
Semi-automatic Road Extraction from Very 

High Resolution Remote Sensing Imagery by 

RoadModeler 

 

 

by 

 

 

Yao Lu 

 

 

A thesis 

presented to the University of Waterloo 

in fulfillment of the 

thesis requirement for the degree of 

Master of Science 

in 

Geography 

 

 

 

Waterloo, Ontario, Canada, 2009 

 

 

© Yao Lu 2009 

 



 

  ii 

Author’s Declaration  

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, 

including any required final revisions, as accepted by my examiners. 

 

I understand that my thesis may be made electronically available to the public. 

 



 

  iii 

Abstract 

Accurate and up-to-date road information is essential for both effective urban planning and 

disaster management. Today, very high resolution (VHR) imagery acquired by airborne and 

spaceborne imaging sensors is the primary source for the acquisition of spatial information of 

increasingly growing road networks. Given the increased availability of the aerial and 

satellite images, it is necessary to develop computer-aided techniques to improve the 

efficiency and reduce the cost of road extraction tasks. Therefore, automation of image-based 

road extraction is a very active research topic.  

 

This thesis deals with the development and implementation aspects of a semi-automatic road 

extraction strategy, which includes two key approaches: multidirectional and single-direction 

road extraction. It requires a human operator to initialize a seed circle on a road and specify a 

extraction approach before the road is extracted by automatic algorithms using multiple 

vision cues. The multidirectional approach is used to detect roads with different materials, 

widths, intersection shapes, and degrees of noise, but sometimes it also interprets parking lots 

as road areas. Different from the multidirectional approach, the single-direction approach can 

detect roads with few mistakes, but each seed circle can only be used to detect one road. In 

accordance with this strategy, a RoadModeler prototype was developed. Both aerial and 

GeoEye-1 satellite images of seven different types of scenes with various road shapes in rural, 

downtown, and residential areas were used to evaluate the performance of the RoadModeler. 

The experimental results demonstrated that the RoadModeler is reliable and easy-to-use by a 
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non-expert operator. Therefore, the RoadModeler is much better than the object-oriented 

classification. Its average road completeness, correctness, and quality achieved 94%, 97%, 

and 94%, respectively. These results are higher than those of Hu et al. (2007), which are 

91%, 90%, and 85%, respectively. The successful development of the RoadModeler suggests 

that the integration of multiple vision cues potentially offers a solution to simple and fast 

acquisition of road information. Recommendations are given for further research to be 

conducted to ensure that this progress goes beyond the prototype stage and towards everyday 

use.   

 

.  
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Chapter 1 

Introduction 

 

This chapter outlines the research problems and challenges in automatic road extraction from 

very high resolution (VHR) satellite and aerial images. Next the defined research objectives 

ensue. Lastly, the thesis structure is outlined. 

 

1.1 Statement of Existing Problems 

 

Accurate and up-to-date geospatial information about road networks is of great importance 

for effective urban and transportation planning, land development, and urban disaster 

management (Mena, 2003). Road information is normally integrated into a Geographical 

Information System (GIS) database for effective management. Due to rapid urban 

development, the GIS database needs to be updated with timely and accurate road network 

information. 

 

Using traditional ground survey techniques to collect road data is out of date as it is labour-

intensive and time-consuming, particularly in mapping large urban areas. However, remote 

sensing has proven to be a powerful technology for spatial data collection and change 

detection. Along with the development of innovative sensors and platforms, road network 

spatial information can be acquired from aerial and satellite imagery, which includes optical 

imagery, Synthetic Aperture Radar (SAR) imagery, Light Detection and Ranging (LiDAR) 
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range data, and image sequences taken from land-based mobile mapping systems with 

different spatial and spectral resolutions (Quackenbush, 2004). 

 

The preferred technology for road extraction is VHR satellite imagery, as it covers larger 

areas than aerial imagery and provides updated information on a regular basis.  Moreover, it 

is more economic than either terrestrial or aerial imaging technologies.  Furthermore, unlike 

SAR and LIDAR data collection, it allows for the extraction of more detailed and accurate 

road information. 

 

Satellite and aerial imagery is raw data, and rarely contains information in an explicit form.  

It is impossible to use the imagery directly without information extraction.  Accurate and 

efficient information extraction is crucial in spatial data applications.  Manually extracting 

roads from satellite imagery, although easy along simple stretches, is impractical and time 

consuming when the scenes are very complex. However, not only are such complex maps 

required for large geographic areas, but frequent updating is needed (Gibdaughter, 2003). 

Therefore, the automatic extraction of satellite imagery is necessary to obtain accurate and 

current maps from complex satellite images.  

 

Research on extracting roads from aerial and satellite images can be traced back to the 

pioneers Bajcsy and Tavaloki (1976).  Even though research in this field began over three 

decades ago, advances in image processing and computer vision remain inadequate. Many 

automatic and semi-automatic algorithms have been attempted, but flawed, and never 
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became operational. Further research on an automatic or semi-automatic road extraction 

method is needed to reach the operational stage.  

 

Clearly there is still no single automatic method that is universally applicable to all types of 

roads from satellite imagery (Quackenbush, 2004). Furthermore, in order to recognize a road 

automatically, automatic methods must check every pixel in the entire image, which is time 

consuming, especially for large volumes of VHR imagery. As people are able to quickly, 

accurately, and effortlessly identify road areas under a variety of conditions, it is practical to 

have a human operator, rather than a computer, provide information about road conditions, 

such as starting points and directions. Starting points are used as seed points and starting 

directions assist road detection (Vosselman and de Knecht, 1995).  An algorithm is then used 

to predict the route in incremental steps until it reaches a stopping criterion.  Thus, the 

running time will depend on the area of the road not the area of the whole image. In addition, 

with the assistance of an operator, most roads in various environmental conditions could be 

detected by computer. Moreover, results from semi-automatic methods are more accurate 

than results from fully automatic methods (Gruen and Li, 1997). In summary, semi-automatic 

methods for road extraction are more practical than automatic methods. 

 

1.2 High Resolution Imagery for Road Extraction 

 

Nowadays, optical imagery, especially VHR satellite imagery, has received considerable 

attention because it provides accurate, spatial information. Table 1.1 shows the main 
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parameters of currently operational and future optical VHR satellite systems. All of the VHR 

satellites mentioned in Table 1.1 simultaneously collect panchromatic (Pan) and 

multispectral (MS) images at higher and lower spatial resolution, respectively.  Most MS 

images are taken within the visible and near-infrared wavelength (VNIR) and are recorded 

into 3 or 4 multispectral bands (Zlatanova and Li, 2008).   

 

Table 1.1 List of currently operational and future optical VHR satellite systems  

Optical satellite Spatial resolution 
(m) and (#bands) 

Swath (km) Repeat cycle 
(days) 

Year launch 

PAN VNIR 

IKONOS 1 4(4) 11 3 1999 

QuickBird 2 0.6 2.5(4) 16 3 2001 

Orb View-3 1 4(4) 8 3 2003 

KOMPSAT-2 1 4(4) 15 28 2004 

Resurs DK-1 1 2-3(3) 4.7-28.3 6 2006 

WorldView-1 0.55 1 (4) 17.6 1. 7-5.9  2007 

GeoEye-1 0.41 1.65(4) 15.2 1-3 2008 

WorldView-2 0.25 1 (4) 16.4 1-4  2009 

Pleiades-1 and 2 0.7 2.8(4) 20 1-2 2009-2010 

Source: (Zlatanova and Li, 2008) 

 

The image-fusion techniques have been developed to combine Pan and MS images to 

generate a high-resolution, pan-sharpened-colour image. To date, the PCI Pansharp module 

produces the best Pan-MS fusion results among all commercially available software tools 

(PCI, 2004; Gorin, 2005). By image pan-sharpening, the highest-resolution coloured satellite 
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imagery available is GeoEye-1 imagery, which reaches 0.5m spatial resolution. Currently, 

DigitalGlobe is developing a VRH imaging satellite named WorldView with a higher spatial 

resolution of 0.25m (Pan), and 1m (MS), respectively. Furthermore, there will be 8 MS bands 

in total within the VNIR range. This occurrence proves that spatial resolution may be further 

improved; eventually matching the resolution of aerial imagery (around 0.15m). It is vital to 

understand aerial orthoimage in the event that spatial resolution of satellite imagery reaches 

the level of aerial photographs. Thus, the images used in this thesis will include pan-

sharpened colour GeoEye-1 images and aerial orthoimages. 

 

1.3 Challenges in Automatic Road Extraction 

 

Road characteristics in general can be classified as radiometrical, geometrical, topological, 

and contextual characteristics (Vosselman and Knecht, 1995). Together, they correspond 

with the challenges listed below: 

 

(1) Radiometrical characteristics and challenges: The road surface is made from different 

materials (e.g., asphalt and cement). On the satellite and aerial imagery, the road 

surface displays different greyscales representing the construction phase of the road. 

Additionally, adjacent regions are often different. Sometimes, even building roofs and 

parking lots appear to similar spectral information to roads. When multiplied and 

inconsistent intensity of roads arise and spectral similarity of neighbourhood areas 

increase, creating radiometrical models for roads will become more difficult. 
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(2) Geometric characteristics and challenges: Since their lengths are far larger than their 

widths, roads appear as elongated regions in VHR imagery. Roads vary in width and 

curvatures. In each road, the width and direction change smoothly. Various road 

shapes may increase the difficulty of building geometric models.  

(3) Topological characteristics and challenges: Roads form networks when they link 

certain places together. In some areas, roads and surrounding buildings are connected 

through driveways and alleys. This may cause confusion between them on the VHR 

imagery since they both carry similar physical characteristics. 

(4) Context characteristics and challenges: The appearances of vehicles, pedestrian lines, 

overpasses and shadows cast by trees and buildings can produce a negative influence 

on homogeneous intensity and connectivity of roads. In some cases, shadows may 

cover certain sections of a road. On the other hand, pedestrian crossings and trees 

located on roadsides may help to imply the presence of roads on a VHR image.   

 

To build models of roads in a large area is difficult as proven by the characteristics and 

challenges listed above. Methods that had already been developed for medium to coarse 

imagery may not apply to VRH imagery. This is because there is more noise (e.g. vehicles, 

traffic lines, shadows, etc.) to lead to blockage problem in VRH imagery (Niu, 2006). 

Furthermore, there is another problem. It is difficult to separate the certain roads from their 

surroundings with similar spectral information, leading to leakage problem (Niu, 2006). Thus, 

a new methodology for road extraction in VHR imagery is required.  
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1.4 Research Objectives  

 

The overall purpose of this study is to develop a semi-automatic method towards a prototype 

software tool called RoadModeler, which can be used to extract diverse types of roads from 

VHR imagery. Specifically, the objectives of the study are as follows: 

(1) To analyze the spatial complexity and heterogeneity of roads in VHR imagery; 

(2) To design and implement a semi-automatic road strategy through a combination of 

digital image analysis techniques in order to develop an operational software tool 

called RoadModeler. Such a tool should be accurate, reliable and easy to use. 

(3) To assess the performance of the RoadModeler through a qualitative and quantitative 

evaluation method on a set of VHR images of various types of roads.  

 

1.5 Thesis Organization 

 

The rest of the thesis consists of the following five chapters: 

 

Chapter 2 provides a review of previous studies on road extraction from VHR imagery.   

 

Chapter 3 presents a theoretical background, framework and explanation of the proposed 

methodology, followed by a detailed description of the developed software tool named 

RoadModeler. 
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Chapter 4 illustrates the results of the proposed RoadModeler with different test images. A 

comparison and discussion between the developed RoadModeler and the object-oriented 

classification methods are included in the experimental results. 

 

Chapter 5 presents a qualitative and quantitative evaluation method. It also focuses on an 

evaluation of the developed RoadModeler’s performance. 

 

Chapter 6 provides the conclusions based on the findings of this study and recommendations 

for future research. 
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Chapter 2 

Related Work on Automatic Road Extraction 

 

This chapter reviews the principle of semi-automatic method for road extraction from VHR 

imagery. Previous research regarding methods and techniques are reviewed. 

 

2.1 Automatic Road Extraction Method: An Introduction 

 

Research on extracting roads from aerial and satellite images can be traced back to the work 

of Bajcsy and Tavaloki in 1976. Many methods have been proposed during the past three 

decades. Conventionally, three steps are required for road extraction from imagery (Trinder 

and Wang, 1998): road finding, road tracking, and road linking. Generally, when human 

interaction is involved in the first step (road finding), the algorithm is referred to as semi-

automatic. If no human interaction is required, the algorithm is considered as a fully 

automatic approach (Niu, 2006). Many techniques rely on preprocessing to enhance edges or 

lines, or segment the imagery into homogeneous regions (Guindon, 1998).  

