
Reconstructing hv-convex
polyominoes with multiple colours

by

Adam Bains

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Adam Bains 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143617?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis examines the problem of reconstructing multiple discrete 2D ob-
jects, represented by a set of cells arranged in an m×n grid, from their projections.
The objects being constructed are disjoint, hv-convex polyominoes, each of which
has a separate colour. The main results presented here are two algorithms for un-
ordered C-colour reconstruction that have time complexities of O(C2n2C+1m2C+1)
and O(C2 min(n2C ,m2C)nm), an ordered C-colour reconstruction algorithm that is
O(C min(n2C ,m2C)nm), and an NP-completeness proof when the number of colours
is unbounded.

iii

Acknowledgements

I would like to thank all of my family and friends for their help and support, as
well as everyone who helped me edit and polish this thesis into what it is today.

iv

Dedication

This is dedicated to my friends and family, as well as all of the people that
supported me throughout the process of writing this thesis.

v

Contents

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Definitions . 3

1.3 Related Results . 6

1.4 Review of existing algorithms . 7

1.4.1 Overview . 7

1.4.2 Barcucci et al. – Reconstructing hv-convex polyominoes via
spine expansion . 7

1.4.3 1-colour 2-SAT . 15

1.4.4 Chrobak and Dürr – Reconstructing hv-convex polyominoes
directly from 2-SAT . 17

2 Multiple-colour Reconstruction 20

2.1 Problem Overview . 20

2.2 Algorithm . 21

2.2.1 Generating foot configurations and spines 21

2.2.2 C-colour 2-SAT . 22

2.2.3 Time Complexity . 22

2.3 Alternate Approach . 23

2.3.1 Preliminaries . 23

2.3.2 Spine Generation . 23

2.3.3 Reconstruction . 24

vi

2.3.4 Time Complexity . 26

2.4 Reconstruction for Ordered Colours 26

2.4.1 Time Complexity . 27

2.5 Final Notes . 28

3 NP-Completeness Results 29

3.1 Overview . 29

3.2 Gadgets . 30

3.3 Layout . 34

3.4 NP-Completeness Proof . 36

4 Conclusion 39

4.1 Results . 39

4.2 Open Problems . 39

References 40

vii

List of Tables

3.1 Row and column information for the position of each gadget within
the layout, where i is the index of the boolean variable associated
with the gadget, and j is the position of the literal being considered.
The index t indicates the clause being considered, and ranges from
1 to |C|. 36

viii

List of Figures

1.1.1 (a) An instance of a single-colour reconstruction, (b) a {0, 1} matrix
representation of that object. 1

1.1.2 A simple single-colour nonogram puzzle. 2

1.1.3 A simple two-colour nonogram puzzle. 3

1.2.4 Example of 4-connectivity. The black circles are 4-neighbours of the
empty circle, and the empty circles are shown to be 4-connected by
the indicated path . 4

1.4.5 An example of a polyomino’s feet. The gray cells are those that
belong to the feet, and the dashed cells are those that belong to the
rest of the polyomino. 8

1.4.6 Example illustrating dj and uj for a descending polyomino where
n1 ≤ j ≤ s2. The row indices given for dj and uj are associated with
the circled column. 10

1.4.7 An example demonstrating the relationship between SW (i, j),Wi,
and Ni−1. 13

1.4.8 (a) Two examples of consecutive pairs of feet with non-empty inter-
sections. (b) A violation of vertical convexity as a result of discon-
nected feet. 13

2.1.1 Example solutions to the 2-colour reconstruction problem on hv-
convex polyominoes. The upper/leftmost set of numbers corresponds
to the polyomino whose cells are filled in with dashes, and the other
numbers correspond to the polyomino shaded using cross- hatching 21

2.2.2 Diagram illustrating the idea of a polyomino’s matrix. The section
of the matrix associated with the darker polyomino (shaded using
cross-hatching) has been circled. The uppermost/leftmost sets of
numbers provide row/column information for the gray polyomino,
which is shaded using dashes. 22

3.1.1 The basic layout of a reduction from 3-SAT to the reconstruction
problem. Circles represent variable gadgets, diamonds are splitter
gadgets, crosses are crosser gadgets, and rectangles are clause gad-
gets. Transmitter gadgets are not shown for the sake of simplicity. . 29

ix

3.2.2 Two representations of a boolean variable in the form of an hv-
convex polyomino. The left polyomino represents xi, while the right
one represents xi. 30

3.2.3 A transmitter gadget being used to project a boolean assignment.
A variable gadget is on the left, while the transmitter is the striped
polyomino on the right. 31

3.2.4 A splitter gadget being used to split a truth-value assignment, trans-
mitting it both horizontally and vertically. The left figure depicts a
splitter gadget in the “true” position, while the right figure shows
the “false” position. 31

3.2.5 Examples of conflicts caused by changing the configuration of the
vertical component in the splitter gadget. 32

3.2.6 The four possible configurations of the crosser gadget. Arrows in-
dicate which boolean-values are associated with each row/column;
filled-in rows/columns are blocked by the gadget, as no other gadget
could occupy those cells without causing an overlap. 33

3.2.7 Four configurations of the clause gadget representing (x1 ∨ x2 ∨ x3).
The upper left restricts the first variable in the clause to true by
blocking a false input, the upper-right restricts the second variable,
the bottom-right restricts the third variable, and the bottom-right
restricts the second variable. 33

3.2.8 All variations of the clause gadget, with the corresponding clause
types listed below each gadget. Solid gray cells represent cells from
other splitter/crosser gadgets transmitting boolean values 35

3.3.9 A simple example of the layout for the NP-completeness proof with
three boolean variables and three clauses. Note that some shades
are re-used throughout the layout; this is for the sake of readability.
Each gadget should be thought of as having its own, unique colour. 38

4.2.1 A version of the transmitter gadget designed specifically for the or-
dered k-colour reconstruction problem. Both versions obey the same
total colour ordering, but transmit different truth values. 40

x

Chapter 1

Introduction

1.1 Motivation

Discrete tomography, for the purposes of this thesis, deals with the problem of
reconstructing a 2D object, which is represented as a discrete set of cells, from
projections of the object’s thickness. In fact, the discrete tomography problem as
considered here is similar to a kind of logic puzzle typically referred to as nonograms,
although they are known by a number of other names (e.g. paint-by-numbers, pic-
a-pix, Edel) [20]. Such puzzles give the reader information about the number of
filled-in cells that should be in each row and column of a matrix of cells. A puzzle
is solved when a cell colouring that matches these criteria is found.

The field of discrete tomography has recently experienced a large surge of inter-
est. Many papers have been published in the last decade. Some examine the basic
problems of the field from new perspectives, while others apply algorithms and tech-
niques from the field to a number of different areas, such as medical imaging [19],
electron microscopy [9, 8], data security [8], and image processing [23]. It should
be noted that this is by no means an exhaustive list of papers or applications; the
collections on the subject by Gabor and Kuba [15, 14] provide a wealth of papers
discussing both the algorithmic aspects of the field and possible applications.

0 1 2 4

2

3

1

1

(a)

0 100

0 0 0 1

0 1 1 1

0 0 1 1

(b)

Figure 1.1.1: (a) An instance of a single-colour reconstruction, (b) a {0, 1} matrix
representation of that object.

This paper examines the subarea of discrete tomography dealing with discrete

1

5 1 1 1 5 0 5 1 2 1 5
1, 1, 1, 1
1, 1, 1, 1
1, 1, 1, 1

1, 1, 1, 1, 1
1, 1, 1, 1, 1

3, 1, 1

Figure 1.1.2: A simple single-colour nonogram puzzle.

sets, which are represented here as sets of cells within a larger matrix of cells.
Traditionally, the cells can be either black or empty. In this thesis, we deal with
multiple colours, so the cells can either be empty or have one of many colours.
Note, however, that each cell can only ever contain one colour. The problem then
becomes to reconstruct these discrete sets from sets of sums (one sum for each
colour) over the rows and columns of the matrix of cells. A formal definition of the
problem will be given in Section 1.2.

Our problem has two motivations: the reconstruction of polyatomic structures,
and multiple colour nonogram puzzles. For the reconstruction of polyatomic struc-
tures, applications consider different types of atoms instead of different colours, but
the two concepts are identical from an algorithmic viewpoint. A two-dimensional
projection of a structure composed of multiple types of atoms can easily be thought
of as a picture containing multiple colours, one for each type of atom. There is a
technique called QUANTITEM [16, 22] that uses high-resolution transmission elec-
tron microscopes to determine the number of atoms in the atom columns of a crystal
in certain directions, which are essentially projections. As there are no degrees of
thickness—a position within the crystal either contains an atom or it is empty—the
problem of reconstructing the crystal from these atom counts is well-suited to dis-
crete tomography, as shown by the consideration other authors have given to both
the 3D and the 2D versions of the problem [8].

The multiple-colour nonogram puzzle is another motivation for our work. As
noted previously, the single-colour version gives you the number of cells in any given
row and column, but with one significant difference: gaps of empty cells between
consecutive blocks of filled-in cells are shown in the row and column information for
the problem. The exact length of the gap is not provided; all that is known is that a
gap of some length exists between blocks of filled-in cells whose lengths are known.
Figure 1.1.2 provides an example demonstrating how the row and column infor-
mation is conveyed. The multiple-colour problem is the same as the single-colour
problem, except that the blocks of consecutive cells can be of different colours; for
example, you might be given a puzzle where you know that a row must contain
five black cells, four red cells, and three green cells. Also, there are not necessarily
gaps between colours, whereas in the single-colour version there is always a gap be-
tween two groups of filled-in cells. If the picture being considered is known to make
use of only hv-convex blocks of colour, the multiple-colour nonogram problem then
becomes a variant of the hv-convex reconstruction problem for multiple colours.

2

3g
1g
1g

1g
1g

1g
1b
1b
1g

1g
1b
1g

1g
1b
1g

1g
1b
1b
1g

1g
1g

1g
1g 3g

4g
1g, 1g
1g, 1g

1g, 1b, 1b, 1g
1g, 1g

1g, 1b, 1g, 1b
1g, 2b, 1g

1g, 1g
4g

Figure 1.1.3: A simple two-colour nonogram puzzle.

1.2 Definitions

We now give formal definitions. A projection is a measurement of the density of an
object (or set of objects) taken from a single direction. For our purposes, we will
only need to consider reconstruction problems from two projections, one along the
x-axis and one along the y-axis of the integer lattice. An object is a set of cells of
the form i, j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Such an object is called a 01-matrix
(xi,j), where xi,j = 1 means that cell (i, j) belongs to the object. A set of objects
is described by a set of colours {1, . . . , C} where each colour is associated with an
object {xci,j ∈ {0, 1} : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. We will later restrict the objects
to be disjoint, so that for any given i and j, the sum over all c of xci,j ≤ 1. Note
that since the cells associated with each object can only take on binary values, the
entries in it can also be thought of as boolean variables.

A projection for such an object that is of colour c is defined as:

hci =
n∑
j=1

xci,j, i = 1, . . . ,m (1.1a)

vcj =
m∑
i=1

xci,j, j = 1, . . . , n (1.1b)

where hci is the density measurement for the ith row of the object, also referred to as
the ith row sum, and vcj is the density measurement for the jth column, also referred
to as the jth column sum. The sets of all row and column sums for the object of
colour c are denoted as Hc = (hc1, . . . , h

c
m) and V c = (vc1, . . . , v

c
n). In the case of a

single-colour reconstruction problem, the c’s are omitted from these definitions, as
there is only one colour available (black). If xci,j = 0 for all c, then the cell is said
to be white, or empty. Note that white is not considered a colour in this sense,
but an absence of colour. It has no row or coloumn sums, nor variables to indicate
whether a cell is white or not.

