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Abstract

Interest in stochastic simulations of chemical systems is growing. One of the as-
pects of simulation of chemical systems that has been the prime focus over the past
few years is accelerated simulation methods applicable when there is a separation
of time scale. With so many new methods being developed we have decided to look
at four methods that we consider to be the main foundation for this research area.

The four methods that will be the focus of this thesis are: the slow scale stochas-
tic simulation algorithm, the quasi steady state assumption applied to the stochastic
simulation algorithm, the nested stochastic simulation algorithm and the implicit
tau leaping method. These four methods are designed to deal with stiff chemi-
cal systems so that the computational time is decreased from that of the “gold
standard” Gillespie algorithm, the stochastic simulation algorithm.

These approximation methods will be tested against a variety of stiff examples
such as: a fast reversible dimerization, a network of isomerizations, a fast species
acting as a catalyst, an oscillatory system and a bistable system. Also, these
methods will be tested against examples that are marginally stiff, where the time
scale separation is not that distinct.

From the results of testing stiff examples, the slow scale SSA was typically the
best approximation method to use. The slow scale SSA was highly accurate and
extremely fast in comparison with the other methods. We also found for certain
cases, where the time scale separation was not as distinct, that the nested SSA was
the best approximation method to use.
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Chapter 1

Introduction

Biochemical systems are all around us, some have extremely complicated struc-
tures, e.g. those involved in bacterial growth. In [1] a numerical study was done on
the intercellular growth of bacteriophage T7. Bacteria and viruses affect and are
involved in our everyday lives. For example, the Spanish influenza pandemic that
occurred from 1918-1920, had a global mortality rate of around 50 million [2]. One
way to understand these biochemical systems is through a mathematical model, as
mentioned previously with the example from [1]. A good example of how a virus
can affect a living organism can be found in [3], this is a model of a virus infecting a
cell. One of the interesting aspects of this model is that the model could enter two
different states: all the species become populated or all the species become extinct
[3]. From what has been mention so far, we see that mathematical models are an
important role in understanding biochemical systems.

There are many aspects of a chemical system’s environment that have an impact
on the behaviour of the system. A system involving a large number of variables and
parameters can be incredibly complex, making it difficult to fully understand its dy-
namics [4]. With experimental data [5] and approximation models [4] now becoming
more available for complicated systems, many simulation tools that determine the
dynamics of a chemical system are being or have been developed [5]. Computer
simulations have become a necessity when it comes to the study of dynamics of a
chemical system because the majority of the time these chemical systems are very
complex [6]. This need for simulations has become evident in experimental and
theoretical studies of different chemical and genetic networks [7].

In the study of chemical kinetics, there are many different mathematical approaches
to determine the behaviour of a chemical system [6]. One of the common ways to
determine the behaviour of the system is to model it by a set of coupled ordinary
differential equations, which has a deterministic behaviour. Another common way
to determine the behaviour of the system is by using a stochastic approach (e.g.
random walk). This stochastic approach has a clearer physical basis than the deter-
ministic approach [8]. A good example of this would be genetic switching [9], where
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the system has two steady states. A deterministic trajectory will converge to one
steady state and stay in that state, where as the stochastic approach accounts for
the noise in the system which plays an important part in genetic switching [9]. The
reason noise is so important to genetic switching is that it allows the concentration
of a species to go from one steady state to another steady state by “pushing” it
out of its current steady state. Stochastic modeling and simulation are important
to chemical kinetics because reactions randomly occur in a chemical system [6] and
the stochastic nature of these reactions produce fluctuations, causing an effect on
the system [10], i.e. genetic switching. The importance of stochastic modeling is
also evident in the chemical reactions occurring within a cell where the volume
and number of reacting species are relatively small, so that any fluctuations in the
number of chemical species can become relatively large. Therefore, further develop-
ment and investigations of stochastic models are needed to determine the chemical
dynamics of interest in biological systems [10].

The basis for the majority of the stochastic approaches in chemical dynamics is the
master equation, which describes the evolution of the probability distribution over
a period of time [11]. Another approach to approximate the solution to the master
equation is the explicit tau leaping method, which solves the associated chemi-
cal Langevin equation, a stochastic differential equation, using a solution method
similar to the explicit Euler method [12]. The explicit tau leaping method is an ac-
celerated approximation method, compared to the SSA, to determine the behaviour
of the system [12].The Langevin equation can be related back to the master equa-
tion through the Fokker-Planck equation, a stochastic partial differential equation
that describes the time evolution of the probability density function. There is a re-
lation between the Fokker-Planck equation and the Langevin equation that will be
discussed later on in this thesis. Even though the method of solving the Langevin
equation is a different approach, it yields similar results to the SSA, [12].

The SSA and the explicit tau leaping method are able to handle chemical sys-
tems that are not stiff. A chemical system is stiff if there is a separation in time
scales between its reactions. The problem that the explicit tau method has with
a stiff system is that it becomes unstable for large ∆t, in the same manner that
the Explicit Euler method would become unstable in addressing stiff systems. The
SSA does not become unstable with a stiff chemical system because the SSA is an
exact method, in the sense that it accounts for all the fluctuations and correlations
implied by the reactants [8]. However, the SSA is slow when dealing with stiff
chemical systems [13] because it must simulate all of the reactions.

A main focus in the area of analysing the behaviour of chemical systems, stiff
or not, is to find an approximation method that is as accurate as the SSA and is
able to produce the results much faster. There are many papers describing these
new methods dealing with non-stiff and stiff chemical systems such as: the bino-
mial tau leaping method [7, 14], the multinomial tau leaping method [15], a hybrid
method [10] and tau leaping with random correction [16] to name a few. In this
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thesis, we will be focusing on four approximation methods: the quasi steady state
assumption applied to the SSA, (QSSA algorithm) [13]; the slow scale SSA [17];
the nested SSA [18, 19]; and the implicit tau leaping method [20].

The explicit tau leaping method is closely related to the implicit tau leaping method
[20]. The implicit tau leaping method, similar to the implicit Euler method, is able
to handle a stiff chemical system much better than the explicit tau leaping method
[20]. We will consider three different ways to implement the implicit tau leaping
method. The first way is to select a time jump that is on the slow time scale, the
time scale where slow reactions take place. The second way of implementing the
implicit tau is to use a fixed time jump through the entire simulation. The third
way we will implement the implicit tau leaping method is by taking a sequence
of small time steps and then taking a larger time step or vice versa. In [20], it is
shown that the sequence of small jumps will restore the overly damped fluctuations
in the fast variables caused by the larger jump on the slow time scale.

The next method that we will be looking at is described in [13]. This is the QSSA
algorithm, a method which uses the quasi steady state assumption to reduce the
computational effort of the SSA. The quasi steady state assumption allows us to put
the species on the fast time scale into steady state, thereby removing the stiffness
from the problem by eliminating the fast reactions. We will implement the QSSA
algorithm by approximating the fast species by its steady state, obtained from the
deterministic equations. A probabilistic approach to the QSSA algorithm involves
sampling from a probability distribution based on the fast system being in a steady
state. This probabilistic approach to the QSSA algorithm is called the slow scale
SSA [17]. We will be looking at a few examples that use the binomial distribution to
approximate the fast species and another example that uses a normal distribution.
The approach of the slow scale SSA is a more “theoretical” version of the nested
SSA [19], which we will discuss next.

Introduced in [19], the nested SSA takes an approach slightly different from that
of the slow scale SSA. The nested SSA involves approximating the fast species by
running a number of SSA’s, for the fast reactions only and for a certain amount of
time, during which the fast system is presumed to reach steady state. The nested
SSA numerically produces a probability distribution and samples from it. The
nested SSA involves three design parameters: n, the number of times to run the
inner SSA, T0 the time to truncate the transient and Tf the time to run after the
time of truncation. We will be looking at different values of n and lengths for the
inner SSA to see which optimizes the CPU time of the nested SSA, as well as the
parameters that produce the best results. In [21], the authors mention that over-
parametrization can lead to an infinite number of parameter combinations that lead
to equivalent results.

In this thesis, we will look at the above four methods (QSSA algorithm, slow
scale SSA, nested SSA and the implicit tau leaping method) in greater detail to see
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how they are similar, as well as how they differ from each other and how well they
describe the behaviour of a chemical system. In comparing the performance of the
methods for different examples, we will use the SSA as a “gold standard” since it is
an exact method [8]. We will be looking at the CPU times for all of the approxima-
tion methods and see which one is the fastest and compare with the SSA. We also
want to see which approximation method, out of the four we have chosen, is the
most accurate when compared to the SSA; we will compute an ensemble of sample
paths of species in each approximation method. This enables us to conduct a com-
parison on the statistical level. When comparing the approximation methods to the
SSA we will be looking at the means and the standard deviation of all the species.
Also we will look at the skewness of the distribution of each of the species produced
by each method which gives us insight to what the probability distribution looks
like for each of the methods. With this in mind we will also look at a histogram of
the species at the final time point of each example. This will allow us to see if the
probability distribution of the approximation method is similar to the SSA’s or not.

We will also be focusing on how well each approximation method approximates
the virtual fast process, the fast species in the fast reactions [17]. We will inves-
tigate how well each method approximates the distribution of this fast process by
creating a histogram of the fast species just before a slow reaction occurs. If an
approximation of the fast system is bad, it might be a poor method to use in that
case. With this information we will come to a conclusion as to which approximation
method is best overall or is best for certain examples.

We will be also looking at two elaborate examples, an oscillatory system and a
bistable system. These approximation methods have not previously been tested
against these more elaborate examples.

If, for some reason, the results of the approximation methods do not share sim-
ilar characteristics to that of the SSA’s results, then the best approach for these
more elaborate examples is simply the SSA.

The results of this thesis will guide the choice of the appropriate approximation
algorithm for a given stiff system. This thesis will also point out any possible flaws
or problems that each method has. Knowing the flaws and problems of a method
prior to implementation is important, as it may have influence on whether one
wants to use that approximation method or not.
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Chapter 2

Background

2.1 Chemistry Background

We will consider a system of N chemical species (S1, S2, · · · , SN) involved in M
reactions (R1, R2, · · · , RM). The state of the system at time t will be denoted as
X(t) = (X1(t), X2(t), · · · , XN(t)), where Xi(t) indicates the number of molecules
of species Si at time t. The reaction rates are denoted as c, where ci corresponds to
Ri. To each reaction Ri is an associated state vector change or stoichiometry, vi.
When Ri occurs, the state is updated by x 7→ x+vj, where vi = (vi1, vi2, · · · , viN).
Each reaction Ri is characterized by a propensity function ai(x), that depend on
the state. The propensity function for Ri is a function of ci and the reactants in Ri.
This relates to the law of mass action which states that the rate of a reaction is
proportional to the product of the reactants concentrations [22]. In Table 2.1.1 we
see examples of propensity functions and stoichiometry values for certain reactions.
However, when we deal with the stochastic modeling one must take into account
individual molecules. We see in Table 2.1.2, how the propensities from stochastic
modeling differ from Table 2.1.1. Both stochastic and deterministic approaches
rely on the condition of a well stirred system. A system is well stirred if there is
spatial homogeneity in the system, which can be caused by non-reactive molecular

Reaction Deterministic
Reaction Rate

Stoichiometry
Vector

S1
c1−→ S2 c1x1 v = (−1, 1)

S1 + S2
c1−→ S3 c1x1x2 v = (−1,−1, 1)

S1 + S2
c1−→ S2 c1x1x2 v = (−1, 0)

S1 + S1
c1−→ S2

c1x2
1

2
v = (−2, 1)

S1 + S1 + S1
c1−→ 2S2

c1x3
1

6
v = (−3, 2)

Table 2.1.1: Examples of reactions, deterministic reaction rates and stoichiometry
vectors
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Reaction Propensity Function

S1
c1−→ S2 c1x1

S1 + S2
c1−→ S3 c1x1x2

S1 + S2
c1−→ S2 c1x1x2

S1 + S1
c1−→ S2

c1x1(x1−1)
2

S1 + S1 + S1
c1−→ 2S2

c1x1(x1−1)(x1−2)
6

Table 2.1.2: Examples of reactions and propensity functions for stochastic mod-
eling

collisions causing a self-stirring effect[23]. In some chemical systems some reactions
occur much more often than others, due to high reactant population size or the
values of the reaction rates. When some reactions occur more often than others
the system is referred to as a stiff system: there is a separation of time scales
between two sets of reactions. The two sets of reactions are the fast reactions or
slow reactions.

Fast reactions have high propensity values compared to the slow reactions propen-
sity values. Any species whose stoichiometry value is non zero in a fast reaction
is called a fast species, where any species whose stoichiometry value is zero in all
the fast reactions is called a slow species. In a stiff system there is a set of nf fast

species (Sf1 , · · · , Sfnf
) and a set of ns slow species (Ss1, · · · , Ssns

), where N = nf +ns.

In a stiff system there is also a set of mf fast reactions (Rf
1 , · · · , Rf

mf
) and a set

of ms slow reactions (Rs
1, · · · , Rs

ms
), where M = mf + ms. The state of the fast

species at time t is denoted as Xf (t) = (Xf
1 (t), · · · , Xf

nf
(t)), where Xf

i (t) indicates

the number of molecules of the fast species Sfi at time t. Similarly, Xs
i (t) indicates

the number of molecules of the slow species Ssi at time t, where Xs(t) is the state
of the slow species at time t. Each slow reaction Rs

i will be characterized by a slow
propensity function asi (x), where X(t) = x. Similarly, each fast reaction Rs

i will be
characterized by a fast propensity function afi (x), where X(t) = x. To each fast
reaction is an associated fast stoichiometry vector vf and each slow reaction there
is an associates slow stoichiometry vector vs. As mentioned in the definition of a
slow species, in all of the fast stoichiometry vectors, the value for all slow species
is zero.

Example 2.1.1

S1 → S2 (2.1.1)

S2 + S1 → S3 (2.1.2)

If (2.1.1) is a fast reaction and (2.1.2) is a slow reaction, then S1 and S2 are fast
species and S3 is a slow species.
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Example 2.1.2

S1 + S4 → S2 + S4 (2.1.3)

S2 + S3 → S4 (2.1.4)

If (2.1.3) is a fast reaction and (2.1.4) is a slow reaction, then S1 and S2 are fast
species and S3 and S4 are slow species. S4 is a slow species because its stoichiometry
value in the fast reaction (2.1.3) is zero.

One approach to handling a stiff system is by using the quasi steady state assump-
tion. Since we are dealing with stiffness due to a time scale separation, the quasi
steady state assumption allows us to place the fast species into their steady state
and focus only on the slow time scale. Therefore, the quasi steady state assump-
tion eliminates the fast dynamics of the system, which means when dealing with
deterministic equations we eliminate the differential equations of the fast species
by finding their steady state [13]. Following is an example of how the quasi steady
state assumption is applied to a stiff chemical system.

Example 2.1.3

∅ c1−→ S1 (2.1.5)

S1 + S2
c2−→ 2S2 (2.1.6)

S2 + S3
c3−→ S3 (2.1.7)

S2
c4−→ S3 (2.1.8)

The deterministic equations for the system are

dS1

dt
= c1 − c2S2S1

dS2

dt
= c2S2S1 − c3S2S3 − c4S2

dS3

dt
= c4S2

If (2.1.5),(2.1.6) and (2.1.7) are fast reactions and (2.1.8) is a slow reaction then
S1 and S2 are fast species and S3 is a slow species, since its stoichiometry value in
(2.1.7) is zero. Applying the quasi steady state assumption we set, c1 − c2S2S1 = 0
and c2S2S1− c3S2S3 = 0 so that S1 = (c3S3 + c4)/c2 and S2 = c1/(c3S3 + c4). After
applying the applying the quasi steady state assumption the deterministic equations
are now reduced to

dS3

dt
= c4S2 =

c4c1
c3S3 + c4

. (2.1.9)

We will see later on in the thesis how this reduces the computational time in
analysis of a stiff system. We next turn to the probability theory which underlines
the methods used in this thesis.
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2.2 Probability Theory

Definition 2.2.1 A sample space, S, is a set of all possible outcomes for an
experiment.

Definition 2.2.2 An event, E, is a certain set of outcomes that occur in an ex-
periment.

Example 2.2.1 Consider an experiment where we are observing two rolls of a die,
where order does not matter, i.e. (1, 4) = (4, 1). This means that the possible
outcomes of this experiment is the sample space,

S = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6),

(3, 3), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 5), (5, 6), (6, 6)}

Some possible events for the experiment are

E1 = One of the rolls was even,

E2 = The sum of the two rolls is 6.

Definition 2.2.3 A random variable is a function defined on a sample space
that maps S → R.

Definition 2.2.4 A random variable is called a discrete random variable if
the set of possible values for the random variable is countable.

Definition 2.2.5 A random variable is called a continuous random variable
if it is not a discrete random variable.

Example 2.2.2 Consider the experiment of tossing a coin n times and define

Xj =

{
1 jth toss is a head
0 jth toss is a tail

Then Xj is a discrete random variable.

Example 2.2.3 An exponential random variable is a continuous random vari-
able. The exponential random variable X, with the rate λ, has the probability dis-
tribution function

f(x) =

{
λ exp(−λx) x ≥ 0

0 x < 0
.

Definition 2.2.6 Two events are called mutually exclusive if, no matter the
outcome of the experiment, they cannot be simultaneously satisfied.
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Definition 2.2.7 The probability of an event E, P (E), is defined as the fre-
quency of an event occurring in a sample space and must satisfy the following
axioms:
1.P (E) > 0 for every event E and that P (S) = 1 for the sample space S.
2. If E and F are mutually exclusive events then P (E ∪ F ) = P (E) + P (F ).

