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Abstract

A network service provider typically sells service at a fixed traffic rate to cus-
tomers. This rate is enforced by allowing or dropping packets that pass through,
in a process called policing. Distributed policing is a version of the problem where
a number of policers must limit their combined traffic allowance to the specified
rate. The policers must coordinate their behaviour such that customers are fully
allowed the rate they pay for, without receiving too much more, while maintaining
some semblance of fairness between packets arriving at one policer versus another.

A review of prior solutions shows that most use predictions or estimations to
heuristically allocate rates, and thus cannot provide any error bounds or guarantees
on the achieved rate under all scenarios. Other solutions may suffer from starvation
or unfairness under certain traffic demand patterns.

We present a new global “leaky bucket” approach that provably prevents star-
vation, guarantees full utilization, and provides a simple upper bound on the rate
allowed under any incoming traffic pattern. We find that the algorithm guarantees
a minimum 1/n share of the rate for each policer, and achieves close to max-min
fairness in many, but not all cases. We also suggest some experimental modifications
that could improve the fairness in practice.
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Chapter 1

Introduction

Networks are heavily used by large numbers of users, but network service providers
have finite capacity for traffic. While there has been prior research on the problem
of dynamically dividing the capacity between variable numbers of users and pricing
by usage [12, 11, 22], this business model is still not widely used and not always
desirable. Users often prefer a predictable level of service and predictable costs.
To that end, providers typically sell a fixed traffic rate to customers at a flat cost
per month. Thus, even though providers may have capacity to spare, they are
limiting the maximum rate that the customer may use. This process is known as
rate-limiting, rate-enforcing, or policing.

In policing, an algorithm is applied to each incoming packet to decide if it falls
within the rate limit or should be dropped. Distributed policing comes into play
when it is necessary to enforce an aggregate rate using multiple network processors
that each receive a distinct subset of the packets. There are at least two applications
for this problem.

One application suggested by Raghavan et al. [17] is for controlling “cloud-
based” distributed services. These are computing services running on servers
throughout the Internet. A customer accesses the services remotely and does not
care which server is used, and their traffic may be distributed onto more than one
server. The argument is made that customers prefer to pay for an agreed upon rate
instead of usage-based pricing, and as such, introduces the distributed rate limiting
(DRL) problem, which we refer to as distributed policing.

Another application is inside network hardware, such as a router or switch.
Network administrators may want to enforce a rate limit on an arbitrary class of
traffic going through the switch, or an Internet Service Provider may sell service at
a fixed rate to customers sharing the switch. As network speeds continue to rise, it
will become more common for network hardware to have multiple processors, with
each one handling policing on a different portion of traffic. Thus we need to scale
the policing algorithm to multiple processors.

The service rate sold to a customer in this way is a contract. If customers pay
for a flat rate of 5 Mbps, they expect to be able to use any amount of bandwidth up
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Figure 1.1: Diagram of a Network Device
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to that speed before being artificially rate-limited. It is important that a policing
system does not start dropping customer packets before the rate limit is reached.
If we over-restrict at first and try to compensate with higher rates later, but higher
demand does not occur later, then not only has the customer been unable to use
the full rate, but we have also failed to honour the contract.

The focus of this thesis is to provide new distributed policing algorithms and
theoretical analyses that guarantee these rates for the customer.1 We find that
previous solutions to the problem lack these guarantees and error bounds, and
have only been analyzed in cases where users are well-behaved and follow the TCP
congestion control protocol. We are able to provide upper bounds and lower bounds
on the global rate under any traffic conditions. However, we fall short of our fairness
goal of providing max-min fair rates to each individual policer, and only provide a
loose lower bound of 1/n rate fraction for each individual.

The rest of this chapter defines the distributed policing problem and the goals
we are aiming for in detail. It also provides background on centralized policing
algorithms. Chapter 2 describes previous solutions to the distributed problem and
provides a detailed comparison of their strategies and shortcomings. Chapter 3
explains our new algorithms and analyses their theoretical worst case performance.
We also have some simulation results, which we list in Chapter 4 to confirm the
theoretical results and explore further issues.

1.1 Background and Model

1.1.1 Basic Network Device

The model for the centralized policing is a basic network device such as a switch
or router (see Figure 1.1). Data packets arrive at the device and are either passed
on, or dropped. A packet must be passed on (i.e. not dropped) for the customer
to have received service. In the device, there is a single processor that handles one
packet at a time, examines it, and decides what is to be done with the packet (e.g.
where to forward it). It is this processor that implements policing, or rate-limiting.

The first step is packet classification. A variety of packets may be arriving on
the network device, and the classifier examines a packet’s headers to assign it to

1By guarantee, we mean that we guarantee not to limit traffic below the agreed upon rate
bound. We do not guarantee packets will actually make it to their destinations.
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a predefined traffic class. (Generally the point of policing is to ensure Quality of
Service for all other traffic that shares the device, so there is little point in policing
without more than one traffic class.) If this traffic class has a rate limit assigned,
then the policer will decide whether to allow or deny the packet. Finally, if the
packet is not dropped, it will go on with other processing and exit the device.

Note that because the processor can only handle one packet at a time, there
is a memory buffer for storing incoming packets until the processor is ready for
them. If the buffer becomes full, packets may be dropped before the classifier and
policer have a chance to look at them. The problem of proper buffer size, number of
queues in the buffer, etc. is another research area in itself and is beyond the scope
of this project. We assume the buffer is sufficient. We will define traffic demand
as the packets that enter the network processor after buffering, so our analysis is
independent of buffering effects.

1.1.2 Policing Definition

Policing is applied on a packet-by-packet basis. The main component of the policer
is called the metering algorithm, or meter, because it measures the rate of traffic
going by. The metering algorithm decides whether the incoming packet is conform-
ing to or exceeding the desired rate. Depending on whether the packet “conforms”
or “exceeds,” the policer will perform a different action. Most often, conforming
packets will be permitted, while exceeding packets will be dropped. Other actions
could be to let the packet through marked with a lower priority, or placing into
a queue. The action actually taken can be prescribed by a network administrator
and is irrelevant from the perspective of the metering algorithm. The metering
algorithm will only count packets that conform. In other words, the precise job
of this algorithm is to enforce a limit on the number of packets that it will mark
“conform.”

However, if packets that exceed are queued, it is no longer considered policing,
but traffic shaping. Suppose three packets arrive in the order A,B,C when the
meter reports the rate is exceeded, and a fourth packet D arrives when enough
time has passed that the rate is under again. In policing, packets A,B,C are
simply dropped, and D would be allowed. In traffic shaping, A,B,C are placed
in a queue. Once enough time has passed, the first packet to be allowed will be
A. When D arrives, it would be placed in the queue behind B,C. Shaping adds
additional complexity. Not only does the meter have to signal the queue, the output
of the queue needs to lead back to the metering algorithm, so previously exceeded
packets can be counted again as conformant. Thus, even though the same metering
algorithm can be used for policing and shaping, the data flow of traffic shaping
does not fit our policing model.

In a policer, the action taken does not affect the meter, so we will use the term
policing algorithm to refer to the metering algorithm. In this document we will also
interchangeably use the terms permit, allow, or forward a packet when we mean to
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mark it “conform” and the terms drop or deny a packet when we mean to mark
it “exceed.” We use the terms policing to rate r or limiting the rate to r to mean
that the rate at which packets are marked “conform” is limited to r.

The metering procedure described above is sometimes called a two-colour marker,
since it categorizes packets into two colours: conform and exceed. There also ex-
ist three-colour policers, such as the single rate [6] and two rate [7] three-colour
markers. We will only consider the two-colour markers.

1.1.3 Distributed Model

In the distributed model, there are several policers, but still only one policer per
processor. In both the multi-processor router and the cloud service applications,
each packet only needs to be serviced by one processor or server. Therefore each
packet is counted by only one policer. In the general rate control problem, a network
is described as a graph of links, and packets may flow through more than one link to
reach their destination. Under this terminology, our model is a set of independent
links. We will simply call it a set of policers.

1.2 The Distributed Policing Problem

We define n policers or nodes P1, . . . , Pn. Each policer receives a different portion
of incoming traffic, which we call the demand, at rates d1, . . . , dn. These rates may
be fluctuating. Each policer must locally run an algorithm to allow or deny each
packet that it receives, such that the total rate allowed by the set of policers is
no more than r and no less than min(d, r) where d =

∑
di is the total demand

received. Allowing more than this is measured as error in correctness, and allowing
less is considered inability to fully utilize the rate. It is permissible to have small
error in either direction, but from a customer satisfaction standpoint, error in the
correctness is preferred.

We assume each policer has capacity greater than r, so that any single policer
can support the full rate r. That is, there are no extra restrictions on which dis-
tributions of resources are possible in the system. However, some distributions
are better (more fair) than others; the ideal distribution is that of max-min fair-
ness, which we elaborate on in Section 1.2.2. To achieve these requirements, each
policer is able to communicate with any other policer as needed. Of course, less
communication is preferred.

1.2.1 Ideal Qualities

The following list summarizes the qualities of a “good” solution, roughly in order
of importance.
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1. Correctness. The algorithm for policing is correct if it limits the combined
traffic to the desired rate r. Allowing traffic higher than r would be error
in the correctness. This error is often defined in terms of the burst size B,
which means in a time interval of length ∆t, the allowed volume may be up
to r∆t+B. Then in an arbitrarily small timeframe, a burst of traffic size B
could be allowed.

2. Full Utilization. The algorithm should use all available resources, i.e. it should
not over-police. Forcing traffic to be at a rate slower than min(d, r) would be
over-policing, as packets have been unnecessarily dropped. If full utilization
were not a key issue, then the simplest solution would be to allocate 1/nth of
the rate to each policer.

3. Fairness/Starvation. Resources should be divided fairly. Fairness can be
interpreted several ways, which we will describe in the next section. The
minimal notion of fairness is that each policer should permit some (non-zero)
level of traffic, i.e. avoid starvation.

4. Minimizing Overhead. Each policer is independent with no shared memory
between them. There must be some communication between policers to cor-
rectly achieve the aggregate rate limit. Communication is in the form of
network packets, which constitute overhead in the system. Overhead should
be minimized.

5. Robustness to Communication Latency and Loss. The communication packets
will take time to travel between policers. This latency may be higher in
a distributed server setup versus a multi-processor switch. If a policer is
waiting for a communication packet, it should be able to continue operating
normally until it arrives. If the communication packet never arrives, i.e.
there is communication packet loss, the distributed algorithm should not be
adversely affected. Ideally, it should be able to recover.

6. Minimizing Burstiness. We would like for the rate of the output traffic to not
swing up and down to extreme levels. That is, the rate should be steady, not
bursty, if possible.

In this paper, we present new algorithms that first achieve correctness and full
utilization, and approximate fairness. We also touch on the other points.

1.2.2 Fairness

Past work has looked at solving distributed policing with different fairness goals
in mind. Both Raghavan et al. [17] and Stanojević and Shorten [19] suggest the
distributed algorithm should behave the same as a centralized algorithm. However,
there are at least two centralized algorithms with different fairness properties. Here
we justify our choice of max-min fairness.
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Max-min fairness (MMF) is a scheme that can be calculated as follows. First
give equal shares to each participant. If a participant does not use all of its share,
the excess is split amongst the remaining participants evenly, and this is repeated
until all resources are used. Mathematically, there is a maximum share v such that
all particpants requesting less than v receive their request. All requesting more
than this receive v. The value v is the one that fully uses the resource.

Max-min fairness is most equal and it does not encourage any participant to
artificially inflate their demand. For example, if a user wanted 4 Mbps rate but the
MMF scheme only allows it 2 Mbps, then the user can not possibly increase its share
by increasing its request rate. Congestion control protocols such as TCP window
[8] ask that users decrease their send rate when the system can not support their
rate. With an incentive-compatible distribution like MMF, there is no incentive
for a user to violate such congestion control protocols, so there is a good chance of
users complying to avoid congestion.

Kelly [12] proposed proportional fairness as a utility-maximizing scheme, defined
as follows. A vector of rates x = {xs, s ∈ S} is proportionally fair if it is feasible
and if for any other feasible vector x∗, the aggregate of proportional changes is zero
or negative: ∑

s∈S

x∗s − xs
xs

≤ 0 (1.1)

In some situations, a large increase can be given to one individual while only re-
moving a small amount from another. In these cases, proportional fairness gives
optimal utility where max-min fairness does not [1, 12]. In our problem, this is not
possible, so the MMF allocation is equivalent to the proportional fair one. Here,
utility is maximized simply when total rate is maximized, i.e. full utilization.

We define demand-proportional fairness as giving shares that are proportional
to the demand. This way, each participant gets the same proportion of resource
that it asks for. However, it is not incentive-compatible. Still, demand-proportional
fairness is quite common, as emulating a single best-effort policer naturally leads
to it.

Lastly, the commonly used Jain’s fairness index [9] evaluates the equality be-
tween rates, which is only required for a subset of max-min fair cases, and almost
never for demand-proportional.

Flows vs Policers

The concept of fairness can be applied to any problem where we need to divide a
resource amongst particpants. In our problem, we can either define the participants
as the policers or flows. A flow is defined as the subset of traffic with the same 5-
tuple: source address, destination address, source port, destination port, protocol.
Flows roughly correspond to users of a network. Each policer may have a different
number of flows, and the numbers may vary widely as flows can start and stop,
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often with short lifespans. Ensuring fair allocation between flows is an ideal goal,
but more complex than between policers, given their dynamic nature.

There have been prior solutions to distributed policing that attempt to achieve
fairness between flows by Raghavan et al. [17] and Stanojević and Shorten [19].
However, the algorithms have always been studied with a constant number of long-
lived flows, which may not reflect dynamic conditions in the real world. This is
understandable, but the algorithms take a noticeable delay to adjust to a change in
flow numbers, which would be problematic in case of very short-lived and erratically
changing flows. Rapidly changing conditions also make it difficult to accurately
measure and evaluate the rates. We think it is prudent to start with fairness
between policers, where the traffic levels should be less variable.

Rate as a Resource

Using rate in a resource sharing problem raises additional questions. What is the
time interval over which we should compute the rate? If a participant has been idle
for several hours, then starts to generate lots of traffic, should it be given credit for
the previous idle time? If so, how far back should we look? We do not know the
answer to this question. We note that policing algorithms with a constant burst
size naturally limit such a credit; no matter how long traffic has been idle, there is
a limited burst of traffic that can occur before it is considered at the rate.

In this thesis, we always measure the allowed rate compared to demand over the
same time interval. Since packets exiting the policer must be a subset of packets
entering it, it is also simpler to measure the rate over a certain volume of traffic.
For theorems that we prove, the rate is an average based on the amount of time it
takes for a certain volume of traffic to be allowed. In experiments we only examine
fairness under steady rate conditions.