 

Roads, in medium and coarse resolution imagery (e.g., 10~30m), appear as curvilinear 

structures, while in higher resolution imagery they appear as homogenous regions that satisfy 

certain shape or size constraints (Hinz et al., 2001). Methods such as morphological operators, 

ratio edge detector, edge detector, Hough transform have been used to extract curvilinear 

structures from medium and coarse resolution imagery is not appropriate for road extraction 
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in VHR imagery (Hu et al., 2007; Quackenbush, 2004).  Therefore, the emphasis in this 

chapter is placed on the study of road extraction from VHR imagery, and the relevant 

problems are discussed.   

 

In the last three decades, there have been many studies on automatic or semi-automatic road 

extraction from aerial and satellite imagery. As a result, many strategies, methodologies and 

algorithms for road extraction were presented which had reached various degree of success 

(Mena, 2004). All these studies firstly described the characteristics of the road reflected from 

the specific remotely sensed data. After that, a feature model was built based on the 

characteristic information. The more information explored, the better results can be obtained. 

According to the applied extraction techniques, the existing road extraction methods using 

VHR remotely sensed images can be classified into: multi-resolution techniques, 

segmentation and classification methods, artificial intelligence approaches, snakes, and road 

tracking methods (Mena, 2003). 

 

2.2 Multi-Resolution Techniques  

 

As the objects are represented with more details in VHR imagery, the task of road finding 

requires complicated methods for the abstraction of these details. In contrast, roads in 

medium and coarse resolution imagery can be extracted by using simple road models. Line 

extraction at low resolution can guide detailed image analysis at high resolution and restrict it 
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to image parts with high probability of containing a road. Many multi-resolution approaches 

first generate lower resolution imagery by degrading a high resolution image.  

 

Shneier (1982) successively applied a 2*2 filter over the image to replace the four-pixel 

neighbourhood with the median value, creating a pyramid of images with progressively 

lower resolution from which lines was extracted by a line detector for identifying roads in the 

higher resolution imagery. Each line in the lower resolution image was assumed to 

correspond to an elongated region in the original image, and could be utilized to identify the 

position and the extent of these regions. As an alternative, Couloigner and Ranchin (2000) 

used a wavelet transform to generate pyramid layers. 

 

Instead of degradating high resolution imagery for multi-resolution analysis, some 

researchers integrate different types of satellite imagery for extraction. Bonnefon et al. (2002) 

used SPOT imagery to approximately identify linear features which are used to identify roads 

in IKONOS imagery.    

 

Trinder and Wang (1998) found distinct advantages by combining the abstraction of the 

coarser scale with the detailed information found at the finer scale. Pairs of edges in high 

resolution imagery were first identified and then combined with lines in lower resolution (re-

sampled) imagery in order to fully extract the road network.  
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Baumgartner et al. (1999) combined roadsides extracted from the original high resolution 

image (0.2–0.5m) and lines extracted from an image of reduced resolution to build the 

hierarchical road structure. The road area can be identified if a pair of edges are 

approximately parallel, have an approximately homogeneous region between them, and have 

a corresponding line in the reduced resolution image.  

 

Road detection in low resolution is the key step for guiding road extraction in high resolution. 

Multi-resolution road extraction is appropriate for rural area where the majority of roads are 

easily extracted from low resolution image but not for high density downtown areas where 

extra edges which represent roads are extracted in low resolution imagery. 

 

2.3 Segmentation and Classification Methods 

 

Segmentation is the automated process of partitioning an image into several clusters that are 

homogeneous with respect to some characteristics such as colour, texture, reflection signal, 

or context, etc. (Chen et al., 2002). Classification is the process of assigning segmented 

individual pixels or homogeneous clusters to specific and more meaningful information 

classes (Asano et al., 1996). These two techniques are used for road extraction in order to 

obtain a binary image where the road network is depicted. Therefore, many researchers have 

chosen to include these techniques in their road extraction methods (Mena, 2003). Baraldi 

and Parmiggiani (1994) followed an Iterative Self-Organizing Data Analysis Technique 

(ISODATA) classification with defining a model to extract linear features by using geometric 
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information such as thin, elongated regions. The ISODATA algorithm is unsupervised 

classification. It can refine the clusters automatically by merging similar clusters which have 

a few pixels or whose centers are very close and by splitting clusters with large standard 

deviations (Jensen, 2005). Doucette, et al. (1999) found that GIS data in a neural network 

could be used to extract linear features after performing a maximum likelihood classification 

on HYDICE imagery.  

 

Gardner, et al. (2001) used Multiple Endmember Spectral Mixture Analysis (MESMA, 

Roberts et al., 1998) to classify the urban areas to extract road networks. However, the roofs 

are misclassified as roads because of the similarities of the spectral information of the roads 

and roofs. Then, they used Q-tree filter to improve the result.  

 

Agouris, et al. (2001) extracted road from multispectral imagery by using a novel technique 

of spatiospectral cluster analysis, in which unsupervised classification, a K-Medians 

algorithm, was first applied to segment the image, and a Three-stage Fuzzy Inference System 

determined which cluster was belong to road class by checking whether a cluster 

demonstrates sufficient characteristics of elongated regions.  

 

Chen et al. (2002a) introduced inductive learning methods to derive rules at three levels: 

parameter learning, algorithm learning, and cluster learning from training data. Then the 

rules were combined to be applied on the new image to extract roads. In their method, 

parameter learning is to select appropriate parameters for K-Means and K-Nearest-Neighbour 
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algorithms; algorithm learning is to choose more suitable algorithm for a given image; and 

cluster learning is to separate the road clusters from non-road clusters.  

 

Mena and Malpica (2002) represented a new supervised classification mainly based on the 

texture analysis named Texture Progressive Analysis on three RGB bands of real image. 

Here, the Dempster - Shafer theory of evidence was applied in order to fuse the information 

from texture analysis to achieve a binary segmentation. The road could be extracted after the 

selecting of road training data by a operator.  

 

 Amini et al. (2002) also used a segmentation called split and merge algorithm (SMA). They 

firstly generated a simpler image by Grey scale Morphological Algorithms (GMA), and then 

SMA was applied on the simplified image, which would be converted to a binary image. 

Next, the binary image map objects were labelled using the connected component analysis 

(CCA) algorithm. After that, the straight line segments and roadsides were extracted by 

applying chain coding and perceptual grouping. Finally, the skeleton of roads could be 

extracted from in the binary reduced resolution image by using SMA and Binary 

Morphological Algorithms (BMA). 

 

Haverkamp (2002) extracted road networks from road objects and intersection objects based 

on size, eccentricity, length of the objects and spatial relationships between neighbouring 

intersection objects. After the a vegetation mask derived from multispectral IKONOS 

imagery, these objects were generated by grouping pixels with similar road directional 
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information based on texture analysis in panchromatic IKONOS imagery.  This method 

requires extreme predetermination that the straight roads have a specific level of contrast and 

a low along-road variance.  

 

Daughterg and Civco (2004) employed the support vector machine to classify IKONOS 

imagery into a road group and a non-road group. Then, a region growing technique was 

applied on the road group image to generate geometrically homogeneous objects. A simple 

thresholding on the shape measurements derived from these objects was performed to extract 

road features. Finally, a thinning process and a vectorization procedure were carried out to 

obtain road centerlines. However, road gaps caused by shadow or obscuring land features 

still exist in the results.  

 

Long and Zhao (2005) utilized the mean shift algorithm to clean and segment a red band of 

IKONOS image to extract roads in urban area. A classification step was based on the analysis 

of a grey histogram of the segmented image and a grey threshold was used to extract road 

areas. After that, morphological opening and closing were applied to remove small objects 

and connect useful objects. Finally, a convex hull for each street-block region was extracted 

as road-side edges. However, the successful extraction strictly assumed that the greylevel 

values in the road do not change dramatically and distribute in a narrow value range. 

 

Zhang et al. (2006) proposed a novel road identification approach on VHR multi-spectral 

imagery. It integrated a traditional k-means clustering for segmentation, a fuzzy logic 
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classifier for road area identification and the angular texture signature for separating the 

roads from the parking lots that had been misclassified as roads. This approach is only tested 

successfully on the scenes where there is no vehicle scattered in the parking lots, because of 

the almost same width and length. However, when there are a lot of vehicles in it, the 

detected area is not the entire parking lots but part of it which shows a shape similar to road. 

In this case, parking lots are still misclassified as road. 

 

Most traditional classification algorithms, such as ISODATA, perform classification using 

spectral analysis based on single pixels. The feature extraction techniques utilized by the 

eCognition® software consider image objects rather than single pixels when performing 

classifications (Definiens, 2008). Figure 2.1 shows the framework of the object-oriented 

classification approach.  A multi-resolution segmentation is first used to produce image 

objects, so as to calculate the features which could be used to classify these objects to a 

specific class. Another segmentation and classification will be operated until the best result 

could be obtained. In these processes, the objects produced by segmentation will be 

propitious to subsequent classification, and the classified objects will also advantage the 

subsequent segmentation (Definiens, 2008). 
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Accordingly, this method is appropriate for the extraction of roads from high resolution 

imagery. All the studies mentioned above have the same steps as common grounds, which 

are to segment the image, to build a model to define a requirement based on the road 

characteristics, and to classify the road class by clusters which satisfy the specific 

requirement. However, the segmentation algorithms need to scan the whole image, and every 

pixel needs to be proceeded at least once, costing much more time. Additionally, only when 

the road areas have a homogeneous colour, the segmentation can generate satisfied segments 

for subsequent classification. If the road does not have obvious different colour from its 

neighbour area, the satisfied segments cannot be obtained, which makes the subsequent 

classification step difficult to generate an appropriate criterion to classify. 

Input: image 

Multiresolution Segmentation

Image Object  

Classification  

    Acceptable? 

Output   

Yes

                  No 

Figure 2.1 Flowchart of object-oriented classification 
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2.4 Artificial Intelligence Approaches   

 

Artificial intelligence approaches convert human knowledge into an exploitable form, aiming 

to carry out reasoning in the same way as a human being (Pigeon, et al., 1999a). In this way, 

combining rules from a variety of sources to build a road model allows the computer to 

provide correct, flexible and effective results. Fuzzy logic, neural networks and genetic 

algorithms are the most popular mathematical tools used in artificial intelligence systems 

(Mohammadzadeh et al., 2006). 

 

Mohammadzadeh et al. (2006) proposed a fuzzy logic approach to detect main road 

centerline from pan-sharpened IKONOS images. Depending on the complexity of the scenes, 

one or up to three pixels might be manually selected from the road surface and the RGB grey 

levels of these pixels were considered as initial values. The best mean values in each band 

from fizzification processing were used in defuzzification to generate a segmented image. 

After that, morphological algorithm was applied to the segmented image for small paths 

removal, holes filing, and centerline extraction. However, road covered by large shadows 

cannot be extracted in this method.  Moreover, this fuzzy model is mainly based on spectral 

information, which may be ascribed to failure for complicated scenes. 

 

Mokhtarzade and Zoej (2007) used artificial neural networks for road detection from high-

resolution satellite image. The discrimination ability of the network is highly affected by the 

choosing of input parameters. After testing multi-spectral IKONOS and Quick-Bird images, 
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the network can be empowered in road detection by inputting neighbour pixels and in 

background detection by inputting the distance of each pixel to the road mean vector. The 

successful detection should base on the assumption that roads are homogeneous area. These 

two methods make good use of three bands information to extract road networks. The more 

characteristics of road are modeled, the more accurate results will be obtained. However, 

only spectral and few shape information is used in these two models, therefore, they are only 

appropriate for simple scenes where roads are salient.  

 

2.5 Snakes  

 

The concept “snake”, also called “active contour model” was first introduced by (Kass et al 

1987), which has been used to seek any shape in the image that was smooth and forms a 

closed contour. Since the boundaries of road network were of diverse shapes including 

various degrees of curvature, snakes were well suited for this task. The extraction process 

was started by initializing a curve, called snake, close to the object boundary by the operator. 

Then, the curve was associated with an objective function which combined internal 

smoothness constraints such as bending of a curve with image forces like the gradient. By 

optimizing the objective function iteratively, the curve started deforming and moved towards 

the desired object boundary. In the end, it completely “shrink-wraped” around the object 

(Kass et al 1987).  

 

However, traditional snakes are extremely sensitive to parameters and its convergence is 
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dependent on initial position. Moreover, it has a small capture range since no external force 

acts on those points far away from the boundary. Furthermore, it fails to detect concave 

boundaries because external force cannot pull control points into boundary concavity. Since 

road networks have various degrees of curvature a close initialization often cannot be 

provided. As a result, traditional snakes can easily get stuck in an undesirable local minimum 

(Niu, 2006). 

 

Neuenschwander et al. (1997) proposed the ziplock snake model allowing a user to only 

specify the distant end points of the curve, simplifying far less initialization effort. The image 

information around the end points was used to provide boundary conditions, Moreover, when 

a snake was near its extremities, the image information would be taken into account at first.  

Accordingly, this modified snake model yields excellent convergence properties for the 

snakes even if the initialization is far away from the solution. They also extended the snake-

based approach to ribbon snakes to extract roads in rural area. The extraction process could 

be achieved by optimizing the position and the width of the ribbon.  However, it will be 

stopped in the presence of disturbances.  

