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Abstract

Astrophysical data analysis of the weak-field predictions support the claim that modi-

fied gravity (MOG) theories provide a self-consistent, scale-invariant, universal description

of galaxy rotation curves, without the need of non-baryonic dark matter. Comparison to

the predictions of Milgrom’s modified dynamics (MOND) provide a best-fit and experimen-

tally determined universal value of the MOND acceleration parameter. The predictions of

the modified gravity theories are compared to the predictions of cold non-baryonic dark

matter (CDM), including a constant density core-modified fitting formula, which produces

excellent fits to galaxy rotation curves including the low surface brightness and dwarf

galaxies.

Upon analysing the mass profiles of clusters of galaxies inferred from X-ray luminosity

measurements, from the smallest nearby clusters to the largest of the clusters of galaxies, it

is shown that while MOG provides consistent fits, MOND does not fit the observed shape

of cluster mass profiles for any value of the MOND acceleration parameter. Comparison

to the predictions of CDM confirm that whereas the Navarro-Frenk-White (NFW) fitting

formula does not fit the observed shape of galaxy cluster mass profiles, the core-modified

dark matter fitting formula provides excellent best-fits, supporting the hypothesis that

baryons are dynamically important in the distribution of dark matter halos.

iii



Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council

of Canada (NSERC) and the University of Waterloo. Research at Perimeter Institute for

Theoretical Physics is supported in part by the Government of Canada through NSERC

and by the Province of Ontario through the Ministry of Research and Innovation (MRI).

It was a privilege to be supervised by John W. Moffat of the Universities of Toronto

and Waterloo. I thank John for illuminating so many subjects in gravity theory, cosmology

and high energy physics with his insight and rational perspective. His scientific expertise

and originality continue to inspire me to seek an ever clearer picture of theories of space-

time and their connection to physical reality. I am grateful to all my mentors – David J.

Rowe of the University of Toronto, James B. Hartle of the University of California at Santa

Barbara, Jess K. Brewer of the University of British Columbia – for supplying brilliantly

challenging and enormously satisfying physics.

iv



Dedications

The most stimulating and rewarding process of modelling gravity is entirely due to the

physicists who have illuminated the physical universe, in their unique and visionary ways.

I dedicate my dissertation to each of the world’s greatest classical and quantum physicists,

each of whom have strongly affected my journey:

Albert Einstein Sir Isaac Newton

Steven Weinberg James C. Maxwell

Wolfgang Pauli Paul Dirac

Richard P. Feynman Erwin Schrödinger

Brian D. Josephson Kenneth G. Wilson

v



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Non-Baryonic Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Modified gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Consequences for Astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.5 Cosmological Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Citations to published results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Part I Theory

2 Non-baryonic dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.1 Dark matter halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Navarro-Frenk-White profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Generalized profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 Core-modified profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Dynamic mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3 Modified gravitation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Equivalence principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.1 Local SO(3,1) theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Strong equivalence principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.3 Violations of the strong equivalence principle . . . . . . . . . . . . . . . . . . . 31

3.2 Modified Newtonian dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Milgrom’s acceleration law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Modified dynamics at small acceleration . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Dynamical preferred frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Metric skew-tensor gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.3.1 Kalb-Ramond-Proca field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Motion under the fifth force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 MSTG acceleration law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.5 Poisson equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.6 Dynamical mass measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Scalar-tensor-vector gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.1 Maxwell-Proca field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.4.2 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.3 Motion under the fifth force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.4.4 STVG acceleration law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vi



3.4.5 Poisson equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.6 Dynamical mass measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Part II Astrophysics

4 Galaxy rotation curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.1 Curve-fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1.1 CDM halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.1.2 Milgrom’s acceleration law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.1.3 Moffat’s modified gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Ursa Major filament of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2.1 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2.2 Surface mass computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 High and low surface brightness galaxies . . . . . . . . . . . . . . . . . . . . . . . 86
4.2.4 Surface mass density maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.5 Radial mass profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2.6 Dynamic mass factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.7 Core-modified dark matter halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2.8 The mass luminosity relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.3 Halos of phantom dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.1 Newtonian cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3.2 Orphan features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.3.3 Core-modified dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
4.3.4 The Tully-Fisher relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5 Clusters of galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.1 X-ray clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.1.1 Astrophysical observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
5.1.2 Isotropic isothermal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.1.3 Surface mass density map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.1.4 Dynamical mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.2 Best-fit cluster models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.2.1 Core-modified dark matter halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
5.2.2 Milgrom’s MOND without dark matter . . . . . . . . . . . . . . . . . . . . . . . . 161
5.2.3 Moffat’s MOG with running couplings . . . . . . . . . . . . . . . . . . . . . . . . . 163
5.2.4 The missing mass problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.3 Bullet Cluster 1E0657-558 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.3.1 X-ray gas map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.3.2 Gravitational lensing convergence map . . . . . . . . . . . . . . . . . . . . . . . . 182
5.3.3 Visible baryon distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
5.3.4 Dark matter distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3.5 Neutrino halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6 Solar system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.1 Pioneer 10/11 Anomaly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.1.1 Pioneer anomalous acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
6.1.2 Gravitational solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
6.1.3 Kepler’s laws of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

vii



6.1.4 Planetary Ephemerides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.1.5 Anomalous perihelion advance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Part III Conclusions

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
7.1 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.1.1 CDM halos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.1.2 Modified gravity theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.2 Galactic astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
7.3 Cluster-scale astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

8 Future astrophysical tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1 Galactic astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

8.1.1 Galaxy rotation curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
8.1.2 Galaxy-Galaxy lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.2 Cluster-scale astrophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.2.1 Intercluster medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.2.2 Gravitational lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

viii



List of Figures

Ursa Major filament of galaxies

4.1 Galaxy rotation curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Surface mass densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.3 Mass profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 Dynamical mass factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.5 Dark matter power-law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
4.6 Stellar mass-to-light ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.7 Empirical K-band Tully-Fisher relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.8 Total mass with dark matter vs. velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
4.9 Theoretical Tully-Fisher relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

X-ray clusters of galaxies

5.1 Mass profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
5.2 Dynamic mass factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Bullet Cluster 1E0657-558

5.3 False colour composite image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
5.4 X-ray gas surface density map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
5.5 King β-model fit to scaled Σ-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.6 X-ray gas surface density model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
5.7 Gravitational lensing convergence map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
5.8 Best-fit model to the gravitational lensing convergence map . . . . . . . . . . . . . . . 184
5.9 Galactic surface mass density map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
5.10 Distribution of visible and dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Solar System

6.1 Pioneer 10/11 anomalous acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
6.2 Dynamic mass factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.3 Kepler’s third law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

ix



List of Tables

1.1 Standard model extensions for non-baryonic dark matter . . . . . . . . . . . . . . . . . . 4
1.2 Catalogue of astronomical case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Ursa Major filament of galaxies

4.1 Galaxy properties of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2 Dark matter best-fit NFW and core-modified parameters . . . . . . . . . . . . . . . . . . 93
4.3 MOND best-fit and universal acceleration parameter . . . . . . . . . . . . . . . . . . . . . . 95
4.4 MSTG best-fit and mean-universal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5 STVG best-fit and mean-universal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.6 Galaxy masses of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
4.7 Tully-Fisher relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

X-ray clusters of galaxies

5.1 X-ray cluster properties of the sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.2 Best-fit cluster model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Bullet Cluster 1E0657-558

5.3 J2000 sky coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
5.4 Isothermal temperature of the main cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
5.5 Component mass predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Solar System

6.1 Planetary predictions and observational limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
6.2 Mean ephemerides of planetary orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
6.3 Planetary perihelion advance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

x



Chapter 1

Introduction

“Whoever undertakes to set himself up as a judge of Truth and Knowledge is

shipwrecked by the laughter of the gods.”

Albert Einstein

As Einstein observed, one’s perspective into the nature of physical reality determines the

degree to which one can understand physics within existing notions, or whether a shift of

paradigm is needed.

1.1 Motivation and Objectives

Motivated by ongoing advances in gravity theory, the basic objective of this thesis is to

present the current state of the art in astrophysical models of the astronomically observed

data and to explore the frontier of cosmology by presenting a model universe without the

necessity of dominant non-baryonic dark matter.

The central computation – in the question of dark matter – is the spatial distribution

of the unseen component. Application of the Newtonian 1/r2 gravitational force law in-

evitably points to dark matter halos dominating disks of visible baryons within galaxies

and clusters of galaxies throughout the cosmos (Oort, 1932).

Alternatively, a modified gravity field theory, which is sourced only by baryons of the

standard model of particle physics, may provide the solution to the unseen component.

Regardless of how minuscule the physical effect must be at planetary and solar scales,

the inclusion requires a fundamental modification of the known interactions, resulting in

additional configuration variables and new couplings. The addition of scalar-vector-tensor

fields and their couplings to the action for pure gravity will be identified as a measurable

fifth force, that does not vanish in a local frame, but without necessarily violating the

weak equivalence principle and the universality of free fall. Although each modified gravity

1
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theory may generate a fifth force through dissimilar means, the necessary violation of the

equivalence principle may be quantified by measuring the dynamical mass factor as the

ratio of the dynamic mass to the observed baryonic mass in each of the theories, depending

on its distance from the astrophysical center of the system.

Motivations for each perspective are presented in greater detail, according to whether

there exists physical dark matter candidates corresponding to as yet undetected massive

particle fields, as in §1.1.1, or the hypothesis that modified gravity is responsible for the

phantom of dark matter, as in §1.1.2, according to some violation of the strong equivalence,

or relativity principle. The full hypothesis is detailed in §1.1.3, defining the candidate

theories and the scope of astronomical case studies. The consequences for astrophysics

and cosmology are identified in §1.1.4 and §1.1.5, respectively.

Whereas each of the main ideas are theoretically developed in Part I, the specific

objective of this thesis, documented in Part II, is to provide the results of a computational

astrophysical data analysis, across a range of scales, in order to determine whether dark

matter is real, or a phantom of a modified gravity theory, according to the method:

1. To measure the visible baryon distributions in galaxies and clusters of galaxies within

Newton’s theory, Milgrom’s modified dynamics (MOND) and Moffat’s modified grav-

ity theories (MOG), and to measure the dark matter distributions in a sample of

galaxies and clusters of galaxies.

2. To compute the dynamic mass factors in each of the sample’s galaxies and clusters

of galaxies, which provide the extra gravity and phantom dark matter in MOND and

MOG; and to compare the dark matter factor with cosmological values.

3. To observe whether the results may be universally understood across the range of

kiloparsec to megaparsec scales within the sample.

Conclusions are supplied in Part III.

1.1.1 Non-Baryonic Dark Matter

Despite over 20 years of focussed experimental effort, no direct evidence of dark matter

particles has ever been found, and no annihilation radiation from any non-baryonic, dark

matter candidate has ever been detected. In fact, no experiment has ever supported any
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physics beyond the standard model of particle physics on which the dark matter hypothesis

depends. One of the goals of CERN’s new Large Hadron Collider (LHC) is to understand

what constitutes dark matter. Capturing the notion that dark matter and dark energy

are emergent gravitational phenomena due to terms beyond the Einstein-Hilbert action

is a primary objective for this thesis. Just as the Michelson-Morley experiment gives a

null result and falsifies the prediction of the luminiferous æther – the medium for the

propagation of light as it was thought until the late 19th century – the LHC and the dark

matter project (and future experiments) may never confirm any candidate for the dark

matter particle. The scientific community was strongly resistant to accept the falsification

of the luminiferous æther, and experiments continue to this day in search of this classically

motivated, but expendable substance. The search for dark matter continues, as Kipling’s

poem IF reasons, regardless.

The most popular candidates for non-baryonic dark matter, and the experimental status

of their respective searches, are listed in Table 1.1. In all cases, a modification to the

standard model of particle physics is required to explain why the Λ-CDM predicted density

of dark matter dominates the baryon component by a factor of 5.7 ± 0.4 (Spergel et al.,

2007).

The status of dark matter is entirely reversed in the astrophysics of galaxies and clusters

of galaxies, where the baryon fraction in certain critical systems can be entirely neglected,

and has led some astrophysicists to claim detection of dark galaxies devoid of stars (Minchin

et al., 2007). The search for dark dwarf galaxies is an important prediction of the Λ-CDM

cosmological model of structure formation. However, after years of intense search, all of the

candidate dark dwarf galaxies have turned out to have been dwarf galaxies with a luminous

stellar component, observed with high-powered optical telescopes. In fact, for decades, dark

matter simulations have predicted many times more companion galaxies than are actually

observed (Merrifield, 2005). Large galaxies like the Milky Way are accompanied by a

local group including many small satellites. However, a robust prediction of dark matter

simulations is that the Milky Way should be accompanied by ∼ 500 satellites, whereas only

35 have been observed (Moore et al., 1999a). Klypin et al. (1999) used the circular velocity

distribution of the galaxy satellites to conclude that unless a large fraction of the Local
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Table 1.1: Standard model extensions for non-baryonic dark matter

Some of the primary candidates for non-baryonic dark matter are
listed (Muñoz, 2004), (Taoso et al., 2008).

Particle Conjecture

Axion

Neutral scalars associated with the spontaneous symmetry
breaking of global U(1) Peccei-Quinn symmetry as a mech-
anism to solve the strong CP problem in QCD. These light
– 10 µeV – non-thermally produced species are viable CDM
candidates with relic abundances matching the cosmological
density. Reviewed in Sikivie (2005) and Raffelt (2007).

WIMP relics

Weakly interacting massive particles whose annihilation rate
fell below the cosmological expansion rate, freezing out at
primordial density, are thermal relics. The required small
annihilation cross-section introduces new physics at the
weak scale.

Neutralino

The lightest supersymmetric WIMP may be stable and may
act as a heavy thermal relic. The near collisionless aspect
of the neutralino makes it a prototype for cold dark matter.
Supersymmetry is badly broken in nature, and requires new
physics at the weak scale.

Neutrino
The first proposed dark matter candidate was a fourth gen-
eration heavy neutrino, but collider experiments have ruled
this out up to 1 TeV.

sNeutrino

The supersymmetric partner to the neutrino has been ruled
out by LEP up to 1 TeV, which is too massive to be the
lightest stable supersymmetric particle. The left-handed
sNeutrino has further been excluded in the minimal super-
symmetric standard model (MSSM), but the right-handed
sNeutrino is viable in extensions to the MSSM.

Gravitino

The supersymmetric partner to the graviton may have a
mass of order keV, and is a candidate for non-baryonic dark
matter in the absence of the inflationary paradigm. How-
ever, relic gravitinos at big bang nucleosynthesis would lead
to a higher reheating temperature than permitted by ther-
mal leptogenesis.
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Group satellites has been missed in observations, there is a dramatic discrepancy between

observations and hierarchical models, regardless of the model parameters. Furthermore,

Somerville et al. (2004) showed that the Λ-CDM hierarchical scenario predicts that the

largest most massive galaxies should form last, yet high redshift observations are beginning

to indicate that some fraction of very luminous galaxies were present quite early in the

process of structure formation.

The dark matter paradigm has spawned an entire industry of computer simulations

which attempts to model the formation of structure in the universe through the gravita-

tional collapse of dark matter dominated clumps. As the resolution of very large computer

simulations continues to improve, definite and robust results for the dark matter distribu-

tion within individual galaxies show a central power-law cusp, ρ(r) ∝ r−γ. The steepness

of the cusp is a topic of debate (Navarro et al., 2004), particularly in regard to the inclusion

of baryons in the simulations.

Bullock et al. (2001) considered the angular momentum of dark matter halos, and pro-

vided high-resolution N-body simulations of the ΛCDM cosmological structure formation

of galactic halos, showing that the HI (and He) gas components cool at early times into

small mass halos, leading to massive low-angular momentum cores in conflict with the

observed exponential disks. The simulated ΛCDM galaxies have profiles which are too

dense at small radii, and with tails extending too far. A possible solution is to associate

the central excesses with bulge components and the outer regions with extended gaseous

disks.

In the cores of spiral galaxies that have been fitted, the power-law index, 1 . γ . 1.5,

and the general consensus is that at large radii, the profile steepens approaching a power-

law index, γ = 3. At intermediate distance, the fits reproduce the observed flat rotation

curves with γ = 2. However, the large amount of luminous stellar material in the core of

spiral galaxies means that such cusps will have negligible effects on the rotation curves of

spiral galaxies. Fortunately, a class of galaxies exists in which this issue is not the case.

These low surface brightness galaxies contain a very low density of luminous material, even

in the core, so that the observed dynamics should be dominated by the gravitational forces

of the dark halo. Unlike in high surface brightness spiral galaxies, the small amount of
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luminous matter should not be efficient in redistributing the dark matter, so the central

cusp should remain. de Blok et al. (2001b) showed that the dark matter fits to a sample

of 30 low surface brightness galaxies do not fit the data, showing systematic deviations in

the galaxy cores. Although the low surface galaxy rotation curves do tend to flatten off to

the constant rotation velocity characteristic of the dark matter halo, they rise significantly

more slowly out to several kiloparsecs than the best-fit cold dark matter prediction. The

rotation curves of low surface brightness galaxies prefer dark matter distributions with

constant density modified cores.

Just as the luminiferous æther is considered an unnecessary addition to physics that

violates the principle of Occam’s razor, non-baryonic dark matter may be considered a

superfluous component to be removed from our description of the cosmos. The application

of Occam’s razor here would be to decrease the computed masses of galaxies and clusters

of galaxies by an order of magnitude, and several orders of magnitude in the case of the

critical systems. Although the evidence we currently have for dark matter is concordant,

it is unconfirmed, so it is vital to investigate the alternatives. In some cases, modified

gravity may seem to fit the observations better than dark matter.

The conflict between the cuspy dark matter halos predicted by hydrodynamical N-body

simulations and the constant density cores preferred by dwarf and low surface brightness

galaxies made it impossible to χ2-fit some of the galaxies in Part II with the NFW fitting

formula of Navarro et al. (1996, 1997) with a nonvanishing stellar mass-to-light ratio.

Regardless, a cure to the cusp problem was found in Chapter 4 by implementing a core-

modified fitting formula of Equation (2.12):

ρ(r) =
ρ0r

3
s

r3 + r3
s

, (1.1)

which provided excellent best-fits across the sample of high and low surface brightness

galaxies including dwarf galaxies; and supports the existing Λ-CDM cosmology based on

logarithmically divergent dark matter halos. For each rotation curve in the Ursa Major

sample of §4.2, the power-law index was found to asymptotically rise (γ → 3) at large

radii, whereas at small radii, the baryon-dominated constant density dark matter core



§Chapter 1. INTRODUCTION 7

(γ → 0) appeared, as shown in Figure 4.5. Including the baryons, the total power-law

indices oscillate around γ → 1 at the small radii and asymptotically rise to γ → 3 at large

radii, where the dark matter core dominates and the baryonic data runs out.

Although cuspy dark matter halos are robust predictions from hydrodynamical N-body

simulations of clusters of galaxies which ignore the baryon components, it is a feature which

has not been observed. Whereas it was impossible to χ2-fit any of the clusters of galaxies

in Part II with the NFW fitting formula of Navarro et al. (1996, 1997), the core-modified

profile of Equations (1.1) and (2.12) that solved the cusp problem for galaxy rotation curves

was successfully applied to clusters of galaxies in Chapter 5, providing excellent best-fits

across the sample from the smallest X-ray cluster in nearby Virgo to the largest and most

radiant Bullet Cluster 1E0657-558 main cluster. The core-modified dark matter halos

described in §5.2.1 do not dispute the existing Λ-CDM cosmology based on logarithmically

divergent dark matter halos, but challenge dark matter simulations to reinsert the baryons,

and make predictions that are consistent with astrophysical observations.

1.1.2 Modified gravity

Aristotle’s notion of the motion of bodies was that a constant force maintains a body in

uniform motion, and that force could only be applied by contact so action at a distance

was considered impossible. Aristotle produced a number of arguments why the heavens

revolved around the Earth, and denied the possibility that the Earth rotated on its axis.

This geocentric model stood the test of time for over eighteen hundred years until Coper-

nicus postulated that the sun was the center of the universe and the earth revolved around

it at a distance related to the size of the orbit. This idea, although controversial, initi-

ated a scientific revolution that allowed a mathematical description of the force of gravity.

Kepler’s empirical three laws of motion determined the elliptical orbits of planets orbiting

the sun and opened an era of precision astronomy. Galileo continued the revolution with

a series of experiments on projectile motion, including the legendary Tower of Pisa ex-

periment on the universality of free fall, and developed the mathematical theory of falling

bodies. Newton (1687) set the foundation for classical mechanics and introduced the law

of universal gravitation and a derivation of Kepler’s laws of planetary motion. Newton’s
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gravity theory describes action at a distance through Poisson’s equation, in which any

change in the matter distribution is instantaneously communicated to bodies in motion

through the gravitational potential field.

Scalar modified gravity

The idea that Newton’s constant varies from one point in space-time to another was first

considered by Jordan (1959) and first implemented in Brans and Dicke (1961), which

attempted to modify general relativity to be compatible with Mach’s principle. A non-

geometric, scalar field, φ(x), was coupled to the Ricci curvature scalar in the action for

gravity. This field is massless, but self-interacting as it couples to its own kinetic term

through the coupling constant, ωBD, which must be determined experimentally. This self-

consistent and energetically stable modification to general relativity leads to the result

that the locally measured value of Newton’s constant varies spatially, and depends on

the expectation value of the inverse of the Jordan-Brans-Dicke field, G(x) = 〈1/φ(x)〉.

However, this scalar-tensor modification to general relativity violates the strong equivalence

principle and leads to a variation in Kepler’s third law – which is locally measurable through

the γ parameter of the parametrized post-Newtonian formalism. Solar system tests and to

a lesser degree, PSR1913+16, have constrained Jordan-Brans-Dicke theory (Will, 2006).

Renormalized gravity

Even without the presence of auxiliary scalar fields which carry energy and momentum, the

evidence from quantum field theory suggests that coupling constants like the fine structure

constant, α, in quantum electrodynamics (QED) are not really universal, but are scale

dependent “running” quantities. The value measured in the lab for the “fundamental”

charge of the electron depends on the renormalization scale, k. The physical mechanism

behind the running fine structure constant is the appearance of a sea of virtual electron-

positron pairs which are in a constant state of creation/annihilation. Offshell photons

surround the test charge, and contribute to the polarization of the bare charge, screening it

at large distances. Experimental measurements of the fine structure constant, at sufficiently

large renormalization scale k, show values α(k) � 1
137

. Just as the Coulomb force law in

classical electromagnetism is modified by the quantum corrected Ueling potential, the
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Newtonian force law may be subject to a running Newton’s constant, leading to quantum

corrected modified gravity (Reuter, 1998; Reuter, 2000).

1.1.3 Hypothesis

The solution to the missing mass problem in galaxy rotation curves and clusters of galaxies

may be one of the candidates:

1. Cold non-baryonic dark matter (CDM),

2. Milgrom’s modified Newtonian dynamics (MOND),

3. Moffat’s metric skew-tensor gravity theory (MSTG),

4. Moffat’s scalar tensor vector gravity theory (STVG).

For the case of CDM, the total mass interior to a spherical region divided by the

integrated baryonic mass of the combined, visible, components is a measure of how much

dark matter is required – this is the dark matter factor. For the case of MOND, the dynamic

mass interior to a region divided by the integrated baryonic mass on the same region is a

measure of how much MOND is required – this dynamic mass factor is the inverse of the

MOND interpolating function, µ. For the case of Moffat’s modified gravity (MOG), the

dynamic mass factor is the ratio of a running Newtonian constant, G(r) divided by the

bare Newtonian constant, GN = 6.67428× 10−11 m3kg−1s2.

The hypothesis will be tested, performing a best-fit to the data for each of the objects

in Table 1.2 and measuring the dynamic mass factor for each of the candidate theories,

completely determining the predictions that are distinct from Newton’s theory. The radial

profile of these dynamic mass factors across the Ursa Major sample of §4.2 are shown

in Figure 4.4. The radial profile of the stellar mass-to-light ratios, for the same sample,

are shown in Figure 4.6, providing the means for the best-fits to the galaxy rotation

curves of Chapter 4. The high resolution properties of the solutions are used to study

orphan features in §4.3.2, and the integrated results are used to study the theoretical Tully-

Fisher relations, shown in Figure 4.9. In Chapter 5, the radial profile of these dynamic

mass factors across a sample of best-fit clusters models, of §5.2, is shown in Figure 5.2,

for each theory. Consistency with solar system experimental constraints are examined in

Chapter 6, using data from §6.1 on the Pioneer 10/11 Anomaly, to set an upper bound on
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dynamic mass factors, plotted in Figure 6.2. The planetary predictions and observational

Table 1.2: Catalogue of astronomical case studies

Case study Astronomical objects

Chapter 4 Galaxy rotation curves §4.2 Ursa Major filament of galaxies
High surface brightness galaxies NGC 3726, NGC 3769, NGC 3877, NGC 3893,

NGC 3949, NGC 3953, NGC 3972, NGC 3992,
NGC 4013, NGC 4051, NGC 4085, NGC 4088,
NGC 4100, NGC 4138, NGC 4157, NGC 4217,
NGC 4389, UGC 6399, UGC 6973

Low surface brightness galaxies NGC 3917, NGC 4010, NGC 4183, UGC 6446,
UGC 6667, UGC 6818, UGC 6917, UGC 6923,
UGC 6983, UGC 7089

Chapter 5 Clusters of galaxies §5.2 Best-fit cluster models
Bullet 1E0657-558, Abell 2142, Coma, Abell
2255, Perseus, Norma, Hydra-A, Centaurus,
Abell 400, Fornax, Messier 49
§5.3 Bullet Cluster 1E0657-558

limits are provided in Table 6.1 and the mean ephemerides of planetary orbits is provided

in Table 6.2. Kepler’s laws of motion are explored in §6.1.3, and the anomalous perihelion

advance is studied in §6.1.5, with constraints listed in Table 6.3.

As regards CDM halos, testing the hypothesis in Chapter 4 and Chapter 5 will

explore the fine details of the cusp problem and too many dwarf problem, discussed in

Chapter 2, and may indicate a consistent cure based upon the model of §2.1.3. Dynamic

mass measurements, according to §2.2, are used to establish a fundamental connection

to the Tully-Fisher relation, demonstrated in §4.3.4, in which the total mass vs. velocity

relation, including dark matter, is plotted in Figure 4.8, and confirming the importance of

including the baryons in curve-fitting dark matter halos. The core-modified dark matter

model, as indicated in §5.2.1, also cures the cusp problem for the sample of clusters of

galaxies studied in Chapter 5, whereas the well established NFW model of §2.1.1 does

not allow χ2-fits in these systems.

As regards MOND, testing the hypothesis will provide a better measurement of the

MOND acceleration, a0, and provide a more detailed understanding of the MOND in-

terpolating function, µ, in the context of Milgrom’s acceleration law presented in §3.2.1.
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Dynamical mass measurements, according to §3.2.2, are used to establish the scales at

which the theory fits observations; and where MOND potentially falls short, consider-

ing both the possibilities of MOND without dark matter, in §5.2.2, and the possibility

of neutrino halos in §5.3.5. Covariant theoretical foundations of MOND are explored in

§3.2.2.

As regards Moffat’s MOG theories, with MSTG presented in §3.3 and STVG presented

in §3.3, the respective point source modified acceleration laws of Equations (3.71) and

(3.139) are derived from an action principle in which a Yukawa fifth force combines with a

Newtonian gravitational force, leading to modified Poisson equations, derived in §3.3.5 and

§3.4.5, respectively. Whereas the MSTG theory has phenomenological parameters derived

from the Tully-Fisher relation, the STVG theory has parameters which emerge as integra-

tion constants from integrated field equations. In either case, testing the hypothesis will

provide a better measurement of the MOG parameters. Dynamical mass measurements,

according to §3.3.6 and §3.4.6, are used to provide support for the conjecture that the

combination of a weak fifth force and a renormalization of Newton’s constant will dynam-

ically provide stronger gravity at astrophysical scales, providing a consistent solution to

the missing mass problem without the addition of baryonic or non-baryonic dark matter.

Although not specifically tested in the list of theories, Moffat’s NGT is considered a

candidate for halos of phantom dark matter, with overlapping predictions with MSTG and

possibly STVG. It is natural that the source of the fifth force in either of the MOG theories

is due to the fundamental NGT field excitations.

1.1.4 Consequences for Astrophysics

We know from general relativity that the Newtonian force is an emergent phenomenon due

to the laws of physics in a curved space-time. Although we no longer treat gravity as a

simple force, we do make such a simplification to perform astrophysics by means of the

central potential,

Φ(t,x) = −
∫
d3x′

GNρ(t,x′)
|x− x′|

, (1.2)
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where GN = 6.67428(67) × 10−11 m3kg−1s−2 is Newton’s constant measured experimen-

tally1. Newton’s central potential, where Φ is given by Equation (1.2), is an unshakeable

foundation of modern physics, and appears upon identification of the constant of integra-

tion in the static spherically symmetric Schwarzschild solution to general relativity,

ds2 =
(

1 +
2Φ

c2

)
dt2 −

(
1 +

2Φ

c2

)−1 (
dx2 + dy2 + dz2

)
. (1.3)

Astrophysics assumes that the measured velocity dispersions and temperature profiles are

determined to a good approximation by the Newtonian acceleration,

a(t,x) = −∇Φ(t,x), (1.4)

which neglects relativistic effects. However, for realistic distributions of matter in galaxies,

we have neither analytic, nor numerical solutions to general relativity from which orbits can

be predicted. For realistic distributions of matter in clusters of galaxies, the high degree of

symmetry improves the situation in general relativity, and we may well approximate the

intracluster medium by the interior solution of the rotating, axially symmetric Kerr solution

to general relativity, from which cluster masses and temperatures may be predicted with

precision. However these interior solutions contain gravitomagnetic components due to the

rotational energy of the system, which are not easily measured astronomically. Newton’s

universal law of motion will emerge from these other solutions with relativistic corrections.

Unlike the simplest case of the Schwarzschild metric, the familiar distance-squared law may

be modified, in effect. Any such modifications would have impact on the computations of

the mass-to-light ratio in galaxy rotation curves, the temperature to mass relationship in

X-ray clusters of galaxies, and gravitational lensing in galaxies and clusters of galaxies.

1.1.5 Cosmological Models

When matter sources are dominated by radiation, as in the early universe, the formation of

local inhomogeneities is suppressed and the universe expands homogeneously and isotrop-

ically, without the growth of structures such as stars, galaxies or clusters of galaxies. In

1NIST 2006 CODATA value.

http://www.physics.nist.gov/cgi-bin/cuu/Value?bg
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the idealized case that the dominant radiation density is constant, the Newtonian central

potential vanishes from the solution to the Einstein equations, and the universe is perfectly

described by the Friedmann Robertson Walker solution to general relativity,

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2(dθ2 + sin2θdφ2)

]
, (1.5)

where k = {0,±1} is the curvature index and a(t) is the expansion factor. The expansion

in time, or redshift z, is governed by nonlinear Friedmann equations of motion,

ȧ(z)2 =
kc2

Ω(z)− 1
, (1.6)

where

Ω(z) =
8π

3

GNρ(z)

H(z)2
(1.7)

is the cosmological density parameter, ρ(z) is the mean cosmological mass density.

H(z) =
ȧ(z)

a(z)
(1.8)

is the Hubble parameter, measured experimentally as a fraction of today’s value.

Moffat and Toth (2007) explored the cosmological consequences of MOG, and found

that it provides, using a minimal number of parameters, good fits to the data, including

the cosmic microwave background temperature anisotropy, the galaxy power spectrum,

and the supernova luminosity-distance observations without the necessity of dark matter.

As astrophysics cannot simply do away with the Newtonian central potential, cosmology

cannot simply do away with Newton’s constant, but neither does gravity theory predict

its value. However, in both astrophysics and cosmology, it can always be arranged that

Newton’s constant, GN , and the mass density, ρ, appear together in the combination GNρ

as in Equations (1.2) and (1.7). This argument is due to dimensional reasoning, and leads

to an ambiguity between the necessity of dark matter, ρm > ρb, and a running Newton’s

constant, G > GN , or the existence of a MOND regime, µ < 1. In the case of the dark

matter paradigm, the density of matter ρm exceeds the density of baryons ρb and the
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combination GNρm > GNρb. In the case of a running Newton’s constant, the combination

Gρb > GNρb, and the visible baryon distribution provides “extra gravity” without non-

baryonic dark matter. However, the apparent degeneracy between dark matter and a

running Newton’s constant may be broken by calculations which involve a spatial integral

or derivative of the combination Gρ. Such is the case for galaxy and cluster lensing

experiments and cosmological models.

1.2 Citations to published results

Large portions of Part II Astrophysics have been published:

Brownstein and Moffat (2006a), “Galaxy rotation curves without non-baryonic
dark matter”, Astrophys. J. 636 721–741. arXiv:astro-ph/0506370

Brownstein and Moffat (2006b), “Galaxy cluster masses without non-baryonic
dark matter”, Mon. Not. Roy. Astron. Soc. 367 527–540. arXiv:astro-ph/0507222

Brownstein and Moffat (2006c), “Gravitational solution to the Pioneer 10/11
anomaly”, Class. Quant. Gravity 23 3427–3436. arXiv:gr-qc/0511230

Brownstein and Moffat (2007), “The Bullet Cluster 1E0657-558 evidence shows
Modified Gravity in the absence of Dark Matter”, Mon. Not. Roy. Astron. Soc.
382 29–47. arXiv:astro-ph/0702146. Roy. Astron. Soc. Press Note 07/44

Some sections of Chapter 3, particularly §3.1 on violations of the strong equivalence

principle, and §3.3 on the geometric origin of a fifth force, and Chapter 6, on Solar

system tests, are motivated from my master’s thesis, which is published:

Moffat and Brownstein (1990), “Spinning test particles and the motion of a
gyroscope in the nonsymmetric theory of gravitation”, Phys. Rev. D41
3111–3117.

1.3 Organization of the thesis

Chapter 1 is an introduction to the problem of non-baryonic dark matter in astrophysics,

and an overview of the solution in which a modified gravity phantom of dark matter appears

at astrophysical distances, followed by a summary of motivations and objectives in §1.1,

with citations to published results in §1.2.

Part I of the thesis is divided into two chapters: Dark matter halo fitting formulae are

provided in Chapter 2, and the derivations of the modified acceleration laws are provided

http://www.arxiv.org/abs/astro-ph/0506370
http://www.arxiv.org/abs/astro-ph/0507222
http://www.arxiv.org/abs/gr-qc/0511230
http://www.arxiv.org/abs/astro-ph/0702146
http://ras.joelbrownstein.com
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in Chapter 3. The two dark matter profiles used in curve-fitting, including baryons, are

the Navarro-Frenk-White (NFW) profile, described in §2.1.1, and the core-modified halo,

derived in §2.1.3. The three modified gravity theories used in curve-fitting, using only

baryons, are Milgrom’s modified Newtonian dynamics, described in §3.2, and Moffat’s

metric skew-tensor gravity (MSTG) and scalar-tensor-vector gravity (STVG), in §3.3 and

§3.4, respectively, which produce a finite range, Yukawa-type, fifth force (Yukawa, 1935).

The relativistic field theoretical versions of Milgrom’s modified Newtonian dynamics

(MOND), including Bekenstein’s TEVES theory, and the general family of Einstein-æther

gravity models that may provide a weak-field MOND-like phantom of dark matter are

documented in §3.2.3.

Part II covers a survey of astronomical observations across a tremendous range of astro-

physical scales. The data used in the dissertation, and range of astrophysical phenomenon

are organized in a catalogue of astronomical case studies, in Table 1.2. The investigation

into the available data starts with galaxy rotation curves, in Chapter 4, and is concerned

with dynamics in the weak field in §4.1, and uses the Ursa Major filament of galaxies, in

§4.2, as the primary experimental observations between the 1 kiloparsec to 50 kiloparsec

range.

The best-fitting core-modified dark matter model of Equation (4.2) provide excellent

fits, including the dwarf galaxies, consistent with the large distance power law behaviour

of cold collisionless non-baryonic dark matter (CDM). All of the galaxy fits include the

best-fitting Newtonian core model of §4.3.1, provided for comparison. The theoretical

underpinning and the experimental status of the Tully-Fisher relation are reviewed in

§4.3.4.

Chapter 5 continues the investigation with X-ray clusters, in §5.1, as the primary ex-

perimental observations between the 50 kiloparsec to 1000 kiloparsec range to the largest

range of virialized matter, which compares the observed X-ray luminosities with the tem-

perature profiles of the best-fit isothermal gas spheres in §5.2. The Bullet Cluster 1E0657-

558 provides a laboratory to distinguish the direct gravitational lensing evidence for CDM

with the modified gravity solution, in §5.3.

The search for the phantom of dark matter within the solar system in Chapter 6, at
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ranges between 1 AU to 50 AU, is primarily concerned with the Pioneer 10/11 Anomaly

in §6.1, and experimental bounds.

Conclusions are presented in Part III, which supplies a summary of contributions in

Chapter 7, and a list of some possible future astrophysical tests in Chapter 8. Lessons

learned from CDM halos and modified gravity theories are supplied in §7.1. Specific

conclusions on galactic astrophysics are summarized in §7.2 with future tests in §8.1, and

specific conclusions on cluster-scale astrophysics are summarized in §7.3 with future tests

in §8.2.



Part I

Theory
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Chapter 2

Non-baryonic dark matter

“No great discovery was ever made without a bold guess.”

Sir Isaac Newton

For three centuries, Newton’s theory has proven to be remarkably successful, but is limited

to weak gravitational fields. As a classical nonrenormalizable effective theory, Einstein’s

theory has proven to be remarkably successful, and together with Newton’s theory, is

believed to fully describe the measurable gravitational physics in astrophysical systems and

cosmology. The fact that these theories predict the necessary existence of non-baryonic

dark matter which dominates the visible matter in the universe will create a new era for

precision astrophysics – provided the dark matter candidate is identified and experimentally

confirmed. Otherwise a modification of gravity, as in Chapter 3, may solve the missing

mass question, provided there are gravitational degrees of freedom in nature that are not

captured by Newton’s or Einstein’s theory.

Whereas flat cosmological models with a mixture of radiation, ordinary baryonic mat-

ter, cold collisionless dark matter and cosmological constant (or quintessence) and a nearly

scale-invariant adiabatic spectrum of density fluctuations provide good fits to large scale

(� 1 Mpc) observations, there remains a large amount of data on galactic and sub-galactic

scales (� 100 kpc) which may be in conflict with the ΛCDM halo structure – or support a

core-modified dark matter fitting formula which retains the large scale ΛCDM halo struc-

ture (Zhao, 1996).

2.1 Dark matter halos

Based on three rotation curves, Roberts and Rots (1973) concluded that spiral galaxies

must be larger than indicated by the usual photometric measurements, and suggested

the existence of an unseen massive halo beyond the last measured point – to explain the

19
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slower than Keplerian decline at large radii. This view challenged the notion of a constant

mass-to-light ratio, with radius, and suggested a mass-to-light ratio which increases with

distance from the center.

Ostriker et al. (1974) argued that the masses of ordinary galaxies – found by assuming

a constant mass-to-light ratio – may have been underestimated by a factor of 10; but that

the galaxy rotation curve in the inner region provides almost no information about the

exterior halo mass. Upon application of a Newtonian force law,

a(r) = −GNMN(r)

r2
(2.1)

one may obtain the Newtonian dynamic mass, MN(r), which is the mass interior to the

sphere of radius, r, needed to support the galaxy rotation curve. Ostriker et al. (1974)

observed that although the surface luminosity profiles, L(r), do appear to be convergent,

MN(r), diverges with r either weakly (logarithmic) or strongly (linear) depending on the

method of measurement, and concluded that within local giant spiral galaxies,

MN(r) ∝ r for 20 kpc ≤ r ≤ 500 kpc. (2.2)

This divergent mass-to-light ratio necessitates the existence of giant halos surrounding

ordinary galaxies of dark matter – the implied density distribution similar to isothermal

gas spheres in the outer parts, (Begeman et al., 1991)

ρ(r) =
ρ0r

2
c

r2 + r2
c

, (2.3)

where rc is the core radius and ρ0 is the central dark matter density. In the limit of

small r � rc, the isothermal sphere model approaches a constant density core. Spherically

integrating the constant density core model of Equation (2.3) one obtains a simple formula

for the mass of dark matter,

M(r) = 4πρ0r
3
c

{
r

rc
− tan−1(r/rc)

}
, (2.4)
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which diverges with the behaviour of Equation (2.2), for r � rc.

Einasto et al. (1974) studied the distribution of missing mass, as it relates to galactic

morphology, concluding that the distribution is suggestive of a corona (surrounding the lu-

minous disk), increasing the total mass of the galaxy by an order of magnitude. Rubin et al.

(1978) considered extended rotation curves of 10 high-luminosity galaxies, and reproduced

observed velocities using mass distributions from disk or spherical models; and suggested

that the flat rotation velocity, vout, is not correlated with luminosity or with radius, but

with extended dark matter. However, the observations did not suggest whether spherical

or disk models were favoured. Rubin et al. (1978) concluded that the total mass-to-light

ratio is higher for early-type galaxies leading to a large intrinsic scatter in the Tully-Fisher

relation.

On larger than galaxy scales, Fillmore and Goldreich (1984) considered the self-similar

gravitational collapse of collisionless dark matter in a perturbed Einstein-de Sitter universe,

and suggested that spherically averaged solutions prefer similar halo mass profiles which

may be approximated by a power-law in the distance from center of symmetry. In the

case of structure evolving hierarchically from a scale-free Gaussian field of a given power

spectrum, Hoffman and Shaham (1985); Hoffman (1988) suggested that the final virialized

halo should have an asymptotic density profile given by

ρ(r) ∝ r−γ, (2.5)

where γ = 2 assuming that the CDM power spectrum, on galactic scales, is effectively,

P (k) ∝ kneff , where neff = 2. (2.6)

2.1.1 Navarro-Frenk-White profile

In search of a universal description of collisionless dark matter, Navarro et al. (1996, 1997)

provided power-law fits to halo density profiles using N-body simulations, showing that

halo profiles are shallower than r−2 near the center and steeper than r−2 near the virial

radius. The NFW profile is then a simple fitting formula to Equation (2.5), with a radially
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varying powerlaw 1 ≤ γ(r) ≤ 3, to describe spherically averaged density profiles:

ρ(r) =
ρ0r

3
s

r(r + rs)2
. (2.7)

Spherically integrating the NFW profile of Equation (2.7) one obtains a simple formula for

the mass of dark matter,

M(r) = 4πρ0r
3
s

{
ln(r + rs)− ln(rs)−

r

r + rs

}
, (2.8)

which diverges logarithmically, for r � rs. In the limit of small r � rs, the NFW fitting

formula of Equation (2.7) approaches the power-law with γ → 1; and in the limit of large

r � rs approaches the power-law with γ → 3 – which does not approximate isothermal

spheres. Navarro et al. (1996) reported that rotation curves from galaxies ranging in size

from giant to dwarf, satellites and gaseous atmospheres are compatible with the NFW

halo structure of Equation (2.7) provided the mass-to-light ratio increases with luminosity.

