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Abstract 
 

Adeno-associated viral (AAV) vectors have been shown to be potential vectors for 

the treatment of diseases, including protocols using RNA interference (RNAi). AAV 

vector production in insect cells using the baculovirus vector expression system has 

been a major advance in furthering their use. A major limitation of AAV vector 

production at high cell densities is a reduction in cell specific yield, which is thought to 

be caused by nutrient limitations. Nutrient consumption profiles after infection, 

however, have still not been fully characterized, probably due to the difficulty of 

characterizing consumption patterns based on increases in cell density, which are 

minimal after infection. It is known, however, that cells increase in size after infection; 

therefore, the driving hypothesis of this thesis was that biovolume, or the total volume 

enclosed by the membrane of viable cells, which accounts for both cell density and cell 

size, could be used to characterize nutrient consumption patterns both before and after 

infection.   

The relationships between nutrient consumption and change in cell density and 

biovolume were examined by statistical correlation analysis.  It was found that in 

uninfected cultures, no significant correlation differences, using either cell density or 

biovolume, were observed since cell size remained relatively constant; however, in 

infected cultures, more than half of the nutrients were found to be better correlated with 

biovolume than with cell density.  

When examining the nutrient and metabolite concentration data on a biovolume 

basis, nutrient consumption remained relatively constant. It is hypothesized that since it 

has been reported that the rate of cell respiration increases after infection, a more 

complete oxidation of nutrients occurs to satisfy increased energy needs during 

infection.  

By having a basis to base nutrient consumption, we can better assess the needs of the 

culture. This will allow the development of feeding strategies based on cellular 

requirements instead of supplying the cultures with generic nutrient cocktails. It is 
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expected that different nutrient mixtures can be used to target different goals such as 1) 

enhancing cell growth (before infection) and 2) improving the production of 

recombinant products (after infection). This will not only increase the efficiency of 

AAV vector production, but will also reduce the cost of production and make the 

process more economical by eliminating the addition of unnecessary nutrients.   

Although promising, some limitations of using biovolume still exist. A first 

limitation is the biovolume measure itself. This measure requires a device that 

measures cell size, such as a Coulter Counter Multisizer (Beckman-Coulter, Miami, 

FL, USA), which can be expensive. Capacitance probes can be a more cost effective 

tool to estimate biovolume; however, the availability of capacitance probes is still not 

common. A second limitation is the interpretation of the biovolume profiles, which can 

depend strongly on the fraction of cells in culture that are infected.  If the culture is 

infected asynchronously, then there will be many different cell populations in the 

culture. Future work may require separating the cell size distribution into populations 

of viable and non-viable cells to get a better biovolume measure as opposed to 

assuming that viability is well distributed over the entire range of cell sizes. In infected 

cultures where the viability may be low, it is likely that the cell size distribution of non-

viable cells will be concentrated at the lower end of the distribution (smaller diameter) 

rather than being well distributed over the whole range.  If this is the case, for the 

infected cultures with low viability, the mean cell diameter calculated will be 

underestimated, which will lead to an overestimation of nutrient consumption for 

cultures with low viability.  This will certainly affect the accuracy of the nutrient 

consumption profiles.  By separating cell size distribution data into different cell 

populations of viable and nonviable, the accuracy can be improved. 
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This thesis is the culmination of two years of work in two separate areas.  The first 

area I was involved with was siRNA delivery in Prof. Pu Chen’s lab.  The second area 

was the baculovirus-insect cell expression system in Prof. Marc Aucoin’s lab.  The two 

areas might at first glance seem to be quite different; however, there are definite 

connections between the two.  The baculovirus system in this thesis was used to 

generate AAV vectors that are heavily used to deliver genes for therapy, among which 

include genes to produce siRNA.   

To reflect both these areas, this thesis first describes siRNA and the use of various 

delivery systems for effective use of this gene silencing mechanism, followed by the 

analysis of the production of AAV vectors in insect cells. The experimental data used 

in this thesis were part of an experimentation aimed at improving AAV vector yields at 

high temperature in high density cultures.  It has been speculated that the reason why 

productivity decreases in high density cultures is due to nutrient limitation.  This thesis 

aims to characterize nutrient consumption profiles of insect cell cultures, which are the 

platform used for production of AAV vectors, before and after baculovirus infection, 

based on the cumulative size of cells (also known as biovolume).  
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Chapter 1 Introduction 

 

From finding the relationship between a molecule (e.g. RNA) and the biological 

effect associated with that molecule (e.g. gene silencing), to the widespread use of the 

molecule as a treatment, a huge number of obstacles need to be overcome.  For viral 

delivery methods, one of these obstacles is often to produce significant amounts of the 

therapeutic material (i.e. viral vector, which in the case of this thesis is based on the 

adeno-associated virus (AAV)).  AAV vectors have shown potential for the treatment 

of diseases using RNA interference (RNAi) by serving as the delivery agent.  AAV 

production has mainly been accomplished by transient transfection or through the use 

of stable mammalian cell lines; however, recently, researchers have shown the ability 

to produce these vectors using the baculovirus expression vector/insect cell system 

(Aucoin, et al. 2008).  Baculoviruses are very efficient at transferring genes to insect 

cells, which are amenable to producing human-like proteins and being cultivated in 

suspension to relatively high cell densities, making the baculovirus/insect cell system 

an interesting production platform for human therapeutics.  

In fact, the production of AAV vectors in insect cells has emerged as a competitive 

process to traditional mammalian cell systems, especially with the potential of 

achieving significantly higher cell densities in serum-free suspension cultures and the 

ability to avoid using genes of pathogenic helper organisms (i.e. adenovirus or herpes 

virus).  A major limitation of high cell density cultures, however, is the drop in specific 

production at high cell densities. Significant improvements in the yield have been 

achieved in the BEVS system due to medium replacement and cocktail additions; but, 

further improvements will rely on the ability to truly identify nutritional needs.  It 

seems from our review of the literature that the reason why nutritional needs after 

infection have not yet been fully characterized is probably due to the difficulty in 

describing nutrient consumption patterns after infection when cells cease to double.  If 

the cells cease to grow, the traditional characterization basis (cell density) is thus 

unavailable.  We know, however, that nutrient consumption is as much present after 

infection as before.  This is mainly to support viral replication and product synthesis.  
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One phenotypic change of the cells after infection is their sizes, which could be used as 

a basis for characterizing nutrient consumptions. 

This thesis aims to establish nutrient consumption patterns in insect cell cultures, 

especially after cells have been infected.  Better understanding of nutrient consumption 

could lead to the development of efficient and effective feeding strategies to maximize 

the production of AAV vectors at high cell densities. 

  

1.1 Hypothesis and Objectives 

The driving hypothesis of this research is that biovolume can be utilized as a 

parameter to characterize nutrient consumptions.   

The objective of this work is to: 

1. Determine the validity of using data from high temperature production of AAV 

vectors to assess nutrient consumption after infection; 

2. Compare the relationship between nutrient consumption, metabolite production, 

cell density and  biovolume;  

3. Establish if biovolume can be used to monitor nutrient consumption and 

metabolite production; and, 

4. Investigate, using biovolume as a new basis, differences in nutrient 

consumption and metabolite production before and after infection. 
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Chapter 2 Literature Review – siRNA Delivery 

 

2.1 RNA Interference 

RNA interference (RNAi), discovered by Andrew Fire and Craig Mello (1998), is a 

gene silencing phenomenon that is conserved in most eukaryotic organisms including 

fungi, plants and animals.  This is an ancient ubiquitously-conserved mechanism used 

by organisms to guard against viral infection and to regulate cellular gene expression, 

which ensures the integrity of their genomes (Sharp 2001). 

Naturally, the RNAi phenomenon is initiated by the cleavage of long dsRNAs by the 

RNase III endonuclease called Dicer, to form short interfering RNAs (siRNAs), which 

are the effector molecules of the RNA interference mechanism. These shorter segments 

of dsRNA range from 21 to 23 bps and are characterized by 2-nucleotide overhangs at 

the 3’ hydroxyl end, and phosphate groups at the 5’ end.  The antisense strand of the 

siRNA is incorporated into a protein complex called the RNA-induced silencing 

complex (RISC) where it is able to base-pair with a gene specific mRNA (Martinez, et 

al. 2002).  The sequence, structure, and thermodynamic stability of the siRNA 

determine which strand is the guide strand to be incorporated into the RISC (Tomari 

and Zamore 2005).  After ATP-dependent unwinding and incorporation of the guide 

strand (Nykanen, et al. 2001), the RISC will cleave the mRNA at a site that is perfectly 

complementary to the siRNA sequence, committing the mRNA to being degraded.   

RNAi has been found to be very useful. For example, it has been used in the study of 

functional genomics (Ganesan, et al. 2008).  It has been studied for use in gene therapy 

for the treatment of cancer (Chen and Huang 2008) and also as a treatment for HIV 

infections (Weber, et al. 2008). 

 Although siRNA, can be delivered to cells as a “naked” molecule, the negative 

charge and the hydrophilicity of nucleic acids make the entry into cells difficult 

because cell membranes are also negatively charged and hydrophobic (Schiffelers, et al. 

2004). Other difficulties associated with siRNA delivery include the lack of cell target 

selectivity, the low stability, the potential for off-target effects and the fact that it is 

prone to nuclease degradation in human plasma. Therefore, like most drugs and 



4 

 

therapeutics, either the siRNA molecule needs to be modified or a delivery agent needs 

to be used, or a combination of the two needs to be applied in order to successfully 

transport the molecule to its destination site, especially for systemic applications. 

 

2.1.1 Chemical Modification of siRNA 

Short interfering RNAs differ from traditional drugs in that they are relatively big 

molecules, negatively charged and have a molecular weight of approximately 7000 Da, 

while traditional small-molecule drugs are apolar and a have molecular weight less than 

700 Da (Corey 2007). The large size and charged characteristic of siRNA make it hard 

to cross the cell membrane, which is also negatively charged. 

RNA is a short lived molecule prone to degradation. Degradation is a serious concern 

in the delivery of most therapeutic molecules in vivo. RNA is susceptible to hydrolysis 

in acidic or basic environments due to its hydroxyl groups at the 2’ end. It is also prone 

to nuclease degradation in human plasma; therefore, methods to increase the stability of 

the molecule have been sought. The stability of the siRNA molecule, enhanced cellular 

uptake and potency can be manipulated through chemical modifications; however, 

modifications can also complicate the incorporation of siRNA into the RISC, the 

unwinding of the siRNA duplex, the rate of target cleavage and the rate of product 

release from the RISC (Dorsett and Tuschl 2004).   

The chemical modifications of siRNA fall into three categories including 1) 

backbone modification, 2) sugar modification, and 3) base modification. 

Backbone modifications include phosphorothioate linkages and boranophosphate 

linkages.  Both are the replacement of one or more of the non-bridging oxygen atoms 

on the phosphate backbone with sulfur and boron atoms, respectively (Eckstein 2002; 

Hall, et al. 2004).  Phosphorothioate (PS) backbones can increase the resistance of 

siRNA to serum nucleases and increase the half-life of siRNA, while retaining its 

silencing ability (Corey 2007); however, cytotoxic effects have been observed when 

too many PS linkages were placed on the backbone (Harborth, et al. 2003).  

Boranophosphate linkages can improve the siRNA’s silencing ability and enhance 

resistance to nucleases as well (Hall, et al. 2004). 
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Modifications to ribose have resulted in locked nucleic acids (LNA), 2’-O-methyl 

RNA, 2’-O-methoxyethyl (2’-MOE) RNA, 2’-fluoro RNA and 4’-thio RNA.  The 

LNAs use a methylene bridge to link the 2’ and 4’ carbons on the ribose ring.  LNAs 

improve the potency and stability of siRNA duplexes (Braasch, et al. 2003; Frieden and 

Orum 2006).  The rest of the 2’-modified RNAs enhance the affinity of the siRNA and 

increase their nuclease resistance.  Alternating 2’-modifications (2’-O-methyl and 2’-

fluoro) have been shown to have a 500 fold increase in potency when compared to 

unmodified siRNA, while retaining the siRNA’s silencing ability (Allerson, et al. 2005).  

In addition, placing the 2’-O-methyl modifications near the termini of the siRNA strand 

can reduce off-target effects, which are the mal-expressions of non-targeted genes 

(Corey 2007).  The 4’-thio modification increases siRNA’s resistance to nuclease 

digestion (Corey 2007).   

Base modification is the substitution of bases using the ribo-difluorotoluyl (rF) 

nucleotide (Xia, et al. 2006).  This modification has been shown to enhance resistance 

to nuclease degradation. This modification is interesting in that although the rF 

nucleotides cannot form normal Watson-Crick base-pairs, the silencing ability of 

siRNA is still retained.   

None of these modifications however, allow for efficient uptake of the siRNA in the 

cell; therefore, the use of therapeutic delivery systems is required. 

 

2.2 Therapeutic Delivery Systems 

A successful gene delivery system should at least have one or more of the following 

attributes: 1) to provide targeted (cellular/ tissue) delivery; 2) to improve oral 

bioavailibity, 3) to sustain drug/ gene effect in target tissue, 4) to solubilize drugs for 

intravascular delivery, and 5) to improve the stability of therapeutic agents against 

enzymatic degradation (nuclease and proteases), especially for protein, peptide, and 

nucleic acid drugs (Panyam and Labhasetwar 2003).  There are two major areas of 

work in gene therapy: 1) to find an effective therapeutic gene that can be expressed at 

the target site; and 2) to efficiently deliver that gene to the specific tissue or organ (Park, 

et al. 2006).  In RNAi therapeutics, siRNA is used as the effective gene to be expressed 
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at the target site.  This section will focus on the second aspect, which is the successful 

design of a gene-delivery vehicle.  The delivery systems can be divided into two major 

categories, which are 1) non-viral delivery, and 2) viral delivery.  

 

2.2.1 Non-viral Delivery 

Non-viral delivery methods include conjugation and complexation of siRNA with 

other molecules, such as peptides, to form nano-particles.  The resulting nano-particles 

allow improvements in cellular uptake, increased half-life and potency, and increased 

cell targeting specificity.   

 Because of their sub-micron size, nano-particles can easily penetrate deep into 

tissues through fine capillaries and be efficiently taken up by cells (Panyam and 

Labhasetwar 2003; Pinto Reis, et al. 2006).  It has been proven that 100 nm size nano-

particles show 2.5 folds greater uptake compared to 1 um, and 6 folds greater uptake 

compared to 10 um micro-particles in the Caco-2 cell line (Panyam and Labhasetwar 

2003); thereby showing that size does make a difference.  The size of nano-particles 

also allows them to be easily accumulated around tumor sites because tumor sites 

usually have defective vascular architectures, and an increased production of 

permeability factors (Yang, et al. 2006).  Due to the leakiness of the tumor vessels, 

small particles can pass through the blood stream and accumulate at the disease site 

more easily.  This passive accumulation phenomenon is called the enhanced 

permeability and retention (EPR) effect.  The size of the small particles usually needs 

to be less than 150 nm for EPR to take effect (Li and Szoka 2007).  In addition to the 

size, the surface properties are also important for delivery.  It has been reported that 

particles with hydrophilic surfaces are more desirable because particles with 

hydrophobic surfaces are more susceptible to uptake by mononuclear phagocytes, 

macrophages and reticuloendothelial systems (RES) in the blood and organs (Yang, et 

al. 2006).   

In siRNA delivery, nano-particles are usually formed by conjugation and 

complexation. Conjugates of siRNA are chemically modified or unmodified siRNA 

linked covalently to another molecule that can improve other in vivo properties.  
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Complexation involves the mixing of charged peptides/molecules with siRNA and 

establishing electrostatic linkages.  Although compared to viral delivery systems, nano-

particles are relatively safe, the delivery efficiency is usually not as high as for viral 

systems.  An example of a nano-particle used for this purpose involves the conjugation 

of a chemically modified siRNA, having phosphorothioate backbone and 2’-O-methyl 

modification, with cholesterol, which increases the biodistribution of siRNA delivered 

to the liver, heart, kidneys, adipose tissue, and lungs (Soutschek, et al. 2004 ).  A more 

detailed review of different types of formulations (conjugations and complexations) is 

presented in the following sections. 

 

2.2.1.1 Cationic Lipids and Polymers 

Cationic lipids and polymers can condense nucleic acids, which are anionic particles, 

through charge-charge interactions to form nano-particles.  Cationic lipids enhance the 

uptake of the nano-particles by binding to the negatively-charged cell membranes. This 

advantage makes cationic lipids the most popular choice as transfection reagents in 

vitro (Li and Szoka 2007).  However, this advantage becomes a disadvantage when 

delivered in vivo in that the positively charged lipids will bind to anionic serum 

proteins such as serum albumin causing aggregation of proteins and immune responses.   

To solve this problem, the siRNA can be condensed with a cationic polymer such as 

polyethyleneimine (PEI), protamine sulfate or polylysine (PLL) first to form the 

interior of the nano-particle; then, an anionic lipid can be added as the outside coat to 

form a neutral nano-particle (Li and Szoka 2007).   

Another way to avoid the problem of positively charged lipids is to pre-condense 

siRNA with the cationic lipid and coat the surface with polyethylene glycol (PEG) 

(Park, et al. 2006; Yang, et al. 2006).  PEG is a biocompatible inert polymer, which is 

known to increase particle stability in the presence of serum proteins and alleviate in 

vivo cytotoxicity of the particles (Chitkara, et al. 2006; Park, et al. 2006; Yang, et al. 

2006).  PEG-stabilized particles, however, suffer from low uptake rates because of 

minimized particle interaction with the cell membrane (Wheeler, et al. 1999).  

Polyelectrolyte complexes (PECs) are based on the principle of polynucleotide 

condensation followed by surface modification and are promising candidates for 
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siRNA delivery.  Most commonly, siRNA PECs are formed by interacting siRNA with 

a polycation first and then conjugating PEG onto the surface of the particle.  Studies 

have shown that PECs are able to be successfully delivered to human hepatoma cells 

(HuH-7) resulting in considerable RNAi activity being observed (Park, et al. 2006).  

 

2.2.1.2 Peptide Delivery System – Cell-Penetrating Peptides 

Peptides are also a promising category of gene delivery system because of their 

biocompatibility and programmability (Chitkara, et al. 2006; Ramachandran and Yu 

2006; Yang, et al. 2006).   Polycationic peptides can neutralize the negative charges 

present on the surface of the siRNA molecule, thus condensing it into a hydrophobic 

core. Synthetic peptides can furthermore be designed to incorporate a cytoplasmic 

translocation signal (CTS) (Brokx, et al. 2002; Simeoni, et al. 2003).  The CTS 

enhances the translocation of the peptide-based delivery vehicle through cellular 

membranes (Brokx, et al. 2002; Simeoni, et al. 2003).   

