
Cryptographic Protocols, Sensor Network Key

Management, and RFID Authentication

by

Jiang Wu

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Jiang Wu 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis includes my research on efficient cryptographic protocols, sensor network key

management, and radio frequency identification (RFID) authentication protocols.

Key exchange, identification, and public key encryption are among the fundamental pro-

tocols studied in cryptography. There are two important requirements for these protocols:

efficiency and security. Efficiency is evaluated using the computational overhead to execute

a protocol. In modern cryptography, one way to ensure the security of a protocol is by

means of provable security. Provable security consists of a security model that specifies the

capabilities and the goals of an adversary against the protocol, one or more cryptographic

assumptions, and a reduction showing that breaking the protocol within the security model

leads to breaking the assumptions. Often, efficiency and provable security are not easy to

achieve simultaneously. The design of efficient protocols in a strict security model with a

tight reduction is challenging.

Security requirements raised by emerging applications bring up new research challenges in

cryptography. One such application is pervasive communication and computation systems,

including sensor networks and radio frequency identification (RFID) systems. Specifically,

sensor network key management and RFID authentication protocols have drawn much at-

tention in recent years.

In the cryptographic protocol part, we study identification protocols, key exchange proto-

cols, and ElGamal encryption and its variant. A formal security model for challenge-response

identification protocols is proposed, and a simple identification protocol is proposed and

proved secure in this model. Two authenticated key exchange (AKE) protocols are proposed

and proved secure in the extended Canetti-Krawczyk (eCK) model. The proposed AKE pro-

tocols achieve tight security reduction and efficient computation. We also study the security

of ElGamal encryption and its variant, Damg̊ard’s ElGamal encryption (DEG).

Key management is the cornerstone of the security of sensor networks. A commonly

recommended key establishment mechanism is based on key predistribution schemes (KPS).

Several KPSs have been proposed in the literature. A KPS installs pre-assigned keys to

iii

sensor nodes so that two nodes can communicate securely if they share a key. Multi-path

key establishment (MPKE) is one component of KPS which enables two nodes without a

shared key to establish a key via multiple node-disjoint paths in the network. In this thesis,

methods to compute the k-connectivity property of several representative key predistribution

schemes are developed. A security model for MPKE and efficient and secure MPKE schemes

are proposed.

Scalable, privacy-preserving, and efficient authentication protocols are essential for the

success of RFID systems. Two such protocols are proposed in this thesis. One protocol

uses finite field polynomial operations to solve the scalability challenge. Its security is based

on the hardness of the polynomial reconstruction problem. The other protocol improves a

randomized Rabin encryption based RFID authentication protocol. It reduces the hardware

cost of an RFID tag by using a residue number system in the computation, and it provides

provable security by using secure padding schemes.

iv

Acknowledgements

I am very grateful for the support and guidance given by my supervisor Professor Douglas

R. Stinson. I also wish to thank the other members of my examination committee for their

numerous comments and helpful suggestions that have improved the quality of this thesis.

My doctoral studies have been partly supported by an NSERC Postgraduate Scholarship, a

David R. Cheriton Graduate Scholarship in Computer Science, and a President’s Graduate

Scholarship. I would like to gratefully acknowledge all of this assistance. Finally, I appreciate

the love and support from my families.

v

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Cryptographic Protocols . 2

1.1.1 Computational Assumptions . 2

1.1.2 Identification . 3

1.1.3 Authenticated Key Exchange . 4

1.1.4 ElGamal Encryption . 5

1.2 Sensor Network Key Management . 6

1.2.1 Connectivity of Key Predistribution Schemes 8

1.2.2 Multipath Key Establishment . 10

1.3 RFID Authentication . 12

2 Cryptographic Protocols 16

2.1 Identification Protocols . 17

2.1.1 Security Model . 17

2.1.2 A Simple Identification Protocol . 21

2.2 Authenticated Key Exchange Protocols . 28

2.2.1 Security Model . 28

2.2.2 Efficient Exponentiation Algorithms. 30

2.2.3 SMEN Protocol . 31

2.2.4 SMEN− Protocol . 40

2.2.5 Comparison . 47

2.3 ElGamal Encryption and Variants . 47

2.3.1 Security of ElGamal Encryption . 47

2.3.2 Security of Damg̊ard ElGamal Encryption 52

vi

3 Sensor Networks Key Management 62

3.1 κ-connectivity of Key Predistribution . 63

3.1.1 Transversal Design KPS . 63

3.1.2 Random KPS . 65

3.1.3 κ-connectivity of the DSN . 67

3.2 Multi-path Key Establishment . 71

3.2.1 Model and Preliminaries . 71

3.2.2 Reed-Solomon Codes . 73

3.2.3 Analysis of the HM and JERT Schemes 76

3.2.4 Two New Schemes for MPKE Based on Reed-Solomon Codes 78

3.2.5 A Scheme Tolerating Error Rate < 1/2 84

4 RFID Authentication Protocols 87

4.1 Polynomial Based Protocol . 88

4.1.1 Scheme Description . 88

4.1.2 Security Analysis . 90

4.1.3 Performance . 99

4.2 Rabin Encryption based Protocol . 102

4.2.1 Security of Paddings . 102

4.2.2 WIPR . 104

4.2.3 Improvements . 108

4.3 Forward and Backward Privacy . 114

4.3.1 Analysis Of The S-M Scheme . 115

5 Conclusion and Future Work 118

5.1 Summary . 118

5.2 Future Work . 121

Bibliography 122

vii

List of Figures

1.1 Relation between the DL/CDH/DDH/SDH/GDH assumptions. 3

2.1 Identification scheme setup . 23

2.2 Identification scheme description . 23

3.1 e-feasible ordered pairs (n, k) for given error rate e and desired key entropy `. 81

4.1 PNPI when S ≥ Bk . 93

4.2 PNPI when S < Bk . 94

4.3 Rabin-SAEP and WIPR-SAEP Padding . 109

viii

List of Tables

2.1 Efficiency (in number of exponentiations) and security comparison. 47

3.1 Expected minimum degree of a block graph for a random KPS. 67

3.2 Distribution of minimum degree of random KPS block graph. 68

3.3 Minimum degree of a DSN using a TD KPS 69

3.4 Minimum degree of a DSN constructed from a random KPS 70

4.1 Summary of hardware cost and security . 113

ix

Chapter 1

Introduction

1.1 Cryptographic Protocols . 2

1.1.1 Assumptions . 2

1.1.2 Identification . 3

1.1.3 Authenticated Key Exchange . 4

1.1.4 ElGamal Encryption . 5

1.2 Sensor Network Key Management . 6

1.2.1 Connectivity of Key Predistribution Schemes 7

1.2.2 Multipath Key Establishment . 10

1.3 RFID Authentication . 12

Key exchange, identification, and public key encryption are among the fundamental pro-

tocols studied in cryptography. There are two important requirements for these protocols:

efficiency and security. Efficiency is evaluated using the computational overhead to execute a

protocol. In modern cryptography, one way to ensure the security of a protocol is by means

of provable security. Provable security [76, §1]consists of a security model that specifies the

capabilities and the goals of an adversary against the protocol, one or more cryptographic

assumptions, and a reduction showing that breaking the protocol within the security model

leads to breaking the assumptions. Often, efficiency and provable security are not easy to

achieve simultaneously. The design of efficient protocols in a strict security model with a

tight reduction is challenging.

Security requirements raised by emerging applications bring up new research challenges in

cryptography. One such application is pervasive communication and computation systems,

including sensor networks and radio frequency identification (RFID) systems. Specifically,

1

sensor network key management and RFID authentication protocols have drawn much at-

tention in recent years.

In this thesis, the following topics are studied: identification protocols, authenticated key

exchange protocols, security proofs for some public key encryption schemes, key management

protocols for sensor networks, and RFID authentication protocols.

1.1 Cryptographic Protocols

1.1.1 Computational Assumptions

Let G = 〈g〉 be a finite cyclic group of order q with generator g, let q be the order of G,

and let λ = log2|G| be the security parameter. Let x ∈R S indicate choosing x uniformly at

random from the set S. Some cryptographic problems and assumptions are listed below:

• Discrete log (DL) problem: given X ∈R G, find x ∈ Zq such that gx = X. We use

DLG(·) to denote the function that solves the DL problem.

• Computational Diffie-Hellman (CDH) problem: given X ∈R G and Y ∈R G, find gxy,

where gx = X, gy = Y . We use CDH(·, ·) to denote the function that solves the CDH

problem.

• Decisional Diffie-Hellman (DDH) problem: distinguish (gx, gy, gz) from (gx, gy, gxy)

where x ∈R Zq, y ∈R Zq, z ∈R Zq. We use DDH(·, ·, ·) to denote the function that

solves the DDH problem. DDH(X, Y, Z) outputs 1 if Z = CDH(X, Y). Otherwise,

DDH(X, Y, Z) outputs 0.

• Strong Diffie-Hellman (SDH) problem: given a pair of elements (ga, gb) where a ∈R

Zq, b ∈R Zq, find the element C = gab with the help of a restricted Decision Diffie-

Hellman Oracle DDHga(gc, gd), which outputs “1” if gd = gac, or “0” if gd 6= gac.

The restricted Decision Diffie-Hellman Oracle DDHga(·, ·) can be considered as a DDH

oracle DDH(·, ·, ·) where the first input is fixed to ga.

• Gap Diffie-Hellman (GDH) problem: given a DDH oracle that solves the DDH problem,

solve the CDH problem.

Given a function f(·), if for any polynomial Q(·), if holds that f(λ) < 1/Q(λ) for λ large

enough, then we say that f() is negligible (in λ).

2

The DL/CDH/DDH/SDH/GDH assumption says that the probability that any polyno-

mial time (in λ) algorithm can solve the DL/CDH/DDH/SDH/GDH problem is negligible

(in λ).

The known relations among the assumptions are as follows: the DDH assumption implies

the CDH assumption, which in turn implies the DL assumption; and the GDH assumption

implies the SDH assumption, which in turn implies the CDH assumption. The relations are

illustrated in Figure 1.1.

DDH CDH DL

GDH SDH

Figure 1.1: Relation between the DL/CDH/DDH/SDH/GDH assumptions.

It is believed that the DDH assumption (therefore CDH and DL assumptions) holds in

certain groups. Two such groups are:

1. Prime order subgroups of the group Z∗
p where p is a large prime.

2. Elliptic curve groups E/Fp where Fp is a finite field and the order of the group is prime

and the embedding degree of E(Fq) is not small.

A detailed discussion on DDH and related problems can be found in [20].

GDH was proposed in [84] and SDH was proposed in [3]. It is believed that GDH and

SDH also hold in the above two prime order groups [84], [3].

1.1.2 Identification

An identification protocol enables one entity (a prover) to identify itself to another (a verifier)

as the legitimate owner of some key or some identifying value. In the public key setting, a

3

prover has a private key and the corresponding public key. The prover needs to prove that

it holds the private key, and the verifier uses the public key to verify the proof.

The objective of an adversary against an identification protocol is to impersonate the

prover. Based on the communication model, the adversary is allowed various types of at-

tacks. In the smartcard communication model considered in [41], the adversary can launch

sequential attacks, where the adversary plays the role of verifier and interacts with the prover

in multiple identification sessions sequentially. Using the information collected in the pro-

cess, the adversary then tries to impersonate the prover to other verifiers. Many classic

identification protocols, e.g., [43], [51], [83], [92], are designed in this model. In the Inter-

net communication model considered in [10], the adversary is capable of concurrent attacks,

where the adversary can concurrently interact with many instances of the prover while it is

impersonating the prover to a verifier. Concurrent attacks cover sequential attacks. Another

powerful attack, a reset attack, where the adversary can reset the provers to their previous

states, was considered in [7]. A formal security model named CR2 (Concurrent-Reset 2) was

proposed in [7] to capture both concurrent attacks and reset attacks. Four paradigms to

build identification protocols secure in the CR2 model were also proposed in [7]. In [103],

an efficient challenge-response identification protocol is proposed and proved to be secure

against active intruder attacks and reset attacks, which are considered to be equivalent to

attacks in the simplified CR2 model.

In this thesis, we present our work on identification protocols [112]. We simplify the CR2

model in [7] for deterministic challenge-response identification protocols. Then we propose an

extremely simple identification protocol and prove its security in the simplified CR2 model.

1.1.3 Authenticated Key Exchange

An authenticated key exchange (AKE) protocol enables two parties to establish a shared

session key with the property that, when one party computes a session key, it is ensured that

only the intended party can compute the same session key. In a typical AKE protocol, each

party holds a static private/public key pair, which will be used in all key exchange sessions.

In each session, each party generates an ephemeral private/public key pair for this session.

The two parties exchange their public keys and compute the session key using the public

keys and their private keys.

Several AKE security models have been proposed to capture attacks against an AKE

protocol. Typical early work includes the BR model by Bellare and Rogaway [10], and

the CK model by Canetti and Krawzcyk [22]. Recently, LaMacchia, Lauter and Mityagin

presented an extended Canetti-Krawczyk (eCK) security model [68]. In the eCK model, the

4

adversary controls the communications among the parties, and is able to reveal private keys

of some parties and session keys of some sessions. The objective of the adversary is to learn

some information of a target session key. There are certain limitations on the attacks so that

the adversary does not achieve its goals by using some unreasonably powerful attacks. For

example, the adversary is not allowed to reveal the target session key, or to reveal both the

static and ephemeral private keys of one party in the target session. The eCK model covers

the BR model and CK model. It also covers some attacks not considered in the BR model

or the CK model.

Several AKE protocols are proved secure in the eCK model, e.g., the CMQV protocol

[106] and the NAXOS protocol [68]. Roughly speaking, their proofs say that, if an adversary

can break the protocol with some probability ε, then with probability cε (c < 1), some hard

problem can be solved, which is assumed infeasible. The c value is one indication of the

tightness of the proofs. It is desirable that c is close to 1, which means the proof is tight. In

the eCK model, the proof of NAXOS is tighter than CMQV.

Efficiency is also important to AKE protocols. Efficiency is evaluated by using the

computational overhead of one party in establishing a session key. MQV [69] and its variants

HMQV [65] and CMQV [106] are among the most efficient AKE protocols. However, MQV

does not have a security proof based on commonly used assumptions. HMQV has a very

complicated security proof in the CK model (plus some security properties not captured by

the CK model) and it relies on some non-standard assumptions. CMQV has a relatively

simple security proof in the eCK model. Both proofs are not as tight as that of NAXOS.

However, NAXOS is not as efficient as MQV. It has been an open problem to find an AKE

that achieves the performance of MQV and has a security reduction as tight as that of

NAXOS.

In this thesis, we present two AKEs named SMEN (Secure MQV or Efficient NAXOS)

and SMEN− [116]. Both protocols are secure in the eCK model and enjoy the same simplicity

and tightness in security proof as NAXOS. The efficiency of both protocols is close to that

of MQV.

1.1.4 ElGamal Encryption

The ElGamal encryption scheme [38] is one of the classic public key encryption schemes.

One description of the scheme is as follows. Let G be a cyclic group of prime order q, and

let g be a generator of G. The private key is a ∈ Zq and the public key is A = ga. The

ciphertext of a message m ∈ G is (c1 = gr, c2 = mAr). In decryption, m is computed as

m = c2/c1
a.

5

In an attack against a public key encryption scheme, an adversary is given a target

ciphertext and needs to get some information of the corresponding plaintext. Three attack

models are often used:

• Chosen-plaintext attacks (CPA). The adversary can choose arbitrary plaintexts and

obtain the corresponding ciphertexts.

• Non-adaptive chosen-ciphertext attacks (CCA1). The adversary can choose arbitrary

ciphertexts and obtain the corresponding plaintexts before it is given the target cipher-

text.

• Adaptive chosen-ciphertext attacks (CCA2). After being given the target ciphertext,

the adversary can choose arbitrary ciphertexts different from the target ciphertext and

obtain the corresponding plaintexts.

ElGamal encryption is provably secure under CPA, and is insecure under CCA2. It is

conjectured to be secure under CCA1, but there has been no formal proof.

In [30], Damg̊ard proposed a variant of ElGamal encryption (DEG). In this scheme, the

private key is a pair (a, b) ∈ Zq×Zq, and the public key is a pair (A, B) where A = ga, B = gb.

The ciphertext of a plaintext m ∈ G is (gr, Ar, mBr). To decipher (X, Y, Z), the private key

owner outputs Z/Xb if Y = Xa, or rejects the ciphertext as invalid if Y 6= Xa. In [30] and

[49], DEG is proved to be CCA1 secure based on certain assumptions.

In this thesis, we present our work in [115], where we investigate the connection between

the security of ElGamal encryption and some cryptographic assumptions. We also give a

new proof that DEG is CCA1 secure under certain assumptions. The proof is simpler than

previous proofs.

1.2 Sensor Network Key Management

Distributed sensor networks (DSNs) consist of large numbers of wireless sensor nodes. In

general, a sensor node is battery powered, equipped with sensors, data processing units

of limited computation capability, limited memory space, and short-range radio commu-

nications. The sensor nodes are usually distributed randomly in a certain area for data

acquisition and environment monitoring. After deployment, they operate unattended and

without physical protection. They need to communicate with each other to accumulate data

and (possibly) relay the data to a base station. In many applications, such as battle field

surveillance, communications between sensor nodes have to be encrypted. At the same time,

sensor nodes deployed in a hostile environment are prone to be captured and compromised.

6

Because sensor nodes have limited computation and communication capabilities as well

as limited power supply, and they are often deployed in a random way, techniques for cryp-

tographic key establishment in conventional networks are not suitable for DSNs. Public

key techniques are computationally expensive and are generally not recommended for use in

sensor nodes. Symmetric key distribution schemes such as Kerberos cannot be used due to

the fact that we cannot assume that there is an online trusted server that can be accessed

by the sensor nodes.

A commonly recommended key distribution approach for DSNs is key predistribution,

which installs cryptographic keys or key material in sensor nodes before they are deployed.

Later, after the sensor nodes are deployed, they establish pairwise keys with their neighbour-

ing nodes (i.e., within the wireless communication range of the nodes). Then communications

between nodes are encrypted using the established pairwise keys.

A key establishment scheme consists of three phases, namely key predistribution, shared-

key discovery, and path-key establishment [40].

1. key predistribution

Key predistribution takes places before the sensor nodes are deployed. In this phase,

keys or key materials are installed into each node.

2. shared-key discovery

The shared-key discovery phase takes place after the sensor nodes are deployed in the

operational environment. In this phase, every node discovers its neighbors in wireless

communication range with which it shares keys.

The shared-key discovery phase establishes the topology of the sensor network as seen

by the routing layer of the DSN. A link exists between two sensor nodes only if they

share a key, and if a link exists between two nodes, then all communication on that

link is secured by link encryption and authentication.

3. path-key establishment

In the path-key establishment phase, two nodes within each other’s wireless communi-

cation that did not discover any shared key in the shared-key discovery phase establish

a key via intermediate nodes. For two nodes A and B that do not share a key, they

can establish a path key using a secure multi-hop path between them. On such a path,

each two adjacent nodes have a secure link. A can transport a key K to B via this

path. On each hop, K is transported using the secure link, encrypted using the key

shared by the two adjacent nodes.

7

1.2.1 Connectivity of Key Predistribution Schemes

There has been extensive research on key predistribution schemes (KPSs) for DSNs. In [40],

Eschenauer and Gligor first introduced the idea of securing a DSN with a random KPS,

where keys assigned to a sensor node are randomly chosen from a large key pool, and two

nodes can establish a pairwise key if they share at least one key. A generalized scheme by

Chan, Perrig, and Song [26] stipulates that two nodes can establish a pairwise key if they

share at least q common keys. Other schemes based on random assignment of keys include

Liu, Ning and Li [73] and Du et al. [37], where each node is assigned shares of a random

subset of bivariate polynomials (chosen from a pool of polynomials of pre-specified degree),

and two nodes can establish a pairwise key if they have shares on a common polynomial.

Instead of randomly assigning keys or key material, Çamtepe and Yener first proposed

deterministic methods using combinatorial designs (a.k.a. set systems) in key predistribution

[24]. The combinatorial structures they considered were symmetric balanced incomplete

block designs and generalized quadrangles. Some other KPSs based on combinatorial designs

include Wei and Wu’s scheme [108] using difference families and all k-subsets of a set; Lee and

Stinson’s scheme [70], [71] based on common intersection designs (in particular, transversal

designs); and Chakrabarti, Maitra and Roy’s scheme [25] which merges blocks in a set system.

There are two graphs associated with a DSN based on a KPS. In both of these graphs,

the vertex set is just the nodes in the DSN. The block graph of a KPS is the graph where

two vertices are adjacent if the corresponding sensor nodes can establish a pairwise key. For

the KPSs we consider in this thesis, this is equivalent to saying that the two nodes share at

least one common key. The geometric graph of the DSN is the graph in which two nodes

are adjacent if they are within each other’s communication range (after the nodes have been

deployed). Two nodes are able to communicate directly if and only if the corresponding

vertices are adjacent in both the block graph and the geometric graph. This motivates

consideration of the network graph, which is the intersection of the block graph and the

geometric graph.

In order to study the connectivity of a DSN secured by a KPS, Eschenauer and Gligor

used the Erdös-Rényi random graph model [39]. In this model, the probability that the DSN

is connected is estimated to be

Pc = e−eln n−np

where n is the number of nodes and p is the probability that two nodes are within each

other’s communication range and can establish a pairwise key. Several other works, including

[26], [37], [108], [59], used the same approach. By applying the random graph model, it is

implicitly assumed that the network graph is a random graph, which in turn implies that

8

the block graph and the geometric graph both behave like random graphs.

In [33], Di Pietro et al. raised questions about the above-mentioned assumptions, arguing

that it is not realistic because the geometric nature of the DSN is not taken into account.

They proposed another approach to derive the probability that the DSN is connected. Their

approach is based on the assumption that a node’s communication radius r is constant and

the number of nodes n is infinite. This is different from the more common model for random

geometric graphs where r decreases as n increases, which we are more interested in.

There also has been some research on the connectivity of the block graph of a random

KPS, without assuming it is a random graph. In [34], Di Pietro et al. proved that if

p = c log n/n for c > 8 (along with some other conditions), where p is the probability

that two nodes in the block graph of a random KPS are adjacent, then the block graph is

connected (for n large enough) with high probability. In previous studies, the block graph

is often assumed to be a random graph, in which case c > 1 is a sufficient condition for the

graph to be connected. It would be desirable to improve the bound c > 8 to a tighter bound,

close to c > 1, while relaxing the assumptions.

An object closely related to the block graph of a random KPS is the random intersection

graph. A random intersection graph G(n, v, p) consists of n nodes. For each node, every

point in a pool of size v is independently assigned to the node with probability p. Two

nodes are adjacent if they have at least one common point. Research on random intersection

graphs can be found in [97], [44], [50], [14].

Given that a graph is connected, κ-connectivity can measure how strong the connectivity

is. A graph is κ-edge-connected if removal of any κ− 1 edges does not disconnect the graph.

A graph is κ-vertex-connected if removal of any κ−1 vertices does not disconnect the graph.

We note that κ-connectivity has been studied in the random graph model (see [18]) and

the random geometric graph model ([88]). Bettstetter [13] studied κ-connectivity of the

geometric graph of a DSN, computing the probability Pr[κ ≥ x] for given x where κ is given

as the minimum node degree dmin. Tague and Poovendran [104] studied κ-connectivity

of DSNs secured by KPSs under two assumptions: 1.) the sensor nodes are distributed

according to a two-dimensional Poisson point process, and 2.) a KPS-secured DSN is a

random geometric graph. So far, there has been no study of κ-connectivity for block graphs

of KPSs.

In previous research, the performance of a DSN has been evaluated by the connectivity

probability, denoted Pc, of the DSN. There are several limitations to this approach. First,

this kind of analysis only indicates if a DSN is likely to be connected; it does not determine

how strong the connectivity is, which may be more important in practice. As suggested by

9

random graph theory, the transition of a random graph from being disconnected to being

connected is a “short phase” [86]. In a practical application, it results that a DSN is more

likely to be “strongly connected” than “just barely connected”. Therefore, we would like to

know how strong the connectivity is. Second, Pc is affected by the way that the vertices are

geometrically located, which is independent of the KPS. This suggests that it is of interest to

also consider the connectivity of the block graph, which depends only on the KPS underlying

the DSN.

Another problem we address is whether the Erdös-Rényi random graph model is suitable

for estimating the connectivity probability of the network graph of a DSN. In the network

graph, denoted GN , the existence of an edge is dependent on other edges, while in the

random graph model, any edge is independent of all other edges. So it is clear that GN is

not a random graph. However, when using the random graph model to study DSNs (as in

[40], for example), it is implicitly assumed that GN behaves like a random graph. Although

many previous papers have used that assumption implicitly, it would be desirable if we did

not have to rely on the assumption. If this is not possible, then it would be desirable for

clarity to make all required assumptions explicit and validate them computationally through

simulations.

As mentioned previously, the network graph is the intersection of the block graph and the

geometric graph. We denote these graphs as GN , GB and GG, respectively. In this thesis,

we study the κ-edge-connectivity of GB and GN . κ-edge-connectivity of GB is an indication

of the suitability of the KPS, and the κ-edge-connectivity of GN indicates how strongly

the resulting DSN is connected. For DSNs based on random KPS, we use simulations to

determine if the κ-edge-connectivity of GB and GN can be estimated using the random graph

model.

1.2.2 Multipath Key Establishment

To enhance the security of a path key, Chan, Perrig and Song [26] and Zhu et al. [117]

proposed to use multiple paths to transmit key shares. Suppose that there are m secure

paths between A and B. A could send n key shares s1, . . . , sn to B, one share via each

path. B recovers the key K as K = s1 ⊕ · · · ⊕ sn. Note that the actual number of such

paths can be estimated using the k-connectivity properties of a sensor network secured by

key predistribution schemes (see, e.g., [111]).

The path key establishment using K = s1 ⊕ · · · ⊕ sn is vulnerable to message dropping

or altering. In [117], Zhu et al. also proposed to use an (n, k) secret sharing scheme [93]

to compute the shares and to recover the key. An (n, k) secret sharing scheme generates n

10

shares for a secret s. With any k of these n shares, the secret s can be recovered. The secret

sharing scheme enables B to recover the key when some shares are dropped. Secret sharing

schemes also provide error correcting ability so that the key can be recovered when some

shares are modified (see [75, 90, 100]). However, the error-correcting ability of the (n, k)

secret sharing scheme is not used in [117].

To withstand message dropping and altering attacks, Huang and Mehdi [57] proposed a

multi-path key establishment scheme (the HM scheme) based on Reed-Solomon (RS) codes.

In the HM scheme, A chooses a key and encodes it in an RS codeword which consists of

multiple symbols. The symbols are sent to B via multiple paths. The RS code provides

error-correction ability so that B can recover the key when some symbols are dropped or

altered.

Deng and Han [32] proposed another RS code based multi-path key establishment scheme

named JERT (Just Enough Redundancy Transmission). JERT is designed for two neigh-

bouring nodes which have a direct but insecure communication link, over which B can send

feedback to A. Unlike the HM scheme where A transmits all symbols of a codeword, in

JERT, A transmits the symbols incrementally. When B has received enough symbols and

recovers a key, B and A can run an authentication protocol over their direct link to verify

the recovered key. If the key recovered by B is correct, then A will not send the remaining

symbols. Because the communication over the direct link does not involve other nodes as in

the code symbol transmission, the transmission overhead of the authentication protocol is

considered free.

In this thesis, we first define a model for multi-path key establishment (MPKE). This

model enhances the model used in [57] and [32]. We have two specific security objectives:

reliability

The adversary nodes should not be able to prevent B from computing the key K that

was chosen by A.

secrecy

From the point of view of the adversary nodes, the entropy of K (given the information

that they observe) should be sufficiently high so that they cannot compute K.

The above objectives can be realized using a protocol for perfectly secure message trans-

mission (PSMT). Constructions and bounds for PSMT have been studied extensively since

the 1993 paper of Dolev et al. [36]. PSMT was first suggested for use in multipath key

establishment in sensor networks in 2004 by Wang [107].

We propose a new optimal protocol for one-round PSMT based on Reed-Solomon codes.

Our protocol is somewhat similar to a protocol found in Fitzi et al. [45]. Then we use our

11

PSMT protocol to obtain two new multi-path key establishment schemes that can be applied

provided that fewer than one third of the paths contain an adversary node. Our first scheme

works in the same setting as the HM scheme, where A does not need to receive feedback from

B. Our second scheme works in the same setting as JERT, where A can receive feedback

from B to reduce message transmission. We optimize the parameters of both our proposed

schemes so that A uses the minimum transmission possible for B to recover a secure key.

Finally, we describe another MPKE scheme that tolerates a higher fraction (less than

1/2) of paths controlled by the adversary. This scheme is based on a new protocol for a

weakened version of message transmission, which is very simple and efficient.

1.3 RFID Authentication

Radio Frequency Identification (RFID) is an automated object identification technology.

RFID systems consist of two main components: tags and readers. Tags are small radio

transponders. They contain the identification information of objects to which they are at-

tached. Readers query these tags for the identifying information about the objects. Readers

often have secure access to a back-end database. For simplicity, a reader and a back-end

database can be treated as a single entity.

While being promising in a wide range of applications such as supply chain, libraries,

and anti-counterfeiting, RFID also raises privacy and security concerns. Since RFID tags

respond to radio interrogation automatically, malicious scanning of tags is a plausible threat.

Even if the information emitted by a tag is encrypted, the information may be used to track

the tag, thus causing privacy issues. An equally significant problem is authentication. One

purpose of RFID tags is to prove the authenticity of objects. If an RFID tag can be scanned

and replicated, then a counterfeit tag can be made to impersonate the authentic one.

RFID protocols must provide privacy and security under those possible attacks. A com-

mon attack model is as follows. There is an adversary who is able to eavesdrop on the

communications between the tags and readers, interrogate the tags, compromise some tags,

reset tags, and change the messages between the tags and readers. The goal of the adversary

is to impersonate or track uncompromised tags. Correspondingly, an RFID protocol needs

to meet two requirements: be secure against impersonation and be untraceable.

In addition to the security and privacy requirements, an RFID protocol needs to be

scalable on the reader side and efficient on the tag side. An RFID system may have a large

number of tags. The RFID protocol must be scalable to allow the reader to deal with such

a large number of tags. On the other hand, a tag has very limited resources in computation

12

and memory, so the protocol must be efficient on the tag side. For cryptographic tools,

symmetric key techniques are usually considered feasible for some RFID tags while public

key techniques are considered unsuitable for any of them.

To design an RFID protocol satisfying all the desired privacy, security, scalability, and

efficiency properties is challenging. Privacy makes RFID authentication different from con-

ventional cryptographic authentication. Using symmetric key techniques, secure authentica-

tion relies on a symmetric key shared between a tag and reader. For privacy, a tag cannot

identify itself to a reader before an authentication interaction, thus the reader does not know

which key to use in the interaction. A straightforward solution is to try every key. This is

prohibitively costly when the number of tags becomes large. This is known as the key search

problem. Literature in this area has sought to reduce the cost of key search. Every such

protocol proposed so far involves some kind of tradeoff among the desired properties [61].

Several existing approaches to the key search problem are as follows.

• Tree approach. In [77], Molnar and Wagner proposed a scheme to reduce the key

search cost to Θ(log n) where n is the total number of keys. The scheme uses d

sets of keys K1, . . . , Kd. Each set contains b keys. Each tag is assigned with d keys

k1 ∈ K1, . . . , kd ∈ Kd. The key assignment can be represented as a tree of depth d and

each node has b children. The scheme can accommodate up to bd tags in total. In an

identification session, the tag runs d rounds of interaction with the reader. In the ith

round, the tag uses the key ki, and the reader searches Ki. In a session, the reader

needs to search through db keys.

Since a key will be used in more than one tag, compromise of one tag results in

compromise of keys in other tags; hence this leads to privacy infringements [4].

• Synchronization approach. The basic idea in the synchronization approach is for the

reader and tags to maintain a synchronized state. For example, every tag Ti maintains

a counter ci. On interrogation, the tag outputs E = fki
(ci) where f is a keyed hash

function and ki is a secret key shared between the reader and Ti, then increase ci. The

reader can compute all possible outputs of all tags and store the results in a searchable

table. In each interrogation, the reader searches the response from the tag in the table.