Which Fairness Criteria to Aim For?

We focus on max-min fairness between policers, which is simpler than achieving
it between flows. However, our methods can be treat flows as participants as
well, given a way to identify flows and sufficient space requirement. In comparison
to previous solutions, we note that only Flow Proportional Share (FPS) [17] and
Distributed Deficit Round Robin (D2R2) [19] explicitly try to achieve max-min
fairness between flows. Both C3P and GRD try to emulate a centralized best effort
limiter, which gives demand-proportional fairness because every packet has the
same probability of being forwarded. Curiously, these two methods were evaluated
on giving equal shares to flows, but demand-proportional fairness would only give
equal shares if demand for each flow is equal!
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1.3 Centralized Policing Algorithms

Before trying to solve the distributed policing problem, it is essential to understand
the centralized (i.e. non-distributed) policing solutions. Virtually all distributed
policing solutions also employ one of the centralized algorithms as a fundamental
part. The centralized policing problem refers to limiting the rate of packets going
through a single policer. Solutions include the well known token bucket [16, 20]
and leaky bucket [21, 3] algorithms. Sometimes a virtual queue [5] algorithm is
used. While the implementations differ, all three of these solutions are functionally
equivalent to each other. In this section, we describe the leaky bucket algorithm
and demonstrate how the others are equivalent.

1.3.1 Leaky Bucket

Conceptually, we have a bucket with a hole in the bottom, so that it leaks out at
a fixed rate. One can add to the bucket as long as doing so does not cause it to
overflow. The algorithm is characterized by two constants: the bucket depth B (also
called burst size) and leak rate r. The level of the bucket is a variable b, initially 0.
The value of b is steadily decreasing at the leak rate, but may not decrease below 0.
Every time a packet arrives, we check if there is enough space in the bucket for the
whole packet. If there is enough room, then the packet size is added to the bucket
level, and the packet conforms (is allowed). Otherwise, the packet is dropped, and
the level is not increased. This decision is outlined in Algorithm 1.1. It is not hard
to see that the rate of packets being allowed is limited by the leak rate from the
bucket.

Algorithm 1.1 Leaky Bucket Algorithm

On event: Receiving packet size s

if b+ s ≤ B then
Allow packet
b← b+ s

else
Drop packet

end if

Avoiding packet size bias. This version of the leaky bucket gives a bias
against large size packets when the bucket is close to full [2]. Since there is only
B − b space available in the bucket, a packet of size s1 > B − b would be dropped,
whereas a smaller packet of size s2 < B − b would be allowed. In the policing
model, dropped packets are not queued, so a large packet being dropped would not
block a smaller packet that arrives right after it. If small packets arrive at sufficient
rate, there might never be enough space created to allow a large packet, effectively
denying all large packets. This bias is avoided using a variant of the leaky bucket
algorithm that allows packets as long as b ≤ B, without regard to the incoming
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packet size. The side effect is the bucket can then become “overfilled,” i.e. b > B.
For this reason, B is sometimes called the bucket threshold level, rather than the
bucket size.

Burst size. After a long enough period of inactivity, the bucket will be empty.
Then the algorithm may allow a burst of up to B traffic in very short time. Thus,
the bucket size B also gives the burst size. To be more accurate, the burst size is the
maximum level that b may reach starting from 0. In the above packet size-agnostic
variant, the burst size may actually be B +max packet size.

Finally, when the leaky bucket is used for traffic shaping, it is sometimes called
the buffered leaky bucket [23]. Here, a leaky bucket will refer to the unbuffered
leaky bucket used for policing.

1.3.2 Token Bucket

The token bucket algorithm [16, 20] is another common method to do (centralized)
policing. The token bucket fills with credits, called tokens, at a fixed rate, and
tokens are removed when packets are allowed. This is exactly opposite to a leaky
bucket, but provides equivalent behaviour. The token bucket can be thought of as
an inverted leaky bucket; a complete analogy is given in Table 1.1.

Table 1.1: Comparing Token Bucket with Leaky Bucket.

Token Bucket Leaky Bucket
Concept Tokens represent credits

available to use.
Bucket level represents
packets using up the rate.

At regular intervals Tokens replenish at rate
r

Bucket leaks at rate r

Tokens accumulate until
bucket is full

Bucket leaks until it
reaches 0

On incoming packet, size
s

If enough tokens, sub-
tract s tokens; the
packet “conforms.” If
not enough tokens, the
packet “exceeds.”

If enough space, add s
bytes; the packet “con-
forms.” If not enough
space, the packet “ex-
ceeds.”

Bucket size, in relation to
burst size

If bucket is full of to-
kens, then a burst of traf-
fic could be allowed all at
once.

If the bucket is com-
pletely empty, then a
burst of traffic could be
allowed all at once.

1.3.3 Virtual Queue

The concept of a leaky bucket filling with arriving packets and leaking at rate r can
also be thought of as a virtual queue filling with packets and being serviced at rate
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r. Gibbens and Kelly [5] first proposed using such a virtual queue to mark packets,
and Stanojević and Shorten [19] use virtual queues to do basic policing in their
distributed C3P and D2R2 algorithms. Unfortunately, implementation details are
vague; the description given in [19] is very brief:

On each arrival the packet size is placed in [a] virtual queue. If the
packet is discarded from the virtual queue, then the arriving packet is
dropped, otherwise it is forwarded to the appropriate output line. Thus,
no queueing delay is caused by any limiter.

The leaky bucket and virtual queue are equivalent assuming items can be par-
tially removed from the queue, i.e. byte by byte, otherwise the removal of large
items from the virtual queue would be delayed. Since the queue is only virtual, and
do not contain any actual items, this assumption is likely valid. The queue model
is often useful for analysis. For example, Butto et al. [3] modelled the leaky bucket
as a G/D/1/B queue (general distribution of arrivals, deterministic service rate by
1 server, and finite waiting room B) in order to analyze leaky bucket’s efficacy at
policing a bursty source.
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Chapter 2

Literature Review

2.1 Padwekar’s Algorithm

Techniques for distributed policing are new, indeed the earliest algorithm we know
of dates from a US patent entitled “System and Method for Distributed Policing”
filed in 2005 by Padwekar [15], and granted in 2006. The algorithm is intended
for application inside a network device that has multiple forwarding engines and
policers. It is expected to be implemented in some Cisco enterprise-level routers.
This algorithm treats the problem as a synchronization problem. The main idea
is to have each policer run a copy of a leaky bucket algorithm that polices at rate
r, and synchronize the copies via update packets. Since a leaky bucket algorithm
only really needs to track one variable — the level of the bucket — this amounts
to synchronizing multiple copies of a single variable.

Each policer Pi keeps a copy of the bucket level bi that leaks at rate r and
tracks global usage, as well as a local count LCi that tracks only local usage.
The bucket bi is called the global bucket because it includes information about
all packets permitted globally, though that particular copy is stored locally. Each
time a packet is permitted by the policer, LCi is incremented by the size of the
packet. When an update is triggered, a policer broadcasts its local count to all
other policers, and the value is merged with their global buckets, hence keeping the
global buckets synchronized at every update.

The policing decision is basically the same as for the regular leaky bucket, but
taking into account both global and local usage. If the sum of the two is above a
certain threshold B, packets are dropped. A copy of the original code filed from
the patent is below, but we give a simplified and equivalent version in Algorithm
2.1 using our notation.

if (global bucket + local traffic count - (leak rate * elapsed time)

> burst)

police packet();
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else

permit packet();

local traffic count += packet length;

Algorithm 2.1 Policing decision

On Event: Policer i receiving regular packet:
if bi + LCi > B then

Drop packet
else

Allow packet
LCi ← LCi+ packet length
Check condition for sending update

end if

Updates are simply triggered by local usage, i.e. when the local count exceeds
some local threshold LT . This is shown in Algorithm 2.2.

Algorithm 2.2 Condition for Sending Update

if LCi > LT then
Send update packet(LCi) to synchronizer
bi ← bi + LCi
LCi ← 0

end if

Although we described this algorithm as a peer-to-peer system, Padwekar’s im-
plementation distinguishes one policer as a synchronizer (master) and the other
n− 1 as non-synchronizer (slave) policers. “Local updates” containing local usage
count are sent to the synchronizer, and the synchronizer broadcasts “global up-
dates” containing the new global bucket level to everyone else. This system, shown
in Algorithms 2.2–2.3, helps keep the system synchronized even if updates are lost.

Algorithm 2.3 Update Handling

On Event: Synchronizer policer i receiving update packet(LCp):
bi ← bi + LCp
Send update packet(bi) to non-synchronizers

On Event: Non-synchronizer policer j receiving update packet(bp):
bj ← bp
Check condition for sending secondary update

2.1.1 The Deadlock Problem and Secondary Updates

In Padwekar’s filing [15], it was noted that there were some deadlock cases “due
to clock skew and traffic patterns”. The term “deadlock” is actually referring
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to starvation due to bias against a policer. This happens because the algorithm
described above synchronizes the global bucket bi variable, but not the local counts
LCi. Since the policing decision considers the sum bi + LCi, this method biases
against high LCi values, which in turn biases in favour of policers that update
earlier. The first policer to update has its local count reset to zero, and the update
forces other policers to stop allowing traffic, leaving them stuck at a high LCi
value, unable to send their own updates. This is biased against all but the earliest
updating policer, and easily causes starvation.

The solution to the deadlock problem proposed by Padwekar [15] is to add a
secondary update system. Effectively, the first (primary) update triggers all other
policers to send a secondary update as well, allowing all policers to synchronize
LCi = 0. Each is followed by a broadcast from the synchronizer, so the process
involves 4 steps, as depicted in Figure 2.1. To reduce overhead, there are a few
conditions where a secondary update is not necessary to be sent. The specific
trigger condition is shown in Algorithm 2.4.

Algorithm 2.4 Condition for Sending Secondary Update

if LCi > 0 and bi + LCi > B then
Send secondary update packet(LCi) to synchronizer
bi ← bi + LCi
LCi ← 0

end if

Figure 2.1: The update process in Padwekar’s Algorithm takes 4 steps.

Step 1. Primary local up-
date

Step 2. Primary global
update (broadcast)

(n− 2) times

Step 3. Secondary local
updates (up to n− 2)

Step 4. Secondary global up-
dates (up to n−2 broadcasts)
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2.1.2 Issues with Padwekar’s Algorithm

After the discovery of deadlock or starvation case, and the secondary update system
to solve it, there was a question of whether this was enough to prevent starvation
entirely. In this thesis, we show that it cannot. This motivates our search for an
algorithm that provably prevents starvation, which we present in the next chapter.

Starvation Case

Padwekar’s full solution periodically synchronizes each policer to the same bucket
value. However, each policer makes no assumptions about the other policers’ usage
in between updates, and each one may be permitting traffic at the full rate r by
itself. While this ensures full utilization, it often leads to overusage. When the
synchronization occurs, the bucket value will be much higher than the threshold
B, and the leaky bucket algorithm will drop all packets until the overusage is
compensated for.

The problem is this compensation or “drop” period, which always occurs when
there is more than one policer receiving total demand greater than the limit. It is
exacerbated by the synchronization procedure which ensures all policers enter (and
leave) the drop period at the same time. Since each individual policer is allowed
to use the total rate limit r during an “allow” period, the total usage rate during
such a period could be nr. To compensate then, the “drop” period would last n−1
times longer than the “allow” period! A starvation case would occur if one of these
policers happens to only receive bursts of traffic during the drop periods, because
it would never permit a single packet. The problem arises because the timing of
the drop period is imposed on a policer by external sources. In our new algorithms,
we solve this by allowing a policer to have more control over when it may permit
traffic.

Burstiness

From the example above, we see another problem – the output traffic is quite bursty.
Since all policers can allow traffic at rate r, we get alternating periods of high traffic
(up to nr) and no traffic.

Overhead

The system broadcasts its updates, which is high overhead relative to other algo-
rithms, especially under the secondary update system where single update triggers
not only one broadcast, but up to n broadcasts. This is O(n2) update packets.
More precisely it is n − 1 primary updates and up to (n − 2)(n − 1) secondary
updates, for (n− 1)2 in total. This is not as bad as it sounds. Without secondary
updates, a broadcast is triggered for every LT bytes allowed by each policer. If a
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secondary update is triggered, say on policer j, then a broadcast has been triggered
after j allowed LCj bytes instead of LT bytes, where LCj < LT . If all the values
of LC average half of LT , then the secondary update system produces double the
number of update packets as it does without secondary updates.

The system produces n−1 update packets for every LCavg bytes allowed by the
whole system, where LCavg is the average of all non-zero local count values. Finally,
due to the 4 distinct steps of the update process (Figure 2.1), the synchronization
will take 4 times the communication latency to complete. Overall, in terms of
overhead, this broadcast method is likely to be the least efficient of all the methods
reviewed.

2.2 Techniques of Raghavan et al.

In 2007, Raghavan et al. [17] proposed three distributed policing algorithms, to be
applied to rate control of cloud-computing services over the Internet. Unlike Pad-
wekar, these algorithms do not try to synchronize a variable. Rather, they allocate
different rate limits to each policer, based on expected demands at each policer.
The main communication between policers is simply to update the new demand es-
timates. However, since it is impossible to predict exact demand, a reliable update
system was not a priority for the authors. The method is inherently error-prone and
only gives an approximate solution, but is fully distributed and requires much less
communication overhead than Padwekar’s system. The algorithms were evaluated
based on a network simulator.

2.2.1 Gossip Protocol for Communication

All of Raghavan et al.’s algorithms use the same “gossip protocol” to send updated
demand estimates. The protocol is less expensive than a full broadcast. At fixed
time intervals, each policer i sends its demand estimate d̃i to a fixed number of
randomly chosen policers, as depicted in Figure 2.2. The recipients may be selected
from any of the policers. If policer j does not receive an update from policer i, it
simply continues to use the last known estimate for i.

Figure 2.2: Gossip Protocol communication graph with one randomly chosen recipient
per node.
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2.2.2 Global Token Bucket (GTB)

Global Token Bucket (GTB) [17] is a näıve algorithm presented mainly for compar-
ison and expectedly does not perform well. Each policer employs a token bucket
algorithm that refills at rate r, but also removes tokens based on expected (pre-
dicted) demand at other policers. On the surface, GTB looks like Padwekar’s
algorithm, but it is not. Since predictions are unlikely to match real demand at
other policers, token buckets quickly go out of sync, and these errors are never
corrected. This differs from Padwekar’s, where all buckets are synchronized.

We find that a better characterization of GTB is that every policer Pi uses a
token bucket that allows packets at some rate ri, where

ri = r − d̃outside (2.1)

and d̃outside is simply the sum of demand estimates at all policers other than i:

d̃outside =
∑
j 6=i

d̃j (2.2)

There are obvious problems with this rate allocation. For example, any policer
will starve if outside demand is greater than r, as this sets ri = 0.