There is a class of short peptides, made of less than 30 amino acids, such as TAT and 

oligoarginine, that have been used to internalize different bioactive compounds into 

cells (Fischer, et al. 2004; Mae and Langel 2006; Morishita and Peppas 2006; Noguchi 

and Matsumoto 2006; Sato, et al. 2006; Zatsepin, et al. 2005).  These peptides are 

termed cell-penetrating peptides (CPP) or protein transduction domains (PTD) and are 

able to deliver bioactive materials into tissues and cells by chemically hybridizing with 

and perturbing the lipid bilayer structure of the cell membrane without the need for a 

receptor.  Table 1 below lists some of the common CPPs and their sequences (Pujals, et 

al. 2006; Sato, et al. 2006).  

By linking these CPPs with peptides containing other desired properties, the 

previously non-CPP can become a CPP (Noguchi and Matsumoto 2006).  Once the 

peptides cross the cell membrane and enter the interior of the cell, they will be rapidly 

degraded, thus releasing the genetic material (Jarver and Langel 2004).   
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CPP 

Table 1: Effective CPPs for the Delivery of Molecules to Cells 

Sequence Length 

Protein-derived peptides 

Tat GRKKRRQRRRPPQ 11 

Penetratin (Antp) RQIKIWFQNRRMKWKK 16 

VP22 DAATATRGRSAASRPTERPRAPARSASRPRRVD 33 

Amphipathic peptides 

MAP KLALKLALKALKAALKLA 18 

Transportan GWTLNSAGYLLGKINLKALAALAKKIL 27 

Transportan-10 AGYLLGKINLKALAALAKKIL 21 

KALA WEAKLAKALAKALAKHLAKALAKALKACEA 30 

Pep-1 KETWWETWWTEWSQPKKKRKV 21 

MPG GALFLGFLGAAGSTMGAWSQPKSKRKV 27 

 

A common feature existing in all CPPs is that they have a high degree of positive 

charges due to their high content of the basic amino acids, lysine and arginine.  The 

presence of the cationic amino acids is important for internalization of the CPP-binding 

cargo.  At physiological pH, both lysine (pKa = 10.5), and arginine (pKa = 12) are 

protonated; therefore, they will interact with the negatively charged sulphate and 

phosphate groups of the extracellular cell matrix (ECM) (Pujals, et al. 2006).  The 

number of arginines needed for optimal cell-penetration is between 7 and 15 depending 

on the techniques and the cell line used (Pujals, et al. 2006).  Studies have shown that 

attaching a small hydrophobic molecule like biotin to a CCP like the Tat peptide can 

cause a 6-fold increase in cellular uptake of the peptide (Pujals, et al. 2006).   

 

2.2.2 Viral Delivery System 

The benefit of using viral vectors to deliver genes coding for the production of 

siRNA in vivo and in vitro is that viruses have evolved to successfully transduce cells 

efficiently.  Once cells are transduced, the recombinant genes can be expressed in the 

host cell for knockdown of the target genes.  To produce siRNAs in the cells, usually a 
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segment of DNA coding for short hairpin RNA (shRNAs) is inserted into the 

expression vector driven by RNA polymerase III-dependent promoters such as pU6 and 

pH1-RNA (Shen, et al. 2003) or pRNA polymerase II CMV (Xia, et al. 2002).  As the 

recombinant gene enters the cell, siRNA will be synthesized from the shRNA as was 

previously described for RNA interference (Section 2.1).   Another way to produce 

siRNA in cells is to use two separate vectors: one coding for the sense and one coding 

for the antisense strand of a small RNA with 19 nucleotides matching the targeted 

mRNA gene sequence.  Small interfering RNA usually has 21 nucleotides with 2 

nucleotides overhanging at the 3’ end; therefore, only 19 nucleotides are needed to 

match to the gene sequence.  The two strands will form a duplex in vivo (Elbashir, et al. 

2001).  Of the two methods, the method that utilizes the shRNA appears to inhibit gene 

expression more efficiently than the duplex-forming method (Yu, et al. 2002).  Viruses 

that have been used to deliver recombinant genes for siRNA synthesis include 

retrovirus, lentivirus, adenovirus, adeno-associated virus and more recently even 

baculovirus (Dorsett and Tuschl 2004; Ong, et al. 2005).   

 

2.2.2.1 Retroviruses 

Retroviruses were the first viral vectors to be used for RNAi (Li, et al. 2006).  

Although successful applications in many cell lines have been achieved in vitro, there 

are two major drawbacks of using retroviruses in vivo.  The first disadvantage is that 

retroviruses work by integrating its genome into the host cell’s chromosome, thus 

raising safety concerns.  The risk with chromosome integration is that it has great 

potential to cause insertional mutagenesis and thus causing potential carcinogenesis (Li, 

et al. 2006).   The second major disadvantage is that retroviruses are only able to infect 

actively dividing cells.  Most mammalian cells are not actively dividing; therefore, its 

use in human therapeutic applications is limited (Li, et al. 2006).  Nevertheless, 

Brummelkamp et al. (2002) and Rubinson et al. (2003) have used retroviruses for 

RNAi in mammalian cells.   
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2.2.2.2 Lentiviruses 

Lentiviruses are a subclass of retroviruses, which include the human 

immunodeficiency virus (HIV).  There are several advantages of using lentivirus as a 

delivery agent.  The first is that lentiviruses are able to infect a wide range of cell lines 

in vitro including primary cells such as stem cells, fertilized oocytes, and blastocysts, 

and various cellular targets in vivo such as brain and liver cells (Wiznerowicz and 

Trono 2003).  Secondly, lentiviruses, unlike retroviruses, are able to infect non-cycling 

and post-mitotic cells.  Thirdly, transgenes delivered by lentiviruses are not silenced 

during cell development; thus, transgenic animals can be generated by infecting 

embryonic stem cells or embryos using lentiviral vectors (Rubinson, et al. 2003).  

Lastly, lentiviruses are able to accommodate large inserts into its genome and are less 

immunogenic than adenoviruses (Li, et al. 2006).  Lentiviruses have been used to 

deliver vectors containing shRNA for the synthesis of siRNA into primary mammalian 

cells, stem cells and transgenic mice (Rubinson, et al. 2003). In addition, Wiznerowicz 

and Trono (2003) have used lentivirus-mediated expression of siRNA to trigger RNAi 

in a drug-inducible fashion.   

 

2.2.2.3 Adenoviruses 

Adenoviruses are a popular choice of virus especially in the area of cancer gene 

therapy.  About 25% of current clinical gene therapy trials use adenoviruses (Relph, et 

al. 2005).  The genome delivered by adenovirus cannot be efficiently integrated into the 

host cell’s genome; thus, the probability of having insertional mutagenesis with the use 

of this viral vector is relatively low (Calos 1996).  At the same time, the genetic 

expression is relatively transient because the information can be lost in the process of 

cell replication (Li, et al. 2006).  In cancer-therapy, transient expression of a toxic gene 

is sufficient (Li, et al. 2006).  Advantages of using adenovirus include the availability 

of high virus titers, and the ability to infect a wide spectrum of cell types including 

primary cell lines (Arts, et al. 2003; Shen, et al. 2003) . Disadvantages of using 

adenovirus include the lack of cell specificity and the significant cytotoxicity to liver 

cells (Li, et al. 2006).  Examples of adenoviral applications include the delivery of 

siRNA to both brain and liver in vitro and in vivo.  Xia et al. (2002) have also used 
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adenovirus-mediated expression of siRNA to successfully reduce the expression of 

polyglutamine in neurons, which is a major cause of at least nine inherited 

neurodegenerative diseases. 

  

2.2.2.4 Adeno-associated Viruses 

The advantages of using adeno-associated viruses (AAVs) as gene therapy vectors 

include: 1) the ability to infect a broad spectrum of both dividing and non-dividing 

cells; 2) wild-type AAV has never been found to be associated with any disease and it 

cannot replicate inside infected cells without the aid of a helper virus; and 3) it usually 

does not stimulate a cell-mediated immune response (Stilwell and Samulski 2003). 

AAVs have been used to deliver shRNA to generate disease models (Hommel, et al. 

2003) that target tyrosine hydroxylase mRNA within the neurons of the midbrain.  

Tyrosine hydroxylase is an important enzyme for the production of dopamine, a 

neurotransmitter responsible for a range of actions including food intake, addiction, and 

control of movements (Hommel, et al. 2003). In addition, the degeneration of 

dopamine-generating neurons is the primary cause of Parkinson disease (Gibb 1997).  

 

2.2.2.5 Baculoviruses 

Baculoviruses are insect cell viruses (see Section 3.1) that have recently found 

themselves as gene delivery vehicles for mammalian cells. More commonly known in 

this setting as BacMam vectors, these vectors have gained attentions because: 1) they 

have a high capacity for large inserts of recombinant genes, and 2) they are not known 

to replicate or express viral proteins inside mammalian cells because their natural hosts 

are insects.  Nicholson et al. (2005) have recently used baculoviruses for siRNA 

delivery into Saos2, HepG2, Huh7, and primary human hepatic stellate cells and have 

successfully knocked down a recombinant GFP gene in each.  In addition, Ong et al. 

(2005) used baculovirus in the delivery of siRNA to reduce recombinant luciferase 

being expressed in rat brain. 
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Chapter 3 Literature Review – Baculovirus–Insect Cell 
System 

 

3.1 Baculoviruses 

Baculoviruses are rod-shaped, circular double-stranded DNA viruses.  They are 

about 40 – 50 nm in diameter and 200 – 400 nm in length (Kelly, et al. 2007).  The 

circular double-stranded DNA consists of approximately 80 – 200 kbps (Kelly, et al. 

2007).  Baculoviruses are characterized by their ability to form occlusion bodies around 

virions.  There are two genera in the Baculoviridae family, the granuloviruses (GVs) 

and the nucleopolyhedroviruses (NPVs).  The GVs form small granular occlusion 

matrices called granulin, which usually only encapsulate one virion.  The NPVs form 

large occlusion matrices called polyhedrin, which usually encapsulate many virions.  

There are also two forms of baculovirus progeny, the budded virus (BV) and the 

occlusion-derived virus (ODV), which will be explained in more details in Section 

3.1.1.   

More than 500 types of baculoviruses have been identified (Hu 2005).  The most 

studied baculovirus is the Autographa californica multinucleopolyhedrovirus 

(AcMNPV).  This virus was originally isolated from alfalfa looper (a lepidopteran).  

The baculoviruses used in this thesis are AcMNPV. 

Baculovirus’ host ranges are restricted to invertebrates.  The most common hosts are 

members of the order Lepidoptera (moth).  Other orders that are also infected by 

baculoviruses include Diptera (flies), Hymenoptera (sawflies), and Trichoptera (caddis 

flies) (Hu 2005; Kelly, et al. 2007).  In cell culture, the two most commonly used insect 

cell lines are from Spodoptera frugiperda and Trichoplusia ni. 

 

3.1.1 Structure of Baculoviruses 

Budded viruses (BV) and occlusion-derived viruses (ODV) are genetically identical, 

but they differ in morphology, time and cellular site of maturation, structural proteins, 

and infectivity (Figure 1) (Kelly, et al. 2007).  The rod-shaped, circular double-stranded 
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DNA is condensed in the nucleocapsid of both forms of the virus (Blissard 1996).  The 

BVs have spike-like structures on one end of the virion known as a peplomer that is 

composed of the glycoprotein gp64 (Volkman, et al. 1984). The glycoprotein, gp64, is 

an important protein for budded virus infection.  The ODV does not have gp64, instead 

it has the envelope protein P74, which is important for ODV attachment to midgut cells 

(Kelly, et al. 2007).  The occlusion matrices envelop protein is called polyhedrin.  

Polyhedrin protein protects the ODVs against proteolysis at the late stage of infection 

as well as against physical and biochemical decay while outside of the host (Hu, et al. 

1999).   

 

 

 

Figure 1: Budded and Occluded Form of Baculoviruses (Blissard 1996) 

 
3.2 Baculovirus and the Baculovirus Expression Vector System 

The baculovirus expression vector system is an attractive system for recombinant 

protein production because:  

1. The host cell for this virus is eukaryotic. Insect cells can perform higher order 

post-translational modification of proteins compared to bacterial and yeast cells. 
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The recombinant proteins made in insect cells will more closely resemble the 

human proteins made for therapeutic purposes.     

2. Baculoviruses have a high capacity for inserts of multiple or large recombinant 

genes.   

3. Baculoviruses are considered safe because they are unable to replicate in 

mammalian cells.   

4. The two very late baculoviral genes, p10 and polyherin, are highly expressed 

and they are not essential in culture for the production of recombinant proteins.  

Thus, the two genes can be removed and replaced by a transgene of choice.  

5. Insect cells can be cultured to very high cell densities.  The reported cell 

density achieved in culture is > 1 x 107 cells/ml (Elias, et al. 2000).  Therefore, 

coupling the high cell density with the strong promoters inside insect cells, can 

greatly amplified protein production.   

6. It is relatively easy to culture insect cells (Sander and Harrysson 2007) 

compared to the culture of mammalian cells. 

 

3.2.1 Recombinant Proteins Production 

One of the major applications of BEVS is the production of recombinant proteins.  

Smith et al. (1983) were the first ones to use AcMNPV as an expression vector to 

produce human β-interferon in insect cells.  Since then, many foreign genes have been 

expressed using the baculovirus expression system.  Examples of recombinant proteins 

produced by BEVS include monoclonal antibodies and tumor necrosis factor-β (TNF-

β) (Sandhu, et al. 2007).   

Virus-like particles (VLPs) can also be produced through baculovirus infection of 

insect cells.  Virus-like particles are generally composed of viral structural proteins that 

self-assemble to form “viruses” that do not contain viral nucleic acid (Palomares, et al. 

2006).  VLPs are made by the simultaneous assembly of major viral structural proteins.  

Virus-like particles are not infectious but they are able to cause immunogenic responses 

due to the epitopes present on the viral proteins; therefore, they can be used as vaccines 

(Palomares, et al. 2006).   
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The production of VLPs usually requires the production of more than one viral 

protein.  There are two ways of producing VLPs.  One way is by employing more than 

one baculovirus, each carrying a gene that is responsible for one viral structural protein. 

After co-infection of cells with multiple vectors, simultaneous production of the viral 

proteins will allow them to self-assemble into viral particles (Aucoin, et al. 2007; 

Mena, et al. 2007).  The other method is to use a single baculovirus containing multiple 

genes coding for multiple viral structural proteins (Mena, et al. 2007).  The first method 

is more popular because it allows for the manipulation of different multiplicities of 

infection (MOI) for each recombinant baculovirus, which can lead to the production of 

VLPs with varying protein composition (Mena, et al. 2007). 

Virus-like particles expressed using the baculovirus expression vector system include 

HIV, herpes simplex virus, polyomavirus, parvovirus, infectious bursal disease virus, 

hepatitis C virus, enterovirus 71, and very recently the severe acute respiratory 

syndrome coronavirus (SARS-CoV) (Hu 2005).  To date, there is still no approved 

human therapeutic based on the BEVS in North America (Sandhu, et al. 2007).  

However, there are several products in their advanced clinical trials.  These include 

PROVENGE®, from Dendreon Corporation, which is a therapeutic for prostate cancer 

in the late stage phase III of clinical trial, and it has received fast track review from the 

FDA; Cervarix®, made by GlaxoSmithKline, which is approved in Australia and 

Europe, is a prophylactic vaccine against human papillomavirus (HPV); and 

FLUBLOK™, from Protein Sciences Corporation,  which is a therapeutic for influenza 

that is in phase III of clinical trials (Cox 2004). 

 
3.3 Nutrient Requirements 

There are many factors that can influence recombinant protein expression levels in 

insect cells using the baculovirus vector expression system.  These factors include: the 

ratio of the number of virus particles to the number of, also known as the multiplicity 

of infection (MOI); the density of the cells when the infection is carried out, often 

referred to as the time of infection (TOI); the type of recombinant protein expressed; 

the type of the cell line used; the type of nutrient supplemented; and the way of nutrient 

supplementation.  This section of the review will focus on of the nutrient requirements 
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of insect cells, specifically for Sf-9 cells.  It is important to understand the nutrient 

requirements of insect cells because nutrient levels affect cell metabolism, which will 

have impacts on the production of recombinant proteins.  It is known that the 

nutritional requirements of insect cells before and after infection are different 

(Palomares, et al. 2004; Radford, et al. 1997; Wang, et al. 1993; Wang, et al. 1993).  

Although, it is known that metabolic differences exists before and after infection, the 

exact differences in terms of nutrient uptake have not yet been thoroughly investigated.  

The following section is meant to report on the state of the art of insect cell 

metabolism. 

 

3.3.1 Sf-9 Cells 

This cell line was derived from the pupal ovarian tissue of the fall armyworm, 

Spodoptera frugiperda.  This cell line is highly susceptible to AcMNPV baculovirus 

infection.  Therefore, it is often used to produce recombinant baculoviral stocks and to 

produce recombinant proteins.  The nutrient review that follows in this section focuses 

on Sf-9 cells. 

 

3.3.2 Essential Nutrients and Supplements 

3.3.2.1 Carbohydrates 

Glucose is considered to be the most important source of carbon for biomass 

production (Ferrance, et al. 1993).  It is the most consumed nutrient (Rhiel and 

Murhammer 1995) and the main energy source (Drews, et al. 2000).  The flux through 

glycolysis is three times higher than the flux from glutamine for energy generation 

(Drews, et al. 2000).  The high levels of glucose consumption are an indication of an 

active glycolytic pathway in insect cells (Benslimane, et al. 2005).  Glucose is also 

metabolized through the pentose phosphate pathway generating reducing power and 

nucleic acid precursors (Benslimane, et al. 2005).  Benslimane et al (2005) reported 

about 4 times more glucose being metabolized through the pentose phosphate pathway 

than through the glycolytic pathway (TCA cycle) for Sf-9 cells.       



18 

 

When glucose is in excess, the rate of consumption will increase.  Since cells only 

require certain amounts of cellular energy and precursors, when glucose supply is 

exceeding the requirements, overflow metabolism through the TCA cycle will occur, 

generating metabolic byproducts including alanine, lactate and ammonia (Doverskog, 

et al. 1997).  Glucose-derived pyruvate is the major carbon source for alanine 

production (Doverskog, et al. 1997); thus, alanine formation is regulated by glucose 

concentration.  Although, alanine itself is nontoxic to cells at high-levels, the 

production of alanine will result in loss of carbon source and reducing power (Ohman, 

et al. 1995) since alanine will only yield 7% of energy compared to complete oxidation 

of glucose (Mendonca, et al. 1999). 

