humans don’t exactly know how their brains do it either), so the best a computer

program can do, based on prior user and programmer input on what is and ins’t

spam, is offer a probability.

To figure out the probability that an email is spam given that the word “free”

is used, we need to appeal to Bayes’ theorem to reverse the dependence and get the
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probability that we want in terms of quantities that we can obtain:

P (An email is spam|free) =
P (free|An email is spam)P (An email is spam)

P (free)
.

(5.1)

The probability on the left hand side is the one that we want to calculate and it is

normally referred to as the posterior probability. The probabilities on the right are

all ones that we can estimate by gathering data:

• P (free|An email is spam) is the probability that a spam email contains the

word “free”. This probability can be estimated initially by collecting a large

number of known spam emails and noting whether “free’ appears in them.

It is then customizable for each user by flagging certain emails as spam, or

by telling the filter that a certain email it thought was spam is actually not.

This ability for the filter to learn as new information becomes available is one

of the key advantages of the Bayesian formulation. In general, we call this

probability the likelihood function.

• P (An email is spam) is the probability that you would get a spam email in

general, which we can estimate by collecting data on a large number of emails,

and is independent of the user since we would expect, on average, for each

person to have the same probability of receiving spam. That may not be the

case, the user might be more susceptible to spam because he or she published

their email on a website to attract more attention to their online store say, and

so in reality this probability is conditional on the user and possibly other prior

information. That is, it should really be denoted as P (An email is spam|user)

. This probability is normally called the prior probability.

• P (free) is the probability that the word “free” will appear in any given email

(written in English). Again, we can estimate this by looking at lots of emails

since this probability is also independent of the recipient. We call this prob-

ability the evidence.

If we wanted to consider more words, let’s denote them as some set {words}, we

would simply extend the previous formulation to consider joint probabilities instead:

P (An email is spam|{words}) =

P ({words}|An email is spam)P (An email is spam)

P ({words})
(5.2)
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A more thorough and entertaining discussion on Bayesian spam filtering can be

found online in an article by Paul Graham [7]. He proposes methods for dealing

with more complicated situations such as when there is capitalization (FREE) and

when there is punctuation (FREE! vs FREE!!!! etc), and notes that a filter that

only deals with the appearance of individual words, and not more complex struc-

tures such as where the word appears in a sentence and so on, is adequate for

catching most spam. The only problems he has are with emails that are purport-

edly from members of the opposite gender soliciting discrete affairs that do not use

words which commonly appear in spam. What’s most interesting is that Graham

claims that if the word “free” appears in the subject line of an email, then the

probability that it is spam is an astonishing 99.99%!

In essence, what we have done here is to tell the computer how to make an

educated guess as to whether a given email is spam or not, given the appearance of

certain words, sentence structures, attachments and so on. In other words, we told

it how to make a best guess. In general, the process of making a guess based on

available data and previous information is known as induction or logical inference.

Some might call the process prediction, but we will see that they are essentially the

same thing. Bayesian inference methods quantify this process by taking advantage

of probability theory and Bayes’ theorem.

Key questions that arise from this brief discussion:

• Why probability theory?

• What does Bayes’ theorem mean?

• How do you prescribe the prior, likelihood function, and evidence?

63



5.1 Induction and Plausible Reasoning

Figure 5.1: The scientific method.

The idea of induction or plausible reasoning is

one that we encounter everyday. Imagine that

there are ominous dark clouds in the sky, what

do you do? Do you bring an umbrella? Do

you stay home? How much faith do you have

in the weather report? Will there be a traffic

jam on the highway? How do you make those

decisions? The best we can do take into ac-

count previous experiences (e.g. snow storms

usually occur around this time of year), along

with the current information (the dark clouds

and weather reports), and make a guess as to

what will happen next because we are not God,

and we do not have any means of knowing for

certain whether it will rain or not. In the words

of E.T. Jaynes [1], we live in a world of “in-

complete information”, that is, we only have

access to what we can observe (such as the dark

clouds) and not the underlying processes. We

could develop a complicated model with mil-

lions of variables, compute the equations on a

super-computer, and find that our model does a good job of predicting the weather,

but we will never be 100% sure that we are correct, and just one unexpected storm

will throw our equations into doubt. In other words, we can only make reasonable

inferences, educated guesses if you will, and not deductions about almost every-

thing in life.

Further, consider for a moment what we would normally describe as the scien-

tific method. For a physical phenomenon that we are interested in, we follow the

scheme summarized in figure 5.1 to conduct our experiments. Thus one might argue

that analyzing data and performing logical inference based on the data is the key

to doing real science, that discovering hidden patterns and information within the

data will lead to new scientific breakthroughs, and hence that developing powerful

and consistent ways of performing data analysis and logical inference is important

and meaningful.
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In general, plausible reasoning is the way through which we perform logical

inference. If we see dark clouds in the sky, it seems more plausible that it will rain;

it might not, but one would be more inclined to believe that it will. How do we

quantify this mathematically?

5.2 Probability Theory - Rules for Consistent Rea-

soning

It turns out that standard probability theory is precisely what we need to describe

the process of logical inference and plausible reasoning.

5.2.1 Degrees of Belief

The first question we need to answer is how do we quantify belief, or rather, relative

degrees of belief ? One thing that humans do is they have some kind of measure of

how much we believe something, which we will call our degree of belief. Belief is

not black or white - we do not believe something to be true just because someone

tells us it is so - most humans are naturally skeptical unless presented with some

kind of evidence, and even then we may question the evidence before us. However,

belief can be many shades of grey. If Stephen Hawking tells us that black holes

exist, we tend to believe him even though we may not even understand what black

holes are. On the other hand, if Barack Obama tells us not to worry, and that he

will solve the financial crisis, we might not believe him so readily. The point here

is that we are capable of different degrees of belief, capable of believing one thing

more than another, and as intractable as that may sound, such a measure of belief

has to follow certain logical rules.

Going back to the rain example, you would be more likely to believe the weath-

erman than your butcher on whether it will rain in the next few hours, and likewise

more likely to believe your butcher than your infant son on the same matter, so it

stands to reason that you would always prefer the forecasts of the weatherman over

those of the baby. Such reasoning is transitive; that is, if we believe A more than B,

and B more than C, then it has to be that we believe A more than C. Otherwise,

our logic would be inconsistent and nonsensical. Real numbers have precisely
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this property, and so we quantify degrees of belief with real numbers,

assigning larger numerical values to propositions we believe more.

5.2.2 Sum and Product Rule

Once we accept that degrees of belief can be represented by real numbers, we need

to develop rules to specify logical reasoning. According to Sivia [2], Richard Cox in

1946 reasoned that if we specify how much we believe a certain proposition, X, to

be true, then we have automatically specified how much we believe it to be false.

This piece of simple insight eventually led to the sum rule of probability:

P (X|I) + P (X|I) = 1, (5.3)

where P (X|I) is the probability that X is true given some background information

I, and X denotes the proposition that X is false. At the two extremes, it is

convention that we have 0 = P (false), and 1 = P (true). Cox also argued that if

we specify how much we believe Y to be true, and also how much X is true given

that Y is true, then we have also specified how much we believe X and Y to be

true at the same time, giving the product rule of probability:

P (X, Y |I) = P (X|Y, I)P (Y |I). (5.4)

All of the above probabilities are conditioned on some background information I to

remind ourselves that in real life we always have some kind of previous knowledge

upon which we base our beliefs. Jaynes [1] in particular makes a big fuss in his

opening remarks about how this previous knowledge is often ignored by researchers

and not put to good use to better their analysis. The I will often be omitted

later but it will always be implied. One might ask why Cox’s argument should

lead to the usual rules of probability, and the answer is that he derived the results

by considering boolean logic and imposing the consistency requirement that any

method of analysis given the same information should always lead to the same

conclusion. For a more rigorous derivation see appendix B of Sivia [2] and chapter

2 of Jaynes [1].

5.2.3 Bayes’ Theorem

A simple consequence of the product rule 5.4 is Bayes’ theorem. Notice that the

joint probability P (X, Y |I) has to be the same as P (Y,X|I), so we must have that

P (X|Y, I)P (Y |I) = P (Y |X, I)P (X|I). (5.5)
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A simple rearrangement yields

P (X|Y, I) =
P (Y |X, I)P (X|I)

P (Y |I)
. (5.6)

This theorem is the crux of logical inference and Bayesian analysis (hence the

name) because it reverses the dependence of the variables. In particular, given

some experimental data and a theory or hypothesis that we want to test, we would

estimate the probability that our hypothesis is true as follows:

P (hypothesis| data, I) =
P (data| hypothesis, I)P (hypothesis| I)

P (data| I)
. (5.7)

Or, more generally,

Posterior =
Prior × Likelihood Function

Evidence
. (5.8)

The posterior probability is the probability that our hypothesis is true, given the

data and prior information. In other words, it is our inference from the observations

as to how much we believe a certain proposition. The situation is not dissimilar

to that of a jury trying to decide whether the defendant is guilty or innocent after

being presented with evidence from the prosecution and a counter argument by the

defence. If the defendant did indeed stab the victim, then there is a good chance

that the victim’s blood would splatter onto defendant’s clothes. So if we do indeed

find blood on the defendant’s shirt, we would be inclined to believe that he or she

did commit the crime, but we would not be 100% sure as there might be other

explanations. Similarly in Bayes’ theorem, the likelihood function computes the

probability of obtaining the observed data if the hypothesis were true, and, along

with the estimates for the other two probabilities, gives us an estimate of whether

the hypothesis is then likely to be true based on the data.

5.2.4 Marginalization

Another consequence of the sum and product rules is the idea of marginaliza-

tion. Consider two propositions X and Y . Adding the probabilities P (Y,X|I) and

P (Y ,X|I) and using the product rule we get

P (Y,X|I) + P (Y ,X|I) = P (Y |X, I)P (X|I) + P (Y |X, I)P (X|I),

= [P (Y |X, I) + P (Y |X, I)]P (X|I),

= P (X|I).
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Since the order of the joint probabilities doesn’t matter, we also have that

P (X|I) = P (X, Y |I) + P (X, Ȳ |I). (5.9)

This expansion is rather interesting as it eliminates the Y dependence in the two

joint probabilities and leaves behind only the probability of X alone. In general,

suppose we had a set of mutually exclusive and exhaustive propositions {Yk}, k =

1, 2, ...,M so that
M∑
k=1

P (Yk|X, I) = 1, (5.10)

it will be true that

P (X|I) =
M∑
k=1

P (X, Yk|I). (5.11)

So in the continuum limit, we have

P (X|I) =

∫ ∞
−∞

P (X, Y |I)dY, (5.12)

where P (X, Y |I) is now interpreted as the probability density rather than the

probability. Marginalization is actually a very powerful tool because it allows us

to eliminate nuisance parameters - parameters that we do not know or do not

care about. Imagine that you wanted to estimate the average height of a first

year student. It is reasonable to assume that heights are normally distributed but

we do not know anything about the variance of the heights, so we would have to

estimate it as well. Since we do not care about the spread of the heights, we can use

marginalization to eliminate variance from our model, and estimate just the mean.

Sivia [2] explains how to employ marginalization to remove background noise from

a signal in chapter 3 of his book.
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Chapter 6

Estimating the HP5

Armed with the basic tools of probability theory, we can now actually set out

to estimate the HP5 in a very simple and straightforward manner. Recall that

HP5 is defined as percentage of readings under 5 mmHg. So all we care about

is whether the measurement is above or below 5 mmHg and the actual numerical

value of the reading doesn’t matter. With each piece of data reduced to only

two possible outcomes, what we have here is simply a Bernoulli trial, with success

meaning the reading is less than 5 mmHg and failure meaning it isn’t, and HP5

is really just intuitively the probability that any given reading is below 5 mmHg.

(A tacit assumption we have made here is that each reading is independent, which

seems plausible, though may not be the case given how the needle probe advances

through the tissue.) To analyze the very general situation of finding the probability

of success in a Bernoulli trial, let us consider the concrete example of flipping a coin.

6.1 Motivation: Coin Flipping - How do you know

if a coin is fair?

Suppose that we have picked up some coin of unknown origin. Assuming that we,

or whoever flips the coin, do not have any special way of flipping a coin to generate

a certain outcome, what is the probability of getting heads on any flip? If the coin

were fair then we would know that the probability for heads is 1/2 and similarly

the probability of getting tails is 1/2, but in practise one would not know that a

priori, and the only thing that can be done is to flip the coin many times, and try

to guess from the data whether the coin is fair or not. That is, we want to estimate

the probability of getting a heads (and hence the probability of getting a tails) on
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any given flip.

To that end, let’s assume that we have flipped the coin several times and col-

lected some data, which we denote as {D}. {D} can be many flips, say several

hundred, or it can be as few as one, all that will change is the level of confidence

we have in the outcome of our analysis. Now define H to be our bias factor (which

is just a fancy name for the probability of obtaining heads), with 0 ≤ H ≤ 1,

and we wish to estimate H, or more precisely H given our data {D}, denoted by

P (H|{D}, I). As Bayesians, we will of course appeal to Bayes’ theorem:

P (H|{D}, I) =
P ({D}|H, I)P (H|I)

P ({D}|I)
. (6.1)

It must be stressed here that the probability that we are trying to obtain, P (H|{D}, I),

is the probability distribution for H that encapsulates our degree of belief for any

value, or range of values, of H given our data {D}. It in no way means that we

have assumed H to be a random variable. We have, in fact, assumed quite the

contrary; we have assumed that H is fixed. The thing is, we do not know what the

value is so the best we can do is say that we believe it to be a certain value to a

certain degree of confidence, expressed in the form of a probability distribution.

6.1.1 Prior Probability

Assuming that we have no prior information that leads us to favor any value, or

range of values, of H over any other, the prior that correctly expresses our complete

ignorance will be the uniform prior:

P (H|I) =

1 if 0 ≤ H ≤ 1,

0 otherwise.
(6.2)

In other words, we are positing that all values of H between 0 and 1 are equally

likely because we have no reason to believe otherwise. I think that the assignment

of the uniform prior, given that we have no prior information about H, is plausible

and reasonable, and a more formal mathematical justification is given in Appendix

E (known as the principle of indifference). If we had some other information about

what the value of H was, then we would have to choose a different prior that

reflects this extra knowledge. How we choose that prior will depend on the type

and specificity of the information that we are given, and there is extensive debate

and much controversy over what is the correct way to do this. The most common
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way of assigning probabilities, the principle of maximum entropy, is the focus of

the Appendix E.

