
Post-mapping topology rewriting for

FPGA area minimization

by

Lei Chen

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Lei Chen 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Circuit designers require Computer-Aided Design (CAD) tools when compiling designs

into Field Programmable Gate Arrays (FPGAs) in order to achieve high quality results due

to the complexity of the compilation tasks involved. Technology mapping is one critical

step in the FPGA CAD flow. The final mapping result has significant impact on the

subsequent steps of clustering, placement and routing, for the objectives of delay, area

and power dissipation. While depth-optimal FPGA technology mapping can be solved in

polynomial time, area minimization has proven to be NP-hard.

Most modern state-of-the-art FPGA technology mappers are structural in nature; they

are based on cut enumeration and use various heuristics to yield depth and area minimized

solutions. However, the results produced by structural technology mappers rely strongly

on the structure of the input netlists. Hence, it is common to apply additional heuristics

after technology mapping to further optimize area and reduce the amount of structural bias

while not harming depth. Recently, SAT-based Boolean matching has been used for post-

mapping area minimization. However, SAT-based matching is computationally complex

and too time consuming in practice.

This thesis proposes an alternative Boolean matching approach based on NPN equiv-

alence. Using a library of pre-computed topologies, the matching problem becomes as

simple as performing NPN encoding followed by a hash lookup which is very efficient. In

conjunction with Ashenhurst decomposition, the NPN-based Boolean matching is allowed

to handle up to 10-input Boolean functions. When applied to a large set of designs, the

proposed algorithm yields, on average, more than 3% reduction in circuit area without

harming circuit depth. The priori generation of a library of topologies can be difficult;

the potential difficulty in generating a library of topologies represents one limitation of the

proposed algorithm.

iii

Acknowledgements

I would like to thank Prof. Andrew Kennings for supervising this work and for giving

me the chance to step into the EDA industry. Without all the help he gave me, this thesis

would not have come into existence. I would also like to thank my family and friends for

their support over these years.

iv

Contents

List of Tables vii

List of Figures ix

1 Architecture and CAD for FPGAs 1

1.1 Introduction . 1

1.2 FPGA Architecture Overview . 2

1.2.1 LUT-based FPGAs . 3

1.3 FPGA CAD Flow . 5

1.3.1 High-level Synthesis . 7

1.3.2 Logic Synthesis . 7

1.3.3 Clustering . 9

1.3.4 Placement and Routing . 9

1.4 Contributions of the Thesis . 10

1.5 Summary . 10

2 Technology Mapping for LUT-based FPGAs 12

2.1 Background . 13

2.2 Cut Enumeration . 14

2.3 Timing Analysis . 16

2.4 Practical Technology Mapping . 17

2.5 Summary . 20

v

3 SAT-Based Boolean Matching 21

3.1 Boolean Matching . 21

3.2 Post-Technology Mapping Optimization 25

3.3 Summary . 26

4 NPN-based Boolean Matching 27

4.1 Matching Via Hash Table Lookups . 28

4.2 NPN Equivalence . 30

4.3 Essential Bits . 32

4.4 Practical Bits . 36

4.5 Numerical Results . 38

4.6 Functional Decomposition . 40

4.7 Summary . 44

5 NPN-based Post-mapping Topology Rewriting 46

5.1 Top-level Rewriting Algorithm . 46

5.2 Revised Cut Computation . 49

5.3 Numerical Results . 52

5.4 Summary . 53

6 Conclusions and Future Work 55

6.1 Conclusions . 55

6.2 Future Work . 56

APPENDICES 58

A Glossary of Terms 59

B List of LUT Topologies 60

Bibliography 68

vi

List of Tables

4.1 The number of practical bits of 3-input LUTs 37

4.2 The number of practical bits of 4-input LUTs 37

4.3 Numerical Results for Topologies of 3-input LUTs 39

4.4 Numerical Results for Topologies of 4-input LUTs 39

4.5 Number of k-input topologies with different structure 40

4.6 A list of decompositions for k-input logic functions 44

5.1 Experiment result of post-mapping topology rewriting 53

vii

List of Figures

1.1 Modern FPGA architecture . 3

1.2 Simplified FPGA architecture . 4

1.3 Simplified configurable logic block . 5

1.4 Simplified basic logic element . 6

1.5 A lookup table . 6

1.6 Simplified FPGA routing architecture . 7

1.7 Typical FPGA CAD flow . 8

2.1 Illustration of cut enumeration . 15

2.2 The typical FPGA technology mapping flow. 18

2.3 Pseudocode for area recovery mapping procedure. 19

3.1 Boolean matching example . 22

3.2 SAT-based matching example . 23

3.3 Using matching to reduce area . 25

4.1 Topology simulation . 29

4.2 Topology simulation with encoding . 31

4.3 Equivalent topologies with complementation 33

4.4 Equivalent topologies with permutation . 34

4.5 A 6-input topology of LUTs with bridged input pins 35

4.6 Topology simulation with encoding using essential bits 36

4.7 Topology simulation with encoding using essential and practical bits 38

4.8 Ashenhurst decomposition . 42

viii

4.9 Functional decomposition of a 9-input Boolean function 43

4.10 Seven missed 8-input topologies of 4-input LUTs 45

5.1 Top-level rewriting algorithm . 48

5.2 Topology selection for rewriting . 49

5.3 Cut computation for topology rewriting. 50

5.4 Cut expansion . 51

5.5 An example of cut weight calculation. 52

5.6 Experiment result of post-mapping topology rewriting 54

B.1 5-input topologies of 3-input LUTs . 60

B.2 6-input topologies of 3-input LUTs . 61

B.3 7-input topologies of 3-input LUTs . 62

B.4 9-input topologies of 3-input LUTs . 62

B.5 5-input topologies of 4-input LUTs . 63

B.6 6-input topologies of 4-input LUTs . 64

B.7 7-input topologies of 4-input LUTs . 64

B.8 10-input topologies of 4-input LUTs . 64

ix

Chapter 1

Architecture and CAD for FPGAs

1.1 Introduction

Application-Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays

(FPGAs) are two primary platforms for integrated circuit design. FPGAs are programmable

semiconductor fabric that are based on an array of prebuilt Configurable Logic Blocks

(CLBs) and programmable interconnects. As opposed to ASICs which are built and cus-

tomized for one particular design, FPGAs can be programmed to the desired application.

Although one-time programmable FPGAs are available, the dominate types are those that

can be reprogrammed a large number of times as the design evolves.

FGPAs and ASICs have different value propositions, and the following are the pros and

cons of each platform. First, the ASIC is fixed once manufactured, whereas the FPGA is

completely reconfigurable. The reconfigurability of the FPGA allows easy modification of

its application. In the case of ASICs, new chips must be manufactured again and old ones

have to be discarded, with any change required in the circuit design. However, if the circuit

design is based on the FPGA, the design can be updated by simply reconfigurating the

FPGA. There are no non-recurring expenses (NREs) for FPGA designs. For this reason,

FPGAs are very suitable for ASIC prototyping, and ASICs tend to be reserved for high vol-

ume products in the future. Second, FPGAs also have an advantage over traditional ASICs

in terms of simpler design cycle and faster time-to-market. The ASIC chip manufacturing

process can take months, whereas FPGAs are pre-fabricated and provide off-the-shelf ap-

1

Architecture and CAD for FPGAs 2

plications. Even though FPGAs seem a compelling proposition for circuit designs in many

situations, FPGAs are not without drawbacks. Because programmable logic blocks and

routing resources are not fully utilized, PFGAs usually consumes larger silicon area, which

leads to higher per-unit cost and larger power consumption. Besides, FPGAs have slower

circuit speed compared with their ASIC counterpart, under the constraints of their logic

blocks and routing resources [28, 29]. For applications that require high performance and

have strict power consumption requirement, ASICs are still the preferred choice.

1.2 FPGA Architecture Overview

Traditionally, FPGAs include programmable logic blocks which implement logic functions,

programmable routing blocks to interconnect these functions and input/output (I/O)

blocks to make off-chip connections. They can be programmed to implement any logic

functions. However, today’s FPGAs have evolved far beyond the basic capabilities present

in their predecessors, and incorporated blocks of commonly used functionalities such as

embedded memories, embedded processors, Phase-Locked Loops (PLLs), Digital Signal

Processing (DSP) units and other special feature blocks. These features make it possible

to build a System on Chip (SoC) inside of a single FPGA. An example of modern FPGA

architecture is the Altera Stratix IV device, as shown in Figure 1.1.

Every FPGA relies on the underlying programming technology that gives FPGAs their

programmability. FPGA vendors offer three fundamental programming technologies for

modern FPGAs. SRAM-based FPGAs are widely used and can be found in devices such

as Xilinx Virtex-5 [8] and Altera Stratix IV [7]. Non-volatile flash-based technology is used

in Actel ProASIC devices [4] and antifuse-based technology is used in Actel Axcelerator

devices [3]. SRAM programming technology has become dominant for FPGAs for its

re-programmability and use of standard CMOS manufacturing processes. Although, flash-

based devices offer benefits in terms of power consumption due to their technology and

antifuse-based devices are popular for aerospace and military applications due to their

radiation tolerance.

Architecture and CAD for FPGAs 3

Figure 1.1: Example of a modern FPGA architecture consisting of many different types of

resources; e.g., the Altera Stratix IV architecture [6].

1.2.1 LUT-based FPGAs

A simplified model of the architecture of an FPGA is illustrated in Figure 1.2. In Fig-

ure 1.2, the FPGA is arranged in an island-style structure based on an array of identical

programmable logic blocks surrounded by routing channels with the I/O pads evenly dis-

tributed around the perimeter of the FPGA [5].

The logic blocks consist of circuitry for implementing the functionality of the given

circuit. Logic blocks are also called logic clusters, or configurable logic blocks (CLBs).

The structure of a simplified cluster-based logic block is illustrated in Figure 1.3. Each

cluster contains N Basic Logic Elements (BLEs). Typically, the number of input pins on

the CLB is less than the sum of the number of inputs of the contained BLEs. Therefore,

if the BLEs within the CLB are to be fully utilized, some of the BLEs will need share

inputs. Typically, the BLE outputs are fed back to the BLE inputs within the cluster; i.e.,

BLEs within the same CLB can drive each other’s inputs without having to go outside

of the CLB. Because the delay of intra-CLB connections is typically much less than the

delay of inter-CLB connections (it is unnecessary to use external routing resources when

making intra-CLB connections), it is preferable to group BLEs together that share many

Architecture and CAD for FPGAs 4

Figure 1.2: A simplified view of an island-styled FPGA consisting of CLBs. [1]

interconnections. Increasing the number of inputs to each logic block can increase the

number of logic functions realized by each logic block as well as improve the performance

of the logic block. However, this comes on the expense of wasted resources because not all

the logic blocks will have all of their inputs fully utilized. The Altera Stratix and Xilinx

Virtex FPGA devices are commercial examples of FPGA architectures that use the idea

of BLEs clustered together inside of CLBs [7, 8].

The simplified architecture of a BLE is shown in Figure 1.4. Each BLE consists of

a k-input Look-Up Table (LUT) for implementing combinational logic and a register for

implementing sequential logic. A multiplexer permits either the LUT or the register to feed

the output of the BLE. A k-input LUT consists of 2k configuration bits and can realize any

Boolean logic function of up to k variables by programming the truth table of the Boolean

logic function directly into the memory bits of the LUT (the programming of the LUT

is done during the configuration of the FPGA). Figure 1.5 shows a two-input LUT with

4 programmable memory bits and a multiplexer to select one of the memory bits based

on the two select lines which serve as inputs to the 2-input logic function. In commercial

LUT-based architectures, k typically varies from 3 to 6.

Architecture and CAD for FPGAs 5

Figure 1.3: A simplified illustration of a Configuration Logic Block (CLB).

In the island-style FPGA architecture, each BLE can be connected to other BLEs via

horizontal and vertical routing channels. A generic FPGA routing architecture is illustrated

in Figure 1.6. Switch boxes connect horizontal and vertical channels through programmable

switches. Connection boxes are used to connect routing channels to the CLBs [41]. The

routing architecture of an FPGA is prefabricated and most modern FPGA architectures

use various wires of different segment lengths to achieve the optimal performance in terms

of circuit delay, routability or both. Finally, in addition to programmable routing for the

purposes of connecting logic blocks, modern FPGAs also contain dedicated global routing

networks for the purpose of distributing low skew clocks and control signals throughout

the programmable logic fabric.

1.3 FPGA CAD Flow

FPGAs have become very popular in recent years, due to their programmability and fast

time-to-market. With the advances in process technology, the number of gates and features

on a single FPGA device has increased dramatically to compete with capabilities that have

traditionally only been offered through ASIC devices. To effectively use FPGAs, circuit

Architecture and CAD for FPGAs 6

Figure 1.4: A simplified illustration of a Basic Logic Element (BLE).