Very little overflow metabolism is observed when both glucose and glutamine are 

limiting as seen when operating in fed-batch mode (Doverskog, et al. 1997).  It is best 

to maintain the glucose level just above its critical value to avoid unnecessary substrate 

consumption – something not often done in batch cultures.  The critical concentration 

of glucose may differ from culture to culture due to different culture conditions, e.g. 

age of the cell-line, type of cells, and the type of media.  When glucose is exhausted, 

the main energy supplier is likely to be switched to glutamine, alanine formation will 

stop and ammonia will start to form (Bedard, et al. 1993) causing increases in pH of the 

culture (Rhiel and Murhammer 1995).  Following glucose exhaustion, the growth of the 

cells will usually stop (Bedard, et al. 1993) and apoptosis can be triggered (Meneses-

Acosta, et al. 2001).  Although glucose and glutamine have been identified as the main 

energy sources, feeding strategies using only glucose and glutamine have not allowed 

significant increases in cell concentration and protein productivity.  This failure 

indicates that other nutrients might be the limiting factors in achieving the two 

objectives (Mendonca, et al. 1999).   

Other carbon sources that can also be utilized by insect cells include fructose, 

maltose and sucrose.  Fructose is only consumed after glucose depletion.  Maltose, a 

dimer of glucose, is also found to be completely consumed at the end of cultures 

containing also glucose and fructose (Bedard, et al. 1993; Rhiel and Murhammer 

1995).  Cultures containing serum, such as the one used in the aforementioned studies, 

may be responsible for the depletion of maltose due to the presence of maltase in 
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serum.  Sucrose, a dimer consisting of glucose and fructose, is normally not consumed 

in insect cell lines; however, some reports have indicated sucrose consumption after 

baculovirus infection (Benslimane, et al. 2005; Wang, et al. 1993).  Sucrose can be 

broken down to release glucose by α-glucosidase, which is the same enzyme that 

breaks down maltose (Wang, et al. 1993).  Sucrose metabolism will add to the energy 

burden for the cells because the cells will need to synthesize α-glucosidase to break 

down sucrose (Wang, et al. 1993).  The maximum specific growth rate in glucose-

deficient culture is 25% lower than in glucose-supplied cultures.  This indicates that 

other carbon sources are not as effective as glucose in providing energy to the cells 

(Mendonca, et al. 1999).  This ineffectiveness might be due to the loss of energy in 

producing the enzymes needed for the metabolism of other carbon sources as in the 

case of sucrose metabolism (Mendonca, et al. 1999; Wang, et al. 1993).   

 

3.3.2.2 Amino Acids 

3.3.2.2.1 Glutamine 

Glutamine is the most consumed amino acid in insect cell culture. It is also the only 

amino acid known to undergo significant degradation in culture media (Ozturk and 

Palsson 1990).  The half-life of glutamine is about 600 hrs at 27 °C (Ferrance, et al. 

1993).  Ozturk and Palsson (1990) have reported a glutamine half-life to be about 500 h 

at 37 °C. It is used by the cells as an energy source, as well as for biomass and nucleic 

acid synthesis (Lehninger 1975; Rhiel and Murhammer 1995).  It is also a major source 

of nitrogen (Drews, et al. 2000).  It can be metabolized via the TCA cycle as 2-

oxoglutarate (2-OG) to generate energy and liberate ammonia ions as shown in Figure 

2 (Benslimane, et al. 2005; Drews, et al. 2000).  About 4.6% of the glutamine 

consumed in the culture enters the TCA cycle (Benslimane, et al. 2005) in the presence 

of glucose.  In glucose-deprived cultures, the glutaminase/glutamate dehydrogenase 

pathway will be up-regulated to generate energy using glutamine via the TCA cycle 

(Drews, et al. 2000).     

Glutamine is the major source of ammonia (Ohman, et al. 1995).  Ammonia can be 

liberated from glutamine via the glutaminase/glutamate dehydrogenase pathway as 
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shown in Figure 2.  Since alanine formation requires the incorporation of ammonia, 

glutamine metabolism will also affect alanine production (Ohman, et al. 1995).  As a 

result in glutamine-limiting conditions, alanine formation will be decreased as well 

(Doverskog, et al. 1997).  Consumption of other amino acids increase when glutamine 

becomes limiting in the culture.  Of these other amino acids, the consumption of 

glutamate, aspartate, and asparagine increase the most because they can act as 

precursors for oxaloacetate (OA) as shown in Figure 2 (Bedard, et al. 1993).   

Ohman et al. (1996) have shown that insect cells can be sustained in cultures without 

glutamine, glutamate and aspartate if ammonium ions are supplied to culture medium.  

This indicates that insect cells are able to synthesize glutamine.  Although synthesis of 

glutamine is possible, the maximum specific growth rate of the cells grown is reduced 

by 63% in glutamine-limiting cultures, indicating exogenous glutamine is more 

efficiently used by the cells (Mendonca, et al. 1999).   

Similar to mammalian cells, it is found that glutamine consumption rate is not 

affected by glucose concentration in insect cells (Rhiel and Murhammer 1995).  

However, glucose and glutamine metabolic routes are co-regulated; therefore, as 

mentioned previously, appropriate amounts of glucose and glutamine are important to 

avoid the accumulation of potentially toxic byproducts and metabolic wastes 

(Palomares, et al. 2004).  The optimum glucose/glutamine ratio found for hybridoma 

cells is 2 – 7 (Savinell and Palsson 1992).  In insect cell cultures, the glucose/glutamine 

ratios are often maintained around 2 – 7 as well, with reported values of 5 (Bruggert, et 

al. 2003; Ohman, et al. 1995), and 2.5 (Bedard, et al. 1993; Ferrance, et al. 1993; 

Weiss, et al. 1981).  Just like glucose, the initial concentration of glutamine will affect 

its consumption rate.  Increased initial concentration will result in increased uptake rate 

(Mendonca, et al. 1999).  

Cells need to achieve certain sizes before they can progress through the cell cycle 

(Bussolati, et al. 1996).  The increase in cell size is associated with the increase in cell 

volume, which is related to the cell water content (Bussolati, et al. 1996).  Therefore, 

cell volume is regulated by the transport rates of osmolytes across the cell membrane 

(Bussolati, et al. 1996).  A significant portion of intracellular amino acids do not have 

metabolic function; instead, those amino acids act as osmolytes (Bussolati, et al. 1996).  
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Glutamine and glutamate, which can be converted interchangeably, make up more than 

70% of amino acid contents intracellularly.  As a result, glutamine is important in cell 

cycle regulation and increase in cell volume (Bussolati, et al. 1996).  It is desirable to 

maintain a high extracellular concentration of glutamine to be used as osmolytes for 

optimal cellular growth (Bussolati, et al. 1996). 

 

 

 

Figure 2: Sf-9 Cell Metabolism (modified from Drews, et al. 2000) 

3.3.2.2.2 Glutamate 

Glutamate is a non-essential amino acid because it can be synthesized in insect cells.  

Glutamate can be made from aspartate, glutamine, alanine and proline (Bruggert, et al. 

2003; Mitsuhashi 1982).  Although non-essential, glutamate is often contained in 

yeastolates (about 2 mM) and serums, thus found in insect cell cultures (Bruggert, et al. 

2003; Drews, et al. 2000; Mitsuhashi 1982).  It is used for energy production in 

addition to biomass generation (Ferrance, et al. 1993).  It is one of the most rapidly 

consumed nutrients (Bedard, et al. 1993) and is one of the major sources of nitrogen 
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(Drews, et al. 2000).  When glucose is abundant, decreased amount of glutamate will 

account for increased amount of alanine production (Bedard, et al. 1993) by glutamate-

pyruvate transaminase: 

 

Glutamate (providing NH4
+) + pyruvate  alanine + 2-oxoglutarate. 

 

 Glutamate accumulates when 2-oxoglutarate is in abundance (Bedard, et al. 1993).  

When both glucose and glutamine become scarce, glutamate can be converted to 2-

oxoglutarate and ammonia by glutamate dehydrogenase (Ohman, et al. 1995).  The 

TCA cycle can then metabolize 2-oxoglutarate to generate energy for the cell.  The 

liberated ammonium ions will accumulate in culture.  Glutamate is used to synthesize 

nucleic acids indirectly because it can be converted to glutamine at the cost of ATP 

molecules.  Glutamate conversion to glutamine will be limited when glucose is limiting 

because glutamate is preferentially used as an energy source (Mendonca, et al. 1999).     

 

3.3.2.2.3 Asparagine 

Asparagine is a non-essential amino acid (Bruggert, et al. 2003).  It is often found in 

culture media because of supplementation by yeastolates and serums (Bruggert, et al. 

2003; Drews, et al. 2000; Mitsuhashi 1982).  Asparagine is used for energy production 

(Drews, et al. 2000) and biomass generation (Ferrance, et al. 1993).  Glutamine is 

preferred over asparagine in energy generation.  Only when glutamine is depleted will 

asparagine consumption increase (Ohman, et al. 1995); thus, it is often found to 

accumulate in culture (Benslimane, et al. 2005).  Asparagine can act as a precursor for 

oxaloacetate and enter the TCA cycle to generate energy when glutamine is depleted in 

the culture (Bedard, et al. 1993).  Asparagine metabolism usually begins with 

conversion to aspartate (Rhiel, et al. 1997; Rhiel and Murhammer 1995).   
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3.3.2.2.4 Aspartate 

Aspartate is a non-essential amino acid (Bruggert, et al. 2003).  It is used for energy 

production and nucleic acid formation in addition to biomass generation (Ferrance, et 

al. 1993).  It is also one of the most consumed nutrients (Bedard, et al. 1993).  

Aspartate can be catabolized from asparagine with the release of ammonium ion.   

 

3.3.2.2.5 Alanine 

Alanine is a non-essential amino acid for insect cells (Bruggert, et al. 2003).  Alanine 

is the only major byproduct formed under excess glucose and glutamine conditions 

(Doverskog, et al. 1997).  Glutamine metabolism will release ammonium ions, part of 

these ammonium ions will be incorporated in the anabolism of alanine.  Alanine 

production will stop once glucose is depleted in the culture; this indicates that glucose 

is the carbon source for alanine formation (Bedard, et al. 1993).  Alanine is often 

produced early in the culture due to excess carbon sources (Mendonca, et al. 1999).  

Alanine is consumed once glucose is depleted and can serve as an energy source for the 

cells by releasing pyruvate, which can enter the TCA cycle to generate energy, as 

shown below.  The glutamate released can also enter the TCA cycle as 2-oxoglutarate 

by releasing an ammonium ion.  Therefore, as a result of alanine catabolism, ammonia 

will start to accumulate in culture (Bedard, et al. 1993; Ohman, et al. 1995; Rhiel and 

Murhammer 1995).   

 

Alanine + 2-oxoglutarate  Glutamate (providing NH4
+) + Pyruvate. 

 

Although alanine accumulation does not inhibit growth (Drews, et al. 1995; Drews, 

et al. 2000), excess alanine formation will drain the cells of reducing powers (Ohman, 

et al. 1995) since most biosynthetic processes will require energy.   
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3.3.2.2.6 Serine 

Serine is used for the production of energy and generation of biomass (Ferrance, et 

al. 1993).  It is one of the most rapidly consumed nutrients (Bedard, et al. 1993).  

Serine can be used to synthesize nucleic acids (Drews, et al. 1995; Tremblay, et al. 

1992).  It is also used in cysteine biosynthesis (Doverskog, et al. 1998).  Cell division 

will stop once serine in the media is depleted (Bruggert, et al. 2003).   

 

3.3.2.2.7 Glycine 

Glycine is important in threonine metabolism (Ferrance, et al. 1993).  Glycine can be 

made from serine in some organisms, but it cannot be formed in Sf-9 cells because the 

cells lack mitochondrial serine hydroxymethyltransferase (Tremblay, et al. 1992).  

Glycine is an absolute requirement for Sf-9 cells (Tremblay, et al. 1992), although the 

consumption is usually negligible and is usually not within the detection limit of the 

protocols generally used (Bedard, et al. 1993; Drews, et al. 1995).  Glycine is used for 

biomass generation (Drews, et al. 1995) and nucleic acid production (Doverskog, et al. 

1997).  Insufficient amounts of glycine will lead to about 50 – 60% reductions in 

protein synthesis (Bruggert, et al. 2003). 

 

3.3.2.2.8 Threonine 

Threonine is used for energy production and biomass generation (Ferrance, et al. 

1993).  Consumption of threonine increases as glutamine becomes limiting, suggesting 

that threonine is also used as an energy source (Ohman, et al. 1995). 

 

3.3.2.2.9 Cysteine 

Cysteine is a non-essential amino acid for insect cells (Bruggert, et al. 2003).  It can 

be synthesized from methionine.  However, the synthesizing ability depends on the 

proliferation state of the cells.  Only cells in the early exponential phase can synthesize 

cysteine and grow well in cysteine-free media (Doverskog, et al. 1997).  Cysteine is 

consumed more than 25% over the period of culture for Sf-9 cells (Palomares and 
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Ramirez 1996), though the consumption is not related to biomass generation 

(Doverskog, et al. 1998).  Cysteine is used to synthesize proteins and produce 

glutathione, an antioxidant protecting cells from free radicals (Doverskog, et al. 1998).  

Cysteine also plays a role in the cysteine transport system (Doverskog, et al. 1998).  

The transport system exchanges cysteine with glutamate and is operated by 

concentration gradients across the cell membrane.  When cysteine concentration 

increases, there will be an increase in the export of glutamate (Bannai 1986).  When 

intracellular glutamate concentration is low, the cell will restore the concentration by 

use of other transport systems (Doverskog, et al. 1998).   All these transport systems 

require energy.  Increased cysteine concentration will result in increased cysteine 

uptake rate.  As a result, increased uptake rate will increase the cellular maintenance 

energy and will have a negative effect on cell growth (Doverskog, et al. 1998).  In 

addition, increased intracellular concentration of cysteine will lead to the production of 

H2S, which is inhibitory to cells (Mehler 1986).  Nonetheless, insufficient amount of 

cysteine will affect the transport of leucine, valine, and tryptophan to cells, which 

depends on the export of cysteine and methionine (Doverskog, et al. 1998).  In Sf900-II 

medium, the amount of cysteine is sufficient for cells and not limiting (Rhiel, et al. 

1997).   

 

3.3.2.2.10 Methionine 

Methionine is an essential amino acid for insect cell growth (Mitsuhashi 1982).  It is 

used as an energy source for cells (Drews, et al. 1995) and can be used to synthesize 

cysteine (Doverskog, et al. 1997).  It is also used as an exchange substrate for leucine, 

isoleucine, valine and tryptophan (Doverskog, et al. 1998).  Therefore, decreases in 

methionine will affect the transport of all these amino acids (Doverskog, et al. 1997).  

Methionine uptake rate is inversely related to cysteine concentration (Doverskog, et al. 

1998).  Methionine feeding has been shown to slow down cell death (Mendonca, et al. 

1999).   
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3.3.2.2.11 Leucine 

Sf-9 cells do not consume much leucine (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  Leucine can be used for protein synthesis and biomass generation 

(Doverskog, et al. 1998; Drews, et al. 1995), but is not used for energy generation 

(Ferrance, et al. 1993).  Uptake of leucine will increase when the concentration of 

cysteine in the culture increases (Doverskog, et al. 1998).    

 

3.3.2.2.12 Isoleucine 

Sf-9 cells do not consume much isoleucine (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  Cultures usually have a net accumulation of isoleucine at the end of 

the culture (Benslimane, et al. 2005).  Isoleucine can be incorporated into cell mass 

(Drews, et al. 1995) and is not used for energy generation (Ferrance, et al. 1993).  

Uptake of isoleucine will increase when the concentration of cysteine in the culture 

increases (Doverskog, et al. 1998). 

 

3.3.2.2.13 Valine 

Sf-9 cells do not consume much valine (Ferrance, et al. 1993).  It can be used for 

protein synthesis and biomass generation (Doverskog, et al. 1998; Drews, et al. 1995), 

but is not used for energy generation (Ferrance, et al. 1993).  Uptake of valine will 

increase when the concentration of cysteine in the culture increases (Doverskog, et al. 

1998). 

 

3.3.2.2.14 Histidine 

Sf-9 cells do not consume much histidine (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  Histidine can be incorporated into cell mass (Drews, et al. 1995).  

 
3.3.2.2.15 Arginine 

Arginine is used for energy production and biomass generation (Drews, et al. 1995; 

Ferrance, et al. 1993).  Consumption of arginine increases as glutamine becomes 
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limiting, suggesting that arginine can be used as an energy source (Ohman, et al. 1995).  

Without sufficient amounts of arginine, the cells will stop to divide (Bruggert, et al. 

2003). 

 

3.3.2.2.16 Proline 

Sf-9 cells do not consume much proline (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  Proline can be used to produce glutamate in culture (Ferrance, et al. 

1993). 

 

3.3.2.2.17 Tyrosine 

Tyrosine is important for insect cell growth (Mitsuhashi 1982) and it is an essential 

amino acid for Sf-9 cells (Gibbs, et al. 1993).  It can be used to make ring-containing 

components in biosynthesis (Ferrance, et al. 1993) and can be incorporated into cell 

mass (Drews, et al. 1995).   Feeding the cells with tyrosine will slow down cell death 

(Mendonca, et al. 1999).  Cell division will stop if tyrosine is not supplied in sufficient 

amounts (Bruggert, et al. 2003).  However, too much tyrosine in the media can cause 

the precipitation of other medium components that might be essential for cell growth 

(Marteijn, et al. 2003). 

 

3.3.2.2.18 Lysine 

Sf-9 cells do not consume much lysine (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  The consumption of lysine increases as glutamine becomes limiting, 

suggesting that this amino acid can be used as an energy source (Ohman, et al. 1995).  

Lysine can also be incorporated into cell mass (Drews, et al. 1995).  Insufficient 

amount of lysine can reduce protein production by 50 – 60% (Bruggert, et al. 2003).   
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3.3.2.2.19 Phenylalanine 

Sf-9 cells do not consume much phenylalanine (Ferrance, et al. 1993; Palomares and 

Ramirez 1996).  It can be used to make ring-containing components in biosynthesis 

(Ferrance, et al. 1993) and can be incorporated into cell mass (Drews, et al. 1995). 

 

3.3.2.3 Metabolic By-products 

3.3.2.3.1 Lactate 

Lactate production is not as common in insect cells as it is in mammalian cells 

(Ohman, et al. 1995) and the production never reaches inhibitory levels (Reuveny, et al. 

1993a).  Lactate usually only accumulates in oxygen-limiting cultures (Reuveny, et al. 