6.1.2 Likelihood Function

Since the only possible outcomes are heads or tails, and assuming that the flips are

independent of each other, it seems intuitively obvious that the likelihood function,

which is the probability of getting the observed data given a certain value of H,

should be the binomial distribution:

P ({D}|H, I) =

(
n

r

)
Hr(1−H)n−r, (6.3)

where n is the total number of tosses or trials, and r is the number of heads or

successes recorded. A formal derivation of this pdf is given in Appendix D; we will

simply take it for granted here that the likelihood function must be binomial.

6.1.3 Evidence

Since the evidence term, P ({D}|I), does not depend on the bias weighting H, it is

constant with respect to H, and will simply act as the normalization constant

P ({D}|I) = c. (6.4)

The evidence term is, in general, constant in situations such as the coin flip where

we are trying to estimate an unknown parameter.

6.1.4 Posterior

Putting everything together and applying Bayes’ theorem (5.6), we get for the

posterior

P (H|{D}, I) =

C ·Hr(1−H)n−r if 0 ≤ H ≤ 1,

0 otherwise,
(6.5)

where C is a constant chosen to normalize the probability. Normally, C will be

determined numerically, but it turns out that in this case we can determine C an-

alytically so I will do so as follows. We will need this result later in Appendix G

when looking at Laplace’s rule of succession.
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To normalize the probability distribution, we need C to satisfy the following

condition: ∫ 1

0

C ·Hr(1−H)n−rdH = 1. (6.6)

The integral on the left hand side is a standard integral known as the beta function

and has the following nice form:∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
. (6.7)

Combining (6.6) and (6.7) we get

C =
(n+ 1)!

r!(n− r)!
. (6.8)

So the posterior distribution for the bias parameter H is in fact

P (H|{D}, I) =


(n+1)!
r!(n−r)!H

r(1−H)n−r if 0 ≤ H ≤ 1,

0 otherwise,
(6.9)

where n and r would be plugged in from our data. This simple equation is our

best guess as to whether the coin is fair, and even though it looks exactly like

the likelihood function, the variable here is H, whereas before we were assuming

H was fixed, and n and r were the variables. Equation 6.9 is more precisely the

probability density function (pdf) for H given our data {D}, and it is a function

that succinctly encapsulates how much we believe each value of H between zero

and one to be the true value of H. The higher the value of P (H0|{D}, I) for some

fixed H0, the more we believe H0 to be the actual value of H, and the value of H0

that maximizes the pdf is our best estimate.

Example. To see what this analysis yields, suppose we had flipped a coin 50 times

and it had come up heads 37 times. Such a result would lead us to believe that

the coin is biased towards heads since heads came up almost three times more than

tails. Using our previous analysis we would get that

P (H|{D}, I) =


(51)!

37!(13)!
H37(1−H)13, if 0 ≤ H ≤ 1,

0, otherwise.
(6.10)

This equation isn’t too illuminating on its own, but looking at the plot (figure 6.1

of the probability distribution for H confirms our suspicions that the coin may be

biased because the probability that the coin is fair, H = 0.5, is almost zero, and that

the more probable values of H are all larger than 0.5, with the maximum at about

H = 0.75.
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Figure 6.1: A plot of the pdf in example 6.1.4. Based on this plot (i.e on the data),

we would not believe the coin to be fair.

As explained earlier, the preceding analysis is equally valid for estimating the

HP5 of a tumour, so I will be using the result, equation 6.10, without modification

to estimate the HP5 of a patient based on the oxygen probe measurements for that

patient. Before presenting the results, there are some details regarding the pdf that

we need to consider.

6.2 Sequential data analysis

In practice, data is likely to be accrued over time, so one might ask: should we wait

until we have all the data, or can we analyze what we have already, and update

our analysis accordingly as more data comes in? In many cases, the distinction is

meaningless because all the data is collected within a short time span, but for some

situations, such as survival data, we could be waiting a long time for all the data

to be collected, so the second option is preferable.

Consider the case where we only have two pieces of data D1 and D2. Recalling

that the evidence term is a constant in parameter analysis, we have

P (H|D1, D2, I) ∝ P (D1, D2|H, I)P (H|I), (6.11)

where P (D1, D2|H, I) would be the joint probability of observing both D1 and D2,
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and corresponds to the situation where we plug in all the data at once. However, we

do not necessarily have to expand P (H|D1, D2, I) in the manner above; we could

also subsume D1 into the background information

P (H|D1, D2, I) ∝ P (D2|H,D1, I)P (H|D1, I). (6.12)

If the data were independent (which we are assuming to be so), then the first term

on the right hand side can be written as

P (D2|H,D1, I) = P (D2|H, I), (6.13)

since the observation of D1 has no bearing on whether D2 is observed on not.

Furthermore, the term on the far right is the posterior probability for H having

observed D1, so it can be rewritten as

P (H|D1, I) ∝ P (D1|H, I)P (H|I). (6.14)

Thus we have

P (H|D1, D2, I) ∝ P (D2|H, I) [P (D1|H, I)P (H|I)] , (6.15)

which in words means that, if D1 and D2 are independent, then the posterior

probability for H given both those pieces of data is simply the product of the

posterior for H given D1 and the likelihood function for observing D2. That is,

we can treat the two pieces of data as though we had only observed D1, calculated

the posterior for H to see what kind of estimate that gives us, then observed D2,

and updated our posterior by multiplying the the likelihood function for D2 with

the posterior for D1. We can think of the posterior for H given D1 as the prior

probability for D2. It should be clear that if we had more data, we would simply

repeat the previous argument inductively, breaking down the joint probability by

taking out one piece of data at a time. Figure 6.2 illustrates how our posterior

changes as we observe more data.

6.3 Effect of Different Priors

We have assumed the situation of total ignorance, but there are many situations

where we will have access to information about the quantity of interest, and that

will lead us to assign a more informative prior than the flat prior. To see the

effects of different priors, suppose we had some extra information about HP5. Say
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Figure 6.2: Estimating the HP5 for patient P19 by building up the posterior se-

quentially. As we accrue more data, we simply multiply the new likelihood function

with the posterior we had previously to generate an updated posterior probability

distribution. Notice how as we add more data the posterior probability becomes

narrower, indicating that our error is decreasing as we hone in on a better estimate

of H0.
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we knew that for the average cervical tumour we expect HP5=0.8. It will turns

out that, using the principle of maximum entropy outlined in Appendix E, having

information about expectation, or the mean, alone will lead to an exponential prior

P (H|µ) =
1

µ
e−

H
µ , (6.16)

where µ is the known average value, and knowing the mean and the variance will

lead to a Gaussian prior

P (H|µ, σ2) =
1

σ
√

2π
e

(H−µ)2

2σ2 , (6.17)

where σ2 is the known variance. The situation is illustrated graphically in figure

6.3, and in short, what happens is that the prior will play a large role if there

is little data, but will become largely irrelevant as we consider more and more

data. This makes sense logically as we would be less likely to reject our previous

knowledge of the situation if there were little evidence, and more likely to disbelieve

it as we observe more evidence to the contrary. More specifically, comparing the

Gaussian prior to the other two priors, we see that the more specific our information,

the narrower the prior probability distribution is, and the harder it is to dissuade

ourselves that our prior information is incorrect.

6.4 Summarizing the Results

Having the actual probability distribution that expresses our degree of belief for the

parameter value is good from a mathematical stand point, and there are methods

for summarizing the key features of the distribution in cases where the posterior is

reasonably well behaved. I will discuss two sets of methods: the best estimate and

the error bar, a method that works best with symmetric pdfs; and the expectation

value and confidence interval, a similar technique that is more appropriate for

asymmetric distributions.

6.4.1 Best Estimate/ Maximum Likelihood

As discussed earlier, the value of H0 that we believe the most is the value that gives

us the highest probability in P (H0|{D}, I). More mathematically, suppose we were

interested in some quantity X, and we had the posterior pdf P (X|{D}, I). Then

the best estimate of X, denoted by X0, is determined by

dP

dX

∣∣∣∣
X0

= 0. (6.18)
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Figure 6.3: The effects of different priors on the HP5 estimate for patient P19. From

the plots, we see that, since the flat prior and the exponential prior are fairly simi-

lar, their posteriors become almost identical after just 20 pieces of data. However,

because the Gaussian prior is tightly peaked about a value that is in disagreement

with our experimental data, it takes much more evidence to “persuade” the poste-

rior to believe the data over the prior information, and we can see that the pdf for

the Gaussian prior does in fact slowly converge to the other two pdfs as we increase

the amount of data.
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Of course, we could try to verify analytically that this value of X0 actually yields

a maximum, but in practice we will simply look at a plot of the pdf. If we were

considering discrete values for X instead, the best estimate is still the value that

gives the largest posterior probability, but the derivative notation would not make

sense. This method of determining the best estimate is often called the maximum

likelihood method because in the case of parameter estimation, if the prior is the flat

indifferent prior, maximizing the posterior is the same as maximizing the likelihood

function.

6.4.2 Error Bar/ Variance

Once we have the best estimate, we want to know how accurate that estimate is,

i.e. how much we believe it to be the true value of H, and that is accomplished by

considering the spread of the posterior about the best estimate. We traditionally

work with the logarithm of the posterior, which varies more slowly with X than

the posterior, and take the Taylor series about the best estimate X0. Define:

L = ln(P (X|{D}, I). (6.19)

Expanding about X0 we get

L(X) = L(X0) +
1

2

d2L

dX2

∣∣∣∣
X0

(X −X0)2 + ..., (6.20)

where the order-one term has disappeared since we are expanding around the max-

imum, and L(X0) is just a constant. So if we are close to X0, we can drop the

higher order terms and get

P (X|{D}, I) ' Aexp

[
1

2

d2L

dX2

∣∣∣∣
X0

(X −X0)2

]
, (6.21)

where A is the normalization constant. Upon closer inspection, this expression is

actually just the normal distribution:

P (H|µ, σ2) =
1

σ
√

2π
e

(H−µ)2

2σ2 . (6.22)

Comparing the two we see that the variance must be related to L through the

following relationship:

σ =
1√
d2L
dX2

∣∣
X0

. (6.23)
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Note that although we denote this quantity by the symbol used for variance, and

it is also sometimes referred to as such, it is not the same as the sample variance,

which is normally estimated by squaring equation 4.4:

s2
x =

1

N − 1

N∑
i=1

(xi − x̄)2 (6.24)

The σ in our case is normally called the error bar and is a measure of the range of

values that we expect the true value of X to reside in. In other words, it describes

the accuracy of our best estimate.

We normally summarize our posterior pdf by the statement:

X = X0 ± σ, (6.25)

because, from equation 6.21, we expect that

P (X0 − σ ≤ X < X0 + σ|{D}, I) =

∫ X0+σ

X0−σ
P (X|{D}, I)dX ' 0.67. (6.26)

That is, we are 67% sure that the true value of X is in the range [X0 − σ,X0 +

σ], and usually that is a good enough guess for X. What we have done here is

to approximate our posterior with a Gaussian for values near the maximum; for

posteriors where the central limit theorem holds, this will be a good approximation

and Sivia [2] provides an interesting counter example where that isn’t the case in

chapter 2 of his book.

Back to the coin

For the case we are considering, where we use a flat prior and the likelihood function

is the binomial distribution, it can be shown that

H0 =
R

N
, σ =

√
R

N2

(
1− R

N

)
. (6.27)

The thing to note here is that the best estimate, H0, is the simple ratio of number

of measurements under the threshold divided by the total number of measurements,

and is the value that we would have gotten had we just followed Bernoulli’s method.

However, by applying Bayesian inference, we not only have that estimate of HP5,

but a measure of how much we believe it to be true as well.
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Figure 6.4: The darker region shaded in red is the width of H0±σ for the previous

coin example, which is approximately 67% of the area under the curve, and tells

us that we are 67% sure that H is within that range. In terms of actual values, we

get H0 = 0.74 ± 0.062. Note that although 0.74 is the same as the sample mean,

the sample variance is 0.2 and is a measure of the spread of the data, whereas the

error bar is a measure of our confidence in the best estimate H0.

6.4.3 Mean/ Expectation Value

If the posterior is skewed to one side of the peak, specifying a symmetric interval

about the peak will make little sense; in this case, we often replace the maximum

with the expectation or mean value

< X >=

∫
XP (X|{D}, I)dX. (6.28)

The expectation is basically just a weighted average that takes into account the

skewness, and reduces to the maximum when the posterior is symmetric.

6.4.4 Confidence Interval

To replace the error bar, we find the confidence (or credibility) interval, which is

the smallest interval (X1, X2) such that

P (X1 ≤ X < X2|{D}, I) =

∫ X2

X1

P (X|{D}, I)dX ' 0.95. (6.29)
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Here 95% is simply the standard choice, and is equivalent to X0 ± 2σ in the sym-

metric case.

6.4.5 Multimodal Posterior Distributions

In the previous discussion, we have implicitly assumed the posterior to only have

one well defined peak, but there will be situations where there is more than one

peak. For multimodal posteriors the best estimate is still meaningful when one

peak of the pdf is much higher than the others, as it still represents the value of

the parameter that we believe the most, but the other methods for summarizing

the results are inappropriate since they all implicitly assume one nice behaved peak.

For example, consider a distribution with two peaks of equal size, spaced sym-

metrically about the middle of the interval (see figure 6.5). Specifying the best

estimate and error bar is dubious because we would have to say our best estimate

is the peak on the left ±σleft OR the peak on the right ±σright, which is confusing

and not too helpful. The expectation is worse as it would give us the value in the

middle, which from the plot of the pdf we know has a probability of close to zero,

and similarly we have no hope of specifying the confidence interval in a sensible

manner. In complex situations, the best we can do is plot the posterior and extract

information as necessary.