2.2.3 Flow Proportional Share (FPS)

Flow Proportional Share (FPS) [17] is the algorithm proposed by Raghavan et al. to
be used for policing TCP (Transmission Control Protocol) flows. The main claim
is to provide a fair rate to each TCP flow, even while there are variable numbers of
TCP flows at each policer. FPS allocates individual rates ri to each policer i based
on the number of flows, but does not actually count the flows. It uses a heuristic to
estimate the number of flows based on demand. Like the GTB algorithm, it uses a
token bucket at each policer to regulate the individual rate.

The idea is to allocate a rate to each policer that is directly proportional to the
flow count. The reasoning is that flows arriving on the same policer will compete
with each other, resulting in roughly equal shares, and with this allocation, all flows
globally would get roughly equal shares. There are two assumptions here. First,
this relies on the TCP protocol for congestion control [8], namely, each TCP flow
should increase its transmission (demand) rate gradually, and then slow down once
there is congestion, due to missing TCP acknowledgements from the destination.
Otherwise flows could not compete as stated. Raghavan et al. only recommend
FPS for TCP traffic. Second, equal shares for all flows is not the ideal (max-min
fair) allocation if there are some flows that have low demand (called bottlenecked
flows by Raghavan et al.). To work around this, FPS computes weights, and gives
rates to each policer proportional to its weight.
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The algorithm for computing the weight is shown in Algorithm 2.5. In the case
where local demand d̃i exceeds the local rate limit ri, FPS assumes that all the
unbottlenecked flows are already getting roughly the same rate. So FPS samples
the rates of some flows and uses the maximum flow rate as an indicator of the
rate of each unbottlenecked flow. For example, if the local rate limit was 50 Kbps,
there is one slow (bottlenecked) flow using 10 Kbps, and two unbottlenecked flows
getting 20 Kbps, then the weight would simply be 50/20 = 2.5 “adjusted flows”.
In the case where d̃i < ri, all flows are slow (bottlenecked), so FPS sets the weight
so that the resulting new rate limit ri equals d̃i.

Algorithm 2.5 FPS-Estimate()

if d̃i ≥ ri then
maxflowrate ← MaxRate(sample set)
weight ← ri / maxflowrate

else
remoteweights ←∑n

j 6=iwj

weight ← d̃i×remoteweights

r−d̃i

end if
ri ← weight×r

remoteweights+weight

Propagate(weight)

Issues with FPS

FPS uses a lot of approximations and heuristics. Like GTB, the actual rate achieved
may be off from the desired rate, and this error is never compensated for. The
assumption that flows at a single policer would automatically compete and share
the policer’s rate in a fair way requires that all flows be well-behaved. It was later
shown by Stanojević and Shorten [19] that the weight used by FPS can be a very
poor estimate of actual flow count if the flows have different round-trip times, i.e.
when some flows accelerate quicker than others.

2.2.4 Global Random Drop (GRD)

Global Random Drop (GRD) [17] is unique in that is the only distributed policing
algorithm reviewed that does not use a token bucket variant to do basic rate limit-
ing. Instead packets are randomly dropped, at a probability that gives an expected
rate. The probability is determined by the demand estimate:

pdrop =
d̃− r
d̃

pallow = 1− pdrop =
r

d̃
(2.3)
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Then the expected rate allowed is:

E(a) = pallowd

=
r

d̃
d (2.4)

And if we assume actual demand matches the demand estimate, d = d̃,

E(a) =
r

d
d

= r (2.5)

The random drop method can be used in a centralized policing algorithm, which
Raghavan et al. [17] call Centralized Random Drop (CRD). In the distributed ver-
sion, GRD only needs to compute d̃ as the sum of all demand estimates across
policers. The drop probability should be the same for all policers (ignoring differ-
ences in estimates caused by the gossip protocol), so GRD does not give individual
rates to each policer. This makes errors in individual policer demand estimates
less important – as long as the overall demand d is close to the overall estimated
demand d̃, GRD should be close to the overall rate limit r.

2.3 Stanojević and Shorten’s Algorithms

In 2008, Stanojević and Shorten [19] proposed two algorithms – Cloud Control
with Constant Probabilities (C3P) and Distributed Deficit Round Robin (D2R2).
Unlike Raghavan et al.’s methods, these algorithms do not depend on randomness
and approximations. They use a feedback mechanism that adjusts rates at each
policer until certain performance indicators are equalized, and they are proven to
converge.

2.3.1 Communication

For these algorithms, there is an undirected D-regular communication graph be-
tween policers. That is, every policer only communicates (i.e. sends updates to) its
D neighbours in the graph. In their experiments, the degree used was D = 2 in a
10 policer graph. Like Raghavan et al.’s gossip protocol, this is a great savings over
a full broadcast from every policer. The updates are sent at fixed time intervals, on
the order of several seconds (2 sec in experiments). This interval is relatively long,
e.g. compared to Raghavan et al.’s update intervals, in order to get good estimation
for loss rates.
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Figure 2.3: The 2-regular communication graph in C3P and D2R2 is a ring.

2.3.2 Cloud Control with Constant Probabilities (C3P)

The algorithm Cloud Control with Constant Probabilities (C3P) attempts to emu-
late a centralized best effort policer. In such a centralized policer, every packet has
the same probability of being dropped. This is the same goal as Global Random
Drop (GRD). However in C3P, no probabilistic drop is employed. C3P allocates
rate limits to individual policers and continually adjusts them, until the loss rates
at all policers is equal. This is essentially a feedback mechanism. C3P relies on
a relation between loss rate and send rate, which is observed in, but not limited
to, TCP flows. Additionally, it is shown that the algorithm behaves well for TCP
flows. To regulate the rate ri at a single policer i, a virtual queue is used, which is
much like a leaky bucket.

Algorithm 2.6 shows how C3P sets each policer’s rate limit ri, where E are
the edges of the communication graph, pi is the loss rate at policer i, and η is
a parameter controlling how quickly the rates change. The paper shows using
induction that, under the communication graph update system, the individual rate
limits always add up to the total rate limit, i.e.

r =
n∑
i=1

ri (2.6)

Algorithm 2.6 C3P Rate Allocation.

InitializeCapacities()

for i = 1 : n do
ri ← r

n

end for

UpdateCapacities()

for i = 1 : n do
ri ← ri + η

∑
(i,j)∈E(pi − pj)

end for

Stanojević and Shorten prove that C3P converges to the correct solution (all
loss rates equal) given that the loss rate p of a TCP flow is related to its send rate
x and round-trip time (RTT ) as follows:

x(p,RTT ) =
θ

RTT
√
p

(2.7)
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It is also claimed that it will converge to the correct solution in general, if the rate
limit ri is related to the loss rate by a differentiable, convex function fi : (0, 1) →
(0,∞)

ri = fi(pi) (2.8)

2.3.3 Distributed Deficit Round Robin (D2R2)

The Distributed Deficit Round Robin (D2R2) algorithm is similar to C3P in that
it also sets and updates the rate limits at each policer. It is different in that it tries
to emulate a centralized processor sharing queue, i.e. giving fair share to each flow
that shares the policer. D2R2 is unique in that it is the only algorithm reviewed to
use a virtual DRR (Deficit Round Robin) [18] algorithm to control the rate limit
at a policer. Where C3P is using a single virtual queue, D2R2 is using a virtual set
of queues – the DRR. The virtual DRR at each policer gives max-min fair rates to
each flow traversing it, and the D2R2 feedback mechanism continually adjusts the
policer rates ri so that the resulting flow rates are also MMF globally.

The D2R2 rate allocation scheme is to adjust rates so that max-min fair shares
are achieved for each flow. In a MMF allocation, there is some maximum share
given to participants, v, where every participant with demand di gets

min(di, v)

In other words, this is the cut-off point or cap on the demands of each participant,
above which no one can get higher. (The paper [19] calls this the “fair-share,” but
this term is confusing. It is more accurate to call it the maximum share.)

The maximum share given to a flow at policer i can be calculated as the solution
to the equation (from [19]):

gi(vi) = ri (2.9)

where the function gi is the sum of rates allocated to the flows in Fi when each
flow s has demand d

(i)
s :

gi(vi) =
∑
s∈Fi

min(d(i)
s , vi) (2.10)

If each policer i provides a MMF allocation to its flows Fi, and the maximum
share vi at each policer is equal, then we have max-min fairness across all flows
globally. The D2R2 algorithm tries to equalize the maximum shares, vi, by adjust-
ing a policer’s local rate limit ri based on its neighbours’ maximum shares. The
pseudocode that does this is shown in Algorithm 2.7.

For D2R2, Stanojević and Shorten prove that this method of updating the rate
limits ri, will result in converging towards a maximum fair share v(α) that is at
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Algorithm 2.7 D2R2 Rate Allocation.

InitializeCapacities()

for i = 1 : n do
ri ← r

n

end for

UpdateCapacities()

for i = 1 : n do
if
∑

s∈Fi
d

(i)
s > ri then

v ← solution to gi(v) = ri
else
v ← maxs∈Fi

(d
(i)
s )

end if
Ri ← ri − gi(v)
vi ← v + αRi

ri ← ri + η
∑

(i,j)∈E(vj − vi)
end for

most 1/α factor away from the ideal maximum share v∗. More precisely, given
some demands, the proofs show:

v(α) ≤ v∗ (2.11)

0 ≤ v∗ − v(α)

v∗
≤ n

Mα
(2.12)

where α ≥ 1 and M is the number of flows with demand not less than v∗.

2.4 Predictive vs Non-Predictive Algorithms

We can divide the distributed policing algorithms into two main classes: predictive
algorithms that work based on expected traffic usage, and non-predictive algorithms
that keep track of exact traffic usage.

1. Predictive algorithms look at past performance and decide how much rate
limiting to do based on predicted future behaviour. Generally this is effected
by assigning individual rates ri to each policer Pi, although this is not the
case for GRD. Each policer controls its own rate using some local policing
algorithm (e.g. token bucket). The only information shared is the performance
indicators (e.g. demand estimates, loss rates) necessary to determine the rate
allocation. The benefit is that these methods can be fully distributed, with
low communication overhead. The global rate limit r is adhered to assuming
the individual rate limits ri sum to r (except for GRD, where global limit
is adhered to when total demand matches the demand estimate). Predictive
algorithms include:

21



• Global Token Bucket (GTB)

• Global Random Drop (GRD)

• Flow-Proportional Share (FPS)

• Cloud Control with Constant Probabilities (C3P)

• Distributed Deficit Round Robin (D2R2)

2. Non-predictive algorithms never predict the demand to be received by each
policer. Each policer running the algorithm only acts based on information it
knows for sure. This necessarily means that global usage information must be
tracked and shared to all policers, usually requiring that a single master exist,
or that communication be broadcast. Generally, the focus is on tracking and
communicating the global usage instead of adjusting rates at each policer.
For example, in Padwekar’s algorithm, each policer assumes there is no traffic
arriving at other policers, but if/when update messages reveal otherwise, then
this is corrected. Non-predictive algorithms include:

• Padwekar’s Algorithm

• Global, leaky bucket algorithms developed in this thesis

It is a generalization to say that predictive algorithms use rate allocation, and
non-predictive ones do not. Indeed, GTB was originally described as a global rate
algorithm with demand estimates, and GRD does not set local rate limits, whereas
our Early Start Steady algorithm (Section 3.3) does allocate local rates without
predicting demand. The important distinction between the two classes is whether
the algorithm relies on predictions or not.

2.4.1 Common Problems with Predictive Algorithms

There are many good qualities about predictive algorithms, namely the low com-
munication without need for a master, and ease of implementing fairness. Cer-
tainly, Shorten and Stanojević’s algorithms are quite successful, assuming we do
not require exact performance. However, we make the case for a non-predictive
distributed policing algorithm. The main problems that pervade all predictive al-
gorithms are correctness and full utilization. This is the nature of using predictions
that can only approximate actual usage, instead of explicitly tracking it.

Error Accumulation

It is easier to see the issue with Raghavan et al.’s GTB, GRD, and FPS, because
these all directly use demand estimates from prior time intervals to determine future
rate allocations (or drop probabilities for GRD). When demands change, estimates
become outdated and give rise to inaccurate allocations (drop probabilities). In
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constantly changing conditions, the allocations are always playing catch-up. In C3P
and D2R2, an indirect feedback mechanism is used. Rates are iteratively adjusted
based on past performance indicators, eventually reaching desired performance at
equilibrium. Again, if demands suddenly change, the performance will be different
than expected, and the algorithms must slowly adjust again. The analyses of FPS
[17], C3P, and D2R2 [19] only prove that the rates will eventually converge to the
correct rates, assuming the demand settles down. Until this happens, the actual
rate will deviate from the desired rate by some error, and none of these algorithms
provide a bound on the error.

Additionally, these errors may accumulate. None of the reviewed predictive algo-
rithms have any mechanism to track or compensate for past error. Understandably,
they lack this because it would require much more overhead to communicate this
information. It is unknown whether the accumulated error is unbounded.

Starvation and Low Utilization Cases

There are some extreme examples where the predictive algorithms do not perform
well. We construct these by making the demands very different from what was
expected.

Consider a policer Pi that is receiving traffic in short bursts in between periods
of no traffic. Other policers are receiving lots of traffic. In the GTB and FPS
algorithms, the rate allocated is directly proportional to prior demand, i.e. 0 for
Pi. When Pi’s traffic burst occurs, its packets are dropped. By the time the demand
estimation reflects Pi’s demand, let its traffic burst already be over. We cycle this
behaviour once demand estimation equals zero again. Thus, such a scheme can lead
to starvation for an entire policer. If we do guarantee a minimum share to avoid
starvation, then the total used rate will be higher than desired. This leads back to
the error accumulation problem. To be fair, the methods do use a filter to smooth
the demand estimates, so the rate limit will unlikely be exactly zero.

In the feedback algorithms, C3P and D2R2, the rates allocated are not directly
proportional to demands, but slowly adjusted based on factors such as loss rates.
However, it is always possible for traffic patterns to be different from expected.
The individual rates assigned should add up to the global rate in all of GTB, FPS,
C3P, and D2R2. Therefore anytime the actual demand for one policer is lower than
predicted, we will fail to get full utilization.

2.5 Distributed Algorithm Components

To complete the overview of prior work, we break down the common components
that comprise a distributed policing algorithm. Such a comparison reveals simple
improvements that could be made, and we point these out. However, these are not
the main contributions of the thesis.
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2.5.1 Global Rate Control

1. A global token (leaky) bucket that replenishes (leaks) at rate r. Each policer
maintains a copy of this bucket, which must be regularly synchronized:

(a) Peer-to-peer updates containing difference values.