1993b); however, lactate has also been found to accumulate in cultures with high initial 

glucose concentration (around 50 mM) (Rhiel and Murhammer 1995).  Lactate 

production is generally a signal of low protein yield and off-balance metabolism 

(Wang, et al. 1996).  The major source of lactate production comes from glucose 

(Wang, et al. 1996).  Lactate production below 2 mM indicates a stress-free culture and 

shows that most glucose is completely oxidized (Garnier, et al. 1996).  Lactate 

consumption will start once glucose is exhausted; however, cell growth cannot be 

presumed even if lactate can act as a carbon source (Bedard, et al. 1993).  Lactate 

accumulation might also have an effect on culture pH as Rheil and Murhammer (1995) 

observed decreases in pH values coinciding with the accumulation of lactate in their 

cultures.     

 

3.3.2.3.2 Ammonia 

Ammonia production is a result of amino acid metabolism (Ferrance, et al. 1993).  

Ammonia is produced by the catabolism of glutamine by glutaminase in the 

mitochondria (Ohman, et al. 1995).  Ammonia can also be formed by the spontaneous 

decomposition of glutamine in the culture media (Ohman, et al. 1995).  Insect cells 

generally are less sensitive to ammonia accumulation than mammalian cells.  Sf-9 cells 

can support ammonia concentrations up to 180 mg/ml without having an inhibitory 
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effect on cell growth (Bedard, et al. 1993).  For Sf-9 cells, minimal ammonia 

accumulation occurs (Ohman, et al. 1995) and the level of production does not inhibit 

cell growth (Bedard, et al. 1993).  Glutamine and glutamate are the two major sources 

of ammonia (Ohman, et al. 1995).  When both glucose and glutamine are present in the 

culture, ammonia is not produced; instead, alanine is produced (Mendonca, et al. 1999).  

When glucose is exhausted, alanine is metabolized to glutamate to enter the TCA cycle 

and produce more energy for the cells.  As glutamate is metabolized, ammonia is 

released and starts to accumulate in culture (Bedard, et al. 1993; Ohman, et al. 1995).     

 

3.3.3 Medium 

Originally, insect cells were cultured using Grace’s basal medium supplemented with 

5 – 10% fetal bovine serum.  Grace’s basal medium was originally developed to 

support the growth of Australian emperor gum moth, Antherea eucalypti.  It has been 

used to culture insect cells of the order Lepidopterans and Dipterans (Grace 1962; 

Grace 1966; Grace 1967).  Serum is used to provide essential growth factors for cells 

and can promote recombinant protein production up to day 1 post-infection (Yamaji, et 

al. 2006).  There are several disadvantages associated with the use of serum: 1) serum 

complicates downstream processing of proteins; 2) the quality of serum can vary lot-to-

lot; 3) serum can contain potential infectious contaminants; and 4) serum is costly 

(Mendonca, et al. 2007; Shen, et al. 2007).  To avoid potential problems that can be 

caused by serum, yeastolate and several different types of hydrolysates have been used 

as substitutes for serum.  Today, SF-900 II (Gibco/Invitrogen) and Excell 405 (Sigma-

Aldrich) media are the two most commonly used serum-free media.  

    

3.3.3.1 Serum-free Medium Supplements 

Hydrolysates and peptones are produced by enzymatic or chemical digestion of 

casein, albumin, yeast cells, plant and animal tissues (Batista, et al. 2005).  They are 

undefined and complex mixtures of amino acids, polypeptides, polysaccharides, 

vitamins, nucleic acids and minerals (Ikonomou, et al. 2003).  Examples of 

hydrolysates include soy hydrolysates, meat hydrolysates, yeast hydrolysates, wheat 
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hydrolysates, and rice hydrolysates (Mendonca, et al. 2007).  Of these hydrolysates, 

yeastolate, which is an aqueous extract of autolysed baker’s or brewer’s yeast, has been 

found to be the most efficient hydrolysate for promoting insect cell growth and 

enhancing recombinant protein production (Batista, et al. 2006; Ikonomou, et al. 2003; 

Shen, et al. 2007).     

 

3.3.3.2 Conditioned Medium 

Conditioned media (CM) are media that have previously been used to culture cells, 

so they usually contain growth factors secreted by the cells.  Doverskog et al. (2000) 

have shown that CM can stimulate the proliferation of Sf-9 cells in serum-free medium.  

In addition, CM from Sf-9 cells has been found to contain antimicrobial activity 

(Svensson, et al. 2005):  it exhibits strong antibacterial activity against the Gram-

positive bacteria, B. megaterium, and weaker activity against the Gram-negative 

bacteria, E. coli (Svensson, et al. 2005).  It has been proposed that the antibacterial 

peptides might be synthesized and secreted by the Sf-9 cells as a defense mechanism 

against bacterial infection (Svensson, et al. 2005).  However, the exact protein 

responsible for the antimicrobial activity has not been identified, yet.     

 

3.3.4 Dissolved Oxygen 

Dissolved oxygen (DO) is an important parameter to cell metabolism because 

oxygen is the final electron acceptor.  DO content can also affect nutrient utilization 

and waste metabolite accumulation (Rhiel and Murhammer 1995).  There should 

always be enough oxygen in the culture to avoid oxygen deprivation; but at the same 

time, too much oxygen can also form free radicals (Rhiel and Murhammer 1995) which 

will damage the cells. The optimum level of DO is affected by the type of media used 

(Rhiel and Murhammer 1995).  Sf-9 cell cultures are found to be rather insensitive to 

the level of dissolved oxygen (Bedard, et al. 1993; Hensler, et al. 1994; Rhiel and 

Murhammer 1995), which is evidenced by the lack of lactate formation.  In general, the 

oxygen demand of insect cells is higher than that of mammalian cells (Shuler and 

Wood 1995). 
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3.4 Baculovirus Infection 

3.4.1 Baculovirus Infection Life Cycle and Gene Expression 

The two progeny phenotypes of baculovirus have different roles in the virus’ life 

cycle. The ODV is usually contained in a protein matrix called polyhedron in the case 

of AcMNPV and is responsible for infecting the gut epithelial cells of the insect that 

ingested the virus.  Once the infection is established within the host insect, the BV is 

responsible for infecting the other cells inside the insect’s body.   

The BV is the type of virus used to infect cells in culture. The ODV does not 

participate in the propagation of the viruses in culture.  Thus, the p10 and polyhedrin 

genes, which are the genes responsible for making the occlusion bodies, can be 

replaced by the recombinant gene of interest to express recombinant proteins in culture. 

There are four stages of gene expression in the baculovirus infection life cycle in 

culture: the immediate-early, the delayed-early, the late and the very late.  The 

immediate-early genes are expressed before viral DNA replication (Blissard and 

Rohrmann 1990).  They can be expressed by healthy insect cells and do not require 

expression of other viral genes (Blissard and Rohrmann 1990).  The baculovirus 

infection cycle starts when baculoviruses are internalized by insect cells through 

adsorptive endocytosis (Matilainen, et al. 2005), as shown in Figure 3. The virus’ outer 

membrane fuses with the endosomal membrane of the cell following the acidification 

of the endosome.  Once inside the cell, the nucleocapsids are released and transported 

to the cell’s nucleus by the induction of actin filaments in the cytoplasm (Matilainen, et 

al. 2005).  The nucleocapsids enter the nucleus through nuclear pores.  Inside the 

nucleus, the nucleocapsids uncoat to release their viral DNA.  The process of viral 

penetration and uncoating will take place between 0 and 4 hpi.  After viral penetration 

and uncoating, the delayed-early genes will start to be expressed (Matilainen, et al. 

2005).  An example of a delayed-early gene is the anti-apoptotic p35 gene, which is 

transcribed within 2 hrs of infection (Kelly, et al. 2007).  The function of the anti-

apoptotic p35 gene is to prevent the host cell from undergoing apoptosis (programmed 

cell death), which is a natural cell defense mechanism against viral infection.  The 

delayed-early expression will last approximately until 6 hpi (Matilainen, et al. 2005).  
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At 6 hpi, the expression of late genes will occur, which is also the start of viral DNA 

replication.  Viral DNA replication and nucleocapsid formation will take place inside 

the cell’s nucleus (Dobos and Cochran 1980).  At this stage, a host-modified or viral 

RNA polymerase (Blissard and Rohrmann 1990) is expressed to transcribe the viral 

DNA to mRNA for viral protein synthesis.   At around 10 to 12 hpi, progeny viruses 

will start to bud out of the cell, and obtain a lipid envelop through the process of 

budding (Carstens, et al. 1979).  At 12 hpi, inactivation of the host RNA polymerase 

occurs, causing the degradation and destabilization of the host RNA (Ooi and Miller 

1988).  It is found that all the identified viral RNAs contain an ATAAG sequence, 

which could allow the viral enzyme to distinguish between viral and host RNA for 

degradation (Ooi and Miller 1988).  Most of the host RNA destroyed is nuclear RNA 

while the host mitochondria RNA can escape degradation to continue providing energy 

for the cell (Ooi and Miller 1988).  The decrease in host RNA levels leads to the 

decrease in host protein production at 12 hpi, and eventually the termination of host 

protein production at 24 hpi (Ooi and Miller 1988).  The process of virus replication 

and budding can last up to 24 hpi (Ooi and Miller 1988).  The maximum wild-type 

baculovirus replication rate is found to occur between 14 and 22 hpi; and the maximum 

virus yield is found to occur at 24 hpi (Tjia, et al. 1979).  The estimated viral particle 

production rate in Sf900-II media is 9.8 ± 1.5 PFU/cell.hr (Carstens, et al. 1979).  In the 

very late stage of the infection (about 24 hpi), the number of virus budding from the 

cell decreases, and the cell starts to produce proteins under the control of the p10 and 

polyhedron promoters.  This last stage of the infection cycle can last till approximately 

60-72 hpi, at which time the insect cells will start to lyse and release the occluded form 

of the virus (Kelly, et al. 2007). 
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Figure 3: Baculovirus Infection Cycle (Modified from Blissard 1996) 
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3.4.2 Infection in Culture 

3.4.2.1 State of Healthy Insect Cells  

The diameter of healthy cells falls in the range of 12.2 – 15 µm (Kamen, et al. 1996; 

Schopf, et al. 1990), however some have reported the cell diameter as being upwards of  

18.5 ± 1.5 µm (Gotoh, et al. 2008).  Since osmolarity will have an effect on cell size, 

the discrepancies between the reported values might have been caused by different 

sizing solution or by the media used for the measurement.  Cell size has been reported 

to stay approximately the same during exponential growth (Zeiser, et al. 1999).   

 

3.4.2.2 State of Infected Insect Cells 

Infection implies that at least one virus has entered the cell and has successfully 

started its replication cycle. In cell culture, the ratio of the total the number of viruses 

added to the total number of cells is referred to as the multiplicity of infection (MOI) 

(Licari and Bailey 1991).  The concept of MOI assumes that the viral inoculums do not 

contain a significant amount of defective viruses, which can lead to cytopathic effects 

but no productive infection (Janakiraman, et al. 2006).  MOI is found to be closely 

coupled to the time of infection (TOI), which is also referred to as the cell density at 

infection.  It is recommended to infect cells in the exponential phase of growth.  

Infection in the stationary phase will reduce the cell’s production capacity (Licari and 

Bailey 1992) and product yield (King, et al. 1992).   

High MOIs will result in synchronous infections; whereas low MOIs will lead to 

asynchronous infections.  In synchronously infected cultures, the volumetric and 

specific productivity of cells will increase with increasing cell density to a critical 

density of 5 to 7 x 106 cells/ml in serum-free medium (Elias, et al. 2000).  Above the 

critical density, the productivity starts to decline, which might be limited by nutrient 

availability at high density cultures (Elias, et al. 2000; Hensler, et al. 1994; Ohman, et 

al. 1995).  This problem may be overcome by supplementing fresh nutrients that would 

be required more intensively after infection (Hensler, et al. 1994; Ohman, et al. 1995).  

However, the addition of nutrient cocktails should be carefully designed as nutrient 

addition will increase the osmolarity of the culture and might have detrimental effects 



35 

 

to the cells (Elias, et al. 2000).  Asynchronous infections are characterized by multiple 

cell populations (infected and healthy cells).  The healthy cell population will compete 

for nutrients with the infected cells resulting in reduced product yield by the infected 

cells (King, et al. 1992).  Although MOI is an important parameter in infection, there 

are some problems associated with the accuracy of MOI.  First, different recombinant 

virus will affect the cell differently even at the same MOI.  Second, it is hard to 

accurately determine viral titers (Licari and Bailey 1992).  As a result, the actual MOI 

can be less or more than the calculated MOI (King, et al. 1992). 

Another important parameter of infection is the cell cycle phase that the insect cells 

are in when infection occurs.  Upon infection, the cells will stop progressing through 

the cell cycle (Volkman and Keddi 1990).  Sf-9 cells are usually arrested in the G2/M 

phase following infection (Braunagel, et al. 1998).  Culture infected at G1 or mid and 

late S phase have higher percentage of cells infected than cultures infected at the G2 

phase (Lynn and Hink 1978).  Therefore, cultures infected at G1/S phase will usually 

have higher productivities (Kioukia, et al. 1995; Saito, et al. 2002).   

Although cells will usually be arrested following infection, wild-type baculovirus 

infected cells can keep growing until 24 hpi (Schopf, et al. 1990).  A proposed 

explanation for this phenomenon is that the introduction of recombinant genes can 

increase virus infectivity by changing the degree of supercoil in the viral DNA.  It was 

found that when the degree of supercoil of DNA is more relaxed, viral infectivity can 

be increased (Kelly and Wang 1981).   

In addition to the phase, passage number will also affect insect cell’s physiology, 

thus affecting productivity.  Low passage numbered cells will have smaller cell sizes 

and express ~20 fold more proteins in total than high passage numbered cells; however, 

the glycosylation pattern is more complex in higher passage numbered cells (Joosten 

and Shuler 2003).  The maximum passage number is recommended to be no more than 

40 to 50 passages (Calles, et al. 2006). 

Energy demand in the infected cells is found to be greater than the energy demand in 

the healthy cells because there are increased events of protein and DNA synthesis 

happening in the infected cells (Kamen, et al. 1996; Lehninger 1975).  Energy 

consumption will be greater in the first 15 to 20 hpi due to increased protein synthesis, 
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viral DNA replication, and release of budded virus.  After 15 to 20 hpi, the demand for 

energy will decline because there will be less viral progeny formation (Kamen, et al. 

1996).  Evidence of increased energy demand can be observed from the increase in per 

cell respiration rates after infection, which can increase as much as 100% (Kamen, et 

al. 1996; Schopf, et al. 1990).  Because of the increase in oxygen uptake rate, the 

occurrence of oxidative stress also increases for infected cells.  Oxidative stress is 

caused by reactive oxygen species (ROS), which can induce cell death. Nonetheless, 

the anti-apoptotic protein, p35, expressed from the virus provides an antioxidant-like 

mechanism that prevents insect cell death induced by blocking the permeabilization of 

the mitochondrial membrane caused by the ROS (Vieira, et al. 2006). 

Differences in nutrient consumption patterns before and after infection have also 

been observed.  Both Kamen et al. (1996) and Rheil and Murhammer (1995) reported 

that glucose consumption rate after infection did not increase on a per cell density 

bases, in contrast to what would be normally expected due to the increased energy 

demand in the cells after infection.  However, the extra demands of energy might be 

met by the increase in the utilization of other energy-yielding substrates.  In fact, Wong 

et al. (1994) have reported an increase in the specific consumption rates of aspartate, 

asparagines, glycine, and threonine after infection.  All of these amino acids can enter 

TCA cycle to generate energy for the cells.     

Infected cells usually have bigger cell sizes (cell volume) than healthy cells because 

of the extra protein production inside the infected cells (Hensler, et al. 1994; Kamen, et 

al. 1996; Schopf, et al. 1990).  The DNA content within the cell also increases 

following infection (Schopf, et al. 1990); therefore, infected cells’ nuclei will also be 

enlarged (Sandhu, et al. 2007).  The mean cell diameter will increase by 20 to 40% or 3 

to 4 µm following infection (Ansorge, et al. 2007; Janakiraman, et al. 2006).  

Palomares et al. (2001) found that the level of protein expression can be related to 

diameter change of infected cells.    

The cell viability in the first 36 hpi is usually greater than 95% (Kamen, et al. 1996).  

The viability of the cell will start to decline after 36 hpi and there will be an increased 

accumulation of cell debris leading to the difficulty of obtaining accurate cell viability 

measurements (Kamen, et al. 1996).    
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Chapter 4 Materials and Methods 

 

The experimental data used in this thesis were part of experimentation aimed at 

improving high temperature (30ºC) and high density insect cell culture production of 

adeno-associated viral (AAV) vectors conducted at the Biotechnology Research 

Institute of the National Research Council Canada (Aucoin 2007).  The Sf-9 cells were 

maintained at 28ºC during routine passages.  A single stock culture seeded at 0.5 x 106 

cells/ml and grew to a cell density of 2 x 106 cells/ml at 28ºC was used for the 

experiments.  Once at 2 x 106 cells/ml, the cells were centrifuged, separated from the 

waste media, and resuspended in fresh media or fresh media containing baculovirus 

(MOI=23) to densities of 1, 2, 4, 8, or  10 x 106 cells/ml.  The cells were then incubated 

at 30ºC for optimal AAV productions (Aucoin, et al. 2007).  A total of 20 cultures (10 

uninfected cultures and 10 infected cultures) were observed, which included duplicate 

cultures.  Details on the origins of the data are provided in this chapter.   

 

4.1  Cells and Media 

The cells used in the experiments were Spodoptera frugiperda (Sf9) cells.  They 

were maintained in suspension in SF-900 II medium (Gibco BRL, Burlington, Ont., 

Canada) at 28ºC.  Cell densities were assessed by both hemocytometer and Coulter 

Counter Multisizer (Beckman-Coulter, Miami, FL, USA).  Cell viabilities were 

determined using the trypan blue dye exclusion method (Aucoin, et al. 2007).  Cell size 

distribution profiles were obtained using the Coulter Counter Multisizer.       

 

4.2  Baculovirus Stock 

Three recombinant baculoviruses, BacITRGFP, BacRep, and BacCap, needed for the 

production of AAV vectors were used (kindly provided by Dr. R.M. Kotin from the 

National Institutes of Health (Bethesda, MD, USA)). Prior to use, baculoviral titers 

were verified using an EPICS XL-MCL flow cytometer (Beckman-Coulter, Miami, FL, 

USA) (Shen, et al. 2002) and by plaque assay.   
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4.3 Experimental Cultures 

Four cultures, for the set of experiments described herewith, were initiated by 

inoculating cells in the exponential phase at 0.5 x 106 cells/ml in 2L flasks.  These cells 

were allowed to grow to 2 x 106 cells/ml at 28ºC.  Once at 2 x 106 cells/ml, the four 

cultures were combined and centrifuged at 600 g for 15 min at room temperature. The 

spent medium was removed and the cells were resuspended in fresh media or in fresh 

media containing baculoviruses (40 ml total) and distributed into 250 ml shake flasks to 

various cell densities (1, 2, 4, 8, and 10 x106 cells/ml).  Cultures (uninfected and 

infected) were then maintained at 30ºC for 72 hrs.  A total of 10 different culture 

conditions were done in duplicate: 5 different cell densities for uninfected cultures and 

5 different cell densities for infected cultures.  A MOI of 23 viruses/cell was used for 

all infected cultures (MOIBacITRGFP=3, MOIBacRep=10, and MOIBacCap=10).  One ml 

samples were taken at 0, 6, 12, 24, 48 and 72 hrs and analyzed for cell density, cell size 

distribution, and cell viability.  For certain time points (0, 12, 24, and 48 hrs), media 

compositions were analyzed as well.   