 

Gruen and Li (1997) used either a dynamic programming approach or LSB-Snakes (Least 

Squares B-spline Snakes) to extract linear feature after providing a few seed points. Dynamic 

programming was used to build the cost function among the seeds and solve optimization 

problems to extracts roads with the parameter model. LSB-Snakes which combine least-

squares template matching (Gruen, 1985) and B-spline Snakes (Trinder and Li, 1995) 
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improved the performance of active contour models and controlled blunders such as 

occlusions very well.  

 

Mayer et al. (1998) and Laptev et al. (2000) used ribbon snakes to extracted salient roads 

based on the detected lines at a coarse scale and the variation of the road width at a fine scale. 

Non-salient roads were extracted by connecting two adjacent ends of salient roads with a 

road hypothesis, which was then verified based on homogeneity and the constancy of width. 

Finally, a closed snake was initialized inside the central area of the junction and expanded 

until delineating the junction borders. Nevertheless, cars, traffic islands and road markings in 

urban area can block the snake’s movement; therefore, this approach is more intended for 

rural areas. 

 

Amo et al. (2006) used the region competition algorithm to extract roads from aerial images. 

The region competition was a mixed approach which combined region growing techniques 

with active contour model. Region growing made the first step faster and region competition 

delivers more accurate results. However, this method is only appropriate for handling roads 

in agricultural fields, where roads are quite homogeneous and their homogeneity is 

sufficiently different from that of their surroundings. 

 

Niu (2006) presented a semi-automatic framework for highway extraction based on a 

geometric deformable model which referred to the minimization of an objective function that 

connects the optimization problem with the propagation of regular curves. After the seed 
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points were placed at the end of the highway segments, the framework would incorporate the 

shape information of a highway segment into the seed point propagation scheme, thus it 

successfully prevented the leakage problem and blockage problem. However, it is based on 

the assumption that the highway is a continuous ribbon with no sudden ends or sharp turns, 

therefore, this method is not appropriate for roads in residential areas.   

 

Most snake methods are applied on rural area, where roads’ colour is homogeneous inside 

and different from neighbour areas. In urban areas, various types of features which often 

present inside the road areas in VHR imagery, such as cars, traffic islands, road markings, 

shadows cast by trees or buildings, which can block the snake’s movement. Furthermore, 

expanding snakes can pass over weak junction borders, leading to some leakage problems.  

 

2.6 Road Tracking Methods  

 

Semi-automatic road tracking by template matching methods seems to be more useful in 

operational applications due to the participation of human operators in tracing (Baumgartner 

et al., 2002; Zhou et al., 2006). This kind of method is an iterative road segment growing 

process starting from a set of seed points automatically or manually selected. The templates 

can be categorized into two classes: profile (1-dimension cross-section of the image 

intensities taken orthogonal to the direction of a road segment) and rectangular template (2-

dimension cross-section of the image intensities taken orthogonal to the direction of a road 
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segment) based on dimension of road template. Template matching compares a reference 

template with the template at a pixel to predict the road direction.  

 

McKeown and Denlinger (1988) introduced a road tracking method based on multiple 

cooperative methods which included a surface correlation tracker and a road edge tracker. 

When one method failed at one point, the alternative tracking method could be used to 

continue the tracking process. However, these two trackers have a lot of limitations, because 

they can work only when the road has constant width, gradually or suddenly changing 

intensity profile, slowly changing direction and so on. 

 

Vosselman and Knecht (1995) extracted roads based on least squares matching of grey value 

profiles; Kalman filter was also used to continue the process when the profile matching failed. 

The two cooperative can trace roads with intersections, flyovers, and vehicle. This method 

can settle complex situations such as occlusion by trees, shadows which are left to the 

operator.  

 

Baumgartner et al. (2002) built a graphical user interface for a profile matching method in a 

style of method mentioned in Vosselman and Knecht (1995). Therefore, the operator can 

monitor the tracking processing, and receive report which describe the problems occurred 

during the tracking through this user interface. This tracking tool is fast, but only appropriate 

for simple scene such as rural areas.  
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Shukla et al. (2002) applied a path following method to extract road form high-resolution 

satellite image by initializing two points to indicate the road direction. Scale space, Edge-

detection techniques were used as pre-processing for segmentation and estimation of road 

width. The cost minimization technique was used to determine the road direction and 

generate next seeds. This method is better than the work of Park and Kim (2001) because it 

can generate seeds in different directions at intersection. The limitations are that the 

algorithm may not work on the road cast by shadows. 

 

Zhao et al. (2002) imposed a semi-automatic method by matching a rectangular road 

template with both road mask and road seeds to extract roads from IKONOS imagery. Road 

mask is the road pixels generated from maximum likelihood classification, and the road seeds 

can be generated by tracing the long edge of the road mask. The problem is that neither all of 

extracted road mask are road area nor all of the extracted long edges are road edge, which 

would result in misclassification.   

 

Hu et al. (2004) presented a semi-automatic road extraction method based on a piecewise 

parabolic model with 0-order continuity, which was constructed by seed points placed by a 

human operator. Road extraction became the problem of estimating the unknown parameters 

for each piece of parabola, which could be solved by least square template matching based on 

the deformable template and the constraint of the geometric model. In densely populated 

areas, where roads have sharp turns and orthogonal intersections, a plenty of seed points are 

needed to be located, resulting in a degrading the efficiency.  
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Kim et al. (2004) used least squares correlation matching to extract road centerlines from 

IKONOS images based on the orientation of the initial seed calculated through Burns line 

extraction algorithm and a road template built around the seed. The limitations of this 

algorithm are that it cannot work on the road with shadows which may terminate the tracking 

process, the initial seed must be selected on road central lines by the operator, and one seed 

can only extract road with one direction, leading to too many seeds when the scene is large 

and complex.   

 

Zhou et al. (2006) proposed a framework which consists of the user, a human–computer 

interface, computer vision algorithms, knowledge transfer schemes and an evaluation 

criterion for semi-automatic road extraction. Extended Kalman filter and particle filter were 

applied to solve profile matching issues for road tracking to enhance the robustness of the 

tracker. Two profiles were required, one perpendicular to the road direction and the other one 

parallel to the road direction. 

 

Another tracking method is based on texture signature. Hu et al. (2007) extracted road 

networks from aerial images by tracking road footprints obtained by a spoke wheel operator 

based on texture information. The first road footprint was generated from a road seed 

initialized by an operator or automatically generated based on rectangular approximations. 

Then, a toe-finding algorithm was used to classify footprints for growing a road tree. Finally, 

a Bayes decision model based on the area-to-perimeter ratio of the footprint was applied to 

prune the paths that leaked into the surroundings. This method can successfully extract 
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various shapes of roads and intersections, while the footprints often fail to be generated 

because of the marking lines or shadows from trees or buildings.  

 

The road tracking methods are mostly semiautomatic at which the running time is 

proportional to the area of the road rather than the area of the whole image, and as such they 

are all efficient. However, most of the road trackers mentioned above would fail when they 

encountered blockage problems caused by radiometric changes due to shadows, vehicle 

congestions, pavement changes, lane markings, overpasses, etc. (Niu, 2006). 

 

2.7 Summary of Existing Methods 

 

In conclusion, most methods can extract salient roads in simple scenes such as rural areas. 

While for some complicated scenes, various problems may occur in different kinds of degree, 

reducing the correctness or completeness of the road extraction. In multi-resolution, results 

from the medium and coarse resolution images bring more effectiveness for the road finding 

processing in VHR imagery, while results from VHR imagery provide more detailed 

information. Nevertheless, this method still cannot detect roads covered by big shadows, 

because no clue can be obtained from different resolution images used for detecting that 

blockage area. Segmentation and classification methods usually separate the images into 

several homogeneous segments, and propose a rule to detect road area, while the noisy road 

can affect the generated segments. Consequently, no satisfied rule can be made to extract all 

road areas. Moreover, the running time of segmentation is usually very long, because every 
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pixel in the whole image needs to be calculated to get a homogeneous segment. Artificial 

intelligence approaches usually builds a model, which includes rules with different weights, 

the area which satisfies all the rules to some degree can be considered road area, and 

nevertheless, rules for very complex scenes are difficult to be exploited into some exploitable 

form that can be performed in computers. Snake methods reduce the road extraction process 

as the optimization of an objective function and it can detect the roads with various shape but 

not the ones with too much noise. Road tracking method tracks the road by comparing it with 

the template to determine the road direction, thus only pixels on the road area and around it 

are calculated, however, blockage on the roads may lead the stop of tracking, and not all 

detected areas which matches with the template are guaranteed as the road area. Based on the 

discussions above, road tracking method demonstrates its superiority over others in practical 

use for VHR imagery, and the human intervention can be imported to resolve its problems in 

this study. 
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Chapter 3 

Semiautomatic Road Extraction by RoadModeler 

 

This chapter describes the research approach applied to develop a semi-automatic road 

extraction strategy and a prototype tool, the RoadModeler. Firstly, Section 3.1 entails 

RoadModerler strategy. Section 3.2 describes grey-like colour in the Red Green Blue (RGB) 

colour space. From Sections 3.3 to 3.8, the proposed strategy is further explained in detail.  

 

3.1 RoadModeler Strategy  

 

In VHR aerial and satellite images, roads are continuous and elongated homogeneous regions 

with nearly constant width. Most tracking methods, especially work of Hu et al. (2007), can 

obtain satisfied results in the simple scene based on radiometrical, geometric, topological 

characteristics of roads. However, roads and parking lot surfaces are made of the same 

construction materials and thus have similar spectral information. Moreover, they are 

connected with each other. Therefore, the traditional tracker will extract the parking lots 

mistakenly. The leakage from roads to the surroundings because of spectral similarity and 

connection is called leakage problem (Hu et al., 2007). Besides of this situation, the 

appearance of shadows, vehicle congestions, road material changes, overpasses, etc. stop 

road-tracking process, which is called blockage problem (Niu, 2006). To resolve these two 

problems, a RoadModeler consisting of a multidirectional approach and a single-direction 

approach is proposed. The multidirectional approach which can detect a road network is 
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mainly used to resolve most of the blockage problems mentioned above. However, its 

powerful tracking ability can result in leakage problem. Therefore, the single-direction 

approach which can detect one road according to one optimal direction is needed to avoid the 

leakage problem.  

 

 

Figure 3.2 illustrates the flowchart of the proposed semi-automatic road extraction system. 

Compared with the traditional one, the one difference is that the initialized seed by a human 

operator is not a point but a circle, so called initial circle seed, which means that the operator 

need to provide the centre position and its radius.  The other difference is that the applied 

Results 
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Complete 

Operator 

Approval for Post-processing 

RoadModeler

Extracted Road Network 

Road Centrelines 

Initialization 

Decision 

Input Image 

Morphologically Filtering 

Thinning 

Single-direction 
Approach 

Multidirectional 
Approach 

Figure 3.1 Flowchart of proposed semi-automatic road extraction system 
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approach, which could be the single-direction approach or the multidirectional approach, are 

also required to be initialized for the circle seed so that it can track roads through the 

corresponding approach.   

 

For a scene without potential leakage problem, the multidirectional approach is enough to 

extract all the road networks. The initial circle seed tracks the road based on the selected 

approach and continue to track a road until no more roads can be detected. At this point, the 

human operator will check whether all the roads in the image have been detected. If not, the 

operator needs to place a new circle seed together with the same approach. This process 

continues until all the roads are extracted. 

 

 On the other hand when dealing with a scene with potential leakage problem, the single-

direction approach is first applied to extract the roads which link with the area with similar 

spectral information, such as parking lots. After that, the undetected roads without potential 

leakage problem can be extracted by using multidirectional approach. Because based on one 

circle seed, the multidirectional approach which can track a road network is much more 

efficient than single-direction approach which can only track one road.  

 

When roads are detected, morphological filtering can be applied to remove noises (e.g., 

vehicles on the road, shadows cast by trees and buildings along the sides of the road). Finally 

a thinning algorithm is applied to delineate the centreline of the road. 
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3.2 Grey-Like Colour in RGB Colour Space 

 

Colour images have a great advantage over pan-chromatic or other grey-level imagery as it 

enhances the capability to discriminate road surface material from most of the other types of 

landscape materials (Niu, 2006). It is very significant to understand the road’s spectral 

information represented in the RGB colour space.  

 

 

 

In the RGB colour space, a colour is represented by the combination of its three primaries 

(Red, Green, and Blue). Figure 3.1 illustrates the RGB colour model, which uses a 

rectangular coordinate system with three coordinate axes assigned to each of three primaries 

to indicate their intensities which start at the origin and increase along each axis (Wyszecki 

and Stiles, 1967). 

 

Each colour in the RGB colour space can only have a discrete value between zero and the 

maximum intensity (e.g., 255 for 8-bit length). Thus, the structure of this colour space would 

Figure 3.2 RGB colour space. 
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result in a cube. Any colour can be defined by giving its red, green, and blue values or 

coordinates within the colour cube. A colour image V with n pixels defined in the RGB 

colour space can be viewed as a vector set,  

 

V = {v1, … vj, … , vn}                                                                          (3.1)  

 

where vj = (vjr, vjg, vjb) is the colour vector of the jth pixel, and vrj, vgj, vbj are its three colour 

components, specifically the red,  green, and  blue, respectively. 