Definition 2.2.8 Events E and F are statistically independent if P (E∩F ) =
P (E)P (F ). Events Ei are mutually independent if

P (
n⋂
i=1

Ei) =
n∏
i=1

P (Ei).

Definition 2.2.9 The probability that event E occurs given that event F has oc-
curred is called the conditional probability, denoted as P (E|F ), and defined by

P (E|F ) =
P (E ∩ F )

P (F )
.

Definition 2.2.10 The probability distribution function, f(x), for a discrete
random variable X is

f(x) = P (X = x).

The cumulative probability distribution function, F (x), for a discrete ran-
dom variable is

F (a) =
a∑

x=−∞

f(x).

The probability that the value of a continuous random variable X lies somewhere
in the interval (a, b) is

P (a < X < b) =

∫ b

a

f(x) dx,

where f(x) is the probability distribution function. The cumulative probability dis-
tribution function, F (x), for a continuous random variable is

F (a) =

∫ a

−∞
f(x) dx.

A probability distribution function has the following properties

f(x) ≥ 0 ∀ x

∞∑
x=−∞

f(x) = 1 for a discrete random variable
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∫ ∞
−∞

f(x)dx = 1 for a continuous random variable

Definition 2.2.11 The expected value of the random variable X is denoted by
〈X〉. The expected value of a discrete random variable X is defined as:

〈X〉 =
∞∑

x=−∞

xf(x).

The expected value of a function of a discrete random variable is

〈g(X)〉 =
∞∑

x=−∞

g(x)f(x).

The expected value of a continuous random variable X is defined as

〈X〉 =

∫ ∞
−∞

xf(x) dx.

The expected value of a function of a continuous random variable is

〈g(X)〉 =

∫ ∞
−∞

g(x)f(x) dx.

Definition 2.2.12 The nth moment of the random variable X is 〈Xn〉. The nth

central moment of the random variable X is 〈(X − 〈X〉)n〉.

Definition 2.2.13 The variance of a random variable X is denoted as 〈〈X〉〉 and
is the second central moment.

Definition 2.2.14 The skewness of a random variable X is defined as

〈(X − 〈X〉)3〉
〈〈X〉〉3/2

.

If the skewness value is negative then the left tail of the distribution is longer and
majority of the probability lies to the right. If the skewness value is positive then
the right tail of the distribution is longer and the majority of the probability lies
to the left. If the skewness value is zero then we know that the distribution is
symmetric.

Definition 2.2.15 The covariance of two random variables X and Y is denoted
as 〈〈XY 〉〉 and is defined as

〈〈XY 〉〉 = 〈XY 〉 − 〈X〉〈Y 〉.
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Definition 2.2.16 The random variables X and Y are uncorrelated if and only
if 〈〈XY 〉〉 = 0.

Definition 2.2.17 The joint probability distribution function of the ran-
dom variable X1, X2, · · · , Xn is denoted as f(x1, x2, · · · , xn). For discrete random
variables

f(x1, x2, · · · , xn) = P (X1 = x1, X2 = x2, · · · , Xn = xn).

The marginal distribution for a discrete random variable, Xi, is found by sum-
ming the joint probability distribution function of X1, X2, · · · , Xn over all states
except Xi. The marginal distribution of Xi is denoted as fi(Xi).

fi(xi) =
∞∑

x1=−∞

· · ·
∞∑

xi−1=−∞

∞∑
xi+1=−∞

· · ·
∞∑

xn=−∞

f(x1, x2, · · · , xn)

The probability that the value of each random variable Xi lies somewhere in the
interval (ai, bi) is

P (a1 < X1 < b1, · · · , an < Xn < bn) =

∫ bn

an

· · ·
∫ b1

a1

f(x1, x2, · · · , xn) dx1 · · · dxn,

where f(x1, x2, · · · , xn) is the joint probability distribution function of X1, X2, · · · , Xn.
For a continuous random variable the marginal distribution for Xi is

fi(xi) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, x2, · · · , xn) dx1 · · · dxi−1dxi+1 · · · dxn.

To find the marginal distribution of more variables other than Xi, say Xi, Xj and
Xk, sum or integrate over every Xl, l 6= i, j, k. The marginal distribution here will
be denoted as fi,j,k(xi, xj, xk). The expectation of a function of discrete random
variables, g(X1, · · · , Xn), is

〈g(X1, · · · , Xn)〉 =
∞∑

x1=−∞

· · ·
∞∑

xn=−∞

g(x1, · · · , xn)f(x1, · · · , xn).

The expectation of a function of continuous random variables, g(X1, · · · , Xn), is

〈g(X1, · · · , Xn)〉 =

∫ ∞
−∞
· · ·
∫ ∞
−∞

g(x1, · · · , xn)f(x1, · · · , xn) dx1 · · · dxn.

Definition 2.2.18 The joint conditional probability density function for
Xi, Xj, Xk, · · · conditional on Xm, Xp, Xq, · · · is denoted as

f(xi, xj, xk, · · · |xm, xp, xq, · · · ).

The joint conditional probability density function is computed by dividing the joint
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probability density function by the marginal distribution of the conditional variables,

f(xi, xj, xk, · · · |xm, xp, xq, · · · ) =
f(x1, · · · , xn)

fm,p,q,···(xm, xp, xq, · · · )
.

This is also known as Bayes’ relation.

The conditional expectation of a random variable Xi is denoted as

〈Xi|X1, · · · , Xi−1, Xi+1, · · · , Xn〉.

The conditional expectation of a function of discrete random variables, e.g.
g(Xi, Xj, Xk), is

〈g(Xi, Xj, Xk)|Xl l 6= i, j, k〉

=
∞∑

xi=−∞

∞∑
xj=−∞

∞∑
xk=−∞

g(xi, xj, xk)f(xi, xj, xk|x1, · · · , xn).

The conditional expectation of a function of continuous random variables, e.g.
g(Xi, Xj, Xk), is

〈g(Xi, Xj, Xk)|Xl l 6= i, j, k〉

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

g(xi, xj, xk)f(xi, xj, xk|x1, · · · , xn)dxidxjdxk.

2.3 A Background in Stochastics

Definition 2.3.1 A stochastic process is a family of random variables. A dis-
crete time stochastic process uses a discrete index, where the family is denoted by
{X(n)}, n ∈ Z. A continuous time stochastic process has a continuous index, where
the family is denoted by {X(t)}, t ∈ R.

Definition 2.3.2 A stochastic process X(t) has discrete states if the set of pos-
sible values of X(t) is countable.

Definition 2.3.3 A stochastic process X(t) has continuous states if the set of
possible values of X(t) is not countable.

Example 2.3.1 An example of a discrete random process is tossing a coin, as
in Example 2.2.2, where the stochastic process is X = {Xi} for i = 1, · · · , n.
If there were 10 tosses, then one possible outcome of the stochastic process is
X = {H,T, T,H,H, T,H, T,H,H,H}. An example of a continuous stochastic pro-
cess is a stock in the stock market. The stochastic process for the stock is X =
{the price of the stock at time t}.

12



Definition 2.3.4 A stochastic process X(t) is said to have independent incre-
ments if X(ti) −X(ti−1) are independent random variables for i = 2, 3, 4, · · · , n.
A stochastic process X(t) has stationary independent increments if X(ti) −
X(ti−1) can be written in terms of the time difference only,

X(ti)−X(ti−1) = ∆X(ti − ti−1),

where X(t) has independent increments.

Here are a few examples of some well known stochastic processes.

Definition 2.3.5 A Poisson process is a discrete state stochastic process. A
stochastic process X(t) is called a Poisson process, with rate λ, if and only if
X(0) = 0, X(t) has stationary independent increments and X(t) has the proba-
bility distribution function

P (X(t) = n) =
exp(−λt)(λt)n

n!
.

Definition 2.3.6 A stochastic process X(t), with continuous state, is called Brow-
nian Motion if and only if X(0) = 0, X(t) has stationary independent increments
and X(t) has the probability distribution function of a normal random variable with
mean 0 and variance t.

Definition 2.3.7 Gaussian white noise, Γ(t) is a stochastic process such that
〈Γ(t)〉 = 0 and 〈Γ(t1)Γ(t2)〉 = δ(t1− t2). It can be considered as an ill defined limit

Γ(t) = lim
dt→0
N (0, 1/dt),

where N (0, 1/dt) is a normal distribution with mean zero and variance 1/dt [24].

Definition 2.3.8 If a stochastic process is not influenced by any information from
the past and is only influenced by its most recent state then the stochastic process
is called a Markov process. For a discrete time Markov process, we have

P (Xn+1 = xn+1|Xn = xn, · · · , X1 = x1) = P (Xn+1 = xn+1|Xn = xn)

and for a continuous time Markov process,

P (X(tn+1) = xn+1|X(tn) = xn; · · · ;X(t0) = x0) = P (X(tn+1) = xn+1|X(tn) = xn),

where ti+1 > ti for i = 0, · · · , n.

From here on, we will only be referring to continuous time stochastic processes.
The joint probability density function for a Markov process can be written as

f(x1, t1; · · · ;xn, tn) =

[
n∏
i=2

f(xi, ti|xi−1, ti−1)

]
f(x1, t1).
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The conditional probability f(xi, ti|xi−1, ti−1) is referred to as the transition proba-
bility. Using the Bayesian relation

f(x1, t1;x2, t2) = f(x2, t2|x1, t1)f(x1, t1)

in calculating the marginal distribution for X2,∫ ∞
−∞

f(x1, t1;x2, t2)dx1 = f(x2, t2)

which gives the first Chapman-Kolmogorov equation∫ ∞
−∞

f(x2, t2|x1, t1)f(x1, t1)dx1 = f(x2, t2).

The second Chapman-Kolmogorov equation involves the use of the joint probability
distribution functions

f(x1, t1;x2, t2;x3, t3) = f(x3, t3|x2, t2)f(x2, t2|x1, t1)f(x1, t1). (2.3.1)

Integrating (2.3.1) with respect to x2, gives

f1,3(x1, t1;x3, t3) =

∫ ∞
−∞

f(x3, t3|x2, t2)f(x2, t2|x1, t1)f(x1, t1)dx2.

The above equation can be written as

f1,3(x3, t3|x1, t1)f(x1, t1) =

∫ ∞
−∞

f(x3, t3|x2, t2)f(x2, t2|x1, t1)f(x1, t1)dx2.

Dividing out f(x1, t1) results in the second Chapman-Kolmogorov equation

f1,3(x3, t3|x1, t1) =

∫ ∞
−∞

f(x3, t3|x2, t2)f(x2, t2|x1, t1)dx2. (2.3.2)

The master equation can be derived from the Chapman-Kolmogorov equation [25,
26].

2.3.1 The Master Equation

The master equation for the probability density with discrete states is

∂f(x, t)

∂t
=
∑
y

w(x|y)f(y, t)− w(y|x)f(x, t), (2.3.3)

where y is summed over all the possible states of x and w(y|x) is the probability
per unit time of transitioning from state x to state y. The master equation for the
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probability density with continuous states is

∂f(x, t)

∂t
=

∫ ∞
−∞

w(x|y)f(y, t)− w(y|x)f(x, t)dy. (2.3.4)

Analogous master equations can also be derived for transition probabilities. The
master equation describes the evolution of the transition probability over mesoscop-
ically long intervals of time, the scale between the microscopic and macroscopic,[11]
allowing us to determine the dynamic behaviour of a stochastic process [27].

Definition 2.3.9 A stochastic process is a birth and death process if there is
a sequence of birth rates b(x) ≥ 0 and a sequence of death rates d(x) ≥ 0 for x ≥ 0
such that the time spent in the state X = x is an exponential random variable with
rate b(x) + d(x), the states x± 1 are the only states that can be entered from state
x and the elapsed time and the probability of jumping to either state x+ 1, a birth,
or state x− 1, a death, are mutually independent [28].

The master equation for a birth and death process is

∂f(x, t)

∂t
= b(x− 1)f(x− 1, t)− b(x)f(x, t) + d(x+ 1)f(x+ 1, t)− d(x)f(x, t).

Van Kampen obtained an expansion of the master equation in terms of the large
volume, where the truncation of the Taylor expansion in 1/

√
volume, took the form

of a partial differential equation known as the Fokker-Planck equation [29].

2.3.2 Fokker-Planck Equation

The Fokker-Planck equation can be used to derive approximate time evolution
equations for the probability density or the transition probability of a stochastic
process with continuous states. The equation

∂f(x, t|x0, t0)

∂t
= −∂(α1(x, t)f(x, t|x0, t0))

∂x
+

1

2

∂2(α2(x, t)f(x, t|x0, t0))

∂x2
(2.3.5)

is referred to as the forward Fokker-Planck equation [30]. The backward Fokker
Planck equation

−∂f(x, t|x0, t0)

∂t0
= α1(x0, t0)

∂f(x, t|x0, t0)

∂x0

+
1

2
α2(x0, t0)

∂2f(x, t|x0, t0)

∂x2
0

can be used to calculate the time it takes for the process to first exit an interval
[30]. In (2.3.5), αi(x) is the ith jump moment for the stochastic process X(t), where

αi(x) =

∫ ∞
−∞

(y − x)iw(y|x)dy. (2.3.6)
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Using the ith jump moment equations in (2.3.6), one can find the macroscopic
equation for any moment, i.e an ordinary differential equation that describes the
time evolution of a moment of a stochastic process. The general formula for the
hierarchy of macroscopic equations, given by

d〈Xn(t)〉
dt

=
n∑
i=1

(
n
i

)
〈Xn−i(t)αi(X(t))〉, (2.3.7)

can be derived from either the master equation or the Fokker-Planck equation. The
macroscopic equation provides the time evolution equations for the nth moment.

Next, we will focus on the Langevin equation, which is closely related to the Fokker
Planck equation although it takes a completely different form.

2.3.3 The Langevin Equation

The Langevin equation is a stochastic differential equation. Before defining the
Langevin equation, we will discuss the difference between a stochastic differential
equation and an ordinary differential equation. Looking at the ordinary differential
equation

dX(t)

dt
= A(X(t), t), (2.3.8)

where A(X(t), t) is an arbitrary function, we can rewrite it in update form as

X(t+ dt) = X(t) + A(X(t), t)dt. (2.3.9)

In (2.3.9), dt is a non-negative infinitesimal value, implying that any higher order
terms of dt are so small that they are negligible [24]. The self consistency condition
constrains a Markov process to evolve according to generalizations of (2.3.8) and
(2.3.9), known as the Langevin equation. The Langevin equation in its standard
form is written as

X(t+ dt) = X(t) + β(X(t), t)dt+ γ(X(t), t)N (0, 1)
√
dt, (2.3.10)

where N (0, 1) is a temporally uncorrelated standard normal random variable with
zero mean and unit variance. Dividing (2.3.10) by dt and taking the limit as dt
approaches zero we have

dX(t)

dt
= β(X(t), t) + γ(X(t), t)Γ(t), (2.3.11)

where Γ(t) is Gaussian white noise. The Langevin equation has a close relation
to the Fokker-Planck equation. For the random variable X(t) described in the
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Langevin equations (2.3.11), the probability distribution function f(x, t) satisfies

∂f(x, t)

dt
= −∂(β(x, t)f(x, t))

∂x
+

1

2

∂2(γ2(x, t)f(x, t))

∂x2
,

which is a Fokker-Planck equation. For more details of the derivation see [24]. We
will next focus on the special case of the master equation and the Langevin equation
that describes a chemical reaction systems.

2.3.4 Chemical Master Equation

Definition 2.3.10 The time evolution of a well stirred system as a discrete stochas-
tic process is described by stochastic chemical kinetics. Deterministic chem-
ical kinetics describes a well stirred system by a set of coupled, first order, ordinary
differential equations. [23]

For both the chemical master equation and chemical Langevin equation, we assume
that the system is in thermal equilibrium, is well stirred and the system is confined
to a constant volume [23]. In [31], Gillespie derives the chemical master equation.
We will briefly highlight some of the main points from the paper [31].

Theorem 2.3.1 If X(t) = x, the probability that exactly one reaction, Ri, will
occur in the time interval [t, t+ dt) is ai(x)dt+ o(dt).

Theorem 2.3.2 If X(t) = x, the probability that no reactions will occur in the
time interval [t, t+ dt) is 1−

∑M
i=1 ai(x)dt+ o(dt).

Theorem 2.3.3 If X(t) = x, the probability that more than one reaction occurring
in the time interval [t, t+ dt) is o(dt).

Gillespie expressed P (x, t+ dt|x0, t0), the probability that X(t) = x conditional on
X(t0) = x0, P (x, t|x0, t0), as the sum of the mutually exclusive events discussed in
the three theorems above. This means that

P (x, t+ dt|x0, t0) = P (x, t|x0, t0)
(
1−

M∑
i=1

ai(x)dt+ o(dt)
)

(2.3.12)

+
M∑
i=1

P (x− vi, t|x0, t0)
(
ai(x)dt+ o(dt)

)
+ o(dt)

Subtracting P (x, t|x0, t0) from both sides, dividing (2.3.12) by dt and then taking
the limit as dt goes to zero, we end up with the chemical master equation

∂P (x, t)

∂t
=

M∑
i=1

ai(x− vi)P (x− vi, t)− ai(x)P (x, t), (2.3.13)
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a special case of the master equation. Next we will look at the form of the chemical
Langevin equation.