The object of colour c is referred to as P c. If a cell is known to belong to P c

(i.e. if xci,j = 1), then (i, j) ∈ P c. The set of all cells, which includes white cells

3

Figure 1.2.4: Example of 4-connectivity. The black circles are 4-neighbours of the
empty circle, and the empty circles are shown to be 4-connected by the indicated
path

as well as cells belonging to each of the objects, is referred to as the matrix. The
outermost rows and columns within the matrix are defined as the boundary rows
and boundary columns, and the cells within them are the boundary cells.

The reconstruction problem (to be defined formally below) consists of recon-
structing a set of disjoint objects from a given set of row/column-sum vectors,
possibly under additional constraints. A solution to the reconstruction problem is
an assignment of colour values to the cells such that the number of coloured cells
in each row and column in the matrix is exactly equal to the given row and column
sums for each colour. Note that in order to be valid, a solution may have to meet
a number of other requirements, depending on the reconstruction problem.

We consider a restricted version of the reconstruction problem, where the objects
must be connected and convex in some sense. For each cell (i, j) in an m×n matrix,
the set N((i, j)) = {(i + 1, j), (i − 1, j), (i, j + 1), (i, j − 1)} is referred to as the
4-neighbours of (i, j). Note that cells in the outer rows and columns of the matrix
may not have all four of these 4-neighbour cells available. Two cells are said to be 4-
connected if there exists a path between the two cells such that each cell in the path
is a 4-neighbour of the next cell in the path. More precisely, P = (i1, j1), . . . , (in, jn)
is 4-connected if for all 1 ≤ k ≤ n, (ik, jk) ∈ N((ik+1, jk+1)). A set is said to be a
polyomino if all cells in the set are 4-connected. A row (column) is said to be h-
convex (v-convex) if it consists of a contiguous block of cells, i.e. it is 4-connected.
A polyomino is said to be h-convex (v-convex) if all of its rows (columns) are h-
convex (v-convex), and hv-convex if it is both h-convex and v-convex [3]. 1 Note
that if a row (column) is h-convex (v-convex), then it is 4-connected, as it is easy
to draw a valid path between any two cells in the row (column). This thesis deals
largely with the reconstruction of hv-convex polyominoes. The problem definition
for the hv-convex reconstruction problem is as follows:

Problem: hv-Convex Polyomino Reconstruction from Or-
thogonal Projections

1Being hv-convex is the same as being orthogonally convex, which is a term that is sometimes
used in Computational Geometry, but not traditionally in Discrete Tomography.

4

Given: Row and column sum vectorsH = (h1, . . . , hm), V = (v1, . . . , vn).

Goal: Construct an hv-convex polyomino contained in an m×n matrix
that satisfies the given row and column sums, i.e., row i has exactly hi
black cells and column j has exactly vi black cells.

In the process of developing a reconstruction, we will also develop a boolean
assignment using 2-SAT that assigns boolean values to variables representing the
cells. As noted earlier, the cells of the various objects being constructed are analo-
gous to boolean variables, so the boolean assignment and the actual reconstruction
are largely interchangeable. In other words, the boolean assignment from the 2-
SAT can be thought of as a possible solution for the instance of the reconstruction
problem it is based on.

We will also have cause to refer to the unrestricted reconstruction problem,
which is formally defined here:

Problem: Unrestricted Reconstruction from Orthogonal
Projections

Given: Row and column sums H = (h1, . . . , hm), V = (v1, . . . , vn).

Goal: Fill the cells of an m × n matrix in a manner that satisfies the
given row and column sums, i.e., all rows i have exactly hi black cells
and all columns have exactly vi black cells.

Lastly, our results make use of the k-satisfiability problem in a number of ways.
The basic problem definition for k-SAT is as follows:

Problem: k-Satisfiability (k-SAT)

Given: A set X of variables, and a set C of m clauses such that each
clause ci ∈ C is a disjunction of k literals, e.g., ci = (x1 ∨ x2 ∨ . . . xk)
Goal: To assign boolean values to all xi ∈ X such that every clause
cj ∈ C is satisfied, i.e., each clause contains a true literal.

Note that when considering the number of variables and clauses, we refer to
them as |X| and |C|. This is because m and n, which are typically used to refer
to these values, are already used to represent the number of rows and columns in
the matrices we consider. Two different versions of the satisfiability problem are
made use of in this thesis: 3-SAT and 2-SAT. The 2-SAT problem is solvable in
polynomial time, whereas the 3-SAT problem is known to be NP-complete.

5

1.3 Related Results

Discrete tomography problems were being discussed as far back as 1957, when
Ryser published a paper that provided the first reconstruction algorithm for the
unrestricted single-colour reconstruction problem. [21] (see also the first chapter
of Herman and Kuba [15].) With those preliminary results in place, other authors
began to examine variants of the single-colour reconstruction problem. Woegin-
ger proved that two problems were NP-complete: reconstructing a 4-connected
object, and reconstructing an hv-convex object [24]. Barcucci et al. presented NP-
completeness proofs for h-convex objects, v-convex objects, h-convex polyominoes,
and v-convex polyominoes [3]. Note that an h-convex object is an object that is
not 4-connect where all rows of the object are h-convex, an h-convex polyomino is
a 4-connected object where all rows of the polyomino are h-convex, and so forth.

Surprisingly, if an object is required to be both hv-convex and 4-connected, the
reconstruction problem becomes polynomial. Barcucci et al. developed an algorithm
for the reconstruction of hv-convex polyominoes that has a total time complexity
of O(n3m3(n + m)) [3]. This time was subsequently improved upon by Chrobak
and Dürr, who published an O(mnmin(m2, n2)) time algorithm [7]. Both of these
algorithms will be discussed in greater detail in Section 1.4, as their results are
the groundwork for the material presented in this thesis. A special case of the
reconstruction problem for hv-convex polyominos was also presented by Chrobak
and Dürr, where the polyomino has at least one row (column) that is n (m) cells
long, i.e., it spans the length (width) of the matrix; they presented a modified
algorithm that could solve this special case in O(m+ n) time [7].

Some researchers have been examining further restricted variants of the poly-
omino reconstruction problem. Balázs developed an algorithm for the reconstruc-
tion of objects that are 8-connected but not 4-connected, and arrives at a total time
complexity of O(mnmin(m,n)) [2]. 8-connectivity is similar to 4-connectivity, ex-
cept it includes cells (i− 1, j − 1), (i− 1, j + 1), (i+ 1, j + 1), and (i+ 1, j − 1) as
8-neighbours of (i, j). Castiglione and Restivo examined so-called L-convex poly-
ominoes and found that such polyominoes can be uniquely determined by their
row and column sums, as well as providing an efficient algorithm for their recon-
struction [5], [6]. Exact time complexity was not given in their papers. Similarly,
Duchi et al. examined the class of so-called Z-convex polyominoes, although they
provided a generating function for the class of polyominoes and not an algorithm
to reconstruct them more efficiently [10]. These convexity classes further restrict
the shape of a valid solution; further details are not relevant to this thesis, but can
be found in the relevant papers.

Thus far, all results mentioned have dealt with single-colour reconstruction. For
more colours, all NP-hardness results carry over, and few algorithmic results are
known. A number of NP-hardness results specific to higher numbers of colours
are known, however. Gardner et al. showed that the unrestricted reconstruction
problem was NP-complete for 6 colours, and Chrobak and Dürr presented an NP-

6

hardness proof for 3 colours [13, 8]). As this result can be extended to 4 and 5
colours, only 2 colours remains an open problem for the unrestricted case.

Further, other researchers have examined reconstruction problems for objects
in more than two dimensions, as well as reconstructions from more than two pro-
jections. Balázs examined the class of decomposable discrete sets and provided
a single-colour reconstruction algorithm for two dimensions and four projections
[1]; Batenburg developed an exact algorithm for the single-colour reconstruction
problem in 3D with two projections, and tested an algorithm for reconstruction
with three or more projections. Batenburg’s results showed that, despite the NP-
hardness of the problem, it was still feasible to reconstruct relatively smooth objects
from a small number of projections [4]. Gardner et al. showed that the single-colour
unrestricted reconstruction problem was NP-hard where the object considered is
3-dimensional or higher and there are three or more non-parallel projections used;
in the same paper, they also showed that the same problem is polynomial for all
other values of dimensions and projections [12].

1.4 Review of existing algorithms

1.4.1 Overview

As mentioned previously, there are two papers that are particularly important to
understand when considering the work presented in this thesis. The first, “Recon-
structing convex polyominoes from horizontal and vertical projections” by Barcucci
et al., presents an early approach to reconstruction of hv-convex polyominoes [3].
Note, however, that we follow the review of this algorithm by Del Lungo and Nivat
for the sake of clarity [17]. Although the paper by Barcucci et al. has since been
improved upon, their work makes use of an idea that is used by the algorithms
presented here. The second paper is “Reconstructing hv-convex polyominoes from
orthogonal projections” by Chrobak and Dürr [7]. This paper provides a much
faster solution than the one by Barcucci et al., but is not well-suited to a multiple-
colour reconstruction problem. Nevertheless, the method they use to develop their
reconstruction, which is to make use of the empty space around the polyomino to
reconstruct it, can be partially adapted to a multiple-colour reconstruction problem,
as we will show later in the algorithms we present.

1.4.2 Barcucci et al. – Reconstructing hv-convex polyomi-
noes via spine expansion

The first method of reconstructing hv-convex polyominoes that we will examine
is the one by Barcucci et al. [17]. Roughly, the algorithm consists of the follow-
ing steps: first, they find a set of cells that must belong to the polyomino being
reconstructed. Next, they expand this set of cells as much as possible, using the

7

2 6 7 8 7 3
3

9

10

9

9

9

9

8

4

1

8 7 7 7 8

Figure 1.4.5: An example of a polyomino’s feet. The gray cells are those that belong
to the feet, and the dashed cells are those that belong to the rest of the polyomino.

basic constraints of the problem to determine more cells that must belong to the
polyomino. Finally, they phrase the resulting reconstruction as a 2-SAT problem
to develop colour assignments for “ambiguous” cells, which could be either black
or white.

Foot configuration and spine

The main idea of the algorithm involves the feet of a polyomino. There are four
feet in a polyomino, each of which corresponds to one of the boundary rows and
columns of the matrix. Note that we can assume all boundary rows and columns
have non-zero sums, as such a column could be safely ignored when developing any
solution. Now, consider the north foot, i.e. the foot associated with the top row of
the matrix. Each of the h1 black cells in this row are considered to be part of the
foot. As these cells are at the top of the matrix, we know that each one of these
cells is the first black cell in its column. By v-convexity, each column j associated
with a cell from the foot has a block of black cells with length vj extending from
the top of the matrix. Since these cells must then be in the polyomino as well, we
will also include them in our definition of the foot. See Figure 1.4.5 for a visual
example. Note that we assume that the row and column sums we are given are all
non-zero; this is because any boundary rows or columns that cannot contain cells
of the polyomino may simply be ignored.

The paper refers to the top, bottom, left, and right feet as the North, South,
West, and East feet respectively, with the columns occupied by the north foot
referred to as n1, . . . , n2, the columns associated with the south foot referred to as
s1, . . . , s2, and so forth. A foot configuration is a partial solution where positions
for each of the feet have been selected. The north foot has n − h1 + 1 possible
positions, the west foot has m− v1 + 1, the south has n− hm + 1, and the east has
m− vn + 1. This results in a total of O(n2m2) possible foot configurations.

Throughout this thesis, unless stated otherwise, we are dealing with a descend-
ing polyomino, a type of polyomino discussed by Duchi et al. [10]. In order to

8

categorize a polyomino as either ascending or descending, the row index of the
southernmost cell in the west foot (w2) is compared to the position of the east foot.
If the east foot begins beneath w2, then the polyomino is classified as descending; if
it ends above w2, the polyomino is ascending. More precisely, if w1 ≤ w2 < e1 ≤ e2
the polyomino is descending, and if e1 ≤ e2 < w1 ≤ w2, it is ascending.