(b) Synchronize with a master value. This requires that an agreed-upon
master policer holds the correct version of the bucket at all times. (Pad-
wekar)

2. Allocate individual rates ri to each policer i, and ensure the sum
∑
ri = r.

The individual local rates will have to be updated regularly. (GTB, FPS,
C3P, D2R2)

3. Probability of dropping packets to give an expected rate r for expected de-
mand d̃. The probability of allowing the packet is set to r/d̃. The total
demand estimate d̃ must be updated regularly. (CRD, GRD)

2.5.2 Local Rate Control

In some algorithms, we would like to achieve a local rate limit ri for each policer,
which is different from the global rate r. The obvious way is to run one of the
centralized policing algorithms at the policer: token bucket, leaky bucket, or virtual
queue. The local rate control methods described are:

1. A token (leaky) bucket that replenishes (leaks) at ri

2. A virtual queue with service rate ri (C3P, D2R2)

3. A token bucket at rate r, but increase the token removal rate by the outside
demand, r − ri (GTB as described)

4. A token bucket at rate r, but lower the token replenishment rate by r − ri
(FPS)

It is simple to see that these are all the same. Proof: In a token bucket, the
policing decision is bucket+replenishment−removal−packet > 0. The equivalence
of token buckets and virtual queues was shown in Section 1.3.

2.5.3 Rate Allocation Strategies

Most of the predictive algorithms allocate individual rate limits to each policer.
In each case, the formula for the rate limit is based on different variables, such as
demand estimate d̃, loss rate p, or maximum fair share v. We list these, plus a
couple of obvious modifications:
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1. GTB allocates the simplistic rate of ri = r − d̃outside. A policer will starve
if outside demand is greater than r, as this sets ri = 0. We can think of
some trivial modifications to GTB’s rate allocation strategy that would work
better.

2. Modification to GTB that prevents starvation. Allocate the rate ri = max(r−
d̃outside, r/n), thus guaranteeing a minimum share for each policer. In this case,
the sum of all local rates ri may be over r.

3. Another modification to GTB: Keep the allocated rate as ri = r − d̃outside,
but define d̃outside =

∑
j 6=i(min(d̃j, r/n)) thus guaranteeing that the outside

demand is no more than r − r/n. Again, the sum of all local rates may be
over r. An example is the case of 2 high-demand policers and large number of
zero-demand policers. It would result in allocating a rate of r − r/n to each
policer, for 2r − 2r/n total rate, which is too high when n > 2. In general,
you can show that it is bad when there are k high-demand policers and n− k
zero-demand policers, whenever n > k > 1. We do not consider this further.

4. Max-min fair modification to GTB: Given that we have the a vector of all
the demand estimates, we can simply set ri proportional to policer i’s MMF
share, given its local demand d̃i relative to d̃. Under this version, the local
rates add up to r assuming estimates are consistent across all policers.

5. FPS allocates rates that are proportional to a weight, i.e. ri = rwi/w. The
weight is the number of unbottlenecked flows at each policer.

6. C3P allocates rates and periodically adjusts them based on loss rates at each
policer. The rate limit is increased if the policer’s loss rate is higher than its
neighbouring policers’ loss rates. It sets ri ← ri + η

∑
(i,j)∈E(pi− pj) where pi

represents the loss rate experienced at policer i.

7. D2R2 allocates rates and periodically adjusts them based on residual band-
width at each policer. The rate limit is increased if the policer’s maximum
fair share is lower than its neighbouring policers’ maximum fair shares. It
sets ri ← ri + η

∑
(i,j)∈E(vj − vi) where vi represents the maximum share at

policer i.

2.5.4 Effective Rates

While the predictive GRD algorithm and non-predictive Padwekar’s algorithm do
not allocate rates, it is still interesting to compare the effective rates that result
when applying these algorithms. We call this the global allowed or achieved rate,
a, and the local achieved rate ai.

1. GRD gives an expected allow rate for a policer, E(ai) = rdi/d̃. Each po-
licer gets a fraction of the rate proportional to its fraction of total estimated
demand, which gives demand-proportional fairness.
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2. Padwekar’s algorithm is demand-proportional up to a point. Each policer
gets

ai = r
min(di, r)∑n
j=1 min(dj, r)

The rationale is as follows. Recall that Padwekar’s algorithm synchronizes
all policers’ leaky buckets so that they all drop traffic or allow traffic at the
same time. Then the amount of traffic a policer allows is proportional to
the amount of demand it recieves during the allow period, except the leaky
bucket prevents any rate higher than r. Hence, policer achieved rates are
demand-proportional up to r.

For all the other predictive, rate allocation algorithms, the achieved rates will
match the rates they aim for (demand-proportional for C3P, max-min fair for FPS
and D2R2), assuming traffic demand behaves as expected. For FPS, this means the
actual demand and number of flows should match the estimate(s) from the previous
time interval(s), and for the feedback algorithms C3P and D2R2, the demands must
have stayed constant for long enough that the performance indicators no longer
change.

2.5.5 Compensation Scheme

In the non-predictive, full utilization algorithms (e.g. Padwekar’s), each policer
assumes that no one else will have demand in the coming time interval. If that is
true, there is no problem, otherwise compensation will be necessary. There is more
than one way to handle the compensation step:

1. Drop traffic until all overuse is compensated for. This naturally arises from
the token or leaky bucket algorithm. The result is alternating a period of
high traffic with a (long) period of no traffic. (Padwekar’s)

2. Lower the local rate to a constant ri < r/n, using some local rate control.
The compensation is slower, but will eventually complete (e.g. twice as long
when ri = r/2n). Afterwards, push local rate back to r. This is a simple way
to guarantee a minimum share. It alternates periods of high traffic with low
traffic.

3. Do not fully compensate the overuse; instead only compensate partially so as
to keep the volume of overuse bounded. This allows the local rate to be set
to ri ≥ r/n. The ri varies depending on how much overuse there is, setting
ri = r when there is no overuse.

In our new algorithms, we use option 3 to achieve a minimum rate guarantee
for each policer.
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2.5.6 Update Intervals

1. Use a timer that causes updates to be sent at equal time intervals. (GTB,
GRD, FPS: 0.1–0.5 sec; C3P and D2R2: 2 sec)

2. Use a local count LCi that tracks how much volume (bytes) is permitted by
a policer i during the update interval. Send updates every time LT bytes
are permitted by the policer. Care is necessary to prevent starvation. (Pad-
wekar’s)
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Chapter 3

A New Leaky Bucket Approach

In this section, we propose a new class of algorithms for solving the distributed
policing problem. We describe several variations on the idea, some of which have
better fairness properties than others.

3.1 General Algorithm

The general approach is to use a global, leaky bucket for controlling the global
rate. The global bucket is controlled by a master, which may or may not be located
on the same processor as a policer. This bucket has a current level g, which is
leaking at a constant rate. Each policer keeps a copy of g, call it bi, which is
occasionally synchronized with the master copy. Unlike previous work, policers are
not all synchronized at once; instead we use a polling system. By polling, we mean
that a policer never receives an update unless it requests one from the master.

Each policer lets through a fixed amount of traffic and reports it to the master.
The master adds this amount to the global bucket, and replies (to the reporting
policer only) with the new level of the bucket. At this point, the policer’s copy bi
is synchronized with the master copy g. It is the new value of bi that determines
when the policer may next report. Since each policer allows a fixed amount of
traffic between reports, this also determines the speed at which the policer allows
traffic.

A key notion in the methods we introduce is that since each traffic report is
added to the global bucket level, there is effectively a stack of reports (or stripes) in
the bucket. We may imagine each stripe has a colour corresponding to the policer
that sent the report, as depicted in Figure 3.1. As the bucket leaks, the entire stack
is sinking. The idea is that, after sending a report, the policer is required to wait
for its stripe in the bucket to leak down to some threshold level before sending in
another report. It may report later, but no earlier than this. The policer knows the
level of its stripe, because at the time of synchronization, its stripe is the top stripe
in the bucket. We stress that this means the master does not need to remember
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the positions of all the stripes in the bucket; it needs only to track the level of the
highest stripe, which is g, and each policer implicitly tracks the level of its own
stripe with bi.

Figure 3.1: Representation of the global leaky bucket as a stack of stripes sinking at
steady rate. Each report from a policer adds a stripe into the top of the bucket. The
master remembers the top level g, while the policers i, j, and k remember the top levels
of their respective stripes. At most one stripe from each policer is allowed above the
threshold G.

bi

bj

bk

g

G

0

This protocol only restricts the time and traffic allowed by a policer between
reports, but does not specify which packets a policer should allow to meet this
requirement. The different versions of the algorithm we present vary in the way
policers operate at this level. We use the following notation:

• n: number of policers

• Pi: policer i (1 ≤ i ≤ n)

• g: current level of global bucket

• G: threshold level of global bucket

• bi: value of g as known to Pi (that is, ignoring any reports from other policers
since Pi’s last update)

• B: threshold level of Pi’s leaky bucket

• r: global rate limit - the rate at which g is leaking

• LT : local threshold - the amount of traffic a policer reports to the master at
a time

• LCi: local count - the amount of traffic Pi has allowed but not yet reported
to the master
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In the remainder of this section, after briefly discussing related work, we outline
key advantages of the general algorithm, namely its low overhead and how it avoids
starvation. In Sections 3.2 and 3.3, we give different versions of the algorithm that
fully specify each policer’s behaviour in order to guarantee full utilization and a
good degree of fairness. In Section 3.4, we describe an experimental modification
of the algorithm, which sometimes violates the reporting protocol.

3.1.1 Related Work

The model of a bucket with a stack of stripes sinking together means that the
stripes are being leaked out in the order in which they arrive. One can also think
of this as a virtual queue, which we showed in Section 1.3.3 is equivalent to the
leaky bucket. Given that each policer in our algorithm retains the position, bi, of a
different stripe, it is really a distributed virtual queue.

Johnson [10] reviewed several distributed queues, where the storage of a single
queue is distributed amongst several processors. One that is similar to our model is
the queue manager algorithm, where a single queue manager keeps track of which
processor is storing what part of the queue. However, this only distributes the stor-
age of elements in the queue, whereas our model also distributes the information
about element positions. Johnson’s fully distributed queue does have this property,
but with no communication when processors insert into the queue, it no longer
maintains a global ordering. Furthermore, the study of distributed queues empha-
sizes locating and retrieving elements stored in the queue, but this is irrelevant to
our problem, since our virtual queue does not store real elements, only the (virtual)
size of elements.

A more closely related technique is the Numbered Ticket algorithm given by
Fischer et al. [4] for allocating resources in FIFO (first in, first out) order. Consider
a line of customers at a bank, with k tellers. If there are fewer than k customers
at the bank, then the next customer will be serviced immediately. When there are
more, the extra customers must line up and are serviced in FIFO order once a teller
becomes available. It is impossible for a single customer to occupy more than one
spot in the line. In our model, if a policer enqueues one stripe below the bucket
threshold, it is “serviced” right away, and can re-enter the queue immediately.
When the bucket level is above the threshold, a policer that enqueues the next
stripe must wait before it can re-enter. We enforce this so that a single policer
can not occupy more than one spot above the threshold. The Numbered Ticket
algorithm solves this FIFO ordering problem by assigning each customer a ticket
number, and storing in shared memory the ticket number that may receive service
(valid) and the next ticket number to be given to a new customer (issue). Since
the service rate in our leaky bucket is constant, the valid number is implicit, but
the issue number must still be shared; this is g, the top level of the bucket that the
master keeps track of.

Fairness in the distributed policing problem is more complex than in either of
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the above problems however. With the bank problem, it is sufficient to service
customers in the same order they enter the queue (FIFO) as this would be fair. In
our problem, policers are continuously re-entering the virtual queue/leaky bucket,
and we are limiting the rate at which they re-enter, but this limiting may not always
be fair. For example, one variation could make the policer wait until getting to the
front of the queue before it starts allowing traffic, and re-enter the queue when it
has allowed enough. It might be more fair to only restrict when the policer may
re-enter the queue (e.g. after reaching the front of the queue), without restricting
when it can accumulate the LT of allowed traffic. These two choices are covered
by our Basic and Early Start algorithms. The analogy would be: if customers have
to complete some task before entering the bank line, they can either perform the
task after reaching the teller, or do it while waiting in line.

3.1.2 Overhead

The overhead is notably less than that of Padwekar’s algorithm [15]. As discussed
in Section 2.1.2, Padwekar’s algorithm requires n− 1 update messages per LT (or
fewer) bytes allowed, whereas our algorithm only needs 2 messages for every LT
allowed. In addition, the update completes after 2 times the communication latency
(from policer to master and back), rather than 4 in Padwekar’s Secondary Update
system. The communication graph between the n policers and 1 master is shown
in Figure 3.2.

Figure 3.2: The communication graph for the polling algorithm, with the master in the
center connected to n policers.

3.1.3 Preventing Starvation

Due to the polling system, any given policer will not know that other policers’
reports have occurred until it, itself, has accumulated enough local count to send a
report. This makes it impossible for starvation to occur.

Theorem 1. No policer can ever be starved under the polling system.

Proof. The protocol restricts a policer’s rate by restricting LT traffic to be
allowed in between reports. Assume that policer Pi is in a starvation state, i.e. it is
perpetually rejecting packets. This implies that it has already permitted LT traffic
and is unable to send a report. The protocol says that a report may be sent once
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bi leaks below G in the global bucket. We show that bi can only decrease. In this
algorithm, bi can only increase if Pi itself sends a report, which can not happen in a
starvation state. Other policers can not increase its value. Meanwhile, bi is steadily
decreasing at the global bucket leak rate, r. No matter how high the value of bi, it
is guaranteed that eventually Pi will be able to report, after which a new quota of
LT traffic is allowed. Pi is no longer in a starvation state, thus a contradiction. ut

3.1.4 Properties

Theorem 1 only states that starvation does not occur because a policer is guaranteed
to be able to report eventually. We can make this statement even stronger. There
is a limit on how long a policer must wait before it can send a report again, because
of an upper limit on the values of g and bi.

Lemma 2. The amount in the global bucket at any time can be never be more than

g ≤ G+ nLT (3.1)

Proof. No policer can report to the master until the level of their last stripe
bi has sunk below the threshold G. Thus, at most one stripe per policer may be
above G, and the most in the global bucket is G+ nLT . ut
Theorem 3. The protocol by itself never restricts any policer to less than r/n rate
of traffic permitted.

