
Applications of Description Logic and

Causality in Model Checking

by

Shoham Ben-David

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Shoham Ben-David 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144143493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Model checking is an automated technique for the verification of finite-state systems that

is widely used in practice. In model checking, a modelM is verified against a specifica-

tion ϕ, exhaustively checking that the tree of all computations ofM satisfiesϕ. When

ϕ fails to hold inM , the negative result is accompanied by acounterexample: a compu-

tation inM that demonstrates the failure. State of the art model checkers apply Binary

Decision Diagrams (BDDs) as well as satisfiability solvers for this task. However, both

methods suffer from the state explosion problem, which restricts the application of model

checking to only modestly sized systems. The importance of model checking makes it

worthwhile to explore alternative technologies, in the hope of broadening the applicabil-

ity of the technique to a wider class of systems.

Description Logic (DL) is a family of knowledge representation formalisms based on

decidable fragments of first order logic. DL is used mainly for designing ontologies in

information systems. In recent years several DL reasoners have been developed, demon-

strating an impressive capability to cope with very large ontologies.

This work consists of two parts. In the first we harness the growing ability of DL

reasoners to solve model checking problems. We show how DL can serve as a natural

setting for representing and solving a model checking problem, and present a variety

of encodings that translate such problems into consistency queries in DL. Experimental

results, using the Description Logic reasonerFaCT++, demonstrate that for some systems

and properties, our method can outperform existing ones.

In the second part we approach a different aspect of model checking. When a speci-

fication fails to hold in a model and a counterexample is presented to the user, the coun-

terexample may itself be complex and difficult to understand. We propose an automatic

technique to find the computation steps and their associated variable values, that are of

particular importance in generating the counterexample. We use the notion ofcausalityto

formally define a set of causes for the failure of the specification on the given counterex-

iii

ample. We give a linear-time algorithm to detect the causes, and we demonstrate how

these causes can be presented to the user as a visual explanation of the failure.

iv

Acknowledgements

I would like to thank my supervisor, Richard Trefler, for his encouragement and support

during my years at Waterloo, and for letting me pursue my own research interests. I

would like to thank my informal co-supervisor, Grant Weddell, for guiding me through

the mysteries of Description Logic, and for his special way of making people feel good

about themselves. For me, at least, it worked.

I would like to thank the other members of my examining committee, Mark Aagaard,

Amy Felty and John Thistle for reading my work thoroughly, for their helpful suggestions

and for making my defense a stimulating experience.

I am grateful to my friends from the IBM Haifa Research Lab, Hana Chockler, Dana

Fisman, Avigail Orni and Sitvanit Ruah. Working with you has been so much fun! There

is nothing like a Hebrew transatlantic phone conversation to boost up one’s motivation. I

hope to continue collaborating with you in the future.

I owe a lot to my friends in the Watform Lab, Vlad Ciubotariu, Shahram Esmaeilsabzali,

Naghmeh Ghaffari, Alma Juarez-Dominguez, Zarrin Langari and Ali Taleghani, who have

made the Watform Lab a pleasant place to work in. Thanks to Shahram for the long con-

versations about history, religion and life in general. Thanks to Ali for being such a cheer-

ful and supportive office-mate, and special thanks to Zarrin for her continuous friendship,

optimism and support.

I would not have survived the years in the University of Waterloo without my sup-

portive family. The love, encouragement and understanding I got from Shai have been

invaluable. I would like to thank Shalev, Naama and Sheffi for making my life cheerful

and for being such incredible young people.

Finally, I am grateful to my mother, for her love and support in the last ... well, many

years, and for never giving up the hope of seeing me getting a PhD.

v

To the memory of my father

who planted in me the love for Mathematics

vi

Contents

List of Figures ix

1 Introduction 1

1.1 Related Work . 6

1.2 Overview of Thesis . 8

2 Background 11

2.1 Model Checking . 11

2.1.1 Kripke Structures . 12

2.1.2 Temporal Logic . 15

2.1.3 Model Checking . 23

2.1.4 Bounded Model Checking . 25

2.2 Description Logic . 28

2.2.1 Syntax and semantics . 29

2.2.2 Terminologies and world descriptions 30

2.2.3 Reasoning . 31

2.2.4 Other Dialects . 34

3 Symbolic Model Checking using Description Logic 37

3.1 Modeling A Kripke Structure as a TBox 38

vii

3.1.1 TBox Interpretations as sub-models ofM 40

3.2 The Different BMC methods . 42

3.3 Correctness . 46

3.4 Alternative Encodings . 51

3.5 Experimental Results . 53

3.6 Discussion . 56

4 Liveness and Fairness Modeling using Description Logic 59

4.1 The Encoding . 60

4.1.1 Other Attempts . 62

4.2 Modeling Fairness . 64

4.2.1 Realizing Fairness in Tableaux Reasoning 65

4.3 Experimental Evaluation . 69

4.4 Discussion . 70

5 Counterexample Explanation 71

5.1 Defining Causality in Counterexamples 73

5.2 Complexity of computing causality in counterexamples 77

5.3 An over-approximation algorithm . 78

5.4 Discussion . 85

6 Conclusion and Future Directions 87

Bibliography 91

viii

List of Figures

2.1 The Kripke structure “Simple model” 13

2.2 CTL Operators . 18

2.3 An NFA forG(s → X(b W e)) . 23

2.4 The semantics ofALC . 29

2.5 A Tbox with facts about eating habits 30

2.6 An Abox . 31

2.7 Tableaux expansion rules forALC . 33

3.1 The TBoxTSimple . 39

3.2 The TBoxT 4
Simple . 44

3.3 Run times for BMC, small model . 54

3.4 Run times for BMC, large model . 55

4.1 Forward vs. backward role modeling . 62

4.2 Expansion rule for fairness . 66

4.3 Two completion trees forT1 . 67

4.4 Run times for the fairness verification tasks 70

5.1 A counterexample with explanations . 73

5.2 Counterexample traces. 77

5.3 An evaluation graph foraU (bU c) . 82

ix

5.4 Evaluation ofaU (bU c) onπ[0..1] = a · ∅ 83

x

Chapter 1

Introduction

Hardware and software systems have become an integral component of our everyday lives,

and we use them for larger and larger parts of our routine activities. While today’s world

cannot be imagined without these systems, software and hardware programs are full of

errors, that often make them unreliable. Errors can be very expensive (e.g., the floating-

point division bug of Intel’s Pentium processor [Hal95], cost $500,000,000 of damage)

and worse – life threatening (e.g., the Therac-25 accidents [LT93] cost the lives of four

people). The main reason for the unreliability of today’s hardware and software systems

is their growing complexity that makes them extremely difficult to verify. In fact, in the

hardware industry, verification is recognized as the most resource-consuming component

of the design process, taking over 60% of the development time and effort. Finding new

verification methods and developing better verification tools can therefore have a signifi-

cant impact on today’s industry.

Verification of software and hardware systems is traditionally done usingtesting: the

system is given sequences of legal input behaviors and the outputs are analyzed compared

to some expected results. For large systems, both the generation of test cases and the

analysis of the results are often automated. However, for any large enough system, run-

ning test cases cannot guarantee coverage of all possible behaviors: there are simply too

1

many cases (possibly an infinite number of them) to be covered. Thus, when testing is the

only method used for verification, systems are delivered to the market with many possi-

ble cases untested. For many systems however, especially safety-critical ones, this is not

enough, and a higher degree of coverage is required. In order to meet this requirement,

formal verificationmethods have been developed, where mathematical techniques are ap-

plied to perform the verification. When properly applied, formal verification methods can

guarantee correctness of a system with respect to its specification.

Formal verification is generally divided into two main approaches, thedeductiveap-

proach and thealgorithmicone. The first is known asTheorem Proving[GM93, BKM95,

KM97], and involves the development of a mathematicalproof for the correctness of a

given system with respect to its specification. Since developing a proof is a hard task,

and in most cases cannot be done automatically, theorem provers are interactive tools that

allow the user to specify the main steps of a proof, avoiding, as much as possible, the

tedious parts of it.

This work concentrates on the algorithmic approach to formal verification, known

asmodel checking([CE81, QS82], c.f.[CGP00]). Model checking is a fully automated

technique for verifying finite-state systems, that is very effective in the verification of

hardware and software programs. In model checking, a modelM , given as a set of state

variablesV and their next-state relations, is verified against a specificationϕ. If the spec-

ification holds on the tree of all computations ofM we denote itM |= ϕ. Whenϕ fails

to hold inM , the model checker provides acounterexample[CGMZ95]: a computation

of M that demonstrates the failure.

Specifications to be checked are given intemporal logic– a dialect of modal logic with

modalities referring to time. The main temporal logics used in practice areLinear Tem-

poral Logic (LTL) [Pnu77] andComputation Tree Logic(CTL) [CE81]. Temporal logic

specifications, whether given inLTL or in CTL, are divided into two main types [Lam77]:

safetyformulas, stating that “something bad never happens”, andlivenessformulas, as-

2

serting that “something good eventually happens”. The violation of a safety formula can

be shown by a finite prefix of a computation path, leading to an erroneous state, while the

violation of a liveness formula can only be shown by an infinite path, or a loop, in the case

of a finite system. Liveness formulas are therefore considered more difficult to verify. In

many cases, a liveness formula is accompanied by afairness constraintrequiring that the

violating loop satisfies some fairness condition.

The main challenge in model checking is called thestate space explosionproblem,

where the number of states in the model grows exponentially in the number of variables

describing it. Different approaches exist to deal with this problem. They can be roughly

divided intoexplicit state methods, that are mostly applied to software systems, andim-

plicit state (orsymbolic) methods that are better applied to hardware models. In this work

we concentrate on symbolic methods for hardware model checking.

In symbolic model checking the system under verification is represented as sets of

states and transitions, and Boolean functions are used to manipulate those sets. Two main

symbolic methods are used to perform model checking. The first, known asSymbolic

Model Verifier(SMV) [McM93] is based on Binary Decision Diagrams (BDDs) [Bry86]

for representing the state space as well as for performing the model checking procedure.

The second is known asBounded Model Checking(BMC) [BCCZ99]. Using this method,

the model description is unfoldedk times (for a given boundk). The unfolded model as

well as thenegationof the specification are then translated into a propositional formula,

and a satisfiability solver is applied to the formula to find a satisfying assignment. Such

an assignment, if found, demonstrates an error in the model.

The introduction of the BDD-based model checking method and later on the satisfia-

bility based ones, have significantly improved the performance and applicability of model

checking, and have brought the field from a completely theoretical one in the early eighties

into a wide-spread practical technique, used in industry [BDEGW03, Ger01, AAH+03].

However, the state explosion problem remains the main problem of this field, restricting

3

the application of model checking to only modestly sized systems. The importance of

verification in general and model checking in particular, makes it worthwhile to explore

alternative technologies, in the hope of enabling the application of the technique to a

wider class of systems.

In the first part of this thesis we explore the possibility of usingDescription Logic

reasoningto solve model checking problems. Description Logic (DL) ([BCM+03]) is a

family of knowledge representation formalisms, mainly used for specifying ontologies for

information systems. The basic elements in description logic areatomic concepts(sets

of individuals) andatomic roles(binary relations between individuals). There are many

dialectsof description logic that differ from each other by the constructs they allow for

building new concepts from existing ones. The most commonly used dialect is called

Attributive Language with Complement, orALC. Given two conceptsC1 andC2, and a

role R, the DL dialectALC allows the construction of the concepts¬C1 (all individuals

that do not belong to the set represented byC1), C1 u C2 (the individuals that belong to

bothC1 andC2), and∀R.C1 (the individualsa, such that for allb whereR(a, b) holds,b

belongs toC1). In general, the more expressive a DL dialect is, the more complex it is to

reason about.

Description Logic is used for describing ontologies and reasoning about them. An on-

tologyT is called aterminology, and consists of a set ofconcept inclusion dependencies.

Each inclusion dependency has the formC1 v C2, and asserts containment properties of

relevant concepts in an underlying domain, e.g., thatcowsare included inanimals

COWv ANIMAL ,

and also inthose things that do not eat animals

COW v ∀eats.¬ANIMAL.

In this latter case,eatsis an example of arole. The main reasoning service provided by

a DL system is theconcept consistencyservice, that is, for a given terminologyT and

4

conceptC, to determine if there is a non-empty interpretation ofC, that also satisfies each

inclusion dependency inT . We denote concept consistency asT |=dl C (note that we use

“ |=dl ” for consistency in DL to differentiate it from “|=” that is used in the model check-

ing world). In recent years several DL reasoners have been introduced, such asFaCT++

[TH06], Pellet [SPG+07] andRacer [HM01], demonstrating growing capability to rea-

son about large ontologies.

We show how Description Logic technology can be used for symbolic model check-

ing. We present a variety of encodings of model checking problems as Description Logic

terminologies over different dialects. In all cases we provide a linear encoding of amodel

description(or program) and a specification as a DL terminology, and pose a query in

such a way that interpretations correspond to errors in the system. We present several

methods to support bounded model checking of safety properties, that result in a natural

symbolic representation of the sets of states and transitions. Experimental results compar-

ing the different methods are surprising: although the methods are closely related, they

perform significantly different.

We then present an encoding for model checking of liveness formulas in DL. Our main

contribution for this type of formulas is the introduction of an algorithm to support fair-

ness constraints in DL. This algorithm enhances the tableaux algorithm for DL reasoning,

and it is thus of interest to the DL community. On the other hand, it introduces a novel

approach to fair path detection, and thus has the potential of improving model checking

performance for some cases.

The second part of this work tackles a different aspect of model checking: the analy-

sis of a counterexample. When a formula fails to hold in a model, the first step in de-

bugging the problem is to examine the counterexample in order to understand the error it

demonstrates. In many cases, however, the task of understanding the counterexample is

non-trivial, and may require a significant manual effort.

An explanation of a counterexample deals with the question:what values on the com-

5

putation trace cause it to falsify the specification?To deal with this problem, we adapt the

formal definition of causality of Halpern and Pearl [HP01]. We view a counterexample

trace as a matrixM × N of values, whereM is the number of time units (thelength)

of the counterexample, andN the number of variables appearing in the counterexample.

An entry (i, j) in the matrix corresponds to the value of variablej at time i. We look

for those entries in the matrix that are causes for the first failure ofϕ on π, according to

the definition of [HP01]. We show that the complexity of detecting an exact causal set is

NP-complete, based on the complexity result for causality in binary models [EL01]. We

then present an over-approximation algorithm whose complexity is linear in the size of

the formula and in the length of the counterexample. Our contribution is both theoretical,

in defining the set of causes, and practical, in introducing the explanation algorithm that

is used in practice.

1.1 Related Work

Model checking using DL

The connection between knowledge-based reasoning and model checking has been ex-

plored before. Gottlob et al in [GGV00, GGV02] analyzed the expressive power ofDat-

alogstatements, and compared them to known temporal logics. Sahasrabudhe in [Sah04]

performed model checking of telephony feature interactions by using SQL on an explicit

state representation of the model, and compared the results with model checking a similar

explicit state representation using the model checker SMV [McM93]. Both Sahasrabudhe

and Gottlob et al, however, used an explicit representation of the model, as opposed to

the representation of the modeldescriptionthat we propose. This difference is crucial,

since in many cases the Kripke structure for the model is too big to be built, and symbolic

methods must be used.

Our paper [BDTW06] was the first to suggest the use of Description Logic reasoners

6

for model checking. However, the method described in that paper required a synchro-

nization between the progress of different state variables, that resulted in a blow-up in the

number of explored states.

Since the DL dialects we use are fragments of first order logic, our method can be

viewed as performing model checking using deductive methods. The work of Tuomi-

nen [Tuo88, Tuo89] is close to ours in this sense. Tuominen used theorem proving for

the verification of Petri-net systems. He useddeterministic propositional dynamic logic

(DPDL) to represent his systems, a logic that is more expressive (and thus more complex

to verify) than the DL dialects that we use.

Finally, Dovier and Quintarelli in [DQ01] were interested in the opposite direction:

they translated a knowledge-base into a Kripke structure, and a query into a temporal

logic formula. They then used a model checker to make inferences about the knowledge-

base.

Counterexample explanation

The problem ofunderstandinga counterexample has attracted a significant amount of

attention in recent years (see for example [CIW+01, JRS02, DRS03, BNR03, Gro04,

GK04, CG05, SQL05, WYIG06, GSB07, SB07, SFBD08]). These works, however,

concentrated on a different aspect ofunderstandingof a counterexample. Mainly, they

addressed the question of finding the root cause of the failure in themodeland proposed

automatic ways to extract more information about the model, to ease the debugging pro-

cedure. Naturally, the algorithms proposed in the above mentioned works involve imple-

mentation in a specific tool. For example, the BDD procedure of [JRS02] would not work

for a SAT based model checker like those of [Gro04, BNR03]. In contrast, the method we

propose is independent of the tool that generated the counterexample, and can be applied

as an external layer to any model checking tool.

There are several works that tie the definition of causality by Halpern and Pearl to

7

formal verification. Most closely related to our work is the paper by Chockler et. al

[CHK08], in which causality and its quantitative measure, responsibility, are viewed as a

refinement of coverage in model checking. In another work, causality and responsibility

are used to improve the refinement techniques of symbolic trajectory evaluation (STE)

[CGY08].

1.2 Overview of Thesis

In Chapter 2 we give the needed background for the thesis. In Section 2.1 we discuss

topics in model checking: we describe the temporal logics used in the thesis, give the

basic definition of amodeland define an example model and specification that are used

in the rest of the document. We briefly discuss the two main symbolic model check-

ing methods: McMillan’s symbolic model checking using BDDs [McM93], and bounded

model checking [BCCZ99] based on Satisfiability solving. Section 2.2 presents basic

facts about Description Logic [BCM+03]. We describe the syntax and semantics of com-

mon dialects, explain how ontologies are defined in description logic, and use an example

to demonstrate a reasoning service provided by a DL reasoner.

In Chapters 3 and 4 we present our results on model checking using Description Logic.

In Chapter 3 we present the symbolic encoding of a model description, and define the dif-

ferent methods for bounded model checking of safety formulas. We prove the correctness

of our encodings and discuss experimental results. The work described in this chapter

appears in [BDTW07a, BDTW07b, BDTW08, BDTTW08]. In Chapter 4 we show, for

the same encoding, how liveness formulas can be described. Since fairness cannot be ex-

pressed in the dialects used in this document, we propose a method to implement fairness

checking in DL. This work appears in [BDPT+09]. Chapter 5 is devoted to explanation

of a counterexample. We define causality in counterexamples, analyze its complexity

and propose an approximation algorithm. The work is based on [BBDC+09]. Chapter 6

8

concludes the document.

9

Chapter 2

Background

This chapter gives the needed background of model checking and description logic. We

start with model checking in the section below, and discusses Description Logic in Sec-

tion 2.2 .

2.1 Model Checking

Model checking ([CE81, QS82], c.f.[CGP00]) is a technique for the formal verification

of hardware and software systems. In model checking, a modelM is verified against

a specificationϕ. If the specification holds in the model we denote itM |= ϕ. For

our discussion, the system under verification, or themodel, is assumed to have a finite

number of Boolean state variables, that may simultaneously change their values as time

progresses. The mathematical representation of such a model is called a Kripke structure,

and its formal definition is given in Section 2.1.1 below. Synchronous hardware systems

are naturally translated into Kripke structures, as these are indeed composed of variables

that work in parallel, changing their value at a clock’s tick. For asynchronous hardware

designs, as well as for software programs, some sort of abstraction may be needed in order

to adapt them to the model of a Kripke structure.