Figure 1.5: An illustration of a 2-input LUT.

designers must resort to and rely on Computer-Aided Design (CAD) tools. These tools

play a critical role in delivering high-quality results when implementing a circuit via an

FPGA. Since designs and devices continue to increase in size and capability, CAD tools

must continually be improved in order to achieve high-quality results with reasonable

computational effort.

Today, most FPGA vendors provide a fairly complete set of design tools that auto-

matically transform design specification, entered either as a schematic or using a hardware

description language (HDL), such as Verilog or VHDL, all the way down to a stream of

“1”s or “0”s that program the FPGA chip during the configuration time. The main steps

of the FPGA CAD flow are illustrated in Figure 1.7 and are described below.

Architecture and CAD for FPGAs 7

Figure 1.6: An illustration of the programmable routing architecture in an FPGA.

1.3.1 High-level Synthesis

High-level synthesis (HLS) is the process of intepreting an algorithmic description of a

desired behaviour and creating hardware that implements the algorithm [32, 24, 22]. This

process involves tasks such as identifying and instantiating datapaths and control logic

(e.g., finite state machines) that implement the desired circuit behaviour. High-level syn-

thesis also performs logic scheduling and resource binding subject to any provided architec-

tural constraints. The output of HLS is typically a Register-Transfer Level (TRL) netlist

consisting of combinational logic, registers and, finally, clock and control signals.

1.3.2 Logic Synthesis

Logic synthesis takes an RTL netlist and performs both technology independent and tech-

nology dependent netlist optimizations. Technology independent optimization is typically

referred to as logic optimization and technology dependent optimization is typically re-

ferred to as technology mapping.

Architecture and CAD for FPGAs 8

Figure 1.7: A typical FPGA CAD flow.

Logic optimization performs tasks such as the removal of redundant logic and simplifica-

tion of logic functions in a technology independent fashion. It may also perform sequential

optimizations including register retiming. Generally, the purpose of logic optimization is

to generate an optimized netlist without the use of any technology dependent information

which is useful for transforming the circuit netlist into something more suitable for the

subsequent technology mapping phase.

Technology mapping is the phase in which a circuit netlist is converted, or mapped,

into a netlist which is realizable within the target technology. For FPGA designs, this

means conversion of combinational logic into k-input LUTs. Technology mapping is not

only responsible for converting the netlist into something which is implementable within

Architecture and CAD for FPGAs 9

the given target technology, but it is also responsible for performing optimizations; i.e.,

minimizing circuit depth, area and any other important objectives. The topic of this thesis

involves FPGA technology mapping. Hence, technology mapping is described in greater

detail later on in this thesis.

1.3.3 Clustering

In the clustering phase, LUTs and registers are first packed into BLEs. Then, a set of

CLBs are generated from the set of BLEs. The clustering phase has to consider specific

parameters of the target FPGA architecture, such as the maximum number of BLEs inside

of a CLB as well as other architectural limitations/constraints on the CLBs. The objective

of the clustering algorithm is to minimize the number of logic blocks and/or minimize the

delay. Certainly, commerical FPGA CAD tools perform clustering. Examples of academic

clustering tools would include VPack or T-VPack [10].

1.3.4 Placement and Routing

In the placement phase, the packed logic blocks are assigned to specific physical logic blocks

in the prefabricated two-dimensional array. In the case of island-style FPGAs, CLBs are

moved around to determine the best location for each CLB. After the placement step,

every CLB is assigned an X and Y location which represents its physical location. The

procedure tries to minimize the delay along the critical path and enhance the routability

of the resulting circuit [10].

The routing phase assigns the nets that connect CLBs in the placed netlist to specific

segmented wires in the routing channels. Routing for FPGAs is complicated by the fact

that the amount of routing resources in the FPGA device is fixed. Generally, routing can

be divided into two steps: global routing and detailed routing [11, 12]. Global routing

selects the channel for every net. Next, detailed routing assign each net to a specific wire

in the channel. The objective of the routing algorithm is to minimize the delay along the

critical path and avoid congestion in the FPGA routing resources.

Finally, the mapped, placed, and routed design generates the bit-stream file to program

the logic and interconnect resources to implement the desired logic design on the target

Architecture and CAD for FPGAs 10

FPGA device.

1.4 Contributions of the Thesis

The topic of this thesis involves the technology mapping stage of the FPGA CAD flow. In

particular, this thesis focuses on post-technology mapping for area minimization subject

to depth (i.e., delay) constraints. Hence, technology mapping is described in greater detail

later in this thesis. Stated succinctly, the contributions of this thesis are as follows:

• An algorithm is proposed for performing area minimization on a technology mapped

netlist. Essentially, the algorithm is based on the idea of circuit rewriting which

replaces, or rewrites, cones of LUTs with alternative topologies of LUTs which serve

to reduce circuit area (as measured in terms of the number of LUTs). Circuit func-

tionality and delay are always preserved.

• The aforementioned algorithm requires the off-line creation of a library of topologies

of LUTs. This turns out to be a potential time and space consuming task. The

thesis proposes several strategies to improve the time and space efficiency of the

off-line library generation.

• The thesis presents numerical results on a large set of design circuits to demonstrate

the potential efficacy of the proposed algorithm in terms of its effectiveness at area

minimization and in terms of runtime.

1.5 Summary

This introductory chapter has provided some background on FPGA architectures and the

importance of the FPGA CAD flow. The remainder of this thesis is as follows. Chapter 2

provides additional background on the problem of FPGA technology mapping. Background

on SAT-based Boolean matching as a means of determining if a particular topology of

LUTs can implement a function is described in Chapter 3. The use of SAT-based Boolean

matching as a post-technology mapping optimization algorithm is also described.

Architecture and CAD for FPGAs 11

Thesis contributions are described in the following chapters. Chapter 4 describes the

use of NPN equivalence classes for performing Boolean matching. Prior to the use of NPN

equivalence classes for matching, it is shown that a topology of LUTs must be simulated

and encoded. This procedure is shown to be complex in terms of both space and time.

The idea of essential bits and practical bits are introduced as a means of reducing both

the space and time complexity of the procedure. In Chapter 5, the overall algorithm for

post-technology mapping area minimization based on NPN equivalence classes is proposed.

Numerical results on a large suite of designs are also provided to demonstrate the efficacy

of the proposed algorithm. Finally, the contributions of the thesis are described in Chapter

6. Future research possibilities are also described.

Chapter 2

Technology Mapping for LUT-based

FPGAs

The purpose of FPGA technology mapping is to convert a netlist composed of simple logic

gates into a netlist composed of k-input LUTs. The mapping procedure attempts to min-

imize some combination of area and delay. Other objectives, including power dissipation

and routability may also be taken into account.

Modern FPGA technology mappers can be divided into functional mappers and struc-

tural mappers. Functional mappers perform Boolean decomposition of the logic functions

of the nodes into sub-functions of limited support size realizable by individual LUTs [37].

Since functional mappers explore a larger solution space, they tend to be time-consuming,

which limit their use to small designs. Structural mappers find a covering of the circuit

graph with k-input subgraphs which correspond to k-input LUTs [17]. Due to both their

efficiency and effectiveness, most modern state-of-the-art FPGA technology mappers are

structural mappers.

Structural technology mappers typically proceed as follows: A circuit netlist is first

converted into a simple network which consists of 2-input logic gates; e.g., a network such

as an And-Inverter Graph (AIG) [17, 33]. This network is typically referred to as the

subject graph. Subsequently, for mapping to an FPGA architecture consisting of k-input

LUTs, all cuts of size k or less are computed for every node in the subject graph. This

step is known as cut enumeration. Finally, the best cuts for a subset of nodes are selected

12

Technology Mapping for LUT-based FPGAs 13

to form k-input LUTs which cover all the gates in the subject graph. In performing the

covering of the subject graph, the covering is done in order to minimize some combination

of delay and area (or other objectives). Technology mapping for minimum circuit depth

is known to be polynomial, but not for other objectives such as area. Hence, technology

mapping is performed using a variety of heuristics during the covering of the subject graph.

The purpose of this chapter is provide background information on technology mapping.

This includes cut enumeration and the different heuristics used by modern state-of-the-art

technology mappers to select a set of cuts to cover the input subject graph.

2.1 Background

A combinational Boolean circuit can be represented as a directed acyclic graph (DAG)

G = (V,E) in which a node v represents a logic gate, and a directed edge e corresponds to

a wire that connects two gates. A primary input (PI) is a node without incoming edges and

a primary output (PO) is a node without outgoing edges. Inputs and outputs of flip-flops

(FFs) can be treated as additional cases of POs and PIs. If there is a path from node v to

node u, v is a predecessor of u and u is a successor of v. The topological order exists in the

DAG, such that each node appears after all its predecessors and before all its successors

in the ordering.

For any node v, fanin(v) denotes the set of nodes which are fanins of node v. Similarly,

fanout(v) denotes the set of nodes which are fanouts of node v. A primary input node has no

fanins and a primary output node has no fanouts. A node is k-feasible if |fanin(v)| ≤ k.

If every node in a graph is k-feasible, then the graph is k-bounded. A subject graph is

typically the terminology reserved for the 2-bounded network which is used as input for

the technology mapper. Subject graphs are typically represented as And-Inverter Graphs

(AIGs) which are networks consisting of 2-input AND gates and inverters.

A cone of logic Cv, rooted at node v, is a sub-graph composed of v and some of its

non-PI predecessors such that any node u ∈ Cv has a path to v which is entirely included

in Cv. We use fanin(Cv) to denote the set of nodes outside of Cv which drives nodes inside

of Cv. The set of fanins to a cone is also known as a cut in the graph. There is a one-to-one

correspondence between a cut and a cone. The notion of k-feasibility also applies to cones

Technology Mapping for LUT-based FPGAs 14

and cuts. A fanin (fanout) cone of node v is a cone that consists of all nodes reachable

through the fanin (fanout) edges from the node v. A maximum fanout free cone (MFFC)

of node v is a subset of the fanin cone, such that every path from a node in the subset to

the POs passes through v. Hence, the MFFC of a node contains all the logic used by the

node.

The level of a node v, denoted as level(v), is the number of edges on the longest path

from a PI to v. The level for a PI node is zero. Often, the terminology level and depth

are used interchangeably. The network depth is the largest level of an internal node in the

network. The depth and area of a technology mapped netlist is measured by the depth of

the network and the number of LUts in the network, respectively.

2.2 Cut Enumeration

Cut enumeration is the process of determining all different cones (or cuts) of logic that

can be used to implement the function at node v such that each cut is k-feasible. Cuts for

a node v are created by using the cuts from its fanin nodes and combining them to form

cuts for node v. An example of this is shown in Figure 2.1(a) where, to generate a cut for

node c, two cuts from nodes a and b are duplicated and combined to form a larger cut that

includes nodes a, b and c. Modern FPGAs consist of an array of k-input LUTs connected

together through programmable interconnect. Since a k-input LUT can implement any

function of fewer than k variables, in technology mapping it suffices to find all k-feasible

cuts of each node v. The correspondence of k-input LUTs and k-feasible cuts is shown in

Figure 2.1(b).

Let u1, u2, · · · , ut denote the fanins of node v and let Sui
denote the set of all k-feasible

cuts for node ui for 1 ≤ i ≤ t. The set operation called merge is defined as follows [40]:

merge(Su1
, Su2

, . . . , Sut
) =

{s = s1 ∪ s2 ∪ . . . st|si ∈ Sui
and ‖ s ‖≤ k}. (2.1)

The set of k-feasible cuts for node v, denoted by Sv is equal to merge(Su1
, Su2

, . . . , Sut
) ∪

{v0} where {v0} represents the trivial cut containing node v only. Hence, if all k-feasible

cuts of the fanins of a node v are given, we can find all non-trivial k-feasible cuts of the

Technology Mapping for LUT-based FPGAs 15

(a) (b)

Figure 2.1: An illustration of cut enumeration: (a) A larger cut for node c derived from

the cross product of the cutsets for nodes a and b; (b) a 4-LUT derived from the 4-input

cut.

node v using the merge operation. This suggests that cut enumeration works by visiting

each node in the network in topological order from PIs to POs and applying the merge

operation to each node v. Any newly formed cuts that are not k-feasible are discarded

during the process. Note that PIs only have a trivial cut. Cut enumeration as described

is not scalable to larger cut sizes (e.g., k > 7) and for cuts containing a large degree of

reconvergent paths.

In the process of merging the cut sets to form the resulting cut set, it is necessary to

delete duplicated cuts and remove dominated cuts. Removing useless cuts before computing

the cuts for the next node reduces the number of cut pairs considered without impacting

the quality of mapping. In practice, the total number of cut pairs tried during the merging

greatly exceeds the number of k-feasible cuts found. This makes checking k-feasibility

of the unions of cut pairs, and testing duplication and dominance of individual cuts, the

performance bottleneck of the cut enumeration.

The most serious problems in cut enumeration are the high time and space complexities.