Figure 6.5: An example where our methods for summarizing the posterior distri-

bution with just a couple of numbers make no sense.
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Figure 6.6: In the next chapter we will estimate the median PO2 using maximum

entropy methods, and the analysis will yield posteriors that are multimodal (shown

above). For patient 3, we can still say that the most probable value is the one given

by the maximum of the distribution, as there is clearly one higher spike than the

others, but the maximum is not so clear for the other two patients because there

are several values that are almost equally probable. The best thing to do in cases

such as these is to simply display the pdfs as shown here.

6.5 Results

We will use the equation for the posterior distribution of H, equation 6.9, to esti-

mate the HP5 of each patient based on the Eppendorf measurements. To do so, we

will first turn the Eppendorf data into binary data (either 1 if PO2<5mmHg and 0

otherwise), add them up and then plug in the appropriate values into equation 6.9.

The binomial distribution is symmetric about its peak, so we will specify the best

estimate and error bar, given by equation 6.27. Figure 6.8 is a table that shows the

results for some of the patients, and figure 6.9 displays the probability distributions

graphically.

6.5.1 Possible Advantages

In the original study [11] the value of HP5 is just a number, a ratio of two other

numbers that offers one key piece of information, an estimate of the hypoxia, but not

much else. It was then used to classify patients into two groups of varying survival

probabilities. By applying Bayesian statistics, we have preserved that original piece

of information in our best estimate H0 and generated new information via the
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Figure 6.7: To calculate the HP5, we first ask ourselves whether each measurement

is above or below 5 mmHg. Then, we tally the results and plug the appropriate

values into equation 6.9.

probability distributions derived for each patient. At first glance this difference

seems purely academic and of no practical importance as using the best estimate

alone would not change any of the survival analysis at all, but I believe there are

advantages to the Bayesian formulation.

The Accuracy of our Best Estimate

One key feature of the Bayesian analysis is that we were able to derive a quantity,

the error bar, that measures the uncertainty of our best estimate. The original

formulation of HP5 just gives us a number, we have no idea how much we can

trust that estimate, and we are not able to tell whether the estimate was a result

of only a few measurements, or many measurements. The error bar is a function of

the number of measurements and reflects how well the data agrees with our best

estimate.

One possible use of the error bar is to use it to analyze how the error changes with

the number of tracks or measurements. We could possibly use it to quantify how

many readings on average we would need to reduce the error to a certain amount,

giving us an idea of how many measurements we would need to be reasonably sure

of how hypoxic the tumour is.
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Figure 6.8: Table of best estimates and error bars for some patients as we increase

the number of tracks. Not all patients have four tracks of data so some of the

columns are blank. The original HP5 estimate used by Fyles et al would correspond

to our best estimate when all the data is used (i.e. the right most estimate in this

table).

Stratification into groups for testing survival

Another possible use for the error bar is in survival analysis. Recall that to analyze

survival, Fyles et al divided the patients into two groups based on their HP5. Now

that we have a sense of how accurate our estimate of the HP5 is, we can be more

flexible in defining the groups. For example, in table 6.8, patient P04 has a HP5

estimate of 0.523± 0.054. If we did not have the error bar we would simply classify

this patient as hypoxic (HP5>.5) but given that our analysis reveals that the true

value of HP5 might be as low as 0.523−0.054 = 0.469, we might reasonably classify

the patient as oxic as well. As shown in Appendix F using filters, being able to

reclassify these patients that are on the border between the two groups can yield

different results in the survival analysis, so having this extra flexibility might be

beneficial.

Incorporation of Prior Knowledge

Another possible advantage of the Bayesian approach is the ease with which we

can incorporate any previous knowledge we might have. We saw earlier in the
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Figure 6.9: Plots of some of the probability distributions as we increase the amount

of data (number of tracks). Again notice how the distributions tend to become

narrower as we increase the data, indicating that we have increased confidence in

our best estimate.
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comparison of priors how extra information can used to assign more informative

priors, and that information might be available from other researchers or from the

manufacturer of the Eppendorf probe. For instance, we might have information

from past studies that patients of a certain age, height, tumour size etc would be

likely to have a certain HP5. Or, Eppendorf might tell us that their probe has a

certain accuracy in human tissue, and we could incorporate that into our model.

At the moment, we have assumed that the measurements are accurate even though

there are obviously impossible negative values.

Probability Distributions as Opposed to One Number

Having access to the probability distribution gives us added flexibility as we can

manipulate it to calculate other quantities of interest. One quantity that we might

want to calculate is the probability that a patient has a HP5 of less than some

threshold, and use that as our estimate of the hypoxia instead of the best estimate

H0. For example, for patient P08, we have H0 = 0.597, and the probability that

the value of HP5 is less than 0.5 is 0.157.
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Chapter 7

Estimating the Median of the

PO2 Distribution

The median PO2 is another quantity of interest because it is a commonly used

measure of hypoxia and also because Fyles et al [11] used the sample median of 5

mmHg in their data for their threshold in hypoxic proportion. Using the method

of maximum entropy outlined in the Appendix E, we can estimate the median of

the unknown underlying distribution that our data is a sample of, and see how that

compares to the sample median.

7.1 Theory

When we perform an experiment, say rolling a die or conducting polls etc, what

we are doing is collecting a sample from some underlying probability distribution,

or population, of possible outcomes. This distribution is generally unknown, and

what orthodox statisticians usually do is try to use the samples that have been

collected to estimate the distribution. Estimating the distribution can be very dif-

ficult, especially if we do not have any idea of its functional form, so what we will

try to do here is to estimate the value of the median (or more generally, the value

of some quantile) of the distribution.

It must be stressed that the median of the distribution is (in general) not the

same as the median of the samples. To calculate the sample median, all we would

do is line them up in order and pick the one in the middle. However, this value will

be vary depending on the samples that have been collected and is not necessarily
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a good estimate of the median of the population.

Mathematically, we wish to estimate the position of a certain quantile, q, of the

pdf P (x), x ∈ [a, b], of the quantity that we are interested in. That is, we want to

find x such that ∫ x

a

P (x′)dx′ = q, (7.1)

where a ≤ x ≤ b, and 0 ≤ q ≤ 1. Now suppose we had N samples, {xi}, taken

from the probability distribution P (x). Let Mx be the hypothesis that the median

is at x:

Mx :

∫ x

a

P (x′)dx′ = 1/2. (7.2)

Then what we want to calculate is the posterior probability for Mx given our data.

Using Bayes’ theorem we have

P (Mx|{xi}) ∝ P (Mx)P ({xi}|Mx). (7.3)

Since we have no reason to believe any value of x over another for the median, all

we know a priori is that the median must lie between a and b. So for the prior,

P (Mx), we will simply assume a uniform or constant probability in the interval

[a, b] and zero everywhere else.

For the likelihood function, P ({xi}|Mx), we know nothing about its functional

form, other than the constraint that its median must be at x, so we must use some

kind of non-parametric analysis. Fortunately, since the hypotheses Mx are testable,

we can make use of the principle of maximum entropy to assign the likelihood

function in a way that satisfies our constraints but still reflects our ignorance of

everything else. We will assume further that the samples are exchangeable so that

Mx is testable information about the joint pdf P ({xi}). Following Gull and Fielden

[8], we wish to maximize

S = −
∫
P ({x})ln

(
P ({x})
m({x})

)
dNx, (7.4)

subject to the following constraints:∫
D

P ({x})dNx = 1, where D is the domain [a, b]N , (7.5)∫
Dx

P ({x})dNx =
1

2
, where Dx is the domain [a, x]N . (7.6)
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In the case of a single sample, with a uniform measure m(x), the analysis simplifies,

and we get [8]:

P (x′|Mx) =

{
1

2(x−a)
, if x′ < x,

1
2(b−x)

, if x′ > x.
(7.7)

For multiple, exchangeable, samples, with uniform measure m({x}), the variables

are independent, so we simply have

P ({xi}|Mx) =

[
1

2(x− a)

]N< [ 1

2(b− x)

]N>
, (7.8)

where N< is the number of data in the set {xi} with xi < x, and N> is the number

of data with xi > x. Thus, using Bayes’ theorem, we must have that the posterior

is given by

P (Mx|{xi}) ∝
[

1

2(x− a)

]N< [ 1

2(b− x)

]N>
. (7.9)

Gull and Fielden [8] stress that this pdf is simply a maxent estimate that satisfies

the constraints while assuming as little as possible about anything else, and that

we are in no way claiming that it is the actual form that underlies the physical

process. This is an important distinction to make, and reminds us that the posterior

probability represents our own uncertainty about the value of the median x, and not

that x is variable, as it is a fixed physical quantity of the system. Notice also that

our assumption that x ∈ [a, b] shows up in the final form of the posterior probability

and means that our choices for a and b can potentially affect the analysis of the

data.

7.2 Results

Using the Eppendorf data from the PMH group, we can apply the previous analysis

to estimate the distribution for the median PO2 for each patient. From chapter 4,

we know that the data we have is between -4.3mmHg and 212.8mmHg, since such

extreme values of oxygen partial pressure are very unlikely in the human body, it

should be safe to set the range in our prior to be [−5, 220]. Also in chapter 4, we saw

how the Eppendorf data exhibit wildly oscillating behavior as a function of distance

inside the tumour, and that would suggest that the sample median is probably not
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a good estimate of the actual median PO2 in the tumour. Indeed, from our table,

figure 7.1, we see that there are sometimes large discrepancies between the sample

median and the maxent estimate of the median (e.g. patients 1, 2, 7, 8) but also

sometimes that there is fairly close agreement (e.g patients 10, 19, 20, 24).

I am not sure as to why there are sometimes close agreements and sometimes

large discrepancies between the two estimates. As we can see in figures 7.2 and 7.3

the maximum entropy estimates yield pdfs that are multimodal and that suggests

our data is in disagreement with each other, with some of it suggesting one me-

dian value and others suggesting another. Perhaps this disagreeing data is because

tumours are heterogeneous and have many sections of different oxygen concentra-

tions with different median values, and the data is telling us exactly that. Thus, the

best estimate of the median PO2 is probably the median PO2 of the largest region

(in terms of oxygen concentrations) within the tumour, and will probably have the

largest effect on radiotherapy. So whether the two estimates are in agreement or not

doesn’t really matter, though it does give us confidence that the Bayesian method

is working when the estimates are close to each other. Perhaps in the cases where

the two estimates agree, the probe is sampling a tumour that is less heterogenous

and so collected data from a region that had consistent oxygenation. We might be

able to check for this by looking at the plots of the data against position and seeing

whether there are any large oscillations.

The new maxent estimate of the median can be used to stratify the patients

into two groups as we did with the HP5. We could also use it to choose a different

threshold for hypoxic proportion. I have not yet tried to use these estimates in the

Kaplan-Meier and log-rank tests because the focus of this thesis was to understand

the theory and produce the new estimate, and it is not yet clear how best to use

the maxent estimate of the median. Also, as explained earlier, the result of the

log-rank test is largely meaningless and not to be trusted.
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Figure 7.1: A comparison between the sample median and the maxent best estimate

of the median for some patients. As the next two figures will show, the pdfs are

multimodal, so there is no simple algorithm to find the maximum. To find the

best estimate, I plotted the distributions and judged visually which point was the

highest. The multimodal nature of the pdfs is also why I have not specified the

error in the best estimate.
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Figure 7.2: Above are estimates for the median po2 of 6 different patients that give

a p.d.f. that is reasonably well behaved. By that I mean there is a clear single

large peak in the distribution that would clearly indicate a possible best estimate

for the value of the median, and that the probabilities for most other values are low

compared to the peak. In such cases we can say fairly confidently that the median

is the value at the peak with some degree of uncertainty, and might conjecture that

the oxygen distribution inside the tumour is fairly homogenous as all measurements

point to the same median value. (Note that the graphs are not normalized, only

rescaled so that the highest point has a value of 1)
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Figure 7.3: Here we have 6 patients where the p.d.f.s are not so well behaved. All

the graphs shown have multiple large spikes in the distribution which means that

there is no clear cut best estimate for the median. Physically, we might suspect that

these tumours are fairly heterogenous but have certain regions within them that

are homogenous and have a well defined median value. For instance, for patient 13,

we might conjecture that the tumour has two distinct regions of oxygenation, one

with a median value of about 7 mmHg and one with a median of about 12 mmHg.

In such cases, what we might say is that choosing a certain threshold value and

simply checking the percentage of readings under that value to make a statement

about the whole tumour might not be a good idea, as there may be pockets of high

and low oxygenation that such a vague analysis would not discover.
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Chapter 8

Survival Analysis as an

Inhomogeneous Poisson Process

Presented here in the last chapter of my thesis is a preliminary alternative to the

Kaplan-Meier estimator. Although the method proposed using Poisson processes is

not strictly under the Bayesian banner, we should be able to modify it in the future

so that it is, since the Poisson distribution can be derived using maximum entropy

(see Appendix E) under similar conditions to the ones we will outline in this chapter.

8.1 Inhomogeneous Poisson Processes

To analyze the survival data, I will assume that it is an inhomogeneous Poisson

process, which is defined as follows [50]:

Definition. A point process {N(t), t ≤ 0} satisfying N(0) = 0 is called an in-

homogeneous Poisson process with intensity function λ(t) if it has the following

properties:

1. {N(t), t ≤ 0} has independent increments

2. P (N(t+ h)−N(t) ≤ 2) = o(h)

3. P (N(t+ h)−N(t) = 1) = λ(t)h+ o(h)
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The first assumption, that of independence, is a reasonable one as there is no

reason to believe that the death of any individual would have an effect on the death

of another patient. The second assumption means that the probability of two or

more events at the same time is small, and that can be easily verified by check-

ing the times of death and making sure that there are no patients who die at the

exact same time. The third is the key mathematical assumption that leads to the

poisson distribution, and is the standard assumption for counting processes, such

as survival, where you count the number of events that occur in a certain amount

of time (or over a certain distance/area etc).