Navarro et al. (1996) determined that the central regions of the NFW distribution have

densities comparable to the luminous parts of galaxies.

Although the N-body problem can easily be defined, and numerically simulated in

the world’s best computers, the problem defies any rigorous analytic treatment. Zait

et al. (2008) reported that N-body numerical simulations are providing conflicting evidence

regarding the asymptotic behaviours of the density slope, γ of the profile at small radii (in

the inner region of the halo).

2.1.2 Generalized profile

Burkert (1995) fitted a sample of several dark matter dominated dwarf galaxies employing

a phenomenologically modified universal fitting formula,

ρ(r) =
ρ0r

3
s

(r + rs)(r2 + r2
s)
. (2.9)

which, as in the case of the isothermal sphere of Equation (2.3), approximates a constant

density core, γ → 0 at r � rs – instead of a divergent γ = 1 core – but otherwise agrees
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with the NFW profile, with γ → 3 at r >> rs. Spherically integrating the Burkert model

of Equation (2.9), one obtains an analytic formula for the mass of dark matter,

M(r) = πρ0r
3
s

{
ln(r2 + r2

s) + 2 ln(r + rs)− 4 ln(rs)− 2 tan−1(r/rs)
}
, (2.10)

which diverges logarithmically, for r � rs.

Zhao (1996) hypothesized that the NFW fitting formula must be broadened to account

for the basic observed features of galactic dynamics, including less cuspy cores:

ρ(r) =
ρ0r

b
s

rc(ra + ras )
(b−c)/a , (2.11)

where (a, b, c) are free parameters. The NFW fitting formula of Equations (2.7) and (2.8)

correspond to Equation (2.11) with an inner cusp with logarithmic slope c = 1, an outer

corona with logarithmic slope b = 3, and a “turnover” exponent of a = 1. Syer and White

(1998) argued that the existence of a γ � 1 core is inconsistent with the hierarchical for-

mation scenario of dark halos, which are much more likely to result in cuspy central density

distributions. The least cuspy fitting formula, the isothermal spheres of Equations (2.3)

and (2.4) correspond to Equation (2.11) with a constant density inner core with logarith-

mic slope c = 0, an outer corona with logarithmic slope b = 2, and a “turnover” exponent

of a = 2. Although Burkert’s fitting formula of Equation (2.9) cannot be expressed in the

core-modified form of Equation (2.11), it does bridge the constant density, γ → 0, core

behaviour of the isothermal sphere with the γ → 3 large r behaviour of the NFW profile.

Kravtsov et al. (1998) used the rotation curves of a sample of dark matter dominated

dwarf and low surface brightness (LSB) galaxies, employing the modified universal fitting

formula of Equation (2.11) with a shallow cusp, (a, b, c) = (2, 3, 0.2), and computed that

a dominant fraction (∼ 95%) of the dynamical mass is due to dark matter at the last

measured point in the rotation curve; but with 0.2 < γ < 0.4 in the inner region, r � rs,

of every galaxy in the sample.

McGaugh and de Blok (1998) enforced the claim that the severity of the mass dis-

crepancy in spiral galaxies is strongly correlated with the central surface brightness of the
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disk. Progressively lower surface brightness galaxies have ever larger mass discrepancies.

No other parameter (luminosity, size, velocity, morphology) is so well correlated with the

magnitude of the mass deficit.

Regardless of the galactic and sub-galactic data, collisionless dark matter N-body sim-

ulations continue to predict steep inner cusps (Moore et al., 1998). Moore et al. (1999b)

argued that a universe dominated by cold dark matter fails to reproduce the rotation

curves of dark matter dominated dwarf and LSB galaxies; and instead provided fits em-

ploying the modified universal fitting formula of Equation (2.11) with a steeper cusp,

(a, b, c) = (1.5, 3, 1.5). However, these fits purposely ignored the contribution from the HI

gas and the stellar disk to maximize the dark matter halo in the core. In contrast, the

stellar mass-to-light ratio, Υ, is critical to the study of galaxy rotation curves; and the

requirement that the stellar mass-to-light ratio, Υ = 0, is too strong and therefore should

be suspect as the reason for Moore et al. (1999b) good core-modified best-fits.

Navarro (1998) remarked that a subset of spiral galaxies have flat rotation curves, and

suggested that disagreement with the rotation curves of a few dwarf galaxies may signal

systematic departures from the NFW shape, and that the rotation curves for LSB galaxies

may be better described by shallower central density profiles, than presumed in the NFW

fitting formula. van den Bosch et al. (2000) argued that the spatial resolution of LSB

rotation curves is not sufficient to put any meaningful constraints on the dark matter

density profiles, but conceded that the rotation curves of dark matter dominated dwarf

galaxies are inconsistent with steeply cusped dark halos. Kleyna et al. (2003) demonstrated

that the most dark matter dominated dwarf galaxies in the Local Group have constant

density γ → 0 halo cores, and suggested that CDM disagrees with observations in that

end of the galaxy mass spectrum. Based on a series of high-resolution N-body simulations

designed to examine whether the density profiles of dark matter halos are universal, Jing

and Suto (2000) found that the dark matter density depends on the total halo mass, making

it difficult to link the inner slope with the primordial index of the fluctuation spectrum.

The unexplained behaviour of the computed dark matter distribution in the core is

known as the cusp problem and casts doubt on the choice of the NFW fitting formula which

presupposes the core behaviour. These discrepancies at the galactic and sub-galactic scale
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have stimulated a number of alternative proposals. Spergel and Steinhardt (2000); Ostriker

and Steinhardt (2003) reviewed the situation for collisionless dark matter predictions –

overly dense cores in the centers of galaxies and clusters and an overly large number of

halos with the Local Group compared to actual observations – and suggested the alternative

of self-interacting dark matter produces distinctive modifications on small scales that can

be tested through improved astronomical observations. Stoehr et al. (2002) commented

that these self-interacting dark matter modifications either may fail to reproduce the large

observed velocity dispersions in the Local Group dwarf galaxies; or may suffer from a fine-

tuning problem. Modifying the microscopic physics of the dark matter particles may work

to reduce the concentration in the central regions of galaxies and to reduce the abundance

of halo substructure (unseen dwarf galaxies).

Binney and Evans (2001) claimed that the Milky Way has considerably less dark matter

in the luminous disk than expected, particularly near the galactic center, and concluded

that cuspy halos favoured by the cold dark matter cosmology (and its variants) are in-

consistent with the observational data. Davé et al. (2001) presented a comparison of halo

properties in cosmological simulations, confirming that collisionless dark matter yields

cuspy halos that are too centrally concentrated, as compared to observations. de Blok

et al. (2001a) found that, at small radii, the mass density distribution is dominated by a

nearly constant density core with a core radius of a few kiloparsecs, and found no clear

evidence for a cuspy halo in any of the low surface brightness galaxies. Swaters et al.

(2003) presented a sample of 15 dwarf and low surface brightness galaxies, showing that

most are equally well or better explained by constant density cores, and none require halos

with steep cusps. Gentile et al. (2004) confirmed that the distribution of dark matter in

spiral galaxies is consistent with constant density cores.

2.1.3 Core-modified profile

Consider a fitting formula of the form of Equation (2.11) with a constant density inner

core with logarithmic slope c = 0, an outer corona with logarithmic slope b = 3, and a

“turnover” exponent of a = 3:

ρ(r) =
ρ0r

3
s

r3 + r3
s

. (2.12)
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which, as in the case of the isothermal sphere of Equation (2.3) and the Burkert model

of Equation (2.9), approximates a constant density core, γ → 0 at r � rs – instead of a

divergent γ = 1 core – but otherwise agrees with the NFW profile, with γ → 3 at r >> rs.

Spherically integrating this core-modified model of Equation (2.12), one obtains a new

analytic formula for the mass of dark matter,

M(r) =
4

3
πρ0r

3
s

{
ln(r3 + r3

s)− ln(r3
s)
}
, (2.13)

which diverges logarithmically, for r � rs.

Utilizing the form of the power-law of Equation (2.5), the power-law index of the profile

of Equation (2.12) is minus the logarithm slope

γ(r) = −d ln ρ(r)

d ln r
=

3r3

r3 + r3
s

. (2.14)

The central density, ρ(0) = ρ0, is finite and may be written in terms of the cosmological

critical density, ρc(z), and the concentration parameter, δc,

ρ0 = ρc(z)δc, (2.15)

where z is the redshift. Moreover, the dark matter density at r = rs is one-half the central

density,

ρ(rs) =
1

2
ρ0, (2.16)

and the power-law index of Equation (2.14) is

γ(rs) = 3/2, (2.17)

which is the intermediate value between the inner core with logarithmic slope γ → 0, and

outer corona with logarithmic slope γ → 3. This means that the halo’s constant density

core is limited to the region r < rs, where baryons dominate the galaxy, which is important

for N-body simulations.
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2.2 Dynamic mass

Theoretical predictions of dynamical quantities such as galaxy rotation curves and cluster

masses of galaxies, as in Chapter 4 and Chapter 5, respectively, are either difference

calculations as in the case of dark matter, or divisive ones as in the case of the modified

gravity models of Chapter 3, and the preferred frame gravity models of §3.2.3, including

those with modified dynamics at small accelerations, as in §3.2.2.

Each of the modified acceleration laws applied in the astrophysics computations of

Part II determine the acceleration felt by a test particle, at a distance r from the center.

This acceleration is proportional to the mass enclosed within a spherical region of radius,

r, so that

a(r) ∝M(r), where M(r) =
∫ r

0
ρ(r′)dV, (2.18)

where ρ(r) is the density at the position, r, and dV denotes the spherical volume element.

In this case, the cells of data can be related by a factor,

MN(r) = M(r)Γ(r) (2.19)

where MN(r) is the dynamical mass of the integrated cells of data within a spherical region

or separation, r, and M(r) is the observed baryonic mass of the same region. Γ(r) is the

dynamical mass factor and is related to the dark matter ratio, whereby

Γ(r) = 1 +Mdark matter(r)/M(r), (2.20)

where Mdark matter(r) is the integrated mass of dark matter inside the common spherical

region. At cosmological scales, where r is course grained away, the dark matter factor of

Spergel et al. (2007) is

Γ = Ωmatter/Ωbaryon = 5.73± 0.40 (2.21)

The dark matter fits to the Ursa Major sample of §4.2 confirm that Γ 6 10 across the

galaxies, therefore the dark matter factor is consistent with the ΛCDM scenario.

Alternatively, the dynamic mass factor predicted by MSTG and STVG, as in §3.3 and
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§3.4, respectively, is effectively due to a renormalized gravitation coupling of Equation

(3.90) with

Γ(r) = MN(r)/M(r) = G(r)/GN , (2.22)

where G(r) is the best-fitted gravitational coupling to the dynamical data at the separation

r, and GN = 6.67428(67) × 10−11 m3kg−1s−2 is Newton’s constant measured experimen-

tally1.

Dynamic mass factors, constructed from galaxy rotation curves in the Ursa Major

filament of galaxies, are provided in Figure 4.4, and those constructed from a sample of

clusters of galaxies are provided in Figure 5.2. Conclusions drawn from the astrophysics

on CDM halos may be found in §7.1.1.

1NIST 2006 CODATA value.

http://www.physics.nist.gov/cgi-bin/cuu/Value?bg


Chapter 3

Modified gravitation theory

“A hundred times every day I remind myself that my inner and outer life depend

on the labors of other men, living and dead, and that I must exert myself in

order to give in the same measure as I have received and am still receiving.”

Albert Einstein

In the absence of a fifth force in nature, either the dark matter paradigm ensues at

astrophysical and cosmological scales, or the relativity principle may come into question.

Local SO(3,1) invariance is a foundation of relativistic gravity theories, and is made mani-

fest by general covariance. However, the equivalence principle, as in §3.1, may be violated

by fifth-force fields or preferred space-time frames. Milgrom’s modified dynamics (MOND),

as in §3.2, is phenomenologically derived from observations of galaxy rotation curves and

the Tully-Fisher relation, relativistic theories with a preferred frame, as in §3.2.3, are man-

ifestly covariant, but violate SO(3,1) Lorentz covariance by means of a constraint. Moffat’s

metric skew-tensor gravity, as in §3.3, is a relativistic metric gravity theory, with massive

fifth-force fields, Moffat’s scalar-tensor-vector gravity, as in §3.4, is furthermore without

phenomenological input from the Tully-Fisher relation.

3.1 Equivalence principle

3.1.1 Local SO(3,1) theory

At the turn of the last century, Lorentz conjectured that Newton’s universal gravitation

law needed to be modified so that changes in the gravitation field propagate with the

speed of light. Days before the Einstein (1905) paper on special relativity, Poincaré (1904,

1905) suggested that all forces, including gravity, should transform according to Lorentz

transformations. Einstein set himself the task of modifying Newton’s gravity theory to

accommodate the principles of special relativity, and proposed the equivalence principle

29
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based on the empirically observed universality of free fall:

Einstein equivalence principle

As far as we know, the physical laws with respect to an accelerated system
do not differ from those with respect to a system at rest; this is based on
the fact that all bodies are equally accelerated in the gravitational field. At
our present state of experience we have thus no reason to assume that the
accelerating and inertial systems differ from each other in any respect, and in
the discussion that follows, we shall therefore assume the complete physical
equivalence of a gravitational field and a corresponding acceleration of the
reference system (Einstein, 1907).

Einstein (1916) formulated his gravity theory geometrically so that particles travel along

geodesics in a curved space-time. Observables are invariant under local Lorentz trans-

formations, generalizing the global Lorentz invariance of special relativity. The Newto-

nian gravitational attraction is the effect outside of a test particle’s rest frame, modulo

relativistic corrections. It is the curvature of the pseudo-Riemannian manifold which is

fundamental, and the space-time metric is a dynamical solution to the Einstein equations.

3.1.2 Strong equivalence principle

The demand that the laws of nature, in a sufficiently small region of a given space-time

point, take the same form as they do in special relativity is stronger than the universality

of free fall as it means that there are no fields unified with the metric.

The is contrary to the case in which the unified field is associated with Maxwell’s elec-

tromagnetism – which obviously does not vanish locally. However, the strong equivalence

principle holds for pure gravity, where the unified field is constrained to vanish by the

metric-connection compatibility equations. Conversely, the dynamic nature of the connec-

tion field does not imply a vanishing torsion trace, and there are two degrees of violation

of the strong equivalence principle in the general hermitian theory.

Even though Einstein’s theory may be written formally as a gauge theory, with field

variables suitably chosen, it does not predict the form of the Newtonian universal force

law. Bianchi et al. (2006) considered the graviton propagator within background indepen-

dent, nonperturbative quantum gravity, yielding results that are consistent with Newton’s

universal law, but the renormalized interaction remains to be calculated.
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3.1.3 Violations of the strong equivalence principle

The two mechanisms for potential violations of the equivalence principle are:

Charge violations The possibility that fermions possess quantum numbers related to

conserved fifth force charges leads to direct violations of the weak equivalence prin-

ciple and severely constrain modified gravity theory (Will, 2006). The non-abelian

gauge theory for gravity necessitates the consideration that the nonmetric degrees

of freedom that are associated with the larger symmetry group carry their charged

quantum numbers. This would cause violations of universality of free fall, although

Cavendish and Eotvös lunar laser ranging experiments tightly constraint any charge

associated with the hermitian theory. The possibility of weak equivalence principle

violations due to the Earth’s rotation have been tightly constrained (Moffat and

Brownstein, 1990), and are not expected to be measurable by the Gravity Probe B

in Earth’s orbit.

Scalar-vector-tensor violations Unlike the local SO(3,1) theory in §3.1.1, local grav-

ity in the general theory cannot be removed due to the presence of dynamical

scalar/vector fields which are not determined by the metric. This is also a general

property of scalar-vector-tensor modifications, including Brans-Dicke gravity theory.

These strong equivalence principle violations do not of themselves imply any vio-

lation of the weak equivalence principle: Scalar-vector-tensor gravity preserves the

universality of free fall. This is important for the consideration of astrophysical

phenomena, for which the universality of free fall is assumed.

Each of the modified gravity theories, including Modified Newtonian dynamics, in §3.2,

Metric skew-tensor gravity, in §3.3, and Scalar tensor vector gravity, in §3.4, violate the

strong equivalence principle, but maintain the universality of free fall for bodies in motion.

3.2 Modified Newtonian dynamics

Milgrom’s modified Newtonian dynamics (MOND) is a nonrelativistic small acceleration

model which softens the Newtonian 1/r2 force law to the 1/r behaviour preferred by galaxy

rotation curves, introduced by Milgrom (1983a,b). MOND violates the strong equivalence
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principle since, at sufficiently low accelerations, the gravitational mass of a test particle

exceeds the inertial mass.

Bekenstein and Milgrom (1984, Appendix B) showed that a modified Newtonian poten-

tial may emerge, in the case of spherical symmetry, from a covariant Lagrangian formalism

in which a cosmological scalar field, sourced by ordinary baryons, is added to the Einstein-

Hilbert action. This relativistic, metric-scalar gravity theory is a modification of Jordan

(1959); Brans and Dicke (1961) theory and similarly leads to violations of the strong equiv-

alence principle, as in §3.1.3.

S[g, φ] =
∫
d4x
√
−g

[
c4

16πG

(
φR− 2Λ− ωφ,νφ

,ν

φ

)]
, (3.1)

where the Jordan-Brans-Dicke parameter, ω, is not treated as a universal constant, but

instead is treated as a function of the magnitude of the scalar gradient (Sanders, 1986a):

ω =
(
ω0 +

3

2

)
f(x)

x
, (3.2)

where

x =
c4

4

φ,νφ
,ν

(2ω0 + 4)2a2
0φ

3
, (3.3)

and a0 is the Milgrom universal acceleration parameter, and

µ(x) =
df(x)

dx
, (3.4)

is the MOND interpolating function.. Sanders (1986a) extended the Bekenstein-Milgrom

modification to include a fixed Yukawa-type length scale (Yukawa, 1935), which fits the

galaxy rotation curves studied by Sanders (1986b) so that at cosmic distances from the

source, the gravitationally strong MOND force would vanish entirely.

To address the hypothesis stated in §1.1.3, of fitting galaxy rotation curves and galaxy

cluster masses without dominant dark matter, Milgrom’s acceleration law is presented in

§3.2.1, and the resulting modified dynamics are considered in §3.2.2. In addition, the

notion of building a relativistic, metric-scalar version of MOND is presented, and theories
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with dynamical preferred frames including Bekenstein’s TEVES theory and the generalized

Einstein-æther theory are presented in §3.2.3.

3.2.1 Milgrom’s acceleration law

Milgrom (1983a) challenged the hidden mass hypothesis and introduced a nonrelativistic

modification of Newtonian dynamics (MOND) at small accelerations, a < a0, whereupon

the gravitational acceleration of a test particle is given by

aµ

(
a

a0

)
= aN, (3.5)

where µ(x) is a function that interpolates between the Newtonian regime, µ(x) = 1, when

x � 1 and the MOND regime, µ(x) = x, when x � 1. Milgrom (1983b) introduced the

interpolating function normally used for galaxy fitting,

µ(x) =
x√

1 + x2
, (3.6)

where

x ≡ x(r) =

∣∣∣∣∣∇Φ(r)

a0

∣∣∣∣∣ =

∣∣∣∣∣a(r)

a0

∣∣∣∣∣ , (3.7)

and determined that the MOND acceleration was of the order a0 ≈ cH0/6, and proportional

to the Hubble constant, implying a cosmological connection to the modified dynamics.

Substituting Equations (3.6) and (3.7) into Equation (3.5) gives,

a(r)2√
a(r)2 + a2

0

= aN(r), (3.8)

which has the solution,

a(r) = a0

√√√√√1

2

(
aN(r)

a0

)2

+

√√√√1

4

(
aN(r)

a0

)4

+

(
aN(r)

a0

)2

, (3.9)
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written in terms of the Newtonian acceleration of a test particle at a separation, r,

aN(r) =
GNM(r)

r2
, (3.10)

where M(r) is the baryonic mass integrated within a sphere of radius, r.

Milgrom’s acceleration law, given by Equation (3.9), is applied to galaxy rotation curves

in Chapter 4, in Equation (4.6). The galaxy rotation curves, plotted in Figure 4.1,

are one parameter best-fits by the stellar mass-to-light ratio, Υ, applying the MOND

acceleration, a0 of Equation (4.8), universally. Milgrom’s acceleration law is applied to

clusters of galaxies in Chapter 5, according to §5.2.2. In §5.2, the MOND mass is best-

fitted to the X-ray gas mass of a sample of 11 clusters of galaxies, and plotted in Figure 5.1

according to the best-fit cluster model parameters tabulated in Panel (b) of Table 5.2, for

Milgrom’s MOND.

3.2.2 Modified dynamics at small acceleration

Substituting Equation (3.10) into Equation (3.5), the MOND acceleration law can be

written,

a(r) =
1

µ(r)

GNM(r)

r2
, (3.11)

and therefore MOND can be interpreted as gravity theory with a varying gravitational

coupling

a(r) =
G(r)M(r)

r2
, (3.12)

G(r) =
GN

µ(r)
, (3.13)

and G(r) ∼ GN in the Newtonian regime and G(r) > GN in the MOND regime. It

is important to note that MOND has a classical instability in the deep MOND regime

corresponding to µ → 0 which leads to a divergent gravitational coupling of Equation

(3.13), and that MOND violates the strong equivalence principle for all µ 6= 1.

For gravity fields interior to galaxies and clusters of galaxies, the accelerations are

sufficiently small that the MOND interpolating function, µ(x)� 1, so that the Newtonian
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dynamic mass determined by MOND is much larger than the actual mass visible in the

system.

Angus et al. (2007) clarified the central issue in regards to gravitational lensing and

the modified dynamics at small acceleration, since the total mass of baryons enclosed in a

sphere of radius, r, is determined from the divergence theorem,

M(r) =
∫ sin θdθdφ

4πG(r)

∂Φ(r, θ, φ)

∂r
, (3.14)

where Φ is the modified gravitational potential, and G(r) is given by Equation (3.13).

Therefore, the MOND dynamic mass factor is precisely the inverse of the MOND interpo-

lating function,

Γ(r) =
G(r)

GN

= 1/µ(x(r)), (3.15)

plotted in Figure 4.4 for the Ursa Major filament of galaxies, and in Figure 5.2 for the

sample of X-ray clusters of galaxies.

Bekenstein and Magueijo (2006) considered the behaviour of the MOND interpolating

function in the deep MOND regime signalled by the small gradient of the dynamical scalar

field, φ of §3.2.3, where µ(x) ≈ x and Equation (3.7) implies

µ(r) ≈
∣∣∣∣∣∇Φ(r)

a0

∣∣∣∣∣ =

∣∣∣∣∣a(r)

a0

∣∣∣∣∣ . (3.16)

In this regime, say far outside a spherically symmetric point source of mass, M , the Milgrom

(1983a) acceleration law,

aµ

(
a

a0

)
=
GNM

r2
, (3.17)

simplifies upon substitution of Equation (3.16):

a(r) =

√
a0GNM

r2
=

√
a0GNM

r
, (3.18)

and thus the modified dynamics, at small acceleration scales, yields the gravitational field

as 1/r instead of the Newtonian 1/r2 law. Substitution of Equation (3.18) into Equation
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(3.16) gives

µ(r) ≈ r−1

√
GNM

a0

, (3.19)

which is valid in the deep MOND regime. Substitution of Equation (3.19) into the dynamic

mass factor of Equation (3.15) gives

Γ(r) = r

√
a0

GNM
(3.20)

in the deep MOND regime, which shows a linear dependence with r at large distances.

Milgrom and Sanders (2008) defined a transition radius in MOND,

rt =

√
GNM

a0

, (3.21)

so that the dynamic mass factor of Equation (3.20) in the deep MOND regime, can be

written,

Γ(r) =
r

rt
, (3.22)

The dynamical mass factors plotted in Figure 4.4, in Chapter 4, do indeed show

a monotonically near-linear increasing Γ(r) < 10, reaching the maximum value at the

outermost observed data point, rout, where r ∼ 10 · rt, typically. This may imply that the

MOND interpolating function is bounded from below, µ > 0.1. Otherwise, as the gradient

of the scalar field approaches zero, and the MOND interpolating function of Equation

(3.16) approaches zero, the dynamic mass factor of Equation (3.15) grows without bound,

Γ(r)→∞ indicating a classical instability.

All of the modified gravity models examined in this dissertation provide the needed

phantom dark matter, which is quantified by the dynamic mass factor, Γ > 1. For MOND

this corresponds to µ(a/aN) < 1, although it is not known if the MOND interpolating func-

tion approaches 0, this would correspond to the ultra-deep MOND regime and if MOND’s

dynamic mass factor is not bounded, Γ → 0, would effectively renormalize gravity’s cou-

pling G→∞. Conversely, if the inverse of the MOND interpolating function approaches a

finite value, so µ∞ < µ < 1, then the instability of the theory is made regular (finite), and
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instead gravity’s coupling approaches an asymptotic value, G → G∞. This is consistent

with the Ursa major sample of §4.2, from which it is clear that µ∞ < 10. Such a cutoff

applied to clusters of galaxies could potentially cure MOND’s unfortunate prediction of

requiring dominant dark matter to fit clusters of galaxies, as in Chapter 5. However, the

final form of MOND’s interpolating function should be dynamically determined from – or

at least correlated with – the action of the covariant field theory from which it is derived.

3.2.3 Dynamical preferred frames

The antithesis of Einstein’s theory of special relativity, with local Lorentz SO(3,1) invari-

ance, is the æther theory in which the symmetry is broken. Named after the luminiferous

æther – the medium for the propagation of light as it was thought until the late 19th

century – the æther theory is a generally covariant extension of general relativity by the

addition of a unit timelike vector field. The æther has a preferred rest frame, and thus

breaks local Lorentz SO(3,1) invariance. In an address delivered on May 5, 1920, at the

University of Leyden, Einstein commented,

How does it come about that alongside of the idea of ponderable matter, which
is derived by abstraction from everyday life, the physicists set the idea of the
existence of another kind of matter, the æther? The explanation is probably
to be sought in those phenomena which have given rise to the theory of action
at a distance, and in the properties of light which have led to the undulatory
theory.

It is the space-time components of the Maxwell field, Fµν , which undulate; whereas the

æther vector field is not free to undulate because it is constrained to spacelike oscillations,

and the vacuum cannot be empty of æther excitations.

Bekenstein’s TEVES theory

Bekenstein (2004) introduced the tensor-vector-scalar (TEVES) theory as a relativistic

implementation of Milgrom’s modified Newtonian dynamics (MOND), as in §3.2, with an

additional scalar field, φ, and also a non-dynamical scalar field, σ. The vector field in

TEVES, Aµ, has timelike unit norm,

gµνAµAν = −1, (3.23)
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and dynamically selects a preferred reference frame, breaking local Lorentz SO(3,1) invari-

ance. gµν is the Einstein metric, with a well defined inverse, gλµ, such that

gλµgµν = δλν . (3.24)

However, all types of matter see the same physical metric

g̃µν = e−2φgµν − 2sinh(2φ)AµAν , (3.25)

with a well defined inverse,

g̃λµ = e−2φgλµ + 2sinh(2φ)gλαgµβAαAβ, (3.26)

so adding a preferred frame is not in conflict with the weak equivalence principle. However,

because TEVES is a relativistic, bimetric theory, it permits the computation of geodesics in

the presence of matter sources, and makes predictions for lensing convergences, time-delays

and other metric effects (Zhao, 2006).

In TEVES, the vector field action is taken to be that of a Maxwell vector field, Aµ,

with an additional Lagrange multiplier, λ, to enforce the timelike, unit norm constraint of

the vector field of Equation (3.23). The action for the pair of scalar fields, φ and σ, is a

generalization of the Bekenstein (1988) phase coupling gravity (PCG) theory including a

vector-scalar interaction. The total action for TEVES is formed by combining the Einstein-

Hilbert action of Equation (3.98) with the vector and scalar actions:

S[g, A, φ, σ] =
∫
d4x
√
−g

{
c4

16πG

[
R− 2Λ− K

2
FµνF

µν + λ (AµA
µ + 1)

]

− 1

2

[
σ2 (gµν − AµAν)φ,µφ,ν +

1

2
G`−2σ4F(kGσ2)

]}
, (3.27)

where Fµν = Aν,µ − Aµ,ν is the Maxwell vector field strength, K and k are dimensionless

couplings, ` is a positive constant with units of length, and F is a free dimensionless

function, similar to the PCG potential, whose behaviour is determined phenomenologically

by requiring that the dynamics at slow accelerations correspond to MOND.
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Bekenstein and Magueijo (2006) predicted a universal acceleration scale, in terms of

the positive coupling constant, k, and the length scale, `, of the TEVES action of Equation

(3.27)

a0 =

√
3k

4π`
≈ 10−8 cm s−2, (3.28)

consistent with the MOND acceleration of Equation (4.8).

Zhao and Famaey (2006) argued that the Bekenstein (2004) model produces a MOND

interpolating function with the wrong behaviour to accurately fit galaxy rotation curves;

and suggested a refinement to the TEVES Lagrangian to accommodate the standard

MOND interpolating function of Equation (3.6).

Einstein-æther theory

Jacobson and Mattingly (2001) proposed a generally covariant model in which local Lorentz

invariance is broken by a dynamical unit timelike vector field, Aµ, which is nowhere van-

ishing. The Einstein-æther theory leads to gravity with a dynamical preferred frame, via

the Jacobson and Mattingly (2004) action

S[g, A] = S[g]−
∫
d4x
√
−g

[
c4

16πG

(
Kαβ

µν∇αA
µ∇βA

ν + λ(AαAα − 1)
)]
, (3.29)

where S[g] is the Einstein-Hilbert action of Equation (3.37), and

Kαβ
µν = c1g

αβgµν + c2δ
α
µδ

β
ν + c3δ

α
νδ
β
µ + c4gµνA

αAβ, (3.30)

is written in terms of four dimensionless coefficients, ci, and λ is a lagrange multiplier

which enforces the unit timelike nature of the vector field.

Jacobson (2007) reviewed the theory, phenomenology, and observational constraints on

the coupling parameters of Einstein-æther gravity, showing that the unit timelike vector

field, which breaks the local Lorentz invariance, must be dynamical; and the preferred

frame must therefore be dynamical.

Jacobson and Mattingly (2001) showed that such a field carries a nonlinear representa-

tion of the local Lorentz group since the field does not take values in a vector space on the
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tangent space, but on the unit hyperboloid. Jacobson and Mattingly (2004) developed the

linearized Einstein-æther theory, finding the speeds and polarizations of the wave modes,

determining in addition to the usual two transverse traceless metric modes, three coupled

æther-metric modes. Eling and Jacobson (2006) claimed that regular perfect fluid star so-

lutions exist with static æther exteriors, with the æther field pointing in the direction of a

timelike Killing vector, but there are no spherically-symmetric solutions constructed purely

from the æther without naked singularities. Seifert (2007) applied the action of Equation

(3.29), and found that the flat space solution and the static vacuum æther solution of Eling

and Jacobson (2006) is stable to linear perturbations, provided the coefficients ci satisfy

an auxiliary inequality relation.

Clayton (2001) showed that Einstein-æther theories of the type of Equation (3.29)

are energetically unstable, having a Hamiltonian, in Minkowski flat space-time, that is

unbounded from below; and the linearized analyses about configurations with a vanishing

æther vector field are singular. Jacobson (2007) pointed out that Clayton (2001) considered

the question of energy positivity, but examined a limited Maxwellian subclass of Equation

(3.30) in which c3 = −c1 and c2 = c4 = 0, and restricted to the case where the coupling

to gravity is neglected. Seifert (2007) confirmed that the subclass investigated by Clayton

(2001) has spherically symmetric static solutions which are unstable, likely related to the

unbounded Hamiltonian, even though kinetic terms in the unit timelike vector for a range

of coefficients, ci, that were ignored by Clayton (2001), may stabilize the theory. Jacobson

(2007) suggested that the linear perturbations all have positive energy for coefficients, ci,

within a particular range, but the total nonlinear energy has not been shown to be positive

in this range. It is an unsatisfactory situation that the theory requires special values of

the ci. This places too great a burden on phenomenology, limiting the theory’s ability

to make testable and falsifiable predictions, but there have been no successful attempts

to identify a principle of symmetry to restrict the action. Carroll et al. (2009a,b) found

that a timelike vector field leads to an unbounded Hamiltonian, and generates instability,

except provided the kinetic term in the action is in the form of a σ-model, and introduced

a σ-model æther modified gravity theory, with a timelike vector field.

Arkani-Hamed et al. (2005) studied the effects of direct couplings between the Goldstone
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boson (which appear due to the broken time diffeomorphism symmetry), and standard

model fermions, which necessarily accompany Lorentz-violating terms in the theory, finding

that the æther field couples to spin in the non-relativistic limit. A spin moving relative to

the æther rest frame will emit Goldstone-Cerenkov radiation. The Goldstone boson also

induces a long-range inverse-square law force between spin sources.

Generalized Einstein-æther theory

Zlosnik et al. (2006) interpreted TEVES as a special case of the Einstein-æther theory of

§3.2.3 with non-canonical kinetic terms, and showed that there exists a tensor-vector-scalar

theory equivalent to TEVES, without the additional scalar field, φ, but retains the non-

dynamical scalar field, σ. The equivalent theory is cast as a single-metric theory, because

the Einstein metric which satisfies the Einstein-Hilbert action couples minimally to the

matter fields. However, there would be modifications to gravity resulting from the metric

coupling to the vector field as a direct consequence of the Lorentz violating, dynamical

æther. Zlosnik et al. (2007) generalized the Einstein-æther theory of Eling and Jacobson

(2004), replacing

K = M−2Kαβ
µν∇αA

µ∇βA
ν , (3.31)

by F(K), where Kαβ
µν is given by Equation (3.30), but restricted to a class of theories

spanned by the first three coefficients ci, i = 1, 2, 3, and M has the dimension of mass

in order to make Equation (3.31) dimensionless. Although the generalized Einstein-æther

theory of Zlosnik et al. (2007) does not include the TEVES equivalent theory of Zlosnik

et al. (2006), each of these theories are reducible to MOND in the weak-field limit due to

the never vanishing vector field. Carroll et al. (2009a,b) found that because the Lorentz

violating timelike vector field has kinetic terms in the action that are not in the form of

a σ-model, the theory leads to an unbounded Hamiltonian, and is not stable, whereas

σ-model æther modified gravity probably does not have a low acceleration MOND limit.

Seifert (2007) considered the stability of spherically symmetric solutions in TEVES,

without matter fields, finding that the perturbational Hamiltonian arising from the varia-

tional principle has an indefinite kinetic term. In the absence of a well-defined variational

principle with a sensible inner product, Seifert (2007) applied a WKB analysis to measure
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the instability of the spherically symmetric vacuum solution, and predicted a timescale of

106 seconds – two weeks – before a solar mass object would collapse under the weight of

the nonvanishing vector-scalar fields.

Contaldi et al. (2008) confirmed that TEVES is a fully causal theory for positive values

of the scalar field, and represents a relativistic modification of gravity which may depend

on acceleration (since one must have a reference frame to measure the acceleration), but

develops classical singularities which may prevent the weak acceleration limit from resem-

bling MOND; and argued that caustic singularities are symptomatic of Einstein-æther

theory, in general. However, Contaldi et al. (2008) speculated that problems with the

vector field dynamics may be rectified by choosing more general kinetic terms, which may

also include MOND in the nonrelativistic limit.

3.3 Metric skew-tensor gravity

van Nieuwenhuizen (1973) found that the only massive antisymmetric tensor fields free of

ghosts, tachyons and higher-order poles in the propagator for linearized gravitation are the

massive spin-1 Maxwell-Proca fields. Isenberg and Nester (1977) performed a Hamilton-

Dirac analysis of vector fields, determining that only Maxwell fields, Proca-Maxwell fields,

and purely longitudinal vector fields are free of instability when minimally coupled to

gravity.

In light of the difficulty in obtaining physically consistent modified gravity theories, it

is instructive to study the emergent Kalb-Ramond-Proca field, as in §3.3.1. The action

in §3.3.2 for the metric skew-tensor gravity (MSTG) theory, given by Equation (3.36),

couples an Einstein metric background (the metric sector) to the Kalb-Ramond-Proca

field (massive skew sector). To address the hypothesis stated in §1.1.3, of fitting galaxy

rotation curves and galaxy cluster masses without dominant dark matter, it is sufficient

to work in the weak-field spherically symmetric limit of MSTG, where the test particle

equations of motion, calculated in §3.3.3, are used to derive the point source acceleration

law in §3.3.4 and effective Poisson equations are deduced in §3.3.5 for distributions of

matter. The quadratic equations for the MSTG dynamic mass are solved exactly in §3.3.6

by Equations (3.95) and (3.96).
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3.3.1 Kalb-Ramond-Proca field

Clayton (1996) showed that the massive nonsymmetric gravity theory (NGT) becomes

identical to a Kalb-Ramond-Proca field with an additional curvature coupling term when

considered as a perturbation about a Ricci-flat background. Since the Kalb-Ramond-Proca

theory does not require a conserved current and yet has no negative energy ghost modes,

higher order poles or tachyons, the additional terms in the action for massive NGT allow

the linearized field equations to take on this form in the antisymmetric sector.

Moffat (1995b); Moffat and Sokolov (1996) determined that in the weak-field approxi-

mation relevant to galaxy dynamics, a range dependent Yukawa-type, fifth force (Yukawa,

1935) emerges in addition to the Newtonian 1/r2 central force due to the exchange of the

spin-1+ skewons between fermions; and asserted that this additional potential due to the

interaction of the field structure with matter in the halos of galaxies can explain galaxy

rotation curves, as in Chapter 4, and is a candidate for phantom dark matter. This

hypothesis is studied in the dynamics of the weak-field, as in §4.1, using the modified

gravity theory of §4.1.3, and extended to clusters of galaxies, in Chapter 5, with running

gravitational couplings, as in §5.2.3.

Geodesic and path motion in the nonsymmetric gravitational theory (NGT) were shown

in Moffat (1995a) to have similar weak-field limits. The correction to the weak-field grav-

itational force was found to be due to a Yukawa potential, resulting in a renormalized

gravitational coupling. The Yukawa interaction, considered as an alternative to dominant

dark matter, must account for the majority of astrophysical forces and meanwhile be com-

pletely undetected at terrestrial scales. It is remarkable that the astrophysical studies in

Part II show that the dark matter to baryon ratio can be consistently explained using the

same Yukawa meson theory, from the smallest dwarf galaxies to the clusters of galaxies.

Measurements in the weak-field, according to §4.1, provide support of the hypothesis that

dark matter is a phantom of MSTG, with galaxy specific density distributions. Whereas

the best-fitting dark matter theory, according to Equation (1.1) of §1.1.1, requires at least

two additional dark matter parameters, ρ0, rs, per galaxy, MSTG provides low reduced-

χ2 best-fits with universal mean parameters across galaxy scales. Clusters of galaxies,

however, show significantly improved χ2 best-fits with variable parameters.
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Violations of the strong equivalence principle, described in §3.1.3, are the means by

which scalar-vector-tensor modifications to the action for gravity result in a fifth force

which preserves the universality of free fall. The effect due to the scalar-vector-tensor

fields on the motion of a test particle requires careful approximation, such as the weak-

field limit of a static, spherically symmetric space-time. At astrophysical scales, we neglect

any contribution to the fifth force due to baryons with charged quantum numbers. Al-

ternatively, we seek gravitationally strong contributions to the fifth force from a Yukawa

(range dependent) meson emerging from the spin-1+ massive vector skewon of the Kalb-

Ramond-Proca field, as in §3.3.2.

The first measurable predictions for galaxy dynamics in the NGT appeared in Moffat

(1994) and Moffat and Sokolov (1996), where the appearance of a Yukawa-like potential

produced by a new spin 1+ boson interacting with fermions emerged. In Légaré and Moffat

(1996), the effects of three new interactions were identified, and possible modifications to

the geodesic and path motion were calculated in the weak-field limit. It was recognized

by these attempts to provide an alternate explanation to the dark matter paradigm that

the static, weak-field, slow speed, spherically symmetric limit of NGT may provide an

adequate solution to the missing mass problem through the nonvanishing skewon mass

and the coupling to baryons. In the static, spherically symmetric limit, the skewon field

strength tensor,

F[µνλ] = ∂[µgνλ] (3.32)

has only one independent, non-zero component, F[θφr]. The modifications to the radial

orbit equations of motion were explicitly computed, and the surviving Yukawa contribution

– potentially attractive or repulsive – added a new phenomenology to the dynamics of

astrophysical scale measurements.

For the case of a repulsive Yukawa potential added to the attractive Newtonian poten-

tial, Sanders (1984) provided a preliminary analysis of circular orbit velocities in which

the combined potentials lead to a deviation from the inverse square-distance law and may

produce rotation curves which are “nearly flat from 10 to 100 kpc”. Sanders (1984) spec-

ulated that “a very low mass vector boson carries an effective antigravity force which on
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scales smaller than that of galaxies almost balances the normal attractive gravity force.”

In principle, for each astrophysical experiment, the Yukawa coupling constant and

the mass of the vector boson (Yukawa range) provide two additional parameters which

may be modelled through the mass-to-light ratio. Sanders (1986b) provided a best-fit

to six galaxy rotation curves ranging in size from 5 to 40 kpc to determine whether the

modification to gravity is associated with a fixed length scale. Using the overall best-fit

Yukawa coupling and range parameters, Sanders (1986b) computed mass-to-light ratios

between 1 and 3, which are considered reasonable, showing no systematic variation with

the size of the galaxy. The observed infrared Tully-Fisher law is shown to be consistent

with the predictions of the Yukawa modified gravity for large galaxies greater in size

than 15 kpc, whereas the smaller galaxies under 10 kpc do not exhibit a maximum flat

rotation velocity. Admittedly, the sample is too small to statistically determine whether

the parameters are universal constants, although best-fitting universal constants for the

finite length-scale Yukawa repulsive gravity does lead to agreement with the data without

introducing mass discrepancies.