We will ignore the cases e1 ≤ w1 ≤ e2 ≤ w2 and w1 ≤ e1 ≤ w2 ≤ e2, as those
necessarily have a spanning row – a row i such that hi = m – and as such can be
solved easily, as shown by Chrobak and Dürr [7]. We similarly assume that there
is no overlap between the north and south feet, again because it would mean that
the polyomino would have a spanning column, and could be detected and solved
quickly. We will also require that n1 ≤ s2 for the sake of simplicity; Barucci et al.
handle the case where s2 < n1 as well [17], but since it is not used by the faster
of the two multiple-colour reconstructions we will present, the details have been
omitted here.

Thus, we assume from now on that in the chosen foot configuration we have
w1 < e2; the other case is handled in a manner similar to the one we will describe.
The next step is to define a spine, which requires the following technical definition
for sets SWE and SNS:

Definition. Let Hi =
∑i

a=1 ha be the ith cumulative row sum, Vj =
∑j

b=1 vb be the
jth cumulative column sum. We define SWE and SNS as sets of cells satisfying the
following properties:

SWE = {(i, j)|w1 ≤ i ≤ e2, Vj ≥ Hi−1, Hi ≥ Vj−1} (1.2)

SNS = {(i, j)|n1 ≤ j ≤ s2, Vj ≥ Hi−1, Hi ≥ Vj−1} (1.3)

These sets consist of cells that must be in any valid solution to the reconstruction
problem given the current foot configuration, with SNS containing all such cells in
columns between the north and south feet, and SWE containing those between the
west and east feet. We also define S = SNS ∪ SWE as the set of all cells satisfying
either set of properties. The NS-spine is then defined as the union of SNS with
the north and south feet, the WE-spine is defined as the union of SWE with the
west and east feet, and the spine is defined as the union of the NS-spine and
the WE-spine. Our goal is to show that the NS-spine contains a cell in every
row of the matrix and is 4-connected. Also, we will demonstrate that for any
foot configuration, the cells in SNS must belong in any solution with that foot
configuration; the same holds for SWE and S. Most of this section will be spent
presenting properties and lemmas to work our way toward these goals.

Our lemmas are slightly different that those presented by Barcucci et al., as we
will need to refer to the results for the NS- and WE-spines later, and they phrased
their proofs in terms of the spine. For this reason, we present full proofs here.

For each column n1 ≤ j ≤ s2, we define two row indices dj and uj. Index dj is
the highest row index where (1.3) holds, i.e., (i, j) 6∈ SNS for i > dj, and uj is the

9

2 3 5 5 6 6 5 6 6 6 5 3 2 2
2 5 10 15 21 27 32 38 44 50 55 58 60 62

3 3
8 5

16 8
26 10
35 9
43 8
52 9
59 7
62 3

dj

uj

Vj

vj

Hj hj

Figure 1.4.6: Example illustrating dj and uj for a descending polyomino where
n1 ≤ j ≤ s2. The row indices given for dj and uj are associated with the circled
column.

lowest row index where (1.3) holds, i.e., (i, j) 6∈ SNS for i < uj. See Figure 1.4.6
for an example. More formally, for dj and uj, we know the following:

Vj ≥ Hi−1 for each i ≤ dj, and Vj < Hdj
(1.4a)

Hi ≥ Vj−1 for each i ≥ uj, and Huj−1 < Vj−1 (1.4b)

Note that it is possible for dj = uj, but it can never be the case that dj < uj, as this
would require that Vj < Hdj

≤ Huj−1 < Vj−1. Also, if n1 = 1 and/or s2 = n, dj and
uj will not exist for n1 and s2. These cases will not pose a problem, however, as the
spines we discuss include the foot cells in addition to those in SNS and SWE; even
if SNS does not have a cell in column n1, the NS-spine will. Lastly, similar indices
(e.g. ri, li) can be defined for rows w1 ≤ i ≤ e2, and the following proofs regarding
dj, uj, and SNS hold for these indices as well. However, due to the similarity to the
proofs presented for dj and uj, the details for li and ri will be omitted.

Lemma 1.4.1. The indices dj and uj must exist for every column j 6= 1, n where
n1 ≤ j ≤ s2. Furthermore, (i, j) ∈ SNS if and only if n1 ≤ j ≤ s2 and uj ≤ i ≤ dj.

Proof. We know that Hm ≥ Vj−1 for n1 ≤ j ≤ s2, as Hm includes all black cells in
the matrix. Similarly, we know that H0 = 0 < Vj−1. Therefore, 1 ≤ uj ≤ m must
exist for n1 ≤ j ≤ s2. As for dj, Vj ≥ H0 and Vj < Hm for all n1 ≤ j ≤ s2, so dj
must exist as well.

If uj ≤ i ≤ dj, we know that Vj ≥ Hi−1 and Hi ≥ Vj−1 by the definition of dj and
uj. These are exactly the properties that ensure that (i, j) ∈ SNS if n1 ≤ j ≤ s2,
allowing us to conclude that (i, j) ∈ SNS. Similarly, if (i, j) ∈ SNS, then Vj ≥ Hi−1

implies i ≤ dj and Hi ≥ Vj−1 implies i ≥ uj

Lemma 1.4.2. The NS-spine is 4-connected.

10

Proof. Assume j 6= 1, n. The jth column of SNS consists of all cells (i, j) with
uj ≤ i ≤ dj, so it must be 4-connected. Now, consider column index j + 1, where
j + 1 ≤ s2. From the definition of dj, uj, dj+1, and uj+1, we can conclude that:

Huj−1 < Vj−1 < Vj ≤ Huj+1
(1.5a)

Huj+1−1 < Vj < Hdj
(1.5b)

Hdj−1 ≤ Vj < Vj+1 < Hdj+1
(1.5c)

Expression 1.5a follows from the requirement that Huj−1 < Vj−1 for column
j, and Hi ≥ Vj−1 for column j. However, the second requirement is expressed in
terms of j + 1 in expression 1.5a, so it is instead written as Vj ≤ Huj+1

. From this,
we know that uj ≤ uj+1. Expression 1.5b applies the requirement Huj−1 < Vj−1

to row j + 1, giving us Huj+1−1 < Vj, and Vj < Hdj
applies the requirement that

Vj < Hdj
to column j, thereby demonstrating that uj+1 ≤ dj. Together with our

previous statement, this allows us to conclude that uj ≤ uj+1 ≤ dj. Lastly, 1.5c’s
leftmost inequality, Hdj−1 ≤ Vj, follows directly from the definition of dj, the middle
inequality follows from the definition of the cumulative column sum, as all columns
must have positive non-zero column sums, and the rightmost inequality also follows
from the definition of dj+1, allowing us to conclude that dj ≤ dj+1. In combination
with our previous statements, this implies that uj ≤ uj+1 ≤ dj ≤ dj+1.

This implies that set SNS is 4-connected. Since uj ≤ uj+1 ≤ dj, we know that
column j is 4-connected to column j+ 1, and we can extend this reasoning to cover
all columns k where n1 ≤ j < k ≤ s2, implying overall 4-connectivity. Since this
covers columns that are included in the north and south feet, which are themselves
4-connected, the union of the north and south feet with SNS is 4-connected as well.
Therefore, the NS-spine must be a polyomino.

If j = 1 or n, i.e., n1 = 1 or s2 = n, the proof is very similar. As mentioned
earlier, dj and uj will not exist for columns j = n1 = 1 and j = s2 = n. Since a
cell (i, j) is in SNS if and only if uj ≤ i ≤ dj, these columns of SNS will be empty;
thus, SNS is 4-connected by the previous case. There are then a few possibilities
to consider: the case where n1 = n2 and/or s1 = s2, and the case where n1 6= n2

and/or s1 6= s2. The second situation is trivial, as SNS will contain cells in the spine
and as such the NS-spine must be 4-connected. In the first situation, let (αj, j) be
the uppermost cell of the south foot. We know that Vn−1 = Vn − vn, which is to
say it is missing exactly the cells of the south foot. As such, it must be the case
that dj > αj in order for Vj < Hdj

to hold, which implies that the NS-spine is
4-connected. A similar proof holds for the case where j = n1 = 1.

Lemma 1.4.3. The NS-spine has at least one black cell in every row of the matrix.

Proof. Recall that a cell is referred to as being black if it is in P , and white oth-
erwise. The north foot contains cells in row 1, and the south foot contains cells in
row m. As the NS-spine is 4-connected, it must be possible to draw a 4-connected
path between row 1 and row m using only the cells in the NS-spine, and such a

11

path would need to pass through every row of the matrix. As such, the NS-spine
must contain at least one black cell in every row of the matrix.

A similar process can be used to prove that the WE-spine is 4-connected and
contains a black cell in every column. As such, the union of SNS ∪ SWE with the
feet results in a polyomino with cells in every row and column.

Next, we will show that all cells in SNS must belong to any valid solution to
the reconstruction problem using the current foot configuration. Before proving
this, a few preliminary lemmas and definitions must be presented. Let NW (i, j) =
{(h, k) : 1 ≤ h ≤ i, 1 ≤ k ≤ j}, NE(i, j) = {(h, k) : 1 ≤ h ≤ i, j ≤ k ≤ n},
SW (i, j) = {(h, k) : i ≤ h ≤ m, 1 ≤ k ≤ j}, and SE(i, j) = {(h, k) : i ≤ h ≤
m, j ≤ k ≤ n}. These are four quadrants of the matrix relative to (i, j).

Lemma 1.4.4. Let (i, j) be a cell in the matrix, and let P be a valid solution.

1. If Vj ≥ Hi−1, then SW (i, j) ∩ P 6= ∅

2. If Hi ≥ Vj−1, then NE(i, j) ∩ P 6= ∅

3. If Hi ≥ A− Vj, then NW (i, j) ∩ P 6= ∅

4. If A− Vj−1 ≥ Hi−1, then SE(i, j) ∩ P 6= ∅

Proof. Assume that SW (i, j) ∩ P = ∅. Let W (g)P be the set of cells belonging
to P in all columns to the left of and including column g (i.e. W (g)P = {(i, j) :
(i, j) ∈ P, j ≤ g}), and let N(i)P be the set of all cells belonging to P in rows
above and including i. If SW (i, j) ∩ P = ∅, then W (j)P must be a subset of
N(i)P . This is because W (j)P − N(i − 1)P ⊆ SW (i, j) and SW (i, j) ∩ P = ∅.
Also, if SW (i, j) ∩ P = ∅, then no path connecting a black cell in NW (i, j) to a
black cell in SE(i, j) can pass through SW (i, j); instead, all such paths must pass
through NE(i, j). As only N(i − 1)P will contain cells (h, k) such that 1 ≤ h ≤ i
and j < k ≤ n, W (j)P must be a proper subset of N(i− 1)P .

Since W (j)P contains exactly Vj black cells and N(i− 1)P contains Hi−1 black
cells, we then know that Vj < Hi−1. As such, if Vj ≥ Hi−1 holds, then SW (i, j)∩P 6=
∅. Similar arguments apply for the other three properties.

Lemma 1.4.5. Let P be a valid solution to the reconstruction problem. Cell (i, j)
is in P if and only if SW (i, j)∩P 6= ∅, NW (i, j)∩P 6= ∅, NE(i, j)∩P 6= ∅, and
SE(i, j) ∩ P 6= ∅, i.e. all four quadrants contain at least one black cell.

Proof. Assume all four quadrants contain at least one black cell, i.e. they have a
non-empty intersection with P . Next, assume (i, j) is white. Then, by h-convexity,
one of the sets {(i′, j) : i′ ≥ i} or {(i′, j) : i′ ≤ i} must be white; assume the former.
Similarly, by v-convexity one of the sets {(i, j′) : j‘ ≥ j} or {(i, j′) : j′ ≥ j} must be
white; again, assume the former is white. Therefore, all cells in L = {(i′, j) : i′ ≥
i} ∪ {(i, j′) : j′ ≥ j} are white. The cells in L correspond exactly to the cells along

12

Wj Ni - 1

Figure 1.4.7: An example demonstrating the relationship between SW (i, j),Wi,
and Ni−1.