There are several variants of the above approach in the literature, e.g., Ohkubo, Suzuki,

and Kinoshita [82], Henrici and Müller [56], Juels [60], and Dimitriou [35].

• Time-space tradeoff approach. In [5] and [4], Avoine, Dysli, and Oechslin used a time-

space trade-off to achieve Θ(n
2
3) in both memory and time complexity for key search.

Time-space tradeoff is used as an enhancement to the synchronization approach. The

13

basic idea is to organize all future response values of all tags in chains. Each chain

consists of a sequence of response values as follows. The reader chooses a random

function f to map a response value x to a pair (i, j), then the response of tag i at the

jth query will be the successor of x in the chain. Only the head and the tail of a chain

is stored. When receiving a response x, the reader can apply f to get its successors.

The reader searches x and its successors in all the tails of the chains to locate the chain

which contains x. Then it starts from the head of the chain, applies f repeatedly, and

locates (i, j) of x.

• Public key approach. If public key cryptosystem can be used, then it would be easier to

solve the key search problem. Whether a public key cryptosystem can be implemented

on RFID tags remains an open problem and has drawn much effort. In [85], Oren and

Feldhofer proposed WIPR, an RFID identification protocol based on a randomized

Rabin encryption scheme. WIPR is very efficient in hardware, requiring only 5705

gates, and its design aims at strong security and privacy requirements. While Oren

and Feldhofer provided an implementation of the protocol, they also note that some

details of the protocol design have not been fully analyzed.

In addition to the conventional privacy requirement, two stronger privacy features for RFID

systems, termed backward untraceability and forward untraceability, were also considered in

the literature. Backward untraceability means that, if the adversary reveals the internal

state of a tag at time τ , the adversary is not able to tell whether a transaction before time

τ involves the tag. Forward untraceability means that, if the adversary reveals the internal

state of a tag at time τ , the adversary is not be able to tell whether a transaction after time

τ + δ (for some δ > 0) involves the tag, provided that the adversary does not eavesdrop on

the tag continuously after time τ .

Our work in RFID authentication protocols includes three contributions:

1. We propose a novel RFID protocol that provides security, privacy, scalability, and ef-

ficiency [113]. The protocol is based on polynomial computation, which has not been

used in RFID protocol design before. The protocol achieves the desirable properties

at the cost that a tag is allowed to be interrogated no more than a given number of

times. This is similar to some previous protocols such as [82], but the interrogation

threshold in our protocol is much higher. In previous protocols, the threshold increases

linearly with the memory or computation overhead, while in our scheme, the threshold

increases quadratically with the overhead. Besides, the threshold in our protocol also

increases linearly with the communication overhead. Overall, our protocol achieves

14

a very high interrogation threshold using moderate computation, memory, and com-

munication resources, and within this interrogation threshold, the protocol is secure

and untraceable. Furthermore, the computation and memory complexity on the RFID

reader/server side is logarithmic in the number of RFID tags.

2. We analyze the security and privacy features of WIPR, a public-key RFID authenti-

cation protocol [85], and propose two variants with improved security and hardware

efficiency [114]. We show that a reduced version of WIPR is vulnerable to short padding

attacks and reset attacks. We discuss countermeasures to avoid these attacks by prop-

erly specifying the details of the protocol. Then we propose two variants, WIPR-SAEP

and WIPR-RNS, to provide better security and to further reduce the hardware cost.

WIPR-SAEP uses an additional hash function to achieve provable security. WIPR-

RNS uses a residue number system (RNS) computation to reduce the hardware cost of

WIPR. WIPR-RNS may also provide better security guarantees in that it uses stan-

dard cryptographic primitives instead of the non-standard ones in WIPR. The two

changes (SAEP padding and RNS computing) can be used independently or combined

together.

3. We analyze an RFID identification scheme which is designed to provide forward un-

traceability and backward untraceability. We show that if a standard cryptographic

pseudorandom bit generator (PRBG) is used in the scheme, then the scheme may fail

to provide forward untraceability and backward untraceability. To achieve the de-

sired untraceability features, the scheme can use a robust PRBG that provides forward

security and backward security.

15

Chapter 2

Cryptographic Protocols

2.1 Identification Protocols . 17

2.1.1 Security Model . 17

2.1.2 A Simple Identification Protocol . 21

2.2 Authenticated Key Exchange Protocols . 28

2.2.1 Security Model . 28

2.2.2 Efficient Exponentiation Algorithms. 30

2.2.3 SMEN Protocol . 31

2.2.4 SMEN− Protocol . 40

2.3 ElGamal Encryption and Variants . 47

2.3.1 Security of ElGamal Encryption . 47

2.3.2 Security of Damg̊ard ElGamal Encryption 51

In this chapter, we study identification protocols, authenticated key exchange protocols,

and ElGamal encryption and its variant DEG (Damg̊ard’s ElGamal encryption). In Section

2.1, we review the CR2 model from [7] and present a simplified CR2 model for challenge-

response identification protocols in Section 2.1.1, and we present a new identification protocol

and its security proof in Section 2.1.2.

In Section 2.2, we review the eCK model in Section 2.2.1 and efficient algorithms for

exponentiation in Section 2.2.2, then present two new protocols SMEN and SMEN− in

Section 2.2.3 and Section 2.2.4 respectively.

In Section 2.3, we present a security analysis for ElGamal encryption in Section 2.3.1 and

a security analysis for DEG in Section 2.3.2.

16

2.1 Identification Protocols

2.1.1 Security Model

Model for General Identification Protocols

In [8], Bellare et al. defined a formal security model for identification protocols. The model

captures concurrent attacks, where an adversary can concurrently execute identification pro-

tocols with multiple provers while he impersonates a prover to a verifier, and reset attacks,

where an adversary can reset a prover to its previous state. The model is named CR2

(concurrent-reset 2). A weaker model is named CR1, where an adversary can concurrently

execute identification protocols with multiple provers only before he impersonates a prover

to a verifier.

The CR2 model consists of a description of an identification protocol and a security game

that defines the security of the protocol. An identification protocol is described by a function

ID() which specifies how all associated processes (key generation, message computation,

session id or decision computation) are implemented. The first argument to ID() is a keyword

(keygen for key generation, prvmsg for prover message computation, vfmsg for verifier message

computation, prvsid for prover session id computation, vfend for verifier end message and

session id computation) which invokes the subroutine responsible for that function on the

other arguments. The protocol consists of m(k) moves where k is a security parameter and

m() is a polynomial. m(k) is odd so that the first and last moves belong to the prover. When

it is necessary, a START message is added for the prover. The corresponding security game

is defined in Game 1.

Model for two-move Protocol with Deterministic Prover

We make the following changes to adapt the CR2 model for two-move identification protocols

with a deterministic prover.

1. change the condition for Â to win. Â wins only when decision = accept and sidV /∈
SID1 ∪ · · · ∪ SIDp.

In the CR2 model, Â wins if Â makes the verifier accept without simply relaying

messages between the verifier and a prover (this condition is captured by condition 1,

decision = accept and sidV /∈ SID1 ∪ · · · ∪ SIDp), or if Â makes two prover instances

output the same sid (this condition is captured by condition 2, there exist 1 ≤ a < b ≤
p with SIDa ∩ SIDb 6= ∅). We note that condition 2 is not essential for the security

of an identification protocol because no verifier is cheated here. In addition, condition

17

Initialization:

1. (pk, sk)← ID(keygen, k) //key generation

2. Choose tape RV for verifier at random

3. CV ← 0 //message counter for the verifier

4. p← 0 //number of active prover instances

Execute adversary Â and reply to its oracle queries as follows:

When Â makes query WakeNewProver //activate a new prover instance

1. p← p + 1; SIDp ← ∅; Pick a tape Rp at random

2. Return p

When Â makes query Send(prvmsg, i,msg1 ‖ · · · ‖ msg2j) with 0 ≤ 2j ≤ m(k) and 1 ≤ i ≤ p

1. msg2j+1 ← ID(prvmsg, sk,msg1 ‖ · · · ‖ msg2j; Ri)

2. s← msg2j+1

3. If 2j + 1 = m(k) then

- sid← ID(prvsid, sk,msg1 ‖ · · · ‖ msg2j+1; Ri),

- s← s ‖ sid

- SIDi ← SIDi ∪ {sid}
4. Return s

When Â makes query Send(vfmsg, msg1 ‖ · · · ‖ msg2j−1) with 1 ≤ 2j − 1 ≤ m(k)

1. CV ← CV + 2

2. If 2j < CV then

- return ⊥ //not allowed to reset the verifier

3. If 2j − 1 < m(k)− 1 then

- msg2j ← ID(vfmsg, pk, msg1 ‖ · · · ‖ msg2j−1; RV)

- return msg2j

4. If 2j − 1 = m(k) then

- sidV ‖ decision← ID(vfend, pk, msg1 ‖ · · · ‖ msg2j; RV)

- return sidV ‖ decision

Â wins the game if either of the following is true:

1. decision = accept and sidV /∈ SID1 ∪ · · · ∪ SIDp

2. There exist 1 ≤ a < b ≤ p with SIDa ∩ SIDb 6= ∅

Game 1: CR2

18

2 makes some identification protocols without known flaws insecure in CR2, e.g., the

signature based challenge-response protocol in Section 3 of [8]. We consider condition

2 to be too strong a condition and drop this condition to simplify the model.

2. change the description of the protocol from odd-number of moves to two moves.

This change is straightforward. With this change, for each prover instance i, Â will

only make query Send(prvmsg, i, x; Ri) once, with x = msg1; for the verifier, Â will

make query Send(vfmsg, x) twice, the first time with x = ⊥ and the second time with

x = msg1 ‖ msg2. Note that the use of the message counter CV ensures that Â must

query Send(vfmsg,⊥) before querying Send(vfmsg, msg1 ‖ msg2). The resulting game

is described in Game 2.

3. change the game for a deterministic prover.

Since the prover is deterministic, the random tapes Ri for prover instance i can be

removed. Then the sets SIDi can be merged into one set SID, and the prover instance

indicator i and related operations can be removed. The resulting game is described in

Game 3.

In Game 3, query Send(vfmsg, msg1) must be made after the query Send(vfmsg). Query

Send(prvmsg, i,msg1) can be before or after Send(vfmsg), and it can be made a polynomial

(in k) number of times. Send(vfmsg, msg1) is the last query. Game 3 can be rewritten into

an interactive game described in Game 4. In Game 4, n1 and n2 are polynomial in the

security parameter k. We specify that, in the identification protocol, sid = msg1 ‖ msg2 and

sidV = msg1 ‖ msg2 (This specification is only for the security proof and does not have to be

included in the protocol itself). Since msg2 ← ID(prvmsg, sk,msg1), the same msg1 values

result in the same msg2 values, and hence the same sid values. Therefore, sidV /∈ SID in

Game 3 is equivalent to c 6= ci in Game 4.

We then rewrite Game 4 to Game 5. It can be shown that the difference between the

probabilities that Â can win in Game 4 and Game 5 is negligible. Then, Game 5 is a security

definition equivalent to the CR2 game (with a modification on the conditions that Â wins) for

challenge-response identification protocols with deterministic provers. Therefore, we define

that the protocol is secure against concurrent attacks and reset attacks if the probability

that the adversary wins Game 5 is negligible.

We give an intuitive explanation why Game 5 captures concurrent attacks and reset

attacks for challenge-response identification protocols with deterministic provers. Since the

prover’s response is only determined by the current challenge, it is stateless. Therefore,

19

Experimentid−cr
ID,A (k) Execution of protocol ID with adversary Â and security param-

eter k in the CR2 setting

Initialization:

1. (pk, sk)← ID(keygen, k)

2. Choose tape RV for verifier at random

3. p← 0

Execute adversary Â on input pk and reply to its oracle queries as follows:

When Â makes query WakeNewProver

1. p← p + 1

2. SIDp ← ∅
3. Pick a tape Rp at random

4. Return p

When Â makes query Send(prvmsg, i,msg1)

1. msg2 ← ID(prvmsg, sk,msg1; Ri)

2. sid← ID(prvsid, sk,msg1; Ri),

3. SIDi ← SIDi ∪ {sid}
4. Return msg2||sid
When Â makes query Send(vfmsg,⊥)

1. msg1 ← ID(vfmsg, pk,⊥; RV)

2. return msg1

When Â queries Send(vfmsg, msg1 ‖ msg2) (this query must be after the query

Send(vfmsg,⊥))

1. sidV ‖ decision← ID(vfend, pk, msg1 ‖ msg2; RV)

2. return sidV ‖ decision

Â wins the game if the following is true:

1. decision = accept and sidV /∈ SID1 ∪ · · · ∪ SIDp

Game 2: CR2 for challenge-response identification protocols.

a reset operation does not affect the prover’s behaviour, and concurrent execution of the

protocol is equivalent to sequential execution of the protocol.

20

Experimentid−cr
ID,A (k) Execution of protocol ID with adversary Â and security

parameter k in the CR2 setting

Initialization:

1. (pk, sk)← ID(keygen, k)

2. Choose tape RV for verifier at random

3. SID ← ∅

Execute adversary Â on input pk and reply to its oracle queries as follows:

When Â makes query Send(prvmsg, i,msg1)

1. msg2 ← ID(prvmsg, sk,msg1)

2. sid← ID(prvsid, sk,msg1)

3. SID ← SID ∪ {sid}
4. Return msg2||sid
When Â makes query Send(vfmsg,⊥)

1. msg1 ← ID(vfmsg, pk,⊥; RV)

2. return msg1

When Â queries Send(vfmsg, msg1 ‖ msg2) (this query must be after the query

Send(vfmsg,⊥))

1. sidV ‖ decision← ID(vfend, pk, msg1 ‖ msg2; RV)

2. return sidV ‖ decision

Â wins the game if the following is true:

1. decision = accept and sidV /∈ SID

Game 3: CR2 for challenge-response identification protocols with deterministic prover.

2.1.2 A Simple Identification Protocol

Description

Initial Setup. The initial setup for our scheme is described in Figure 2.1. We assume the

existence of a trusted authority, denoted by T̂A, who will issue certificates for all potential

participants in the scheme. Observe that the setup of the scheme is defined in terms of

security parameters k′ and k. We would probably take k′ = 1024 and k = 160 in practice.

Protocol Description. In a session of the scheme, the prover P̂ tries to convince the

21

C Â

1. generate (sk, pk)
pk−→

repeat steps 2. and 3. n1 times:

2. ci←−
3.

ri−→
4. generate challenge c

c−→
repeat steps 5. and 6. n2 times:

5. ci←−
6.

ri−→
7. accept or reject r as the response of c r←−

Â wins the game if C accepts and c 6= ci.

Game 4: Interactive CR2 for challenge-response identification protocols with deterministic

prover.

C Â

1. generate (sk, pk)
pk−→

2. generate challenge c
c−→

repeat steps 3. and 4. n = n1 + n2 times:

3. ci←−
4. if ci 6= c, then compute response ri

ri−→
5. accept or reject r as the response of c r←−

Â wins the game if C accepts in step 5.

Game 5: Deterministic challenge-response identification CR2.

verifier V̂ of its identity. V̂ “accepts” only if P̂ responds to V̂ ’s challenge in an appropriate

way. The steps in a session of our scheme are summarized in Figure 2.2.

In the following, we omit the operation “mod p” to simplify the notation. The message

flows can be depicted as follows:

P̂
x=gr

←−−− V̂

P̂
z=h(xa)−−−−→ V̂

22

Input. Security parameters k and k′, which are positive integers.

The parameter k′ should be polynomial in k.

1. The T̂A chooses a large prime p such that p−1 is divisible

by another large prime q, where log2 p ≈ k′, log2 q ≈ k,

and k′ is polynomial in k.

2. The T̂A chooses an element g ∈ Z∗
p having order q.

3. The T̂A publishes the triple (p, q, g).

4. The T̂A publishes a hash function h : Z∗
p → {0, 1}k.

5. Each prover P̂ chooses a private key a uniformly at ran-

dom from Zq, computes the public key v = ga mod p,

and sends v to the T̂A. T̂A verifies that P̂ does possess

the private key corresponding to v, and issues a certifi-

cate to P̂ certifying that v is indeed P̂ ’s public key.

Figure 2.1: Identification scheme setup

1. V̂ chooses r ∈ Zq uniformly at random and computes

x = gr mod p.

Then V̂ sends x to P̂ .

2. After receiving x, P̂ rejects and stops if xq mod p 6= 1;

otherwise P̂ computes

z = h(xa mod p).

and sends z to V̂ ; otherwise P̂ rejects and stops.

3. After receiving z, V̂ verifies z. If z = h(vr mod p), then

V̂ accepts; otherwise, V̂ rejects.

Figure 2.2: Identification scheme description

Remark. The protocol may have been used in practice. However, to the best of our knowl-

edge, it has not been formally presented or analyzed in the literature. Although having much

resemblance, it is not a straightforward instantiation of any conventional encryption or sig-

nature based challenge-response identification protocols. Therefore, we think it worthwhile

to describe the protocol and analyze its security in detail.

23

Remark. The protocol can also be implemented in the setting of an elliptic curve E

of prime order q, where q ≈ 2160. In this setting, the verification that xq mod p 6= 1 is

unnecessary; it would suffice to verify that x is a point on E.

Security proof

Next we prove that the protocol is CR2 secure in the random oracle model if the SDH

assumption holds.

Theorem 2.1.1. If the SDH assumption holds, then the protocol is CR2 secure in the random

oracle model.

Proof. The CR2 security of the protocol is defined by Game 6, which is an instantiation of

Game 5. Note that in Game 6, A has access to the hash function h() which is modelled as

a random oracle. A may use the hash function to verify if ri = h(ci
a).

C A

1. a
R←− Zq, v = ga v−→

2. e
R←− Zq, c = ge c−→

repeat steps 3. and 4. n times:

3.
ci←−

4. if ci
q = 1 and ci 6= c, then ri ← h(ci

a)
ri−→

5. if r = h(ca), then accept, else reject r←−
Game 6:

We use Pri[E] to indicate the probability that an event E occurs in game i. In Game 6,

A wins the game with probability Pr6[r = h(ca)].

Now we transform Game 6 to Game 7 using the following changes:

• C receives ga and ge as input where a
R←− Zq and e

R←− Zq, and sets v = ga and c = ge.

• C is given a restricted DDH oracle DDHga(·, ·).

• C maintains a table T . The rows of T consists of triples (x, y, h) such that y = xa and

h = Hash(y), where Hash(·) is defined in Algorithm 2 and simulates a random oracle.

Let X,Y, and H be the set of the elements in the three columns respectively. Initially,

T contains one row (c, y, hc) where y = ⊥ (⊥ denotes empty) and hc
R←− {0, 1}k.

• When A queries the hash function h(), C computes the hash value using Hash() in

Algorithm 2.

24

• In step 4, C computes ri = Response(ci) using Algorithm 1.

• In Step 5, if r = hc, then C returns the y value in the initial row in T .

CDDHga (,)(ga, ge) A

1. v = ga v−→
2. c = ge c−→

repeat steps 3. and 4. n times:

3. ci←−
4. if ci

q = and ci 6= c, then ri ← Response(ci)
ri−→

5. if r = hc, then return the y value in the initial row (c, y, hc) r←−
Game 7:

input: x

if x ∈ X then
return h in the same row in T

end

else

for each pair (x, y) ∈ {x} × Y do

if DDHv(x, y) = 1 then
fill x in the same row as y in T

return h
end

end

add x to a new row of T

fill in a random value for h and y = ⊥ in that row

return h
end

Algorithm 1: Response

In Game 7, C simulates a hash function to answer A’s queries to the hash function. C

makes consistent replies to identification challenges and hash queries throughout Game 7:

when A queries h(vri), and challenges with gri , it receives the same results. Therefore, Game

6 and Game 7 are identical to A, and it holds that

Pr
6

[r = h(ca)] = Pr
7

[r = h(ca)].

25

input: y

if y ∈ Y then
return h in the same row in T

end

else

for each pair (x, y) ∈ X × {y} do

if DDHv(x, y) = 1 then
fill y in the same row as x in T

return h from the same row
end

end

add y to a new row in T

fill in a random value for h and x = ⊥ in that row

return h
end

Algorithm 2: Hash

Suppose that, in step 5, A responds with r = hc. Then, only with negligible probability

can A generate r = hc without querying the hash function h(y) with y = ca. If A generated

r not by querying the hash function, then with negligible probability it holds that r = hc. If

A generated r by querying h(y) where y 6= ca, then only with negligible probability it holds

that C will return hc (this only happens in the case that hc appears in a row which does

not contain c). Therefore, if A responds with r = hc, then with overwhelming probability,

A queried h(y) where y = ca. It holds that

Pr
7

[y = ca|r = hc] > 1− ε

where ε is negligible. Therefore,

Pr
7

[y = ca] ≥ Pr
7

[y = ca and r = hc]

> (1− ε) Pr
7

[r = hc]

= (1− ε) Pr
6

[r = h(ca)].

Therefore, if the SDH assumption holds, then the protocol is CR2 secure.

We note that the above proof is similar to the proof in [3], where Abdalla et al. gave

results on the security of an ElGamal encryption variant named DHIES. In both proofs, the

key steps are for the challengers C to simulate a hash function so that C’s answers to hash

queries are consistent with its answers in the protocol.

26

Equivalence of Protocol Security and SDH Hardness

Next, we prove that the CR2 security of the protocol implies the hardness of the SDH

problem. In the proof, we do not need to assume that the hash function h() is a random

oracle. Instead, we only assume that h() is collision-free; i.e., the it is computationally

infeasible to find x1 and x2 where x1 6= x2 and h(x1) = h(x2). Collision-free is a standard

assumption for cryptographic hash functions [102, §4.2].

Theorem 2.1.2. If the protocol is CR2 secure and the hash function h() is collision-free,

then the SDH problem is hard.

Proof. We prove the theorem by showing that, if the SDH problem is not hard, then the

protocol is not CR2 secure or we can find a collision for h.

Suppose that there is a polynomial time algorithm S that solves the SDH problem with

non-negligible probability. We define the following Game 8. In Game 8, C and A run a game

as defined in Game 6, where A acts as a cheating prover trying to cheat the challenger C.

At the same time, A and S run a SDH game where A acts as a challenger to ask S to solve

the SDH problem. In the SDH game, A sends (v = ga, c = ge) to S, A answers DDH oracle

queries DDHv(ci, yi) from S, and S finally answers y = gae.

C A S

1. a
R←− Zq, v = ga v−→

2. e
R←− Zq, c = ge c−→ c,v−→

repeat steps 3. and 4. n times:

3. if ci = c then d = 2 else d = 1
ci,yi←−−

ci←− ci ← ci
d

4. If ci
q = 1 and ci 6= c, then ri ←

h(ci
a)

ri−→ if ri = h(yi
d) then b = 1

b−→

else b = 0

5. If r = h(ve), then accept, else

reject.

r←− r = h(y) y←−

Game 8:

In the SDH game with S, A uses C to help answer the DDH oracle queries DDHv(ci, yi)

from S: if ri = h(yi), then A decides that yi = ci
a and answers with b = 1; if ri 6= h(yi), then

A decides that yi 6= ci
a and answers with b = 0. If it happens that yi 6= ci

a but h(yi) = h(ci
a),

then C finds a collision for h(). If this does not happen, then A always gives correct answers

to the DDH oracle queries from S. Therefore, in step 5, S will output y such that y = ca.

27

We conclude that, if the SDH problem is easy, then C will either find a collision for h(),

or it will accept in Step 5, which means that the protocol is not CR2 secure.

Combining Theorem 2.1.1 and Theorem 2.1.2, we conclude that the CR2 security of the

protocol is equivalent to the hardness of the SDH problem.

Performance

We compare the performance of our scheme with the Stinson-Wu (SW) scheme in [103].

Assume, for all protocols, that k′ = 1024 and k = 160. The total message length is 2208 bits

in the SW scheme, and 1184 bits in our scheme. Note however that a hash function can be

used to compress the messages in the SW scheme (by hashing the 1024-bit response to 160

bits) so its message length can be reduced to 1344 bits.

In view of the number of exponentiations, the computational complexity of the two

schemes is the same. Both the prover and verifier need two exponentiations, all with a 160-

bit exponent. In the elliptic curve setting, provers in both schemes are required to perform

only one “exponentiation” (i.e., a scalar multiple of a point on the elliptic curve).

2.2 Authenticated Key Exchange Protocols

2.2.1 Security Model

The extended Canetti-Krawczyk (eCK) model is described as an experiment between an

adversary M̂ and a challenger Ĉ. A certificate authority ĈA is involved in registering public

keys. Initially, M̂ selects the identities of n honest parties, for whom Ĉ generates static

private key/public key pairs and registers the public keys to ĈA.

Execution of an AKE by one of these parties is called an AKE session. A session identifier

sid is defined as

sid = (role, Â, B̂, comm),

where role = {I, R} is the role (initiator/responder) of the owner of the session, Â is the

identity of the owner, B̂ is the identity of the other party in the session, and comm is the

concatenation of communication messages between the two parties. Two sessions sid =

(role, Â, B̂, comm1) and sid∗ = (role, B̂, Â, comm2) are matching sessions if role is the

complement of role and comm1 = comm2 . A protocol execution between Â and B̂ without

the intervention of an adversary produces two matching sessions.

In the experiment, M̂ controls all communications between the parties, and can reveal

the static private key of a party, the ephemeral private key in a session, and the session key

28

of a session. M̂ can make any sequence of the following queries, which Ĉ needs to answer

accordingly:

• Send(Â, B̂, comm). M̂ sends a message comm to Â on behalf of B̂. Ĉ returns Â’s

response.

• StaticKeyReveal(Â). Ĉ returns the static private key of Â.

• EphemeralKeyReveal(sid). Ĉ returns the ephemeral private key of the session sid.

• SessionKeyReveal(sid). Ĉ returns the session key of the session sid.

• Establish(Â). Using this query, the adversary registers an arbitrary public key on behalf

of an adversary controlled party Â. Ĉ only checks the validity of the public key, but

does not need to check the possession of the corresponding private key.

A session sid(role, Â, B̂, comm) is fresh if the following conditions hold:

• Both Â and B̂ are honest parties.

• M̂ did not query the session key of sid or its matching session sid∗ (if the matching

session exists).

• M̂ did not query both the static private key of Â and the ephemeral private key of Â

in this session.

• If sid∗ exists, then M̂ did not query both the static private key of B̂ and the ephemeral

private key of B̂ in this session.

• If sid∗ does not exist, then M̂ did not query the static private key of B̂ .

Security of an AKE is defined as follows. In an eCK experiment, M̂ issues Send, StaticK-

eyReveal, EphemeralKeyReveal, SessionKeyReveal, and Establish queries polynomially many

times (in a security parameter λ) in any sequence. Then M̂ selects a completed session sid,

and makes a query Test(sid). To answer Test(sid), Ĉ chooses a bit b ∈ {0, 1} uniformly at

random. If b = 1, then Ĉ sets the session key of sid as K. Otherwise, Ĉ selects K from

the key space uniformly at random. Ĉ then returns K as the answer of Test(sid). M̂ con-

tinues to query Send, StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Establish

polynomial times. At last, M̂ outputs a bit b′ and terminates the game. If the selected test

session is fresh and b′ = b, then M̂ wins the game.

29

The advantage of the adversary M̂ in the eCK experiment with AKE protocol Π is defined

as

AdvAKE
Π (M̂) = Pr[M̂ wins]− 1

2
.

An AKE protocol is secure (in the eCK model) if no efficient adversary M̂ has more than a

negligible advantage in winning the above experiment; i.e.,

AdvAKE
Π (M̂) < 1/Q(λ)

for any polynomial Q() when λ is sufficiently large.

2.2.2 Efficient Exponentiation Algorithms.

We review several algorithms that will be used in the protocols to accelerate the computa-

tions.

Single Exponentiation. To compute a single gx, a popular algorithm is the square-and-

multiply algorithm [76, §14.6.1]. Suppose that the bit length of x is t and the cost of a

square operation is the same as a multiplication. Then the algorithm on average takes 1.5t

multiplications to compute gx.

Multiplication of Exponentiations. To compute the product of k exponentiations

g0
e0 . . . gk−1

ek−1 , the simultaneous multiple exponentiation [76, Algorithm 14.88] can be used

to reduce the computation. For k = 2, it takes 7
4
t+2 multiplications, for k = 3, it takes 15

8
t+6

multiplications, and for k = 4, it takes 31
16

t + 12 multiplications. Approximately, it can be

estimated that the product of two exponentiations takes 1.17 times a single exponentiation,

product of three exponentiations takes 1.25 times a single exponentiation, and product of

four exponentiations takes 1.29 times a single exponentiation.

The algorithm requires additional storage. It stores 2k− 1− k more group elements than

computing k separate exponentiations. For small k = 2, 3, 4, the overhead is trivial for most

applications.

Exponentiations Using the Same Base. To compute two exponentiations gx and gy

using the same base, the exponent combination algorithm [78] can be used. This algorithm

takes about 1.17 times the cost of a single exponentiation to compute gx and gy simultane-

ously.

30

2.2.3 SMEN Protocol

We design the protocol SMEN (Secure MQV or Efficient NAXOS) to achieve tight security

reduction (as NAXOS [68]) and efficient computation (as MQV [69]).

Description

In the protocol description, λ is the security parameter. G is a cyclic group of prime order

q where log2 q ≈ λ. h1 : Zq × Zq → Zq and h2 : G × G → {0, 1}λ are two hash functions.

Â and B̂ are two parties with static private/public key pairs (a, A = ga) and (b, B = gb)

respectively. We assume that the public key certificate of a party can be obtained after

knowing its identity. The two-pass SMEN protocol is as follows:

Offline phase

1. Â selects two ephemeral private keys x̃1 ∈R Zq, x̃2 ∈R Zq, and computes

x1 = h1(x̃1, a), X1 = gx1 , x2 = h1(x̃2, a), X2 = gx2 .

Â stores x̃1, x̃2, X1, X2, and erases x1, x2.

2. B̂ selects two ephemeral private keys ỹ1 ∈R Zq, ỹ2 ∈R Zq, and computes

y1 = h1(ỹ1, b), Y1 = gy1 , y2 = h1(ỹ2, b), Y2 = gy2 .

B̂ stores ỹ1, ỹ2, Y1, Y2, and erases y1, y2.

Online phase

1. Â initializes a session s=(I, Â, B̂, X1, X2, ⊥) and sends (B̂, Â, X1, X2) to B̂.

2. Upon receiving (B̂, Â, X1, X2), B̂ performs the steps:

(a) if Â = B̂, then rejects and stops.

(b) verifies that X1 ∈ G, X2 ∈ G.

(c) computes y1 = h1(ỹ1, b), y2 = h1(ỹ2, b).

(d) computes the session key

K = h2(A
y1X1

bX2
y2 , Â, B̂, X1, X2, Y1, Y2).

(e) erases ỹ1, ỹ2, y1, y2.

31

(f) completes a session s=(R, B̂, Â, X1, X2, Y1, Y2), and sends (Â, B̂, X1, X2, Y1, Y2)

to Â.

3. Upon receiving (Â, B̂, X1, X2, Y1, Y2), Â performs the following steps:

(a) if B̂ = Â, then rejects and stops.

(b) verifies that a session s =(I, Â, B̂, X1, X2, ⊥) exists.

(c) verifies that Y1 ∈ G, Y2 ∈ G.

(d) computes x1 = h1(x̃1, a), x2 = h1(x̃2, a).

(e) computes the session key

K = h2(B
x1Y1

aY2
x2 , Â, B̂, X1, X2, Y1, Y2).

(f) erases x̃1, x̃2, x1, x2.

(g) completes the session s =(I, Â, B̂, X1, X2, Y1, Y2).

It is straightforward to verify that, without the intervention of an adversary, Â and B̂

complete with identical shared session keys and matching sessions.

Note that x1, x2, y1, y2 are deleted in the offline phase and are re-computed in the online

phase. This is to prevent the adversary from learning x1, x2, y1, y2 by revealing a party’s

ephemeral private key.