For a circuit with n nodes, the number of cuts of size k can be as large as O(nk) [21] and

computing all cuts can take significant runtime. For small cuts (i.e. k = 6 or 7), the

enumerative procedure is feasible to compute all cuts. But for large cuts, the enumerative

procedure fails simply because there are too many cuts. Fortunately, modern FPGAs are

built using LUTs with ≤ 6 inputs.

Technology Mapping for LUT-based FPGAs 16

There are some heuristic approaches to make cut enumeration more manageable. In

[21], this problem is addressed by selectively pruning cuts that seems to be useless. How-

ever, for large cut sizes, pruning tends to remove many valuable cuts in the following

mapping solution. In [14], the notion of cut factorization is introduced where one enumer-

ates both global and local cuts and uses these cuts to generate other cuts. It is possible

to generate any cut from the factor cuts (i.e., complete factorization), but this is still an

expensive operation. Partial factorization can also be used, but in this scheme there is

no guarantee of generating all cuts from the factor cuts. In [16, 36], the notion of prioity

cuts is introduced. In this scheme, only the most promising set of cuts for any given node

are kept and propagated through the network. This reduces the runtime and memory

requirements of cut enumeration, but can prevent some good cuts from being generated.

Nevertheless, priority cuts are empirically demostrated to be useful for mapping to k-inputs

LUTs. Given the cutset for a node v, each cut Cv is ranked according to several different

criteria, such as (1) the logic depth of the cut, (2) area of the cut, (3) number of inputs

of the cut |fanin(v)|. Since cuts are computed in topological order, the depth of a cut is

computed easily by finding the maximum depth of the inputs of the cut. The area of the

cut is a measure of the effectiveness of the cut in covering the underlying subject graph.

Finally, the number of inputs of the cut is also a useful metric since those cuts which have

good depth and large area, but only a small number of inputs, are likely to result in good

mappings.

2.3 Timing Analysis

In order to optimize performance, technology mappers must have some concepts of circuit

delay. Although arbitrary delay models can be used during technology mapping, it is most

often the case that exact layout information is not available (i.e., placement and/or routing

has not yet been performed). Hence, it is common for technology mappers to use a unit

delay model to measure performance. In this model, each LUT contributes one unit of delay

to any circuit path that passes through the LUT. Hence, under the unit delay assumption,

the delay of a network becomes synonymous with circuit depth (or circuit level).

Under the unit delay model, and assuming that cut enumeration has been performed,

Technology Mapping for LUT-based FPGAs 17

it is possible to compute the optimal delay for any given node in the subject graph. Subse-

quently, the optimal delay for the mapped network can be computed; i.e., the best achiev-

able circuit delay is known. The minimum delay at any node v, denoted by arrival(v),

can be calculated by

arrival(v) = min[max[arrival(ui)] + 1],∀ Cv ∈ cutset(v), ui ∈ fanin(Cv) (2.2)

where Cv represents a cut in the cutset for node v and arrival(ui) is the arrival time on the

fanin ui of Cv. The calculation of arrival times is computed in topological order from the

PIs towards to POs of the network. The worst arrival time at any of the POs represents

the worst case delay of the entire circuit; i.e., the optimal (minimum) worst case delay of

the circuit.

Given a selected set of cuts which cover the subject graph, the required time at any

node v, denoted as required(v), can be computed. The required time denotes the largest

delay allowed at the node v in order to achieve the best network delay. Required times are

computed in reverse topological order from POs backward toward the PIs of the network.

The required time at any node v is computed by

required(v) = min[required(v), required(n) − 1], n ∈ fanout(v) (2.3)

where n is a fanout of node v. Finally, the slack can be computed for each node in the

technology mapped network. The slack for any node v in the mapped network, denoted

by slack(v) is computed in terms of its arrival and required times by

slack(v) = required(v) − arrival(v). (2.4)

Slack gives an indication of how far away a node is from being considered as timing critical.

Nodes with slack > 0 are not on the critical path; i.e., they are not timing critical. Nodes

with slack ≤ 0 are timing critical nodes and are important for performance.

2.4 Practical Technology Mapping

As mentioned, modern FPGA technology mapping algorithms [17, 18, 15, 31, 35] are based

on cut enumeration. This is because every k-input cut maps directly into a k-input LUT.

Technology Mapping for LUT-based FPGAs 18

Procedure: Technology Mapping

Inputs: An And-Inverter netlist N and LUT architecture K

Outputs: A mapped LUT-based netlist N ′

Perform cut enumeration and save all K-feasible cuts at each node;1

Find a depth-optimal cut at each node and mark it as the representative;2

Modify the representative cut at each node on the non-critial paths to save area;3

Replace each representative cut with a corresponding LUT;4

Return the netlist N ′ of LUTs as the result of the final mapping;5

Figure 2.2: The typical FPGA technology mapping flow.

Based on the previous descriptions of cut enumeration and timing analysis, it is possible

to develop an intuitive approach for the objectives of any technology mapping solution.

The overall flow of technology mapping is described in Figure 2.2. Specifically, the goal of

any technology mapper is to select the “correct” set of cuts such that (1) the delay of the

circuit is minimized (delay optimal) while (2) requiring a minimum number of cuts (area

optimal) to cover the original network. Intuitively, selecting a set of cuts which yield a

delay optimized solution is straightforward (select the delay minimizing cut for each node

v from the cutset for node v). In fact, the depth-optimal technology mapping problem can

be solved in polynomial time using a dynamic programming procedure known as FlowMap

[17]. Conversely, the area minimization problem has been shown to be NP-hard for k-

input LUTs of size k ≥ 3 [23]. The selection of a set of cuts which minimizes area is not

straightforward.

Thus, heuristics are necessary to solve the area-minimization problem. The area min-

imizing mapping procedure based on depth relaxation is shown in Figure 2.3. Before the

area minimizing procedure, the new required time is computed on each node in reverse

topological order. The node with slack larger than 0 is claimed to be on the non-critical

path, and the representative cut on the node can be changed to minimize local mapping

area without violating the timing constraints. As discussed in IMap [31] and ABC [36, 35],

two complementary heuristic measures of area cost are applied as guidance to good prac-

tical results. The first heuristic area flow has a global view and selects logic cones with

more shared logic. It can be computed in one pass over the network from the PIs to the

POs. Area flow for the PIs is set to 0, and area flow at node v is:

AreaF low(v) = [Area(v) +
∑

i

AreaF low(fanini(v))]/numFanouts(v) (2.5)

Technology Mapping for LUT-based FPGAs 19

Procedure: Area Recovery Heuristics

Inputs: A optimum-depth netlist, N

Returns: A mapped netlist with area recovery, N ′

Update the required times from POs to PIs for the last mapping;1

for each node n in topological order from PIs to POs do2

for each cut C at node n do3

Cr is the current representative cut;4

if Arrival T ime(C) <= Required T ime(n) then5

if AreaF low(C) < AreaF low(Cr) then6

Cr = C; continue;7

end if8

if LocalArea(C) < LocalArea(Cr) and AreaF low(C) == AreaF low(Cr) then9

Cr = C; continue;10

end if11

end if12

end do13

end do14

return N ′;15

Figure 2.3: Pseudocode for area recovery mapping procedure.

where AreaF low(v) is the number of LUTs needed to cover the representative cut at the

node v. fanini(v) is the i-th fanin of the representative cut at v, and numFanouts(v) is

the number of fanouts of node v in the last mapping solution. The second heuristic local

area looks at the area added to the mapping by locally modifying the representative cut

at a node. The local area is equal to the sum of the LUTs in the MFFC of the cut, i.e.

the LUTs to be added to the mapping if the cut is selected as the representative cut. It

has a local view by minimizing the area exactly at each node. In one pass of area recovery,

area flow is used as the primary metric and local area as a secondary metric to break

the tie. The heuristic area minimizing procedure will run several iterations until no area

improvement happens. At last, one pass of LUT covering is done in reverse topological

order. For each PO, the representative cut is chosen and a LUT is constructed in the

mapped netlist to implement it. Then, recursively for each fanin node of the LUT, this

procedure is repeated until the whole netlist is covered by LUTs.

Technology Mapping for LUT-based FPGAs 20

2.5 Summary

This chapter has introduced the concept of cut enumeration and has described the typical

flow of state-of-the-art structural FPGA technology mappers. These technology mappers

are capable of producing delay optimized solutions given the structure of the provided

subject graph. However, they make local decisions based on depth relaxation and various

heuristic measures of area cost (e.g., area flow and exact local area evaluation) in order

to minimize area. Further, because these technology mappers are structural in nature and

cut enumeration is performed on the provided subject graph, the ability of the technology

mappers is somwhat restricted by the structure of the provided subject graph. Hence,

because of the limitations imposed based on the structure of the subject graph and due to

the heuristic nature of the area minimization, it is quite likely that the technology mapped

netlists can be further improved if additional post-processing is applied directly to the

technology mapped netlist.

Chapter 3

SAT-Based Boolean Matching

As mentioned in Chapter 2, structural technology mappers suffer from two main issues with

respect to area minimization. First, the results produced by structural mappers depend

strongly on the structure of the initial subject graph. Second, these mappers make local

choices when selecting a cut for any given node; choices are made based on either local or

heuristic measures of area. Hence, the LUT netlists produced by structural mappers can

be further optimized by post-technology mapping improvement techniques which target

the minimization of area under delay constraints [33, 30, 43, 20, 26].

This chapter describes how LUT netlists can be further optimized through the use

of Boolean matching. The Boolean matching problem is described. Subsequently, it is

demonstrated how the Boolean matching problem can be solved via the solution of a

Boolean Satisfiability (SAT) problem. These approaches are computationally demanding

and too slow for practical purposes.

3.1 Boolean Matching

For the purposes of this thesis, the problem of Boolean matching can be stated as follows.

Can a logic function f of n variables, e.g., expressed in terms of its truth table, be im-

plemented by some topologies of LUTs? For example, Figure 3.1(a) shows a 3-input logic

function f = b(a + c). The question to be answered is whether or not this function can be

implemented by the topology of LUTs illustrated in Figure 3.1(b). In this example, the

21

SAT-Based Boolean Matching 22

f = b(a + c)

(a) (b) (c)

Figure 3.1: An example of Boolean matching: (a) A 3-input logic function f ; (b) A topology

of LUTs consisting of two 2-input LUTs; (c) An implementation of f .

function can be implemented as showing in Figure 3.1(c) by connecting the function inputs

as shown and setting the configuration bits of the LUTs appropriately; other solutions are

also possible and are obtained by permutation of the inputs and changing the values of the

configuration bits for the LUTs.

Within the FPGA community, the problem of determining whether or not a logic

function f can be implemented via a topology of LUTs has been formulated as a SAT

problem. This is accomplished as follows: First, an expression representing the topology

of LUTs is created in Conjunctive Normal Form (CNF). Second, this CNF expression is

duplicated once for each row of the truth table of f . Finally, the conjoined CNF expression

is passed to a SAT solver. If the SAT solver returns false, then the logic function can not

be implemented by the topology of LUTs. On the other hand, if the SAT solver returns

true, then the logic function f can be implemented by the topology of LUTs. Further, the

solution to the SAT problem provides the proper permutation for connecting the inputs of

the logic function and the proper configuration bits for the LUTs within the topology.

To illustrate this process, consider the problem of determine whether or not a logic

function f with ≤ 3 inputs can be implemented by the LUT topology consisting of two

2-input LUTs shown in Figure 3.1(b). To create the CNF for the topology, it is necessary

to break down the topology into individual circuit elements and compute the CNFs for

each individual element. The individual CNFs can then combine to form the CNF for the

entire topology. In order to account for input permutations, it is necessary to add virtual

multiplexers at the inputs of the topology. These multiplexers do not exist in the topology

and are “artifically” added into the SAT problem in order to support the permutation

SAT-Based Boolean Matching 23

Figure 3.2: Illustrating of the CNF creation for a particular topology of LUTs. Virtual

multiplexers are included to allow for input permutation.

of the logic function inputs. The topology consisting of two, 2-input LUTs in Figure 3.1

is illustrated in terms of its basic logic elements in Figure 3.2. The addition of virtual

multiplexers to allow for input permutation is also illustrated in Figure 3.2.

In Figure 3.2, the CNF for LUT1, denoted by GLUT1(~x, ~C, f), involves the two inputs

w1w2 = ~x, the configuration bits C1C2C3C4 = ~C, and the output w3 = f and is given by

GLUT1 =(w1 + w2 + C1 + w3) · (w1 + w2 + C1 + w3)·

(w1 + w2 + C2 + w3) · (w1 + w2 + C2 + w3)·

(w1 + w2 + C3 + w3) · (w1 + w2 + C3 + w3)·

(w1 + w2 + C4 + w3) · (w1 + w2 + C4 + w3)

(3.1)

Similarily, The CNF for MUX1, denoted by GMUX1(~x, ~C, f), involves inputs i1i2i3 = ~x,

the configuration bits C9C10 = ~C, and output the w1 = f .