2.3.5 Chemical Langevin Equation

A derivation of the chemical Langevin equation starts with the update equation

Xi(t+ dt) = Xi(t) +
M∑
j=1

vjiKj(X(t), dt), (2.3.14)

where Kj(X(t), dt) is a random variable that is the number of reactions that occur
in the interval [t, t + dt] [27]. We impose the condition that dt is so small that
the change in the state during [t, t + dt] is such that aj(X(t′)) ≈ aj(X(t)) for all
t′ ∈ [t, t + dt]. This allows us to approximate the Kj(X(t), dt) as independent
Poisson random variables, P(aj(X(t)), dt) [27]. The second condition that we will
impose is that dt is large enough that the expected number of reactions Rj occurring
in [t, t+ dt] is much larger than 1. This means that

aj(X(t))dt� 1, ∀j = 1, · · · ,M.

This condition allows the approximation of a Poisson random variable with a nor-
mal random variable with the mean aj(X(t))dt and the variance aj(X(t))dt [27].
Equation (2.3.14) can then be approximated as

Xi(t+ dt) = Xi(t) +
M∑
j=1

vjiNj(aj(X(t))dt, aj(X(t))dt), (2.3.15)

where N (µ, σ2) is a normal random variable with mean µ and variance σ2. Since
N (µ, σ2) = µ+ σN (0, 1), (2.3.15) can be written as

Xi(t+ dt) = Xi(t) +
M∑
j=1

vjiaj(X(t))dt+ vji

√
aj(X(t))dtNj(0, 1) (2.3.16)

where Nj(0, 1) are independent unit normals. Equation (2.3.16) is the standard
form of the Langevin equation; putting (2.3.16) in differential form we have the
chemical Langevin equation

dXi(t)

dt
=

M∑
j=1

vjiaj(X(t)) + vji

√
aj(X(t))Γj(t) (2.3.17)

where Γj(t) are temporally uncorrelated, independent Gaussian white noise terms
[27].
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From the chemical master equation and its approximation in the form of the chem-
ical Langevin equation, one can derive simulation algorithms that accurately de-
scribe the behaviour of chemical reaction systems. The SSA provides an exact sim-
ulation of the behaviour of a chemical system. An alternative simulation method,
explicit tau leaping, was derived from the chemical Langevin equation, (2.3.16) [12].
There have been other approximation methods derived that are able to handle stiff
chemical systems. These methods were developed for stiff systems because the SSA
runs very slow for a stiff system. As for the explicit tau leaping method, it becomes
unstable when dealing with a stiff chemical system. The methods developed to
handle stiff systems include the QSSA algorithm, the slow scale SSA, the nested
SSA and the implicit tau leaping method.
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Chapter 3

Simulation Methods

The following methods simulate well stirred systems at fixes volume and constant
temperature. These assumptions allow for the Markov property to be applied to
the system [32]. The majority of the methods approximating a chemical system are
derived from the chemical master equation [32].

3.1 Stochastic Simulation Algorithm (SSA)

The SSA simulates a realization of the chemical master equation. To approximate
the solution to the chemical master equation by the SSA one computes the values
of the propensity functions of the system in order to determine which reaction will
occur next as well as the time at which that reaction occurs. The SSA makes no
distinction between fast and slow reactions. Thus, the computational time is slow
for stiff systems, since the SSA computes all of the many fast reactions occurring
in between each slow reaction event. In the SSA, the time to the next reaction, τ ,
is computed as

τ = − ln(r1)

a0(x)
, (3.1.1)

where a0(x) is the sum of the propensities:

a0(x) =
M∑
i=1

ai(x), (3.1.2)

and r1 is a unit uniform random number. The index, j, of the reaction, Rj, that
occurs at this time is found by

j = smallest integer such that

j∑
i=1

ai(x) ≥ r2a0(x), (3.1.3)
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where r2 is a unit uniform random number independent of r1. The following steps
are used to implement the SSA over a time interval [t0, tf ].

Step 1: Set initial conditions of the system, X(t0) = x0.
Step 2: Compute the values of the propensity functions at the current state.
Step 3: Sample two unit uniform random numbers, r1 and r2. Compute the time
to the next reaction using (3.1.1). Compute the index j of the reaction to occur
using (3.1.3).
Step 4: Update the species, X(t+ τ) = X(t) + vj.
Step 5: Update time, t = t+ τ .
Step 6: If t < tf repeat Steps 2-6.

3.2 Quasi-Steady State Assumption Applied to

the Stochastic Simulation Algorithm (QSSA

algorithm)

The quasi steady state assumption can be applied when there is a separation of
time scales in the dynamics. It states that a subset of species reach steady state on
the fast time scale, allowing the number of species and reactions in a stiff system
to be reduced. A species is eliminated when it depends only on fast reactions; its
behaviour is given by its steady state. When the quasi steady state assumption is
applied to the SSA, the quasi steady state assumption eliminates the fast dynamics
of the system by setting the fast species to their steady state under the fast reac-
tions, where slow species are treated as parameters. Then with the steady state
values of the fast species the QSSA algorithm defines the time to the next slow
reaction as

τ = − ln(r1)

as0(x)
, (3.2.1)

where as0(x) is the sum of the slow propensities:

as0(x) =
ms∑
i=1

asi (x).

To find the index, j, of the next slow reaction the QSSA algorithm uses [13]

j = smallest integer such that

j∑
i=1

asi (x) ≥ r2a
s
0(x). (3.2.2)

In (3.2.1) and (3.2.2), r1 and r2 are unit interval uniform random numbers. Rao and
Arkin were able to construct the following algorithm from the previous information
for the QSSA algorithm for a time interval [t0, tf ][13].
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Step 1: Partition the fast and slow reactions, followed by partitioning the fast
and slow species. Find the equations for the fast species steady state from the
deterministic equations of the fast system, treating the slow species as parameters.
Then set the initial conditions X(t0) = (xf0 , x

s
0).

Step 2: Set the fast species to its steady state using the equations found in Step 1:,
taking any conservation into account. Round to the nearest integer greater than
zero for each fast species.
Step 3: Compute the values of the slow propensity functions.
Step 4: Sample two unit unform random numbers, r1 and r2. Then compute the
time to the next slow reaction from (3.2.1) and the index of the next slow reaction
from (3.2.2).
Step 5: Update the species X(t+ τ) = X(t) + vj and time t = t+ τ .
Step 6: If t < tf repeat Steps 2-6.

In [13] there was a probabilistic approach taken to develop the QSSA algorithm.
The probabilistic approach to the QSSA algorithm is similar to the slow scale SSA
in [17].

3.3 Slow Scale SSA

Definition 3.3.1 The virtual fast processes, denoted as X̂
f
(t), consists of the

fast species, Xf (t), reacting under the fast reactions only.

The way that X̂
f
(t) is defined makes it Markovian since the state is effected by the

fast reactions and any slow species that participates in a fast reaction, e.g. as a
catalyst, is treated as a parameter that is considered to be constant. The virtual
fast process obeys the chemical master equation,

∂P (xf , t|x0, t0)

∂t
=

mf∑
i=1

afi (x
f
i − vfi ,x

s
0)P (xfi − vfi , t|x0, t0) (3.3.1)

−
mf∑
i=1

afi (x
f
i ,x

s
0)P (xfi , t|x0, t0)

One of the requirements for application of the slow scale SSA is that X̂
f
(t) be

stable, implying
lim
t→∞

P (xf , t|x0, t0) = P (xf ,∞|x0)

exists, i.e. the distribution of the virtual fast process, X̂
f
(t), will reach a limit

as t → ∞. However, this does not mean that the distribution of the fast species,
Xf (t), should reach a limit as t → ∞ because the slow reactions may change the

distribution of the fast species, Xf (t), throughout the simulation. With X̂
f
(∞) in
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steady state (3.3.1) reads as

0 =

mf∑
i=1

afi (x
f − vfi ,x

s
0)P (xf − vfi ,∞|x0)− afi (xf ,xs0)P (xf ,∞|x0). (3.3.2)

This set of algebraic equations for xf is simpler to solve then the set of differential
equations in (3.3.1). The slow scale SSA will only provide a good approximation

of the system behaviour if the convergence of the virtual fast process, X̂
f
(t), to the

virtual fast process in its steady state, X̂
f
(∞), occurs quickly compared to the slow

time scale. In [17], the authors define the slow scale propensity function for Rs
i as

āsi (x
f ,xs) =

∑
xf ′

P (xf
′
,∞|xf ,xs)asi (xf

′
, xs). (3.3.3)

Treating the fast species as though they were distributed according to X̂
f
, the slow

scale propensity function is the average of the propensity functions over the fast
variables. The slow scale propensity functions can be written in terms of moments

of the virtual fast process in its steady state, X̂
f
(∞), as follows.

If the propensity function is independent of any fast species then

āsi (xs) = asi (xs). (3.3.4)

Otherwise the following rules can be used

asi (x
f ,xs) = cix

f
j ⇒ āsi (x

f ,xs) = ci〈X̂f
j (∞)〉 (3.3.5)

asi (x
f ,xs) = cix

s
j′x

f
j ⇒ āsi (x

f ,xs) = cix
s
j′〈X̂

f
j (∞)〉 (3.3.6)

asi (x
f ,xs) = cix

f
j (x

f
j − 1) ⇒ āsi (x

f ,xs) = ci〈X̂f
j (∞)(X̂f

j (∞)− 1)〉 (3.3.7)

asi (x
f ,xs) = cix

f
j x

f
j′ ⇒ āsi (x

f ,xs) = ci〈X̂f
j (∞)X̂f

j′(∞)〉 (3.3.8)

Using the information from above, Cao, Gillespie and Petzold approximate the SSA
by having the slow scale SSA run on the slow time scale only [17]. This is achieved
by summing the slow scale propensity functions.

ās0(x) =
ms∑
i=1

āsi (x). (3.3.9)

Given two unit interval uniform random numbers, r1 and r2, as well as the state
X(t), the time to the next slow reaction is

τ = − ln(r1)

ās0(x)
, (3.3.10)
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and the next slow reaction, Rs
j , is determined from

j = smallest integer such that

j∑
i=1

āsi (x) ≥ r2ā
s
0(x). (3.3.11)

The determination of the time to the next slow reaction and finding the index of
the next slow reaction is similar to that of the QSSA algorithm, where the only
difference in the propensity functions is that they rely on the moments of the fast
species or the moment of the product of the fast species. The slow scale SSA similar
is implemented with the following steps for the time interval of [t0, tf ][17].

Step 1: Set all the parameter values, then partition the fast and slow species
as well as the fast and slow reactions. Identify the virtual fast process. Compute
the mean and variance from the stationary moments. Find a distribution that will
approximate the virtual fast process using the mean and variance from the station-
ary moments. Provide the initial state of the species, X(t0) = (xf0 ,x

s
0) and set the

starting time t0.
Step 2: Compute the values of the slow scale propensity functions at X(t).
Step 3: Compute the time to the next slow reaction using equation (3.3.10) and
the index of the next slow reaction using (3.3.11).
Step 4: Update the time and species with the values found in Step 3, i.e., t = t+ τ
and X(t+ τ) = X(t) + vsj
Step 5: Sample from the distribution found for the virtual fast process to approx-
imate the fast species. Then round the fast species to the nearest integer that is
greater than zero.
Step 6: If t < tf repeat Step 2 - Step 6.

We consider three different ways to find the mean and variance of a normal distri-
bution for the virtual fast process. The first way is set the mean to the equilibrium
in the fast system, taking the variance for the fast species as zero. In this case the
slow scale SSA reduces to the previously described QSSA algorithm. The second
approach to finding the mean and variance for the normal distribution of the virtual
fast process is to use birth and death formulas

α̂(x) = b(x− 1)− d(x) (3.3.12)

From [17], x̂ ≥ 0 is a steady state of the virtual fast process if and only if

for some δ ∈ [0, 1), α̂(x̂+ δ) = 0 and α̂′(x̂+ δ) < 0. (3.3.13)

Then 〈X̂(∞)〉 = x̂, if the virtual fast process has only one steady state x̂ which can
be approximately obtained from α̂(x̂) = 0 and α̂′(x̂) < 0 [17]. The variance of x̂ is

σ2 =
d(x̂)

−α̂′(x̂)
. (3.3.14)
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The variance in (3.3.14) will be used in a Gaussian distribution [17]. The final
method to finding the mean and variance of the normal distribution for the virtual
fast process is to use the stationary moment equations as follows. To find the first
moment solve

0 =

mf∑
i=1

vfij〈a
f
i (X(∞))〉 (j = 1, · · · , nf ). (3.3.15)

To find the second moment solve

0 =

mf∑
i=1

vfij〈X
f
k (∞)afi (X(∞))〉+ vfik〈X

f
j (∞)afi (X(∞))〉 (3.3.16)

+

mf∑
i=1

vfijv
f
ik〈a

f
i (X(∞))〉 j = 1, · · · , nf k = j, · · · , nf

These moment equations originate from (3.3.2). To find (3.3.15), one would mul-
tiply the interior of the summation from (3.3.2) by the a fast species, Xf

i (t). To
find (3.3.16), one would multiply the interior of the summation from (3.3.2) by two
fast species, Xf

i (t) and Xf
j (t). For details see [17]. In the case where the propen-

sity functions are linear we do not have to truncate any higher moments. If the
propensity functions are nonlinear we would have to truncate the higher moments
appearing in (3.3.15) and (3.3.16) to be able to find the first and second moments
of the virtual fast process.

The QSSA algorithm and slow scale SSA both suppose that the fast system reaches
equilibrium quickly compared to the slow time scale. The difference between them
is that the QSSA algorithm uses deterministic equations and the slow scale SSA
uses stationary moment equations. The slow scale SSA is a probabilistic version of
the QSSA algorithm; both algorithms share the assumption that the fast species are
Markovian, that the fast system must reach an equilibrium and that the probability
distribution of the fast species conditional on the slow species is time invariant.

3.4 Nested SSA

The nested SSA [19] can be briefly described as two SSA simulations in one. One
SSA handles the slow reactions while the other, which runs between each slow
reaction, handles only the fast reactions. Since most of the SSA’s time is spent on
computing the fast reactions, the nested SSA’s focus is to approximate these fast
reactions as accurately as possible. The inner SSA handles only the fast reactions
and runs n independent SSA’s for the time interval [t, t+ Tf + T0]. The inner SSA
runs between each slow step to approximate the virtual fast process. The inner

25



SSA also computes the modified slow rates of the system, defined as

āsj =
1

n

n∑
i=1

1

Tf

∫ T0+Tf

T0

asj(x
i(γ))dγ,

where xi(γ) is x is the state at time γ of the ith run. The parameter T0 is chosen
to minimize the error in the approximation of the modified slow rates caused by
the transient. Since the inner SSA can be parallelized it can be beneficial to take
n large [19], but in [19] the authors take n = 1. Of course, taking more than one
inner SSA will effect the CPU time of the nested SSA, as we will see in later sec-
tions. The authors also suggest it is possible to take Tf � 1 and still have a good
approximation of the fast system, assuming that the slow time scale is of order 1
[18]. The nested SSA algorithm which as follows for the time interval [t0, tf ] [19].

Step 1: Partition the species into fast species and slow species, the reactions into
fast reactions and slow reactions and the propensity functions into fast propensity
functions and slow propensity functions. Set the initial conditions X(t0) = x0.
Step 2: Run n SSA’s on the fast reactions only for a time from t to t + Tf + T0

with the initial condition being the state X(t) = x.
Step 3: Find the modified slow rates

āsj =
1

n

n∑
i=1

1

Tf

∫ T0+Tf

T0

asj(x
i(γ))dγ.

Step 4: Sample two unit uniform random numbers, r1 and r2. Compute the time
to the next slow reaction

τ = − ln(r1)/ā
s

where ās =
∑ms

i=1 ā
s
i and compute the index of the next slow reaction from

j = smallest integer such that

j∑
i=1

āsi (x) ≥ r2ā
s(x).

Step 5: Update the species and the time, X(t + τ) = X(t) + vj and t = t + τ . If
Xi(t+ τ) < 0 then Xi(t+ τ) = 0.
Step 6: If t < tf repeat Step 2 - Step 6.

The nested SSA is similar to the slow scale SSA since they both sample from a
distribution to approximate the virtual fast process. The difference between the
nested SSA and the slow scale SSA is that the nested SSA numerically generates the
probability distribution for the fast species, whereas the slow scale SSA determines
the probability distribution for the fast species analytically. The next method we
will be looking at is the implicit tau leaping method.
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3.5 Implicit-Tau Leaping Method

The implicit-tau leaping method is derived from the chemical Langevin equation,
similar to the explicit-tau leaping method. The explicit-tau leaping method is very
similar to the explicit Euler method [20]. The explicit-tau update step is

X(t+ τ) = X(t) + τ
M∑
i=1

vjaj(X(t+ τ)) + τ 1/2vjaj(X(t))1/2Nj(0, 1),

where Nj(0, 1) are independent standard Normals [12]. The explicit-tau method
does not handle stiff systems very well, since if the time jump is too big the method
becomes unstable. Using small time jumps will not make the explicit tau method
run faster than the SSA, which is what the explicit tau was developed for. The
implicit-tau leaping method is able to handle a stiff system with little worry of the
method becoming unstable and able to run faster than the SSA.

With the implicit-tau leaping method, there is no need to distinguish fast reactions
or species as the method directly solves a set of equations, linear or non-linear, for
the desired time. The implicit-tau method was developed by Rathinam, Petzold,
Cao and Gillespie [20]. Similar to the explicit-tau leaping method the authors at-
tempt to implicitize the generation of Poisson random variables, Pj(aj(x(t+τ)), τ),
where X(t+ τ) = x(t+ τ) is unknown. To resolve this problem they took the ran-
dom variable Pj and wrote it as the sum of two parts, one being the mean value of
Pj, ajτ , and the second, Pj − ajτ , the zero mean random variable. At the known
state X(t), they evaluated the zero mean random variable and the mean value at
the unknown state X(t+ τ). Then they were able to describe the implicit method,
with statistically independent Poisson random variables, as follows

X(t+ τ) = X(t) +
M∑
i=1

vjaj(X(t+ τ))τ + vj(Pj(aj(X(t)), τ)− aj(X(t))τ). (3.5.1)

Since the Poisson random variables do not depend on the next value of the species,
X(t + τ), the generation of the Poisson random numbers is greatly simplified. An
approximation of the Poisson with a Normal in (3.5.1) gives

X(t+ τ) = X(t) + τ

M∑
i=1

vjaj(X(t+ τ)) + τ 1/2vjaj(X(t))1/2Nj(0, 1), (3.5.2)

where Nj(0, 1) are independent standard Normals.