 

4.3.1 Cell Density Calculation 

Cell densities, for the cultures mentioned above, were determined using both a 

hemocytometer and a Coulter Counter Multisizer.  The number of counts recorded by 

the Coulter Counter Multisizer was corrected for coincidence.  There are two ways 

coincidence can occur: 1) when two or more particles having sizes normally detectable 

by the Coulter pass through the measuring zone simultaneously and are counted as one 

big particle (primary coincidence); or, 2) when two or more particles having sizes 

below the detectable limit of the Coulter cluster together and are detected and counted 

as one large particle (secondary coincidence).  Primary coincidence results in a 

diminished cell count with no change in overall volume measured, which in turn 

increases the observed mean diameter.  Secondary coincidence results in both increased 

cell count and overall cell volume.  The possibility of having secondary coincidence 

may be increased in cultures of low viability because the majority of the cells may have 

very small cell sizes due to cell shrinkage, lysis, and death in cultures with low 
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viability.  However, the effect of secondary coincidences is usually minimal and 

therefore, is typically neglected (Wynn and Hounslow 1997).  To correct for primary 

coincidence, the following empirical formula has been suggested (Allen 1990): 

 

                                                                𝐶𝐶𝑖𝑖 = 𝑐𝑐𝑖𝑖 +  𝑝𝑝𝑐𝑐𝑖𝑖2                                                 Equation 1 

 

where Ci is the corrected Coulter count, ci is the original observed count recorded by 

the Coulter and p is the coincidence factor, which can be calculated from (Allen 1990): 

 

                                                     𝑝𝑝 = 2.5 � 𝐷𝐷
100

�
3
�500

𝑣𝑣
� 𝑥𝑥10−6                                   Equation 2 

 

where D is the aperture diameter (µm) and v is the volume of suspension used for the 

count (µl). 

Given the two independent measures (hemocytometer and Coulter), the average of 

the two methods was used as the cell density for each sample.  The viabilities of the 

cultures were determined by using the trypan blue dye exclusion method.  The viable 

cell densities (VCD) were then determined by multiplying cell viability with cell 

density. 

 

4.3.2 Biovolume Calculation 

Biovolume has been defined as the volume enclosed by the plasma membrane of 

viable cells (Zeiser, et al. 2000). Dead cells are not considered to contribute to 

biovolume because dead cells usually have leaky membrane or no structural 

membranes left.  Assuming cells are spherical, biovolume can be calculated from the 

cell size distributions obtained by the Coulter Counter Multisizer.  Particles in the range 

of 9.63 – 26.5 µm were used for the calculation of biovolume (BioV) using the 

following equation:  
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                                                          𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 =  𝐵𝐵𝐶𝐶𝐷𝐷 𝑥𝑥 𝑀𝑀𝐶𝐶𝐵𝐵                                          Equation 3 

                                                     

where VCD is the viable cell density and MCV is the mean cell volume.  Equation 3  

assumes that viable cells have a size distribution between 9.63 – 26.5 µm.  MCV is 

calculated using Equation 4:  

 

                                                         𝑀𝑀𝐶𝐶𝐵𝐵 =  
∑ 1

6𝜋𝜋𝑑𝑑𝑖𝑖
3𝐶𝐶𝑖𝑖  𝑛𝑛

𝑖𝑖=1

𝑇𝑇𝐶𝐶
                                              Equation 4

                                    

where di is the ith cell diameter (µm), Ci is the corrected Coulter count having the ith 

diameter, and TC is the total number of particles counted having diameters in between 

9.63 – 26.5 µm. 

 

4.3.3 Growth Rate Calculation 

Growth is a result of changes in both cell density and cell size (Shuler and Kargi, 

2002).  The relationship between nutrient utilization and cell mass increase is described 

as: 

 

                            𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 → 𝑆𝑆𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆 𝑝𝑝𝑆𝑆𝐵𝐵𝑑𝑑𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆 + 𝑚𝑚𝐵𝐵𝑆𝑆𝑆𝑆 𝑐𝑐𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 

                                                       ∑𝑆𝑆 +  𝑋𝑋 →  ∑𝑃𝑃 +  𝑛𝑛𝑋𝑋                                    Equation 5 

 

X is the cell mass concentration (g/ml).  X can also be substituted with N, which is 

the cell number concentration, in other words, the cell density concentration (cells/ml).  

The latter is the parameter that is often used to characterize nutrient utilizations in 

insect cell cultures in literature, although it does not take into account the changes in 

cell size.  In this experiment, cell density and cell size distribution data were both 

recorded.  Since growth is a result of changes in both cell density and cell size, 

combining the two data, biovolume (um3/ml) profiles can be generated to characterize 
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growth in a more complete sense than just cell density data alone.  If one assumes that 

changes in cell volume is proportional to changes in cell mass, then this notion of 

biovolume can actually be equated to cell mass concentration.  Equation 5 can then be 

changed to: 

 

                                                 ∑𝑆𝑆 + 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 →  ∑𝑃𝑃 +  𝑛𝑛𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵                              Equation 6. 

 

The net specific growth rate can then be defined to be, 

 

                                                            𝜇𝜇𝑛𝑛𝑆𝑆𝑆𝑆  ≡  1
𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵

 𝑑𝑑𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵
𝑑𝑑𝑆𝑆

                                             Equation 7 

 

with BioV = BioV1 at t = t1, and BioV = BioV2 at t = t2, integration of Equation 7 gives, 

 

                                                       𝑐𝑐𝑛𝑛 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵2
𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵1

=  𝜇𝜇𝑛𝑛𝑆𝑆𝑆𝑆 (𝑆𝑆2  − 𝑆𝑆1)                                      Equation 8 

 

𝜇𝜇𝑛𝑛𝑆𝑆𝑆𝑆  is the slope of a plot of 𝑐𝑐𝑛𝑛 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵2
𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵1

 𝑣𝑣𝑆𝑆.∆𝑆𝑆. 

 

4.4 Nutrient/ Metabolite Quantification  

Samples were centrifuged (Heraeus Pico microcentrifuge, Waltham, MA, USA) at 

2000 rpm for 10 min.  The resulting supernatant from the centrifugation (about 500 µL) 

were then put in an Ultrafree-MC 30000 NMWL Filter Unit (Millipore) and 

centrifuged at 8000 rpm for at least 20 min.  The permeates from the filter unit were 

frozen at -80 °C until used for nutrient/ metabolite analyses. Amino acid analyses were 

performed for all cultures by analytical HPLC following the methods reported by 

Kamen et al. (1991).  Both internal and external standards were used to normalize 
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results.  Glucose, lactate and ammonia analyses were performed using a Kodak 

Biolyzer (Kodak, New Haven, Connecticut, USA).   

 

4.4.1 Accounting for the Errors in Nutrient/ Metabolite Quantification 

To account for measurement variability, multiple samples of Sf-900 II taken from the 

same source were analyzed.  The error associated with each nutrient in the media was 

calculated as a % coefficient of variation (%CV) by dividing the standard deviation of 

all the measurements of the original media by the average of all the measurements.  

The error (%CV) of each nutrient/metabolite was then compared to the % changes 

recorded for each nutrient/metabolite.  If the % changes recorded were smaller than the 

error; then the % changes were adjusted to 0, as having no changes, because the % 

changes recorded needed to be more significant than the error in order to be justified as 

a true consumption or production. 

 

4.4.2 Yield Coefficients and Consumption Rates Calculations 

In order to characterize growth kinetics, yield coefficients and nutrient consumption 

rates were calculated.  The yield coefficient was defined as the amount of substrate 

used in order to generate a unit of biomass (Shuler and Kargi, 2002):   

 

                                                               𝑌𝑌𝑆𝑆/𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵 =  ∆𝑆𝑆
∆𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵

                                        Equation 9. 

 

Nutrient consumption rate were then defined as, 

 

                                                         𝑞𝑞𝑆𝑆 =  1
𝑋𝑋

 𝑑𝑑𝑆𝑆
𝑑𝑑𝑆𝑆

=  µ𝑛𝑛𝑆𝑆𝑆𝑆 𝑌𝑌𝑆𝑆/𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵                                 Equation 10. 
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4.4.3 Average Nutrient Consumption Rates Calculations 

Nutrient/metabolite analysis was done for samples taken at 0, 12, 24, and 48 hrs..  

Since there were four time points, there were three time segments, namely 0 – 12, 12 – 

24, and 24 – 48 hrs/hpi. For each nutrient/metabolite, three yield coefficients were 

calculated (one for each segment).  There were also three µnet calculated for each 

corresponding time segment.  As a result, there were three consumption/production 

rates calculated for each nutrient/metabolite utilization profile.  Since the length of each 

time segment, i.e. the total number of hours, was not the same, the average 

consumption rate, qavg, was calculated as a weighted average.  The length of first and 

second time segments were the same (12 hrs), but the length of the last time segment 

was twice the length of the first and the second time segments (24 hrs).  Therefore, the 

last time segment with double the length was given double the weight in calculating the 

average: 

 

                                                          𝑞𝑞𝑆𝑆𝑣𝑣𝑎𝑎 = (𝑞𝑞1+ 𝑞𝑞2+ 2𝑞𝑞3)
4

                                         Equation 11. 
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Chapter 5 Results and Discussion 

 

5.1 Analysis of Culture Profiles 

5.1.1 Justification of Using Viable Cell Density 

Viable cell densities were used in this thesis instead of using total cell densities 

because it is assumed that only viable cells will consume nutrients.  Using either viable 

cell density or total cell density does not have a significant impact in uninfected 

cultures as shown in Figure 4 because the viability of the uninfected cultures are high 

(greater than 95%) throughout the culture period; however, the choice becomes 

important when dealing with the infected cultures as shown in Figure 5 because the 

viability of the infected cultures is continuously decreasing.  The total cell density in 

the infected culture stayed relatively constant, which is to be expected because infected 

cells will be arrested and will not continue to divide.  From the beginning of the culture 

to the end of the culture, the density profile of an infected culture is almost a perfect 

horizontal line.  The viability profile as shown in Figure 5, however, constantly 

decreased as the culture proceeded. This decrease in viability is reflected in the viable 

cell density but not in the total cell density.  If the total cell density was used in any of 

the nutrient consumption rate calculations, both the cell density and biovolume profiles 

would be overestimated.  For example, when calculating nutrient consumption rates, 

the rates would be underestimated due to the inflated profiles.  Due to the reasons 

stated above, viable cell density profiles were used in this thesis.  
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Figure 4: TCD vs. VCD for Uninfected Culture (2 x 106 cells/ml) 

 

  

Figure 5: TCD vs. VCD for Infected Culture (2 x 106 cells/ml) 
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Figure 6: Viable Cell Density Profiles for Uninfected (Left) and Infected (Right) Cultures 
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Figure 7: Mean Cell Diameters for Uninfected (Left) and Infected (Right) Cultures 
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Figure 8: Viable Biovolume Profile for Uninfected (Left) and Infected (Right) Cultures 
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5.1.2 Uninfected and Infected Culture 

The left graphs of Figure 6, Figure 7, and Figure 8 show the average profiles of 

viable cell density, mean cell diameter, and biovolume, respectively, for the uninfected 

cultures; and the right graphs of Figure 6, Figure 7, and Figure 8 show the average 

profiles of viable cell density, mean cell diameter, and biovolume, respectively, for the 

infected cultures.  The error bars represent the standard deviations of the sample 

measurements (n = 2).   

 

5.1.2.1 Analysis for the Uninfected Cultures 

There are five phases that can be observed in a batch culture: lag, exponential 

growth, deceleration, stationary, and death phases.  The lag phase is defined as the 

period of time in which the cells adjust to a new environment before entering 

exponential growth phase.  In the experiments, the cells were pre-cultured at 28 ºC; at 

the start of the experiment, the cells at early to mid-exponential phase were moved and 

incubated at 30 ºC.  Although there was a difference in the pre-incubation temperature 

and the experimental temperature, a lag phase was not observed.  As will be discussed 

in Section 5.2, optimal growth of insect cells occurs in the range of 27 – 30 ºC (Shuler, 

et al. 1990); therefore, the shift in temperature was within the acceptable physiological 

temperature ranges for insect cells. Temperature changes within the acceptable range 

do not induce a lag phase (Ingraham and Marr 1996; NG, et al. 1962; Shaw 1967).  

Depending on the initial cell densities of the cultures, at the end of the culture, the cells 

either remained in exponential growth, entered the deceleration phase or were seen to 

be in the stationary phase.   

The stationary phase is often caused by the exhaustion of certain nutrients (Nystrom 

2004).  For cells in the stationary phase, although the net specific growth rate is zero, 

cells are still metabolically active and will still consume nutrients, albeit most likely at 

a slower rate.  In our experiment, it was found that serine depletion coincided with the 

start of stationary phase.  The stationary phases were only observed in the high density 

cultures (8, and 10 x 106 cells/ml), and they occurred beyond 48 hrs of culture time.  
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Bruggert et al. (2003) have also found that the exhaustion of serine causes Sf-9 cells to 

stop proliferating.  Cells consume serine for the synthesis of nucleic acids (Drews, et al. 

1995; Tremblay, et al. 1992).  When serine is depleted, nucleic acid synthesis may be 

hindered, thus hindering cell growth. When more and more essential nutrients are 

depleted, the cells will start to self-digest to generate energy needed for survival 

(Nystrom 2004).  The endogenous materials consumed include cell membrane, free 

amino acid pools inside the cells, RNAs, ribosomes and cellular proteins (Campbell, et 

al. 1963; Gronlund and Campbell 1961; Gronlund and Campbell 1963; Maaloe and 

Kjelgaard 1966; Nystrom 2004).  The number of ribosomes and RNAs within a cell is 

proportional to the cell growth rate and the rate of protein synthesis within the cell 

(Maaloe and Kjelgaard 1966; Saint-Ruf, et al. 2007).  Since protein synthesis and DNA 

replication are kept to a minimum during stationary phase, the excess number of 

ribosomes and RNAs can be metabolized by the cells to generate energy (Maaloe and 

Kjelgaard 1966).  Due to self-digestion, cells will continually shrink in size (Givskov, 

et al. 1994; Nystrom 2004; Siegele and Kolter 1992).  When too much of cellular 

material is degraded, cell death will occur.  In the experiments, the death phase was not 

observed in the cultures because cell viabilities remained high (> 95%) throughout the 

culture period. 

 From Figure 7 (right), it was observed that there were small fluctuations in the mean 

cell diameters during culture time probably due to cells cycling through different cell 

cycle phases.  There are four phases of a cell cycle, the mitotic phase (M), the first gap 

phase (G1) between the completion of mitosis and the entrance into DNA synthesis, the 

DNA synthesis phase (S), and the second gap phase between the completion of DNA 

synthesis and the entrance into mitosis (G2).  Cells will increase in size before division 

(M phase); therefore, cell sizes are larger in the S/G2 phase and smaller in the G1 phase 

(Al-Rubeai, et al. 1991; Al-Rubeai, et al. 1995).  The mean cell diameter distribution 

that is represented in Figure 7 shows the average movement of the cell population in 

the cultures over time.  The increase in the mean cell diameter distribution can be 

viewed as more cells being synchronized in the S/G2 phase; and the decrease trend can 

show that more and more cells were synchronized toward the G1 phase.  By observing 

the mean cell diameter distributions in Figure 7 (right), one can tell 1) the cell cycle 
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phase that the majority of the cells are synchronized to in at a specific time (can be 

estimated by determining if the mean cell diameter lies on an increasing or decreasing 

trend) and 2) the length of time for the majority of the cells to complete one cell cycle, 

which is determined by the completion of one increasing and one decreasing trend.  

Figure 7 (right) shows that the majority of cells in cultures having ICD = 1 and 2 x 106 

cells/ml completed one cell cycle faster than the other cultures; and the length of time 

for cell cycle completion increased as ICD increased.  This correlated well with the 

growth rates of the cultures: cells grew fastest at the lowest ICD, and the growth rate 

decreased with increasing ICD as shown in Table 2.  These observations were to be 

expected since the concentrations of the nutrients in the media were fixed; therefore, 

there were more nutrients available for fast growth of low initial cell density cultures.  

In addition, culture heterogeneity will increase when cell density increases because 

every single cell can behave differently.   In fact, it has been reported for CHO cells, 

individual cell cycling time can range from 20 to 35 hrs, a difference of 15 hrs with the 

same conditions (Lloyd, et al. 1999).  The majority of the variation in cell cycle time 

occurs in the G1 phase (Darzynkiewicz, et al. 1982; Zetterberg 1996).  Cell populations 

in the G1 phase are the most heterogeneous and this is the result of unequal divisions of 

the parent cells that generate unequal-sized daughter cells (Darzynkiewicz, et al. 1982).  

The inequality in the sizes of the daughter cells will cause variability in the metabolism 

of the two daughter cells (Darzynkiewicz, et al. 1982), thus affecting the time the cells 

require preparing themselves for the entrance into the S phase. When there are more 

cells present in the culture, the variability can increase resulting in a longer average 

time for the majority of the cells in the batch culture to complete one cell cycle, which 

can also explain why the average growth rate decreases as ICD increases.  The 

fluctuations in the mean diameters of the cells throughout the culture period were 

within 3.73%.  Since there were still small fluctuations in cell sizes, the net specific 

growth rates from biovolume and cell density will be slightly different as expected. 
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ICD ( x106 cells/ml) 

Table 2. Initial Cell Density and Average Growth Rate of Uninfected Cultures 

Avg Growth Rates(/hr) 
1 0.0374 
2 0.0286 
4 0.0243 
8 0.0133 

10 0.0119 
 

5.1.2.2 Analysis for the Infected Cultures 

The viable cell densities of the infected culture stayed relatively constant until 24 

hours post-infection (hpi), and they decreased thereafter until the end of the culture.  