GMUX1 =(C9 + C10 + i1 + w1) · (C9 + C10 + i1 + w1)·

(C9 + C10 + i2 + w1) · (C9 + C10 + i2 + w1)·

(C9 + C10 + i3 + w1) · (C9 + C10 + i3 + w1)·

(C9 + C10)

(3.2)

SAT-Based Boolean Matching 24

As mentioned, since MUX1 is a virtual multiplexer, its configurations bits are used to

determine which of the logic function inputs should be connected to w1; the configuration

bits are not required for the programming of any LUT.

Now combining these two equations according to Figure 3.2, along with similar equa-

tions for the other LUTs and virtual multiplexers, yields the CNF equation given by

GTotal =GMUX1(i1i2i3, C9C10, w1)·

GMUX2(i1i2i3, C11C12, w2)·

GMUX3(i1i2i3, C13C14, w4)·

GLUT1(w1w2, C1C2C3C4, w3)·

GLUT2(w3w4, C5C6C7C8, f)

(3.3)

which represents the input for the entire LUT topology with inputs i1i2i3 and output f .

In order to test whether function f could be implemented by the LUT configuration,

GTotal would have to be duplicated for each of the possible 23 inputs (for an n-input

function, the GTotal would need to be duplicated 2n times). Each copy of GTotal corresponds

to one specific row of the function’s truth table and has appropriate values substituted

for the input variables and the output variable in the CNF. The conjunction of the 23

duplicates of GTotal represent the CNF equation specific to the function f which is being

tested against the generic topology of LUTs. This CNF equation can be fed into a SAT

solver to determine whether or not the function f can be implemented by the topology.

The SAT-based approach for Boolean matching is complete and guarantees to find a

match if it exists. It can be easily customized to different topologies of LUTs and therefore

offers great flexibility. However, it suffers from excessive runtime due to high computational

complexity even with improvements [43, 20, 26]. The complexity of SAT-based Boolean

matching increases dramatically with the number of inputs in the topology; e.g., it can

take seconds or minutes to solve a problem involving the matching of a 10-input logic

function. With an imposed timing limit, the SAT-based Boolean matching procedure

becomes incomplete with only a limited success rate; e.g., as shown in [20], only 50%

Boolean matching problems are solved for 10-input Boolean functions under the timeout

limit of 60 seconds.

SAT-Based Boolean Matching 25

(a) (b)

Figure 3.3: Using matching to reduce area: (a) A 7-input logic cone implementing a logic

function f which can be implemented by (b) an alternative circuit.

3.2 Post-Technology Mapping Optimization

The procedure for SAT-based Boolean matching can be used to post-process technology

mapped netlists to perform further area minimization without harming the delay of the

mapped netlist. This is accomplished as follows. In turn, each node in the technology

mapped netlist (i.e., a netlist of LUTs) can be examined. This examination can be done

randomly or in some specific order such as in a topological order. For any selected node

v, an n-input cone of logic C rooted at node v can be computed for some reasonable n

(typically n ≤ 10). Once the cone of logic is selected, it can be simulated to determine its

logic function f . Subsequently, assuming a topology of LUTs is provided with ≥ n inputs,

a SAT problem can be formulated to determine if the function f of the cone C can be

implemented by the topology of LUTs. If f cannot be implemented, either another cone of

logic is attempted for node v, or the algorithm proceeds to another node in mapped netlist.

If, however, f can be implemented by the topology of LUTs, this topology provides an

alternative circuit structure that can be used to replace the original cone of logic C without

changing the function f . If the new circuit topology for implementation of f reduces the

number of required LUTs in the network and does not cause the slack at node v to become

negative, then the topology of LUTs is a suitable replacement for the cone of logic which

reduces the total number of LUTs in the mapped network without impacting the worst-

case network delay. An example of replacing a cone of logic with an alternative topology of

LUTs is illustrated in Figure 3.3. In Figure 3.3(a), a 7-input cone of logic is identified in the

SAT-Based Boolean Matching 26

technology mapped netlist. Here, the unsigned integer values inside of each LUT indicate

the configuration bits of the LUT. The selected logic cone consists of 6 LUTs. Note that

one of the LUTs in the logic cone has multiple fanouts; it cannot be removed by replacing

the logic cone. In Figure 3.3(b), an alternative implementation for the logic cone is shown

and was obtained by matching the logic function to a topology of three, 3-input LUTs

connected serially. Here, the unsigned integers again represent the LUT configuration bits.

The bubbles represent inversions which can be absorbed into the LUTs. This alternative

topology requires only 3 LUTs. Hence, assuming that the delay at the output of the

new topology does not worsen the worst-case delay of the network, the alternative circuit

structure in Figure 3.3(b) can be used to replace the original implementation of the logic

function in Figure 3.3(a) while removing two LUTs from the mapped netlist.

3.3 Summary

This chapter has described the Boolean matching problem and shown that it can be solved

by formulating a SAT problem. Further, this chapter has described how Boolean matching

can be used in an algorithm applied to post-technology mapping optimization. Although

very general, the SAT-based approach to Boolean matching is rather time consuming which

makes it less attractive and an actual optimization algorithm applied after technology

mapping.

Chapter 4

NPN-based Boolean Matching

As discussed in Chapter 3, SAT-based Boolean matching is not feasible for practical ap-

plications due to the time complexities involved in formulating and solving the necessary

SAT problem each time a function is matched. In this chapter, an alternative approach

based on the use of precomputed libraries of implementable functions and NPN equivalence

classes is proposed. The NPN-based Boolean matching approach finds matches through

simple hash table lookups in a pre-computed library of implementable functions created

a priori from the analysis of different topologies of LUTs. Since hash table lookups are

fast, the resulting Boolean matching is fast enough for practical application. The proposed

approach requires a library of topologies of LUTs and the explicit need to determine all

of the implementable functions. The creation and storage of the library of implementable

functions is time consuming and memory intensive; it is the potential inability to create a

library that limits the practicality of the approach. However, if the library can be created,

then the proposed method is fast and efficient for performing Boolean matching.

This chapter describes how a pre-computed library of implementable functions, created

by the analysis of a set of topologies of LUTs, can be used along with the idea of NPN

equivalence classes as an alternative to SAT-based Boolean matching. Some critical im-

provements on computation time and memory usage are proposed to make the a priori

library creation more efficient and practical.

27

NPN-based Boolean Matching 28

4.1 Matching Via Hash Table Lookups

Intuitively, SAT-based Boolean matching is an implicit way to answer the question whether

or not a logic function f with ≤ k inputs can be implemented by a k-input topology of

LUTs; i.e., given a topology of LUTs, all implementable functions with ≤ k inputs are

implicitly represented by a set of Boolean clauses. Determining whether or not a logic

function f is implementable involves tailoring the SAT problem to the particular function

and performing a search (accomplished via the SAT solver) through the clauses for a

solution.

However, there is an alternative way to answer the question of whether or not a k-input

logic function f is implementable by a k-input topology of LUTs. Specifically, given a k-

input topology of LUTs, all implementable k-input functions can be enumerated explicitly

via a priori simulation and stored (e.g., via a hash table) for future reference. Consequently,

the Boolean matching problem is simplified to the problem of looking to see if f is found

in the hash table.

Unlike the SAT-based Boolean matching, the proposed alternative approach is only

capable of matching a k-input logic function to a k-input topology of LUTs. This restriction

stems from the use of hash table lookups and that everything in the proposed alternative

approach is explicit rather than implicit (In SAT-based Boolean matching, it is the use of

virtual multiplexers that allows a single variable to be connected to multiple inputs on the

topology, c.f. Chapter 3. The use of virtual multiplexers is yet another example of the

representation of implicit information). This restriction, however, is not a problem and is

easily addressed by creating a library of topologies of LUTs in which each topology has

a different number of inputs. The connection of a single logic function input to multiple

inputs on a topology is accomplished by matching the function to the proper topology of

LUTs. Without further detail, illustrations of the topologies of LUTs used in this thesis are

provided in Appendix B. Topologies of LUTs obey the naming convention “LUTx y v”,

where “x” means a x-LUT architecture (i.e., the architecture consists of x-input LUTs),

“y” represents the number of inputs of the topology, and “v” represents the version of the

structure in the topology. For example, the topologies “LUT3 6 1” and “LUT3 6 4” are

the names of two different 6-input topologies for an architecture which consists of 3-input

LUTs.

NPN-based Boolean Matching 29

Procedure: Enumeration of Implementable Logic Functions

Inputs: A LUT Topology T

Returns: A Hash Table, H.

for each set of configuration bits (c1, c2, . . . , cn) in the topology T do1

Simulate the current logic function f that is implemented by the topology T ;2

if f does not exist in the hash table H then3

Insert f and (c1, c2, . . . , cn) into the hash table H;4

end if5

end do6

return H;7

Figure 4.1: Enumeration of implementable logic functions for a particular topology of

LUTs using simulation.

Hence, the proposed alterative approach to Boolean matching can be described as

follows for matching a k-input logic function f to a k-input topology of LUTs: (1) create

a library of k-input topologies of LUTs suitable for the target architecture; (2) determine

through simulation all logic functions implementable by each topology of LUTs and insert

these functions into a hash table; (3) determine which, if any, k-input topologies are capable

of implementing the logic function f through hash table lookups.

When simulating a set of topologies of LUTs, a hash table is built for each separate

topology of LUTs. Each hash key corresponds to a logic function, and the associated

hash value corresponds to a set of configuration bits of LUTs necessary to implement the

simulated logic function. The pseudo-code of the exhaustive enumeration procedure for a

topology composed of n LUTs is described in Figure 4.1. For each set of configuration bits

(c1, c2, . . . , cn), the given topology can be simulated to determine its current logic function

f . If the logic function f does not exist in the hash table, it is inserted into the table, with

the current set of configuration bits.

Obviously, in the proposed approach, the use of hash tables makes the matching of logic

functions extremely fast when compared to SAT-based matching. Whereas SAT-based

matching amortizes the matching time over all matching problems, the proposed approach

pushes all computational effort to the a priori determination of all implementable functions.

Hence, while the exhaustive simulation of a topology of LUTs can be very expensive both

in terms of time and memory usage, it only needs to be performed once and can therefore

be treated as an off-line process. After the exhaustive enumeration, the functions (along

NPN-based Boolean Matching 30

with configuration bit information) which are implementable are saved to data files. Prior

to Boolean matching, these data files are loaded into memory.

However, the Boolean matching approach based on hash lookups proposed above is still

facing several severe problems:

• The number of implementable logic functions in a topology is extremely large, due

to the flexibility of LUTs. It results in consuming a large portion of memory to keep

hash tables online.

• The enumeration of all implementable logic functions for topologies with large num-

ber of inputs is time consuming. Runtime improvement is indispensable for pre-

computation of some topologies.

• The pre-computed library is requested to contain a large number of topologies with

different structure, which has a large impact on both computation time and memory

usage.

In the following sections, these problems are discussed in detail and relevant solutions are

proposed.

4.2 NPN Equivalence

The issue of memory usage may be addressed by relying on the concept of NPN equivalence

classes to reduce the size of the hash tables required to store those functions implementable

by a particular topology of LUTs. Any k-input logic function can be represented through

its NPN equivalence class in a canonical way. Specifically, two Boolean functions f and g

are said to belong to the same NPN equivalence class if f can be derived from g (or visa-

versa) by negating (N) and permuting (P) inputs and negating (N) the output [9]. For

example, functions f = ab + cd and g = ac + bd are NPN equivalent because swapping b

and c makes them functionally equivalent. However, functions f = ab+ cd and g = abc+d

are not NPN equivalent because any permuting and complementing of variables can not

make them functionally equivalent. A canonical form, denoted as the NPN equivalence

class fnpn can be used to check NPN equivalence between functions f and g by testing

under all input permutations/complementations and output complementation.

NPN-based Boolean Matching 31

Procedure: NPN Equivalence Class Enumeration

Inputs: A LUT Topology T

Returns: A Hash Table, H.

for each set of configuration bits (c1, c2, . . . , cn) of LUTs in the topology T do1

Simulate the current logic function f that is implemented by the topology T ;2

Obtain its NPN equivalence class fnpn using a NPN encoder3

if fnpn does not exist in the hash table then4

Insert fnpn, configuration bits, and complementation/permutation information into the hash table5

end if6

end do7

return H;8

Figure 4.2: Enumeration of implementable logic functions for a particular topology of

LUTs using simulation. Only one representative logic function is recorded for each NPN

equivalence class.