 

The greyscale pixels have the same value in three colour components in the RGB colour 

space. However, not all the road surface displays grey scales. There are usually some 

differences between three colour components. Therefore, a grey-like colour which has 

similar colour components to greyscale can be used to represent the spectral information of 

road. The grey-like pixels set GP meets the two requirements: (1) Red, green, and blue 

values of the pixel are close to each other: 

 

| vjr - vjb | ≤ GD, | vjr - vjg | ≤ GD, | vjb - vjg | ≤ GD, for  j = 1, 2, … , n                            (3.2)  

 

 (2) All the three values cannot be close to either its minimum (0) or maximum (255) values. 

This way, black or white can be avoided.  

GMin ≤ vjr, vjg, vjb ≤ GMax, for j = 1, 2, … , n                                                                 (3.3)  
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where GD (acceptable grey difference), GMin (grey minimum), and GMax (grey maximum) 

are selected as 40, 20, 200 respectively based on experiments. The lower GD is, the larger 

proportion the greyscales have in grey-like colour. Presenting grey-like colour can be used as 

a radiometrical requirement for a road pixel. When the road displays very dark, or the road is 

covered by shadows, GMin can be changed to 0.  

 

3.3 Initialization of Circle Seeds 

 

A circle seed can be initialized by two given points; one is used to indicate the centre point 

whereas the other is used to indicate the nearest boundary of a road. The radius R of the 

circle seed can be calculated by: 

 

R = ටሺࢋ࢚࢘࢔ࢋࢉࢄ െ ሻ૛࢟࢘ࢇࢊ࢔࢛࢕࢈ࢄ ൅ ሺࢋ࢚࢘࢔ࢋࢉࢅ െ  ሻ૛                                       (3.4)࢟࢘ࢇࢊ࢔࢛࢕࢈ࢅ

 

where Xcentre and Ycentre are coordinate of the centre point, while Xboundary and Yboundary are 

coordinate of the boundary point. The initial (or original) circle seed pixels OSP = {osp1, 

osp2, …, ospl} are the set of the pixels covered by the initial circle seed, l is the number of the 

pixels. bspi = {ospir, ospig, ospib, ospix, ospiy }  is the colour and position vector of the ith 

pixel, and ospir, ospig, ospib are its three colour components, namely the red, the green, and 

the blue, respectively. ospix and ospiy are the coordinate of the ith pixel and satisfy: 
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ටሺ࢞࢏࢖࢙࢕ െ ሻଶ  ࢋ࢚࢘࢔ࢋࢉࢄ ൅ ൫࢟࢏࢖࢙࢕  െ ൯ ࢋ࢚࢘࢔ࢋࢉࢅ 
ଶ <= R                                              (3.5) 

 

The Grey initial (or original) circle seed pixels GOSP = {gosp1, gosp2, … , gospm} are the set 

of the grey-like pixels covered by the initial circle seed, m is the number of the pixels. gospi = 

{ gospir, gospig, gospib, gospix, gospiy} is the colour and position vector of the ith pixel, and 

gospir, gospig, gospib are its three colour components, namely the red, the green, and the blue, 

respectively. GOSP satisfies: 

 

GOSP = GP ת OSP                                                                                                   (3.6) 

 

The reference colour (Rreference, Greference, Breference) can be calculated by 

 

Rreference = 
∑ ୥୭ୱ୮౨౟

ౣ
౟సభ

୫
                                                                                              (3.7) 

 

Greference = 
∑ ୥୭ୱ୮ౝ౟

ౣ
౟సభ

୫
                                                                                             (3.8) 

 

Breference = 
∑ ୥୭ୱ୮ౘ౟

ౣ
౟సభ

୫
                                                                                             (3.9) 
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automatically generated by the RoadModeler. Therefore, roads can be tracked in the manner 

of being covered by circle seeds. 

 

Each generated circle seed’s information (e.g. coordinate, reference colour) always guide the 

generation of the sequential circle seeds, thus, it is significant to store every generated circle 

seed’s information. As illustrated in Figure 3.4, the initial circle seed is first added into a 

circle seeds array (defined in Section 3.4.1) which is used to store the information of all the 

generated circle seeds, and it would appear later in the processed image.  The circle seeds 

array is enlarged when new circle seeds are generated. Every circle seed in the array will be 

selected and processed once, and newly generated seeds will be added in this array. 

 

When a circle seed is selected, its peripheral condition (defined in Section 3.4.3), which is 

the spectral information of the selected circle seed’s neighbour area, is calculated. Based on 

the analysis of this condition, new circle seeds may be generated. The information of the new 

circle seeds is then added in the existing circle seeds array and the circle seeds are drawn on 

the processed image. The area covered by newly generated circle seeds is considered as the 

road area. When all the circle seeds in the circle seeds array have been processed once, and 

no more circle seeds can be generated to enlarge the array, the road extraction based on this 

initial circle seed is finished.  
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3.4.1 Initialization of Circle Seeds Array  

 

As mentioned previously, the circle seeds array stores the information of all the circle seeds. 

This information includes: (1) the identification number used to recognize the circle seed , (2) 

The X and Y coordinate of the centre point of circle seed used to indicate its position on the 
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Figure 3.4 Flowchart of road tracking 
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image, (3) the radius of the circle seed used to determine its size, (4) the direction of the 

circle seed used to determine its origin direction, (5) the detection strategy used for 

generating the circle seed , (6) the parent circle seed (7) the daughter circle seed generated by 

this circle seed (8) the reference colour of the circle seed, which is used to determine whether 

or not the pixels covered by the circle seed belong to road area. The information of each 

circle seed is significant in the generating and testing of new circle seeds. 

 

Firstly, the circle seeds array will be set by an initial circle seed generated by a human 

operator. The information of the initial circle seed can be set as the following: The 

identification number is set to 1; the x and y coordinate and the radius are set according to the 

original circle seed; The direction is set to -1, which implies the seed is the initial circle seed 

The reference colour is an ordered triplet (R, G, B) which can be calculated by Equation 3.7-

3.9; The detection strategy is set to 0 which indicates that it is being generated by an operator; 

Parent seed is set to -1, which means this seed does not have a parent seed; The daughter  

seeds must wait to be set by the newly generated circle seeds. 

 

3.4.2 Two Approaches in RoadModeler 

 

For large complex scenes, using only one type of detection algorithm would not be enough to 

detect all the roads. For instance, in some areas, there is an inconsistency in colour which 

leads to confusion with neighbouring areas. Also, some roads are surrounded by trees or 
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vehicles. There are five detection algorithms composed of two approaches used to generate a 

circle seed.  They are in detail as follows:  

(1) General similarity detection algorithm: This is used to detect ribbon road with typical 

intersections such as cross road, T-junction and Y-junction which have clear 

boundaries and less noises.  

(2) Narrow similarity detection algorithm: This is used to detect roads which are partly 

covered by vehicles or shadows cast by buildings or trees.  

(3) Grey similarity detection algorithm: This is used to detect roads with sudden 

radiometrical changes due to construction material and hidden by the trees or covered 

by shadows. 

(4)  Jump similarity detection algorithm: This is used to detect roads completely covered 

by vehicles or shadows cast by buildings or trees. 

(5)  Single-direction detection algorithm: This is used to detect roads in one direction.  

 

The two approaches are as follows: 

(1) Single-direction approach: This approach is integrated by operating single-direction 

detection, narrow similarity detection, grey similarity detection, and jump similarity 

detection.  

(2) Multidirectional approach: This is formed by replacing single-direction detection by 

general similarity detection. 
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General similarity detection and single-direction detection have the highest priority and are 

operated first in each approach since the requirements for a circle seed in those detections are 

strict. On the contrary, the other three detections have relatively low priorities because of the 

tolerant requirements for the circle seed. As shown in Figure 3.5. When the detection with 

higher priority is unable to generate new circle seeds, detections with lower priorities will 

Figure 3.5 Flowchart of different detections 
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continue to do its job until all detections in one approach are used. When a new circle seed is 

generated by the detection with higher priority, the sequent detections will not be processed.  

 

From the detection algorithms which multi-directional approach consists of, this approach 

can extract various roads with different materials, different widths, different shapes of 

intersection, and different degrees of noise. However, it usually results in leakage problem. 

To solve this problem, the single-direction approach could be used in detecting roads 

according one direction because of the single-direction detection. Thus, when a circle seed 

passes by a parking lot, it would only extend in its original direction without extracting 

parking lots. The limitation of the single-direction model is that a circle seed can only move 

down a road in one direction. 

 

In addition, detections with relatively low priority such as narrow similarity detection 

algorithm, grey similarity detection algorithm, and jump similarity detection algorithm 

enables the two approaches to detect more road areas than that detected only by general 

similarity detection and single-direction detection algorithms. However, this detection 

algorithm is also more prone to mistakes since non road areas are frequently detected. Thus, 

the validation should be applied on the circle seed generated by the detections with low 

priority. If no circle seed can be generated within the neighbour area, only jump similarity 

detection can detect the area far from the selected seed to obtain more information for 

analyzing. For single-direction detection, only one circle seed needs to be generated based on 

the road direction and spectral information, and circle seed validation is not necessary.   
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Figure 3.6 Flowchart of the road detection strategy 
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3.4.3 Peripheral Condition of the Circle Seed 

 

Candidate circle seeds 

 

As mentioned before, each circle seed has its own information in the circle seeds array. 

When a circle seed is selected as a parent circle seed (also called selected circle seed or 

processed circle seed) to generate new daughter circle seeds, the parent circle seed’s 

information which consists of x and y coordination: Xparent and Yparent, radius R, direction 

Dparent, and reference colour (RCparent_r, RCparent_g, RCparent_b). Some of them are firstly used to 

generate the candidate circle seeds which are the peripheral circle seeds with the same radius 

surrounding the parent circle seed. The centre of a candidate circle seed can be calculated by: 

 

Xcandidate_k = Xparent + MD * cos ( θk )                                                                      (3.10) 

 

Ycandidate_k = Yparent + MD * sin ( θk )                                                                       (3.11) 

 

where MD is the moving distance which is between the centres of the parent circle seed and a 

candidate circle seed. θk is the direction represented as a horizontal angle measured 

anticlockwise from a south base line, which cannot exceed the highest number of units in a 

circle (a 360° circle). So the direction θk satisfies: 

 

θk = k * AI, for k = 1, 2, … , Ndirection                                                                      (3.12)        
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Ndirection = ଷ଺଴°
ࡵ࡭

                                                                                                          (3.13) 

 

where AI is the angle between two adjacent directions, known as the angle interval. The 

lower the angle interval is the more accurate the direction of a daughter seed. However, more 

calculating time is also spent. Based on experiments, the angle interval is selected as 12/ߨ, 

and the moving distance is set as the diameter of the circle (see Figure 3.7 c). For the jump 

similarity detection, this distance can be enlarged to detect more areas around a selected 

circle seed. 

 

Candidate circle seed pixels BSP = {bsp1, bsp2, …, bspm} are the set of the pixels covered by 

the circle seed, m is the number of the pixels. bspi = {bspir, bspig, bspib, bspix, bspiy }  is the 

colour and position vector of the ith pixel, and bspir, bspig, bspib are its three colour 

components, namely the red, the green, and the blue, respectively. bspix and bspiy are the 

coordinate of the pixel and satisfy: 

 

ටሺ࢞࢏࢖࢙࢈ െ ሻଶ  ࢑_ࢋ࢚ࢇࢊ࢏ࢊ࢔ࢇࢉࢄ ൅ ൫࢟࢏࢖࢙࢈  െ ࢑_ࢋ࢚ࢇࢊ࢏ࢊ࢔ࢇࢉࢅ ൯
ଶ <= R                             (3.14) 

 

 

 

 



 

 45 

 

 

 

Information of Candidate circle seeds 

 

After the candidate circle seeds have been determined their condition information can be 

calculated. This includes the direction of the peripheral candidate circle seed, the proportion 
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(b) Angle interval = 6/ߨ    (c) Angle interval = 12/ߨ    

Parent seed 
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Figure 3.7 Position of the candidate seed circles with different angle intervals 



 

 46 

of the similar grey pixels, the proportion of the grey pixels and the proportion of the 

classified road pixels. The proportion of the similar grey pixels (PSGP) is defined as the ratio 

between the number of similar grey pixels (SGPB) whose colour is similar to the selected 

circle seed’s reference colour and the total number of circle seed pixels (BSP) that is covered 

by a candidate circle seed: 

 

PSGP = ࡺሺ࡮ࡼࡳࡿሻ
ሻࡼࡿ࡮ሺۼ

࢒ = 
࢓

                                                                                                (3.15) 

 

where SGPB= {sgpb1, sgpb 2, …, sgpb l}  is intersection of BSP and GP. l is the number of 

the pixels. sgpbi = { sgpbir, sgpbig, sgpbib, sgpbix, sgpbiy }  is the colour and position vector of 

the ith pixel, and sgpbir, sgpbig, sgpbib which are its three colour components, namely the red, 

the green, and the blue respectively. Besides the requirements mentioned in BSP and GP, 

those three colour components satisfy: 

 

| sgpbir - RCparent_r|   ≤ CDiff                                                                                    (3.16) 

 

| sgpbig - RCparent_g|  ≤  CDiff                                                                                   (3.17) 

 

| sgpbib - RCparent_b | ≤  CDiff                                                                                   (3.18) 

 

where CDiff (Colour Difference) is represented as the acceptable difference between the 

reference colour and the colour of one specific pixel. The similarity of two circle seeds is 
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evaluated by a threshold which can be set as different values: MaxCDiff, MedCDiff, and 

MinCDiff which is used in general similarity detection, narrow similarity detection, and jump 

similarity detection, respectively.  