Efficiency

In the online phase, each party needs to compute a product of three exponentiations. Using

the simultaneous multiple exponentiation algorithm, the cost is about 1.25 exponentiations

on average. As a comparison, MQV, HMQV, and CMQV compute a product of two expo-

nentiations in online phase, which takes 1.17 exponentiation.

In the offline phase, each party computes two exponentiations using the same base g.

Using the exponent combination algorithm, the cost is 1.17 exponentiations, only 0.17 ex-

ponentiation more than that of MQV, HMQV, or CMQV.

Security

Theorem 2.2.1. SMEN is secure in the eCK model if h1() and h2() are modelled as inde-

pendent random oracles and if the GDH assumption holds.

Let εgdh be the probability that any polynomial time algorithm solves the GDH problem,

and let εdl be the probability that any polynomial time algorithm solves the DL problem. For

32

any adversary that involves at most n honest parties and activates at most k sessions, we

have that

AdvAKE
SMEN(M̂) ≤ max{k2, nk}(εgdh + εdl).

Proof. Define

f(Â, B̂, X1, X2, Y1, Y2)

= CDH(A, Y1)CDH(B, X1)CDH(X2, Y2).

Let E indicates a true eCK experiment, let M be the event that M̂ wins an eCK experi-

ment, and let H be the event that M̂ queried h2(f(Â, B̂, X1, X2, Y1, Y2), Â, B̂, X1, X2, Y1, Y2)

where sid = (∗, Â, B̂, X1, X2, Y1, Y2) is the test session. Let H̄ be the event that H does not

happen. It holds that

AdvAKE
SMEN(M̂) = Pr[M |E]− 1/2

= Pr[M ∧H|E] + Pr[M ∧ H̄|E]− 1/2.

First we consider the event M ∧ H̄. Let σ be a 7-tuple

σ = (f(Â, B̂, X1, X2, Y1, Y2), Â, B̂, X1, X2, Y1, Y2).

A session key is computed as K = h2(σ). In the protocol, only matching sessions have

identical 7-tuples. In the eCK model, M̂ is not allowed to reveal the session keys of the

test session or its matching session. Since h2() is modelled as a random oracle, without

querying h2(σ) where σ is identical to the 7-tuple of the test session, M̂ does not obtain any

information about the test session key. It holds that

Pr[M ∧ H̄|E] = 1/2

and

AdvAKE
SMEN(M̂) = Pr[M ∧H|E] (2.1)

≤ Pr[H|E].

Next we consider the event H. There are two cases that M̂ chooses a test session: a test

session with a matching session (denoted as event L) and a test session without a matching

session (denoted as event L̄).

L. The test session has a matching session.

33

if (⊥, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2 then
return h

end

else if (α, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2 where α = f(Â, B̂, X1, X2, Y1, Y2) then
return h

end

else

add (⊥, Â, B̂, X1, X2, Y1, Y2, h) to T2 where h ∈R {0, 1}λ

return h
end

Algorithm 3: SessionKey(Â, B̂, X1, X2, Y1, Y2)

In this case, we modify the experiment E to E ′ as follows. In E ′, Ĉ selects at random

a session sidA owned by an honest party Â and a session sidB owned by an honest

party. Ĉ runs E ′ the same way as it runs E, except that Ĉ aborts E ′ if sidA and sidB

become non-matching as the experiment proceeds, or sidA is not chosen by M̂ as the

test session in the experiment. Let T be the event that Ĉ does not abort E ′; i.e., sidA

is the test session and sidB is its matching session. It holds that

Pr[H|E ∧ L] = Pr[H|E ′ ∧ T] (2.2)

=
Pr[H ∧ T |E ′]

Pr[T |E ′]

≤ k2 Pr[H|E ′]

We then modify the experiment E ′ to experiment S in which Ĉ simulates the hash

functions h1() and h2(). In S, Ĉ maintains a hash table T2. T2 contains tuples

(α, Â, B̂, X1, X2, Y1, Y2, h) where h is supposed to be the hash value

h = h2(α, Â, B̂, X1, X2, Y1, Y2).

T2 is initially empty. We define two algorithms, SessionKey() in Algorithm 3 and Hash()

in Algorithm 4, to maintain T2.

Let (X, Y) be the input of a CDH challenge. We modify E ′ to S as follows.

• For sidA, Ĉ chooses (x̃1, x̃2) and computes X1 as defined in the protocol, but sets

X2 = X, and computes the session key

K = SessionKey(Â, B̂, X1, X2, Y1, Y2).

34

if (α, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2 then
return h;

end

else if there is a tuple (⊥, Â, B̂, X1, X2, Y1, Y2) ∈ T2 and α = f(Â, B̂, X1, X2, Y1, Y2)

then

update the tuple to (α, Â, B̂, X1, X2, Y1, Y2, h)

return h
end

else

add (α, Â, B̂, X1, X2, Y1, Y2, h) to T2 where h ∈R {0, 1}λ.
return h

end

Algorithm 4: Hash(α, Â, B̂, X1, X2, Y1, Y2)

If a tuple (α, Â, B̂, X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to

check if α = f(Â, B̂, X1, X2, Y1, Y2). Since a = DLG(A) and x1 = DLG(X1) are

known, SessionKey() can check if this relation holds by using the DDH oracle to

check if

DDH(X2, Y2, α/(Bx1Y1
a)) = 1.

• For sidB, Ĉ chooses (ỹ1, ỹ2) and computes Y1 as defined in the protocol, but sets

Y2 = Y , and computes the session key

K = SessionKey(Â, B̂, X1, X2, Y1, Y2).

If a tuple (α, Â, B̂, X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to

check if α = f(Â, B̂, X1, X2, Y1, Y2). Since b = DLG(B) and y1 = DLG(Y1) are

known, SessionKey() can check if this relation holds by using the DDH oracle to

check if

DDH(X2, Y2, α/(Ay1X1
b)) = 1.

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Â, B̂, X1, X2, Y1, Y2), if a tuple (⊥, Â, B̂, X1, X2, Y1, Y2, h)

is already in T2, Hash() needs to check if α = f(Â, B̂, X1, X2, Y1, Y2). Since each

(⊥, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2 is added by SessionKey() where Ĉ knows either

(a, x1) or (b, y1), Hash() is able to check if the relation holds.

35

• Ĉ simulates h1() in the usual way. When queried with h1(x), if h1(x) has not been

queried, then Ĉ returns a random value; otherwise, Ĉ returns the same value as

it returned for h1(x) before.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Estab-

lish queries faithfully.

The difference between the probabilities that H happens in E ′ and S is upper bounded

by the probability that M̂ successfully distinguishes the two experiments. Let D be

the output of a distinguisher for the two experiments. It holds that

|Pr[H|E ′]− Pr[H|S]| ≤ |Pr[D = 1|E ′]− Pr[D = 1|S]|.

We consider the probability that M̂ can distinguish S from E ′. The difference between

E ′ and S is due to the fact that Ĉ does not know DLG(X2) or DLG(Y2) where X2 =

X, Y2 = Y . However, the session keys involving X2 or Y2 are computed by using

SessionKey() or Hash(), and SessionKey() and Hash() give consistent results. Since sidA

is the test session, M̂ is not allowed to reveal both a and (x̃1, x̃2), or both b and (ỹ1, ỹ2).

Suppose that M̂ is able to distinguish E ′ from S. Then M̂ must be able to distinguish

at least one of the following four pairs of distributions:

(a) (X, A, a) and (gh1(a,x̃2), A, a) (corresponding to the case that M̂ reveals a),

(b) (X, A, x̃2) and (gh1(a,x̃2), A, x̃2) (corresponding to the case that M̂ reveals x̃2),

(c) (Y,B, b) and (gh1(b,ỹ2), B, b), (corresponding to the case that M̂ reveals b),

(d) (Y,B, ỹ2) and (gh1(b,ỹ2), A, ỹ2) (corresponding to the case that M̂ reveals ỹ2).

Since h1 is a random oracle, (X, A, a) and (gh1(a,x̃2), A, a) are indistinguishable. If M̂ is

able to distinguish (X, A, x̃2) from (gh1(a,x̃2), A, x̃2), then, in the random oracle model,

it can be shown that M̂ must have queried h1(a, x̃2), therefore, he must have computed

a = DLG(A). Similarly, (Y,B, b) and (gh1(b,ỹ2), B, b) are indistinguishable, and if M̂

is able to distinguish (Y,B, ỹ2) from (gh1(b,ỹ2), B, ỹ2), then M̂ must have computed

b = DLG(B). We conclude that the if M̂ is able to distinguish E ′ and S, then M̂ is

able to solve the DLP. It holds that

|Pr[D = 1|E ′]− Pr[D = 1|S]| ≤ εdl.

Therefore,

Pr[H|E ′] ≤ Pr[H|S] + εdl (2.3)

36

If H happens in S, then the inputs to h2(f(Â, B̂, X1, X2, Y1, Y2), Â, B̂, X1, X2, Y1, Y2)

are recorded in T2. Since Ĉ knows (a, x1), Ĉ can find the record by using the DDH

oracle to check if

DDH(X2, Y2, α/(Bx1Y1
a)) = 1,

and then find

CDH(X, Y) = CDH(X2, Y2) = α/(Bx1Y1
a).

In this case, Ĉ solves a CDH problem using a DDH oracle. It holds that

Pr[H|S] ≤ εgdh. (2.4)

Combining (2.2), (2.3), and (2.4), it holds that

Pr[H|E ∧ L] ≤ k2(εgdh + εdl). (2.5)

L̄. The test session does not have a matching session.

In this case, we modify E to E ′ as follows. Ĉ randomly chooses an honest party B̂

and a session sidA owned by an honest party Â. Ĉ runs E ′ the same way as it runs

E, except that Ĉ aborts E ′ if the peer in sidA is not B̂, or sidA is not chosen as the

test session in the experiment. Let T be the event Ĉ does not abort E ′; i.e., sidA is

the test session and the peer in this session is B. It holds that

Pr[H|E ∧ L̄] = Pr[H|E ′ ∧ T] (2.6)

=
Pr[H ∧ T |E ′]

Pr[T |E ′]

≤ kn Pr[H|E ′]

We then modify the experiment E ′ to experiment S as follows. Without loss of gener-

ality, we assume that Â is the initiator in the session sidA.

• For B̂, Ĉ sets B = Y . In a session sidB = (R, B̂, Ô,X1, X2, Y1, Y2) owned by B̂

where B is a responder, Ĉ picks (ỹ1, ỹ2) as the ephemeral private keys, chooses

y1 ∈R Zq, y2 ∈R Zq, and computes Y1 = gy1 , Y2 = gy2 . Ĉ computes the session key

as

K = SessionKey(Ô, B̂, X1, X2, Y1, Y2).

If a tuple (α, Ô, B̂, X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to

check if α = f(Ô, B̂, X1, X2, Y1, Y2). Since y1 and y2 are known, SessionKey() can

check if the relation holds by using the DDH oracle to check if

DDH(B, X1, α/(Oy1X2
y2) = 1

37

where O is the static public key of the peer Ô.

In a session sidB = (I, B̂, Ô,X1, X2, Y1, Y2) owned by B̂ where B is an initiator,

the simulation is similar and we omit the detailed steps.

• For sidA = (I, Â, B̂, X1, X2, Y1, Y2), Ĉ generates (x̃1, x̃2) and computes X2 accord-

ing to the protocol, but sets X1 = X. Ĉ computes the session key as

K = SessionKey(Â, B̂, X1, X2, Y1, Y2).

If a tuple (α, Â, B̂, X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to

check if α = f(Â, B̂, X1, X2, Y1, Y2). Since a = DLG(A) and x2 = DLG(X2) are

known, SessionKey() can check if the relation holds by using the DDH oracle to

check if

DDH(X1, B, α/(Y1
aY2

x2)) = 1.

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Ô, B̂, X1, X2, Y1, Y2), if a tuple (⊥, Ô, B̂, X1, X2, Y1, Y2, h)

already exists in T2, Hash() needs to check if α = f(Ô, B̂, X1, X2, Y1, Y2). When the

query is h2(α, Â, B̂, X1, X2, Y1, Y2), if a tuple (⊥, Â, B̂, X1, X2, Y1, Y2, h) already

exists in T2, Hash() needs to check if α = f(Â, B̂, X1, X2, Y1, Y2). Since each

(⊥, Ô, B̂, X1, X2, Y1, Y2, h) ∈ T2 or (⊥, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2 is added by

SessionKey(), Ĉ knows either (y1, y2) or (a, x2) respectively. Therefore, Hash() is

able to check if the relation holds.

• Ĉ simulates h1() in a usual way.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Estab-

lish queries faithfully.

We consider the probability that M̂ can distinguish S from E ′. The difference between

the probabilities that H happens in the two experiments is upper bounded by the

probability that M̂ successfully distinguishes the two experiments. Let D be output

of a distinguisher for the two experiments. It holds that

|Pr[H|E ′]− Pr[H|S]| ≤ |Pr[D = 1|E ′]− Pr[D = 1|S]|.

38

The difference between E ′ and S is due to the fact that Ĉ does not know DLG(B) or

DLG(X1) where X1 = X, B = Y . However, the session keys involving B or X1 are

computed by calling SessionKey() or by calling Hash(), and SessionKey() and Hash()

give consistent results. Since sidA is the test session, M̂ is not allowed to reveal both a

and (x̃1, x̃2), or to reveal DLG(B). In this case, the only way that M̂ can distinguish S

from E ′ is if M̂ queries h1(a, x̃1), h1(b, ỹ1), or h1(b, ỹ2) to find out that X2, Y1, or Y2 was

not computed correctly. However, M̂ cannot do this unless it computes DLG(X1) or

DLG(B) (A more detailed analysis would be similar to the analysis for distinguishing

E ′ and S under the event L). It holds that

|Pr[D = 1|E ′]− Pr[D = 1|S]| ≤ εdl.

Therefore,

Pr[H|E ′] ≤ Pr[H|S] + εdl (2.7)

If H happens in S, then the inputs of the hash query

h2(f(Â, B̂, X1, X2, Y1, Y2)), Â, B̂, X1, X2, Y1, Y2)

are recorded in T2. Since Ĉ knows (a, x2) for sidA, Ĉ can find the record by checking

if

DDH(X1, B, α/(Y1
aY2

x2)) = 1,

and then find

CDH(X, Y) = CDH(X1, B) = α/(Y1
aY2

x2)).

In this case, Ĉ solves a CDH problem using a DDH oracle. Then it holds that

Pr[H|S] ≤ εgdh. (2.8)

Combining (2.6), (2.7), and (2.8), it holds that

Pr[H|E ∧ L̄] ≤ kn(εgdh + εdl). (2.9)

Combining (2.1), (2.5), and (2.9), we have that

AdvAKE
SMEN(M̂) ≤ Pr[H|E]

= Pr[H|E ∧ L] Pr[L] + Pr[H|E ∧ L̄] Pr[L̄]

≤ max{Pr[H|E ∧ L], Pr[H|E ∧ L̄]}
= max{k2, kn}(εgdh + εdl).

If the GDH assumption and the DL assumption hold, then εgdh and εdl are negligible in

the security parameter λ. Both k and n are polynomial in λ. Therefore, AdvAKE
SMEN(M̂) is

negligible.

39

Reflection Attacks

SMEN does not allow a party to establish a key with itself. This is necessary to prevent M̂

from distinguishing S from E ′ under the event L̄ (the test session does not have a matching

session). Recall that under the event L̄, in experiment S, B̂’s public key B is replaced with Y .

If Â = B̂, then M̂ would find out that A 6= Y and deduce that it is in S. From another point

of view, if SMEN allows a party to establish a key with itself, then the protocol suffers from

the following reflection attack where M̂ impersonates Â to Â : M̂ receives (Â, Â, X1, X2)

from Â , chooses y2, computes Y1 = 1/X1, Y2 = gy2 , and sends back (Â, Â, X1, X2, Y1, Y2).

The session key is K = h2(g
x2y2 , Â, Â, X1, X2, Y1, Y2), and M̂ can compute it using y2.

We note that, although NAXOS and NETS allow a party to establish a key with itself,

their security proofs do not cover this case. In the proofs, when the adversary chooses a test

session (role, Â, B̂, ∗) without a matching session, the simulator changes a true experiment

to a simulated experiment by substituting the public key of the peer B̂ with V , where V is

part of the input of a CDH challenge. The proofs are based on the argument that the two

experiments are indistinguishable to the adversary. However, this argument holds only when

Â 6= B̂. When B̂ = Â, the adversary can find out it is in a simulated experiment because

V 6= A where A is Â’s public key. This flaw can be fixed by adding a case to the proof.

When M̂ chooses (role, Â, Â, ∗) as a test session, the simulator changes the experiment as

follows: Ĉ randomly chooses a party Â , and substitutes its public key with V . M̂ chooses

r ∈R Zq and computes X = Ar, and sets the session key as K ∈R {0, 1}λ. If M̂ does not

choose a session (role, Â, Â, ∗) without a matching session as the test session, then Ĉ aborts.

It can be shown that if M̂ wins the experiment, then in the random oracle model, Ĉ can

compute gv2
. If Ĉ can compute gv2

for given gv, then it can solve the CDH problem [74].

2.2.4 SMEN− Protocol

SMEN uses the NAXOS trick to compute an ephemeral public key so that an adversary

cannot get its discrete log in the eCK model. This trick needs to use the static private key

to compute the ephemeral public key. If we want to minimize the risk of leaking the static

private key, then we may try to minimize the use of the static private key. At the same time,

we do not want to sacrifice the efficiency or tightness of reduction too much. To achieve this

property, we propose SMEN−, which does not use the NAXOS trick, but is still efficient in

online computation and tight in security reduction.

40

Description

In the protocol description, λ is the security parameter. G is a cyclic group of prime order

q where log2 q ≈ λ. h : G × G → {0, 1}λ is a hash function. Â and B̂ are two parties with

static public/private key pairs ((A1, A2), (a1, a2)) and ((B1, B2), (b1, b2)) respectively, where

A1 = ga1 , A2 = ga2 , B1 = gb1 , B2 = gb2 . We assume that the public key certificate of a party

can be obtained after knowing its identity. The two-pass SMEN− protocol is as follows:

Offline phase

1. Â selects x1 ∈R Zq, x2 ∈R Zq, computes X1 = gx1 , X2 = gx2 , and stores x1, x2, X1, X2.

2. B̂ selects y1 ∈R Zq, y2 ∈R Zq, computes Y1 = gy1 , Y2 = gy2 , and stores y1, y2, Y1, Y2.

Online phase

1. Â initializes a session s=(I, Â, B̂, X1, X2, ⊥) and sends (B̂, Â, X1, X2) to B̂.

2. Upon receiving (B̂, Â, X1, X2), B̂ performs the steps:

(a) if Â = B̂, then B̂ rejects and stops.

(b) verifies that X1 ∈ G and X2 ∈ G.

(c) computes the session key K = h(A1
y1X1

b1A2
b2X2

y2 , Â, B̂, X1, X2, Y1, Y2).

(d) sends (Â, B̂, X1, X2, Y1, Y2) to Â.

(e) completes session s=(R, B̂, Â, X1, X2, Y1, Y2).

3. Upon receiving (Â, B̂, X1, X2, Y1, Y2), Â performs the following steps:

(a) if Â = B̂, then Â rejects and stops.

(b) verifies that a session s =(I, Â, B̂, X1, X2, ⊥) exists.

(c) verifies that Y1 ∈ G and Y2 ∈ G.

(d) computes the session key K = h(B1
x1Y1

a1B2
a2Y2

x2 , Â, B̂, X1, X2, Y1, Y2).

(e) completes session s =(I, Â, B̂, X1, X2, Y1, Y2).

It is straightforward to verify that, without the intervention of an adversary, Â and B̂

complete with identical shared session keys and matching sessions.

41

Efficiency

In the online phase, each party needs to compute a product of four exponentiations. Using

the simultaneous multiple exponentiation algorithm, the cost is about 1.29 exponentiations

on average.

Security

Theorem 2.2.2. SMEN− is secure in the eCK model if the hash function h() is modelled

as a random oracle and if the GDH assumption holds.

Let εgdh be the probability that any polynomial time algorithm solves the GDH problem.

For any adversary that involves at most n honest parties and activates at most k sessions,

we have that

AdvAKE
SMEN−(M̂) ≤ max{k2, nk}εgdh.

Proof. Define

f2(Â, B̂, X1, X2, Y1, Y2)

= CDH(A1, Y1)CDH(B1, X1)CDH(A2, B2)CDH(X2, Y2).

Let E indicates a true eCK experiment, let M be the event that M̂ wins an eCK experi-

ment, and let H be the event that M̂ queried h(f2(Â, B̂, X1, X2, Y1, Y2), Â, B̂, X1, X2, Y1, Y2)

where sid = (∗, Â, B̂, X1, X2, Y1, Y2) is the test session. As with SMEN, it holds that

AdvAKE
SMEN−(M̂) ≤ Pr[H|E]. (2.10)

In the eCK model, M̂ is not allowed to reveal both the static private key and the ephemeral

private key of a test session. If the test session has a matching session, then M̂ is not allowed

to reveal both the static private key and the ephemeral private key of the matching session,

either. If the test session does not have a matching session, then M̂ is not allowed to reveal

the static private key of the peer in the session. There are six cases where M̂ chooses a test

session. We denote them as L1, . . . , L6, and describe the simulation and analysis for each

case as follows. Let (X, Y) be the input of a CDH challenge.

L1. The test session does not have a matching session, and M̂ does not reveal the ephemeral

private key of the owner of the test session.

In this case, we modify E to E ′ as follows. Ĉ chooses an honest party B̂ and a session

sidA owned by an honest party Â at random. Ĉ runs E ′ the same way as it runs E,

42

except that Ĉ aborts E ′ if the peer in sidA is not B̂, or sidA is not chosen as the test

session in the experiment. Let T be the event Ĉ does not abort E ′. It holds that

Pr[H|E ∧ L̄] = Pr[H|E ′ ∧ T] (2.11)

=
Pr[H ∧ T |E ′]

Pr[T |E ′]

≤ kn Pr[H|E ′]

We then modify the experiment E ′ to experiment S. In S, Ĉ simulates h() the same

way as Ĉ simulates h2() in SMEN, except that the function f() in SMEN is substituted

with f2(). Without loss of generality, we assume that Â is an initiator in a session in

which it participates, and B̂ is a responder in a session in which it participates.

• For B̂, Ĉ sets B1 = Y . In a session sidB = (R, B̂, Ô,X1, X2, Y1, Y2) owned by B̂,

Ĉ picks (ỹ1, ỹ2) as the ephemeral private keys, chooses y1 ∈R Zq, y2 ∈R Zq, and

computes Y1 = gy1 , Y2 = gy2 . Ĉ computes the session key as

K = SessionKey(Ô, B̂, X1, X2, Y1, Y2).

If a tuple (α, Ô, B̂, X1, X2, Y1, Y2) is already in T2, then SessionKey() needs to

check if α = f2(Ô, B̂, X1, X2, Y1, Y2). Since b2, y1 and y2 are known, SessionKey()

can check if the relation holds by using the DDH oracle to check if

DDH(B1, X1, α/(O1
y1O2

b2X2
y2) = 1

where (O1, O2) is the public static key of the peer Ô.

• For sidA = (I, Â, B̂, X1, X2, Y1, Y2), Ĉ generates (x̃1, x̃2) and computes X2 accord-

ing to the protocol, but sets X1 = X. Ĉ computes the session key as

K = SessionKey(Â, B̂, X1, X2, Y1, Y2).

If a tuple (α, Â, B̂, X1, X2, Y1, Y2) already exists in T2, then SessionKey() needs to

check if α = f2(Â, B̂, X1, X2, Y1, Y2). Since a1, a2 and x2 are known, SessionKey()

can check if the relation holds by using the DDH oracle to check if

DDH(X1, B1, α/(Y1
a1B2

a2Y2
x2)) = 1.

• For any other sessions, Ĉ proceeds according to the protocol faithfully.

43

• Ĉ answers the hash query h2(α, Î, R̂,X1, X2, Y1, Y2) by replying with

Hash(α, Î, R̂,X1, X2, Y1, Y2).

When the query is h2(α, Ô, B̂, X1, X2, Y1, Y2), if a tuple (⊥, Ô, B̂, X1, X2, Y1, Y2, h)

already exists in T2, Hash() needs to check if

α = f2(Ô, B̂, X1, X2, Y1, Y2).

When the query is h2(α, Â, B̂, X1, X2, Y1, Y2), if a tuple (⊥, Â, B̂, X1, X2, Y1, Y2, h)

already exists in T2, then Hash() needs to check if

α = f2(Â, B̂, X1, X2, Y1, Y2).

Since each (⊥, Ô, B̂, X1, X2, Y1, Y2, h) ∈ T2 or (⊥, Â, B̂, X1, X2, Y1, Y2, h) ∈ T2

is added by SessionKey(), Ĉ knows either (b2, y1, y2) or (a1, a2, x2) respectively.

Therefore, Hash() is able to check if the relation holds.

• Ĉ simulates h1() in a usual way.

• Ĉ answers the StaticKeyReveal, EphemeralKeyReveal, SessionKeyReveal, and Estab-

lish queries faithfully.

The difference between E ′ and S is due to the fact that Ĉ does not know DLG(B1) or

DLG(X1) where X1 = X, B1 = Y . However, the session keys involving B1 or X1 are

computed by SessionKey() or by Hash(), and SessionKey() and Hash() give consistent

results. In event L1, since M̂ does not reveal the ephemeral private key of Â or static

private key of B̂, E ′ and S are identical to M̂ . Therefore,

Pr[H|E ′] = Pr[H|S]. (2.12)

If H happens in S, then the inputs of the hash query

h2(f2(Â, B̂, X1, X2, Y1, Y2)), Â, B̂, X1, X2, Y1, Y2)

is recorded in T2. Since Ĉ knows (a1, a2, x2) for sidA, Ĉ can find the record by checking

if

DDH(X1, B1, α/(Y1
a1B2

a2Y2
x2)) = 1,

and then find

CDH(X,Y) = CDH(X1, B1) = α/(Y1
a1B2

a2Y2
x2)).

44

In this case, Ĉ solves a CDH problem using a DDH oracle. Then it holds that

Pr[H|S] ≤ εgdh. (2.13)

Combining (2.11), (2.12), and (2.13), it holds that

Pr[H|E ∧ L1] ≤ knεgdh.

For the following cases, we only describe the simulation and the analysis result. It is

straightforward to work out the details following the same approach in L1.

L2 M̂ chooses a test session without a matching session. M̂ does not reveal the static

private key of the session owner.

Change E to E ′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ

chooses a party B̂ at random. Ĉ stops if the peer in sidA is not B̂, or sidA is not the

test session. It holds that

Pr[H|E ∧ L2] = nk Pr[H|E ′].

Change E ′ to S: Ĉ sets A2 = X, B2 = Y .

We have that

Pr[H|E ∧ L2] ≤ nkεgdh.

L3. M̂ chooses a test session with a matching session. M̂ does not reveal the static private

key of the session owner. M̂ does not reveal the static private key of the matching

session owner.

Change E to E ′: Ĉ chooses a session sidA at random. Let Â be the owner of the

session. Ĉ chooses another party B̂ at random. Ĉ stops if sidA is not the test session

or the other party in sidA is not B̂ . It holds that

Pr[H|E ∧ L3] = nk Pr[H|E ′].

Change E ′ to S: Ĉ sets A2 = X, B2 = Y .

We have that

Pr[H|E ∧ L3] ≤ nkεgdh.

45

L4. M̂ chooses a test session with a matching session. M̂ does not reveal the ephemeral

private key of the session owner. M̂ does not reveal the static private key of the

matching session owner.

Change E to E ′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ

chooses another party B̂ at random. Ĉ stops if the peer in sidA is not B̂, or sidA is

not the test session. It holds that

Pr[H|E ∧ L4] = nk Pr[H|E ′].

Change E ′ to S: Ĉ sets X1 = X, B1 = Y .

We have that

Pr[H|E ∧ L4] ≤ nkεgdh.

L5. M̂ chooses a test session with a matching session. M̂ does not reveal the static private

key of the session owner. M̂ does not reveal the ephemeral private key of the matching

session owner.

Change E to E ′: Ĉ chooses a party Â at random and chooses a session sidB at random.

Let B̂ be the owner of sidB. Ĉ stops if the matching session of sidB is not the test

session, or the the peer in sidB is not Â. It holds that

Pr[H|E ∧ L5] = nk Pr[H|E ′].

Change E ′ to S: Ĉ sets A1 = X, Y1 = Y .

We have that

Pr[H|E ∧ L5] ≤ nkεgdh.

L6. M̂ chooses a test session with a matching session. M̂ does not reveal the ephemeral

private key of the session owner. M̂ does not reveal the ephemeral private key of the

matching session owner.

Change E to E ′: Ĉ chooses a session sidA at random. Let Â be the owner of sidA. Ĉ

chooses a session sidB at random. Let B̂ be the owner of sidB. Ĉ stops if sidA and

sidB are not matching or sidA is not the test session. It holds that

Pr[H|E ∧ L6] = k2 Pr[H|E ′].

Change E ′ to S: Ĉ sets X2 = X, Y2 = Y .

We have that

Pr[H|E ∧ L6] ≤ k2εgdh.

46

Summarizing the above results, it holds that

AdvAKE
SMEN−(M̂) ≤ Pr[H|E]

≤
6∑

i=1

Pr[H|E ∧ Li] Pr[Li]

≤ max{Pr[H|E ∧ Li], 1 ≤ i ≤ 6}
= max{k2, kn}εgdh.

2.2.5 Comparison

In Table 2.1, we compare the efficiency and security of MQV, HMQV, CMQV, NAXOS,

NETS, SMEN and SMEN−. We assume that, in all the protocols, 1) it is not necessary to

check if xq = 1 to verify whether x is an element of a group G of order q, and 2) efficient

algorithms are used to compute the product of multiple exponentiations.

Protocol Efficiency Security Assumption Proof NAXOS

Offline Online trick

MQV 1 1.17 KKS, wPFS, KCI, UKS ? ? No

HMQV 1 1.17 CK, wPFS, KCI, LEP ROM, GDH, KEA not tight No

CMQV 1 1.17 eCK ROM, GDH not tight Yes

NAXOS 1 2.17 eCK ROM, GDH tight Yes

NETS 1 2 eCK ROM, GDH tight Yes

SMEN− 1.17 1.29 eCK ROM, GDH tight No

SMEN 1.17 1.25 eCK ROM, GDH tight Yes

Table 2.1: Efficiency (in number of exponentiations) and security comparison.

2.3 ElGamal Encryption and Variants

2.3.1 Security of ElGamal Encryption

Scheme Description

First we recall the basic ElGamal encryption scheme. Let G be a multiplicative group of

prime order q and g be a generator of G. k ≈ log2 q will be used as the security parameter in

47

the security analysis. The scheme consists of three algorithms: key generation, encryption,

and decryption. G, g, q are default system parameters for these algorithms. In the following

description, we use x ∈R X to indicate that x is chosen from set X uniformly at random.

The key generation algorithm computes a public key u and a private key a as follows:

a ∈R Zq, u← ga.

The message space of the scheme is G. To encrypt a message m ∈ G, the encryption

algorithm computes a ciphertext c = (x, y) ∈ G×G as follows:

r ∈R Zq, x← gr, y ← m · ur.

To decrypt a ciphertext c = (x, y) ∈ G×G, the decryption algorithm computes

m← y/xa.

Security Analysis

First we present the Strong GKEA (SGKEA) and DTDLA.

Assumption 2.3.1. The Strong Generalized Knowledge-of-Exponent Assumption (SGKEA)

is as follows: Let G be a group of prime order q, g be a generator of G, and k ≈ log2 q be the

security parameter. Let A be a polynomial time (in k) algorithm. A is given (x0, x0
a, · · · , xn, xn

a)

where x0, · · · , xn ∈ G and x1, · · · , xn are chosen by A adaptively, n is polynomial in k,

a ∈R Zq and a is unknown to A. There exists an efficient compiler E such that for any

A that outputs a pair (x, y) ∈ G × G, E can compiles A to A′ that satisfies the following

conditions: 1. Â′ is polynomial time; 2. A′ has the same input, output, and random tape

accesses as A, except that in addition to x and y, A′ also outputs (c0, · · · , cn) such that

Pr

[
n∏

i=0

xi
ci = x | y = xa

]
> 1− εsgkea

where εsgkea is negligible.