When simulating a topology of LUTs, rather than inserting all implementable logic

functions into a hash table, it is only necessary to store one representative logic function for

each NPN equivalence class found during simulation. This requires an extra NPN encoding

step in the procedure for the simulation of a topology of LUTs. Specifically, for each set

of configuration bits (c1, c2, . . . , cn) of LUTs, the topology is simulated to determine the

current logic function f . This is followed by an efficient NPN encoding step [2, 13] to obtain

the NPN equivalence class, fnpn, of f . If the NPN equivalence class fnpn does not exist in

the hash table, it is inserted into the table, with the current set of configuration bits and

the specific permutations/complementations on inputs and output provided by the NPN

encoder as its associate hash value. Thus, all NPN equivalence classes are enumerated after

going through all sets of configuration bits of LUTs. The pseudo-code of the enumeration

of NPN equivalence classes for a given topology is described in Figure 4.2. The compressed

hash table with all NPN equivalence classes are saved into a data file that corresponds to

the name of the given topology. In this way, the number of hash keys maintained in the

hash table significantly decreases. For example, for a k-input topology of LUTs, there are

as many as 22k

logic functions possible. However, the number of NPN equivalence classes

can be significantly less. As one specific example, there are 65536 possible logic functions

for a simple 4-input topology of LUTs. However, there are at most 222 NPN equivalence

classes for 4-input logic functions [39].

NPN-based Boolean Matching 32

While the use of NPN equivalence classes effectively reduces the memory usage required

to store the hash tables, it does affect the matching process itself. Specifically, given a

function f , it is no longer “just sufficient” to look for the function f in the hash table

of implementable functions; this is because the hash table only stores equivalence class

representatives. Rather, to determine if some arbitrary logic function f is implementable, it

is now (additionally) necessary to encode the function and compute the necessary inversions

and/or permutations to arrive at a matching for the function. Finally, it is important to

note that the permutations and/or inversions do not increase the complexity of the match

in terms of the number of LUTs in the topology. Permutations are handled simply by

connecting signals as is appropriate. Inversions, rather than creating explicit inverters in

the circuit, are simply absorbed into the LUTs within the topology (which corresponds to

simple and straight-forward changes to the LUT configuration bits).

Numerical results are presented later in this chapter to demonstrate that the use of NPN

equivalence classes results in fairly compact encoding of the logic functions implementable

by different topologies of LUTs.

4.3 Essential Bits

Although the use of NPN equivalence classes addresses the potential storage issues, it

does not address the runtime implications of determining all of the logic functions imple-

mentable by a topology of LUTs. The enumeration of all NPN equivalence classes is time

consuming, due to the heavy computation tasks of simulating a topology for a particular

set of configuration bits and NPN encoding the resulting simulated function for each set of

configuration bits. The complexity of enumerating the implementable logic functions for

a topology of LUTs increases dramatically with both the number of topology inputs, the

number of LUTs in the topology and the number of LUT inputs. For example, as shown in

Table 4.3, it takes about 20 hours to enumerate and encode all implementable logic func-

tions for a 7-input topology composed of three 3-input LUTs (c.f. topology “LUT3 7 1”

in Table 4.3 and in Appendix B).

However, during the enumeration of the topology, it is possible that certain values of

the configuration bits for certain LUTs can be skipped and those bits which can be skipped

NPN-based Boolean Matching 33

(a) (b) (c)

Figure 4.3: Three NPN equivalent topologies with complementation: (a) Topology

{f, c1, c2}; (b) Topology {f ′, c1, c2}; (c) Topology {f ′, c1
′, c2}

can be determined a priori. Of course, skipping many configuration bits is beneficial,

because it will reduce the total amount of simulation and NPN encoding required during

the enumeration of the topology to find the implementable functions. Those configuration

bits which cannot be skipped during enumeration are referred to as the essential bits while

those bits which can be skipped are referred to as redundant bits.

The question arises as to which bits are essential bits and which bits are redundant

for a particular LUT in any given topology. Redundant and essential bits follow from the

definition of NPN equivalence; based on the definition of NPN equivalence, it is possible

to know a priori that two different logic functions implemented by two different sets of

configuration bits will lead to the same NPN equivalence class, without knowing which

particular equivalence class. Thus, since we only need to store one representative for any

particular equivalence class, only one of the two functions needs to be simulated and NPN

encoded, thus reducing the overall computational effort required to enumerate the topology.

Further, skipping configuration bits in the fashion described will yield the same results as

performing full enumeration of the topology (i.e., not skipping any bits).

A simple example is used to illustrate the methodology of determining which config-

uration bits can be skipped for each LUT in a topology. Consider the 5-input topology

consisting of two 3-input LUTs illustrated in Figure 4.3(a). The configuration bits for

these two 3-input LUTs named L1 and L2 are denoted as c1 and c2, respectively. The

NPN-based Boolean Matching 34

(a) (b) (c)

Figure 4.4: Three NPN equivalent topologies with permutation: (a) Topology {f, c1, c2};

(b) Topology {f ′′, c1, c2}; (c) Topology {f ′′, c1
′, c2}

logic function implemented by the above 5-input topology is denoted as f . Assume that

configuration bit c1 = 0xA0 and c2 = 0xEA. This yields a logic function f = abc+abc+de.

In Figure 4.3(b), an inverter represented as a bubble is manually added on the first input

pin a of L1. In this case, the implementable logic function, denoted as f ′, is given by

f ′ = abc + abc + de. According to the concept of NPN equivalence, f and f ′ are NPN

equivalent since one is obtained from the other by inversion of an input. Hence, the NPN

encoding of both functions would lead to the same NPN equivalence class. Finally, in Fig-

ure 4.3(c), the inverter is absorbed into into the LUT L1, which modify the configuration

bit of L1 from c1 to c1
′ with c1

′ = 0x50. Since two logic functions f and f ′ belong to

the same NPN equivalence class, it is not necessary to simulate and NPN encode both

the circuit shown in Figure 4.3(a) and Figure 4.3(c); it is guaranteed that none of the

NPN equivalence classes will be lost if one of {c1, c2} or {c1
′, c2} is skipped during the

enumeration of the topology.

Similarly, input permutation and output complementation can also be used to find out

the sets of configuration bits which implement NPN equivalent logic functions. Consider

Figure 4.4(a) and Figure 4.4(b) where the first two inputs pins a and b are swapped. The

logic function in Figure 4.4(b), denoted by f ′′, has logic function f ′′ = abc + abc + de and

is NPN equivalent to f in Figure 4.4(a). In Figure 4.4(c), to absorb the permutation of

a and b into LUT L1, the configuration bit c1 of L1 changes from c1 to c1
′′ (c1

′′ = 0xC0),

so as to maintain the same logic function f ′′. Thus, the configuration bits {c1
′′, c2} can

NPN-based Boolean Matching 35

(a) (b) (c)

Figure 4.5: A 6-input topology of LUTs illutrating situations where complementation is not

permitted to find essential and redundant bits; (a) Original topology; (b) Complementation

not allowed on bridged inputs; (c) Complementation not allowed on internal inputs.

also be skipped during the enumeration of the topology as long as the configuration bits

{c1, c2} are not skipped. In summary, for the preceding examples, c1
′ and c1

′′ are defined

as redundant bits for LUT L1, while c1 (c1 = 0xA0) is defined as the essential bit of c1
′ (c1

′

= 0x50) and c1
′′ (c1

′′ = 0xC0) for LUT L1.

As discussed above, the simulation and NPN encoding steps must only applied on its

essential bits and redundant bits can be skipped. Before the simulation and NPN encoding

steps, another procedure is required to enumerate all essential bits for each LUT in the

given topology. It needs to be mentioned that the procedure has to be modified for each

LUT in a specific topology structure, because not every input or output pin is allowed for

complementation and permutation. An example of a 6-input topology of 3-LUTs is shown

in Figure 4.5(a). First, bridged input pins are not allowed to have complementation or

permutation, as shown in Figure 4.5(b). Second, the internal pins connecting two LUTs

are not allowed to have complementation or permutation, as shown in Figure 4.5(c). In

this case, complementation and permutation are only allowed to be on the input pins a

and b of LUT L1, the input pins d, e and f of LUT L2, and the output pin of LUT L3.

The pseudo-code of the enumeration of NPN equivalence classes using essential bits for

a given topology is described in Figure 4.6. Numerical results demonstrating the benefits

of essential bits in reducing the amount of computational effort required to enumerate

topologies of LUTs are presented later in the chapter.

NPN-based Boolean Matching 36

Procedure: NPN Equivalence Class Enumeration Using Essential Bits

Inputs: A LUT Topology T

Returns: A Hash Table, H.

Enumerate all essential bits for each LUT in the topology T ;1

for each set of essential configuration bits (c1, c2, . . . , cn) of LUTs in the topology T do2

Simulate the current logic function f that is implemented by the topology T ;3

Obtain its NPN equivalence class fnpn using a NPN encoder;4

if fnpn does not exist in the hash table then5

Insert fnpn, configuration bits, and complementation/permutation information into6

the hash table;7

end if8

end do9

return H;10

Figure 4.6: Enumeration of implementable logic functions for a particular topology of

LUTs using essential bits

4.4 Practical Bits

The NPN-based approach for Boolean matching is complete and guarantees to find a match

if it exists, as long as the enumeration of NPN equivalence classes is complete. However, the

enumeration of NPN equivalence classes still suffers excessive runtime using essential bits.

Based on the practical observation, some values of the configuration bits for certain LUTs

rarely show up in practical circuit designs, due to the large flexibility of LUTs. Hence,

certain values of the configuration bits can also be skipped, and it further reduces the total

amount of simulation and NPN encoding required during the enumeration of the topol-

ogy to find the implementable functions, at the expense of some implementable functions

missed. As a result, the NPN-based Boolean matching approach becomes incomplete.

The popularity of a configuration bit refers to the frequency of its appearance in practi-

cal circuits. Certain configuration bits are denoted as practical bits when their popularities

are above a particular threshold value. To find out appropriate practical bits, the following

work is done on a large set of practical circuits. First, all k-feasible (k = 3 or 4) cuts are

computed on the AIG of each practical circuit. Next, each k-feasible cut is simulated to

determine its implementable logic functions. Obviously, the truth table of the logic func-

tion corresponds to the configuration bit of a k-input LUT. Last, all configuration bits of

LUTs are collected from the set of practical circuits. The popularity of a particular config-

NPN-based Boolean Matching 37

uration bit is calculated using the number of its appearance divided by the total number of

appearance for all configuration bits. The threshold value for picking up practical bits has

to be chosen carefully. If the threshold moves up, more configuration bits can be skipped

and more possible implementable functions will be missed during enumeration. For the

3-input LUT architecture, the threshold value is set as 0.00%, 0.01%, 0.02%, 0.03%, 0.04%

and 0.05% individually. For the 4-input LUT architecture, the threshold value is set as

0.0%, 0.1% and 0.01% individually. The numbers of practical bits whose popularities above

different threshold values are shown in the table 4.1 and table 4.2.

Table 4.1: The number of practical bits of 3-input LUTs
3-input LUT architecture

Popularity 0.00% 0.01% 0.02% 0.03% 0.04% 0.05%

of Practical Bits 243 126 111 102 93 84

Table 4.2: The number of practical bits of 4-input LUTs
4-input LUT architecture

Popularity 0.00% 0.01% 0.1%

of Practical Bits 8376 774 140

It is clear that the use of both essential bits and practical bits can significantly reduce

computation time and memory usage further. The practical bits are collected and saved

in a data file. During the enumeration for topologies of LUTs, practical bits are loaded

into memory. The essential bits for each LUT are enumerated on the basis of its practical

bits, instead of all its configuration bits. Hence, less essential bits are necessary to be

fed into the following simulation and NPN encoding steps. However, some valuable NPN

equivalence classes are possibly missed and it leads to the incomplete Boolean matching.

The pseudo-code of the enumeration of NPN equivalence classes using essential bits for

a given topology is described in Figure 4.7. The efficacy of practical bits is presented

later in the chapter, which shows that the use of practical bits significantly speeds up the

simulation and NPN encoding steps, and also results in loss of some NPN equivalence

classes.

NPN-based Boolean Matching 38

Procedure: NPN Equivalence Class Enumeration Using Essential and Practical Bits

Inputs: A LUT Topology T

Returns: A Hash Table, H.

Load the practical bits for the LUTs in the topology;1

Enumerate all essential bits on the basis of practical bits for each LUT in the topology T ;2

for each set of essential configuration bits (c1, c2, . . . , cn) of LUTs in the topology T do3

Simulate the current logic function f that is implemented by the topology T ;4

Obtain its NPN equivalence class fnpn using a NPN encoder;5

if fnpn does not exist in the hash table then6

Insert fnpn, configuration bits, and complementation/permutation information into7

the hash table;8

end if9

end do10

return H;11

Figure 4.7: Enumeration of implementable logic functions for a particular topology of

LUTs using essential and practical bits

4.5 Numerical Results

The pre-computation of a library of topologies is executed on an Intel D920 machine

running the Linux operating system. The numerical result is shown in the table 4.3 and

4.4. In these two tables, “TO” means that the enumeration of NPN equivalence classes

exceeds the 48 hours timeout limit. In this case, the enumeration is terminated before

completion, so the correspondent number of partial NPN equivalence classes is labelled as

“N/A”.