The issue of whether the Yukawa meson coupling and range are universal is not certain

in the weak-field limit of NGT, where the Yukawa potential is emergent. Moffat (1995c)

derived the mismatch between the six degrees of freedom in the full nonlinear theory, and

the three degrees of freedom that survive in the symmetry reduced, and linear, weak-field

limit due to a Kalb and Ramond (1974) field, identified clearly as the skewon, h[µν], to

explain the effective, low energy coupling to the Yukawa meson.

Whereas Moffat (2004b) developed the radial orbit equations of motion for the problem

of galaxy rotation curves from the full NGT action, Moffat (2004a) derived the linear weak-

field approximation, from which the Kalb and Ramond (1974) field emerges as the field

strength of the massive skewon. The modified acceleration law corresponds to the low

energy, low speed limit of NGT, effectively suppressing the high energy contributions of

the full theory. Metric skew-tensor gravity (MSTG) is introduced in Moffat (2005), where

the modified acceleration law results from coupling the massive skew symmetric Fµνλ field

to Einstein’s metric. At astrophysical scales, the emergent low energy Yukawa meson is

the only feature of the full NGT left in MSTG to explain galaxy rotation curves.
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3.3.2 Action

Damour et al. (1993) analysed a class of physically consistent and ghost-free nonsymmetric

gravity models with finite range massive spin-1+ gauge boson described by a second rank

skew symmetric tensor, Aµν , with an action in which the skewon’s field strength tensor

is coupled to a conserved fermion current vector with a dimensionless coupling constant.

The similarity to Maxwell’s field, but for a massive skewon (instead of a massless photon),

is described by the massive Kalb and Ramond (1974) action,

SF =
∫
d4x
√
−g
( 1

12
FµνλF

µνλ − 1

4
µ2AµνA

µν
)
, (3.33)

with

Fµνλ = ∂µAνλ + ∂νAλµ + ∂λAµν , (3.34)

and µ is the mass of the Kalb-Ramond-Proca field, Aµν . The action is invariant under

diffeomorphisms, and invariant under the U(1) local gauge transformation,

δ0Aµν = ∂µεν − ∂νεµ, (3.35)

only in the massless case. Therefore, the dependence of the action based on the Lagrangian

of Equation (3.33) must be quadratic in the Proca field’s strength tensor, Fµνλ of Equation

(3.34).

Damour et al. (1993) showed that, although the Kalb-Ramond-Proca field leads to

minuscule – as yet unmeasured – deviations from Newtonian gravity at terrestrial scales

consistent with stringent bounds on possible violations of the weak equivalence principle,

the field may acquire gravitational strength at sufficiently large astrophysical scales because

the coupling is unbounded as the range increases, and that the magnitude of the field is

proportional to the coupling.

Moffat (2005) introduced the metric skew-tensor gravity (MSTG) gravity theory by

adding the Kalb-Ramond-Proca action, coupled to a conserved fermion current, to an

Einstein-Hilbert action:

S = SEH + SF + SFM + SM , (3.36)
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where

SEH =
c4

16πG

∫
d4x
√
−g
(
R− 2Λ

)
, (3.37)

is the Einstein-Hilbert action, and SF is the Kalb-Ramond-Proca action of Equation (3.33).

A possible action for the coupling between the Kalb-Ramond-Proca field and matter was

suggested by Damour et al. (1993) in regards to the NGT, and applied to MSTG by Moffat

(2005), according to

SFM =
∫
d4xFλµνJ

∗λµν = −3
∫
d4xεαβµνAαβ∂µJν , (3.38)

where Jµ is a conserved vector current and J∗µνλ = εµνλαJα is the dual tensor current

density. SM is the ordinary matter action.

Varying the action of Equation (3.36) with respect to the metric,

1√
−g

δS

δgµν
= −1

2
(TMµν + TFµν) , (3.39)

gives the field equations,

Gµν + Λgµν =
8πG

c4
(TMµν + TFµν) , (3.40)

where TMµν and TFµν are the energy-momentum tensors for matter and the Kalb-Ramond-

Proca field, Aµν , respectively. The Bianchi identities satisfied by the Einstein tensor,

Gµν = Rµν −
1

2
gµνR (3.41)

lead to the conservation laws

∇ν(TMµν + TFµν) = 0. (3.42)

Varying the action of Equation (3.36) with respect to the field, Aµν ,

1√
−g

δS

δAµν
= − 1√

−g
Jµν , (3.43)
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gives the Kalb-Ramond-Proca field equations,

∇σFµνσ + µ2Aµν =
1√
−g

Jµν , (3.44)

where Jµν is the tensor density source for the Aµν field:

Jµν = εµναβ∂
αJβ. (3.45)

3.3.3 Motion under the fifth force

The equations of motion of a test particle are

duµ

dτ
+

{
µ

αβ

}
uαuβ = gµαfανu

ν , (3.46)

where τ is the proper time along the path of the particle and uλ = dxλ/dτ is the 4-velocity

of the particle, and {
λ

µν

}
=

1

2
gλρ (gµρ,ν + gρν,µ − gµν,ρ) , (3.47)

is the Christoffel connection, and fαν is derived from the Euler-Lagrange equations for a

test particle, of mass m, and fifth force charge λm, where λ couples the skew field to the

test particle and is assumed constant for the universality of free fall. Such a test particle

has a point particle action (Légaré and Moffat, 1994; Moffat, 2005),

STP = −m
∫
dτ
√
gαβuαuβ − λm

∫
dτ
εασηλ√
−g

Fσηλgαβu
β. (3.48)

Variation of Equation (3.48) yields Equation (3.46) with

fαν =
1

3
λ∂[α

(
εµσηλ√
−g

Fσηλgν]µ

)
. (3.49)

For a spherically symmetric, static skew symmetric potential field Aµν there are two

non-vanishing components, the “magnetic” field potential A0r(r) = w(r) and the “electric”
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potential field Aθφ(r) = f(r) sin θ. According to Moffat (2005), we may assume that there

are no static magnetic poles, so only the electric field contribution f(r) sin θ is non-zero,

Therefore, Fµνλ has only one non-vanishing component:

Fθφr = ∂rAθφ = f ′ sin θ, (3.50)

where the prime notation implies differentiation with respect to r, so f ′ = df/dr. Substi-

tuting Equation (3.50) into Equation (3.49),

fr0 = λ
d

dr

(
γf ′√
αγr4

)
. (3.51)

For a static spherically symmetric gravitational field the line element has the form

ds2 = γ(r)dt2 − α(r)dr2 − r2(dθ2 + sin2 θdφ2), (3.52)

and the equations of motion for a test particle are

d2r

dτ 2
+
α′

2α

(
dr

dτ

)2

− r

α

(
dθ

dτ

)2

− r
(

sin2 θ

α

)(
dφ

dτ

)2

+
γ′

2α

(
dt

dτ

)2

+
1

α

d

dr

(
λγf ′√
αγr4

)(
dt

dτ

)
= 0, (3.53)

d2t

dτ 2
+
γ′

γ

(
dt

dτ

)(
dr

dτ

)
+

1

γ

d

dr

(
λγf ′√
αγr4

)(
dr

dτ

)
= 0, (3.54)

d2θ

dτ 2
+

2

r

(
dθ

dτ

)(
dr

dτ

)
− sin θ cos θ

(
dφ

dτ

)2

= 0, (3.55)

d2φ

dτ 2
+

2

r

(
dφ

dτ

)(
dr

dτ

)
+ 2 cot θ

(
dφ

dτ

)(
dθ

dτ

)
= 0. (3.56)

The motion of a test particle can be shown to lie in the plane, θ = π/2, by an appropriate

choice of axes. Integrating Equation (3.56) gives

r2dφ

dτ
= J, (3.57)
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where J is the conserved orbital angular momentum. Integration of Equation (3.54) gives

dt

dτ
= −1

γ

[
λγf ′√
αγr4

+ E

]
, (3.58)

where E > 0 is the conserved orbital energy per unit mass (E = 0 for the photon).

Substituting Equation (3.58) into Equation (3.53), and using Equation (3.57), we obtain

d2r

dτ 2
+
α′

2α

(
dr

dτ

)2

− J2

αr3
+

γ′

2αγ2

(
λγf ′√
αγr4

+E

)2

=
1

αγ

d

dr

(
λγf ′√
αγr4

)(
λγf ′√
αγr4

+E

)
. (3.59)

3.3.4 MSTG acceleration law

Approximating the line element of Equation (3.52) by the Schwarzschild solution:

α(r) ∼
(

1− 2GM

r

)−1

, γ(r) ∼ 1− 2GM

r
, (3.60)

and making the approximations 2GM/r � 1, λf ′/r2 � 1, f/r2 � 1 and the slow motion

approximation dr/dt� 1, Equation (3.59) becomes

d2r

dt2
− J2

N

r3
+
GM

r2
= λ

d

dr

(
f ′

r2

)
, (3.61)

where JN is the Newtonian orbital angular momentum.

Transforming the Kalb-Ramond-Proca field equations of Equation (3.44), to polar co-

ordinates for the components Aθφ = f(r) sin θ,

(
1− 2GM

r

)
f ′′ − 2

r

(
1− 3GM

r

)
f ′ −

(
µ2

r2
+

8GM

r

)
f = 0, (3.62)

which has the solution (Moffat, 2005)

f(r) =
1

3
sG2M2 exp(−µr)(1 + µr), (3.63)

where s is a dimensionless constant. The skew field is therefore an excellent candidate

for the phantom of dark matter due to the result of Equation (3.63), which leads to
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gravitationally strong astrophysical effects, with a geometric originating fifth force, similar

to the appearance of a fifth force charge, Q5, as an integration constant in Equation (3.132),

described in §3.4, for STVG.

Substituting Equation (3.63) into Equation (3.61) gives

d2r

dt2
− J2

N

r3
= −GM

r2
+
σ exp(−µr)

r2
(1 + µr), (3.64)

where σ is given by

σ =
λsG2M2µ2

3
. (3.65)

It is phenomenologically important for the modified acceleration law to be consistent

with the observed Tully-Fisher relation, v4 ∝ M (Tully and Fisher, 1977), so MSTG

requires that the constant, s, be of the form

s = gM−3/2, (3.66)

so Equation (3.65) becomes:

σ =
√
MM0, (3.67)

where

M0 =

(
λgG

3r2
0

)2

, (3.68)

is a parameter related to the strength of the coupling of the Kalb-Ramond-Proca field to

matter, and

r0 =
1

µ
, (3.69)

and the gravitational constant, G, in Equation (3.64) is taken to be:

G∞ = GN

(
1 +

√
M0

M

)
, (3.70)

where GN is Newton’s gravitational constant. If the dependence of σ on the source mass

distribution is correctly modelled as per Equation (3.65), then the MSTG mass parameter,

M0 , defined by Equation (3.68), will be a universal constant. µ denotes the effective mass
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of the skewon, Aµν , with reciprocal identified as the MSTG length parameter, r0, defined

by Equation (3.69).

Substituting Equations (3.67), (3.69) and (3.70) into Equation (3.64), and neglecting

the Newtonian angular momentum, JN , we obtain the MSTG acceleration law,

a(r) = −GNM

r2

{
1 +

√
M0

M

[
1− exp(−r/r0)

(
1 +

r

r0

)]}
. (3.71)

We can rewrite Equation (3.71) in the form

a(r) = −G(r)M

r2
, (3.72)

where

G(r) = GN

{
1 +

√
M0

M

[
1− exp(−r/r0)

(
1 +

r

r0

)]}
. (3.73)

3.3.5 Poisson equations

The experience of a test particle in the MSTG theory, moving in an extended matter

distribution, is a combination of the force of gravity due to Einstein’s metric gravity theory,

and a coupled fifth force due to a Kalb-Ramond-Proca field. The weak-field, central

potential for a static, spherically symmetric system can be split into two parts:

Φ(r) = ΦN(r) + ΦY (r), (3.74)

where

ΦN(r) = −G∞M
r

, (3.75)

and

ΦY (r) =
GNσ exp(−µr)

r
(3.76)

denote the Newtonian and Yukawa potentials, respectively, where M denotes the total

constant mass of a point source. The point source gravitational coupling in Equation

(3.75) is

G∞ = GN(1 +
σ

M
), (3.77)
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where σ, defined by Equation (3.65), is dependent on the source mass distribution through

a power-law model, derived from the Tully-Fisher relation, leading to the phenomenolog-

ical parametrizations of Equations (3.67) and (3.70). Since the Schwarzschild solution,

according to Equation (3.60), was used in the derivation of Equation (3.77), Equations

(3.67) and (3.70) may be generalized to static, spherically symmetric matter distributions,

using the interior solution of the Schwarzschild metric, and we may set M to the active

mass interior to a sphere of radius, r,

M =
∫
d3r′ρ(r′). (3.78)

The Poisson equations for ΦN(r) and ΦY (r) are given by

∇2ΦN(r) = −G∞ρ(r), (3.79)

and

(∇2 − µ2)ΦY (r) =
σ

M
GNρ(r), (3.80)

respectively. For sufficiently weak fields, the Poisson Equations (3.79) and (3.80) are

uncoupled and determine the potentials ΦN(r) and ΦY (r) for non-spherically symmetric

systems, which can be solved analytically and numerically. The Green’s function for the

Yukawa Poisson equation is given by

(∇2 − µ2)∆Y (r) = −δ3(r). (3.81)

The full solutions to the potentials are given by

ΦN(r) = −GN

∫
d3r′

(
1 +

σ

M

)
ρ(r′)

4π|r− r′|
, (3.82)

and

ΦY (r) = GN

∫
d3r′

σ

M
exp(−µ|r− r′|) ρ(r′)

4π|r− r′|
. (3.83)
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The modified acceleration law is the gradient of the potential of Equation (3.74),

a(r) = −∇Φ = −
(
∇ΦN(r) +∇ΦY (r)

)
. (3.84)

Combining Equations (3.82), (3.83) and (3.84),

a(r) = −GN

∫
d3r′

(r− r′)ρ(r′)
4π|r− r′|3

{
1 +

σ

M

[
1− exp(−µ|r− r′|)(1 + µ|r− r′|)

]}
. (3.85)

Dividing the Tully-Fisher relation inspired phenomenological input of Equation (3.67)

by M ,

σ

M
=

√
M0

M
, (3.86)

and substituting Equations (3.69) and (3.86) into Equation (3.85), we obtain

a(r) = −
∫
d3r′

(r− r′)ρ(r′)
4π|r− r′|3

G(r− r′), (3.87)

where

G(r− r′) = GN

{
1 +

(
M0∫

d3r′ρ(r′)

)1/2[
1− exp

(
−|r− r′|

r0

)(
1 +
|r− r′|
r0

)]}
. (3.88)

For a δ-function point source,

ρ(r) = Mδ3(r), (3.89)

the modified acceleration law of Equations (3.87) and (3.88) reduces to the point source

solution of Equations (3.72) and (3.73).

For a static, spherically symmetric system, the effective modified acceleration law is:

a(r) = −G(r)M(r)

r2
, (3.90)

where

G(r) = GN

{
1 +

√
M0

M(r)

[
1− exp(−r/r0)

(
1 +

r

r0

)]}
. (3.91)
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We observe that G(r)→ GN as r → 0.

3.3.6 Dynamical mass measurements

Comparison of Equation (3.90) with the Newtonian acceleration law:

a(r) = −GNMN(r)

r2
, (3.92)

allows the interpretation of the modified gravity dynamic mass as a scaled version of the

Newtonian dynamic mass,

MMOG(r) =
GNMN(r)

G(r)
, (3.93)

where the varying gravitation coupling, G(r), may take the form of Equation (3.91), derived

in MSTG. The MSTG dynamic mass,

MMSTG(r) = MN(r)

{
1 +

√
M0

MMSTG(r)

[
1− exp(−r/r0)

(
1 +

r

r0

)]}−1

, (3.94)

has the exact analytic solution:

MMSTG(r) = MN(r) +M0ξ(r)−
√
M0

2ξ(r)2 + 2M0MN(r)ξ(r), (3.95)

ξ(r) ≡ 1

2

[
1− exp(−r/r0)

(
1 +

r

r0

)]2

, (3.96)

which is identified with the total baryonic mass within a separation, r from the center of

the system.

This MSTG acceleration law is applied to galaxy rotation curves in Chapter 4, in

Equations (4.11) and (4.12). In §4.2 , in order to compute the overall best-fitting mean

result, M0 and r0 are permitted to vary across the sample of 29 galaxies, as tabulated

in Table 4.4. The galaxy rotation curves, plotted in Figure 4.1, are subsequently one

parameter best-fits by the stellar mass-to-light ratio, Υ, applying the mean results of

Equation (4.14) universally. The MSTG acceleration law is applied to clusters of galaxies

in Chapter 5, according to §5.2.3: Metric skew-tensor gravity, in order to compute the

scaling of the parameters, M0 and r0. In §5.2, the MSTG mass is best-fitted to the X-ray
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gas mass of a sample of 11 clusters of galaxies, and plotted in Figure 5.1 according to

the best-fit cluster model parameters tabulated in Panel (c) of Table 5.2, for MSTG. A

summary of lessons learned from the application of MSTG to the astrophysics of galaxies

and clusters of galaxies is supplied in §7.1.2.

3.4 Scalar-tensor-vector gravity

Whereas the metric skew-tensor gravity theory, of §3.3, describes the effective, low energy

Yukawa skewon as the Kalb-Ramond-Proca field, a separate solution is to model a gravity

theory with a simpler Maxwell-Proca field, such as in the scalar-tensor-vector gravity

(STVG) theory, which describes the low energy Yukawa phion, φµ, as a massive spin-

1− vector field, described in §3.4.1. The action in §3.4.2 for the STVG theory, given

by Equation (3.97), includes an Einstein metric background (the gravity sector) to the

Maxwell-Proca field in which the gravitational coupling, G, and the phion coupling, ω, and

the phion mass, µ, are treated as a triplet of scalar fields (scalar-tensor-vector sector). To

address the hypothesis stated in §1.1.3, of fitting galaxy rotation curves and galaxy cluster

masses without dominant dark matter, it is sufficient to work in the weak-field spherically

symmetric limit of STVG, where the test particle equations of motion, calculated in §3.4.3,

are used to derive the point source acceleration law in §3.4.4 and effective Poisson equations

are deduced in §3.4.5 for distributions of matter. The STVG dynamic mass is provided

in §3.4.6 by Equation (3.164) which is nonlinear through Equations (3.159) and (3.160),

and requires a numerical solution unlike the exact analytic solution of Equations (3.95)

and (3.96) for MSTG. Using the MSTG dynamic mass as the initial guess for the STVG

numerical computation led to fast convergence in fewer than ten iterations. Lessons learned

from the application of STVG to the astrophysics of galaxies and clusters of galaxies may

be found in §7.1.2.

3.4.1 Maxwell-Proca field

van Nieuwenhuizen (1973) found that the only massive vector fields free of ghosts, tachyons

and higher-order poles in the propagator for linearized gravitation are the massive spin-1

Maxwell-Proca fields.
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The expectation from the Yukawa skewon theory of §3.3.4 is that the gravitational

coupling, G(r) of Equation (3.91) and the mass and range parameters, M0 and r0, are

scale dependent. Conversely, STVG theory models this astrophysical scale dependence

with a renormalized triplet of self-interacting, cosmological, Klein-Gordon scalar fields.

Moffat (2006b) introduced the scalar-tensor-vector gravity (STVG) theory by including

a massive spin-1− vector phion, which is the Maxwell-Proca field of §3.4.2, self-coupled and

coupled to a matter current, to an Einstein-Hilbert action. Perhaps much simpler than the

NGT, and possibly MSTG, the STVG effectively captures the fifth force due to a weak-

field emergent Yukawa meson, simulating the predictions of NGT and MSTG, to a first

order approximation. To address the hypothesis stated in §1.1.3, of fitting galaxy rotation

curves and galaxy cluster masses without dominant dark matter, it is sufficient to work in

the weak-field limit where the effective, low energy excitation is described by the Yukawa

phion theory of §3.4.4. The cumulative renormalization of the phion mass, µ, self-coupling,

ω, and the gravitational coupling, G, provide the gravitational strength. The central force

law, for test particle motion in STVG, is derived in §3.4.5.

3.4.2 Action

The STVG action, with matter present, is based on the Lagrangian density,

L = LEH + Lφ + LS + LM . (3.97)

The Einstein-Hilbert Lagrangian density,

LEH =
c4

16πG

(
R− 2Λ

)√
−g, (3.98)

provides the general relativistic background, where Λ is the cosmological constant. The

Maxwell-Proca spin-1− vector phion, φµ, introduces the fifth force by a modification to

gravity’s action by the inclusion of the Lagrangian density,

Lφ = −ω
[
1

4
BµνBµν −

1

2
µ2φµφ

µ + Vφ(φ)
]√
−g, (3.99)
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where µ is the phion mass, ω characterizes the coupling strength between the phion and

matter, Vφ is the phion self-interaction potential, and the phion field strength tensor is

Bµν = ∂µφν − ∂νφµ. (3.100)

Isenberg and Nester (1977) showed that, when minimally coupled to gravity, both the

Maxwell field photon, Aα, and the Maxwell-Proca field phion, φα, where α = (0, a), have

two constraints: The primary constraint sets the canonical momentum conjugate to A0

and φ0 to zero, and therefore the longitudinal modes are non-propagating. A secondary

constraint enforces the Gauss law,

G = ∇aE
a =

 0 photon

µ2φ0 phion,
(3.101)

where Ea is the canonical momentum conjugate to Aa, or φa, respectively. The Maxwell

Hamiltonian has undetermined Lagrange multipliers which generate U(1) gauge invariance,

but the Maxwell-Proca Hamiltonian is uniquely determined, since it is U(1) gauge non-

invariant. Therefore, the Maxwell field has 4− 1− 1 = 2 degrees of freedom, whereas the

Maxwell-Proca field has 4 − 1 = 3 degrees of freedom. Similar arguments apply to the

MSTG massive spin-1+ skewon, of §3.3.2, which is a Kalb-Ramond-Proca field.

Moffat (2006b) confirmed that there are no pathological singularities in the Maxwell-

Proca field coupled to gravity and promotes the three coupling constants of the theory,

G, µ and ω, to scalar fields by introducing associated kinetic and potential terms in the

Lagrangian density:

Ls = −c
4

G

[
1

2
gην

(
∇ηG∇νG

G2
+
∇ηµ∇νµ

µ2
−∇ηω∇νω

)
+
VG(G)

G2
+
Vµ(µ)

µ2
+ Vω(ω)

]
√
−g,

(3.102)

where ∇η denotes covariant differentiation with respect to the local SO(3,1) invariant,

symmetric metric gην , while VG, Vµ, and Vω are the self-interaction potentials associated

with the scalar fields.
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The action principle for STVG in the presence of matter,

δS = δ
∫
d4x (LEH + Lφ + LS + LM) = 0, (3.103)

where LM is the ordinary matter Lagrangian density, with SM =
∫
d4xLM .

The total energy-momentum tensor takes the form,

Tµν = TMµν + Tφµν + TSµν , (3.104)

where

2√
−g

δSM
δgµν

= −TMµν ,
2√
−g

δSφ
δgµν

= −Tφµν ,
2√
−g

δSS
δgµν

= −TSµν . (3.105)

Variation of the action with respect to gµν yields the Einstein field equations in the

presence of a massive vector phion:

Gµν + Λgµν +Qµν =
8πG

c4
Tµν , (3.106)

where Gµν is the Einstein tensor given by Equation (3.41), and

Qµν =
8πG

c4
ω
{(
BµκBν

κ − 1

4
gµνBκλB

κλ
)

+ µ2
(
φµφν −

1

2
gµνφ

κφκ

)
+ gµνVφ(φ)

}
− 8π

{(
∇αG∇βG

G2
+
∇αµ∇βµ

µ2
−∇αω∇βω

)(
δαµδ

β
ν −

1

2
gαβgµν

)}

+ 8πgµν

{
VG(G)

G2
+
Vµ(µ)

µ2
+ Vω(ω)

}
. (3.107)

A fifth force-matter current arises from extremizing the matter action under variations of

the Maxwell-Proca phion field, φµ:

Jµ = − 1√
−g

δSM
δφµ

. (3.108)

Variation of the action with respect to φν yields the Maxwell-Proca equations for the
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massive vector phion:

∇µB
µν +

1

ω
Bµν∇µω + µ2φν − ∂Vφ(φ)

∂φν
=

1

ω
Jν . (3.109)

Variation of the action with respect to the gravitational coupling, G, the phion coupling,

ω, and the phion mass, µ yields the scalar field equations:

∇ν∇νG−
3

2

∇νG∇νG

G
+
G

2

(
∇νµ∇νµ

µ2
−∇νω∇νω

)
+

3

G
VG(G)

−V ′G(G) +G

[
Vµ(µ)

µ2
+ Vω(ω)

]
− G

16π
(R− 2Λ) = 0, (3.110)

∇ν∇νω −
Gµ2

2c4
φµφ

µ +
G

4c4
BµνBµν +

G

c4
Vφ(φ) + V ′ω(ω) = 0, (3.111)

∇ν∇νµ−
∇νµ∇νµ

µ
+
Gωµ3

c4
φµφ

µ +
2

µ
Vµ(µ)− V ′µ(µ) = 0. (3.112)

3.4.3 Motion under the fifth force

The equations of motion of a test particle are

duµ

dτ
+

{
µ

αβ

}
uαuβ = aµ5 , (3.113)

where τ is the proper time along the path of the particle and uλ = dxλ/dτ is the 4-velocity

of the particle, and {
λ

µν

}
=

1

2
gλρ (gµρ,ν + gρν,µ − gµν,ρ) , (3.114)

is the Christoffel connection. The acceleration, aµ5 , is due to the fifth force derived from

the Euler-Lagrange equations for a test particle, of mass m, and fifth force charge,

q5 = κm, (3.115)

where κ is a constant, independent of m. Such a test particle has a point particle ac-

tion (Moffat, 2006b; Moffat and Toth, 2009),

STP = −m
∫
dτ
√
gαβuαuβ − q5

∫
dτωφµu

µ. (3.116)
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Variation of Equation (3.116) yields the Euler-Lagrange equations corresponding to Equa-

tion (3.113), where the velocity-dependent fifth force is given by

fµ5 = q5 [ωBµ
νu

ν +∇µω (φαu
α)−∇αω (φµuα)] . (3.117)

Dividing the fifth force of Equation (3.117) by the test particle mass, m, and using Equation

(3.115), the mass m cancels, and the acceleration due to the fifth force becomes,

aµ5 =
fµ5
m

= κωBµ
νu

ν + κ∇µω (φαu
α)− κ∇αω (φµuα) , (3.118)

which is independent of the test particle mass, in exact agreement with the weak equiva-

lence principle and the universality of free fall. Taking ω as constant,

aµ5 = κωBµ
νu

ν . (3.119)

For a static spherically symmetric gravitational field the line element has the form

ds2 = Bdt2 − Adr2 − r2(dθ2 + sin2 θdφ2), (3.120)

and the equations of motion for a test particle are

d2r

dτ 2
+
α′

2α

(
dr

dτ

)2

− r

α

(
dθ

dτ

)2

− r
(

sin2 θ

α

)(
κωdφ

dτ

)2

+
γ′

2α

(
dt

dτ

)2

+κω
1

α

(
dφ0

dr

)(
dt

dτ

)
= 0, (3.121)

d2t

dτ 2
+
γ′

γ

(
dt

dτ

)(
dr

dτ

)
+ κω

1

γ

(
dφ0

dr

)(
dr

dτ

)
= 0, (3.122)

d2θ

dτ 2
+

2

r

(
dθ

dτ

)(
dr

dτ

)
− sin θ cos θ

(
dφ

dτ

)2

= 0, (3.123)

d2φ

dτ 2
+

2

r

(
dφ

dτ

)(
dr

dτ

)
+ 2 cot θ

(
dφ

dτ

)(
dθ

dτ

)
= 0. (3.124)

The motion of a test particle can be shown to lie in the plane, θ = π/2, by an appropriate
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choice of axes. Integrating Equation (3.124) gives

r2dφ

dτ
= J, (3.125)

where J is the conserved orbital angular momentum. Integration of Equation (3.122) gives

dt

dτ
= −1

γ

[
κωφ0 + E

]
, (3.126)

where E > 0 is the conserved orbital energy per unit mass (E = 0 for the photon).

Substituting Equation (3.126) into Equation (3.121), and using Equation (3.125), we obtain

d2r

dτ 2
+
α′

2α

(
dr

dτ

)2

− J2

αr3
+

γ′

2αγ2
(κωφ0 + E)2 = κω

1

αγ

(
dφ0

dr

)
(κωφ0 + E). (3.127)

3.4.4 STVG acceleration law

Approximating the line element of Equation (3.120) by the Schwarzschild solution:

α(r) ∼
(

1− 2GM

r

)−1

, γ(r) ∼ 1− 2GM

r
, (3.128)

and making the approximations 2GM/r � 1, κωφ0 � 1, and the slow motion approxima-

tion dr/dt� 1, Equation (3.127) becomes

d2r

dt2
− J2

N

r3
+
GM

r2
= κω

dφ0

dr
, (3.129)

where JN is the Newtonian orbital angular momentum.

In the limit of no phion self-interactions, Vφ(φ) → 0, and with ω constant, Equation

(3.109) becomes

∇µB
µν + µ2φν =

1

ω
Jν . (3.130)

In the weak-field, static spherically symmetric limit with Jν = 0, the only nonpropagating

mode, φ0, obeys the Maxwell-Proca equation

∂2

∂r2
φ0 +

2

r

∂

∂r
φ0 − µ2φ0 = 0, (3.131)
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which has the Yukawa solution

φ0(r) = −Q5
e−µr

r
. (3.132)

The constant Q5 emerges as a constant of integration, and should be interpreted as an

effective Yukawa phion field strength, whereas the mass of the effective Yukawa phion,

µ, should be interpreted as the range of the Yukawa interaction, λ = 1/µ. Substituting

Equation (3.132) into Equation (3.129),

d2r

dt2
− J2

N

r3
= −GM

r2
+
κωQ5 exp(−µr)

r2
(1 + µr). (3.133)

Since the effective phion field strength is proportional to the source mass, M , with the

same constant of proportionality as in Equation (3.115), (Moffat and Toth, 2009)

Q5 = κM, (3.134)

we may write Equation (3.133) as

d2r

dt2
− J2

N

r3
= −GM

r2
+
αGNM exp(−µr)

r2
(1 + µr), (3.135)

where

αGN = κ2ω. (3.136)

Demanding consistency with the observed Newtonian force law, for small r, when µr � 1,

the difference between Equation (3.135) and the Newtonian force law vanishes,

GNM

r2
− GM

r2
+
αMGN

r2
= 0, (3.137)

and the gravitational constant, G, in Equation (3.135) has the solution

G∞ = GN(1 + α). (3.138)

Substituting Equation (3.138) into Equation (3.135) and neglecting the Newtonian angular
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momentum, JN , we obtain the STVG acceleration law,

a(r) = −GNM

r2

{
1 + α

[
1− exp(−µr)

r2
(1 + µr)

]}
. (3.139)

Whereas the derivation of the MSTG acceleration law of Equation (3.71) relied upon the

phenomenological input of Equations (3.66) and (3.67) leading to the MSTG parameters

M0 and r0, Moffat and Toth (2009) integrated the equations of motion in the weak-field,

spherically symmetric limit, obtaining α and µ as functions of the mass M ,

α =
M(√

M + E
)2

(
G∞
GN

− 1
)
, (3.140)

µ =
D√
M
. (3.141)

The parameters D and E are universal constants. We can rewrite Equation (3.139) in the

form

a(r) = −G(r)M

r2
, (3.142)

where

G(r) = GN

{
1 + α− αe−µr(1 + µr)

}
. (3.143)

3.4.5 Poisson equations

The experience of a test particle in the STVG theory, moving in an extended matter

distribution, is a combination of the force of gravity due to Einstein’s metric gravity theory,

and a fifth force described by a triplet of scalar fields and a Maxwell-Proca field. The

weak-field, central potential for a static, spherically symmetric system can be split into

two parts:

Φ(r) = ΦN(r) + ΦY (r), (3.144)

where

ΦN(r) = −G∞M
r

, (3.145)

and

ΦY (r) =
κωQ5 exp(−µr)

r
(3.146)
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denote the Newtonian and Yukawa potentials, respectively, where M and Q5 denote the

total constant mass and fifth force charge of a point source. G∞ is the gravitational

coupling in Equation (3.145), and is given by Equation (3.138), and µ denotes the effective

mass of the phion, φµ, in STVG. Since Q5 is proportional to M by Equation (3.134) and

using Equation (3.136), Equation (3.146) becomes

ΦY (r) =
αGNM exp(−µr)

r
. (3.147)

The Poisson equations for ΦN(r) and ΦY (r) are given by

∇2ΦN(r) = −G∞ρ(r), (3.148)

and

(∇2 − µ2)ΦY (r) = αGNρ(r), (3.149)

respectively. For sufficiently weak fields, the Poisson Equations (3.148) and (3.149) are

uncoupled and determine the potentials ΦN(r) and ΦY (r) for non-spherically symmetric

systems, which can be solved analytically and numerically. The Green’s function for the

Yukawa Poisson equation is given by

(∇2 − µ2)∆Y (r) = −δ3(r). (3.150)

The full solutions to the potentials are given by

ΦN(r) = −GN

∫
d3r′

(1 + α)ρ(r′)
4π|r− r′|

(3.151)

and

ΦY (r) = GN

∫
d3r′

αρ(r′) exp(−µ|r− r′|)
4π|r− r′|

. (3.152)

The modified acceleration law is the gradient of the potential of Equation (3.144),

a(r) = −∇Φ = −
(
∇ΦN(r) +∇ΦY (r)

)
. (3.153)
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Combining Equations (3.151), (3.152) and (3.153),

a(r) = −GN

∫
d3r′

(r− r′)ρ(r′)
4π|r− r′|3

{
1 + α− α exp(−µ|r− r′|)(1 + µ|r− r′|)

}
. (3.154)

Therefore

a(r) = −
∫
d3r′

(r− r′)ρ(r′)
4π|r− r′|3

G(r− r′), (3.155)

where

G(r− r′) = GN

{
1 + α− α exp(−µ|r− r′|)(1 + µ|r− r′|)

}
. (3.156)

For a δ-function point source,

ρ(r) = Mδ3(r), (3.157)

the modified acceleration law of Equations (3.155) and (3.156) reduces to the point source

solution of Equations (3.142) and (3.143).

For a spherically symmetric system, the total baryonic mass within a separation, r,

from the center of the system, is

M(r) =
∫ r

0
4πr′2dr′ρ(r′). (3.158)

Whereas the MSTG Poisson equations of Equations (3.79) and (3.80) relied upon the Tully-

Fisher relation inspired phenomenological input of Equations (3.67) and (3.70) leading

to the MSTG parameters M0 and r0 in Equation (3.91), α and µ can be obtained, by

integrating the equations of motion in the weak-field, spherically symmetric limit (Moffat

and Toth, 2009):

α =
M(r)(√

M(r) + E
)2

(
G∞
GN

− 1
)
, (3.159)

µ =
D√
M(r)

. (3.160)
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For a static, spherically symmetric system, the effective modified acceleration law is:

a(r) = −G(r)M(r)

r2
, (3.161)

where

G(r) = GN

{
1 + α− αe−µr(1 + µr)

}
. (3.162)

where α and µ are given by Equations (3.159) and (3.160), respectively.

3.4.6 Dynamical mass measurements

Comparison of Equation (3.161) with the Newtonian acceleration law of Equation (3.92)

allows the interpretation of the modified gravity dynamic mass as a scaled version of the

Newtonian dynamic mass,

MMOG(r) =
GNMN(r)

G(r)
, (3.163)

where the varying gravitation coupling, G(r), may take the form of Equation (3.162),

derived in STVG. The STVG dynamic mass,

MSTVG(r) = MN(r)
{

1 + α− αe−µr(1 + µr)
}−1

, (3.164)

where α and µ are defined by Equations (3.159) and (3.160), respectively, is identified with

the total baryonic mass within a separation, r from the center of the system.

This STVG acceleration law is applied to galaxy rotation curves in Chapter 4, in

Equations (4.11), (4.15), (4.16) and (4.17). In §4.2, in order to compute the overall best-

fitting mean result, D, E and G∞ are permitted to vary across the sample of 29 galaxies, as

tabulated in Table 4.5. The galaxy rotation curves, plotted in Figure 4.1, are subsequently

one parameter best-fits by the stellar mass-to-light ratio, Υ, applying the mean results of

Equation (4.19) universally. The STVG acceleration law is applied to clusters of galaxies

in Chapter 5, according to §5.2.3: Scalar-tensor-vector gravity, in order to compute the

scaling of the asymptotic coupling, G∞. In §5.2, the STVG mass of Equation (3.164) is

fitted to the X-ray gas mass of a sample of 11 clusters, and plotted in Figure 5.1 according

to the best-fit cluster model parameters tabulated in Panel (d) of Table 5.2, for STVG.
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Chapter 4

Galaxy rotation curves

“To myself I am only a child playing on the beach, while vast oceans of truth

lie undiscovered before me.”

Sir Isaac Newton

The creation of galaxy rotation curves from astrophysical observations is subject to

model dependent assumptions. The road from photometry, in some observed electromag-

netic band, to the mass profile, in some chosen gravity theory, takes its way through the

dynamics of the galaxy, with the destination a rotational velocity profile. Spiral galaxies

show a remarkable variation of the distribution and relative abundances of stellar material,

distributed in bulges and disks, and the intergalactic medium, distributed in exponentially

thin rings with vanishing amounts within galaxy cores. These are the three visible com-

ponents – the sources of photometric data – that are used to reconstruct the dynamics of

the galaxy, and the predicted galaxy rotation curves.

The galaxy mass profiles are determined by a best-fit algorithm, within each gravity

theory depending on dynamics in the weak-field, as in §4.1, for a sample from the Ursa

Major filament of galaxies, in §4.2. Every galaxy studied, from the highest to lowest

in surface brightness, from the most giant to the smallest dwarf, require some form of

dark matter or some modification of gravity. Each of the candidates offer robust and

distinguishable predictions for the mass luminosity relationship, as in §4.2.8. Although

Milgrom’s modified Newtonian dynamics and Moffat’s modified gravity theories are sourced

by ordinary baryons, there is evidence that each of these theories lead to measurable,

and distinguishable halos of phantom dark matter, as described in §4.3. Dark matter

distributions are sensitive to baryon distributions because χ2-fitting algorithms recover

the kinks and wiggles, repatriating the surface masses of orphan features, described in

§4.3.2. If the best-fit stellar mass-to-light ratio for the model is near unity, Υ ∼ 1, then

71
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the Tully-Fisher relation, as in §4.3.4, follows from fundamental physics.

4.1 Curve-fitting

The observational data from galaxy rotation curves is compared to the predictions of cold

non-baryonic dark matter (CDM) halos, Milgrom’s modified Newtonian dynamics, and

Moffat’s modified gravity theories, in §4.1.1, §4.1.2, and §4.1.3, respectively.

4.1.1 CDM halos

In Chapter 2, the halo density power-law function of Equation (2.5), was shown to have

fitting formulae for a power-law index between 1 ≤ γ(r) ≤ 3, for the NFW formulae of

Equations (2.7) and (2.8),

ρ(r) =
ρ0r

3
s

r(r + rs)2
,

M(r) = 4πρ0r
3
s

{
ln(r + rs)− ln(rs)− r

r+rs

}
,

(4.1)

and between 0 ≤ γ(r) ≤ 3, for the core-modified formulae of Equations (2.12) and (2.13),

ρ(r) =
ρ0r

3
s

r3 + r3
s

,

M(r) = 4
3
πρ0r

3
s {ln(r3 + r3

s)− ln(r3
s)} .

(4.2)

Each profile is self-similar and describes the tremendous variation of galaxy-scale halos,

without any further parameters. In addition, each profile has a simple analytic expression

for the integrated mass function, M(r), relevant for curve-fitting. The two parameters

that must be varied in both Equations (4.1) and (4.2), are ρ0 and rs. In the core-modified

model these can be interpreted as the dark matter central density, and the radius at which

the density is one-half the central density, respectively. Furthermore, the core-modified

γ → 0 behaviour occurs in the baryon dominated galactic core, decreasing the dark matter

density where the cusp problem prevents better fits using the NFW profile.

Best-fits to the mass profiles of the dark matter halos, neglecting the stellar galactic

disk (Υ = 0) were poor to gross for both the NFW profile and the core-modified model,

whereas simultaneously best-fit parameters, ρ0, rs, Υ, produced low to very low χ2, as
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shown in Table 4.2. The very low χ2 best-fits repatriated many of the orphan features seen

within the galaxy rotation curves, as shown in Figure 4.1. Moreover, the predicted surface

mass profile, Σ(r), extends gradually into the galaxy with a much broader center than the

predictions of the modified gravity Σ̄-maps, as shown in Figure 4.2.

Observations

The CDM computations, using HI and K-band photometric surface luminosity data, de-

tailed in §4.2, with galaxy rotation curves plotted in Figure 4.1, indicate the following:

1. The sample may be universally fit with a common NFW profile given by Equation

(4.1), where the NFW parameters are varied in order to best-fit the rotation curve –

either with or without baryons. The fits without baryons lead to gross best-fits of the

galaxy rotation curves, with very poor χ2. Including the visible HI (and He) gaseous

disk and the available luminous stellar disk with a variable stellar mass-to-light ratio

Υ provides excellent fits to the large galaxies, but suppresses the best-fit Υ � 1,

particularly in the case of the dwarf galaxies. The worst of these dwarf galaxies

cannot be fitted using the NFW profile with any nonzero value of the stellar mass-to-

light ratio. This confirms the cusp problem due to the singular NFW fitting formula

and reinforces the importance of correctly incorporating the baryonic components

into the galaxy models.

2. Every galaxy in the UMa sample, from the highest to lowest in surface brightness

may be universally fit with a common core-modified profile given by Equation (4.2)

– with no extra parameters beyond those of the NFW parameters – provided the

visible HI (and He) gaseous disk and the available luminous stellar disk are included.

This model provides superior fits, with the lowest reduced χ2 statistic over all of

the gravity theories considered, including all of the dwarf galaxies, and yields values

of Υ ∼ 1 as tabulated in Table 4.2. Moreover, the dark matter to baryon ratio

at the outermost radial point, tabulated in Table 4.6 with mean values provided by

Equation (4.53), is below the upper limit set by Spergel et al. (2007) in the Wilkinson

microwave anisotropy probe (WMAP) third year results.