The inhomogeneity occurs in the intensity function λ(t), and leads to a poisson

distribution for the increments that depends on t [50]:

pi(s, t) =
[Λ(t)− Λ(s)]i

i!
e−[Λ(t)−Λ(s)], i = 0, 1, 2, ..., (8.1)

where

Λ(t) =

∫ t

0

λ(x)dx. (8.2)

In particular, the absolute state probabilities are given by

pi(t) = pi(0, t) = P (N(t) = i),

=
[Λ(t)]i

i!
e−Λ(t), i = 0, 1, 2, .... (8.3)

Physically, we interpret the intensity function Λ(t) as the average number of occur-

rences of the event (in our case death) in time t, or, equivalently, we can consider

Λ(t)/t as the average rate of occurrence per unit time. More generally, noting the

way Λ(t) appears in (8.1), we can say that

1

τ
Λ(τ, t) =

1

τ
[Λ(t+ τ)− Λ(t)] =

1

τ

∫ t+τ

t

λ(x)dx (8.4)

is the average rate of occurrence in the interval [t, t+ τ ].

From [50] we can also derive formulas for other quantities of possible interest,

such as:

• E(Tn), the expected time of the nth event.

• E(Yn), the expected time between the (n-1)th and nth events.

• f(t1, t2, ..., tn) the joint probability density of (T1, T2, ..., Tn).
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8.2 Analysis

To apply the ideas of the Poisson process we need a way to find λ(x) for our data.

Once we have determined λ(x) we can apply the formulas of the previous section

to get the probabilities of interest. For example, we might want the probability of

say ten deaths within five years given our data, and all we would have to do would

be to plug in the appropriate numbers.

8.2.1 Finding λ(x)

Motivated by the physical interpretation of Λ(t), we can see that λ(x) is sort of like

the density of deaths per unit time. So to find an approximation of λ(x) given our

data, I will consider our survival data to be a particular realization of the Poisson

process (see figures 8.3 and 8.4). Then, I will plot the number of deaths within

certain time intervals, and fit a Gaussian through the data using least squares (see

figures 8.1 and 8.2). Of course we could use other curves, but a Gaussian seems to

fit the data well.

I must note here that in order to apply the analysis, I had to take out the data

of 17 patients who, as noted before in chapter 4, all apparently died or suffered a

relapse on the same day (t = 0.003). Recall that one of the assumptions behind the

Poisson process was that the probability of two events occurring at the same time

was essentially zero, so the fact that 17 events occurred simultaneously is clearly a

violation of our assumptions. However, it seems implausible and unrealistic that so

many patients all suddenly died or had a relapse at the exact same time, so I feel

reasonably justified in discarding those data for this analysis.

In what follows I will abbreviate the hypoxic group, HP5>.5, as H, and the

non-hypoxic group, HP5<.5, as NH. The Gaussians we get fitted to the data are

(figure 8.2):

λH(x) = 0.14 + 13.01e−
(x−1.15)2

0.822 , (8.5)

λNH(x) = 1.00 + 10.65e−
(x−1.24)2

0.482 . (8.6)

We could also apply the same analysis to the data without stratification to get a

different fitting that reflects the death rate of cervix cancer patients in general:

λC(x) = 1.14 + 22.00e−
(x−1.22)2

0.712 . (8.7)
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Figure 8.1: Table for the tally of event occurrences (deaths) within uniform time

intervals using the survival data.

8.2.2 Results

Now armed with the various λ(x) we can plug them back into the formulas and

take a look at the results. First, lets consider Λ(t), the intensity function that

corresponds to the expected or average number of deaths at time t (figure 8.5).

From the table on the left we can see that the hypoxic group of patients has a

larger average number of deaths than the non-hypoxic group, especially in the first

few years, but the two eventually become almost identical as we march forward in

time. This observation agrees with what we see visually in the graphs (figure 8.2),

as there are more deaths in the earlier years for the hypoxic group than the non-

hypoxic group, and is confirmed by the table of average rates on the right, because

the rate of death in the first few years is much higher for the hypoxic group than

the non-hypoxic group, and also much higher than in the later years for the hypoxic

patients.

The fact that both groups eventually tend to the same value of Λ(t) as time

increases would suggest that chances of survival in the long term for both groups

is about the same. Looking at the values for Λ(t) for the cervical cancer patients

as a whole and seeing a similar pattern to both of the two subgroups would also

suggest that that is the case.
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Figure 8.2: Plots of the various λ(x) fitted against the data.
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Figure 8.3: Plots of the survival data as an inhomogeneous Poisson process. The

crosses indicate the time of last checkup for patients who are healthy. The bottom

plot is the Kaplan-Meier curve of the same data as a comparison.
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Figure 8.4: Survival plots for the data without stratification into two groups

Now lets consider some absolute probabilities at various times (figure 8.6). We

can make several observations here; for example, in the table for t = 1, the most

probable number of deaths for the hypoxic group is 7 whereas for the non-hypoxic

group it is 3. So again we see that in the short term the hypoxic group is more

likely to have a higher mortality rate. This pattern holds for t = 3 and t = 5 but

from the previous analysis we would expect the probabilities to be about the same

for large t. Another thing to notice is that as t increases, the probability of having

more deaths increases for both groups, which makes sense from a physical point of

view.

Perhaps of more interest is the probability of at least a certain number of deaths

at a given time. We can easily calculate such probabilities using the values in the

tables and the rules of probability:

P (N(t) ≥ k) = 1− P (N(t) < k) = 1−
k−1∑
i=0

P (N(t) = i) (8.8)

= 1−
k−1∑
i=0

pi(t) (8.9)

For example, the probability of at least 15 deaths at t = 5 is 0.86 for the hy-

poxic group compared to 0.44 for the non-hypoxic group. However, at t = 10 the

probabilities are 0.89 and 0.85 respectively, once again reaffirming the idea that
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Figure 8.5: Table for the intensity function Λ(t) and the average rate of occurrence

Λ(t)/t.

Figure 8.6: Table of absolute probabilities pi(t) at various times.

the hypoxic patients do worse in the short term but are not too different from the

non-hypoxic patients in the long term.

8.3 Conclusion

The use of the Poisson process as a tool for analyzing the survival data offers us

a simple and straightforward way of generating results that are easy to interpret.

As was the case in the difference between the original estimate of HP5 and the

Bayesian estimate of HP5, the difference between the Kaplan-Meier estimator and

the Poisson process is that the Kaplan-Meier estimator generates a number, where

as the Poisson process gives as a probability distribution. From the probability

distribution, we are able to generate a wealth of information that is not as read-

ily available from the Kaplan-Meier estimate, and from which we can gleam more

concrete results.
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From the table of probabilities and average number of deaths Λ(t) there is

evidence that the hypoxic group has a lower chance of survival in the short term,

but is not much different from the non-hypoxic group in the long term. Such an

observation may be because of a lack of data (few deaths) after the first few years,

or it may well be because that such is the case in real life, that somehow hypoxia

is only an indicator of short term survival and its effects are diminished for some

reason if you can live through it for a few years.
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Chapter 9

Summary, Conclusion, and Future

Direction

In this thesis I have outlined in great detail why tumour oxygen concentration is

important and how readings from a probe that purportedly measures oxygen par-

tial pressure in biological tissue is used by clinical researchers to predict survival.

I have gone to great lengths to explain the difference between the Bayesian and

Frequentist interpretation of probability, and the two main results of this thesis,

the Bayesian estimates of HP5 and median of the pdf for the PO2 distribution,

reflect those differences while still conforming to the existing work in the literature.

It is my goal that these two improved estimates of tumour oxygenation eventually

lead to better analyses of survival probability, but that will be future work.

Oxygen plays a large role in radiotherapy because it is believed that oxygen is

necessary for radiation to permanently damage a tumour cell. In a process known

as the oxygen fixation hypothesis, the indirect action of radiation creates free rad-

icals within a tumour cell that can only bind with the DNA molecule if sufficient

oxygen is present, and it is this binding that causes irreparable harm to the DNA,

leading to cell death. If there isn’t enough oxygen present, the damage will not

be permanent, and the cancer cell will survive. Regions of low oxygen, hypoxic

regions, naturally arise in tumours because of the chaotic and haphazard way in

which it grows, resulting in abnormal and inefficient vascular networks. Thus, it

is of interest to determine the oxygen concentration levels in a tumour as it can

adversely affect radiotherapy.

To measure oxygen concentration with the tumour, a needle electrode known as
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the Eppendorf probe is used. It is a probe that was originally used in chemistry for

measuring oxygen concentrations in solutions and has now been adapted for use in

humans. As we saw in chapters 3 and 4, there may be some serious issues with using

the probe in biological tissue. In particular, we saw that the readings undergo large

oscillations, even though physically they are being taken mere millimeters apart,

and we saw also that there are impossible negative values for partial pressure, cor-

roborating Albanese’s [28] claim that it may not be possible to calibrate the probe

correctly for biological tissue. However, despite these issues, the Eppendorf probe

is still probably the best method available to measure oxygen concentration within

tumours because it is the only device that is physically inserted inside the tumour.

Hence, we need to develop methods of extracting the necessary information from

the Eppendorf data.

Oxygen concentration within a tumour is usually quantified by a measure called

HP5, the percentage of the Eppendorf measurements under 5 mmHg. I think that

the abnormally large and negative values present in the Eppendrof data is one of

the reasons why researchers use HP5; it conveniently allows them to avoid the issue

of calibration, as the actual values of the measurements are not used, and allows

them to condense the large number of measurements into an easily interpretable

number. There is evidence to suggest that there is correlation between HP5 and

survival, and we have shown how that evidence is usually presented in the form of

the Kaplan-Meier estimator and log-rank test. However, the rejection of the null

hypothesis in the log-rank test is often misinterpreted as evidence towards the re-

searchers proposed alternate hypothesis, and, even worse, we were not able to reject

the null hypothesis with our data, so there is much to be done in truly determining

whether HP5 is correlated with survival probability.

Nonetheless, we have used Bayesian methods to estimate the HP5 because it is

the most commonly used measure of tumour oxygen concentration. The original

formulation is just a number, a percentage that seems to discard other potentially

useful information from the Eppendorf data, and the Bayesian estimate of the HP5

is able to recover some of that information through the error bar. One of the main

advantages of the Bayesian formulation of data analysis is that everything is rep-

resented by probability distributions, and by representing our estimate of the HP5

as a probability distribution we were able to determine how accurate we think our

estimate is. Although the best estimate of the HP5 using the Bayesian formulation

yields the exact same result as the original calculation, the error bar tells us how

104



much we can trust that estimate (as a function of sample size) and gives us added

flexibility in the survival analysis. Moreover, the Bayesian formulation allows us to

incorporate other information into the estimate and has predictive qualities as well

(such as in the form of Laplace’s rule of succession detailed in Appendix G).

There is no real mathematical or biological justification to choose HP5 as our

measure of hypoxia, so a method of estimating the median PO2 of the underlying

distribution using maximum entropy is also presented. The median value of the

data was used as the measure before researchers invented the notion of hypoxic

proportion, and it is still reported and compared to HP5 in the literature. Hence

there is just as much reason to estimate the median PO2 as there is the HP5. It

should be clear intuitively that the median value of our data is likely not to be the

median value of the oxygen tension within the entire tumour, and the maximum

entropy method outlined in chapter 7 gives us a way of estimating the true median

value based on the data. The results demonstrate that our estimate of the true

value can be markedly different from the sample median, and the multimodal pdfs

seem to be a result of the heterogeneity inside a tumour.

We could of course develop methods to estimate any quantity we wish from the

Eppendorf data, but the HP5 and median PO2 are the two most commonly used

measures in the literature. The results presented in this thesis demonstrate how

Bayesian methods can potentially improve our study of tumour oxygen concentra-

tion, and perhaps when we have developed better methods of assessing survival

probability (that does not involve a p-value) we will be able to determine whether

HP5 or median PO2 are actually good measures of tumour oxygenation, or whether

we need to pursue some different quantity. The preliminary alternative using inho-

mogeneous Poisson processes in chapter 8 yields similar results to the Kaplan-Meier

estimator but is a step in the right direction as we are able to gleam more potentially

useful information in the pdfs that are generated.
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Appendix A

Henry’s Law

A.1 Modified versions of Henry’s Law

Henry’s Law was first proposed by English chemist William Henry in 1803. Henry

postulated that, at a certain fixed temperature, the amount of gas dissolved in a

liquid is proportional to the partial pressure of the gas in equilibrium with the liq-

uid (i.e. when the solution is saturated). Although this law has since been verified

experimentally, and the proportionality constants measured and well established,

modern chemists have found that this simple law only holds in limited situations

and have since added modifications to the law [34].

The form of Henry’s Law used by electro-chemists such as Fatt [24], Hudson [30],

and Albanese [28] in deriving the current equation for a polarographic electrode is

the aforementioned narrowly applicable version:

C = kP, (A.1)

where C is the concentration of the dissolved gas in the solute, P is the partial

pressure of the gas in equilibrium, and k is the Henry’s Law constant. It is used

without justification or qualification in their papers.

For a more modern discussion of Henry’s Law, first let us define exactly what

we mean by equilibrium. Consider a closed system where there are a number of

components existing in different phases, after a long enough time, we expect the

system to settle into a state where ”the macroscopic properties of the phases will

not change” [34]. In such a state, we must have that the temperature and pressure
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Figure A.1: Consider a closed container of a gas and a liquid under pressure. In

equilibrium there will be a certain amount of the gas dissolved in the liquid. As we

increase the pressure we expect that more of the gas will become dissolved because

of the increased pressure on the system, which increases the partial pressure of the

gas. Diagram from [38]

are equal for all phases, that the chemical potential, µ, must be the same for all

components, and that the Gibbs free energy must be at a minimum. For a two

phase system, say liquid (L) and vapour (V ), this means that:

TL = T V , (A.2)

PL = P V , (A.3)

µLn = µVn , ∀n, (A.4)

where the subscript n denotes the different components of the system. We can

rewrite the equation involving chemical potentials, (A.4), in terms of fugacity to

get

fLn = fVn , ∀n. (A.5)

Fugacity is a thermodynamic quantity that acts as an adjusted pressure for non-

ideal gases and is a measure of a substance’s tendency to stay in one phase or

another. It can be shown that fugacity is proportional to exp(µ/RT) [39]. (More

discussion on fugacity follows in the next section.) Given these equilibrium states,

Henry’s constant is defined as the limit

Hij = lim
xi→0

f̂Li
xi
, (A.6)
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(a) Experimental data. The relationship be-
tween P and x seems to be non-linear.

(b) Plotting P/x gives a line that looks
straight.