The columns “Baseline”, “Essential Bits” and “Essential and Practical Bits” show the

computation time for enumeration of NPN equivalence classes and the number of resulting

NPN equivalence classes using all sets of configuration bits exhaustively, sets of essential

bits on the basis of all configuration bits, and sets of essential bits on the basis of all

practical bits. Under the condition of “Essential and Practical Bits”, the practical bits

belong to the group of configuration bits with popularities larger than 0.03%. From the

experimental result, the same number of NPN equivalence classes are obtained between

using the sets of configuration bits directly and the sets of essential bits on the basis of

all configuration bits. It is obvious that a significant improvement in computation time

are achieved using essential and practical bits. For example, almost 1700X speedup is

obtained for the topology “LUT3 7 2”. The enumeration for three 9-input topologies of

NPN-based Boolean Matching 39

Table 4.3: Numerical Results for Topologies of 3-input LUTs
Baseline Essential Bits Essential and Practical Bits

Topology NPN classes Time NPN classes Time NPN classes Time

LUT3 5 1 255 16.5 sec 255 0.3 sec 88 0.1 sec

LUT3 6 1 1010 24.7 min 1010 18.1 sec 435 4.6 sec

LUT3 6 2 769 25.0 min 769 12.4 sec 332 3.1 sec

LUT3 6 3 845 23.9 min 845 12.2 sec 319 2.4 sec

LUT3 6 4 999 23.8 min 999 16.0 sec 407 3.8 sec

LUT3 6 5 299 23.9 min 299 6.8 sec 91 1.4 sec

LUT3 6 6 3096 6.9 hrs 3096 6.4 min 1025 32.4 sec

LUT3 6 7 9200 6.2 hrs 9200 5.2 min 1937 27.4 sec

LUT3 6 8 3421 6.2 hrs 3421 5.3 min 1025 25.8 sec

LUT3 6 9 7644 6.0 hrs 7644 5.2 min 1652 22.3 sec

LUT3 6 10 3067 6.0 hrs 3067 3.8 min 937 17.4 sec

LUT3 7 1 5610 22.1 hrs 5610 4.1 min 1197 59.4 sec

LUT3 7 2 3081 17.9 hrs 3081 3.8 min 605 36.6 sec

LUT3 9 1 N/A TO N/A TO 2015 5.00 hrs

LUT3 9 2 N/A TO N/A TO 5367 24.0 hrs

LUT3 9 3 N/A TO N/A TO 10197 30.0 hrs

LUT3 9 4 N/A TO N/A TO 14682 6.70 hrs

Table 4.4: Numerical Results for Topologies of 4-input LUTs
Baseline Essential Bits Essential and Practical Bits

Topology NPN classes Time NPN classes Time NPN classes Time

LUT4 5 1 1705 10.9 min 1705 4.35 sec 231 0.52 sec

LUT4 5 2 810 11.5 min 810 1.87 sec 155 0.26 sec

LUT4 5 3 255 43.1 sec 255 0.60 sec 88 0.11 sec

LUT4 5 4 N/A TO 12661 3.03 min 908 4.43 sec

LUT4 5 5 N/A TO 6599 33.0 sec 772 4.00 sec

LUT4 5 6 N/A TO N/A TO 6474 5.11 min

LUT4 6 1 N/A TO 9744 5.18 hrs 692 2.31 sec

LUT4 6 2 N/A TO 5418 6.00 hrs 642 2.28 sec

LUT4 6 3 N/A TO N/A TO 10655 90.9 sec

LUT4 7 1 N/A TO N/A TO 5050 63.0 sec

LUT4 10 1 N/A TO N/A TO N/A TO

LUT4 10 2 N/A TO N/A TO N/A TO

NPN-based Boolean Matching 40

3-input LUTs and two topologies of 4-input LUTs is allowed to be complete before the

timeout limit, although the enumeration is still terminated for the two 10-input topologies

of 4-input LUTs.

In conclusion, essential bits offer an impressive solution to runtime speedup, and prac-

tical bits suggest tradeoff between CPU time and the number of NPN equivalence classes.

The aforementioned improvements make the pre-computation of a library of topologies

practical for the 3-input LUT architecture, however it is still not practical for the 4-input

LUT architecture. To address this issue and the third problem mentioned in section 4.1, a

modified NPN-based Boolean matching is proposed in the next section.

4.6 Functional Decomposition

The SAT-based Boolean matching approach is flexible, and it can be customized to different

topologies of LUTs. Given a k-input function with a given n-input topology of LUTs

(k ≤ n), it is guaranteed to find a match if it exists. However, the NPN-based approach

is limited to match a k-input function with a k-input topology of LUTs. As a result, the

pre-computed library is required to include a large number of topologies with different

structure, due to the existence of bridged inputs and flexible choice of k-input LUTs. The

number of k-input topologies with different structure is shown in the table 4.5. The large

number of topologies with different structure has a large impact on computation time and

Table 4.5: Number of k-input topologies with different structure
k-variable LUT topology # different topologies

5-input topology of 3-LUTs 1

6-input topology of 3-LUTs 10

7-input topology of 3-LUTs 2

8-input topology of 3-LUTs 22

9-input topology of 3-LUTs 4

5-input topology of 4-LUTs 5

6-input topology of 4-LUTs 3

7-input topology of 4-LUTs 1

8-input topology of 4-LUTs 27

9-input topology of 4-LUTs 10

10-input topology of 4-LUTs 2

NPN-based Boolean Matching 41

memory consumption. For example, 8-input topologies of 3-input LUTs have 22 different

structures. Not only the runtime of enumerating NPN equivalence classes is excessive for

all these 22 topologies, but also a large portion of memory allocation is required when

hash tables in these topologies are loaded priori to the online matching. Meanwhile, as

described above, the number of NPN equivalence classes is still too large for 10-input

topologies of 4-input LUTs, even though the enumeration is incomplete using practical

bits. To alleviate these problems, a NPN-based Boolean matching in conjunction with

functional decomposition is proposed.

In order to find a match for a 10-input logic function, the aforementioned NPN-based

Boolean matching is looking for some 10-input topologies of 4-input LUTs that can im-

plement the NPN equivalence class of the given logic function. Instead of straightforward

hash lookups, functional decomposition is applied to pre-process the logic function. First,

the 10-input function can be decomposed into a 4-input function and a 7-input function.

It is obvious that any 4-input function is implementable in a single 4-input LUT. Thus,

the Boolean matching problem is simplified from a 10-input function to a smaller 7-input

function.

In general, a functional decomposition is of the form:

f(x1, . . . , xr) = G(H1(x1, . . . , xi), . . . , Hm(x1, . . . , xi), xj, . . . , xr) (4.1)

where i, j,m ≤ r and 0 < i < j − 1. Intuitively, this is a procedure of encoding the first

j − 1 variables using m new variables. Therefore the functions H1, . . . , Hm are referred as

the encoding functions, and g as the base function. If i = j − 1, it is called a disjunctive

decomposition, in which variables x1, . . . , xi form the bound set, and xj, . . . , xr form the

free set; otherwise it is a non-disjunctive decomposition. If m = 1, it is called a simple

decomposition; otherwise it is a complex decomposition. If m < j − 1, g has fewer variables

than f , the decomposition is nontrivial; otherwise it is trivial [17].

For the Boolean matching problem, the functional decomposition is based on the clas-

sical Ashenhurst decomposition. Ashenhurst decomposition solves the simple disjunctive

decomposition problem, as shown in Figure 4.8(a). Thus, the equation 4.1 is simplified as:

f(x1, . . . , xr) = G(H(x1, . . . , xi), xi+1, . . . , xr) (4.2)

NPN-based Boolean Matching 42

(a) disjunctive (b) nondisjunctive

Figure 4.8: Ashenhurst decomposition

It uses a partition matrix, in the form of a 2-D truth table, for a given variable partitioning

of bound set B = x1, . . . , xi and free set F = xi+1, . . . , xr. Each column corresponds to one

possible assignment (i.e. a minterm) of the bound set variables, and each row corresponds

to one possible assignment of the free set variables. The partition matrix implies a simple

disjunctive decomposition if and only if there are at most two different distinct column

(thus the bound set variables can be encoded into one bit, using one function). To have a

nontrivial decomposition, the size of the bound set must be at least two. The derivation

of the base and encoding functions is easy: the encoding function H(B) can be defined by

the bound set minterms corresponding to the columns of one pattern (which is equivalent

to assigning H = 1 for these columns); the base function g(H,F) can be defined by the

compressed truth table obtained after merging the identical columns and assigning the

value of H for each column. Assuming to decompose a 10-input logic function into a 4-

input function and a 7-input function, the truth table of the logic function H corresponds

to the configuration bit of a 4-input LUT, and the other logic function G is used to find a

match in the pre-computed library. The functional decomposition is also computationally

complex. For the case above, there are
(

10
4

)

different way for decomposition. Fortunately,

functional decomposition is only applied on the function once, thus the complexity of

decomposition is not an issue.

It is important that Ashenhurst decomposition can also be modified to handle non-

disjoint decomposition. To make the decomposition simple and efficient, only one common

NPN-based Boolean Matching 43

Figure 4.9: Functional decomposition of a 9-input Boolean function

variable is allowed to be shared between the bound set and the free set, as shown in Figure

4.8(b). Thus, equation 4.2 can be modified as:

f(x1, . . . , xr) = G(H(x1, . . . , xs, . . . , xi), xs, xi+1, . . . , xr) (4.3)

where, xs exists in both the bound set and the free set. The existence of common variable

allows to explore larger solution space, making it possible to handle matching problems

for those topologies with bridged inputs.. For example, a 9-input logic function can be

decomposed into a 4-input logic function and a 6-input logic function, where no common

variable exists between these two functions, or it can be decomposed into a 4-input logic

function and a 7-input logic function, where one common variable is shared between these

two logic functions, as shown in Figure 4.9. The Table 4.6 shows a full list of possible

functional decomposition for all k-input functions (8 ≤ k ≤ 10).

In conclusion, for the 3-input LUT architecture, the straightforward NPN-based Boolean

matching is feasible but limited to an incomplete appraoch. Also, many different topolo-

gies are required for simulation and NPN encoding; for the 4-input LUT architecture, the

NPN-based Boolean matching is not feasible for k-input (k > 7) logic functions. The

Ashenhurst decomposition in conjunction with NPN equivalence addresses the problem.

Its benefits are (1) only k-input topologies (5 ≤ k ≤ 7) are necessary to exist in the library,

which saves a lot of computation time and memory usage; (2) for the 3-input LUT archi-

tecture, the NPN equivalence classes for k-input topologies (5 ≤ k ≤ 9) can be enumerated

only using essential bits in the timeout limit, thus the Boolean matching will be complete.

(3) for the 4-input LUT architecture, the enumeration of NPN equivalence classes for k-

NPN-based Boolean Matching 44

Table 4.6: A list of decompositions for k-input logic functions
k-input topology Architecture Encoding Function (H) Base Function (G)

8-input topology 3-LUT 2-input function 7-input function

8-input topology 3-LUT 3-input function 6-input function

8-input topology 3-LUT 3-input function 7-input function

8-input topology 4-LUT 2-input function 7-input function

8-input topology 4-LUT 3-input function 6-input function

8-input topology 4-LUT 4-input function 5-input function

8-input topology 4-LUT 3-input function 7-input function

8-input topology 4-LUT 4-input function 6-input function

9-input topology 3-LUT 3-input function 7-input function

9-input topology 4-LUT 3-input function 7-input function

9-input topology 4-LUT 4-input function 6-input function

9-input topology 4-LUT 4-input function 7-input function

10-input topology 4-LUT 4-input function 7-input function

input topologies (5 ≤ k ≤ 10) has to involve practical bits, thus the Boolean matching

will be incomplete. Besides, the proposed approach has to miss seven topologies with two

bridged input pins, when to find a match for some 8-input functions. These missed 8-input

topologies are illustrated in Figure 4.10.

4.7 Summary

This chapter has proposed the NPN-based Boolean matching problem and shown it can

be solved through simple hash lookups in a pre-computed library of topologies. The pre-

computation of a library of topologies suffers excessive computation time and memory

consumption. Two critical concepts of essential bits and practical bits are discussed to

solve runtime and memory problems. Further, Ashenhurst decomposition is involved as

a pre-process for logic functions, to make the NPN-based Boolean matching efficient to

handle functions with larger number of inputs. These technologies are combined together

to allow the NPN-based Boolean matching approach applicable on large industrial circuits

under the 3- or 4-input LUT architecture.

NPN-based Boolean Matching 45

Figure 4.10: Seven missed 8-input topologies of 4-input LUTs

Chapter 5

NPN-based Post-mapping Topology

Rewriting

Given the availability of the fast Boolean matching algorithm described in Chapter 4, this

chapter describes an algorithm that can be applied post-technology mapping to reduce the

number of LUTs in the mapped design without damaging the critical path of the circuit.

The presented algorithm is based on topology rewriting and focuses on 3- and 4-input LUT

architectures. Numerical results are presented to demonstrate the efficacy of the proposed

algorithm.