(a) (b)

Figure 1.4.8: (a) Two examples of consecutive pairs of feet with non-empty inter-
sections. (b) A violation of vertical convexity as a result of disconnected feet.

the border of NE(i, j). Therefore, there is no path of black cells that could connect
a cell in NE(i, j) to a cell in any other region of the matrix, thereby contradicting
the 4-connectivity requirements.

Next, assume (i, j) ∈ P ; as (i, j) ∈ NE(i, j), NW (i, j), SW (i, j), SE(i, j), all
four quadrants have a non-empty intersection with P . Therefore, we have proven
that (i, j) ∈ P if and only if all four quadrants contain at least one black cell.

Lemma 1.4.6. Let P be a valid solution to the reconstruction problem. Then
SNS ⊆ P .

Proof. Let (i, j) ∈ SNS, and recall that n1 ≤ i ≤ s2. By the definition of SNS, this
implies that Vj ≥ Hi−1 and Hi ≥ Vj−1. Then NW (i, j) ∩ P 6= ∅ and SE(i, j) ∩
P 6= ∅, as they contain the north and south feet, respectively. By Vj ≥ Hi−1,
SW (i, j) ∩ P 6= ∅, and by Hi ≥ Vj−1, NE(i, j) ∩ P 6= ∅ (see Lemma 1.4.4).
Therefore, (i, j) must be in P by Lemma 1.4.5.

Similarly, if considering a cell (i, j) where w1 ≤ i ≤ e2, we knowNE(i, j), SW (i, j)∩
P 6= ∅ from the properties of cells in SWE, NW (i, j) contains the west foot, and
SE(i, j) contains the east foot. As such, if (i, j) ∈ SWE, it must be in P . This
allows us to conclude that if (i, j) ∈ S, (i, j) ∈ P .

Based on all of the material presented in this section, we can conclude that the
NS-spine is 4-connected, contains a cell in every row, and that every cell in it must

13

be black in any solution to the reconstruction problem. The same holds for the
WE-spine with similar arguments.

With regards to the algorithm presented by Barcucci et al., we now consider
how to generate the spine. In order to develop the spine, valid positions for the
feet need to be found, and the algorithm tests each of the O(n2m2) possible foot
configurations to determine whether or not it is valid. The authors say that a foot
position is valid if the two consecutive pairs of feet have a non-empty intersection.
A valid foot position is required in order to allow for hv-convexity; if e.g. the north
foot had an empty intersection with both the west and east feet, then there would
necessarily be a violation of vertical convexity. See Figure 1.4.8 for an example.
Validity of any given foot position can be checked in O(m+ n) time by examining
each row and column associated with each of the feet to determine whether or
not there is an intersection with an adjacent foot. The spine for a given foot
configuration can be generated in O(nm) time: the values Hi and Vj for all i and j
can be precomputed in O(m+ n) time, and each of the n×m cells can be checked
in constant time to see whether it satisfies the properties of SNS or SWE (Definition
on page 9) .

Polyomino expansion

Once a spine is found, Barcucci et al.’s algorithm proceeds to attempt to generate
the solution (P) by constructing three subsets of the remaining cells: a set of cells
definitely belonging to P called the kernel, a set of ambiguous cells called the shell,
and the remaining cells that definitely do not belong to P . At the beginning of
the algorithm’s execution, the kernel K is defined as the union of the NS-spine
and the WE-spine, and the shell S is the entire matrix. In other words, the kernel
is initialized as the set of all cells we know must be in P , while the shell initially
contains all cells in the matrix. Note that, although the shell is defined as containing
ambiguous cells, it also contains the cells of the kernel; as such, it can also be
thought of as the kernel, with the addition of some cells that may or may not be
black in a valid solution.

After the initial values of the shell and the kernel have been found, their algo-
rithm proceeds to attempt to expand the kernel and contract the shell through the
use of filling operations. These operations slowly expand the kernel and remove
cells of the matrix that cannot be in P from the shell, causing it to contract. The
operations themselves take a constant amount of time, which means that every time
the rows and columns of the matrix are processed, it takes O(n + m) time. Since
the paper guarantees that at least one cell will be added to the kernel or removed
from the shell with every pass, at most O(nm) passes can be performed, giving this
portion of the algorithm time complexity O(nm(n+m)). These concepts were orig-
inally used to provide a base for the 2-SAT reconstruction technique that Barcucci
et al. used to develop a solution. Our algorithm makes use of a different 2-SAT
reconstruction technique, and as such does not make use of any of these operations

14

or concepts. As such, we will not review the polyomino expansion operations in
detail.

Reconstruction via SAT

The algorithm then goes on to reconstruct the polyomino by applying a 2-satisfiability
(2-SAT) construction to the expanded spine. When applying 2-SAT to the spine,
Barcucci et al. identify “cycles” of ambiguous cells where if one cell is set to black,
another cell must be set to white, which requires a further cell to be black, and
so on. Our algorithm skips the expansion step entirely, and uses the 2-SAT to
express the basic constraints of the problem—4-connectivity and hv-convexity—
thereby removing the need to expand the spine or search for cycles of ambiguous
cells. As such, the details of the 2-SAT used by Barcucci et al. have been omitted;
an examination of the 2-SAT that we make use of will follow in Section 1.4.3.

Time complexity

Since the filling operations have a worst-case time complexity of O(nm(n + m)),
and can be performed on any or all of the O(n2m2) possible foot configurations,
the algorithm has a total time complexity of O(n3m3(n+m)).

1.4.3 1-colour 2-SAT

The process of expanding the spine and searching for cycles of ambiguous cells that
is used by Barcucci et al. is useful in a single-colour setting, but becomes cum-
bersome when considering a multiple-colour problem. Instead of directly adapting
their algorithm and the idea of expanding the spine, we make use of a different
2-SAT reconstruction technique. This section contains the details for a simplified,
1-colour version of this 2-SAT technique, which will be used in Section 2.5.

2-SAT is known to be solvable in O(|X| + |C|) time. It can be applied to
the 1-colour reconstruction problem by considering each individual cell (i, j) as a
boolean variable, and the colours black and white as xi,j and xi,j. For each row
i, let αi be a column index chosen such that cell (i, αi) belongs to the spine. We
choose cells belonging to the spine because they are known to exist in every row
and column of the matrix, and it has been shown that they must belong to any
solution using the foot configuration that they are generated from in Lemmas 1.4.3
and 1.4.6. To ensure that a solution derived from the 2-SAT instance is 4-connected

15

and hv-convex, we place the following restrictions for each row i:

xi,j,∀j ≤ αi − hi (1.6a)

xi,j,∀j ≥ αi + hi (1.6b)

xi,j ⇐⇒ xi,j+hi
,∀j ∈ {αi − hi + 1, . . . , αi − 1} (1.6c)

xi,j ⇒ xi,j+1, ∀j ∈ {αi − hi + 1, . . . , αi − 2} (1.6d)

xi,j ⇒ xi,j−1,∀j ∈ {αi + 2, . . . , αi + hi − 1} (1.6e)

xi,αi
(1.6f)

Lemma 1.4.7. Clauses 1.6a - 1.6f ensure that row i is h-convex and will contain
exactly hi black cells.

Proof. Let j1 (j2) be the smallest (largest) column index such that xi,j = 1. Then
j1 ≤ αi ≤ j2 by 1.6f, and by 1.6d and 1.6e, xi,j = 1 for all j1 ≤ j ≤ j2, guaranteeing
h-convexity. Each black cell to the left of column αi forces the cell hi columns to
its right to be white (by Clause 1.6c), so the row must contain at most hi black
cells, since it is h-convex. Clause 1.6c simultaneously guarantees that there must
be at least hi black cells in the column, because for every white cell to the right of
αi, the cell hi columns to its left must be black.

We also know that any valid solution to the reconstruction problem must satisfy
the clauses, but as the proof is trivial, it has been omitted. These clauses only
express restrictions for the rows. In order to ensure hv-convexity, we also need to
add similar restrictions for each column j. Let (αj, j) represent an arbitrary cell in
column j of the spine:

xi,j,∀i ≤ αj − vj (1.7a)

xi,j,∀i ≥ αj + vj (1.7b)

xi,j ⇐⇒ xi+vj ,j,∀i ∈ {αj − vj + 1, . . . , αj − 1} (1.7c)

xri,j ⇒ xi+1,j, ∀i ∈ {αj − vj + 1, . . . , αj − 2} (1.7d)

xi,j ⇒ xi−1,j, ∀i ∈ {αj + 2, . . . , αi + hi − 1} (1.7e)

xαj ,j (1.7f)

The purpose of each clause here mirrors that of the corresponding clause in
Equations 1.6a–1.6f, and as such they guarantee that each column j is v-convex
and has exactly vj black cells. Overall 4-connectivity follows trivially, as the rows
and columns being built are extensions of the spine, which is already known to be
hv-convex and 4-connected.

16

1.4.4 Chrobak and Dürr – Reconstructing hv-convex poly-
ominoes directly from 2-SAT

In 1999, Chrobak and Dürr presented an improved algorithm for the reconstruction
of hv-convex polyominoes that has a total time complexity of O(mnmin(m2, n2)),
a significant improvement over the previous algorithm [7].

The algorithm presented by Chrobak and Dürr avoids the process of developing
a spine for the polyomino being reconstructed, and instead moves directly to a 2-
SAT problem instance. Before generating the 2-SAT problem, however, they make
use of an idea that is similar to the feet of the polyomino: the anchor cell. An
hv-convex polyomino P is anchored at rows k and l if the cells (k, 1) and (l, n) are
elements of P ; k and l are referred to as the anchor rows. This is similar to the idea
of the feet of the polyomino in that it looks for cells on the boundary of the matrix,
but only two rows are used: one from what would be the East foot, and one from
the West. So, where Barcucci et al. examined O(m2n2) possible configurations,
Chrobak and Dürr only have to check O(min(m2, n2)) possible positions for the
anchor rows.2

In addition to the anchor rows, the algorithm also defines four areas in the
matrix: the upper left, upper right, lower left, and lower right corner regions, which
are denoted as A,B,C, and D. These regions represent the empty space that may
or may not exist in the corners of the matrix, with A representing the upper-left
corner, B the upper-right, C the lower-left, and D the lower-right. These regions do
not have to exist; for example, a polyomino where Hm = Vn = mn would have no
white cells, and as such would have empty corner regions. If cell (i, j) is an element
of A, then (i − 1, j) ∈ A and (i, j − 1) ∈ A, which implies that NW (i, j) ∈ A, in
the terminology of the Barcucci et al. algorithm. Similar rules apply to the other
three corner regions. The hv-convex polyomino P is defined as being the negation
of the union of all four regions, i.e., P = A ∪B ∪ C ∪D. Also note that A,B,C,
and D are disjoint and satisfy the following properties:

(i− 1, j − 1) ∈ A implies (i, j) 6∈ D (1.8)

(i− 1, j + 1) ∈ B implies (i, j) 6∈ C (1.9)

These require that the boundaries of A and D, as well as B and C, don’t touch;
therefore, P is 4-connected. The reconstruction algorithm then moves immediately

2min(m2, n2) is used because if n < m, the solution can be rotated 90◦, so that the north and
south feet become the east and west feet.