11

In order to verify a given model we need to specify its desired behavior. In model

checking, specifications are given as temporal logic formulas [Pnu77] – a language that

allows specifying the behavior of the program variables over time. In Section 2.1.2 we

present the two main temporal logics that are used in practice, namely, LTL and CTL, and

discuss different categories of formulas. In Sections 2.1.3 and 2.1.4 we discuss the two

main existing methods for symbolic model checking.

2.1.1 Kripke Structures

A Kripke structure is a labeled directed graph, defined in the context of Modal Logic. We

describe here a restricted type of Kripke structure that is used to model reactive systems.

We associate a Kripke structure with a finite setV of Boolean variables. Each node in the

graph is labeled with a subset ofV (the variables that are assigned 1 in the node). Thus

each node in the graph represents astateof the modeled system. Different nodes in the

graph must be labeled with different sets, that is, each state of the system can appear at

most once in the Kripke structure. Thus, ifV includesn variables, the Kripke structure

may have at most2n nodes. An edge from one node to another means that a transition

is possible in the system, from a given state to the next, in one time unit. From each

node there must exist at least one outgoing edge (that is, there are no “dead-ends” in the

system). The mathematical definition of a Kripke structure is given below.

Definition 1 (Kripke Structure). Let V be a set of Boolean variables. AKripke structure

M overV is a four tupleM = (S, I, R, L) where

1. S is a finite set of states.

2. I ⊆ S is the set of initial states.

3. R ⊆ S × S is the transition relation that must be total, that is, for every states ∈ S
there is a states′ ∈ S such thatR(s, s′).

12

4. L : S → 2V is a function that labels each state with the set of variables true in that

state.

We view each states as a truth assignment to the variablesV . We view a set of states

as a Boolean function overV , characterizing the set. For example, the set of initial states

I is considered as a Boolean function overV . Thus, if a states belongs toI, we write

s |= I. Similarly, if vi ∈ L(s) we writes |= vi, and ifvi 6∈ L(s) we writes |= ¬vi. We

say thatw = s0, s1, ... is apath in M if s0 |= I and∀i, 0 ≤ i, (si, si+1) ∈ R.

Example 2. Figure 2.1 draws the states and transitions of a Kripke structure, called

Simple . The initial state is colored dark, and the label of each state is the value of

the vector(v1, v2, v3).

Figure 2.1: The Kripke structure “Simple model”

Kripke structures are used for modeling the behaviors of real hardware and software

systems. However, in practice the full Kripke structure of a system is usually too big and

13

too complex to be explicitly described. Rather, a model is given as a set of Boolean vari-

ablesV = {v1, ..., vn}, their initial values and their next-state assignments. Moreover,

for every reasonably-sized system, the Kripke structure is too big to be explicitly built.

Rather, systems are described by giving the behavior of every state variable separately.

We concentrate on hardware, where systems are naturally described in this way by exist-

ing Hardware Description Languages (HDL). In standard HDLs however, the system is

deterministic, and multiple behaviors can only be due to the behavior of the inputs. The

input language ofSMV[McM93] allows a more complex non-deterministic behavior. Our

notation is an abstraction of the input language ofSMV.

Definition 3 (Model Description). Let V = {v1, ..., vn} be a set of Boolean variables. A

tupleMD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) is aModel DescriptionoverV whereIMD, ci, c′i

are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L),

whereS = 2V , L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci

impliess′ |= ¬vi ands |= c′i ∧ ¬ci impliess′ |= vi}.
Intuitively, a pair〈ci, c′i〉 defines the next-state assignment of variablevi in terms of

the current values of{v1, ..., vn}. That is,

next(vi) =

0 if ci

1 if c′i ∧ ¬ci
{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of variables

v1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state with

vi = 0.

Example 4. For the modelSimple given in figure 2.1, the next state assignments are

given below.

14

next(v1) =

8>><
>>:

0 if v1 ∧ v2
1 if v3 ∧ ¬(v1 ∧ v2)

{0, 1} otherwise

next(v2) =

(
0 if ¬v2
{0, 1} otherwise

next(v3) =

(
0 if v1

1 otherwise

The full model description is given by

Simple = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3} with I = ¬v1 ∧ v2 ∧ ¬v3.

This example shall be used throughout this document to demonstrate our methods.

2.1.2 Temporal Logic

Temporal Logic is a dialect of Modal Logic. The use of Temporal Logic for the speci-

fication of reactive systems was first suggested by Pnueli in [Pnu77] and has since been

accepted as the major language for the specification of such systems. Several types of tem-

poral logics exist in the literature, with the most commonly used ones beingLTL [Pnu77]

andCTL [CE81]. We describe the logicsLTL andCTL below, and then discuss different

types of temporal logic formulas, known assafetyandlivenessformulas.

Linear Temporal Logic

Given a finite set AP of atomic propositions, formulas ofLTL are recursively defined as

follows:

• Every atomic proposition is anLTL formula.

• If ϕ andψ areLTL formulas then so are:

• ¬ϕ • ϕ ∧ ψ • Xϕ • [ϕUψ]

Additional operators are defined as syntactic sugaring of those above:

• true = ¬p ∨ p • ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) • Fϕ = [true Uϕ]

• ϕ→ ψ = ¬ϕ ∨ ψ • Gϕ = ¬F¬ϕ • [ϕWψ] = [ϕUψ] ∨Gϕ

15

The formal semantics ofLTL formulas is defined with respect to an infinite computa-

tion path. A computation path is a sequence of statesw = s0, s1, s2, ... wheresi is a truth

assignments to the atomic propositionsAP . We sometimes usew to denote a finite prefix

of a path. The suffix of a computation,sj, sj+1, sj+2, ... is denoted bywj. Given a prefix

ρ and a pathw, we denoteρ · w the concatenation of them. We usew |= ϕ to indicate

that theLTL formulaϕ holds on the computationw. The semantics of|= is inductively

defined as follows.

• w |= p IFF s0 |= p

• w |= ¬ϕ IFFw 6|= ϕ

• w |= ϕ ∧ ψ IFFw |= ϕ andw |= ψ

• w |= Xϕ IFFw1 |= ϕ

• w |= [ϕUψ] IFF ∃k ≥ 0 such thatwk |= ψ and for all0 ≤ j < k, wj |= ϕ

It is common practice to view computations satisfying anLTL formula as infinite

wordsover the alphabet2AP , where the letters of the alphabet are the states of the compu-

tation paths [WVS83, VW86, SVW87]. Under this interpretation, one can talk about the

languageaccepted by anLTL formula, referring to the set of words satisfying the formula.

Languages that can be accepted byLTL formulas are omega-regular languages. Such lan-

guages are accepted by Büchi automata. We give the definition of a Büchi automaton

below.

Definition 5 (Büchi automaton). A Büchi automaton is a 4-tuple(S, I, δ, F) where

• S is a finite set of states

• I ⊆ S is a set of initial states

• δ ⊆ S × S is a transition relation

16

• F ⊆ S is a set of accepting states

An infinite sequence of states is accepted by a Büchi automaton if and only if it contains

infinitely many accepting states.

In most cases, the verification of anLTL formulaϕ is done by first building a B̈uchi

automatonA that accepts¬ϕ [Var96], and then verifying thatA accepts no computation

of the modelM .

Negation Normal Form

For bothLTL andCTL (see below) it is possible to transfer formulas into equivalent ones

in Negation Normal Form (NNF), where negations are allowed on atomic propositions

only. For example, theLTL formula¬G(p→ Xq), where a temporal operator is negated,

is equivalent toF(p ∧X¬q), that is inNNF. The transformation is straightforward using

the temporal operations defined above.

Computation Tree Logic

Computation Tree Logic (CTL) is a branching time logic. This means that time is viewed

as a tree, where one state may have more than one successive state. To capture this,

branching time logics introduce, on top of the temporal operators used forLTL, two Path

Quantifiers: theA path quantifier stands for “All paths”, and theE path quantifier stands

for “there exists a path”. InCTL, a path quantifier must immediately precede a temporal

operator. A formula inNNF form, consisting of theA path quantifier only, is called an

ACTL formula If only theE path quantifier exists it is called anECTL formula. The

formal definition ofCTL is then given as follows:

Definition 6 (Computation Tree Logic). Given a finite set AP of atomic propositions,

formulas ofCTL are recursively defined as follows:

• Every atomic proposition is aCTL formula.

17

• If ϕ andψ areCTL formulas then so are:

• ¬ϕ • ϕ ∧ ψ • AXϕ • EXϕ • A[ϕUψ] • E[ϕUψ]

Additional operators are defined as syntactic sugaring of those above:

• ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) • ϕ→ ψ = ¬ϕ ∨ ψ
• AFϕ = A[true Uϕ] • EFϕ = E[true Uϕ]

• AGϕ = ¬E[true U¬ϕ] • EGϕ = ¬A[true U¬ϕ]

• A[ϕ V ψ] = ¬E[¬ϕ U¬ψ] • E[ϕ V ψ] = ¬A[¬ϕ U¬ψ]

• A[ϕ Wψ] = ¬E[¬ψ U¬ϕ ∧ ¬ψ] • E[ϕ Wψ] = ¬A[¬ψ U¬ϕ ∧ ¬ψ]

The intuitive semantics ofCTL operators are given in Figure 2.2. The formal seman-

Figure 2.2:CTL Operators

tics of CTL formulas is defined with respect to a Kripke structureM = (S, I, R, L) over

a set of variablesV = {v1, ..., vk}. The notationM, s |= ϕ, means that the formulaϕ is

true in states of the modelM .

• M, s |= p iff s |= p

• M, s |= ¬ϕ iff M, s 6|= ϕ

• M, s |= ϕ ∧ ψ iff M, s |= ϕ andM, s |= ψ

18

• M, s0 |= AXp iff for all paths(s0, s1, ...),M, s1 |= p

• M, s0 |= EXp iff for some path(s0, s1, ...),M, s1 |= p

• M, s0 |= A[ϕUψ] iff for all paths (s0, s1, ...), for somei, M, si |= ψ and for all

j ≤ i,M, sj |= ϕ

• M, s0 |= E[ϕUψ] iff for some path(s0, s1, ...), for somei, M, si |= ψ and for all

j ≤ i,M, sj |= ϕ

We say that a Kripke structureM = (S, I, R, L) satisfies aCTL formulaϕ (M |= ϕ)

if for all si ∈ I,M, si |= ϕ.

Polarity of Subformulas

Let ϕ be a temporal logic formula and letψ be an occurrence of a subformula inϕ.

We say thatψ has apositive polarityin ϕ, if ψ is under the scope of an even number

of negations. Otherwise, we say thatψ has anegative polarityin ϕ. For example, for

ϕ = ¬G(p ∧ ¬Xq), the subformulaψ = Xq has a positive polarity, andψ′ = p has a

negative polarity. Note that ifϕ is given in NNF, only propositions can have a negative

polarity inϕ.

The Common Fragment ofLTL and ACTL

Monika Maidl in [Mai00] has investigated the relationship betweenCTL andLTL, and

characterized the fragment ofACTL that can be expressed inLTL. This fragment is called

ACTLdet, and its inductive definition is given below, where the operatorW stands for

“weak until”.

• Every atomic proposition is anACTLdet formula.

• If p is a proposition,ϕ andψ areACTLdet formulas then so are:

19

• ϕ ∧ ψ • (p ∧ ϕ) ∨ (¬p ∧ ψ) • AXϕ
• A[(p ∧ ϕ)U(¬p ∧ ψ)] • A[(p ∧ ϕ)W (¬p ∧ ψ)]

It is interesting to note that most of theCTL formulas written in practical applications

belong to the common fragment ofACTL andLTL [BDFR05].

Safety and Liveness Formulas

Temporal logic specifications, whether written inLTL or in CTL, are divided into three

basic categories [Lam77, AS85, AS87, MT01]:livenessproperties,safetyproperties and

formulas that are combinations of the two. Informally, a safety formula states that “some-

thing bad never happens” while a liveness formula asserts that “somethinggood will

eventually happen”. A somewhat more formal definition was given by Alford et al. in

([AAH +85] cf. [Kin94]), defining assafetyformulas whose violation can be shown by

a finite prefix of a computation path, while the violation of a liveness formula must con-

tain an infinite path (a loop, in case of a finite model). For example, theLTL formula

G(p→ Xq) is a safety formula, since, in order to show violation, it is enough to present

a finite prefix of a computation path that leads to a state wherep holds, followed by a state

whereq does not hold. The formulaG(req → F(ack)) on the other hand is a liveness

formula, because the violation of it must show a state wherereq holds followed by an

infinite path along whichack never holds.

Fairness

When verifying a liveness formula it is many times the case that the formula should only

be verified on computation paths that arefair according to some notion. The simplest

and most commonly used fairness constraint states that some Boolean conditionp must

hold on the path infinitely often. (This constraint can be described by theLTL formula

GFp, with p being a Boolean expression over the set of variablesV). When the fairness

20

constraintfairness p is given, a legal counterexample for a liveness formula (on a

finite model) should therefore include a loop on which the liveness formula fails, but

where the expressionp holds at least on one state in the loop.

Translating Temporal Logic Formulas into Automata

As mentioned earlier, a popular method for model checking anLTL specificationϕ, is to

first build a B̈uchi automatonA¬ϕ for thenegationof ϕ with size exponential in the size

of the formula [Var96, BFH05]. For formulas in the common fragment ofLTL andACTL,

this automaton is of size linear in the size of the formula [Mai00].

OnceA¬ϕ is built, the parallel composition ofA¬ϕ with the modelM , denotedA¬ϕ||M ,

is itself a B̈uchi automaton, and its language can be checked for emptiness (if the set of

computations is not empty, it contains counterexamples forϕ). Since the accepting con-

dition of a Büchi automaton requires visiting a set of states infinitely often, the model

checking ofϕ amounts to searching for a fair path inA¬ϕ||M . For safety formulas, the

Büchi condition is not needed. Rather, the automaton built is used as a non-deterministic

finite automaton (NFA) that has accepting states (accepting error computations) [KV99].

For safety formulas as well, when a formula belongs to the common fragment ofLTL and

ACTL, the NFA built for it is linear in the size of the formula [BBDL98, Mai00, BDFR05].

Below we sketch the translation of a safety common-fragmentLTL formulaϕ into a

non-deterministic finite automaton that accepts erroneous paths. The translation is done in

two phases. In the first phase we produce, givenϕ, a regular expressionrϕ that describes

an erroneous computation. The alphabetΣϕ of rϕ contains Boolean expressions over

the propositions appearing inϕ, and words accepted byrϕ are sequences of states where

letters fromΣϕ hold. The full translation is given in [BBDL98]. We give the flavor of

the translation using a few examples. We use the lettert to indicateTrue (the Boolean

expressionp∨¬p for some propositionp). We use∗ and· in their usual regular-expression

meaning.

21

1. Letϕ = G(p). We definerϕ to be(t∗) · ¬p. Note that this regular expression

accepts all computations that include a finite number of states whereTrue holds

(any state), followed by a state satisfying¬p. That is, counterexamples forG(p).

2. Letϕ = G(p→ Xq). Thenrϕ = (t∗) · p · ¬q. A computation path accepted byrϕ

demonstrates a finite sequence of states ending with a state satisfyingp, followed

by a state not satisfyingq. This is a counterexample forϕ.

3. Let ϕ = (p W q). In this case we haverϕ = (p ∧ ¬q) ∗ · (¬p ∧ ¬q). Paths

accepted byrϕ start with a finite number of states wherep holds butq does not

hold, followed by a state wherep stops holding beforeq arrives. Such a scenario is

a counterexample to(p W q).

The second phase of the translation builds a non-deterministic finite automatonA¬ϕ ac-

cepting the same language asrϕ. There are many known algorithms to achieve this

[HU79], where the constructed automaton is of size linear in the size of the regular ex-

pression. We give an example of a full translation, from a specification into an automaton,

using the automaton building algorithm of [BFR04].

Let us consider a specification stating that one cycle after the signalSTART appears,

the signalBUSY should hold untilEND arrives. IfEND never arrives,BUSY should hold

forever. We uses to representSTART, b for BUSY, ande for END. In LTL, this would be

written as follows.

ϕ = G(s → X(b W e))

Building rϕ as described above, we get

rϕ = (t∗) · s · (b ∧ ¬e) · (¬b ∧ ¬e)

The automatonA¬ϕ is given in Figure 2.1.2. The initial state is state 1, and the accepting

state is 4. Note that Figure 2.1.2 can also be seen as a state-machine, since from every

state and for every input it is possible to progress to another state. Let this state-machine

22

Figure 2.3: An NFA forG(s → X(b W e))

be calledSMϕ. If ϕ holds in the model under verification, then it can never be the case

thatSMϕ reaches state 4 while (¬b∧¬e) holds in the state. Model checking ofϕ can now

be carried out by runningSMϕ with the model under verification, verifying the formula:

G¬((SMϕ = 4) ∧ (¬b ∧ ¬e)).

2.1.3 Model Checking

The main challenge in model checking is known as thestate space explosionproblem,

where the number of states in the model grows exponentially in the number of variables

describing it. In this chapter we briefly describe some of the main methods used in prac-

tice to cope with the size problem. We present symbolic model checking ofCTL formulas

below, and then we sketch the bounded model checking method in Section 2.1.4.

Model Checking ofCTL formulas

In [EC80] Emerson and Clarke showed that various branching time properties can be

characterized as fixed points of appropriate monotonic functions. Later in [CE81] they

23

introduced the logicCTL, and showed that its operators can be characterized in this way.

To present Clarke and Emerson’s theorem, we need to introduce the notion of afunc-

tional. A functional is denotedλy.f wheref is a formula andy is a variable. The variable

y acts as a place holder. When applied to a parameterp, the functionalλy.f yieldsf with

p substituted fory. For example, ifγ = λy.(x∧ y) thenγ(true) = x∧ true = x. A fixed

point of a functionalγ is anyp such thatγ(p) = p. For example ifγ = λy.(x ∧ y) then

(x ∧ y) is a fixed point ofγ sinceγ(x ∧ y) = x ∧ x ∧ y = x ∧ y.

If γ is a monotonic functional, then it has aleast fixed pointas well as agreatest fixed

point. The least and greatest fixed points ofλy.f are denotedµy.f andνy.f respectively.

A functionalγ is union-continuous when for any non-decreasing infinite sequence of sets

p1 ⊆ p2 ⊆ ..., we have∪iγ(pi) = γ(∪ipi). Similarly, a functionalγ is intersection-

continuous when for any non-decreasing infinite sequence of setsp1 ⊆ p2 ⊆ ..., we have

∩iγ(pi) = γ(∩ipi). Tarski [Tar55] showed that ifγ is monotonic and union-continuous,

then the least fixed point ofγ is ∪iγi(false) (that is, the union of the sequence obtained

by iteratingγ with the initial value false). Similarly, ifγ is monotonic and intersection-

continuous, then the least fixed point ofγ is∩iγi(true).
Clarke and Emerson viewed aCTL formulaf as a set of states{s|s |= f}, the states

in which the formula is true. ViewingCTL formulas this way, we can observe that the

equationEFp = p∨EXEFp holds for all models. ThusEFp is a fixed point of the functional

γ = λy.p ∨ EXy, and in fact, it is theleastfixed point ofγ. In a similar way, Clarke and

Emerson obtained the following characterizations:

1. EFp = µy.(p ∨ EXy)

2. EGp = νy.(p ∧ EXy)

3. E(qUp) = µy.(p ∨ (q ∧ EXy))

Since the above functionals are monotonic, and the set of states in our models is finite,

Tarski’s theorems apply, and we get an effective procedure for calculating the fixed points.

24

ForEFp for example, we get:

EFp = ∪i(λy.(p ∨ EXy))i(false)

and thus it is enough to iterateEX until a fixed point is found, starting with false. Given a

set of statesS, calculatingEX(S) is done by going one step backwards fromS, to get all

states that can reachS in one step through the transition relation.