Cell sizes fluctuate widely at different stages of infection as illustrated in Figure 7 

(left).  Increases in cell sizes have been used as indications of successful infection 

(Palomares, et al. 2001).  The biovolumes of the cultures increased up to 12hpi.  From 

12 hpi to 24 hpi, biovolumes remained relatively constant. Ansorge et al. (2007) have 

also observed a plateau region of permittivity measurements, which is linearly related 

to biovolume, at 12 to 20 hpi.  This plateau region has been associated with the 

maximum CO2 evolution rate of infected insect cell culture (Zeiser, et al. 2000), the 

maximum oxygen consumption rate (Kamen, et al. 1996; Schmid 1996), the release of 

budded virus and the start of secondary infection (Ooi and Miller 1988 ; Wong, et al. 

1994).  Biovolume started to decrease continuously after 24 hpi due to the continuous 

decreases in cell viability and the budding of progeny viruses (Kelly, et al. 2007).  The 

late promoters, p10 and polyhedrin, start to drive recombinant protein production at the 

very late stage of infection (after 24 hpi), and can last up to 72 hpi (Kelly, et al. 2007).   

 

5.1.3 Justification of Using Mean Cell Diameters 

Mean cell diameters were used to compare the uninfected and infected cultures in 

this thesis.  It is acknowledged that at each culture time, there were always more than 

one cell population present in the culture due to cells in different cell cycle phase, 

growth phase, and infection stage.  The % of cells present in different phases and stages 

would all have impacts on the diameter distribution, which were reflected in the mean 
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cell diameter since mean cell diameters are calculated by dividing the sum of cells of 

different diameters by the total number of cells as shown in Equation 12, 

 

                                                        𝑀𝑀𝐶𝐶𝐷𝐷 =  ∑ 𝑑𝑑𝑖𝑖𝐶𝐶𝑖𝑖  𝑛𝑛
𝑖𝑖=1
𝑇𝑇𝐶𝐶

                                Equation 12 

 

Where di is the ith cell diameter (µm), Ci is the corrected number of particles counted 

having the ith diameter, and TC is the total number of particles counted having 

diameters in between 9.63 – 26.5 µm, which is the viable cell diameter range.  The 

mean diameter profiles in Figure 7 were calculated from this range. 

 

5.2  Cell Size 

5.2.1 Cell Size Range 

In this work, viable cells were assumed to be equally distributed in a diameter range 

between 9.63 – 26.5 µm. Previous work (Zeiser, et al. 2000), a diameter range of 5 – 

20.11 µm was assumed for viable cell distribution. The difference in the diameter range 

observed could be explained by the different culture conditions used in Zeiser’s 

experiments.  Although both used Sf-9 cells with Sf900-II media, Zeiser’s paper 

described cells cultured at a lower temperature (27 ºC) compared to the temperature 

used for this study (30 ºC).  In addition, the product produced in Zeiser’s experiments 

was β-galactosidase, which only required one type of recombinant baculovirus; 

whereas, in our experiment, adeno-associated viral vectors were produced, which 

required triple-infection with three types of recombinant baculoviruses.  All these 

differences in culturing conditions are expected to have contributed to the difference in 

the distribution ranges observed. 

Three factors can affect cell size: 1) protein and DNA content in a cell (Nurse 1975; 

Stocker and Hafen 2000); 2) nutritional conditions surrounding the cell (Nurse 1975), 

and 3) lastly, temperature around the cell (Stocker and Hafen 2000). Both Zeiser’s and 

our work used the same media, therefore, the effect of nutritional conditions on the 
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variability of cell size observed was ruled out.  The successful production of AAV 

vectors requires Sf-9 cells to be infected by three types of recombinant baculoviruses 

that carry the AAV ITR sequences, and the AAV Rep and Cap genes.  Since the 

number of recombinant genes transduced into a Sf-9 cell for the production of AAV 

vectors are higher than the number of recombinant gene transduced for β-galactosidase 

production, the amount DNA and protein content in a Sf-9 cell targeted to produce 

AAV vectors is thought to be higher than in a Sf-9 cell targeted to produce β-

galactosidase.  The higher contents of DNA and proteins could result in increased cell 

sizes observed in our experiments. In addition, temperature can also affect cell size.  

When temperature changes occur in a non-harmful range and when nutrient resources 

are abundant in the environment, increases in temperature will usually lead to increases 

in growth rate and cell size (Atkinson and Sibly 1997).  Insect cells are usually cultured 

at 27 or 28 ºC; nonetheless, Shuler et al. (1990) have reported that insect cells can grow 

optimally at the temperature range between 27 to 30 ºC.  Furthermore, Huhtala et al. 

(2005) have found no heat shock protein production in Sf-9 cells cultured below 37 ºC.  

All these indicate that culturing the cells at 30 ºC was non-harmful to the cells.  Since 

the nutrients were abundant and the temperature was not harmful, the increase in 

temperature in our experiments could also lead to the increases in cell sizes observed. 

 

5.2.2 Cell Size Distribution of Uninfected and Infected Cultures 

The cell size distributions of healthy and uninfected insect cells remained more or 

less constant as the cells proliferated and increased in cell density.  Baculovirus-

infected insect cells, however, cease to divide once arrested in the S and G2/M phase of 

their cell cycle, which occurs due to the expression of early viral genes. The cell 

population increases in size due to the additional production of viral nucleic acids and 

proteins (Hensler, et al. 1994; Kamen, et al. 1996; Schopf, et al. 1990), until their 

viability decreases due to infection-induced cell death.   

To better illustrate the differences between the cell profiles of healthy and infected 

cells, the diameter distribution profiles of both healthy and infected cells inoculated at 
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an initial cell density (ICD) of 2 x 106 cells/ml are shown in Figure 9 and Figure 10, 

respectively.   

 

 

 

Figure 9: Diameter Distribution at ICD = 2 x 106 cells/ml for Uninfected Cells  

 

Figure 10: Diameter Distribution at ICD = 2 x 106 cells/ml for Infected Cells 
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In both figures, the cell populations at 0 hr had similar cell diameter distribution 

profiles.  The mean cell diameter at 0 hr in Figure 9 was 15.00 ± 0.13 µm, while in 

Figure 10, the mean cell diameter was 15.02 ± 0.05 µm.  Eighteen other cultures were 

performed, and the % coefficient of variation (% CV) of the mean cell diameters at 0 hr 

for all cultures was 1.30%.   

As time proceeded, differences started to emerge as can be seen from the cultures at 

24 hrs.  At 24 hrs, in Figure 9 (Uninfected Cells), the mean cell diameter was 15.74 ± 

0.06 µm.  This increase was most likely due to the fact that cells were switched to a 

30ºC environment from a 28ºC environment.  Still, the increase in diameter was 

relatively small and the diameter distribution remained approximately constant.   

At 24 hpi, the mean cell diameter increased to 17.74 ± 0.62 µm for the infected 

culture shown in Figure 10.  The mean cell diameter in the infected culture increased 

by 2.74 ± 0.75 µm or by 18.26 ± 5.00 %, which was close to the 3 – 4 µm or 20 % 

increases observed by others (Ansorge, et al. 2007; Janakiraman, et al. 2006).  The 

slight differences in the observed increases in diameters might be due to the differences 

in culturing conditions such as temperature, media compositions, and the isotonic 

solutions used when running measurements on the cells.  The latter two differences 

could cause differences in osmolarity, which would ultimately affect cell sizes, in 

addition to the effect of temperature discussed in the previous section.  Although 

cultures with varying ICD were used, the % CV of the increases in mean cell diameters 

was within 9.31%. 

At 48 and 72 hrs, the distribution profiles of the uninfected cells remained 

approximately the same.  The mean cell diameter at 48 hrs was 15.72 ± 1.07 µm, and 

the mean cell diameter at 72 hrs was 14.69 ± 0.05 µm.  However, there was an apparent 

shift in the distribution to the left (decreased cell diameters) for the infected cell 

cultures, most likely due to decreased protein production, and cell shrinkage and death 

at 48 and 72 hpi.  The mean cell diameter at 48 hpi was 16.77 ± 0.82 µm, and the mean 

cell diameter at 72 hpi was 13.38 ± 0.07 µm. 
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5.3  Cell Viability 

To undertake a comprehensive analysis of the uninfected and infected cultures, the 

viabilities of the populations were also examined.  Cell viability can also affect cell size 

distributions especially at the end of the cultures since dying cells will shrink in size.   

Cell cultures at ICD = 2 x 106 cells/ml were used as examples to show the changes in  

mean cell diameters and viabilities over the entire culture periods for the uninfected 

and infected cells in Figure 11 and Figure 12, respectively.    

 

 

 

Figure 11 : Mean Cell Diameter and Viability of Uninfected Culture (ICD = 2 x 106 

cells/ml) 
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Figure 12 : Mean Cell Diameter and Viability of Infected Culture (ICD = 2 x 106 

cells/ml) 
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mean diameter observed at the end of the culture was likely due to cells losing 

membrane integrity.   

 

5.4  Synchronicity of Infection 

It is known that infected cells will be arrested in the S and G2/M phase of the cell 

cycle and cease to divide (Braunagel, et al. 1998).  The efficiency of infection could be 

dependent on the cell cycle phase the cells were in (Kioukia, et al. 1995; Springett, et 

al. 1989).   Figure 13 shows the maximum increase in cell density following infection 

versus the initial cell densities for the 10 infected cultures at 30ºC.  By removing the 

sole outlier, determined by the residual plot analysis and the median of absolute 

deviation about the median test (MAD test), the R2 increased from 0.4956 to 0.9146.  It 

was shown in Figure 13 that there was an average of about 17.55% increase in cell 

densities following infections.  Palomares et al. (2001) have also observed cell density 

increase by as much as 5 x 105 cells/ml for a culture inoculated at 1 x 106 cells/ml (50% 

increase) and infected with a MOI of 5.  The MOI employed in the experiments was 23, 

at such a high MOI, synchronous infection was expected.       

To investigate the synchronicity of infection in the experiments, the fraction of cells 

infected instantaneously (% of infection) was calculated.  Three methods were used for 

the investigations: the first method estimated % of infection based on viable cell 

densities; the second estimated % of infection based on cell sizes; and the third method 

investigated was based on the rates of infection via computer simulations. 
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Figure 13 : Maximum Increase in Cell Density vs. Initial Cell Density for all Infected 

Cultures  

5.4.1 Method 1 – Estimation via Viable Cell Densities 

The concept behind this method was that the cell densities at doubling time would be 
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experiments could be caused by the higher culturing temperature, 30°C, used in the 

experiments, which might have lead to faster cell metabolism. The cell densities at 

doubling time were obtained by interpolation of the logarithmic growth data.   

Let I denote the initial cell density at 0 hr, and let X denote the % of cells infected at 

0 hr.  The number of cells generated by replication in 18.54 hrs, R, is defined to be I(1-

X).  Then, the cell density at 18.54 hrs, F, can be calculated by I+R.  Assuming infected 

cells will be arrested and will not divide or die within 18.54 hours, and assuming that 

all the uninfected cells will double in 18.54 hrs, the equation for calculating X, the % of 

cells infected at 0 hr can be calculated as follows,  

 

                                                           𝐹𝐹 = 𝐼𝐼 + 𝑅𝑅 

                                                               = 𝐼𝐼 + 𝐼𝐼(1 − 𝑋𝑋) 

                                                               = 𝐼𝐼 + 𝐼𝐼 − 𝐼𝐼𝑋𝑋 

                                                               = 2𝐼𝐼 − 𝐼𝐼𝑋𝑋                                                Equation 13 

   

Rearrange and solve for X, 

 

                                                                   𝑋𝑋 =  2𝐼𝐼−𝐹𝐹
𝐼𝐼

                                             Equation 14. 

 

The range of X is from 0 – 100%.  Any calculated value outside of the range would 

be set to fall within the range.  For example, if X was calculated to be 106%, it would 

be recorded as 100%.  Note that when the calculated value of X exceeded 100%, which 

only happened in 2 out of the 10 samples and those 2 samples were high cell density 

samples, this might imply that cell death occurred within 18.54 hrs, and the above 

calculation was based on the assumption that no cell death would occur within 18.54 

hrs.  The assumption alternatively implied that cell death would occur only after the 

whole population was infected, and it assumed that 100% infection might not happen at 

0 hr, so that was why no cell death would occur within 18.54 hrs.  Therefore, having an 
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X calculated above 100% only showed that 100% infection did happen at 0 hr.  Thus, 

returning X back to 100% was justified.  

 

5.4.2 Method 2 – Estimation via Cell Sizes 

The second method was based on the concept that cells would increase in size 

following infection.  The higher the % of synchronous infection in the cultures the 

higher the mean cell diameters because there would be less effects from the uninfected 

cell population, which had relatively constant smaller diameters that could reduce the 

calculated mean cell diameters.  Assuming cells at the maximum mean cell diameter 

had achieved synchronous infection, then comparing the cell diameter at doubling with 

the maximum cell diameter, the degree of infection achieved at doubling time can be 

calculated.  This method was a modification of a method proposed by Janakiramann et 

al. (2006) for the estimation of baculovirus titer. 

Let P denote % of infection at doubling time, Ddt denote the diameter at doubling 

time, which was estimated by interpolation of the cell size data, D0 denote the average 

diameter of uninfected, healthy cells, and Dinf denote the average maximum diameter in 

the infected cultures, which usually occurred at 24 or 48 hpi.  The formula for 

calculating the % of infection at doubling time is as follows, 

 

                                                                    𝑃𝑃 =  𝐷𝐷𝑑𝑑𝑆𝑆 − 𝐷𝐷0
𝐷𝐷𝑖𝑖𝑛𝑛𝑖𝑖 − 𝐷𝐷0

                                            Equation 15. 

 

In order to calculate X, the % of infection at 0 h, a relationship between X and P 

needed to be developed.  Let I denote the initial cell density at 0 h, then the number of 

infected cells could be calculated as IX.  If all the uninfected cells would double in the 

period of doubling time, subsequently the number of cells generated in 18.54 h could 

be calculated as I(1-X).  Then, the total cell density at doubling time could be 

calculated by adding the initial cell density and the replicated cells together.  The % of 

infection at doubling time could also be expressed as, 
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                                               𝑃𝑃 =  
𝐼𝐼𝑛𝑛𝑖𝑖𝑆𝑆𝑐𝑐𝑆𝑆𝑆𝑆𝑑𝑑 𝐶𝐶𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑆𝑆 18.54 ℎ. 𝑝𝑝. 𝑖𝑖.
𝑇𝑇𝐵𝐵𝑆𝑆𝑆𝑆𝑐𝑐 𝐶𝐶𝑆𝑆𝑐𝑐𝑐𝑐𝑆𝑆 𝑆𝑆𝑆𝑆 18.54 ℎ.𝑝𝑝. 𝑖𝑖.

  

                                                    =  𝐼𝐼𝑋𝑋
𝐼𝐼+𝐼𝐼(1−𝑋𝑋)

                                                                 Equation 16 

 

Rearranging the terms and solve for X in terms of P,  

 

                                                                    𝑋𝑋 =  2𝑃𝑃
1+𝑃𝑃

                                                     Equation 17 

 

Again, the range of X is from 0 – 100%.  Any results outside of this range would be set 

to return to this limit. 

 

5.4.3 Method 3 - Infection Rate Simulation 

The first two methods aimed to calculate the % of infection; whereas, this method 

aimed to investigate rates of infection.  The rate of infection, ki, was calculated by 

solving the set of differential equations in a Matlab simulation: 

 

                                                             𝑑𝑑𝑋𝑋
𝑑𝑑𝑆𝑆

=  µ𝑋𝑋 − 𝑘𝑘𝑖𝑖𝑋𝑋                                         Equation 18 

 

                                                                    𝑑𝑑𝑋𝑋𝑖𝑖
𝑑𝑑𝑆𝑆

=  𝑘𝑘𝑖𝑖𝑋𝑋                                                  Equation 19 

 

and, 

                                                                  𝑋𝑋𝑖𝑖 =  𝑋𝑋 +  𝑋𝑋𝑖𝑖                                               Equation 20 
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The growth rate of the uninfected cells, µ, was set to be equal to the growth rate of the 

uninfected culture at ICD = 1 x 106 cells/ml (the same reason as stated previously).  Xf 

is the final viable cell density at 24 hpi, X is the uninfected viable cell density at 24 hpi 

calculated by the simulation, and Xi is the infected viable cell density at 24 hpi 

calculated by the simulation.   

Equation 18 describes the changes in the uninfected cell population; Equation 19 

describes the increase in the infected cell population; and Equation 20 describes that 

the uninfected cell density and the infected cell density at 24 hpi need to add up to the 

real experimental cell density at 24 hpi.  The simulation assumed no secondary 

infections occurred in the first 24 hpi.  The Matlab codes can be found in Appendix A.  

  

5.4.4 Discussions on the Methods 

5.4.4.1 Cell Density Method 

Figure 14 shows the relationship between % of infection and initial cell density.  The 

outliers were determined by residual plot analysis and MAD test. The R2 increased 

from 0.3989 to 0.5547 after taking out the outlier.  The low R2 could be explained by 

the variability between duplicate cultures, nonetheless the data points seemed to 

suggest a linear trend regardless of the low R2. 
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Figure 14 : Method 1’s % Infection at t = 0 hr vs. Initial Cell Density 

The relationship shows that the baseline of infection achieved with a MOI of 23 was 

91.67% and the % of infection increased as density increased.  To investigate on the 

accuracy of this relationship, the cell density at the doubling time, t = 18.54 hrs, were 

calculated with the % of infection predicted by this model.  The predicted cell densities 

at doubling time were then plotted against the actual cell densities at doubling time and 

the relationship is shown in Figure 15. 
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Figure 15: Predicted Cell Density vs. Actual Cell Density at Doubling Time  

The relationship between the cell density predicted by the model and the actual cell 

density was found to be linear and close to unity, with a R2 of 0.9908. 

 

5.4.4.2 Cell Size 

Figure 16 shows the relationship between % of infection calculated by method 2 and 

initial cell density.  The R2 is 0.2337.  This low R2 suggests that there was more 

variability in cell sizes between duplicate cultures; nonetheless the data still seemed to 

suggest a linear relationship. 
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Figure 16 : Method 2’s % Infection at t = 0 hr vs. Initial Cell Density 

The relationship showed the baseline of infection achieved with a MOI of 23 was 

83.56% and % of infection increased as density increased.  To investigate on the 

accuracy of this relationship, again, the cell density at the doubling time, 18.54 h, was 

calculated with the % of infection predicted by this model.  The predicted cell densities 

at doubling time were then plotted against the actual cell densities at doubling time and 

the relationship is shown in Figure 17. 
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Figure 17 : Predicted Cell Density vs. Actual Cell Density at Doubling Time  

The relationship between the cell density predicted by the model and the actual cell 

density was linear with a R2 of 0.9920.  However, the predicted cell density on average 

overestimated the actual cell density by 23.76%.  This meant that there were actually 

more cells arrested than the predicted numbers, which means that the actual % of 

infection was higher than the predicted % of infection. 