Figure A.2: To determine the Henry’s Law constant k given a set of experimental

data (left graph), it is convention to plot P/x against x and fit a straight line to

the data (right graph). From the limit definition, k must then be the y intercept

of the second plot. Figures from [37]

where Hij denotes the Henry’s Law constant for solute i in solvent j, f̂ denotes

the fugacity of a component in the solution, and xi is the mole fraction of the

solute in the liquid. Mole fraction is simply one way of measuring concentration,

we can always choose another definition and adjust the dimensions and values of the

constants to compensate, such choices have led to many different versions of Henry’s

Law and Henry’s Law constants [35]. For example, in the case of an ideal gas, the

fugacity is simply the pressure, and, using the usual definition of concentration,

(A.6) simply reduces to the intuitive definition of Henry’s constant

k = lim
C→0

P

C
. (A.7)

Figure A.2 demonstrates how one might compute this limit given some experimental

data.

To derive a modified version of Henry’s Law, consider the following thermody-

namic relation that relates the fugacity, pressure, volume, and temperature of the

liquid phase (a brief derivation is provided at the end of this section):

∂ ln[f 0
i ]

∂P
=
V
∞
i

RT
, (A.8)

where V
∞
i is the molar volume (V/n) at infinite dilution (i.e. xi → 0) of component

i, and f 0
i is the reference fugacity of the liquid phase, related to the f̂Li by the
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following equation:

f̂Li = γixif
0
i , (A.9)

where γi is the activity coefficient. According to Carroll [34] as xi → 0 the activity

coefficient approaches unity, so in the infinite dilution limit the reference fugacity

f 0
i is equal to the Henry’s Law constant Hij. Now if we integrate (A.8) from this

infinite dilution limit (xi = 0, f 0
i = Hij, P = P 0

j ) to some arbitrary state, we get

f 0
i = Hijexp

 P∫
P 0
j

(
V
∞
i

RT

)
dP

 . (A.10)

The exponential term is known as the Poynting correction as it corrects for situa-

tions when the gas is not ideal. For the vapour phase, we have a relationship that

relates the fugacity to the pressure:

f̂Vi = yiφ̂iP, (A.11)

where yi is the mole fraction of component i in the vapour, and φ̂i is the vapour

phase fugacity coefficient which can be calculated (further details can be found in

Carroll [34]). Recall that in equilibrium the fugacities must be equal, so we can

combine equations (A.10), (A.9), and (A.11) to give

γixiHijexp

 P∫
P 0
j

(
V
∞
i

RT

)
dP

 . = yiφ̂iP (A.12)

This is known as the “Ensemble Henry’s Law” and is the most generally applicable

version of Henry’s Law that relates pressure P to mole fraction xi, but is difficult to

use. In practise simplifying assumptions are made. For instance, if the component

vapour pressure is low, or if the total pressure is low, then the Poynting term is

approximately equal to unity, and if, in addition, the gas and liquid phases are close

to ideal (practically, this means that the mole fractions xi, yi are small) then the

activity and fugacity coefficients are also unity, γi = 1 and φ̂i = 1, so the ensemble

law simplifies dramatically to

xiHij = yiP. (A.13)

Equation (A.13) is called “strict Henry’s Law” and is applicable for total pressures

up to about 2 atm (P<200kPa) and for liquid concentrations up to about about 1
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mol% (xi < 0.01). For a single solute where the solvent is nonvolatile (yj ' 0, i.e.

yi ' 1) (A.13) further reduces to

xiHij = P, (A.14)

which we recognize as the original form of Henry’s Law. For a far more extensive

discussion on the various forms of Henry’s Law the reader is referred to Carroll [34]

Both Carroll [35] and Smith and Harvey [36] outline many potential problems

when using Henry’s Law, the most important of which is the underlying temper-

ature dependence of the Henry’s Law constant that can dramatically change its

value. Care must also be taken when looking up Henry’s Law constants in a table,

as many different measures of concentration and pressure can be used, changing

the units and values of the Henry’s Law constant.

A.2 Fugacity

Fugacity comes from the rearranged form of the 1st and 2nd laws of thermodynamics

for Gibbs Free energy:

dG = −SdT + V dP. (A.15)

Suppose that the temperature, T , is constant, then dT = 0. If we integrate (A.15)

from some reference state (G0, P0), we get

G = G0 +

P∫
P0

V dP. (A.16)

Further, if the gas is ideal, we have PV = nRT , so this simplifies to

G = G0 + nRTln

(
P

P0

)
. (A.17)

Dividing both sides by n, we define G/n, the Gibbs Free energy per mole, as the

chemical potential µ:

µ = µ0 +RTln

(
P

P0

)
. (A.18)

If the gas is not ideal, no such simplification occurs, and we have

µ = µ0 +RT

P∫
P0

V (P ′)dP ′, (A.19)
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where V = V/n.

G. N. Lewis in 1908 proposed that we preserve the form of (A.18) by introducing

a quantity called fugacity, f(P ), so that

µ = µ0 +RTln

(
f(P )

P0

)
. (A.20)

Physically, fugacity has the same units as pressure, and thus acts as an adjusted

measure of pressure for non-ideal gases. As the pressure decreases, gases become

ideal, so we require that f(P ) must satisfy the following condition:

lim
P→0

f(P ) = P. (A.21)

A.3 Derivation of equation A.8

To get equation (A.8), note that at constant temperature, we can divide (A.15) by

n and differentiate (A.20) to get two different expressions for dµ:

dµ = V dP, (A.22)

dµ = RT · d lnf. (A.23)

These expressions for dµ must be the same, thus

RT · d lnf = V dP,

⇒ d lnf

dP
=

V

RT
. (A.24)

A more detailed discussion on fugacity can be found in the University of Arizona

notes [39].
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Appendix B

Derivation of the Spearman’s

Coefficient of Rank Correlation

One of the clearest expositions of this correlation coefficient is given in Sec. 12.3

of [49], and is summarized below (with a slight change in notation). Consider a

random sample of n paired data

(x1, y1), (x2, y2), ..., (xn, yn),

drawn from some bivariate population with (unknown) Pearson product-moment

correlation coefficient

ρ(X, Y ) =
Cov(X, Y )

[V ar(X)V ar(Y )]
1
2

, (B.1)

where (X, Y ) are the random variables from which the samples (xi, yi) are drawn.

In orthodox statistics, it is usual for ρ to be estimated from the data using the

sample correlation coefficient R, defined as

R =

n∑
i=1

(xi − x̄)(yi − ȳ)[
n∑
i=1

(xi − x̄)2
n∑
i=1

(yi − ȳ)2

] 1
2

, (B.2)

where x̄ and ȳ are the sample means for the {xi} and {yi} respectively. Now,

suppose we rank the data in order of magnitude from smallest to largest (or vice

versa, so long as we do the same to both) using the integers 1, 2, ..., n, then we will

have a new set of paired rank data

(X1, Y1), (X2, Y2), ..., (Xn, Yn),
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where

Xi = rank(xi), and Yi = rank(yi). (B.3)

For the Spearman coefficient, we do not use the actual data, but instead find the

correspondence between the ranks. That is, we use our new set of data (Xi, Yi) and

plug them into equation B.2. The correlation between the ranks of the data is con-

sidered a measure of the correlation between the actual data, but it is not clear how

exactly the two are related. Nonetheless, it is a commonly used measure because

there is “intuitive appeal” [49] in considering just how the data are related to each

other when ranked in order. I suppose it is like looking at a race, where we only

care about who crosses the finish line first, and not really about how fast they did

it, unless they have broken a world record or accomplished some other amazing feat.

Noting that the new data can only take on discrete values 1, 2, ..., n, we can

make several simplifications as follows:

n∑
i=1

Xi =
n∑
i=1

Yi =
n∑
i=1

i =
n(n+ 1)

2
, (B.4)

X = Y =
n+ 1

2
, (B.5)

n∑
i=1

(Xi −X)2 =
n∑
i=1

(Yi − Y )2 =
n∑
i=1

(
i− n+ 1

2

)2

. (B.6)

Substituting these results into equation 4.3 yields

R =

12
n∑
i=1

(Xi −X)(Yi − Y )

n(n2 − 1)
, (B.7)

as the equation for the Spearman Rank Correlation Coefficient. It is often useful

to write B.7 in terms of the differences instead. Let

Di = Xi − Yi = (Xi −X)− (Yi − Y ), (B.8)

then we have that
n∑
i=1

D2
i =

n∑
i=1

(Xi −X)2 +
n∑
i=1

(Yi − Y )2 − 2
n∑
i=1

(Xi −X)(Yi − Y ), (B.9)

and hence

R = 1−
6

n∑
i=1

D2
i

n(n2 − 1)
. (B.10)

This form of the Spearman coefficient is one most commonly used.
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Appendix C

The Log-rank Test

Data in clinical trials are commonly split into two or more groups (e.g. control and

experimental drug) and we want to see if there is any difference in survival between

the two groups. The log-rank test is probably the most commonly used technique

to examine the differences in survival between two (or more) groups and it does so

by testing the null hypothesis that there is no difference in survival between the

two (or more) groups [44][45][46].

For two groups of data, let us denote the failure times of all the patients as

t(1) < t(2) < ... < t(r) as before. Now let d1j be the number of deaths in group 1

at time t(j), n1j the number of patients at risk in group 1 at t(j), and similarly d2j

and n2j for group 2. Define dj = d1j + d2j and nj = n1j + n2j as the total number

of deaths and total number at risk at time tj. To consider the null hypothesis that

there is no difference between the survival times of the two groups, we will compare

the observed number of deaths in each group to the expected number of deaths

under the null hypothesis. Notice that if we consider dj, n1j, and n2j to be fixed,

then the number of deaths in both groups can be specified by d1j alone. So we

will consider d1j as a random variable that can take on any value in the range 0 to

min(dj, n1j). In fact, d1j has a hypergeometric distribution [45]:(
dj
d1j

)(
nj−dj
n1j−d1j

)(
nj
n1j

) . (C.1)

The expected value, or mean, of d1j in this case is simply the intuitive ratio

e1j = dj
n1j

nj
. (C.2)
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Now we need to compute the difference between the observed number of deaths in

group 1 and the expected number of deaths in group 1:

U =
r∑
j=1

(d1j − eij) =
r∑
j=1

(
d1j − n1j

dj
nj

)
. (C.3)

Notice that this sum is simply the total number of deaths in group 1 minus the total

number of expected deaths in group 1:
∑
d1j −

∑
e1j. Collett [45] claims that U

can be shown to be normally distributed with zero mean, and that the variance is

simply the sum of the variances of each d1j since they are independent. Specifically,

the estimated variance for U is given by

V̂ ar(U) =
r∑
j=1

n1jn2jdj(nj − dj)
n2
j(nj − 1)

, (C.4)

and we have that
U√

V̂ ar(U)

∼ N(0, 1). (C.5)

We define the log-rank statistic as

S =
U2

V̂ ar(U)
. (C.6)

where S ∼ χ2 with one degree of freedom. The p-value for this statistic is then the

probability of getting a value greater than or equal to the value calculated from our

data.
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Appendix D

Derivation of the Binomial

Distribution

To see why we must get the binomial distribution (and why we curiously denote

the number of successes by r), following Sivia [2], consider an urn of W white balls

and R red balls, and randomly draw one ball out of the urn. Suppose we have

labeled the balls from j = 1, ..., R + W , then, assuming total ignorance as before,

we would have that the probability of drawing the jth ball is

P (j|I) =
1

R +W
, (D.1)

since all balls are equally likely to be drawn. Thus the probability of drawing a red

ball is, using the product rule and marginalization,

P (red|I) =
R+W∑
j=1

P (red, j|I) =
R+W∑
j=1

P (red|j, I)P (j|I),

=
1

R +W

R+W∑
j=1

P (red|j, I), (D.2)

where P (red|j, I) is the probability of the jth ball being red after we have drawn

it. So it is 1 if the ball is red, and 0 if it is white. This means that

P (red|I) =
R

R +W
. (D.3)

This result should be no surprise, as we have just shown that probability theory

agrees with our intuition that P (red|I) should be

P (red|I) =
number of cases favourable to red

total number of equally possible cases
. (D.4)
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Now consider the case where we draw multiple times with replacement, what is the

probability that in N trials we will have drawn r red balls? Using the product rule

and marginalization again, we get

P (r|N, I) =
∑
k

P (r, Sk|N, I),

=
∑
k

P (r|Sk, N, I)P (Sk|N, I), (D.5)

where the sum is taken over all 2N possible sequences of red-white drawings {Sk}
in N draws. P (r|Sk, N, I) is, similar to before, either 1 when there are exactly r

red balls and zero otherwise. P (Sk|N, I) is the probability that a draw contains r

exactly red balls. We will assume that the prior information I is simply the state

of total ignorance, so all we know is that the draws are independent and do not

influence the probability of subsequent draws. Hence the probability, P (Sk|N, I),

will not depend on the order and only on the number of each ball present

P (Sk|N, I) = [P (red|I)]r [P (white|I)]N−r =
RrWN−r

(R +W )N
. (D.6)

So the probability P (Sk|N, I) can be taken out of the sum, and the sum itself

is just the total number of possible combinations of r red balls in N draws with

replacement, which is the binomial coefficient
(
N
r

)
. Thus, we get that

P (r|N, I) =

(
N

r

)
RrWN−r

(R +W )N
. (D.7)

Now suppose that we were not thinking about urns, red balls, and white balls, but

any kind of generic success or failure. We can rearrange D.7 in a more suggestive

form. Let’s define p as the probability of drawing a red ball, and q as the probability

of drawing a white ball:

p =
R

R +W
, q =

W

R +W
. (D.8)

Then p+ q = 1 ,and we have

P (r|N, I) =

(
N

r

)
prqN−r =

(
N

r

)
pr(1− p)N−r, (D.9)

which is precisely the binomial distribution. Note that p and q do not have to be

the probabilities of getting red and white balls, they can represent red, and not-red,

or more generically anything that we can simply label as success or failure, and the

analysis will still hold.
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Appendix E

Assigning Probabilities - The

Maximum Entropy Principle

We have seen already that in the case where there are only two possible outcomes

that it is natural to assign the binomial distribution for the probability. In general,

we would like to develop methods for assigning probabilities based on our available

information, whether it be for the prior, the likelihood function, or some other

unknown quantity.