For this, one needs an efficient way to represent and manipulate sets of states and

relations. McMillan in [McM93] showed how this can be done using Binary Decision

Diagrams (BDDs) [Bry86], that can be seen as a data structure that is especially efficient

for the representation of Boolean functions. McMillan also wrote the first symbolic model

checker called SMV [McM93].

2.1.4 Bounded Model Checking

Given a Kripke structureM , a formulaϕ, and a boundk, bounded model checking (BMC)

tries to refuteM |= ϕ by proving the existence of a witness to thenegationof ϕ, of

lengthk or less. We use the notationMk to denote the modelM bounded byk. The

idea of bounded model checking was first proposed in 1999 by Biere, Cimatti, Clarke

and Zhu [BCCZ99]. They suggested to unfold a given model and specificationk times,

using auxiliary variables, making them into a propositional formula, and then use a sat-

isfiability solver to find a satisfying assignment. Such an assignment, if found, serves

as a counterexample toϕ. The vast development of SAT solvers in recent years (See

zChaff [MMZ+01] and MiniSAT [ES04] for example), has made this method into the

leading one in the world of hardware model checking.

We describe the translation of a BMC problem into a propositional formula in the next

section.

25

Translating a BMC problem into a propositional formula

The BMC method of [BCCZ99] generates a propositional formula that is satisfiable if and

only if Mk 6|= ϕ. We describe this method for invariant formulas, e.g.ϕ = AG(p). For

such formulas, we have thatMk 6|= ϕ if and only if there exists a pathw = s0, ..., sj in

M , such thatj ≤ k andsj |= ¬p.

We use the definition of amodel description(Definition 3), given in Section 2.1.1.

Let MD = (IMD , [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description over a set of variables

V = {v1, ..., vn}, and letϕ = AG(p) be the formula to be verified, withp being a Boolean

expression overV . In order to unfoldMD until a given boundk, we introducek sets of

new propositional variablesV 1 = {v1
1, ..., v

1
n}, ..., V k = {vk1 , ..., vkn}. For readability, the

original set of variablesV , will now be calledV 0. According to Definition 3, a pair〈ci, c′i〉
states that if the conditionci holds in the current state (in terms of the variablesV 0), then

the value ofvi in any next state must be0, while if ci does not hold butc′i does hold,

then the value ofvi in the next state must be1. We introducek conditionsc1i , ..., c
k
i and

k conditionsc1′i , ..., c
k′
i for each pairci, c′i, wherecji is the conditionci written in terms of

the variablesV j.

For each pair〈ci, c′i〉 we introducek propositional formulas:

T ji = (cji → ¬vj+1
i) ∧ (¬cji ∧ c

j′
i → vj+1

i)

for 0 ≤ j < k. The propositional formula that represents the unfolded model is composed

of three parts:

• The initial conditionI, written in terms of the variablesV 0.

• The transition formulasT ji for 0 ≤ j < k.

• The negation of the specification:P = ¬p0 ∨¬p1 ∨¬p2 ∨ ...∨¬pk, wherepi is the

Boolean formulap written in terms of the set of variablesV i.

26

The model and specification are therefore represented by the propositional formula:

I ∧ P ∧ (
∧

0≤j<k,0<i≤n

T ji).

We demonstrate the translation with the example below.

Example 7. We consider again the model given in Figure 2.1.

Simple model = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3} with I = ¬v1 ∧ v2 ∧ ¬v3, and letϕ = AG(v1 ∨ v2). We choose

k = 4. To translate the model into a propositional formula for bound 4, we introduce 4

copies of the variables,V 1 = {v1
1, v

1
2, v

1
3}, ..., V 4 = {v4

1, v
4
2, v

4
3}. We first have to write

the initial conditionI in terms of the variablesV 0:

I = ¬v0
1 ∧ v0

2 ∧ ¬v0
3

Second, we build the propositional formulaP corresponding to the specification:

P = ((¬v0
1 ∧ ¬v0

2) ∨ (¬v1
1 ∧ ¬v1

2) ∨ (¬v2
1 ∧ ¬v2

2) ∨ (¬v3
1 ∧ ¬v3

2) ∨ (¬v4
1 ∧ ¬v4

2))

We now build the formulasT ji . For the next-state value ofv1 in time step 0, we have:

T 0
1 = ((v0

1 ∧ v0
2) → ¬v1

1) ∧ ((¬(v0
1 ∧ v0

2) ∧ ¬v0
3) → v1

1)

T 1
1 , T

2
1 andT 3

1 will be the same asT 0
1 , with all the top indexes shifted.

For the next-state value ofv2 we get:

T 0
2 = (¬v0

2 → ¬v1
2) ∧ (v0

2 ∧ v0
1 ∧ ¬v0

1 → v1
2)

Note that the right hand side ofT 0
2 is equivalent toTrue, thus we getT 0

2 = (¬v0
2 → ¬v1

2).

Similarly, we haveT 1
2 = (¬v1

2 → ¬v2
2), T

2
2 = (¬v2

2 → ¬v3
2) andT 3

2 = (¬v3
2 → ¬v4

2).

For the last variablev3 we have:

T 0
3 = (¬v0

1 → ¬v1
3) ∧ (v0

1 → v1
3)

27

andT 1
3 , T

2
3 , T

3
3 are defined in the same way, with the top indexes shifted as above. The

propositional formula for the model, unfolded to depth 4 is then:

T 4
Simple = I ∧ P ∧ T 0

1 ∧ T 1
1 ∧ T 2

1 ∧ T 3
1 ∧ T 0

2 ∧ T 1
2 ∧ T 2

2 ∧ T 3
2 ∧ T 0

3 ∧ T 1
3 ∧ T 2

3 ∧ T 3
3

In order to find a counterexample of lengthk or less, we need to find a satisfying

assignment forT 4
Simple . SinceT 4

Simple is a propositional formula, a satisfiability

solver can now be applied to it. If no satisfying assignment exists, it means that no bug

can be found until cycle 4.

2.2 Description Logic

Description Logic [BCM+03] is a family of knowledge representation formalisms. It

has evolved from earlier knowledge representations, such asnetwork semantics[Qui67,

CQ69], andframes[Min81] in an attempt to overcome ambiguities in the semantics of

those formalisms.

In description logic, the basic elements areatomic conceptsandatomic roles. Atomic

concepts are unary predicate symbols, denoting sets of individuals; atomic roles are binary

predicate symbols, used to express relationships between individuals. Complex descrip-

tions of concepts and roles can be built from simpler ones by usingconstructors. Different

dialects of Description Logic are distinguished by the constructors they allow. An impor-

tant feature of description logic is the ability toinfer about the described knowledge-base:

to find implicit facts from the explicit information given.

We present the formal syntax and semantics of different description logic dialects

in Section 2.2.1. Section 2.2.2 discusses how knowledge-bases are represented using

terminologies (Tboxes) and world descriptions (Aboxes). Section 2.2.3 then presents the

basic reasoning algorithm using tableau construction.

28

2.2.1 Syntax and semantics

The basic description logic dialect that we use in this work is known asALC (for attribute

languagewith complement). In ALC, complex concepts are formed from simpler ones

using the following constructors, whereA is an atomic concept,C andD are concepts

andR is a role:
A (atomic concept)

> (universal concept)

⊥ (bottom concept)

¬C (negation)

C uD (intersection)

∀R.C (value restriction)

The union operator is defined asC tD = ¬(¬C u¬D), and existential quantification

is defined as∃R.C = ¬∀R.¬C. The semanticsof ALC is defined with respect to a

structureI = (∆I , ·I), where∆I is a non-empty set, and·I is a function mapping every

atomic concept to a subset of∆I and every role to a subset of∆I × ∆I . Figure 2.4

presents the semantics ofALC constructors.

A AI ⊆ ∆I

R RI ⊆ ∆I ×∆I

> ∆I

⊥ ∅
¬C ∆I \ CI

C uD CI ∩DI

∀R.C {x ∈ ∆I |∀y.(x, y) ∈ RI → y ∈ CI}

Figure 2.4: The semantics ofALC

We review terminologies and reasoning procedures forALC in the next sections. In

Section 2.2.4 we define other DL dialects that are used in this document.

29

2.2.2 Terminologies and world descriptions

Complex descriptions of concepts and roles are used to describe the classes of objects

of a given domain. The knowledge-base itself is composed of two components: ater-

minology(or Tbox) and aworld description(or Abox). The terminology gives a list of

axioms, that describe relations between concepts in the domain. In the most general case,

terminological axioms have the form of a concept inclusion

C v D,

whereC andD are concepts written in terms of a given dialect. The semantics of a

concept inclusion is as expected: an interpretationI satisfies the concept inclusionC v D

if CI ⊆ DI . Figure 2.5 presents a terminology with concepts about animals and their

eating habits. The second component of a knowledge-base, the Abox, lists assertions

Herbivore v ∀eats.¬Animal

Omnivore v ∃eats.Animal u ∃eats.¬Animal

Cow v Animal u Herbivore

Human v Animal u (Herbivore tOmnivore)

Figure 2.5: A Tbox with facts about eating habits

about individual names in a specific domain. These will be of the form

C(a) , R(b, c)

wherea, b, c are individual names in the domain,C a concept andR a role. The above

assertions state thata is a member ofC and b, c are related byR. When an Abox is

present, an interpretationI should also map the individual names: each individuala will

be mapped to an elementaI ∈ ∆I . Figure 2.6 gives an example of an Abox.

30

Cow(DINA)

eats(DINA,GRASS)

Figure 2.6: An Abox

2.2.3 Reasoning

Different inference tasks come to mind when dealing with Description Logic. For exam-

ple, we can consider:

• Subsumption - is one concept more general than another:C v D?

• Consistency - does a given conceptC have an interpretation?

• Membership - is the individuali a member of a conceptC in all interpretations?

It turns out that the different inference tasks can all be reduced to the question ofconsis-

tency. We use |=dl C to indicate consistency in DL, to differentiate it from satisfaction

in the model checking world. Thus, the general consistency problem, with respect to a

Tbox T , asks ifT |=dl C holds; that is, if there exists an interpretationI such thatCI is

non-empty and such thatCI
1 ⊆ CI

2 holds for everyC1 v C2 in T .

Tableaux algorithms for consistency checking ofC with respect to a terminologyT ,

try to prove the consistency by demonstrating the existence of an interpretationI such that

CI is not empty and all the concept inclusions inT hold. This is done by syntactically

decomposingC, to derive constraints on the structure of such an interpretation. The

construction fails if the constraints include aclash; that is, if some individualx must be

an element of bothD and¬D for some conceptD. The algorithm is designed in such a

way that it is guaranteed to terminate, and guaranteed to construct an interpretation if one

exists.

31

In practice, the algorithm works on a labeled tree, called acompletion tree1, that has a

close correspondence to an interpretation forT andC. We assume that concepts are given

in negation normal form(NNF), where negations are allowed only on atomic concepts. A

concept can be transformed into an equivalent one in NNF by pushing negation inwards,

making use of de Morgan’s laws and the duality between existential and universal restric-

tions [HST00]. For a conceptC, we writennf(C) to denote the NNF ofC, write ¬̇C to

denote the NNF of¬C, andsub(C) to denote the set of all sub-concepts ofC (including

C) and their negations. For a TBoxT we definesub(T) =
⋃

(CvD)∈T sub(C) ∪ sub(D).

Definition 8. Let T be anALC TBox andC a concept in NNF. Acompletion treefor C

with respect toT is a directed graphG = (V,E,L) where each nodex ∈ V is labelled

with a setL(x) ⊆ sub(T)∪ sub(C) and each edge〈x, y〉 ∈ E is labelled with a role name

L(〈x, y〉) ∈ RN .

If 〈x, y〉 ∈ E, theny is called asuccessorof x andx is called apredecessorof y.

If, in addition,R = L(〈x, y〉), theny is called anR-successorof x andx is called an

R-predecessorof y. Ancestoris the transitive closure of predecessor, anddescendantis

the transitive closure of successor.

G is said to contain aclashif for someA ∈ NC and nodex of G, {A,¬A} ⊆ L(x).

The tableaux algorithm for checking concept consistency ofC with respect toT starts

with the completion treeG = ({r0}, ∅,L) whereL(r0) = {nnf(C)}. G is then expanded

by repeatedly applying the expansion rules given in Figure 2.7, stopping if a clash occurs.

In order to ensure termination we need to restrict the creation of new nodes in the

completion tree. The notion ofblockingis used for this purpose.

Definition 9. A nodex is label blockedif it has an ancestory such thatL(x) ⊆ L(y).

In this case, we say thaty blocksx. A node isblockedif either it is label blocked or its

predecessor is blocked.

1We note that for more expressive DL dialects a completiongraphmay be needed.

32

v-rule: if 1. C1 v C2 ∈ T , and

2. {¬̇C1, nnf(C2)} ∩ L(x) = ∅

then setL(x) = L(x) ∪ {C} for someC ∈ {¬̇C1, nnf(C2)}

u-rule: if 1. C1 u C2 ∈ L(x), and

2. {C1, C2} 6⊆ L(x)

then setL(x) = L(x) ∪ {C1, C2}

t-rule: if 1. C1 t C2 ∈ L(x), and

2. {C1, C2} ∩ L(x) = ∅

then setL(x) = L(x) ∪ {C} for someC ∈ {C1, C2}

∃-rule: if 1. ∃R.C ∈ L(x), x is not blocked, and

2. x has noR-successory with C ∈ L(y),

then create a new nodey with L(〈x, y〉) = R

andL(y) = {C}

∀-rule: if 1. ∀R.C ∈ L(x), and

2. there is anR-successory of x such thatC /∈ L(y)

then setL(y) = L(y) ∪ {C}

Figure 2.7: Tableaux expansion rules forALC

33

When nodes in a branch of the completion tree resemble ancestor nodes, a block is

established to ensure that further applications of∃-rule are not applied to the blocked

nodes (and therefore ensure termination).

Definition 10. A completion treeG is calledcompleteif no expansion rule can be applied.

G is clash-freeif no node contains a clash.

A tableaux algorithmfor checking concept consistency of anALC conceptC with

respect to a TBoxT builds a completion tree forC. If a complete and clash-free tree can

be obtained, the algorithm returns “consistent”; otherwise, if it was unable to build such

a tree, it returns “unsatisfiable”.

Theorem 11. (decision procedure, [SS91]) The tableaux algorithm always terminates for

a givenALC conceptC and TBoxT , and returns “consistent” iffC is satisfiable with

respect to a TBoxT .

2.2.4 Other Dialects

We present additional DL dialects that are needed for our results in Chapter 3.

• Inverse roles (indicated by the letterI).

If R is a role, this construct allows us to define the concept∀R−.C, for any concept

C. Given a structureI = (∆I , ·I), the semantics is defined as(∀R−.C)I = {x ∈
∆I : ∀y.(y, x) ∈ RI → y ∈ CI}.

• Nominals (indicated byO).

This constructor allows the definition of a concept as a set of individuals:{s1, ..., sk}.
the semantics, given a structureI = (∆I , ·I), is as expected:({s1, ..., sk})I =

{(s1)
I , ..., (sk)

I}.

• Functional roles (indicated byF).

Allows defining some or all of the roles asfunctionals. If R is functional and

34

I = (∆I , ·I) is given, then for anyx, y1, y2 ∈ ∆I , {(x, y1), (x, y2)} ⊆ RI implies

y1 = y2.

35

Chapter 3

Symbolic Model Checking using

Description Logic

We present a variety of encodings for symbolic model checking using Description Logic.

For all of those encodings the ontology constructed describes an error in the system, and

interpretations if found, provide legal paths from the initial state of the model to a buggy

state. Interpretations can thus serve as counterexamples.

In this chapter we give formulations of bounded model checking ofinvarianceprop-

erties, of the typeG(p), and in Chapter 4 we discuss unbounded model checking ofin-

evitabilityproperties (F(p)), wherep is a Boolean expression over the set of state variables

V . As explained in Section 2.1.2, allLTL properties can be translated into these types of

formula via the construction of a B̈uchi automaton. Note that theCTL formulasAG(p)

andAF(p) are equivalent to theLTL onesG(p) andF(p) respectively. We sometimes use

theCTL notation, since the description of an erroneous situation (EF(¬p) or EG(¬p)) is

easier inCTL.

The rest of this chapter is organized as follows. In Section 3.1 we show how a model

descriptionMD can be represented as a TBoxTMD over the Description Logic dialect

ALC. We then prove several lemmas in Section 3.1.1, correlating interpretations satisfy-

37

ing TMD with sub-models of the Kripke structureMMD described byMD . These lemmas

will be used later in this chapter to prove the correctness of our encodings. In Section

3.2 we present various ways of phrasing a bounded model checking problem as a consis-

tency problem in DL. The methods differ from each other in the DL dialects they use as

well as in the encodings themselves. We prove the correctness of our encodings in Sec-

tion 3.3, and in Section 3.4 we sketch an alternative symbolic representation of a model

description, and review the changes needed in all of the previously presented encodings.

Section 3.5 gives experimental results, and Section 3.6 concludes this chapter with a dis-

cussion.

3.1 Modeling A Kripke Structure as a TBox

We start by presenting a natural encoding of a model descriptionMD as a terminology

overALC. Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the model

MMD = (S, I, R, L), overV = {v1, ..., vn}, as defined in Section 2.1.1.

For each variablevi ∈ V we introduce one primitive conceptVi, whereVi denotes

vi = 1 and¬Vi denotesvi = 0. We introduce one primitive roleR corresponding to the

transition relation of the model. Given a Boolean expressionp over the state variables

v1, ..., vn, we denoteD(p) the conceptP derived fromp by replacing eachvi in p with

Vi, and∨,∧,¬ with u,t,¬ respectively. For example, ifp = (¬v1 ∧ v2), thenD(p) =

(¬V1 u V2).

We define the conceptS0 to represent the set of initial states:S0 = D(I). We define

Ci = D(ci), C′
i = D(c′i), for all 1 ≤ i ≤ n. The TBoxTMD would consist of the following

concept inclusions, describing the model: for each pair〈ci, c′i〉we introduce the inclusions

Ci v ∀R.¬Vi

(¬Ci u C′
i) v ∀R.Vi

Interpretations forTMD will consist of individuals that correspond to states in the

38

systemMD . Note that in our DL translation, if an individualσ belongs to a conceptVi it

means that the variablevi has the value 1 in the corresponding states. The first inclusion

ensures that in any interpretation, an individual that belongs toCi can be related byRonly

to individuals that do not belong toVi. Since individuals correspond to states in the model

MMD , this means that whenci holds in a states, all neighbor states ofsmust havevi = 0.

The above inclusions thus restrict the roleR to agree with the definition ofR in the model

description. Note that for a model descriptionMD overn variables,TMD will consists of

only 2n concept inclusions.

As an example, consider the Kripke structureSimple presented in Figure 2.1. Its

MD is given asSimple = (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉]) over V =

{v1, v2, v3} with I = ¬v1 ∧ v2 ∧ ¬v3. We build a TBox TSimple for it. We intro-

duce three primitive conceptsV1,V2,V3 and one primitive roleR. Figure 3.1 below gives

the full TBox.

Note that for simplicity, we omitted the inclusion(¬¬V2 u V1 u ¬V1) v ∀R.V2 (corre-

S0 v ¬V1 u V2 u ¬V3

(V1 u V2) v ∀R.¬V1

(¬(V1 u V2) u V3) v ∀R.V1

¬V2 v ∀R.¬V2

¬V1 v ∀R.¬V3

V1 v ∀R.V3

Figure 3.1: The TBoxTSimple

sponding to¬Ci uC′
i v ∀R.Vi for i = 2), since the prefix¬¬V2 u V1 u ¬V1 is equivalent

to⊥. Similarly, the concept¬¬V1 u V1 (corresponding to¬C3 uC′
3) was replaced by the

equivalentV1.