 

The proportion of the grey pixels (PGP) is defined as the ratio between the number of grey 

pixels in the candidate circle seed and the total number of pixels covered by the candidate 

circle seed.  

 

PGP = ࡺሺ࡮ࡼࡳሻ
ሻࡿ࡮ሺࡺ 

                                                                                                          (3.19)       

                                                                        

where GPB are the pixels whose position vector satisfies the requirements of BS and whereas 

whose colour vector satisfies the requirements of GP.  

 

The proportion of the classified road pixels (PRP) is defined as the ratio between the number 

of detected road pixels in the candidate circle seed and the total number of pixels covered by 

the candidate circle seed. 

 

PRP = ࡺሺ࡮ࡼࡾሻ
ሻࡿ࡮ሺࡺ 

                                                                                                           (3.20)       

                                                                    

where RPB are the pixels whose position vector satisfies the requirements of BS and who has 

detected as road pixels 
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3.4.4 Analysis of the Condition of Candidate Circle Seeds 

 

From the information provided by peripheral candidate circles, a new circle seed could be the 

candidate circle seeds which have the largest grey proportion value in the continuous 

peripheral candidate circle seeds.  The continuous peripheral candidate circle seeds should 

satisfy four requirements:  

 

Firstly, PSGP of the candidate circle seeds should exceed the minimum value which is 

referred as Stand Similar Grey Proportion which is composed of three values: Maximum 

Stand Similar Grey Proportion (MaxSSGP), Median Stand Similar Grey Proportion 

(MedSSGP), and Minimum Stand Similar Grey Proportion (MinSSGP) which can be used in 

general similarity detection algorithm (or single-direction detection algorithm), narrow 

similarity detection algorithm, and jump similarity detection algorithm respectively. For the 

grey similarity detection algorithm, PGP of the candidate circle seeds should exceed a 

minimum value which is referred as Stand Grey Proportion (SGP). All the four thresholds are 

selected based on experiments. These four thresholds are used to validate a circle seed’s 

spectral information.  

 

Secondly, the difference between PSGP and PRP of all the candidate circle seeds is greater 

than a minimum value which is referred as Additional Grey Proportion (AGP), which is used 

in general similarity detection algorithm or single-direction detection algorithm. For other 

three detection algorithms, PRP of them is under a maximum value which is referred as 
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Stand Maximum Road Proportion (SMRP). These two parameters is used to increase the 

effectiveness of each circle seed which means it can reduce superposition of two circle seeds.  

 

Thirdly, the candidate circle seed’s direction θk satisfies: 

 

Min ( | θk - Dparent |,  2ߨ - | θk - Dparent | )  ≤  ࡭ࡾࡱ
૛

                                                      (3.21) 

 

where Dparent is the parent circle seed’s direction which is obtained from the circle seeds array, 

ERA is effective range angle and is used to limit the direction of the candidate circle seed. 

ERA is set as two thresholds which is referred as wide effective range angle (WERA) and 

narrow effective range angle (NERA). As illustrated in Figure 3.8, the parent circle seed A’s 

direction is 2/ߨ and ERA is 43/ߨ, so the directions of the candidate circle seeds B, C, D, E, and F in 

shadow area are effective directions. 
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Finally, the peripheral candidate circle seeds are in a circle. This means the first direction 

ߨ /12 and the last direction 2*ߨ  can also be considered as continuous circle seeds. The 

continuous circle seed’s directions θm and θn would satisfy: 

 

Min ( | θm - θn |,  2ߨ - | θm - θn | )  ≤  AI                                                                   (3.22) 

 

where AI is the angle interval. After the new circle seed have been detected, its coordinate, 

radius, direction, its parent identification number, and the used detection strategy will be 

recorded for updating of the circle seeds array. 

 

3.4.5 Validation of Adjacent Circle Seeds  

 

After the new daughter circle seeds in various directions are generated, considering that the 

road may become wider, the adjacent area of the daughter seed will be checked to see 

whether it satisfies the same requirements of circle seed generated by the general similarity 

detection algorithm. The neighbour circle seeds are also the candidate circle seeds whose 

direction is 60º departures from the direction of the newly generated circle seed. The adjacent 

circle seed will be used to extend to more neighbouring circle seeds until no more circle seed 

can satisfy the requirements. 

 

As shown in Figure 3.9, circle seed B is generated from circle seed A, candidate circle seeds 

C and D are the adjacent circle seeds of B, the interval angle between the circle seed and its 
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neighbour circle seeds is 60º. If C or D satisfies the requirements, it will be considered as the 

new daughter circle seed whose adjacent circle seed (E or F) also need to be checked to 

generate more new daughter circle seeds. This step is used in general similarity detection 

algorithm to enlarge the width of the road and in single-direction detection algorithm to find 

the best direction. 

 

 

3.4.6 Requirements for Different Detection Algorithms 

 

As shown in Table 3.1, the standard thresholds of the different detection algorithms in the 

multidirectional approach are based on experiments. Grey Maximum, Grey Minimum, Grey 

Difference are the same. Other thresholds will be explained in detail in the following part. 
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Figure 3.9 Neighbour circle seeds 
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Table 3.1 The Thresholds of different detection algorithms in Multidirectional Approach 

 General 
Similarity 
Detection 
algorithm 

Narrow 
Similarity 
Detection 
algorithm 

Grey 
Similarity 
Detection 
algorithm 

Jump  
Similarity 
Detection 
algorithm 

Stand Similar Grey 
Proportion 

MaxSSGP 
=70% 

MedSSGP 
=30% 

N/A MinSSGP 
=25% 

Additional Grey 
Proportion 

AGP=70% N/A N/A N/A 

Stand Grey Proportion N/A N/A SGP =90% N/A 

Stand Road Proportion N/A SMRP =1% SMRP =1% SMRP =1% 

Colour Difference 
Criteria 

MaxCDiff =25 MedCDiff =15 N/A MinCDiff =15 

Effective Range Angle WERA=3 4/ߨ NERA= =NERA 6/ߨ  6/ߨ =NERA 6/ߨ

Grey Maximum 200 200 200 200 

Grey Minimum 20 20 20 20 

Grey Difference 40 40 40 40 

Neighbour Detection or 
not 

Yes No No No 

Number of generated 
circle seeds 

No limit 1 1 1 

Moving Distance 2*radius 2*radius 2*radius 2*radius 

Max Moving Distance N/A N/A N/A 6*radius 

Distance Increment N/A N/A N/A 2 

 

 

General Similarity Detection algorithm 

 

The general similarity detection algorithm is used frequently. It can be used to detect visible 

roads with different degrees of width and different types of intersections. This can be done as 
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long as spectral values along a road do not change greatly within a short distance, and few 

vehicles or shadows are evident in covering the road.  

 

As shown in Table 3.1, the standard similar grey proportion and additional grey proportion 

are usually set as 70% (MaxSSGP and AGP), and the colour difference criteria is set as 25 

(MaxCDiff), which is larger than other detection algorithms. Thus, the detected circle seeds 

would have large proportion of similar colour pixels to his parent circle seed. The effective 

angle, which is set as 1.5ߨ (WERA), is the largest one in all the detection algorithms to 

detect all the possible directions so that different kinds of intersections can be detected.  After 

the circle seeds which have the largest proportion of grey similar pixels and have different 

directions have been detected, the adjacent areas of them also need to be checked so that road 

whose width is wider than the diameter of the circle seed could be detected. 

 

Narrow Similarity Detection algorithm 

 

When general similar detection algorithm fails to generate new circle seeds, the narrow 

similar detection algorithm can be used to detect a circle seed, specifically for roads partly 

covered by vehicles or shadows cast by trees and buildings.  

 

As shown in Table 3.1, the stand similar grey proportion is usually set as 30% (MedSSGP), 

which is lower than general similar detection algorithm. Therefore, the unclear road with low 

proportion of grey pixels can also be detected. Stand road proportion is set as 1% (SMRP) to 
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ensure the effectiveness of the newly generated circle seed. In order to reduce mistaken 

detection, the colour difference criteria is set as 15 (MedCDiff), which is much lower than 

general similar detection algorithm. Therefore, the circle seed with higher similar colour to 

its parent circle seed’s reference colour can be generate through narrow similar detection 

algorithm than general similarity detection algorithm. Additionally, the effective range angle 

is set to 6/ߨ (NERA), which is much lower than general similar detection algorithm, so that 

the direction of the possible newly generated circle seed keep consistent with its parent circle 

seed’s direction. Therefore, the circle seed which has low proportion of pixels with higher 

spectral similarity and have a consistent direction could be detected. The neighbouring circle 

seeds do not need to be checked in this detection algorithm. 

 

Grey Similarity Detection algorithm 

 

Due to different materials or constructing time, the spectral information changes greatly 

along the road. No circle seeds can be generated through general similarity detection 

algorithm and narrow similarity detection algorithm because of the few similar pixels 

between the candidate circle seed and the selected circle seed. In this case, the grey similarity 

detection algorithm should be applied. 

 

As shown in Table 3.1, the stand grey proportion is normally set to 90% (SGP). The range of 

the definition of the grey-like pixel in this thesis is quite large; even some non-grey pixel is 

included in this range. In order to reduce mistaken detection, the effective range angle and 
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stand road proportion is set to the same value as narrow similarity detection algorithm’s to 

guarantee the generated circle seed’s consistency in direction and effectiveness. The circle 

seed which has a large proportion of grey-like pixels and have consistent direction with its 

parent’s can be detected. The checking of neighbouring circle seeds is not required in this 

detection algorithm. 

 

Jump Similarity Detection algorithm 

 

The appearances of vehicles, pedestrian lines, overpasses and shadows cast by trees and 

buildings can produce a negative influence on homogeneous intensity and connectivity of 

roads. In some cases, shadows may cover certain sections of a road. No circle seed can be 

generated through the detections mentioned before. This is because the near peripheral 

candidate circle seeds cannot satisfy the requirements of those three detections. However, 

there may be a circle seed satisfying the requirements of the jump similar detection algorithm 

in the area far from the selected circle seed. 

 

As shown in Table 3.1, the parameters in narrow similar detection and jump similar detection 

are almost the same. The difference is that the stand similar grey proportion is usually set to 

25% (MinSSGP), which is lower than that of the narrow similarity detection. The moving 

distance is dynamically changed to detect farther areas.  
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The moving distance is increased gradually by a specific value called Distance Increment. If 

the circle seed cannot be generated within the area of the increased moving distance, the 

moving distance will keep increasing until a threshold value called Max Moving Distance is 

obtained.  

 

 

In Figure 3.10, assuming the distance increment and the Max Moving Distance are set as 

radius and 6*radius respectively. The circle seed A cannot generate any circle seeds by using 

the moving distance which is the diameter of the circle seed. There are still four more trials 

which can be made to obtain a circle seed. Since the distance increment is set to the length of 

2 pixels, the circle seed can be detected as near as possible before the moving distance 

reaches its threshold value. After the circle seed which has low proportion of pixels with 

higher spectral similarity and have consistent direction has been detected, the area between 
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Figure 3.10 Jump similar detection 
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the daughter circle seed and the parent circle seed is considered as road area as well. As 

illustrated in Figure 3.10, if the candidate circle seed F satisfies all the requirements, the area 

between circle seed A and circle seed F which is the grey area will be detected as road area. 

The adjacent circle seeds do not need to be checked for detecting wider roads. 

 

Single-direction Detection algorithm 

 

Single-direction detection algorithm can replace the general similarity detection algorithm to 

generate a new approach called single-direction approach. When a parking lot is located 

beside a road, the general similar detection will consider the parking lot as a wider road or 

intersection mistakenly. Single-direction detection can resolve this problem effectively. 