Rathinam, Petzold, Cao and Gillespie developed a method for restoring the true
behaviour in the fast species. Any fluctuations that may occur in the fast species
due to noise are damped out by the large tau leaps [20]. The idea to reduce the
damping is to take tau leaps on the slow time scale of the system followed by a
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sequence of smaller tau leaps on the fast time scale. The smaller time steps can be
taken using the implicit or explicit tau methods, as there would be little worry of
instability. With just the large implicit tau leaps the statistical distributions may
become narrow, which is corrected by the sequence of small tau leaps. To imple-
ment the implicit tau leaping method for the time interval [t0, tf ], follow these steps

Step 1: Set the initial values of the species, X(t0) = x0

Step 2: Define the time jump, τ . It is possible to use a τ similar to (3.2.1), or use
a fixed τ , or use the method of tau leaps on the slow time scale then a sequence of
tau leaps on the fast time scale to reduce the dampening in the fast variables.
Step 3: Using τ , solve the set of implicit equations, (3.5.2), to find the species at
the new time, e.g. using Newton’s method.
Step 4: Update the time t = t+ τ .
Step 5: If t < tf repeat Step 2 - Step5 until desired time is reached.

The implicit tau method takes a different approach than the other methods, since
it involves an implicit description of the species at the next time step. The implicit
tau method has an approach for time stepping to reduce the dampening of the fluc-
tuations as mentioned previously. This approach is not taken by any of the other
approximation methods in this thesis. It would be worth investigating to see if this
approach of a sequence of time steps on the fast time scale improve a method’s
approximation of a chemical reaction system. A significant difference is that the
implicit tau method does not require separation of the species or the reactions.

We will now apply the QSSA algorithm, slow scale SSA, the nested SSA and the
implicit tau leaping method to a variety of examples to see how each compare to
the SSA. The goal of this analysis is to see whether one method prevails for any
kind of chemical system or if a certain method excels only for a specific type of
chemical system. We will consider a variety of measures to determine what method
is best suited for each example.
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Chapter 4

Example 1: Fast Reversible
Dimerization

This example is from [17]. The system is a fast reversible dimerization, with three
species involved in four reactions:

2S1

c1−⇀↽−
c2

S2

S1
c3−→ ∅

S2
c4−→ S3

Following mass action, the propensity functions for this system are

a(x) = (c1x1(x1 − 1)/2, c2x2, c3x1, c4x2).

The stoichiometry vectors are

v1 = (−2, 1, 0), v2 = (2,−1, 0), v3 = (−1, 0, 0), v4 = (0,−1, 1).

Taking

2S1

c1−⇀↽−
c2
S2

as the fast reactions, the fast species in this example are S1 and S2. The fast
stoichiometry vectors are vf1 = (−2, 1) and vf2 = (2,−1). We consider this example
to be a fairly representative example with straightforward dynamics. The two fast
species both decay over time, while the slow species grows until S2 has diminished.
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4.1 Theoretical Analysis of the System

The SSA, QSSA algorithm, slow scale SSA and the nested SSA approximate a
solution to the chemical master equation which for this example is

∂P (x, t|x0, t0)

∂t
=

c1(x1 + 2)(x1 + 1)

2
P (x− v1, t|x0, t0)−

c1x1(x1 − 1)

2
P (x, t|x0, t0)

+ c2(x2 + 1)P (x− v2, t|x0, t0)− c2x2P (x, t|x0, t0) (4.1.1)

+ c3(x1 + 1)P (x− v3, t|x0, t0)− c3x1P (x, t|x0, t0)

+ c4(x2 + 1)P (x− v4, t|x0, t0)− c4x2P (x, t|x0, t0).

Implementation of the slow scale SSA and the nested SSA involves finding a prob-
ability distribution for the fast species under only the fast reactions. Reducing the
system to just the fast reactions, the chemical master equation for the virtual fast
process is

∂P (xf ,xs, t|x0, t0)

∂t
=

c1(x1 + 2)(x1 + 1)

2
P (xf − vf1 , x

s, t|x0, t0) (4.1.2)

− c1x1(x1 − 1)

2
P (xf ,xs, t|x0, t0) + c2(x2 + 1)P (xf − vf2 , x

s
0, t|x0, t0)

− c2x2P (xf ,xs, t|x0, t0).

Summing over all possible values for xs, (4.1.2) becomes

∂P (xf , t|x0, t0)

∂t
=

c1(x1 + 2)(x1 + 1)

2
P (xf − vf1 , t|x0, t0)−

c1x1(x1 − 1)

2
P (xf , t|x0, t0)

+ c2(x2 + 1)P (xf − vf2 , t|x0, t0)− c2x2P (xf , t|x0, t0). (4.1.3)

There is a conservation in the fast system such that XT = X1(t) + 2X2(t), where
XT = xT is a constant on the fast time scale. With the conservation in the fast
system (4.1.3) can be rewritten as

∂Q(x2, t|x0, t0)

∂t
=

c1(xT − 2x2 + 2)(xT − 2x2 + 1)

2
Q(x2 − 1, t|x0, t0)

− c1(xT − 2x2)(xT − 2x2 − 1)

2
Q(x2, t|x0, t0) (4.1.4)

+ c2(x2 + 1)Q(x2 + 1, t|x0, t0)− c2x2Q(x2, t|x0, t0)

where Q(x2, t|x0, t0) = P (xT − 2x2, x2, t|x0, t0). (4.1.4) describes a birth and death
process for x2, where the birth rate is

b(x2) =
c1(xT − 2x2)(xT − 2x2 − 1)

2

and the death rate is
d(x2) = c2x2.
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The QSSA algorithm, slow scale SSA and the nested SSA can only be used when the
fast species reach a steady state under the fast reactions. In such cases the first and
second moment will be in steady state as well. We consider the time evolution of
the first and second moments to see how they relate to the approximation methods
and the SSA. Our theoretical descriptions of these moments will provide a basis for
evaluating the quality of the approximation methods illustrated in Chapter 4. The
time evolution of the first moment is

d〈X2(t)〉
dt

= 〈b(X2(t))〉 − 〈d(X2(t))〉

=
c1(X

2
T −XT ) + 2〈X2(t)〉(c1 − 2c1XT − c2) + 4c1〈X2

2 (t)〉
2

.(4.1.5)

In our implementation of the QSSA algorithm, 〈X2(t)〉 under the fast reactions is
just the steady state solution of X2’s deterministic equation in the fast system; the
species X2(t) is assumed to have deterministic behaviour [17]. In general, the time
evolution of the second moment is (see [11])

d〈X2
2 (t)〉
dt

= 〈b(X2(t))〉+ 〈d(X2(t))〉

+ 2〈X2(t)b(X2(t))〉 − 2〈X2(t)d(X2(t))〉 (4.1.6)

=
d〈X2(t)〉

dt
+ (X2

T −XT + 2c2)〈X2(t)〉+ 2(c1 − 2c1XT − c2)〈X2
2 (t)〉

+ 4c1〈X3
2 (t)〉.

Notice that the evolution of each moment depends on a higher moment. To arrive
at a closed system, we must eliminate the higher moment by making an assumption.
We assume that the distribution is Gaussian, i.e. the third central moment is zero.
We write the third moment of X2(t) as

〈X3
2 (t)〉 = 〈([X2(t)− 〈X2(t)〉] + 〈X2(t)〉)3〉

= 〈(X2(t)− 〈X2(t)〉)3〉+ 3〈(X2(t)

−〈X2(t)〉)2〉〈X2(t)〉+ 3〈X2(t)

−〈X2(t)〉〉〈X2(t)〉2 + 〈X2(t)〉3

Using the assumption that the distribution of X2(t) is Gaussian, implying 〈(X2(t)−
〈X2(t)〉)3〉 = 0, then the third moment for X2(t) becomes

〈X3
2 (t)〉 = 3〈X2

2 (t)〉〈X2(t)〉 − 2〈X2(t)〉3 (4.1.7)

Substituting (4.1.7) into (4.1.6) the time evolution of the second moment is approx-
imated by

d〈X2
2 (t)〉
dt

≈ d〈X2(t)〉
dt

+ (c1(X
2
T −XT ) + 2c2)〈X2(t)〉+ 2(c1 − 2c1XT − c2)〈X2

2 (t)〉

+ 12c1〈X2
2 (t)〉〈X2(t)〉 − 6c1〈X2(t)〉3 (4.1.8)
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To find the equilibrium of the moment equations we will solve

c1(X
2
T −XT ) + 2〈X2(t)〉(c1 − 2c1XT − c2) + 4c1〈X2

2 (t)〉 = 0 (4.1.9)

(c1(X
2
T −XT ) + 2c2)〈X2(t)〉+ 2(c1 − 2c1XT − c2)〈X2

2 (t)〉
+12c1〈X2

2 (t)〉〈X2(t)〉 − 6c1〈X2(t)〉3 = 0 (4.1.10)

From (4.1.9)

〈X2
2 (t)〉 =

c1(X
2
T −XT ) + 2〈X2(t)〉(c1 − 2c1XT − c2)

4c1
(4.1.11)

Substituting (4.1.11) into (4.1.10), the equation to find the first moment is

(c1(X
2
T −XT ) + 2c2)〈X2(t)〉

+ 2(c1 − 2c1XT − c2)
c1(X

2
T −XT ) + 2〈X2(t)〉(c1 − 2c1XT − c2)

4c1
+ 3

(
c1(X

2
T −XT ) + 2〈X2(t)〉+ (c1 − 2c1XT − c2)

)
〈X2(t)〉 (4.1.12)

− 6c1〈X2(t)〉3 = 0,

a cubic equation that does not admit a convenient analytical solution. The mean
for X1 is

〈X1(t)〉 = XT − 2〈X2(t)〉

The variance for X1 is
〈〈X1(t)〉〉 = 4〈〈X2(t)〉〉.

With these equations for the moments of X1 and X2, one could use these to sample
from a Gaussian distribution to approximate the virtual fast process of the slow
scale SSA. We will see later on in this example that there is an alternative way to
find the mean and variance for our Gaussian distribution. As mentioned previously
in this paper, a chemical system can also be represented by a chemical Langevin
equation. The implicit tau leaping method approximates a solution to the chemical
Langevin equation. The Chemical Langevin Equation for this system is

dX1(t)

dt
= −c1X1(t)(X1(t)− 1) + 2c2X2(t)− c3X1(t) (4.1.13)

−
√

2c1X1(t)(X1(t)− 1)Γ1(t) + 2
√
c2X2(t)N2(t)−

√
c3X1(t)Γ3(t)

dX2(t)

dt
= c1X1(t)(X1(t)− 1)/2− c2X2(t)− c4X2(t) (4.1.14)

+
√
c1X1(t)(X1(t)− 1)/2Γ1(t)−

√
c2X2(t)N2(t)−

√
c4X2(t)Γ4(t)

dX3(t)

dt
= c4X2(t)−

√
c4X2(t)Γ4(t) (4.1.15)

where Γi(t) are temporally uncorrelated white noise [27]. With the knowledge of
the theoretical representation of this system, next we will consider the details of
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implementing each algorithm.

4.2 QSSA algorithm

The QSSA algorithm approximates the distribution of the fast species as the delta
distribution at the steady state of the fast species under the fast reactions in the
deterministic model. The deterministic equations for this system are

dX1

dt
= −c1X2

1 + 2c2X2 − c3X1 (4.2.1)

dX2

dt
=
c1X

2
1

2
− c2X2 − c4X2 (4.2.2)

dX3

dt
= c4X2. (4.2.3)

The species X1 and X2 are fast with a conservation XT = X1 + 2X2 in the fast
reactions only. Ignoring all the slow reactions, the equation to be solved is c1X

2
1 =

2c2X2. Using the conservation relation the equation is c1(XT − 2X2)
2 = 2c2X2.

The approximation for X2 is

X2 =
2c1XT + c2 −

√
c22 + 4c1c2XT

4c1
. (4.2.4)

Using the conservation relation XT = X1 + 2X2, the approximation for X1 is

X1 = XT − 2X2 =
−c2 +

√
c22 + 4c1c2XT

2c1
. (4.2.5)

With the approximation of the virtual fast processes the fast time scale is removed
and the following slow reactions remain to be simulated

S1
c3−→ ∅

S2
c4−→ S3.

4.3 Slow Scale SSA

For this example we will take a normal distribution to approximate the behaviour of
the virtual fast process in the slow scale SSA. We will find the mean of the virtual
fast process using the birth and death formulas from section 3.3. The relative
maximum of P (x̂2

f ,∞) can be computed as the greatest integer of the down going
root of b(x2−1)−d(x2) = 0 [17] where b(x2) = c1(4x

2
2−2x2(2xT−1)+xT (xT−1))/2,
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d(x2) = c2x2 and xT = x1 + 2x2. Solving for x2,

x2 =
2c1xT + 3c1 + c2 −

√
(2c1xT + 3c1 + c2)2 − 4c21(xt + 1)(xt + 2)

4c1
(4.3.1)

Denote the greatest integer function by xINT2 = dx2e. xINT2 is the stable state of
X̂f

2 (∞) for the birth and death process [17]. The variance that is used for the
normal distribution of X̂f

2 (∞) is

〈〈X̂f
2 (∞)〉〉 =

c2x
INT
2

−4c1xINT2 + c1(2xT + 3) + c2
, (4.3.2)

which is from (3.3.14). When we sample from the normal distribution for this
example we must make sure that X2 ≥ 0 and that X2 ≤ XT/2 since X1+2X2 = XT

[17].

4.4 Nested SSA

We begin by addressing which choice of design parameters will produce the best
results for the nested SSA. The parameters are: n, the number of inner SSA’s we run
between the outer SSA steps; the amount of time to run the inner SSA, Tf +T0, and
the length of the transient T0. We will test Tf = {0.005, 0.01, 0.015, 0.02, 0.025},
T0 = {0.005, 0.01, 0.015, 0.02} and n = {1, 2}, chosen as reasonable values after
extensive testing. Our first criterion will be that the choice of parameters must
provide for a CPU time less than that of the SSA. The initial number of species for
the simulation is

X(0) = (540, 730, 0).

The simulations were run for 400 time units. The reaction rates are

c1 = 1, c2 = 200, c3 = 0.02, c4 = 0.004.

To run a single trajectory of 400 time units, the CPU time for the SSA was ap-
proximately 135.62 seconds. Table 4.4.1 indicates parameter values that result in a
CPU time less than that of the SSA. Table 4.4.1 is for a single run of the inner loop,
i.e. n = 1. We call a run consistent if the nested SSA’s approximation was good
enough so no significant problems occurred before the end of the simulation. We
found that the fastest most consistent combination of Tf and T0 for this example
was Tf = 0.02 and T0 = 0.02. We will also consider Tf = 0.025 and T0 = 0.02 (with
n = 1) because a larger Tf value will improve the approximation of the virtual fast
process.

Table 4.4.2 shows results for two runs of the inner loop, i.e. n = 2. We will
only consider parameters that produce a CPU time faster than 44.48 seconds, the
best time for n = 1. We found by running simulations for the different combina-
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Tf + T0 CPU Time (sec.)
0.01 11.56
0.015 16.73
0.02 21.29
0.025 26.99
0.03 33.13
0.035 38.36
0.04 44.48
0.045 50.83

Table 4.4.1: Fast Reversible Dimerization: CPU times for the nested SSA for
n = 1, for a single sample path. The type of machine that was used for these
simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD Operton
chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

Tf + T0 CPU Time (sec.)
0.01 21.99
0.015 31.52
0.02 41.00
0.025 51.82

Table 4.4.2: Fast Reversible Dimerization: CPU times for the nested SSA for
n = 2, for a single sample path. The type of machine that was used for these
simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD Operton
chips (8 processors) at 2.6GHz running OpenSuSE 10.2.
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tions of Tf and T0 that the fastest most consistent combination of Tf and T0 for
N = 2 was Tf = 0.005 and T0 = 0.005. For the case of n = 2 we will also consider
Tf = 0.01 and T0 = 0.005. We will compare the results of these four cases to see
which one is the most accurate.

To calculate the moments of each species we took an ensemble of 250 simulations.
Each parameter set that we are taking for the nested SSA was able to produce a
distribution similar to that of the SSA for both of the virtual fast processes. When
we are computing the error of the mean we take the base ten logarithm of the ratio
of the mean produced by the approximation method over the mean produced by the
SSA simulations (The moments for the results of the SSA were computed from an
ensemble of 250 simulations). If the value of the error is negative we know that the
approximation method under-approximated the value of the SSA, where a positive
value in the error implies that the value of the SSA was over-approximated. We
take a similar approach to address the error of the standard deviation. In Figure
4.4.1 we see the error of the mean of X1 for each of the nested SSA parameter sets;
in Figure 4.4.2 we see the error of the standard deviation of X1. We see from Figure
4.4.1 and Figure 4.4.2 that the two cases for N = 2 give poor approximations to
the system for both the mean and standard deviation. The two cases for n = 1
approximate the standard deviation of X1 well. However, in Figure 4.4.3 we see
that the two cases for n = 1 give a poor approximation near the end of the simu-
lation for the standard deviation of X3, which is due to the approximation of the
modified slow rates. The same thing can be said for the two cases for n = 1 for
the mean of X3 (not shown). The optimal parameters for the nested SSA from the
parameters we have tested are n = 1, Tf = 0.02 and T0 = 0.02, since they produced
the most accurate data for the species overall and resulted in faster computations
than n = 1 and Tf = 0.025. n = 1 and Tf = 0.025, produced results similar to
n = 1 and Tf = 0.02 but was not chosen was due to the longer CPU time than
Tf = 0.02.