3. Every galaxy in the UMa sample, from the highest to lowest in surface brightness
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has a central disk where the dark matter density differs strongly from a single power-

law density profile, and γ(r) of Equation (2.5) increases with radii, r, as shown in

Figure 4.5. This solution to the dark matter cusp problem is studied in §4.2.7.

4. The UMa sample can be fit by Newton’s theory alone – without dark matter – using

the visible HI (and He) gaseous disk and the available luminous stellar disk, within

a Newtonian core up to some radius which varies across the galaxy sample. This

maximizes the stellar mass-to-light ratio, Υ, and leads to systematically bad fits

beyond the Newtonian core, indicating that the missing mass problem increases with

radius. This point is elaborated in §4.3.1. The Newtonian core radii are plotted in

Figure 4.6, and the galaxy rotation curves derived from this best Newtonian core

model are plotted in Figure 4.1.

5. The total mass and the shape of the dark matter halo varies in all galaxies, indepen-

dent of the total mass of the visible HI (and He) gaseous and stellar disks. The dark

matter parameters are neither correlated with galactic mass, nor the flat rotation

velocity, vout, nor with the extent of the galaxy rotation curve, rout, as listed in Ta-

ble 4.1. Sub kiloparsec, high-resolution Σ-map predictions are provided in Figure 4.2.

6. Orphan features become traceable to a parent in either the gaseous disk, or the

luminous stellar disk, for r . rs, but become increasingly orphaned for r � rs

where the dark matter halo dominates. This provides the most obvious improvement

between the quality of the fits, as compared to those of the NFW profile.

Conclusions drawn upon identification of the missing mass as CDM is presented in the

summary §7.1.1.

4.1.2 Milgrom’s acceleration law

In Chapter 3, Milgrom’s acceleration law of Equation (3.5),

aµ(x) = aN, (4.3)

with the interpolating function,

µ(x) =
x√

1 + x2
, (4.4)
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where

x ≡ x(r) =
a(r)

a0

, (4.5)

was shown in Equation (3.9) to have the solution,

a(r) = a0

√√√√√1

2

(
aN(r)

a0

)2

+

√√√√1

4

(
aN(r)

a0

)4

+

(
aN(r)

a0

)2

, (4.6)

written in terms of the Newtonian acceleration of a test particle at a separation, r,

aN(r) =
GNM(r)

r2
, (4.7)

where M(r) is the baryonic mass integrated within a sphere of radius, r. Each of the galaxy

rotation curves in §4.2.3 are fitted in MOND by substituting the MOND acceleration law

of Equation (4.6) into Equation (4.25) for the orbital velocity.

Using the interpolating function of Equation (4.4), Sanders and McGaugh (2002) sug-

gested that using the fits to the rotation curves of §4.2, using a revised cluster distance

of 18.6 Mpc to Ursa Major, from the Cepheid-based re-calibrated Tully-Fisher relation of

Sakai et al. (2000), would imply that the MOND universal acceleration should be reduced

to

a0 = 1.0× 10−8 cm s−2. (4.8)

In §4.2, a0 is permitted to vary across the sample of 29 galaxies, in order to compute the

MOND universal acceleration parameter, in Table 4.3, with the best-fitting results,

a0 =

 (1.34± 0.66)× 10−8 cm s−2 HSB galaxy subsample,

(1.02± 0.78)× 10−8 cm s−2 LSB galaxy subsample.
(4.9)

Because of the gross uncertainty in the mean results, the galaxy rotation curves of Fig-

ure 4.1 are one parameter best-fits by the stellar mass-to-light ratio, Υ, applying Equa-

tion (4.8) universally.
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For galaxies of sufficiently high surface brightness, the asymptotic circular velocity,

v4
out = a0GNM, (4.10)

satisfies the empirical Tully-Fisher relation L ∝ v4
out provided one uses a luminosity param-

eter which is proportional to the observed mass. This is shown more precisely in §4.2.8,

where the stellar mass-to-light ratio, Υ, is the single free parameter, treated as a constant

within a galaxy (recovering the empirical Tully-Fisher relation), but varying from galaxy

to galaxy depending on the best-fit, with results tabulated in Table 4.3.

Observations

The MOND computations using HI and K-band photometric surface luminosity data,

detailed in §4.2, with galaxy rotation curves plotted in Figure 4.1, indicate the following:

1. The sample may be universally fit with a single MOND interpolating function and

MOND acceleration constant given by Equations (4.4) and (4.8) yielding a best-fit

stellar mass-to-light ratio Υ providing excellent to poor fits.

2. The sample may be fit with a single MOND interpolating function but a varying,

best-fit MOND acceleration parameter, tabulated in Table 4.3, yielding stellar mass-

to-light ratios closer to Υ ∼ 1, and correcting those poor fits with the universal

MOND acceleration, but providing minor correction to those fits that were already

good. The best-fit MOND acceleration parameter is not correlated with the galactic

surface brightness.

3. Every galaxy from the highest to lowest in surface brightness has a central disk that

is dominated by the Newtonian potential, where the MOND interpolating function

remains in the Newtonian core, µ ∼ 1, and a MOND regime where µ > 1 outside of

the core.

4. Once within the MOND regime, the dynamics within the galactic disk continue to

dominate, rising monotonically with orbital distance, as shown in Figure 4.4 which

plot Γ(r) ≡ 1/µ vs. r. Unless µ is bounded from below, the dynamical mass factor,

Γ(r)→∞ suggesting a classical instability. Conversely, since for every galaxy in the

sample Γ(rout < 10, there is evidence that µ > µ∞ ∼ 0.1 is bounded by a cosmological
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lower limit.

5. The best-fit stellar mass-to-light ratio, Υ, is generally too large in the Newtonian

core and too small in the MOND regime for those HSB galaxies that show poor fits,

however the trend is reversed in those LSB galaxies that MOND does not fit well,

as evident in Figure 4.6. For the lowest surface brightness galaxies, the increased

uncertainty in the stellar mass-to-light ratio in the MOND regime lead to dramatic

increases in the uncertainty in the total galaxy mass and relatively weak fits in the

Newtonian core.

6. Orphan features are traceable to a parent in either the gaseous or luminous stellar

disks and are generally independent of choice of either the best-fit or universal accel-

eration parameter, but become increasingly pronounced toward the outermost radial

data point in the velocity rotation curve.

4.1.3 Moffat’s modified gravity

Moffat’s modified gravity theory predicts that galaxy rotation curves are explained by the

radial acceleration law,

a(r) = −G(r)M(r)

r2
, (4.11)

where G(r) is the effective gravitational constant, and varies through the galaxy. In the

cores of each galaxy, where Newtonian gravity dominates the dynamics, G(r) ∼ GN , the

value of Newton’s constant. However, within a few kiloparsecs away from the core, the

repulsive Yukawa forces becomes appreciable, G(r) > GN . For the analysis of galaxy

rotation curves, we will consider the effective gravitational constant given in §3.3.5 by

Equation (3.91), derived from MSTG (Moffat, 2005):

G(r) = GN

{
1 +

√
M0

M(r)

[
1− exp(−r/r0)

(
1 +

r

r0

)]}
. (4.12)

Brownstein and Moffat (2006a) applied the MSTG acceleration law of Equations (4.11)

and (4.12) to a large sample of LSB and HSB galaxy rotation curves, obtaining satisfactory
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fits with the parameters

M0 = 96.0× 1010M�, r0 = 13.92 kpc. (4.13)

However, the dwarf LSB and HSB galaxy rotation curves were better fit with smaller values

for these parameters. In §4.2, M0 and r0 are permitted to vary across the sample of 29

galaxies, in order to compute the MSTG mean-universal parameters, in Table 4.4, with

the overall best-fitting result,

M0 = (98.6± 21.6)× 1010M�, r0 = (16.4± 6.1) kpc. (4.14)

Figure 4.1 are subsequently one parameter best-fits by the stellar mass-to-light ratio, Υ,

applying the mean results of Equation (4.14) universally.

Moffat (2006b) introduced the scalar-tensor-vector gravity theory (STVG) where the

weak-field, massive skew symmetric sector of NGT and MSTG are reduced to the simplest

representation of the Yukawa meson – a massive Maxwell-Proca spin-1− vector field, φµ

and a triplet of scalar fields, G, µ, ω. The STVG modified acceleration law results from

coupling the additional degrees of freedom to the Einstein metric, where Newton’s constant

and the Yukawa meson’s coupling and range are dynamical scalar fields.

The predictions of STVG mimics those of MSTG and NGT at astrophysical scales,

but since the basic excitations of the three theories are qualitatively different, fits to astro-

physical phenomena may constrain the phenomenological parameter space. Moreover, since

STVG is a relatively simple gauge theory of gravitation, the static, spherically symmetric

solution has been calculated exactly and resembles the Reissner-Nordström solution, but

with the source electromagnetic charge replaced by the source “fifth force” charge between

fermions and the massive Maxwell-Proca spin-1− vector field.

A derivation of a new acceleration law in STVG – from the action principle, but without

necessary ad-hoc phenomenological input – provided a modified acceleration law of the

form of Equation (4.11), where the effective gravitational constant is determined from the
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modified central force law, given in §3.4.5 by Equations (3.159), (3.160) and (3.162):

G(r) = GN

{
1 + α− αe−µr(1 + µr)

}
, (4.15)

α(r) =
M(r)(√

M(r) + E
)2

(
G∞
GN

− 1
)
, (4.16)

µ(r) =
D√
M(r)

, (4.17)

obtaining satisfactory fits with universal parameters, (Moffat and Toth, 2009)

D = 6.25M
1/2
� /pc, E = 25000M

1/2
� , G∞ = 20GN . (4.18)

In §4.2, D, E and G∞ are permitted to vary across the sample of 29 galaxies, in order to

compute the STVG mean-universal parameters, in Table 4.5, with the overall best-fitting

result,

D = (6.44± 0.20)
√
M�pc−1, E = (28.4± 7.9)× 103M

1/2
� , G∞ = (24.4± 18.0)GN .

(4.19)

The galaxy rotation curves of Figure 4.1 are subsequently one parameter best-fits by the

stellar mass-to-light ratio, Υ, applying the mean results of Equation (4.19) universally.

Observations

The MSTG and STVG computations using HI and K-band photometric surface luminosity

data, detailed in §4.2, with solutions plotted in Figure 4.1, indicate the following:

1. The sample may be universally fit with the MOG acceleration law given by Equations

(4.11) and (4.12) in MSTG, or Equations (4.15), (4.16) and (4.17) in STVG, and

either universal MSTG or universal STVG parameters of Equations (4.14) and (4.19),

respectively, yielding best-fit stellar mass-to-light ratios, Υ, providing fits and galaxy

masses comparable to MOND.

2. The sample may be fit with varying, best-fit MSTG parameters of Equation (4.12),

tabulated in Table 4.4, yielding stellar mass-to-light ratios closer to Υ ∼ 1 for the HSB

galaxies and farther from unity for the LSB galaxies Υ > 1, and correcting the fits
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using the mean-universal MSTG parameters. The best-fit MSTG scale parameters

are correlated with the galactic surface brightness, with larger values of M0 and

smaller values of r0 preferred by HSB galaxies, with the reverse trend in LSB galaxies.

3. The sample may be fit with varying, best-fit STVG parameters of Equation (4.15),

tabulated in Table 4.5, yielding the most robust stellar mass-to-light ratios Υ ∼ 1 of

all the gravity theories tested, and correcting the fits with the mean-universal STVG

parameters. The best-fit STVG parameters are strongly correlated with the galactic

surface brightness, with larger values preferred by HSB galaxies, and smaller values

preferred by LSB galaxies, with the greatest uncertainty in the STVG cosmological

parameter, G∞.

4. Every galaxy from the highest to lowest in surface brightness has a central disk that

is dominated by the Newtonian potential, where the MOG running gravitational

coupling remains in the Newtonian core, G(r) ∼ GN , and a MOG regime where

G(r) > GN outside of the core.

5. Once within the MOG regime, the dynamics within the galactic disk continue to

dominate, rising monotonically with orbital distance, as shown in Figure 4.4 which

plot Γ(r) ≡ G(r)/GN vs. r. Since G(r) is bounded from above, the dynamical mass

factor, Γ(r)→ Γ∞ confirming the asymptotic stability of MOG. This is the primary

difference between the MOG and MOND predictions, in which the former return

to a Keplerian behaviour (with larger than Newton gravitational coupling) whereas

MOND favours asymptotically flat galaxy rotation curves until the dynamics are

correlated with other systems.

Lessons learned from modified gravity theory are presented in §7.1.2 of the summary

chapter of Part III.

4.2 Ursa Major filament of galaxies

Surrounding the local group of the Milky Way, the Coma-Sculptor cloud is our home in

the Virgo supercluster. Tully et al. (1996) identified 79 galaxies of the Ursa Major (UMa)

filament, in the first of a trilogy of works, and provided surface brightness measurements

in the blue, red and infrared bands. UMa lies in the plane of the Virgo supercluster at
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the junction of filamentary structures, beyond the long axis of the filament of the Coma-

Sculptor cloud.

In a sequel, Tully and Verheijen (1997) explored the differences in surface brightness

amongst the 62 galaxies of the complete sample, and identified two distinct radial config-

urations of spiral galaxies of varying size, all of which are unevolved and rich in HI gas

consistent with observations in Virgo and Fornax. These are the high surface brightness

(HSB) galaxies and the low surface brightness (LSB) galaxies. Remarkably, even though

the configurations differ, both types of HSB and LSB galaxies exhibit a common expo-

nential disk for the central surface brightness profiles. However, the mass-to-light ratio in

LSB galaxies is difficult to explain using Newtonian gravity without dark matter dominated

cores, whereas the mass-to-light ratio in HSB galaxies is difficult to explain using Newto-

nian gravity without baryon dominated cores and extended dark matter halos. The UMa

sample suggests that structure formation avoids the region of parameter space between

LSB and HSB galaxies, possibly due to different angular momentum regimes. Passing

from high to low specific angular momentum, there is first the transition from LSB to

HSB regimes, and at very low specific angular momentum, there is another transition from

HSB galaxies which are exponential disk dominated to disk and bulge dominated. Since

the first transition can be modelled by a single parameter – the mass-to-light ratio of the

stellar exponential disk, whereas the second transition requires a second parameter – the

mass-to-light ratio of the bulge, this chapter will focus exclusively on the subsample where

the bulge can be neglected; and one parameter fits are possible for both HSB and LSB

galaxies.

Sanders and Verheijen (1998) presented a third paper in the series on the rotation curves

of UMa galaxies which focussed on the near-infrared band, because it is relatively free of

the effects of dust absorption and less sensitive to recent star formation. In this work, it

was observed that the exercise of fitting dark matter halos to galaxy rotation curve data

required at least three free parameters per galaxy (stellar disk mass-to-light ratio, halo

core radius and density normalization) and essentially any observed rotation curve can be

reproduced. However, dark matter gained more predictive power when the density law

was parametrized by singular r−γ halos, with 1 ≤ γ ≤ 3. However, although these singular
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halo models such as Navarro et al. (1996) produced acceptable fits to HSB galaxies, they

generally failed for LSB galaxies. McGaugh and de Blok (1998) tested the dark matter

hypothesis with LSB galaxies, finding that progressively lower surface brightness galaxies

have progressively larger mass deficits, requiring high concentrations of dark matter deep

in the galaxy core, rendering the visible components insignificant to the galaxy dynamics

and leading to fine-tuning problems. In comparison, MOND was shown to fit all of the

galaxies in the sample with only a single free parameter (disk mass-to-light ratio) although

MOND itself has the Milgrom acceleration parameter, a0 and the best-fit mass-to-light

ratio also depends on the choice of a universal interpolating function µ(x). The notion

of fitting galaxy rotation curves without dark matter was further explored in Brownstein

and Moffat (2006a) utilizing a larger sample (including UMa) where it was confirmed that

MOND provided good one parameter fits to the sample’s galaxy rotation curves with a

universal choice of a0 and µ(x).

4.2.1 Photometry

According to Sanders and Verheijen (1998), the existence of K-band surface photometry

is a great advantage since the near-infrared emission, being relatively free of the effects of

dust absorption and less sensitive to recent star formation, is a more precise tracer of the

mean radial distribution of the dominant stellar population. The principal advantages of

using infrared luminosities is that stellar mass-to-light ratios are less affected by population

differences and extinction corrections are minimal (Verheijen, 2001).

The galaxy rotation curves of §4.2 are divided into high and low surface brightness

galaxies , as in §4.2.3. The component velocities plotted in Figure 4.1 are based on the

surface photometric data of the gaseous disk (HI plus He) component and luminous stellar

disk component. The method of generating the rotation curves closely followed Sanders

and Verheijen (1998) and (Verheijen, 2001). The ROTMOD task of that group’s Gronin-

gen Image Processing System (GIPSY)1 was used to analyse the HI and K-band surface

photometry data to produce the velocity profiles of the gaseous disk (HI plus He) distri-

bution and luminous stellar disks, accounting for the Verheijen and Sancisi (2001) revised

1http://www.astro.rug.nl/~gipsy/

http://www.astro.rug.nl/~gipsy/
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distance estimate to UMa from D = 15.5 Mpc to D = 18.6 Mpc.

For each galaxy in the UMa sample, the photometric data is best-fit to the galaxy

rotation curve data through a non-linear least squares fitting algorithm, which minimizes

the weighted sum of squares of deviations between the fit and the data. The sum of

squares of deviations is characterized by the estimated variance of the fit. The reduced

χ2/ν statistic is computed as the value of χ2 per degree of freedom,

reduced− χ2 ≡ χ2/ν, where ν = N − p, (4.20)

where the number of degrees of freedom, ν, is the difference between the number of data

points in the galaxy rotation curve, N , and the number of free parameters, p.

4.2.2 Surface mass computation

The gaseous disk is modelled as an infinitely thin, uniform disk and the surface mass density

profile is derived numerically by means of a computation allowing for high resolution

sampling of the HI gas data. The UMa sample was resolved at the sub-kiloparsec scale,

equivalent to a resolution of

% =
rout

100
, (4.21)

where rout is the outermost observed radial position, measured in kiloparsecs, of the rotation

velocity data, listed for each galaxy in Column (4) of Table 4.1; and Column (5) is the

observed velocity at the outermost observed radial position.

The surface brightness computation,

MHI = 2.36× 105D2
∫
Sdv [M�], (4.22)

derives the absolute surface mass density of the HI gas, where
∫
Sdv is the integrated

HI flux density in units of Jy km/s as measured from the global HI profile – taken from

Column (15) of Table 2 of Verheijen (2001), and D is the distance in Mpc. The computation

results in a radial surface mass profile, at the resolution, %, of Equation (4.21), and a total

(integrated) result which is an absolute measurement of the HI disk mass. Although the
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computation is free of unspecified parameters, it is systematically affected by changes in

distance estimates.

However, since all of the UMa galaxies are located within a filament of the Coma-

Sculptor cloud – and at similar redshift, listed in Column (3) of Table 4.1 – luminosity

distances are common and the uncertainty in the mass-to-light ratio is greatly reduced.

This improves the certainty in identifying orphan features, as in §4.3.2, which appear from

emergent surface mass profiles. The total (integrated) HI gas masses, determined by the

computation, are listed in Column (2) of Table 4.6, and the total mass of the HI (and He)

gaseous disk is determined by scaling the HI gas mass by the Big bang nucleosynthesis

Helium fraction,

Mgas =
4

3
MHI , (4.23)

where the 4/3 BBN He fraction is enforced across the UMa sample. This introduces a

margin of uncertainty, in Equation (4.23), which increases radially due to evolutionary

changes in the distribution of HI and He, since the formation of the UMa filament of

galaxies. Hoekstra et al. (2001) showed that the BBN scale factor would have to increase

by a factor of ∼ 7 to fit a sample of 24 spiral galaxies without dark matter, obtaining

good fits for most galaxies, but not for those galaxies which show a rapid decline of the HI

surface density in the outermost regions.

The luminous stellar disk was assumed to be described by the Van der Kruit and Searle

law, where the disk density distribution as a function of z (vertical height from the plane

of the disk) is given by

Σ(z) = sech2(z/z0)/z0, (4.24)

where z0 is the vertical scale height of the luminous stellar disk, and was assumed to

be 20% of the near infrared exponential disk scale length according to Column (13) of

Table 2 of Verheijen (2001), as listed in Column (4) of Table 4.1. The surface brightness

computations using Equation (4.24) return the surface mass density of the stellar disk to

within an overall multiplicative factor, Υ, which is strictly set to unity in the computation,

as listed in Column (3) of Table 4.6. The idea of a varying the stellar mass-to-light ratio,

Υ(r) throughout a galaxy – shown in Figure 4.6 – would lead to perfect fits for any gravity
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Table 4.1: Galaxy properties of the Ursa Major sample

Galaxy Type Redshift z0disk LK vmax rout vout

(kpc) (1010L�) (km s−1) (kpc) (km s−1)
(1) (2) (3) (4) (5) (6) (7) (8)

High surface brightness (HSB) galaxies

NGC 3726 SBc 0.002887 0.68 6.216 169+9
−12 33.6 167± 15

NGC 3769 SBb 0.002459 0.356 1.678 126+5
−8 38.5 113± 11

NGC 3877 Sc 0.002987 0.562 6.396 171+8
−6.5 11.7 169± 10

NGC 3893 Sc 0.003226 0.486 5.598 194+10
−8.5 21.1 148+21

−17

NGC 3949 Sbc 0.002669 0.346 2.901 169+7
−44 8.8 169+7

−44

NGC 3953 SBbc 0.00351 0.767 12.183 234+10
−7 16.2 215± 10

NGC 3972 Sbc 0.002843 0.389 1.124 134+5
−7 9 134± 5

NGC 3992 SBbc 0.003496 0.832 13.482 272+7
−8.5 36 237+7

−10

NGC 4013 Sb 0.002773 0.41 7.09 198± 10 32.2 170± 10
NGC 4051 SBbc 0.002336 0.54 6.856 170± 7 12.6 153± 10
NGC 4085 Sc 0.002487 0.313 1.797 136± 7 6.4 136± 7
NGC 4088 SBc 0.002524 0.67 8.176 182± 8.5 22.1 174± 8
NGC 4100 Sbc 0.003584 0.508 4.909 195+10

−7 23.5 159+10
−8

NGC 4138 Sa 0.002962 0.281 4.203 195± 10 21.7 150± 21
NGC 4157 Sb 0.002583 0.518 9.098 201± 10 30.8 185± 14
NGC 4217 Sb 0.003426 0.583 7.442 191+8.5

−7 17.3 178± 12
NGC 4389 SBbc 0.002396 0.292 1.782 110± 8 5.5 110± 8
UGC 6399 Sm 0.00264 0.475 . . . 88± 5 8.1 88± 5
UGC 6973 Sab 0.002337 0.194 4.513 180+5

−10 8.1 180+5
−10

Low surface brightness (LSB) galaxies

NGC 3917 Scd 0.003218 0.616 2.289 138± 5 15.3 137± 8
NGC 4010 SBd 0.003008 0.691 1.169 129+7

−6 10.8 122+5
−6

NGC 4183 Scd 0.003102 0.637 0.924 115± 8.5 21.7 113+13
−10

UGC 6446 Sd 0.002149 0.356 . . . 85± 8 15.9 80± 11
UGC 6667 Scd 0.003246 0.583 0.173 86± 5 8.1 86± 5
UGC 6818 Sd 0.002696 0.356 . . . 74+7

−5 7.2 74+7
−5

UGC 6917 SBd 0.003038 0.583 0.26 111+5
−7 10.8 111+5

−7

UGC 6923 Sdm 0.003556 0.259 0.237 81± 5 5.3 81± 5
UGC 6983 SBcd 0.003609 0.529 0.16 113± 6 16.2 109± 12
UGC 7089 Sdm 0.002568 0.616 . . . 79± 7 9.4 79± 7

Notes. — Relevant galaxy properties of the UMa sample: Column (1) is the NGC/UGC galaxy
number. Column (2) is the galaxy morphological type. Column (3) is the observed redshift
from the NASA/IPAC Extragalactic Database. Column (4) is the K-band vertical scale height
of the luminous stellar disk, and Column (5) is the K-band luminosity data converted from the
2MASS K-band apparent magnitude via Equation (4.58). Column (6) is the velocity amplitude
(maximum) of the rotation curve. Column (7) is the outermost observed radial position in the
rotation velocity data; and Column (8) is the observed velocity at the outermost observed position.
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theory, but the arbitrariness of such a solution would lead to a fine-tuning problem, and

instead a best-fit Υ is computed by a nonlinear least-squares algorithm – shown in the

same figure – with results provided for the best-fit NFW and core-modified dark matter

profiles in Table 4.2, the best-fit MOND universal acceleration in Table 4.3, and the best-fit

MSTG and STVG parameters in Table 4.4 and Table 4.5, respectively.

4.2.3 High and low surface brightness galaxies

The galaxy rotation curves, in Figure 4.1, plot the rotation velocity profiles,

v(r) =
√
ra(r), (4.25)

in km s−1, vs. r in kpc, where the acceleration law, a(r), is given by Equations (2.1) and

(4.7) for Newton’s theory (with and without dark matter), Equation (4.6) for Milgrom’s

MOND, and Equation (4.11) for Moffat’s MOG.

Shown for each galaxy are the mean-universal best-fits according to Moffat’s STVG and

MSTG theories and Milgrom’s MOND; and the best-fitting core-modified dark matter –

and the corresponding core-modified dark matter halo components. The best-fit Newtonian

results (visible baryons only) are plotted for comparison.

Newtonian core

Each of the gravity theories which fit high and low surface brightness galaxies disagree

with Newton’s theory without dark matter. The disagreement is small in the core of each

galaxy, but increases with separation from the center. In each galaxy in the sample, there

is a Newtonian core where neither modified gravity nor dark matter is required to fit the

galaxy rotation curves. The computation of the radius of the Newtonian core weights

the velocity points inside the core, and discards the velocity points outside the core, and

yields a single parameter, the best-fit stellar mass-to-light ratio, Υ, for each galaxy, as

detailed in §4.2.8. For every galaxy in the sample, the best-fit Newtonian core model,

plotted in brown dot-dotted lines, shows the characteristic Keplerian behaviour outside

the Newtonian core, which disagrees with the galaxy rotation curves, but the model shows

reduced χ2/ν comparable to the modified gravity theories within the Newtonian core.
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Figure 4.1: UMa — Rotation curves.

The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc for 19
HSB and 10 LSB galaxies. The dynamic data consist of the measured orbital velocities.
The photometric data sets consist of the actual HI gas component and the stellar disk
component, with a normalized stellar mass-to-light ratio, Υ = 1. The computed best-fit
results by varying the stellar mass-to-light ratio, Υ, are plotted for Moffat’s STVG
and MSTG theories and Milgrom’s MOND theory with mean-universal parameters.
Results are plotted for the best-fit core-modified dark matter theory including visible
baryons, and the corresponding dark matter halo component. The best-fit Newtonian
core model (visible baryons only) is plotted for comparison. The figure is continued.

Best-fit and universal parameters

Other than Newton’s theory without dark matter, each of the gravity theories which fits

the sample of high and low surface brightness galaxies contain either one, two or three

parameters unique to their respective acceleration laws. In the case of dark matter, as

discussed in §4.1.1, either the NFW profile of Equation (4.1) or the core-modified profile

of Equation (4.2) contain two parameters – the central dark matter density, ρ0, and the

scale radius, rs – which are taken to vary from galaxy to galaxy.

Conversely, the hope for the modified gravity theories is that there exist universal

parameters which simultaneously fit all of the data for high and low surface brightness

galaxies. To research this possibility, each of the parameters unique to each of the modified

gravity theories and the stellar mass-to-light ratio, Υ, were first allowed to vary and a table

of best-fit values was constructed. Then each parameter was averaged across the
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Figure 4.1 continued: UMa — Rotation curves.
The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc.
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Figure 4.1 continued: UMa — Rotation curves.
The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc.
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Figure 4.1 continued: UMa — Rotation curves.
The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc.
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Figure 4.1 continued: UMa — Rotation curves.
The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc.
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Figure 4.1 continued: UMa — Rotation curves.

The rotation velocity profile, v(r) in km s−1, vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The dynamic data consist of the measured orbital velocities. The photometric
data sets consist of the actual HI gas component and the stellar disk component, with a
normalized stellar mass-to-light ratio, Υ = 1. The computed best-fit results by varying
the stellar mass-to-light ratio, Υ, are plotted for Moffat’s STVG and MSTG theories and
Milgrom’s MOND theory with mean-universal parameters. Results are plotted for the
best-fit core-modified dark matter theory including visible baryons, and the corresponding
dark matter halo component. The best-fit Newtonian core model (visible baryons only) is
plotted for comparison.
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subsamples of HSB and LSB galaxies, and across the complete sample, and mean-universal

parameters were chosen. Next the galaxy rotation curves were refitted and replotted

with one free parameter, the stellar mass-to-light ratio, Υ, using the tabulated universal

parameters. Therefore all of the dark matter fits have three free parameters, whereas all of

the modified gravity theories have only one free parameter, and should be compared with

this in mind.

Overall, the core-modified dark matter model shows the lowest reduced χ2/ν statistic,

but the model is less predictive than MOND, MSTG, or STVG due to the variation across

the sample in the ρ0 and rs parameters in the dark matter fitting formulae. The only

theory that fails to produce χ2 best-fits for some dwarf galaxies was the NFW model for

NGC 4389 and UGC 6818, as shown in Table 4.2.

When MOND as in Table 4.3, MSTG as in Table 4.4, and STVG as in Table 4.5,

use the best-fit parameters instead of the mean-universal parameters, the reduced χ2/ν

statistic of Equation (4.20) decreases, but there is no case where using mean-universal

parameters leads to disagreement with the photometry. It is reasonable to conclude that

MOND, MSTG and STVG provide acceptable fits to galaxy rotation curves with universal

parameters and variable mass-to-light ratios, as shown in Figure 4.1.

4.2.4 Surface mass density maps

The importance of being able to determine the distribution of matter in astronomical

objects is that it allows predictions for ongoing and future experiments, such as galaxy-

galaxy lensing, which measures the line-of-sight surface mass density,

Σ(r) ≡
∫
ρ(r)dz, (4.26)

through the convergence,

κ(r) =
Σ(r)

Σc

, (4.27)

where

Σc =
c2

4πGN

Ds

DlDls

(4.28)
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Figure 4.2: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc for 19 HSB and 10
LSB galaxies. The photometric data sets consist of the actual HI gas component and the
stellar disk component, with a normalized stellar mass-to-light ratio, Υ = 1. The com-
puted best-fit results by varying the stellar mass-to-light ratio, Υ, are plotted for Moffat’s
STVG and MSTG theories and Milgrom’s MOND theory with mean-universal param-
eters. Results are plotted for the best-fit core-modified dark matter theory including
visible baryons, and the corresponding dark matter halo component. The best-fit Newto-
nian core model (visible baryons only) is plotted for comparison. The figure is continued.

is the Newtonian critical surface mass density (with vanishing shear), Ds is the angular

distance to the source, background galaxy, Dl is the angular distance to the lens, foreground

galaxy. (Peacock, 2003, Chapter 4).

The Σ-maps plotted in Figure 4.2 provide high resolution sub-kiloparsec predictions,

whereas the current state of the art in galaxy-galaxy lensing yield only course grained obser-

vations, with resolutions of . 10 kpc/pixel. The MOG predictions for future high resolution

κ-maps must account for the modified acceleration law of Equation (4.11) Brownstein and

Moffat (2007):

κ(r) =
∫ 4πG(r)

c2

DlDls

Ds

ρ(r)dz ≡ Σ̄(r)

Σc

, (4.29)

where

Σ̄(r) =
∫ G(r)

GN

ρ(r)dz, (4.30)



§Chapter 4. GALAXY ROTATION CURVES 103

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

103

102

101

100

HSB (b) NGC 3769

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

103

102

101

100

HSB (c) NGC 3877

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

104

103

102

101

100

HSB (d) NGC 3893

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

104

103

102

101

100

HSB (e) NGC 3949

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

104

103

102

101

100

HSB (f) NGC 3953

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

100101

103

102

101

100

HSB (g) NGC 3972

r [kpc]

Σ
(r

)
[M

!
/p

c2
]

100101

104

103

102

101

100

(a) NGC 3726

Σ(r)

Component lines

Actual HI gas green dashed line

Stellar disk [Υ = 1] magenta dotted line

Dark matter halo orange fine-dotted line

Theory lines

Newtonian core brown dot-dotted line

STVG [Σ̄(r)] black solid line

MSTG [Σ̄(r)] blue short dash-dotted line

MOND cyan long dash-dotted line

Dark matter orange solid line

Σ(r)
Theory with lines

Newtonian core brown dot-dotted line

Component with lines STVG [Σ̄(r)] black solid line

Actual HI gas green dashed line MSTG [Σ̄(r)] blue short dash-dotted line

Stellar disk [Υ = 1] magenta dotted line MOND cyan long dash-dotted line

Dark matter halo orange fine-dotted line Dark matter orange solid line

Figure 4.2 continued: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc.
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Figure 4.2 continued: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc.
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Figure 4.2 continued: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc.
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Figure 4.2 continued: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc.



§Chapter 4. GALAXY ROTATION CURVES 107

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

1001010.1

103

102

101

100

LSB (g) UGC 6917

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

1001010.1

103

102

101

100

LSB (h) UGC 6923

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

1001010.1

103

102

101

100

LSB (i) UGC 6983

r [kpc]

Σ
(r

)
[M

⊙
/p

c2
]

1001010.1

102

101

100

LSB (j) UGC 7089
r [kpc]

Σ
(r

)
[M

!
/p

c2
]

100101

104

103

102

101

100

(a) NGC 3726

Σ(r)

Component lines

Actual HI gas green dashed line

Stellar disk [Υ = 1] magenta dotted line

Dark matter halo orange fine-dotted line

Theory lines

Newtonian core brown dot-dotted line

STVG [Σ̄(r)] black solid line

MSTG [Σ̄(r)] blue short dash-dotted line

MOND cyan long dash-dotted line

Dark matter orange solid line

Σ(r)
Theory with lines

Newtonian core brown dot-dotted line

Component with lines STVG [Σ̄(r)] black solid line

Actual HI gas green dashed line MSTG [Σ̄(r)] blue short dash-dotted line

Stellar disk [Υ = 1] magenta dotted line MOND cyan long dash-dotted line

Dark matter halo orange fine-dotted line Dark matter orange solid line

Figure 4.2 continued: UMa — Surface mass densities.

The surface mass density, Σ(r) in M�/pc2, vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The photometric data sets consist of the actual HI gas component and the stellar
disk component, with a normalized stellar mass-to-light ratio, Υ = 1. The computed best-
fit results by varying the stellar mass-to-light ratio, Υ, are plotted for Moffat’s STVG and
MSTG theories and Milgrom’s MOND theory with mean-universal parameters. Results
are plotted for the best-fit core-modified dark matter theory including visible baryons,
and the corresponding dark matter halo component. The best-fit Newtonian core model
(visible baryons only) is plotted for comparison.
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is the weighted surface mass density, and Σc is the usual Newtonian critical surface mass

density Equation (4.28). Moffat and Toth (2008) simplified Equations (4.29) and (4.30),

in STVG, in the case that the lens may be treated as a point source, but not for extended

mass distributions relevant for galaxy-galaxy lensing.

The surface mass density due to the visible component is,

Σbaryon(r) = Σgas(r) + ΥΣdisk(r), (4.31)

and therefore the Σ-map computed for each galaxy depends on the best-fitting stellar

mass-to-light ratio, Υ, determined separately for each gravity theory:

Σ(r) =


Σbaryon(r) Newtonian core, MOND

Σ̄baryon(r) MSTG, STVG

Σbaryon(r) + Σhalo(r) Dark matter.

(4.32)

4.2.5 Radial mass profiles

The missing mass problem is best visualized by solving Equation (4.25) for the Newtonian

dynamic mass of Equation (4.7),

MN(r) =
r
(
v(r)

)2

GN

, (4.33)

where the velocity points are dynamic variables determined from the galaxy rotation curves

of Figure 4.1.

The visible component mass profiles, plotted in Figure 4.3, are based on the surface

photometric data of the gaseous disk (HI plus He) component and luminous stellar disk

component,

Mgas(r) =
∫ r

0
2πr′Σgas(r

′)dr′, (4.34)

Mdisk(r) =
∫ r

0
2πr′Σdisk(r′)dr′. (4.35)
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Figure 4.3: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The dynamic data consist of the Newtonian dynamic mass due to the measured
orbital velocities. The photometric data sets consist of the actual HI gas component and
the stellar disk component, with a normalized stellar mass-to-light ratio, Υ = 1. The com-
puted best-fit results by varying the stellar mass-to-light ratio, Υ, are plotted for Moffat’s
STVG and MSTG theories and Milgrom’s MOND theory with mean-universal param-
eters. Results are plotted for the best-fit core-modified dark matter theory including
visible baryons, and the corresponding dark matter halo component. The best-fit Newto-
nian core model (visible baryons only) is plotted for comparison. The figure is continued.

The integrated mass profile due to the visible component is therefore,

Mbaryon(r) = Mgas(r) + ΥMdisk(r), (4.36)

which depends on the best-fitting stellar mass-to-light ratio, Υ, for each galaxy, determined

separately for each gravity theory.

M(r) =

 Mbaryon(r) Newtonian core, MOND, MSTG, STVG

Mbaryon(r) +Mhalo(r) Dark matter,
(4.37)

where the dark matter halo may be computed according to either the NFW formula of

Equation (4.1), or alternatively the core-modified formula of Equation (4.2).
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Figure 4.3 continued: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc.
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Figure 4.3 continued: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc.



112 Chapter 4. GALAXY ROTATION CURVES

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (n) NGC 4138

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (o) NGC 4157

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (p) NGC 4217

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (q) NGC 4389

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (r) UGC 6399

r [kpc]

M
(r

)
[M

⊙
]

100101

1012

1011

1010

109

108

107

HSB (s) UGC 6973

r [kpc]

M
(r

)
[M

!
]

100101

1012

1011

1010

109

108

107

(a) NGC 3726

M(r) red crosses with error bars

Component lines

Actual HI gas green dashed line

Stellar disk [Υ = 1] magenta dotted line

Dark matter halo orange fine-dotted line

Theory lines

Newtonian core brown dot-dotted line

STVG black solid line

MSTG blue short dash-dotted line

MOND cyan long dash-dotted line

Dark matter orange solid line

M(r) red crosses with error bars
Theory with lines

Newtonian core brown dot-dotted line

Component with lines STVG black solid line

Actual HI gas green dashed line MSTG blue short dash-dotted line

Stellar disk [Υ = 1] magenta dotted line MOND cyan long dash-dotted line

Dark matter halo orange fine-dotted line Dark matter orange solid line

Figure 4.3 continued: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc.
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Figure 4.3 continued: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc.
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Figure 4.3 continued: UMa — Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The dynamic data consist of the Newtonian dynamic mass due to the measured
orbital velocities. The photometric data sets consist of the actual HI gas component and
the stellar disk component, with a normalized stellar mass-to-light ratio, Υ = 1. The com-
puted best-fit results by varying the stellar mass-to-light ratio, Υ, are plotted for Moffat’s
STVG and MSTG theories and Milgrom’s MOND theory with mean-universal parame-
ters. Results are plotted for the best-fit core-modified dark matter theory including visible
baryons, and the corresponding dark matter halo component. The best-fit Newtonian core
model (visible baryons only) is plotted for comparison.
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The total mass of each galaxy due to the visible components is

Mbaryon = Mgas + ΥMdisk, (4.38)

and therefore the total mass of each galaxy depends on the best-fitting stellar mass-to-light

ratio, Υ, determined separately for each gravity theory:

Mtotal =

 Mbaryon Newtonian core, MOND, MSTG, STVG

Mbaryon +Mhalo Dark matter,
(4.39)

where the dark matter halo mass may be computed according to Equation (4.1) according

to the NFW fitting formula, or alternatively according to the core-modified fitting formula

of Equation (4.2). The final results for the total galaxy masses, according to the best-fitting

stellar mass-to-light ratio, Υ, for each gravity theory are provided in Table 4.6.

Every galaxy studied, from the highest to lowest in surface brightness, from the most

giant to the smallest dwarf, exhibit Newtonian dynamic masses far in excess of the mass

profiles due to the visible components, outside the Newtonian core. The situation within

the Newtonian core depends on the particular gravity theory being applied. Milgrom’s

theory provides a region inside the MOND regime where accelerations are larger than

a0, where Moffat’s MOG theories provide a region inside the MOG regime where the

gravitational coupling G(r) ∼ GN . The core-modified dark matter halo is spherical, and

does not dominate the visible disks until a critical radius is reached. In all cases, there is

a transition region just outside the Newtonian core where either some form of dark matter

is required, or some modification of gravity provides sufficient violations of the strong

equivalence principle.
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4.2.6 Dynamic mass factor

Since the Newtonian dynamic mass greatly exceeds the baryonic mass outside the Newto-

nian core, each gravity theory must make up the difference in order to fit the data. For

dark matter, the difference is the halo component,

MN(r) = Mbaryon +Mhalo. (4.40)

The dynamic mass factor is defined as the Newtonian dynamic mass per unit baryonic

mass

Γdark matter(r) ≡
MN(r)

Mbaryon(r)
= 1 +

Mhalo(r)

Mbaryon(r)
. (4.41)

For Milgrom’s MOND, the difference is due to the reciprocal factor of the smaller than

unity MOND interpolating function,

MN(r) =
Mbaryon(r)

µ(r)
, (4.42)

and the dynamic mass factor is defined as

ΓMOND(r) ≡ MN(r)

Mbaryon(r)
=

1

µ(r)
. (4.43)

For Moffat’s MOG, the difference is due to the multiplicative factor of the larger than

Newton gravitational coupling,

MN(r) =
G(r)Mbaryon(r)

GN

, (4.44)

and the dynamic mass factor is defined as

ΓMOG(r) ≡ MN(r)

Mbaryon(r)
=
G(r)

GN

. (4.45)

The dynamic mass factors, plotted in Figure 4.4 for each galaxy in the UMa sample,
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Figure 4.4: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc for 19 HSB and 10
LSB galaxies. The dynamic data consist of the Newtonian dynamic mass due to
the measured orbital velocities per unit baryonic mass per gravity theory, shown
with error bars. The computed best-fit results by varying the stellar mass-to-
light ratio, Υ, are plotted for Moffat’s STVG and MSTG theories and Milgrom’s
MOND theory with mean-universal parameters. Results are plotted for the best-fit
core-modified dark matter theory including visible baryons. The figure is continued.

are shown to be a monotonically rising (near linear) functions, with similar properties:

Γ(r) ≈ 1 within Newtonian core,

Γ(r) � 1 beyond Newtonian core,

Γ(r) . 10 within galaxy,

(4.46)

and is the measure of the missing mass factor. Each theory may be judged by how well the

Newtonian dynamic mass due to the measured orbital velocities per unit baryonic mass per

gravity theory, shown with error bars, corresponds to the predictions of Equations (4.41),

(4.43) and (4.45). The dynamic mass factor provides a unifying picture for dark matter

and phantom dark matter and can be phenomenologically applied to constrain the choice

of the MOND interpolating function – without ad hoc choices – and the form of Moffat’s

varying gravitational coupling.
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Figure 4.4 continued: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc.