 

As shown in Table 3.2, the stand similar grey proportion and colour difference criteria are 

normally set to 60% and 35% respectively, which is more tolerant than general similar 

detections. This way, the detected circle seed would have large proportion of similar colour 

pixels to his parent circle seed. The requirement for additional grey proportion is not required, 

because the road tracking does not need to be blocked by the detected road. Additionally, the 

effective range angle is set to ߨ /6, which is much lower than general similar detection 

algorithm. Therefore, the effective direction range is narrow, and the direction of the possible 

newly generated circle seed is consistent with its parent circle seed’s direction. After the 

circle seed which has a high proportion of pixel with high spectral similarity and has 

consistent direction has been detected, its neighbouring circle seeds needs to be checked so 
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that more circle seeds can be generated to provide more directional choices, Only the circle 

seed with  the most consistent direction will be selected and shown on the map . One parent 

circle seed can only generate one daughter circle seed through this type of detection. 

 

Table 3.2 The Thresholds of different detection algorithms in Single-direction Approach 

 Single- 
Directional 
Detection 
algorithm 

Narrow 
Similarity 
Detection 
algorithm 

Grey 
Similarity 
Detection 
algorithm 

Jump  
Similarity 
Detection 
algorithm 

Stand Similar Grey 
Proportion 

MaxSSGP 
=60% 

MedSSGP 
=21% 

N/A MinSSGP 
=15% 

Additional Grey 
Proportion 

N/A N/A N/A N/A 

Stand Grey Proportion N/A N/A SGP =60% N/A 

Stand Road Proportion N/A SMRP =1% SMRP =1% SMRP =1% 

Colour Difference 
Criteria 

MaxCDiff =35 MedCDiff =15 N/A MinCDiff =15 

Effective Range Angle WERA= 6/ߨ NERA= =NERA 6/ߨ  6/ߨ =NERA 6/ߨ

Grey Maximum 200 200 200 200 

Grey Minimum 20 20 20 20 

Grey Difference 40 40 40 40 

Neighbour Detection or 
not 

No No No No 

Number of generated 
circle seeds 

1 1 1 1 

Moving Distance 2*radius 2*radius 2*radius 2*radius 

Max Moving Distance N/A N/A N/A 6*radius 

Distance Increment N/A N/A N/A 2 
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In single-direction approach, when no more circle seeds can be generated, narrow similar 

detection algorithm, grey similarity detection algorithm, and jump similarity detection 

algorithm will be used to detect circle seeds in order, only one circle seed with the most 

consistent direction will be shown on the image and be used to generate the next circle seed. 

The thresholds for these three detection algorithms in a single-direction approach are more 

tolerant than that in a multidirectional approach because the direction consistency can 

guarantee the correct road extraction.  

 

3.4.7 Updating the Circle Seeds Array 

 

After the newly circle seeds have been generated, the information of it will be stored in the 

circle seed array. The information of the new circle seed can be set as the following : The 

identification number is set by adding the previous circle seed’s identification number by 1; 

the x and y coordinate and the radius are set according to the new circle seed; The direction is 

set to corresponding direction from its parent circle seed; The reference colour can be 

calculated by equation (3.7)-(3.9); The detection strategy is set to corresponding approach 

and detection algorithm; Parent seed is set to the identification number of its parent circle 

seed; The daughter seeds must wait to be set by the newly generated circle seeds. This circle 

seed will record its identification number to the daughter seed field of its parent circle seed. 
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3.4.8 Drawing of a Circle Seed 

 

After the newly circle seeds have been determined, the grey pixels covered by them will be 

changed to red colour and shown in the image (Figure 3.11a). To connect the roads together, 

the area between the parent seed and the daughter seed need to be covered by a circle named 

Connected Circle (Figure 3.11b). The grey-like pixels covered by the connected circle can be 

considered as road area.  

 

 

 

 

(a) Drawing of one generated seed (b) Making two seeds more continual  

(c) Drawing of another generated seed (d) Making two seeds more continual 

Figure 3.11 Drawing a seed circle 
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The connected circle’s coordinate (Xconnected, Yconnected) can be calculated by: 

 

Xconnected = ࢘ࢋࢎ࢚ࢇࢌࢄା࢔࢕࢙ࢄ

૛
                                                                                             (3.23) 

 

Yconnected = ࢘ࢋࢎ࢚ࢇࢌࢅା࢔࢕࢙ࢅ

૛
                                                                                             (3.24) 

 

where (Xparent, Yparent) and (Xdaughter, Ydaughter) are a parent circle seed and its daughter circle 

seed’ coordinates respectively. 

 

3.4.9 Validation 

 

Not all the road areas detected by the detection algorithms mentioned above are correct. 

Different detections have different probabilities of detecting road areas correctly. From the 

descriptions of the detections, general similar detection and single-direction detection have 

higher probability of detecting road areas correctly, and the other three detections have 

relatively lower probability. Testing the validity of the circle seeds generated by those three 

detections helps to improve the effectiveness of the detection algorithm so that the number of 

the mistakenly generated circle seeds can be avoided. 

 

The continuous usage of low priority detection algorithms to generate circle seeds has very 

high probability of detecting non-road area mistakenly. When both a circle seed’s detection 

strategy and its father circle seed’s detection strategy are one of those three detections, the 
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direction of the two circle seeds will be tested to find out whether or not they are consistent. 

The degree of the consistence of directions can be evaluated by the angle difference between 

the two directions. When the angle difference is less than the Max Angle Difference, two 

circles’ directions are viewed consistent, and the two circle seeds are taken as valid circle 

seeds. If they are not, the two circle seeds will be considered as useless circle seeds and are 

removed from the images. Moreover, their information in circle seeds array are removed as 

well. Max Angle Difference is selected as 12/ߨ based on experiments. The information of the 

valid circle seeds will be appended into in the circle seeds array, waited to be processed. 

 

3.5 Morphological Filtering 

 

Matheron (1975) and Serra (1982) developed Mathematical morphology as a geometry-based 

technique for image processing and analysis. Binary morphology uses the set operators such 

as union, intersection, complementation, and translation, while a binary image is represented 

as a set. 

 

Let E be the discrete integer space Zm, a binary image can be represented as a subset of E or a 

mapping f: E → {0, 1}. The translation operator, Ta, which translates the set of object vectors,

EOV ⊂ , by a constant vector, Ea∈ , is defined as 

 

}:{)( OVovaovOV ∈+=aT                                                                                   (3.25) 
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The reflection or symmetry operator, –, of OV is defined as 

 

}:{ OVovovOV ∈−=−                                                                                          (3.26) 

 

Let EBI ⊂ be a binary image and ESE ⊂ be a binary structuring element. The binary 

dilation
T
SEδ , erosion

T
SEε , closing

T
SEχ , and opening 

T
SEο  of BI by SE are binary images given 

by: 

 

})(:{)( Φ≠∩−∈= BISEEaBI a
T
SE Tδ                                                                 (3.27) 
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Generally, the binary opening suppresses small peaks and eliminates other small details, 

while the binary closing fills up narrow channels and small gaps. It is notable that the size of 

larger structures or objects isn’t really affected by binary closing and binary opening. Given 

the fact that noise (objects which does not belong to road) exists in the extracted images. 

Depending on the shape of noise objects, the appropriate combinations of binary closing or 
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opening operators can be used to remove the noise (e.g., small area out of the road area) or 

fill the holes within the road area. 

 

3.6 Road Centreline Delineation  

 

Zhang and Suen (1984) presented a thinning algorithm to extract a skeleton of an object from 

a binary image. This algorithm can also be used to extract road centerline from the 

morphological result, where road pixels have a value of 1 (white), and those background 

(non-road) pixels have a value of 0 (black). This method consists of two iterative steps, 

which are used to delete boundary pixels. The first step deletes south-east boundary pixels p, 

if its 8-neighbour pixels shown in Figure 3.12 are satisfied: 

 

2 ≤ N (p) ≤ 6                                                                                                           (3.31) 

 

S (p) = 1                                                                                                                  (3.32) 

 

p0 · p2 · p4 = 0                                                                                                          (3.33) 

 

p2 · p4 · p6 = 0                                                                                                          (3.34) 

 

where N (p) is the number of neighbour road pixels: 
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and S(p) is the number of 01 patterns in the ordered sequence of p0, p1, …, p6, p7. 

 

 

 

 

In the second step which is used to delete north-west boundary pixels, only Equations 3.33 

and 3.34 are changed to 

 

p0 · p2 · p6 = 0                                                                                                          (3.36) 

 

p0 · p4 · p6 = 0                                                                                                          (3.37) 

 

 

 

Figure 3.12 Neighbourhood arrangement 
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3.7 Degrading and Upgrading of Image Resolution 

 

The width of a road in the aerial image with 0.15m spatial resolution is more than 50 pixels. 

Thus, this high resolution is not necessary for the road extraction. Moreover, the running 

time is usually proportional with the image size. It is meaningful to degrade the VHR 

imagery. Once the central line is extracted, this central line can be upgraded to overlay on the 

original image. 

 

In order to degrade a high resolution image to a low resolution image, the value of each pixel 

in low resolution can be obtained by calculating the mean value of the reference pixels in a 

specific window from higher resolution image. The position of the centre reference pixel can 

be calculated by 

 

XCreference = Xlow * (Llarge /Lsmall)                                                                                     (3.38) 

 

YCreference = Ylow *  (Wlarge /Wsmall)                                                                                   (3.39) 

 

where (Xlow, Ylow) is the coordinate of the pixel in low resolution image, and (XCreference, 

YCreference) is its centre reference pixel’s coordinate in high resolution image, Lsmall and Wsmall 

are the length and width of the low resolution image. Llarge and Wlarge are the length and width 

of the high resolution image. The centre reference pixel is in the centre of the window. The 
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number of reference pixels depends on the size of the window. The length and the width of 

the widow can be calculated by 

 

Lwindow= Llarge / Lsmall                                                                                                                                                         (3.40) 

 

Wwindow= Wlarge / Wsmall                                                                                                                                                   (3.41) 

 

After the centreline had been extracted, the pixels of that line are cast on the original image. 

The new position can be calculated by equations (3.38) and (3.39). The new enlarged image 

is a black and white image; the white point is cast from low resolution image. The closing 

binary morphology is used to connect those points into lines. Finally, the line is overlaid on 

the original high resolution image.     
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Chapter 4 

Implementation 

 

This chapter illustrates the implementation of the RoadModeler. The comparison between the 

proposed semi-automatic road extraction strategy and the object-oriented classification 

method is carried out according to the experimental results, the human operator’ experience, 

and the degree of human intervention.  

 

4.1 Datasets  

 

A set of test images selected from the pansharpened GeoEye-1 colour images with 50 cm 

resolution, colour aerial orthoimages with 10 cm and 15 cm resolution, and black-and-white 

aerial orthoimages (see Table 4.1).  The pan-sharpened GeoEye-1 colour satellite images and 

the colour aerial orthoimages covering the City of Davis, California, USA were downloaded 

from the two public websites (http://www.geoeye.com/CorpSite/) and 

(http://cityofdavis.org/gis/orthoimagerys/), respectively. The colour orthoimages covering the 

City of Waterloo, Ontario, Canada were collected from the Map Library at the University of 

Waterloo. The black-and-white aerial images used in Hu et al. (2007) were provided by the 

research group at Arizona State University in USA. 
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Table 4.1 List of the selected test images.  

Image ID 
 

Image type,  
spatial resolution,  

image size 

Location 

 Figure 4.1 (a) Colour GeoEye-1  
0.5m 

1000×1000 pixels 

Giza, Egypt 

 Figure 4.1 (b) Khalifa Sports City, Doha, Qatar 

Figure 4.1 (c) Colour aerial Orthoimage 
0.1m 

0.1m7433 × 7433 pixels 

Waterloo, Ontario, Canada 

 Figure 4.1 (d) Waterloo, Ontario, Canada 

Figure 4.1 (e) Colour aerial orthoimage 
0.15m 

3200×3200 pixels 

City of Davis, California, USA 

 Figure 4.1 (f) City of Davis, California, USA 

Figure 4.2 Black-and-white aerial orthorimage 
N/A 

823×744 pixels 

N/A 

 

 

In this study, MATLAB was used as a numerical computing environment and programming 

language. One of its important platforms is for image processing and analysis. It has strong 

capability for complicated mathematical calculation, friendly programming interface and 

convenient accesses to tabular data via interactive query. 

 

Nevertheless, in order to make objective comparison with the proposed method, a 

commercial software package, Definiens Developer Trial, is also used in road network 

extraction. A 1.79 GHz Processor, 1.87GB of RAM DELL desktop computer was the major 

hardware for the program operation. 
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(a) (b)

(c) (d)

(e) (f)

Figure 4.1 Selected test images 
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4.2 Extraction of Roads in Rural Areas 

 

Roads in rural areas usually have few high buildings and trees along the road sides. Thus, 

there is normally no shadow blocking the roads in the image. However, the width of the rural 

road usually only accommodates two vehicles side by side in opposite directions, therefore, a 

big van and its shadow perpendicular to the road direction may block the road in some 

special cases. Moreover, the quality of the construction of rural roads is usually very crude. 

As a result, the boundary of the road is very weak, which will make the RoadModeler detect 

the neighbour areas mistakenly. Figure 4.1(a) shows typical roads in a rural area.  