4.5 Implicit Tau Method

In an implementation of the implicit tau leaping method, there are three different
approaches we will consider: a random time jump that is on the slow scale; a fixed
time jump; and a large time jump followed by a sequence of small time jumps.
Recall the CPU time for the SSA was 135.62 seconds over 400 time units, for a
single sample path. Using the time jump on the slow scale the implicit tau had a
CPU time of approximately 8.31 seconds. Using a fixed time jump of 0.2250 the
CPU time was around 9.92 seconds. We choose the time jump of 0.2250 because it
is the average of the random time jumps on the slow scale over the entire simulation.
Using a slightly higher fixed time jump of 0.5, the CPU time was approximately
4.53 seconds. The type of machine that was used for these simulations was a sun
fire x4600 with 32G of RAM and 4 dual-core AMD Operton chips (8 processors)
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Figure 4.4.1: Fast Reversible Dimerization: The base ten logarithm of the approx-
imation of X1’s mean by the nested SSA approximations over the approximation
of X1’s mean by the SSA. Ensemble size of 250 simulations.
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Figure 4.4.2: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X1’s standard deviation by the nested SSA approximations over
the approximation of X1’s standard deviation by the SSA. Ensemble size of 250
simulations.
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Figure 4.4.3: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X3’s standard deviation by the nested SSA approximations over
the approximation of X3’s standard deviation by the SSA. Ensemble size of 250
simulations.
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at 2.6GHz running OpenSuSE 10.2. The choice of a time jump of 0.5 produces a
much coarser plot than the other approaches. Using the third approach we took
one large jump and then a sequence of 4 small jumps; the CPU time was 49.77
seconds. For the small jumps we took them to be

τ =
− ln(r1)∑4
i=1 ai(x)

and for the bigger jump we took them to be the on the slow time scale

τ =
− ln(r1)

c3x1 + c4x2

,

where r1 is a unit interval uniform random variable. In Figure 4.5.1 we see the error
of the mean for X1; the sequence of small jumps does not approximate the mean
very well near the end of the simulation. However, the sequence of small jumps is
the best approach to use for approximating the mean of X2, as seen in Figure 4.5.2.
All of the approaches for the implicit tau were able to accurately approximate the
mean of X3 (not shown). In Figure 4.5.3 we see the standard deviation of X2 is best
approximated by the sequence of small jumps. The standard deviation of the other
species was well approximated by all of the approaches to the implicit tau (not
shown). The most accurate approach for the implicit tau is through the sequence
of small jumps. However, the approach of using large fixed jumps gave just as good
an approximation for X3 (not shown) as the sequence of small jumps and slightly
better approximations for X1, Figure 4.5.1. The error of the large fixed time jumps
for the approximation of X2 was similar to the error of the approximation of the
mean of X1 that the sequence of small time jumps produced. The large fixed jump
approach is much faster than the sequence of small jumps. Taking into account
accuracy and CPU time the approach of the large fixed time jumps is the one we
will use for the implicit tau leaping method.

4.6 Comparison of the Methods

The first thing that we will be looking at is the CPU time it takes to run each of
the methods. We next will compare the results of the various algorithms against
the SSA, using the SSA as the “gold standard”. In each case we took an ensemble
of 250 simulations. From Table 4.6.1, we see that the slow scale SSA and QSSA
algorithm are the two fastest approximation methods.

How the QSSA algorithm, nested SSA and slow scale SSA approximate the fast
species is important in how the three methods approximate the entire system.
Overall, we found that the nested SSA, QSSA algorithm, slow scale SSA were able
to produce a distribution for the virtual fast process similar to the results of the
SSA. To find the delta peak of the QSSA algorithm we used (4.2.4) to approximate
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Figure 4.5.1: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X1’s mean by the implicit tau leaping approximations over the
approximation of X1’s mean by the SSA. Ensemble size of 250 simulations. (IT
refers to the implicit tau leaping method)
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Figure 4.5.2: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X2’s mean by the implicit tau leaping approximations over the
approximation of X2’s mean by the SSA. Ensemble size of 250 simulations. (IT
refers to the implicit tau leaping method)
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Figure 4.5.3: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X2’s standard deviation by the implicit tau leaping approximations
over the approximation of X2’s standard deviation by the SSA. Ensemble size of
250 simulations. (IT refers to the implicit tau leaping method)
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Method CPU Time
(sec.)

SSA 135.62
QSSA algorithm 0.02
Nested SSA 44.48
Slow Scale SSA 0.02
Implicit Tau 4.53

Table 4.6.1: Fast Reversible Dimerization: CPU times for all the methods for 400
time units, for a single sample path. The type of machine that was used for these
simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD Operton
chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

X2 and (4.2.5) to approximate X1. The QSSA algorithm approximations of X1 and
X2 were located in the central part of the SSA distribution of the corresponding
fast species. In implementing the slow scale SSA, the normal approximation using
the mean and variance from section 4.3 was used as a distribution for X2. Corre-
sponding values of X1 were derived from the conservation X1 = XT − 2X2.

Considering the overall system behaviour, it seems that the approximation
methods approximated the mean of each species very well, with the exception of
the nested SSA and the species X3. In Figure 4.6.1, we see that the nested SSA does
an extremely poor job off approximating X3 at the end of the simulation, similarly
the nested SSA approximates the variance of the species X3 poorly at the end (not
shown). Looking closer at the means of each species, we notice that the nested SSA
does a poor job in approximating the mean of X1, Figure 4.6.2 , where both the
QSSA algorithm and the slow scale SSA do a very good job. In Figure 4.6.3 we see
that the nested SSA is the best approximation for the mean of X2 as the slow scale
SSA tails off at the end. In Figure 4.6.4 we see that the nested SSA and the slow
scale SSA approximate the standard deviation of X1 very well. The results of the
implicit tau and the QSSA algorithm do not even resemble the standard deviation
of X1 produced by the SSA. The QSSA algorithm and implicit tau method also
under-approximate the standard deviation of X2 (not shown). However, this time
the QSSA algorithm and implicit tau method were able to reproduce a standard
deviation of X2 similar to the SSA. Figure 4.6.5 shows a histogram of X2 at 300
time units. We see that every method besides the implicit tau method was able
to represent the distribution of the species X2. The same results were found for
the other species histograms at 300 time units (not shown). (All the values of the
species are not in integer bins because we had to interpolate the data to 300 time
units.)

The QSSA algorithm provides a poor approximation of the standard deviation
of the fast species. The nested SSA was much slower than the slow scale SSA and
poorly approximated X3 at the end of the simulation. Because of how the modified
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Figure 4.6.1: Fast Reversible Dimerization: The approximation of X3’s mean
made by all the methods. Ensemble size of 250 simulations. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 4.6.2: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X1’s mean by the approximation methods over the approximation
of X1’s mean by the SSA. Ensemble size of 250 simulations. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 4.6.3: Fast Reversible Dimerization: The base ten logarithm of the ap-
proximation of X2’s mean by the approximation methods over the approximation
of X2’s mean by the SSA. Ensemble size of 250 simulations. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 4.6.4: Fast Reversible Dimerization: The approximation of X1’s standard
deviation made by all the methods. Ensemble size of 250 simulations. (IT refers to
the implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 4.6.5: Fast Reversible Dimerization: The histogram of X2 for all the
methods at 300 time units. Ensemble size of 250 simulations. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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slow propensities were calculated: near the end of the simulation the values for X1

and X2 decrease, causing the tau, the time to the next fast reaction in the inner SSA
to become much larger than previously in the simulation. This larger tau causes the
approximation of the Reimann sum to become worse. The approximation of the in-
tegral could be improved by the use of a better quadrature method. In addition the
modified slow propensities become inaccurate at the end of the inner SSA since the
fast species are sometimes have a zero concentration, but the modified slow rates
may not be zero. This causes the nested SSA to produce negative concentrations
for a species and then we must set the species concentration to zero. From these
results we can conclude that the slow scale SSA is the best approximation method
to use for this example. The slow scale SSA was able to capture the characteristics
of the SSA for the mean, standard deviation, majority of the skewness (not shown)
and the distribution of each species.
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Chapter 5

Example 2: Network of
Isomerizations

This example from [18] involves four species in a network of isomerizations involving
six reactions:

S1

c1−⇀↽−
c2

S2

S2

c3−⇀↽−
c4

S3

S3

c5−⇀↽−
c6

S4.

The propensity functions for this system are

a(x) = (c1x1, c2x2, c3x2, c4, x3, c5, x3, c6x4).

The stoichiometry vectors are

v1 = (−1, 1, 0, 0), v2 = (1,−1, 0, 0), v3 = (0,−1, 1, 0),

v4 = (0, 1,−1, 0), v5 = (0, 0,−1, 1), v6 = (0, 0, 1,−1).

Take

S1

c1−⇀↽−
c2

S2

S3

c5−⇀↽−
c6

S4

as the fast reactions. As a result there are no slow species in the system. The fast
stoichiometry vectors are vf1 = (−1, 1, 0, 0), vf2 = (1,−1, 0, 0), vf3 = (0, 0,−1, 1)
and vf4 = (0, 0, 1,−1). There are two independent fast systems:

S1

c1−⇀↽−
c2
S2
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and
S3

c5−⇀↽−
c6
S4.

This system differs considerably from the previous example; there are no slow
species, and there are two independent fast subsystems coupled through slow reac-
tions, complicating the approximation of the behaviour of the virtual fast process.
The behaviour of this system is that X1 and X2 both decay over time as the species
X3 and X4 both grow over time.

5.1 Theoretical Analysis of the System

The chemical master equation for this example is

∂P (x, t|x0, t0)

∂t
= c1x1P (x− v1, t|x0, t0)− c1x1P (x, t|x0, t0)

+ c2x2P (x− v2, t|x0, t0)− c2x2P (x, t|x0, t0)

+ c3x2P (x− v3, t|x0, t0)− c3x2P (x, t|x0, t0) (5.1.1)

+ c4x3P (x− v4, t|x0, t0)− c4x3P (x, t|x0, t0)

+ c5x3P (x− v5, t|x0, t0)− c5x3P (x, t|x0, t0)

+ c6x4P (x− v6, t|x0, t0)− c6x4P (x, t|x0, t0).

The chemical master equation for the virtual fast process is

∂P (xf , t|x0, t0)

∂t
= c1x1P (xf − vf1 , t|x0, t0)− c1x1P (xf , t|x0, t0)

+ c2x2P (xf − vf2 , t|x0, t0)− c2x2P (xf , t|x0, t0)

+ c5x3P (xf − vf5 , t|x0, t0)− c5x3P (xf , t|x0, t0) (5.1.2)

+ c6x4P (xf − vf6 , t|x0, t0)− c6x4P (xf , t|x0, t0).

Since there are two independent fast systems, we write (5.1.2) as two separate
systems.

∂P (xf , t|x0, t0)

∂t
= c1x1P (xf − vf1 , t|x0, t0)− c1x1P (xf , t|x0, t0) (5.1.3)

+ c2x2P (xf − vf2 , t|x0, t0)− c2x2P (xf , t|x0, t0)

∂P (xf , t|x0, t0)

∂t
= c5x3P (xf − vf5 , t|x0, t0)− c5x3P (xf , t|x0, t0) (5.1.4)

+c6x4P (xf − vf6 , t|x0, t0)− c6x4P (xf , t|x0, t0).
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In (5.1.3), summing over x3 and x4 we have

∂P (xf1 , x
f
2 , t|x0, t0)

∂t
= c1x1P (xf1 + 1, xf2 − 1, t|x0, t0) (5.1.5)

− c1x1P (xf1 , x
f
2 , t|x0, t0) + c2x2P (xf1 − 1, xf2 + 1, t|x0, t0)

− c2x2P (xf1 , x
f
2 , t|x0, t0).

There is also a conservation in the system such that XT1 = X1(t) + X2(t), where
XT1 = xT1 is constant on the fast time scale. Using the conservation, (5.1.3) is
rewritten as

∂Q(xf1 , t|x0, t0)

∂t
= c1x1Q(xf1 + 1, t|x0, t0)− c1x1Q(xf1 , t|x0, t0) (5.1.6)

+ c2(xT1 − x1)Q(xf1 − 1, t|x0, t0)− c2(xT1 − x1)Q(xf1 , t|x0, t0),

where Q(xf1 , t|x0, t0) = P (xf1 , xT1 − x1, t|x0, t0). Equation (5.1.6) describes a birth
and death process for X1 with birth rate

b(x1) = c2(xT1 − x1)

and death rate
d(x1) = c1x1.

The time evolution of the first moment of X1(t) is

d〈X1(t)〉
dt

= c2XT1 − (c1 + c2)〈X1(t)〉. (5.1.7)

The time evolution of the second moment is

d〈X2
1 (t)〉
dt

=
d〈X1(t)〉

dt
+ 2(c2XT1 + c1)〈X1(t)〉 − 2(c1 + c2)〈X2

1 (t)〉. (5.1.8)

To find the steady state solution of (5.1.7) and (5.1.8) we solve

c2XT1 − (c1 + c2)〈X1(t)〉 = 0 (5.1.9)

(c2XT1 + c1)〈X1(t)〉 − (c1 + c2)〈X2
1 (t)〉 = 0 (5.1.10)

The solution for (5.1.9) is

〈X1(t)〉 =
c2XT1

c1 + c2
. (5.1.11)

Using (5.1.11) in (5.1.10), the steady state solution for the second moment is

〈X2
1 (t)〉 =

c22X
2
T1

+ c1c2XT1

(c1 + c2)2
.
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The variance for X1(t) is

〈〈X1(t)〉〉 = 〈X2
1 (t)〉 − 〈X1(t)〉2 =

c1c2XT1

(c1 + c2)2
. (5.1.12)

Using the conservation XT1 = X1(t) +X2(t), we have that

〈X2(t)〉 = XT1 − 〈X1(t)〉 =
c1XT1

c1 + c2
(5.1.13)

〈〈X2(t)〉〉 = 〈〈XT1 −X1(t)〉〉 =
c1c2XT1

(c1 + c2)2
. (5.1.14)

Similarly, using the conservation relation in the other fast system XT2 = X3(t) +
X4(t), where XT2 = xT2 is constant, we have that

〈X3(t)〉 =
c5XT2

c5 + c6
, (5.1.15)

〈〈X3(t)〉〉 =
c5c6XT2

(c5 + c6)2
, (5.1.16)

〈X4(t)〉 =
c6XT2

c5 + c6
, (5.1.17)

〈〈X4(t)〉〉 =
c5c6XT2

(c5 + c6)2
. (5.1.18)

One could use these moment equations to produce a normal approximation to the
virtual fast process of these four species in the slow scale SSA. However, later on
in this section we will see that there is an alternative distribution for the virtual
fast process.

Now we will show the chemical Langevin equation for this system:

dX1(t)

dt
= −c1X1(t) + c2X2(t) (5.1.19)

−
√
c1X1(t)Γ1(t) +

√
c2X2(t)Γ2(t),

dX2(t)

dt
= c1X1(t)− c2X2(t)− c3X2(t) + c4X3(t) (5.1.20)

+
√
c1X1(t)Γ1(t)−

√
c2X2(t)Γ2(t)−

√
c3X2(t)Γ3(t) +

√
c4X3(t)Γ4(t),

dX3(t)

dt
= c3X2(t)− c4X3(t)− c5X3(t) + c6X4(t) (5.1.21)

+
√
c3X2(t)Γ3(t)−

√
c4X3(t)Γ4(t)−

√
c5X3(t)Γ5(t) +

√
c6X4(t)Γ6(t),

dX4(t)

dt
= c5X3(t)− c6X4(t) (5.1.22)

+
√
c5X3(t)Γ5(t)−

√
c6X4Γ6(t).

54



These equations will be used by the implicit tau leaping method to approximate
the behaviour of the chemical system. With the knowledge of the theoretical rep-
resentation of this system, next we will consider the details of implementing each
algorithm.

5.2 QSSA algorithm

The deterministic equations for the system are

dX1

dt
= −c1X1 + c2X2

dX2

dt
= c1X1 − c2X2 − c3X2 + c4X3

dX3

dt
= c3X2 − c4X3 − c5X3 + c6X4

dX4

dt
= c5X3 − c6X4

Reactions 1, 2, 5 and 6 are fast. This means that there are two independent fast
systems with the conservations XT1 = X1 +X2 and XT2 = X3 +X4. The equations
to solve for the fast systems are

c1X1 = c2X2 = c2(XT1 −X1)

c5X3 = c6X4 = c6(XT2 −X3)

The steady states for the fast species are

X1 =
c2XT1

c1 + c2
(5.2.1)

X2 =
c1XT1

c1 + c2
(5.2.2)

X3 =
c6XT2

c5 + c6
(5.2.3)

X4 =
c5XT2

c5 + c6
(5.2.4)

With the approximation of the virtual fast processes the fast time scale is removed
and the following slow reactions remain to be simulated

S2

c3−⇀↽−
c4
S3
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5.3 Slow Scale SSA

The fast system is made up of two independent isomerizations. Consider the iso-
merization of X1 and X2; the other fast system is similar. Recall, the conservation
XT1 = X1(t) + X2(t), where XT1 is constant in the fast system. The isomerization
can be written in terms of a birth and death process in X1(t), where the birth rate
is

b(x1) = c2(xT1 − x1)

and the death rate is
d(x1) = c1x1.