Proof. Consider the time interval between updates for policer i. The amount
of traffic permitted in this time is LT . The minimum time interval required by the
protocol is when bi decreases to G, so the maximum rate allowed for Pi during this
time interval is:

ri =
rLT

bi −G
(3.2)

where bi is the updated value just received from the master as a copy of the global
bucket level g. Since Lemma 2 gives the maximum value of g, it can also be applied
to bi:

ri ≥
rLT

G+ nLT −G
≥ r

n
(3.3)

ut
We say that the protocol, itself, does not restrict a policer to less than r/n,

because other factors may cause the rate to be less than this. For example, the
demand may be less than r/n; this is not a problem. More importantly, we find
that some versions of the algorithm impose additional restrictions on how quickly
a policer permits traffic on top of the protocol’s restriction of when an update may
be sent.
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3.2 A Basic Version Achieving Full Utilization

Recall that the bi value, after synchronizing with the master bucket level, determines
when policer Pi is next allowed to report traffic, but does not specify which packets
a policer should allow to meet this requirement. Here, we describe one way to do
it. The näıve approach is for a policer is to take the bi value and use it as its
own leaky bucket for policing. That is, each policer will leak bi at the same rate r
as the master, and on a packet-by-packet basis, decide whether to allow a packet
depending on the level of bi compared to a threshold B. This version is very similar
to Padwekar’s algorithm [15], where each policer also runs a leaky bucket, differing
only in our polling update system versus a simultaneous synchronization strategy.

The pseudocode for the Basic algorithm is shown in Algorithms 3.1 and 3.2.
Particularly, the policing decision requires

bi + LCi ≤ B (3.4)

for a packet to be permitted, where LCi is the amount of traffic allowed but not
yet reported to the master. Otherwise a packet is dropped.

Note that the bucket threshold B for locally permitting a packet is different,
but related to the global bucket threshold G for when a policer may report a stripe
of traffic. The relation is:

B = G+ LT (3.5)

This can be explained as follows. The policer Pi is allowed to report LT traffic
when its stripe bi has leaked down to G at the earliest. Also, the policer only
reports after its local count LCi fills up to LT traffic. Given the policing decision
in Equation (3.4), this happens at the earliest when bi + LT = B. Since we want
bi = G at the earliest possible report time, then it follows that we should choose
the threshold B = G+ LT .

Effectively this variation only starts permitting traffic once bi leaks down to
G + LT . The problem of starting at this time, is that it will not have completed
allowing LT traffic by the time bi leaks down to G, unless the policer’s traffic
demand is incoming at rate di ≥ r.

Algorithm 3.1 Basic algorithm for master

On event: Master receiving report(LT ) from policer Pi

1: g ← g + LT
2: Send update packet(g) to policer Pi

3.2.1 Time-Staggering Property

The Basic algorithm described exhibits time-staggering that greatly reduces bursti-
ness in the global rate compared to Padwekar’s algorithm. While individual policers
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Algorithm 3.2 Basic algorithm for policer i

On event: Policer receiving update(g) from master

1: bi ← g

On event: Receiving regular packet

1: if bi + LCi ≤ B then
2: Allow packet
3: LCi ← LCi+ packet size
4: Check condition for reporting
5: else
6: Drop packet
7: end if

Condition for reporting:

1: if LCi ≥ LT then
2: Report(LT ) to master
3: bi ← bi + LT
4: LCi ← LCi − LT
5: end if

may still produce bursts of traffic1, these bursts are staggered and do not coincide
with each other thanks to the polling update system and total ordering of reports
in the global bucket. A special case is when each policer is receiving traffic demand
at r or faster, each policer’s share is spread over a different time slice. The result
is time-sharing with no explicit scheduling required.

Each time a policer reports, the master bucket is increased by LT . Then,
a policer receives back the bucket value that is always LT higher than the one
received by the policer before it, minus any leak due to elapsed time. Let Pj be the
policer that updates after Pi and assume i 6= j. Because all policers leak their bi
value at the same rate, we have the invariant:

bj = bi + LT (3.6)

If bi is over the threshold B, policer i will have to wait for it to leak down to
B before it starts allowing more packets under the Basic algorithm. Let tstart(Pi)
represent this start time. Pj will have to wait for LT more bytes to leak than Pi
does, so the start times are staggered in the same order as updates:

tstart(Pj) = tstart(Pi) +
LT

r
(3.7)

If policer i is receiving demand at rate di ≥ r, then after the start time, it can

1We will improve on the individual policer burstiness in Section 3.3.
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allow LT more volume in LT/r time. Thus, Pi reports again at time:

treport(Pi) = tstart(Pi) +
LT

r
(3.8)

This is the same time that Pj starts allowing packets. Furthermore, because Pi’s
new report is sent after Pj, it’s new bi value is necessarily at least LT higher than
bj, and Pi stops allowing traffic.

We can show that the special case of di > r for all i leads to a complete time-
sharing between policers. If all policers have di ≥ r, then total demand is greater
than nr and the global bucket level g must rise. The first policer to be updated with
a bucket level strictly higher than G+LT , will have to wait longer than LT/r time
to send its next report. Call this P1. All other policers have lower bi value, and with
demand over r, all policers will report before P1 next reports. By induction, each
subsequent reporting policer will have to wait an even longer time to report next.
This gives a sequence of n unique policers sending reports, with no repeats; we can
number these {P1, . . . , Pn} in order. Now we have the situation above, where as
soon as one policer finishes allowing LT traffic, it stops allowing new packets and
the next policer starts allowing packets. In other words, P1 stops once P2 starts,
P2 stops once P3 starts and so on, giving us the time-sharing behaviour.

We have complete time-sharing when all di > r, implicitly requiring d > nr.
In general, time-staggering will occur between two reporting policers whenever the
global bucket goes above G+ LT , which happens when d > r.

3.2.2 Error Bounds on Rate

Any amount of traffic that goes over the desired rate limit is considered the error.
Under a centralized leaky bucket algorithm, the error in the amount of traffic per-
mitted (in bytes) is bounded by a constant over time. This bound is called the
burst size. Over longer time intervals, the burst becomes insignificant, and the
error in the rate itself approaches zero. We can show there is a burst size for the
Basic algorithm.

Theorem 4. The total volume allowed by the Basic algorithm in any given period
of time ∆t is no more than r∆t + G + nLT . In other words, the burst size is
G+ nLT .

Proof. This follows from the maximum global bucket value given in Lemma 2.
The burst occurs when we start receiving traffic on all policers when the global
bucket is empty, and instantaneously reach the maximum level of g = nLT + G.
This means that each policer has one stripe (size LT ) above the threshold G in the
global bucket. The policer with the lowest stripe is at level bi = G + LT . From
(3.4) and (3.5), the basic algorithm only permits packets when

bi + LCi ≤ G+ LT,

so any additional traffic is restricted to rate r and does not add to the burst size.
The burst size is G+ nLT . ut
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3.2.3 Full Utilization

Like in Padwekar’s algorithm[15], the Basic algorithm only restricts traffic based on
past overuse, never on future expected use, so the full rate is always used if demand
is there. Full utilization is guaranteed, with one requirement of the threshold G,
which we prove in the following theorem. Full utilization means that the achieved
global rate a must be no less than min(d, r), where d is the global demand and r
the global rate limit.

Lemma 5. If the total demand is d ≤ r, the maximum value of bi + LCi is nLT
for any policer i.

Proof. Whenever x volume is forwarded at rate d by the entire system, g will
have decreased at least x at leak rate r. Any report (or group of reports) that
causes the global bucket level to increase, will have been preceded by an even larger
decrease, with one exception. The exception is that g can not decrease below 0.
The highest level occurs when g = 0 initially and all policers update simultaneously,
causing g = nLT . There is one policer j for which bj = g. Since all policers have
updated, LCj = 0. Then this policer has the largest sum of bj + LCj = nLT .
However, since total demand is d ≤ r, each policer can not possibly increase their
local count any faster than their bucket level is decreasing. So nLT is the maximum
value of bi + LCi. ut
Theorem 6. The basic algorithm ensures full utilization iff G ≥ (n− 1)LT .

Full utilization implies G ≥ (n − 1)LT . Proof. Consider the case where total
demand d = r. For absolute full utilization, all packets should be allowed. Lemma
5 says the maximum bi + LCi can reach is nLT . But if bi + LCi > B a packet will
be dropped by the algorithm. So for full utilization we require:

B ≥ nLT

G ≥ (n− 1)LT (3.9)

G ≥ (n − 1)LT implies full utilization. Proof. Assume the algorithm does not
give full utilization. Then the overall allowed rate a is less than min(d, r). There
are two cases: either a < d ≤ r or a < r < d.

For the first case, we already know that bi + LCi ≤ nLT from Lemma 5 and
nLT ≤ G + LT = B from the premise. Under the policing decision, a packet will
never be dropped. This case gives full utilization.

In the other case, on average g must be decreasing, since the leak rate is r > a,
and this means bi for all i are also decreasing. Eventually this bucket level will go
below B − LT , at which point the policing decision will not drop any packets at
all. But if no packets are dropped, the total demand d > r would cause g to rise
again after several reports. Thus the bucket level can not be decreasing on average,
which is a contradiction. ut
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3.2.4 Unfairness in the Basic Version

In the time-sharing special case from Section 3.2.1, all policers are receiving demand
di ≥ r and all policers get equal r/n rates, which is max-min fair. For general cases,
fairness is not always achieved.

A counter-example is when one policer, P1, receives exactly r/n demand and
the rest receive r demand each. The max-min fair allocation is r/n rate each. This
can only be achieved if P1 is permits packets at all times. Instead, when P1 reports
to the master, it is easy to see that it will often receive a high value of b1. (The high
demand policers are receiving traffic fast enough that they can report LT traffic
to the master as soon as their previous stripe leaks below threshold. Then the
global bucket level will be consistently G+(n−1)LT or higher.) Because the basic
algorithm waits until bi ≤ G+LT to start allowing packets, for n > 1, P1 does not
allow all packets. This means it allows less than its MMF share of r/n rate, thus
giving unfairness. It turns out this waiting is an unnecessary extra restriction.

3.3 Early Start Strategy: Improving Fairness

To address the fairness issues of the Basic algorithm, we propose an “Early Start”
strategy. Using this strategy will still comply with the general protocol, i.e. a policer
can only report LT traffic to the master when the level of its previous report (or
stripe) bi has sunk down below the threshold G. The idea is the policer starts
allowing new packets as soon as it reports to the master. If it finishes allowing
LT traffic before the next allowable report time, then it will both delay reporting
to the master and drop all further packets until that time. We can compare four
algorithms, two of which use the Early Start strategy:

1. Basic: A policer allows LT traffic starting when bi ≤ G + LT , at rate r. It
reports to the master when LCi = LT , which occurs at earliest when bi = G.
This is the basic polling algorithm described in Section 3.2.

2. Basic, Unrestricted: A policer allows LT traffic starting when bi ≤ G+LT ,
at unrestricted rate. It reports to the master when LCi = LT , or when bi = G,
whichever occurs later. This would allow arbitrarily sharper bursts of traffic,
but the time-staggering of the bursts would be the same as the preceding
method.

3. Early Start, Unrestricted: A policer allows LT traffic starting when the
last report is sent, at unrestricted rate. It reports to the master when LCi =
LT , or when bi = G, whichever occurs later. This allows traffic through at any
arbitrary speed, but stops when LT is reached. Clearly, this maintains the
same burstiness and time-staggering as the preceding method, only shifting
the occurrence of each burst by an equal amount earlier. Pseudocode for this
implementation is given in Algorithm 3.3.
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4. Early Start, Steady: A policer allows LT traffic starting when the last
report is sent, at rate ri. Choose ri such that LCi can accumulate to LT in
the same time that it takes bi to leak to G. We can enforce ri by using a
separate leaky bucket, to give a much steadier output rate. Pseudocode for
this implementation is given in Algorithm 3.4.

The following example compares the behaviour of these four algorithms.

Example 1. Let one time unit be the time it takes LT to leak at rate r. Suppose
a policer has just reported and received a new bucket level from the master, so that
bi = G+ 2LT . This specifies that the earliest time for the next report is in 2 time
units, i.e. the policer can allow up to r/2 average rate during the time until the
next report.

If this policer is receiving demand at di = 2r, then it would take 1/2 a time
unit to forward LT traffic if unrestricted. Under the Basic algorithm, it would be
allowed to do this in 1 time unit after waiting 1 time unit for bi = G + LT , and
under Early Start Steady, 2 time units starting right away. In all variations, the
policer does not report until 2 time units have passed. Thus, the average allowed
rate achieved is r/2 in all cases, and the only difference is in the burstiness. This
is depicted graphically in Figure 3.3.

However if instead the policer receives demand at di = r/2, we no longer get
r/2 rate in the Basic algorithms. At this demand, it naturally takes 2 time units to
allow LT traffic. The basic variations force waiting for 1 time unit, thus finishing
in 3 time units total, for an average of r/3 rate. With the Early Start strategy,
there is no initial waiting, as shown in Figure 3.4. The early start variations allow
r/2 traffic as desired.

Figure 3.3: Resulting rate achieved by policer receiving 2r demand, when the next
allowable report time is in 2 time units, on four variations: (a) Basic (b) Basic Unre-
stricted (c) Early Start Unrestricted (d) Early Start Steady. The area of the shaded area
represents volume allowed and equals LT in all cases.

r

2r

Allowed Rate

Time

(a) (b) (c) (d)
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0 1 2 0 1 2 0 01 2 1 2
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Figure 3.4: Resulting rate achieved by policer receiving r/2 demand, when the next
allowable report time is in 2 time units, on (a) Basic variations and (b) Early Start
variations. The area of the shaded area represents volume allowed and equals LT in all
cases.
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3.3.1 Implementation

Algorithms 3.3 and 3.4 show how we could implement the Early Start Unrestricted
and Early Start Steady algorithms. Only pseudocode for the policers is given; the
code for the master remains the same as in Algorithm 3.1.

Like the Basic algorithm, these implementations take the bucket level bi and
continuously decrement it at rate r to mimic the global leaky bucket. However,
this variable is no longer used in the policing decision for an incoming regular
packet. It only signals when the next report may be sent. Alternatively, we could
simply precompute the time at which bi would leak to G, avoiding unnecessarily
changing of the variable. Either way, the policer needs a timing mechanism, so we
have presented the first method that leaks bi.

3.3.2 Error Bounds

As with the Basic algorithm, we can give an error bound on the rate in terms of
a burst size. The burst size for both early start variations is G + 2nLT , which is
slightly larger than G+ nLT for the basic algorithm.

Theorem 7. The total volume allowed by the early start algorithm in any given
period of time ∆t is no more than r∆t+G+ 2nLT . In other words the burst size
is G+ 2nLT .