The cell size method might consistently underestimate the number of cells infected at 

0 hr because it assumed that synchronous infection was only achieved at the maximum 

cell diameter; whereas, it was likely that synchronous infection was achieved before the 

cells reach maximum cell diameters.  This is because maximum cell diameters usually 

occur when peak DNA replication and protein production takes place inside the cells.  

By assuming infection was achieved at the maximum cell diameter, method 2 might be 

prone to consistently underestimate % of infection at 0 hr.  

 

 

y = 1.2376x
R² = 0.992

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

0.0E+00 2.0E+06 4.0E+06 6.0E+06 8.0E+06 1.0E+07 1.2E+07

Pr
ed

ic
te

d 
C

el
l D

en
si

ty
 (c

el
ls

/m
l)

Intial Cell Density (cells/ml)

Predicted Cell Density vs Initial Cell Density



 

69 

 

 

5.4.4.3 Infection Rate 

Figure 18 shows the relationship between infection rate and initial cell density for the 

first 24 hpi.       

 

 

 

Figure 18: Infection Rate vs. ICD 

Figure 18 shows that infection rates were linearly related to initial cell densities until 

4 x 106 cells/ml was reached.  After 4 x 106 cells/ml, the infection rate reached a 

maximum plateau at 1.3275 hr-1.  In the low density cultures, the rate of infection 

increased with increasing cell densities at a rate of 0.3272 cells*10-6/ml.hr up to a 

critical cell density of 4 x 106 cells/ml.  After the critical cell density, in the high cell 

density cultures, infection rates were not dependent on initial cell densities anymore; 

instead, high cell density cultures all reached a maximum infection rate at 1.3275 hr-1.   

 

5.4.4.4 Method Comparison 

For all three methods, it was observed that both % of infection and rate of infection 
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methods, which calculated % of infection, it was observed that the estimation of % 

infection via cell density was more accurate than the estimation via cell size.  

According to the estimation via cell density, at a MOI of 23, on average, all cultures 

achieved at least 91.67% infection.  This high % of infection was expected for the high 

MOI employed in the experiments.   

Although some methods might provide a more clear relationship than the other 

methods, all three methods showed that either the % of infection or the rate of infection 

could be dependent on initial cell densities.  In other words, it might suggest that the 

effectiveness of MOI, which is thought to govern the rate of infection and be 

independent of cell density, could be dependent on initial cell density.  The same MOI 

at a high initial cell density might be more effective than at a low initial cell density 

culture because when there are more cells and viruses in the media, the probability of a 

cell colliding with a virus and becoming infected by the virus might increase.  Based on 

the results, it was observed that a baseline of 91.67% infection could be achieved in 

cultures with high MOI, and the % of infection could increase with initial cell density 

by a factor of 0.0071 multiplied by the initial cell density.  In addition, the rate of 

infection was found to linearly increase with initial cell density at a rate of 0.3272 

cells*10-6/ml.hr until the critical cell density of 4 x 106 cells/ml was reached; whereas, 

initial cell densities above the critical cell density all reached maximum rate of 

infection at 1.3275 hr-1. Although preliminary conclusions could be drawn, still, more 

investigations on MOI should be carried out to validate this conclusion.   

 

5.5 Nutrient Analysis 

The cell density of an uninfected culture will continue to increase, while the cell 

density of an infected culture will cease to divide. The density in the infected cultures 

will therefore stay relatively constant before decreasing due to cell death.  This can be 

seen in Figure 6.  The cell diameters of an uninfected culture will stay relatively 

constant, while the diameters of an infected culture will increase (shown in Figure 19).  

Based on these characteristics of uninfected and infected cultures, cell density alone 

cannot fully characterize all the nutrient requirements of the cultures.  If only cell 
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density was used to characterize nutrient uptake and production rates, then the amount 

of nutrient taken up by the cells after infection would not be properly accounted for.   

 

 

 

Figure 19 : Comparison of Uninfected and Infected Cell Diameter (at ICD = 2 x 106 

cells/ml) 

5.5.1 Correlation Analysis 

Correlation analysis of the changes of the 22 nutrients and metabolic byproducts 

with changes in cell density and biovolume were done.  The changes were obtained by 

subtracting the previous recorded nutrient concentration from the next recorded nutrient 

concentration.  For example, the nutrient concentration at 0 hr is subtracted from the 

nutrient concentration at 12 hr.  The errors in the data lie in the errors of the measuring 

instruments, which are believed to have greater than 90% accuracy.  Therefore, the 

confidence interval is believed to be greater than 90%.  The objective of running the 

correlation analysis was to examine which of the parameters, cell density or biovolume, 

correlated better with the nutrient consumption profiles.  The correlation plot for the 
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uninfected cultures is presented in Figure 20; and, the correlation plot for the infected 

cultures is presented in Figure 21.   

 

 

 

Figure 20 : Correlations of Uninfected Cultures 

 

Figure 21 : Correlations of Infected Cultures 
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As can be seen from the uninfected cultures in Figure 20, both parameters, 

biovolume and cell density, did not differ much in their ability to characterize 

consumptions since both parameters had roughly the same correlations.  The minimal 

difference seen in using either cell density or biovolume for the correlations was 

expected since cell diameters stayed relatively constant in the uninfected cultures.  On 

the other hand, it was observed that more than half of the nutrients and byproducts 

correlated better with biovolume than with cell density in the infected cultures as is 

shown in Figure 21.  More dramatic differences between the two parameters could be 

observed.  This was again expected since infected cells would increase in size and this 

increase in size could not be fully characterized by using only cell density data alone.  

The correlation plots showed that biovolume could be a better parameter for tracking 

changes in nutrient consumption and byproduct production patterns than cell density, 

especially in the infected cultures.    

 

5.5.2 Uninfected Cultures 

The analysis of the cultures were separated into two groups, low density cultures 

(ICD = 1, 2, and 4 x 106 cells/ml) and high density cultures (ICD = 8 and 106 cells/ml) 

based on the culture profiles shown in Figure 6 (left) and Figure 8 (left).  The cultures 

with ICD = 2 x 106 cells/ml were picked to represent the low density cultures and the 

cultures with ICD = 8 x 106 cells/ml were picked to represent the high density cultures 

in the figures.   

Figure 22 shows glucose consumption and lactate production versus time.  Lactate 

usually does not accumulate in insect cell cultures, though accumulation is possible 

when initial glucose concentration is high (~50 mM) (Rhiel and Murhammer 1995) and 

when oxygen is limiting (Reuveny, et al. 1993a).  The initial glucose concentration in 

Sf900-II media used in the experiments was 47.75 ± 1.64 mM, which was high.  

Therefore, lactate accumulation was indeed observed in the cultures, although only at 

low levels.  Maximum lactate accumulation was only 2.95 ± 0.07 mM for the high 

density cultures.  Minimal lactate accumulation indicated that the cultures were not 

under stress (Garnier, et al. 1996).  Lactate was also consumed in high density cultures.  
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Therefore, although high density cultures initially accumulated more lactate, toward the 

end of the culture, lactate accumulation was very minimal due to the consumption near 

the end of the cultures.   

 

 

 

Figure 22 : Glucose Consumption vs. Lactate Production 

Figure 23 shows glucose consumption and alanine production versus time.  Alanine 

formation is common in Sf-9 cell cultures.  It is a result of excess glucose and 

glutamine concentrations (Doverskog, et al. 1997).  Glucose is known to be the main 

carbon source for alanine formation (Bedard, et al. 1993).  As the initial concentrations 

of glucose and glutamine were high in Sf900-II media, formation of alanine was 

expected.  Alanine is also known to be consumed once glucose is depleted.  Since 

glucose never reached depletion in the experiments, alanine consumption was not 

expected or observed in the cultures.   
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Figure 23 : Glucose Consumption vs. Alanine Production 

Figure 24 shows glutamine consumption and ammonia production versus time.  

Amino acid metabolism and decomposition will release ammonia.  Since glutamine is 

known to be the most consumed amino acid and the only amino acid to undergo 

significant decomposition, ammonia production is closely related to glutamine 

consumption.  Ammonia accumulation was minimal in the cultures and the 

disappearance of ammonia from the cultures seen in high density cultures was most 

likely due to the incorporation of ammonia into the production of alanine.    
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Figure 24 : Glutamine Consumption vs. Ammonia Production 

The rates of consumption and production of the nutrients and byproducts related to 

glucose and glutamine metabolism are shown in Table 2.  The rates shown were the 

average rates between the duplicate cultures.  Glucose and glutamine are the most 

consumed nutrients in culture as observed by Wong et al. (1994) and Mendonca et al. 

(1999).  The ratio of glucose vs. glutamine consumption for low density cultures was 

2.17 ± 0.13, and the ratio for high density cultures was 3.32 ± 0.72.  The ratios showed 

that a greater % of glucose as compared to glutamine was used to generate energy in 

the high density cultures than in the low density cultures.  The increased ratio of 

glucose consumption to yield energy in high density cultures might suggest that more 

energy was needed in the high cell density cultures because glucose is able to yield 

more energy than glutamine.   

Amino acid metabolism is the source of ammonia.  Since glutamine is the major 

amino acid used in insect cell culture, glutamine metabolism is then the major source of 

ammonia generation in insect cell culture.  As shown by the ratios, less glutamine was 

used for energy production in the high density cultures; therefore, the amount of 
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cultures.  Therefore, most of the ammonia generated in high density cultures could be 

successfully removed from the media through alanine production.  The rate of 

ammonia generation might have exceeded the rate of alanine formation in low density 

cultures due to the higher amount of glutamine used, thus causing small ammonia 

accumulation in the low density cultures.  In addition, the amounts of alanine and 

lactate produced per mmol of glucose consumed for low density cultures were 0.52 ± 

0.17 mmol and 0.27 ± 0.10 mmol, respectively; and for high density cultures were 0.32 

± 0.05 mmol and 0.09 ± 0.02 mmol, respectively.   

As can be seen from Table 3, nutrient consumption rates (glucose and glutamine) 

decreased as culture densities increased.  Furthermore, there were also greater amounts 

of byproducts produced per µm3 of biovolume per hour in low density cultures than in 

high density cultures.  Since all cultures started with the same initial concentrations of 

nutrients, the concentrations of nutrients were in greater excess in low density cultures.  

When nutrients are in excess, nutrient uptake rates increase and will lead to increased 

production of metabolic byproducts, this phenomenon is called overflow metabolism 

(Doverskog, et al. 1997; Mendonca, et al. 1999; Miller and Blanch 1991).  Overflow 

metabolism often results in waste of energy since the increased nutrient uptake rates 

often lead to increased byproduct production.   

 

Nutrient 

Table 3: Rates Related to Glucose and Glutamine Metabolism 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 

Group Rates 

Stdev 

Glc LD 1 -0.0319 -0.0313 0.0006 

    2 -0.0312     

    4 -0.0308     

  HD 8 -0.0196 -0.0203 0.0010 

    10 -0.0209     
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Nutrient 

Table 3: Rates related to Glucose and Glutamine Metabolism (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 
Group Rates 

Stdev 

Gln LD 1 -0.0155 -0.0145 0.0011 

    2 -0.0146     

    4 -0.0134     

  HD 8 -0.0070 -0.0062 0.0011 

    10 -0.0055     

Ala LD 1 0.0227 0.0163 0.0057 

    2 0.0147     

    4 0.0115     

  HD 8 0.0069 0.0064 0.0008 

    10 0.0058     

Lac LD 1 0.0118 0.0084 0.0032 

    2 0.0080     

    4 0.0054     

  HD 8 0.0020 0.0019 0.0003 

    10 0.0017     

Amm LD 1 0.0022 0.0024 0.0002 

    2 0.0026     

    4 0.0025     

  HD 8 -0.0002 -0.0002 0.0001 

    10 -0.0001     

  

  Table 4 shows the consumption and production rates of all other amino acids for the 

uninfected cultures.  The same patterns of consumption continued for all the other 

amino acids: more nutrients were consumed in low density cultures than in high density 

cultures.     
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Nutrient 

Table 4: Other Amino Acid Consumption/ Production Rates 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 
Group Rates 

Stdev 

Asp LD 1 0.0014 0.0006 0.0007 

    2 0.0005     

    4 0.0000     

  HD 8 -0.0008 -0.0009 0.0002 

    10 -0.0010     

Glu LD 1 -0.0032 -0.0028 0.0003 

    2 -0.0026     

    4 -0.0026     

  HD 8 -0.0012 -0.0011 0.0001 

    10 -0.0010     

Ser LD 1 -0.0065 -0.0060 0.0004 

    2 -0.0059     

    4 -0.0056     

  HD 8 -0.0033 -0.0041 0.0011 

    10 -0.0049     

Asn LD 1 -0.0086 -0.0052 0.0030 

    2 -0.0041     

    4 -0.0030     

  HD 8 -0.0014 -0.0013 0.0001 

    10 -0.0012     

Gly LD 1 -0.0022 -0.0017 0.0005 

    2 -0.0014     

    4 -0.0014     

  HD 8 -0.0008 -0.0007 0.0002 

    10 -0.0006     

 

 



 

80 

 

 

Nutrient 

Table 4: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 
Group Rates 

Stdev 

His LD 1 0.0000 -0.0003 0.0002 

    2 -0.0003     

    4 -0.0004     

  HD 8 -0.0003 -0.0002 0.0000 

    10 -0.0002     

Thr LD 1 -0.0005 -0.0012 0.0005 

    2 -0.0014     

    4 -0.0016     

  HD 8 -0.0005 -0.0005 0.0001 

    10 -0.0005     

 Arg LD 1 -0.0017 -0.0019 0.0003 

    2 -0.0018     

    4 -0.0022     

  HD 8 -0.0019 -0.0017 0.0003 

    10 -0.0015     

Pro LD 1 -0.0049 -0.0035 0.0013 

    2 -0.0033     

    4 -0.0023     

  HD 8 -0.0012 -0.0011 0.0002 

    10 -0.0010     

Tyr LD 1 -0.0016 -0.0014 0.0002 

    2 -0.0015     

    4 -0.0011     

  HD 8 -0.0006 -0.0006 0.0001 

    10 -0.0005     
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Nutrient 

Table 4: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 
Group Rates 

Stdev 

Cys LD 1 -0.0008 -0.0006 0.0002 

    2 -0.0007     

    4 -0.0005     

  HD 8 -0.0002 -0.0002 0.0000 

    10 -0.0002     

Val LD 1 0.0000 -0.0010 0.0009 

    2 -0.0012     

    4 -0.0017     

  HD 8 -0.0010 -0.0009 0.0001 

    10 -0.0008     

Met LD 1 0.0000 -0.0003 0.0003 

    2 -0.0003     

    4 -0.0007     

  HD 8 -0.0004 -0.0004 0.0000 

    10 -0.0005     

Ile LD 1 0.0000 -0.0007 0.0006 

    2 -0.0008     

    4 -0.0012     

  HD 8 -0.0007 -0.0006 0.0001 

    10 -0.0006     

Leu LD 1 -0.0027 -0.0029 0.0001 

    2 -0.0029     

    4 -0.0029     

  HD 8 -0.0016 -0.0014 0.0002 

    10 -0.0013     
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Nutrient 

Table 4: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 

Group  

Avg Rates 
Group Rates 

Stdev 

Lys LD 1 -0.0010 -0.0016 0.0005 

    2 -0.0018     

    4 -0.0019     

  HD 8 -0.0012 -0.0011 0.0001 

    10 -0.0010     

Phe LD 1 0.0000 -0.0004 0.0004 

    2 -0.0004     

    4 -0.0007     

  HD 8 -0.0004 -0.0004 0.0000 

    10 -0.0004     

 

5.5.3 Infected Cultures 

Figure 25 shows glucose consumption and lactate production versus time for the 

infected cultures.  As stated in the previous section, since the initial glucose 

concentration in Sf900-II media was high, lactate was found to accumulate in culture, 

although at low levels.  Since lactate accumulation was low in the cultures, the cultures 

were not under stress.       

Maximum lactate accumulation in the high density culture was 2.45 ± 0.07 mM and 

occurred at 12 hpi; whereas, the uninfected high density culture had a maximum lactate 

concentration of 2.95 ± 0.07 mM that occurred at 24 hrs.  By examining the cell 

populations of both cultures in the first 12 hrs, it could be observed that the cell density 

in the uninfected culture increased by 1.70 x 106 cells/ml; whereas, the cell density in 

the infected cell culture only increased by 0.5 x 106 cells/ml.  On a per cell basis, the 

infected cells seemed to produce more lactate than the uninfected cells.  However, if 

instead, change in biovolume was examined, a totally different conclusion might be 

drawn.  The biovolume for the uninfected culture increased by 4.52 x 109 µm3/ml; 

whereas, the biovolume for the infected culture increased by 7.71 x 109 µm3/ml.  On a 
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per biovolume basis, the uninfected cultures actually produced a bit more lactate than 

the infected cultures.  This example again supports the use of an alternative basis to 

characterize nutrient uptake and production rates.   

 

 

 

Figure 25 : Glucose Consumption vs. Lactate Production 

Figure 26 shows glucose consumption and alanine production versus time.  Again, 

alanine was formed due to excess glucose and glutamine concentrations in Sf900-II 

media.  Since glucose was never depleted, alanine was not consumed in the cultures.     
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Figure 26 : Glucose Consumption vs. Alanine Production 

Figure 27 shows glutamine consumption and ammonia production versus time.  

Glutamine metabolism is the major source of ammonia accumulation in insect cell 

cultures.  Usually ammonia will not accumulate in cultures because it will be 

incorporated into the formation of alanine.  However, in the infected cultures, more 

ammonia accumulated than in the uninfected cultures.  This might be because an 

infected cell might be able to adjust its metabolism so that less energy would be wasted 

on alanine formation; therefore, leaving free ammonia accumulate in culture instead of 

being incorporated into alanine.     
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Figure 27 : Glutamine Consumption vs. Ammonia Production 

The rates of consumption and production of the nutrients and byproducts related to 

glucose and glutamine metabolism for the infected cultures are shown in Table 5.  The 

rates shown were the average rates between duplicate cultures.  As could be observed 

from Table 5, nutrient consumption rates (glucose and glutamine) remained relatively 

constant for both low density and high density cultures. This trend is different than the 

trend observed in uninfected cultures.  In addition, the infected nutrient consumption 

rates (glucose and glutamine) were similar to the uninfected nutrient consumption rates 

of the high density cultures.  As discussed in the above section, the uninfected high 

density cultures might have a higher energy demand than the low density cultures due 

to the higher cell populations, thus the amount of glucose used in the high density 

cultures increased.  The similar rates observed in the infected cultures could mean that 

the energy demand of the infected cells were similar to the energy demand of the 

uninfected high density cultures.  In terms of byproduct formation, the trend in the 

uninfected culture was observed.  That is more byproducts were produced per µm3 of 

biovolume per hour in low density cultures than in high density cultures.   
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The ratio of glucose to glutamine consumption for low density cultures was 3.35 ± 

1.65, and the ratio for high density cultures was 3.01 ± 0.06.  The standard deviation 

showed that the ratios for the low density cultures were more spread out from its mean.  