SGKEA is a variant of GKEA. GKEA was first defined in [48]. GKEA is the same as

SGKEA except that it does not specify if A chooses x1, · · · , xn.

Assumption 2.3.2. The Delayed-Target Discrete Log Assumption (DTDLA) is as follows.

Let G be a finite cyclic group, g be a generator of G, and k ≈ log2 |G|. Let A be a probabilistic

polynomial (in k) time algorithm that takes input g and has access to two oracles. The first

48

is a discrete log oracle DLg(), which on input x ∈ G returns r such that x = gr. The second

is a challenge oracle Cg() that, when invoked, returns x ∈R G. A can access DLg() n times,

where n is polynomial in k. The DTDLA assumption assumes that after receiving a challenge

x from Cg(), without further accesses to the oracle DLg(), the probability that A outputs r

such that gr = x is negligible.

DTDLA is defined and discussed in [64].

Next we review the security notation. We define the following interactive game, Game

9, between a probabilistic polynomial time (PPT) challenger C and a PPT adversary A. In

the game, A can ask for n decryptions from C. Then A tries to decrypt a fresh challenge

ciphertext.

C A

1. a ∈R Zq, u← ga g, u−→
Repeat 2 and 3 n times:

2. xi, yi←−−
3. mi ← yi/xi

a mi−→
4. m ∈R G, r ∈R Zq, x← gr, y ← m · ur x, y−→
5. m′

←−
Game 9: ElGamal OW-CCA1 Game.

We use Pri[e] to denote the probability that an event e happens in Game i. We say that

ElGamal encryption is one-way under non-adaptive chosen ciphertext attack (i.e., OW-CCA1

secure) if Pr9 [m′ = m] is negligible.

We show that ElGamal encryption is OW-CCA1 secure if SGKEA and DTDLA hold.

The sketch of the proof is as follows: assuming that SGKEA holds, if an adversary can

break the scheme, then using the adversary as a subroutine, a PPT algorithm can break the

DTDLA. We follow the proof style suggested in [96] to structure the proof as a sequence of

games.

Theorem 2.3.3. If SGKEA and DTDLA hold, then the ElGamal encryption scheme is

OW-CCA1 secure.

Proof. We transform Game 9 to Game 10 by removing the value m in the messages. It is

clear that

Pr
9

[m′ = m] = Pr
10

[z = xa]. (2.14)

49

C A

1. a ∈R Zq, u← ga g, u−→
Repeat 2 and 3 n times:

2. xi←−
3. zi ← xi

a zi−→
4. x ∈R G x−→
5. z←−

Game 10:

We transform Game 10 to Game 11 by a conceptual change: instead of receiving x from

C, A reads x from its random tape. Besides, A outputs x along with z. It holds that

Pr
11

[z = xa] = Pr
10

[z = xa]. (2.15)

C A

1. a ∈R Zq, u← ga g, u−→
Repeat 2 and 3 n times:

2. xi←−
3. zi ← xi

a zi−→
4. x ∈R G

5. x, z←−
Game 11:

In Game 11, when A outputs the pair (x, z), by SGKEA, it can be compiled into A′ that

has the same input, output, and random tape accesses as A, except that, in addition to

(x, z), A′ also outputs r0, · · · , rn, such that

Pr

[
x =

∏
0≤i≤n

xi
ri|z = xa

]
> 1− εsgkea. (2.16)

Next we transform Game 11 to a new Game 12 by replacing A with A′.

Next we transform Game 12 to a new Game 13. In Game 13, C can query DLg(x) to

compute the logarithm of x, and A′ queries Cg() to generate a random x. The oracles DLg()

and Cg() are as defined in the DTDLA assumption.

50

C A′

1. a ∈R Zq, u← ga g, u−→
Repeat 2 and 3 n times:

2. xi←−
3. zi ← xi

a zi−→
4. x ∈R G

5. x, z, r0, · · · , rn←−−−−−−−−−−
Game 12:

C A′

1. a ∈R Zq, u← ga g, u−→
Repeat 2 - 4 n times:

2.
xi←−

3. ei ← DLg(xi)

4. zi ← xi
a zi−→

5. x←− Cg

6. x, z, r0, · · · , rn←−−−−−−−−−−
7. e = r0 + e1r1 + e2r2 + · · ·+ enrn

Game 13:

It is clear that

Pr
13

[ge = x] = Pr
13

[
x =

∏
0≤i≤n

xi
ri

]
(2.17)

= Pr
11

[
x =

∏
0≤i≤n

xi
ri

]
. (2.18)

In Game 13, DLg() is accessed n times, then Cg() outputs a random challenge x. e is

computed as a “guess” of the logarithm of x. Therefore,

Pr
13

[ge = x] = AdvC
dtdl (2.19)

where AdvC
dtdl is the probability that the polynomial time algorithm C can solve the delayed-

target DL problem.

Combining (2.14)-(2.19), it holds that

Pr
9

[m′ = m] <
AdvC

dtdl

1− εsgkea

.

51

We conclude that if SGKEA and DTDLA hold, then ElGamal is OW-CCA1 secure.

Relations Between The Assumptions

First, we consider the relation between OW-CCA1 security of ElGamal encryption and the

following delayed-target computational Diffie-Hellman assumption (DTCDHA). DTCDHA

is defined in [46] and is discussed in [64].

Assumption 2.3.4. The Delayed-Target Computational Diffie-Hellman Assumption (DTCDHA)

is as follows. Let G be a finite cyclic group of order q, g be a generator of G, and k ≈ log2 q.

Let A be a probabilistic polynomial (in k) time algorithm that takes input g, ga ∈ G where

a ∈R Zq. A has access to two oracles. The first is a CDH oracle CDHg,ga(), which on input

x ∈ G returns xa. The second is a challenge oracle Cg() that, when invoked, returns x ∈R G.

A can access CDHg,ga() n times where n is polynomial in k. The DTCDHA assumes that

after receiving a challenge x from Cg(), without further access to the oracle CDHg,ga(), the

probability that A outputs z such that z = xa is negligible.

We observe that Game 10 is in fact a delayed-target computational Diffie-Hellman game.

Therefore we have the result:

Theorem 2.3.5. OW-CCA1 security of ElGamal encryption is equivalent to DTCDHA.

Since DTDLA and SGKEA imply that the ElGamal encryption is OW-CCA1 secure, it

also holds that

Corollary 2.3.6. DTDLA and SGKEA imply DTCDHA.

This result may be of independent interest in studying the relation between the assump-

tions.

In [21], Brown and Gallant presented an algorithm that can be used to recover a in the

DTCDH problem. If the adversary knows u where u|(q−1) and u ≈ q1/3, then the adversary

can query the CDH oracle Θ(q1/3) times and recover a in time Θ(q1/3). This algorithm is

more efficient than Pallard’s ρ algorithm [76, §3.6], which solves a in time O(q1/2) without

querying the oracle.

2.3.2 Security of Damg̊ard ElGamal Encryption

In this section, we use the delayed-target decisional Diffie-Hellman assumption (DTDDHA),

which is the Gap Subgroup Membership Assumption in prime order groups, to prove that

52

DEG is IND-CCA1. Our proof is simpler than the one in [49] in that it uses a straightforward

reduction. Then, we propose a decisional version of the DHK1 (Diffie-Hellman Knowledge)

assumption [9], namely the DDHK1 assumption, prove that DEG is IND-CCA1 under the

DDHK1 and DDH assumptions, and prove that DHK1 implies DDHK1. In [9], DHK1 is

used to prove the security of DEG. Our result shows that DHK1 is stronger than necessary

in the security proof of DEG.

Scheme Description

Let G be a group of prime order q and let g be a generator of G. DEG consists of three al-

gorithms: key generation, encryption, and decryption. G, g, q are default system parameters

for these algorithms.

The key generation algorithm computes a public key (u, v) ∈ G × G and a private key

(a, b) ∈ Zq × Zq as follows:

a ∈R Zq, b ∈R Zq, u← ga, v ← gb.

The message space of the scheme is G. To encrypt a message m ∈ G, the encryption

algorithm computes a ciphertext c = (x, y, z) ∈ G3 as follows:

r ∈R Zq, x← gr, y ← ur, z ← m · vr.

To decrypt a ciphertext c, the decryption algorithm computes m as follows: if y = xa,

then

m← z/xb.

Otherwise, the decryption algorithm returns ⊥ to indicate an invalid ciphertext.

Security Analysis

First we define the DTDDHA:

Assumption 2.3.7. The Delayed-Target Decisional Diffie-Hellman Assumption (DTDDHA)

is as follows: Let G be a group of prime order q, g be a generator of G, and k ≈ log2 q.

Let D be a probabilistic polynomial (in k) time algorithm that takes input g, ga ∈ G where

a ∈R Zq and A has access to two oracles. The first is a DDH oracle DDHg,ga(), which on

input (x, y) ∈ G×G returns 1 if y = xa and returns 0 otherwise. The second is a challenge

oracle Cg,ga() that, when invoked, returns a challenge (x, xa) or (x, y) with equal probability

where x ∈R G and y ∈R G. A can access DDHg,ga() for n times where n is polynomial in k.

53

The DTDDHA assumes that after receiving a challenge (x, y) from Cg,ga(), without further

accesses to the oracle DDHg,ga(), the advantage of D in this game, defined as

AdvD
dtddh = |Pr [D(x, y) = 1|y = xa]− Pr [D(x, y) = 1|y ∈R G]| ,

is negligible.

DTDDHA is an instantiation of the Gap Subgroup Membership Assumption in [49].

Remark. It holds that DDHA implies CDHA, which implies DLA in turn. This relation

cannot be shown to hold for DTDDHA, DTCDHA, and DTDLA. Although the task for the

adversary in DTDDHA is easier than in DTCDHA, the oracle it has in DTDDHA is weaker

than that in DTCDHA. Similarly, although the task for the adversary in DTCDHA is easier

than in DTDLA, the oracle it has in DTCDHA is weaker than that in DTDLA.

Next we describe an interactive game, Game 14, between a PPT challenger C and a PPT

adversary A to define the semantic security of DEG under CCA1.

C A

1. a ∈R Zq, b ∈R Zq, u← ga, v ← gb g, u, v−−−→
Repeat 2 - 5 n times:

2. xi, yi, zi←−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0, m
′
1←−−−−

7. d ∈R {0, 1}, r ∈R Zq, x← gr

y ← ur, z′ ← vr, z ← m′
dz

′ x, y, z−−−→
8. d′←−

Game 14: DEG CCA1 Game.

The adversary’s advantage in Game 14 is

AdvA
game14 =

∣∣∣Pr
14

[d′ = d]− 1/2
∣∣∣ .

We say that DEG is IND-CCA1 secure if AdvA
game14 is negligible.

Next we prove the result:

Theorem 2.3.8. DEG is IND-CCA1 secure if DTDDHA holds.

54

C A

1. a ∈R Zq, b ∈R Zq, u← ga, v ← gb g, u, v−−−→
Repeat 2 - 5 n times:

2. xi, yi, zi←−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0, m
′
1←−−−−

7. d ∈R {0, 1}, r ∈R Zq, x← gr

y ∈R G, z′ ← vr, z ← m′
dz

′ x, y, z−−−→
8. d′←−

Game 15: y is replaced with a random value.

Proof. We transform Game 14 to a new Game 15 by replacing y with a random element.

Then we construct an algorithm D1 as shown in Algorithm 5 to solve the delayed-target

DDH problem. Note D1 uses A as a subroutine.

D
DDHg,ga ,Cg,ga

1 (g, ga) A

1. b ∈R Zq, u← ga, v ← gb g, u, v−−−→
Repeat 2 - 5 n times:

2. xi, yi, zi←−−−−
3. if DDHg,ga(xi, yi) = 1 then mi ← zi/xi

b

4. else mi = ⊥
5. mi−→
6. m′

0, m
′
1←−−−−

7. d ∈R {0, 1}, (x, y)← Cg,ga(), z′ ← xb, z ← m′
dz

′

8. x, y, z−−−→
9. d′←−
10. if d′ = d then return 1

11. else return 0
Algorithm 5: D1

In algorithm D1, if y is generated by Cg,ga to be y ← xa, then the computation of A

55

proceeds as in Game 14, therefore

Pr [D1 = 1|(y ← xa)] = Pr
14

[d′ = d] .

If y is generated by Cg,ga to be y ∈R G, then the computation of A proceeds as in Game 15,

therefore

Pr [D1 = 1|(y ∈R G)] = Pr
15

[d = d′] .

It follows that∣∣∣Pr
14

[d = d′]− Pr
15

[d = d′]
∣∣∣ = |Pr [D = 1|(y ← xa)]− Pr [D = 1|(y ∈R G)]| (2.20)

= AdvD1
dtddh.

Next we transform Game 15 to Game 16 by replacing z′ with a random element.

C A

1. a ∈R Zq, b ∈R Zq, u← ga, v ← gb g, u, v−−−→
Repeat 2 - 5 n times:

2. xi, yi, zi←−−−−
3. if yi = xi

a then mi ← zi/xi
b

4. else mi = ⊥
5. mi−→
6. m′

0, m
′
1←−−−−

7. d ∈R {0, 1}, r ∈R Zq, x← gr

y ∈R G, z′ ∈R G, z ← m′
dz

′ x, y, z−−−→
8. d′←−

Game 16: z′ is replaced with a random value.

Then we construct an algorithm D2 as shown in Algorithm 6 to solve the delayed-target

DDH problem.

Let b = ac. Then in D2, we have v = uc = gac = gb, and z′ = xa ⇔ z′c = xac = xb.

Therefore, if in the challenge pair (x, z′), z′ is generated by z′ ←− xa, then the computation

of A proceeds as in Game 15, and it holds that

Pr [D2 = 1|(z′ ← xa)] = Pr
15

[d = d′] .

If in the challenge pair (x, z′), z′ is generated by z′ ∈R G, then the computation of A proceeds

as in Game 16, therefore

Pr [D2 = 1|(z′ ∈R G)] = Pr
16

[d = d′] .

56

D
DDHg,ga ,Cg,ga

2 (g, ga) A

1. c ∈R Zq, u← ga, v ← uc g, u, v−−−→
Repeat 2 - 5 n times:

2. xi, yi, zi←−−−−
3. if DDHg,ga(xi, yi) = 1 then mi ← zi/yi

c

4. else mi = ⊥
5. mi−→
6. m′

0, m
′
1←−−−−

7. d ∈R {0, 1}, (x, z′)← Cg,ga(), y ∈R G, z ← m′
dz

′c

8. x, y, z−−−→
9. d′←−
10. if d′ = d then return 1

11. else return 0
Algorithm 6: D2

It follows that∣∣∣Pr
15

[d = d′]− Pr
16

[d = d′]
∣∣∣ = |Pr [D2 = 1|(z′ ← xa)]− Pr [D2 = 1|(z′ ∈R G)]| (2.21)

= AdvD2
dtddh.

We also have Pr16 [d = d′] = 1/2 since z is independent of m′
b in Game 16. Therefore∣∣∣Pr

14
[d′ = d]− 1/2

∣∣∣ ≤ AdvD1
dtddh + AdvD2

dtddh. (2.22)

We conclude that, if DTDDH assumption holds, then DEG is IND-CCA1 secure.

Decisional DHK1 Assumption

First we review the DHK1 assumption.

Assumption 2.3.9. The DHK1 assumption is as follows: Let G be a group of prime order

q, let g be a generator of G, and let k ≈ log2 q. Let a ∈R Zq. Let O be an oracle that satisfies

the following property: when O is queried with a pair (xi, yi) ∈ G × G, O returns ri such

that xi = gri if yi = xi
a. Given (g, ga), for any polynomial (in k) time algorithm A that has

access to O, if A outputs a pair (x, y) ∈ G × G, then there exists a compiler E such that

A′ = E(A), and A′ satisfies the following conditions: (1) A′ is polynomial time; (2) A′ has

57

the same input, output, oracle access, and random tape access behaviour as A, except that

in addition to x and y, A′ also outputs r such that

Pr [x = gr|y = xa] > 1− εdhk1,

or equivalently

Pr [x 6= gr, y = xa] < εdhk1,

where εdhk1 is negligible.

DHK1 is a generalization of KEA. KEA is the same as DHK1 except that A does not

have access to the oracle O. KEA was originally proposed to prove the security of DEG in

[30]. Bellare et al. pointed out a flaw in the security argument in [30], and proposed DHK1

to prove the security of DEG [9]. The above definition of DHK1 is different from that in [9]

in expression, but their ideas are the same.

We observe that using the DDH assumption and the following decisional DHK1 (DDHK1),

we can prove that DEG is IND-CCA1 secure.

Assumption 2.3.10. The Decisional DHK1 (DDHK1) assumption is as follows: Let G be

a group of prime order q, let g be a generator of G, and let k ≈ log2 q. Let a ∈R Zq. Let

O be an oracle. When O is queried with a pair (xi, yi) ∈ G × G, O returns 1 if yi = xi
a

and returns 0 if yi 6= xi
a. Given (g, ga), for any polynomial (in k) time algorithm A that

has access to O, if A outputs a pair (x, y) ∈ G×G, then there exists a compiler E such that

A′ = E(A), and A′ satisfies the following conditions: (1) A′ is polynomial time; (2) A′ has

the same input, output, oracle access and random tape access behaviour as A, except that in

addition to x and y, A′ also outputs a bit b such that

Pr [b = 1, y = xa] + Pr [b = 0, y 6= xa] > 1− ε

where ε is negligible.

First, we observe that DHK1 is stronger than DDHK1.

Lemma 2.3.11. DHK1 implies DDHK1.

Proof. We consider an assumption DHK1′. DHK1′ is the same as DHK1 except that the

oracle O returns 1 if yi = xi
a and returns 0 if yi 6= xi

a. We define the event that A wins

DHK1 to be the event gr 6= x and y = xa in the DHK1 setting, the event that A wins DHK1′

to be the event gr 6= x and y = xa in the DHK1′ setting, and the event that A wins DDHK1

to be the event b = 0 and y = xa in the DDHK1 setting.

58

First we show that DHK1 implies DHK1′. In DHK1′, A can tell if yi = xi
a by querying

O. In DHK1, A can not only tell if yi = xi
a, but also get ri such that gri = xi when yi = xi

ri .

It is more likely that A in DHK1 can compute (x, y = xa) without choosing r where gr = x

than A in DHK1′. We use PrDHK1′ [e] and PrDDHK1[e] to denote the probability that an event

e happens in DHK1′ setting and DDHK1 setting respectively. If A can compute (x, y = xa)

with out knowing r = log x, then A′ would not be able to extract r from A. It holds that

Pr
DHK1

[A wins] ≥ Pr
DHK1′

[A wins]

Pr
DHK1

[gr 6= x, y = xa] ≥ Pr
DHK1′

[gr 6= x, y = xa]

Therefore, if DHK1 holds, then DHK1′ holds.

Next we show that DHK1′ implies DDHK1. Suppose that DHK1′ holds. We construct the

algorithm A′ in DDHK1 (denoted as A′
DDHK1) based on the algorithm A′ in DHK1′ (denoted

as A′
DHK1′). Let (r, x, y) be the output of the A′

DHK1′ and let (e, x, y) be the output of

A′
DDHK . We define that A′

DDHK outputs (1, x, y) if x = gr and y = (ga)r, otherwise A′
DDHK

outputs (0, x, y). It holds that

Pr[e = 0|y 6= xa] = 1

and

Pr[e = 1|y = xa] ≥ Pr[e = 1, x = gr|y = xa]

= Pr[e = 1|x = gr, y = xa] Pr[x = gr|y = xa]

> 1− εdhk1.

It holds that

Pr[e = 1, y = xa] + Pr[e = 0, y 6= xa]

= Pr[e = 1|y = xa] Pr[y = xa] + Pr[e = 0|y 6= xa] Pr[y 6= xa]

> (1− εdhk1) Pr[y = xa] + Pr[y 6= xa]

= 1− εdhk1 Pr[y = xa].

Therefore, if DHK1′ holds, then DDHK1 holds.

We conclude that DHK1 implies DDHK1.

Next, we prove that the DDH and DDHK1 assumptions imply the DTDDH assumption.

Theorem 2.3.12. DDH and DDHK1 assumptions imply DTDDH assumption.

59

C A

1. a ∈R Zq, u = ga g, u−→
Repeat 2 - 3 n times:

2. xi, yi←−−
3. If yi = xi

a then e′i ← 1, otherwise, e′i ← 0 e′i−→
4. x, y−→
5. e←−
6. return e

Game 17: DTDDH game

Proof. we define a DTDDH game as shown in Game 17. Let AdvA
DTDDH be the probability

that A answers e correctly in a game.

We transform Game 17 to Game 18 by replacing A with A′ = E(A) where E and A′ are

as defined in the DDHK1 assumption.

C A′

1. a ∈R Zq, u = ga g, u−→
Repeat 2 - 3 n times:

2. ei, xi, yi←−−−−
3. If yi = xi

a then e′i ← 1, otherwise, e′i ← 0 e′i−→
4. x, y−→
5. e←−
6. return e

Game 18:

Let AdvA′
game18

be the probability that A′ answers e correctly in a game. It holds that

AdvA
dtddh = AdvA′

game18
.

Next we transform Game 18 to 19 in which C set e′i ← ei.

If the DDHK1 assumption holds, then in Step 3, e′i is a correct answer with probability

(1 − ε) where ε is negligible. If in all n rounds, all the e′i values are correct, then the

computation of A′ proceeds the same way as in Game 18. Therefore, it holds that

AdvA′

game19
≥ AdvA′

game18
(1− ε)n

60

C A′

1. a ∈R Zq, u = ga g, u−→
Repeat 2 - 3 n times:

2. ei, xi, yi←−−−−
3. e′i ← ei e′i−→
4. x, y−→
5. e←−
6. return e

Game 19:

Note that in Game 19, C does not use a to compute e′i. We can transform Game 19 to

Game 20 where C takes a triple (ga, x, y) ∈ G3 as input and solves the DDH problem.

C(ga, x, y) A′

1. u = ga g, u−→
Repeat 2 - 3 n times:

2. ei, xi, yi←−−−−
3. e′i = ei e′i−→
4. x, y−→
5. e←−
6. return e

Game 20:

Let AdvC
DDH be the probability that C correctly answers if y = xa. It holds that

AdvC
DDH = AdvA′

game19
.

It follows that

AdvC
ddh ≥ AdvA

dtddh(1− ε)n.

Note that n is polynomial in k and ε is negligible in k if the DDHK1 assumption holds.

We conclude that if the DDDHK1 assumption holds, then the DDH assumption implies

the DTDDH assumption; i.e., the DDH assumption and the DDHK1 assumption imply the

DTDDH assumption.

The above results prove that DHK1 is stronger than necessary in the security proof for

DEG.

61

Chapter 3

Sensor Networks Key Management

3.1 κ-connectivity . 62

3.1.1 KPS Constructed from Transversal Designs 62

3.1.2 Random KPS . 64

3.1.3 κ-connectivity of the DSN . 67

3.2 Multi-path Key Establishment . 70

3.2.1 Model and Preliminarie . 70

3.2.2 Reed-Solomon Codes . 72

3.2.3 Analysis of the HM and JERT Schemes 75

3.2.4 Two New Schemes for MPKE Based on Reed-Solomon Codes 77

3.2.5 A Scheme Tolerating Error Rate < 1/2 82

In this chapter, we first study connectivity of key predistribution schemes in Section 3.1.

In Section 3.1.1, we study the connectivity of the block graphs of a class of deterministic

KPS based on transversal designs. In Section 3.1.2, we study the κ-edge-connectivity of a

random KPS. In Section 3.1.3, we study the κ-edge-connectivity of two classes of DSNs, one

based on the deterministic KPS derived from transversal designs, and the other based on

random KPS.

In Section 3.2, we study multi-path key establishment. In Section 3.2.1, we describe the

proposed model and some preliminary results on secure message transmission, Reed-Solomon

codes and key derivation using resilient functions. In Section 3.2.3, we present and analyze

the HM and JERT schemes. In Section 3.2.4, we present our first two new schemes and their

analysis. In Section 3.2.5, we present our third scheme, which tolerates less than 1/2 of the

paths controlled by the adversary.

62

3.1 κ-connectivity of Key Predistribution

3.1.1 Transversal Design KPS

κ-connectivity of the Block Graph

In [70], [71], Lee and Stinson proposed a deterministic KPS based on transversal design

TD(k, r) [101, §6.6]. The TD(k, r) KPS has the following properties:

• The scheme uses kr keys, which are divided into k sets of r keys.

• Each node is assigned k keys, one from each set.

• Every pair of keys from different sets is contained in exactly one node.

• Each key is assigned to exactly r nodes.

• Each node has degree equal to k(r − 1) in the block graph GB.

• The number of nodes is r2.

The designs TD(k, r) exist for a wide variety of parameters k and r. For example,

TD(k, r) are known to exist for all pairs (k, r) where r is a prime or prime power and k ≤ r.

In this section, we prove that the block graph GB of a TD(k, r) KPS is k(r − 1)-edge-

connected. (In fact, the connectivity cannot be greater than this value because GB is a

regular graph of degree k(r − 1).) The proof idea is from [53], in which the connectivity of

two combinatorial structures, BIBD (balanced incomplete block design) and PBD (pairwise

balanced design), are proved.

Theorem 3.1.1. The block graph of a TD(k, r) KPS is k(r−1)-vertex-connected and k(r−1)-

edge-connected.

Proof. First we consider the vertex connectivity. Let B the set of vertices in GB.

Let a and c be any two nonadjacent vertices in GB. Let C be a vertex cut; i.e., a set of

nodes, the removal of which separates a and c.

Let x be a key not assigned to a or c (i.e., x /∈ a∪ c). Let Sa(x) be the nodes containing

x that are adjacent to a in GB, and let Sc(x) be the nodes containing x that are adjacent to

c in GB. Suppose there exist nodes b1 and b2 such that b1 ∈ Sa(x), b1 /∈ C, b2 ∈ Sc(x) and

b2 /∈ C. Then a b1 b2 c is a path in GB − C since b1 and b2 are adjacent (they both contain

the key x). This contradicts the assumption that C separates a and c. From this, it follows

immediately that either Sa(x)\Sc(x) ⊆ C or Sc(x)\Sa(x) ⊆ C.

63

For x /∈ a∪c, there are exactly k−1 pairs of keys which contain x and a key in a from one

of the k − 1 columns which do not contain x. Each of these k − 1 pairs of keys is contained

in a different node. So there are k − 1 nodes which contain x and are adjacent to a in GB.

Similarly there are k − 1 nodes which contain x and are adjacent to c in GB. Then

|Sa(x)\Sc(x)| = |Sa(x)| − |Sa(x) ∩ Sc(x)|
= k − 1− |Sa(x) ∩ Sc(x)|
= |Sc(x)| − |Sa(x) ∩ Sc(x)|
= |Sc(x)\Sa(x)|.

Let B′ be the nodes in B\{a, c} which are adjacent to exactly one of a or c in GB, and

let C ′ = B′ ∩ C. From the above calculation, it follows that at least half of the nodes that

are in B′ and contain x are in C ′.

Each node b ∈ C ′ has exactly one key shared with a or c. Therefore,

2|C ′|(k − 1) = 2
∑
b∈C′

|{(x, b) : x /∈ a ∪ c, x ∈ b}|

= 2
∑

x/∈a∪c

|{(x, b) : b ∈ C ′, x ∈ b}|

≥
∑

x/∈a∪c

|{(x, b) : b ∈ B′, x ∈ b}|

=
∑
b∈B′

|{(x, b) : x /∈ a ∪ c, x ∈ b}|

= |B′|(k − 1).

Hence, |C ′| ≥ |B′|/2.

Next, let B′′ be the nodes adjacent to both a and c. There are k(k − 1) pairs of keys

such that one key in the pair is in a and the other is in c. These pairs are all contained in

different nodes. So |B′′| = k(k − 1).

Each one of the k keys in a occurs in r − 1 other nodes. Of these r − 1 nodes, there

are k − 1 nodes adjacent to c. So there are k(r − k) nodes that are adjacent to a but not

adjacent to c. Similarly, there are k(r − k) nodes that are adjacent to c but not adjacent to

a. Therefore we have |B′| = 2k(r − k).

Finally, we have that

|C| ≥ |C ′|+ |B′′| ≥ |B
′|

2
+ |B′′| = k(r − 1).

Therefore, GB is at least k(r−1)-vertex-connected. Also, it is at least k(r−1)-edge-connected

(by Whitney’s inequality [109]). Since each node has k(r− 1) edges, we conclude that GB is

exactly k(r − 1)-vertex-connected and k(r − 1)-edge-connected.

64

3.1.2 Random KPS

Minimum Degree of the Block Graph

In a random KPS, for each of the n nodes, k keys are randomly drawn from a key pool of

size v ([40]). The block graph is called a random intersection graph and denoted G(n, v, k).

In some previous papers (e.g., [40], [26], [37], [108], [59]), the random intersection graph

G(n, v, k) is implicitly assumed to be a random graph G(n, p1), where two nodes are adjacent

with probability

p1 = 1−
(

v−k
k

)(
v
k

) .

Note that p1 is the probability that two nodes share at least one key. For clarity, we now

make this assumption explicit:

Assumption 3.1.2. A random intersection graph G(n, v, k) can be modelled as a random

graph G(n, p1) where p1 = 1− (v−k
k)

(v
k)

.

Given the above assumption, we would compute the κ-edge-connectivity of the G(n, p1),

and then expect that the G(n, v, k) is κ-edge-connected as well. The minimum degree of

a graph is a bound on its connectivity. Therefore we study the minimum vertex degree in

G(n, p1).

The degrees of the vertices in G(n, p1) are random variables which follow binomial dis-

tributions with parameters n − 1 and p1. These random variables can be considered as

independent [18, §3]. We can obtain the expected minimum degree using minimum order

statistics [31]. We have the following result:

Theorem 3.1.3. The expected minimum value among n independent random variables is

dmin =
n−1∑
i=0

(1− F (i))n − n(1− F (n))n (3.1)

where F (x) is the cumulative probability distribution of the random variables.

Proof. Let Fmin(x) = Pr[dmin ≤ x] be the cumulative distribution of the minimum value

dmin of the n random variables d1, · · · , dn. Then we have

Fmin(x) = Pr[dmin ≤ x]

= 1− Pr[d1 > x and · · · and dn > x]

= 1− (1− F (x))n.

65

Let fmin = Pr[dmin = x] be the mass distribution of dmin. Then

fmin(x) = Fmin(x)− Fmin(x− 1). (3.2)

Let dmin be the expectation of dmin. We have

dmin =
n∑

x=0

xfmin(x)

=
n∑

x=1

x(Fmin(x)− Fmin(x− 1))

= nFmin(n)−
n−1∑
x=0

Fmin(x)

= n(1− (1− F (n))n)−
n−1∑
x=0

(1− (1− F (x))n)

=
n−1∑
x=0

(1− F (x))n − n(1− F (n))n

We know that for G(n, p1), it holds that

F (x) = Pr[d ≤ x]

=
x∑

i=0

(
n− 1

i

)
p1

i(1− p1)
n−1−i. (3.3)

Using (3.1) and (3.3), we can compute the expected minimum degree of G(n, p1), and

use it to estimate the expected minimum degree of G(n, v, k). We use simulation to verify

the result. In the simulation, we set n = 2000, k = 5, v = 500, 1000, 1500, 2000, 2500, 3000,

and 3500. We randomly choose k out of v keys for each node, construct a graph by creating

edges between nodes who share keys, and compute the minimum degree in the resulting

graphs. For each v we run the simulation 100 times. The average minimum degree in the

simulation and the estimated minimum degree computed using the formulas developed above

are listed in Table 3.1. From this table, it can be seen that the estimation is very close to

the simulation.

We also use simulation to verify fmin(x), the distribution of dmin computed using (3.2).

We choose n = 2000, k = 5, and v = 2000, and run the simulation 200 times. The results

are shown in Table 3.2. We find that computed values match the simulation well.

66

v dmin in simulation Computed dmin

500 67.36 66.86

1000 27.61 27.53

1500 15.27 15.43

2000 9.80 9.80

2500 6.48 6.65

3000 4.62 4.68

3500 3.31 3.37

Table 3.1: Expected minimum degree of a block graph for a random KPS.