In the subsection below we prove that interpretations ofTMD must correspond to sub-

39

models of the Kripke structureMMD . The propositions presented here will be used later

in this chapter to prove the correctness of our encodings.

3.1.1 TBox Interpretations as sub-models ofM

Let MD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be a model description for the modelMMD =

(S, I, R, L), overV = {v1, ..., vn}, and letTMD be the TBox built for it as described

above. LetI = (∆I , ·I) be an interpretation forTMD . We define a mappingM : ∆I → S

that relates individuals from∆I to states fromS.

Definition 12. M(σ) = s if ∀i, 1 ≤ i ≤ n, σ ∈ VI
i if and only if s |= vi.

Note thatM is a function, since a states is determined by the value of the variables

v1, ..., vn. The following lemma shows thatσ andM(σ) agree also on Boolean expres-

sions overv1, ..., vn.

Lemma 13. Let b be a Boolean expression overv1, ..., vn, andB = D(b) its corresponding

concept. Letσ ∈ ∆I be an element in the interpretationI, and lets = M(σ). Then

σ ∈ BI if and only if s |= b.

Proof. By induction on the structure of the Boolean expressionb.

Corollary 14. Let σ1, σ2 ∈ ∆I , M(σ1) = s1, M(σ2) = s2. If (σ1, σ2) ∈ RI then

(s1, s2) ∈ R.

Before we prove Corollary 14, we note that the other direction does not hold: if

(s1, s2) ∈ R in the systemMD it does not necessarily imply that(σ1, σ2) ∈ RI . To

see this, note that the concept inclusions inTMD do not enforce any ‘edge’ to exist in an

interpretation; they only assert conditions on edges, if they do exist. Thus, an interpreta-

tion that has no edges at all, would satisfy all concept inclusions ofTMD . Note also that

the direction stated in the corollary is the only one needed for our proofs.

40

Proof of Corollary 14. If (σ1, σ2) ∈ RI , then sinceI is an interpretation forTMD we

know that∀i, 1 ≤ i ≤ n, (σ1 ∈ CI
i implies σ2 ∈ ¬VI

i andσ1 ∈ C′I
i ∩ ¬CI

i implies

σ2 ∈ Vi). But sinceCi = D(ci) andC′
i = D(c′i), we get by Lemma 13, that∀i, 1 ≤ i ≤ n,

(s1 |= ci impliess2 |= ¬vi ands1 |= c′i ∧ ¬ci impliess2 |= vi). By Definition 3 we get

that(s1, s2) ∈ R.

Corollary 15. Let I = (∆I , ·I) be an interpretation forTMD , and letσ0, σ1, ..., σm be

individuals in ∆I , such that(σi, σi+1) ∈ RI . We define a sequence of stateswI =

s0, s1, ..., sm such thatM(σi) = si. ThenwI is a path inMMD .

Proof. Follows directly from Corollary 14.

Corollary 16. Let w = s0, s1, ..., sm be a path inMMD. Let Iw = (∆Iw , ·Iw) be a

structure derived fromw: ∆Iw = {σ0, σ1, ..., σm}, and·Iw maps the individuals in such a

way thatM(σi) = si and(σi, σi+1) ∈ RIw . ThenIw is an interpretation forTMD.

Proof. All the inclusions inTMD have the formCi v ∀R.¬Vi or (¬Ci u C′
i) v ∀R.Vi.

We know that for alli, 1 ≤ i < n, (si, si+1) ∈ R. Thus, by the definition, for allj,

1 ≤ j ≤ n, (si |= cj impliessi+1 |= ¬vj andsi |= c′j ∧ ¬cj impliessi+1 |= vj). Since

by construction,M(σi) = si, we get by Lemma 13 that for allj, 1 ≤ j ≤ n, (σi ∈ CI
j

impliesσi+1 ∈ ¬VI
j andσi ∈ C′I

j ∩¬CI
j impliesσi+1 ∈ Vj). Thus the pairs (σi, σi+1) obey

the concept inclusions ofTMD . Since these pairs are the only ones inRIw , the inclusions

hold under the interpretationIw.

Note that the TBox built so far describes only the model and does not consider the

specification to be verified. Legal interpretations include for example the empty interpre-

tation, and are not necessarily useful for verification. In order to use DL reasoning for

41

model checking we need to add restrictions to the terminology to stand for the specifi-

cation. In all methods described in the sequel, we add concept inclusions or assertions

that describe abug in the model. Interpretations will therefore be legal sub-models that

demonstrate an erroneous behavior. In the section below we discuss safety properties.

Liveness properties are treated in Chapter 4.

3.2 The Different BMC methods

Letϕ = AG(p) be the formula to be verified, withp being a Boolean expression over the

state variablesv1, ..., vn. Recall that in bounded model checking of boundk, one tries to

refute the satisfaction ofAG(p) in the given model by presenting a path of lengthk or

less, that leads to a state where¬p holds. In order to encode this as a DL query, we use

the TBox TMD described in Section 3.1, and add two components to it, one describing a

bounded path and the other describing a buggy state. LetT k
MD be the TBox representing

both the model and the bounded path, and letCϕ be a concept representing a bug. Model

checking is then carried out by asking the DL reasoner to determine whetherT k
MD |=dl Cϕ.

If the answer is positive, it means that an interpretation is found forT k
MD such thatCϕ is

not empty. Such an interpretation represents a counterexample.

Below we present four encodings of a bounded model checking problem as a consis-

tency query in DL. The methods we describe differ from each other by the way a bounded

path of lengthk is defined, and by the way the formula is represented. We demonstrate

each method on the exampleSimple presented in Figure 2.1.

1. UsingALC
For this method we use the terminologyTMD built in section 3.1, and add nothing

to encode a bounded path. Rather, we encode the possible existence of a bug at

distancek or less, as one concept inclusion. Letϕ = AG(p), andP = D(p) the

42

concept representingp. We define the conceptC1
ϕ as follows.

C1
ϕ v S0 u (¬Pt ∃R.(¬Pt ∃R.(¬Pt ...∃R.¬P)...)))

with k nested∃Rs.

As an example, consider the modelSimple , the boundk = 4 and the specification

ϕ = AG(¬v2∨¬v3). We buildTSimple as shown in Section 3.1, and the concept

C1
ϕ as given below.

C1
ϕ v S0u((V2uV3)t∃R.((V2uV3)t∃R.((V2uV3)t∃R.((V2uV3)t∃R.(V2uV3)))))

Verification will now take place by asking whetherTSimple |=dl C1
ϕ.

2. UsingALCI.

Recall that the conceptS0 represents the set of initial states ofM . If S1 represents

states that can be reached in one step fromS0, then the concept inclusionS1 v
∃R−.S0 must hold (that is, the setS1 is a subset of all the states that can reachS0 by

going one step backwards using the relationR). Similarly, we denote bySi subsets

of the states reachable ini steps from the set of initial states, and introduce the

inclusions

Si v ∃R−.Si−1

for 0 < i ≤ k. We call this set of concept inclusionsTk.

Forϕ = AG(p), let P = D(p) be the concept representingp. We define the concept

C2
ϕ v ¬Pu (S0 t S1 t ... t Sk). If Cϕ is consistent with respect to the terminology

T k
MD = Tk ∪ TMD , it means that¬p holds in a state with distancek or less from the

initial state. Model checking is thus reduced to the query:T k
MD |=dl C2

ϕ. A positive

answer from the DL reasoner indicates an error inMMD.

For the modelSimple , the boundk = 4 and the specificationϕ = AG(¬v2∨¬v3).

Figure 3.2 describesT 4
Simple , the TBox representing both the model and bound.

43

(V1 u V2) v ∀R.¬V1

(¬(V1 u V2) u V3) v ∀R.V1

¬V2 v ∀R.¬V2

¬V1 v ∀R.¬V3

V1 v ∀R.V3

S0 v (¬V1 u V2 u ¬V3)

S1 v ∃R−.S0

S2 v ∃R−.S1

S3 v ∃R−.S2

S4 v ∃R−.S3

Figure 3.2: The TBoxT 4
Simple

For the specificationϕ = AG(¬v2 ∨ ¬v3) we getP ≡ ¬V2 t ¬V3, andC2
ϕ v

¬Pu (S0 tS1 tS2 tS3 tS4). Verification is then carried out by asking the query:

Is the conceptC2
ϕ consistent with respect toT 4

Simple ?

3. UsingALCO and Aboxes.

The method described in item (2) above encodes a bounded path with a set of con-

cept inclusions, and thus usesinverse roles. We show how a bounded path, as well

as the formula to be checked can be encoded as a set of ABox assertions. For a

boundk, we introducek+1 individuals,s0, s1, ..., sk. The assertionS0(s0) makes

s0 an initial state, and for0 ≤ i < k, the assertionsR(s i,s i+1) makes i a state

of distancei from the initial state. We call this set of assertionsAk. In order to

verify the specificationϕ we usenominals. Forϕ = AG(p) we define the concept

P = D(p) as before, and define the conceptC3
ϕ v ¬Pu {s0, ..., sk}. Verification

for this method is done by asking the query:(TMD ,Ak) |=dl C3
ϕ.

For the exampleSimple , with boundk = 4 andϕ = AG(¬v2 ∨ ¬v3), we build

the ABox

A4 = {S0(s0),R(s0, s1),R(s1, s2),R(s2, s3),R(s3, s4)}

and the concept

C3
ϕ v V2 u V3 u {s0, s1, s2, s3, s4}

44

Verification is done by asking the query(TSimple ,Ak) |=dl C3
ϕ.

Note that the assertions inAk form a symbolic path of lengthk + 1 through the

model, starting from an initial states. Moreover, this syntactic definition of a path

does not depend on the model described in the TboxTMD .

4. UsingALCF and Aboxes.

This method encodes a bounded path as an ABox as described in item (3) above.

However, we use a special encoding for the formula, that involves enhancing both

the TBox and the ABox. It is based on two known facts. First, that ifAG(p) does

not hold in a model thenEF (¬p) does. Second, thatEF (p) has a fixpoint repre-

sentation (Clarke and Emerson’s [CE81]):

EF (p) ≡ p ∨ EX(EF (p))

That is, in order forEF (p) to hold in a state, eitherp should hold in the current

state, or there should exist a next state whereEF (p) holds. In order to encode this

in DL, we need to enhance both the TBox built in section 3.1 and the ABox de-

scribed in item (3) above.

We first defineR to be afunctional role, to ensure that each individual in the in-

terpretation has at most one outgoing edge throughR. We then add an assertion to

Ak:

¬∃R.>(sk)

forcingsk to be the last state in the interpretation (that is,sk has no outgoing edges).

We then build the TboxT ′
MD by adding one concept inclusion toTMD . We introduce

a new conceptEFnotP , and define it as follows:

EFnotP v ¬Pt ∃R.EFnotP

This inclusion imitates exactly the fixpoint representation of Clarke and Emerson:

we first check whether¬P holds in the current state; if it does, then a bug was found

45

and we are done. If not, we try to perform the same check on the following states,

that are accessible via the roleR. SinceR is a functional, we have that∃R.EFnotP

is the same as∀R.EFnotP , and it is propagated to the next state. If¬P does not

hold in the last state,∃R.EFnotP is not applicable anymore, and the search stops

afterk steps.

Finally, we add another assertion toAk, stating thats0, the initial state, belongs

also to the new conceptEFnotP :

EFnotP (s0).

LetA′
k = Ak∪{EFnotP (s0),¬∃R.>(sk)}, andT ′

MD as defined above. If(T ′
MD ,A′

k)

is consistent, it means that¬p holds on one of the states of distancek or less from

the initial state.

For the exampleSimple , ϕ = AG(¬v2 ∨ ¬v3) andk = 4, we defineR to be a

functional role, and add the following inclusion to createT ′
Simple :

EFnotP v (V2 u V3) t ∃R.EFnotP

We then add two assertions toA4:

A′
4 = A4 ∪ {EFnotP (s0),¬∃R.>(s4)}

Verification is now carried out by asking whether(T ′
Simple ,A′

4) is consistent.

Note that as in the examples above, we expect the DL reasoner to give an “unsatis-

fiable” result (“inconsistent” for the other cases), since the formulaϕ actually holds

in Simple .

3.3 Correctness

We relate the satisfaction ofϕ in the modelMMD to the consistency problems stated in

the previous section. LetMD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) denote a model description for

46

a modelMMD = (S, I, R, L), let Mk
MD be the restriction ofMMD to distancek from

the initial states, and letϕ = AG(p) be a safety formula. LetTMD , T k
MD , (TMD ,Ak),

(T ′
MD ,A′

k) be the ontologies built forMD as defined in items (1),(2),(3),(4) respectively

in Section 3.2, and letC1
ϕ , C2

ϕ, C3
ϕ be the concepts representingϕ, as described in items

(1),(2),(3) of Section 3.2 (note that for method (4) noCϕ is defined). Theorems 17 and 18

state that our methods are correct.

Theorem 17. If Mk
MD 6|= ϕ then all the following hold:

1. TMD |=dl C1
ϕ. 2. T k

MD |=dl C2
ϕ. 3.(TMD ,Ak) |=dl C3

ϕ 4. (T ′
MD ,A′

k) is consistent.

Theorem 18. If one of the following holds:

1. TMD |=dl C1
ϕ 2. T k

MD |=dl C2
ϕ 3.(TMD ,Ak) |=dl C3

ϕ or 4. (T ′
MD ,A′

k) is consistent

thenMk
MD 6|= ϕ.

Proof of Theorem 17. Assume thatMk
MD 6|= ϕ. Then there exists a path inMk

MD ,

w = s0, ..., sj, wherej ≤ k, such thats0 |= I, ∀l, 0 < l ≤ j, (sl−1, sl) ∈ R, andsj 6|= p.

We build a finite interpretationI = (∆I , ·I) for TMD , based onw. The set∆I includes

j + 1 elementsσ0, ..., σj. Each of the primitive conceptsVi is interpreted as a setVI
i ,

such that∀l, 0 ≤ l ≤ j, σl ∈ VI
i if and only if sl |= vi. Note that for this interpretation,

M(σl) = sl (whereM is as given in definition 12). The interpretationRI of the roleR is

a set of pairs(σl, σl+1), 0 ≤ l < j. By Corollary 16, we know that all concept inclusions

of TMD hold under this interpretation. Note further that sincesj 6|= p we get by Lemma 13

thatσj ∈ ∆I \ PI .

We consider each of the four methods separately.

1. We assignσ0 ∈ C1
ϕ (whereσ0 is the individual corresponding tos0). We need to

show that the inclusion

C1
ϕ v S0 u (¬Pt ∃R.(¬Pt ∃R.(¬Pt ...∃R.¬P)...)))

47

holds under the interpretationI. This is easy to see: first,σ0 ∈ S0, by the

mappingM and Lemma 13. Second, sinceσj ∈ ∆I \ PI and (σj−1, σj) be-

long to RI , we have thatσj−1 ∈ (∃R.¬P)I . For similar considerations, since

(σ0, σ1), (σ1, σ2), ..., (σj−2, σj−1) all belong toRI , we have that

σ0 ∈ (∃R.∃R....∃R︸ ︷︷ ︸
j

.¬P)I . We have shown an interpretation where all inclusions of

TMD hold, andC1
ϕ is not empty, thusTMD |=dl C1

ϕ.

2. We interpret each primitive conceptSl as {σl} for 0 ≤ l ≤ j. The primitive

conceptsSj+1, ...,Sk are interpreted as∅. We assignσj ∈ C2I
ϕ . SinceT k

MD =

TMD ∪ Tk, it remains to show that all concept inclusions ofTk hold under this

interpretation, and thatC2
ϕ v ¬Pu (S0 t S1 t ... t Sk).

• Inclusions fromTk: For l > j, SI
l = ∅, and are thus included in any other set.

In order forSl v ∃R−.Sl−1 to hold, for l ≤ j, we need to show thatSI
l ⊆

{x ∈ ∆I | ∃y ∈ ∆I s.t.(y, x) ∈ RI ∧ y ∈ SI
l−1}. Indeed,SI

l = {σl},SI
l−1 =

{σl−1}, (σl−1, σl) ∈ RI , and(σl−1, σl) is the only pair(x, y) ∈ RI such that

x ∈ SI
l−1. Thus the inclusion holds.

• We need to show thatC2
ϕ v ¬Pu(S0tS1t ...tSk) holds under the interpreta-

tion I. SinceSj = {σj}, we get thatσj ∈ (SI
0 ∪SI

1 ∪ ...∪SI
k). Sincesj |= ¬p,

we get by Lemma 13 thatσj 6∈ PI . Thusσj ∈ (¬Pu (S0 tS1 t ...tSk))I as

needed.

3. We interpret the individualss0, ..., s j of Ak asσ0, ..., σj, that already exist in∆I .

We assignσj ∈ C3I
ϕ , andσj is the only individual inC3I

ϕ . For s j+1, ..., sk, we

introduce new individuals,σj+1, ..., σk. Sincesj 6|= p, we get by Lemma 13 that

σj 6∈ PI .

By the construction ofI, it satisfies bothTMD andAk. It remains to be shown that

C3
ϕ v ¬Pu{s0, ..., sk} under the interpretationI. Sinces j is interpreted asσj and

48

σj 6∈ PI , we get thatσj ∈ (∆I \ PI) ∩ {sI
0 , ..., s

I
k} as needed.

4. We interpret the individualss0, ..., s j of Ak asσ0, ..., σj, as above. We map allσi,

0 ≤ i ≤ j, to belong toEFnotP . The assertions inA′
k therefore hold:(sI

i , s
I
i+1) ∈

RI , sI
0 ∈ EFnotP I andsI

k ∈ (∆I \ {e ∈ ∆I : ∃(e, e′) ∈ RI}) since there is

no outgoing edge fromsI
k . It remains to be shown that the inclusionEFnotP v

¬Pt ∃R.EFnotP holds under the interpretationI. We know thatσ0, σ1, ..., σj ∈
EFnotP I , and only them. We have to show that these individuals belong also to the

right hand side of the inclusion.σ0, σ1, ..., σj−1 belong there since(σi, σi+1) ∈ RI ,

σi+1 ∈ EFnotP I for 0 ≤ i < j. Sinceσj 6∈ PI it also belongs there.

This concludes the proof of Theorem 17.

For the proof of Theorem 18, we need to show the opposite direction, that is, that if an

interpretation can be found for one of the ontologies, it means thatMk
MD 6|= ϕ. The

following lemma, derived trivially from Lemma 13 and Corollary 15, shows that it is

enough to show, given an interpretation forTMD, that it includes a “bad” sequence of

individuals.

Lemma 19. Let I = (∆I , ·I) be an interpretation forTMD. Let ϕ = AG(p) be a for-

mula andP = D(p). If there exist individualsσ0, σ1, ..., σj in ∆I , such thatσ0 ∈ SI
0 ,

(σi, σi+1) ∈ RI for 0 ≤ i < j, andσj 6∈ PI thenMk
MD 6|= ϕ.

Proof. Let s0 = M(σ0), s1 = M(σ1),..., sj = M(σj). SinceI is an interpretation of

TMD , we know by Corollary 15, thats0, s1, ..., sj is a path inMk
MD. Sinceσj 6∈ PI we

have thatsj 6|= p by Lemma 13. ThusMk
MD 6|= ϕ.

Proof of Theorem 18. In all the cases, we assume that an interpretationI = (∆I , ·I)
exists, such that the given ontology holds. We then show, for each case that the axioms and

assertions imply the existence of a series of individuals,σ0, σ1, ..., σj such thatσ0 ∈ S0,

(σi, σi+1) ∈ RI for 0 ≤ i < j, andσj 6∈ PI . This is enough by Lemma 19.