§Chapter 4. GALAXY ROTATION CURVES 121

r [kpc]

Γ
(r

)

4035302520151050

4.5

4

3.5

3

2.5

2

1.5

1

0.5

HSB (h) NGC 3992

r [kpc]

Γ
(r

)

35302520151050

7

6

5

4

3

2

1

HSB (i) NGC 4013

r [kpc]

Γ
(r

)

20151050

4

3.5

3

2.5

2

1.5

1

0.5

HSB (j) NGC 4051

r [kpc]

Γ
(r

)

20151050

10

9

8

7

6

5

4

3

2

1

0

HSB (k) NGC4085

r [kpc]

Γ
(r

)

20151050

4

3.5

3

2.5

2

1.5

1

0.5

0

HSB (l) NGC 4088

r [kpc]

Γ
(r

)

20151050

3.5

3

2.5

2

1.5

1

0.5

0

HSB (m) NGC 4100

r [kpc]

Γ
(r

)

35302520151050

8

7

6

5

4

3

2

1

0

(a) NGC 3726

Γ(r)

Dynamical mass factor error bars

STVG black solid error bars

MSTG blue short dash-dotted error bars

MOND cyan long dash-dotted error bars

Dark matter orange solid error bars

Predictions lines

STVG [G(r)/GN ] black solid line

MSTG [G(r)/GN ] blue short dash-dotted line

MOND [1/µ(r)] cyan long dash-dotted line

Dark matter [MN(r)/Mbaryon(r)] orange solid line

Γ(r)

Dynamical mass factor with error bars Predictions with lines

STVG black solid error bars STVG [G(r)/GN ] black solid line

MSTG blue short dash-dotted error bars MSTG [G(r)/GN ] blue short dash-dotted line

MOND cyan long dash-dotted error bars MOND [1/µ(r)] cyan long dash-dotted lines

Dark matter orange solid error bars Dark matter [MN (r)/Mbaryon(r)] orange solid line

Figure 4.4 continued: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc.
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Figure 4.4 continued: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc.
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Figure 4.4 continued: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc.
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Figure 4.4 continued: UMa — Dynamical mass factors.

The Dynamical mass factor, Γ(r), vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The dynamic data consist of the Newtonian dynamic mass due to the measured
orbital velocities per unit baryonic mass per gravity theory, shown with error bars. The
computed best-fit results by varying the stellar mass-to-light ratio, Υ, are plotted for
Moffat’s STVG and MSTG theories and Milgrom’s MOND theory with mean-universal
parameters. Results are plotted for the best-fit core-modified dark matter theory including
visible baryons.
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4.2.7 Core-modified dark matter halos

The simple observation that galaxy rotation curves are approximately flat at large radii,

where the orbital velocity of Equation (4.25) is constant, leads to the conclusion of Equation

(2.2) that the Newtonian dynamic mass of Equation (4.33) grows linearly with radius, and

therefore, since we are not neglecting baryons,

ρ(r) ≡ ρbaryon(r) + ρhalo(r) ∝ r−2, (4.47)

is valid where the galaxy rotation curves are approximately flat. However, the radial

distribution of spherically averaged dark matter halos is unlike either of the baryonic

components which accumulate in exponentially thin HI (and He) gaseous disks or luminous

stellar disks of Equation (4.24), and

ρbaryon(r)� ρhalo(r) on the galactic plane, (4.48)

ρbaryon(r)� ρhalo(r) off the galactic plane, (4.49)

Therefore in order to generalize the power-law index of Equation (2.14) to include

baryons, it is convenient to derive the relation using the spherically integrated power-law

density of Equation (2.5),

MN(r) ∝
∫ r

0

r′2

r′γ(r′)dr
′, (4.50)

and

dMN(r) ∝ r2−γ(r)dr. (4.51)

Thus the spherically averaged power-law index may be defined in terms of the logarithm

slope,

γ(r) = 2− d lnMN(r)

d ln r
. (4.52)

The power-law indices for the best-fit core-modified dark matter halo, given by Equation

(2.14), and the Newtonian dynamic mass including baryons, according to Equation (4.52),

are plotted in Figure 4.5.

Since the virial radius of the halo naturally extends beyond the outermost radial point



126 Chapter 4. GALAXY ROTATION CURVES

r [kpc]

γ
(r

)

50454035302520151050

3

2.5

2

1.5

1

0.5

0

(a) NGC 3726

γ(r)

Component lines

Dark matter halo orange fine-dotted line

Theory lines

Dark matter with baryons orange solid line

γ(r)

Component with lines Theory with lines

Dark matter with baryons orange solid error bars Dark matter halo orange fine-dotted line

r [kpc]

γ
(r

)

50403020100

4

3

2

1

0

HSB (a) NGC 3726

γ(r)

Component lines

Dark matter halo orange fine-dotted line

Theory lines

Dark matter with baryons orange solid line

γ(r)

Component with lines Theory with lines

Dark matter with baryons orange solid lines Dark matter halo orange fine-dotted line

Figure 4.5: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc for 19 HSB
and 10 LSB galaxies. The logarithm slope, γ(r) of the dark matter power-
law, vs. orbital distance, r in kpc. The computed best-fit results are plot-
ted for core-modified dark matter theory including visible baryons – and
the corresponding dark matter halo component. The figure is continued.

in the galaxy rotation curve, rout, the dark matter to baryon fraction can grow without

bound until the cosmological limit is reached. Within each galaxy in the sample, the dark

matter to baryon fraction is tabulated to the outermost radial point in the galaxy rotation

curve – in Column (8) of Table 4.6 – with mean values:

Mhalo(rout)

Mbaryon(rout)
=


2.4± 2.1 HSB galaxies

1.3± 0.5 LSB galaxies

2.0± 1.8 full sample.

(4.53)

which are consistently below the upper limit set by Spergel et al. (2007) in the Wilkinson

microwave anisotropy probe (WMAP) third year results.

Solution to the dark matter cusp problem

The conflict between the cuspy dark matter halos predicted by N-body simulations and

the constant density cores preferred by dwarf and low surface brightness galaxies may be

resolved by a universal core-modified fitting formula with a constant density core, while
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Figure 4.5 continued: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc.
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Figure 4.5 continued: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc.
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Figure 4.5 continued: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc.
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Figure 4.5 continued: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc.
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Figure 4.5 continued: UMa — Dark matter power-law logarithm slopes.

The logarithm slope profile, γ(r), vs. orbital distance, r in kpc for 19 HSB and 10 LSB galaxies.
The logarithm slope, γ(r) of the dark matter power-law, vs. orbital distance, r in kpc.
The computed best-fit results are plotted for core-modified dark matter theory including
visible baryons – and the corresponding dark matter halo component.
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including the visible baryons which are dominant in the galaxy core.

As the plot of the dark matter power-law proves in Figure 4.5, at large distances from

the center of each galaxy in the sample, the density profile of the dark matter halo is well

described by a steep power-law, with power-law index γ → 3, whereas at distances toward

the center of the galaxy an increasingly shallow power-law is observed. For distances less

than the dark matter halo core radius, r < rs,the total density profile including baryons

shows a universal γ → 1 power-law index, and the density profile of the dark matter

component alone approaches a rarified, constant density core.

A comparison of Table 4.2, show a statistically significant reduction of the χ2/ν test in

∼ 90% of the galaxies results from using the core-modified profile of Equation (4.2) instead

of the NFW profile of Equation (4.1). Moreover, in those galaxies that the singular NFW

profile fits well, the best-fit stellar mass-to-light ratio, Υ� 1, which has prompted the dark

matter community of physicists to disregard the baryonic component in their simulations.

Most strikingly, in one HSB and one LSB galaxy, there does not exist a best-fit NFW profile

with any nonzero stellar mass-to-light ratio, forcing Υ ≡ 0 for these galaxies. Alternatively,

the core-modified profile prefers values for the best-fit stellar mass-to-light ratio, Υ ∼ 1,

which are physically acceptable for every galaxy in the sample.

This core-modified dark matter galaxy model produces excellent fits to the galaxy

rotation curves of Figure 4.1, and enables predictions of detailed surface mass density

maps, as shown in Figure 4.2, and demonstrates excellent fits to the mass profiles of

Figure 4.3, with dark matter to baryon fractions consistent with cosmologically observed

values.

4.2.8 The mass luminosity relationship

Throughout this work, the stellar mass-to-light ratio, Υ, is treated as a free parameter,

with results near unity considered reasonable. Each gravity theory which attempts to fit

the galaxy rotation curve to the integrated surface mass densities of the HI (and He) gas

and stellar disk components will select a best-fit stellar mass-to-light ratio, for each galaxy.

The behaviour of the mass-to-light ratio within each galaxy and the change in the

behaviour from galaxy to galaxy are important concerns of a good fit. For the sample of
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Figure 4.6: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc for 19 HSB and 10
LSB galaxies. The stellar mass-to-light ratio, Υ, required to fit the galaxy rotation
curve at each data point without dark matter is plotted for Moffat’s STVG and MSTG
theories, Milgrom’s MOND theory, and Newton’s theory. Within each theory, the
best-fit value of the stellar mass-to-light ratio, Υ, is shown with a horizontal line,
including the best-fit core-modified dark matter; and the best-fit Newtonian core
model – the extent of the core shown with a vertical line. The figure is continued.

galaxies considered in §4.2, the basic computation is that of the surface mass computation

of §4.2.2 of the individually detected components: the exponentially thin gaseous (HI and

He) disk of Equations (4.22) and (4.23) and the luminous stellar disk of Equation (4.24),

with the bulge neglected for the reasons stipulated at the start of this section in regards

to Tully and Verheijen (1997).

In order to calculate the total mass of each galaxy from the photometry, within the

context of each gravity theory, the mass luminosity relationship is based on the best-

fitting stellar mass-to-light ratio, Υ, according to Equation (4.38). The HI (and He)

gaseous component is the only computation that is independent of assumptions on the

mass-to-light ratio and is determined by big bang nucleosynthesis according to Equation

(4.23).

The best-fit stellar mass-to-light ratio, Υ, and the computed total galaxy mass is listed

for each galaxy in Table 4.6. It is clear that the best-fit mass-to-light ratio varies from

galaxy to galaxy; and none of the galaxy rotation curves in the UMa sample can be
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Figure 4.6 continued: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc.
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Figure 4.6 continued: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc.
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Figure 4.6 continued: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc.
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Figure 4.6 continued: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc.
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Figure 4.6 continued: UMa — Stellar mass-to-light ratios.

The stellar mass-to-light ratio, Υ(r), vs. orbital distance, r in kpc for 19 HSB and 10 LSB
galaxies. The stellar mass-to-light ratio, Υ, required to fit the galaxy rotation curve at
each data point without dark matter is plotted for Moffat’s STVG and MSTG theories,
Milgrom’s MOND theory, and Newton’s theory. Within each theory, the best-fit value of
the stellar mass-to-light ratio, Υ, is shown with a horizontal line, including the best-fit
core-modified dark matter; and the best-fit Newtonian core model – the extent of the core
shown with a vertical line.
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fit by a universal-mean stellar mass-to-light ratio. The possibility that the stellar mass-

to-light ratio changes within a galaxy, Υ = Υ(r), may be explored by calculating Υ(r)

independently at every point in the galaxy rotation curve, for each gravity theory.

Figure 4.6 plots the stellar mass-to-light ratio, Υ(r) vs. r, showing that the variation

in Υ(r) in every galaxy exceeds the variation in the best-fit stellar mass-to-light ratio, Υ,

across the sample of galaxies.

4.3 Halos of phantom dark matter

Whether galaxy rotation curves are best described by cold non-baryonic dark matter

(CDM) halos, as in §4.1.1, or Milgrom’s modified Newtonian dynamics, as in §3.2, or

Moffat’s modified gravity, as in §4.1.3, or other sensible theories, there are certain regular-

ities in galactic structure which may have theoretical underpinning. Each of the galaxies

studied in Brownstein and Moffat (2006a) and the Ursa Major filament of galaxies, in §4.2,

exhibit a core region where Newton’s theory provides acceptable fits and the galaxy may be

modelled by a Newtonian core model, as in §4.3.1. The observation that mass follows light

and the appearance of orphan features beyond the Newtonian core, as in §4.3.2, confirm

that the baryons are dynamically important. This result is natural in MOND and MOG

theories which are sourced by baryons alone, and also supports the alternative model of

core-modified dark matter, as described in §4.3.3, which fits the galaxy rotation curves of

§4.2.3, including all of the dwarfs, with physically reasonable stellar mass-to-light ratios of

Υ ≈ 1. This is difficult to achieve using the cuspy NFW profile for some LSB and dwarf

galaxies which prefer Υ ∼ 0. Comparison of the dynamic mass distribution inferred from

galaxy rotation curves and the visible baryon distribution derived from each gravity theory

enable a fundamental explanation to the Tully-Fisher relation, as in §4.3.4.

4.3.1 Newtonian cores

The radius of the Newtonian core is easily measured by plotting the stellar mass-to-light

ratio, as in Figure 4.6, which shows the variation in the Newtonian Υ(r) in brown dot-

dotted lines. The profile is flat Υ ∼ 1 in the Newtonian core, and then rises rapidly

outside the Newtonian core, as shown on the figure for each galaxy. Thus the best-fitting
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stellar mass-to-light ratio for Newton’s theory without dark matter may be computed by

weighting the region inside the core radius, for each galaxy, as shown by the horizontal

brown-dot-dotted lines in the figure. As a result, the best-fit Newtonian core model predicts

values of Υ larger than the other theories because there is less gravity due to the visible

baryons, without dark matter.

4.3.2 Orphan features

Kent (1986) presented a sample of 37 Sb and Sc galaxies with photometric data, discovering

that the component mass distributions admit decompositions into baryon and dark matter

components, but could not simultaneously constrain the dark matter distribution and

the stellar mass-to-light ratio for the baryons. At one extreme, the stellar mass-to-light

ratio was set to the maximum value permitted by the rotation curves, and a modest halo

component produced good fits, but most galaxies were also well fit by models at the other

extreme, with much more massive dark matter halos and correspondingly reduced stellar

mass-to-light ratios.

Kent (1987) presented a sample of 16 spiral galaxies with photometric data and ex-

tended HI gas, and provided least-squares fits to the rotation curves, finding that a halo

component is needed in each galaxy, but is tightly coupled to the stellar mass-to-light

ratio. Although Kent (1986, 1987) assumed the constant density core dark matter distri-

bution of Equation (2.3), the uncertainty in the stellar mass-to-light ratio is a result of the

uncertainty in the dark matter distribution.

However, this fine-tuning problem, which is known as the disk-halo conspiracy, is re-

solved by a correlation between the shape of the rotation curve and the shape of the

baryonic luminosity measurements, first observed by Burstein et al. (1982), which suggests

the presence of some features in the rotation curves at the transition from the baryon

dominated core to the dominant dark matter halo. Salucci and Frenk (1989) showed that

the fractional amount of mass from the luminous disk is an increasing function of the lu-

minosity, and argued that the shape of the rotation curve near the edge of the optical disk

should vary systematically with luminosity, leading to distinct features in galaxy rotation

curves.
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Hoekstra et al. (2001) applied a mass model in which the dark matter surface density

is a scaled version of the observed HI surface density to a sample of 24 spiral galaxies,

obtaining good fits for most galaxies, but not for those galaxies which show a rapid decline

of the HI surface density in the outermost regions.

Noordermeer (2006) provided a systematic study of HI rotation curves in spiral galaxies,

finding that galaxy rotation curves have distinct features that may be traced back to the

luminous components in the form of bumps and wiggles, and that the declines in the

rotation curves at intermediate to large radii are rarely featureless.

4.3.3 Core-modified dark matter

It is important to notice that the Σ-map components of Equations (4.31) and (4.32) com-

bine to produce maps with features that can be traced back to the luminous stellar disk

component for r < rs and to the gaseous disk component for r ≈ rs, whereas the dark

matter halo dominates for r > rs, as shown by the surface mass density maps, plotted

in Figure 4.2. The core-modified dark matter surface mass density distribution including

the visible baryons is remarkably flattened in the galaxy core, as compared to the best-fit

Newtonian core, in the absence of dark matter, as in §4.3.1. Moreover, for every galaxy in

the sample, the central surface mass density,

Σ0 ≡ Σ(0), (4.54)

is determined by the baryonic component alone, where the dark matter halo is rarified as a

result of the core-modified model of Equation (4.2). This is precisely the reverse situation

for the singular halo models of §4.1.1: Navarro-Frenk-White profile which dominate the

Newtonian dynamic mass throughout the galaxy, including the core leading to artificially

small stellar mass-to-light ratios, Υ� 1 as shown by the best-fit NFW and core-modified

parameters, listed in Table 4.2.

Therefore the reasoning that dominant dark matter erases the orphan features visible

in galaxy rotation curves and the derived Σ-maps applies only to the NFW profile, and not

to the core-modified profile. The excellent fits to the galaxy rotation curves, in Figure 4.1,
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confirm that the baryonic components are dynamically important, but the Newtonian force

law of Equation (4.7) without dark matter fits none of the galaxy rotation curves outside

the Newtonian core. A comparison of Table 4.2, show a statistically significant reduction

of the χ2/ν test in ∼ 90% of the galaxies results from using the core-modified profile of

Equation (4.2) instead of the NFW profile of Equation (4.1) because the orphan features

in the dynamic data are correctly repatriated with the baryonic surface density maps.

4.3.4 The Tully-Fisher relation

The observational Tully and Fisher (1977) relation is an empirical relation between the

measured total luminosity of a galaxy in a particular band (proportional to the stellar

mass) and the amplitude of the rotation curve (the maximum velocity) of the form:

L ∝ vamax where a ≈ 3− 4, (4.55)

where the total luminosity

L = 4πΦd2, (4.56)

may be inferred by measuring the isotropic flux, Φ, and knowing the distance, d, between

earth and the galaxy. Since all of the galaxies in the sample of §4.2 are at a common

distance from the Milky Way, and because of the improvements identified in §4.2.1 from

using the available near-infrared K-band, the large astronomical uncertainties are miti-

gated, leaving an ideal laboratory to study the relationship between the luminosity of a

galaxy, and theoretical predictions from §4.1, for each gravity theory, independent of the

galactic mass distribution.

Tully and Pierce (2000) showed that, although the exponent in Equation (4.55) depends

on the wavelength of the measured luminosity, and increases systematically from B to K

bands, there appears to be convergence in the near-infrared where

a = 3.4± 0.1. (4.57)
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McGaugh et al. (2000); McGaugh (2005) studied a large sample of galaxies, with stellar

masses ranging over five decades, and observed a change in slope in the Tully-Fisher relation

which disappears when using the total baryonic mass including both stellar and gaseous

components, instead of just the luminous stellar mass, and concluded that the Tully-Fisher

relation is fundamentally a relation between the total baryonic mass and the rotational

velocity. Using a combination of K-band photometry and high resolution rotation curves,

Noordermeer and Verheijen (2007) discovered a second change in slope at the high mass

end of the Tully-Fisher relation which disappeared when using, in combination, the total

baryonic mass and the asymptotic, outermost velocity instead of the velocity amplitude.

Considering the asymptotic behaviour of the galaxy rotation curves of Figure 4.1, most

high-resolution galaxy rotation curves are either slowly rising or slowly declining at large

radii. Verheijen (2001) considered an alternate definition of the “flat rotation velocity”,

categorizing galaxies according to three kinds of behaviour depending on the shape of the

rotation curve.

Avila-Reese et al. (2008) explored the variation in the Tully-Fisher relation using a

large sample of 76 high and low surface brightness galaxies, and obtained a = 3.40 for the

ordinary Tully-Fisher relation (where the stellar luminosity is taken proportional to the

stellar mass), confirming Equation (4.57). However, the value of the exponent in Equation

(4.55) may be as shallow as a = 3.00 for the baryonic Tully-Fisher relation, a = 2.77 for

the actual B-band, and a = 3.67 for the actual K-band, based on their sample.
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Figure 4.7: UMa —

Empirical K-band Tully-Fisher relation.

The K-band luminosity, LK of Equa-
tion (4.58), in 1010 L�, vs. velocity, v
in km s−1 for 19 HSB and 10 LSB
galaxies. The velocity is identified
according to Equation (4.65) as ei-
ther v = vmax, with blue circles with
error bars, or as v = vout, with red
crosses with error bars, with best-fits
shown with solid blue and red dashed
lines, respectively, with parameters
listed in the top row of Table 4.7.
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In order to calculate the total K-band luminosity, apparent K-band magnitudes from

the 2MASS survey were used. Given an apparent K-band magnitude it is possible to

calculate the K-band luminosity as

log10(LK) = 1.364− 2

5
KT + log10(1 + z) + 2 log10 d, (4.58)

where LK is the K-band luminosity in units of 1010L�, KT is the K-band apparent magni-

tude and z is the redshift of the galaxy (determined from the NASA/IPAC Extragalactic

Database), and d = 18.6 Mpc is the distance to the galaxy in the Ursa Major filament.

The log10(1 + z) term is a first order K-correction.

The empirical K-band Tully-Fisher relation is plotted in Figure 4.7, with the ordinary

relation in blue, including the best-fit power-law,

LK ∝ vmax
4.1±0.4, (4.59)

of the form of Equation (4.55). To consider the effect of identifying the velocity in the

Tully-Fisher relation with the asymptotic velocity, vout, instead of the maximum velocity,

vmax, the asymptotic K-band Tully-Fisher relation is plotted in red, including the best-fit

power-law with results listed in Table 4.7.

The empirical Tully-Fisher relation involves the total luminosity in a particular band,

such as the K-band, which is proportional to the stellar disk mass through the stellar

mass-to-light ratio,

L =
M

Υ
, (4.60)

log(M) = a log(v) + b− log (Υ) . (4.61)

Thus, the effect of Υ 6= 1 is to shift the log(M)-intercept; but does not affect the

slope. Theoretical predictions may be may quantified by either computing the appropriate

Υ values which depend on the particular band of the luminosity measurements, or by

considering the respective curve fits to the actual Tully-Fisher relation:

log(M) = a log(v) + b. (4.62)
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Table 4.7: Tully-Fisher relation

vmax vout

Relation Type a b a b
(1) (2) (3) (4) (5)

Empirical K-band 4.1± 0.4 −8.5± 0.8 4.6± 0.4 −9.5± 0.9

Stellar mass

STVG 3.2± 0.3 −6.9± 0.7 3.5± 0.4 −7.4± 0.9
MSTG 2.9± 0.3 −6.0± 0.7 3.1± 0.4 −6.4± 0.9
MOND 4.1± 0.4 −8.7± 0.8 4.4± 0.5 −9.3± 1.0

Dark Matter 3.0± 0.4 −6.2± 1.0 3.1± 0.5 −6.5± 1.2

Baryonic mass

STVG 2.6± 0.2 −5.4± 0.5 2.8± 0.3 −5.7± 0.7
MSTG 2.5± 0.2 −5.0± 0.5 2.6± 0.3 −5.3± 0.7
MOND 3.0± 0.3 −6.3± 0.5 3.3± 0.3 −6.7± 0.7

Dark Matter 2.5± 0.3 −5.1± 0.7 2.7± 0.4 −5.4± 0.9
Total mass Dark Matter 2.9± 0.2 −5.5± 0.5 3.1± 0.3 −5.9± 0.7

Notes. — The empirical and theoretical Tully-Fisher relation: Column (1) lists the relation type,
where the empirical Tully-Fisher relation is the measured K-band luminosity, LK vs. velocity,
plotted in Figure 4.7; and the theoretical Tully-Fisher relation identifies the total luminosity with
either the stellar disk mass, in the ordinary case, or the baryonic mass including the stellar disk
and HI (plus He) gas mass, each per gravity theory: Moffat’s STVG and MSTG theories and
Milgrom’s MOND theory and the core-modified dark matter theory. The total mass relation
identifies the combined masses of the stellar disk, HI (and He) gaseous disks and dark matter
halo as the source of galactic dynamics. Columns (2) and (3) list the power-law index and
proportionality constant of Equation (4.62), respectively, for the ordinary Tully-Fisher relation
with v = vmax. Columns (4) and (5) list the power-law index and proportionality constant of
Equation (4.62), respectively, for the asymptotic Tully-Fisher relation with v = vout.

As regards dark matter, Figure 4.8 plots the total mass including the luminous baryonic

components and the dark matter halo, Mtotal = Mbaryon + Mhalo, according to the best-fit

core-modified dark matter theory, including the best-fit power-law, with results listed in

the bottom row of Table 4.7, finding a minimum of scatter in the best-fit power-law,

Mtotal ∝

 vmax
2.9±0.2,

vout
3.1±0.3.

(4.63)

The result is significant because it provides an empirical relation to determine the total

mass of a galaxy, from a few simple dynamical velocity measurements.

In the ordinary case, without dark matter, M is identified with Mdisk. However, the
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Figure 4.8: UMa — To-

tal mass with dark matter vs. velocity relation

The total mass, Mtotal = Mbaryon +
Mhalo, in 1010M�, vs. velocity, v in km
s−1 for 19 HSB and 10 LSB galaxies,
with Mhalo of Equation (4.2). The
velocity is identified according to
Equation (4.65) as either v = vmax,
with blue circles, or as v = vout,
with red crosses, with best-fits shown
with solid blue and red dashed lines,
respectively, with parameters listed
in the bottom row of Table 4.7. v [km s−1]
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theoretical underpinning of the Tully-Fisher relation suggests that the empirical relation

is an approximation to the baryonic Tully-Fisher relation which identifies M with Mbaryon,

instead, because in the absence of non-baryonic dark matter, galactic dynamics are sourced

by the total baryonic mass, and not just the luminous stellar disk. Figure 4.9 plots four

distinct Tully-Fisher relations, where the luminosity is taken proportional to the stellar

mass in the left panels and the baryonic mass in the right panels, and where the velocity is

taken as the velocity amplitude (maximum) in the top panels, and the asymptotic velocity

at the position rout in the bottom panels:

M =

 Mdisk Ordinary Tully-Fisher relation,

Mbaryon Baryonic Tully-Fisher relation,
(4.64)

and for each, two depending on whether

v =

 vmax Ordinary Tully-Fisher relation,

vout Asymptotic Tully-Fisher relation.
(4.65)

The scatter in the theoretical Tully-Fisher relations is minimized in the case of the

baryonic Tully-Fisher relation across all gravity theories, except dark matter, implying

that the empirical Tully-Fisher relation – which involves only the luminous disk – is an

approximate law.
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(a) Luminous disk vs. maximum velocity

vmax [km s−1]

M
b
a
ry

o
n

[1
01

0
M
⊙
]

25020015010050

101

100

10−1

(b) Baryonic mass vs. maximum velocity
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(c) Luminous disk vs. outermost velocity
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(d) Baryonic mass vs. outermost velocity
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(a) Luminous disk vs. maximum velocity
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(b) Baryonic mass vs. maximum velocity
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(c) Luminous disk vs. outermost velocity
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(d) Baryonic mass vs. outermost velocity

Tully-Fisher relations

Theoretical predictions with error bars Best-fit power-law with lines

STVG black solid error bars STVG black solid line

MSTG blue short dash-dotted error bars MSTG blue short dash-dotted line

MOND cyan long dash-dotted error bars MOND cyan long dash-dotted lines

Dark matter orange solid error bars Dark matter orange solid line

Figure 4.9: UMa — Theoretical Tully-Fisher relations.

The mass, M , in 1010M�, vs. velocity, v in km s−1 for 19 HSB and 10 LSB galax-
ies. The mass is identified according to Table 4.6 as either M = Mdisk in
the left panels, or as M = Mbaryon, in the right panels, for Moffat’s STVG
and MSTG theories and Milgrom’s MOND theory and the core-modified dark
matter theory. The velocity is identified according to Equation (4.65) as ei-
ther v = vmax, in the top panels, or as v = vout, in the bottom panels, with
best-fits shown per gravity theory, with parameters tabulated in Table 4.7.





Chapter 5

Clusters of galaxies

“A table, a chair, a bowl of fruit and a violin; what else does a man need to be

happy?”

Albert Einstein

Smail et al. (1995) argued that as clusters of galaxies are the largest bound structures

known in the universe, their mass-to-light ratios and baryonic fractions should approach

that for the cosmos as a whole. Whereas X-ray luminosity measurements typically give

temperature distributions an order of magnitude larger than observed from fits to observed

isothermal gas spheres, there is a remarkable variation in the size and shapes of the X-ray

distributions, to foil the search for a universal description of the phantom of dark matter,

within the modified gravitation theory of Chapter 3.

Brownstein and Moffat (2006b) applied the modified acceleration law of metric skew-

tensor gravity (MSTG), as described in §3.3, obtained from the Yukawa skewon theory

of §3.3.4 in which Einstein gravity is coupled to a Kalb-Ramond Proca field, as in §3.3.2.

Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot

intracluster medium (ICM) with King β-models, the predicted X-ray surface brightnesses

of the sample of 106 X-ray clusters were consistent without introducing a non-baryonic dark

matter component. The sub-kiloparsec X-ray surface brightness distributions, as functions

of radial distance, are well matched across the sample, including the correct shape, by

the β-model fits to the X-ray surface brightness distributions arising from the modified

acceleration law.

Prompted by the observed ring-like feature of the weak-lensing map of the galaxy

cluster CL 0024+1654, Milgrom and Sanders (2008) argued that despite any underlying

feature in the baryon distribution, the ring may be observed as the image of the MOND

transition region. The possibility that these emergent features appear as phantom dark

149
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matter in the strong and weak lensing mass reconstruction of Jee et al. (2007) indicates the

degree to which MOG theories violate the strong equivalence principle in order to describe

clusters of galaxies in the absence of dark matter. The same phenomenon applied to the

Bullet Cluster 1E0657-558 produces the observed phantom dark matter in the strong and

weak lensing mass reconstruction of Clowe et al. (2006a); Bradač et al. (2006); Clowe et al.

(2007), in the form of spatially dislocated peaks.

The physics of X-ray clusters is derived in §5.1. Dark matter distributions are computed

and compared to actual gas mass measurements for each of the clusters of galaxies, with

best-fit cluster models presented in §5.2. Direct evidence from the Bullet Cluster 1E0657-

558 gravitational lensing experiment is presented in §5.3 which supports the necessity of

dominant dark matter, or the modified gravity alternative.

5.1 X-ray clusters

The creation of X-ray mass profiles from astrophysical observations, as described in §5.1.1

for clusters of galaxies, is subject to model dependent assumptions based on the isotropic

isothermal model, as in §5.1.2. The road from measuring radial, X-ray temperature profiles,

to surface mass density maps, as in §5.1.3, in some chosen gravity theory, takes its way

through the dynamics of the isothermal sphere and dynamical mass computations, as

described in §5.1.4, which result in best-fit cluster models, presented in §5.2.

5.1.1 Astrophysical observations

Clusters of galaxies have been known to require some form of energy density that makes

its presence felt only by its gravitational effects since Zwicky (1933) analysed the velocity

dispersion for the Coma cluster. The more than 1000 galaxies spherically distributed

within the Coma cluster comprise a small fraction (10%) of the baryonic mass, the larger

fraction consisting of a diffuse cloud of 100 million degree X-ray emitting plasma – the

intracluster medium (ICM). The ICM itself comprises only a small fraction (10%) of the

Newtonian dynamic mass as determined from X-ray luminosity measurements.

Much closer to the Milky Way, the Virgo cluster forms the heart of the Local Super-

cluster, and has a galaxy population as rich as Coma distributed in three groups. Messier
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49 – an elliptical / lenticular galaxy – is the brightest member of the Virgo cluster and is

the center of one of the subdominant groups. The ICM surrounding Messier 49 is a diffuse

cloud of 10 million degree X-ray emitting plasma, but only accounts for a tiny fraction (1%)

of the Newtonian dynamic mass as determined from X-ray luminosity measurements. The

Fornax cluster is much smaller than Virgo, but at a similar distance from the Milky Way.

The 15 million degree ICM surrounding the Fornax core – which is in the preliminary pre-

heating stage of an imminent merger as determined from peculiar velocity measurements

along a filament – comprises a similar fraction (3%) of the Newtonian dynamic mass.

Abell 400 is an ongoing cluster-cluster merger, with multiple subclusters around a

central main cluster containing the Dumbbell galaxy, which is the result of a galaxy-

galaxy merger and is the topic of ongoing X-ray and radiowave analysis due to a pair of

suspected supermassive black holes, bound and moving together. The 30 million degree

X-ray emitting plasma accounts for 10% of the Newtonian dynamic mass. The Hydra-

Centaurus supercluster contains two distinct X-ray clusters, each with 100 member galaxies

near their respective centers, and have 50 and 40 million degree X-ray emitting ICM

plasmas, respectively, which account for 10% of the Newtonian dynamic masses. At the

center of the Great Attractor 65 Mpc distant, the Norma cluster is half the size of the

Coma cluster, but larger than Centaurus, Hydra-A, Fornax and Messier 49 combined. It is

in the process of swallowing a galaxy which shows a comet-like tail nearly twice as long as

the galaxy itself, consisting of a 70 million degree X-ray plasma, and accounting for 10%

of the Newtonian dynamic mass.

Perseus is the brightest X-ray cluster in the sky and is nearly the size of the Coma

cluster, but is not as rich in galaxies. The 80 million degree X-ray plasma accounts for

20% of the Newtonian dynamic mass. Chandra has measured concentric ripples in the X-

ray surface mass density surrounding a strong source of gravitation inside an X-ray cavity

– a candidate for a 108M� black hole. Abell 2255 is only slightly larger than Perseus, and

slightly less than the size of Coma, but the X-ray peak is offset from the brightest cluster

galaxy, which has a large peculiar velocity, (1200 km s−1), indicating an ongoing cluster

merger. The 80 million degree plasma accounts for 8% of the Newtonian dynamic mass.

The giant Abell 2142 is one-and-a-half times larger than the Coma cluster, and is in the
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later stages of a cluster-cluster merger showing bow-shock waves. The 110 million degree

plasma accounts for 15% of the Newtonian dynamic mass.

The Bullet Cluster 1E0657-558 is a merger between a giant main cluster with thousands

of galaxies and a supersonic subcluster, aligned in the plane perpendicular to the line-

of-sight. The 170 million degree main cluster ICM accounts for 10% of the Newtonian

dynamic mass, and provides strong and weak gravitational lensing observations which

show structure offset from the X-ray surface density map.

The sample selection includes the Bullet Cluster 1E0657-558, Abell 2142, Coma, Abell

2255, Perseus, Norma, Hydra-A, Centaurus, Abell 400, Fornax, and Messier 49, with

cluster properties listed in Table 5.1 – ordered from the hottest X-ray emitting to the

coolest of the clusters. The Newtonian dynamic masses and the ICM gas masses, for each

cluster, are plotted in Figure 5.1, and the ratio of the Newtonian dynamic masses to the

ICM gas masses are plotted as dynamic mass factors in Figure 5.2 – each as a function of

radial position and compared to the theoretical predictions of core-modified dark matter

halos, as in §5.2.1, Milgrom’s MOND as in §5.2.2, and Moffat’s MOG as in §5.2.3.

The study of the Bullet Cluster 1E0657-558, in §5.3, is a detailed analysis of the X-

ray gas surface density map in relation to the Newtonian dynamic mass inferred from the

strong and weak gravitational lensing map. The missing mass in MOG is explained by

galactic surface mass density maps, presented in Figure 5.9. The missing mass in terms of

dark matter is presented in Figure 5.10.

5.1.2 Isotropic isothermal model

Recent observations from the XMM-Newton satellite suggest that the intracluster medium

(ICM) is very nearly isothermal inside the region defined by the X-ray emission with tem-

peratures ranging from ≈ 1–15 keV (or 107 – 2 × 108 K) for different clusters (Arnaud

et al., 2001). The combination of the observed density profile, ne(r), and the temperature

profile, T (r), obtained from X-ray observations of the galaxy cluster leads to a pressure

profile, P (r), which directly leads to a mass profile, M(r), by assuming the gas is in nearly

hydrostatic equilibrium with the gravitational potential of the galaxy cluster. Within a few

core radii, the distribution of gas within a galaxy cluster may be fit by a King “β-model”.
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The observed surface brightness of the X-ray cluster can be fit to a radial distribution

profile (Chandrasekhar, 1960; King, 1966):

I(r) = I0

[
1 +

(
r

rc

)2
]−3β+1/2

, (5.1)

resulting in best-fit parameters, β and rc. A deprojection of the β-model of Equation (5.1)

assuming a nearly isothermal gas sphere then results in a physical gas density distribu-

tion (Cavaliere and Fusco-Femiano, 1976):

ρ(r) = ρ0

[
1 +

(
r

rc

)2
]−3β/2

, (5.2)

where ρ(r) is the ICM mass density profile, and ρ0 denotes the central density. The mass

profile associated with this density is given by

M(r) = 4π
∫ r

0
ρ(r′)r′2dr′, (5.3)

where M(r) is the total mass contained within a sphere of radius r. Galaxy clusters

are observed to have luminous distributions with finite spatial extent. This allows an

approximate determination of the total mass of the galaxy cluster by first solving Equation

(5.2) for the position, rout, at which the density, ρ(rout), drops to ≈ 10−28 g/cm3, or 250

times the mean cosmological density of baryons:

rout = rc

( ρ0

10−28 g/cm3

)2/3β

− 1

1/2

. (5.4)

Then, the total mass of the ICM gas may be taken as Mgas ≈M(rout):

Mgas = 4π
∫ rout

0
ρ0

1 +

(
r′

rc

)2
−3β/2

r′2dr′. (5.5)

Provided the number density, n, traces the actual mass, we may assume that n(r) ∝
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ρ(r), which according to Reiprich (2001); Reiprich and Böhringer (2002) is explicitly

ρgas ≈ 1.17nemp, (5.6)

and rewrite Equation (5.2)

ne(r) = n0

[
1 +

(
r

rc

)2
]−3β/2

. (5.7)

For a spherical system in hydrostatic equilibrium, the structure equation can be derived

from the collisionless Boltzmann equation

d

dr
(ρ(r)σ2

r) +
2ρ(r)

r

(
σ2
r − σ2

θ,φ

)
= −ρ(r)

dΦ(r)

dr
, (5.8)

where Φ(r) is the gravitational potential for a point source, σr and σθ,φ are mass-weighted

velocity dispersions in the radial (r) and tangential (θ, φ) directions, respectively. For an

isotropic system,

σr = σθ,φ. (5.9)

The pressure profile, P (r), can be related to these quantities by

P (r) = σ2
rρ(r). (5.10)

Combining Equations (5.8), (5.9) and (5.10), the result for the isotropic sphere is

dP (r)

dr
= −ρ(r)

dΦ(r)

dr
. (5.11)

For a gas sphere with temperature profile, T (r), the velocity dispersion becomes

σ2
r =

kT (r)

µAmp

, (5.12)

where k is Boltzmann’s constant, µA ≈ 0.609 is the mean atomic weight and mp is the

proton mass. We may now substitute Equations (5.10) and (5.12) into Equation (5.11) to
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obtain
d

dr

(
kT (r)

µAmp

ρ(r)

)
= −ρ(r)

dΦ(r)

dr
. (5.13)

Performing the differentiation on the left hand side of Equation (5.11), we may solve for

the gravitational acceleration:

a(r) ≡ −dΦ(r)

dr

=
kT (r)

µAmpr

[
d ln(ρ(r))

d ln(r)
+
d ln(T (r))

d ln(r)

]
. (5.14)

For the isothermal isotropic gas sphere, the temperature derivative on the right-hand side of

Equation (5.14) vanishes and the remaining derivative can be evaluated using the β-model

of Equation (5.2):

a(r) = −3βkT

µAmp

(
r

r2 + r2
c

)
. (5.15)

5.1.3 Surface mass density map

To make contact with the experimental data, we must calculate the surface mass density

by integrating ρ(r) of Equation (5.2) along the line-of-sight:

Σ(x, y) =
∫ zout

−zout

ρ(x, y, z)dz, (5.16)

where

zout =
√
r2

out − x2 − y2. (5.17)

Substituting Equation (5.2) into Equation (5.16), we obtain

Σ(x, y) = ρ0

∫ zout

−zout

[
1 +

x2 + y2 + z2

r2
c

]−3β/2

dz. (5.18)

This integral becomes tractable by making a substitution of variables:

u2 = 1 +
x2 + y2

r2
c

, (5.19)
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so that

Σ(x, y) = ρ0

∫ zout

−zout

[
u2 +

(
z

rc

)2
]−3β/2

dz

=
ρ0

u3β

∫ zout

−zout

[
1 +

(
z

urc

)2
]−3β/2

dz

= 2
ρ0

u3β
zoutF

([
1

2
,
3

2
β
]
,
[
3

2

]
,−

(
zout

urc

)2
)
, (5.20)

where we have made use of the hypergeometric function, F ([a, b], [c], z). Substituting

Equation (5.19) into Equation (5.20) gives

Σ(x, y) = 2ρ0zout

(
1 +

x2 + y2

r2
c

)−3β/2

F

([
1

2
,
3

2
β
]
,
[
3

2

]
,− z2

out

x2 + y2 + r2
c

)
. (5.21)

We next define

Σ0 ≡ Σ(0, 0) = 2ρ0zoutF

([
1

2
,
3

2
β
]
,
[
3

2

]
,−

(
zout

rc

)2
)
, (5.22)

which we substitute into Equation (5.21), yielding

Σ(x, y) = Σ0

(
1 +

x2 + y2

r2
c

)−3β/2 F
([

1
2
, 3

2
β
]
,
[

3
2

]
,− z2

out

x2+y2+r2
c

)
F
([

1
2
, 3

2
β
]
,
[

3
2

]
,− z2

out

r2
c

) . (5.23)

In the limit zout � rc, the Hypergeometric functions simplify to Γ functions, and Equations

(5.22) and (5.23) result in the simple, approximate solutions:

Σ0 =
√
πρ0rc

Γ
(

3β−1
2

)
Γ
(

3
2
β
) (5.24)

and

Σ(x, y) = Σ0

(
1 +

x2 + y2

r2
c

)−(3β−1)/2

, (5.25)

which we may, in principle, fit to the Σ-map data to determine the King β-model param-

eters, β, rc and ρ0.
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5.1.4 Dynamical mass

The Newtonian dynamical mass can be obtained as a function of radial position by equat-

ing the gravitational acceleration of Equation (5.14) – derived in §5.1.2 for the isotropic

isothermal model – with Newton’s acceleration law:

kT (r)

µAmpr

[
d ln(ρ(r))

d ln(r)
+
d ln(T (r))

d ln(r)

]
=
GNMN(r)

r2
, (5.26)

with the solution,

MN(r) = − r

GN

kT

µAmp

[
d ln(ρ(r))

d ln(r)
+
d ln(T (r))

d ln(r)

]
, (5.27)

and the isothermal β-model result of Equation (5.14) can be rewritten as

MN(r) =
3βkT

µAmpGN

(
r3

r2 + r2
c

)
. (5.28)

5.2 Best-fit cluster models

The study of X-ray clusters, according to §5.1, provides valuable information on their mass

profiles and insight into their formation and evolution. It is no longer a matter of fitting

the total masses of these systems, but a powerful means to model the spatial distribution of

each component, as in the case of the Bullet Cluster 1E0657-558 presented in §5.3, which

may further constrain cosmological models. Although X-ray luminosity measurements

typically give temperature distributions an order of magnitude larger than observed from

fits to observed isothermal gas spheres, this does not guarantee that the missing mass has

the form predicted by Λ-CDM cosmological models, particularly because of the remarkable

variation in the shapes and scales of the X-ray distributions.