Proof. The burst occurs when we start receiving traffic on all policers when
the global bucket is empty, and instantaneously reach the maximum level of g =
G + nLT given in Lemma 2. This means that each policer has reported at least
once, and each now has one stripe (size LT ) above the threshold G in the global
bucket. Under the Early Start Unrestricted algorithm, each policer may now allow
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Algorithm 3.3 Early Start Unrestricted for policer i

On event: Receiving regular packet

1: if LCi < LT then
2: Allow packet
3: LCi ← LCi+ packet size
4: end if
5: Check condition for reporting

Condition for reporting:

1: if LCi ≥ LT then
2: if bi ≤ G then
3: Report(LT ) to master
4: bi ← bi + LT
5: LCi ← LCi − LT
6: else
7: (optional) Schedule a report to be sent when bi ≤ G
8: end if
9: end if

another LT bytes in zero time. After this, the rate is restricted to r, because each
policer must wait for its stripe of size LT to sink below threshold at rate r. The
full burst size is G+ 2nLT .

ut

3.3.3 Full Utilization

The Early Start algorithms presented give full utilization. The proof sketch is that
both the Early Start Unrestricted and Early Start Steady variations will allow LT
volume in the same amount of time as the Basic algorithm or earlier. Since the
basic algorithm gives full utilization (Theorem 6), so do these.

3.3.4 Minimum Rate Guarantee

Using the early start strategy, we can guarantee a minimum rate of r/n for every
policer, for every discrete interval between its reports. By guarantee we mean: of
the demand received at a policer, we guarantee never to police it below r/n. For
the Early Start Unrestricted algorithm, this is always true, no matter how bursty
the demand is. Under Early Start Steady, traffic is policed so that the output rate
is steady like a leaky bucket, but this steady rate will never be restricted below
r/n.

Theorem 8. The Early Start Unrestricted algorithm imposes no additional re-
strictions on the rate of a policer, apart from the restriction specified in the general

40



Algorithm 3.4 Early Start Steady for Policer i

On event: Receiving update(g) from master

1: bi ← g
2: if bi > G then
3: ri ← r LT

bi−G
4: Create new leaky bucket size E = LT , with level e and leak rate ri
5: ei ← LT
6: end if

On event: Receiving regular packet

1: if LCi < LT and (bi ≤ G or ei < E) then
2: Allow packet
3: ei ← ei+ packet size
4: LCi ← LCi+ packet size
5: end if
6: Check condition for reporting

Condition for reporting:

1: if LCi ≥ LT then
2: if bi ≤ G then
3: Report(LT ) to master
4: bi ← bi + LT
5: LCi ← LCi − LT
6: else
7: (optional) Schedule a report to be sent when bi ≤ G
8: end if
9: end if
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protocol in Section 3.1. That is, for any period between reports, with the protocol-
specified rate of ri and demand di, the policer i allows packets at a rate of

ai = min(di, ri) (3.10)

when all rates are computed as simple averages (amount divided by time) during
the period between reports.

Proof. The general protocol implicitly specifies a rate ri, during the interval
between reports, by restricting the earliest time when the policer may next report.
Following the sending of the previous report, the algorithm will allow the first LT
traffic that arrives at the policer. Thus, the only way a policer will allow less
than ri is if LT demand does not arrive before the allowable reporting time. Then
all packets up to LT will be allowed, and the achieved rate is the same as the
demand di. The Early Start Unrestricted algorithm never imposes any additional
restriction. ut
Corollary 9. The Early Start Unrestricted algorithm never restricts any policer to
less than r/n rate over any interval between reports.

Proof. From Theorem 3, the reporting protocol specifies a rate of ri between
reports that is no less than r/n. Since this algorithm imposes no additional restric-
tions, any traffic is never policed below r/n. ut
Theorem 10. The Early Start Steady algorithm never restricts any policer to less
than r/n leaky bucket rate over any interval between reports.

Proof. From Theorem 3, the protocol specifies a rate ri between reports that is
no less than r/n. The Early Start Steady algorithm uses a leaky bucket leaking at
ri to allow packets, thus implying the theorem. ut

3.3.5 Weighted Rate Guarantees

The analysis of the Early Start strategy allows for a minimum 1/nth fraction of the
rate to each individual policer. It is possible to give different minimum shares to
each policer, if we chose to weight each policer differently.

We next modify the protocol so that each policer still allows a fixed amount of
traffic between reports, but the amount is different for each policer, LTi instead
of the same LT for all. The analogy is we still have at most one stripe from each
policer in the global bucket above the threshold G, but the size of each stripe is
now variable. At capacity, the minimum share of the rate that any policer would
get is equal to its fraction of the sum of all LTi.

Under this technique, the maximum level in the global bucket from Lemma 2
becomes

g ≤ G+
n∑
j=1

LTj (3.11)
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Then similar to (3.2), the rate specified by the protocol for any policer Pi is

ri =
rLTi
bi −G

≥ rLTi
G+

∑
j(LTj)−G

≥ rLTi∑
j(LTj)

(3.12)

as desired. The two Early Start algorithms we presented would then guarantee not
to police below this minimum rate, as described in the previous section.

3.3.6 Almost Max-Min Fair

The rate specified by the general protocol in Equation (3.2), and achieved by the
Early Start algorithms, approximates the max-min fair allocation for a policer. It
guarantees that any policer will be able to get at least a 1/nth share of the rate,
which is a requirement for being max-min fair. Intuitively, if any policer uses less
than this share, then the global bucket will contain less than the maximum. This
would result in lower bi values upon updating, thus yielding a higher effective rate
for the other policers that can use it. The main issue is that the allowed rate
depends on the actual bucket level bi upon updating, and this can vary from one
update to the next.

Example 2. Bad Case (Conjectured Worst Case)

We can construct a bad case with policers receiving constant demand. The bad
case relies on perfectly coincidental reports by practically all policers, an extreme
case to be sure. Let there be n− 2 policers each receiving low demand, equal to a
constant fraction α ∈ [0, 1] of the minimum rate guarantee. So each policer receives:

dlo =
αr

n
<
r

n
(3.13)

Let β ∈ [0, 1] be the remaining bandwidth fraction,

β = 1− (n− 2)α

n

=
n− nα− 2α

n
(3.14)

Of the other two policers, one (Pmid) has demand equaling half the remaining
bandwidth, which exceeds the minimum rate guarantee:

dmid =
βr

2
>
r

n

The last (Phi) is receiving demand

dhi � r

43



The max-min fair allocation is to give the low and mid demand policers all their
demand, with the high demand policer getting the same as the mid.

Since each low policer’s demand is less than r/n, the algorithm is obligated to
allow all their packets. By setting them all to the same constant rate, all n−2 local
counts will fill and send simultaneous updates. Meanwhile, the high demand policer
will quickly cause the bucket level to rise above G (this is a required property to
achieve full utilization). Afterwards, the high policer will always have one stripe in
the global bucket. It is clear that upon the arrival of n − 2 simultaneous reports,
the bucket level will be over threshold by a n−1 stripes. It can be shown that Pmid
will have to report at some point while the bucket level is still high, and that it
will finish allowing LT traffic before its stripe drains. Then it must drop packets,
failing to achieve the max-min fair allocation.

Intuitively, the unfairness is caused by the variation between high bucket level
(when low policers all update) and low bucket level (after bucket leaks down, but
before low policers have enough to send an update). At high level, Pmid and Phi
are restricted to ∼ r/n. At low level, they are only restricted to ∼ r/2, but Pmid is
unable to use all this rate. Phi uses up what Pmid can not use (due to efficiency).

3.3.7 Bad Case Analysis

Let us analyze the bad case above for Pmid. (We conjecture this is the worst case
when all demands are steady.) The demands are set up so that the n − 2 policers
always report at the same time. The maximum global bucket level of G+nLT from
(3.1) is reached when all n policers’ reports coincide. Assume this happens and the
mid policer’s report is the last to arrive at the master, so that Pmid receives the
maximum level of bmid. The time this takes to leak down to G is nLT/r. The next
group of Plo reports occurs in nLT/rα time. Also assume that at each such group
of reports, Pmid arrives at the same time, always as the last one.2 Therefore for α
of the time, Pmid is restricted to r/n rate. In this case, the achieved rate fraction
for Pmid is:

amid
r

=
α

n
+

(1− α)β

2

=
(n− 2)α2

2n
− (n− 2)α

n
+

1

2
(3.15)

We can verify this equation. If n = 2 or α = 0, Equation (3.15) says 1/2 the rate
limit is given to Pmid. This makes sense because if n = 2, then there is only one
mid and one high demand policer, and the Pmid asks for, and is guaranteed, exactly
1/2 the rate. If α = 0, the low demand policers ask for no demand and have no
effect on the system. Again, since only 2 policers ever report to the master, the
global bucket is at most G+ 2LT and r/2 rate is guaranteed.

2This is not always the case, but such cases do exist and are simple to construct. Such cases
are presented and simulated in Chapter 4.
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On the other hand, if α = 1, Equation (3.15) gives 1/n rate fraction. Note
α = 1 implies the low demand policers have demand of r/n which is no longer “low
demand” by our definition. This means Pmid has demand dmid = r/n as well, which
is guaranteed. Again, this matches the equation.

To be max-min fair, Pmid should be allowing all of its traffic demand. To judge
how far from fair the algorithm is, we can look at either the absolute or relative
difference from actual to fair allocation.

Fairness Ratio

Let us look at the ratio of what Pmid gets to the fair share:

amid
dmid

=
2α

nβ
+ (1− α)

=
2α

n− nα + 2α
+ (1− α) (3.16)

We can quickly verify this equation as well. If α = 1 or α = 0 or n = 2 the ratio is
1, which matches the cases described above because Pmid is getting the fair share
in each case.

Try to find the worst fairness ratio by finding the value of α that minimizes
Equation (3.16). Take the derivative with respect to α:

2(n− nα + 2α)− 2(−n+ 2)α

(n− nα + 2α)2
− 1 (3.17)

Set this to zero.

2(n− nα + 2α) + 2(n− 2)α = (n− nα + 2α)2

2n = n2 − 2n2α + 4nα− 4nα2 + n2α2 + 4α2

0 = (−4n+ n2 + 4)α2 + (−2n2 + 4n)α + (n2 − 2n)

0 = (n− 2)2α2 + 2n(2− n)α + n(n− 2)

0 = (n− 2)([n− 2]α2 − 2nα + n) (3.18)

Note that if n = 2 then the derivative is 0 at all values of α. This is because
the ratio equals 1 when n = 2. For n > 2, the critical values of α are the solutions
to:

0 = [n− 2]α2 − 2nα + n (3.19)
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Using the quadratic formula:

α =
2n±

√
4n2 − 4(n− 2)n

2(n− 2)

=
2n±

√
4n2 − 4n2 + 8n

2n− 4

=
2n±

√
8n

2(n− 2)

=
n±
√

2n

n− 2
(3.20)

Given that n > 2 and α ∈ [0, 1], then n+
√

2n
n−2

> 1 is an extraneous solution. The

only appropriate value of α is n−
√

2n
n−2

because this value is ∈ (0, 1).

Proof.

n > 2

2n > 4
√

2n > 2

n−
√

2n < n− 2

n−
√

2n

n− 2
< 1 (3.21)

Also,

n > 2

n2 > 2n
√
n2 >

√
2n

n >
√

2n

n−
√

2n > 0 (3.22)

n−
√

2n

n− 2
> 0 (3.23)

ut
So the value of α minimizing Equation (3.16) is

αmin =
n−
√

2n

n− 2
(3.24)

The worst case ratio is(
amid
dmid

)
min

=
2αmin

n− nαmin + 2αmin

+ (1− αmin)

which simplifies to:

=
2
√

2√
n+
√

2
(3.25)
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which can get arbitrarily small as n grows large. There is no value of n that
minimizes the ratio. Although this can make it very unfair for Pmid, we note that
increasing n also increases the number of policers getting exactly the fair share,
n− 2.

Absolute Fairness Difference

We can also look at the absolute difference between the achieved rate and the fair
rate. In this case we find a r/8 difference at worst in the bad case above.

Since dmid is the fair share for the mid policer, the difference between the fair
and achieved shares is:

dmid
r
− amid

r
=
β

2
−
(
α

n
+

(1− α)β

2

)
=
nα− nα2 + 2α2 − 2α

2n

=
(n− 2)α− (n− 2)α2

2n
(3.26)

To verify, note that if α = 0 or α = 1 or n = 2, the difference is 0, i.e. it is max-min
fair, which agrees with our previous analysis.

Take the derivative with respect to α and set it equal to zero:

n− 2

2n
− 2(n− 2)

2n
α = 0

n− 2

2n
=

2(n− 2)

2n
α

α = 1/2 (3.27)

Thus α = 1/2 maximizes the fairness difference. The largest fairness difference is
then:

(n− 2)(1/2)(1/2)

2n
=
n− 2

8n

≤ 1

8
(3.28)

The bad case fairness difference value is no worse than 1/8 the rate as n approaches
infinity. In practical terms, this means as n grows large, the worst fairness difference
occurs when the low demand policers together take up 1/2 the bandwidth, leaving
β = 1/2. The max-min fair allocation is for the mid and high policers to each
receive 1/4 the bandwidth, but instead the mid gets 1/8 and the high gets 3/8
under the Early Start algorithms.
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3.3.8 A Partial Solution: Seeding

One way to alleviate the bad case affecting the Early Start algorithms is to seed
the initial local counts. The policers’ LCi values are initialized with random or
uniformly spaced values between 0 and LT (or −LT and +LT ) instead of 0. This
avoids the coincidental occurrence of reports by policers that receive demand at
the exact same rate, because each policer now fills to LCi = LT at a different
time. Note that we retain the same theoretical guarantees on minimum rates, error
bounds, and utilization; only the initial reporting time will change. In doing so, it
greatly reduces the chance that many policers report at once, even in cases where
demands are equal or have very small lowest common multiples.

The seeding strategy does not give us any better guarantees. It is possible that
the policers start receiving demand at different times, and if the starting times were
chosen to exactly nullify the seeded local counts, we would have reconstructed the
bad case. This is highly unlikely even if an adversary picks the start times, as long
as the adversary does not know the exact initial values used. We stress that because
the LCi values are not leaked, there is no chance of “idling” until they reach zero;
the start times must be picked exactly.

We have simulated the seeding strategy on the bad case, when all demands are
steady and start at the same time. In the experiments, seeding brings the Early
Start algorithms much closer to max-min fairness. We present these results in
Chapter 4.

3.4 Low Usage Credit

The Low Usage Credit modification is both an algorithm for the policer and a
modification to the general reporting protocol. Since the Early Start Unrestricted
algorithm is already the most flexible way to comply with the protocol, this modi-
fication deviates from the protocol’s requirements in an attempt to achieve better
fairness. However by doing so, we lose several nice theoretical properties. As such,
this modification is considered experimental, but it does perform better in the bad
cases affecting the Early Start and Basic algorithms.

As with the general protocol, the bi value received from the master specifies the
next allowable report time. However a policer is allowed to violate this and report
earlier, if in a previous interval it had reported later than the allowable time. The
idea is to average out the fluctuations of high and low values received, which was
the main problem causing the bad case for Early Start. The master is not aware
of the violation and operates the same as the general algorithm. Only the policer’s
behaviour is changed.