E.1 Principle of Indifference

The flat prior that we saw previously is normally called the principle of insufficient

reason or the principle of indifference. Quoting Sivia [2], “it states that if we can

enumerate a set of basic, mutually exclusive, possibilities, and have no reason to

believe that any one of these is more likely to be true than another, then we should

assign the same probability to all.”Imagine we had a die, lets list the six possible

outcomes as

Xi ≡ the top face has i dots, (E.1)

for i = 1, 2, .., 6. Then, if we didn’t know otherwise, we would simply assign

P (Xi|I) =
1

6
. (E.2)

We must be very careful in interpreting this statement, it appears as if we have

assumed the die to be fair, but that is not true. Imagine we had relabeled the

propositions Xi as letters A,B,..,F, in some way, say X3 was A and X6 as B and
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so on. After prescribing the probabilities P (A|I), P (B|I), ..., P (F |I), suppose we

were told that there was some mistake and A actually corresponded to X4 and B

to X2. Since we have assumed that we have no knowledge of the situation, such a

reordering should not change the probabilities because if it did it would mean that

we have acquired other information that we didn’t have before. Thus, the principle

of consistency requires that we do not change the probability assignments, and the

only way to ensure that this is true is by assigning the same probability to each

possible outcome.

E.2 Location and Scale Parameters

The argument in the previous section worked for discrete outcomes and we can

generalize it to the case of continuous parameters. Suppose X represented the

position of some object, say the redial distance of the moon from the surface of the

earth, then the probability that X lies in the range x to x+ δx is given by

P (X = x|I)dX = lim
δx→0

P (x ≤ X < x+ δx|I). (E.3)

Similar to the argument before, suppose we were told that our instruments were

wrongly calibrated and all the positions were actually offset by some constant x0, if

we were totally ignorant about the situation, such an adjustment should not make

much difference to our posterior probability (other than possibly throwing some

values out of our range of allowed values), so we need that

P (X|I)dX ' P (X + x0|I)d(X + x0). (E.4)

Since d(X + x0) = dX, this statement just reduces to P (X|I) ' P (X + x0), or in

words

P (X|I) '

constant in the allowed range,

0 otherwise.
(E.5)

So for location parameters, complete ignorance is captured by the assignment of a

constant prior probability.

For quantities where the relative or fractional change is more important, rather

than the absolute value as in the case of location or distance, we would need our

pdf to be invariant to a change in scales. For instance, if were interested in the

length L of some quantity, and were told that the measurements were actually in
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millimeters instead of centimeters, no knowledge about the length scale of L should

have much of an effect on our assignment of the probability. Such a requirement

would mean that

P (L|I)dL ' P (βL|I)d(βL), (E.6)

where β is a positive constant. Since d(βL) = βdL, the only possible assignment is

P (L|I) ∝

 1
L

in the allowed range,

0 otherwise.
(E.7)

This probability is known as Jeffreys’ Prior, and expresses our ignorance about

scale parameters.

E.3 The Maximum Entropy Principle

E.3.1 Testable Information

For more complicated situations, where we actually have some information about

the quantity of interest, we need more sophisticated methods. According to Sivia,

to make the problem more manageable, Jaynes in 1957 demanded that our prior

information I be testable. What do we mean by testable? Imagine that we were in

possession of a die again, but this time we were told that over a large number of

trials, the die on average gave a result of 4.5. We can write that piece of information

mathematically as

< X >=
6∑
i=1

iP (Xi|I) = 4.5. (E.8)

Given such a concrete restriction, we can easily test candidate pdfs to see whether

they satisfy the constraint. For instance, the uniform pdf that we assigned previ-

ously would not satisfy the constraint, as its expected value is 3.5. Thus, we call

the constraint testable because we can test candidate pdfs for their eligibility as a

possible pdf under the information given. Things that are not testable would be

vague statements along the lines of “I believe the die is biased” or “it seems to roll

a six more often than the other numbers”.

E.3.2 Entropy

If our prior information is testable, Jaynes goes on to propose that the best choice

for the probability is one that maximizes the entropy S while satisfying all the
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constraints. For the die example, abbreviating by letting pi = P (Xi|I), we would

have

S = −
6∑
i=1

piln(pi), (E.9)

subject to the expected value constraint and normalization:

6∑
i=1

ipi = 4.5, and
6∑
i=1

pi = 1. (E.10)

To solve, we would use the method of lagrange multipliers to get

Q = −
6∑
i=1

piln(pi) + µ

(
1−

6∑
i=1

pi

)
+ λ

(
4.5−

6∑
i=1

ipi

)
, (E.11)

where µ and λ are our lagrange multipliers. After some work, we get that

pi = e−(µ+1)e−λi, (E.12)

where the constants will be determined by the constraints.

A natural question that one would ask is: why maximize this odd looking quan-

tity S? The actual expression for entropy comes from statistical mechanics and

information theory, and there are various justifications as to why it is desirable to

maximize it in the setting of probability theory [1][2]. We will look at one heuristic

justification known as the monkey argument.

E.3.3 The Monkey Argument

Suppose there are M distinct possibilities {Xi} and some given criterion express-

ible as testable information in our background information I. What is the best

way to assign the probabilities pi = P (Xi|I)? By best, we mean that we want the

constraint to be satisfied while assuming as little else about the pi as possible. To

answer this question, imagine that we had replaced the propositions Xi with M

boxes of the same size, and we had a team of monkeys randomly throwing pennies

at the boxes. We will assume that the monkeys have no particular preference to

throw the pennies at any one box so that after a large number of tosses, we will have

a candidate distribution for pi. If the distribution does not satisfy the constraint in

I we discard it and start over, if it does, we make note of it and begin another trial.

Repeating the trials many times will yield a large number of candidate distributions

122



that satisfy I, but some will reappear more often than others, and the one that

is repeated the most would be our best choice for the distribution. It is the best

choice because we have assumed that the monkeys have no preferred disposition to

throw in one direction over another, so the resulting most likely distribution should

be the one that sanctifies the testable constraint while being least committal about

anything else.

To see why these monkeys give us the expression −
∑
piln(pi), denote the num-

ber of coins in box i by ni, and let the total number of pennies thrown be N , so

that

N =
M∑
i=1

ni. (E.13)

We will assume that N is very large, in particular, it must be much larger than

the number of boxes N � M . The distribution of the {ni} gives us a candidate

distribution for the {pi}:
pi =

ni
N
, (E.14)

where i = 1, 2, ...,M . Since the N pennies are equally likely to land in any of the M

boxes, there are MN ways of distributing the coins, but not all of these possibilities

are distinct (i.e. yield the same {ni}), so the expected frequency F of obtaining

{pi} is

F ({pi}) =
number of ways of obtaining {ni}

MN
. (E.15)

The numerator is simply the multinomial coefficient:

N !

n1!n2!...nM !
. (E.16)

So we have that

ln[F ] = −Nln[M ] + ln[N !]−
M∑
i=1

ln[ni!]. (E.17)

The reason we take logarithms here is similar to the reason why we took logarithms

in the derivation for the error bar: we want to estimate the quantity F , and taking

the logarithm makes the function vary more slowly. Using Stirling’s approximation

ln[n!] ' nln[n]− n, (E.18)

which is valid for large n, we have that

ln[F ] = −Nln[M ] +Nln[N ]−
M∑
i=1

niln[ni]. (E.19)

123



Substituting for ni using pi and noting that
∑
pi = 1, gives

ln[F ] = −Nln[M ]−N
M∑
i=1

piln[pi]. (E.20)

Since F is the frequency for which a particular candidate distribution {pi} appears,

and since ln is monotonic, we can find the most likely distribution, the one that

maximizes F , by maximizing lnF . Therefore, we want to maximize the quantity:

S = −
M∑
i=1

piln[pi], (E.21)

which is exactly the entropy expression we had before. Note that we use the

natural logarithm here for convenience, it could be log to any base, or even another

monotonic function. So the final form of the entropy for this monkey example is

simply a choice that allows us to maximize the frequency of occurrence, F , to obtain

the most likely probability distribution {pi}. There are more rigorous arguments as

to why the particular form −
∑
pilog[pi] is required or desirable, such as Shannon’s

theorem on information theory, reproduced in Jaynes [1] on pages 346-51.

E.3.4 Extending to continuous parameters

Suppose that the boxes in the previous example were not of equal sizes. Let the

probability that a monkey will throw a penny into box i be mi, then we have that

M∑
i=1

mi = 1. (E.22)

This is just the generalization of the previous case where the mi were all equal to

1/M . Now the frequency F that there are ni coins in the ith box is the multinomial

distribution:

F ({pi}) =
N !

n1!n2!...nM !
mn1

1 m
n2
2 ...m

nM
M . (E.23)

Taking logarithms as before, we get:

ln[F ] =
M∑
i=1

niln[mi]−N
M∑
i=1

piln[pi]. (E.24)

Substituting ni = piN then yields

1

N
ln[F ] = −

M∑
i=1

piln

[
pi
mi

]
=: S. (E.25)
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This extension to boxes of different sizes is necessary if we want to extend the

formulation to continuous variables:

S = −
∫
p(x)ln

[
p(x)

m(x)

]
dx. (E.26)

The reason is that want S to be invariant under a change of variables x→ y = f(x),

and choosing an appropriate m(x) that changes in the same way as p(x) will ensure

that occurs. The situation is very similar to the one discussed previously regarding

scale and location parameters.

Interpretation of m(x)

To see what kind of role m(x) plays, consider the situation where we are totally

ignorant about p(x). In that case, all we know is that the probability must be

normalizable:
∫
p(x)dx = 1. Considering the discrete case instead to simplify the

algebra, we want to maximize E.25 subject to the condition
∑
i

pi = 1, and we can

do that by using the method of Lagrange multipliers. Let

Q = −
∑
i

piln

[
pi
mi

]
+ λ

(
1−

∑
i

pi

)
, (E.27)

assuming the {pi} are independent, we have that

∂Q

∂pj
= −1− ln

[
pj
mj

]
− λ = 0, (E.28)

since ∂pi/∂pj = 0 for i 6= j. A simple rearrangement produces

pj = mje
−(1+λ). (E.29)

Recall that λ is simply the lagrange multiplier, a constant, so we have established

that

p(x|normalization) ∝ m(x). (E.30)

Thus m(x) is a multiple of the probability distribution that expresses the ignorance

of the situation at hand. Since m(x) itself is a probability, we would need to assign

it using the same tricks described earlier in the chapter, and we normally call it

the measure of ignorance since it reflects how much we know about the situation a

priori.
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E.3.5 Some examples

Here are some examples of how common pieces of testable information that we

might have access to will lead to some recognizable distributions using maximum

entropy. These examples illustrate how using the principle of maximum entropy

actually agrees with our logic and intuition.

Mean ⇒ Exponential Distribution

Suppose we knew that the expected value of our unknown probability distribution

had to be some fixed number µ. Then we would have the constraint

< x >=

∫
xP (x|I)dx = µ. (E.31)

For simplicity, consider again the discrete case instead. We want our probability

distribution to be normalized and give the correct expected value, so the function

we want to maximize is the following:

Q = −
∑
i

piln

[
pi
mi

]
+ λ0

(
1−

∑
i

pi

)
+ λ1

(
µ−

∑
i

xipi

)
, (E.32)

where the λi are the lagrange multipliers. Setting ∂Q/∂pj = 0 and solving as before

yields

pj = mje
−(1+λ0)e−λ1xj . (E.33)

In the discrete case, the lagrange multipliers would normally be calculated numeri-

cally by applying the two constraints, assigning equal values for mj given that our

background knowledge does not tell us anything about how to assign the proba-

bilities, and introducing the partition function Z =
∑
exp(−λ1xj) to simplify the

algebra. For the continuous case, we will similarly assign a uniform measure for

m(x) and conclude from the discrete version that

P (x|I) ∝ e−λ1x. (E.34)

If the admissible range for x is [0,∞) then we can determine the normalization

constant and λ1 analytically to give

P (x|µ) =
1

µ
e−

x
µ , (E.35)

which is commonly known as the exponential distribution. Choosing other measures

for m(x) will of course give rise to different distributions.
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Mean + Variance ⇒ Gaussian Distribution

Now imagine in addition to the mean µ, we also had the variance σ2:

< (x− µ)2) >=

∫
(x− µ)2P (x|I)dx = σ2. (E.36)

Note that here we have in fact specified two pieces of information, < x >= µ

and < x2 >, and combined them succinctly into one expression using the relation

< (x−µ)2 >=< x2 > −µ2. Turning to the discrete case once again, we would have

that

Q = −
∑
i

piln

[
pi
mi

]
+ λ0

(
1−

∑
i

pi

)
+ λ1

(
σ2 −

∑
i

(xi − µ)2pi

)
, (E.37)

and upon differentiating get

pj = mje
−(1+λ0)e−λ1(xj−µ)2 . (E.38)

Thus in the continuous case, applying a uniform measure for m(x) for the same

reasons as before, we have

P (x|I) ∝ e−λ1(x−µ)2 . (E.39)

If the limits of integration are (−∞,∞), then, after a little bit of work, using the

known result that ∫ ∞
−∞

e−x
2

dx =
√
π, (E.40)

we get the gaussian distribution

P (x|µ, σ2) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (E.41)

This result should be of no surprise as the mean and variance fully characterize the

normal distribution, but what we have shown here is actually almost the reverse:

In the situation where only the mean and variance of some quantity is known,

according to the principle of maximum entropy, the distribution that satisfies these

constraints while being the least committal about anything else is the Gaussian.

Binomial Distribution

To derive the binomial distribution using maxent, suppose we knew that the ex-

pected number of successes in M trials was < N >= µ. Then our constraint would

be

< N >=
M∑
N=0

NP (N |M,µ) = µ, (E.42)
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and the normalization condition. Setting up the lagrange multipliers as before, we

get the result

P (N |M,µ) ∝ m(N)e−λN , (E.43)

where λ is the lagrange multiplier and m(N) is the measure. Recall that m(N)

reflects our ignorance of the situation, so given only that we have N successes in M

trials, we must assign equal probability to all 2M possible outcomes. That means

m(N) must be the number of ways to obtain N successes in M trials:

m(N) =

(
M

N

)
=

M !