The core-modified dark matter halo, described in §5.2.1, provides an alternative which

does not suffer from the cusp problem of the singular NFW fitting formula and does fit high

and low surface brightness and dwarf galaxies to low χ2. Alternatively, Milgrom’s MOND

as in §5.2.2 and Moffat’s MOG as in §5.2.3 are to be explored, and the means by which

each of the candidate theories provides best-fit cluster models are compared in §5.2.4. The
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Table 5.2: Best-fit cluster model parameters

Cluster ρ0 rs χ2/ν

(106 M⊙/kpc3) (kpc)

(1) (2) (3) (8)

Bullet 2.73 ± 0.47 328.1 ± 26.7 4.5

Abell 2142 8.34 ± 1.16 141.8 ± 7.7 3.7

Coma 1.91 ± 0.19 262.1 ± 10.6 3.9

Abell 2255 0.67 ± 0.08 403.0 ± 21.0 1.2

Perseus 28.83 ± 4.97 58.7± 3.9 205.7

Norma 1.58 ± 0.16 222.7 ± 8.3 0.8

Hydra-A 22.79 ± 2.72 59.3± 3.0 13.1

Centaurus 37.96 ± 2.48 36.3± 0.9 104.3

Abell 400 2.09 ± 0.18 119.9 ± 4.0 3.7

Fornax 1.39 ± 0.05 117.4 ± 1.8 0.2

Messier 49 36.75 ± 0.45 21.3± 0.1 68.8

(a) Core-modified dark matter

Cluster a0 χ2/ν

(10−8 cm s−2)

(1) (4) (8)

Bullet 7.26 ± 0.42 653.9

Abell 2142 3.14 ± 0.22 1942.4

Coma 6.05 ± 0.25 162.6

Abell 2255 5.04 ± 0.22 311.8

Perseus 1.63 ± 0.15 2036.6

Norma 3.63 ± 0.17 32.6

Hydra-A 2.79 ± 0.16 4595.6

Centaurus 3.99 ± 0.15 626.9

Abell 400 2.51± 0.1 575.0

Fornax 17.46 ± 0.18 1.7

Messier 49 80.29 ± 0.27 229.0

(b) Milgrom’s MOND

Cluster M0 r0 χ2/ν

(1014 M⊙) (kpc)

(1) (5) (6) (8)

Bullet 56.7 ± 8.2 116.8 ± 8.5 138.9

Abell 2142 30.0 ± 3.0 56.8± 2.9 45.0

Coma 30.7 ± 2.6 88.2± 3.8 14.3

Abell 2255 43.8 ± 3.1 157.4 ± 5.6 85.2

Perseus 10.7 ± 1.0 23.5± 1.1 16.7

Norma 30.1 ± 1.9 97.6± 3.1 2.9

Hydra-A 9.5± 0.7 23.9± 0.9 87.9

Centaurus 10.0 ± 0.3 14.2± 0.2 3.3

Abell 400 6.0± 0.3 44.7± 1.3 7.8

Fornax 13.7 ± 0.2 67.4± 0.5 1.3

Messier 49 10.3 ± 0.0 10.8± 0.0 8.7

(c) Moffat’s MSTG

Cluster G∞ χ2/ν

(GN )

(1) (7) (8)

Bullet 8.7± 0.5 56.7

Abell 2142 8.7± 0.5 375.0

Coma 12.3 ± 0.5 56.6

Abell 2255 12.4 ± 0.5 42.1

Perseus 7.5± 0.5 433.0

Norma 11.8 ± 0.5 12.5

Hydra-A 10.8 ± 0.5 740.5

Centaurus 18.4 ± 0.5 107.5

Abell 400 13.4 ± 0.5 174.2

Fornax 46.1 ± 0.5 0.4

Messier 49 149.7 ± 0.5 18.4

(d) Moffat’s STVG

Notes. — Best-fitting parameters of the X-ray cluster sample for (a) Core-modified dark matter,
(b) Milgrom’s MOND, (c) Moffat’s MSTG and (d) Moffat’s STVG: Column (1) is the cluster
name. Columns (2) and (3) list the best-fit parameters for the core-modified universal fitting
formula of Equation (2.12). Column (4) list the best-fit MOND acceleration parameter. Columns
(5) and (6) list the best-fit MSTG mass and range parameters, respectively. Column (7) list the
best-fit STVG asymptotic gravitationally coupling. Column (8) list the reduced-χ2 statistic of
Equation (4.20) per gravity theory.
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common and unusual features of the fits, across the sample of clusters of galaxies, are

presented in §5.2.4: Observations – with statistics provided in Table 5.2.

5.2.1 Core-modified dark matter halos

The simplicity of the dark matter paradigm allows predictions which justifiably ignore

the X-ray surface mass. However, it has been known since Bahcall (1977); Hoffman and

Shaham (1985) that the halo density profile of virialized clusters of galaxies cannot be

fitted by a single power law,

ρ(r) ∝ r−γ, (5.29)

but γ seems to increase with r. The NFW fitting formula of Equation (2.7) bridges this

behaviour of Equation (5.29) with a singular, cuspy core, γ → 1 at small r, and γ → 3 at

large r.

This point has led to controversy over the cuspy shape of the singular NFW profile,

which appears as a robust prediction of N-body simulations without baryons, but is not

actually observed (with low χ2) in X-ray cluster data. Conversely, Ettori et al. (2002a)

found 2 X-ray clusters out of a sample of 22 clusters that could not be χ2 fitted to the NFW

profile at all. Further Chandra studies of the cores of clusters, such as Ettori et al. (2002b),

indicated that the NFW profile is only reliable outside the cluster core, as is the case in

certain low surface brightness and dwarf galaxies. Sand et al. (2004) studied the dark

matter distribution in the central region of 6 clusters of galaxies by combining constraints

from gravitational lensing and the stellar velocity dispersion profile of the brightest central

galaxy, confirming that the core behaviour is statistically inconsistent with a singular NFW

profile, and that the inclusion of baryonic matter affects the dark matter distribution not

accounted for in conventional CDM simulations.

In a gravitational lensing study of two X-ray clusters of galaxies, Smail et al. (1995)

found that the Newtonian dynamic mass is distributed similarly to the visible baryonic

mass with the same core radius, but while it is more concentrated at the center, it is less

cuspy than CDM predictions. Tyson et al. (1998); Shapiro and Iliev (2000) argued that

the singular density profiles based on NFW fitting formula are in apparent conflict with

the observed mass distributions inside dark matter dominated halos on two extremes of
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the halo mass function – dwarf galaxies and clusters of galaxies; each of which is better

described by a less cuspy or constant density core.

The core-modified fitting formula of Equation (2.12) bridges the behaviour of Equation

(5.29) with a constant-density core, γ → 0 at small r but γ → 3 at large r, which fits the

high and low surface brightness galaxies in the Ursa Major sample of §4.2 including all of

the dwarf galaxies. The dark matter power-law profile, plotted in Figure 4.5, confirms that

the variation in the exponent of Equation (5.29) agrees with CDM predictions, provided

the visible baryonic components are not neglected. It is therefore important to test the

core-modified dark matter fitting formula of Equation (2.12) at the scale of X-ray clusters.

Arieli and Rephaeli (2003) compared the best-fits to a sample of 24 X-ray clusters of

galaxies, and concluded that a core-modified dark matter profile of the form of Equation

(2.12) is statistically more consistent with ROSAT observational results than either the

NFW profile of Equation (2.7) or a family of simple polytropic fitting formulae.

Whereas, attempts to fit cluster mass distributions to NFW profiles lead to large uncer-

tainties due to a parameter degeneracy between the central density parameter, ρ0, and the

scale radius, rs, which prevented the computation of the best-fit ρ0 and rs from converging,

regardless of the χ2. Without numerical convergence, the NFW results either over-predict

the density at the core or under-predict the total mass. However, the core-modified fitting

formula of Equation (2.12) provides excellent fits with low χ2 to the mass profiles, plotted

in Figure 5.1, and a reasonable explanation of the variation in the dynamic mass factors,

plotted in Figure 5.2, providing one solution to the missing mass problem, presented in

§5.2.4.

5.2.2 Milgrom’s MOND without dark matter

Brownstein and Moffat (2006b) predicted convergent MOND X-ray surface brightness pro-

files which did not match any observed distributions of a sample Reiprich (2001); Reiprich

and Böhringer (2002) of 106 X-ray clusters. Without treating the MOND acceleration, a0,

as a free parameter as opposed to a universal constant, or considering improved but as yet

undiscovered MOND interpolating functions, MOND cannot account for the observed X-

ray luminosities without the addition of an unseen component to explain away the missing
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mass. Sanders (2003, 2007) considered adding a neutrino halo, modelled as a nonluminous

constant density rigid sphere, discussed in §5.3.5.

Conversely, The and White (1988) were able to decrease the MOND discrepancy be-

tween the X-ray observationally determined gas mass and the X-ray surface brightness of

the Coma cluster by increasing the MOND acceleration by a factor of four greater than

Equation (4.8). However, Aguirre et al. (2001) presented evidence from the central 200

kpc of three clusters which inflates the discrepancy in the MOND acceleration to a factor

of ∼ 10. More recently, Pointecouteau and Silk (2005) used X-ray data from the XMM-

Newton satellite for eight clusters of varying temperature and masses to place constraints

on the general use of MOND phenomenology.

Furthermore, every galaxy rotation curve that produced a weak fitting MOND one-

parameter best-fit by a variable stellar mass-to-light ratio, Υ, plotted in Figure 4.1 for the

Ursa Major sample of §4.2, shows dramatic improvement and reduction in the reduced χ2/ν

statistic using a two-parameter best-fit including a variable MOND acceleration parameter.

The tabulation of a0 in Column (2) of Table 4.3 provides no statistical support that a0 is

a universal constant due to gross uncertainties in the mean results of Equation (4.9).

A varying choice of the MOND interpolating function, including those of Bekenstein

(2004) and Famaey and Binney (2005), does not lead to significant improved behaviour

since a(r) < a0 or x < 1 at all radii within clusters of galaxies.

Therefore the alternatives for MOND are either add two additional parameters (or scal-

ing relations) per system to include a dark matter component, or to determine if sensible

fits are possible without dark matter using a one-parameter best-fit by a variable accelera-

tion parameter. The absence of a universal acceleration parameter violates the notion that

MOND is a fundamental theory, but the notion of a scale dependent acceleration parame-

ter may be a dynamic, more natural effect of a covariant, but Lorentz-violating theory with

a preferred frame, as in §3.2.3 and is not inconsistent with Bekenstein’s TEVES action, as

in §3.2.3.
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5.2.3 Moffat’s MOG with running couplings

In the absence of non-baryonic dark matter, the modified gravity dynamical mass may

be obtained as a function of radial position by substituting the MOG acceleration law of

Equation (3.90) – with a varying gravitational coupling, G(r) – so that the result for the

isothermal β-model of Equation (5.28) becomes

MMOG(r) =
3βkT

µAmpG(r)

(
r3

r2 + r2
c

)
. (5.30)

Brownstein and Moffat (2006b) predicted X-ray surface brightness profiles from X-ray

luminosity observations consistent with the observed X-ray gas distributions of a sample

of 106 X-ray clusters (Reiprich, 2001; Reiprich and Böhringer, 2002) using the modified

acceleration law based upon metric skew-tensor gravity, as in §3.3.

Metric skew-tensor gravity

The MSTG dynamic mass is obtained by substituting G(r) of Equation (3.91) into Equa-

tion (5.30) and may be written explicitly as a function of the Newtonian dynamic mass of

Equation (5.28) and two parameters, M0 and r0:

MMSTG(r) = MN(r) +M0ξ(r)−
√
M0

2ξ(r)2 + 2M0MN(r)ξ(r), (5.31)

ξ(r) ≡ 1

2

[
1− exp(−r/r0)

(
1 +

r

r0

)]2

, (5.32)

which are MSTG mass and range parameters, respectively. However, it is not possible to

fit any of the clusters of galaxies with the MSTG mass and range parameters of Equation

(4.14), which were applied universally to high and low surface brightness galaxies including

all of the dwarfs, in the Ursa Major sample of §4.2, with galaxy rotation curves plotted

in Figure 4.1. Whereas every weak fitting MSTG one-parameter best-fit by a variable

stellar mass-to-light ratio, Υ, shows dramatic improvement and reduction in the reduced

χ2/ν statistic using a three-parameter best-fit including variable MSTG mass and range

parameters, the tabulation of M0 and r0 in Column (2) and (3) of Table 4.4 provides no

statistical support that the MSTG parameters are universal constants, but does provide
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very strong statistical support that the MSTG parameters are scale dependent.

Brownstein and Moffat (2006b) used an empirically determined power-law scale relation

to set the MSTG mass scale parameter,

M0 = (60.4± 4.1)× 1014M�

(
Mgas

1014M�

)0.39±0.10

, (5.33)

where Mgas, given by Equation (5.5), is the mass of the ICM integrated to the distance at

which the density drops to ≈ 10−28 g/cm3, or 250 times the mean cosmological density.

In order to better determine the scale dependence of the parameters, it is reasonable

to treat the MSTG mass and range parameters as variable and to perform two-parameter

best-fits to the X-ray gas masses of the sample of 11 clusters of galaxies, using Equation

(5.33) as initial value only. The mass profiles are plotted in Figure 5.1 according to the

best-fit cluster model parameters tabulated in Panel (c) of Table 5.2, for MSTG.

Scalar-tensor-vector gravity

Moffat and Toth (2009) investigated a fundamental parameter-free solution to the running

couplings using the modified acceleration law based upon scalar-tensor-vector gravity, as

in §3.4. The STVG dynamic mass of Equation (3.164) may be written as a function of the

Newtonian dynamic mass of Equation (5.28) and two functions α(r) and µ(r) which are

derived from an action principle, with the equations of motion given by Equations (3.159)

and (3.160), respectively, in terms of three constants of integration, D, E, and G∞.

However, it is not possible to fit any of the clusters of galaxies with the values of

Equation (4.19), which were applied universally to high and low surface brightness galaxies

including all of the dwarfs, in the Ursa Major sample of §4.2, with galaxy rotation curves

plotted in Figure 4.1. Whereas every weak fitting STVG one-parameter best-fit by a

variable stellar mass-to-light ratio, Υ, show dramatic improvement and reduction in the

reduced χ2/ν statistic using a four-parameter best-fit including variable parameters, the

tabulation of D, E, and G∞ in Columns (2), (3) and (4) of Table 4.5 provides no statistical

support that the STVG integration constants are universal.

For values of D sufficiently large and values of E sufficiently small, the STVG gravita-
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tional coupling of Equation (3.143) simplifies to its asymptotic form,

G(r) = G∞, (5.34)

and is independent of r. Substituting this form of the gravitational coupling into Equation

(5.30), we obtain the STVG dynamic mass for clusters of galaxies:

MSTVG(r) =
3βkT

µAmpG∞

(
r3

r2 + r2
c

)
. (5.35)

Therefore, in order to determine the scale dependence of the STVG asymptotic coupling, it

is reasonable to treat G∞ as variable and to perform one-parameter best-fits to the X-ray

gas masses of the sample of 11 clusters of galaxies, plotted in Figure 5.1 according to the

best-fit cluster models parameters tabulated in Panel (d) of Table 5.2, STVG.

5.2.4 The missing mass problem

The Newtonian dynamical mass of Equation (5.28) is a derived relation between the density

profile for the X-ray gas component, according to the isotropic isothermal model of §5.1.2,

and the measured isothermal temperature, T . The ICM gas mass is a spherical integral

of the King β-model of Equations (5.2) and (5.3). Table 5.1 includes the total ICM gas

mass and total Newtonian dynamical mass within the position, rout, at which the density,

ρ(rout), drops to ≈ 10−28 g/cm3, or 250 times the mean cosmological density of baryons.

The total fraction of ICM gas mass is between 1% and 20% of the total Newtonian dynamic

mass, and is typically 10%, as demonstrated in §5.1.1. Therefore, according to Newtonian

dynamics, between 80% to 99% of the mass needed to explain the isothermal profiles is

missing.

However, whereas the solution that there is just enough dark matter to fill the total

difference is consistent with the NFW fitting formula of Navarro et al. (1996, 1997), the

cusped profile does not correctly fit the shape of the dynamic mass profile. Arieli and

Rephaeli (2003) suggested that there is a clear need to explore modifying the NFW pro-

file, which has been adopted in hydrodynamic N-body simulations of the structure and

evolution of Λ-CDM halos, or finding an alternative which provides a reasonable fit to the
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Figure 5.1: X-ray clusters of galaxies – Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc for a sample of
X-ray clusters. The dynamic data consist of the Newtonian dynamic mass of Equation
(5.28), due to the measured isothermal temperature. The observed ICM gas masses
are derived from Equations (5.2) and (5.3) using the best-fit King β-model parameters
listed in Table 5.1. The computed best-fitted results are plotted for Moffat’s STVG and
MSTG theories and Milgrom’s MOND theory with variable parameters. Results are
plotted for the best-fit core-modified dark matter theory including the X-ray gas mass
component. The reduced-χ2 statistic is included in Table 5.2. The figure is continued.

X-ray cluster masses.

Similarly, it is not enough for any gravity theory to solve the missing mass problem,

in the absence of dark matter, without providing a reasonable fit to the observed X-ray

gas mass distribution for each cluster. The mass profiles of Figure 5.1 plot the Newtonian

dynamical mass and observed ICM gas mass profiles, including the best-fits resulting from

Moffat’s STVG and MSTG theories, Milgrom’s MOND theory with variable parameters.

Results are plotted for the best-fit core-modified dark matter theory including the X-ray

gas mass component. The reduced-χ2 statistic is included in Table 5.2, and reveals that the

dark matter solutions of §5.2.1 and the modified gravity solutions of §5.2.3 are reasonable,

although the MOND solution without dark matter of §5.2.2 is wrong – and a variable

MOND acceleration parameter only allows a correct fit to the total cluster mass. This

has prompted Sanders (2003, 2007) to consider the possibility of 2 eV neutrino halos as

providing the missing 80% to 99% of cluster dark matter, but Angus et al. (2008) showed
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Figure 5.1 continued: X-ray clusters of galaxies – Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc.
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Figure 5.1 continued: X-ray clusters of galaxies – Mass profiles.

The radial mass profile, M(r) in M�, vs. orbital distance, r in kpc for a sample of X-ray
clusters. The dynamic data consist of the Newtonian dynamic mass of Equation (5.28), due
to the measured isothermal temperature. The observed ICM gas masses are derived from
Equations (5.2) and (5.3) using the best-fit King β-model parameters listed in Table 5.1.
The computed best-fitted results are plotted for Moffat’s STVG and MSTG theories and
Milgrom’s MOND theory with variable parameters. Results are plotted for the best-fit
core-modified dark matter theory including the X-ray gas mass component. The reduced-
χ2 statistic is included in Table 5.2.
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that MOND-neutrino-baryon models will not provide reasonable fits to the X-ray gas mass

profile, particularly in the inner 100 to 150 kiloparsecs of the cluster. This neutrino halo

hypothesis is explored in §5.3.5 as part of the analysis of the strong and weak lensing map

of the Bullet Cluster 1E0657-558, presented in §5.3.

Biviano and Salucci (2006) derived mass profiles of the different luminous and dark

components of 59 X-ray clusters of galaxies and confirmed that the baryonic components

are relevant to mass models of clusters of galaxies both near the center because of the

substantial contribution from the central dominant galaxy and in the outer regions, because

of the increasing mass fraction of the ICM gas – and the corresponding decreasing dynamic

mass factor. Therefore the missing mass problem is most serious in the core of galaxy

clusters, in complete opposition to the situation in the galaxy rotation curves of Chapter 4

where the dynamical mass factors of Figure 4.4 show a maximum at the outermost observed

radial position, for each gravity theory.

The dynamical mass factors, plotted in Figure 5.2, show the ratio of the Newtonian

dynamical mass to the observed ICM gas mass, including the best-fits resulting from

Moffat’s STVG and MSTG theories, Milgrom’s MOND theory with variable a0, and the

best-fit core-modified dark matter theory including the X-ray gas mass component, where

the results of Table 5.2 were used, respectively.

For each cluster, the substitute of missing mass in MOND is the wrong shape, with

only the correct total mass predicted due to a variable, best-fit MOND acceleration. For

r < rout, the dynamic mass factor predicted by MOND is much smaller than observed

leading to too great a predicted gas mass in these regions. For some of the clusters such

as the Bullet Cluster 1E0657-558, Abell 2255 and Fornax, this trend is suddenly reversed

for r < 100 kpc, where MOND predicts a dynamic mass factor which diverges strongly

(as does the cuspy NFW profile not shown), but is not actually observed in the data even

though the coolest of the clusters such as Messier 49 show a dynamic mass factor as large

as Γ→ 400 as r → 0.

Unlike the NFW fitting formula of Navarro et al. (1996, 1997), the core-modified dark

matter halos provide the means to fit X-ray masses with constant density cores. This

solution provides missing mass in line with the observations plotted in Figure 5.2 at all
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Figure 5.2: X-ray clusters of galaxies – Dynamic mass factors.

The dynamic mass factors, Γ(r), vs. orbital distance, r in kpc for a sample of X-ray
clusters. The dynamic data consist of the ratio of the Newtonian dynamic mass of Equa-
tion (5.28), due to the measured isothermal temperature, to the integrated X-ray gas
mass, derived from Equations (5.2) and (5.3) using the best-fit King β-model parameters
listed in Table 5.1. The computed best-fitted results are plotted for Moffat’s STVG and
MSTG theories and Milgrom’s MOND theory with variable parameters. Results are
plotted for the best-fit core-modified dark matter theory including the X-ray gas mass
component. The reduced-χ2 statistic is included in Table 5.2. The figure is continued.

radial positions.

Moffat’s MOG theories provide a remarkable picture of the missing mass problem,

even though the galactic mass components have been neglected, which are dynamically

important in MOG due to the absence of dominant dark matter and the increased weight

due to the larger than Newtonian gravitational coupling. These MOG effects due to visible

baryons are explored in greater detail in §5.3.3 as part of the analysis of the strong and

weak lensing map of the Bullet Cluster 1E0657-558, presented in §5.3.

Observations

In the case of the Ursa Major sample of high and low surface brightness galaxies, the

dynamic mass factors of §4.2.6

Γ(r) =
G(r)

GN

(5.36)
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Figure 5.2 continued: X-ray clusters of galaxies – Mass profiles.

The dynamic mass factors, Γ(r), vs. orbital distance, r in kpc.
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Figure 5.2 continued: X-ray clusters of galaxies – Dynamic mass factors.

The dynamic mass factors, Γ(r), vs. orbital distance, r in kpc for a sample of X-ray clus-
ters. The dynamic data consist of the ratio of the Newtonian dynamic mass of Equation
(5.28), due to the measured isothermal temperature, to the integrated X-ray gas mass,
derived from Equations (5.2) and (5.3) using the best-fit King β-model parameters listed
in Table 5.1. The computed best-fitted results are plotted for Moffat’s STVG and MSTG
theories and Milgrom’s MOND theory with variable parameters. Results are plotted for
the best-fit core-modified dark matter theory including the X-ray gas mass component.
The reduced-χ2 statistic is included in Table 5.2.
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are monotonically increasing, nearly linear functions, plotted in Figure 4.4. This is a

prediction of the modified dynamics at small accelerations, of §3.2.2, where the slope is

determined by Equation (3.20) to be the inverse of the transition radius,

dΓ(r)

dr
= rt

−1 =

√
a0

GNM
, (5.37)

where a0 is the transition acceleration.

For the best-fit cluster models of §5.2, the dynamic mass factors plotted in Figure 5.2,

show very different trends, never showing a monotonically linear rise as in Equation (5.37).

For each of the clusters of galaxies in the sample, Γ(r)� r for all r, having the greatest

magnitude in the cores of the smaller (cooler) clusters, in particular Messier 49. The slope

dΓ(r)

dr
. 0, (5.38)

is close to flat for the larger (hotter) clusters, in particular the Bullet Cluster 1E0657-

558 and Abell 2255, but generally having the greatest magnitude outside the cores of the

smaller (cooler) clusters. All of the cluster cores have a particularly slow varying slope.

Therefore Equation (5.38) suggests that clusters of galaxies are observationally inconsistent

with singular (cuspy) models. For the Bullet Cluster 1E0657-558, the relationship between

the X-ray observed Σ-map and the gravitational lensing κ-map is discussed in §5.3.2.

5.3 Bullet Cluster 1E0657-558

Figure 5.3: Bullet Cluster 1E0657-558

False colour composite image.

The surface density Σ-map peaks
reconstructed from X-ray imaging
observations are shown in red and
the convergence κ-map peaks as re-
constructed from strong and weak
gravitational lensing observations are
shown in blue. Image provided cour-
tesy of Chandra X-ray Observatory.

http://chandra.harvard.edu/photo/2006/1e0657/
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The Chandra Peer Review has declared the Bullet Cluster 1E0657-558 to be the most

interesting cluster in the sky. This system, located at a redshift z = 0.296 has the highest

X-ray luminosity and temperature (T = 14.1±0.2 keV ∼ 1.65×108 K), and demonstrates

a spectacular merger in the plane of the sky exhibiting a supersonic shock front, with

Mach number as high as 3.0± 0.4 (Markevitch, 2006). The Bullet Cluster 1E0657-558 has

provided a rich dataset in the X-ray spectrum which has been modelled to high precision.

From the extra-long 5.2 × 105 s Chandra space satellite X-ray image, the surface mass

density, Σ(x, y), was reconstructed providing a high resolution map of the ICM gas (Clowe

et al., 2007). The Σ-map, shown in a false colour composite map (in red) in Figure 5.3 is

the result of a normalized geometric mass model based upon a 16′×16′ field in the plane of

the sky that covers the entire cluster and is composed of a square grid of 185× 185 pixels

(∼ 8000 data-points).

Based on observations made with the NASA/ESA Hubble Space Telescope, the Spitzer

Space Telescope and with the 6.5 meter Magellan Telescopes, Clowe et al. (2006a); Bradač

et al. (2006); Clowe et al. (2007) reported on a combined strong and weak gravitational

lensing survey used to reconstruct a high-resolution, absolutely calibrated convergence κ-

map of the region of sky surrounding Bullet Cluster 1E0657-558, without assumptions on

the underlying gravitational potential. The κ-map is shown in the false colour composite

map (in blue) in Figure 5.3. The gravitational lensing reconstruction of the convergence

map is a remarkable result, considering it is based on a catalogue of strong and weak lensing

events and relies upon a thorough understanding of the distances involved – ranging from

the redshift of the Bullet Cluster 1E0657-558 (z = 0.296) which puts it at a distance of

the order of one million parsecs away. Additionally, the typical angular diameter distances

to the lensing event sources (z ∼ 0.8 to z ∼ 1.0) are several million parsecs distant.

In most observable systems, gravity creates a central potential, where the baryon den-

sity peaks. As exhibited in Figure 5.3, the latest results from the Bullet Cluster 1E0657-558

show, beyond a shadow of doubt, that the Σ-map, which is a direct measure of the hot

ICM gas, is offset from the κ-map, which is a direct measure of the curvature (convergence)

of space-time. The fact that the κ-map is centered on the galaxies, and not on the ICM

gas mass is certainly either evidence of “missing mass”, as in the case of the dark matter
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paradigm, or evidence of a stronger gravitational coupling due to a modification to gravity,

as supported by Brownstein and Moffat (2007). Clowe et al. (2007) stated

One would expect that this (the offset Σ- and κ-peaks) indicates that dark
matter must be present regardless of the gravitational force law, but in some
alternative gravity models, the multiple peaks can alter the lensing surface
potential so that the strength of the peaks is no longer directly related to the
matter density in them. As such, all of the alternative gravity models have to
be tested individually against the observations.

Clowe et al. (2007) described this as a degeneracy between whether gravity comes from

dark matter, or from the observed baryonic mass of the hot ICM and visible galaxies where

the excess gravity is due to a fifth force modification to the potential. This degeneracy

may be split by examining a system that is out of steady state, where there is spatial

separation between the hot ICM and visible galaxies. This is precisely the case in galaxy

cluster mergers such as the Bullet Cluster 1E0657-558, since the galaxies will experience a

different gravitational potential created by the hot ICM than if they were concentrated at

the center of the ICM.

The data from the Bullet Cluster 1E0657-558 provides a laboratory of the greatest scale,

where the degeneracy between “missing mass” and “extra gravity” may be distinguished.

We are fortunate, indeed, that the Bullet Cluster 1E0657-558 is not only one of the hottest,

most supersonic, most massive cluster mergers seen, but the plane of the merger is aligned

with our sky! Brownstein and Moffat (2007) addressed the full-sky data product (Clowe

et al., 2006b) for the Bullet Cluster 1E0657-558, and provide first published results for

the King β-model of the Σ-map, detailed in §5.3.1. Brownstein and Moffat (2007) utilized

the metric skew-tensor gravity model of §3.3 to compute component mass profiles, and

account for all of the baryons in each of the main and subclusters, including all of the

galaxies in the regions near the main central dominant (cD) and the subcluster’s brightest

central galaxy (BCG), without non-baryonic dark matter, to fit the gravitational lensing

convergence map, as in §5.3.2. The results of the analysis include a map of the visible

baryon distribution, as in §5.3.3, and the dark matter distribution, as in §5.3.4.
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Figure 3: Surface density Σ-map.
Data reconstructed from X-ray imaging observations of the Bullet Cluster 1E0657-558, November 15, 2006 data
release (Clowe et al., 2006b). Σ-map observed peaks (local maxima) and κ-map observed peaks are shown for
comparison. The central dominant (cD) galaxy of the main cluster, the brightest cluster galaxy (BCG) of
the subcluster, and the MOG predicted gravitational center are shown. The colourscale is shown at the bot-
tom, in units of 1015 M!/pixel2. The resolution of the Σ-map is 8.5 kpc/pixel, based upon the mea-
sured redshift distance ∼ 260.0 kpc/arcminute of the Bullet Cluster 1E0657-558 (Bradač et al., 2006). The
scale in kpc is shown at the top of the figure. J2000 and map (x,y) coordinates are listed in Table 1.

alternatively by performing the fit to a subset of the Σ-map on a straight-line connecting the main cluster Σ-map
peak (R ≡ 0) to the main cD, and then extrapolating the fit to the entire map. This reduces the complexity of the
calculation to a simple algorithm, but is not guaranteed to yield a global best-fit. However, our approximate best-fit
will prove to agree with the Σ-map everywhere, except at the subcluster (which is neglected for the best-fit).

The scaled surface density Σ-map data is shown in solid red in Figure 4. The unmodeled peak (at R ∼ 300 kpc) is
due to the subcluster. The best-fit to the King β-model of Equation (34) is shown in Figure 4 in short-dashed blue,
and corresponds to

β = 0.803± 0.013, (43)

rc = 278.0± 6.8 kpc, (44)

where the value of the Σ-map at the main cluster peak is constrained to the observed value,

Σ0 = 1.6859× 1010 M!

pixel2

(

1 pixel

8.528 kpc

)2

= 2.3181× 108M!/kpc2. (45)

We may now solve Equation (33) for the central density of the main cluster,

ρ0 =
Σ0√
πrc

Γ
(

3
2β

)

Γ
(

3β−1
2

) = 3.34 × 105 M!/kpc2. (46)

Figure 5.4: Bullet Cluster 1E0657-558 – X-ray gas surface density map.

Data reconstructed from X-ray imaging observations of the Bullet Cluster 1E0657-558,
November 15, 2006 data release (Clowe et al., 2006b), showing Σ-map observed peaks
(local maxima) and κ-map observed peaks. The central dominant (cD) galaxy of the
main cluster, the brightest cluster galaxy (BCG) of the subcluster, and the MOG
predicted gravitational center are shown. The colourscale is shown at the bottom, in
units of 1015 M�/pixel2. The resolution of the Σ-map is 8.5 kpc/pixel, based upon the
measured redshift distance ∼ 260.0 kpc/arcminute (Bradač et al., 2006). The scale in kpc
is shown at the top of the figure. J2000 and map (x,y) coordinates are listed in Table 5.3.

5.3.1 X-ray gas map

With an advance of the Clowe et al. (2006b) November 15, 2006 data release, Brownstein

and Moffat (2007) performed a precision analysis to model the gross features of the surface

density Σ-map data in order to gain insight into the three-dimensional matter distribution,

ρ(r), and to separate the components into a model representing the main cluster and the

subcluster – the remainder after subtraction.

The Σ-map is shown in false colour in Figure 5.4. There are two distinct peaks in the

surface density Σ-map – the primary peak centered at the main cluster, and the secondary

peak centered at the subcluster. The main cluster gas is the brightly glowing (yellow)
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Table 5.3: J2000 sky coordinates of the Bullet Cluster 1E0657-558

Observation J2000 Coordinates Σ-map κ-map
RA Dec (x, y) (x, y)

(1) (2) (3) (4) (5)

Main cluster Σ-map peak 06 : 58 : 31.1 -55 : 56 : 53.6 (89, 89) (340, 321)
Subcluster Σ-map peak 06 : 58 : 20.4 -55 : 56 : 35.9 (135, 98) (365, 326)

Main cluster κ-map peak 06 : 58 : 35.6 -55 : 57 : 10.8 (70, 80) (329, 317)
Subcluster κ-map peak 06 : 58 : 17.0 -55 : 56 : 27.6 (149, 102) (374, 327)

Main cluster cD 06 : 58 : 35.3 -55 : 56 : 56.3 (71, 88) (330, 320)
Subcluster BCG 06 : 58 : 16.0 -55 : 56 : 35.1 (154, 98) (375, 326)

MOG Center 06 : 58 : 27.6 -55 : 56 : 49.4 (105, 92) (348, 322)

Notes. — November 15, 2006 data release (Clowe et al., 2006b): Column (1) provide the primary
observational features. Columns (2) and (3) list the J2000 right ascension (RA) and declination
(Dec) for each feature. Columns (4) and (5) provide the Σ-map and κ-map (x, y) coordinates
using a resolution of 8.5 kpc/pixel, and 15.4 kpc/pixel, respectively, based upon the measured
redshift distance ∼ 260.0 kpc/arcminute of the Bullet Cluster 1E0657-558 (Bradač et al., 2006).

region to the left of the subcluster gas, which is the nearly equally bright shockwave region

(arrowhead shape to the right). The κ-map observed peaks, the central dominant (cD)

galaxy of the main cluster, the brightest cluster galaxy (BCG) of the subcluster, and the

MOG predicted gravitational center are shown in Figure 5.4 for comparison. J2000 and

map (x,y) coordinates are listed in Table 5.3.

Since there is a multitude of source galaxies in a range of redshifts (z = 0.85 ± 0.15),

the source distances, Ds, may be averaged. For the Bullet Cluster 1E0657-558, Clowe et al.

(2004) used
DlDls

Ds

≈ 540 kpc, (5.39)

and the Newtonian critical surface mass density (with vanishing shear) of Equation (4.28),

Σc =
c2

4πGN

Ds

DlDls

≈ 3.1× 109 M�/kpc2 (5.40)

is effectively constant.
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Figure 5.5: Bullet Cluster 1E0657-558

King β-model fit to scaled Σ-map.

A cross-section of the Σ-map of
Figure 5.4 reconstructed from X-ray
imaging observations (Clowe et al.,
2006b), shown in solid red, on a
straight-line connecting the main X-ray
cluster peak to the main central dom-
inant (cD) galaxy. The King β-model
(neglecting the subcluster) of Equation
(5.25) is shown in short-dashed blue,
best-fit by Equations (5.41), (5.42)
and (5.43). The unmodeled peak (at
R ∼ 300 kpc) is due to the subcluster. R [kpc]

Σ
(R

)/
Σ

c

10005000-500-1000

0.1

0.08

0.06

0.04

0.02

0
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To calculate the best-fit parameters, β, rc and ρ0 of the King β-model of Equations (5.24)

and (5.25), Brownstein and Moffat (2007) applied a nonlinear least-squares fitting routine

(including estimated errors) to the Σ-map on a straight-line connecting the main cluster Σ-

map peak (R ≡ 0) to the main cD, and then extrapolated the fit to the entire map. This

reduces the complexity of the calculation to a simple algorithm, but is not guaranteed

to yield a global best-fit. However, the approximation provides a very low reduced χ2

everywhere on the full sky map, except at the subcluster (which is masked for the best-

fit). The X-ray gas surface density Σ-map data, and the King β-model of Equation (5.25),

best-fit to the scaled Σ-map, are shown in Figure 5.5, with the best-fit parameters,

β = 0.803± 0.013, (5.41)

rc = 278.0± 6.8 kpc, (5.42)

where the value of the Σ-map at the main cluster peak is constrained to the observed value,

Σ0 = 1.6859× 1010 M�
pixel2

(
1 pixel

8.528 kpc

)2

= 2.3181× 108M�/kpc2, (5.43)
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scaled by Σc of Equation (5.40). Solving Equation (5.24) for the central density of the

main cluster,

ρ0 =
Σ0√
πrc

Γ
(

3
2
β
)

Γ
(

3β−1
2

) = 0.334× 106 M�/kpc3, (5.44)

which is between one and two orders of magnitude less than the dark matter central

densities listed in Table 4.2 derived from the galaxy rotation curves of §4.2.3, proving that

cluster scale dark matter does not affect the dynamics of galaxy rotation curves. The set

of parameters, β, rc and ρ0, completely determines the isotropic isothermal King β-model

for the density, ρ(r), of Equation (5.2) of the main cluster X-ray gas, and the isotropic

isothermal model of §5.1.2 may be applied to measure the mass-luminosity relation in the

main cluster and compute the ratio of the Newtonian dynamic mass to the X-ray gas

(baryon) mass, per gravity theory.

Brownstein and Moffat (2007) computed the Newtonian dynamic mass profile for the

main cluster of the Bullet Cluster 1E0657-558, and determined the MSTG mass profile

according to Equations (3.93) and (3.94), finding that the modified gravity mass profile

is an excellent fit to the measured X-ray (baryon) mass profile, as shown in Panel (a) of

Figure 5.1. Across the full range of the r-axis, and throughout the radial extent of the

Bullet Cluster 1E0657-558, the 1σ correlation between the gas mass, M(r) and the MOG

dynamical mass, MMSTG(r), provides excellent agreement between theory and experiment.

Substituting Equations (5.41), (5.42) and (5.44) into Equation (5.4), we obtain the

main cluster outer radial extent,

rout = 2620 kpc, (5.45)

the distance at which the density, ρ(rout), drops to ≈ 10−28 g/cm3, or 250 times the mean

cosmological density of baryons. The total mass of the main cluster may be calculated by

substituting Equations (5.41), (5.42) and (5.44) into Equation (5.5):

Mgas = 3.87× 1014 M�, main cluster. (5.46)

The MOG temperature prediction, from the MSTG best-fit, is increasingly consistent
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with updated experimental values, shown in Table 5.4.

Table 5.4: Isothermal temperature of the main cluster

Year Source - Theory or Experiment T (keV) % error

2007 Computed value 15.5± 3.9
2002 accepted experimental value 14.8+1.7

−1.2 4.5
1999 ASCA+ROSAT fit 14.5+2.0

1.7 6.5
1998 ASCA fit 17.4± 2.5 12.3

Notes. — The computed isothermal temperature is consistent with the experimental values for
the main cluster (Markevitch et al., 2002).: Column (1) and (2) list the year and source of the
temperature result, respectively. Column (3) provides the temperature in keV, and Column (4)
provides the percent error between the computed and experimental values.

Model of the bullet subcluster

Although the X-ray morphology of the main cluster is very regular, and well described by

the King β-model of the main cluster, Liang et al. (2000) reported on a diffuse radio halo,

which requires the acceleration of thermal electrons to ultra-relativistic energies, enhanced

at the main X-ray gas peak and more focused at the densest part of the optical galaxy

distribution. Since galaxies are collisionless, at the ∼ 1 Mpc cluster scale, a merger with

the subcluster – the bullet in the X-ray gas surface density map of Figure 5.4 – allows the

galaxies to stream through the X-ray gas and generate the radio halo.

Markevitch et al. (2002) reported on Chandra observations, providing evidence that

the merger is ongoing and the subcluster is in a perturbed state far from hydrostatic

equilibrium leading to an apparent increase in the X-ray temperature, 150 million years

after its collision with the main cluster core. Barrena et al. (2002) studied the dynamics of

the collision, and determined that the subcluster is the remnant core of a moderate mass

cluster of galaxies, whose properties have been strongly affected. Randall et al. (2008)

studied the prominent bow shock, estimating the supersonic merger velocity of 4700 km

s−1, and concluded that the subcluster X-ray gas mass distribution is significantly more

peaked than a King profile.

Brownstein and Moffat (2007) computed the surface mass density of the subcluster

by subtracting the best-fit (χ2 < 0.2) King β-model to the main cluster – which agreed
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(a) The subcluster surface density Σ-map (b) The subcluster Σ-map su-
perposed onto the best-fit King β-model of the main cluster

Figure 5.6: Bullet Cluster 1E0657-558 – X-ray gas surface density model.