17

into an instance of 2-SAT using the following clauses:

Corners =
∧
i,j

Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j

Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1

Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1

Disjoint =

∧
i,j

{
Xi,j ⇒ Y i,j : for symbols X, Y ∈ {A,B,C,D}, X 6= Y

}
Connected =

∧
i,j

{
Ai,j ⇒ Di+1,j+1 Bi,j ⇒ Ci+1,j−1

}
Anchors = Ak,1 ∧Bk,1 ∧ Ck,1 ∧Dk,1 ∧ Al,n ∧Bl,n ∧ C l,n ∧Dl,n

LBC =
∧
i,j

{
Ai,j ⇒ Ci+vj ,j Ai,j ⇒ Di+vj ,j

Bi,j ⇒ Ci+vj ,j Bi,j ⇒ Di+vj ,j

}
∧
∧
j

{
Cvj ,j, Dvj ,j

}
UBR =

∧
j

{ ∧
i≤min{k,l}Ai,j ⇒ Bi,j+hi

∧
k≤i≤l Ci,j ⇒ Bi,j+hi∧

l≤i≤k Ai,j ⇒ Di,j+hi

∧
max{k,l}≤iCi,j ⇒ Di,j+hi

}

The first clause defines the corner regions, and the second and third ensure that
the corner regions are disjoint and that any solution is connected. This ensures
4-connectivity of the solution because it ensures that the borders of A and D (B
and C) cannot touch; if they did, then a 4-neighbour path along the border of A
would be blocked by cells of D. The corner clause restates the requirement that
(i, j) is an element of A whenever (i + 1, j) ∈ A or (i, j + 1) ∈ A. Disjointness
is guaranteed by explicitly stating that if a cell (i, j) is in one corner region, it
cannot be in any of the other corner regions. The connectivity clause is similarly
straightforward, as it just restates 1.8 and 1.9.

The last three clauses represent the anchor rows, a lower bound on column
sums, and an upper bound on row sums, respectively. The anchors clause requires
that the anchor rows are in P = A ∪B ∪ C ∪D, and it does so through a simple
conjunction of literals. The LBC clause, which gives a lower bound on the column
sums, is written in two parts: the second half of the clause (for each j, Cvj ,j, Dvj ,j)
is a statement ensuring that there are at least vj cells in column j that are not
occupied by the lower corners, and the first half ensures that there are always at
least vj cells beneath the bottom-most cell of A or B in column j and the upper-
most cells of C and D. The final set of clauses is similar, except it exerts an upper
bound on the row sums by guaranteeing that for any cell that could be in T , all
cells more than hi − 1 cells to the right of it cannot be in T .

This is where the anchor rows become important. The set of clauses establishing
an upper bound on the row sums uses the anchor rows to determine the relationship
between the corner regions for each row index. If the current row is above both
anchor rows, then A and B are used, as the fact that both anchor rows are beneath
the current row tells us that we must be dealing exclusively with upper regions. On
the other hand, if k ≤ i ≤ l, then we know that the region on the left could not be

18

A, as the anchor row k—which is in P , and as such not in A,B,C, or D—divides
A from C. Therefore, the corner region on the left must be C.

Once these individual clauses have been converted from full propositional logic
to CNF, the entire system can be described by the formula Fk,l(H,V) = Cor ∧
Dis ∧ Con ∧ Anc ∧ LBC ∧ UBR. The algorithm then tests Fk,l(H,V) using a
2-SAT algorithm and determines whether or not the formula is satisfiable. If it is,
then T = A ∪B ∪ C ∪D is an hv-convex polyomino satisfying the row and column
sums (H and V), and the algorithm can terminate. Otherwise, it moves on to the
next pair of anchor rows and repeats.

Time Complexity

As mentioned previously, there are O(min(m2, n2)) possible pairs of anchor rows
to be worked through. As we already know, a 2-SAT problem instance can be
solved in O(|X| + |C|) time. This algorithm has exactly four variables per cell
(Ai,j, Bi,j, Ci,j, Di,j) and a constant number of clauses per cell, and so the solution
to the 2-SAT can be found in O(nm) time. Hence, the final time complexity for
the algorithm is O(nmmin(m2, n2)).

19

Chapter 2

Multiple-colour Reconstruction

2.1 Problem Overview

For this thesis, instead of dealing with a single hv-convex polyomino, we consider the
reconstruction problem when we know that there are multiple non-overlapping hv-
convex polyominoes within the problem space. This is typically described as the C-
colour reconstruction problem for hv-convex polyominoes, where C is some constant
number. Each colour corresponds to one of the polyominoes to be reconstructed.
A more precise definition follows.

Note that there are two ways in which colour information can be presented:
ordered and unordered. Basically, if colours are unordered, then we are presented
with sets of sums for every row and column, whereas ordered colours present us with
tuples of sums. These tuples provide a total ordering on the colours, in that if colour
a occurs before colour b in a row tuple, all cells of colour a must be to the left of
cells with colour b in the reconstruction. Unless explicitly stated otherwise, we are
considering the unordered version of the reconstruction problem. Also, note that
we are not putting any restrictions on the shape (e.g., 4-connectivity, convexity) of
the union of the C colours. We now define this problem formally.

Problem: Multiple-Colour Reconstruction of hv-convex Poly-
ominoes from Orthogonal Projections

Given: A finite set of colours {1, . . . , C}, row sum vectors {H1, . . . , Hc}
where H i = (hi1, . . . , h

i
m), and column sum vectors {V 1, . . . , V c} where

V i = (vi1, . . . , v
i
n).

Goal: Construct C hv-convex, non-overlapping, coloured polyominoes
that satisfy the row and column sums for their respective colours, i.e
row i has exactly hci cells of colour c, and column j has exactly vcj cells
of colour c.

20

3 5 7 7 6 3

3

4

5

5

4

3

4

2

1

0 0 0 0

0

0 0 0 0 2 6 9 9 7 3

2

4

3

4

4

4

4

4

4

3

3 5 7 7 0 0
2

3

3

4

3

2

2

2

1

0 0 0 0

0

0 0 0 0 2 6 9 9 7 3

2

4

3

4

4

4

4

4

4

3

Figure 2.1.1: Example solutions to the 2-colour reconstruction problem on hv-
convex polyominoes. The upper/leftmost set of numbers corresponds to the poly-
omino whose cells are filled in with dashes, and the other numbers correspond to
the polyomino shaded using cross- hatching

Two polyominoes, P r and P b, are non-overlapping if for every cell (i, j) ∈ P r,
(i, j) 6∈ P b and vice versa. An example of a solution to a 2-colour reconstruction
problem is shown in Figure 2.1.1.

2.2 Algorithm

To solve this version of the reconstruction problem, we make use of a reconstruction
algorithm that has three phases. First, we generate a foot configuration for each of
the C polyominoes that are to be reconstructed. Next, this set of foot configurations
is used to create the spine for each polyomino. Finally, a 2-SAT formula based on
the one presented in Section 1.4.3 is used to find a colour assignment for the cells
that satisfies the row and column sums, if such an assignment exists. If a valid
assignment exists, that assignment is returned as a solution; if not, a new foot
configuration is generated and the process repeats. This continues until a valid
solution is found or until all possible foot positions are exhausted.

2.2.1 Generating foot configurations and spines

When considering the multiple-colour reconstruction problem, each colour will only
have row (column) sums for some of the rows (columns) of the matrix; other rows
will simply be listed as containing 0 cells of that colour. Since there is nothing to
reconstruct in these rows and columns, we can ignore them.

As mentioned in Section 1.4.2, a single polyomino can have as many as O(n2m2)
possible foot configurations. Since we are constructing C polyominoes, there will be
a total of O(n2Cm2C) possible foot configurations in total. The details of generating
the foot configurations and spines are otherwise identical to those presented earlier.
From here, we move to the 2-SAT portion of the algorithm.

21

3 5 7 7 6 3 0 0 0 0
0 0 0 0 2 6 9 9 7 3

3

4

5

5

4

3

4

2

1

0

2

4

3

4

4

4

4

4

4

3

Figure 2.2.2: Diagram illustrating the idea of a polyomino’s matrix. The section
of the matrix associated with the darker polyomino (shaded using cross-hatching)
has been circled. The uppermost/leftmost sets of numbers provide row/column
information for the gray polyomino, which is shaded using dashes.

2.2.2 C-colour 2-SAT

For the C-colour 2-SAT representation, each cell (i, j) will be represented by C
variables: xci,j ∈ {0, 1} for each colour c. The clauses being used are the same
as those presented in Section 1.4.3, but as we have C different polyominoes to
reconstruct, we will need to have C copies of the clauses, one for each colour. By
Lemma 1.4.7, we know that if these clauses are satisfied, the resulting solutions will
be 4-connected and hv-convex. In order to fulfill the final requirement, which states
that the various polyominoes must not overlap, we need to introduce one more set
of clauses. For all r and b in the set of colours such that r 6= b, and all cells (i, j),
we have a clause of the form:

(xri,j ∧ xbi,j).

In a C-colour problem, each of the m × n cells will require C(C−1)
2

clauses,
leading to a total of O(C2nm) clauses needed for the 2-SAT. As there are exactly
C variables per cell, one for each colour, the 2-SAT will involve O(Cnm) variables,
and will take O(Cnm+ C2nm), or O(C2nm) time to solve.

2.2.3 Time Complexity

Theorem 2.2.1. The C-colour reconstruction problem for hv-convex polyominoes
from orthogonal projections can be solved in O(C2n2C+1m2C+1) time.

22

Proof. As mentioned previously, there are a total for O(n2Cm2C) possible foot con-
figurations. For each configuration, we must generate a spine and solve the rele-
vant 2-SAT problem; these steps take O(Cnm) and O(C2nm) time respectively.
Any solution of the 2-SAT can then be converted into a colour assignment in
O(Cnm) time, giving a final time complexity of O(n2Cm2C(Cnm + C2nm)), or
O(C2n2C+1m2C+1).

2.3 Alternate Approach

2.3.1 Preliminaries

The previous algorithm is based on the algorithm presented by Barcucci et al. [15] as
opposed to the much faster algorithm proposed by Chrobak and Dürr [7] because the
algorithm by Barcucci et al. is better suited to a multiple-colour problem. Chrobak
and Dürr’s approach never explicitly mentions the black cells of the polyomino
that is being reconstructed; instead, it reconstructs the polyomino by computing
the empty space around it. This would prevent us from ever explicitly stating that
the various polyominoes must be disjoint, or that if a cell belongs to P r it must
be in a corner region of P b. This could cause severe difficulties when considering
tightly-packed polyominoes: for example, if there were two valid configurations for a
2-colour reconstruction problem given the current foot configuration, one polyomino
might be reconstructed in a manner that is incompatible with the other polyomino’s
position.

To avoid this problem, we present an alternate approach to the C-colour recon-
struction problem that combines the idea of using “empty” space with the spine
and portions of the previous C-colour reconstruction algorithm. It still refers to the
coloured cells directly, allowing us to express our non-overlapping property, but by
placing restrictions on the space not belonging to a given polyomino, it allows us
to relax the requirements for the spines we generate. Note that all of the material
here is written as though we were dealing with a single colour; this is done for the
sake of readability. The clauses are the same for multiple colours, simply replacing
the relevant variables with the versions that use the multiple-colour notation, e.g.
replacing xi,j with xci,j.

This algorithm will have a final time complexity of O(C2nmmin(n2C ,m2C)).
Note that in the single-colour case, this simplifies to O(nmmin(n2,m2)), which is
exactly that of Chrobak and Dürr’s single-colour reconstruction algorithm [7].

2.3.2 Spine Generation

Instead of dealing with a full spine, as in the algorithm that has just been presented,
this approach deals with the WE-spine, which consists of the union of SWE and
the west and east feet, as per the definition in Section 1.4.2. Instead of developing

23

a foot configuration where the positions of all four feet are fixed, we now only need
to fix the positions of the west and east feet. We then find SWE, which consists of
the cells that satisfy Equation 1.2, which is shown on page 9.

Lemma 1.4.2 proved that the NS-spine was 4-connected and contained a cell in
every row; later, we noted that a similar proof could be used to show that the WE-
spine was also 4-connected and contained a cell in every column. These are exactly
the properties that we require for the reconstruction process, so spine generation is
finished once SWE has been determined.