Using the recursion formula from [17]

P (x1,∞) =

{
d(x1+1)P (x1+1,∞)

b(x1)
x1 = −1, 0

b(x1−1)P (x1−1,∞)
d(x1)

x1 = 1, 2, · · · , xT1

the probability distribution of X1(t) under the fast reactions is

P (x′1,∞|x1, x2) =

(
xT1

x′1

)
(

c2
c1 + c2

)x
′
1(

c1
c1 + c2

)xT1
−x′1 , (5.3.1)

where x′1 = 0, 1, 2, · · · , xT1 . The probability distribution in (5.3.1) is a binomial
distribution.

5.4 Nested SSA

In [33], the parameter values used for the nested SSA were Tf = 1.1 × 10−5 with
T0 = 0 and N = 1. Since the authors of [33] were comparing the slow scale SSA to
the nested SSA, we will use these parameters when comparing the nested SSA to
the other approximation methods in this paper.

5.5 Implicit Tau Leaping

The reaction rates are

c1 = 3× 104, c2 = 6× 104, c3 = 1,

c4 = 1, c5 = 6× 104, c6 = 3× 104.

The initial value for each species was

X(0) = (1200, 600, 0, 0).

56



Method CPU Time
(sec.)

SSA 2641.9
QSSA algorithm 0.04
Nested SSA 12.33
Slow Scale SSA 0.61
Implicit Tau 3.27

Table 5.6.1: Network of Isomerizations: CPU times for all the methods for 3
time units, for a single sample path. The type of machine that was used for these
simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD Operton
chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

Each simulation was run for 3 time units. To calculate the moments we used an
ensemble of 250 simulations. We consider four approaches to implementation of
the implicit tau leaping algorithm: a fixed time step of 0.0016; a larger fixed time
step of 0.008; jumps on the slow time scale; and a large jump on the slow time
scale followed by a sequence of 5 small jumps on the fast time scale. The CPU
times for the fixed time step of 0.0016 is approximately 11.68 seconds, the larger
fixed time step of 0.008 is 2.55 seconds, the sequence of small jumps had a CPU
time of 48.57 seconds and on the slow time scale it was 11.34 seconds. The type of
machine that was used for these simulations was a sun fire x4600 with 32G of RAM
and 4 dual-core AMD Operton chips (8 processors) at 2.6GHz running OpenSuSE
10.2 Figure 5.5.1 shows the error of the mean of X3, indicating there is not much
difference between these different approaches in approximating the mean of X3.
The same thing can be said for all the other species in the system (not shown).
Figure 5.5.2 shows the error of the approximation of the standard deviation for
X2, indicating that there is no difference in the standard deviations generated by
these different approaches. Similar results were found for all other species in the
system (not shown). Since all of the methods are extremely close to one another
in approximations, we will use the fastest approach- the large fixed time jump of
0.008- in the comparison to follow.

5.6 Comparison of the Methods

To compute the moments and the histograms of the species at the end of the sim-
ulation we used an ensemble of 250 simulations. The CPU times for each method
for this example are given in Table 5.6.1, where we see that the QSSA algorithm
is the fastest approximation method. The approach the nested SSA and slow scale
SSA take in dealing with the stiffness is important to how well they approximate
the behaviour of the system. For the histograms of the virtual fast processes, we
used an ensemble of 1000 simulations. To begin the comparison of the results,
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Figure 5.5.1: Network of Isomerizations: The base ten logarithm of the approxi-
mation of X3’s mean by the implicit tau leaping approximations over the approx-
imation of X3’s mean by the SSA. Ensemble size of 250 simulations. (IT refers to
the implicit tau leaping method)
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we will first focus on how the SSA, nested SSA, slow scale SSA and QSSA algo-
rithm distribute the virtual fast processes. We will compare those results with the
theoretically-determined normal approximation of the fast species distribution us-
ing the mean and variance equations from (5.1.11) to (5.1.18) for each individual
species. Since there is a conservation in each subsystem, we will address only X2

and X4. Considering the state X1 = 950, X2 = 425, X3 = 125 and X4 = 250,
the QSSA algorithm approximates the virtual fast process by the delta distribution
with

X2 = 458.33 ≈ 458 and X4 = 250

using (5.2.2) and (5.2.4) respectively. Figures 5.6.1 shows the distribution of the
virtual fast process for XT1 = 1375, indicating that the QSSA algorithm’s approxi-
mation of X2 is very good since it lies in the center of the SSA’s distribution for X2.
Similar results for the QSSA algorithm were found for the distribution of X4 (not
shown). We see in Figure 5.6.1 that the nested SSA’s distribution does not match
that of the SSA’s. The nested SSA’s distribution for X2 is not accurate since the
inner SSA was not run long enough for X2 to reach its steady state. We can see in
Figure 5.6.2 that when we run the inner SSA for a longer period of time we have
the nested SSA approximating the distribution of X2 appropriately. The downside
is the CPU time is even longer than that shown in Table 5.6.1. The nested SSA
produced a distribution for the virtual fast process that resembled the distribution
produced by the SSA for some time points in the simulation (not shown). The slow
scale SSA reproduced he distribution of the virtual fast process of the SSA through
the different states in the system (not shown). We can conclude that the slow scale
SSA provides the best approximation of the distribution of the virtual fast process.

Considering the overall behaviour of the system, all of the approximation meth-
ods give an accurate approximation of the mean of each species in the system,
although initial approximations of the mean of X3 were not good. In Figure 5.6.3
we see the error of the approximation of the mean of X3, indicating the poor ap-
proximation during the initial part of the simulation. The slow scale SSA and
implicit tau leaping method do not give as poor approximation in the initial part
of the simulation as the other two methods. One reason the approximation of the
mean of X3 was not as accurate as that of X2 is due to poor approximation of the
transient. With the initial conditions of X3 = 0 and X4 = 0 the only way that X3

can first be produced is through X2 and X4 can only be produced through X3. It
will take a short time into the simulation before the approximation methods surpass
the transient and produce a more accurate approximation for X3 and X4, as seen in
Figure 5.6.3. Figure 5.6.4 shows the standard deviation of X1, indicating that the
nested SSA and the slow scale SSA were able to produce the standard deviation
of X1 in agreement with the SSA. For the standard deviation of X3 and X4, all
the methods have the same shape for the standard deviation, however the value of
the standard deviation for the QSSA algorithm and the implicit tau method are
smaller than that of the SSA (not shown). From what we have seen so far in this
example, the nested SSA and the slow scale SSA are the two methods that best
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Figure 5.6.1: Network of Isomerizations: The distribution of the virtual fast
process for X2 for the SSA, nested SSA, slow scale SSA. The curve is the theoretical
normal. X1 = 950, X2 = 425 and XT1 = 1375. Ensemble size of 1000 simulations.
(ssSSA refers to the slow scale SSA)
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Figure 5.6.2: Network of Isomerizations: The distribution of the virtual fast
process for X2 for the nested SSA, where the inner SSA was ran for a longer period
of time. The curve is the theoretical normal. X1 = 950, X2 = 425 and XT1 = 1375.
Ensemble size of 1000 simulations.
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Figure 5.6.3: Network of Isomerizations: The base ten logarithm of the approx-
imation of X3’s mean by the approximation methods over the approximation of
X3’s mean by the SSA. Ensemble size of 250 simulations. (IT refers to the implicit
tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 5.6.4: Network of Isomerizations: The approximation of X1’s standard
deviation made by all of the methods. Ensemble size of 250 simulations. (IT refers
to the implicit tau leaping method and ssSSA refers to the slow scale SSA)
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approximate the SSA. When we take a closer look at the ratio of the standard
deviations (not shown), it is still hard to tell whether the nested SSA or the slow
scale SSA is the best approximation. The histograms at 3 time units (not shown)
and skewness (not shown) of the species also do not give us any insight into the
comparison. From the results we have found, the inaccuracy of the nested SSA in
determining the distribution of the virtual fast process had very little effect on the
overall accuracy of the nested SSA. However, the slow scale SSA is the best ap-
proximation to use for this example, since it is able to approximate the fast species
under the fast reactions consistently throughout the entire simulation, where the
nested SSA is not. The slow scale SSA is also the best method to use as it was
almost the fastest approximation method, second only to the QSSA algorithm. In
terms of accuracy of the overall behaviour of the system the nested SSA and slow
scale SSA are equivalent. One of the reasons why the QSSA algorithm provided
poor results is that near the beginning of the simulation its approximation of the
variance for each of the species was inaccurate until a slow reaction occurred. Until
a slow reaction occurs in this system the QSSA algorithm will not have a value for
the variance, we will see this more clearly in the next example. However, further
into the simulation the QSSA algorithm’s approximation of the variance improved.
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Chapter 6

Example 3: Fast Species Acting as
a Catalyst

This example is from [20], and involves three species and three reactions:

S1

c1−⇀↽−
c2

S3

S1 + S2
c3−→ S1.

The propensity functions for this system are

a(x) = (c1x1, c2x3, c3x1x2).

The stoichiometry vectors for the system are v1 = (−1, 0, 1), v2 = (1, 0,−1) and
v3 = (0,−1, 0). We will take the fast reactions in the system to be

S1

c1−⇀↽−
c2
S3,

so the stoichiometry vectors for the fast system are vf1 = (−1, 1), vf2 = (1,−1).
There is a conservation in the fast system, XT = X1(t)+X3(t) where XT is constant
on the fast time scale. The interesting aspect of this system is that the slow reaction
has no effect on the fast species. In the two previous examples a slow reaction
affected one or more of the fast species. Here the fact that the fast system remains
unchanged by the slow system causes some interesting behaviour for the QSSA
algorithm. In this system the two fast species remain constant, while the slow
species decays over time until the slow species has depleted.
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6.1 Theoretical Analysis

The chemical master equation that the SSA, QSSA algorithm, slow scale SSA and
the nested SSA approximate is

∂P (x, t|x0, t0)

∂t
= c1x1P (x− v1, t|x0, t0)− c1x1P (x, t|x0, t0)

+ c2x3P (x− v2, t|x0, t0)− c2x3P (x, t|x0, t0) (6.1.1)

+ c3x1x2P (x− v3, t|x0, t0)− c3x1x2P (x, t|x0, t0).

Focusing on only the fast system, the chemical master equation is similar to (5.1.3)
after summing over all possible values of the slow species X2. Using the conservation
XT = X1(t) + X3(t) in the chemical master equation we have the new chemical
master equation, similar to (5.1.6). Similarly to that in section 5.1 we have that

〈X1(t)〉 =
c2XT

c1 + c2
, (6.1.2)

〈〈X1(t)〉〉 =
c1c2XT

(c1 + c2)2
, (6.1.3)

〈X3(t)〉 =
c1XT

c1 + c2
,

〈〈X3(t)〉〉 =
c1c2XT

(c1 + c2)2
.

These can be used by the slow scale SSA for the normal approximation to sample the
virtual fast processes. However, later in this section we will see that an alternative
distribution can be used. The chemical Langevin equation for this system is

dX1(t)

dt
= −c1X1(t) + c2X3(t) (6.1.4)

−
√
c1X1(t)Γ1(t) +

√
c2X3(t)Γ2(t)

dX2(t)

dt
= −c3X1(t)X2(t)−

√
c3X1(t)X2(t)Γ3(t) (6.1.5)

dX3(t)

dt
= c1X1(t)− c2X3(t) (6.1.6)

+
√
c1X1(t)Γ1(t)−

√
c2X3(t)Γ2(t)

(6.1.7)

67



6.2 QSSA algorithm

The deterministic equations for the system are

dX1

dt
= −c1X1 + c2X3

dX2

dt
= −c3X1X2

dX3

dt
= c1X1 − c2X3

(6.2.1)

Applying the QSSA algorithm, we will solve −c1X1 + c2X3 = 0 using the conser-
vation, XT = X1(t) +X3(t). This means that

X1 =
c2XT

c1 + c2
(6.2.2)

and

X3 =
c1XT

c1 + c2
. (6.2.3)

With the approximation of the virtual fast processes the fast time scale is removed
and the following slow reaction remains to be simulated

S1 + S2
c3−→ S1.

6.3 Slow Scale SSA

As in section 5.3 the distribution of the fast system for the slow scale SSA is a
binomial distribution.

6.4 Nested SSA

We took an approach similar to that in [33] in which the sum of the constant fast
reaction rates is inverted to determine the value for Tf . Since the fast system is
starting in equilibrium, we took T0 = 0. We used only one inner loop to reduce the
computational time of the nested SSA.

6.5 Implicit Tau Leaping Method

With the implicit tau leaping method we used the approach of taking one large
jump and a sequence of 5 small jumps. This is similar to the approach taken in
[20] for this example.
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Method CPU Time
(sec.)

SSA 1832.20
QSSA algorithm 0.00003
Nested SSA 2.92
Slow Scale SSA 0.05
Implicit Tau 1.38

Table 6.6.1: Fast Species Acting as a Catalyst: CPU times for all of the methods
for 0.1 time units, for a single sample path. The type of machine that was used
for these simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD
Operton chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

6.6 Comparison of the Methods

The reaction rates are

c1 = 105, c2 = 105, c3 = 0.0005.

The initial value for each species was

X(0) = (10000, 100, 10000).

Each simulation was run for 0.1 time units. The CPU times for each method for
this example are given in Table 6.6.1, where we see that the QSSA algorithm is
the fastest approximation method. To begin our comparison, we look at the mean
of X1 in Figure 6.6.1, and see that all the methods agree with the SSA. The most
significant difference is that the mean for X1 produced by the SSA is noisy com-
pared to the results of the approximation methods. With the approximation of X2,
all of the methods produce similar results to that of the SSA, as shown in Figure
6.6.2 which shows the error of the mean for X2. Although, in Figure 6.6.2, the
implicit tau leaping method has a slightly better approximation of the mean of
X2 than the the other approximation methods. Figure 6.6.3 shows the standard
deviation of X2, and indicates that the standard deviation of X2 is approximated
very well by all of the approximation methods, although the QSSA algorithm’s is
the weakest, as shown in the error of the approximation of the standard deviation
of X2 in Figure 6.6.4. The implicit tau leaping method has some trouble at the
beginning of the simulation. In Figure 6.6.5, which shows the standard deviation
of X1, we can see that the implicit tau leaping method and the QSSA algorithm
give poor approximations of the standard deviation for the fast species X1. It is
understandable that the QSSA algorithm’s approximation of X1 is poor because
the QSSA algorithm has X1 remaining constant throughout the entire simulation.
This can be seen in Figure 6.6.1, where the QSSA algorithm describes a constant
behaviour. Similarly, the implicit tau method generates a somewhat constant mean,
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Figure 6.6.1: Fast Species Acting as a Catalyst: The approximation of X1’s mean
made by all of the methods. Ensemble size of 250 simulations. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 6.6.2: Fast Species Acting as a Catalyst: The base ten logarithm of the
approximation of X2’s mean by the approximation methods over the approximation
of X2’s mean by the SSA. Ensemble size of 250 simulations. (IT refers to the implicit
tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 6.6.3: Fast Species Acting as a Catalyst: The approximation of X2’s
standard deviation made by all of the methods. Ensemble size of 250 simulations.
(IT refers to the implicit tau leaping method and ssSSA refers to the slow scale
SSA)
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Figure 6.6.4: Fast Species Acting as a Catalyst: The base ten logarithm of
the approximation of X2’s standard deviation by the approximation methods over
the approximation of X2’s standard deviation by the SSA. Ensemble size of 250
simulations. (IT refers to the implicit tau leaping method and ssSSA refers to the
slow scale SSA)
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Figure 6.6.5: Fast Species Acting as a Catalyst: The approximation of X1’s
standard deviation made by all of the methods. Ensemble size of 250 simulations.
(IT refers to the implicit tau leaping method and ssSSA refers to the slow scale
SSA)
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Figure 6.6.1, reflected by the variance. Even the slow scale SSA and the nested
SSA were not able to reproduce the standard deviation of X1, as the two methods
under-approximated the value. Even with a closer look at the errors of the standard
deviation of the nested SSA and the slow scale SSA, the two are still fairly similar
to each other. All of the methods are similar to the SSA when we look at the skew-
ness of X2 after the time point of 0.01, but for the implicit tau method prior to 0.01
the skewness is decreasing in value while the SSA is increasing in value (not shown).

The slow scale SSA is again the best approach to use for this example, as it was
able to reproduce results of the mean, variance and skewness similar to the SSA.
Histograms (not shown) of the slow scale SSA shared similarities to that of the SSA
as did all the other approximation methods. Another reason the slow scale SSA
was the best method is that its CPU time was one of the fastest, second only to the
QSSA algorithm. The QSSA algorithm was not considered to be one of the best
approximation methods because of its poor ability to approximate the behaviour
of the fast species. The reason the nested SSA was not chosen was because of its
CPU time was much slower than the slow scale SSA’s.
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Chapter 7

Example 4: Oscillatory System

We consider an example of a system that exhibits sustained limit cycle oscillations.
The chemical system is composed of three species involved in seven reactions:

S3
c1−→ S1

S3
c2−→ S2

S1
c3−→ 2S1

S1 + S2
c4−→ 2S2

S2
c5−→ ∅

∅ c6−→ S3

S3 + S2
c7−→ S2.

This system is similar to the Lotka reaction system, i.e. the predator-prey model.
We created a fast system that reached a steady state dependent on the state of the
slow species X2. We also included two slow reactions where X3 produced X1 and
X2, so that the slow species would not go extinct. The propensities for this system
are

a(x) = (c1x3, c2x3, c3x1, c4x1x2, c5x2, c6, c7x3x2).