5.1 Top-level Rewriting Algorithm

The proposed algorithm for area minimization on the post-technology mapped network is

now described. The goal of the algorithm is to reduce the number of LUTs in the technology

mapped network without worsening the critical path in the design. The proposed algorithm

is based on the concept of circuit rewriting. Basically, it is a fast greedy algorithm which

minimizes the area of a mapped network by iteratively selecting subgraphs of LUTs rooted

at nodes and replacing, or rewriting, the subgraphs with alternative and smaller (i.e., less

LUTs) precomputed subgraphs. Of course, the repcomputed subgraphs must implement

the same functionality as the subgraphs they are replacing. Circuit rewriting is a very local

algorithm in so far as it rewrites small cones of logic. However, rewriting is very fast and

46

NPN-based Topology Rewriting 47

can be applied to the network many times. By an iterative application of rewriting, the

scope of the changes made to the network will no longer be local; the cumulative effect of

several rewriting passes is likely to achieve good results in terms of area minimization over

the entire network.

A single pass of the proposed algorithm is described as follows with pseudo-code pro-

vided in Figure 5.1. The proposed algorithm accepts as input a technology mapped net-

work. The output is also a mapped network with reduced area; i.e., a functionally equiv-

alent network of LUTs which contains fewer LUTs than the original network. Each pass

of rewriting begins with static timing analysis in which arrival times are propagated from

PIs to POs; this is followed by the propagation of required times from POs to PIs. Subse-

quently, each node in the network is considered as a candidate for rewriting in topological

order; i.e., nodes are processed from PIs to POs.

For node n, the following operations are considered to determine if the function imple-

mented by node n should be rewritten (and, hence, implemented by an alternative circuit

topology). At the node n, a set of cuts cutset is computed for node n, filtered and sorted by

a ranking weight (largest weights first); each cut C in the cutset of node n is considered as

a candidate for rewriting. The selected cut C is simulated to determine its corresponding

logic function f .

If the number of inputs of the logic function f is ≤ 7, then NPN-based matching is

used to find an alternative set of topologies of LUTs, denoted by topset, which implements

the logic function f . Each alternative topology implementing f is considered to determine

the impact on the area and delay of the circuit. An alternative topology is considered to

improve the circuit if either the area of the circuit is reduced without violating the timing

of the circuit or if the area of the circuit remains the same, but the delay of the circuit is

reduced (although the goal of the algorithm is to perform area minimization, it is possible

that a reduction in circuit delay can be found by performing rewriting). The topology

which yields the maximum improvements is selected for replacing the cut C. Pseudo-code

for selecting the best topology from the topset is shown in Figure 5.2.

If the number of inputs of the logic function f is ≥ 8, then NPN-based matching is

combined with Ashenhurst decomposition to find an alternative topology of LUTs which

implements the logic function f . First, disjoint Ashenhurst decomposition is applied to

NPN-based Topology Rewriting 48

Procedure: NPN-based Topology Rewriting

Inputs: Mapped network, N

Returns: Area minimized network, N ′

perform static timing analysis on network N1

for each node n in topological order from PIs to POs do2

compute sorted cutset for node n;3

for each cut C in cutset4

Area = Area(C); Delay = Delay(C); Required T ime = Required T ime(C);5

simulate C to obtain logic function f ;6

if fanin(C) ≤ 7 do7

find alterative topologies topset for f using NPN-based matching;8

select best topology Tbest for f from topset;9

if Tbest! = 0 do10

replace cut C with topology Tbest and update timing;11

end if12

else13

for each disjoint decomposition (g, h) of f do14

find alterative topologies topset for h using NPN-based matching;15

select best topology Tbest for h from topset;16

replace (g, h) with (LUT, Tbest);17

end do18

if Tbest! = 0 do19

for each non-disjoint decomposition (g, h) of f do20

find alterative topologies topset for h using NPN-based matching;21

select best topology Tbest for h from topset;22

replace (g, h) with (LUT, Tbest);23

end do24

end if25

if Tbest! = 0 do26

replace cut C with topology (LUT, Tbest) and update timing;27

end if28

end if29

end do30

end do31

Figure 5.1: The top-level algorithm for post-technology mapping area minimization using

topology rewriting.

NPN-based Topology Rewriting 49

Procedure: Topology selection

Inputs: Set of topologies topset, current Area, Delay and Required T ime

Returns: Best topology Tbest in topset

Tbest = 0;1

for each topology T in topset2

if Area(T) < Area and Delay(T) <= Required T ime do3

Area = Area(T); Delay = Delay(T); Tbest = T ;4

else5

if Area(T) == Area and Delay(T) < Delay do6

Delay = Delay(T); Tbest = T ;7

end if8

end if9

end do10

end do11

Figure 5.2: The means by which a topology is selected to replace a cut.

decompose f into the base function g and encoded function h. Of course, there are multiple

decompositions possible. The encoded function h is matched using NPN-based matching. If

disjoint Ashenhurst decompostion cannot find a candidate topology for f , then non-disjoint

Ashenhurst decomposition is used. The ground rule is that the disjoint decomposition will

always be tried first since non-disjoint decompositions will generate reconvergent paths

which leads to more complicated topologies.

5.2 Revised Cut Computation

The presented rewriting algorithm requires the computation of a cutset for the nodes in

the mapped network. The cut computation for topology rewriting is somewhat different

when compared with the cut enumeration used prior to technology mapping. Recall that

cut enumeration applied prior to technology mapping is perfomed on a subject graph and

the size or volume of the cut (measured in terms of its area) is not particularly important;

it is only important that each cut fits into a single LUT. Further, for cut enumeration prior

to technology mapping, the number of inputs to the cut is typically small since cuts are

mapped into single LUTs. However, during topology rewriting, larger cuts with additional

inputs need to be computed as well. Finally, since the topology rewriting algorithm is

continually changing the network, cut computation needs to be dynamic to remain in sync

NPN-based Topology Rewriting 50

Procedure: Cut Computation for Topology Rewriting

Inputs: root, N, S

Returns: A set of cuts sorted by their weights, cutset

Compute the MFFC mffc(root) for the root node;1

insert the trivial cut of the root node in the cutset;2

for each cut C in cutset do3

for each fanin L of C do4

if fanin L is not primary input then5

expandCut(C, L, N, S, mffc, cutset);6

end if7

end do8

end do9

sort cuts in the cutset by their weights;10

return cutset;11

Figure 5.3: Cut computation for topology rewriting.

with the changing network. Hence, the strategy for enumerative cut generation which is

used prior to technology mapping is not well suited for topology rewriting and a different

strategy is required.

During the previously proposed algorithm for topology rewriting, cuts were computed

separately for each node starting with its trivial cut. New cuts are obtained by expand-

ing existing cuts towards the PIs. The pseudo-code of the cut computation is shown in

Figure 5.3. The procedure starts on the node root for which the cuts are being computed

along with the limit on the cut size N and the limit S on the number of duplicated nodes.

A duplicated node is defined as a node which can be covered by a cut for node root, but is

not in the MFFC of the node root. By allowing nodes to be duplicated, more cuts can be

generated for node root, thereby allowing the rewriting algorithm to explore a potentially

large solution space which can lead to a better solution. Procedure expandCut() tries to

expand the cut by moving a fanin node L to the set of covered nodes and adding the

node’s fanins to the set of fanins. If the fanin node doesn’t belong to the MFFC of the

root mffc(root) and the number of duplicated nodes of the cut numDups(C) has already

saturated, i.e., numDups(C) ≥ S, the new cut is not constructed. If the new cut has more

fanins than the limit N or dominated by any of the previously computed cut, the new cut

is not appended to the cutset. Finally, if none of the above conditions holds, the cut is

appended to the cutset. Later in the cut computation, this cut is used to derive other cuts

NPN-based Topology Rewriting 51

Procedure: Cut Expansion

Inputs: C, L, N, S, mffc, cutset

Returns: cutset

if L /∈ mffc and numDups(C) == S1

return cutset;2

end if3

A new cut C′ = (C − L) ∪ fanins(L) is constructed;4

if numFanins(C′) > N // check if the cut C′ is N -feasible5

return cutset;6

end if7

if cutsF ilter(cutset, C′) // check if C′ is dominated by any cut in cutset8

return cutset;9

end if10

cutset = cutset ∪ C′;11

return cutset;12

Figure 5.4: Cut expansion

by calling expandCut(), whose pseudo-code is shown in Figure 5.4.

At the end of cut computation, some cuts may not be useful for topology rewriting

because the network structure covered by these cuts cannot be improved. That is, some

cuts should be pruned before rewriting consideration because they obviously offer little to

no potential improvement for reducing the area of the network; any further consideration

of these cuts will simply waste runtime without yielding any benefit in terms of circuit

area. In order to filter out the useless cuts and prioritize other cuts, the notion of cut

weight is involved. Weights are computed for all cuts in the cutset and only those cuts

with large enought weights are retained for topology rewriting.

The weight of a cut is defined and given by

cutWeight(c) = [numCovered(c) − numDup(c)]/numLuts(c) (5.1)

where numLuts(c) = ceiling[(numFanins(c)− 1)/(K − 1)]. The procedures numCovered

and numDup return the total number of covered nodes and the number of covered nodes

whose fanout nodes not included in the cut, respectively. numLuts is the minimum number

of k-input LUTs needed to implement the cut of the given size. An example of a cut of

LUTs is illustrated in Figure 5.5. This cut contains 6 nodes, and the node F is not covered

by the cut and needs duplication. Meanwhile, this cut has 7 fanins and the minimum

number of 3-input LUTs to implement the cut will be 3. Thus, the weight of cut will be

NPN-based Topology Rewriting 52

Figure 5.5: An example of cut weight calculation.

1.67. Intuitively, the weight of a cut shows how likely the cut will be useful in topology

rewriting. Larger weights imply cuts that might yield larger reductions in area. Those cuts

with weights ≤ 1 can be skipped because they offer no potential for improvement.

5.3 Numerical Results

The proposed rewriting algorithm has been tested on a large set of designs which have been

technology mapped to both architectures composed of 3-input LUTs and 4-input LUTs.

In terms of circuit size, the designs range in size from 51 to 16K LUTs when mapped to

3-input LUTs and from 39 to 12K LUTs when mapped to 4-input LUTs. All numerical

results were obtained on a dual processor Xeon machine with two separate hyper-threaded

processors, which runs a Linux operating system.

Table 5.1 presents a summary of the results for 3- and 4-input LUT architectures. Ta-

ble 5.1 compares the area and delay of the original technology mapped network to the

network obtained after the application of our proposed algorithm; area and delays are

reported as the geometric mean over the entire set of designs. As shown in Table 5.1,

the proposed algorithm yields and area improvement of roughly 3.5% on the 3-input LUT

network and 3.1% on the 4-input LUT network. Table 5.1 also shows the average run-

time required by the proposed algorithm demonstrating that, on average, the algorithm

is reasonably fast. The geometric mean of runtime for the entire rewriting is around 20

seconds. The longest runtime for the rewriting process is 403.16 seconds on the 3-input

LUT network, and 894.06 seconds on the 4-input LUT network.

NPN-based Topology Rewriting 53

Table 5.1: Experiment result of post-mapping topology rewriting
Before Rewriting After Rewriting

Designs Area Delay Area Delay Ratio of Area Runtime (sec)

3-input LUT architecture 2097.80 11.67 2024.60 11.67 0.965 19.87

4-input LUT architecture 1648.97 8.21 1597.17 8.20 0.969 23.45

Numerical results on a per design basis are shown in Figures 5.6(a) and 5.6(b) for

the the 3-input and 4-input LUT architectures respectively. From these figures, it can be

observed that the maximum area improvement is 10% for the 3-input LUT architecture

and 18% for the 4-input LUT architecture.

5.4 Summary

This chapter has discussed the entire proposed rewriting algorithm for area minimization

after technology mapping. It has shown how larger cuts are computed and how NPN-based

Boolean matching (along with Ashenhurst decomposition) is used to rewrite a circuit to

reduce the required number of LUTs. Numerical results have been presented to demon-

strate the efficacy of the proposed rewriting algorithm. In general, the application of the

proposed rewriting algorithm is reasonably fast and can effectively reduce the number of

LUTs in a given technology mapped netlist.

NPN-based Topology Rewriting 54

(a) 3-input LUT architecture

(b) 4-input LUT architecture

Figure 5.6: Experiment result of post-mapping topology rewriting

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Technology mapping is an important step in the FPGA CAD flow and has the responsibility

of optimizing simultaneous objectives, including area and delay. Unfortunately, this is a

difficult problem and technology mappers are forced to resort to efficient heuristic methods

to accomplish their task.