When sending a report, each policer checks to see if it is doing so later than
the allowable time. This can be measured by the policer’s bi value compared to
G. If the report occurs later than necessary, bi will have leaked below G, and this
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difference is saved in a credit counter, CRi, per policer. This credit is cumulative.
The credit allows a policer to report earlier than allowed as follows: The protocol
originally specifies a report can be sent when bi ≤ G. With the credit counter, the
time a policer may report is changed to when:

bi ≤ G+ CRi

When positive credit exists, then it is possible for a policer to report when bi > G.
The difference in values can be subtracted from CRi. Thus, credit is awarded when
a policer’s usage is lower than its given share, and it can be redeemed when a policer
needs higher usage than its share.

3.4.1 Implementation

The Low Usage Credit modification can be used in combination with the Early
Start modification, but it is not strictly necessary. It can be applied to the Basic
algorithm, and we observe that this is enough to give fairness improvements in cases
that were problematic for the Basic algorithm alone. The pseudocode is presented
in Algorithm 3.5. Like the Basic algorithm, we set a leaky bucket threshold B =
G+ LT .

In Algorithm 3.6, the pseudocode for modifying Early Start Unrestricted with
the Low Usage Credit is shown.

Algorithm 3.5 Basic + Low Usage Credit for policer i

On event: Receiving update(g) from master

1: bi ← g

On event: Receiving regular packet

1: if bi + LCi < B + CRi then
2: Allow packet
3: LCi ← LCi+ packet size
4: Check condition for reporting
5: end if

Condition for reporting:

1: if LCi ≥ LT then
2: Report(LT ) to master
3: CRi ← CRi +G− bi
4: bi ← bi + LT
5: LCi ← LCi − LT
6: end if
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Algorithm 3.6 Early Start Unrestricted + Low Usage Credit for policer i

On event: Receiving update(g) from master

1: bi ← g

On event: Receiving regular packet

1: if LCi < LT then
2: Allow packet
3: LCi ← LCi+ packet size
4: end if
5: Check condition for reporting

Condition for reporting:

1: if LCi ≥ LT then
2: if bi ≤ G+ CRi then
3: Report(LT ) to master
4: CRi ← CRi +G− bi
5: bi ← bi + LT
6: LCi ← LCi − LT
7: else
8: (optional) Schedule a report to be sent when bi ≤ G+ CRi

9: end if
10: end if
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3.4.2 Wait Time is Reduced

The Low Usage Credit modification does not require the use of the Early Start
modification to be effective. A policer that has credit is allowed to report earlier,
and this implicitly means the policer may start allowing packets earlier under the
Basic + Low Usage Credit algorithm (Algorithm 3.5). Under steady rate demands,
we find that this algorithm allows a policer to start allowing packets just early
“enough.”

Let a policer be receiving steady demand at rate di. Let d̂i = min(di, r) be its
demand capped at r, so that 0 < d̂i ≤ r. The amount of time it takes this policer
to permit LT traffic is always:

∆tallow =
LT

d̂i
(3.29)

Assume the credit is 0 and the policer receives a value of bi > G+LT from the
master. Under the Basic + Low Usage Credit algorithm, it only starts permitting
traffic when bi ≤ G+ LT , so the policer’s bucket level just before reporting is:

bi = G+ LT − r∆tallow

= G+ LT − rLT

d̂i
(3.30)

From line 3 of the condition to send an update (Algorithm 3.5), the credit becomes

CRi ← CRi +G− bi
= 0 +G− (G+ LT − rLT

d̂i
)

=
rLT

d̂i
− LT (3.31)

The policer then receives the updated bi from the master, which determines how
long the policer needs to wait before allowing the next packet. Assuming bi ≥
B +CRi, it needs to wait until bi = B +CRi. If any credit was collected from the
last report, this wait time is reduced. The time it spends dropping packets (i.e. the
wait time) is:

∆tdrop =
bi − (B + CRi)

r

=
bi −G− LT − rLT

d̂i
+ LT

r

=
bi −G
r
− LT

d̂i
(3.32)
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Now if we look at the total time taken between reports, which is the sum of
time to allow plus time to wait, we find that the total time does not depend on the
policer’s demand d̂i.

∆tallow + ∆tdrop =
LT

d̂i
+
bi −G
r
− LT

d̂i

=
bi −G
r

(3.33)

Compare with the Basic algorithm where a smaller d̂i means longer time overall:

∆tallow + ∆tdrop =
LT

d̂i
+
bi − (G+ LT )

r
(3.34)

Additionally, the time given in equation 3.33 is exactly the amount of time in
which the bucket level bi leaks to G, hence the credit counter CRi is unchanged.
Thus we have arrived at a stable equilibrium.

This analysis shows that the Low Usage Credit reduces the packet drop time in
response to low demand, so that the policer can start allowing packets just early
enough to report in time. Thus, the Early Start strategy is not necessary when
using Low Usage Credit. Assuming all policers receive constant and unchanging
demand, the time between reports is purely determined by the updated bucket
level bi and not the policer’s own demand, thus eliminating the bias towards high
demand policers exhibited by the Basic algorithm.

However, our assumption that the updated bi value is larger than B + CRi is
not always true. If not, the algorithm allows packets right away without dropping
any packets, and the policer will report later than necessary, due to low demand.
This is the same behaviour as the Early Start algorithms, except the credit counter
will remember this under-usage indefinitely, while Early Start forgets it at each new
reporting interval.

3.4.3 Issues and Error Bounds

Since the Low Usage Credit modification allows violation of our general reporting
protocol, it loses many of the theoretical guarantees provided by that protocol.
Most notably, Lemma 2 relating to the maximum level of the global bucket and
Theorem 3, which leads to the r/n minimum rate guarantee, both do not hold.
However, since it is still a reporting system, the no-starvation guarantee does hold,
and we conjecture full utilization holds as well. We are also able to give an error
bound on the rate, which is quite different from before. In general, the carry-over of
credit makes analysis difficult relative to the Basic and Early Start algorithms. It
may be possible to refine the analysis, but we treat this as more of an experimental
algorithm.
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A policer that is receiving traffic demand at low rate can accumulate unbounded
credit under the Low Usage Credit modification. Under our simple case studies and
simulations where demands are constant, this has not been a problem. However, if
demands skyrocket, the policer with large credit will allow a large burst of traffic.
We should bound the maximum credit any policer can accumulate to some value
CRmax. Interestingly, the credit is consumed quadratically.

Claim 11. The maximum burst size for the Basic + Low Usage Credit algorithm
is

(−1 +
√

1 + 8nCRmax)LT

2
+G+ nLT (3.35)

Proof. The largest burst size occurs when the global bucket is empty (g = 0), all
n policers have maximum credit, and all policers receive infinite demand. The first
G/LT reports do not consume nor increase the credit (because credit is already
maximized), but push the bucket level to G. Each of the n policers still has a bi
value less than or equal to G, and can each report once more without consuming
credit. After this, each subsequent report sent by a policer will decrease that
policer’s credit by bi − G. Since the global bucket increases by one LT at each
report, the first report consumes LT , the second consumes 2LT , etc. until nCRmax

credit is expended. There are at most k reports that consume credit, where

1 + 2 + 3 + 4 + · · ·+ k = nCRmax

k(k + 1)

2
= nCRmax (3.36)

The solution is k = (−1+
√

1+8nCRmax)
2

and the maximum burst size is approximately

(−1 +
√

1 + 8nCRmax)LT

2
+G+ nLT

ut

3.5 Other Considerations

Communication Loss and Latency. If an update is lost from master to policer,
the policer may report traffic earlier than allowed. Lemma 2 would temporarily
not hold and the error could exceed the bound. However, the policer will recover
the next time it reports to the master, restoring the correct burst size. If a report
is lost from policer to master, then the overall traffic allowed can be permanently
LT above the upper bound. However, it has been suggested that correcting for lost
communication messages could be implemented at the master if each policer reports
the cumulative amount of traffic allowed, rather than only the amount allowed in
each interval. Alternatively, each outgoing report from a policer could be numbered
in sequence. In both cases, the master would keep the last received value from each
policer, so that it can detect and account for missing reports.
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In case of such communication packet loss, or even high latency, we do not
want to block a policer from allowing packets while it waits for a message from the
master. At the same time, we do not want to let it permit traffic without bound. A
policer that is sending a report of size LT knows that the master bucket level must
increase by at least LT . Then it can increment bi by LT before reporting. Once
the master’s update is received, it can properly synchronize the bucket level. In
case of a series of communication packet losses from master to policer, this prevents
the individual policer from going over r rate limit by itself. All of the pseudocode
presented for our algorithms use this method.

Uneven Packet Sizes. In all of the analyses, we have assumed that the
local count would accumulate packets up to exactly LT bytes and then report. In
actuality, it may be that LCi > LT upon triggering a report. If the policer reports
the LCi value, this would give slight bias towards policers that reach higher LCi.
We eliminate this bias by specifying that all reports increase the global bucket level
by LT , and the policer’s LCi is decremented by LT instead of zeroed. All of the
pseudocode presented for our algorithms use this method.

Fairness Per Flow. Our method could be extended to give rate guarantees
between flows, simply by creating a policer for each flow. This would require space
linear in the number of flows as well as knowing the maximum number of flows
beforehand to properly set G. This space requirement is no worse than Stanojević
and Shorten’s virtual queues per flow, used in the D2R2 algorithm [19].
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Chapter 4

Simulation Results

4.1 Methods

To verify our algorithms, we used a simulator developed while working with Cisco
Systems. It is a simple event-based simulator of packets arriving at a number of
policers in a distributed policing system. Other details, such as routing or where the
packet goes after leaving the policer, are abstracted out. We have only simulated
steady traffic patterns, i.e. evenly-spaced packet arrival times. The tests here are
by no means exhaustive; however they should support our hypotheses of worst case
fairness scenarios.

4.2 Typical Cases

The majority of experiments that we ran showed the Early Start and Low Usage
Credit algorithms achieving very close to max-min fair rates between policers, while
the Basic algorithm was insufficient. Here we show the results from two such
experiments.

The simulations were run with the following parameters. Note that the packet
size is constant; traffic demand rates were varied by changing the time interval
between packet arrivals.

• Policers: n = 4

• Packet size: 10 bytes

• Rate Limit: r = 10000 packets/sec = 100000 Bps

• Local threshold: LT = 100 bytes

• Global Bucket threshold: G = (n− 1)LT = 300 bytes
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Table 4.1: Results for Basic, Early Start Unrestricted, Low Usage Credit algorithms,
n = 4 policers, typical experiment 1. The ideal shares are max-min fair (MMF).

Demand Achieved rate (% of r)
Policer (% of r) MMF (%) Basic ESU LUC

1 50 26 2/3 29.42 26.67 26.67
2 40 26 2/3 29.41 26.67 26.67
3 30 26 2/3 23.53 26.67 26.67
4 20 20 17.65 20.00 20.00

Total 140 100 100.01 100.01 100.01

Table 4.2: Results for Basic, Early Start Unrestricted, Low Usage Credit algorithms,
n = 4 policers, typical experiment 2. The ideal shares are max-min fair (MMF).

Demand Achieved rate (% of r)
Policer (% of r) MMF (%) Basic ESU LUC ESU+LUC

1 100 32.5 40.01 32.51 30.02 32.51
2 35 32.5 30.00 32.50 35.00 32.50
3 25 25 20.00 25.00 25.00 25.00
4 10 10 10.00 10.00 10.00 10.00

Total 170 100 100.01 100.01 100.01 100.01

• Simulation time: 60 seconds

The first experiment was performed with the demands at each policer listed
in Table 4.1. The results show that the Basic algorithm fails to achieve the ideal
(max-min fair) allocation, as policers 3 and 4 do not get the rates they are entitled
to. Both the Early Start Unrestricted (ESU) and Basic with Low Usage Credit
(LUC) algorithms achieve the ideal results, with less than 0.01% error.

The second experiment was performed with the demands at each policer listed
in Table 4.2. Similarily, the Early Start Unrestricted (ESU) algorithm gives max-
min fairness, and the Basic does not. This was one of the few examples where the
Basic with Low Usage Credit (LUC) algorithm performed worse than ESU. Policer
2 with lower demand actually receives a larger share than policer 1 with a higher
demand. We noticed that in this scenario, policer 2 collected much credit, while
policer 1 collected none. Under the same setup, but changing policer 1’s demand
rate to above 110% or below 90%, the Basic with Low Usage Credit algorithm was
able to reach MMF. Otherwise, combining the Early Start Unrestricted with Low
Usage Credit (ESU+LUC) algorithm also gave good results.

4.3 Unfair Cases for Early Start Algorithm

In this section, we show empirical results from simulations which motivated our
bad case analysis in Section 3.3.7. Since the unfair cases rely on a large number of
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Table 4.3: Unfair example under Early Start Unrestricted algorithm, n = 10 policers,
α = 0.5.

Policer Demand Actual
Type Count (% of r) MMF (%) (% of r)

lo 8 5 5 5
mid 1 30 30 20

hi 1 100 30 40

total 10 170 100 100

policers sending reports at the same time, we use a priority system at the master
that explicitly accepts certain policers’ reports before others that arrive at the same
time. To find the worst results, we gave the “mid” policer the lowest priority. The
following results for the Early Start Unrestricted algorithm were simulated with
the following parameters:

• Policers: n = 10

• Packet size: 40 bytes

• Rate Limit: r = 2500 packets/sec = 100000 Bps

• Local threshold: LT = 400 bytes

• Global Bucket threshold: G = (n− 1)LT = 3600 bytes

• Simulation time: 60 seconds

We found a particularly unfair case with the following demands in Table 4.3,
which gives a significant discrepancy between the MMF share and actual share
for one single policer (labeled “mid”). To construct this bad case, there are 8
low demand policers each receiving demand at α = 0.5 times the minimum rate
guarantee, i.e. 0.5r/n = r/20 or 5% of the rate. To be max-min fair, all these
policers should be allowed their full demand. Together they take up 40% of the
bandwidth, leaving 60% available. A high demand policer is receiving demand at
r or 100% of the rate and a mid demand policer receives demand at 30% the rate.
To be max-min fair, each of these two should equally be allowed 30%, but they
are not. Instead the mid demand policer, which is “playing nice” by only asking
what it deserves, gets only 20% of the rate. (This is exactly what is predicted by
Equation (3.15) in Section 3.3.7.) The mid policer only achieves 2/3 the max-min
fair share, and 1/2 of what the high demand policer gets.