Note that either SWE or SNS could be used for this algorithm, as it doesn’t really
matter whether we have at least one cell in all of the columns or all of the rows. The
one important difference is that the number of foot positions for the north and south
feet is O(n2), while the number of positions for the west and east feet is O(m2).
We use either the NS- or WE-spine, depending on whether n or m is smaller,
giving us a total of O(min(n2,m2)) foot configurations, or O(min(n2C ,m2C)) total
foot configurations in the C-colour case. We assume without loss of generality that
m < n when explaining the algorithm, and as such we will use SWE in the coming
examples.

2.3.3 Reconstruction

As we have already shown that the WE-spine has at least one cell in every column
of the polyomino, we can apply the 2-SAT clauses from the first algorithm to the
columns. We can do this because the clauses from the first algorithm require a cell
in every column j that is known to be in P to act as the αj index for that column.
As such, for every 1 ≤ j ≤ n, we add the following clauses:

xi,j,∀i ≤ αj − vj (2.1a)

xi,j,∀i ≥ αj + vj (2.1b)

xi,j ⇐⇒ xi+vj ,j,∀i ∈ {αj − vj + 1, . . . , αj − 1} (2.1c)

xi,j ⇒ xi+1,j, ∀i ∈ {αj − vj + 1, . . . , αj − 2} (2.1d)

xi,j ⇒ xi−1,j, ∀i ∈ {αj + 2, . . . , αi + hi − 1} (2.1e)

xαj ,j (2.1f)

Because SWE is not guaranteed to have at least one cell in every row, however,
the rows cannot be reconstructed using the same clauses. Instead, we borrow
the idea of restricting coloured cells by defining the surrounding white space from
Chrobak and Dürr [7]. Their paper, previously covered in Section 1.4.4, revolves
around the idea of a corner region: an area of white cells surrounding cells belonging
to the solution. We use a similar idea: for each colour and cell, we define a variable
Ri,j that is true if (i, j) is to the right of all black cells in row i; in the multiple-
colour case, then, Rc

i,j means that cell (i, j) is to the right of all cells of colour c.
We add the following clauses to the 2-SAT to define this region:

24

Ri,j ⇒ Ri,j+1,∀i, ∀j (2.2a)

Ri,j ⇒ xi,j,∀i,∀j (2.2b)

xi,j ⇒ Ri,j+hi
,∀i,∀j (2.2c)

Clause 2.2a ensures that if a cell (i, j) is to the right of all black cells in row
i (i.e. Ri,j holds), Ri,k must hold for k > j as well. Clause 2.2b requires that if
Ri,j, cell (i, j) cannot be black in the solution, enforcing the region’s definition as
an area of non-black cells. Clause 2.2c ensures that there can be no more than hi
black cells in row i. Combining these clauses with the previous 2-SAT clauses, we
can prove the following lemmas:

Lemma 2.3.1. A reconstruction satisfying both 2.1 and 2.2 guarantees that the
sum of black cells in each row i is equal to the row sum hi.

Proof. We prove this via contradiction. Lemma 1.4.7 shows us that all column
sums must be satisfied by the column reconstruction. This gives us an exact bound
on the number of black cells in the reconstruction, in that it equals Vn =

∑n
j=1 vj,

and therefore Hm =
∑m

i=1 hi as well.

Clause 2.2c provides an upper bound for the rows, as it guarantees that no more
than hi black cells can be to the right of any given black cell. This, in combination
with the exact bounds on the column cells, provides us with our guarantee that
the number of black cells in the rows is exactly equal to hi, in the same manner
as Chrobak and Dürr’s reconstruction approach [7]. The column bounds guarantee
that there will be exactly Hm black cells, and Clause 2.2c requires that there will
be no more than hi black cells in any row i. If there were fewer than hi black cells
in the row, there would have to be fewer than Hm black cells in total, or some other
row would have more black cells than possible, both of which are contradictions.

Lemma 2.3.2. A reconstruction satisfying both 2.1 and 2.2 must be hv-convex and
4-connected.

Proof. By Lemma 1.4.7, we know that the columns are v-convex. Next, consider
the rows. By Lemma 2.3.1, we know that there are exactly hi black cells in any
row. If (i, j) is black, then by Clause 2.2c, cell (i, j+h1), must be in R (i.e., Ri,j+hi

is true) and must be white, so there is no room for any white cells in-between the
black cells in the row. As such, the rows must be h-convex, in which case the
solution must be hv-convex.

Lemma 1.4.2 can be used to show that the WE-spine is 4-connected. Since the
columns are v-convex extensions of the spine, in that they use a key cell from the
spine and build outwards, the union of the 2-SAT-generated columns and the spine
is still 4-connected. Similarly, as the rows are h-convex and the clauses used to
build them just impose convexity requirements on the column cells, the union of
the row cells generated by the 2-SAT and the spine are 4-connected as well. As
such, 4-connectivity in the final reconstruction must be maintained.

25

As before, this single-colour algorithm can be generalized to a multiple-colour
approach by adding the relevant notation, i.e. Ri,j becomes Rc

i,j for each colour
c, xi,j becomes xci,j, and so forth. Note that since we are dealing with a problem
involving multiple colours, Rc

i,j only implies that a cell is not of colour c; it might
be white or any other colour in the reconstruction. We will also need to include
the O(C2nm) non-overlapping clauses (e.g., xc1i,j ∧ xc2i,j).

2.3.4 Time Complexity

Theorem 2.3.3. The multiple-colour discrete reconstruction problem for hv-convex
polyominoes from orthogonal projections can be solved in O(C2 min(n,m)2Cnm)
time.

Proof. As previously mentioned, we assume that m < n and as such use the WE-
spine, thereby ignoring the north and south feet. By removing the north and south
feet from the spine generation process, we remove O(n2) possible foot configurations
from consideration, lowering the time complexity for that step from O(n2Cm2C) to
O(m2C). By adding the new variable Ri,j for each colour being considered, we add
O(Cnm) new variables and O(Cnm) new clauses to the 2-SAT. These changes do
not affect the final runtime of O(C2nm) for the 2-SAT, and so the final run time is
O(C2 min(n,m)2Cnm).

Note that the techniques used in this algorithm remove a factor of n2C from
the reconstruction process, which is a significant decrease in time complexity from
the first algorithm developed in this thesis. As previously mentioned, in the single-
colour case, the run-time simplifies to O(nmmin(n2,m2)), which is exactly that of
Chrobak and Dürr’s single-colour reconstruction algorithm [7].

2.4 Reconstruction for Ordered Colours

Up until now, we have been considering the unordered c-colour reconstruction prob-
lem. We now show that using a modified version of the alternate reconstruction
approach, we can also develop a solution to the ordered c-colour reconstruction
problem. The key idea behind this approach is that the R region defined in the
previous section gives us an easy way to determine if a cell is to the right of all cells
of a given colour.

As a result of Clause 2.2a’s restriction that if Ri,j holds, Ri,k must hold for
k ≥ j + 1, we can easily develop clauses to ensure that a strict colour order is
maintained. For example, consider the following colour ordering for row i in a k-
colour reconstruction problem: (c1, c2, . . . , ck). In this case, colour order could be
enforced via the following clause:

xcli,j ⇒ R
cl−1

i,j for 2 ≤ l ≤ k (2.3)

26

These clauses guarantee that all cells of colour cl will be to the right of all cells
of colour cl−1, for 2 ≤ l ≤ k, and by transitivity they will be to the right of all
cells of colour cj as well, for all 1 ≤ j < l − 1. Note that the Ri,j clauses only offer
a horizontal colour ordering; in order to ensure that our solutions will satisfy an
overall colour ordering, we need to apply a similar set of clauses to the columns
of the reconstruction using a new region. We introduce the variable Bi,j to denote
that cell (i, j) is beneath all cells of colour c in column j. The clauses used to define
Bi,j are as follows:

Bi,j ⇒ Bi+1,j,∀i, j (2.4a)

Bi,j ⇒ xi,j,∀i,∀j (2.4b)

xi,j ⇒ Bi+vj ,j, ∀i, ∀j (2.4c)

As Ri,j and Bi,j are simply another way of defining cells that are not of colour
c, Bi,j will not affect v-convexity or vj requirements which have already been es-
tablished by the previous column clauses (Clauses 2.1a to 2.1f).

2.4.1 Time Complexity

By imposing a strict colour order on the solution to the reconstruction problem,
we actually decrease time complexity significantly. This is because a strict colour
ordering gives us non-overlapping polyominoes “for free”.

Lemma 2.4.1. If a solution to the reconstruction problem satisfies a total colour
order, each cell will have been assigned at most one colour.

Proof. Assume some cell is assigned colour c in addition to some other colour d. If
d is earlier in the total order, then the ordering has been violated, as all cells of
colour c are not to the right of all cells of colour d. A similar order violation occurs
if d is later in the total order, as all cells of colour d are not to the right of all cells
of colour c.

Theorem 2.4.2. The ordered, multiple-colour reconstruction problem for hv-convex
polyominoes from orthogonal projections can be solved in O(C min(n,m)2Cnm) time.

Proof. All aspects of the algorithm other than the 2-SAT remain unchanged from
what is described in Theorem 2.3.3. Lemma 2.4.1 allows us to eliminate allO(C2nm)
non-overlapping clauses from the 2-SAT problem. This decreases the 2-SAT time
complexity to O(Cnm) from O(C2nm), thereby resulting in an overall time com-
plexity of O(C min(n,m)2Cnm).

Note that it is possible to use the techniques presented above to solve an ordered
colour reconstruction problem where we are only given a partial order on the set of
colours. In this case, Clause 2.3 would only be applied to colours involved in the

27

given order. However, since order requirements would no longer exist for the other
colours, we would need to continue using the non-overlapping clause (xc1i,j ∨xc2i,j) for
all such colours. This would result in a return to the previous time complexity of
O(C2 min{n,m}2Cnm).

2.5 Final Notes

Throughout this section, specifics have not been mentioned regarding a 2-SAT
solver as the actual process of solving the 2-SAT can be regarded as a black box
solving process. However, the choice of 2-SAT solver does impact the final algorithm
in that it determines whether the final algorithm returns a single solution to the
reconstruction problem or all possible solutions to the reconstruction problem. Up
until the 2-SAT is encountered, the algorithm is largely generic; the spine that is
constructed for a given foot configuration is the same for all possible reconstructions
based on that foot position. As such, if the goal were to generate all possible hv-
convex reconstructions of a given set of data, it could easily be accomplished by
iterating through all possible foot configurations and using a 2-SAT solver that
returns all possible solutions to a 2-SAT instance, such as the algorithm by Feder
[11]. This could pose a problem with respect to time complexity, however, because it
was shown that in the worst case, there can be an exponential number of hv-convex
polyominoes that satisfy the same row and column sums [18].

28

Chapter 3

NP-Completeness Results

For the second part of the thesis, we will be providing NP-completeness results
for the hv-convex reconstruction problem for k colours, where k is unbounded.
The proof will involve a reduction from 3-SAT, which was defined in Section 1.4.3,
using the standard “gadget” template. The proof given is for the NP-completeness
of the unordered colour version of the problem; the ordered version will be discussed
briefly in Section 4.2.

3.1 Overview

x1

x2

x|X|

.

.

.

...

...

...

...

x3 ...

c1 = x1 ∨ x2 ∨ x3 c|C| = x1 ∨ x2 ∨ x|X|

Figure 3.1.1: The basic layout of a reduction from 3-SAT to the reconstruction
problem. Circles represent variable gadgets, diamonds are splitter gadgets, crosses
are crosser gadgets, and rectangles are clause gadgets. Transmitter gadgets are not
shown for the sake of simplicity.