Additional heuristics can be applied after technology mapping. In particular, it is pos-

sible to apply circuit rewriting in order to further reduce the area of a technology mapped

network without harming the delay of the network. Unfortunately, area minimization

through rewriting requires the use of some sort of Boolean matching algorithm in order

to determine alternative circuit topologies which require less area, while implementing the

same function. It is possible to use SAT-based Boolean matching. However, SAT-based

Boolean matching is slow due to the need to continually formulate and solve the individual

SAT problems. Hence, despite the flexibility and elegance of the SAT-based approach, it

is not necessarily practical in terms of runtime.

This thesis has proposed the use of NPN-based matching as an alternative to SAT-

based matching. In this approach, only hash table lookups are required to determine if

a function is implementable within a particular topology of LUTs. Consequently, the use

of the proposed approach during circuit rewriting for area minimization offers significant

speedups in terms of runtime if compared to a SAT-based matching algorithm.

55

Conclusions 56

Unfortunately, the proposed NPN-based matching algorithm requires off-line enumer-

ation of the logic functions which can be implemented by different topologies of LUTs.

Although this procedure only needs to be performed once for a given topology of LUTs,

it has both large runtime and memory requirements. To offset these negatives, several

contributions have been proposed. The use of NPN equivalence classes has been proposed

to reduce the amount of memory required to store the functions which are implementable

by a particular topology of LUTs. To offset the amount of runtime required to process a

topology of LUTs, the ideas of essential bits and practical bits was introduced to avoid un-

necessary and unneeded simulation and NPN encoding. Numerical results were presented

to demonstrate the efficacy of the proposed ideas. The use of NPN encoding was shown to

keep the memory requirements low while the use of essential and practical bits was shown

to significantly speed up the processing of different topologies of LUTs (many topologies of

LUTs which could not be processed within 24 hours could, in fact, be processed by using es-

sential and practical bits). Finally, to further extend the range and ability of the proposed

matching algorithm, it was combined together with simple Ashenhurst decomposition.

Finally, the thesis proposed a post-technology mapping algorithm aimed at area min-

imization. The proposed algorithm was based on the concept of circuit rewriting using

the proposed NPN-based matching algorithm. Experimental results obtained from test-

ing the proposed algorithm on a set of designs demonstrated that the proposed algorithm

was quite capable of achieving area minimization. For FPGA architectures consisting of

3-input LUTs, an average area reduction of 3.5% was obtained. For FPGA architectures

consisting of 4-input LUTs, an average area reduction of 3.1% was obtained. Further, the

proposed algorithm was demonstrated to be computationally efficient due to the use of

NPN-based matching. On average, the proposed algorithm took, on average, about 20

seconds to perform rewriting. It is therefore concluded that the proposed algorithm can

be applied to large designs.

6.2 Future Work

From the obtained results, substantial area improvement can be achieved after post-

mapping topology rewriting in the reasonable computation time. However, the proposed

Conclusions 57

rewriting algorithm is only applicable on the 3- or 4-input LUT architectures. Besides,

the algorithm can only rewrite on the 10-feasible cuts. Future work in the post-mapping

topology rewriting will include:

• Discovering new canonical forms to represent logic functions instead of NPN equiv-

alence classes, which provides a more compressed way to contain all implementable

logic functions in a topology of LUTs. This will reduce the memory consumption

problem and make the Boolean matching feasible on topologies of large LUTs.

• Exploring other functional decomposition algorithms in corporation with NPN-based

Boolean matching, to allow the rewriting algorithm to work for functions with more

than 10 inputs.

APPENDICES

58

Appendix A

Glossary of Terms

ASIC Applicaton-Specific Integrated Circuit.

BLE Basic Logic Element.

Boolean Matching The question whether a logic function f can be implemented by a

topology of logic gates.

CLB Configurable Logic Block.

FPGA Field Programmable Gate Array.

NPN equivalent Two Boolean functions are NPN equivalent if one function can be de-

rived from the other function (or visa-versa) by negating (N) and permuting (P)

inputs and negating (N) the output.

IO Input/Output.

59

Appendix B

List of LUT Topologies

(a) LUT3 5 1

Figure B.1: 5-input topologies of 3-input LUTs

60

List of LUT Topologies 61

(a) LUT3 6 1 (b) LUT3 6 2

(c) LUT3 6 3 (d) LUT3 6 4

(e) LUT3 6 5 (f) LUT3 6 6

(g) LUT3 6 7 (h) LUT3 6 8

(i) LUT3 6 9 (j) LUT3 6 10

Figure B.2: 6-input topologies of 3-input LUTs

List of LUT Topologies 62

(a) LUT3 7 1 (b) LUT3 7 2

Figure B.3: 7-input topologies of 3-input LUTs

(a) LUT3 9 1 (b) LUT3 9 2

(c) LUT3 9 3 (d) LUT3 9 4

Figure B.4: 9-input topologies of 3-input LUTs

List of LUT Topologies 63

(a) LUT4 5 1 (b) LUT4 5 2

(c) LUT4 5 3 (d) LUT4 5 4

(e) LUT4 5 5 (f) LUT4 5 6

Figure B.5: 5-input topologies of 4-input LUTs

List of LUT Topologies 64

(a) LUT4 6 1 (b) LUT4 6 2

(c) LUT4 6 3

Figure B.6: 6-input topologies of 4-input LUTs

(a) LUT4 7 1

Figure B.7: 7-input topologies of 4-input LUTs

(a) LUT4 10 1 (b) LUT4 10 2

Figure B.8: 10-input topologies of 4-input LUTs

Bibliography

[1] FPGA architecture. http://www.eecg.toronto.edu/∼vaughn/challenge/fpga arch.html.

[2] A. Abdollanhi and M. Pedram. A new canonical form for fast Boolean matching in

logic synthesis and verification. In Proc. DAC, pages 379–384, 2005.

[3] Actel Corporation, Mountain View, CA. Actel Axcelerator family FPGAs, November

2008.

[4] Actel Corporation, Mountain View, CA. Actel ProASIC3 flash family FPGAs, Febru-

ary 2009.

[5] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron fpga

performance and density. IEEE Trans. VLSI, 12(3):288–298, March 2004.

[6] Altera Corporation, San Jose, CA. Altera 40nm Stratix IV FPGAs and HardCopy IV

ASICs, September 2008.

[7] Altera Corporation, San Jose, CA. Altera Stratix IV device handbook, June 2009.

[8] Altera Incorporated, San Jose, CA. Xilinx Virtex-5 family overview, February 2009.

[9] L. Benini and G. Micheli. A survey of Boolean matching techniques for library binding.

Trans. on DAES, 2(3):193–226, July 1997.

[10] V. Betz and J. Rose. VPR: A new packing, placement and routing tool for FPGA

research. In Proc. FPL, pages 213–222, 1997.

65

http://www.eecg.toronto.edu/~vaughn/ challenge/fpga_arch.html

List of LUT Topologies 66

[11] Vaughn Betz, Jonathan Rose, and Alexander Marquardt, editors. Architecture and

CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[12] S. Brown, J. Rose, and Z. Vranesic. A detailed router for field-programmable gate

arrays. volume 11, pages 620–628, May 1992.

[13] D. Chai and A. Kuelmann. Building a better Boolean matcher and symmetry detector.

In Proc. DATE, pages 1079–1084, 2006.

[14] S. Chatterjee, A. Mishchenko, and R. Brayton. Factor cuts. In Proc. ICCAD, pages

143–150, 2006.

[15] D. Chen and J. Cong. DAmap: A depth-optimal area optimization mapping algorithm

for FPGA designs. In Proc. ICCAD, pages 752–759, 2004.

[16] S. Cho, S. Chatterjee, A. Mishchenko, and R. Brayton. Efficient FPGA mapping using

priority cuts. In Proc. FPGA, 2007.

[17] J. Cong and Y. Ding. FlowMap: An optimal technology mapping algorithm for delay

optimization in lookup-table based FPGA designs. IEEE Trans. CAD, 13(1):1–12,

January 1994.

[18] J. Cong and Y. Ding. Combinational logic synthesis for LUT based field programmable

gate arrays. Trans. on DAES, 1(2):145–204, April 1996.

[19] J. Cong and Y. Hwang. Boolean matching for LUT-based logic blocks with ap-

plications to architecture evaluation and technology mapping. IEEE Trans. CAD,

20(9):1077–1090, September 2001.

[20] J. Cong and K. Minkovich. Improved SAT-based Boolean matching using implicants

for LUT-based FPGAs. Proc. FPGA, pages 139–147, 2007.

[21] J. Cong, C. Wu, and Y. Ding. Cut ranking and pruning: enabling a general and

efficient FPGA mapping solution. In Proc. FPGA, pages 29–35, 1999.

[22] P. Coussy and A. Morawiec, editors. High-level synthesis: from algorithm to digital

circuit. Springer Publishers, 2008.

List of LUT Topologies 67

[23] A. Farrahi and M. Sarrafzadeh. Complexity of the lookup-table minimization problem

for FPGA technology mapping. IEEE Trans. CAD, 13(11):1319–1332, Nov 1996.

[24] D. Gajski, N. Dutt, A. Wu, and S. Lin, editors. High-level synthesis: introduction to

chip and system design. Springer Publishers, 1999.

[25] S. Hassoun and T. Sasao, editors. Logic Synthesis and Verification. Springer Publish-

ers, 2001.

[26] Y. Hu, V. Shih, R. Majumdar, and L. He. Exploiting symmetry in SAT-based Boolean

matching for heterogeneous FPGA technology mapping. In Proc. DAC, pages 379–384,

2007.

[27] Y. Kukimoto, R. Brayton, and P. Sawkar. Delay-optimal technology mapping by DAG

covering. In Proc. DAC, pages 348–351, 1998.

[28] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In Proc. FPGA,

pages 21–30, 2006.

[29] I. Kuon, R. Tessier, and J. Rose. Fpga architecture: Survey and challenges. Founda-

tions and Trends in Electronic Design Automation, 2(2):135–253, 2008.

[30] A. Ling, D. Singh, and S. Brown. FPGA technology mapping: a study of optimality.

In Proc. DAC, pages 427–432, 2005.

[31] V. Manohararajah, S. D. Brown, and Z. G Vranesic. Heuristics for area minimization

in LUT-based FPGA technology mapping. IEEE Trans. CAD, 25(11):2331–2340,

November 2006.

[32] M. McFarland, A. Parker, and R. Camposano. Tutorial on high-level synthesis. In

Proc. DAC, pages 330–336, 1988.

[33] A. Mishchenko. DAG-Aware AIG rewriting: a fresh look at combinational logic syn-

thesis. pages 24–28, 2006.

[34] A. Mishchenko, S. Chatterjee, and R. Brayton. Fast Boolean matching for LUT

structures. 2007.

List of LUT Topologies 68

[35] A. Mishchenko, S. Chatterjee, and R. Brayton. Improvements to technology mapping

for LUT-based FPGAs. IEEE Trans. CAD, 26(2):250–253, February 2007.

[36] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton. Combinational and sequential

mapping with priority cuts. In Proc. ICCAD, pages 354–361, 2007.

[37] R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli. Logic synthesis algorithms

for programmable gate arrays. pages 620–625, 1990.

[38] R. Murgai, R. Brayton, and A. Sangiovanni-Vincentelli, editors. Logic Synthesis for

Field-Programmable Gate Arrays. Springer Publishers, 1995.

[39] Muroga.S, editor. Logic design and switching theory. John Wiley & Sons, 1979.

[40] P. Pan and C. Lin. A new retiming-based technology mapping algorithm for LUT-

based FPGAs. In Proc. FPGA, pages 35–41, 1998.

[41] J. Rose and S. Brown. Flexibility of interconnection structures for field-programmable

gate arrays. IEEE J. SSC, 26(3):277–282, March 1991.

[42] J. Rose, R.J. Francis, D. Lewis, and P. Chow. Architecture of field-programmable gate

arryas: The effect of logic block functionality on area efficiency. pages 1217–1225, 1990.

[43] S. Safarpour, A. Veneris, G. Baeckler, and R. Yuan. Efficient SAT-based Boolean

matching for FPGA technology mapping. pages 466–471, July 2006.

	List of Tables
	List of Figures
	Architecture and CAD for FPGAs
	Introduction
	FPGA Architecture Overview
	LUT-based FPGAs

	FPGA CAD Flow
	High-level Synthesis
	Logic Synthesis
	Clustering
	Placement and Routing

	Contributions of the Thesis
	Summary

	Technology Mapping for LUT-based FPGAs
	Background
	Cut Enumeration
	Timing Analysis
	Practical Technology Mapping
	Summary

	SAT-Based Boolean Matching
	Boolean Matching
	Post-Technology Mapping Optimization
	Summary

	NPN-based Boolean Matching
	Matching Via Hash Table Lookups
	NPN Equivalence
	Essential Bits
	Practical Bits
	Numerical Results
	Functional Decomposition
	Summary

	NPN-based Post-mapping Topology Rewriting
	Top-level Rewriting Algorithm
	Revised Cut Computation
	Numerical Results
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	APPENDICES
	Glossary of Terms
	List of LUT Topologies
	Bibliography