κ-connectivity of the Block Graph of a Random KPS

Since the random graph G(n, p1) is dmin-edge-connected asymptotically [18], by Assumption

3.1.2, we estimate G(n, v, k) to be dmin-edge-connected as well. We verify this assumption

using simulations. We use Maple 9.5 to compute the minimum degree and edge-connectivity

of a given graph. Because finding the connectivity of a graph is time consuming, we only

test G(n, v, k) with small number of nodes. In the simulation, we set n = 100, k = 5,

v = 100, 200, 300, and check the minimum degree and minimum edge cut of the resulting

G(n, v, k). We run the simulation 10 times with different random seeds for each v value. In

all the 30 simulations, the minimum degree and the connectivity of G(n, v, k) are the same

(the range of values is from 1 to 14).

3.1.3 κ-connectivity of the DSN

After the sensor nodes are deployed, only the pairs of nodes located within each other’s

wireless communication range can communicate directly. In the previous KPS papers ([40],

[26], [37], [108], [59]), the random geometric graph GG is implicitly assumed to be a random

graph. Observe that the network graph GN can be viewed as being generated from the block

graph GB by deleting some edges, namely, those which are not in the graph GG. An edge in

GB will thus be deleted with probability 1− p2, where p2 is the probability that two nodes

are in each other’s wireless communication range. The parameter p2 is determined by the

the area in which the nodes are deployed, the number of nodes deployed, and by the nodes’

wireless communication range.

Here we make the assumption regarding the random geometric graph GG explicit:

67

x fmin(x) in simulation Computed fmin(x)

3 0 0

4 0 0

5 0 0

6 0.01 0.01

7 0.03 0.03

8 0.09 0.1

9 0.23 0.22

10 0.35 0.33

11 0.26 0.25

12 0.04 0.05

13 0 0

14 0 0

15 0 0

Table 3.2: Distribution of minimum degree of random KPS block graph.

Assumption 3.1.4. We assume the random geometric graph GG with parameters n and p2

can be modelled as a random graph G(n, p2); i.e., we assume that GG is generated from a

complete graph by deleting every edge independently, with probability 1− p2.

Based on this assumption, we can estimate the expected minimum node degree of the

network graph GN . We will again verify the result by simulation.

Minimum Degree of DSN Constructed from a TD-based KPS

The block graph GB for a KPS constructed from a transversal design TD(k, n) is a regular

graph with degree k(r− 1). After deleting each edge with probability 1− p2, the degree of a

given node is a random variable following a binomial distribution with parameters k(r − 1)

and p2, and the random variable’s cumulative probability distribution is as follows:

F (x) = Pr[d ≤ x]

=
x∑

i=0

(
k(r − 1)

i

)
p2

i(1− p2)
k(r−1)−i. (3.4)

In our simulation, we first assign keys to the nodes using a TD(k, n), and then we distribute

the nodes uniformly at random in an L × L square. We delete an edge between two nodes

68

in the block graph if the Euclidean distance between the two nodes is greater than `, where

` is the wireless communication range of a node. To eliminate the “border effect” of the

geometric distribution, we do not use the nodes close to the border when computing the

minimum degree1. In the simulation, we set k = 30, r = 49, v = 1470, n = 2401 and

L = 100. We compute p2 = πl2

L2 , we use (3.1) and (3.4) to compute dmin, and we compare

the results with simulation in Table 3.3. We find that the results match well.

l dmin in simulation Computed dmin

4 0.04 0.18

5 1.32 1.79

6 4.39 4.37

7 7.61 7.90

8 12.06 12.36

9 17.79 17.74

10 23.93 24.05

Table 3.3: Minimum degree of a DSN using a TD KPS

Minimum Degree of DSN Constructed from a Random KPS

In section 3.1.2, we assumed the block graph GB of a random KPS is a random graph where

an edge joins each pair of nodes with probability p1. After the nodes are deployed, each

existing edge will be deleted with probability 1 − p2. Under Assumptions 3.1.2 and 3.1.4,

the resulting network can be considered as a random graph in which each edge is included

with probability p1p2. The probability distribution of an edge degree follows a binomial

distribution with parameters n− 1 and p1p2, and its cumulative probability distribution is

F (x) = Pr[d ≤ x]

=
x∑

i=0

(
n− 1

i

)
(p1p2)

i(1− p1p2)
n−1−i. (3.5)

We use (3.1) and (3.5) to compute the expected minimum degree dmin, and compare it with

a value obtained by simulation. The simulation setting is the same as in Section 3.1.3 except

that we assign keys using the random KPS. The results are shown in Table 3.4 and they

match well.

1For a detailed discussion on border effect and methods to avoid border effect, see [13].

69

l dmin in simulation Computed dmin

4 0.00 0.00

5 0.38 0.72

6 2.36 2.41

7 4.58 4.86

8 7.64 8.03

9 11.83 11.92

10 16.52 16.52

Table 3.4: Minimum degree of a DSN constructed from a random KPS

κ-connectivity of DSN

Based on Assumption 3.1.2 and Assumption 3.1.4, the network graph GN of the DSN con-

structed from a random KPS is also a random graph. A random graph is asymptotically

κ-edge-connected when its minimum degree is κ [88]. Thus GN can be estimated to be

dmin-edge-connected on average, where dmin is computed using (3.1) and (3.5).

For the DSN constructed from a TD-type KPS, we make the following assumption:

Assumption 3.1.5. The network graph GN generated by intersecting the block graph of a

TD-type KPS and a random geometric graph is κ-edge-connected, where its minimum degree

is κ.

The assumption is based on the observation that in the random graph model and the

random geometric graph model, when the graph’s minimum node degree is κ, the graph

becomes κ-edge-connected asymptotically ([18], [88]). Under this assumption, we can esti-

mate the DSN constructed from a TD-type KPS to be dmin-connected, where dmin can be

computed using (3.1) and (3.4).

We verify the above estimate with simulations using Maple 9.5. In the simulation, we

compare the minimum degree and κ-edge-connectivity of GN . Because finding the κ-edge-

connectivity of a graph is time-consuming, we only test network graphs GN with small

number of nodes. We use n = 121, v = 55, k = 5 for the key assignment schemes. For

geometric distribution we distribute the nodes in a 100 × 100 grid as in section 3.1.3. We

set ` = 30, 40, 50 respectively. For each key distribution schemes and each `-value, we run

the simulation 10 times. In all 60 simulations (30 for the DSNs constructed from a random

KPS and 30 for the DSNs constructed from a TD-type KPS), the minimum degree and the

size of the minimum cut of GN are identical(these values range from 0 to 12).

70

Note that, since the dmin value computed using (3.5) or (3.4) reflects the minimum degree

of the nodes not on the border of the network’s geometric area, it reflects the connectivity

of the “majority” of the network, excluding the nodes on the border of the geometric area.

3.2 Multi-path Key Establishment

3.2.1 Model and Preliminaries

Our model for multi-path key establishment (MPKE) is an enhancement of the model used

in [57] and [32]. It is described as follows.

1. In a sensor network secured using key predistribution schemes, there often are multiple

node-disjoint paths between a specified source node A and a specified destination node

B. Every two consecutive nodes (i.e., a link) on such a path have a common key, and

no two of these paths contain any common nodes except for A and B. These paths

are identified by A before key establishment takes place.2 A sends key establishment

messages over the paths. The efficiency of the scheme is measured by communication

complexity; i.e., the total amount of information that is transmitted over all the paths.

2. We will assume that a fraction e of these paths (where 0 ≤ e < 1/2) are controlled by

an adversary. We call e the error rate. A path P is controlled by an adversary if there

exists an adversary that has knowledge of the key corresponding to a link on the path

P . We assume that an adversary controlling a path P can observe, drop or alter any

messages that are transmitted from A to B using the path P .

3. The goal of a key establishment scheme is to enable A and B to establish a key with

sufficient entropy. This leads to two security requirements. First, the adversary should

not be able to disrupt the protocol by preventing B from computing the same key K

that A holds. Second, the adversary should be prevented from determining partial

information about the established key. This idea is formalized by considering the

entropy of the message M received by B, from the point of view of the adversary who

collects partial information about M (see Section 3.2.2 for details).

Entropy of the established key is not analyzed in [57] and [32]. However, entropy is

a critical requirement for the established key to be secure, because a key with low

2In the previous model in [57] and [32], it is assumed that some routing protocols are used to identify the
paths. In this model, we follow the assumption.

71

entropy can easily be determined by the adversary by exhaustive search. Key entropy

should be considered when evaluating the scheme, along with efficiency.

Remark. An adversary who controls a node N in one of the paths P from A to B has access

to all the keys stored in N . Suppose that one of these keys, say K, is stored by a node N ′

in another path P ′ from A to B. Therefore the adversary can read information encrypted

using the key K, and thus the path P ′ will not be secure. So the number of paths controlled

by the adversary can be greater than the number of nodes controlled by the adversary. See

[107] for more discussion on this issue.

Secure Message Transmission

Perfectly secure message transmission (PSMT) was introduced in 1993 by Dolev et al. [36].

PSMT was first suggested for use in multi-path key establishment in sensor networks in

2004 by Wang [107]. We define PSMT protocols and summarize some relevant results in this

section.

Suppose two parties A and B are connected by p channels. An adversary controls pa (or

fewer) of these channels, but it is not known which channels are controlled by the adversary.

The adversary can observe, delete, or modify the information in these pa channels. An r-

round (p, pa)-perfectly secure message transmission scheme is an interactive protocol between

A and B which takes place in r rounds (denoted as rounds 1, . . . , r), such that the following

properties are satisfied:

1. In each odd-numbered round, A sends information to B over each of the p channels

connecting them.

2. In each even-numbered round, B sends information to A over each of the p channels

connecting them.

3. After the rth round, A and B both possess a common key K which is an element of a

prespecified key space K.

4. The adversary has no information on the value of K (so the entropy of K, from the

point of view of the adversary, is log |K|).

The overhead of a PSMT is defined to be the ratio

amount of information transmitted over all p channels

length of the key K
.

72

There is a large literature on PSMT. For our purposes, we are most interested in one-

round protocols, since these are the simplest and best suited to be applied to multi-path

key establishment. It was proven in [36] that a 1-round (p, pa)-perfectly secure message

transmission scheme exists if and only if p ≥ 3pa + 1. It is shown in [45] that the overhead

of a one-round PSMT satisfies the condition

overhead ≥ p

p− 3pa

. (3.6)

Furthermore, for all pairs (p, pa) with p ≥ 3pa + 1, schemes that meet the bound in (3.6)

with equality (i.e., optimal overhead schemes) are constructed in [45].

If 3pa ≥ p ≥ 2pa + 1, then all is not lost. It is possible to construct 2-round (p, pa)-

PSMT in these cases [91, 67]. Alternatively, one can obtain one-round schemes that are not

perfectly reliable (i.e., condition 3 in the definition of PSMT is relaxed). Such schemes are

constructed in [66, 87].

Comparison Between PSMT and MPKE

A PSMT assumes multiple channels connecting A and B. The channels not controlled by

the adversary are assumed to provide unconditional secrecy and authenticity. The security

of a PSMT scheme is unconditional, provided that no computational assumptions are made

in the analysis of the protocol. Almost all PSMT in the literature are studied in the setting

of unconditional security.

In an MPKE, information is transmitted over links in encrypted form using conventional

secret-key cryptography. Therefore we do not expect an MPKE to provide unconditional

security; the security will depend on the assumption that the encryption and authentica-

tion schemes are (computationally) secure. Additional computational assumptions may be

required, depending on the scheme.

3.2.2 Reed-Solomon Codes

Many PSMT protocols are based on Reed-Solomon codes, which we introduce now. There

are different ways to construct RS codes. Each has its encoding and decoding algorithms.

Here we only describe the general functionalities of the encoding/decoding algorithms. For

details of the algorithms, see, e.g., [89, 58]. Simply speaking, the input of the RS encoding

algorithm is a message m = (m0, . . . ,mk−1) ∈ F k
q where Fq is a finite field of order q. The

output of an RS encoding algorithm is c = (c0, . . . , cn−1) ∈ F n
q where k ≤ n ≤ q. c is called

a codeword. Each coordinate in m or c is called a symbol.

73

If it always happens that ci = mi for 0 ≤ i ≤ k − 1, then the encoding is systematic. In

this case, m0, . . . ,mk−1 may be called information symbols and ck, . . . , cn−1 may be called

parity check symbols. Not all RS encoding schemes are systematic, however.

The above-described RS code has length n and dimension k. Its distance is d = n− k +1

(i.e., any two distinct codewords differ in at least n− k + 1 symbols).

A Reed-Solomon code is a linear code, which means that the codewords form a k-

dimensional subspace of the vector space F n
q . A commonly-used method of encoding a

linear code is to constuct a generator matrix, denoted G, whose rows form a basis for the

code. Then, to encode a message m, we compute c = mG.

During transmission, some symbols in a codeword c may be deleted or altered. Suppose

that δ of the symbols in c are deleted, and ε other symbols in c are altered. Let r be

the resulting received vector. The input of the decoding algorithm is r. The output of the

decoding algorithm is the codeword whose distance from r is minimized. It is a standard

result in coding theory that this decoding algorithm will output c provided that

δ + 2ε < d. (3.7)

In the case of an RS code, we have d = n− k + 1 and the condition (3.7) becomes

δ + 2ε ≤ n− k. (3.8)

Given any codeword c, it is a simple matter to obtain the corresponding message m, regard-

less of whether or not the code is systematic.

In the above-described RS code, a message consists of k symbols and a codeword consists

of n (n ≥ k) symbols. The code is termed an (n, k) RS code.

Evaluating the Secrecy of a Message

When RS codes are used to encode and transmit a secret message m = (m0, . . . ,mk−1), we

need to consider the entropy of m from an adversary’s point of view. The original entropy

of m is k log2 q bits. Suppose that i symbols are received by the adversary. If i ≥ k, then

the adversary can recover m, and the entropy of m is 0. If i < k, then the adversary can

randomly choose k− i other symbols and recover a (possibly incorrect) message. In this case

the adversary recovers the correct message with probability

1

2(k−i) log2 q
.

Therefore, when the adversary knows i symbols in m, the entropy of m is

max{(k − i) log2 q, 0}

bits.

74

Key Derivation and Resilient Functions

In the protocols we will be describing, the key K, which is derived from a k-tuple m, should

have sufficient entropy. We will use the number of symbols, instead of number of bits, to

indicate the entropy. In this terminology, the entropy of a message m is k symbols.

To ensure that K is secure, we desire that m should have entropy at least ` symbols, for

some prespecified value of `. There are several ways to derive K from m while preserving

its entropy. For example, we can use a cryptographic hash function hash to compute K =

hash(m). If it holds that

1. the hash function is modelled as a random oracle,

2. the input of the hash function has entropy at least ` symbols, and

3. the output of the hash function has a length of at least ` symbols,

then the entropy of the derived key K is at least ` symbols (so we say that K is `-secure).

The above approach only provides computational security of the key. An alternative is to

use resilient functions [11, 27] to derive the key. This approach would provide unconditional

security of the key.

Suppose q is a prime power. Let k, `, t be positive integers such that k ≥ ` + t. A

(k, `, t, q)-resilient function, or (k, `, t, q)-RF, is a function f : F k
q → F `

q such that f(m) is

uniformly distributed in F `
q whenever any t inputs are fixed and the remaining k − t inputs

are chosen independently and uniformly at random from Fq, e.g., by an adversary (here we

are regarding f as a function with k inputs from Fq).

There is a large body of literature on resilient functions. For our purposes, we need a

well-known class of resilient functions that is derived from Reed-Solomon codes. In fact,

any linear code gives rise to a linear function. The following was proven for binary codes in

[11, 27]. It was observed in [99] that the same result holds for codes over an arbitrary finite

field.

Theorem 3.2.1. Suppose q is a prime power, and suppose there exists a linear code over Fq

having length n, dimension k and distance d. Then there exists a (n, k, d− 1, q)-RF.

Using Reed-Solomon codes, the following is an immediate corollary.

Corollary 3.2.2. Suppose q is a prime power such that q ≥ k > `, where k and ` are positive

integers. Then there exists a (k, `, k − `, q)-RF.

75

The construction of a (k, `, k − `, q)-RF is easy. Let G be the generator matrix of a

Reed-Solomon code of dimension ` and length k over Fq. Then f is defined as f(m) = mGT ,

where GT denotes the transpose of G.

Remark. The above-described usage of resilient functions has previously been employed in

the literature on PSMT; see, for example, the function EXTRAND in [87, §4.2]. However,

the connection to resilient functions is not made in [87] or in other papers on PSMT.

3.2.3 Analysis of the HM and JERT Schemes

The HM Scheme

The HM scheme [57] is as follows. Let n − k = 2t. The number of paths controlled by the

adversary is assumed to be at most t. Suppose that there are p node-disjoint paths between

A and B, where 2t < p ≤ k. A chooses a message m = (m0, . . . ,mk−1) and uses a system-

atic (n, k) RS encoding algorithm to generate a codeword c = (m0, . . . ,mk−1, b0, . . . , b2t−1).

m0, . . . ,mk−1 are k information symbols and b0, . . . , b2t−1 are 2t parity check symbols. Let

b = (b0, . . . , b2t−1). Then A creates k (2t + 1)-tuples, each of the form mi ‖ b, and sends

at most t of the (2t + 1)-tuples on each of the p node-disjoint paths (note that this requires

that k ≤ pt, which is not stated as a necessary condition in [57]).

Since there are at most t paths that are controlled by the adversary and p > 2t, B can

use the majority rule to find the correct b. It is then claimed in [57] that B can then recover

m, but the ability to recover m also depends on how many information symbols have been

altered by the adversary. In fact, we show that B may not be able to recover m at all in

many situations. Suppose k > p > 2t (note that it is assumed that 2t < p ≤ k, so we are just

saying that k 6= p). Suppose that each message symbol is transmitted by one path. Then

there is at least one of the p paths, say P0, that is used to transmit at least two message

symbols. If P0 is one of the t paths controlled by the adversary, then the adversary can

alter at least t + 1 message symbols. However, an RS code can only correct t errors, so the

message cannot be recovered by B.

Another problem with the scheme in [57] is that adversary can obtain information about

the message. Recall that the scheme is supposed to tolerate up to t compromised paths.

However, if t paths are controlled by the adversary, then the adversary receives 2t correct

parity check symbols and at least t correct information symbols, and hence by (3.8) the

adversaries collectively are able to recover m when 3t ≥ k (equivalently, when n ≤ 5t).

Even when there is only one path controlled by the adversary, it will receive 2t parity check

symbols and at least one information symbol. Then the entropy of the key is max{k−2t−1, 0}

76

symbols, which could be very low.

We regard it as a weakness in the scheme for A to send all the 2t parity check symbols on

every path, because for decoding of RS codes, a parity check symbol yields the same amount

of information about the message as an information symbol does. Another problem (as noted

in [32]) is that the scheme is quite inefficient due to the amount of repeated information that

is transmitted.

The JERT Scheme

JERT [32] is designed for two neighbouring nodes that have direct but insecure communica-

tion. In this case, A and B can run a challenge-response authentication protocol over this

insecure channel to verify if they share a common secret key. The communication overhead

over the direct link may be neglected.

Here are the details of the scheme. A chooses m = (m0, . . . ,mk−1), encodes it into a

codeword c = (c0, . . . , cn−1), and derives a key K from m. Then A selects p node-disjoint

paths between A and B. A divides the n symbols into R groups. Group j contains rj

symbols. It holds that
R∑

j=1

rj = n.

A sends the n symbols in R rounds. In round j, the rj symbols in group j are sent over the

p paths. For each path i, A computes fraction parameters qi (0 ≤ qi ≤ 1), where

p∑
i=1

qi = 1.

Then A sends rjqi symbols over path i in round j. In each round, if B can recover an m′

using all the received symbols, then B derives a key K ′ from m′, and runs an authentication

protocol with A over their direct link to verify if K = K ′. A keeps on sending the codeword

symbols until the authentication protocol indicates that K ′ = K or until all n symbols are

sent.

The main purpose JERT is for A to send just enough symbols for B to recover K, instead

of transmitting all symbols as in the HM scheme. JERT may be thought of as an adaptive

algorithm, whereas HM is non-adaptive.

The security analysis in [32] discusses three attack scenarios:

1. All adversary nodes are passive. In this case, the probability that a given fraction of

symbols is received by the adversary nodes is computed.

77

2. All adversary nodes are active. In this case, the number of symbols that must be sent

so that B can recover the key is computed.

3. Some adversary nodes are active and some are passive. This case is not analyzed in

[32], where it is stated that an analysis of this case “would be quite complex”.

In our schemes, we consider all possible attack scenarios. First, the adversary cannot

make B accept an incorrect key, even if all the adversary nodes are active. Since B learns

the correct key, K, we only need to consider how much information the adversary can derive

about K. For this analysis, we allow adversary nodes to be active or passive.

3.2.4 Two New Schemes for MPKE Based on Reed-Solomon Codes

In this section, we propose two multi-path key establishment schemes, Protocol 1 and

Protocol 2. These protocols are obtained from a new PSMT protocol based on (n, k) RS

codes. In Protocol 1, as in the HM scheme, A does not receive feedback from B. In

Protocol 2, as in the JERT scheme, A receives feedback from B. For both schemes, we are

interested in finding the optimal choice of (n, k) values such that B can recover a key with

the desired entropy while A only transmits the minimum possible number of bits (i.e., the

transmission overhead is optimized).

As mentioned above, our schemes are based on RS codes over finite field Fq. We assume

that q is fixed and q ≥ n in the chosen (n, k) RS code.

Protocol 1

Here are the details of our first MPKE protocol, which is in fact a 1-round PSMT scheme if

the parameters are chosen appropriately. We refer to this protocol as Protocol 1.

1. A chooses a random message m = (m0, . . . ,mk−1) ∈ F k
q and encodes it into an RS

codeword c = (c0, . . . , cn−1) ∈ F n
q .

2. A sends the n codeword symbols over p pre-specified node-disjoint paths. Note that

the number of symbols sent over any path is either dn
p
e or bn

p
c.

3. B decodes the received symbols to a codeword c′. Then a message m′ is derived from

c′. Finally, a key K ′ is derived from m using a pre-specified key derivation function.

We discuss feasible and optimal choices of (n, k) values in Section 3.2.4.

78

Remark. When B receives a symbol ci, B also needs to know its index i for decoding

purposes (this applies to the HM scheme and JERT as well). This objective could be ac-

complished, for example, if A and B have some synchronization mechanism. In any event,

we assume that B has some reliable means of knowing the index of any received symbol.

Analysis and Optimization Our goal is that the key K (derived from m) has entropy

` symbols if m has entropy at least ` symbols. We will derive conditions to ensure that m

has entropy at least ` symbols. Then the key derivation function is just a (k, `, k− `, q)-RF,

obtained from Corollary 3.2.2. This would provide A and B with an unconditionally secure

key in F `
q .

Suppose there are p node-disjoint paths from A to B and pa of these paths are controlled

by the adversary. Therefore the error rate is e = pa/p. For simplicity, assume that n/p is an

integer. Then in Protocol 1, n/p × pa = ne symbols will be received by adversary nodes.

These ne symbols may be altered or deleted.

First, we derive a condition to ensure reliability (i.e., so that B can correctly compute

the key K). Since altering symbols makes it most difficult for B to recover m, we assume

that these ne symbols are all altered. For B to be able to correctly recover m, the condition

(3.8) becomes

ne ≤ n− k

2
. (3.9)

Observe that (3.9) implies that ne < n/2, so e < 1/2.

Remark. If the scheme satisfies (3.9), then it is already a prefectly reliable message trans-

mission scheme (for a definition, see [87]).

Now we consider secrecy of the transmitted message. In order for m to have entropy at

least ` symbols, we require that

k − ne ≥ `. (3.10)

Using the fact that the desired entropy ` > 0, it can be seen that (3.9) and (3.10) together

imply that
k

1− 2e
≤ n <

k

e
,

which yields e < 1/3.

So hereinafter we assume that e < 1/3. Under this assumption, (3.9) and (3.10) are

equivalent to
k − `

e
≥ n ≥ k

1− 2e
. (3.11)

79

The inequalities in (3.11) provide the conditions under which B can compute a key with

entropy at least ` symbols. Note that (3.11) can equivalently be expressed as follows:

n(1− 2e) ≥ k ≥ ` + ne. (3.12)

Suppose a value ` is fixed. Then we define an ordered pair (n, k) to be e-feasible if (3.11)

(equivalently, (3.12)) is satisfied.

Given ` and e, the set of all e-feasible ordered pairs form a region, a typical example

of which is indicated by the shadowed area in Figure 3.1. The optimal solution will be an

ordered pair of integers (n, k) that is close to the ordered pair (nmin, kmin), which denotes

the intersection of the two lines k = n(1− 2e)and k = ` + ne. It is easy to compute

nmin =
`

1− 3e
and kmin =

`(1− 2e)

1− 3e
. (3.13)

Clearly nmin > 0 and kmin > 0 because e < 1/3. nmin represents the optimal transmission

size in the protocol.

Theorem 3.2.3. Suppose ` is a positive integer and 0 ≤ e < 1/3. Suppose (n, k) is e-

feasible. Finally, suppose that there are p disjoint paths from A to B, where pa = pe of these

paths are controlled by the adversary. Suppose that n/p is an integer. Then Protocol 1

yields an `-secure secret key. The total transmission of Protocol 1 consists of n symbols.

If we apply Protocol 1 with (n, k) = (nmin, kmin), then the transmission overhead is

n

`
=

1

1− 3e
=

p

p− 3pa

,

which is optimal, by (3.6).

Protocol 1 is analyzed in terms of the error rate e. In general, the error rate will not

be known. In practice, Alice and Bob would choose a value e∗ < 1/3 which they hope is

an upper bound on e. They would then execute Protocol 1 with an e∗-feasible ordered

pair (n, k). It is easy to see that an e∗-feasible ordered pair is also e-feasible provided that

0 ≤ e ≤ e∗, so Protocol 1 will still work correctly in these circumstances.

Example. Suppose that e = 1/5, p = 5 and ` = 40. Then we can take n = 100 and k = 40

in Theorem 3.2.3. That is, we obtain a 40-secure key using a (100, 40) RS code under the

assumption that at most one of five node-disjoint paths joining A and B is controlled by the

adversary.

80

)21(enk −=

nelk +=

n

k

Figure 3.1: e-feasible ordered pairs (n, k) for given error rate e and desired key entropy `.

Protocol 2

In Protocol 1, if the actual error rate e < e∗, then the protocol might transmit more

information than is actually necessary; i.e., the efficiency might not be optimal. To reduce

the number of transmitted symbols, A can use feedback from B. This idea was first proposed

in JERT [32]. JERT is designed for two neighbouring nodes that can communicate directly.

It is assumed that the channel connecting A and B is a broadcast channel. Therefore, it

provides data integrity, but no confidentiality or data origin authentication. The lack of

confidentiality or authentication is not a problem, as this channel is used only for message

authentication. We assume a similar channel in our protocol.

Next we define Protocol 2, where B will send feedback to A using the broadcast channel.

Let e∗ be the maximum error rate that the protocol is designed for (i.e., an e∗-feasible ordered

pair (n, k) is chosen for use in the protocol). As before, assume that there are p node-disjoint

paths from A to B and assume for convenience that p | n. In Protocol 2, MAC denotes a

81

secure message authentication protocol.

1. A chooses a random message m = (m0, . . . ,mk−1) ∈ F k
q and encodes it into an RS

codeword c = (c0, . . . , cn−1) ∈ F n
q .

2. In each of n/p rounds, A sends one codeword symbol over each of the p pre-specified

node-disjoint paths.

3. After each round, B attempts to decode the symbols he has received in the current and

all previous rounds to a codeword c′. If he is successful, then a message m′ is derived

from c′ and a key K ′ is derived from m′ using the key derivation function.

4. If B is able to compute a (possible) key K ′, then B start a conventional message

authentication code (MAC) based mutual authentication protocol with A over the

broadcast channel. In the protocol, A and B verify if the peer holds the same key. If

the authentication succeeds, then both A and B stop.

Since we assumed that the broadcast channel provides integrity, the adversary is not

allowed to change the messages between A and B in the authentication protocol. If A

and B have the same key, then the adversary is not able to prevent the authentication

from succeeding. If the adversary does not know the key held by A, it cannot stop

A from sending. If the adversary does not know the key held by B, it cannot stop B

from receiving, either.

Remark. This protocol is also secure against mobile adversaries. (A mobile adversary is

allowed to compromise different nodes in different rounds, subject to the constraint that the

error rate is at most e∗ in any given round.)

Protocol 2 is computationally secure whenever MAC is a computationally secure mes-

sage authentication code. It would be possible to analyze Protocol 2 in the setting of un-

conditional security, by employing an unconditionally secure message authentication code.

This analysis would be required to take into account the fact that usage of a key in an un-

conditionally secure MAC “leaks” information about the key. However, as noted in Section

3.2.1, a “practical” MPKE scheme will not be unconditionally secure, so we do not pursue

this theme further here.

Analysis First, let us consider the properties of security and reliability. It is certainly

possible that B computes an incorrect key, but he will not accept a wrong key (except with

very small probability) due to the mutual authentication protocol. Eventually, after some

82

number of rounds, B will be able to compute the correct key provided that e ≤ e∗ (for

details, see below). Therefore Protocol 2 achieves reliability. Secrecy follows from the

same analysis as for Protocol 1.

Next, we analyze the efficiency of Protocol 2 by determining the number of rounds

required for B to be able to compute the correct key K. After r rounds, B has received rp

symbols, at most rpe of which have been altered. The number of symbols which have not

yet been transmitted to B is n − pr. Thus B has a received vector in which ε ≤ per and

δ = n− pr. Referring to (3.8), B can correctly decode this received vector if

2rpe + n− pr ≤ n− k,

which is equivalent to

r ≥ k

p(1− 2e)
. (3.14)

Therefore the correct key is computed by B after at most dk/(p(1− 2e))e rounds. It follows

that the speedup factor of Protocol 2 as compared to Protocol 1 is

1− 2e∗

1− 2e
.

If e = e∗, then the number of rounds required is dk/(p(1− 2e∗))e. If e = 0, then the number

of rounds required is dk/pe.
Summarizing the above discussion, we have the following theorem.

Theorem 3.2.4. Suppose ` is a positive integer and 0 < e ≤ e∗ < 1/3 and suppose (n, k)

is e∗-feasible. Suppose that there are p disjoint paths from A to B, where pa = pe of these

paths are controlled by the adversary. Then Protocol 2 yields an `-secure secret key. The

total transmission of Protocol 2 consists of (roughly) n(1− 2e∗)/(1− 2e) symbols.

Remark. In practice, B would not attempt to decode the received vector after every round.

The exact error rate e = pa/p, where pa ≤ pe∗ is an integer. Using (3.14), we see that it is

sufficient for B to decode a received vector only when a round r has the form

r =

 k

p
(
1− 2i

p

)
 =

⌈
k

p− 2i

⌉

for some integer i ≥ 0.

83

3.2.5 A Scheme Tolerating Error Rate < 1/2

Both of our protocols described in Section 3.2.4 assume that the number of paths controlled

by the adversary is less than a 1/3 fraction of the number of paths connecting A and B. A

higher fraction (less than 1/2) of paths controlled by the adversary could be tolerated by

using appropriate message transmission schemes mentioned in Section 3.2.1. These schemes

either require additional rounds of communication or they are not perfectly reliable. They

are also somewhat complicated and/or inefficient. In this section, we present a new 2-round

protocol for a weakened version of message transmission that is very simple and efficient,

and well-suited for application as a MPKE scheme. Our protocol will be computationally

secure provided that certain specified ingredients exist.

Our scheme has the following properties:

• We assume that A and B are joined by p node-disjoint paths, at most pa of which are

controlled the adversary, where p ≥ 2pa + 1.

• We require a mapping h : K → T , where K is the key component space and T is the

tag space. We will take K = Fq for some prime power q ≥ p.

• The scheme is perfectly reliable if h is injective (in this case, the scheme enables A

and B to establish a shared key K ∈ K with probability equal to 1 independent of any

computationl assumptions). The scheme is (computationally) reliable if h is second-

preimage resistant.