In our reduction, we make use of the idea of gadgets : representations of 3-SAT
variables and clauses that can communicate boolean values while still adhering to

29

the restrictions of the reconstruction problem. In order to handle the reduction, we
will need to make use of five different types of gadgets: boolean variable gadgets,
splitters, crossers, transmitters, and clause gadgets. These will ultimately be laid
out in a manner similar to that shown in Figure 3.1.1, with each gadget using
different colours.

The clause gadgets are laid out at the bottom of the matrix, while the boolean
variables are aligned against the left border of the matrix. Boolean values are
then transmitted horizontally across the matrix by transmitter gadgets, with values
being sent downwards to clause gadgets at the appropriate horizontal position with
the aid of a splitter gadget. When a vertical boolean-value transmission crosses a
horizontal boolean-value transmission, the crosser gadget is used to transmit values
without modifying them.

3.2 Gadgets

The simplest component of the reduction is the boolean variable gadget ; this is what
represents each boolean variable xi ∈ X, and acts as the source of the value for
that variable. Its row and column sum values are: H = (3, 1, 3), V = (1, 1, 3, 1, 1).
Due to the hv-convexity and 4-connectivity restrictions, this input has two possible
reconstructions, which are shown in Figure 3.2.2. These configurations represent
the literals xi and xi. If the upper-left corner of the polyomino’s matrix is empty,
then the variable represents xi; similarly, if it is occupied, it represents xi.

Figure 3.2.2: Two representations of a boolean variable in the form of an hv-convex
polyomino. The left polyomino represents xi, while the right one represents xi.

The second gadget is the transmitter gadget, which transmits the boolean values
of our variable gadgets horizontally across the matrix. It has the following row and
column sums: H = {1, 1, 1, 1, 3, 1, 1, 1, 1}, V = {5, 1, 5}. It is essentially a boolean
variable gadget with longer top and bottom rows, and as such has the same two
possible configurations as the variable gadget.

A transmitter gadget is shown in Figure 3.2.3, where it is being used to trans-
mit a boolean value. Note that it is not possible to switch the transmitter to its
“false” configuration, as that would introduce an overlap between it and the vari-
able gadget; the transmitter must mirror the variable’s truth value in any valid
reconstruction. This basic idea is used whenever we need to transmit truth values
between adjacent gadgets.

30

Figure 3.2.3: A transmitter gadget being used to project a boolean assignment. A
variable gadget is on the left, while the transmitter is the striped polyomino on the
right.

Figure 3.2.4: A splitter gadget being used to split a truth-value assignment, trans-
mitting it both horizontally and vertically. The left figure depicts a splitter gadget
in the “true” position, while the right figure shows the “false” position.

Next is the splitter gadget, which is composed of multiple variable gadgets. The
true and false versions of the gadget can be seen in Figure 3.2.4. Note that the
vertical component is a variable gadget that has been rotated 90◦ clockwise, and
the true and false positions follow from this: if the upper-left corner is occupied, it
is in the true position. The row and column sums for each component should be
obvious, and have been omitted. We can also derive the following lemma:

Lemma 3.2.1. All components of the splitter gadget must have the same boolean
value.

Proof. Each of the shapes that compose the splitter gadget have only two possible
configurations, as they are variable gadgets. There are no conflicts when all com-
ponents are set to the same boolean value, as can be seen in Figure 3.2.4. The
two horizontal variable gadgets must have the same value, otherwise they would
overlap. As the vertical gadget is similarly constrained to two possible reconstruc-
tions, each of the two possible configurations for the horizontal gadgets leaves only
one possible configuration for the vertical gadget. We have defined the positions
of the vertical gadget so that the value for each configuration mirrors the value
transmitted by the horizontal gadgets.

The crosser gadget is used to transmit values horizontally and vertically with-
out allowing them to interfere, and so the horizontal and vertical parts of the
gadget are able to switch between true and false configurations without conflicting

31

Figure 3.2.5: Examples of conflicts caused by changing the configuration of the
vertical component in the splitter gadget.

with the other set. Its row and column sums are H = {1, 1, 7, 5, 7, 5, 1, 1}, V =
{1, 1, 4, 6, 4, 6, 4, 1, 1}.
Lemma 3.2.2. The crosser gadget’s row and column sums permit exactly four valid
hv-convex reconstructions.

Proof. First, exactly one row (column) needs to extend to the border in each of
the four cardinal directions in order to satisfy the row (column) sums of 1 – if two
rows were extended in the same direction, the row sum would be exceeded, and
if no rows were extended, the sums would not be satisfied. Additionally, only the
rows (columns) with sums of 7 (6) can extend to the border of the bounding box;
otherwise, at least two rows or columns would be one cell short of their respective
sums. This covers all ways of modifying the reconstruction while satisfying hv-
convexity.

The clause gadget is used to represent 3-SAT clauses. Each clause gadget has
three inputs, and restricts the boolean value of one of these inputs to either true
or false in any given configuration in a similar manner as the other gadgets. The
values that each clause gadget restricts are exactly those that would not cause
the 3-SAT clause it represents to evaluate as true. For example, the clause gad-
get associated with the 3-SAT clause (xi ∨ xj ∨ xk) would have three inputs, one
each from xi, xj, and xk, and would be able to restrict xi to be true, xj to be
false, or xk to be true. The row and columns sums for the clause gadget corre-
sponding to the 3-SAT clause (x1 ∨ x2 ∨ x3) are H = {1, 1, 14, 14, 14, 14, 14, 1, 1}
and V = {4, 5, 5, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 3}. Each clause gadget has four possible
configurations, which are shown in Figure 3.2.7. Two of these configurations are
functionally equivalent insofar as they both restrict the same variable, and as such
one of them can be safely ignored.

Lemma 3.2.3. The clause gadget has exactly four possible configurations.

Proof. All columns j such that vj = 5 are fixed in place for any possible solution
to the reconstruction problem. This is because rows 3 through 7 have row sums of
14, and the gadget has 16 columns. The 13 cells from column 2 to 15 must then

32

x1x1

x2

x1x1

x2

x2

x2

x1x1

x1x1

x2

x2

x2

x2

Figure 3.2.6: The four possible configurations of the crosser gadget. Arrows indicate
which boolean-values are associated with each row/column; filled-in rows/columns
are blocked by the gadget, as no other gadget could occupy those cells without
causing an overlap.

x1x1 x2x2 x3x3 x1x1 x2x2 x3x3

Figure 3.2.7: Four configurations of the clause gadget representing (x1 ∨ x2 ∨ x3).
The upper left restricts the first variable in the clause to true by blocking a false
input, the upper-right restricts the second variable, the bottom-right restricts the
third variable, and the bottom-right restricts the second variable.

33

be black in each of these rows, completely satisfying the column sum requirements
when vj = 5.

With these columns removed from consideration, we only need examine the
columns with lengths 3, 4, and 7: the rightmost, leftmost, and (approximately)
middle columns. As the matrix containing a clause gadget has only 9 rows, there
are exactly two possible positions for the middle column that satisfy its column
sum: these positions span either rows 1 to 7, or rows 3 to 9. The position spanning
2 to 8 does not work, as it requires that the cell satisfying the uppermost row sum
(hi = 1) be in a different column, which would result in a violation of v-convexity.
This leaves only the side columns. Due to row sum requirements, these columns
cannot occupy any of the same rows, as this would result in rows with more than 14
black cells. Row sum requirements also ensure that they must occupy neighbouring
rows; if the left column spanned rows 1-4 and the right spanned 6-8, row 5 would
have 13 black cells, violating row sum requirements. With this in mind, the union
of the two can be considered as roughly analogous to the middle column, placing
similar restrictions on its possible positions.

This would indicate two possible configurations of the clause gadget. However,
as either the rightmost or leftmost column can be extended into the rows where
hi = 1, there are two possible configurations when the union of these two columns
is pointing up, and two when it is pointing down, resulting in four possible config-
urations.

There are eight different clause gadgets, one for each of the other possible forms
a 3-SAT clause can take, e.g., (x1∨x2∨x3). The one shown in Figure 3.2.7 represents
a clause of the form (xi ∨ xj ∨ xk), and the remaining clause gadgets are shown in
Figure 3.2.8.

3.3 Layout

We now explain how all gadgets are put together; a full example is given in Figure
3.3.9 on page 38. Row and column positions for each individual gadget are de-
pendent on both the index of the variable they represent and the position of that
variable within the clause it is being inserted into. There are |C| clauses and each
clause has three indices associated with it that correspond to the three literals in
the clause. As such, literal positions range from 1 . . . 3|C| with 1 representing the
first literal in the first clause and 3|C| the third literal in the |C|th clause. Gadget
positions will be described in terms the rows and columns that the gadgets occupy;
Table 3.1 lists these positions for each gadget. Positions are described in terms of i
and j, where i is the current variable’s index (i.e., the i in xi) and j is the current
literal’s position; e.g., the third literal in the fifth clause would be in the 15th posi-
tion. Note that the rows and columns range from 1 . . .m and 1 . . . n respectively,
so (1, 1) is considered the upper-left cell.

34

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

(x1 ∨ x2 ∨ x3) (x1 ∨ x2 ∨ x3)

1
1
14
14
14
14
14
1
1

1
1
14
14
14
14
14
1
1

1
1
14
14
14
14
14
1
1

1
1
14
14
14
14
14
1
1

1
1
16
16
16
16
16
1
1

1
1
16
16
16
16
16
1
1

1
1
12
12
12
12
12
1
1

1
1
12
12
12
12
12
1
1

4 5 7 355555 555555 4 5 5 355555 555575

4 5 7 355555 555555 55 5 7 35554 555555

5 5 35554 555575 5 7 35554 555555 55

4 5 5 355555 555575 55 5 7 35554 555555 55

Figure 3.2.8: All variations of the clause gadget, with the corresponding clause types
listed below each gadget. Solid gray cells represent cells from other splitter/crosser
gadgets transmitting boolean values

35

We list only one of the clause gadgets in Table 3.1; all other clause gadgets are
variations on this, with the gadget’s left border moved to 21j−12 if the first literal
is negated, and the right border moved to 21j + 2 if the third literal is negated.

Gadget Rows Columns
Variable 6i− 5 to 6i− 3 1 to 5

Transmitter 6i− 5 to 6i− 3 7j − 3 to 7j + 5
Splitter 6i− 5 to 6i− 1 7j − 3 to 7j + 5
Crosser 6(i− 1)− 1 to 6i− 1 7j − 3 to 7j + 5

Clause (x1 ∨ x2 ∨ x3) 6|X| − 2 to 6|X|+ 6 21t− 14 to 21t

Table 3.1: Row and column information for the position of each gadget within the
layout, where i is the index of the boolean variable associated with the gadget, and
j is the position of the literal being considered. The index t indicates the clause
being considered, and ranges from 1 to |C|.

The area of the matrix associated with variable xi and the jth literal’s position is
used by either a transmitter gadget, a crosser gadget, or a splitter gadget as follows.
If the literal at the jth position is either xi or xi, the gadget must be a splitter, as
the variable’s truth value needs to be transmitted down to the clause gadget. If
the jth literal is xh or xh for h < i, then a crosser gadget is used. Otherwise, a
transmitter gadget is used.

From this layout, we can derive an upper bound of on the number of colours
needed. Each row can have at most 3|C| gadgets, plus the truth variable gadget.
Furthermore, there are |C| clause gadgets, giving us a total of |X|(3|C|+ 1) + |C|
gadgets. However, 3|C| of these gadgets are splitter gadgets, which use three colours
instead of just one. This means we will need 6|C| colours in addition to the previous
total, giving us a final total of |X|(3|C|+ 1) + 7|C| ∈ O(|X||C|) colours.

3.4 NP-Completeness Proof

Theorem 3.4.1. The multiple-colour discrete reconstruction problem for hv-convex
polyominoes from orthogonal projections is NP-complete if the number of colours is
part of the input.