N !(M −N)!
. (E.44)

To impose the normalization constant, recall the binomial theorem:

(a+ b)N =
N∑
j=0

(
N

j

)
ajbN−j. (E.45)

Since we want the sum of the probabilities to equal one, we have that

M∑
N=0

m(N)e−λN =
(
e−λ + 1

)M
. (E.46)

This means the proportionality constant in E.43 is
(
e−λ + 1

)−M
. To apply the

constraint on the mean, differentiate E.46 with respect to λ to obtain

M∑
N=0

Nm(N)e−λN = M
(
e−λ + 1

)M−1
e−λ, (E.47)

and deduce that

µ = M
(
1 + e−λ

)−1
. (E.48)

Thus, with a little manipulation, we arrive at the binomial distribution as expected:

P (N |M,µ) =

(
M

N

)( µ
M

)N (
1− µ

M

)M−N
. (E.49)

Notice that the information we are given here to obtain the binomial distribution

is identical to the information we were given when we considered the red and white

balls in the urn, just phrased slightly differently. The expected number of red balls

drawn in an urn that has R red balls and W white balls after M = W+R draws has

to be R, the difference here is that we have generalized the problem. The agreement

between the maximum entropy method and logical deduction should give us faith

that this strange quantity actually works.
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Counting ⇒ Poisson Distribution

Remember in survival analysis we were interested in knowing whether a patient suf-

fered a relapse, or worse, died, and noting when it happened. If we split continuous

time into many tiny intervals, small enough so that not more than one event oc-

curs in each interval, then we can actually consider each interval as an independent

Bernoulli trial and consider the event, relapse or death, as a success. In general, for

any situation where we have to count the occurrence of a certain event over some

time interval, we can split the interval into M subintervals, let M →∞ so that no

more than one event occurs in each subinterval, and consider each subinterval as

an independent Bernoulli trial.

To that end, consider the limit M → ∞ in the previous example. The initial

information given, < N >= µ, is the same so we arrive at the same initial result

as E.43, but now N signifies the number of events observed over the time interval.

For M large, we have that
M !

(M −N)!
'MN , (E.50)

which means our measure is now

m(N) =
MN

N !
, (E.51)

and hence the probability is

P (N |µ) = A

(
Me−λ

)N
N !

, (E.52)

where A is the normalization constant. To determine A, let’s first write out the

normalization condition:
∞∑
N=0

A

(
Me−λ

)N
N !

= 1. (E.53)

Notice that the left hand side is actually the Taylor series for ex, so the normaliza-

tion condition reduces to

A =
1

eMe−λ
. (E.54)

To apply the condition < N >= µ, we would differentiate the series as before, and

get that Me−λ = µ. Putting everything together gives us the Poisson distribution:

P (N |µ) =
µNe−µ

N !
. (E.55)

What is interesting here is that the final result is independent of M , the number

of subintervals. This might lead one to believe that the size of M is not relevant,

but keep in mind that we assumed M to be large right at the beginning.
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E.3.6 Priors Vs Likelihood Functions

The maximum entropy method that we have developed for assigning probability

distributions based on our prior information I can be used for both the prior and the

likelihood function, and is simply a matter of nomenclature and personal preference.

If the data is new, then we call the pdf assigned using this new data the likelihood

function; if the data is old, then we call it the prior.
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Appendix F

Preliminary Work - Filtering the

Data

Prior to the adoption of Bayesian methodology to analyze the data, my initial work

focused on using mathematical filters to filter the data in an attempt to improve

the HP5 estimate. The results are presented in this appendix.

F.1 A few simple filters

Idea: Using the track information, we can plot the oxygen tension against position

and consider each track as a sort of signal, allowing us to apply some signal

processing filters to try and eliminate the noise.

F.1.1 Moving Average Filter

The moving average filter is a very simple filter that smooths a signal in the time

domain, has low pass characteristics, and is, in some ways, ideal for filtering white

noise [40]. In words, given an input signal {x[k]}, we generate a new sequence {y[k]}
by taking the average of x[k] and several of its nearest neighbours. It is called a

moving average filter because we can think of the filter as a moving window over

the signal that computes the average of the signal under the window. (Illustrated

in figure F.1.)
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Figure F.1: A cartoon showing how a moving average filter works. We can think of

the red box on the left as moving along the curve, taking the average of the values

under it, and outputting values for the plot on the right

Mathematically, for an input x[k] and a window size n = 2N + 1, the output

y[k] of the symmetric moving average filter is given by

y[k] =
1

2N + 1

N∑
i=−N

x[k + i]. (F.1)

Note that we can implement this recursively as

y[k] =
(2N + 1)y[k − 1]− x[k −N − 1] + x[k +N ]

2N + 1
. (F.2)

For the end points we can either modify the scheme to a one sided average at those

points or discard the points and have y[k] be a shorter sequence. I have chosen

to discard the ends since the length of the signal does not matter too much in

calculating HP5. Examples using this filter are shown in figure F.2.

F.1.2 Threshold Moving Average Filter

A useful modification to the moving average filter is to add a threshold. Given a

threshold value T, the threshold moving average filter is given by:

y[k] =


1

2N+1

N∑
i=−N

x[k + i], if ∆ > T,

x[k], if ∆ < T,

(F.3)
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Figure F.2: Plots of the data passed through a 3 point moving average filter. The

peaks and valleys in the signal are smoothed by the averaging of the values, and

the ends are cut off by choice.

Figure F.3: 5 point threshold moving average with T=5. Notice how with the

addition of the threshold, the output signal will follow the original signal if the

original signal is not undergoing large oscillations.
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where ∆ is simply the difference

∆ =

∣∣∣∣∣x[k]− 1

2N + 1

N∑
i=−N

x[k + i]

∣∣∣∣∣ . (F.4)

Again, I have chosen to cut of the ends of the signal where this symmetric definition

is not valid.

The effect of the threshold is to not smooth the regions where there is little

variation and preserve the original input signal in our output for those regions.

Physically, regions of the signal where there is little variation are possible indicators

of places that are not affected as much by noise, so retaining the original signal

makes sense because the smoothing action of the moving average filter might cause

information to be lost in regions where there is little noise. Use of this filter is

illustrated in figure F.3.

F.1.3 Weighted Moving Average Filter

We can also add weights to each value in the input {x[k]} to get the weighted mov-

ing average filter. Given some weights (a−N , a−N+1, ..., aN), the weighted moving

average filter is given by

y[k] =

N∑
i=−N

aix[k + i]

N∑
i=−N

ai

. (F.5)

Although there is no particular reason (such as prior information) to weight each

term in {x[k]} differently, we might want to weigh the central term x[k] more for

the output y[k] because it makes sense that the middle term should have more in-

fluence on the measurement at that point than the neighbouring terms. Some plots

using the weighted moving average filter with different weights are demonstrated

in figure F.4.

There are many more variations of the basic moving average filter, but the three

aforementioned filters serve as a good basis to work with, as they are all simple to

implement, make sense physically, and generate some interesting results.
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Figure F.4: Two kinds of weighted moving average filter. Centered weights make

sense since the current value should have the most influence on the output signal.

F.2 Results

Recall that to classify the amount of hypoxia in a patient we calculate the HP5.

Then, based on their HP5, the patients are split into two groups, oxic (HP5<.5)

and hypoxic (HP5>.5), and put into the log-rank test to see whether there is any

difference in survival between the two groups. Applying the various moving average

filters to the data affects the HP5 classification on some patients, and that in turn

affects the Kaplan-Meier plots and results of the log-rank test.

F.2.1 Effects of the filter on HP5

Applying the filters to the data and recalculating the HP5 changes the results. In

particular, it changes the classification of some patients and that will affect the

result of the log-rank test. For comparison, the table in figure F.5 displays some

of the results for three different 5 point filters, moving average, threshold moving

average with T=1, and weighted moving average with weights (1,2,5,2,1), and how

they deviated from the original data. Around 10 patients changed classification in

each case, and perhaps of interest is the fact that all of those who changed went

from being classified as hypoxic to being classified as oxic after the filtering, which

is probably a result of the filter eliminating small values in the data when smooth-

ing over regions with both large and small PO2 values.
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Figure F.5: Some values of HP5 before and after filtering. The letters in the right

most column, Y and N, stand for yes and no respectively to the question of whether

any of the filters changed the classification of the patient. Notice that for the most

part the filter does not change the classification unless the patient was borderline

to begin with, such as for patients 1, 3, 20, and almost for 12.

F.2.2 Effects of the filter on the Kaplan-Meier plot and

log-rank test

We can apply the same Kaplan-Meier estimator and log-rank test to the filtered

data, and, as you can see in the table in figure F.7, the filtered data did not have

much of an effect on the p-value. However, recall that one of the reasons 50% was

chosen as the threshold value for HP5 for splitting the patients into two groups

was because it was the median value of HP5 in the unfiltered data, so it might

not make sense to keep 50% as the threshold for the filtered data. If the groups

become imbalanced after the filtering, we might simply choose the median or some

other value of HP5 to split the patients into two new roughly equally sized groups

instead. We can see most clearly how keeping 50% might be a bad choice for the

filtered data when looking at the plots of the Kaplan-Meier estimator (figure F.6)

and p-value for the threshold moving average filter (figure F.7). Using 50% as the

threshold for the aforementioned data yields a p-value of 0.473, much larger than

the original value of 0.063, but when the median value of 41% was used for splitting,

the p-value for the filtered data was very close to the original value (0.062). Testing

some arbitrary threshold choices between 40% and 50% gave 42% as a threshold

value that “improved” the log-rank statistic (lowered it down to 0.03). There is no

mathematical or physical reason to choose 42% and that number was simply found

using trial and error.
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Figure F.6: Kaplan-Meier plots using the various different stratifications. The

feature of note here is that the last plot, using .42 as the stratification, separates

the two curves. Having curves that do not intersect is apparently beneficial because

that means the Cox proportional hazards assumption holds [45][46].
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Figure F.7: P-values for the log-rank test using various stratifications and various

filters. The results here seem to favour the threshold moving average filter and a

stratification choice of .42, but we cannot conclude that such a filter and stratifica-

tion threshold is useful in general because it is simply an ad hoc choice that works

best for the data that I have.

F.3 Conclusion and Future Direction

Data collected by the Eppendorf needle is clearly noisy. There are massive os-

cillations between readings mere millimeters apart, physically impossible negative

values of partial pressure that suggest at least a calibration error, and extremely

high values of oxygen tension that suggest we may not be measuring inside the

tumour. The first problem in particular motivates the use of a low-pass filter to

try and eliminate the noise. The moving average filter is a simple filter that does a

good job of smoothing the signal, makes sense physically, and is easy to implement,

but the filtered data, for the most part, did not significantly alter the outcome of

the statistical tests. We must be careful though, to not judge the merits of the

filter based on the outcome of the log-rank test. We would certainly like the filter

to lower the p-value and strengthen the result of the study, but in reality the data

might not support such a conclusion and, as mentioned in the main text, a low

p-value is not as important as many researchers believe. So to choose a filter that

produced a lower p-value would be erroneous and misleading because in that case

we would simply be manipulating data to create a certain result, and not analyzing

the data to pursue the underlying truth.

The problem with using a filter is that we have nothing to guide us in our choice,

there are literally hundreds of different filters that can be used. Even in the case

of the moving average filter, different weights or thresholds or window sizes could

potentially dramatically change the results. We could try to select filters based on

what kind of noise we think the Eppendorf incurs, but given the inherent problems

with measuring oxygen tension in tissue, that assumption might be hard to justify,
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and may not narrow down the choices much.
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Appendix G

Laplace’s Rule of Succession

In the coin tossing example, we were able to estimate the bias parameter H which

was our best estimate of the probability of getting a heads on any throw. However,

if I were a gambler, what I would want to know specifically is the outcome of the

next throw. More mathematically, one might ask:

What is the probability that the next throw will be heads?

Of course, since we are Bayesians, a more accurate representation of the problem

would be:

Given that we have tossed a coin n times and gotten r heads. What is

the probability that the next throw will be heads?

Laplace investigated a very similar problem many many years ago:

Given that the sun has risen everyday for the past 5000 years, what is

the probability that the sun will rise tomorrow?

Laplace’s solution to the sunrise problem is known as “Laplace’s Rule of Suc-

cession”, and it must be pointed out here that the only prior information we are

considering is the number of times the sun has risen in the past 5000 years. If

we took into consideration other pieces of information, such as celestial mechanics,

satellite data etc, the analysis would necessarily be altered, and it would be obvious

that the sun will rise tomorrow, so the probability of the sun rising must be exactly

(or extremely close to) 1, but that is precisely what we are not doing here, as we
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wish to analyze a more general class of problems.

It occurred to me in the midst of investigating this problem that we might possi-

bly use Laplace’s result on the Eppendorf data. Recall previously that we estimated

the HP5 of a patient exactly as though it were a Bernoulli trial, so Laplace’s rule

would necessarily apply to our data as well and predict the probability of whether

the next measurement is going to be greater than or less than 5 mmHg. If we took

a number of additional measurements and compared it to our prediction we might

be able to verify whether our original estimate of HP5 was suitable or not.

(Historical note: Laplace postulated that the sun had risen for the past 5000

years because 5000 years was the commonly accepted age of the Earth at the time

according to the Bible. We can adjust easily for personal experience, or for more

recent estimates of the age of the Earth.)

G.1 Prediction vs Expectation

We want to assess what the probability will be that the next trial will yield a head

given that we have already conducted n trials and gotten r heads. If the bias

parameter H were known exactly, since we assume the trials are independent, this

probability would clearly be exactly H. However, since H is unknown in our case

and we are trying to estimate it, Jaynes [1] claims that the probability of interest is

actually “numerically equivalent” to the expected value of the distribution we have

derived for H, < H >. Jaynes proposes that this equivalence holds in very general

settings, but does not seem to prove it. Instead, he provides us with a number of

examples where the result holds.

G.1.1 Jaynes’ illustrative example

Consider an urn with N balls, R of which are red. In the most general case, we do

not know what the values of N and R are and wish to estimate them. To proceed,

we would then draw n balls out of the urn, note that r of them are red, and analyze

the data accordingly to get the joint distribution for N and R. However, let us

suppose that we knew what N was and only wish to estimate R given our data.