• Under the assumption that h is a random function, the scheme provides secrecy of

the established key. (For a random function, a computationally-bounded adversary is

unable to compute any non-negligible information about a secret value L, when the

adversary is given only the value h(L).)

• The scheme is a two-round scheme.

Here is the protocol, which we term Protocol 3.

1. For 1 ≤ i ≤ p, A chooses a key component Li ∈ K independently and uniformly at

random. Then A computes hi = h(Li), i = 1, . . . , p.

2. For 1 ≤ i ≤ p, A sends Li over the ith path. Also, for 1 ≤ i, j ≤ p, i 6= j, A defines

hi,j = hi and sends hi,j over the jth path.

84

3. (a) For 1 ≤ i ≤ p, B computes

check(i) = {j : hi,j = h(Li)}.

(b) B accepts Li if and only if |check(i)| ≥ p− pa − 1.

(c) B defines

accept = {i : B accepts Li}

and n = |accept|.

(d) B defines m = (Li : i ∈ accept).

(e) B computes K = f(m), where f is an (n, p−pa, n− (p−pa), q)-resilient function.

4. B transmits accept to A over every one of the p paths.

5. (a) A determines accept, as it will be correctly received over at least p − pa paths

(i.e., a majority of the paths).

(b) A computes m and K exactly as B did.

Remark. As described above, Protocol 3 is not a message transmission scheme due to

the fact that the value of the derived key, K, is not specified a priori ; its value depends

on possible actions of the adversary. This is sufficient for the goals of an MPKE scheme.

However, if desired, it is easy to use a standard trick to make a minor alteration to our

scheme in order to transmit a predetermined key K∗ from A to B. Namely, the protocol

would be initiated by B (instead of A), and in the second round, A would send K∗ + K to

B along with accept.

Remark. In practice, we could take h to be a second preimage-resistant and one-way hash

function. Another alternative is to let h be a semantically secure public-key cryptosystem

with randomly chosen public key, in which case h would be injective.

Analysis

First, we show that if B accepts a key component Li, then it was not altered by the adversary.

Suppose that the adversary replaces Li by a different value L′
i. Assuming that h is injective,

we have that h(L′
i) 6= h(Li). In order for the adversary to make B accept L′

i (in step 3(b)),

he would have to change at least p − pa − 1 of the p − 1 values hi,j (j 6= i). But if the

adversary controls pi. then the adversary controls at most pa − 1 of the other p − 1 paths.

We have pa− 1 < p− pa− 1 because p ≥ 2pa + 1. Therefore, in this situation, the scheme is

perfectly reliable.

85

If h is not injective but it is second-preimage resistant, then a computationally-bounded

adversary is unable to find L′
i such that h(L′

i) = h(Li), even if such L′
i exist. The scheme is

(computationally) reliable in this case.

It remains to evaluate the secrecy of the derived key K. First, we observe that if the

adversary does not control the ith path, then he cannot determine any information about the

key component Li. This is because we are assuming that h is a random mapping. Now, let r

denote the number of rejected key components; r = p− a. Any rejected key component lies

on a path controlled by the adversary. Therefore the number of accepted key components

that lie on paths controlled by the adversary is at most pa − r = n − (p − pa). Now, the

n-tuple m contains at most n−(p−pa) components that are known to the adversary. Hence,

application of a (n, p− pa, n− (p− pa), q)-resilient function will yield a key whose entropy is

p− pa symbols. This resilient function exists by Corollary 3.2.2.

Finally, A is also able to compute K because A is able to correctly determine the set

accept after receiving p copies of it from B (at most pa of these copies are altered by the

adversary, so the correct accept can be determined by majority rule).

Let’s next analyze the transmission overhead of the scheme. For the purpose of this

analysis, assume that |K| is Θ(|T |). Then the derived key has entropy p − pa symbols and

the total transmission from A to B is Θ(p2) symbols. The total transmission from B to A is

p2 bits (the set accept can be represented as a bitstring of length p). Since q ≥ p, this is at

most p symbols. So the total transmission is Θ(p2) symbols, and the transmission overhead

is at most

Θ

(
p2

p− pa

)
.

Since p− pa > p/2, the transmission overhead is Θ(p).

Theorem 3.2.5. Suppose ` is a positive integer and 0 ≤ e < 1/2. Suppose that there are

p disjoint paths from A to B, where pa = pe of these paths are controlled by the adversary.

Then Protocol 3 yields a (p− pa)-secure secret key. The total transmission of Protocol 3

consists of Θ(p2) symbols, and the transmission overhead is Θ(p).

86

Chapter 4

RFID Authentication Protocols

4.1 Polynomial Based RFID . 86

4.1.1 Description . 86

4.1.2 Security Analysis . 88

4.1.3 Performance . 97

4.2 Rabin Encryption based Protocol . 98

4.2.1 Security of Paddings . 98

4.2.2 WIPR . 101

4.2.3 Improvements . 104

4.3 Forward and Backward Privacy . 111

In this chapter, we study RFID authentication protocols. In Section 4.1, we present a

new polynomial based RFID authentication protocol in Section 4.1.1, and give its security

analysis in 4.1.2 and performance analysis in 4.1.3.

In Section 4.2, we review short padding attacks and secure paddings in Section 4.2.1,

then we analyze WIPR in Section 4.2.2. In Section 4.2.3, we present WIPR-SAEP, a WIPR

variant secured using SAEP padding, and WIPR-RNS, a WIPR variant based on residue

number systems which uses fewer hardware gates.

In Section 4.3, we analyze an RFID identification scheme, and show how to ensure forward

and backward untraceability of RFID authentication protocols by using a robust PRBG.

87

4.1 Polynomial Based Protocol

4.1.1 Scheme Description

In this section, we present our RFID protocol. We assume that there are N tags and one

reader (here the reader refers to an entity consisting of the actual reader, the database that

stores the tag information, and perhaps an application server which processes the data). We

also assume that a tag is capable of generating random bits, computing cryptographic hash

functions, and modular multiplication over a field F2l . Such tags would fall into the category

of symmetric-key tags in [61].

Initial Setup

The initial setup configures the reader and the tags as follows.

• Choose an l-bit block cipher and a secret key. Let E be the encryption function and

D be the decryption function.

• Generate m random bivariate polynomials f1(x, y), . . . , fm(x, y) over a finite field F2l .

The degree of x and y in each fi is at most k.

• Assign the m polynomials to the reader.

• For tag i, 1 ≤ i ≤ N , compute xi = E(i) as its meta ID, then

– store m univariate polynomials f1,i(y) = f1(xi, y), . . . , fm,i(y) = fm(xi, y) in the

tag in a randomly permuted order.

– Set a counter c to 0.

– Set an interrogation threshold Qmax, which is the maximum number of queries

that the tag will answer correctly.

– Set a number b, which will be used in the protocol.

• Choose a secure hash function h : {0, 1}∗ 7→ {0, 1}l which will be used by readers and

tags.

Note that the meta ID xi is not stored in the tag or the reader. We will discuss the parameter

selection for l,m, b, k, and Qmax in the analysis and performance sections.

88

Authentication

The authentication process between a reader and a tag i is as follows.

1. The reader generates r ∈ F2l uniformly at random, then sends r to the tag.

2. If c > Qmax, then the tag responds with b random points in F2l × F2l . Otherwise, the

tag does the following:

(a) Generate r′ ∈ F2l uniformly at random, and compute y′ = h(r||r′).

(b) Choose g from {f1,i, . . . , fm,i} randomly, and compute z′ = g(y′).

(c) Generate b − 1 pairs of points (r1, z1) . . . , (rb−1, zb−1) ∈ F2l × F2l uniformly at

random.

(d) Send the b points (r′, z′), (r1, z1), . . . , (rb−1, zb−1) to the reader in a random order.

(e) Set c = c + 1.

3. After receiving the b points, for each point (r′, z′) and each polynomial f ∈ {f1, . . . , fm},
the reader solves the equation z′ = f(x, h(r||r′)). The reader needs to solve mb such

equations, and each equation generates up to k solutions. If any solution x is a valid

meta ID; i.e., 1 ≤ D(x) ≤ N , then the reader identifies the tag ID as D(x).

Remark. In Step 2 (b), to pick a polynomial, the tag can use two different approaches.

One is random choice and the other is random permutation. In random choice, each time,

the tag chooses one polynomial from the m polynomials uniformly at random. In random

permutation, the choice of g in m consecutive authentication sessions is a random permuta-

tion of the m polynomials assigned to the tag. In the following parts, we assume the random

permutation approach.

Correctness

If the reader receives b points from a valid tag with ID i, then one of the points (r′, z′) will

satisfy z′ = f(E(i), h(r||r′)) for a polynomial f ∈ {f1, . . . , fm}. At the reader side, E(i) will

be the solution of x to the equation z′ = fj(x, h(r||r′)). So the valid tag will be correctly

identified.

The server will also get up to mbk− 1 other solutions in one authentication session. The

distribution of the meta IDs can be considered to be uniformly at random in F2l , so the

89

probability that one or more of these solutions happen to be valid meta IDs is estimated to

be

1−
(

1− N

2l

)mbk−1

. (4.1)

4.1.2 Security Analysis

In this section, we analyze the security and privacy properties of our protocol. Recall that

in the attack model, the adversary can eavesdrop and query any tag, compromise some

tags, reset the tags, and change the messages between a tag and a reader. The goal of the

adversary is to impersonate or trace the uncompromised tags.

Query and Recovery

First, we consider the query-and-recovery attack. In this attack, the adversary repeatedly

queries a tag, collects the responses, and then tries to recover the polynomials assigned to

the tag. This is an intermediate step toward impersonation and tracing.

Our security analysis for the query-and-recovery attack is based on the hardness of the

noisy polynomial interpolation problem, which is related to the well-known polynomial recon-

struction problem. Next we present existing results about these problems in the literature,

followed by our analysis.

Preliminary First we review the polynomial reconstruction (PR) problem [63] and the

noisy polynomial interpolation (NPI) problem [81].

Definition 4.1.1. (Polynomial reconstruction)

Input: Integers k and t, and T points {(xi, yi) : i ∈ [1, T]} where xi, yi ∈ F2l.

Output: All univariate polynomials P of degree at most k such that P (xi) = yi for at

least t values i ∈ [1, T].

The fastest algorithm known to solve this problem is the Guruswami-Sudan algorithm

[52]. It solves the problem when t >
√

Tk in time polynomial in T . When t ≤
√

Tk, the

current state of knowledge suggests that the problem may be difficult even in the light of

recent extensions of list decoding or average case decoding for related families of codes [63].

A variant of the PR problem, denoted as the noisy polynomial interpolation (NPI) prob-

lem, is as follows:

Definition 4.1.2. (Noisy Polynomial Interpolation)

90

Input: S sets of points generated as follows: Pick a random polynomial P over F2l of

degree at most k. Generate S ≥ k + 1 sets, each containing B points. The x coordinate of

each point is randomly chosen from F2l subject to the condition that all x values are distinct

and different from 0. In each set there is exactly one point (x, y) which satisfies y = P (x).

For the other B − 1 points, the y coordinate is chosen randomly.

Output: the polynomial P .

The NPI problem is presented in [81]. A previous version of this problem was presented in

[80] in which the points in the same set all have the same x coordinate. In [15], Bleichenbacher

and Nguyen show that having the same x coordinate allows meet-in-the-middle attacks and

lattice attacks. However, it is unknown how to employ these attacks against NPI. It appears

that, although there is more information given in NPI than in the PR problem, NPI may be

as hard as the PR problem.

Parameter Selection for NPI In [81], Noar and Pinkas also proposed a cryptographic

assumption based on the NPI problem. They assumed that, if S, B and k are polynomial in

the security parameter and S <
√

SBk, then the problem is hard. Here we further analyze

the security level under concrete parameter settings.

First we review the analysis of parameter choices for the PR problem in [62]. In [62], the

best approach to solve the PR problem is assumed to be one of the two choices: (1) choose

k + 1 points to recover a polynomial and then test all
(

T
k+1

)
polynomials, or (2) delete d

points, where t >
√

(T − d)k, and use the GS algorithm on the remaining T − d points. We

call the first approach exhaustive search; its idea is clear. The idea of the second approach

is to delete d points. If all the d points are not on the polynomial P , then it happens that

t >
√

(T − d)k so that GS will output the proper P . We call this approach exhaustive

deletion.

We note that the idea of exhaustive search and exhaustive deletion can be generalized to

selecting n points where k + 1 ≤ n ≤ T . We use this generalized idea for the NPI problem

and consider the following new probabilistic algorithm A as shown in Algorithm 7 to solve

NPI.

choose n sets of points

choose β points from each set

use the nβ points as input to the GS algorithm, and output all polynomials of degree

at most k that fit at least k + 1 points.
Algorithm 7: A

91

Note that A may output more than one polynomial. If P is among them, we consider A

successful in solving the problem.

Let PNPI(S, B, k, n, β) be the probability that P will be outputted. Let t be the number

of points in the set of nβ points that satisfy y = P (x). It is clear that 0 ≤ t ≤ n and t follows

a binomial distribution with parameters (β
B

, n). If t >
√

nβk, then P will be outputted. It

holds that

PNPI(S, B, k, n, β) = Pr[t >
√

nβk] (4.2)

=
n∑

i=b
√

nβkc+1

Pr[t = i]

=
n∑

i=b
√

nβkc+1

(
n

i

) (
β

B

)i (
1− β

B

)n−i

.

Remark. Note that, when β = 1 and n = k + 1, the algorithm becomes an exhaustive

search and

PNPI(S, B, k, k + 1, 1) =

(
1

B

)k+1

.

When β = B, the algorithm is deterministic for given n. In this situation, if n ≤ Bk, then

b
√

nBkc+ 1 > n so that PNPI(S, B, k, n,B) = 0. If n > Bk, then

PNPI(S, B, k, n,B) =
n∑

i=b
√

nBkc+1

(
n

i

)
0n−i = 1.

Regarding the hardness of NPI, we make the following assumption to estimate the con-

crete security level.

Assumption 4.1.3. Let

AdvNPI
S,B,k = max{PNPI(S, B, k, n, β) : 1 ≤ β ≤ B, k + 1 ≤ n ≤ S}. (4.3)

Let n0, β0 be the optimal choices of n, β for A to achieve AdvNPI
S,B,k. Let τ be the running time

of A using n0, β0. We assume that no algorithm can solve NPI with probability greater than

AdvNPI
S,B,k using time at most τ .

AdvNPI
S,B,k can be estimated as

AdvNPI
S,B,k = max

{(
1

B

)k+1

, PNPI

(
S, B, k, S,

⌈
S

k

⌉
− 1

)}
(4.4)

92

Figure 4.1: PNPI when S ≥ Bk

.

Discussion on NPI and Exhaustive Search and Deletion. We discuss the optimal

choices of n and β for A to achieve AdvNPI
S,B,k. It is difficult to give an analytic result, so here

we discuss this question based on some simulations.

Figure 4.1 shows PNPI(S, B, k, n, β) as a function of n and β for 1 ≤ n ≤ Bk, 1 ≤ β ≤ B,

B = 21 and k = 5. We see that when n approaches Bk and β approaches B, PNPI increases

sharply to 1. That indicates that if there are enough sets of points (s ≥ Bk), then the

adversary can easily recover the polynomial.

Figure 4.2 shows PNPI(S, B, k, n, β) as a function of n and β for 1 ≤ n ≤ S, 1 ≤ β ≤ B,

B = 5, k = 5 and S = 83 ≤ Bk. There are two points that have peak values among their

vicinities in the graph. One is at n = k + 2 and β = 1, the other is at n = 83 = S and

β = 13.

We note that, if we use the exhaustive search approach, we will choose n = k + 1 and

β = 1, and then we have PNPI(S, B, k, k + 1, 1) = 0.1 × 10−7 which is lower than the peak

value where PNPI(S, B, k, k + 2, 1) = 0.8× 10−7, but the difference is small in view of their

magnitudes. Also, the point (n = k + 1, β = 1) for exhaustive search is close to that for the

peak value at (n = k + 2, b = 1).

If we take the exhaustive deletion approach, then we will choose n = S = 83, β =

dS
k
e−1 = 16, and have PNPI(S, B, k, 83, 16) = 0.4×10−8 which is lower than the other peak

value PNPI(S, B, k, 83, 15) = 0.4× 10−7, but difference is small in view of their magnitudes.

Also the point for exhaustive search (n = 83, β = 16) is close to that for the peak value at

93

Figure 4.2: PNPI when S < Bk

.

(n = 83, β = 15).

The above observation leads to the conjecture that, for S < Bk, the results of exhaustive

search and exhaustive deletion are close to the best strategy for the adversary. Then the

advantage of the adversary may be estimated as

AdvNPI
S,B,k = max

{(
1

B

)k+1

, PNPI

(
S, B, k, S,

⌈
S

k

⌉
− 1

)}
. (4.5)

Security Under Query-and-Recovery Now we relate the difficulty of the query-and-

recovery attack to the difficulty of solving the NPI problem.

Recall that in the protocol, to answer a challenge r, the tag computes z′ = g(h(r||r′))
where r′ is a random number generated by the tag. h(r||r′) can be considered as random to

the adversary. This point (z′, r′) is sent along with b − 1 other random points. In a query-

and-recovery attack, the adversary queries a tag Q times. In every consecutive m queries,

the tag uses each of its m polynomials once and in a random order. The problem for the

adversary is to recover these polynomials after Q queries. We have the following result.

Theorem 4.1.4. Suppose Assumption 4.1.3 holds. If the adversary queries a tag Q times

(where we assume that m|Q), then the probability that it can recover any polynomial of the

tag within time τ is at most

1

m
AdvNPI

Q/m,mb−m+1,k. (4.6)

94

Proof. We reduce an NPI problem with parameters (S = Q/m,B = mb − m + 1) to a

query-and-recovery problem. We choose m − 1 random polynomials. For each polynomial,

we generate Q/m points from Q/m random x values, and put the Q/m points in the Q/m

sets. This becomes a query-and-recovery problem of Q queries, m polynomials of degree k,

and b points in each answer, and with probability 1/m, the polynomial recovered by the

adversary is the answer to the NPI problem.

Given ε, m, b, and k, there is a Qmax such that for Q ≤ Qmax, it holds that

AdvNPI
Q/m,mb−m+1,k ≤ ε.

Therefore, Qmax is the maximum number of queries allowed for one tag. Qmax can be

estimated as

Qmax ≈ ((b− 1)m2 + m)k (4.7)

Equation (4.7) indicates that Qmax increases linearly with m2 and k. mk indicates the

memory overhead to store the m polynomials of degree k in a tag. Qmax also increases

linearly with b, which indicates the communication overhead and the number of random

points the tag needs to generate.

Compromise and Recovery

In this attack, the adversary compromises some tags, obtains the polynomials assigned to

these tags, and tries to recover the bivariate polynomials used in the server side. This is an

intermediate step toward impersonation and tracing.

First we express the polynomial assignment in the form of a matrix computation. Let

X =


1 x1 . . . x1

k

. . .
. . .

1 xn . . . xn
k

 ,

where x1, . . . , xn are the meta IDs assigned to the n tags. Let M1, . . . ,Mm be (k+1)×(k+1)

matrices, which are matrix representations of the bivariate polynomials f1, . . . , fm. Let

Yi = XMi. Then Yi is an n× (k + 1) matrix, and row j of Mi corresponds to the univariate

polynomial generated using fi and assigned to tag j.

We use M [r] to denote the rth row of a matrix M , and M [r][c] to denote the entry at the

rth row and cth column of M . It is clear that Yj[i] = X[i]Mj, and the univariate polynomials

assigned to tag i are Y1[i], . . . , Ym[i].

95

For the adversary to recover an Mi, it is necessary to know Yi. Suppose the adversary

obtains Yi. He then needs to solve the following system of n(k+1) equations with n+(k+1)2

unknown variables:

Yi[r][c] =
k∑

j=0

xr
jMi[j][c], (4.8)

where 0 ≤ r ≤ n− 1, 0 ≤ c ≤ k.

A necessary (but maybe not sufficient) condition to solve (4.8) is n ≥ (k+1)2

k
. We assume

that when n ≥ (k+1)2

k
, the adversary can solve (4.8) in a practical time period τ .1

However, when Y1[i], . . . , Ym[i] are assigned to the tag xi, their order is randomly per-

muted. So by compromising n tags, the adversary does not know which n polynomials in

the n tags are generated from the same M . We assume that the best he can do is to draw

one polynomial from each tag as a row of Yi, and solve x1, . . . , xn and Mi in (4.8). With

probability 1/mn−1, the polynomials in Yi are generated from the same bivariate polynomial

f . Therefore, we estimate that the probability that the adversary can compute one Mi in

time τ is

AdvCR =
1

mn−1
(4.9)

≤ 1

m

⌈
(k+1)2

k

⌉
−1

= m−k−2.

Remark. After the adversary has compromised n tags, if he also knows the meta IDs

x1, . . . , xn of the tags, then he can use the GS algorithm to recover M1, . . . ,Mm. However,

when x1, . . . , xn are unknown, the GS algorithm is no longer applicable, and we assume that

there is no efficient algorithm to solve the problem. It is worthwhile to further investigate

the validity of this assumption.

Man-in-the-middle Attacks

In this attack, the adversary can modify the messages between the tag and the reader. We

consider the following specific attack. The adversary modifies one of the b points returned

1(4.8) is a system of nonlinear polynomial equations. For general systems of nonlinear polynomial equa-
tions where the number of unknown variables u equals the number of equations v, there is no efficient
algorithm. If the system is overdefined; i.e., v > u, then the linearization technique may sometimes be used
to solve the problem efficiently [29]. But for (4.8), the linearization technique does not work. On the other
hand, we cannot rule out the possibility that the special form of (4.8) may make some efficient algorithms
possible. Here we assume that (4.8) can be solved efficiently. This assumption may underestimate the
security of the protocol.

96

by the tag. If the reader rejects the tag, then the adversary knows that the modified point is

on one of the tag’s polynomials. After repeating the attack mb(k + 1) times, the adversary

gathers (k + 1) of points (on average) for each of the polynomials of a tag. However, the

adversary does not know which k + 1 points are for the same polynomial. If the adversary

randomly chooses k +1 points, then the probability that they are on the same polynomial is

m(
m(k+1)

k+1

) . (4.10)

If the adversary tries to use the GS algorithm to solve the problem, then it needs to repeat

the attack q times where

q

bm
>

√
qk

b
.

It requires that

q > m2bk. (4.11)

Reset Attacks

In this attack, the adversary can reset a tag’s internal state. This attack may be effective

if a tag uses a pseudorandom number generator, and the pseudorandom number generator

repeats its output when its internal state is reset. When the tag uses a true random number

generator, or a pseudorandom number generator with certain properties, then the reset

attack does not work (see Section 4.3 for examples). In this protocol, we assume that proper

pseudorandom number generator is used and the protocol is secure under reset attacks.

Impersonation

In the impersonation attack, the adversary tries to impersonate a uncompromised tag to a

reader. In the RFID literature, this is often named counterfeiting or cloning. Since cloning

implies replicating a tag, we think that impersonation may describe the goal of the adversary

better. For example, the adversary may combine the information gathered from a tag to

generate new messages to impersonate a tag, or use the information gather from one tag to

impersonate another tag. In both cases, the adversary tries to cheat the reader in a way

other than by replicating. After receiving a challenge r, to make the reader accept it as a

valid tag, the adversary A needs to generate a point (r′, z′) such that z′ = g(h(r||r′)) where

g is a polynomial assigned to the tag. As we have analyzed, the adversary cannot learn the

polynomials assigned to a tag by querying a tag or compromising other tags. Since A does

not know g, he cannot compute z′ by evaluating g(). Then A may choose a z′ previously

97

generated by the tag. A can do this in a probabilistic way: after observing a query and

response from the tag, A randomly picks one point from the response. With probability

1/b, A gets r0, r
′
0, and z′0 where z′0 = f(h(r0||r′0)). Then A needs to find r′ such that

h(r||r′) = h(r0||r′0). When r is a random challenge, and the hash function h() is modelled as

a random oracle, then the probability that A chooses r such that h(r||r′) = h(r0||r′0) is

Pr[h(r ‖ r′) = h(r0 ‖ r′0)] (4.12)

= Pr[h(r ‖ r′) = h(r0 ‖ r′0) ∧ r = r0] + Pr[h(r ‖ r′) = h(r0 ‖ r′0) ∧ r 6= r0]

≤ Pr[r = r0] + Pr[h(r ‖ r′) = h(r0 ‖ r′0)|r 6= r0]

=
1

2l
+

1

2l

=
1

2l−1
.

A may just send random points and hope that at least one of them satisfies z′ =

f(x′, h(r||r′)) for a polynomial f ∈ {f1, . . . , fm} and a valid meta ID x′. The probabil-

ity that this happens is similar to (4.1).

Tracing

Now we consider the tracing problem. Suppose that the adversary observes or participates

in two authentication sessions as a reader. The problem for the adversary is to tell if the

two sessions involve the same tag.

The output of a tag is b points. b − 1 of them are random points, and only one point

(r′, g(h(r||r′))) contains the information related to the tag. As we have analyzed, the ad-

versary cannot learn the polynomials of an uncompromised tag. Without knowing g, only

when y1 = h(r||r′1) = y2 = h(r||r′2), can the adversary tell that two points (y1, g(y1)) and

(y2, g(y2)) are generated by the same polynomial. When r′1 and r′2 are generated by the tag

at random, and the hash function h() is modelled as a random oracle, the probability that

the adversary can trace a tag by its response is

Pr[h(r||r′1) = h(r||r′2)] ≤ Pr[r′1 = r′2] + Pr[h(r||r′1) = h(r||r′2)|r′1 6= r′2] (4.13)

=
1

2l
+

1

2l

=
1

2l−1
.

Note that if a tag has been queried more than Qmax times, and the adversary can get

more information than the tag’s response (i.e., if an authentic reader accepts the tag), then

the adversary may trace the tag.

98

4.1.3 Performance

We discuss the performance of the protocol under a concrete parameter setting. We set

l = 64, m = 16, k = 8, b = 8, and Qmax = 13700.

Security and Privacy

The security and privacy provided by the protocol is as follows.

• The adversary queries a tag and tries to recover the secret polynomials held by the

tag. In each trial, the probability that the adversary can succeed is at most 2−56 (by

(4.6)).

• The adversary compromises several tags and tries to determine the secret bivariate

polynomials held by the server. In each trial, the probability that the adversary can

succeed is at most 2−40 (by (4.9)).

Note that, with probability 2−40, the adversary only obtains a correct system of non-

linear equations. The system consists of (k +1)2 +k +3 unknowns and (k +1)2 +k +3

equations; i.e., 92 equations in 92 unknowns. It is not clear whether there is any

efficient algorithm to solve the system.

• The adversary performs the man-in-the-middle attack as described in 4.1.2. The ad-

versary needs a tag to be queried 16384 times to collect sufficient points (by (4.11)) to

recover the tag’s polynomial with probability 1, or it requires less queries but succeeds

in each trial with a successful probability 2−42 (by (4.10)).

• The adversary tries to compute a valid response using messages previously generated

by a tag. In each trial, the probability that the adversary can succeed is 2−63 (by

(4.12)).

• The adversary answers a query with random responses. In each interaction with the

reader, the probability that the adversary is identified as a valid tag is at most 2−22

when N ≤ 232 (by (4.1)). On average, the adversary will succeed once if it tries this

attack 222 times. However, the adversary can only launch this attack when it is queried

by a legitimate reader.

• The adversary tries to determine if two responses are from the same tag. For each pair

of responses from one tag, the probability that the adversary succeeds is at most 2−63

(by 4.13).

99

• The adversary launches a Denial of Service (DOS) attack against a tag by repeatedly

querying a tag. After being queried for 13700 times, a tag cannot be accepted by

an authentic reader. In addition, an adversary may be able to trace the tag using

information in addition to the tag’s response, e.g., if the tag is accepted by an authentic

reader.

Tag

In each session, a tag needs to generate 2b−1 random numbers in F2l , evaluate a polynomial

of degree k over F2l , and compute a hash function. Random number generation and hash

computation have been used in most previous symmetric-key based RFID protocols (e.g.,

[82], [56], [35]). The tag needs to store m polynomials over F2l , each of degree k. So it

needs to store m(k + 1) items of size l. For m = 16, k = 8, l = 64, it takes a 9216-bit

ROM, corresponding to 9216 gates in hardware. Using Horner’s rule, it takes k modular

multiplication over F2l to evaluate a polynomial of degree k. A 64-bit modular multiplier

takes several hundred gates in hardware. Therefore, in our protocol, a tag needs about

10000 more gates in hardware than a regular tag capable of hashing computation. As a

comparison, a basic RFID tag with low security require a couple of thousands of gates [61],

a hash function or a block cipher requires several thousands of gates [17], and about 20000

gates are required to implement an ECC processor for RFID tags to perform public key

computations [47].

Server

The server stores m bivariate polynomials of degree k. This requires m(k + 1)2l/8 ≈ 10K

bytes of memory.

In each session, for each bivariate polynomial f(x, y) and each received point (z′, r′),

the reader needs to solve an equation z′ = f(x, h(r||r′)). Then it checks if the roots are

valid meta IDs. There are efficient algorithms to solve polynomials over finite fields, e.g.,

Berlekamp’s algorithm [12] and the Cantor-Zassenhaus algorithm [23]. After a meta ID is

computed, it takes constant time to check if it is valid. Solving the polynomials dominates

the total time in an authentication process.

We implemented the reader algorithm based on NTL [1]. On a P4 3.2G PC with 1G

RAM running Linux, when m = 16, k = 8, b = 8, and l = 64, the running time using the

Cantor-Zassenhaus algorithm in average case (solving mb/2 polynomials of degree k on F2l

where l = 64) is about 0.1 seconds for one query.

100

Scalability

N (the maximum number of tags) is at most l bits. N is also limited by the false positive

probability given in (4.1). Given the fixed parameters m = 16, k = 8, b = 8, and l = 64,

when the false positive probability is less than 2−22, N can be as large as 232, which is

sufficient for almost all conceivable applications. Therefore the protocol is highly scalable.

Comparison

We compare our protocol with OSK/AO [5]. Both protocols are secure and untraceable, and

both are designed to solve the key search problem to provide good scalability.

Time and Space. OSK/AO has a query threshold Qm, which is the length of its hash

chain. OSK/AO needs to store a precomputed table of size M . The time for each query

follows the rule

T = µ
(NQm)2

M2

where µ is a constant. For N = 220, Qm = 128, and M = 1GByte, OSK/AO takes 0.004

milliseconds for one query. However, when the number of tags increases, without increasing

the table size, the time increases fast. Let M, Qm be fixed, and let T1, T2 be the time for tag

number N1, N2 respectively. It holds that

T2 =

(
N2

N1

)2

T1.

If we consider a system of N = 232 tags, then, OSK/AO will take 67 seconds for one query,

using an 1G bytes precomputed table. As a comparison, our protocol takes 0.1 seconds and

10K bytes memory in the server.

Query Threshold. In OSK/AO, if a tag is queried more than Qm = 128 times by an

adversary between two queries by an authentic server, then the tag cannot be recognized by

an authentic reader. In our protocol, if a tag is queried a total of Qm = 13700 times, then it

cannot be recognized by an authentic reader. In OSK/AO, the time for one query increases

in Qm
3 (instead of Qm

2). In our protocol, the time increases in
√

Qm. Therefore, the query

threshold Qm in our protocol is much higher. However, OSK/AO does not have a limit on

the total number of queries for a tag, although it is more susceptible to tag disable attacks

where an adversary repeatedly queries a tag in a short time. On the contrary, our scheme is

more resilient to tag disable attacks, but there is a limit on the total number of times that

a tag can be queried. Which approach is better depends on how frequently a tag is queried.

For example, in a library RFID system where a tag may be queried several times a day, the

101

OSK/AO scheme may be desirable. In some other applications such as e-passport where a

tag is queried every several weeks or months, our protocol may be preferable.

Tag Hardware. The main drawback of our protocol compared to OSK/AO may be the

hardware cost on the tag side, which is about 10000 more gates in hardware. As a comparison,

it can be estimated that in an OSK/AO protocol, a tag may need 4000 gates, of which 2000

are for basic RFID functions and 2000 are for a hash function.