Proof. We first show that a solution can be verified in polynomial time. Given a
reconstruction, we need to verify three properties: that the row and column sums
are satisfied, that each polyomino is hv-convex, and that each polyomino is 4-
connected. Row and column sums can be verified trivially by summing up the cells
in each row/column. Convexity can be determined by a simple scan through each
row/column to ensure that for each colour c, if a non-c cell is found after a cell of
colour c has already been observed, no other c cells occur later in the row/column.
Finally, 4-connectivity can be verified in polynomial time by constructing a graph

36

for each colour c where the nodes are cells of colour c and edges are drawn between
cells that are 4-neighbours of each other. Connectivity can then be checked in the
usual manner for a graph.

We now show that the problem is NP-hard via reduction from 3-SAT. Given an
instance of 3-SAT, develop an instance to the reconstruction problem as described
in the previous section. Given a truth-value assignment satisfying the 3-SAT for-
mula, select one literal from each clause that evaluates as true. Next, assume all
clause gadgets within the matrix are realized in the configurations that restrict their
respective literal’s value. For example, if some clause c1 = (x1 ∨ x2 ∨ x3) evaluates
as true because x3 is false in the 3-SAT assignment, that clause’s gadget would be
reconstructed such that it accepts a true input as the third literal, but disallows a
false input.

If this is done, then a valid reconstruction can be found in polynomial time by
setting each variable gadget to the value associated with it in the 3-SAT assign-
ment. If each of the gadgets in the layout described above are set to configurations
corresponding with the truth values of the relevant variables, then each gadget will
not overlap with any of its neighbouring gadgets. Additionally, since we have al-
ready set the clause gadget to allow values associated with key literals, we know
that there will be no conflicts between the clause gadgets and any adjacent gadgets.
As we already know exactly which objects need to be constructed and where they
will be located, reconstruction in polynomial time is trivial.

Given a valid reconstruction, consider a clause of the form cj = (x1 ∨ x2 ∨ x3).
From Lemma 3.2.3 and Figure 3.2.7, we know that the first two rows of cj’s clause
gadget have row sum 1, and these cells will be located in one of three columns, which
have lengths 4, 7, and 3. The clause gadget is arranged such that these columns
are exactly those corresponding to the boolean values x1, x2, and x1 respectively.
As such, the literals x1, x1, x1 cannot all be true simultaneously, so clause cj must
be satisfied. From the layout and Lemmas 3.2.1 and 3.2.2, all variable gadgets,
transmitter gadgets, splitter gadgets, and crosser gadgets involving variable xi must
communicate the same boolean value as xi, so we can trace back from the clause
gadget inputs to each variable’s gadget in order to find a solution to the 3-SAT.

As discussed earlier, the number of gadgets, colours, rows, and columns is poly-
nomial in the number of variables and clauses, which proves NP-hardness. Since
there is also a polynomial-time verifier, the problem is therefore NP-complete.

37

x
1 ∨

x
3 ∨

x
2

x
1 ∨

x
2 ∨

x
3

x
1 ∨

x
2 ∨

x
3

Figure 3.3.9: A simple example of the layout for the NP-completeness proof with
three boolean variables and three clauses. Note that some shades are re-used
throughout the layout; this is for the sake of readability. Each gadget should be
thought of as having its own, unique colour.

38

Chapter 4

Conclusion

4.1 Results

In this thesis, two main algorithms were presented: an O(C2n2C+1m2C+1) time hv-
convex unordered C-colour reconstruction algorithm based on the results presented
by Barcucci et al. [3], and an O(C2 min(n2C ,m2C)nm) time algorithm incorporating
aspects of the algorithm by Chrobak and Dürr [7]. Additionally, a method for
adapting the latter algorithm to the ordered version of the reconstruction problem
was presented. Finally, an NP-completeness proof was presented for the multiple-
colour hv-convex reconstruction problem if the number of colours is not a constant.

4.2 Open Problems

We will conclude by discussing a few open problems. One possible avenue for
exploration is to examine cases where the polyominoes are further restricted to be
certain types of hv-convex polyominoes, such as L-convex or Z-convex polyominoes,
which are discussed by Castiglione et al [5] and Duchi et al. [10] respectively. All of
these cases can be considered as either ordered or unordered colour reconstruction
problems. We could also think about applying other notions of connectivity—
such as 8-connectivity, which is discussed by Balázs et al. [2]—to the polyominoes
being reconstructed. Our notions of connectivity could also be modified: we could
examine problems where each colour is guaranteed to form a constant number (e.g.,
two) of hv-convex polyominoes which are not connected to each other. All of these
problems remain open.

The most fascinating open problem that remains for us is to generalize the NP -
completeness proof to the ordered colour version of the reconstruction problem.
This would require gadgets that have multiple configurations, each representing
a different boolean value being transmitted, that all maintain the same colour
ordering. We have already been able to convert the transmitter gadget into a new

39

Figure 4.2.1: A version of the transmitter gadget designed specifically for the or-
dered k-colour reconstruction problem. Both versions obey the same total colour
ordering, but transmit different truth values.

representation that respects these requirements, but the remaining gadgets appear
to be more difficult to convert.

The transmitter gadget that we have developed works differently than those
previously presented; instead of using the non-overlapping property to restrict the
number of configurations, the colour ordering is used. Figure 4.2.1 shows the new,
ordered gadget. Note that any of its components can be switched without overlap-
ping with one of the others, but doing so violates the colour ordering. This idea also
is used to transmit values between gadgets. Instead of placing gadgets within the
matrix such that inconsistent boolean values would cause overlaps, they would be
positioned such that an inconsistent pair of configurations would result in a colour
ordering violation.

The splitter, crosser and clause gadgets would have to be reworked, and are a
non-trivial problem. In particular, the clause gadget is difficult to rework into a
format that respects colour ordering; it is easy to arrange it such that the colour
ordering is respected for two of the three boolean inputs, but the third is difficult
to restrict without violating either the ordering or the hv-convexity requirement.
Finally, these problems that we have mentioned can be made more interesting by
introducing additional layers of complexity. For example, all such problems become
worth studying if we consider higher dimensions. Alternatively, we could consider
instances without solutions, or with noisy data. Are there algorithms that can
handle such situations by giving a solution that is ”close” to the correct solution,
i.e., that are provably-good approximation algorithms for some measure of error?

40

References

[1] Péter Balázs. A decomposition technique for reconstructing discrete sets from
four projections. Image and Vision Computing, 25(10):1609–1619, October
2007. 7

[2] Péter Balázs, Emese Balogh, and Attila Kuba. Reconstruction of 8-connected
but not 4-connected hv-convex discrete sets. Discrete Applied Mathematics,
147(2-3):149–168, April 2005. 6, 39

[3] Elena Barcucci, Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. Recon-
structing convex polyominoes from horizontal and vertical projections. Theor.
Comput. Sci., 155(2):321–347, 1996. 4, 6, 7, 39

[4] K.J. Batenburg. A new algorithm for 3D binary tomography. Electronic Notes
in Discrete Mathematics, 20:247–261, July 2005. 7

[5] Giusi Castiglione and Antonio Restivo. Reconstruction of L-convex polyomi-
noes. Electronic Notes in Discrete Mathematics, 12:290 – 301, 2003. 9th
International Workshop on Combinatorial Image Analysis. 6, 39

[6] Giusi Castiglione, Antonio Restivo, and Roberto Vaglica. A reconstruction
algorithm for L-convex polyominoes. Theoretical Computer Science, 356(1-
2):58 – 72, 2006. In honour of Professor Christian Choffrut on the occasion of
his 60th birthday. 6

[7] Marek Chrobak and Christoph Dürr. Reconstructing hv-convex polyominoes
from orthogonal projections. Inf. Process. Lett., 69(6):283–289, 1999. 6, 7, 9,
17, 23, 24, 25, 26, 39

[8] Marek Chrobak and Christoph Dürr. Reconstructing polyatomic structures
from discrete X-rays: NP-completeness proof for three atoms. Theoretical
Computer Science, 259(1-2):81–98, May 2001. 1, 2, 7

[9] Albert V. Crewe and David A. Crewe. Inexact reconstruction: Some improve-
ments. Ultramicroscopy, 16(1):33 – 40, 1985. 1

[10] Enrica Duchi, Simone Rinaldi, and Gilles Schaeffer. The number of Z-convex
polyominoes. Advances in Applied Mathematics, 40:54–72, 2008. 6, 8, 39

41

[11] Toms Feder. Network flow and 2-satisfiability. Algorithmica, 11(3):291–319,
March 1994. 28

[12] R. J. Gardner, P. Gritzmann, and D. Prangenberg. On the computational
complexity of reconstructing lattice sets from their X-rays. Discrete Math.,
202(1-3):45–71, 1999. 7

[13] R. J. Gardner, P. Gritzmann, and P. Prangenberg. On the computational com-
plexity of determining polyatomic structures by X-rays. Theoretical Computer
Science, 233(1-2):91–106, February 2000. 7

[14] Gabor T. Herman and Attila Kuba. Advances in Discrete Tomography and Its
Applications. Birkhäuser, 2007. 1

[15] G.T. Herman and A. Kuba, editors. Discrete Tomography: Foundations, Al-
gorithms, and Applications. Birkhäuser, 1999. 1, 6, 23

[16] C. Kisielowski, P. Schwander, F.H. Baumann, M. Seibt, Y. Kim, and A. Our-
mazd. An approach to quantitative high-resolution transmission electron mi-
croscopy of crystalline materials. Ultramicroscopy, 58(2):131 – 155, 1995. 2

[17] Alberto Del Lungo and Maurice Nivat. Reconstruction of connected sets from
two projections. In Gabor T. Herman and Attila Kuba, editors, Discrete
Tomography, article 7, pages 163–188. Birkhäuser, 1999. 7, 9

[18] Alberto Del Lungo, Maurice Nivat, and Renzo Pinzani. The number of convex
polyominoes reconstructible from their orthogonal projections. Discrete Math.,
157(1-3):65–78, 1996. 28

[19] G.P.M. Prause and D.G.W. Onnasch. Binary reconstruction of the heart
chambers from biplane angiographic image sequences. Medical Imaging, IEEE
Transactions on, 15(4):532–546, Aug 1996. 1

[20] Conceptis Puzzles. Color pic-a-pix, Last accessed in June 2009.
http://www.conceptispuzzles.com/. 1

[21] H. J. Ryser. Combinatorial properties of matrices of zeroes and ones. Canad.
J. Math., 9:371–377, 1957. 6

[22] P. Schwander, C. Kisielowski, M. Seibt, F. H. Baumann, Y. Kim, and A. Our-
mazd. Mapping projected potential, interfacial roughness, and composition
in general crystalline solids by quantitative transmission electron microscopy.
Phys. Rev. Lett., 71(25):4150–4153, Dec 1993. 2

[23] Abe Shliferstein and Y. T. Chien. Switching components and the ambigu-
ity problem in the reconstruction of pictures from their projections. Pattern
Recognition, 10(5-6):327 – 340, 1978. 1

42

[24] Gerhard J. Woeginger. The reconstruction of polyominoes from their orthogo-
nal projections. Information Processing Letters, 77(5-6):225–229, March 2001.
6

43

	List of Tables
	List of Figures
	Introduction
	Motivation
	Definitions
	Related Results
	Review of existing algorithms
	Overview
	Barcucci et al. -- Reconstructing hv-convex polyominoes via spine expansion
	1-colour 2-SAT
	Chrobak and Dürr -- Reconstructing hv-convex polyominoes directly from 2-SAT

	Multiple-colour Reconstruction
	Problem Overview
	Algorithm
	Generating foot configurations and spines
	C-colour 2-SAT
	Time Complexity

	Alternate Approach
	Preliminaries
	Spine Generation
	Reconstruction
	Time Complexity

	Reconstruction for Ordered Colours
	Time Complexity

	Final Notes

	NP-Completeness Results
	Overview
	Gadgets
	Layout
	NP-Completeness Proof

	Conclusion
	Results
	Open Problems

	References