Figure 4.2 Black-and-white Aerial image 
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In the object-oriented classification, the multi-resolution segmentation is first operated. Three 

parameters including scale, the ratio between shape and colour, and the ratio between 

compactness and smoothness need to be set. For this scene, these parameters are set as 500, 

0.1, and 0.5, respectively. The result of segmentation is shown in Figure 4.3(a). 

 

 

 

 

After segmentation, the image is classified into 9 objects. Since the road is composed of one 

object, the classification step becomes easier. Here, the classification rule is that objects 

whose mean values in the red layer are between 78 and 79 are considered as road areas. As 

(a) (b)

(c) (d) (e)

Figure 4.3 Roads in a rural area detected by the object-oriented classification 
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shown in Figures 4.3(b), (c) and (d) present the road segments leaking to the neighbour areas 

and (e) shows the road segment blocked by two vehicles.  

 

Figure 4.4 demonstrates the results obtained by the RoadModeler by using standard 

thresholds shown in Table 3.1 and Table 3.2. To avoid the road leaking problem, the single-

direction approach is applied first, and the result is shown in (a). After the white circle seed 

shown in (e) is initialized, the road is covered by a series of circles. From the original image 

(f), it is easy to see the obvious spectral change indicated by red arrow, so the grey similarity 

detection algorithm is automatically applied here to generate a blue circle seed shown in (e), 

and only the grey pixels are changed to blue. The yellow area in (e) is not a complete circle, 

since some area is covered by vehicles, the narrow similarity detection algorithm is 

automatically applied to generate a yellow circle seed, and only the pixels whose colour is 

similar to the reference colour are changed to yellow. (g) and (i) show that the proposed 

method does not leak to the adjacent area as object-oriented classification does, while the 

original image of them is shown in (h) and (j). When the circle seed meets with a block such 

as a vehicle shown in (l), jump similarity detection algorithm is automatically applied to 

generate a red circle. In this detection algorithm, the pixels with similar colour to the 

reference colour, together with the pixels in the area between the generated circle and its 

parent circle seed, are altered to red. Therefore, the vehicle can be part of the red area in (k). 
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(a) (b) 

(c) 

(e) 

(f) 

(g) 

(h) 

(i)

(j) 

   (k) 

(l) 

(m) (p) 

(o)

(d) 

(n) 

Figure 4.4 Roads in a rural area detected by the RoadModeler 
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Multidirectional approach follows to extract the undetected roads with width change, then, 

another circle seed shown in (c) is initialized and detects the remaining road shown in (b). As 

shown in (d), when a circle seed comes across a wider road area, more circle seeds are 

generated to cover it.  

 

In order to make the detected road more continuous, the area between the parent circle seed 

and its daughter circle seeds is also considered as road area and changed to green. (m) shows 

the continuous road, more specifically, the result in (n) is much better than the result in (d). 

The continuous result is changed to black and white image for mathematical morphology, 

since there are some holes and cracks indicated by red arrow shown in (o) in the road (white 

area).  

 

 

 

(a) (c) 

(b) 

Figure 4.5 Morphologically filtered roads in a rural area and overlaid on the image  
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Figure 4.5 (a) shows the homogenous road regions (white) after using the binary 

morphological opening and closing operation that uses the square structuring element with 

size of 3 × 3 pixels and 11 × 11 pixels respectively. The result in (b) clearly shows that the 

holes and cracks have been filled. The final result is overlaid on the original image shown in 

(c). By visual evaluation and analysis, the result obtained by proposed approach, which does 

not have leakage problem and blockage problem, is better than that obtained by object-

oriented classification in which those problems exist. 

 

4.3 Extraction of Roads in Downtown Areas 

 

Roads in downtown areas usually have some white or yellow lane markings and can 

accommodated several vehicles in parallel. There are also some high buildings casting large 

shadows on the road. Roundabout or cloverleaf junction makes roads show various shape and 

curvatures. Parking lots beside the road are always extracted mistakenly, because they have 

similar spectral information and link with the road. 

 

4.3.1 Extraction of Roads with Roundabouts  

 

Figure 4.1(b) shows roads with roundabouts. This scene embodies two difficulties. One is the 

road represents different spectral information and various curvatures. The other one is from 

the parking lot with similar spectral information beside the road. The scale is set as 200; the 
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other thresholds remain the same as the previous one. The result of segmentation is shown in 

Figure 4.6(a). 

 

 

 

 

After segmentation, the image is classified into 123 objects. In Figure 4.6 (a), the different 

degrees of grey show the mean values in red band in each segment. The lighter the segment 

is, the larger the mean value is. It easily can be seen that the segment of the non-road area has 

similar grey to the one of the road area. Accordingly, the classification rule is that objects 

with mean value between 35 and 78 in red layer are considered as road areas.  From the 

result shown in Figure 4.6 (b), many non-road areas are extracted mistakenly.  

(a) (b)

Figure 4.6 Roads with roundabouts detected by the object-oriented classification 
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(b) 

(a) 

Figure 4.7 Roads with roundabouts detected by the RoadModeler 
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For this scene, Figures 4.7 and 4.8 show the results of the proposed approach with the same 

standard thresholds and the morphology and overlaid results. The white circle shown in 

Figure 4.7 (b) is used in single-direction approach, and some parts of the directed road are 

Figure 4.8 Morphologically filtered roads with roundabouts and overlaid on the image 
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wrong because of the similar spectral information with the neighbour area. After the other 

white circles shown in (a) are applied by multidirectional approach, it can be seen that it is 

the jump similarity detection algorithm who leads to the wrong detection, as shown by the 

white arrow.  

 

4.3.2 Extraction of Roads with Shadows  

 

Figure 4.1(c) shows roads with some shadows cast by buildings. In this scene, not only does 

the shadow of the building cover the whole width of the road, but also the parking lot with 

similar spectral information is beside the road. In object-oriented classification, scale, the 

ratio between shape and colour, and the ratio between compactness and smoothness are set as 

1000, 0.1, and 0.5, respectively. The result of the first segmentation is shown in the Figure 

4.9(a). The classification rule is that objects whose mean values in red layer are between 131 

and 180 are considered as road areas. From the classification result shown in Figure 4.9 (b), 

most of the roads can be extracted. However, road area covered by the shadow indicated by 

white arrow is not extracted, while some non-road areas such as parking lots are extracted 

mistakenly as well. The second segmentation is applied on red area shown in Figure 4.9(c), 

and the three parameters is set as 500, 0.3, and 0.5, and the classification rule is that the 

objects in red area whose densities are more than 1.2 are non-road areas. After the second 

classification, some parking lots and buildings are not considered as road areas in new results 

(see Figure 4.9d). 
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(b)(a) 

(a) 

(c) (d)

Figure 4.9 Roads with shadows detected by the object-oriented classification 
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(a) 

(b) (c) 

Figure 4.10 Roads with shadows detected by the RoadModeler 
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For this scene, the RoadModeler with the same standard thresholds listed in Table 3-2 has 

also been implemented to generate results shown in Figure 4.10. Only single-direction 

approach is used in this scene to avoid extracting the parking lot beside the road mistakenly. 

This approach will not be obstructed by the detected road, and it can pass through the 

extracted road area and keeps its direction to continue detecting. Seven initialized circle 

seeds (white circle) are required for extracting the main road. The road area covered by 

shadow is also automatically extracted by jump similarity detection algorithm and covered by 

red circle seeds shown in Figure 4.10(a). The more continuous result and the black and white 

result are shown in (b) and (c), respectively. The result of mathematical morphology with the 

same thresholds and the final overlaid result are shown in Figures 4.11(a) and (b), 

respectively. The final result is much better than that of the object-oriented classification. 

 

 

 

(b)(a) 

Figure 4.11 Morphologically filtered roads with shadows and overlaid on the image 
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4.3.3 Extraction of Roads with Parking Lots 

 

Figure 4.1(d) shows roads with parking lots. For the multi-resolution segmentation, scale, the 

ratio between shape and colour, and the ratio between compactness and smoothness are set as 

1000, 0.1, and 0.5, respectively. The result of segmentation is shown in Figure 4.12(a). The 

classification rule is that objects whose mean values in red layer are between 149 and 200 are 

considered as road areas. From the result shown in Figure 4.12 (b), most of the road areas can 

be extracted, while some non-road areas such as parking lots are extracted mistakenly as well. 

 

 
(a) (b) 

Figure 4.12 Roads with parking lots detected by the object-oriented classification 
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In Figure 4.13, the results of RoadModeler with standard thresholds are shown. Three white 

circle seeds shown in (a) are initialized for single-direction approach. Another six circle 

seeds indicated by red arrow shown in (b) are initialized for the application of 

(a) (b)

(c) (d)

Figure 4.13 Roads with parking lots detected by the RoadModeler 
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multidirectional approach. The more continuous result and the black and white result are 

shown in (c) and (d), respectively. The mathematical morphology results and the final 

overlaid result are shown in Figures 4.14(a) and (b), respectively. The final result is much 

better than that of object-oriented classification, as all the roads have been extracted and few 

non-road areas are extracted as road areas mistakenly. 

 

 

 

 

4.4 Extraction of Roads in Residential Areas 

 

Roads in the residential area are usually built by the same material with homogeneous colour, 

and have salient curbs which yield a good boundary of road. However, some tree shadows 

(a) (b)

Figure 4.14 Morphologically filtered roads with parking lots and overlaid on the image  
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may cause the blockage problem, and the roofs of the houses with similar colour to the road 

area may cause the leakage problem.  

 

4.4.1 Extraction of Roads with Few Trees 

 

Figure 4.1(e) shows roads with few trees. In this scene, the roads have homogeneous spectral 

information. In object-oriented classification, the ratio between shape and colour is set as 0.1 

in order to generate segment mainly based on spectral information. The other two thresholds 

remain the same as the previous scene. The result of segmentation is shown in Figure 4.15(a). 

After segmentation, the image is classified into 47 objects. The classification rule is that 

objects whose mean values in red layer are between 127 and 137 are considered as road areas. 

From the result shown in Figure 4.15 (b), some of the house roofs are extracted as road areas 

mistakenly. 

 
(a) (b)

Figure 4.15 Roads with few trees detected by the object-oriented classification 
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Figure 4.16 Roads with few trees detected by the RoadModeler 
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Figure 4.16 shows the results of the RoadModeler with the same standard thresholds and 

Figure 4.17 shows the morphological filtered and overlaid results. Four white circle seeds are 

initialized for multidirectional approach, and only an extremely thin path is extracted 

mistakenly by narrow similarity detection algorithm, which can almost be removed by 

opening morphology operation. 

 

4.4.2 Extraction of Roads with Numerous Trees 

 

Figure 4.1(f) shows the roads with numbers of trees. In this scene, the tree shadows or their 

canopy covers some parts of the roads. In object-oriented classification, three parameters: 

scale, the ratio between shape and colour, the ratio between compactness and smoothness are 

(a) (b)

Figure 4.17 Morphologically filtered roads with few trees and overlaid on the image 
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set as 500, 0.3, and 0.5, respectively. The result of segmentation is shown in the Figure 

4.18(a). After the segmentation, the image is classified into 47 objects. The classification rule 

is that objects whose mean values in red layer are between 111 and 154 are considered as 

road areas.  From the result shown in Figure 4.18(b), road areas hidden from trees’ canopy 

cannot be extracted. In addition, non-road areas are extracted as roads mistakenly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b)

Figure 4.18 Roads with numerous trees detected by the object-oriented classification 
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(a)

(b) (c) 

Figure 4.19 Roads with numerous trees detected by the RoadModeler 
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Because some of the roads are hidden, the GMin is changed from 20 to 0. For this scene, 

Figure 4.19 shows the results of the RoadModeler with the decreased GMin and Figure 4.20 

shows the morphology and overlaid results. Four white circle seeds are initialized for 

multidirectional approach, and only a few non-road areas are extracted by jump similarity 

detection algorithm mistakenly. Most areas are detected by general similarity detection 

algorithm. Narrow similar detection algorithm is used when half of the road is covered by 

shadow of trees, and grey similarity detection algorithm is used when most of the road is 

covered by shadow of trees.  

 

 

 

 

 

(a) (b)

Figure 4.20 Morphologically filtered roads with numerous trees and overlaid on the image 
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4.5 Extraction of Roads in Black and White Aerial Image 

 

In order to compare the RoadModeler with the method presented by Hu et al, (2007), the 

same image shown in Figure 4.2 will be used to extract roads by the RoadModeler. For this 

scene, Figure 4.21 shows the results of the RoadModeler and Figure 4.22 shows the 

morphological filtered and overlaid results. Six white circle seeds are initialized for 

multidirectional approach, and only a few non-road areas are extracted by jump similarity 

detection algorithm mistakenly. Most areas are detected by general similarity detection 

algorithm. Narrow similar detection algorithm is used when half of the road is covered by 

shadow of trees, and jump similarity detection algorithm is used when the material of the 

road changed suddenly. The centerline will be extracted and compared with the results of Hu 

et al, (2007) in the next Chapter. 
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(a) 

(b) (c) 

Figure 4.21 Roads in black and white aerial image detected by the RoadModeler 
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4.6 Chapter Summary 

 

From the comparison between object-oriented classification and the RoadModeler, although 

the object-oriented classification has only three parameters which control the size, the 

homogeneous degree, the compactness degree, and smoothness degree of the generated 

objects, it is difficult to generate desired objects with the uniform feature classified by the a 

single rule when the scene is complicated.   