49

1. We know that the inclusion

C1
ϕ v S0 u (¬Pt ∃R.(¬Pt ∃R.(¬Pt ...∃R.¬P)...)))︸ ︷︷ ︸

k

holds under the interpretationI, and thatC1
ϕ is not empty. Letσ0 be an individual

in C1
ϕ
I . Thenσ0 ∈ SI

0 and alsoσ0 ∈
I

(¬Pt ∃R.(¬Pt ∃R.(¬Pt ...∃R.¬P)...)))︸ ︷︷ ︸
k

.

If σ0 ∈ PI then there must exist an individualσ1 such that(σ0, σ1) ∈ RI and

σ1 ∈
I

(¬Pt ∃R.(¬Pt ∃R.(¬Pt ...∃R.¬P)...)))︸ ︷︷ ︸
k−1

. For similar considerations, there

must exist a series of individuals,σ2, σ3, ..., σj such thatj ≤ k, (σi, σi+1) ∈ RI for

1 ≤ i < j, andσj 6∈ PI . We have found a sequenceσ0, σ1, ..., σj such thatj ≤ k

σj 6∈ PI , and by Lemma 19,Mk
MD 6|= ϕ.

2. LetI = (∆I , ·I) be an interpretation showing thatT k
MD |=dl Cϕ is consistent. Since

CI
ϕ = (∆I \ BI) ∩ (SI

0 ∪ SI
1 ∪ ... ∪ SI

k) is not empty inI, it must be the case that

for somej, 0 ≤ j ≤ k, (∆I \ PI) ∩ SI
j is not empty. Letσj be an element in

(∆I \ PI) ∩ SI
j . Thenσj ∈ (∆I \ BI) and alsoσj ∈ SI

j .

SinceT k
MD includes the concept inclusionSj v ∃R−.Sj−1, andSI

j is not empty, we

deduce thatSI
j−1 is not empty, and that∃σj−1 ∈ SI

j−1, such that(σj−1, σj) ∈ RI .

By similar considerations, there must exist a sequence of elementsσ0, ..., σj ∈ ∆I ,

such that for0 ≤ l < j, (σl, σl+1) ∈ RI , σ0 ∈ SI
0 andσ0 6∈ PI . ThusMk

MD 6|= ϕ.

3. LetI = (∆I , ·I) be an interpretation showing that(TMD ,Ak) |=dl Cϕ is consistent.

SinceCϕ v ¬P u {s0, ..., sk} is not empty, we know thatsI
j 6∈ PI for some

0 ≤ j ≤ k. Let σ0, σ1, ..., σj be the interpretation of{s0, ..., s j}. By the assertions

in Ak we know thatσ0 ∈ SI
0 , (σi, σi+1) ∈ RI for 1 ≤ i < j andσj 6∈ PI as needed.

4. Let I = (∆I , ·I) be an interpretation showing that(T ′
MD ,A′

k) is consistent. Let

σ0, σ1, ..., σk be the interpretation of{s0, ..., sk}. By the assertions inA′
k we have

50

thatσ0 ∈ SI
0 and alsoσ0 ∈ EFnotP I . SinceEFnotP I ⊆ ¬PI∪∃RI .EFnotP I we

know that eitherσ0 6∈ PI or there exists an elementγ ∈ ∆I such that(σ0, γ) ∈ RI ,

andγ ∈ EFnotP I . SinceR is a functional role,γ = σ1. For similar considerations,

eitherσ1 6∈ PI or σ2 ∈ EFnotP I , and the same applies toσi, 0 ≤ i < k. Sinceσk

has no outgoing edge, we get that one ofσ0, , σ1, ..., σk must belong to∆I \PI . Let

this element beσj.

We have found a sequenceσ0, , σ1, ..., σj such thatσ0 ∈ SI
0 , (σi, σi+1) ∈ RI for

1 ≤ i < j andσj 6∈ PI as before, thusMk
MD 6|= ϕ.

This concludes the proof of Theorem 18.

We now turn to investigate a different encoding to a model description as a TBox, that

gives rise to new BMC encodings.

3.4 Alternative Encodings

The methods described in the previous section all used the same encoding for the model,

which we denotedTMD . In this section we present an alternative encoding of a model,

based on the Ramsey-rule [Ram31]. Translated into DL notation, this rule states the

following equivalence:

Cv ∀R.D if and only if ∃R−.Cv D

Note that the roleR used inTMD is actually defined by the restrictions imposed by the

concept inclusions. We can therefore replaceRby a roleR̂, equivalent to the inverse ofR.

The model descriptionMD will be defined by the following inclusions, denoted̂TMD :

∃R̂.Ci v ¬Vi

∃R̂.(¬Ci u C′
i) v Vi

Note thatT̂MD is defined overALC. Let ϕ = AG(p), andP = D(p). The four methods

of section 3.2 can now be adapted to use the TBoxT̂MD .

51

1. We define the conceptĈ
1

ϕ as follows.

Ĉ
1

ϕ v ¬Pu (S0 t ∃R̂.(S0 t ∃R̂.(S0 t ...∃R̂.¬S0)...)))

with k nested∃R̂s. Checking whether̂TMD |=dl Ĉ
1

ϕ performs a search backwards,

starting from a buggy state (that belongs to¬P), and trying to reach an initial state

in k or less steps.

2. Recall that for the second method we used concept inclusions to encode a bounded

path, that needed the inverse roles, thus using the dialectALCI. UsingR̂, we built

T̂k where onlyALC is needed:

Si v ∃R̂.Si−1

for 0 < i ≤ k. The encoding of the formula now stays the same:

Ĉ
2

ϕ v ¬Pu (S0 t S1 t ... t Sk)

As we see, for this method the alternative encoding allows us to avoid the use of

inverse roles.

3. As in the original encoding, for a boundk we introducek + 1 individuals,s0,s1

,...,sk. However, we encode the path and formula differently. We assert¬P(sk) to

say thatsk is a buggy state. For0 < i ≤ k, the assertionŝR(s i,s i−1) makes i a

state of distancek − i from the buggy state. We call this set of assertionsÂk. We

now want to use nominals to say that the initial state is reachable ink steps, going

backwards from the buggy statesk: Ĉ
3

ϕ v S0 u {s0, ..., sk}. Verification for this

method is done by asking the query:(T̂MD , Âk) |=dl Ĉ
3

ϕ.

4. As in section 3.2, for the fourth method we defineR̂ to be afunctional role, ensuring

that each individual in the interpretation has at most one outgoing edge throughR̂.

52

We use the same TBox and ABox as in item 3 above, but add to them. We add an

assertion toÂk:

¬∃R̂.>(s0)

forcings0 to be the last state in the interpretation (that is,s0 has no outgoing edges).

We then build the Tbox̂T ′
MD by adding one concept inclusion tôTMD . We introduce

a new conceptEFs0, and define it as follows:

EFs0 v S0 t ∃R̂.EFs0

We now add another assertion tôAk, stating that thatsk, the buggy state, belongs

also to the new conceptEFs0:

EFs0(sk).

Like before, we first check whetherS0 holds in the current state - that is, if the buggy

state from which we start is already an initial state; if it is, then a bug was found in

an initial state (S0) and we are done. If not, we try to perform the same check on the

following states, that are accessible via the roleR̂. SinceR̂ is a functional, we have

that∃R̂.EFs0 is the same as∀R̂.EFs0, and it is propagated to the next state. IfS0

does not hold in the last state,∃R̂.EFs0 is not applicable anymore, and the search

stops afterk steps.

Let Â′
k = Âk ∪ {EFs0(sk),¬∃R̂.>(s0)}, andT̂ ′

MD as defined above. If(T̂ ′
MD , Â′

k)

is consistent, it means thatI can be reached ink or less steps from a buggy state.

3.5 Experimental Results

We conducted our experiments using theFaCT++ description logic reasoner [TH06].

While other DL reasoners exist, such asPellet [SPG+07] andRacer [HM01], we found

FaCT++ to be more accessible, being a free, open-source and well documented tool. A

benchmark comparison reported in [GHT06] suggests thatFaCT++ is also one of the

53

leading tools in performance. The tool accepts three input languages. The DIG interface

language [BMC03] (defined by the Description Logic Implementation Group), the Owl-

DL language and a simple lisp-like input. We worked with the lisp-like input language.

We have experimented with the eight methods described in the previous sections, to com-

pare their performances. We used a model derived from the NuSMV example “dme1-16”,

taken from [NuS], parameterized to enable different model sizes, and ran our experiments

on an Intel XEON CPU of 1.8GHz, with a 4GB RAM and Cache size of 512 KB. In table

3.3 below we present run-time results for a model consisting of 85 state variables.

Size Bound SAT 1 1* 2 2* 3 3* 4 4*

85 5 0.02 0.02 1.13 1.77 5.3 0.05 125 0.18 –

85 6 0.03 0.03 1.38 287 48 0.08 – 0.25 –

85 7 0.04 0.03 4.3 – 104 0.18 – 0.34 –

85 8 0.05 0.04 59.31 – 604 0.6 – 0.44 –

85 9 0.05 0.05 – – – 2.61 – 0.55 –

85 10 0.05 0.05 – – – 34 – 0.68 –

85 15 0.08 0.11 – – – – – 5.85 –

85 17 0.09 0.12 – – – – – 10 –

85 20 0.12 59.72 – – – – – – –

85 30 0.22 – – – – – – – –

85 40 0.30 – – – – – – – –

Figure 3.3: Run times for BMC, small model

Time is given in seconds, and a result of ‘–’ indicates that the run did not terminate

within 1200 seconds. Column 2 gives theboundof the BMC run. Column 3 presents

the results of the same model and formula running using a SAT solver. For this, we

used the BMC mode of Cadence-SMV [McM], that invokedzChaff [MMZ +01] as a SAT

54

solver. The columns titled with a number, each refer to the method with a similar number,

described in Section 3.2. The columns titled with a starred number (1*, 2* etc), refer to

the methods described in Section 3.4 (note that the starred methods are the Ramsey-rule

versions of the non-starred ones). Table 3.4 presents results for a larger model, consisting

Size Bound SAT 1 1* 2 2* 3 3* 4 4*

425 5 0.71 0.17 34 32 58 29.5 – 32 –

425 6 0.72 0.19 42 – 134 39.8 – 43.9 –

425 7 0.78 0.21 87 – 279 51.5 – 55.9 –

425 8 0.80 0.24 600 – 1275 63.8 – 69.4 –

425 9 0.88 0.28 – – – 95.9 – 83.8 –

425 10 0.93 0.34 – – – 703.6 – 99 –

425 15 1.04 0.79 – – – – – 423 –

425 17 1.50 1.15 – – – – – 630 –

425 20 2.34 314 – – – – – – –

425 30 2.76 – – – – – – – –

425 40 4.56 – – – – – – – –

Figure 3.4: Run times for BMC, large model

of 425 state variables. The verified formula was an invariant formula that failed on cycle

42. As evident from the table, none of our methods, for the large model as well as for

the small one, were capable of searching more than 20 cycles. Thus in all cases the result

from the DL reasoner was “unsatisfiable” (meaning that no error was found up to the

given bound).

The satisfiability solver we used,zChaff, outperformed all of our encodings as can be

seen in the tables. While some of these methods, especially number 1, performed well for

lower bounds, they all seem to be very sensitive to the depth of the search, and explode

55

once the bound passes 20.

In all methods, except for number 2, the Ramsey-rule version performed much worse

than the original one. In the context of model checking this is not surprising, sinceback-

wards traversal of the transition relation is known to be more difficult than forward tra-

versal. The exception of Method 2 can be explained by the fact that the original method

in this case required backward traversal as well.

It is interesting to note the significant differences between the various DL encodings

themselves. While the gap between forward and backward encodings is expected due to

the nature of the model checking problem, the difference in performance between forward

encodings seems to be related to internal DL algorithms. In Chapter 6 we suggest possible

future directions to investigate this phenomena.

3.6 Discussion

It is interesting to compare a typical DL application to the model checking application pre-

sented above. The GALEN ontology [RN94] for example, contains close to 25,000 con-

cepts and around 500 concept inclusions, yet queries are resolved in a matter of minutes.

In contrast, the examples we use contain only a few hundred concepts and a similar num-

ber of concept inclusions, but for big enoughk the run does not terminate. The difference,

it seems, stems from the different “shape” of the problems. A typical DL application is

usually “shallow” in the sense that relations through roles are applied only once, while

the model checking application involves concepts that are defined using repeated relations

through one role.

The complexity of consistency checking with respect to a general terminology is

known to be EXP-time complete in all dialects used in this chapter [Sch91, DM00,

Tob01]. The complexity of model checking is known to be PSPACE-complete [SC85,

CES86]. At first sight then, it may look as if we try to solve a simple task with a complex

56

algorithm. This is not the case however, for two main reasons.

First, we note that the complexity result for model checking is measured with respect

to the full Kripke structure (themodel) rather than themodel description, while consis-

tency checking complexity is given in terms of the terminology size. For our encoding,

the size of the terminology is linear in the size of the model description. The Kripke struc-

ture is in many cases exponentially larger than the description of it, and the main idea of

symbolic model checking is to avoid, when possible, the need to build the full Kripke

structure.

Second, it is important to note that while consistency checking is EXP-time complete

in general, the complexity is in NP for all the bounded model checking methods presented

above. To see this, letn = |MD| andk the bound. The size of the model description

isO(n + k). If an interpretation is given, (a ‘witness’ for the consistency query), it is of

sizeO(n × k) (k nodes, each of them of sizeO(n), assigning values to then primitive

concepts). Verifying that the given interpretation indeed satisfies all concept inclusions

will again amount toO(n × k) calculations. We conclude that, as known, complexity is

not a good measurement to assess model checking methods.

57

Chapter 4

Liveness and Fairness Modeling using

Description Logic

In the previous chapter we explored several methods to encode a bounded model checking

problem of invariance formulas in DL. We now turn to considerlivenessformulas, given

asAF(p) with p being a Boolean expression. Such formulas state thatp must hold at least

once on every path. For a model descriptionMD , we use the same encoding as described

in Section 3.1, and here as well, we encode in our terminology a description of abuggy

path, and use the DL reasoner to find a counterexample for us. In the liveness case, a

buggy path would be one on whichp never holds. We thus look for a representation of

the formulaEG(¬p). As discussed in Section 2.1.2, liveness formulas are rarely verified

without some fairness constraints. In fact, for the main model checking method ofLTL,

a liveness formula is translated into a Büchi automaton [Var96], and model checking is

reduced to finding a “fair” loop.

In Section 4.1 below we give an encoding forAF(p) formulas overALC, and prove

its correctness. Section 4.2 deals with fairness encoding. We show that fairness cannot

be expressed inALC or other dialects discussed in this document, and demonstrate that

for our needs, fairness can be implemented on top of a tableau reasoning algorithm. In

59

Section 4.3 we present experimental results, and Section 4.4 concludes this chapter with

a discussion.

4.1 The Encoding

As before, we use the fix-point representation ofCTL formulas, as defined by Clarke and

Emerson in [CE81] (see Section 2.1.3). Thus,EG(¬p) is represented as follows:

EG(¬p) = ¬p ∧ EX(EG(¬p)) (4.1)

We use this equation for our translation into DL. LetMD = (I, [〈c1, c′1〉, ..., 〈cn, c′n〉]) be

a model description for the modelMMD = (S, I, R, L) overV = {v1, ..., vn}, and let

TMD be the terminology built for it as described in Section 3.1. Letϕ = AF(p) be the

formula to be verified, withp being a Boolean expression over the variablesv1, ..., vn, and

let P = D(p).

We introduce a new concept calledEGnotP , and add the following concept inclusion

to TMD :

EGnotP v ¬Pu ∃R.EGnotP (4.2)

Note that the expression∃R.C can be seen as taking one step throughR, and thus corre-

sponds, in a sense, to theCTL expressionEX(C).

Let T F
MD be the terminology we get by adding Equation (4.2) toTMD . We define the

conceptCϕ v S0uEGnotP . In order to verifyϕ, we now check whetherCϕ is consistent

with respect to our terminology:T F
MD |=dl Cϕ ?

A positive answer from the DL reasoning tool will be accompanied by an interpretation

for T F
MD in which Cϕ is not empty. This interpretation can serve an a witness toEG(¬p),

or as a counterexample toAF(p). The following proposition states our result formally.

Proposition 20.MMD 6|= ϕ if and only if T F
MD |=dl Cϕ.

60

Proof. (=⇒). Assume thatMMD 6|= ϕ. SinceMMD is a finite kripke structure, this means

there exists a loop, that is, a sequence of statess0, s1, ... ,sm such thats0 |= I, si 6|= p for

0 ≤ i ≤ m, (si, si+1) ∈ R for 0 ≤ i < m, andsm = sj for some0 ≤ j < m. We use

this sequence to build an interpretationI = (∆I , ·I) for T F
MD . We definem individuals

σ0, σ1, ..., σm−1 in ∆I , that correspond tos0, s1, ... ,sm−1. We mapσi ∈ EGnotPI

for 0 ≤ i < m. We then map eachσi to the primitive conceptsVI
k according tosi as

expected:σi ∈ VI
k if and only if si |= vk. Note that sinces0 |= I we get by Lemma 13

thatσ0 ∈ SI
0 , and alsoσi 6∈ PI for 0 ≤ i < m, sincesi 6|= p. We define(σi, σi+1) ∈ RI

for 0 ≤ i < m − 1, and also(σm−1, σj) ∈ RI . Finally, we mapσ0 ∈ EGnotPI . We

need to show that all inclusion inT F
MD hold under this interpretation. By Corollary 16, we

know that all inclusions fromTMD hold.

• For the inclusionEGnotP v ¬Pu ∃R.EGnotP , note that by the construction of

I, all individualsσi belong toEGnotPI . We know also thatσi 6∈ PI . Since each

individual has an outgoing edge that is also inEGnotPI the inclusion holds.

• The inclusionCϕ v S0uEGnotP holds, sinceσ0, the only individual inCϕ, belongs

also toSI
0 ∩ EGnotPI .

(⇐=). Assume thatT F
MD |=dl Cϕ. Then there exists an interpretation forT F

MD , such that

CI
ϕ is not empty. SinceALC enjoys thefinite model property[BCM+03], there must exist

a finite interpretationI = (∆I , ·I) for T F
MD such thatCI

ϕ is not empty. Thus there exists

an individualσ0 ∈ SI
0 ∩ EGnotPI .

Sinceσ0 ∈ EGnotPI andEGnotPI ⊆ (∆I \ PI) ∩ {e ∈ ∆I : ∃(e, e′) ∈ RI s.t. e′ ∈
EGnotPI} we know thatσ0 6∈ PI , and there must existσ1 ∈ EGnotPI such that

(σ0, σ1) ∈ RI . For similar considerations, there exists a sequence of individuals,σ0, σ1, σ2, ...,

such thatσi ∈ EGnotPI , σi 6∈ PI , and(σi, σi+1) ∈ RI for all i. SinceI is finite there

must existm, j such thatσm = σj. We show thatMMD 6|= ϕ by presenting an infinite

sequence of states (a loop) inMMD that do not satisfyp. We map eachσi to a statesi as

61

usual:σi ∈ VI
k if and only if si |= vk. By Lemma 13,si 6|= p, sinceσi 6∈ PI . Also, by

Corollary 14,∀0 ≤ i ≤ m, (si, si+1) ∈ R and(sm, sj) ∈ R.

4.1.1 Other Attempts

We consider two related attempts that can be tempting to be tried.