The stoichiometry vectors for this system are v1 = (1, 0,−1), v2 = (0, 1,−1),
v3 = (1, 0, 0), v4 = (−1, 1, 0), v5 = (0,−1, 0), v6 = (0, 0, 1) and v7 = (0, 0,−1).
The fast system for this example is taken to be

∅ c6−→ S3

S3 + S2
c7−→ S2.

The fast stoichiometry values are vf1 = (1) and vf2 = (−1). From the previous
examples we have yet to see a slow species have an effect on the behaviour of the
fast system. As well, these approximation methods have yet to be tested against
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an oscillating system.

7.1 Slow Scale SSA

Here we will show that the use of a normal distribution is sufficient for the ap-
proximation of the fast species for this system. In [17], the authors explain how to
find the probability distribution of the state of a birth and death process. For this
oscillatory example the birth rate of the species X3 is b(x3) = c6B and the death
rate is d(x3) = c7x3x2, where X2 is a slow species and is considered fixed during the
fast reactions. Using the recursive formula from [17], the probability distribution
function is

P (x3,∞) =

{
c7x2(x3+1)P (x3+1,∞)

c6
x3 = −1, 0

c6P (x3−1,∞)
c7x2x3

x3 = 1, · · · , L
(7.1.1)

where L is the upper limit of the species X3. We start by looking at x3 = −1 and
see that P (x3 = −1,∞) = 0. Next we look at x3 = 0 and see that

P (x3 = 0,∞) =
c7x2

c6
P (x3 = 1,∞)

or
P (x3 = 1,∞) =

c6
c7x2

P (x3 = 0,∞). (7.1.2)

Using (7.1.2), and the recursive formula for the probability we found that for x3 ≥ 1

P (x3,∞) =
( c6
c7x2

)x3P (x3 = 0,∞)

x3!
. (7.1.3)

Will will assume that L =∞ to determine the probability distribution of X3. Using
a normalizing condition we have that

L∑
x3=0

P (x3,∞) = 1

which means using (7.1.3) and L =∞ we have

P (x3 = 0,∞)
∞∑

x3=0

( c6
c7x2

)x3 1

x3!
= 1 (7.1.4)

Solving (7.1.4), we have that

P (x3 = 0,∞) = exp
− c6

c7x2 .

With that we have

P (x3,∞) =
( c6
c7x2

)x3 exp
− c6

c7x2

x3!
.
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This implies that the probability distribution is a Poisson, with λ = c6
c7x2

. However,
with the upper limit not truly capable of reaching an extremely large value the
chance that the distribution is a Poisson is small. Since a Poisson (for the case that
X2 actually reaches a small value) can be approximated by a normal distribution
[20] and it is suggested in [17] that the normal approximation be used when the
distribution can not be determined, we will approximate the fast species of this
system using a normal distribution. The moments for the normal distribution can
be found using the stationary moment equations, from which we have

〈X3(∞)〉 =
c6B

c7X2(t)

〈〈X3(∞)〉〉 =
c6B

c7X2(t)
.

7.2 Nested SSA and Implicit Tau Method

We chose

Tf = max
X2(t)

{ 1

c6 + c7X2(t)

}
≈ 1.0001× 10−6,

T0 = 0 and N = 1 for the nested SSA. The fast system is similar to the fast
system of the example in chapter 6, so we took a similar approach to determine our
parameters. For the implicit tau leaping method we chose our jumps to occur on
the slow time scale.

7.3 Comparison of Methods

The reaction rates are taken as

c1 = 1, c2 = 1, c3 = 10, c4 = 0.01,

c5 = 10, c6 = 1000000, c7 = 1

and the initial values are chosen

X(0) = (1000, 1000, 1000).

We ran the simulations for 1000 time units. We focus attention on the asymptotic
behaviour, we also truncated the first 100 time units to eliminate any transient. In
Figures 7.3.1 and Figure 7.3.2 we see that each method generates oscillations. To
address the accuracy of the approximations, we compare the average of the spectra
of the sample paths. We took the fast Fourier transform (FFT) of an interval of
50 time units, from our single sample path, starting at 100 time units. This gave
us 18 FFT’s to average. To reduce any error caused at the ends of our intervals
we implemented a Hann window. Refer to the appendix for further information on
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Figure 7.3.1: Oscillatory System: The plot for X1 during a portion of the simula-
tion, t ∈ [100, 125]. (IT refers to the implicit tau leaping method and ssSSA refers
to the slow scale SSA)
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Figure 7.3.2: Oscillatory System: The plot for X3 during a portion of the simula-
tion, t ∈ [100, 125]. (IT refers to the implicit tau leaping method and ssSSA refers
to the slow scale SSA)
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Method 〈X1〉 〈X2〉 〈X3〉 〈〈X1〉〉 〈〈X2〉〉 〈〈X3〉〉
SSA 916.58 1099 914.27 8236.9 7953.9 6140.3
QSSA algorithm 916.01 1100 915.09 8171 7980 5564.2
Nested SSA 889.38 1140.3 835.514 6716 6823.2 3544.1
Slow Scale SSA 916.10 1099.1 915.5 7645.7 7449.9 5649.7
Implicit Tau 917.03 1099.7 913.45 7980.3 7690.6 5743.8

Table 7.3.1: Oscillatory System: The mean and variance for each species for the
entire simulation produced by each method

Hann windows. Looking at the average frequency in Figure 7.3.3 we see that all
the methods roughly have the same frequency as the SSA.

Next, we will look at the mean and variance of the species throughout the en-
tire simulation to see which method best compares to the SSA. We see from the
Table 7.3.1 that the QSSA algorithm is the best method to approximate both the
mean and the variance of the all the species. The slow scale SSA and implicit tau
method do a good job as well approximating the mean, however their approxima-
tion of the variance is slightly under the value of the SSA. The nested SSA does
not approximate the mean or the variance very well at all, although this could be
improved by a different choice of design parameters.

Finally we will look at Figure 7.3.4 to Figure 7.3.6 to give some insight into the
phase of the oscillations. If the values in the plot for an approximation method look
similar to that of the SSA we can conclude the approximation method generates a
similar phase as the SSA. Refer to the appendix for a more detailed description of
this analysis approach for the phase of the oscillations. In Figure 7.3.4, we see that
the nested SSA best approximates the SSA, at least for when X2 ∈ (900, 1400).
The slow scale SSA and the QSSA algorithm are somewhat similar to the SSA,
except that the slow scale SSA and QSSA algorithm have a slightly higher mean
for X2 ∈ (900, 1400). Also in Figure 7.3.4, we see that given X3 ∈ (800, 1250) the
slow scale SSA and the implicit tau method most resemble the SSA. The QSSA
algorithm does well for a short interval, X3 ∈ (800, 1000), but after X3 = 1000 the
mean of X1 starts to increase. Before we make a conclusion about the phase of
X1 we must look at the standard deviation to see if each method varies in value
similar to the SSA. As for the variance, in Figure 7.3.5 the QSSA algorithm and
slow scale SSA are the methods best able to reproduce the standard deviation of
X1, given X2 ∈ (900, 1300). The results from the nested SSA and implicit tau
are similar to the SSA but for a shorter interval of X2; thus the nested SSA and
implicit tau are considered less accurate. Given X3 ∈ (750, 1250) we see in Fig-
ure 7.3.5 that the slow scale SSA results best resemble those of the SSA. Given
this information about X1, we conclude that the method that best captures the
phase of X1 is the slow scale SSA. In Figure 7.3.6, we see that the results from
the slow scale SSA best resemble the standard deviation of X3 given X1 or X2.
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Figure 7.3.3: Oscillatory System: The average power of X1 with the application
of a Hann windows applied to each 50 time length interval for all the methods. (IT
refers to the implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 7.3.4: Oscillatory System: The phase analysis for X1, showing the mean
of X1 given X2 and X3 produced by each method. (IT refers to the implicit tau
leaping method and ssSSA refers to the slow scale SSA)
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Figure 7.3.5: Oscillatory System: The phase and amplitude analysis for X1,
showing the standard deviation of X1 given X2 and X3. (IT refers to the implicit
tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 7.3.6: Oscillatory System: The phase and amplitude analysis for X3,
showing the standard deviation of X3 given X1 and X2. (IT refers to the implicit
tau leaping method and ssSSA refers to the slow scale SSA)
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The implicit tau results also resemble the SSA results but under-approximate the
value of the standard deviation of X3. The QSSA algorithm does not produce
as much noise for the fast species as the other methods, as seen in Figure 7.3.2,
so its approximation of the standard deviation of X3 given X1 or X2 is too low.
The slow scale SSA is the closest method in resembling the SSA for the phase of X3.

From the analysis, we can conclude that the slow scale SSA and QSSA algorithm
are the best methods to approximate the SSA for this oscillating system. We have
found that the slow scale SSA excels where the QSSA algorithm does not and the
QSSA algorithm excels where the slow scale SSA does not. The slow scale SSA’s
approximation of the frequency was slightly under the value of the SSA and the
variance of the species was also slightly under approximated. The QSSA algorithm
was not able to produce the noise as the other methods did in the fast system.
This resulted in the standard deviation of X3 given either X1 and X2 to be under
approximated compared to the values produced by the SSA. The QSSA algorithm
was able to reproduce the frequency of the system slightly better than that of the
slow scale SSA. As well the QSSA algorithm was able to reproduce the variance of
a species similar to the SSA slightly better than the slow scale SSA.

We will focus on the CPU time of each method to see if the QSSA algorithm
or slow scale SSA was faster. We ran the system for 100 time units, for a single
sample path; the QSSA algorithm had a CPU time of 83.45 seconds and the slow
scale SSA had a CPU time of 96.06 seconds. The type of machine that was used
for these simulations was a sun fire x4600 with 32G of RAM and 4 dual-core AMD
Operton chips (8 processors) at 2.6GHz running OpenSuSE 10.2. For this example
it is difficult to come to a conclusion to determine whether the QSSA algorithm or
slow scale SSA is the better approximation method. The slow scale SSA was not
that far off in any of its approximations of the system but the QSSA algorithm was
able to approximate those areas better than the slow scale SSA. The slow scale SSA
accounted for the noise in the fast system as where the QSSA algorithm did not.
The noise in the fast system can play an important role as it may slightly change
the phase or even frequency of the oscillations. If the QSSA algorithm is unable to
account for the noise in the fast system then at times the QSSA algorithm is not
approximating the SSA very well. On the other hand, the QSSA algorithm CPU
time is much faster than that of the slow scale SSA for longer simulation times.
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Chapter 8

Example 5: Bistable System

This is a bistable system based on a model in [34]. The chemical system has two
species that are involved in seven reactions:

2S1 + S2

c1−⇀↽−
c2

3S1

S1

c3−⇀↽−
c4

S2

∅ c5−→ S2

S1
c6−→ S1 + S2

S2
c7−→ ∅.

The stoichiometry vectors are v1 = (1,−1), v2 = (−1, 1), v3 = (−1, 1), v4 =
(1,−1), v5 = (0, 1), v6 = (0, 1) and v7 = (0,−1). The propensity functions for this
system are

a(x) = (c1x1(x1 − 1)x2/2, c2x1(x1 − 1)(x1 − 2)/6, c3x1, c4x2, c5, c6x1, c7x2).

The fast reactions for this system are taken as

∅ c5−→ S2

1
c6−→ S1 + S2

S2
c6−→ ∅.

This implies that the fast species is S2. The fast stoichiometry vectors are vf1 = (1),
vf2 = (1) and vf3 = (−1). This system is similar to the oscillating system, where
the equilibrium of the virtual fast process depends on the state of the slow species.
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8.1 Nested SSA and Implicit Tau Method

We chose

Tf = max
X1(t)

{ 1

c5 + c6X1(t) + c7

}
=

1

c5 + c7
,

T0 = Tf × 10−3 and N = 1 for the nested SSA. The fast system is similar to the
fast system of the oscillatory system in section 7, so we took a similar approach
to determine our parameters. For the implicit tau leaping method we chose the
method of a large jump then a sequence of small jumps. The size of our large jump
was fixed at 50 time units. We then took a sequence of 5 small jumps fixed at
0.0001 time units.

8.2 Comparison of Methods

The reaction rates for the system are

c1 = 0.001, c2 = 1, c3 =
1

250000
, c4 = 0.1,

c5 = 3000000, c6 = 40000, c7 = 1000.

The initial values for the system are

S1 = 0, S2 = 3000

and the simulation was run for 100000 time units. Figure 8.2.1 shows a single tra-
jectory for the both species simulated by the SSA. This shows us that the system
is bistable. We will not be comparing the approximation methods to the SSA as
the SSA took too long to complete the full run of 105 time units making it difficult
to do any statistical analysis. The reason the SSA was taking so long to simulate
this system was because of the fast propensity values are so much larger than the
slow propensity values.

Figure 8.2.2 shows a single trajectory of species X1 for the system and Figure 8.2.3
shows a single trajectory of species X2, both figures produced by the approximation
methods. We see from both of the figures that the implicit tau leaping method was
unable to make the transition to the “high” state, indicating that it is not a good
approach for this system. The implicit tau leaping method was unable to reach the
high state due to the fact that the method was unable to produce enough noise to
force it out of the lower state. This can be due to our approach in the selection
of tau. In Figure 8.2.3, we see that the approximation of the nested SSA is not
comparable to either the slow scale SSA or the QSSA algorithm’s approximation
of the fast species. From our knowledge from the previous examples, the choice
of different parameters could possibly improve the nested SSA’s approximation.
Figure 8.2.4 shows the base ten logarithm of the distribution of the fast species X2
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Figure 8.2.1: Bistable System: The trajectory of X1 and X2 produced by the
SSA.
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Figure 8.2.2: Bistable System: The trajectory of X1 produced by the approxima-
tion methods. (IT refers to the implicit tau leaping method and ssSSA refers to
the slow scale SSA)
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Figure 8.2.3: Bistable System: The trajectory of X1 produced by the approxima-
tion methods. (IT refers to the implicit tau leaping method and ssSSA refers to
the slow scale SSA)
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Figure 8.2.4: Bistable System: The negative base ten logarithm of X2’s distribu-
tion produced by the QSSA algorithm, slow scale SSA and the nested SSA. (ssSSA
refers to the slow scale SSA)
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Figure 8.2.5: Bistable System: The negative base ten logarithm of X1’s distribu-
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Method Average
Time Spent
in Lower
State for X1

Average Time
Spent in Up-
per State for
X1

QSSA algorithm 62.96 73.51
Nested SSA 20.90 87.03
Slow Scale SSA 62.96 73.51

Table 8.2.1: Bistable System: The average time X1 spent in the upper and lower
state, approximated by the QSSA algorithm, slow scale SSA and the nested SSA.

throughout the entire simulation. For the QSSA algorithm, there are gaps between
the bins because the steady state of the fast species depends on the slow species,
implying that only certain values can be obtained through the approximation of
the QSSA algorithm. From Figure 8.2.5 we see that the QSSA algorithm, the slow
scale SSA and the nested SSA give a similar distribution to the slow species, X1.

In Table 8.2, we took the lower state to be when X1 ≤ 2. The nested SSA’s
values for the average time spent in either state is very different from the other two
approximation methods. From this information we can make an educated guess
that the slow scale SSA would give the best approximation of the system because
we believe that the QSSA algorithm did not capture the true distribution of the
fast species.

94



Chapter 9

Marginally Stiff Systems

In previous examples there was a clear separation of the time scales in the system.
We will now test the four approximation methods to see how well they compare to
the SSA when the slow and fast time scales are less distinct. For all of the following
examples the SSA is computationally fast, however there is still a small magnitude
of stiffness occurring in the systems. Our goal with these following examples is to
see which methods fail and succeed under these weak stiffness conditions. We aim
to have a definitive decision on what approximation method operates best under
these conditions.

9.1 Fast Reversible Dimerization

Using the system from the Example 1 (chapter 4) we changed the reaction rates to
make the system less stiff. The new reaction rates are

c1 = 10−3, c2 = 0.2, c3 = 0.02, c4 = 0.004.

Here the system is stiff for the approximately half of the simulation as the species
pass through a transient. We will use the approach of a large fixed tau, τ = 80, for
the implicit tau leaping method, to ensure that the implicit tau leaping method has
a faster CPU time than the SSA. For the nested SSA we took N = 1 and T0 = 0.01
and Tf = 0.01. The CPU times for this example are in Table 9.1.1. We see in
Table 9.1.1 that the QSSA algorithm is the fastest approximation method for this
example. The nested SSA and the implicit tau method were unable to produce
accurate results of the dynamics of the system as seen in Figure 9.1.1, which shows
the mean of X1. If we were to change the parameter values of the nested SSA to
have better results this would result in a higher CPU time than that of the SSA. As
a result the nested SSA and the implicit tau are unable to handle a system where
the time scales are so close. In Figure 9.1.2, showing the error of the approximation
of the mean for X2 and Figure 9.1.3, showing the mean of X3, we see that the QSSA
algorithm and slow scale SSA did not change much compared to the stiffer system
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Figure 9.1.1: Marginally Stiff Fast Reversible Dimerization: The approximation of
X1’s mean made by all the methods. (IT refers to the implicit tau leaping method
and ssSSA refers to the slow scale SSA)
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Figure 9.1.2: Marginally Stiff Fast Reversible Dimerization: The base ten loga-
rithm of the approximation of X2’s mean by the approximation methods over the
approximation of X2’s mean by the SSA. (IT refers to the implicit tau leaping
method and ssSSA refers to the slow scale SSA)
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Figure 9.1.3: Marginally Stiff Fast Reversible Dimerization: The approximation of
X3’s mean made by all the methods. (IT refers to the implicit tau leaping method
and ssSSA refers to the slow scale SSA)
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Figure 9.1.4: Marginally Stiff Fast Reversible Dimerization: The approximation
of X1’s standard deviation made by all the methods. (IT refers to the implicit tau
leaping method and ssSSA refers to the slow scale SSA)
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Method CPU Time
(sec.)