4.2 Rabin Encryption based Protocol

4.2.1 Security of Paddings

Hereinafter, we use |x| to denote the length of a bit string x, and we use x||y to denote the

concatenation of strings x and y.

Integer Factoring Problem. Let N = pq where p and q are large primes and |p| ≈ |q|.
The factoring assumption says that given N , for any polynomial time (in |N |) algorithm A

and any polynomial Q, for sufficiently large |N |, it holds that Pr[(p, q) = A(N)] < 1/Q(|N |);
i.e., it is infeasible to factor N in polynomial time (in |N |) with nonnegligible probability.

|N | = 1024 is often chosen in practice.

Rabin Function. Let (N, p, q) be the parameters in the factoring assumption, and in ad-

dition, p ≡ 3 mod 4 and q ≡ 3 mod 4. The Rabin function computes y = x2 mod N, x ∈
Z∗

N . The Rabin function is a trap-door one-way function in that given y = x2 mod N ,

without (p, q), to find x such that y = x2 mod N is as hard as factoring N . With (p, q), x

can be computed in polynomial time. Note that there are four distinct x values such that

x2 = y mod N : ±x and ±αx where α is a nontrivial square root of 1 mod N (i.e., α2 = 1

mod N and α 6= ±1 mod N). Given x and αx, one can factor N [102, §5.8].

Randomized Rabin Function. Shamir [94] and Naccache [79] simultaneously proposed

a randomized Rabin function. Instead of computing y = x2 mod N , the randomized Rabin

function computes y = x2+rN where r is a random number. The randomized Rabin function

is as secure as the Rabin function when |r| is big enough (|r| ≥ |N | + 80 is recommended).

The ways to compute y = x2 + rN in [94] and [79] are different. In [94], the numbers x, r

and N are represented using a regular number system and the multiplication is conventional

multiplication. In [79], the numbers are represented in a residue number system (RNS) and

the multiplication is RNS multiplication. An RNS has a list of coprime numbers p1, . . . , pm.

Each number x ≤
∏m

i=1 pi is represented as a list of m numbers xi = x mod pi. To compute

102

z = x + y in RNS, one computes zi = xi + yi mod pi. To compute z = xy in RNS, one

computes zi = xiyi mod pi. Note that the resulting z should be in the range 0 ≤ z ≤
∏m

i=1 pi.

Given the RNS representation (x1, . . . , xm), x can be computed using the Chinese Remainder

Theorem [102, §5.2.2].

The randomized Rabin encryption is as secure as the Rabin encryption if |r| − |N | is

sufficiently large. Usually it is recommended that r is 80 bits longer than N [94].

Short Padding Attacks. To use the Rabin function to encrypt a message m where |m| <
|N |, some kind of padding is necessary. Some padding schemes are vulnerable to attacks

based on the following result by Coppersmith [28]:

Theorem 4.2.1 (Coppersmith Theorem). Let N be an integer and let f(x) ∈ ZN [x] be a

monic polynomial of degree d. Then there is an efficient algorithm (denoted as Coppersmith

algorithm) to find all x0 ∈ Z such that f(x0) = 0 mod N and −N1/d < x0 < N1/d.

In [28], several attacks are identified for the RSA function with short padding and a small

encryption key (i.e., y = x3 mod N). The same attacks apply to the Rabin function as well

(i.e., y = x2 mod N). We list these attacks, and rewrite them for the Rabin function as

follows.

1. The padding function is x = c||m where c is known to the adversary and |m| < |N |/2.

Given the ciphertext y = (c||m)2 mod N , m can be computed as follows:

Let C = 2|m|c. Then it holds that

y = m2 + 2Cm + C2 mod N. (4.14)

(4.14) is a univariate polynomial in m of degree 2 (mod N). Since |m| < |N |/2, m can

be computed using the Coppersmith algorithm.

2. The padding function is x = r||m where r is a random string and |r| < |N |/4. Given

two ciphertexts y1 = (r1||m)2 mod N and y2 = (r2||m)2 mod N for the same plain-

text m, m can be computed as follows:

Let R1 = 2|m|r1, R2 = 2|m|r2, x1 = m + R1, ∆ = R2 −R1. Then we have

x1
2 − y1 = 0 mod N (4.15)

(x1 + ∆)2 − y2 = 0 mod N (4.16)

where x1 and ∆ are unknowns.

103

x1 can be eliminated from (4.15) and (4.16) by taking their resultant2, and it is easy

to verify that the resultant equals to 0:

ρ(x1
2 − y1, (x1 + ∆)2 − y2) (4.17)

= ∆4 − 2∆2y2 − 2y1∆
2 + y1

2 − 2y1y2 + y2
2

= 0 mod N.

(4.17) is a univariate polynomial in ∆ of degree 4 (mod N). Since |∆| < |N |/4, ∆ can

be computed using the Coppersmith algorithm.

From (4.15) and (4.16) we have

(x1 + ∆)2 − x1
2 = 2x1∆ + ∆2

= y2 − y1 mod N,

then we can solve for x1 and compute m by parsing x1 = r1||m.

SAEP Padding. In [19], Boneh proposed Simple OAEP (SAEP), a padding scheme for

Rabin function which is provably secure in the sense that breaking the Rabin-SAEP scheme

leads to factoring N . The SAEP padding is as follows: x = m||o ⊕ h(r)||r where r is a

random string, |r| > |N |/2, o is a string of 0’s, |m| < |o|, and h is a hash function. The

Rabin-SAEP encryption provides semantic security under chosen ciphertext attacks, which

implies semantic security under chosen plaintext attacks, meaning that even if the adversary

can choose the plaintext m, he is not able to distinguish the ciphertext from a random string

of the same size. The security proof is in the random oracle model which assumes h to be a

random oracle. The proof is based on the Coppersmith Theorem.

The connection between our work and the above related work is as follows. WIPR is

closely related to Shamir’s randomized Rabin function using a simple padding, which may

be vulnerable to the short padding attacks. One of our improvements to WIPR is to use

RNS computation, which is similar to Naccache’s randomized Rabin function. The other

improvement is to use a secure padding similar to SAEP.

4.2.2 WIPR

WIPR was proposed in [85].

2The resultant of two monic polynomials P and Q is defined as

ρ(P,Q) =
∏

(x,y):P (x)=0,Q(y)=0

(x− y).

104

Description

Setup. Let (p, q, N) be the parameters of the Rabin function and let |N | = 1024. In the

scheme, RFID tags are provided with the public key N and a reader is provided with the

secret key (p, q). Each tag is assigned with an ID.

Challenge. Reader generates a random bit string c where |c| = 128, and sends c to the tag.

Response. The tag generates a random bit string r, and computes x = MIX(c||r||ID)

where MIX is a simple byte-interleaving operation. The tag generates a random number r′

where |r′| = 1024 + 80, then computes y = x2 + r′N , and sends y to the reader.

Verify. The reader solves x2 mod N = y mod N for x. There are four roots. The reader

checks if one of the roots contains c. If such a root is found, then the reader parses the root

and finds ID.

WIPR is designed to provide the following properties:

• Secrecy. An adversary observing a protocol exchange between a reader and a tag

cannot learn anything about the ID of the tag.

• Full backward and forward privacy. An adversary cannot determine whether a tag was

a part of any past or future protocol exchange it has recorded, even if the adversary

knows the ID of the tag.

The framework of WIPR is the same as Shamir’s randomized Rabin function in [94]. The

main novelty in WIPR is to use a reversible stream cipher to generate a long pseudorandom

string on the fly which can be accessed forward and backward. The design of the reversible

stream cipher is as follows. Let si be the ith state of the stream cipher. To transfer to the

next state, the cipher computes si+1 = si−1 ⊕ f(si) where f is a one-way function. The

cipher can also transfer to the previous state by computing si−1 = si+1 ⊕ f(si). WIPR uses

a boolean function to implement the oneway function f . The authors of WIPR noted that

the boolean function is somewhat insecure.

WIPR did not specify some details of the scheme such as the MIX function and the sizes

of ID and r. The authors of WIPR noted that the parameter sizes need to be fine-tuned,

based on the relative strengths of attacks against the scheme’s various subcomponents.

105

Analysis

Short Padding Attacks Against a Reduced WIPR WIPR uses a padding scheme

x = MIX(c||r||ID) before computing y = x2 mod N .3 We consider a reduced version of

WIPR where the MIX function is not used (i.e., x = (c||r||ID)). We discuss how the length

of r affects the security of the protocol.

First, we show that, if |r| < |N |/4 = 256, then an adversary can compute the ID of

a tag after querying the tag twice. The adversary queries the tag twice with the same

challenge c, and receives y1 = (c||r1||ID)2 mod N and y2 = (c||r2||ID)2 mod N. The

number x = c||r||ID can be expressed as x = ac + br + ID where a = 2|ID|+|r| and b = 2|ID|.

Let x1 = ac + br1 + ID and let ∆ = (r2 − r1). Then the adversary has

x1
2 = y1 mod N

(x1 + b∆)2 = y2 mod N

and he can solve for ∆ and x1 as shown in case (2) of the short padding attacks in Section

4.2.1. Then ID can be found within x1.

Next, we show that, when |r| < |N |/2 = 512, the scheme does not provide forward or

backward privacy. Suppose the adversary gets a tag ID at some time. To tell if a message

(c, y) observed at some other time involves this same ID, the adversary solves the equation

y = (ac + br + ID)2 mod N

for r using the Coppersmith algorithm. If (c, y) is generated using the ID; i.e., y = (c||r||ID)2

mod N for some r where |r| < |N |
2

, then according to the Coppersmith Theorem, the adver-

sary can compute this r and verify that y = (c||r||ID)2 mod N . In this case, the adversary

concludes that (c, y) is generated by this ID. In the other case where y is generated from

another tag ID′; i.e., y = (c||r′||ID′) for some r′, we show that there does not exist an r

such that (c||r||ID)2 mod N = y. If such an r exists, then it can be computed using the

Coppersmith algorithm. Now we get two square roots of y: x1 = c||r′||ID′ and x2 = c||r||ID.

It is unlikely that x1 = −x2 since ID and ID′ are independent, thus we can factor N using

x1 and x2. Therefore, in this case, the Coppersmith algorithm will not output r such that

|r| < 512 and (c||r||ID)2 mod N = y. Upon this result, the adversary can conclude that

(c, y) is not related to the ID. Therefore, the adversary can successfully tell if the message

(c, y) is related to a given ID. This attack is based on case (1) of the short padding attacks

in Section 4.2.1.

3The tag actually computes y = x2 + rN . It is equivalent to y = x2 mod N in view of both functionality
and security. In the analysis, we use the notation y = x2 mod N for simplicity.

106

Parameter Choice for WIPR Two basic countermeasures can be taken in WIPR to

withstand the short padding attacks.

• use a random padding with a length greater than 512 bits. In this case, even without

a MIX function, the above short padding attacks do not work.

• use a MIX function to spread the random padding into at least three separated blocks,

e.g., MIX(c||r||ID) = (r1||ID||r2||c||r3) where r = r1||r2||r3. In this case, even when

|r| < 256, the above short padding attacks do not work, either. Note that if r is

separated into only two blocks, an attack is still possible, although the computation is

more complicated and results are not guaranteed [28].

It is reasonable to assume that longer random paddings and more separated padding blocks

are more resistant to the short padding attacks. In practice, c is 128 bits and we assume

that ID is 128 bits, then r is 768 bits. A MIX function may divide r into 32 3-byte blocks,

and insert one byte of c||ID after each block (note that both the input and output of MIX

are generated on the fly).

Reset Attacks In WIPR, a reversible stream cipher is designed to extend a short random

string to a long pseudorandom string. Three such ciphers are used in WIPR. We note that the

reversible stream cipher only serves to extend a short random seed to a long pseudorandom

string for one identification session. One seed is needed for each individual session. Therefore,

an additional random bit generator is needed for WIPR. We denote this random bit generator

as RBG1.

To ensure the security and privacy properties of WIPR, RBG1 should be resistant to reset

attacks, where the adversary can reset a tag’s internal state to its initial state. Reset attacks

have been considered for standard identification protocols in the smartcard setting [7], and

they have recently been considered for RFID systems [16]. If RBG1 is a pseudorandom bit

generator (PRBG), and its output only depends on a secret initial seed, then the output

of RBG1 can be repeated after resetting. In this case, the adversary can recover the tag

ID as follows. The adversary resets the tag, queries it with c1, and gets the response y1 =

(MIX(c1||r||ID))2 mod N . The adversary resets the tag again, queries it with c2, and gets

the response y2 = (MIX(c2||r||ID))2 mod N . The adversary chooses c1 and c2 such that

they differ at only one bit. Suppose this bit is the ith bit bi in x = MIX(c||r||ID) = x1||bi||x2,

and bi = 1 in c1. Then the adversary can solve

y1 = (x1||0||x2 + 2i)2 mod N

y2 = (x1||0||x2)
2 mod N

107

for x1||0||x2 and recover ID.

If RBG1 is a true random bit generator, then the reset attack does not work. When

RBG1 is a PRBG, one way to avoid the above reset attack is to let the output of the RBG1

depend on the challenge c. In this case, the above reset attack does not work, either.

We note that, if RBG1 is a PRBG, then to ensure the forward and backward privacy of

the protocol, the PRBG should also provide forward and backward security. More detailed

discussion of these issues can be found in [110].

4.2.3 Improvements

When the padding length is long enough and the MIX function is properly designed, WIPR

can be considered secure based on the fact that, despite considerable research interest over

the last 30 years, there is still no way of performing Coppersmith-type attacks on ciphertexts

in which c (known), r (random padding), and m (secret) are sufficiently mixed. However, as

for any cryptographic protocol, “provable security” is usually preferable to security based on

“no known attacks”. Recall that, provable security means that, in a given security model,

breaking the protocol leads to solving some hard problem, e.g., the integer factoring problem.

An essential building block of WIPR is the reversible stream cipher. The reversible

stream cipher uses 1238 gates, which is highly lightweight and is critical for WIPR to be

useful on RFID tags. However, as a cryptographic primitive, the reversible stream cipher has

not received extensive public scrutiny, and hence, it may raise concerns about its security.

It would be desirable to substitute it with a well-studied cipher. Also, we are interested in

investigating possible ways to further reduce the hardware cost of WIPR without affecting

its security.

Next, we propose two approaches to improve the security and to reduce the hardware

cost of WIPR. The first is a secure padding based on SAEP. The resulting scheme is denoted

as WIPR-SAEP. The major additional hardware cost for WIPR-SAEP is a hash function.

WIPR-SAEP is provably secure in the sense that violating the security and privacy of the

scheme leads to factoring N . The second improvement is to change the way to compute

multiplication. We use RNS as in Naccache’s randomized Rabin function [79]. The resulting

scheme is denoted as WIPR-RNS. In WIPR-RNS, we replace the three reversible stream

ciphers in WIPR with one regular stream cipher, hence we reduce the hardware cost and

provide a better security guarantee. These two approaches can be used together, if desired.

108

ID 0

h(r)

r

(ID||0) c h(r)

h

r

c

ID 0

h(r)

r

(ID||0) h(r)

h

r

Rabin-SAEP Padding WIPR-SAEP Padding

Figure 4.3: Rabin-SAEP and WIPR-SAEP Padding

WIPR-SAEP

Description We assume that the total number of tags is 2s where s < 64. This would be

sufficient for any conceivable application. The padding scheme is as follows:

x = (c⊕ (ID||o)⊕ h(r))||r

where h() is a hash function, |h()| = 128, |r| = 1024−128, o is a string of 0, and |o| = 128−s.

This padding is exactly the SAEP padding except that the additional parameter c has been

included. Figure 4.3 illustrates the WIPR-SAEP padding and the Rabin-SAEP padding. The

tag then computes y = x2 +r′N and sends y to the reader. The reader solves x2 mod N = y

mod N for x, parses x as x′||r where |x′| = 128, then computes x′′ = x′ ⊕ h(r) ⊕ c. If the

low-order 128− s bits in x′′ are 0, then the high-order s bits comprise the ID.

109

As in WIPR, x needs to be generated on the fly and in two directions. In WIPR-SAEP,

x is generated as follows. First, h(r) is computed. Note that a hash function processes its

input in multiple iterations, and the input is divided into contiguous fix-sized blocks. In

each iteration, one block is read and processed. This allows r to be generated on the fly

instead of being stored in RAM. Next, (c ⊕ (ID||o) ⊕ h(r)) is computed and stored in the

RAM holding c. Then, x can be generated on the fly in two directions by regenerating r on

the fly in two directions. Computation of x2 + r′N is the same as in WIPR. Compared to

WIPR, WIPR-SAEP only needs one additional hash function.

Security Analysis We describe the following game to define the security and privacy of

WIPR-SAEP. The notations r and o are the same as in the description for WIPR-SAEP.

Since a randomized Rabin encryption is as secure as a conventional Rabin encryption, we

will only write the encryption function as y = x2.

WIPR-SAEP Game

• The adversary chooses two tags ID0 and ID1, and he sends (ID0, ID1) to the chal-

lenger. The challenger chooses a random bit b.

• This step repeats n times: The adversary chooses a random challenge c and sends c

to the challenger. The challenger chooses a random r, computes x = ((IDb||o) ⊕ c ⊕
h(r))||r, computes y = x2, and sends y to the adversary.

• The adversary outputs b′. If b′ = b, then the adversary wins.

It is clear that, if the adversary cannot win the game, then he cannot track a tag even if he

knows the tag ID. Also the adversary cannot recover the ID by querying a tag.

We give a (sketch) proof that, when the hash function h is modelled as a random oracle,

if the adversary can win the game, then the challenger can factor N . The challenger returns

the adversary’s hash queries and identification queries. Without loss of generality, we assume

the challenger chooses m0 in the game, and computes x0 = ((m0||c)⊕ h(r))||r and y = x0
2.

For each y, there exists another square root x1 6= x0, where x1 = ((m1||c) ⊕ h(r′))||r′ for

some r′ and h(r′) values. Because (mb||c) is masked by h(r) or h(r′), if the adversary can

have any information about mb, it must have queried h(r) or h(r′), and with 1/2 probability,

h(r′) is queried. In this case, the challenger knows r′, h(r′), and c. Only |m1| consecutive

bits in x1 are unknown to the challenger. Let x1 = u||v where u is the block of unknown bits

and v is the block of known bits. Since |u| = |m1| < |N |/4 in the protocol, the challenger

can solve y = (u||v)2 for u, and then recover x1. With x0 and x1, the challenger can factor

N .

110

We conclude that if the factoring problem is hard, then the adversary cannot win the

WIPR-SAEP game. WIPR-SAEP is secure against tracking even when the tag ID is dis-

closed; i.e., it provides forward and backward privacy, and the adversary cannot recover an

ID by querying a tag.

Hash Function Selection WIPR-SAEP requires a hash function. For RFID tags, block

cipher based hash functions are better candidates than dedicated hash functions such as

SHA1 and MD5 [42], [17]. One example of such a hash function is H-PRESENT-128, which

provides 128 bit output and requires 2330 hardware gates [17]. Some other hash functions

dedicated to highly constrained devices provide other options. SQUASH-128 [95] is a keyed

hash function that takes as input a 64 bit key and a 64 bit message, and outputs a 32 bit

message authentication code (MAC). It is expected that SQUASH-128 requires about half of

the number of the gates required by GRAIN-128 [54], which requires 2133 gates. Although

SQUASH-128 cannot be directly used in WIPR, very low cost 128-bit hash functions using a

similar design may be possible. By using the H-PRESENT-128 hash function, WIPR-SAEP

requires a total of 5705 + 2330 = 8035 gates in hardware.

WIPR-RNS

WIPR-RNS aims to reduce the hardware cost of WIPR and to remove the 1238-gate re-

versible stream ciphers used WIPR, which we consider to be a non-standard cryptographic

primitive. Also the authors of WIPR noted that the boolean function used to construct the

reversible stream cipher is somewhat insecure. In [79], RNS is used in the randomized Rabin

function. But the goal of [79] is to reduce the time complexity, and several measures are

used at the cost of additional ROM space. Here we use RNS to reduce the hardware cost of

WIPR, and substitute the three reversible stream ciphers in WIPR with one regular stream

cipher.

Description First, we give a high level description of WIPR-RNS. Let p1, . . . , pm be m

coprime integers such that |
∏m

i=1 pi| > 2048 + 80. p1, . . . , pm form the basis of an RNS. A

tag receives a challenge c, generates x. Then the tag computes and sends y = x2 + r′N in

RNS as in Algorithm 8.

After receiving y1, . . . , ym, the reader can recover y and proceed with the verification

process.

Next, we describe in detail the data representation and computation in Algorithm 8.

A regular stream cipher is used to generate r and r′ on the fly. Note that in Algorithm

111

for i=1..m do
xi = x mod pi

r′i = r′ mod pi

Ni = N mod pi

send yi = xi
2 + r′iNi mod pi

end

Algorithm 8: x2 + r′N in WIPR-RNS

8, r and r′ do not have to be reversible as in WIPR. Therefore, a regular stream cipher is

sufficient for WIPR-RNS. We may choose Grain [55] as the selected stream cipher. Grain

uses about 1300 gates and may be the most efficient stream cipher without known flaws.

For the pi’s, we choose the 127 largest 16-bit primes and a set of 16-bit integers {64526,

64541, 64829, 64843, 65463, 65477, 65509}. It can be verified that the integers in the set are

coprime. Therefore, the seven selected integers and the 127 primes are coprime and form the

basis of an RNS. In this RNS, we can express integers less than 22048+93, which is sufficient

for WIPR-RNS. After these 134 coprime numbers are ordered, the difference between any

two consecutive numbers is less than 15. Therefore, the 134 16-bit numbers can be stored in

16 + 4× 133 = 548 bits in ROM, which costs 548 gates.

The tag computes x = MIX(c||r||ID) on the fly the same way as in WIPR, except that

x is generated in one direction, from most significant bit to least significant bit. Therefore,

the reversible stream cipher in WIPR used to generate r in two directions can be replaced

with a regular stream cipher.

To compute xi = x mod pi, x is generated on the fly as described above, and xi is

computed using plain modular reduction.

N is stored in ROM as in WIPR. It is loaded in RAM on the fly and Ni is computed

using plain modular reduction.

yi = xi
2 + r′iNi mod pi is computed using regular multiplication and plain modular

reduction.

The above algorithm uses a 32-bit adder and subtractor and a 16-bit multiplier, while

the result is 2048+80 bits in length.

Analysis We compare WIPR and WIPR-RNS which uses WIPR padding in hardware cost

and computational efficiency. Since we have not implemented WIPR-RNS in hardware, we

only give an approximate estimation.

In WIPR-RNS, we use one regular stream cipher to generate r and r′, and remove the

three reversible stream ciphers in WIPR. This saves about 2500 gates. WIPR-RNS needs

112

an additional 548 gates to store the RNS basis. The computing units (adder, subtractor,

multiplier, and RAM to hold temporary results) may need several hundred more gates than

WIPR. We estimate that more than 1000 gates can be saved in WIPR-RNS. Therefore, the

estimated hardware cost of WIPR-RNS is 5705− 1000 ≈ 4700 gates.

For time complexity, we compare the number of bit add/substract operations in comput-

ing y = x2 + r′N . Let L be the length of x, N and r′. Let l be the length of pi. To compute

x2 +r′N as shown in Algorithm 8, the program runs m = L/l rounds. In each round, it takes

3(L−1)l bit operations to compute xi, r
′
i, and Ni using plain modular reduction, and 3l2 +2l

bit operations to compute xi
2 + r′iNi mod pi. Therefore, the number of bit operations in

WIPR-RNS is approximately

L

l
(3(L− l)l + 3l2) = 3L2.

In WIPR, it is approximately 2L2. We estimate that WIPR is about 1.5 times faster than

WIPR-RNS.

Combining SAEP and RNS

WIPR-SAEP and WIPR-RNS use two different approaches to improve the security of WIPR.

WIPR-SAEP uses a secure padding, and WIPR-RNS replaces the non-standard stream ci-

pher with a standard stream cipher. These two approaches can be combined together. The

combined approach is the same as WIPR-RNS, except that it computes x = (ID||o) ⊕
c ⊕ h(r)||r instead of x = MIX(c||r||ID). x is generated the same way as described in

WIPR-SAEP.

In Table 4.1, we give a summary of the security and the estimated hardware costs of

WIPR-SAEP, WIPR-RNS, and WIPR-SAEP-RNS compared with WIPR. We assume that

WIPR-SAEP uses a H-PRESENT-128 hash function.

Number of Gates Security

WIPR 5705 No proof

WIPR-SAEP ≈ 8000 Proof

WIPR-RNS ≈ 4700 No proof

WIPR-SAEP-RNS ≈ 7000 Proof

Table 4.1: Summary of hardware cost and security

113

4.3 Forward and Backward Privacy

Pseudorandom Bit Generator Random bit generation is very important in cryptogra-

phy. However, true random bit generators rely on physically random processes, and hence

they are inefficient or expensive in most practical environments. It is therefore more common

to use pseudorandom bit generators (PRBG) in practice.

A standard (cryptographic) PRBG is a deterministic algorithm which, when given a truly

random binary input of length n, outputs a binary sequence of length polynomial in n, say

p(n), which “appears” to be random. The input to the PRBG is called the seed, while the

output of the PRBG is called a pseudorandom bit sequence. A standard PRBG is secure, if

when given the first l < p(n) bits of the output of the PRBG, it is infeasible in polynomial

time (in n) to predict the next bit of the output ([76], [102]).

A robust PRBG provides additional security beyond a standard PRBG. In [6], Barak

et al. propose a formal model and an architecture for robust PRBG, which satisfies the

following properties of forward security and backward security4: (1) backward security: past

output of the PRBG looks random to an adversary, even if the adversary learns the internal

state at a later time. (2) forward security: future output of the PRBG looks random to an

adversary with knowledge of the current state, provided that the PRBG is later refreshed

with data of sufficient entropy. Similar properties and constructions can be found in [2] from

NIST.

One example of standard PRBG is a block cipher with a secret key working in counter

mode; i.e., if Ek() is a block encryption scheme with secret key k, then the output is si =

Ek(i), i = 1, 2, · · · . Such a PRBG is a standard PRBG if the block cipher is secure, but it is

not a robust PRBG.

Another example of standard PRBG is a keyed hash function with a secret key in output-

feedback mode. Let hk() be a keyed hash function with secrete key k and an initial input

s0, the output is si+1 = hk(si), i = 0, 1, · · · . Such a PRBG is not a robust PRBG, either.

In [98], the definition for a PRBG refers to the standard PRBG. It is worthwhile to

point out that, in order to achieve forward untraceability and backward untraceability, the

S-M scheme in [98] needs to use a PRBG stronger than the standard PRBG. In Section

4.3.1, we show that if a standard PRBG is used in the scheme, then the scheme may fail to

provide forward untraceability and backward untraceability. We also construct an example

of a robust PRBG for the S-M scheme to ensure its desired untraceability features.

4In [6], forward security means that past output is secure, while backward security means that future
output is secure. Here we switch the two names to be consistent with the terminology we use in this paper.

114

4.3.1 Analysis Of The S-M Scheme

Scheme Description We briefly recall the S-M scheme which is described in [98]. fk()

is a keyed hash function with key k. h() is a hash function. x � y denotes the operation

that right rotate-shifts x by y bits and x� y denotes the operation that left rotate-shifts x

by y bits. l is the length of the parameters in the scheme.

Initially, for each tag Ti, the server stores its identifier (ui, ti). ui is a unique secret for

Ti and ti = h(ui). The value ti is stored in the tag. An identification session takes place as

follows.

1. The reader sends a random challenge r1 to the tag.

2. The tag generates a random r2, computes M1 = ti ⊕ r2, M2 = fti(r1 ⊕ r2), and sends

(M1, M2) to the reader.

3. The reader forwards (r1, M1, M2) to the server.

4. The server searches for a tag Ti such that ti satisfies M2 = fti(r1⊕r2) where r2 = M1⊕ti,

computes M3 = ui ⊕ (r2 � l/2), and sends M3 to the reader. The server also updates

ui and ti as follows: ui(new) = (ui � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r2, ti(new) = h(ui(new)).

5. The reader forwards M3 to the tag.

6. The tag computes ui = M3 ⊕ (r2 � l/2). If h(ui) = ti, then the tag updates ti as

follows: ti = h((ui � l/4)⊕ (ti � l/4)⊕ r1 ⊕ r2).

To perform the above protocol, a tag needs to generate random numbers. [98] cites a

definition for PRBG which is just a standard PRBG.

Forward Untraceability We review forward untraceability as defined in [72] and [98]:

at time τ , the adversary reveals the internal state of the tag Ti. At time τ ′ > τ , the

tag performs a transaction with the server and the adversary does not eavesdrop on this

transaction. Forward untraceability means that the adversary cannot tell if a transaction at

time τ ′′ > τ ′ involves the tag Ti.

We show that, if the PRBG used by the tag is not a robust PRBG, then the scheme

does not achieve forward untraceability. To be concrete, we assume the block cipher based

PRBG described in Section 4.3. Suppose at time τ , the adversary reveals the internal state

of a tag, including its value ti and the internal state of its PRBG. At some time τ ′ > τ ,

115

the tag has a transaction without being eavesdropped by the adversary. After time τ ′, the

adversary observes multiple transaction messages.

Given the internal state (k and i) of the PRBG that the adversary obtained at time τ ,

the adversary can compute a sequence of n future outputs of the PRBG, where n is an upper

bound on the maximum number of times that the tag could have invoked its PRBG since

time τ . If any value r in this sequence and any observed message (r1, M1, M2, M3) after τ ′

satisfies fM1⊕r(r1⊕r) = M2, then the adversary can deduce that the message involves the tag

Ti. In addition to identifying the tag, the adversary can further compute the ti used in the

observed transaction as well as the updated ti after this transaction: ui = M3 ⊕ (r � l/2),

current ti = h(ui), and updated ti = h((ui � l/4) ⊕ (ti � l/4) ⊕ r1 ⊕ r). Therefore, the

adversary can launch more attacks, e.g., to impersonate the tag or clone the tag.

Backward Untraceability We review backward untraceability as defined in [72] and

[98]: at time τ , the adversary reveals the internal state of the tag Ti. Backward untraceability

means that the adversary cannot tell if a transaction at time τ ′ < τ involves the tag Ti.

Given the internal state (k and i) of the PRBG that the adversary obtained at time τ ,

the adversary can compute a sequence of i previous outputs of the PRBG. The adversary

has also observed multiple transactions before time τ . If any r value in the computed output

sequence and any observed message (r1, (M1, M2), M3) satisfies fM1⊕r(r1 ⊕ r) = M2, then

the adversary can deduce that the message involves the tag Ti.

Using Robust PRBG In The S-M Scheme It is clear that, for the S-M scheme to

achieve forward untraceability and backward untraceability, the PRBG used in the tags

needs to be forward secure and backward secure. We can follow the construction in [6] or

[2] to build a robust PRBG for the tags. An example of a robust PRBG is based on a block

cipher working in counter mode. Let k be the secret key. Each time the PRBG is invoked,

s = Ek(i) is outputted as the random bits, the key is updated as k = Ek(i + 1), and the

counter i increases. The PRBG also refreshes its key as k = k ⊕ r1 each time a random

challenge r1 is received from the reader.

Now we briefly analyze the case when k and i are revealed at time τ . First we consider

backward traceability. If E is a secure block cipher, then it is infeasible to find the previous

keys it used; without the previous keys, it is infeasible to distinguish its previous output

from a random number. Therefore backward untraceability of the schemes is preserved.

Next we consider forward traceability. Suppose in a certain transaction after τ , the

adversary does not observe the messages, including r1. Then the adversary does not know

116

the updated key and thus he cannot predict the future outputs of E. Therefore, forward

untraceability of the schemes is preserved.

Remark. We note that the backward security of the robust PRBG is sufficient but not

necessary for the backward untraceability of the S-M scheme. Suppose the PRBG based

on keyed hash function given in Section 4.3 is used in the S-M scheme. Given si and k at

time τ , the adversary can tell if a given value x was generated by the PRBG by computing

x1 = hk(x1), x2 = hk(x2), · · · and checking if si appears in the sequence. Therefore, this

PRBG does not provide backward security. But given si and k at time τ , the adversary

cannot compute any previous output of the PRBG. The attack described above for block

cipher based PRBG does not work for the keyed hash based PRBG. However, we note that

that the L-K scheme in [72] does need a robust PRBG to ensure its backward untraceability

because the output of the PRBG is sent in plaintext.