We also tried adjusting the mid policer demand, but keeping the low demand
and high demand constant. The results are shown in Table 4.4. We found the
worst behaviour when the mid policer is asking exactly what it deserves (30%). At
higher demands, the MMF share is still 30% but there is more traffic to compete
with Phi’s demand. At 50% demand and higher, the mid policer is fully able to
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Table 4.4: Resulting rates when varying mid policer demand under Early Start Unre-
stricted algorithm, n = 10 policers, α = 0.5.

dmid (% of r) MMFmid (% of r) amid (% of r)
10 10 10.00
15 15 14.99
20 20 15.01
25 25 20.00
30 30 20.27
35 30 24.64
40 30 25.02
45 30 28.51
50 30 30.02

compete with the high demand policer (100%) and gets its fair share. At lower
demands, the MMF share is still equal to what it asks for, but we get closer to the
minimum guaranteed rate (10%). Oddly, the achieved rates do not scale linearly
between these points.

4.3.1 Varying Low Demand α

For the next series of tests, we increased the number of policers to 100 (n− 2 = 98
low demand, 1 mid demand, 1 high demand). This setup magnifies the fairness
discrepancy.

• Policers: n = 100

• Packet size: 10 bytes

• Rate Limit: r = 10000 packets/sec = 100000 Bps

• Local threshold: LT = 40 bytes

• Global Bucket threshold: G = (n− 1)LT = 3600 bytes

• Simulation time: 60 seconds

Running an analogous experiment to that of Table 4.3, we have 98 low de-
mand policers receiving demand at α = 0.5 times the minimum rate guarantee, i.e.
0.5r/n = r/200 or 0.5% of the rate. Together they take up 49% of the bandwidth,
leaving 51% available. A high demand policer is receiving demand at r or 100%
of the rate and a mid demand policer receives demand at 25.5% the rate (half the
available bandwidth). The results are shown in Table 4.5. Now, the mid policer
only achieves slightly over half the max-min fair share, and roughly 1/3 of what
the high demand policer gets.
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Table 4.5: Unfair example under Early Start Unrestricted algorithm, n = 100 policers,
α = 0.5.

Policer Demand Actual
Type Count (% of r) MMF (%) (% of r)

lo 98 0.5 0.5 0.5
mid 1 25.5 25.5 13.3

hi 1 100.0 25.5 37.8

total 100 174.5 100.0 100.1

We now look at the effects of varying the demand dlo for each low demand
policer. The low policer demand is set to αr/n, varying α between 0.01 and 0.99.
The mid policer’s demand dmid is set to half the remaining bandwidth each time,
so that its max-min fair share MMFmid is the same as its demand. The results
are shown in Table 4.6. The value α = 0.5 gives the greatest difference between
MMFmid and amid, but somewhere between α = 0.75 and α = 0.90 is the worst
fairness ratio; the allotted rate is less than 1/3 the MMF rate. Equations (3.24)-
(3.25) predict the worst case ratio occurs at α = 0.876 and gives 0.2478 ratio, or
roughly 1/4. Experimental results are slightly better than the equation predicts
though.

Table 4.6: Resulting rates when varying low policer demand (α) under Early Start
Unrestricted algorithm, n = 10 policers. All demands are in % of r.

dlo Predicted amid dmid ahi
(each) worst = MMFmid

0.01 49.0 48.9 49.5 50.2
0.10 40.7 40.7 45.0 49.6
0.25 28.6 28.6 37.5 47.0
0.33 23.0 23.1 33.9 44.7
0.50 13.3 13.3 25.5 37.8
0.66 6.7 6.8 17.7 28.7
0.75 4.1 4.4 13.2 22.1
0.90 1.5 1.8 5.9 10.1
0.99 1.0 1.0 1.5 2.1

4.3.2 Improvements from Seeding

In Section 3.3.8, we noted that seeding can be used to combat the specific unfair
case affecting the Early Start algorithms. Our experimental results show that it
can indeed improve the fairness, but does not completely reach max-min fairness.
We start with the same setup as the previous section. We noticed that the size of
the local threshold (reporting traffic size) affected the effectiveness of the seeding,
so we tried a few different setups. These settings were in common across the tests:
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Table 4.7: Comparing seeding on Early Start Unrestricted algorithm, α = 0.5. Rates
shown for Pmid and are in % of r.

n LT MMF Predicted Type of Seeding
worst None Uniform Random

10 40 30 20 20.00 25.00 23.33 - 26.67
10 400 30 20 20.03 27.50 25.00 - 30.00
10 4000 30 20 20.25 27.54 25.09 - 29.99

100 40 25.5 13.25 13.28 14.01 14.01 - 14.51
100 400 25.5 13.25 13.58 25.00 21.54 - 22.54

• Packet size: 10 bytes

• Rate Limit: r = 10000 packets/sec = 100000 Bps

• Simulation time: 60 seconds

These settings were varied:

• Policers: n = 10 or 100

• Local threshold: LT = 40 or 400 or 4000 bytes

• Global Bucket threshold: G = (n− 1)LT

We seeded the local counts LCi of each policer using two methods: 1) uniformly
spaced values between 0 and LT , and 2) random values between 0 and LT . The
resulting rates for the mid policer are shown in Table 4.7. For the random method,
we ran the test 10 times and presented the range. Without seeding, the Early
Start algorithms perform very close to the predicted worst case allocation given
in Equation (3.15). Both seeding methods improved the share, with the random
seeding sometimes worse and sometimes better than the uniform seeding. There
was one exception where all random trials gave consistently less fair shares than
the uniform seeding. We are unable to explain this behaviour. Increasing the size
of the local count threshold LT improved the benefit from seeding. This effect
was especially significant in the 100 policers case. We speculate there is greater
variation in policer reporting times when LT is higher. In the case where LT = 40,
only 4 packets of size 10 are allowed before a policer reports, and so any seeded
LCi value will pigeonhole a policer into one of 4 possible reporting slots.

4.3.3 Improvements from Low Usage Credit

Finally we ran the same experiments as the previous section on our other exper-
imental modification, Low Usage Credit. We tried both the Basic + Low Usage
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Table 4.8: Comparing different versions of Low Usage Credit algorithm and seeding,
α = 0.5. Rates shown for Pmid and are in % of r.

n LT MMF Predicted LUC LUC ESU+LUC ESU+LUC
worst Seeding Seeding

10 40 30 20 25.00 28.00 23.34 29.99
10 400 30 20 24.99 29.98 24.99 29.98
10 4000 30 20 24.89 29.79 24.89 29.79

100 40 25.5 13.25 13.52 15.70 13.52 16.00
100 400 25.5 13.25 13.89 25.18 13.65 25.18

Credit (LUC) and Early Start Unrestricted + Low Usage Credit (ESU+LUC) al-
gorithms with and without uniform seeding. Random seeding was not attempted.
The resulting rates for Pmid are shown in Table 4.8. Notably the LUC algorithm
gave better fairness in the 10-policer tests, but not the 100-policer test. In all cases,
seeding generally improved the result, whereas the combination of ESU+LUC was
rarely better than LUC alone.

Note that the implementations tested did not limit policers to a maximum
credit, as suggested in Section 3.4.3. In almost all cases, this resulted in accumula-
tion of very large amounts of credit for all the low and mid demand policers. This
was not a problem in the tests because all demands were constant.
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Chapter 5

Conclusion

5.1 Summary

The distributed policing problem has practical applications in multiprocessor net-
working devices such as routers and switches, as well as servers in a cloud-computing
service. In all of these applications, a customer pays for, and is entitled to, a speci-
fied rate. We have looked at this problem prioritizing the full utilization aspect for
the customer.

Most prior solutions to the distributed problem are predictive algorithms that
adjust rates using either feedback mechanisms or demand estimation, and their
outputs only asymptotically converge to the desired rate. These solutions do not
guarantee full utilization or any error bounds during the adjustment period because
each policer has incomplete information about the system. Padwekar’s solution is
a non-predictive synchronization algorithm that tracks exact usage, giving error
bounds and full utilization, but has several shortcomings, including possibility of
starvation, burstiness, and high overhead.

We have presented a general protocol where policers report to a master (or
global bucket) such that no information is lost. The solution is similar to that of
a FIFO ordering problem, and can be described as a polling system. The protocol
has several nice properties and allows for easy derivation of error bounds. However,
there are many ways that a policer algorithm could handle packets and still follow
the protocol; we have suggested several.

The Basic algorithm we presented is very similar to Padwekar’s algorithm, but
with a different update system that requires strictly less overhead (lowered from
n − 1 updates per LT (or fewer) bytes usage, to 2 updates per LT bytes usage
exactly). It also proves starvation is impossible and full utilization is guaranteed.
However, we find the Basic algorithm to be unnecessarily restrictive, and is unable
to achieve max-min fairness in even trivial cases.

The Early Start Unrestricted and Early Start Steady algorithms are the least
restrictive and give the best guarantees. Each individual policer is essentially guar-
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anteed a 1/nth share of the rate, with higher shares occurring when global usage is
low. Every discrete chunk of LT traffic that a policer Pi allows is spread out over a
time period, such that the allowed rate averages min(ri, di) where ri ≥ r/n is given
by the protocol. This heuristically approaches max-min fairness. In analysis and
simulations, these variations do reach the ideal max-min fair allocations on many
test cases, but fall short on several constructed cases.

To alleviate the fairness issues, we proposed two experimental modifications to
the general algorithm. The first, seeding, makes it extremely unlikely that the bad
fairness case will be reconstructed. The second, Low Usage Credit, allows for vi-
olation of the protocol in a controlled manner, however it loses the minimum rate
guarantee afforded by the Early Start algorithms. In our simulation experiments,
both modifications improved the fairness, but the best (max-min fair) results came
when combining both Low Usage Credit and seeding. We caution that the experi-
ments only consider steady rate demands.

Of the presented algorithms, we recommend the Early Start Unrestricted or
Early Start Steady algorithms, depending on whether steady output rate is pre-
ferred, as well as seeding. We recommend setting the global bucket threshold
G = (n − 1)LT since this is the smallest value that guarantees full utilization;
larger values increase the burst size and error. This makes the burst under 3nLT .
Then the parameter LT can be set smaller for smaller error, or larger for less fre-
quent communication (reports) between policers. While we can not say whether
our algorithms are better than predictive solutions in a practical setting, many
of our theorems (starvation, burst size, minimum rate) are guaranteed under any
arbitrary traffic conditions, and not just under expected conditions.

5.2 Future Work

We have focused on the theoretical guarantees we can get under certain arbitrarily
bad scenarios, however the steady demand cases may not reflect real world usage.
It would be interesting to see how well the algorithms perform under a Poisson
model of packet arrivals, or dynamic traffic demands following the TCP protocol.
It would be nice to see if the recommended Early Start algorithms with seeding are
sufficiently fair in practice. Also, the analysis of the Low Usage Credit algorithm is
relatively difficult compared to the others. We still do not know the ideal value of
CRmax, the maximum credit a policer may accumulate, to give adequate fairness.
Finding this would give a better idea of the maximum error we can expect from
this algorithm.

Additionally, we have only looked at local policer algorithms for improving
fairness. It has been suggested to replace the logic at the master with a different, fair
packet scheduling algorithm, since the role of the master is essentially to schedule
when reports from each policer may arrive. However, our observations — that a
constant traffic flow at policers can translate to uneven rates of reports arriving at
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the master — show that fairness of reports does not necessarily mean fairness at
the packet level. We suspect that better traffic fairness requires a longer “memory”
at the master, which may impact full utilization. This certainly warrants further
study.
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[1] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo. A queueing analysis of
max-min fairness, proportional fairness and balanced fairness. Queueing Syst.
Theory Appl., 53(1-2):65–84, 2006. 6

[2] M.J.C. Buchli, D. De Vleeschauwer, J. Janssen, and G.H. Petit. Policing ag-
gregates of voice traffic with the token bucket algorithm. In Communications,
2002. ICC 2002. IEEE International Conference on, volume 4, pages 2547–
2551 vol.4, 2002. 8

[3] M. Butto, E. Cavallero, and A. Tonietti. Effectiveness of the ‘leaky bucket’
policing mechanism in ATM networks. Selected Areas in Communications,
IEEE Journal on, 9(3):335–342, Apr 1991. 8, 10

[4] Michael J. Fischer, Nancy A. Lynch, James E. Burns, and Allan Borodin.
Distributed FIFO allocation of identical resources using small shared space.
ACM Trans. Program. Lang. Syst., 11(1):90–114, 1989. 30

[5] R.J. Gibbens and F.P. Kelly. Distributed connection acceptance control for a
connectionless network. 16th International Teletraffic Congress in Edinburgh,
Jun 1999. 8, 10

[6] J. Heinanen and R. Guerin. A single rate three color marker. Network Working
Group, RFC 2697, Sep 1999. 4

[7] J. Heinanen and R. Guerin. A two rate three color marker. Network Working
Group, RFC 2698, Sep 1999. 4

[8] V. Jacobson. Congestion avoidance and control. In SIGCOMM ’88: Sympo-
sium proceedings on Communications architectures and protocols, pages 314–
329, New York, NY, USA, 1988. ACM. 6, 16

[9] Raj Jain, Dah-Ming Chiu, and W. Hawe. A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems. Tech-
nical Report DEC-TR-301, DEC, Sep 1984. 6

[10] T. Johnson. Designing a distributed queue. In Parallel and Distributed Pro-
cessing. Proceedings. Seventh IEEE Symposium on, pages 304–311, Oct 1995.
30

65



[11] F. P. Kelly, A. K. Maulloo, and D. K. H. Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the
Operational Research Society, 49:237–252(16), Mar 1998. 1

[12] Frank Kelly. Charging and rate control for elastic traffic. European Transac-
tions on Telecommunications, 8:33–37, 1997. 1, 6

[13] Srisankar S. Kunniyur and R. Srikant. An adaptive virtual queue (AVQ) algo-
rithm for active queue management. IEEE/ACM Trans. Netw., 12(2):286–299,
2004.

[14] P.P. Mishra. Effect of leaky bucket policing on tcp over atm performance.
In Communications, 1996. ICC 96, Conference Record, Converging Technolo-
gies for Tomorrow’s Applications. 1996 IEEE International Conference on,
volume 3, pages 1700–1706 vol.3, Jun 1996.

[15] Ketan A. Padwekar. System and method for performing distributed policing.
Patent, Oct 2006. US 2006/0221819 A1. 11, 12, 13, 31, 33, 36

[16] C. Partridge. A proposed flow specification. Network Working Group, RFC
1363, Sep 1992. 8, 9

[17] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth Yocum,
and Alex C. Snoeren. Cloud control with distributed rate limiting. In SIG-
COMM ’07: Proceedings of the 2007 conference on Applications, technologies,
architectures, and protocols for computer communications, pages 337–348, New
York, NY, USA, 2007. ACM. 1, 5, 7, 15, 16, 17, 18, 23

[18] M. Shreedhar and George Varghese. Efficient fair queueing using deficit round-
robin. IEEE/ACM Trans. Netw., 4(3):375–385, 1996. 20
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