SSA 0.3281
QSSA algorithm 0.0156
Nested SSA 0.2031
Slow Scale SSA 0.0313
Implicit Tau 0.2813

Table 9.1.1: Marginally Stiff Fast Reversible Dimerization: CPU times for the
all the methods for 400 time units, for a single sample path. The type of machine
that was used for these simulations was a sun fire x4600 with 32G of RAM and 4
dual-core AMD Operton chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

Method CPU Time
(sec.)

SSA 0.4063
QSSA algorithm 0.0313
Nested SSA 0.1719
Slow Scale SSA 0.4062
Implicit Tau 0.3438

Table 9.2.1: Marginally Stiff Network of Isomerizations: CPU times for all the
methods for 3 time units, for a single sample path. The type of machine that was
used for these simulations was a sun fire x4600 with 32G of RAM and 4 dual-core
AMD Operton chips (8 processors) at 2.6GHz running OpenSuSE 10.2.

in their approximation of the less stiff system. In Figure 9.1.4, showing the standard
deviation of X1, we notice that the QSSA algorithm was unable to approximate the
variance of the fast species correctly, similar to the results of the stiffer system. We
conclude that the slow scale SSA is still the best approach to use for this example
as an approximation method.

9.2 Network of Isomerizations

The new reaction rates for Example 2 (chapter 5) are

c1 = 2.5, c2 = 5 c3 = 1,

c4 = 1, c5 = 5 c6 = 2.5.

For the nested SSA we took N = 1, Tf = 1/7500 and T0 = 0. For the implicit tau
leaping method we took τ = 0.1. We see in Table 9.2.1 that the QSSA algorithm is
the fastest approximation method for this example. From Table 9.2.1 we see that
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Method CPU Time
(sec.)

SSA 0.0313
QSSA algorithm 0.00004
Nested SSA 0.0156
Slow Scale SSA 0.0468
Implicit Tau 0.0156

Table 9.3.1: Marginally Stiff Fast Species Acting as a Catalyst: CPU times for
all the methods for 0.1 time units, for a single sample path. The type of machine
that was used for these simulations was a sun fire x4600 with 32G of RAM and 4
dual-core AMD Operton chips (8 processors) at 2.6GHz running OpenSuSE 10.2

the slow scale SSA has a similar CPU time to that of the SSA. In Figure 9.2.1,
which shows the error of the approximation of the mean of X4, we see that the
implicit tau method is inaccurate in approximating the mean of X4. The nested
SSA approximates the distribution of the species X1 the best, as seen in Figure
9.2.2. In Figure 9.2.3, showing the error in the standard deviation of X2, we see
that the QSSA algorithm does not approximate the standard deviation of X2 very
well compared to the other approximation methods. Since the slow scale SSA
had a much slower CPU time than that of the nested SSA, the best method to
approximate this system would be the nested SSA as it was able to produce accurate
results in the fastest time.

9.3 Fast Species Acting as a Catalyst

The new reaction rates example 3 (chapter 6) of a fast species acting as a catalyst
are

c1 = .25, c2 = .25 c3 = 0.0005.

For the nested SSA we took N = 1, Tf = 0.002 and T0 = 0. For the implicit

tau leaping method we took τ = −50 log(r1)
c3x1x2

. For this example the system is stiff
throughout the entire simulation. We see in Table 9.3.1 that the QSSA algorithm
is the fastest approximation method for this example. From Table 9.3.1 we notice
that the slow scale SSA was not able to run faster than the SSA at times and
there is no way to improve the slow scale SSA’s CPU time. Figure 9.3.1 shows
the standard deviation of X1, indicating that the slow scale SSA was not able to
approximate the standard deviation of the fast species very well, unlike in the more
stiff example in chapter 6. The QSSA algorithm still gives a poor approximation of
the standard deviation for the fast species for this system. The implicit tau slightly
improves in its approximation of the standard deviation. However, the implicit
tau’s approximation of the standard deviation looks linear compared to that of the
SSA’s. Figure 9.3.2 shows us the distribution of X2 at 0.1 time units, which shows
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Figure 9.2.1: Marginally Stiff Network of Isomerizations: The base ten logarithm
of the approximation of X4’s mean by the approximation methods over the approx-
imation of X4’s mean by the SSA. (IT refers to the implicit tau leaping method
and ssSSA refers to the slow scale SSA)
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Figure 9.2.2: Marginally Stiff Network of Isomerizations: The histogram of X1 for
all the methods at 3 time units. (IT refers to the implicit tau leaping method and
ssSSA refers to the slow scale SSA)
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Figure 9.2.3: Marginally Stiff Network of Isomerizations: The base ten logarithm
of the approximation of X2’s standard deviation by the approximation methods
over the approximation of X2’s standard deviation by the SSA. (IT refers to the
implicit tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 9.3.1: Marginally Stiff Fast Species Acting as a Catalyst: The approxima-
tion of X1’s standard deviation made by all the methods. (IT refers to the implicit
tau leaping method and ssSSA refers to the slow scale SSA)
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Figure 9.3.2: Marginally Stiff Fast Species Acting as a Catalyst: The histogram
of X2 for all the methods at 3 time units. (IT refers to the implicit tau leaping
method and ssSSA refers to the slow scale SSA)
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Figure 9.3.3: Marginally Stiff Fast Species Acting as a Catalyst: The approxima-
tion of X2’s mean made by all the methods. (IT refers to the implicit tau leaping
method and ssSSA refers to the slow scale SSA)

107



that the QSSA algorithm gives the best approximation to the distribution. How-
ever, in Figure 9.3.3, which shows the mean of X2, we see that the nested SSA’s
approximation of X2 is as good as the QSSA algorithm’s approximation. We con-
clude that the nested SSA is the best approximation method for this example, since
the nested SSA’s approximation of the mean is similar to the QSSA algorithm’s,
which best matched that of the SSA’s, and the nested SSA was the best method to
approximate the fast species standard deviation.
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Chapter 10

Conclusion and Comments

The ensembles were chosen sufficiently large to show the behavior of the methods
without making the simulations unnecessarily burdensome. We did some test (not
shown) and found that the behaviour of the mean and variance did not change after
running larger ensemble sizes. Since all of our results for each algorithm were from
the ensemble size of 250, the mean and variance of each algorithm was computed
on an even playing field.

From the results of the stiff examples it is evident that the slow scale SSA is typi-
cally the best approximation method to use. The slow scale SSA is highly accurate
and extremely fast in comparison with the other methods. The other approxima-
tion methods were as accurate as the slow scale SSA but this was for only a few
examples. The QSSA algorithm was as accurate as the slow scale SSA for example
1, example 4, and example 5. The nested SSA was as accurate as the slow scale
SSA for example 2 and example 3. The implicit tau was accurate as the slow scale
SSA for example 4. The slow scale SSA did fall behind the QSSA algorithm for the
oscillatory example but the slow scale SSA still produced reliable results.

However, from the marginally stiff examples we saw that the slow scale SSA’s
CPU time for two of three examples was similar to the SSA’s CPU time. In terms
of accuracy, the slow scale SSA did not change compared to the stiff examples, with
the exception of the slow scale SSA’s over approximation of a species standard de-
viation in section 9.3. From the results of the marginally stiff systems we found
that the nested SSA was typically the best approximation method to use. In the
next few paragraphs we will summarize what we have learned about these different
approximation methods for stiff chemical systems.

The nested SSA was not as successful as the slow scale SSA due to the param-
eter choices for each example: it is difficult to find parameters to produce the best
results. In example 1, the choice of parameters had a large impact on the CPU time
and the results. As we saw in the examples, taking only one inner loop is sufficient
as multiple loops add to the CPU time, without significant improvement to the
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results. As for finding a suitable time to truncate for the transient the question
becomes: where does one draw the line? The truncation can be as straightforward
as setting T0 = 0 or as intricate as making T0 a function of the system’s time scales
to determine the proper transient time. As for the value of Tf , if the value is too
short, the approximation is terrible as seen in [33] and in section 4.4. If the value
is taken to be longer than what is sufficient then it just adds to the CPU time of
the nested SSA, as mentioned in section 4.4.

In example 2 we saw that for a given Tf the one fast system was unable to con-
sistently reach equilibrium. The point is that with the nested SSA there are so
many possible combinations of parameters one is unsure before the simulation how
good the approximation is going to be. However, there is a benefit to parameter
choices as it allows one to control the accuracy and CPU time of the nested SSA.
On the other hand, if the information is accurate but the CPU time for the nested
SSA is longer than the SSA one should just use the SSA as it is an exact method.
The approach that the nested SSA has taken is good because it is fairly easy to
implement, but not knowing the optimal choice of parameters is a significant prob-
lem. To improve the nested SSA one may want to look into ways of determining
appropriate values for the parameters of the inner SSA to produce the best results.

The QSSA algorithm was fairly easy to implement as well because the majority
of the work was determining the steady state of the virtual fast process. The ap-
proach of using the delta distribution for the fast species approximation in the fast
system decreased the CPU time immensely. The QSSA algorithm had CPU times
similar to and faster than that of the slow scale SSA. At times the QSSA algorithm
was as accurate as the slow scale SSA, as in the fast reversible dimerization example
and parts of the other examples, but failed in other aspects when it came to other
examples such as the fast species acting as a catalyst example as well as parts of
the network of isomerizations. The main reason it failed was due to the approxi-
mation of the species variance because the variance plays an important role when
one looks at a single trajectory of the system. If the variance differs from that of
the SSA then for that single trajectory one is bound to have a different outcome for
the QSSA algorithm. In [13], the authors do take a probabilistic approach to the
QSSA algorithm to fix this problem with the variance. The only reason we did not
look at this probabilistic case is because the probabilistic approach to the QSSA
algorithm is fairly similar if not identical to that of the slow scale SSA. There are
a few minor differences in assumptions in [13] as compared to [17] but in the end
the assumptions state the same thing: the fast system must reach a steady state.

The implicit tau leaping method allows many different ways to select the size of tau.
There have been recent papers discussing more efficient ways of selecting this tau,
however in this paper we decided to focus on the approaches taken in the paper [20]
along with a selection of tau similar to the QSSA algorithm and slow scale SSA.
Using the choice of a large fixed tau produced the best results as well as the best
CPU time for the examples of the fast reversible dimerization and the network of
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isomerizations. Since there may be better ways of selecting tau, we cannot conclude
that the implicit tau leaping method is inaccurate for all of our test results. If we
truly wanted to see how accurate the implicit tau leaping method is we would have
to compare all of the different tau leaping methods and ways of selecting tau. This
in itself could be another study.

Another challenging aspect of the implicit tau leaping method is the fact that
one has to use a numerical solver to solve the implicit set of equations, leading to a
much higher CPU time in some cases. Another slight problem that we encountered
with the implicit tau leaping method was that when the concentration of a species
was near zero the numerical solver occasionally produced negative values. This is a
problem with the choice of numerical solver, not the implicit tau leaping method.
We used the numerical solver fsolve in MATLAB and to work around this problem
of negative values we used a transformation when solving. The transformation we
used was Z2

i = Xi, for all species i. Overall, we found that on occasion the implicit
tau leaping method was as accurate as the slow scale SSA. However, with improved
ways of selecting tau one may produce more accurate results that are consistently
reliable for all test cases. However, I believe that there is no way to decrease the
CPU time of the implicit tau method to be at the same level as the slow scale SSA.

The slow scale SSA produced consistently reliable results that resembled the SSA
for all of the stiff examples. In the oscillatory example, there was a slight differ-
ence in the variance throughout the entire simulation but the slow scale SSA made
up for it in reproducing the phase, mean and frequency of the SSA. The toughest
aspect about implementing the slow scale SSA is finding the distribution of the
fast species. Solving the moment equations to find the moments for the normal
approximation requires a similar effort to finding the steady state in the QSSA al-
gorithm. However, at times one has to make an assumption about certain moments
to have moment closure, as seen in the example of the fast reversible dimerization.
As we saw in the example of the fast reversible dimerization the assumption that
the third central moment was zero did not have any effect on the final outcome of
the approximation. Overall the slow scale SSA was fairly straight forward to im-
plement once the distribution was found and the slow scale SSA produced reliable
consistent results for our test examples.
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Appendix A

Fast Fourier Transform

The fast Fourier transform (FFT), is a computational method that efficiently com-
putes the discrete Fourier transform (DFT) of a series of data samples. The dis-
covery of the FFT produced major changes in the computational aspect of spectral
analysis and other fields [35]. We used the FFT for the spectral analysis of the
oscillatory systems produced by our approximation methods. The DFT is defined
as

An =
N−1∑
k=0

Xk exp−2πink/N ,

where N is the number of data points, n = 0, · · · , N − 1 . Xk is the kth data point
and i =

√
−1. An represents the nth coefficient of the DFT. The FFT computes

the DFT by sequentially combining progressively larger weighted sums of data.
The FFT computes the DFT in two ways: decimation in time and decimation in
frequency. The decimation of time approach begins by splitting the data points
into odd and even data points, i.e. Yn = X2n and Zn = X2n+1. Then one splits the
Fourier transform into the first N/2 data points and the last N/2 data points and
the DFT can be computed since Xk can be obtained from the DFT of Yk and Zk.
The decimation of frequency begins with the division of the data points into two
separate groups, the first N/2 data points and the last N/2 data points, i.e. Yk is
the set of first N/2 data points and Zk is the set of last N/2 data points. Then
one looks at the even and odd number points of the transform, i.e. An where we
look at the separate cases of n being odd or even. The DFT for an even number
of transform points is determined by an N/2 point DFT and a combination of the
Yk and Zk. For an odd number of transform points the transform is determined by
another N/2 point DFT with a different combination of Yk and Zk. For a more in
depth derivation of the two ways of applying the FFT refer to [35]. The FFT not
only decreases the computational time, it also reduces any round off errors that are
associated with the computation of the DFT [35].
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Appendix B

Hann Window

To reduce the error, due to discontinuities of periodic extensions, of calculating
the spectrum using the FFT the application of a Hann window to the data set is
beneficial [36]. The Hann window, H(x, t) is defined [37] as

H(x, t) =

{
1/2 + 1/2 cos(πx/t) |x| < t

0 |x| ≥ t

We chose the Hann window because it best handles background noise when one
is trying to calculate the frequency spectrum [38]. Leakage is when a non integer
number of periods is acquired. Two advantages of the Hann Window is that it has
little leakage and it does not effect the accuracy of the frequency spectrum. The
downfall of the Hann Window is it does cause some amplitude error. [38]. A Hann
Window is shown in Figure B.0.1. In Figure B.0.2 we see a sine wave and then a
sine wave with the application of a Hann Window.
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Figure B.0.1: Hann Window: A Hann window for the time interval for 0 ≤ t ≤ 10.
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Figure B.0.2: Hann Window: A Hann window applied to the function sin(2πt)
for the time interval for 0 ≤ t ≤ 10.
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Appendix C

Analysis of Oscillations

The approach we have taken for the phase analysis is to consider the mean and
variance of a species conditional on the abundance of another species. If an ap-
proximation method and the SSA agree in this measure then the two methods are in
relatively the same phase. The conditional variance will give us information about
the amplitude of the oscillations and whether the methods produce roughly the
same amplitude. We will look at a few examples to fully understand the analysis.

C.1 Example 1

Let t ∈ [0, 10], and X1(t) = 2 sin(πt) while X2(t) = sin(πt) compared against
X̃1(t) = sin(πt) and X̃2(t) = cos(πt). We see in Figure C.1.1 that conditional on
X2, the two sets of curves give the same mean. When we look at Figure C.1.2 we
see that the variances differ because the amplitudes differ.

C.2 Example 2

Since the approximation methods we deal with are stochastic, noise from the system
will change the phase of the oscillations. Let t ∈ [0, 10] and take

X1(t) =



sin(πt) t ∈ [0, 3/π]
sin(3) t ∈ [3/π, 1]

sin(πt− 3) t ∈ [1, 18/π]
sin(15) t ∈ [18/π, 6]

sin(πt+ 15) t ∈ [6, 27/π]
sin(42) t ∈ [27/π, 9]

sin(πt− 42) t ∈ [9, 10]
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Figure C.1.1: Analysis of Oscillations (Example 1): Oscillation analysis of the
mean for given values of a species.
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Figure C.1.2: Analysis of Oscillations (Example 1): Oscillation analysis of the
standard deviation for given values of a species.
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and

X2(t) =



cos(πt) t ∈ [0, 3/π]
cos(3) t ∈ [3/π, 1]

− cos(πt+ 3) t ∈ [1, 18/π]
− cos(21) t ∈ [18/π, 6]

− cos(πt+ 21) t ∈ [6, 27/π]
− cos(48) t ∈ [27/π, 9]

cos(πt+ 48) t ∈ [9, 10]

.

Compare with X̃1 = sin(πt) and X̃2 = cos(πt). We see in Figure C.2.1 that the
mean is different from that of the other pair the “phase” has changed. In Figure
C.2.2, we see that the standard deviation is slightly different when the phases have
changed.
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Figure C.2.1: Analysis of Oscillations (Example 2): Oscillation analysis of the
mean for given values of a species.
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Figure C.2.2: Analysis of Oscillations (Example 2): Oscillation analysis of the
standard deviation for given values of a species.
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