117

Chapter 5

Conclusion and Future Work

5.1 Summary . 117

5.2 Future Work . 119

5.1 Summary

In this thesis, cryptographic protocols, sensor network key management, and RFID authen-

tication protocols were studied. The results are summarized as follows.

Cryptographic Protocols. We discussed the security model for deterministic two-move

identification protocols. With the deterministic provers in such protocols, we simplified the

CR2 model in [7] which captures concurrent attacks and reset attacks. Then we proposed

an extremely simple identification protocol and proved that its CR2 security is equivalent to

the hardness of the Strong Diffie-Hellman problem.

We proposed two AKE protocols that have efficient online computation and tight security

proofs in the eCK model. Previous AKEs provide either efficient computation (e.g., MQV,

HMQV, CMQV), or tight security proof (e.g., NAXOS, NETS), but not both. As an example,

CMQV uses 2.17 exponentiations in computation, but does not have a tight security proof.

NETS has a tight security proof, but it takes three exponentiations in computation. We

prosed an AKE named SMEN whose online computation takes 1.25 exponentiations, close

to that (1.17 exponentiations) of MQV, HMQV, and CMQV. The security reduction of

SMEN is as tight as that of NAXOS in the eCK model. The NAXOS trick is used in the

design of SMEN. We also proposed SMEN−, which does not use the NAXOS trick. SMEN−

118

takes 1.29 exponentiations in online computation. Without the NAXOS trick, SMEN− may

be more resilient to static private key leakage. Both SMEN and SMEN− achieve efficient

online computation and tight security reduction at the cost of one more exponentiation in

offline computation and a longer message, and the limitation that one party is not allowed

to establish a key with itself.

We showed that ElGamal encryption is OW-CCA1 under the strong generalized knowledge-

of-exponent assumption (SGKEA) and the delayed-target discrete log assumption (DTDLA),

and its security is equivalent to the hardness of the delayed-target computational Diffie-

Hellman (DTCDH) problem. For DEG, we gave a simple proof that DEG is IND-CCA1

secure under the delayed-target decisional Diffie-Hellman assumption. We proposed a deci-

sional DHK1 assumption (DDHK1), and proved that DHK1 implies DDHK1 and DEG is

IND-CCA1 secure under the DDHK1 and DDH assumptions.

Sensor Network Key Management. We studied κ-edge-connectivity for two types of

KPS and the resulting DSNs. We proved the κ value for a deterministic TD-type KPS, and

we estimated the κ value for a random KPS, and validated the result using simulation. We

also estimated and validated the κ values for DSNs constructed from TD-type KPSs and

random KPSs. This approach may help to analyze the expected performance of other types

of KPS and the DSNs constructed from them.

We also used simulations to validate the assumption that the block graph of a random

KPS and its intersection with a random geometric graph can be modelled as a random graph,

in that they are κ-edge-connected whenever the minimum node degree is κ. It would be de-

sirable to prove the connections between the minimum node degree and κ-edge-connectivity

of these graphs.

We proposed an enhanced security model to capture attacks against multi-path key es-

tablishment schemes in sensor networks. We identified two security objectives, which we

term reliability and secrecy, that should be achieved. We observed that these objectives

could be realized using perfectly secure message transmission schemes.

We proposed a new, optimal one-round PSMT scheme using Reed-Solomon codes, and

we constructed two new multi-path key establishment schemes based on it. Both MPKE

schemes achieve the desired objectives in an efficient manner. The second protocol potentially

reduces the communication complexity in some cases by using feedback involving a message

authentication code. Both of these protocols assume that the number of adversary-controlled

paths is less than a 1/3 fraction of the number of paths connecting A and B.

We described another MPKE scheme that tolerates a higher fraction (less than 1/2) of

paths controlled by the adversary. This scheme is based on a new protocol for a weakened

119

version of message transmission, which is very simple and efficient.

RFID Authentication Protocols. We proposed a novel RFID protocol to solve the key

search problem in RFID identification protocols. In previous RFID protocols, a hash-chain

is used to achieve good privacy. In such protocols, to identify a tag, a server needs to search

a table of size NQ, where N is the number of tags and Q is the length of the hash chain.

The search takes either Θ(NQ) time or Θ(NQ) memory, and therefore it does not scale

well. A time-memory tradeoff technique can mitigate the scalability problem. However,

with the time-memory tradeoff, either the time or the space is still at least Θ((NQ)2/3).

In our protocol, the server “solves”, instead of “searches”, for a tag ID. The protocol is

based on polynomial operation, and its security and privacy is based on the difficulty of

reconstructing a polynomial with noisy data. The protocol supports very large NQ values.

In our demo implementation where N = 232, Q = 13700, the server takes 0.1 seconds and

10K bytes memory to identify a tag. As a comparison, a hash-chain protocol enhanced with

time-memory tradeoff will take 67 seconds with the support of a 1G byte pre-computed table.

At the same time, our protocol preserves security and privacy.

We analyzed the security and privacy of the WIPR RFID authentication protocol and

proposed two approaches to improve its security and to further reduce its hardware cost.

We showed that a reduced version of WIPR is vulnerable to short padding attacks, and

WIPR is vulnerable to reset attacks if its PRBG is not properly chosen. We discussed

countermeasures to withstand these attacks by properly specifying some details of WIPR.

Then we proposed two variants of WIPR, namely, WIPR-SAEP and WIPR-RNS. WIPR-

SAEP used SAEP padding to achieve provable security and privacy. WIPR-RNS used RNS

computing to reduce the hardware costs of WIPR, and replaced the non-standard reversible

stream cipher in WIPR with a standard stream cipher. The two approaches, SAEP padding

and RNS computing, can be used together.

We analyzed an RFID identification scheme which is designed to provide forward un-

traceability and backward untraceability. We showed that, if a standard pseudorandom

bit generator (PRBG) is used in the scheme, then the scheme may fail to provide forward

untraceability and backward untraceability. To achieve these untraceability features, the

scheme can use a robust PRBG which provides forward security and backward security.

120

5.2 Future Work

Authenticated Key Exchange. The SMEN and SMEN− AKE protocols achieve compu-

tational efficiency close to that of MQV, but they have some limitations. First, they should

use a group G in which it is efficient to verify if x ∈ G for a given x. A prime order elliptic

curve group is such a group. To check if x ∈ G, it would suffice to verify that x is a point on

the elliptic curve and that x is not the point at infinity. However, if G is a subgroup of Z∗
p

where p is a large prime and G has a prime order q, then, to check if x ∈ G, we need to check

if xq = 1. In this case, SMEN and SMEN− need to compute one exponentiation more than

MQV does in online computation to check if the received ephemeral public keys are valid,

because there is one more ephemeral public key in SMEN/SMEN− than in MQV. Second,

SMEN and SMEN− do not allow a party to establish a key with itself. It would be desirable

to remove these limitations without affecting the efficiency and secrecy of the protocols.

A previous open problem for AKE protocols is to find a protocol that is as efficient as

MQV and as secure as NAXOS [105]. This problem is not completely solved yet. At the

same time, the presentation of SMEN− suggests a more difficult but reasonable problem.

SMEN− lowers the risk of leaking the static private key in NAXOS and it also has a security

reduction tighter than NAXOS. Therefore, SMEN− can be considered as more secure than

NAXOS. As a result, the open problem may be updated to find a protocol that is as efficient

as MQV and as secure as SMEN−.

Multipath Key Establishment For existing sensor network multipath key establishment

protocols, it has been assumed that a sender will identify the paths between itself and a

receiver before it starts a key establishment session. To find a path in a network is the

task of a routing protocol. However, current secure routing protocols for sensor networks

require that the sender and the receiver share a secret key, or one of them has a public

key. Therefore, under key predistribution, existing secure routing protocols cannot be used

to identify the paths between a sender and a receiver that do not share a pre-assigned key.

There is a deadlock between current solutions to path key establishment and secure routing

in sensor networks: the solution to one problem relies on the solution to the other. It would

be worthwhile to investigate how to break the deadlock; i.e., to find a solution to one of the

problems without relying on the solution to the other.

121

Bibliography

[1] NTL: A library for doing number theory, http://www.shoup.net/ntl/.

[2] NIST special publication 800-90. Recommendation for random number generation us-

ing deterministic random bit generators. 2007.

[3] M. Abdalla, M. Bellare, and P. Rogaway. The oracle Diffie-Hellman assumptions and

an analysis of DHIES. In David Naccache, editor, CT-RSA, volume 2020 of Lecture

Notes in Computer Science, pages 143–158. Springer, 2001.

[4] G. Avoine, E. Dysli, and P. Oechslin. Reducing time complexity in RFID systems. In

Bart Preneel and Stafford E. Tavares, editors, Selected Areas in Cryptography, volume

3897 of Lecture Notes in Computer Science, pages 291–306. Springer, 2005.

[5] G. Avoine and P. Oechslin. A scalable and provably secure hash-based RFID protocol.

In PerCom Workshops, pages 110–114. IEEE Computer Society, 2005.

[6] B. Barak and S. Halevi. A model and architecture for pseudo-random generation with

applications to /dev/random. In CCS ’05: Proceedings of the 12th ACM conference on

Computer and communications security, pages 203–212, New York, NY, USA, 2005.

ACM.

[7] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure

against reset attacks. In EUROCRYPT 2001 Proceedings, volume 2045 of Lecture Notes

in Computer Science, pages 495–511, Berlin, Heidelberg, New York, 2001. Springer.

[8] M. Bellare, M. Fischlin, S. Goldwasser, and S. Micali. Identification protocols secure

against reset attacks. Unpublished manuscript, available from http://www-cse.ucsd.

edu/users/mihir/papers/id-reset.html (this is the full version of [7]), 2001.

[9] M. Bellare and A. Palacio. Towards plaintext-aware public-key encryption without

random oracles. In P.J. Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in

Computer Science, pages 48–62. Springer, 2004.

122

http://www.shoup.net/ntl/
http://www-cse.ucsd.edu/users/mihir/papers/id-reset.html
http://www-cse.ucsd.edu/users/mihir/papers/id-reset.html

[10] M. Bellare and P. Rogaway. Entity authentication and key distribution. In CRYPTO

’93 Proceedings, volume 773 of Lecture Notes in Computer Science, pages 232–249,

Berlin, Heidelberg, New York, 1994. Springer.

[11] C. H. Bennett, G. Brassard, and J.-M. Robert. Privacy amplification by public dis-

cussion. SIAM J. Comput., 17:210–229, 1988.

[12] E.R. Berlekamp. Factoring polynomials over finite fields. Bell Systems Technical

Journal, (46):1853–1859, 1967.

[13] C. Bettstetter. On the minimum node degree and connectivity of a wireless multihop

network. In MobiHoc ’02: Proceedings of the 3rd ACM International Symposium on

Mobile Ad Hoc Networking & Computing, pages 80–91, New York, NY, USA, 2002.

ACM Press.

[14] S.R. Blackburn and S. Gerke. Connectivity of the uniform random intersection graph.

Discrete Mathematics. to appear.

[15] D. Bleichenbacher and P. Q. Nguyen. Noisy polynomial interpolation and noisy Chinese

remaindering. In EUROCRYPT, Lecture Notes in Computer Science, pages 53–69.

Springer, 2000.

[16] C. Blundo, G. Persiano, A.R. Sadeghi, and I. Visconti. Resettable and non-transferable

chip authentication for ePassports. In Conference on RFID Security, Budaperst, Hon-

gria, July 2008.

[17] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, and Y. Seurin.

Hash functions and RFID tags: Mind the gap. In Elisabeth Oswald and Pankaj

Rohatgi, editors, CHES, volume 5154 of Lecture Notes in Computer Science, pages

283–299. Springer, 2008.

[18] B. Bollobás. Random Graphs. Cambridge University Press, second edition, 2001.

[19] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In Joe Kilian, ed-

itor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 275–291.

Springer, 2001.

[20] Dan Boneh. The decision diffie-hellman problem. In Joe Buhler, editor, ANTS, volume

1423 of Lecture Notes in Computer Science, pages 48–63. Springer, 1998.

123

[21] Daniel R. L. Brown and Robert P. Gallant. The static diffie-hellman problem. Cryp-

tology ePrint Archive, Report 2004/306, 2004. http://eprint.iacr.org/.

[22] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for

building secure channels. In EUROCRYPT ’01: Proceedings of the International Con-

ference on the Theory and Application of Cryptographic Techniques, pages 453–474,

London, UK, 2001. Springer-Verlag.

[23] D. G. Cantor and H. Zassenhaus. A new algorithm for factoring polynomials over finite

fields. Math. Comp., 36(154):587–592, 1981.

[24] S.A. Çamtepe and B. Yener. Combinatorial design of key distribution mechanisms for

wireless sensor networks. IEEE/ACM Trans. Netw., 15(2):346–358, 2007.

[25] D. Chakrabarti, S. Maitra, and B. Roy. A key pre-distribution scheme for wireless

sensor networks: merging blocks in combinatorial design. Int. J. Inf. Secur., 5(2):105–

114, 2006.

[26] H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor set-

works. In SP ’03: Proceedings of the 2003 IEEE Symposium on Security and Privacy,

page 197, Washington, DC, USA, 2003. IEEE Computer Society.

[27] B. Chor, O. Goldreich, J. Hasted, J. Friedman, S. Rudich, and R. Smolensky. The bit

extraction problem or t-resilient functions. In 26th Annual Symposium on Foundations

of Computer Science, pages 396–407, 1984.

[28] D. Coppersmith. Small solutions to polynomial equations, and low exponent RSA

vulnerabilities. J. Cryptology, 10(4):233–260, 1997.

[29] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving

overdefined systems of multivariate polynomial equations. In Lecture Notes in Com-

puter Science : Advances in Cryptology - EUROCRYPT 2000: International Confer-

ence on the Theory and Application of Cryptographic Techniques, Bruges, Belgium,

May 2000. Proceedings, pages 392+, 2000.

[30] I. Damg̊ard. Towards practical public key systems secure against chosen ciphertext

attacks. In CRYPTO ’91: Proceedings of the 11th Annual International Cryptology

Conference on Advances in Cryptology, pages 445–456, London, UK, 1992. Springer-

Verlag.

124

http://eprint.iacr.org/

[31] H.A. David. Order Statistics. John Wiley & Sons, Inc., second edition, 1981.

[32] J. Deng and Y.S. Han. Multipath key establishment for wireless sensor networks using

just-enough redundancy transmission. IEEE Transactions on Dependable and Secure

Computing, 5(3):177–190, 2008.

[33] R. Di Pietro, L.V. Mancini, A. Mei, A. Panconesi, and J. Radhakrishnan. Connectivity

properties of secure wireless sensor networks. In SASN ’04: Proceedings of the 2nd

ACM Workshop on Security of Ad Hoc and Sensor Networks, pages 53–58, New York,

NY, USA, 2004. ACM Press.

[34] R. Di Pietro, L.V. Mancini, A. Mei, A. Panconesi, and J. Radhakrishnan. How to design

connected sensor networks that are provably secure. In Proceedings of SecureComm

2006, the 2nd IEEE/CreateNet International Conference on Security and Privacy in

Communication Networks, 2006.

[35] T. Dimitriou. A lightweight RFID protocol to protect against traceability and cloning

attacks. In SECURECOMM ’05: Proceedings of the First International Conference on

Security and Privacy for Emerging Areas in Communications Networks, pages 59–66,

Washington, DC, USA, 2005. IEEE Computer Society.

[36] D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message transmission.

Journal of the ACM, 40:17–47, 1993.

[37] W. Du, J. Deng, Y.S. Han, P. Varshney, J. Katz, and A. Khalili. A pairwise key

pre-distribution scheme for wireless sensornetworks. The ACM Transactions on Infor-

mation and System Security (TISSEC), 8(2):228–258, May 2005.

[38] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. In Proceedings of CRYPTO 84 on Advances in Cryptology, pages 10–18,

New York, NY, USA, 1985. Springer-Verlag New York, Inc.

[39] P. Erdős and A. Rényi. On the evolution of random graphs. In Publ. Math. Inst.

Hungar. Acad. Sci., volume 3, pages 17–61.

[40] L. Eschenauer and V. D. Gligor. A key-management scheme for distributed sensor

networks. In CCS ’02: Proceedings of the 9th ACM Conference on Computer and

Communications Security, pages 41–47, New York, NY, USA, 2002. ACM Press.

[41] U. Feige, A. Fiat, and A. Shamir. Zero knowledge proofs of identity. Journal of

Cryptology, 1:77–94, 1988.

125

[42] M. Feldhofer and C. Rechberger. A case against currently used hash functions in

RFID protocols. In R. Meersman, Z. Tari, and P. Herrero, editors, OTM Workshops

(1), volume 4277 of Lecture Notes in Computer Science, pages 372–381. Springer, 2006.

[43] A. Fiat and A. Shamir. How to prove yourself: practical solutions to identification

and signature problems. In CRYPTO ’86 Proceedings, volume 263 of Lecture Notes in

Computer Science, pages 186–194, Berlin, Heidelberg, New York, 1987. Springer.

[44] J.A. Fill, E.R. Scheinerman, and K.B. Singer-Cohen. Random intersection graphs

when m= w(n): an equivalence theorem relating the evolution of the g(n,m, p) and

g(n, p) models. Random Struct. Algorithms, 16(2):156–176, 2000.

[45] M. Fitzi, M. Franklin, J. Garay, and S. H. Vardhan. Towards optimal and efficient

perfectly secure message transmission. In TCC 2007, volume 4392 of Lecture Notes in

Computer Science, pages 311–322. Springer, 2007.

[46] D. Freeman. Pairing-based identification schemes. Cryptology ePrint Archive, Report

2005/336, 2005. http://eprint.iacr.org/.

[47] F. Fürbass and J. Wolkerstorfer. ECC processor with low die size for RFID applica-

tions. In ISCAS, pages 1835–1838. IEEE, 2007.

[48] K. Gjøsteen. Subgroup membership problems and public key cryptosystems. PhD thesis,

Norwegian University of Science and Technology, 2004.

[49] K. Gjøsteen. A new security proof for Damg̊ard’s ElGamal. In D. Pointcheval, editor,

CT-RSA, volume 3860 of Lecture Notes in Computer Science, pages 150–158. Springer,

2006.

[50] E. Godehardt, J. Jaworski, and K. Rybarczyk. Random intersection graphs and clas-

sification. In Advances in Data Analysis, pages 67–74. Springer Berlin Heidelberg,

2007.

[51] L. Guillou and J.-J. Quisquater. A “paradoxical” identity-based signature scheme re-

sulting from zero-knowledge. In CRYPTO ’88 Proceedings, volume 403 of Lecture Notes

in Computer Science, pages 216–231, Berlin, Heidelberg, New York, 1990. Springer.

[52] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-

geometry codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.

126

http://eprint.iacr.org/

[53] D.R. Hare and W. McCuaig. The connectivity of the block-intersection graphs of

designs. Des. Codes Cryptography, 3(1):5–8, 1993.

[54] M. Hell, T. Johansson, A. Maximov, and W. Meier. A stream cipher proposal: Grain-

128. In 2006 IEEE International Symposium on Information Theory, pages 1614–1618,

2006.

[55] M. Hell, T. Johansson, and W. Meier. Grain: a stream cipher for constrained environ-

ments. Int. J. Wire. Mob. Comput., 2(1):86–93, 2007.

[56] D. Henrici and P. Müller. Hash-based enhancement of location privacy for radio-

frequency identification devices using varying identifiers. In PerCom Workshops, pages

149–153. IEEE Computer Society, 2004.

[57] D. Huang and D. Medhi. A Byzantine resilient multi-path key establishment scheme

and its robustness analysis for sensor networks. In IPDPS ’05: Proceedings of the

19th IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)

- Workshop 12, page 240.2, Washington, DC, USA, 2005. IEEE Computer Society.

[58] W. C. Huffman and V. Pless. Fundamentals of Error-Correcting Codes. Cambridge

University Press, 2003.

[59] J. Hwang and Y. Kim. Revisiting random key pre-distribution schemes for wireless

sensor networks. In SASN ’04: Proceedings of the 2nd ACM Workshop on Security of

Ad Hoc and Sensor Networks, pages 43–52, New York, NY, USA, 2004. ACM Press.

[60] A. Juels. Minimalist cryptography for low-cost RFID Tags. In Carlo Blundo and

Stelvio Cimato, editors, SCN, volume 3352 of Lecture Notes in Computer Science,

pages 149–164. Springer, 2004.

[61] A. Juels. RFID security and privacy: a research survey. IEEE Journal on Selected

Areas in Communications, 24(2):381–394, 2006.

[62] A. Kkiayias and M. Yung. Directions in polynomial reconstruction based cryptogra-

phy. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and

Computer, E87-A(5):978–985, 2004.

[63] A. Kkiayias and M. Yung. Cryptographic hardness based on the decoding of Reed-

Solomon codes. IEEE Transactions on Information Theory, 54(6), 2008.

127

[64] N. Koblitz and A. Menezes. Another look at non-standard discrete log and Diffie-

Hellman problems. Journal of Mathematical Cryptology., 2(4):1862–2984, 2008.

[65] H. Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In

V. Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages

546–566. Springer, 2005.

[66] K. Kurosawa and K. Suzuki. Almost secure (1-round, n-channel) message transmission

scheme. Cryptology ePrint Archive, Report 2007/076, 2007.

[67] K. Kurosawa and K. Suzuki. Truly efficient 2-round perfectly secure message trans-

mission scheme. In EUROCRYPT ’08, volume 4965 of Lecture Notes in Computer

Science, pages 324–340. Springer, 2008.

[68] B.A. LaMacchia, K. Lauter, and A. Mityagin. Stronger security of authenticated key

exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec, volume 4784

of Lecture Notes in Computer Science, pages 1–16. Springer, 2007.

[69] L. Law, A.J. Menezes, M. Qu, J. Solinas, and S. Vanstone. An efficient protocol for

authenticated key agreement. Designs, Codes and Cryptography, 28:119–134, 2003.

[70] J. Lee and D.R. Stinson. A combinatorial approach to key predistribution for dis-

tributed sensor networks. In IEEE Wireless Communications and Networking Confer-

ence, volume 2, pages 1200–1205, March 2005.

[71] J. Lee and D.R. Stinson. On the construction of practical key predistribution schemes

for distributed sensor networks using combinatorial designs. ACM Trans. Inf. Syst.

Secur., 11(2):1–35, 2008.

[72] C.H. Lim and T. Kwon. Strong and robust RFID authentication enabling perfect

ownership transfer. In P. Ning, S. Qing, and N. Li, editors, ICICS, volume 4307 of

Lecture Notes in Computer Science, pages 1–20. Springer, 2006.

[73] D. Liu, P. Ning, and R. Li. Establishing pairwise keys in distributed sensor networks.

ACM Trans. Inf. Syst. Secur., 8(1):41–77, 2005.

[74] U.M. Maurer and S. Wolf. Diffie-Hellman oracles. In N. Koblitz, editor, CRYPTO’96,

volume 1109 of Lecture Notes in Computer Science, pages 268–282. Springer, 1996.

[75] R. J. McEliece and D. V. Sarwate. On sharing secrets and Reed-Solomon codes.

Commun. ACM, 24(9):583–584, 1981.

128

[76] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptog-

raphy. CRC Press, Boca Raton, 1996.

[77] D. Molnar and D. Wagner. Privacy and security in library RFID: issues, practices,

and architectures. In CCS ’04: Proceedings of the 11th ACM conference on Computer

and communications security, pages 210–219, New York, NY, USA, 2004. ACM.

[78] D. M’Räıhi and D. Naccache. Batch exponentiation: a fast DLP-based signature

generation strategy. In CCS ’96: Proceedings of the 3rd ACM conference on Computer

and communications security, pages 58–61, New York, NY, USA, 1996. ACM.

[79] D. Naccache, D. M’Räıhi, W. Wolfowicz, and A. di Porto. Are crypto-accelerators really

inevitable? 20bit zero-knowledge in less than a second on simple 8-bit microcontrollers.

In EUROCRYPT’95, pages 404–409, 1995.

[80] M. Naor and B. Pinkas. Oblivious transfer and polynomial evaluation. In STOC ’99:

Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages

245–254, New York, NY, USA, 1999. ACM.

[81] M. Naor and B. Pinkas. Oblivious polynomial evaluation. SIAM J. Comput.,

35(5):1254–1281, 2006.

[82] M. Ohkubo, K. Suzuki, and S. Kinoshita. Efficient hash-chain based RFID privacy

protection scheme. In In International Conference on Ubiquitous Computing Ubicomp,

Workshop Privacy: Current Status and Future Directions, 2004.

[83] T. Okamoto. Provably secure and practical identification schemes and corresponding

signature schemes. In CRYPTO ’92 Proceedings, volume 740 of Lecture Notes in

Computer Science, pages 31–53, Berlin, Heidelberg, New York, 1993. Springer.

[84] T. Okamoto and D. Pointcheval. The gap-problems: A new class of problems for the

security of cryptographic schemes. In Kwangjo Kim, editor, Public Key Cryptography,

volume 1992 of Lecture Notes in Computer Science, pages 104–118. Springer, 2001.

[85] Y. Oren and M. Feldhofer. WIPR - a Public Key Implementation on Two Grains

of Sand. In Conference on RFID Security, Budapest, Hungary, July 2008. http:

//iss.oy.ne.ro/WIPR.

[86] E.M. Palmer. Graphical Evolution. John Wiley & Sons, Inc., 1985.

129

http://iss.oy.ne.ro/WIPR
http://iss.oy.ne.ro/WIPR

[87] A. Patra, A. Choudhary, K. Srinathan, and C. Pandu Rangan. Unconditionally reli-

able and secure message transmission in undirected synchronous networks: possibility,

feasibility and optimality. Cryptology ePrint Archive, Report 2008/141, 2008.

[88] M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.

[89] I.S. Reed and X. Chen. Error-Control Coding for Data Networks. Kluwer Academic

Publishers, Norwell, MA, USA, 1999.

[90] R. Rees, D. R. Stinson, R. Wei, and J. van Rees. An application of covering de-

signs: Determining the maximum consistent set of shares in a threshold scheme. Ars

Combinatoria, 53:225–237, 1999.

[91] H. Md. Sayeeda and H. Abu-Amara. Efficient perfectly secure message transmission

in synchronous networks. Information and Computation, 126:53–61, 1996.

[92] C.P. Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,

4:161–174, 1991.

[93] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[94] A. Shamir. Memory efficient variants of public-key schemes for smart card applications.

In EUROCRYPT, Lecture Notes in Computer Science, pages 445–449. Springer, 1994.

[95] A. Shamir. SQUASH — a new MAC with provable security properties for highly

constrained devices such as RFID tags. In Fast Software Encryption: 15th International

Workshop, FSE 2008, Lausanne, Switzerland, February 10-13, 2008, Revised Selected

Papers, Lecture Notes in Computer Science, pages 144–157, Berlin, Heidelberg, 2008.

Springer.

[96] V. Shoup. Sequences of games: a tool for taming complexity in security proofs. Cryp-

tology ePrint Archive, Report 2004/332, 2004. http://eprint.iacr.org/.

[97] K.B. Singer. Random intersection graphs. PhD thesis, The Johns Hopkins University,

1996.

[98] B. Song and C.J. Mitchell. RFID authentication protocol for low-cost tags. In WiSec

’08: Proceedings of the first ACM Conference on Wireless Network Security, pages

140–147. ACM Press, 2008.

130

http://eprint.iacr.org/

[99] D. R. Stinson and J. L. Massey. An infinite class of counterexamples to a conjecture

concerning nonlinear resilient functions. Journal of Cryptology, 8:167–173, 1995.

[100] D. R. Stinson and S. Zhang. Algorithms for detecting cheaters in threshold schemes.

Journal of Combinatorial Mathematics and Combinatorial Computing, 61:169–191,

2007.

[101] D.R. Stinson. Combinatorial Designs. Springer-Velag, 2003.

[102] D.R. Stinson. Cryptography: Theory and Practice, Third Edition. Chapman &

Hall/CRC, Boca Raton, 2006.

[103] D.R. Stinson and J. Wu. An efficient and secure two-flow zero-knowledge identification

protocol. Journal of Mathematical Cryptology, 1:201–220, 2007.

[104] P. Tague and R. Poovendran. A canonical seed assignment model for key predistribu-

tion in wireless sensor networks. ACM Trans. Sen. Netw., 3(4):19, 2007.

[105] B. Ustaoğlu. Key establishment - security models, protocols and usage. PhD thesis,

University of Waterloo, 2008.

[106] B. Ustaoglu. Obtaining a secure and efficient key agreement protocol from (H)MQV

and NAXOS. Designs, Codes and Cryptography, 46(3):329–342, 2008.

[107] Y. Wang. Robust key establishment in sensor networks. SIGMOD Record, 33:14–19,

2004.

[108] R. Wei and J. Wu. Product construction of key distribution schemes for sensor net-

works. In Lecture Notes in Computer Science, volume 3357, pages 280–293. Springer

Berlin / Heidelberg, 2004.

[109] H. Whitney. Congruent graphs and the connectivity of graphs. American Journal of

Mathematics, 54(1):150–168, 1932.

[110] J. Wu and D.R. Stinson. How to ensure forward and backward untraceability of RFID

identification schemes by using a robust PRBG. Cryptology ePrint Archive, Report

2008/201, 2008. http://eprint.iacr.org/.

[111] J. Wu and D.R. Stinson. Minimum node degree and k-connectivity for key predis-

tribution schemes and distributed sensor networks. In Virgil D. Gligor, Jean-Pierre

Hubaux, and Radha Poovendran, editors, WISEC, pages 119–124. ACM, 2008.

131

http://eprint.iacr.org/

[112] J. Wu and D.R. Stinson. An efficient identification protocol secure against concurrent-

reset attacks, 2009. Manuscript.

[113] J. Wu and D.R. Stinson. A highly scalable RFID authentication protocol. In Proceeding

of the 14th Australasian Conference on Information Security and Privacy, 2009. to

appear.

[114] J. Wu and D.R. Stinson. How to improve security and reduce hardware demands of

the WIPR RFID protocol. In Proceeding of the 2009 IEEE International Conference

on RFID, 2009. to appear.

[115] J. Wu and D.R. Stinson. On the security of the ElGamal encryption scheme and

Damg̊ard’s variant, 2009. Manuscript.

[116] J. Wu and B. Ustaoğlu. Efficient key exchange with tight security reduction, 2009.

Manuscript.

[117] S. Zhu, S. Xu, S. Setia, and S. Jajodia. Establishing pairwise keys for secure commu-

nication in ad hoc networks: A probabilistic approach. In ICNP, pages 326–335. IEEE

Computer Society, 2003.

132

	List of Figures
	List of Tables
	Introduction
	Cryptographic Protocols
	Computational Assumptions
	Identification
	Authenticated Key Exchange
	ElGamal Encryption

	Sensor Network Key Management
	Connectivity of Key Predistribution Schemes
	Multipath Key Establishment

	RFID Authentication

	Cryptographic Protocols
	Identification Protocols
	Security Model
	A Simple Identification Protocol

	Authenticated Key Exchange Protocols
	Security Model
	Efficient Exponentiation Algorithms.
	SMEN Protocol
	SMEN- Protocol
	Comparison

	ElGamal Encryption and Variants
	Security of ElGamal Encryption
	Security of Damgård ElGamal Encryption

	Sensor Networks Key Management
	-connectivity of Key Predistribution
	Transversal Design KPS
	Random KPS
	-connectivity of the DSN

	Multi-path Key Establishment
	Model and Preliminaries
	Reed-Solomon Codes
	Analysis of the HM and JERT Schemes
	Two New Schemes for MPKE Based on Reed-Solomon Codes
	A Scheme Tolerating Error Rate < 1/2

	RFID Authentication Protocols
	Polynomial Based Protocol
	Scheme Description
	Security Analysis
	Performance

	Rabin Encryption based Protocol
	Security of Paddings
	WIPR
	Improvements

	Forward and Backward Privacy
	Analysis Of The S-M Scheme

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