 

By visual evaluation and analysis, the RoadModeler can obtain much better results than the 

object-oriented classification approach. In addition, the RoadModerle is easier to be used 

than object-oriented classification. The RoadModeler with the same thresholds is used to 

extract roads. What the human operator is required to do is to choose the positions and the 

(a) (b)

Figure 4.22 Morphologically filtered roads and overlaid on the black and white aerial image  
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radii of some circle seeds and the corresponding approaches. For object-oriented 

classification, different parameters are used in different scenes for the segmentation. 

Different classification rules also need to be made by a human operator.  Although the 

parameters and the classification rules used for different scenes are not the best, because the 

objective of a tool is to reduce the labour of the human operator and save the time, it is 

meaningless to spend much more time in finding the best parameters and classification rules 

for different scenes when the post-extraction of human is become much easier. 

 

After testing eight different types of scenes, the strategy for two approaches is that when the 

parking lot or any other area with the similar spectral information is located beside the road, 

one-directional approach should firstly be adapted to avoid the leakage problem. Besides the 

scenes discussed above, RoadModeler can also be used to extract bridges, because the 

material of a bridge is the same and appears as homogeneous spectral information on the 

remote sensing image. When a road extends from paved area to unpaved area, if the road 

keeps its direction without turning, grey similarity detection can be applied to detect roads 

when spectral information of the roads change suddenly. When grey similarity detection does 

not work because of the road curvature, a human operator can initial another circle seed to 

track the unpaved road.  RoadModeler cannot extract long hidden roads such as channels, 

which require an operator to manually extract based on human knowledge.  

 

The objective of RoadModeler is to facilitate a human operator, so it can provide the most 

convenient assist to handle different road situations. In most cases, RoadModeler cannot 
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extract all the roads, and there are usually some ruptures in the road network. Therefore, 

before the GIS database updating, the manually post-extraction by human operator is 

required to fill the rupture, to extract the undetected road, and to remove the mistakenly 

detected road.   
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Chapter 5 

Performance Assessment  

 

This chapter introduces a qualitative and quantitative evaluation method for the accuracy 

assessment of RoadModeler. The effectiveness of the proposed RoadModeler is further 

investigated by comparison with the results mentioned in Hu et al. (2007).   

 

5.1 Evaluation Method 

 

From an algorithmic point of view, the extraction accuracy typically defines the success of a 

feature extraction method (Agouris et al., 2004). Accuracy is commonly measured by 

comparing the algorithm output against the reference data either from the GIS database or 

through manually digitizing. According to Wiedemann et al. (1998) and Hu et al. (2007), 

three indexes to evaluate the quality of road extraction are as follow: 

 

Correctness = 
࢓ࡸ
࢘ࡸ

                                                                                        (5.1) 

 

Completeness = 
࢓ࡸ
ࢋࡸ

                                                                                     (5.2) 

 

Quality = 
࢓ࡸ

ࢋࡸା࢛࢘ࡸ
                                                                                         (5.3) 
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where Lr is the number of pixels composing of the reference road R, Le is the number of the 

pixels composing of the extracted road V, Lme shown in Figure 5.1(a) is the number of the 

pixels composing the extracted road that is in the reference buffer (seethe shaded area shown 

in Figure 5.1a), which is the area in which the distance between pixels and the reference road 

is less than a given tolerance T.  Lmr shown in Figure 5.1(b) is the number of the pixels 

composing the reference road that is in the extraction buffer (the shaded area shown in Figure 

5.1b), which is the area in which the distance between pixels and extracted road is less than a 

given tolerance T. Lm = min (Lme, Lmr), and Lur is the number of the reference roads that are 

out of the extraction buffer. In this study the width of the road is selected as the tolerance T. 

 

 

 

 

 

 

Reference Buffer Extracted Road Le
Extraction Buffer Extracted Road Le

Reference Road Lr Reference Road Lr 

Lmr 
Lme Lur 

T

(a) (b)

Figure 5.1 Buffers for the extracted roads and the reference roads  
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5.2 Evaluation Results  

 

Figures 5.2 (a), (c) and 5.4 (a), (c) show the reference road centrelines for Figures 4.1 (a), (b), 

(e) and (f), respectively. These reference data are generated by on-screen manual digitizing. 

Figures 5.3 (a) and (c) show the reference road centrelines for Figures 4.1 (c) and (d), 

respectively. These reference data refer to the GIS database (obtained from the Map Library 

of the University of Waterloo). Figure 5.5 (a) are the reference road centrelines which refer 

to a GIS database and (b) is the extracted centreline by using the method of Hu et al. (2007). 

These reference and extracted data are provided by Hu et al. (2007). The roads extracted by 

RoadModerler are input into the thinning algorithm to obtain the road centrelines. Figures 5.2 

(b), (d) and 5.3(b), (d) and 5.4 (b), (d) and 5.4(c) present the extracted road centrelines by the 

thinning algorithm. 
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(a) 
(b)

(c) (d)

Figure 5.2 Reference vs. extracted road centerlines of GeoEye-1 satellite images: (a) and (c) Reference 

centerlines generated by on-screen manual digitizing, (b) and (d) centrelines extracted by the 

RoadModeler 
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(a) (b) 

(c) (d) 

Figure 5.3 Reference vs. extracted road centerlines of aerial image for city of Waterloo: (a) and 

(c): Reference centerlines obtained from GIS database, (b) and (d) centrelines extracted by the 

RoadModeler 
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(a) (b)

(c) (d) 

Figure 5.4 Reference vs. extracted road centerlines of aerial image for city of Davis: (a) and (c) 

Reference centerlines generated by on-screen manual digitizing,  (b) and (d) centrelines extracted by

the RoadModeler
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All the evaluation values for these seven scenes are shown in Table 5.1. Most of them are 

higher than 90%. The average values for completeness, correctness, and quality and the 

number of initial circle seeds in the seven scenes are 94%, 97%, 94%, 6, respectively. The 

(a) 

(b)

(c)

Figure 5.5 Reference vs. extracted road centerlines of black and white aerial image: (a) Reference 

centrelines, (b) centrelines extracted by Hu et al (2007), (c) centrelines extracted by the 

RoadModeler 



 

 105 

RoadModeler has higher average completeness, correctness, and quality than Hu et al. (2007) 

whose corresponding evaluation results are 91%, 90%, and 85%, respectively. 

 

Table 5.1 Evaluation results with standard thresholds 

Image ID 
Figure 

Buffer 
Tolerance 
(pixels) 

Completeness 
(%) 

Correctness 
(%) 

Quality 
(%) 

Number of 
Initial Seeds 

4-1a 10 97 100 100 2 

4-1b 20 82 93 83 12 

4-1c 40 99 98 97 7 

4-1d 32 94 100 99 9 

4-1e 40 97 96 93 4 
4-1f 40 97 94 91 4 
4-2 16 95 98 93 6 

Average  94 97 94 6 
 

The images used by Hu et al. (2007) were black-and-white aerial images with relatively low 

spatial resolution, where the widths of roads are less than 8 pixels on the images. The 

RoadModeler is appropriate for road extraction from VHR image. Therefore, the image with 

a relative large spatial resolution is used for the comparison. For the same scene, 

completeness, correctness, and quality of Hu et al. (2007) are 93%, 96%, 92%, respectively. 

Compared with this results, the corresponding evaluation values of the RoadModeler which 

are 95%, 98%, and 93% are better.  

 

Additionally, the images used by Hu are black and white images, while the RoadModeler can 

be used on not only black and white images but also colour images so that the RoadModeler 
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can integrate more information for road extraction, which increases the extraction 

performance. 

 

Furthermore, the scenes presented in  Hu et al. (2007) are simple, because there are no 

parking lots and trees beside the roads, and no shadows, vehicles, and marking lines shown 

inside the roads. All these situations are shown on the images mentioned in Chapter 4. 
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Chapter 6 

Conclusions and Recommendations 

This chapter presents conclusions based on the findings of this study, and recommendations 

for further research.  

 

6.1 Conclusions  

 

In this thesis, a semi-automatic method called RoadModeler has been developed for road 

extraction from the VHR imagery. This approach brought significant improvement in 

completeness, correctness, and quality. 

 

The developed RoadModeler integrates five types of detection algorithms, including general 

similarity, narrow similarity, grey similarity, jump similarity, and single-direction detection 

algorithms into two approaches. They are the multidirectional detection approach and the 

single-direction approach. Once an initial circle seed is placed and the approach type is 

selected by the human operator, a road could be detected by using different detection 

algorithms. These algorithms help extract the roads with different widths, different pavement 

materials, various lane markings, and disturbed by trees, buildings, and vehicles.   

 

The computing time of the RoadModeler is highly dependent on the complexity of the scenes, 

instead of that of the algorithms. The five types of detection algorithms are operated 
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sequentially. If the first detection algorithm (e.g., general similarity) can find a road, the 

second detection algorithm (e.g., narrow similarity) will not be needed and thereafter. 

Conversely, if the first detection algorithm cannot find a road, then the second detection 

algorithm will be required. Regarding a simple case, the computing time comes from only 

one of the detection algorithms. For a complicated case, a large amount of time must be spent 

on the selection of detection algorithms. In addition, the only area calculated by the 

RoadModeler is the road and its surrounding areas. . The computing time of the 

RoadModeler is proportional to the road areas, rather than the entire image. Therefore, the 

running time is dependent on the complexity and the area of road network. 

 

The placement of the circle seed and the selection of the road detection approaches are based 

on the decisions made by the human operator. Correct use of single-direction approach can 

extract roads from linked parking lots, while correct use of multidirectional approach can 

extract most roads based on one single circle seed. The RoadModeler requires a human 

operator to manually place an initial circle seed, to select different models, and to restrict the 

parameters. Most of the cases, the RoadModeler with standard thresholds can generate 

desired results; accordingly it is easy to use.  

 

The RoadModeler has been used to extract different types of roads in rural areas, downtown 

areas, and residential areas from satellite and aerial images, respectively. The new strategy 

for aerial images with 0.15m and 0.1m spatial resolution is to degrade the resolution of the 

image, extract the road network from the low resolution image, and to upgrade the result to 
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the original image. This developed strategy requires less computing time while still 

producing a satisfied result. Most importantly, the developed RoadModeler has successfully 

resolved the blockage and leakage problems which had puzzled previous researchers. 

 

The results produced by the RoadModeler shows that the entire road has been detected with 

less mistakes. From the visual evaluation, the proposed approach was much better than the 

object-oriented classification method. From a more accurate evaluation through the use of 

standard thresholds, the average completeness, correctness, and quality have achieved 94%, 

97%, and 94%, respectively. They are higher than those of Hu et al. (2007) which are 91%, 

90%, and 85%, respectively. The same image provided by Hu et al. (2007) is used to extract 

roads by the RoadModeler and obtained the corresponding evaluation results which are 95%, 

98%, and 93%.  The results is also better than that of Hu et al. (2007), which are 93%, 96%, 

and 92%, respectively.  

 

Overall, this study has successfully developed an effective RoadModeler for semi-automatic 

extraction of road networks form the VHR imagery. Noticeably, the proposed strategy has 

higher extraction accuracy than the object-oriented classification method. 

 

6.2 Recommendations for Future Research 

 

Future improvements can be made towards each individual component of the RoadModeler. 

An interesting challenge will be to integrate more automatic processes into the RoadModeler. 
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Firstly, initializing a circle seed requires a human operator to point out the centre of the road 

and the nearest boundary. If the circle seed can be generated automatically by specifying the 

centre point of the road, the operation can be carried out. The width of the road can be 

automatically calculated by analyzing the background of that centre point.  

 

Secondly, the results of the RoadModeler are used to extract the centreline of the road 

network. However the sidelines cannot be extracted precisely. The methods such as snakes 

may be applied here to obtain more accurate sidelines of a road.   

 

Thirdly, the generated circle seeds in a road can be considered a whole to be validated by 

using road-shape information. A good validation of the generated circle seed can guarantee 

more tolerant and flexible thresholds, which reduces unnecessary work load of the human 

operator required for adjusting the thresholds.  

 

In addition, morphological operations can be applied on a specific region, instead of the 

whole image. This helps the human operator to achieve better results.  

 

Moreover, algorithms needs to be improved to be able to removed some branches which are 

derived from the thinning process.   
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Furthermore, the RoadModeler was developed by using MatLab which has low computation 

efficiency. The implementation of the RoadModeler using C++ programming may improve 

that.  

 

In summary, based on the semi-automatic road extraction strategy, the RoadModeler has 

demonstrated to be efficient, accurate and reliable. With modifications suggested above, the 

RoadModeler may become of commercial value.  
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