(a) Subtracted subcluster X-ray gas surface density map is shown in green.
(b) X-ray gas surface density model. The blue surface represents the Σ-
map due to the integrated (line-of-sight) King β-model fit to main clus-
ter. The green surface is the contribution to the Σ-map from the subcluster.

with the main cluster surface mass Σ-map (data) within 1% everywhere – from the total

X-ray surface mass density of Figure 5.4. The subcluster subtraction is accurate down to

ρ = 10−28 g/cm3 ∼ 563.2 M�/pc3 baryonic background density. After subtraction, the

subcluster Σ-map peak takes a value of 1.30× 108 M�/kpc2, whereas the full Σ-map has

a value of 2.32 × 108 M�/kpc2 at the subcluster Σ-map peak. Thus the subcluster (at

its most dense position) provides only ≈ 56% of the X-ray ICM, the rest is due to the

extended distribution of the main cluster.

Figure 5.6 is a stereogram of the subcluster subtracted surface density Σ-map and the

subcluster superposed onto the surface density Σ-map of the best-fit King β-model to the

main cluster.

Since the outer radial extent of the subcluster gas is less than 400 kpc, the Σ-map

completely contains all of the subcluster gas mass. By summing the subcluster subtracted

Σ-map pixel-by-pixel over the entire Σ-map peak, one is performing an integration of

the surface density, yielding the total subcluster mass. Brownstein and Moffat (2007)
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performed such a sum over the subcluster subtracted Σ-map data, obtaining

Mgas = 2.58× 1013 M�, subcluster. (5.47)

for the mass of the subcluster gas, which is less than 6.7% of the mass of main cluster gas

of Equation (5.46). This justifies the initial assumption that the subcluster may be treated

as a perturbation in order to fit the main cluster to the King β-model. The subsequent

analysis of the thermal profile confirms that the main cluster X-ray temperature is nearly

isothermal, lending further support to the validity of the King β-model and the reliability

of the isothermal temperatures of Table 5.4.

5.3.2 Gravitational lensing convergence map

The convergence κ-map of Figure 5.7 is a false colour image of the strong and weak gravi-

tational lensing reconstruction (Clowe et al., 2006a; Bradač et al., 2006; Clowe et al., 2007)

of all of the bending of light over the entire distance from the lensing event source toward

the Hubble Space Telescope. The source of the κ-map is ∝
∫
GNρ(r), along the line-of-site,

as in the Newtonian case of Equation (4.27), but ∝
∫
G(r)ρ(r) as in Equation (4.29) of

modified gravity with a spatially varying gravitational coupling.

Modified gravity solution

The lack of spherical symmetry in the κ-map, shown in Figure 5.7, is better visualized in

Panel (a) of Figure 5.8, which demonstrates the importance of the subcluster’s dynamic

mass.

Brownstein and Moffat (2007) utilized the metric skew-tensor gravity model of §3.3 to

compute the weighted surface mass density, Σ̄ of Equation (5.50), of the X-ray gas mass of

the main cluster using the King β-model of Equation (5.2) with the best-fit parameters of

Equations (5.41), (5.42) and (5.44). This is shown as Σ̄(r)/Σc by the black surface of the

κ-model of Panel (b) of Figure 5.8. Including the galaxies is accomplished by Equation

(5.48) which is shown by the red surface of the κ-model.

Brownstein and Moffat (2007) proceeded to account for the spherical symmetry break-

ing effect of the subcluster on the dynamic mass of Equation (3.94): Remarkably, as the



§Chapter 5. CLUSTERS OF GALAXIES 183

21

IV. THE CONVERGENCE MAP FROM LENSING ANALYSIS

A. The κ-Map
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Figure 12: The surface density κ-map reconstructed from strong and weak gravitational lensing.
Main cluster and subcluster of the Bullet Cluster 1E0657-558, November 15, 2006 data release κ-map (Clowe et al.,
2006b) observed peaks (local maxima) and Σ-map observed peaks are shown for comparison. The cen-
tral dominant (cD) galaxy of the main cluster, the brightest cluster galaxy (BCG) of the subcluster, and
the MOG predicted gravitational center are shown. J2000 and map (x,y) coordinates are listed in Table 1.

As tempting as it is to see the convergence κ-map of Figure 12 – a false color image of the strong and weak
gravitational lensing reconstruction (Bradač et al., 2006; Clowe et al., 2006a,c) – as a photograph of the “curvature”
around the Bullet Cluster 1E0657-558, it is actually a reconstruction of all of the bending of light over the entire
distance from the lensing event source toward the Hubble Space Telescope. The source of the κ-map is ∝

∫

GNρ(r),
along the line-of-site, as in Equation (35), ∝ G(r)

∫

ρ(r) as in Equation (39), or ∝
∫

G(r)ρ(r) as in Equation (41).
For the Bullet Cluster 1E0657-558, we are looking along a line-of-sight which is at least as long as indicated by a
redshift of z = 0.296 (Gpc scale). The sources of the lensing events are in a large neighbourhood of redshifts, an
estimated z = 0.85 ± 0.15. This fantastic scale (several Gpc) is naturally far in excess of the distance scales involved
in the X-ray imaging surface density Σ-map. It is an accumulated effect, but only over the range of the X-ray source
– as much as 2.2 Mpc. A comparison of these two scales indicates that the distance scales within the Σ-map are 10−3

below the Gpc’s scale of the κ-map.

Preliminary comments on the November 15, 2006 data release (Clowe et al., 2006b):

• The conclusion of Bradač et al. (2006); Clowe et al. (2006a), that the κ-map shows direct evidence for the
existence of dark matter may be premature. Until dark matter has been detected in the lab, it remains an open
question whether a modified gravity theory, such as MOG, can account for the κ-map without nonbaryonic dark
matter. MOG, due to the varying gravitational coupling, Equation (18), gives the Newtonian 1/r2 gravitational
force law a considerable boost – “extra gravity” as much as G∞ ≈ 6 for the Bullet Cluster 1E0657-558.

Figure 5.7: Bullet Cluster 1E0657-558 – Gravitational lensing convergence map.

Data reconstructed from strong and weak gravitational lensing of the Bullet Clus-
ter 1E0657-558, November 15, 2006 data release (Clowe et al., 2006b), showing
convergence κ-map observed peaks (local maxima) and Σ-map observed peaks. The
central dominant (cD) galaxy of the main cluster, the brightest cluster galaxy (BCG) of
the subcluster, and the MOG predicted gravitational center are shown. The scale in kpc
is shown at the top of the figure. J2000 and map (x,y) coordinates are listed in Table 5.3.

MOG center was separated from the main cluster Σ-map peak, due to the gravitational

effect of the subcluster, the centroid naturally shifted toward the κ-map peak, and the

predicted height of the κ-map decreased, flattening the peak and dimpling the core and

skewing the distribution in the direction opposite to the shift in the MOG center. Although

Moffat (2006a) demonstrated that the integration of the κ-map, assuming a constant sur-

face mass density for the galaxies, produced a peak offset from the X-ray peak, the effect

alone was insufficient to fit the Bullet Cluster 1E0657-558 κ-map data. However, the

difference can be entirely accounted for by including the surface mass density of the galax-

ies, Σ̄galax(r)/Σc, as indicated by the red surface of the best-fit κ model of Figure 5.8.
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(a) κ-map, November 15, 2006 data release (b) Best-fit κ-model

Figure 5.8: Bullet Cluster 1E0657-558 – Best-fit model to the gravitational lensing convergence map.

(a) Gravitational lensing convergence κ-map November 15, 2006 data release (Clowe
et al., 2006b) is shown in gold. The twin peaks are due to the main and subcluster,
respectively. (b) Gravitational lensing convergence model. The black surface is the
best-fit κ-map to the main cluster X-ray gas component. The red surface represents
the excess κ-map of the galactic component beyond the best-fit X-ray gas component.

Combining the black surface and the red surface, we obtain the best-fit model,

κ(r) =
Σ̄(r) + Σ̄galax(r)

Σc

, (5.48)

which is equivalent to the κ-map data illustrated by the gold surface on the left hand side

of Figure 5.8.

As introduced in §4.2.4, predictions for the κ-map of high resolution sub-kiloparsec

galaxy-galaxy lensing, plotted in Figure 4.2, are computed by

κ(r) =
∫ 4πG(r)

c2

DlDls

Ds

ρ(r)dz ≡ Σ̄(r)

Σc

, (5.49)

where

Σ̄(r) =
∫ G(r)

GN

ρ(r)dz, (5.50)

is the weighted surface mass density. For the multiple source Bullet Cluster 1E0657-558
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reconstruction, Clowe et al. (2004) used Σc ≈ 3.1× 109M�/kpc2, without estimate of the

uncertainty. The precision of the κ-map depends on the validity of the assumption of small

variation ∆Σc across the lens, which depends on the variation in the ratio, Dls/Ds.

Substituting Equation (5.36) into Equation (5.50),

Σ̄(r) =
∫

Γ(r)ρ(r)dz. (5.51)

In the Newtonian limit, G(r) → GN , and therefore the factor Γ(r) → 1 is removed from

the integral, and Σ̄→ Σ, recovering the Σ-map of Equation (5.16).

Whereas Γ(r) is a maximum value for the outer radial positions of galaxies, contributing

more weight to the integral of Equation (5.51) in the galactic halo, Γ(r) contributes more

weight to the cores of spherically symmetric clusters of galaxies.

5.3.3 Visible baryon distribution

The galaxies contribute a “measurable” surface mass density,

Σgalax(r) ≈ GN

G(r)

(
κ(r)Σc − Σ̄(r)

)
, (5.52)

which we may interpret as the difference between the κ-map and the scaled contribution

from the weighted surface density of the ICM gas. The result of the galaxy subtraction

of Equation (5.52) is shown as the galactic surface mass density map, in Figure 5.9. The

surface mass density of the visible baryons is taken to be the sum of the ICM gas component

and the galaxies, as shown in the left panel of Figure 5.10.

The total mass of the galaxies is determined by integrating over the Σ-map,

Mgalax =
∫

Σgalax(r)dxdy. (5.53)

Brownstein and Moffat (2007) performed the integration within a 100 kpc radius aper-

ture about the main cluster cD and subcluster BCG, separately, the results of which are

listed in Table 5.5, where they are compared with the upper limits on galaxy masses set

by HST observations. If the hypothesis that the predicted Mgalax is below the bound set
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Figure 13: The galaxy surface density Σ-map prediction.
The prediction of the Σ-map due to the galaxies as computed by the difference between the κ-map and our MOG
κ-model, scaled as surface mass density according to Equation (78). Σ-map and κ-map observed peaks are shown
for comparison. The central dominant (cD) galaxy of the main cluster, the brightest cluster galaxy (BCG) of the
subcluster, and the MOG predicted gravitational center are shown. J2000 and map (x,y) coordinates are listed
in Table 1. Component masses (integrated within a 100 kpc radius aperture) for the main and subcluster, the
MOG center and the total predicted baryonic mass, Mbary, for the Bullet Cluster 1E0657-558 are shown in Table 5.

where Σ̄ is the weighted surface mass density of Equation (42), and the best-fit κ-model of Σ̄/Σc is derived from
Equations (41) and (42). Therefore, the galaxies contribute a “measurable” surface mass density,

Σgalax(x, y) ≈
κ(x, y)Σc − Σ̄(x, y)

G(x, y)
, (78)

where G(x, y) corresponds to the best-fit model of Equation (18) listed in Table 3. The result of the galaxy subtraction
of Equation (78) is shown in Figure 13. Now we may interpret Figure 14d as the total convergence κ-map where the
black surface is the contribution from the weighted surface density of the ICM gas, Σ̄/Σc, and the red surface is the
remainder of the κ-map due to the contribution of the weighted surface density of the galaxies, Σ̄galax/Σc. We may
calculate the total mass of the galaxies,

Mgalax =

∫

Σgalax(x
′, y′)dx′ dy′. (79)

We were able to perform the integration within a 100 kpc radius aperture about the main cluster cD and subcluster

Figure 5.9: Bullet Cluster 1E0657-558 – Galactic surface density map.

The predicted Σ-map due to the galaxies as computed by the difference between
the κ-map and the MOG κ-model, scaled as surface mass density according to Equation
(5.52). Σ-map and κ-map observed peaks are shown for comparison. The central
dominant (cD) galaxy of the main cluster, the brightest cluster galaxy (BCG) of the
subcluster, and the MOG predicted gravitational center are shown. J2000 and map (x,y)
coordinates are listed in Table 5.3. Component masses (integrated within a 100 kpc
radius aperture) for the main and subcluster, the MOG center and the total predicted
baryonic mass, Mbaryon, for the Bullet Cluster 1E0657-558 are shown in Table 5.5.

by HST observations is true, then it follows that

Mbary = Mgas +Mgalax, (5.54)

requires no addition of non-baryonic dark matter. The results of our best-fit forMgas, Mgalax

and Mbary of Equation (5.54) are listed in Table 5.5. The result of Mgalax/Mgas ≈ 0.4% in

the central ICM is due to the excellent fit in MOG across the hundreds of kpc separating

the main and subcluster.
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(a) Scaled surface density for the MOG
predicted galaxies, Σgalax/Σc, and the MOG predicted
visible baryons, Σbary/Σc, compared to the ICM gas.
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(b) Scaled surface
density of dark matter, ΣDM/Σc, compared to ICM gas.

Figure 15: Plot of the scaled surface density Σ/Σc along the line connecting the main cluster Σ-map peak with the main cD.
In Figure 15a, the prediction of Equation (78) for the galaxies is shown in long-dashed magenta, and the prediction of Equation
(80) for the visible baryonic mass is shown in solid brown. The calculation of Equation (81) for dark matter is shown in Figure
15b in dash-dot black. The ICM gas distribution inferred from the Σ-map data is shown in short-dashed green on each plot.

for the main cluster since it was well described by an isothermal sphere, to an excellent approximation. We further
argued that the subcluster was (per mass) a small perturbation to the ICM. But if MOG has more freedom than
MOND, but less freedom than Dark Matter, then what is the additional degree of freedom that enters the Bullet
Cluster observations?

The question is resolved in that there is a physical degree of freedom due to a lack of spherical symmetry in the
Bullet Cluster, and whence the galaxies sped outward, beyond the ICM gas clouds which lagged behind – effectively
allowing the galaxies to climb out of the spherical minimum of the Newtonian core where MOG effects are small
(inside the MOG range r0) upwards along the divergence of the stress-energy tensor (Newtonian potential, if you
prefer a simple choice) towards the far infrared region of large gravitational coupling, G∞.

In fact, the Bullet Cluster data results describe, to a remarkable precision, a simple King β-Model. Our analysis,
with the result to the best-fit shown in Table 2, uniquely determines the mass profile ρ(r) of Equation (21) used
throughout our computations. We permitted only a single further degree of freedom to account for the fits of Figure
14c and the predictions of Figures 13 and 15; this was the location of the MOG center, where the gravitational
coupling, G(0) → 1, is a minimum at the Newtonian core. Remarkably, the data did not permit a vanishing MOG
center, with respect to the peak of the ICM gas ρ(0). We have shown the location of the MOG center as determined
by a numerical simulation of convergence map according to Equations (41) and (42) in each of Figures 3, 10, 12 and
13 and provided the coordinates in Table 1.

The surface density Σ-map derived from X-ray imaging observations is separable into the main cluster and the
subcluster subtracted surface density Σ-map through a low χ2-fitting King β-model. Following the (> 100) galaxy
cluster survey of Brownstein and Moffat (2006a), we have derived a parameter-free (unique) prediction for the X-ray
temperature of the Bullet Cluster 1E0657-558 which has already been experimentally confirmed. In Equations (41)
and (42), we have derived a weighted surface mass density, Σ̄, from the convergence κ-map which produced a best-fit
model (Figures 14c and 14d and Table 3). We have computed the dark matter and the MOG predicted galaxies and
baryons (Figure 15), and noted the tremendous predictive power of MOG as a means of utilizing strong and weak
gravitational lensing to do galactic photometry – a powerful tool simply not provided by any candidate dark matter
(Figure 13). The predictions for galaxy photometry will be the subject of future investigations in MOG, and the
availability of weak and strong gravitational lensing surveys will prove invaluable in the future.

Although dark matter allows us to continue to use Einstein (weak-field) and Newtonian gravity theory, these theories

Figure 5.10: Bullet Cluster 1E0657-558 – Distribution of visible and dark matter

Plot of the scaled surface density, Σ(r)/Σc, of the ICM gas is shown in short-
dashed green on each plot along the line connecting the main cluster Σ-map peak with
the main cD. In the left panel, the MOG prediction for the galaxies of Equation (5.52)
is shown in long-dashed magenta, and the prediction of the visible baryonic mass due
to the combined ICM gas mass and galaxies is shown in solid brown. The calculation
of Equation (5.55) for dark matter is plotted in the right panel in dash-dot black.

5.3.4 Dark matter distribution

In the absence of modified gravity, dark matter is hypothesized to account for all of the

“missing mass” which results in applying Newton/Einstein gravity. This means, for the

November 15, 2006 data release (Clowe et al., 2006a; Bradač et al., 2006; Clowe et al.,

2007, 2006b), that the “detected” dark matter must contribute a surface mass density,

ΣDM(x, y) ≈ κ(x, y)Σc − Σ(x, y), (5.55)

and is plotted in the right panel of Figure 5.10.

The total mass of the dark matter distribution with an associated total mass,

MDM =
∫

ΣDM(r)dxdy. (5.56)
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Upon substitution of Equation (5.55), the integral of Equation (5.56) becomes:

MDM = Σc

∫
κ(r)dxdy −

∫
Σ(r)dxdy (5.57)

where we have neglected Mgalax in Equation (5.57), because the contribution from the

galaxies is ≤ 1 – 4% of Mtotal due to dark matter dominance.

Brownstein and Moffat (2007) computed MDM in Equation (5.57) by a pixel-by-pixel

sum over the convergence κ-map data and surface density Σ-map data, within a 100 kpc

radius aperture around the main and subcluster κ-map peaks, respectively. The result of

the computation, including the mass ratios, Mgalax/Mgas, for the main and subcluster and

central ICM are provided in Table 5.5.

Table 5.5: Component mass predictions.

Component Main cluster Subcluster Central ICM Total
(1) (2) (3) (4) (5)

Mgas 7.0× 1012 M� 5.8× 1012 M� 6.3× 1012 M� 2.2× 1014 M�
Mgalax 1.8× 1012 M� 3.1× 1012 M� 2.4× 1010 M� 3.8× 1013 M�
Mbary 8.8× 1012 M� 9.0× 1012 M� 4.9× 1012 M� 2.6× 1014 M�
MDM 2.1× 1013 M� 1.7× 1013 M� 1.4× 1013 M� 6.8× 1014 M�

Mgalax/Mgas 26% 53% 0.4% 17%
Mgas/MDM 33% 34% 45% 32%

Notes. — Column (1) specifies the component masses and mass fractions. Columns (2) and (3) list
the component masses integrated within a 100 kpc radius aperture for the main and subcluster,
respectively. Columns (4) lists the component mass integrated within a 100 kpc radius aperture
for the central ICM located at the MOG center. Column (5) lists the total of each component
masses integrated over the full Σ-map.

The dark matter result of Mgas/MDM ≈ 45% in the central ICM implies that the

evolutionary scenario does not lead to a spatial dissociation between the dark matter

and the ICM gas, which confirms that the merger is ongoing. In contrast, the MOG

result shows a true dissociation between the galaxies and the ICM gas as required by

the evolutionary scenario. The baryon to dark matter fraction over the full Σ-map is

32%, which is significantly higher than the Λ-CDM cosmological baryon mass-fraction of

17+1.9
−1.2% (Spergel et al., 2007).
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5.3.5 Neutrino halos

Sanders (2003) postulated a two component model for the Coma cluster, adding a nonlu-

minous rigid sphere to include the contribution of finite mass neutrinos – a candidate for

hot non-baryonic dark matter – with a constant density core,

ρν < 4.8× 10−27g cm−3
(
mν

2eV

)4 ( T

keV

) 3
2

. (5.58)

Sanders (2003) assumed that the constant density cores have finite radii that scale as

rν = 2rc, (5.59)

where rc is the gas core radius of the isothermal King β-model of Equation (5.2). For a 2

eV neutrino and the accepted experimental value of Table 5.4 suggest

ρν < 3.9+0.7
−0.5 × 106M�kpc−3. (5.60)

Substituting Equation (5.42) into Equation (5.59) gives the constant density neutrino core

radius,

rν = 556± 14kpc, (5.61)

which has an integrated mass within an aperture of 100 kpc of

M100 = 1.6+0.3
−0.2 × 1013M�, (5.62)

which is within 30% of the required value according to Table 5.5. However, the total

integrated core mass of

Mν = 2.8+0.5
−0.3 × 1015M�, (5.63)

exceeds the mass of the Bullet Cluster 1E0657-558 by a factor of three, implying that

while Equation (5.60) is reasonable, Equations (5.59) and (5.61) may be overestimating

the extent of the neutrino halos by a factor of two.

Sanders (2007) elaborated on the MOND neutrino-baryon model of clusters, confirming
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the result of §5.2.4 that the need for dark matter appears to decrease with increasing

temperature, suggesting Equation (5.58) is opposite to observation, but argued that the

observed trend is caused by the cooling and inflow of baryons. Sanders (2007) provided

an improved neutrino halo model for clusters, with the constant density core of Equation

(5.58), and included a theoretically derived scaling relation instead of Equation (5.59),

rν =

 0.7 Mpc
(
mν
2eV

)−4/3 (
T

keV

) 1
6 forT ≤ 3 keV

(
mν
2eV

)−8/5

1.1 Mpc
(
mν
2eV

)−2 (
T

keV

)− 1
4 otherwise,

(5.64)

which assumes three flavours of neutrinos, each of which have comparable velocity disper-

sions to the baryons and maintain their cosmological density ratio,

Ων/Ωbaryon = 2.8
(
mν

2eV

)
. (5.65)

Now, substituting the accepted experimental value of Table 5.4 of T = 14.5+2.0
−1.7 keV into

Equation (5.64) gives the constant density 2 eV neutrino core radius,

rν = 575+20
−17 kpc, (5.66)

which is consistent with Equation (5.61) and therefore too large by a factor of 2 to explain

the total mass of the Bullet Cluster 1E0657-558.

Angus et al. (2007) confirmed that a simple model of 4 dominant constant density cores

of 2 eV neutrinos can supply the missing mass in the peaks of the gravitational lensing

convergence κ-map of the Bullet Cluster 1E0657-558, provided the neutrino cores have

radii rν . 50 kpc. Brownstein and Moffat (2007) provided a comparison of the surface

density of dark matter to the surface density of the X-ray emitting ICM gas, shown in

Panel (b) of Figure 5.10, consistent with 2 extended, overlapping halos centered at the

galactic regions, which may have constant density cores in the inner 50 kpc, but then

declining more rapidly.

In the absence of scaling relations, such as those investigated by Sanders (2003), each

neutrino halo requires additional free parameters to specify the shape of the density pro-
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file, which may be better described by other possibilities including the King β-model, or

the core-modified dark matter profile of §5.2.1 which fits clusters of galaxies without the

necessity of MOND. The core-modified dark matter fit to the main cluster of the Bullet

Cluster 1E0657-558 from §5.2, with best-fit parameters listed in the top row of Panel (a)

of Table 5.2, provides

ρ0 = (2.73± 0.47)× 106M�kpc−3, (5.67)

rs = 328.1± 26.7 kpc, (5.68)

Identifying Equation (5.67) with Equation (5.58), we may solve for the upper limit on the

neutrino mass,

mν < 1.8± 0.1 eV, (5.69)

which is below the Mainz/Troitsk experimental limit on the electron neutrino, mν,e < 2.2

eV, but is falsifiable in the near future.

Angus et al. (2008) decomposed the mass profiles of 26 X-ray systems according to

MOND, with temperatures ranging from 0.5 keV to 9 keV, and concluded that whatever

the equilibrium distribution, 2 eV neutrino halos cannot explain the inner 100 to 150

kiloparsecs of clusters within MOND. This issue is seen in the dynamic mass factors plotted

in Figure 5.2, since each plot is maximized in the inner region of every cluster in the sample,

where the missing mass problem is most pronounced.
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Solar system

“I was like a boy playing on the sea-shore, and diverting myself now and then

finding a smoother pebble or a prettier shell than ordinary, whilst the great

ocean of truth lay all undiscovered before me.”

Sir Isaac Newton

The motion of the planets and planetoids, their satellites, and the chunks of matter

that comprise the asteroids and the comets are along paths derived from matter’s response

to gravity. The opportunity to discover new celestial physics in the solar system provides a

challenge to form deeper understandings of Kepler’s eponymous laws, from which Newton’s

theory of universal gravitation is founded. Precise observation of orbits of the many bodies

in the solar system suggest Kepler’s three laws require subtle corrections:

Kepler’s first law: The path of planets and bodies about the sun are near elliptic

in shape, with a focus near the center of the sun, but changing in time under the

influence of Jupiter and the other solar bodies.

Kepler’s second law: An imaginary line drawn from the center of a body to the center

of a body in orbit will sweep out nearly equal changing areas in equal intervals of

time, where the change in area slightly increases if orbital angular momentum is

transferred to the orbiting body from the spin of the central body, and decreases if

angular momentum is transferred in the opposite direction.

Kepler’s third law: The ratio of the squares of the periods of any two planets is nearly

equal to the ratio of the cubes of their average distances from the sun, where the

difference in this near equality is most significant at the orbit of Jupiter.

Because the sun is not the only source of gravity in the solar system, and since so few

solutions to Einstein’s gravity theory are known, modelling gravity in the solar system is

a managed process, such as the astronomer’s ephemerides, which are datacentric solutions

without the elegance and utility of a theoretical prediction, which does not need daily

193
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updates to correct for unmodelled physics, deemed unnecessary. Jupiter adds a significant

source of gravity to the solar system, with mass MX = 0.0095M�, which is more than

twice the total mass of all the other smaller bodies, combined.

New physics beyond the orbit of Jupiter must be nearly consistent with Kepler’s three

laws, and should make quantitative predictions of the necessary amendments. However,

all terrestrial and solar system attempts to falsify Moffat’s nonsymmetric gravity theory

(NGT) have led only to upper bounds on the possible strength of the modified gravity

fifth force, including predictions for the Gravity Probe B experiment. Moffat and Brown-

stein (1990) considered spinning test particles and the motion of a gyroscope, finding that

the difference between the NGT correction to the gyroscope precession, and the Einstein

correction, would be smaller than the Gravity Probe B experiment could detect in orbit

about Earth.

Brownstein and Moffat (2006c) considered the motion of the Pioneer 10 and 11 space-

craft in the metric skew-tensor gravity theory, as in §3.3, proving that the unexpected

sunward acceleration can be explained by modified gravity without leading to disagree-

ment between the predicted and actual orbits of the outermost planets. According to the

Pioneer Explorer Collaboration, the most likely explanation is that there is a systematic

origin to the effect, such as a thermal recoil force investigated by Toth and Turyshev (2009),

using a simulated Pioneer 10 data set, but neither has NASA ruled out the modified gravity

solution, presented in §6.1.2.

6.1 Pioneer 10/11 Anomaly

The radio tracking data from the Pioneer 10/11 spacecraft during their travel to the outer

parts of the solar system have revealed a possible anomalous acceleration. The Doppler

data obtained at distances r from the Sun between 20 and 70 astronomical units (AU)

showed the anomaly as a deviation from Newton’s and Einstein’s gravitational theories.

At this time, NASA continues to support the search for a gravitational solution, as in

§6.1.2, but the Pioneer Explorer Collaboration may eventually be able to rule out modified

gravity as the origin of the effect, once the recovered data sets have been formatted and

a comprehensive model can be applied, as progressing according to Toth and Turyshev
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(2009).

Brownstein and Moffat (2006c) applied the metric skew-tensor gravity theory of §3.3, in

which Einstein gravity is coupled to a Kalb-Ramond-Proca field, as in §3.3.2, and provided

a fit to the available anomalous acceleration data or the Pioneer 10/11 spacecraft consistent

with all current satellite, laser ranging and observations for the inner planets.

The Pioneer anomalous acceleration observations are described in §6.1.1, and the fit is

presented in §6.1.2. The effect of modified gravity in the solar system on Kepler’s law of

motion and the planetary ephemerides are explored in §6.1.3 and §6.1.4, respectively, and

the constraints set by observations of the anomalous perihelion advance are identified in

§6.1.5.

6.1.1 Pioneer anomalous acceleration

Anderson et al. (1998, 2002); Turyshev et al. (2006a) observed the Doppler residuals data as

the differences of the observed Doppler velocity from the modelled Doppler velocity, and

computed the anomalous acceleration directed towards the Sun, with an approximately

constant amplitude over the range of distance, 20 AU < r < 70 AU:

aP = (8.74± 1.33)× 10−8 cm s−2. (6.1)

After a determined attempt to account for all known sources of systematic errors,

Anderson et al. (1998, 2002); Turyshev et al. (2006a) reached the conclusion that the

Pioneer anomalous acceleration towards the Sun could be a real physical effect that requires

a physical explanation. Turyshev et al. (2006b) reviewed NASA’s efforts to recover the

extended Pioneer doppler data set, emphasizing that the apparent difficulty to explain the

anomaly within standard physics is a motivation to look for new physics, including the

model of Brownstein and Moffat (2006c).

In NASA’s official statement, Turyshev (2007) reported,

“As of March 2007, the existence of the anomaly is confirmed by seven
independent investigations using different navigational codes – the signal is
present in the Doppler data received from both Pioneers 10 and 11. The most
important question now is to identify the cause of this anomalous frequency
drift discovered in the Pioneer data.
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“. . . Our thermal modelling of the Pioneer vehicles is progressing very well.
We finished the development of the geometric mathematical models of the
spacecraft that include geometry and properties of most of the important space-
craft components and surfaces. We are now working on the thermo-dynamical
model of the vehicles. At this stage, we have a very good understanding of
heat re-distribution within the craft and soon will be ready to compute the
heat flow to the outside of the craft. Soon, we will be able to tell whether or
not heat contributes to the formation of the anomaly.”

MOND is not considered a viable mechanism because the value of the MOND universal

acceleration of Equation (4.8) that provides good fits to galaxy rotation curves, as in

Chapter 4, is orders of magnitude smaller than the acceleration of the Pioneer satellites,

aP , until the satellite reaches the MOND transition radius of Equation (3.21),

rt =

√
GNM�
a0

∼ 7700 AU, (6.2)

and is not likely to be observed on the scales of the solar system.

Galaxy scale dark matter cannot affect the solar system, since the density of the Milky

Way dark matter halo in the vicinity of the solar system is

ρ ∼ 5.0× 10−19M�/AU3, (6.3)

and therefore a galaxy scale dark matter globe, equivalent in mass to Earth, would have a

radius of greater than 10,000 AU.

6.1.2 Gravitational solution

The acceleration law of Equations (3.90) and (3.91), derived from the metric skew-tensor

gravity theory of §3.3.5, can be written

a(r) = −G(r)M

r2
, (6.4)

where

G(r) = GN

[
1 + α(r)

(
1− exp(−r/λ(r))

(
1 +

r

λ(r)

))]
. (6.5)
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Brownstein and Moffat (2006c) postulated a gravitational solution that the Pioneer 10/11

anomaly is caused by the difference between the running G(r) of Equation (6.5) and the

bare value, GN . So the Pioneer anomalous acceleration directed towards the center of the

Sun is given by

aP = −δG(r)M�
r2

, (6.6)

where

δG(r) = G(r)−GN = GNα(r)

[
1− exp(−r/λ(r))

(
1 +

r

λ(r)

)]
. (6.7)

The dynamic mass factor is defined as

Γ(r) = G(r)/GN = 1 +
δG(r)

GN

(6.8)

= G(r)/GN = 1 + α(r)

[
1− exp(−r/λ(r))

(
1 +

r

λ(r)

)]
, (6.9)

and measures the degree to which the observed acceleration of the Pioneer satellite differs

from the Newtonian acceleration,

aP (r) = (Γ(r)− 1)aN(r), (6.10)

where the Newtonian acceleration is

aN(r) = −GNM

r2
. (6.11)

Therefore, a measurement of Γ(r) ∼ 1 dismisses the Pioneer anomaly, whereas modified

gravity predicts a monotonically increasing Γ(r) due to Equation (6.9).

Brownstein and Moffat (2006c) proposed the following parametric representations of

the running of α(r) and λ(r):

α(r) = α∞(1− exp(−r/r̄))b/2, (6.12)

λ(r) =
λ∞

(1− exp(−r/r̄))b
. (6.13)



198 Chapter 6. SOLAR SYSTEM 1

r [AU]

a P
(r

)
[×

10
−

8
cm

/s
2
]

5040302010

10

9

8

7

6

5

4

3

2

1

(a) Linear scale for radial axis

r [AU]

a P
(r

)
[×

10
−

8
cm

/s
2
]

10001001010.1

10

9

8

7

6

5

4

3

2

1

(b) Logarithm scale for radial axis

Theoretical best-fit with lines Data with error bars

aP (r) red solid line Pioneer 10 light blue open circles

mean aP horizontal black dotted lines Pioneer 11 blue closed circles

Figure 6.1: Pioneer 10/11 anomalous acceleration

Pioneer 10/11 anomalous acceleration, aP (r) in 10−8 cm s−1, vs. orbital distance, r

in AU, of Equation (6.6), is plotted on a linear scale out to r = 50 AU, in the
left panel, and on a logarithmic scale out to r = 5, 000 AU, in the right panel.
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Here, r̄ is a non-running distance scale parameter and b is a constant.

In Figure 6.1, we display a best-fit to the Pioneer 10/11 anomalous acceleration data

from Nieto and Anderson (2005, Figure 4) obtained using a nonlinear least-squares fitting

routine including estimated errors from the Doppler shift observations (Anderson et al.,

2002).

The best-fit parameters are:

α∞ = (1.00± 0.02)× 10−3,

λ∞ = 47± 1 AU,

r̄ = 4.6± 0.2 AU,

b = 4.0. (6.14)

The small uncertainties in the best-fit parameters are due to the remarkably low variance

of residuals corresponding to a reduced χ2 per degree of freedom of 0.42 signalling a good
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Figure 6.2: Dynamic mass factor in the Solar system

Pioneer 10/11 anomaly dynamic mass factor, Γ(r), vs. orbital distance, r in AU,
of Equation (6.8), is plotted on a linear scale out to r = 50 AU, in the left
panel, and on a logarithmic scale out to r = 5, 000 AU, in the right panel.
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fit.

In Figure 6.2, we display the Pioneer 10/11 data in the form of dynamic mass factors:

Γ(r) =
aN(r) + aP (r)

aN(r)
, (6.15)

which is a rearrangement of Equation (6.10), and compare to the MOG prediction of

Equation (6.9) for the parametric values of α(r) and λ(r) of Equation (6.12) and Equation

(6.13), respectively, using the best-fit values for the parameters given in Equation (6.14).

The behaviour of G(r)/GN is closely constrained to unity over the inner planets until

beyond the orbit of Saturn (r & 10 AU) where the deviation in Newton’s constant increases

to an asymptotic value of G∞/GN → 1.001 over a distance of hundreds of AU.

Although MOND is not expected to provide a viable solution to the Pioneer 10/11

anomaly because of Equation (6.2), the variation in the dynamic mass factor, Γ(r), shown

in Panel (a) of Figure 6.2, is consistent with the deep MOND linear relation of Equation
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(3.20) with a best-fit MOND acceleration of

a0 = (3.0± 0.3)× 10−11 cm s−2, (6.16)

provided the MOND interpolating function is so gentle that the onset of the deep MOND

regime occurs at

r = 10.5± 0.5 AU, (6.17)

instead of rt, which is not consistent with MOND, and improbable to explain using any

generalized theory involving a preferred frame, as in §3.2.3, including Bekenstein’s TEVES

theory of §3.2.3.

Since the density of the Milky Way dark matter in the vicinity of the solar system,

according to Equation (6.3), is at least 10 orders of magnitude too small to affect the

acceleration of spacecraft, then the Solar System must have its own halo for dark matter

to provide a viable solution to the Pioneer 10/11 anomaly. Frère et al. (2008) calculated

the bound on the dark matter density of a spherical halo centered about the sun from

high precision Solar System measurements, finding that a dark matter halo around the

Solar System may be as much as 5 to 6 orders of magnitude more dense than the Milky

Way’s dark matter halo, but this is still at least 4 orders of magnitude too low to affect

the acceleration of spacecraft in the Solar System.

6.1.3 Kepler’s laws of motion

A consequence of a variation of G and GM� for the solar system is a modification of

Kepler’s third law:

a3
PL = G(aPL)M�

(
TPL
2π

)2

, (6.18)

where TPL is the planetary sidereal orbital period and aPL is the physically measured semi-

major axis of the planetary orbit. For given values of aPL and TPL, Equation (6.18) can

be used to determine G(r)M�. The standard method is to use astrometric data to define

GM� for a constant value,

G(r)M� = G(a⊕)M� = κ2, (6.19)
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Figure 6.3: Solar system — Kepler’s third law.

The cube of the orbital distance, a3
PL in AU3, vs. the square of the orbital period,

T 2
PL in day2 for the Solar system. The orbital data consist of the measured semi-major

axis of the planateary orbit, aPL and the measured planetary sidereal orbital period,
TPL, listed in Table 6.2, respectively. Corrections due to MOG in Kepler’s third law to
Equation (6.8) is plotted using the result for Γ(r) of Figure 6.2. The figure is continued.

where a⊕ is the semi-major axis for Earth’s orbit about the Sun, and κ is the Gaussian

gravitational constant given by1

κ = 0.01720209895 AU3/2/day. (6.20)

We obtain the standard semi-major axis value at 1 AU:

ā3
PL = G(a⊕)M�

(
TPL
2π

)2

. (6.21)

For several planets such as Mercury, Venus, Mars and Jupiter there are planetary ranging

data, spacecraft tracking data and radiotechnical flyby observations available, and it is

possible to measure aPL directly. For a distance varying GM� we derive (Fischbach and

1http://ssd.jpl.nasa.gov/?constants

http://ssd.jpl.nasa.gov/?constants
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Figure 6.3 continued: Solar system — Kepler’s third law.

The cube of the orbital distance, a3
PL in AU3, vs. the square of the orbital period, T 2

PL in day2

for the planets of the Solar system. The orbital data consist of the measured semi-major
axis of the planateary orbit, aPL and the measured planetary sidereal orbital period, TPL,
listed in Table 6.2, respectively. Corrections due to MOG in Kepler’s third law to Equation
(6.8) is plotted using the result for Γ(r) of Figure 6.2.
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Talmadge, 1999; Talmadge et al., 1988):

(
aPL
āPL

)
= 1 + ηPL =

[
G(aPL)M�

κ2

]1/3

. (6.22)

Here, it is assumed that GM� varies with distance such that ηPL can be treated as a

constant for the orbit of a planet. We may substitute the Gaussian gravitational constant

of Equation (6.19) into Equation (6.22) and obtain

ηPL =

[
G(aPL)

G(a⊕)

]1/3

− 1. (6.23)

6.1.4 Planetary Ephemerides

For the nine planets, we obtain the values of ηPL shown in Table 6.1. We see that we are

able to obtain agreement well within the bounds of possible variation of GM� consistent

with the data (Fischbach and Talmadge, 1999; Talmadge et al., 1988) for Mercury, Venus,

Mars and Jupiter. No observational limit on ηPL for Saturn or the outer planets has yet

been established; but this is precisely where the deviation δG(r)/GN leads to a sizeable

contribution in the theoretical prediction for ηPL.

The reason for the uncertainty beyond the orbit of Saturn and the lack of observational

limits on ηPL is that the ephemerides for the outer planets is based on optical measure-

ments. Even in the context of Newton’s theory, the extrapolation of Kepler’s third law of

Equation (6.18) using the Gaussian gravitational constant of Equation (6.20) which fits

the inner planets missestimates the semi-major axis, aPL, or the orbital period, TPL, of the

outer planets resulting from Newtonian perturbations due to Jupiter and the gas giants and

their satellites, the Kuiper belt and hundreds of asteroids. The latest version of the plan-

etary part of the numerical ephemerides is a numerical integration of the post-Newtonian

metric. It attempts to account for these perturbations from Kepler’s law beyond Saturn

by a least squares adjustment to all the available observations including the CCD opti-

cal astrometric observations of the outer planets. These values (without uncertainty) are

available from the Solar System Dynamics Group (SSD) of the Jet Propulsion Laboratory



204 Chapter 6. SOLAR SYSTEM

Table 6.1: Planetary predictions and observational limits

Planet r Prediction Observational Limit aP
(AU) ηPL (10−10) ηPL (10−10) (10−8 cm/s2)

(1) (2) (3) (4) (5)

Mercury 0.38 −6.55× 10−5 +40± 50 1.41× 10−10

Venus 0.72 −6.44× 10−5 −55± 35 5.82× 10−8

Earth 1.00 0.00× 100 0 1.16× 10−6

Mars 1.52 4.93× 10−3 −0.9± 2.1 4.42× 10−5

Jupiter 5.20 4.19× 102 +200± 400 2.76× 10−1

Saturn 9.54 1.67× 104 . . . 3.27× 100

Uranus 19.22 1.84× 105 . . . 8.86× 100

Neptune 30.06 4.39× 105 . . . 8.65× 100

Pluto 39.52 6.77× 105 . . . 7.72× 100

Notes. — Theoretical predictions of the values of ηPL and the best-fit theoretical predictions for
the Pioneer Anomaly, aP , for the planetary bodies and observational limits. Planetary bodies are
listed in Column (1), with their mean distance, r, from the Sun shown in Column (2). Column (3)
is the theoretical prediction of ηPL of Equation (6.23), and may be compared to Column (4) for the
observational limits taken from Talmadge et al. (1988). No observational limits were computed
beyond Saturn in Talmadge et al. (1988) due to uncertainty in opical data. Beyond the outer
planets, the theoretical predictions for η(r) approaches the asymptotic value η∞ = 3.34 × 10−4.
Column (5) lists the anomalous accelerations, at the planetary positions, predicted by the best-fit
to the Pioneer 10/11 anomaly.

(JPL) through the Horizon’s ephermeris DE410 online2. The Russian Academy of Sciences

has also placed their latest values known as EPM2004 online3. Because the perturbations

change daily due to the motion within the solar system, the planetary ephemerides quoted

values for aPL and TPL change daily. In order to compute deviations from Kepler’s third

law for the outer planets, we have listed today’s best known values in Table 6.2.