This meant that more variability existed in the low density cultures.  This could be 

explained by the less synchronous infection achieved in the low density cultures as 

discussed in Section 5.4.   

Glucose is considered to be the most significant energy source for insect cells 

(Drews, et al. 2000).  The % of glucose consumed by the infected cultures as shown by 

the ratios were approximately the same, with slightly higher % in the low density 

cultures than in the high density cultures.  In addition, the amounts of glutamine used in 

low and high density infected cultures were also approximately the same, and the 

amounts of ammonia accumulated in cultures were similar, too.  This supported the 

notion that glutamine is the major source for ammonia production.  Furthermore, more 

alanine and lactate were produced per mmol of glucose consumed in low density 

cultures than in high density cultures.  The amounts of alanine and lactate produced per 

mmol of glucose in low density cultures were 0.79 ± 0.42 mmol and 0.34 ± 0.23 mmol, 

respectively; and in high density cultures were 0.49 ± 0.00 mmol and 0.18 ± 0.00 

mmol, respectively.  Although, glucose uptake rates stayed relatively constant for both 

low and high density cultures, there were still more byproducts formed in the low 

density cultures than in the high density cultures.  Fewer nutrients wasted on the 

production of byproducts could mean that more nutrients were metabolized more 

efficiently by the insect cells in the high density cultures.  Comparing the infected 

cultures with the uninfected cultures, it was found that the infected cultures had higher 

glucose to glutamine usage ratios.  Glucose is known to be able to yield more energy 

than glutamine (Mendonca, et al. 1999; Neermann and Wagner 1996).  Upon complete 

oxidation, glucose is able to yield 32 molecules of ATP through the tricarboxylic acid 

cycle (TCA), and glutamine is able to yield 27 molecules of ATP (Mendonca, et al. 

1999).  Neerman and Wagner (1996) also determined that 14.3% of glutamine and 60% 

of glucose in batch cultures were completely oxidized to CO2 in insect cell cultures by 

radiolabeled studies of insect cells from the early exponential growth phase cultured at 

27°C.  Therefore, not only is glucose able to yield more energy when completely 
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oxidized but insect cells also seem to use more glucose than glutamine.  Since the rate 

of respiration has been shown to increase in infected cells (Kamen, et al. 1996), 

indicating increase in the demand of energy, it then makes sense for the cells to have a 

higher glucose/glutamine usage ratio after infection.   

Comparing the uninfected and infected cultures, it might seem like less nutrients 

were needed to support 1 µm3 of growth in the infected cultures than in the uninfected 

cultures.  However, it was also found that on average the cell size increases by 17.22 ± 

2.54 % after infection.  Therefore, on a per cell basis comparison, multiplying the 

infection rate by 1.1722, the low and high density glucose infected uptake rate become 

-0.0206 and -0.0205 x 10-9 mmol/um3.hr. Comparing this to the glucose uptake rate of 

the uninfected high density culture, which was -0.0203 x 10-9 mmol/um3.hr, it was 

observed that the infected cultures had similar consumption rate as the uninfected high 

density culture.  Palomares et al. (2004), Kamen et al. (1996), and Wong et al. (1994) 

have also observed that glucose uptake rate remains constant after infection.  In 

addition, doing the same adjustment to glutamine, the infected glutamine uptake rates 

for low and high density became -0.0066 and -0.0068 x 10-9 mmol/um3.hr.  Compared 

to the glutamine uptake rate of the uninfected high density cultures, which was -0.0062  

x 10-9 mmol/um3.hr, it was observed that the glutamine uptake rates did not change 

much before and after infection either, as was also observed by Palomares et al. (2004) 

and Wong et al. (1994).  The fact that nutrient uptake rates stayed relatively constant 

before and after infection, and that cell respiration has been shown to increase after 

infection, all seem to suggest that the infected cells were able to yield more energy 

from the nutrient molecules consumed. 
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Nutrient 

Table 5: Rates related to Glucose and Glutamine Metabolism 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 
Group Avg 

Rates 
Group Rates 

Stdev 

Glc LD 1 -0.0104 -0.0176 0.0066 

    2 -0.0189     

    4 -0.0235     

  HD 8 -0.0178 -0.0175 0.0004 

    10 -0.0172     

Gln LD 1 -0.0071 -0.0057 0.0013 

    2 -0.0047     

    4 -0.0052     

  HD 8 -0.0058 -0.0058 0.0000 

    10 -0.0058     

Ala LD 1 0.0130 0.0120 0.0014 

    2 0.0126     

    4 0.0104     

  HD 8 0.0066 0.0065 0.0001 

    10 0.0064     

Lac LD 1 0.0061 0.0050 0.0015 

    2 0.0057     

    4 0.0034     

  HD 8 0.0017 0.0016 0.0001 

    10 0.0016     

Amm LD 1 0.0045 0.0037 0.0010 

    2 0.0039     

    4 0.0026     

  HD 8 0.0034 0.0029 0.0006 

    10 0.0025     

 



 

89 

 

 

Table 6 shows the consumption and production rates of all other amino acids for the 

infected cultures.  It was observed that the nutrient uptake rates increased as density 

increased in the infected cultures.  This trend was different from the trend observed in 

the uninfected cultures, which had higher nutrient uptake rates in lower density 

cultures.  The phenomenon observed in the uninfected cultures was most likely caused 

by overflow metabolism as explained in the previous sections.  It was suggested from 

the previous discussion that infected cells seemed to utilize nutrients more efficiently 

by having minimal overflow metabolism.  Therefore, the phenomenon (increased 

uptake rates in lower density cultures) did not occur in the infected cultures.  The trends 

of nutrient consumptions returned to normal: as density increased, more nutrients were 

needed to support growth.   

 

Nutrient 

Table 6: Other Amino Acid Consumption/ Production Rates 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 
Group Avg 

Rates 
Group Rates 

Stdev 

Asp LD 1 0.0018 0.0019 0.0006 

    2 0.0025     

    4 0.0014     

  HD 8 -0.0006 -0.0006 0.0000 

    10 -0.0006     

Glu LD 1 -0.0012 0.0006 0.0017 

    2 0.0021     

    4 0.0011     

  HD 8 -0.0009 -0.0007 0.0002 

    10 -0.0006     

Ser LD 1 -0.0014 -0.0014 0.0003 

    2 -0.0012     

    4 -0.0018     

  HD 8 -0.0023 -0.0024 0.0001 

    10 -0.0025     
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Nutrient 

Table 6: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 
Group Avg 

Rates 
Group Rates 

Stdev 

Asn LD 1 -0.0058 -0.0027 0.0027 

    2 -0.0011     

    4 -0.0012     

  HD 8 -0.0016 -0.0016 0.0000 

    10 -0.0016     

Gly LD 1 0.0010 0.0006 0.0004 

    2 0.0007     

    4 0.0002     

  HD 8 -0.0006 -0.0006 0.0000 

    10 -0.0006     

His LD 1 0.0005 0.0004 0.0002 

    2 0.0005     

    4 0.0001     

  HD 8 -0.0002 -0.0002 0.0000 

    10 -0.0002     

Thr LD 1 0.0009 0.0005 0.0006 

    2 0.0006     

    4 -0.0002     

  HD 8 -0.0008 -0.0008 0.0000 

    10 -0.0008     

Arg LD 1 -0.0004 0.0000 0.0003 

    2 0.0002     

    4 0.0001     

  HD 8 -0.0005 -0.0005 0.0000 

    10 -0.0005     
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Nutrient 

Table 6: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 
Group Avg 

Rates 
Group Rates 

Stdev 

Pro LD 1 -0.0036 -0.0015 0.0018 

    2 -0.0006     

    4 -0.0003     

  HD 8 -0.0009 -0.0008 0.0002 

    10 -0.0006     

Tyr LD 1 -0.0015 -0.0008 0.0006 

    2 -0.0005     

    4 -0.0005     

  HD 8 -0.0006 -0.0007 0.0000 

    10 -0.0007     

Cys LD 1 -0.0006 -0.0004 0.0002 

    2 -0.0003     

    4 -0.0004     

  HD 8 -0.0004 -0.0004 0.0000 

    10 -0.0004     

Val LD 1 0.0017 0.0012 0.0009 

    2 0.0016     

    4 0.0002     

  HD 8 -0.0007 -0.0007 0.0000 

    10 -0.0008     

Met LD 1 0.0015 0.0011 0.0006 

    2 0.0015     

    4 0.0004     

  HD 8 -0.0004 -0.0004 0.0001 

    10 -0.0005     
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Nutrient 

Table 6: Other Amino Acid Consumption/ Production Rates (Continued) 

Group ICD 

Rates  

(10-9 mM/µm3.hr) 
Group Avg 

Rates 
Group Rates 

Stdev 

Ile LD 1 0.0016 0.0012 0.0007 

    2 0.0015     

    4 0.0004     

  HD 8 -0.0005 -0.0005 0.0001 

    10 -0.0006     

Leu LD 1 -0.0001 -0.0003 0.0003 

    2 -0.0002     

    4 -0.0007     

  HD 8 -0.0013 -0.0013 0.0001 

    10 -0.0014     

Lys LD 1 0.0018 0.0010 0.0009 

    2 0.0013     

    4 0.0000     

  HD 8 -0.0007 -0.0008 0.0001 

    10 -0.0008     

Phe LD 1 0.0014 0.0010 0.0006 

    2 0.0013     

    4 0.0003     

  HD 8 -0.0005 -0.0005 0.0000 

    10 -0.0005     

 

 

 

 

  



 

93 

 

 

Chapter 6 Conclusions and Recommendations 

 

Biovolume has been shown to be a potential parameter for characterizing nutrient 

consumption profiles in this thesis.  The merit of using biovolume is that this parameter 

allows for the comparison of nutrient consumption profiles before and after infections 

that the density parameter cannot.  By comparing the consumption profiles, knowledge 

of the nutrient requirements before and after infections can be enhanced.  By knowing 

the nutrient requirements, different nutrient cocktails can be designed to enhance cell 

growth (before infection) and to improve the production of recombinant proteins (after 

infection).  This will not only increase the efficiency of achieving specific goals at 

different stages of the culture, but will also reduce the cost, since unnecessary nutrients 

will not be added and wasted, thus making the process more economical.   

Although promising, this parameter still has some limitations.  First of all, in order to 

obtain biovolume profile, a laboratory must have access to some sort of cell counter; 

whereas, to obtain density profile, a laboratory only needs to have a hemocytometer, 

which is more commonly found in cell culture laboratories.  Another limitation of this 

method is that the accuracy of the biovolume profiles after infection depends strongly 

on the success of achieving synchronous infection.  If the culture is too asynchronous, 

then there will be many different cell populations mixed in the culture.  For example, at 

any time point, there may be an uninfected cell population, which will keep on 

dividing, an infected cell population, and a dead cell population.  Both the uninfected 

cell population and the dead cell population will “dilute” the true infected biovolume 

exhibited by the infected cell population.   

The second limitation can be resolved if different cell populations can be identified 

by separating the cell size distribution profiles.  One possible future work is to separate 

the cell size distribution into viable cell size distribution and nonviable cell size 

distribution.  In this thesis, it was assumed that viability was well distributed in the 

diameter range of 9.63 – 26.5 µm.  This assumption might seem harmless to uninfected 

cultures where viability is close to 100%; however, in infected cultures where the 

occurrence of very low viability is possible, it is likely that the non-viable cells will be 
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localized at the lower end of the diameter scale of the cell size distribution rather than 

being well distributed over the whole range.  If this is the case, for the infected cultures 

with low viability, the mean cell diameter calculated will be underestimated, which will 

lead to an overestimation of nutrient consumption for cultures with low viability.  The 

accuracy of the nutrient consumption in terms of infected cultures without correction 

might then be dependent on the cell viability.  This can be corrected by separating cell 

size distribution data into different cell populations of viable and nonviable.  This 

analysis is currently being carried out in our group. 

Once the cell size distribution data is separated into viable and nonviable 

populations, the % of uninfected and % of infected population of the viable cell culture 

can then be calculated by the % of infection method proposed in this thesis.  By 

estimating the % of uninfected culture and knowing the average diameter of the 

uninfected culture, the biovolume of the uninfected culture can then be corrected.  

After the corrections, the “true” % of infected biovolume can then be calculated and 

compared with the “true” uninfected biovolume.   

Four major objectives were achieved in this thesis: 

1. to compare and contrast uninfected and infected culture profiles;  

2. to examine synchronicity of infection; 

3. to statistically compare biovolume and cell density to nutrient consumption and 

metabolite production;  

4. to examine and discuss differences in nutrient consumption and metabolite 

production patterns before and after infection. 

As a result, the driving hypothesis of this thesis, that biovolume can be utilized as a 

parameter for characterizing nutrient consumption patterns, has been validated to a 

certain extent. Biovolume could be used as a basis for growth and nutrient consumption 

characterization. In uninfected cultures, the cell density increases while the cell sizes 

stays relatively constant; whereas in the infected cultures, cell density stays relatively 

constant while cell sizes increase.  Combining cell density and cell size profiles, 

biovolume profiles were generated and used to characterize changes in growth and 

nutrient consumption profiles instead of cell density data alone. 
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To verify that biovolume was indeed a better parameter for characterization of 

growth and nutrient consumption, analyses of the correlations between nutrient 

consumptions and changes in cell density and biovolume were performed.  It was found 

that in the uninfected cultures, there was no significant difference in using either cell 

density or biovolume since cell size stayed relatively constant; however, in the infected 

cultures, better correlations were found using  biovolume than using cell density.  Since 

biovolume provided a better correlation, it was used to characterize the nutrient 

consumption profiles.   

When culturing cells at 30°C, it was found that metabolites such as lactate and 

alanine were produced more readily in low density uninfected cultures (from 1 to 4 x 

106 cells/ml), suggesting the use of alternative metabolic pathways in the cells, often 

referred to as an “overflow metabolism.”  Overflow metabolism occurs when the 

amount of nutrients present in the media are more than what the cells require because 

cells have a tendency to increase their nutrient uptake rate when the concentrations of 

nutrients increase.  The increased uptake of nutrients will then result in increased 

generation of metabolic byproducts.  The amount of alanine and lactate produced per 

mmol of glucose consumed for low density cultures were 0.52 ± 0.17 mmol and 0.27 ± 

0.10 mmol, respectively; and the amount produced for high density cultures (> 8 x 106 

cells/ml) were 0.32 ± 0.05 mmol and 0.09 ± 0.02 mmol, respectively.   

In the production of AAV at high temperature (30°C), it was found that more glucose 

was consumed compared to glutamine.  The ratio of glucose to glutamine consumption 

rates in low density and high density cultures were similar; in low density cultures, the 

ratio was 3.35 ± 1.65, and the ratio for high density cultures was 3.01 ± 0.06.  

Comparing to the uninfected cultures, which had a ratio of 2.17 ± 0.13 for low density 

cultures, and a ratio of 3.32 ± 0.72 for high density cultures, it was observed that the 

infected cultures had a higher glucose to glutamine consumption ratio than uninfected 

low density cultures, and the ratio of high density cultures stayed relatively constant 

regardless of whether the cultures were infected or not.  Since glucose is able to yield 

more energy than glutamine, and when the cultures have more cells, more energy is 

needed, the increased use of glucose vs. glutamine from low density to high density 
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uninfected cultures was justified.  It was also observed that the energy requirement of 

infected cultures were similar to those of the uninfected high density cultures.  It is 

known that the uninfected cultures will increase in density, whereas the density of the 

infected cultures remains relatively constant.  Instead, the cell sizes of the infected 

cultures will increase due to increased DNA replication and protein productions inside 

the cells.  The data appeared to suggest that the amount of nutrients consumed in the 

infected cultures were similar to the amount of nutrient consumed in the uninfected 

cultures.   

On the surface, it might seem that energy demand of the cells remained relatively 

constant in the infected and uninfected cultures because nutrient consumptions 

remained relatively constant.  However, it has also been reported that he rate of cell 

respiration increases after infection.  Higher reparation rates can allow a higher 

amounts of nutrient to be oxidized completely.  As a result of a more complete 

oxidation, more energy can be yielded.  Therefore, although the rates of consumption 

were similar in the infected and uninfected cultures; the energy demand in the infected 

cultures can still be greater due to the higher respiration rates.   

Synchronicity of infection was also examined in this thesis.  Three methods were 

used.  The first two methods calculated % of infection at 0 hr; and the last method 

investigated on rate of infection through computer simulation.  The results from all 

three methods seemed to suggest that synchronicity of infection could be a function of 

initial cell density.   
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Appendix A - Matlab Codes 

 

Script File – callfile 
 

clear all 

close all 

  

global u xo xf cult 

  

u = [0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203 0.0203]; 

xo = [8.47E+05 1.99E+06 4.11E+06 9.24E+06 1.07E+07 1.06E+06 2.01E+06    

4.04E+06 8.09E+06 1.01E+07]; 

xf= [1.08E+06 2.08E+06 3.99E+06 8.47E+06 1.04E+07 1.10E+06 2.06E+06 3.72E+06 

7.23E+06 8.24E+06]; 

  

ki=zeros(1,10); 

  

for i=1:10 

cult=i; 

parameter=0.05; 

options=optimset('TolFun',0.0001); 

ki(1,i)=fminsearch(@minkierr, parameter, options); 

end 

  

ki 
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Function File – minkierr 
 

function error_out=minkierr(parameter) 

  

global xo xf cult crate  

  

%------------------------------------------------------------------------------------------------------- 

% This file calculates and minimizes the error of ki 

 

%Initial conditions 

%          xo     xi          

Cinit = [xo(cult), 0]; 

crate=parameter; 

  

%Timespan 

Tspan=[0 24]; 

  

%Differential Equation Solution 

[t,x]=ode45(@balances, Tspan, Cinit); 

  

%error calculation 

j = length(t); 

kierr = (x(j,2)+x(j,1) - xf(cult))^2; 

error_out=kierr; 
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Function File – balances 
 

function dydt=balances(t,y) 

  

global u cult crate 

  

%-------------------------------------------------------------------------------------------- 

% This file calculates changes in the uninfected and infected cell populations 

 

X=y(1); 

Xi=y(2); 

mu=u(cult); 

  

%-------------------------------------------------------------------------------------------- 

%ODEs 

  

if X<0  

   X=0; 

end 

  

dXdt=mu*X-crate*X; 

dXidt=crate*X; 

  

if dXdt<-X 

   dXdt=-X; 

   dXidt=X; 
end 

  

%--------------------------------------------------------------- 

dydt=[dXdt; dXidt]; 
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