• It is interesting to try the Ramsey-rule method for encoding a model description

(Section 3.4). Recall that using this method, we encode a roleR̂ that goes back-

wards, equivalent to the inverse of the roleR. For the BMC methods of Section 3.4,

we used this method to go backwards from a buggy state, trying to reach an initial

state within the given bound. In our case however, there is no buggy state, as a

failure can be demonstrated only by a buggy loop. Suppose that equation 4.2 is

changed a bit, to usêR:

̂EGnotP v ¬Pu ∃R̂. ̂EGnotP

Figure 4.1 demonstrates the difference between the conceptsEGnotP and ̂EGnotP .

The left hand side of the figure describeEGnotP : individuals in which¬p holds,

Figure 4.1: Forward vs. backward role modeling

and in all the other individuals reachable throughR , ¬p holds also. The right hand

side describeŝEGnotP : individuals that when going backwards throughR (that is,

forward througĥR) can visit only individuals with¬p. For model checkingAF(p),

62

we check the consistency ofS0 u EGnotP , that is check whether one of the ini-

tial states belong toEGnotP . If that is the case it means that a loop with¬p is

reachable from the initial state. We note thatS0 u ̂EGnotP would not, in general,

give us the correct answer. Only if the individual in the intersection is part of the

loop. Otherwise the answer would be wrong. Thus we can get a “false negative”

if S0 u ̂EGnotP is found to be inconsistent, although a state might exist in the left

“tail”, that is not included in ̂EGnotP . We can also get a “false positive”, if the

intersection is not empty because it includes an individual from the right tail, which

actually does not lead to a legal loop.

• It is tempting to try and use the same reasoning to verify a formulaψ = AG(p):

instead of the concept inclusion in (4.2), add the conceptAGpand the following

concept inclusion:

AGpv Pu ∀R.AGp. (4.3)

DefineCψ v S0 u AGp. Let T F ′
MD be the terminology we get by replacing Equation

(4.2) with Equation (4.3) inT F
MD . Note that checkingT F ′

MD |=dl Cψ does not give

us what we want. To see this, recall thatT F ′
MD |=dl Cψ asks whetherthere existsan

interpretationI, that satisfies all concept inclusions inT F ′
MD , and for whichCψ is

not empty. Such interpretation does not necessarily include all possible transitions

in the given modelMMD . In fact, an interpretation that satisfies inclusion (4.2)

would be enough for inclusion (4.3) as well. ThusT F ′
MD |=dl Cψ verifiesEG(p) and

notAG(p).

The encoding we have presented so far does not account for fairness constraints. This

is the topic of the next section.

63

4.2 Modeling Fairness

In Section 2.1.2 we explained that fairness constraints are an important component in

model checking of liveness formulas. The constraintfairness p asserts that the live-

ness formula should be verified only on infinite paths on whichp holds infinitely often. In

order to encode fairness, we need to expresseventuality- that some event can be reached

within a finite number of steps. Providing a general encoding for this (as done for a

bounded path in Section 3.2), is not possible in the DL dialects that were considered so

far (subsets ofALCIOF). To see this, recall thatALCIOF corresponds to a fragment

of first order logic. Eventuality, needed for fairness, is equivalent toreachability, which

cannot be expressed in first order logic (c.f. [MR04]).

More expressive dialects have been defined in the DL literature that can deal with our

problem. In [GL97], De Giacomo and Lenzerini propose the embedding of aµ calculus

operator to DL, introducing the dialectµALCQ. In a joint work with Calvanese [CGL99]

they later expand this dialect to support inverse roles as well as roles with arbitrary arity,

introducing the dialectDLRµ. While they provide an algorithm to decide consistency

problems written in these dialects (using tree automata), those algorithms were never

implemented in any existing DL reasoning tool [TW08].

We observe that while fairness cannot be expressed inALCIOF , it can be easily

implemented. In order to find an interpretation for our encoding of liveness properties

overALC (Section 4.1), the mechanism ofblocking [HS99] comes into play (see Sec-

tion 2.2.3): an interpretation is found when a new nodey in the expansion is a subset of

a previous nodex (in this case we say thaty is blocked byx)1. Such an interpretation

demonstrates a loop, or, translated into the model checking world, an infinite sequence of

states. In order to support, for example, the fairness constraintfairness p we need to

make sure that at least one of the nodes in the loop has (or can possibly have)p in it. That

is, we allowx to blocky only if p appears in some node on the path fromx to y .

1Other blocking conditions may apply for more expressive DL dialects.

64

Below we show how fairness can be achieved in tableau based DL reasoning. We

assume that the formula to be verified is of the formAF(false) (or EG(true)), meaning

that model checking is reduced to finding a fair cycle.

4.2.1 Realizing Fairness in Tableaux Reasoning

We propose a modification to the tableaux procedure to support fairness. Our procedure

is both terminating and sound: if a fair cycle is found, it is a correct one. However, the

procedure is not complete, that is, there are cases were a fair cycle exits but our procedure

fails to find it. We show that by an iterative application of the algorithm, completeness

can also be achieved. In the remainder of this section we discuss the theoretical and

implementation considerations for realizing fairness in DL reasoning.

As discussed before, fairness constraints in model checking are Boolean expressions

that should be satisfied at least once in a given loop in order for it to be a legal coun-

terexample. The algorithm we present deals with one fairness constraint; if more than

one constraint should be considered, a repeated application of the algorithm would be

required.

In tableaux reasoning, an interpretation is represented by a completion tree (see Sec-

tion 2.2.3), and cycles are represented by blocked nodes. If a nodey is blocked by a node

x0 then there exists a path of nodesx0, x1 . . . , xn, y in the completion tree, such that each

edge〈x0, x1〉, . . . , 〈xn, y〉 is labeled withR. (note that in the terminologies that we deal

with there exists only one roleR). Such a blocking path represents a loop.

In order to implement reasoning with fairness, we need to reject those completion trees

that correspond to unfair computations. LetFC be a fairness constraint. A completion

treeG is unfair with respect toFC if there exists a loopx0, . . . , xn, y such thatFC /∈
L(xi) for all 0 ≤ i ≤ n. Otherwise, we say thatG is fair with respect toFC.

65

Modifying Tableaux to Support Fairness

Our approach to implementing fairness is to build a complete and clash-free completion

tree and, if it is unfair, to attempt to make it fair by adding the fairness constraint to the

label of some node involved in a cycle. To accomplish this, the tableaux algorithm is

extended with the new rule illustrated in Figure 4.2. We set the new rule to have a lower

priority than all existing rules.

fairness-rule: if 1. y is a node blocked byx0 (let (x0, . . . , xn, y) be the cycle)

2. FC is a fairness constraint such that for everyi, 0 ≤ i ≤ n, FC /∈ L(xi)

then setL(xi) = L(xi) ∪ {FC} for somei : 0 ≤ i ≤ n

Figure 4.2: Expansion rule for fairness

The tableaux algorithm is enhanced in such a way that a node is not consideredblocked

until a fairness constraint appears in the label of one of its nodes. Note that after applying

thefairness-rule the completion tree must be updated: a clash may now exist that did

not exist before, and labels of nodes may need to change.

Theorem 21. The tableaux algorithm withfairness-rule terminates and is sound (if a

complete clash-free fair completion tree forC is found thenC is consistent).

Proof. The algorithm is clearly sound: if a cycle is found whereFC holds on one of the

nodes then a fair cycle exists. To prove termination, we assume, without loss of generality,

that the completion tree is a single path. After a first application offairness-rule to a

given blocking loop, there are three cases to consider:

1. It is possible to compute a complete clash-free fair completion tree without a need

for a second application offairness-rule.

2. A clash occurs before a second application of thefairness-rule, or

66

3. A subsequent application offairness-rule is required.

Both cases (1) and (2) lead to termination. Case (3) implies that the addition ofFC to

a label inside the cycle breaks the blocking condition and leads to a new cycle. The al-

gorithm therefore proceeds by addingFC inside the next loop. Again, there are three

possible outcomes, with two resulting in termination. In the worst case, there is a se-

quence of case (3) for which addingFC forces unblocking the last node and moving the

blocking loop forward. However, after a finite number of occurrences of case (3), there

must eventually be two nodes labeled byFC for which the labels are the same (since the

TBox is finite). One of these nodes will then block the other, and the fair loop must then

be established.

Note that while our algorithm is sound, completeness is not guaranteed. That is, there

can be cases where a concept is satisfiable with respect to a fairness constraintFC, but the

tableaux procedure fails to find an interpretation. To see how this happens, let us consider

the example shown in Figure 4.3, that presents two completion trees for the conceptC

Figure 4.3: Two completion trees forT1

with respect to the TBoxT1 = {Cv ¬B,> v ∃R.>}.

67

ObviouslyT1 |=dl C, since there exists a complete and clash-free completion treeG

for it as illustrated in the left-hand side of Figure 4.3. OnG, the nodey is blocked by

x0. If we add the fairness constraintFC = B, thefairness-rule will try to addB to the

only possible node,x0, resulting in a clash. Our tableau algorithm will therefore return an

“unsatisfiable” result.

A clash-free fair completion tree forC does exist, however, as shown byG′ in Fig-

ure 4.3. In order to find it though, we need to allow for a longer blocking cycle. In the

definition below, we introduce the notion ofn-blocking.

Definition 22. Letn be a non-negative integer. A nodey isn-blockedby the nodex0 with

blocking loopx0, . . . , xm, y if y is blocked byx0 andn ≤ m, that is, there are at leastn

nodes in the blocking loop.

Figure 4.3 gives examples for 0-blocking according to Definition 22 (the completion

treeG), as well as 1-blocking (G′).

Note that replacing the original tableaux blocking withn-blocking in the (fair) tableaux

algorithm would clearly preserve both termination and soundness. Based onn-blocking,

we can now propose a tableaux algorithm that would guarantee completeness, for loop

lengths less than or equal ton.

Algorithm 23. Given a conceptC, a TBoxT , a fairness conditionFC and a non-negative

integern, check the unfair consistency ofC with respect toT using the regular tableaux

procedure. If it is unsatisfiable, return “unsatisfiable”. Then, for0 ≤ k ≤ n, run the fair

tableaux algorithm withk-blocking. Return “satisfiable” if a fair loop is found for some

k; otherwise return “unsatisfiable”.

Theorem 24. Algorithm 23 is a sound and complete decision procedure for the fair sat-

isfaction ofCwith respect toT andFC, with loops up to lengthn.

Proof. Termination and soundness are a simple consequence of Theorem 21. Complete-

ness follows from the fact that no fair blocking loops for any possible length not exceeding

68

n were found.

Note that for a Kripke structureM and a liveness specificationϕ there existsn such

that if M 6|= ϕ, thenM contains a fair cycle with length not exceedingn (sinceM is

finite). Thus, it is possible to build the TBoxT using the technique from Section 4.1 and

run the procedure suggested in Algorithm 23 to determine if a fair cycle exists.

4.3 Experimental Evaluation

The modified tableaux reasoning procedure described above was implemented by Dmitry

Tsarkov on top ofFaCT++ [TH06], a state-of-the-art description logic reasoner. In order

to run real examples, we wrote a translator from the AIGER [Bie07] format, that builds a

terminology as described in Section 4.1. Liveness formulas were translated in the AIGER

models into B̈uchi automata (see section 2.1.2), and the fairness constraints were passed

to FaCT++ using a new construct in the interface language.

The models we acquired were originally written in theVIS [BHSV+96] input lan-

guage, and were translated into AIGER using different tools. We present results running

three sets of benchmarks with fairness constraints. The “amba” benchmark encodes an

Advanced High Performance Bus. The “vsa” benchmarks encode a simple architecture

for a microprocessor. In each of the vsa benchmarks, the number indicates the datawidth

of the microprocessor. The “Vending” example is part of theVIS distribution.

Figure 4.4 summarizes our results. Times reported are in seconds and a time of ’–’

indicates that the run did not finish in the allotted time of 1 hour.

It is evident from Figure 4.4 that our approach is efficacious in certain scenarios. For

the “amba” benchmark, our system could not finish in the given time, whileVIS was

easily able to handle it in a fraction of a second. However, the “vsaR” benchmarks proved

simple for our reasoner whileVIS was unable to finish in the given time.

69

Benchmark Result Size (vars) FaCT++ VIS

vsaR - 6 Fail 170 10.8s –

vsaR - 8 Fail 204 14.4s –

vending Pass 64 – 1.1s

amba2 - G3 Pass 63 – 0.7s

amba3 - G3 Pass 77 – 17.7s

Figure 4.4: Run times for the fairness verification tasks

4.4 Discussion

Our method can be seen as “bounded” fair cycle detection, where at each iteration we look

for loops of length not shorter than a given boundn. In this aspect it resembles bounded

model checking of liveness properties using satisfiability solving. The search algorithm

is different however. While our method dynamically searched for a fair loop, in the SAT

case a CNF formula is statically created prior to the SAT run, encoding all possible loops

up to a given length.

Our method works better when a fair cycle does exist in the model. Note that when a

fair cycle does not exist, the boundn on the length of the longest loop is an inadequate

over-approximation of the real limit. Our algorithm would thus continue iterating longer

than needed before it would reach the conclusion that a fair cycle does not exist. This

can be also observed in the results presented in the previous section: when a formula is

satisfied (no fair cycle exists), our method performs much worse thanVIS, but becomes

useful when a bad cycle does exist in the model.

70

Chapter 5

Counterexample Explanation

An important feature of model checking tools is their ability to provide, when the specifi-

cation does not hold in a model, acounterexample[CGMZ95]: a trace that demonstrates

the failure of the specification in the model. This allows the user to analyze the failure,

understand its source(s), and fix the specification or model accordingly. In many cases,

however, the task of understanding the counterexample is challenging, and may require a

significant manual effort.

An explanation of a counterexample deals with the question:what values on the trace

cause it to falsify the specification?Thus, we face the problem ofcausality. The philoso-

phy literature, going back to Hume [Hum39], has long been struggling with the problem

of what it means for one event to cause another. We relate the formal definition of causal-

ity of Halpern and Pearl [HP01] to explanations of counterexamples. The definition of

causality used in [HP01], like other definitions of causality in the philosophy literature,

is based oncounterfactual dependence. EventA is said to be acauseof eventB if, had

A not happened (this is the counterfactual condition, sinceA did in fact happen) thenB

would not have happened. Unfortunately, this definition does not capture all the subtleties

involved with causality. The following story, presented by Hall in [Hal02], demonstrates

some of the difficulties in this definition. Suppose that Suzy and Billy both pick up rocks

71

and throw them at a bottle. Suzy’s rock gets there first, shattering the bottle. Since both

throws are perfectly accurate, Billy’s would have shattered the bottle had it not been pre-

empted by Suzy’s throw. Thus, according to the counterfactual condition, Suzy’s throw

is not a cause for shattering the bottle (because if Suzy wouldn’t have thrown her rock,

the bottle would have been shattered by Billy’s throw). Halpern and Pearl deal with this

subtlety by, roughly speaking, takingA to be a cause ofB if B counterfactually depends

onA under some contingency. For example, Suzy’s throw is a cause of the bottle shat-

tering because the bottle shattering counterfactually depends on Suzy’s throw, under the

contingency that Billy doesn’t throw.

We adapt the causality definition of Halpern and Pearl from [HP01] to the analysis of

a counterexample traceπ with respect to a temporal logic formulaϕ. We view a trace as a

matrix of values, where an entry(j, i) corresponds to the value of variablei at timej. We

look for those entries in the matrix that are causes for the first failure ofϕ onπ, according

to the definition in [HP01]. To demonstrate our approach, let us consider the following

example.

Example: A transaction begins whenSTARTis asserted, and ends whenENDis asserted.

Some unbounded number of time units later, the signalSTATUSVALID is asserted. Our

specification requires that a new transaction must not begin before theSTATUSVALID

of the previous transaction has arrived. This specification can be written in LTL as

G(START → (¬ENDU (END∧X[¬STARTU STATUSVALID]))).

A counterexample for this specification may look like the computation pathπ shown

in Fig. 5.1.

In this example, the failure of the specification on the trace is not trivially evident. Our

explanations, displayed asdotsattract the user’s attention to the relevant places, to help

in identifying the failure. Note that each dotr is acauseof the failure ofϕ on the trace:

switching the value ofr would, under some contingency on the other values, change the

value ofϕ on π. For example, if we switch the value ofSTARTin state 15 from 1 to 0,

72

Figure 5.1: A counterexample with explanations

ϕ would not fail on the given trace anymore (in this case, no contingency on the other

values is needed). Thus the matrix entry of the variableSTARTat time 15 is indicated as

a cause.

We show that the complexity of detecting an exact causal set is NP-complete, based

on the complexity result for causality in binary models ([EL01]). We then present an

over-approximation algorithm whose complexity is linear in the size of the formula and

in the length of the trace.

5.1 Defining Causality in Counterexamples

A counterexampleto anLTL formulaϕ in a Kripke structureK is a computation path

π = s0, s1, . . . such thatπ 6|= ϕ. For a statesi and a variablev, the labeling functionL

of K maps the pair〈si, v〉 to {0, 1} in a natural way:L(〈si, v〉) = 1 if si |= v, and0

otherwise. For a pair〈s, v〉 in π, we denote by〈ŝ, v〉 the pair that is derived from〈s, v〉
by switching the labeling ofv in s. Let π be a path,s a state inπ andv a variable in the

labeling function. We denoteπ〈ŝ,v〉 the path derived fromπ by switching the labeling of

v in s on π. This definition can be extended for a set of pairsA: we denoteÂ the set

{〈ŝ, v〉|〈s, v〉 ∈ A}. The pathπÂ is then derived fromπ by switching the value ofv in s

for all pairs〈s, v〉 ∈ A.

One of the ways to define causality is to use the definition ofcriticality: eventA is

critical for eventB if, hadA not occurred,B would not occur. EventC is then defined

to be acauseof eventB if C can be madecritical for B by, possibly, changing some

73

conditions. Adapting this definition to causality in counterexamples, we want to say that

the value of variablev in states is critical for the failure ofϕ onπ if, after switching this

value,ϕ does not fail onπ any longer.

Before we formally define causes in counterexamples we need to deal with one sub-

tlety: the value ofϕ on finite paths. While computation paths are infinite, it is often

possible to determine thatπ 6|= ϕ after afinite prefix of the path. Thus, a counterexam-

ple produced by a model checker may demonstrate a finite execution path. We use the

notationπ[0..k] |=fϕ to denote “finitely models”, andπ[0..k] |=/fϕ for “finitely falsifies”.

These are defined as follows.

Definition 25 (Evaluation on finite paths). Let π[0..k] be a finite path andϕ an LTL

formula. We say that:

1. The value ofϕ is true in π[0..k] (π[0..k] |=fϕ) iff for all infinite computationsρ, we

haveπ[0..k] · ρ |= ϕ

2. The value ofϕ is falsein π[0..k] (π[0..k] |=/fϕ) iff for all infinite computationsρ, we

haveπ[0..k] · ρ 6|= ϕ;

3. The value ofϕ in π is unknown (π[0..k] ? ϕ) iff there exist two infinite computa-

tionsρ1 andρ2 such thatπ[0..k] · ρ1 |= ϕ andπ[0..k] · ρ2 6|= ϕ.

Before we define criticality and causality in counterexamples, we note that only part

of the values in a counterexample can be relevant for the explanation. We thus need the

definition below.

Definition 26 (Bottom value). For a Kripke structureK = (S, I, R, L), a pathπ in K,

and a formulaϕ, a pair〈s, v〉 is said to have abottom valuefor ϕ in π, if L(〈s, v〉) = 0

andv has apositivepolarity inϕ, orL(〈s, v〉) = 1 andv has anegativepolarity inϕ.

Note that a variablev may appear in different polarities in a formulaϕ. In such a case,

we say that〈s, v〉 has a bottom value for every states.

74

Let ϕ be anLTL formula that fails on an infinite pathπ = s0, s1, . . ., and letk be the

smallest index such thatπ[0..k] |=/fϕ. If ϕ does not fail on any finite prefix ofπ, we take

k = ∞ (thenπ[0..∞] naturally stands forπ, and we haveπ 6|= ϕ).