It will turn out that the result of interest, the predictive probability that the next

ball drawn will be red, is independent of N , which is surprising, but very useful
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because it means we do not need to know N after all.

Denoting the data that r balls out of n draws is red by D, and using Bayes’

theorem, the probability distribution of R is given by

P (R|DNI) = P (R|NI)
P (D|NRI)

P (D|NI)
. (G.1)

Suppose we were completely ignorant about R, then our prior must be the uniform

distribution:

P (R|NI) =

{
1

N+1
if 0 ≤ R ≤ N,

0 if R ≥ N.
(G.2)

(Note that we are in a discrete setting, hence the N + 1 in the denominator.) For

this urn problem, the likelihood function is the hypergeometric distribution [1]:

P (D|NRI) =

(
N

n

)−1(
R

r

)(
N −R
n− r

)
. (G.3)

The evidence, P (D|NI), is a normalization constant as before, so we have

P (R|DNI) = S−1 1

N + 1

(
R

r

)(
N −R
n− r

)
, (G.4)

where S is the normalization constant. Jaynes [1] gives us this useful formula:

N∑
R=0

(
R

r

)(
N −R
n− r

)
=

(
N + 1

n+ 1

)
. (G.5)

Thus, we have

S =
N∑
R=0

1

N + 1

(
R

r

)(
N −R
n− r

)
=

1

N + 1

(
N + 1

n+ 1

)
=

1

n+ 1

(
N

n

)
, (G.6)

and hence

P (R|DNI) =
n+ 1

N + 1

(
R
r

)(
N−R
n−r

)(
N
n

) . (G.7)

Now let’s calculate the expected value of R as follows. We want to compute

< R >=
N∑
R=0

RP (R|DNI). (G.8)
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According to Jaynes, a useful formula is

(R + 1)

(
R

r

)
= (r + 1)

(
R + 1

r + 1

)
, (G.9)

which yields

< R > +1 = (r + 1)

(
N + 1

n+ 1

)−1(
N + 2

n+ 2

)
=

(N + 2)(r + 1)

(n+ 2)
. (G.10)

Thus the expected fraction of red balls left in the urn is

< F >=
< R > −r
N − n

=
r + 1

n+ 2
. (G.11)

Notice that this expectation is intuitively the probability that the next ball drawn

will be red because it is the expected fraction of red balls to total balls remaining.

We shall derive the predictive probability that the next ball drawn will be red

in a different manner using probability theory as follows. Let:

Ri ≡ red ball on ith draw, 1 ≤ i ≤ N. (G.12)

Then the probability of interest is, using marginalization,

P (Rn+1|DNI) =
N∑
R=0

P (Rn+1R|DNI),

=
N∑
R=0

P (Rn+1|RDNI)P (R|DNI),

=
N∑
R=0

R− r
N − n

(
N

n

)−1(
R

r

)(
N −R
n− r

)
,

=
r + 1

n+ 2
. (G.13)

Which yields exactly the same formula as the one for < F >. Jaynes notes that

this equality is not a mere coincidence and that:

“under quite general conditions, the predictive probability of an event

at a single trial is numerically equal to the expectation of its frequency

in some specified class of trials.”

What exactly these conditions and trials are is not clear. Notice that the result is

independent of N even though we assumed that we knew exactly what N was.
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G.2 The Result

Going back to our coin toss problem, we want the probability that the next toss

will be heads. According to the previous example, we would do so (that is, derive

Laplace’s rule of succession), by calculating the expected value of H. Recall from

chapter seven that the posterior probability for the coin flipping problem has the

following form (equation 6.9):

P (H|D, I) =


(n+1)!
r!(n−r)!H

r(1−H)n−r if 0 ≤ H ≤ 1,

0 otherwise.
(G.14)

The expected value of H is then given by

P (Hn+1|DI) = < H > =

∫ 1

0

HP (H|D, I)dH,

=

∫ 1

0

(n+ 1)!

r!(n− r)!
Hr+1(1−H)n−rdH,

=
r + 1

n+ 2
. (G.15)

The integral was evaluated using the known result for beta functions (equation 6.7)

as in chapter 6. The result for the coin flip is identical to the previous one (G.13)

because it is simply the continuous version of the discrete result as N →∞. Since

the formula is independent of N , this limit has no effect on the outcome.

G.2.1 So will the sun rise tomorrow?

Assuming the sun has risen everyday for the last 5000 years, we have that n = r =

5000× 365, so

P =
5000× 365 + 1

5000× 365 + 2
≈ 0.9999995. (G.16)

This means that even the most naive estimate would have the sun almost certain

to rise tomorrow, though, of course, aliens might invade and destroy the sun before

then!

G.2.2 Back to Eppendorf

My original idea was the following: Suppose it were possible to get additional Ep-

pendorf measurements from the patients. Then we can test the accuracy of the
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Figure G.1: Here is a comparison between the results for Laplace’s rule of succession

(LRS) and the best estimate for HP5 from chapter 6. For completeness, the sample

median and maxent median estimates are also included.

HP5 estimate by taking a number of additional readings, and comparing the prob-

ability of getting a reading less than 5mmHg in these new readings compared to the

predicted probability of getting a reading less than 5mmHg using Laplace’s rule of

succession.

However, a quick glance at the table of results for Laplace’s rule of succession

compared to the previous results from chapter 6 for the best estimate (figure G.1)

will show that the two are nearly identical for all patients. At the very least, the

Laplace result is within the error bar for the best estimate. The reason for this is

mostly likely because of the large number of data that we had, which meant that

there was little difference between the best estimate, given by r/n, and Laplace’s

rule of succession, given by r+1/n+2. So while the sunrise problem is an interesting

intellectual puzzle, it does not yield particularly useful information for our data.
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[21] I. Toma-Daşu et al, Theoretical simulation of oxygenn tension measurement

in tissues using a microelectrode: I. The response function of the electrode.

Physiol. Meas., 2001, vol. 22, 713-725. 39, 40

[22] J. Scott Armstrong, Significance tests harm progress in forecasting. Interna-

tional Journal of Forecasting, 2007, vol.23, 321-327. 59, 60

[23] J. Scott Armstrong, Statistical Significance Tests are Unnecessary Even When

Properly Done. International Journal of Forecasting, 2007, vol.23, 335-336. 59,

60

[24] I. Fatt, Polarographic Oxygen Sensors. CRC Press 1976. 17, 18, 19, 20, 22,

23, 27, 28, 32, 37, 38, 107

[25] P. W. Davies, The Oxygen Cathode. Physical Techniques in Biological Re-

search, vol. IV, ed. W. Nastuk. Academic Press 1961. 137-179. 23

[26] I. M. Koltholf and J. J. Ligane, Polarography - Volume I, Theoretical Princi-

ples; Instrumentation and Technique. Interscience Publishers, New York, 1952.

19, 23, 28, 32

[27] K. H. Mancy et al, A Galvanic Cell Oxygen Analyzer. J. Electoanal. Chem.,

4, 1962, 65-92. 21, 32

[28] R. A. Albanese, Use of Membrane-covered Oxygen Cathodes in Tissue. J.

thoer. Biol., 1971, vol.33, 91-103. 22, 23, 24, 28, 30, 32, 37, 104, 107

[29] C. E. W. Hahn, Electrochemical analysis of clinical blood-gases, gases, and

vapours. Analyst, June 1998, vol. 123, 57R-86R. 19, 28, 33, 34, 36, 37, 38, 39,

42

[30] J. A. Hudson, Measurement Of Oxygen Tension By The Oxygen Cathode.

Med. & biol. eng., 1967, vol. 5, 207-223. 22, 38, 107

[31] I. A. Silver, Polargraphy and its biological applications. Phys. Med. Biol., 1967,

vol.12, no.3, 285-299. 28, 32, 33, 34, 35, 38

[32] D. L. Short and G. S. G. Shell, Fundamentals of Clark membrane configu-

ration oxygen sensors; some confusion clarified. CSIRO Centre for Irrigation

Research, Australia, Feb, 1984. 32

[33] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids. 2nd Ed. Oxford

University Press, 1959. 25

148



[34] J. J. Carroll, What Is Henry’s Law? Chemical Engineering Progress. Vol. 87,

no.9, 1991, 48-52. 107, 110, 111

[35] J. J. Carroll, Henry’s Law Revisited. Chemical Engineering Progress. Jan.

1999, 49-56. 109, 111

[36] F. L. Smith, A. H. Harvey, Avoid Common Pitfalls When Using Henry’s Law.

Environmental Management. Sep 2007, 33-39. 111

[37] Univeristy of Delaware Physical Chemistry lecture notes.

http://www.udel.edu/pchem/C443/Lectures/Lecture33.pdf 109

[38] Universtiy of Florida Physical Chemistry lecture notes.

http://www.chem.ufl.edu/˜itl/4411/colligative/lec i.html 108

[39] Univeristy of Arizona Chemistry 480A notes. Aug 2001.

http://www.chem.arizona.edu/˜salzmanr/480a/480ants/chemther.html 108,

112

[40] Steven W. Smith, The Scientist and Engineer’s Guide to Digital Signal Pro-

cessing. http://www.dspguide.com 131

[41] Rakesh K. Jain, Normalizing tumor vasculature with anti-angiogenic therapy:

A new paradigm for combination therapy. Nature Medicine, vol. 7, no.9, Sep

2001, 987-989. 10, 11

[42] T. Roose, J. Chapman, et al, Mathematical Models of Avascular Tumor

Growth. SIAM Review, vol. 49, no.2, 179-208 10, 11

[43] Answers to Your Radiation Therapy Questions. American Society of Radiation

Oncology (ASTRO) http://www.rtanswers.org/ 9

[44] R. Peto, M. C. Pike, et al, Design and Analysis of Randomized Clinical Trials

Requiring Prolonged Observation of Each Patient. Br. J. Cancer, 1977, 35,

1-38. 57, 115

[45] D. Collet, Modelling Survival Data in Medical Research. 2nd Ed. Chapman &

Hall/CRC, USA, 2003. 50, 51, 52, 54, 55, 56, 115, 116, 137

[46] M. Pintilie, Competing Risks - A Practical Persepctive. Wiley. Ontario Cancer

Institute, Canada. 50, 54, 55, 56, 115, 137

[47] J.H. McDonald, Handbook of Biological Statistics. Sparky House Publishing,

Baltimore, Maryland, 2008. http://udel.edu/˜mcdonald 48

149



[48] E. L. Kalplan and P. Meier, Nonparametric Estimation From Incomplete Ob-

servations. American Statistical Association Journal, June 1958, 458-481. 52

[49] J.D. Gibbons and S. Chakraborti, Nonparametric Statistical Inference, 3rd

Ed. Marcell Dekker, 1992. 113, 114

[50] Frank E. Beichelt and L. Paul Fatti, Stochastic Processes and Their Applica-

tions. Tayloer & Francis, New York, 2002. 94, 95

[51] Blood Gases, Medline Plus, U.S. National Library of Medicine

http://www.nlm.nih.gov/medlineplus/ency/article/003855.htm 42

[52] Bob Bartlett, Answering questions about hypoxia. Wound Healing Persepc-

tives, vol. 1, no.4, 2004. 43, 44

150


	List of Figures
	Introduction
	Radiotherapy and The Role of Oxygen
	Hypoxic Regions in Tumours
	General Overview of Radiotherapy
	Ionizing Radiation
	Cell Killing
	Direct and Indirect Action of Radiation
	The Oxygen Effect - Oxygen Fixation Hypothesis
	Fractionation

	Metastasis
	Methods for measuring oxygen concentration in tumours

	An Overview of The Polarographic Oxygen Electrode
	Chemical Basis of the Probe
	Mathematical Modeling of the Probe
	Diffusion
	Equation for the Current
	Bare Spherical Electrode
	Membrane Covered Spherical Electrode
	What is diffusing?

	Practical Aspects of Polarography
	Original uses in Chemistry
	Medical Applications
	Why Partial Pressure?
	Calibration
	Potential Issues

	Summary

	The Data and Standard (Orthodox) Techniques For Analyzing It
	PO2 in Normal Tissue
	The Data
	Correlation between HP5 and Median PO2
	Survival Data and its Analysis
	Some Critical Comments

	Bayesian Data Analysis - The Basics
	Induction and Plausible Reasoning
	Probability Theory - Rules for Consistent Reasoning
	Degrees of Belief
	Sum and Product Rule
	Bayes' Theorem
	Marginalization


	Estimating the HP5
	Motivation: Coin Flipping - How do you know if a coin is fair?
	Prior Probability
	Likelihood Function
	Evidence
	Posterior

	Sequential data analysis
	Effect of Different Priors
	Summarizing the Results
	Best Estimate/ Maximum Likelihood
	Error Bar/ Variance
	Mean/ Expectation Value
	Confidence Interval
	Multimodal Posterior Distributions

	Results
	Possible Advantages


	Estimating the Median of the PO2 Distribution
	Theory
	Results

	Survival Analysis as an Inhomogeneous Poisson Process
	Inhomogeneous Poisson Processes
	Analysis
	Finding (x)
	Results

	Conclusion

	Summary, Conclusion, and Future Direction
	APPENDICES
	Henry's Law
	Modified versions of Henry's Law
	Fugacity
	Derivation of equation A.8

	Derivation of the Spearman's Coefficient of Rank Correlation
	The Log-rank Test
	Derivation of the Binomial Distribution
	Assigning Probabilities - The Maximum Entropy Principle
	Principle of Indifference
	Location and Scale Parameters
	The Maximum Entropy Principle
	Testable Information
	Entropy
	The Monkey Argument
	Extending to continuous parameters
	Some examples
	Priors Vs Likelihood Functions


	Preliminary Work - Filtering the Data
	A few simple filters
	Moving Average Filter
	Threshold Moving Average Filter
	Weighted Moving Average Filter

	Results
	Effects of the filter on HP5
	Effects of the filter on the Kaplan-Meier plot and log-rank test

	Conclusion and Future Direction

	Laplace's Rule of Succession
	Prediction vs Expectation
	Jaynes' illustrative example

	The Result
	So will the sun rise tomorrow?
	Back to Eppendorf


	References