The uncertainty in the EPM2004 deduced values for the semi-major axes of the planets,

∆aPL, have been studied in Pitjeva (2005) and the quoted values are listed in Table 6.2.

Pitjeva (2005) warned that the real errors may be larger by an order of magnitude. The

uncertainty in the periods for the outer planets are not quoted in either EPM2004 or

DE410, and so we have assumed small uncertainties based on the precision provided by

the JPL Horizon’s online ephemeris.

2http://ssd.jpl.nasa.gov/horizons.html
3ftp://quasar.ipa.nw.ru/incoming/EPM2004
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We may calculate the uncertainty, ∆ηPL, by propagating the errors ∆aPL and ∆TPL

according to Equations Equation (6.21) and Equation (6.22), neglecting any uncertainty

in the Gaussian gravitational constant of Equation (6.20):

∆ηPL =

√√√√(∆aPL
āPL

)2

+
(

2

3

aPL
āPL

∆TPL
TPL

)2

. (6.24)

Although according to Table 6.1 we are consistent with the observational limits of ηPL

for the inner planets to Jupiter, the computation of Talmadge et al. (1988) attempted to

set model-independent constraints on the possible modifications of Newtonian gravity. The

procedure was to run the planetary ephemerides numerical integration with the addition

of ηPL as free parameters. Because there was one additional parameter for each planet,

they were only able to find observational limits for the inner planets including Jupiter.

In order to compute the observational limit for ηPL for the outer planets, it would be

necessary to compute the planetary ephemerides using the modified acceleration law of

Equations Equation (6.4) and Equation (6.5). Although this is beyond the scope of the

current investigation, we may approximate here the observational limit of ηPL for the outer

planets as the uncertainty ∆ηPL from Equation (6.24), for the perturbations of Figure 6.2,

δG(r)/GN , are small compared to the Newtonian perturbations acting on the outer planets.

The results for ∆ηPL due to the uncertainty in the planetary ephemerides are presented

in Table 6.2 for the nine planets and exceed the predictions, ηPL, of Table 6.1.

Modified gravity can explain the Pioneer anomalous acceleration data and still be

consistent with the accurate equivalence principle, lunar laser ranging and satellite data

for the inner solar system as well as the outer solar system planets including Pluto at a

distance of r = 39.52 AU = 5.91× 1012 meters. The ephemerides for the outer planets are

not as well know as the inner planets due to their large distances from the Sun.

The orbital data for Pluto only correspond to the planetoid having gone round 1/3 of

its orbit. It is important that the distance range parameter lies in the region 47 AU <

λ(r) < ∞ for the best-fit to the Pioneer acceleration data, for the range in the modified

Yukawa correction to Newtonian gravity lies in a distance range beyond Pluto. Further

investigation of fifth force bounds obtained by an analysis of the planetary data for the
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outer planets, based on the modified gravity theory is required. We are predicting that

measurements of a fifth force in the solar system will become measurable at distances

r & 10 AU from the Sun where as shown in Figure 6.2, δG(r)/G0 (and ηPL) become

potentially measurable. The likely possibility that the Pioneer 10/11 anomaly is caused

by thermal effects would cause these predictions to be treated as bounds on the effects of

MOG in the solar system. Moffat and Toth (2009) give good agreement with solar system

bounds using the scalar-tensor-vector modified acceleration law of §3.4.4.

6.1.5 Anomalous perihelion advance

The relativistic equation of motion for a test particle in our gravitational theory may be

solved perturbatively in a weak field approximation for the anomalous perihelion advance

of a planetary orbit:

∆ωPL =
6πGNM�

c2aPL(1− e2
PL)

(1− αPL), (6.25)

where we have assumed as with Kepler’s third law that GM� and α vary with distance

such that they can be treated as constants for the orbit of a planet, where we have made

use of the approximation G(r) ≈ GN Moffat (2006b), which is the case from the fit to

the Pioneer 10/11 anomalous acceleration data. We may rewrite Equation (6.25) as the

perihelion advance in arcseconds per century:

ω̇PL =
∆ωPL
2πTPL

=
3GNM�

c2aPL(1− e2
PL)TPL

(1− αPL), (6.26)

where TPL is the planetary orbital period, and ePL is the planetary orbital eccentricity.

We may separate Equation (6.26) into the usual Einstein anomalous perihelion advance,

and a prediction of the correction to the anomalous perihelion advance:

ω̇PL = ω̇0 + ω̇1, (6.27)

where

ω̇0 =
3GNM�

c2aPL(1− e2
PL)TPL

, (6.28)

ω̇1 = −αPLω̇0, (6.29)



208 Chapter 6. SOLAR SYSTEM

T
ab

le
6.

3:
P

la
ne

ta
ry

p
er

ih
el

io
n

ad
va

nc
e ω̇

(′′
/c

en
tu

ry
)

P
l
a
n
e
t

α
P
L

λ
P
L

(
A

U
)

δG
P
L
/G

0
E
in

st
e
in

R
e
t
r
o
g
r
a
d
e

E
p
h
e
m
e
r
is

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

M
er

cu
ry

6.
51
×

10
−6

1.
11
×

10
6

3.
98
×

10
−1

9
42
.9

9
−

2.
80
×

10
−4

−
0.

03
36
±

0.
00

50
V

en
u
s

2.
12
×

10
−5

1.
05
×

10
5

5.
04
×

10
−1

6
8.

63
−

1.
83
×

10
−4

..
.

E
ar

th
3.

82
×

10
−5

3.
23
×

10
4

1.
84
×

10
−1

4
3.

84
−

1.
47
×

10
−4

−
0.

00
02
±

0.
00

04
M

ar
s

7.
95
×

10
−5

7.
44
×

10
3

1.
67
×

10
−1

2
1.

35
−

1.
07
×

10
−4

0.
00

01
±

0.
00

05
J
u
p
it

er
4.

59
×

10
−4

2.
23
×

10
2

1.
23
×

10
−7

0.
06

24
−

2.
86
×

10
−5

0.
00

62
±

0.
03

6
S
at

u
rn

7.
64
×

10
−4

8.
05
×

10
1

4.
96
×

10
−6

0.
01

37
−

1.
05
×

10
−5

−
0.

92
±

2.
9

U
ra

n
u
s

9.
69
×

10
−4

5.
00
×

10
1

5.
55
×

10
−5

0.
00

23
9

−
2.

31
×

10
−6

0.
57
±

13
.0

N
ep

tu
n
e

9.
97
×

10
−4

4.
73
×

10
1

1.
34
×

10
−4

0.
00

07
8

−
7.

73
×

10
−7

..
.

P
lu

to
1.

00
×

10
−3

4.
70
×

10
1

2.
05
×

10
−4

0.
00

04
2

−
4.

18
×

10
−7

..
.

N
ot

es
.

—
T

he
va

lu
es

of
th

e
ru

nn
in

g
pa

ra
m

et
er

s,
α

(r
)

of
E

qu
at

io
n

(6
.1

2)
an

d
λ

(r
)

of
E

qu
at

io
n

(6
.1

3)
an

d
th

e
de

vi
at

io
n

in
th

e
di

m
en

si
on

le
ss

gr
av

it
at

io
na

l
co

ns
ta

nt
,
δG

(r
)/
G

0
of

E
qu

at
io

n
(6

.5
),

ca
lc

ul
at

ed
fo

r
ea

ch
pl

an
et

.
In

cl
ud

ed
on

th
e

ri
gh

t
of

th
e

ta
bl

e
is

th
e

th
eo

re
ti

ca
l

(E
in

st
ei

n)
pe

ri
he

lio
n

ad
va

nc
e

of
E

qu
at

io
n

(6
.2

8)
,

an
d

th
e

pr
ed

ic
te

d
re

tr
og

ra
de

of
E

qu
at

io
n

(6
.2

9)
fo

r
th

e
pl

an
et

s,
an

d
th

e
lim

it
s

se
t

by
th

e
ep

he
m

er
is

P
it

je
va

(2
00

5)
.

P
la

ne
ta

ry
bo

di
es

ar
e

lis
te

d
in

C
ol

um
n

(1
),

w
it

h
th

ei
r

m
ea

n
di

st
an

ce
,
r,

fr
om

th
e

Su
n

sh
ow

n
in

C
ol

um
n

(2
).

C
ol

um
n

(3
)

is
th

e
th

eo
re

ti
ca

l
pr

ed
ic

ti
on

of
η P

L
of

E
qu

at
io

n
(6

.2
3)

,
an

d
m

ay
be

co
m

pa
re

d
to

C
ol

um
n

(4
)

fo
r

th
e

ob
se

rv
at

io
na

ll
im

it
s

ta
ke

n
fr

om
T

al
m

ad
ge

et
al

.
(1

98
8)

.
N

o
ob

se
rv

at
io

na
ll

im
it

s
w

er
e

co
m

pu
te

d
be

yo
nd

Sa
tu

rn
in

T
al

m
ad

ge
et

al
.

(1
98

8)
du

e
to

un
ce

rt
ai

nt
y

in
op

ic
al

da
ta

.
B

ey
on

d
th

e
ou

te
r

pl
an

et
s,

th
e

th
eo

re
ti

ca
l

pr
ed

ic
ti

on
s

fo
r
η
(r

)
ap

pr
oa

ch
es

th
e

as
ym

pt
ot

ic
va

lu
e
η ∞

=
3.

34
×

10
−4

.
C

ol
um

n
(5

)
lis

ts
th

e
an

om
al

ou
s

ac
ce

le
ra

ti
on

s,
at

th
e

pl
an

et
ar

y
po

si
ti

on
s,

pr
ed

ic
te

d
by

th
e

be
st

-fi
t

to
th

e
P

io
ne

er
10

/1
1

an
om

al
y.



§Chapter 6. SOLAR SYSTEM 209

are the Einstein anomalous perihelion advance, and the predicted retrograde, respectively.

Note the minus-sign in the predicted retrograde of Equation (6.29) as compared to the

Einstein anomalous perihelion advance of Equation (6.28). The measured perihelion pre-

cession is best known for the inner planets (for Mercury the precession obtained from

ranging data is known to 0.5% (Will, 2006)). For each of the planets in the solar system,

we find that αPL << 1, so that our fit to the Pioneer anomalous acceleration is in agree-

ment with the relativistic precession data. The results for the Einstein perihelion advance,

and our predicted retrograde for each planet, and the observational limits set by the recent

ultra-high precision ephemeris are listed in Table 6.3.

The validity of the bounds on a possible fifth force obtained from the ephemerides of the

outer planets Uranus, Neptune and Pluto are critical in the exclusion of a parameter space

for our fits to the Pioneer anomaly acceleration. Beyond the outer planets, the theoretical

prediction for η(r) approaches an asymptotic value:

η∞ ≡ lim
r→∞ η(r) = 3.34× 10−4. (6.30)

We see that the variations (running) of α(r) and λ(r) with distance play an important

role in interpreting the data for the fifth force bounds. This is in contrast to the standard

non-modified Yukawa correction to the Newtonian force law with fixed universal values of

α and λ and for the range of values 0 < λ < ∞, for which the equivalence principle and

lunar laser ranging and radar ranging data to planetary probes exclude the possibility of

a gravitational and fifth force explanation for the Pioneer anomaly.

Perhaps, a future deep space probe can produce data that can check the predictions ob-

tained for the Pioneer anomaly from modified gravity theory. Or perhaps utilizing Mars or

Jupiter may clarify whether the Pioneer anomaly is caused by the gravitational field. (Page

et al., 2006). An analysis of anomalous acceleration data obtained from earlier Doppler

shift data retrieval will clarify in better detail the apparent onset of the anomalous accel-

eration, or support the thermal recoil explanation of Toth and Turyshev (2009), perhaps

to as low a χ2 as the modified gravity solution.
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Chapter 7

Summary

“Any intelligent fool can make things bigger and more complex and more vio-

lent. It takes a touch of genius – and a lot of courage to move in the opposite

direction.”

Albert Einstein

The mysteries of the gravitational field continue to challenge mankind as our physi-

cal models of the universe evolve. Isaac Newton’s great contribution was to deduce the

analytical form of the force of gravity exerted by an isolated object. However, the prin-

ciple of superposition is not exact, as Newton assumed, because the gravitational field is

non-linear, and models of the gravity internal to astrophysical matter distributions are

Newtonian approximations. Albert Einstein’s great contribution was to deduce the geo-

metric form of the relativity principle, reinterpreting the force of gravity as a geometric

distortion of space and time, but this sets the gravitational field apart from the three other

known forces. Gravity is the only force that couples universally to matter and energy.

However, the strong equivalence principle, which Einstein first assumed, does not hold for

stable gravity theories that include scalar, vector and tensor modifications to the met-

ric with associated couplings, even when additional charged quantum numbers associated

with new symmetries are suppressed. Such modified gravity theories suggest the presence

of a fifth force, which is assumed to couple universally to matter and energy, and gains

in strength at astrophysical scales to become the dominant force. This dominant force, if

neglected by means of a Newton-Einstein approximation, emerges as the phantom of dark

matter in galaxies and clusters of galaxies.

To address the hypothesis, stated in §1.1.3, to the missing mass problem in galaxy

rotation curves and clusters of galaxies, the following theories were studied:

1. Cold non-baryonic dark matter (CDM),

2. Milgrom’s modified Newtonian dynamics (MOND),
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3. Moffat’s metric skew-tensor gravity theory (MSTG),

4. Moffat’s scalar tensor vector gravity theory (STVG).

Conclusions drawn upon identification of the missing mass as CDM is presented in §7.1.1.

Some common lessons learned from the modified gravity theories are summarized in §7.1.2.

Corresponding to each of the astrophysical scales in Table 1.2, conclusions based upon

galactic-scale and cluster-scale astrophysics are summarized in §7.2 and §7.3, respectively.

Some possible directions for future astrophysical tests are suggested in Chapter 8.

7.1 Lessons learned

Whether identified as dark matter halos with profiles defined in Chapter 2, or the massive

fifth-force fields of a modified gravity theory with acceleration laws derived in Chapter 3,

conclusions are drawn in §7.1.1 and §7.1.2, respectively.

7.1.1 CDM halos

According to Table 4.2 from the Ursa Major sample of galaxies of §4.2, every one of the

galaxy rotation curves presented in Figure 4.1 have excellent fits, within Einstein-Newton

gravity including a non-baryonic dark matter halo density described by the core-modified

dark matter profile of Equation (4.2), with reasonable mean stellar mass to light ratios Υ,

as compared to baryon suppressed fits with Υ = 0.

Provided baryons are included in the core-modified dark matter halo, the total mass

with dark matter vs. velocity relation, plotted in Figure 4.8, showed the least scatter of

any of the Tully-Fisher relations, even when compared to the modified gravity alternatives

Shown in the same table, in the leftmost columns, the Navarro-Frenk-White (NFW)

profile of Equation (4.1) showed low χ2 when including the visible baryons, but because

the cusp problem occurs precisely where baryons are important, there were exceptions in

the sample of Chapter 4, involving high and low surface dwarf galaxies, that could not be

χ2 best-fit for any non-zero value of Υ. For those galaxies that the NFW formula produced

excellent best-fits, the halo mass function overcompensated for the baryons by suppressing

the best-fit stellar mass to light ratio, Υ < 1.

The dynamic mass factors show no indication of a cusp at small r, but unlike for
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clusters of galaxies, take on a global minimum, with limr→0 Γ(r) = 1, whereas the core-

modified dark matter formula provides excellent fits to the dynamic mass factors, Γ(r) for

all positions, r, plotted in Figure 4.4, for every galaxy in the sample including the dwarfs.

In the CDM hierarchical structure formation scenario, galactic halos are considered

subhalos to the larger structure which is their cluster (or filament). These subhalos are

self-similar to the cluster halo if they are describable by similar fitting formulae. Shown

in Panel (a) of Table 5.2, the core-modified dark matter profile of Equation (4.2) showed

the lowest χ2 best-fit cluster model parameters for the sample of Chapter 5, including

X-ray clusters of varying mass, scale radius, and central temperature, as compared to the

modified gravity alternatives.

The NFW profile could not be χ2 best-fit to the sample of X-ray clusters because the

data does not exhibit the cusp in the core, as shown by the variation in the dynamic mass

factor, plotted in Figure 5.2.

Therefore, the core-modified dark matter formula describes a self-similar halo profile for

both high and low surface brightness galaxies, including the dwarfs, and also for the clusters

of galaxies, including the dwarf clusters and the Bullet Cluster 1E0657-558, provided the

baryons are not suppressed in the fits.

7.1.2 Modified gravity theories

Unlike the core-modified dark matter or NFW profiles, each of the modified gravity theories

produced low χ2 fits to the galaxy rotation curves of Chapter 4 with universal parame-

ters, averaged over the sample, shown in Table 4.3 for MOND, Table 4.4 for MSTG, and

Table 4.5 for STVG. The monotonic (near-linear) rise of the dynamic mass factor, plotted

in Figure 4.4 across all gravity theories, suggests that the missing mass problem is most

pronounced at the edge of the luminous disk.

Only the STVG acceleration law of §3.4.4 is derived without any phenomenological

input from the Tully-Fisher relation. The Tully-Fisher relations are compared in Table 4.7,

for each of the gravity theories, and plotted in Figure 4.9.

For the sample of X-ray clusters of galaxies of Chapter 5, it was confirmed that MOND

provides poor best-fits to X-ray cluster mass profiles, as plotted in Figure 5.1, even with a
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varying MOND acceleration, a0, as shown in Panel (b) of Table 5.2. The possibility, within

MOND, of including a non-luminous component, such as neutrino halos, was considered in

the case of the Bullet Cluster 1E0657-558 in §5.3.5, although the models of Sanders (2003,

2007) may be overestimating the extent of the neutrino halos by a factor of two to provide

a universally consistent explanation.

Unlike MOND, both MSTG and STVG theories provided excellent best fits to the

X-ray cluster mass profiles of Figure 5.1, as shown in Panels (c) and (d) of Table 5.2,

respectively. Whereas the STVG theory produced a constant dynamic mass factor, which

is an approximate feature present in the data, the MSTG produced dynamic mass factors

which mimicked the core-modified dark matter result and produced excellent fits, as shown

in Figure 5.2, from the smallest of the clusters to the largest Bullet Cluster 1E0657-558.

Effectively, the common feature of the modified gravity paradigm is given by Equation

(3.93), in which

M(r) =
GNMN(r)

G(r)
, (7.1)

where G(r) is the spatially varying gravitational coupling. The modified gravity hypothesis

of phantom dark matter suggests that, for sufficiently large r, G(r)/GN � 1 so that the

luminous, baryonic mass, M(r), is less than the observed Newtonian dynamic mass, MN(r),

by the same factor.

The metric skew-tensor gravity (MSTG) theory, presented in §3.3, identifies the phan-

tom of dark matter with the massive skewon of the Kalb-Ramond-Proca field, as described

in §3.3.2, with a Yukawa interaction that leads to motion under the fifth force, as in §3.3.3.

For MSTG astrophysical predictions, the gravitational coupling, G(r), of Equation (3.91),

was substituted into Equation (7.1) leading to a nonlinear equation because G(r) itself is

a function of M(r), which was solved exactly in Equations (3.95) and (3.96). This solu-

tion permits the analytic computation of baryon masses according to MSTG from dynamic

measurements such as velocity rotation curves or X-ray temperature distributions, without

approximation.

Using a simpler field structure, the MSTG skewon can be replaced by a massive vec-

tor phion in the scalar-tensor-vector gravity (STVG) theory, presented in §3.4, which then
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identifies the Maxwell-Proca field , as in §3.4.2, as the phantom of dark matter. The STVG

action includes three dynamical scalar fields which lead to gravitationally strong interac-

tions, as shown in the Yukawa phion theory of §3.4.4, which leads to the modified central

force law of §3.4.5. For STVG astrophysical predictions, the gravitational coupling, G(r),

of Equation (3.143), was substituted into Equation (3.93) leading to Equation (3.164),

where the Yukawa strength and phion mass, α and µ, are given by Equations (3.159) and

(3.160), respectively.

To compare the predictions of the gravity theories relevant to astrophysical scales,

Equation (7.1) can be written in terms of the dynamic mass factor, of Equation (2.22),

M(r) =
MN(r)

Γ(r)
. (7.2)

It was shown that MOND may be the weak-field limit of certain Lorentz violating theories,

including the family of theories discussed in §3.2.3, which have non-metric field structure

that are subject to violations of the strong equivalence principle, as described in §3.1.3,

and may thereby provide the phantom of dark matter detected in galaxy rotation curves

and X-ray cluster masses. In §3.2.2 it was shown that the dynamic mass factor due to mod-

ified dynamics at small accelerations, is precisely the inverse of the MOND interpolating

function, according to Equation (3.15),

Γ(r) = 1/µ(x(r)). (7.3)

At sufficiently small accelerations, the dynamic mass factor is a linear function in r ac-

cording to Equation (3.20), for all MOND interpolating functions, and is proportional to
√
a0. Whereas this fits the observations in galaxy rotation curves, it does not correspond

to the observations in X-ray cluster masses, even with larger values of the MOND universal

acceleration.

The dynamic mass factor,

Γ(r) =
MN(r)

M(r)
, (7.4)

is the ratio of the Newtonian dynamic mass to the observed, baryonic mass. For CDM,



218 Chapter 7. SUMMARY

Equation (7.4) is constrained by the particular choice of the dark matter fitting formula.

7.2 Galactic astrophysics

In Chapter 4, a core-modified fitting formula was derived in §4.1: Core-modified profile,

and found to fit the sample of high and low surface brightness galaxies, including all of

the dwarfs. The NFW fitting formula led either to fits with very poor χ2, if baryons

were omitted, or to a suppression of the stellar mass-to-light ratio if photometric data was

included, particularly for the dwarf galaxies. The worst of these dwarf galaxies could not

be fitted using the NFW profile with any non-zero value of the stellar mass-to-light ratio,

as discussed in §4.1.1: Observations.

The core-modified fitting formula of Equation (2.12) produced the lowest reduced-χ2

best-fits to the galaxy rotation curves for the sample of §4.2, plotted in Figure 4.1, with two

parameters, ρ0 and rs, which varied across the sample, tabulated in Table 4.2. The surface

mass densities, plotted in Figure 4.2, show the baryon dominated cores transitioning to

dark matter dominated halos. The best-fitting mass profiles are plotted in Figure 4.3,

showing the halo component negligible in the galaxy cores, but adding up to the dominant

mass at the outermost radial points. At large distances from the center of each galaxy in

the sample, the density profile of the dark matter halo is well described by a steep power-

law, with power-law index γ → 3, whereas at distances toward the center of the galaxy an

increasingly shallow power-law is observed, as plotted in Figure 4.5. For distances less than

the dark matter halo core radius, r < rs,the total density profile including baryons shows

a universal γ → 1 power-law index, and the density profile of the dark matter component

alone approaches a rarified, constant density core.

§4.1.2: Observations discusses the MOND best-fits to the galaxy rotation curves for

the sample of §4.2, plotted in Figure 4.1, with universal acceleration, a0, tabulated in

Table 4.3.

§4.1.3: Observations discusses the MSTG and STVG best-fits to the galaxy rotation

curves for the sample of §4.2, plotted in Figure 4.1, with universal parameters depending

on the theory, tabulated in Table 4.4 and Table 4.5, for MSTG and STVG respectively.

All of best-fits showed a central disk dominated by the Newtonian potential, where
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Γ(r) ∼ 1, outside of which, the dynamical mass factor increased approximately linearly

with distance, plotted in Figure 4.4. The results, plotted (with lines) are nearly equivalent

for all of the gravity theories studied. However each theory’s data (with error bars) has a

dependence on the result of the best-fit stellar mass-to-light ratio, Υ, provided in Table 4.2

for the NFW profile and the core-modified dark matter profile, Table 4.3 for MOND,

Table 4.4 for MSTG, and Table 4.5 for STVG.

The analysis of the Ursa Major sample of §4.2 involved a series of calculations using a

variety of computational resources. The error analysis was a fruitful exercise in measuring

the properties of the variation of the stellar mass-to-light ratio within high or low surface

brightness galaxies, and the quality of the best-fit. The stellar mass-to-light ratio, Υ(r),

varied strongly within every galaxy, in comparison to the variation across different galaxies

of the best-fit stellar mass-to-light ratio.

The Newtonian core was calculated from the plot of the stellar mass-to-light ratio, Υ(r)

of Figure 4.6 (vertical lines), at the position, rc, where the Newtonian dynamics induce

a rapid increase in the slope of Υ(r), for every galaxy including the dwarfs. The best-fit

stellar mass-to-light ratio for the Newtonian core is plotted (horizontal line) to r = rc.

Within the luminous disk, the stellar mass-to-light ratio never exceeds a value of ten in

any galaxy. This naturally constrains the total amount of dark matter required and allows

the best-fit dark matter theory, with two parameters ρ0 and rs, and the best-fit stellar

mass-to-light ratio, Υ, to be simultaneously varied toward minimum χ2.

The stellar mass-to-light ratios, Υ(r), plotted in Figure 4.6 (with lines) are nearly

equivalent for MOND, MSTG and STVG, with similar mean values, near Υ = 1, with

larger values for the best-fit Newtonian core model, in all galaxies. The best-fit values,

determined by a non-linear least squares fitting algorithm, are plotted (with horizontal

lines). Since the galaxies of Ursa Major are at a common distance from the Milky Way,

the variation in the actual stellar mass-to-light ratio from galaxy to galaxy is not expected

to be large. The results for the best-fit stellar mass-to-light ratio, with a core-modified

dark matter halo, are plotted (with horizontal lines), with mean values close to predicted

values according to MOND and the MOG theories. This is an example of the importance

of the luminous baryons in the computation. It is the variable stellar mass-to-light ratio
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which includes the data, by force, and allows the ultra-low reduced χ2 test for the core-

modified dark matter model. The computational results are provided in Table 4.2 for the

NFW profile and the core-modified dark matter profile, Table 4.3 for MOND, Table 4.4

for MSTG, and Table 4.5 for STVG.

Qualitative assessment of each theory’s predictions for the Ursa Major galaxies is

provided in §4.3, and includes the predictions of the best-fit Newtonian core model of

§4.3.1, which is a base-line for any improvement. Whereas repatriating orphan features,

as described in §4.3.2, provides a reasonable test for theories which fit galaxy rotation

curves, particularly the core-modified dark matter halos which properly include the lumi-

nous baryons, as in §4.3.3. The power-law profile, for either the NFW or core-modified

models is derived as the logarithm slope of Equation (4.52), which relates

γ(r) + 2 = −d lnM(r)

d ln r
, (7.5)

which depends on the baryon distribution through the mass-to-light ratio, according to

Equations (4.38) and (4.40). The halo component is computed by substituting M = Mhalo

into Equation (7.5) and the dark matter logarithm slope is computed by substituting

M = 4
3
MHI + ΥMdisk + Mhalo, thereby including the gaseous and luminous stellar disks

into the Newtonian dynamic mass as discussed in §4.2.7: Solution to the dark matter cusp

problem.

The implication of Occam’s razor, that the total mass of a galaxy should be less in a

theory without non-baryonic dark matter, depends on how large the halo is taken to be,

beyond the luminous disk, where there is data. The results for the variation in the total

integrated mass, M(r), to the outermost radial position, rout, are plotted in Figure 4.3

(with lines), per theory. Components are plotted for the actual HI gas, and the stellar disk

is normalized with Υ = 1 for relevance across theories, each with a best-fit Υ. The dark

matter halo component is plotted, which is a small part of the total mass in the dark matter

model in the core of every galaxy studied. However the dark matter halo component is the

fastest rising mass in the galaxy because of the spherical distribution, compared to both

the exponentially-thin gaseous disk, and the best-fit luminous disk, becoming dominant
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outside the Newtonian core, rc, per galaxy.

The Tully-Fisher relation, as in §4.3.4, confronts the dynamical importance of the

luminous baryons compared to the ordinary Tully-Fisher relation, plotted in Figure 4.7

(blue) with power-law index of a = 4.1± 0.4 according to the best-fit of Equation (4.59).

This result, although familiar, is today considered too large with larger samples providing

a K-band Tully Fisher relation power-law index of a = 3.4± 0.1 (Tully and Pierce, 2000).

Table 4.7 provides the best-fit logarithm slopes and intercepts for six relations of the

form M ∝ va, where either M = ΥMdisk for the stellar Tully-Fisher relation, or M =

4
3
MHI + ΥMdisk for the baryonic Tully-Fisher relation, or M = 4

3
MHI + ΥMdisk +Mhalo for

the total mass-velocity relation, including the best-fit core-modified dark matter halo, as

in Figure 4.8. The best-fits (with lines) to the theoretical Tully-Fisher relations are plotted

(with error bars) for the two stellar and two baryonic relations in Figure 4.9, per gravity

theory.

In MOND, the relation with the least scatter is the baryonic mass to outermost velocity,

vout, with a logarithm slope of a = 3.3±0.3 whereas the ordinary, vmax, stellar relation has

a logarithm slope of a = 4.1 ± 0.4. However, the STVG, MSTG and core-modified dark

matter theories show less scatter for the ordinary baryonic relation with smaller logarithm

slopes of a = 2.6± 0.2, a = 2.5± 0.2, and a = 2.5± 0.3, respectively. Whereas overall, the

relation which shows the least scatter is that of the total mass, including luminous baryons

and core-modified dark matter, vs. velocity as plotted in Figure 4.8, with a = 2.9 ± 0.2

for the ordinary case. This restores the Tully-Fisher relation to the dark matter solution,

provided the baryons are included, and dismisses the notion that the Tully-Fisher relation

is unnatural due to dark matter dominance.

Some possible directions for future galactic astrophysical tests are presented in §8.1.

7.3 Cluster-scale astrophysics

In Chapter 5, the missing problem is studied with X-ray clusters, as described in §5.1,

using the astrophysical sample of §5.1.1. The King β-model of the X-ray gas distribution

of Equation (5.2) is presented in §5.1.2, and the collisionless Boltzmann equations are

derived, and the solution is shown in Equation (5.15). In §5.1.3, a computation expresses



222 Chapter 7. SUMMARY

the surface mass density map, Σ(x, y), as the simple analytical result of Equations (5.24)

and (5.25), in terms of the King β-model best-fit values (ρ0, β, rc). This was used in the

analysis of the Bullet Cluster 1E0657-558, in §5.3, as the initial study of the X-ray gas

map, described in §5.3.1. The Newtonian dynamical mass of Equation (5.28) is derived in

§5.1.4.

Each of the theories that were tested at galactic-scale using galaxy rotation curves are

studied at cluster-scale using the best-fit cluster models of §5.2. The NFW fitting formula

of Equation (2.7) generated large uncertainties due to a parameter degeneracy between

the central density parameter, ρ0, and the scale radius, rs, and could not be χ2-fitted.

Without numerical convergence, the NFW results either over-predicted the density at the

core or under-predicted the total mass. Alternatively, the core-modified dark matter model

of §5.2.1 provided excellent fits using the fitting formula of Equation (2.12), with results

provided in Panel (a) of Table 5.2.

Although MOND does not fit X-ray cluster masses, there have been studies that claim

improvements using a larger value of the MOND universal acceleration, a0, or to include

a non-luminous component. Both avenues were considered in this thesis. In §5.2.2, the

MOND universal acceleration was treated as a variable parameter, and found to lead to

very poor fits with larger than galaxy-scale values of a0, as shown in Panel (b) of Table 5.2.

Furthermore, the problem of too large a dynamic mass factor, for small r, and too small a

dynamic factor for intermediate r, was not corrected although the increase in the value of

a0 did lead to the correct dynamic mass factor for r ∼ rout. This means that the best-fit

MOND solution in clusters of galaxies without dark matter does not fit the shape of the

X-ray mass profile, except at rout so that the total mass is corrected.

Both MSTG and STVG theories, as discussed in §5.2.3, provided excellent fits to the

X-ray gas masses, with results provided in Panels (c) and (d), respectively, of Table 5.2.

The missing mass problem at cluster-scale, presented in §5.2.4, is best demonstrated

by the dynamic mass factor of Equation (7.4), which is plotted (with lines) in Figure 5.2,

per gravity theory. The observations are plotted (with error bars) as the ratio of the

Newtonian dynamical mass, MN(r) of Equation (5.28), to the best-fit King β-model to

the gas mass, M(r), of Equations (5.2) and (5.3), and is therefore a ratio of two very
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large masses, increasing with separation, r, as plotted (with red crosses, and green circles,

including error bars).

The study of the Bullet Cluster 1E0657-558, in §5.3, includes a detailed analysis of the

X-ray gas map, of §5.3.1, with the subcluster masked-out, and a best-fit to the King β-

model for the main cluster is derived in Equations (5.41), (5.42) and (5.44). The subcluster

subtracted from the X-ray data was added to the best-fit King β model of the main cluster,

as shown in Figure 5.6. The study of the gravitational lensing convergence map, according

to §5.3.2, applies the derivation of Equations (4.29) and (4.30) with running gravitational

coupling, G(r), leading to the best-fit κ-model of Figure 5.8. The best-fit MOG model

is used to compute the visible baryon surface mass profile in §5.3.3, and the result of

the galaxy subtraction of Equation (5.52) is shown in Figure 5.9. Predictions for the

component masses of the main cluster, subcluster and central ICM are listed in Table 5.5.

The dark matter distribution is computed as the difference between the κ-map and the

scaled Σ-map by a pixel by pixel subtraction in §5.3.4. The distribution of visible and dark

matter, plotted in Figure 5.10, provides a comparison of the distribution of galaxies, gas

and total baryons according to MOG in Panel (a), as compared to the distribution of gas

and dark matter in Panel (b). Although the NFW profile does not fit the main cluster,

the excellent fit to the core-modified profile is shown in Panel (a) of Figure 5.1.

Some possible directions for future cluster-scale astrophysical tests are presented in

§8.2.





Chapter 8

Future astrophysical tests

“If I have seen further than others, it is by standing upon the shoulders of

giants.”

Sir Isaac Newton

The work of Part II explored the importance of directly measuring the dynamics of

the gravitational field and comparing to the observed galactic and gaseous components,

within the gravity theories of Part I. The results show a strong interplay between current

astrophysical measurements and the resulting surface density maps predicted by gravity

theory, with predictions which are testable and falsifiable. Some possible directions in

future space observations are presented in §8.1 for galactic-scale astrophysics, and in §8.2

for cluster-scale astrophysics.

8.1 Galactic astrophysics

Testing whether galaxy dynamics are dominated by a distribution of cold non-baryonic dark

matter, like the models of Chapter 2, or whether galaxy dynamics are dominated by a

modified gravity theory which violates the strong equivalence principle, such as any of the

candidates of Chapter 3, is possible through a combination of sub-kiloparsec resolution

luminous disk observations, galaxy rotation curve measurements, and future directions in

galaxy-galaxy lensing, depending on the next generation of space observatories. Future

directions for rotation curve methods, and galaxy-galaxy lensing are explored in §8.1.1,

and §8.1.2, respectively.

8.1.1 Galaxy rotation curves

The rotation curves for the Ursa Major filament of galaxies, studied in §4.2, are already

sufficiently detailed to provide features challenging to any candidate theory’s best-fit. As

the state of the art of computational models of gravity theories continues to improve,
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astrophysical observations of nearby filaments and clusters of the Local Group offer the

best possible future laboratory.

Within the Local Group, the Milky Way is the most well studied galaxy, but the

available rotation curve remains poorly known. Brownstein and Moffat (2006a) performed

a MOND and MSTG best-fit to the Milky Way galaxy rotation curve supplied by Sofue

(1996) using a parametric model for the surface mass density, independent of photometric

observations, whereas the method using photometry, as described in §4.2.1, for the surface

mass computation of §4.2.4, and best-fitting by means of the stellar mass to light ratio,

as described in §4.2.8, is preferred. According to our best-fit parametric model, the total

baryonic mass of the Milky Way was determined to be

MMilky Way =

 9.12± 0.28 M� MSTG,

10.60± 0.37 M� MOND.
(8.1)

A new study of the rotation curve for the Milky Way should include better high-

resolution rotation curve measurements, particularly for orbital distances greater than the

Solar system’s, and an updated model of the luminous stellar and gaseous components using

available photometry, providing a better answer of the mass of our galaxy as determined

by each gravity theory. The 21-cm line emission of neutral hydrogen, as traced by the

Leiden/Argentine/Bonn (LAB) galactic HI survey (Kalberla et al., 2005), is a full sky map

which may be used to provide the gas component in Equation (4.34), assuming a big-bang

nucleosynthesis relation such as Equation (4.23). Spitzer Space Telescope’s encompassing

infrared view of the plane of the Milky Way consists of nearly one million images which

have been composed into a 120◦ mosaic, and may be used to compute the vertical scale

height, z0, and provide the stellar disk component in Equation (4.35), assuming a Van der

Kruit and Searle law such as Equation (4.24).

The Milky Way has three large dwarf satellite galaxies. Sagittarius is a 6 kpc dwarf

spheroidal, located just below the galactic plane, twice as close as the Large and Small

Magellanic Clouds, which are between 4 and 8 kpc in diameter. In addition, the Milky Way

has sixteen dwarf spheroidal galaxies each less than 2 kpc in diameter. These satellite dwarf

galaxies are an important part of the future laboratory for rotation curve astrophysics.
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8.1.2 Galaxy-Galaxy lensing

Although galaxy rotation curves, as in Figure 4.1, are the primary research tool for mea-

suring dark matter or predicting modified gravity line-of-sight surface mass densities, as

in Figure 4.2, and their galactic mass profiles, as in Figure 4.3, it is the dynamic mass fac-

tor of Figure 4.4 which best shows where the missing mass according to Einstein-Newton

gravity is distributed. For every high and low surface brightness galaxy, including the

dwarf galaxies, the dynamic mass factor increases monotonically with distance from the

galactic center. It is this factor which amplifies the different predictions between cold non-

baryonic dark matter and each of the modified gravity solutions. Σ-maps, as in Figure 4.2

for the Ursa Major filament of galaxies, are predictions for future galaxy-galaxy lensing

measurements.

Galaxy-galaxy lensing is a unique method to probe the dynamic mass of the foreground

(lens) galaxy out to large radii. Strong galaxy-galaxy lensing, in which multiple background

(source) galaxies appear in the image, allow direct measurements of the dynamic mass on

scales . 10 kpc. The Center for Astrophysics at Harvard – Arizona Space Telescope Lens

Survey (CASTLES) has identified (∼ 100) strong gravitational lens galaxies from Hubble

Space Telescope images. However, in order to directly measure the line-of-sight surface

mass distribution across the foreground galaxy out to ∼ 100 kpc, precision weak lensing

is used, whereby the slight, coherent, gravitational lensing induced shape correlations can

be averaged over multiple (∼ 1000) source galaxies. The Cosmological Evolution Survey

(COSMOS) has observed a 2 square degree equatorial field with the Advanced Camera

for Surveys aboard the Hubble Space Telescope, and Leauthaud et al. (2007) report on

the source catalogue constructed from COSMOS, containing almost 400,000 galaxies with

shape measurements and uncertainties. Refregier and Douspis (2008) report on plans for

the Dark Universe Explorer (DUNE) wide-field mission concept, consisting of a 1.2 m tele-

scope designed to carry out an all-sky survey in one visible and three near infrared bands,

optimised for weak gravitational lensing. With the future direction of galaxy-galaxy lens-

ing measurements, sub-kiloparsec distributions of the dynamic and visible components are

attainable, providing high resolution images of the distribution of matter within galaxies.

Whether identified as CDM or the massive fifth-force fields of a modified gravity theory,
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the solutions to the missing mass problem are testable and falsifiable by current galactic

observations, as in Chapter 4, and through future directions in measuring galaxy rotation

curves, with infrared photometry on the stellar and gaseous disks, as in §8.1.1, and through

techniques such as gravitational lensing for directly measuring the dynamic mass, as in

§8.1.2.

8.2 Cluster-scale astrophysics

Some tests involving X-ray space observatories for measuring the intercluster medium are

introduced in §8.2.1, which should be expected to generate higher resolution and greater

bandwidth Σ-maps, which are correlated to the ionized electron density, and thereby a

measurement of the visible baryon distribution. Some directions involving the Hubble and

Spitzer space telescopes for the future of gravitational lensing measurements are introduced

in §8.2.2, which provide Γ-maps correlated to the missing mass, whether identified as dark

matter, or the massive fifth-force fields of a modified gravity theory, according to the

lessons learned in §7.1.

8.2.1 Intercluster medium

The intercluster medium (ICM) is X-ray measurable with temperatures as high as 15.5±

3.9 keV, from our 2007 value shown in Table 5.4 for the main cluster of the Bullet Cluster

1E0657-558 (Brownstein and Moffat, 2006b), based on the Chandra observatory’s very high

resolution surface mass density Σ-map, shown in Figure 5.4. However, Chandra’s band-

width limitation prevents the Bullet Cluster 1E0657-558 being identified as the hottest

cluster in the sky, until the next generation of X-ray space observatories, and a combina-

tion of the high bandwidth, but low resolution, data available from methods involving the

Sunyaev-Zeldovich effect. New Σ-maps of the ICM will therefore be of even greater preci-

sion and resolution, and more complete at the hottest concentrations of ionized electrons,

where the baryon densities are the greatest.

Unlike the high precision, high resolution data analysis for the Bullet Cluster 1E0657-

558 of §5.3, the X-ray mass profiles of Figure 5.1 are based on the high precision, but low

resolution, data analysis of Reiprich (2001); Reiprich and Böhringer (2002), and therefore
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updating the results with Chandra data is an important future effort, particularly as the

next generation of high resolution Sunyaev-Zeldovich imaging also becomes available.

8.2.2 Gravitational lensing

Weak and strong gravitation lensing surveys of large clusters, such as presented in §5.3

for the Bullet Cluster 1E0657-558, may be used to map the scaled surface mass density

by means of the convergence κ-map, discussed in §5.3.2. The November 15, 2006 data

release (Clowe et al., 2006b), shown in Figure 5.7, is a computational reconstruction based

an a survey of both strong and weak gravitational lensing, using images provided by the

Advanced Camera for Surveys aboard the Hubble Space Telescope, providing a much more

complete convergence κ-map than was previously known. Gravitational lensing surveys,

particularly the CASTLES and COSMOS surveys discussed in §8.2.2, have provided cat-

alogues of lensing events, which may lead to as yet undiscovered distributions of mass,

whether it be non-baryonic dark matter or the massive fifth-force fields of a modified

gravity theory.

The solutions to the missing mass problem in clusters of galaxies are testable and falsi-

fiable by current observations, as in Chapter 5, and through increasingly complete, more

precise, and higher resolution measurements of the intercluster medium will lead to a bet-

ter identification of the dynamic mass measured by gravitational lensing reconstructions.
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