In the definitions of criticality and causality given below, we assume thatk is the smallest

index such thatπ[0..k] |=/fϕ.

Definition 27 (Criticality in counterexample traces). A pair 〈s, v〉 is critical for the failure

of ϕ onπ[0..k] if π[0..k] |=/fϕ, but eitherπ〈ŝ,v〉[0..k] |=fϕ or π〈ŝ,v〉[0..k] ? ϕ.

That is, switching the value ofv in s changes the value ofϕ onπ[0..k] (to eithertrue

or unknown). As a simple example, consider the formulaϕ = Gp, on π = s0, s1, s2,

labeledp · p · ¬p. Then,π[0..2] |=/fϕ, and〈s2, p〉 is critical for this failure, since switching

the value ofp in states2 changes the value ofϕ to unknown.

Definition 28 (Causality in counterexample traces). A pair 〈s, v〉 is acauseof the failure

of ϕ onπ[0..k] if there exists a setA of bottom-valuedpairs, such that the following hold:

• 〈s, v〉 6∈ A,

• πÂ[0..k] |=/fϕ, k is the smallest such index, and

• 〈s, v〉 is critical for the failure ofϕ onπÂ[0..k].

A pair 〈s, v〉 is defined to be acausefor the failure ofϕ on π, if it can be made

critical for this failure by switching the values of some bottom-valued pairs. Note that

according to this definition, only bottom-valued pairs can be causes. The restriction of

allowed changes to bottom-valued pairs is important, since other changes of values may

introduce new failures that did not exist on the original counterexample, and thus can lead

to “spurious causes” - pairs that are not causes of the original failure, but can be made

critical if new failures are introduced. Consider, for example, the formulaψ1 = G(req →
Xack) and the traceρ1 pictured in Figure 5.2. It is clear that the value ofreq in s0 is not

75

a cause for the failure ofψ1, since this request is acknowledged. If we allow changes of

any pairs, it is easy to see that〈s0, req〉 is a cause for the failure ofψ1 because changing

the value ofreq in s2 and ofack in s1 makes it critical.

Note that a traceπ may demonstrate more than one failure ofϕ, as we demonstrate

in the examples below. We believe that the first failure is the most interesting one for the

user. Also, focusing on one failure naturally reduces the set of causes, and thus makes it

easier for the user to understand the explanation.

Examples:

1. Considerϕ1 = G p and a pathπ1 = s0, s1, s2, s3, (s4)
ω labeled as(p) · (p) · (¬p) ·

(¬p) · (p)ω. The shortest prefix ofπ on whichϕ1 fails isπ1[0..2]. 〈s2, p〉 is critical

for the failure ofϕ on π[0..2], because changing its value from0 to 1 changes the

value ofϕ on π[0..2] from false to unknown. Also, there are no bottom-valued

pairs inπ[0..2], thus there are no other causes, which indeed meets our intuition.

2. Considerϕ2 = F p and a pathπ2 = (s0)
ω = (¬p)ω. The formulaϕ2 fails in π2, yet

it does not fail on any finite prefix ofπ2. Note that changing the value of any〈si, p〉
for i ≥ 0 results in the satisfaction ofϕ on π, thus all pairs{〈si, p〉 : i ∈ IN} are

critical and hence are causes for the failure ofϕ2 onπ2.

3. The following example demonstrates the difference between criticality and causal-

ity. Considerϕ=G(a ∧ b ∧ c) and a traceπ3 = s0, s1, s2, . . . labeled as(∅)ω (see

Figure 5.2). The formulaϕ3 fails ons0, however, changing the value of any signal in

one state does not change the value ofϕ3. There exists, however, a setA of bottom-

valued pairs whose change makes the value ofa in s0 critical: A = {〈s0, b〉, 〈s0, c〉}.
Similarly, 〈s0, b〉 and〈s0, c〉 are also causes.

76

Figure 5.2: Counterexample traces.

5.2 Complexity of computing causality in counterexam-

ples

The complexity of computing causes for counterexamples follows from the complexity of

computing causality in binary causal models defined in [HP01].

Lemma 29. Computing the set of causes for falsification of a linear-time temporal speci-

fication on a single trace is NP-complete.

Proof. The proof of NP-hardness is based the reduction from computing causality in bi-

nary causal models to computing causality in counterexamples. The problem of comput-

ing causality in binary causal models is NP-complete [EL01]. The reduction from binary

causal models to Boolean circuits and from Boolean circuits to model-checking, shown in

[CHK08], is based on the automata-theoretic approach to branching-time model checking

([KVW00]), and proves that computing causality in model checking of branching time

specifications is NP-complete. On a single trace linear-time and branching temporal log-

ics coincide, and computing the causes for satisfaction is easily reducible to computing

the causes for falsification.

The proof of membership in NP is straightforward: given a pathπ and a formula

ϕ that is falsified onπ, the number of pairs〈s, v〉 is |ϕ| · |π|; for a pair〈s, v〉, we can

non-deterministically choose a setA of bottom-valued pairs; checking whether changing

77

L on S makes〈s, v〉 critical for the falsification ofϕ requires model-checkingϕ on the

modifiedπ twice, and thus can be done in linear time.

5.3 An over-approximation algorithm

The counterexamples we work with have a finite number of states. When representing an

infinite path, the counterexample will contain a loop indication, i.e., an indication that the

last state in the counterexample is equal to one of the earlier states.

Let ϕ be a formula, given in negation normal form, and letπ[0..k] = s0, s1, ..., sk be

a non-empty counterexample for it, consisting of a finite number of states and a possible

loop indication. We assume that the counterexample contains a loop only if it is necessary

for demonstrating the failure. In other words, ifπ[0..k] |=/fϕ then we assume thatπ[0..k]

has no loop indication.

We denote byπ[i..k] the suffix ofπ[0..k] that starts atsi. The procedureC below

producesC(π[i..k], ψ), the approximation of the set of causes for the failure of a sub-

formulaψ on the suffix ofπ[0..k] that starts withsi. We invoke the procedureC with the

arguments(π[0..k], ϕ) to produce the set of causes for the failure ofϕ onπ[0..k].

During the computation ofC(π[i..k], ϕ), we use the auxiliary functionval, that eval-

uates sub-formulas ofϕ on the given path. It returns0 if the sub-formula fails on the path

and 1 otherwise. The computation ofval is done in parallel with the computation of the

causality set, and relies on recursively computed causality sets for sub-formulas ofϕ. The

value ofval is computed as follows:

• val(π[i..k], true) = 1

• val(π[i..k], false) = 0

• For any formulaϕ 6∈ {true, false}, val(π[i..k], ϕ) = 1 iff C(π[i..k], ϕ) = ∅

78

Algorithm 30 (Causality Set). An approximated causality setC for π[i..k] andψ is com-

puted as follows

• C(π[i..k], true) = C(π[i..k], false) = ∅

• C(π[i..k], p) =

 {〈si, p〉} if p 6∈ si
∅ otherwise

• C(π[i..k],¬p) =

 {〈si, p〉} if p ∈ L(si)

∅ otherwise

• C(π[i..k],Xϕ) =

 C(π[i+ 1..k], ϕ) if i < k

∅ otherwise

• C(π[i..k], ϕ ∧ ψ) = C(π[i..k], ϕ) ∪ C(π[i..k], ψ)

• C(π[i..k], ϕ ∨ ψ) = C(π[i..k], ϕ) ∪ C(π[i..k], ψ) if val(π[i..k], ϕ) = 0 andval(π[i..k], ψ) = 0

∅ otherwise

• C(π[i..k],Gϕ) =
C(π[i..k], ϕ) if val(π[i..k], ϕ) = 0

C(π[i+ 1..k],Gϕ) if val(π[i..k], ϕ) = 1 andi < k andval(π[i..k],XGϕ) = 0

∅ otherwise

• C(π[i..k], [ϕUψ]) =

C(π[i..k], ψ) ∪ C(π[i..k], ϕ) if val(π[i..k], ϕ) = 0 andval(π[i..k], ψ) = 0

C(π[i..k], ψ) if val(π[i..k], ϕ) = 1 andval(π[i..k], ψ) = 0 andi = k

C(π[i..k], ψ) ∪ C(π[i+ 1..k], [ϕUψ]) if val(π[i..k], ϕ) = 1 andval(π[i..k], ψ) = 0

andi < k andval(π[i..k],X[ϕUψ]) = 0

∅ otherwise

79

The procedure above recursively computes a set of causes for the given formulaϕ on

the suffix of a counterexampleπ[i..k]. At the proposition level,p is considered a cause

in the current state if and only if it has a bottom-value in the state. At every level of the

recursion, a sub-formula is considered relevant (that is, its exploration can produce causes

for falsification of the whole specification) if it has a value offalseat the current state.

We explain in detail the recursive computation for theUntil operator, since it is the

most difficult to follow.

When examining the computation pathπ[i..k], the subformulaη = [ϕUψ] will be

explored only in the case thatη has a value offalseonπ[i..k]. There could be one of the

three reasons for this:

1. The value ofϕ on π[i..k] is false , and the value ofψ on π[i..k] is false, in which

case the causality set will be the union of the causality sets forϕ and forψ.

2. The value ofϕ onπ[i..k] is true or unknown , and the value ofψ onπ[i..k] is false,

andi = k . In this case we know that the Until formula does not fail on any finite

prefix of the counterexample (and therefore it must have a loop). The causality set

is the set forψ, since the reason for the failure is the fact thatψ never holds.

3. The value ofϕ onπ[i..k] is true or unknown, the value ofψ onπ[i..k] is false, and

the value ofX[ϕUψ] onπ[i..k] is false. Here the Until formula has not failed yet,

but we know that it will. We thus take as causality sets the set forψ, to show that it

has continuously failed to hold so far, and the set forX[ϕUψ].

Lemma 31. The complexity of Algorithm 30 is linear ink and in|ϕ|.

Proof. The complexity follows from the fact that each subformulaψ of ϕ is evaluated at

most once at each statesi of the counterexampleπ.

Theorem 32. The set of pairs produced by Algorithm 30 for a formulaϕ on a pathπ is

an over-approximation of the set of causes forϕ onπ according to Definition 28.

80

For the proof of Theorem 32, we consider an evaluation graph forϕ on a given path

π. An LTL formulaϕ, given in Negation Normal Form, can be decomposed according to

the following two rules (that appear, for example, in [Wol85, MP85]):

• ψ1 Uψ2 ≡ (ψ2 ∨ (ψ1 ∧X(ψ1 Uψ2)))

• Gψ ≡ ψ ∧X(Gψ)

Given a finite prefix of an execution pathπ[0..k], we can build a labeled AND-OR

evaluation graph forϕ on π[0..k]. Each node will be labeled with a state and a formula

that should be evaluated in the state. Internal nodes are labeled also by an operator, AND

or OR, that indicates how the evaluations of the children nodes are combined. The root of

the graph will be labeled with(s0, ϕ). A leaf noden labeled(si, ϕ) is expanded according

to its label:

• If ϕ = ψ1 ∧ ψ2, we construct two new nodes, and label them with(si, ψ1) and

(si, ψ2). The noden is then labeled also with AND.

• Forϕ = ψ1 ∨ ψ2, the same as item (1) with the label ofn being OR.

• If ϕ = Xψ, we add a child node and label it(si+1, ψ).

• Finally, if ϕ = Gψ or ϕ = ψ1 Uψ2 we expand the formula according to the

expansion rules given above.

For a pathπ of lengthk, the graph is expanded according to the above given rules, until

all leaf nodes are labeled with one of the following:

• (sk+1, ρ) with ρ being any formula, or

• (si, l) wherei ≤ k andl is a literal (a variable or its negation).

81

Figure 5.3: An evaluation graph foraU (bU c)

Figure 5.3 demonstrates the AND-OR evaluation graph for the formulaaU (bU c), on a

two-state path. To evaluate the formula, we now consider the given pathπ[0..k]: every

proposition gets a value (true or false) as indicated inπ, and the evaluation is performed

bottom-up, starting from the leaves. Note that in general a leaf’s value may be unknown,

if it depends on values from the statesk+1, that are not given inπ[0..k]. However, in our

circumstances this would not affect the evaluation ofϕ onπ sinceπ[0..k] is a counterex-

ample, and thereforeϕ evaluates tofalseon it. Figure 5.4 presents the evaluation graph

of aU (bU c), with the values added forπ[0..1] = a · ∅. We use the evaluation graph to

prove Theorem 32.

Proof of Theorem 32.For a formulaϕ and a pathπ[0..k], we examine the evaluation

graph as described above. Sinceϕ fails on π, the value of the root isfalse. We look

at evaluation pathsε in the graph, that start from a leaf and go backward all the way to

82

Figure 5.4: Evaluation ofaU (bU c) onπ[0..1] = a · ∅

the root. Ifε visits only falselabeled nodes, we call it afailure path . The claim below is

needed for the rest of the proof.

Claim 33. Let l be a literal inϕ and si a state inπ[0..k]. We denotevl the variable

corresponding tol (that is,l = ¬vl or l = vl). Then the following holds.

1. Let ε be afailure path in the evaluation graph ofϕ on π[0..k], such that its leaf

is labeled with(si, l). If l evaluates tofalse in si, then the pair〈si, vl〉 is a cause

according to Algorithm 30.

2. If a pair〈si, vl〉 is a cause according to Definition 28, then there must exist afailure

path ε on which(si, l) appears in the leaf label, andl evaluates tofalse in si.

By item (2) of Claim 33, if〈si, vl〉 is a cause according to Definition 28, thenv gets

a bottom-value on a leaf of a failure path. But by item (1) of the claim, in this case

83

〈si, vl〉 is also a cause according to Algorithm 30. Thus the algorithm produces an over-

approximation of the causal set according to Definition 28.

Proof of Claim 33. 1. A close examination of Algorithm 30 shows that a pair〈si, vl〉
gets into the causality set ifvl assumes a bottom-value insi. It will be passed on to

the next level of the recursion as long as the sub-formula thatvl belongs to keeps

gettingfalse. This is the same as visiting onlyfalselabeled nodes on the way to the

root.

2. Suppose the pair〈si, vl〉 can be madecritical. That means that after switching

some bottom values,ϕ still fails onπ[0..k], but switching〈si, vl〉 now changes the

value ofϕ onπ[0..k]. Note that(si, l) must be located on a failure path; otherwise

switching its value cannot change the value ofϕ.

We note that not all bottom-valued leaves that have a failure path to the root are causes

(otherwise Algorithm 30 would always give accurate results). In our experience though,

Algorithm 30 gives accurate results for the majority of real-life examples. As an example

of a formula on which Algorithm 30 does not give an accurate result, considerϕ =

aU (bU c) and a traceπ = s0, s1, s2, . . . labeled asa · (∅)ω (see Figure 5.2). The formula

ϕ fails onπ, andπ[0..1] is the shortest prefix on which it fails. What is the set of causes

for failure ofϕ on π[0..1]? The pair〈s0, a〉 is not a cause, since it is not bottom-valued.

Checking all possible changes of sets of bottom-valued pairs shows that〈s0, b〉 is not a

cause. On the other hand,〈s1, a〉 and〈s1, b〉 are causes because changing the value of

a in s1 from 0 to 1 makesϕ unknown on π[0..1], and similarly for〈s1, b〉. The pairs

〈s0, c〉 and〈s1, c〉 are causes because changing the value ofc in eithers0 or s1 from 0 to

1 changes the value ofϕ to true on π[0..1]. The values of signals ins2 are not causes

because the first failure ofϕ happens ins1. The causes are represented graphically as red

dots in Figure 5.2. By examining the algorithm, we can see that onϕ andπ it outputs the

84

set of pairs that contains, in addition to the exact set of causes, the pair〈s0, b〉.

5.4 Discussion

The definition of an explanation for a counterexample reflects two major decisions. First,

we chose to detect a set of causes for the temporallyfirst failure only (that is, the smallest

k such thatπ[0..k] |=/fϕ). We believe that this is the most beneficial for the user; in many

cases, other failures demonstrated by the computation path are a consequence of the first

one. For example, in the design of a hardware model, it is common to have anerror

signal, that is never supposed to rise, however, once rises, it stays in this position forever.

For the formulaG¬error, only the first state wereerror=1 is interesting, since the rest are

a consequence of the first.

Another decision made when choosing the definition is that for the first failure, we try

to find all values that have any influence on the failure. That is where the definition of

causality, rather thancriticality, comes into play. We believe that our explanations, at this

stage, should furnish the user with all she needs to debug the error. Choosing to provide

a critical set as an explanation, would make this set minimal, such that switching any of

the values would make the formula pass in the computation path.

Such a set can be detected by translating the counterexample path and the formula into

a CNF formula via a BMC translation. This CNF formula would be unsatisfiable, and the

unsat core [LS04, MLA+05] provided by the satisfiability solver would be a minimal set

that demonstrate the failure. We think, however, that this is not good enough for the user.

For example, let our formula beG(p∧ q), on a single-state trace∅. Thenp andq are each

an unsat core, and therefore only one of them will be provided. If the user is to debug the

problem, however, she must be aware of the failure of bothp andq.

85

Chapter 6

Conclusion and Future Directions

We have approached two different aspects of model checking. In Chapters 3 and 4 we ex-

amined different ways to use Description Logic reasoning for symbolic model checking.

In Chapter 5 we proposed a method to analyze a counterexample. Below we summarize

each of the chapters and discuss future research directions.

Bounded model checking of safety formulas using DL

We have presented several methods to perform bounded model checking of safety proper-

ties using Description Logic reasoning. All of these methods have the nice property that

the encoding of the problem as a DL ontology is of constant size in terms of the original

problem, and once set, the model checking task is performed by the DL reasoning tool,

with no intervention. This is in contrast to BDD-based model checking tools that need to

custom-build the model checking algorithm using BDDs. For bounded model checking,

a given model descriptionMD and a boundk are represented in DL with an ontology of

size|MD|+k, as opposed to|MD|×k when translatingMD to a propositional formula

in order to use a satisfiability solver. Our method can thus be viewed as a natural setting

for a symbolic representation of bounded model checking problems, avoiding the need to

unfold the model as done for SAT based BMC.

87

The methods described in Chapter 3 used the DL reasoner as a black box, and no

attempt has been made to tune the DL algorithms to better work for the task of model

checking. In the future it would be interesting to examine the internal DL algorithms in

light of our application. First, the results of Section 3.5 demonstrate that different encod-

ings of the same problem vary dramatically in performance. If this is found to be inherent

in the DL algorithms, it would be natural to search for easily detectable conditions, where

one encoding can be automatically translated into another, that is easier to reason about.

This could improve the reasoning performance for some applications, as demonstrated by

our results. Second, at least one of our encodings (the one usingALC), seems to perform

very well as long as the bound is small enough. It is interesting to understand what causes

the blow-up for larger bounds. If this problem can be overcome, it would enable the use

of DL for model checking, and potentially improve the performance of DL reasoning in

general.

Finally, when a concept is found to be consistent with respect to a given terminology,

the DL reasoner is capable of providing a satisfying interpretation. Since the existence

of an interpretation, in our setting, indicates a bug in the model, the interpretation should

be translated into a readable counterexample. Note that the interpretation can possibly be

only partial, since the tableaux reasoning algorithm may not depend on all concepts of the

terminology. For such cases, some mechanism should be developed, to derive the lacking

information.

Liveness and fairness using DL

We have approached model checking of liveness formulas using DL reasoning, and showed

that a formula of the typeAFp can be easily encoded overALC when no fairness con-

straints are involved. When fairness constraints are required, encoding in common di-

alects of DL is not possible. We showed however, that the tableaux reasoning procedure

can be modified to support fairness in bounded model checking. In order to achieve un-

88

bounded model checking, the algorithm should be iterated with increasing bounds. This

makes our method less efficient when no fair cycle exists (the formula holds in the model)

or when the fair loop is long. The experiments we have presented, comparing our method

to the model checkerVIS, support the observation that our approach would be more ben-

eficial when a fair loop does exist in the model (i.e. a bug is found). More experiments

should be performed, however, to understand the extent to which our method can be ben-

eficial.

Model checking of liveness properties is considered more difficult than model check-

ing of safety ones, and special attention has been devoted to this type of formula in the lit-

erature, both using BDD-based methods [BGS00, RBS00, BGS06], and using SAT-based

techniques [AS04, GGA05]. It has been recognized, however, that no single method can

outperform others on all models [BDEGW03, Nev08]. State of the art model checkers in-

voke multiple algorithms for each model checking problem, presenting the user with the

result of the first method to terminate. Our method, if found beneficial for a significant

range of models, could fit nicely in such a platform, speeding up verification time for part

of the models.

Counterexample explanation

We have shown how the causality definition of Halpern and Pearl [HP01] can be adapted

to the task of explaining a counterexample. Since the causality algorithm is applied to

a single counterexample, ignoring the model from which it was extracted, no size issues

are involved, and the execution time is negligible. An important advantage of our method

is the fact that it is independent of the tool that produced the counterexample. When

more than one model checking “engine” is invoked to verify a formula, as described

in [BDEGW03, Nev08], the independence of the causality algorithm is especially impor-

tant. We note that our approach, though demonstrated here forLTL specifications, can

work in the same manner forACTL formulas, since on a single computation path,LTL

89

andACTL formulas coincide.

In the future, it would be interesting to extend our method to other linear temporal log-

ics used in practice, such as PSL [Acc03]. While our definition should hold for this logic

as well, the approximation algorithm should be extended without increasing its complex-

ity. Since the algorithm we provided produces an over-approximation of the causality set,

it is interesting to see if the language for which it provides the exact causality set could be

characterized. Finally, the approach we have presented defines and (approximately) de-

tects a set of causes for thefirst failure of a formula on a trace. While we believe that this

information is the most beneficial for the user, other definitions can also be considered.

90

Bibliography

[AAH +85] M. W. Alford, J. P. Ansart, G. Hommel, L. Lamport, B. Liskov, G. P.

Mullery, and F. B. Schneider.Distributed systems: methods and tools for

specification. An advanced course. Springer-Verlag New York, Inc., New

York, NY, USA, 1985.

[AAH +03] M. S. Abadir, K. Albin, J. Havlicek, N. Krishnamurthy, and A. K. Mar-

tin. Formal verification successes at motorola.Formal Methods in System

Design, 22(2):117–123, 2003.

[Acc03] Accellera. Accellera property language reference manual. In

http://www.eda.org/ vfv/docs/psllrm-1.0.pdf, pages 101–112, January

2003. Appendix B.

[AS85] B. Alpern and F. B. Schnieder. Defining liveness. InInformation Process-

ing Letters, pages 21:181–185, October 1985.

[AS87] B. Alpern and F. B. Schnieder. Recognizing Safety and Liveness.Distrib-

uted Computing, 2(3):117–126, 1987.

[AS04] Mohammad Awedh and Fabio Somenzi. Proving more properties with

bounded model checking. InCAV, pages 96–108, 2004.

91

[BBDC+09] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard

Trefler. Explaining a counterexample using causality. InCAV, 2009.

[BBDL98] Ilan Beer, Shoham Ben-David, and Avner Landver. On-the-fly model

checking of RCTL formulas. InProc. 10th International Conference

on Computer Aided Verification (CAV’98), LNCS 1427, pages 184–194.

Springer-Verlag, 1998.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking

without BDDs. InIn Proc. 5th international Tools and Algorithms for the

Construction and Analyses of Systems (TACAS’99), 1999.

[BCM+03] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.

The Description Logic Handbook. Cambridge University Press, 2003.

[BDEGW03] Shoham Ben-David, Cindy Eisner, Daniel Geist, and Yaron Wolfsthal.

Model checking at IBM.Formal Methods in System Design, 22(2):101–

108, 2003.

[BDFR05] Shoham Ben-David, Dana Fisman, and Sitvanit Ruah. The safety simple

subset. InFirst International Haifa Verification Conference, volume 3875

of Lecture Notes in Computer Science, pages 14–29. Springer, November

2005.

[BDPT+09] Shoham Ben-David, Jeffrey Pound, Richard Trefler, Dmitry Tsarkov, and

Grant Weddell. Fair cycle detection using description logic reasoning. In

Proc. 22nd International Workshop on Description Logics, 2009.

[BDTTW08] Shoham Ben-David, Richard Trefler, Dmitry Tsarkov, and Grant Weddell.

Checking inevitability and invariance using description logic technology,

2008. Technical report CS-2008-28, University of Waterloo.

92

[BDTW06] Shoham Ben-David, Richard Trefler, and Grant Weddell. Model checking

the basic modalities of CTL with description logic. InProc. 19th Interna-

tional Workshop on Description Logics, pages 223–230, 2006.

[BDTW07a] Shoham Ben-David, Richard Trefler, and Grant Weddell. Bounded model

checking with description logic reasoning. InProc. 16th International

Conference on Automated Reasoning with Analytic Tableaux and Related

Methods (TABLEAUX), pages 60–72, 2007.

[BDTW07b] Shoham Ben-David, Richard Trefler, and Grant Weddell. Modal vs. propo-

sitional reasoning for model checking with description logic. InProc. 20th

International Workshop on Description Logics, pages 179–186, 2007.

[BDTW08] Shoham Ben-David, Richard Trefler, and Grant Weddell. Model checking

using description logic.Journal of Logic and Computations, 2008. doi:

10.1093/logcom/exn062.

[BFH05] Doron Bustan, Dana Fisman, and John Havlicek. Automata construction

for PSL, 2005. Technical Report MCS05- 04, Computer Science and Ap-

plied Mathematics, The Weizmann Institute of Science.

[BFR04] Shoham Ben-David, Dana Fisman, and Sitvanit Ruah. Embedding finite

automata within regular expressions. In1st International Symposium on

Leveraging Applications of Formal Methods (IsoLa’04), Paphos, Cyprus,

November 2004.

[BGS00] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm

for strongly connected component analysis in n log n symbolic steps. In

Formal Methods in Computer Aided Design, pages 37–54. Springer-Verlag,

2000.

93

[BGS06] Roderick Bloem, Harold N. Gabow, and Fabio Somenzi. An algorithm for

strongly connected component analysis in log symbolic steps.Formal

Methods in System Design, 28(1):37–56, 2006.

[BHSV+96] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi,

A. Aziz, S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,

S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa.

VIS: A system for verification and synthesis. InCAV, 1996.

[Bie07] Armin Biere. The AIGER And-Inverter Graph (AIG) Format, 2007.

http://fmv.jku.at/aiger/.

[BKM95] R. S. Boyer, M. Kaufmann, and J. Strother Moore. The boyer-moore theo-

rem prover and its interactive enhancement.Computers and Mathematics

with Applications, 29(2):27–62, 1995.

[BMC03] S. Bechhofer, R. Mller, and P. Crowther. The dig description logic inter-

face. InProc. of the 16th Description Logic Workshop, 2003.

[BNR03] T. Ball, M. Naik, and S. Rajamani. From symptom to cause: Localizing

errors in counterexample traces. InPrinciples of Programming Languages,

pages 97–105, 2003.

[Bry86] Randy Bryant. Graph-based algorithms for boolean function manipulation.

In In IEEE Transactions on Computers, volume C-35(8), pages 677–691,

1986.

[CE81] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. InProc. Workshop on Log-

ics of Programs, LNCS 131, pages 52–71. Springer-Verlag, 1981.

94

[CES86] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verifica-

tion of finite-state concurrent systems using temporal logic specifications.

ACM Transactions on Programming Languages and Systems, 8(2):244–

263, 1986.

[CG05] Marsha Chechik and Arie Gurfinkel. A framework for counterexample

generation and exploration. InProceedings of FASE’05, pages 217–233,

2005.

[CGL99] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive

description logics with fixpoints based on automata on infinite trees. In

IJCAI, pages 84–89, 1999.

[CGMZ95] E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation

of counterexamples and witnesses in symbolic model checking. InDesign

Automation Conference, pages 427–432, 1995.

[CGP00] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT

Press, 2000.

[CGY08] Hana Chockler, Orna Grumberg, and Avi Yadgar. Efficient automatic ste

refinement using responsibility. InTACAS, pages 233–248, 2008.

[CHK08] H. Chockler, J. Y. Halpern, and O. Kupferman. What causes a system to

satisfy a specification?ACM Trans. Comput. Log., 9(3), 2008.

[CIW+01] F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. Efficient

debugging in a formal verification environment. InIn Proceedings of

CHARME’01, pages 275–292, 2001.

[CQ69] A.M. Collins and M.R. Quillian. Retrieval time from semantic memory.

Journal of Verbal Learning and Verbal Behavior, 8:240–247, 1969.

95

[DM00] Francesco M. Donini and Fabio Massacci. Exptime tableaux forALC.

Artificial Intelligence, 124(1):87–138, 2000.

[DQ01] A. Dovier and E. Quintarelli. Model checking based data retrieval. InRe-

vised Papers from the 8th International Workshop on Database Program-

ming Languages, LNCS Vol. 2397, pages 62–77, 2001.

[DRS03] Y. Dong, C. R. Ramakrishnan, and S. A. Smolka. Model checking and

evidence exploration. InIEEE Conference and Workshops on Engineer-

ing Computer Based Systems, pages 214–223, Huntsville, Alabama, 2003.

IEEE.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of

parallel programs using fixpoints. InProceedings of the 7th Colloquium

on Automata, Languages and Programming, pages 169–181, London, UK,

1980. Springer-Verlag.

[EL01] T. Eiter and T. Lukasiewicz. Complexity results for structure-based causal-

ity. In Proc. 7th International Joint Conference on Artificial Intelligence,

pages 35–40, 2001.

[ES04] Niklas Een and Niklas Srensson. An extensible SAT-solver.Theory and

Applications of Satisfiability Testing, pages 502–518, 2004.

[Ger01] R. Gerth. Model checking if your life depends on it a view from intel’s

trenches. InSPIN, page 15, 2001.

[GGA05] Malay K. Ganai, Aarti Gupta, and Pranav Ashar. Beyond safety: cus-

tomized sat-based model checking. InDAC, pages 738–743, 2005.

96

[GGV00] George Gottlob, Erich Grädel, and Helmut Veith. Linear Time Datalog

for Branching Time Logic. In J. Minker, editor,Logic-Based Artificial

Intelligence, chapter 19. Kluwer, 2000.

[GGV02] Georg Gottlob, Erich Grädel, and Helmut Veith. Datalog LITE: a deductive

query language with linear time model checking.Computational Logic,

3(1):42–79, 2002.

[GHT06] Tom Gardiner, Ian Horrocks, and Dmitry Tsarkov. Automated benchmark-

ing of description logic reasoners. InDescription Logics, 2006.

[GK04] A. Groce and D. Kroening. Making the most of bmc counterexamples. In

SGSH, July 2004.

[GL97] G. De Giacomo and M. Lenzerini. A uniform framework for concept defi-

nitions in description logics.J. Artif. Intell. Res. (JAIR), 6:87–110, 1997.

[GM93] M.J.C. Gordon and T.F. Melham.Introduction to HOL: a theorem prov-

ing environment for higher order logic. Cambridge University Press, New

York, USA, 1993.

[Gro04] A. Groce. Error explanation with distance metrics. InTACAS, 2004.

[GSB07] A. Griesmayer, S. Staber, and R. Bloem. Automated fault localization for

c programs.Electr. Notes Theor. Comput. Sci., 174(4):95–111, 2007.

[Hal95] Tom R. Halfhill. An error in a lookup table created the infamous bug in in-

tel’s latest processor, 1995. http://www.byte.com/art/9503/sec13/art1.htm.

[Hal02] N. Hall. Two concepts of causation. In J. Collins, N. Hall, and L. A. Paul,

editors, Causation and Counterfactuals. MIT Press, Cambridge, Mass.,

2002.

97

[HM01] Volker Haarslev and Ralf Moller. Racer system description. InInterna-

tional Joint Conference on Automated Reasoning (IJCAR’2001), volume

2083, pages 701–706, 2001.

[HP01] J.Y. Halpern and J. Pearl. Causes and explanations: A structural-model

approach — part 1: Causes. InUncertainty in Artificial Intelligence: Pro-

ceedings of the Seventeenth Conference (UAI-2001), pages 194–202, San

Francisco, CA, 2001. Morgan Kaufmann Publishers.

[HS99] Ian Horrocks and Ulrike Sattler. A description logic with transitive and

inverse roles and role hierarchies.Journal of Logic and Computation,

9(3):385–410, 1999.

[HST00] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individ-

uals for the description logicSHIQ. Lect. Notes in Comp. Sci., pages

482–496, 2000.

[HU79] John E. Hopcroft and Jeffrey D. Ullman.Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley Series in Computer

Science. Addison-Wesley, 1979.

[Hum39] D. Hume.A treatise of human nature. John Noon, London, 1939.

[JRS02] H. Jin, K. Ravi, and F. Somenzi. Fate and free will in error traces. In

TACAS02, pages 445–458, 2002.

[Kin94] E. Kindler. Safety and liveness properties: A survey.EATCS-Bulletin, 53,

June 1994.

[KM97] Matt Kaufmann and J. Strother Moore. An industrial strength theorem

prover for a logic based on common lisp.IEEE Trans. Software Eng.,

23(4):203–213, 1997.

98

[KV99] Orna Kupferman and Moshe Y. Vardi. Model checking of safety proper-

ties. InProc. 11th International Conference on Computer Aided Verifica-

tion (CAV), LNCS 1633, pages 172–183. Springer-Verlag, 1999.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach

to branching-time model checking.Journal of the ACM, 47(2):312–360,

March 2000.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs.IEEE

Transactions on Software Engineering, SE–3(2):125–143, 1977.

[LS04] Inês Lynce and Jõao P. Marques Silva. On computing minimum unsatisfi-

able cores. InSAT, 2004.

[LT93] N. G. Leveson and C. S. Turner. An investigation of the therac-25 acci-

dents.Computer, 26(7):18–41, 1993.

[Mai00] Monika Maidl. The common fragment of CTL and LTL. InIEEE Sympo-

sium on Foundations of Computer Science, pages 643–652, 2000.

[McM] K. McMillan. Cadence-smv. http://www.kenmcmil.com/smv.html.

[McM93] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,

1993.

[Min81] M. Minsky. A framework for representing knowledge. InMind Design,

MIT Press, pages 95–128, 1981.

[MLA +05] Maher N. Mneimneh, In̂es Lynce, Zaher S. Andraus, João P. Marques Silva,

and Karem A. Sakallah. A branch-and-bound algorithm for extracting

smallest minimal unsatisfiable formulas. InSAT, pages 467–474, 2005.

99

[MMZ +01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient sat solver. In38th Design Automation Conference,

pages 530–535, 2001.

[MP85] Zohar Manna and Amir Pnueli.Temporal Verification of Reactive Systems:

Safety. Springer (Published: 8/1995), New York, NY, USA, 1985.

[MR04] M.Huth and M. Ryan.Logic in Computer Science. Cambridge University

Press, Canbridge UK, 2004.

[MT01] Panagiotis Manolios and Richard J. Trefler. Safety and liveness in branch-

ing time. InLogic in Computer Science, pages 366–377, 2001.

[Nev08] Ziv Nevo. User-friendly model checking: Automatically configuring al-

gorithms with rulebase/pe. In4th Haifa Verification Conference, October

2008.

[NuS] NuSMV examples collection. http://nusmv.irst.itc.it/examples/examples.html.

[Pnu77] Amir Pnueli. The temporal logic of programs. In18th IEEE Symposium

on Foundation of Computer Science, pages 46–57, 1977.

[QS82] J. Quielle and J. Sifakis. Specification and verification of concurrent sys-

tems in CESAR. In5th International Symposium on Programming, 1982.

[Qui67] M.R. Quillian. Word concepts: A theory and simulation of some basic

semantic capabilities.Behavioral Science, 12:410–430, 1967.

[Ram31] F. Plank Ramsey. Truth and Probability.Foundations of Mathematics and

Other Logical Essays, 1931.

[RBS00] Kavita Ravi, Roderick Bloem, and Fabio Somenzi. A comparative study

of symbolic algorithms for the computation of fair cycles. InFMCAD ’00:

100

Proceedings of the Third International Conference on Formal Methods in

Computer-Aided Design, pages 143–160. Springer-Verlag, 2000.

[RN94] A. L. Rector and W. A. Nowlan. The galen project.Computer Methods

and Programs Biomedicine, 45(1-2):75–78, 1994.

[Sah04] Maneesha Sahasrabudhe. SQL-based CTL model checking for telephony

feature interactions. InA Master Thesis, Univesity of Waterloo, Ontario

Canada, 2004.

[SB07] S. Staber and R. Bloem. Fault localization and correction with qbf. InSAT,

pages 355–368, 2007.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-

poral logics.Journal of the ACM, 32(3):733–749, 1985.

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Prelimi-

nary report. InProc. of the 12th International Joint Conference on Artificial

Intelligence, pages 466–471, 1991.

[SFBD08] A. S̈ulflow, G. Fey, R. Bloem, and R. Drechsler. Using unsatisfiable cores

to debug multiple design errors. InACM Great Lakes Symposium on VLSI,

pages 77–82, 2008.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: A practical owl-dl reasoner. 5(2), 2007.

[SQL05] S. Shen, Y. Qin, and S. Li. A faster counterexample minization algorithm

based on refutation analysis. InDATE05, pages 672–677, 2005.

[SS91] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept descrip-

tions with complements. 48(1):1–26, 1991.

101

[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation

problem for b̈uchi automata with appplications to temporal logic.Theor.

Comput. Sci., 49:217–237, 1987.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pa-

cific journal of mathematics, 5(2):285–309, 1955.

[TH06] Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner:

System description. InProc. of the Int. Joint Conf. on Automated Reason-

ing (IJCAR 2006), volume 4130 ofLecture Notes in Artificial Intelligence,

pages 292–297. Springer, 2006.

[Tob01] Stephan Tobies. Complexity results and practical algorithms for logics in

knowledge representation, 2001. PhD Thesis, LuFG Theoretical Computer

Science, RWTH-Aachen, Germany.

[Tuo88] H. Tuominen. Elementary net systems and dynamic logic. InEuropean

Workshop on Applications and Theory in Petri Nets, number 424 in LNCS,

pages 453–466, 1988.

[Tuo89] H. Tuominen. Proving properties of elementary net systems with a special-

purpose theorem prover. InProc. International Workshop on Automatic

Verification Methods for Finite State Systems, number 407 in LNCS, pages

97–104, 1989.

[TW08] D. Toman and G. Weddell, 2008. Personal Communication.

[Var96] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In

F. Moller and G. Birtwistle, editors,Logics for Concurrency: Structure ver-

sus Automata, volume 1043 ofLecture Notes in Computer Science, pages

238–266. Springer-Verlag, Berlin, 1996.

102

[VW86] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to

automatic program verification (preliminary report). InLICS, pages 332–

344, 1986.

[Wol85] Pierre Wolper. The tableau method for temporal logic: An overview.

Logique et Analyse, 28:119–135, 1985.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about

infinite computation paths (extended abstract). InFOCS, pages 185–194,

1983.

[WYIG06] C. Wang, Z. Yang, F. Ivancic, and A. Gupta. Whodunit? causal analysis

for counterexamples. InATVA, pages 82–95, 2006.

103

