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Abstract

Assessment of the “health” of an ecosystem is often of great interest to those in-

terested in monitoring and conservation of ecosystems. Traditionally, scientists

have quantified the health of an ecosystem using multimetric indices that are semi-

qualitative. Recently, a statistical-based index called the Latent Health Factor In-

dex (LHFI) was devised to address many inadequacies of the conventional indices.

Relying on standard modelling procedures, unlike the conventional indices, accords

the LHFI many advantages: the LHFI is less arbitrary, and it allows for straight-

forward model inference and for formal statistical prediction of health for a new

site (using only supplementary environmental covariates). In contrast, with con-

ventional indices, formal statistical prediction does not exist, meaning that proper

estimation of health for a new site requires benthic data which are expensive and

time-consuming to gather. As the LHFI modelling methodology is a relatively

new concept, it has so far only been demonstrated (and validated) on freshwater

ecosystems. The goal of this thesis is to apply the LHFI modelling methodol-

ogy to estuarine ecosystems, particularly to the previously unassessed system in

Richibucto, New Brunswick. Specifically, the aims of this thesis are threefold:

firstly, to investigate whether the LHFI is even applicable to estuarine systems

since estuarine and freshwater metrics, or indicators of health, are quite different;

secondly, to determine the appropriate form that the LHFI model if the technique

is applicable; and thirdly, to assess the health of the Richibucto system. Note that

the second objective includes determining which covariates may have a significant

impact on estuarine health. As scientists have previously used the AZTI Marine

Biotic Index (AMBI) and the Infaunal Trophic Index (ITI) as measurements of es-

tuarine ecosystem health, this thesis investigates LHFI models using metrics from

these two indices simultaneously. Two sets of models were considered in a Bayesian

framework and implemented using Markov chain Monte Carlo techniques, the first

using only metrics from AMBI, and the second using metrics from both AMBI

and ITI. Both sets of LHFI models were successful in that they were able to make
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distinctions between health levels at different sites.
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Chapter 1

Introduction

1.1 Quantifying Marine and Estuarine Ecosys-

tem Health

The assessment of benthic populations is an important part of many marine and

estuarine environmental monitoring programmes. Generally, the goals of such pro-

grammes are to ensure that human health is not threatened, to ensure that unac-

ceptable harm is not done to marine ecosystems or their resources, and to supply

managers with information that allows them to make decisions on the continued

use of such resources (Bilyard, 1987). Benthos, those organisms living on or in

the sediment at the bottom of a body of water, are useful indicators of underlying

health conditions as they are relatively sedentary (they cannot avoid deteriorat-

ing water/sediment quality conditions), have relatively long life spans (indicate

and integrate water/sediment quality conditions), and consist of different species

that exhibit different tolerances to stress (can be classified into functional groups)

(Dauer, 1993; Bilyard, 1987). Thus, a study of the benthic population is often

included in marine or estuarine monitoring programmes.

The overall condition, or “health”, of an ecosystem is a complex concept, involv-

ing many diverse factors, and therefore can be difficult to evaluate in a quantitative
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manner. Numerous methods exist for measuring estuarine health based mainly on

benthic data. Many of these methods involve health indicators that are measures

of species abundance, diversity, evenness, and many also examine specific groups

of benthos, such as opportunistic species, species sensitive to stress, deep-dwelling

species, etc.

1.2 Existing Methods

The conventional and most popular way of consolidating this assortment of data is

via a multi-metric index, which produces a scalar number from a formula involving

several of these indicator variables of health, called metrics. One such index is the

AZTI Marine Biotic Index (AMBI), which was devised to establish the ecological

quality of benthos within European estuarine and coastal environments. The cal-

culation of AMBI is based upon the abundances of five species groups organized by

their relative sensitivity to environmental stress (A. Borja and Erez, 2000). Another

is the Infaunal Trophic Index (ITI), which aims to indicate changes in the amount of

organic material present, and is based upon the abundances of four species groups

organized by their methods of feeding and responses to sources of organic material

(Word, 1978).

The remainder of this section is a summary of the main advantages and disad-

vantages of the broad group of conventional indices of the form described above, as

brought up by Chiu et al. (2008).

The main advantage of these conventional indices is that their outputs are sim-

ple, and thus supposedly easily interpretable. This capability is particularly ap-

pealing to policy makers. They also contain a high amount of biological content

from scientists being involved at all stages of index development.

On the other hand, conventional indices tend to be somewhat ad hoc since the

process of building such indices is often highly arbitrary. For example, a formula is

usually chosen for combining metrics to produce the index. It is hard to quantify
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how much information is double-counted from metrics providing overlapping infor-

mation, and thus the weighting scheme used in a typical formula can be viewed

as somewhat arbitrarily chosen. Another disadvantage stems from the practice of

comparing indices of test sites to so-called pristine sites as a control condition,

where these control sites are assumed to be absolute and invariant. However, truly

pristine sites virtually no longer exist, and the best available site is sometimes sub-

stituted, but these “best” sites themselves vary in quality. The conventional indices,

however, do not take this variation into account. Thus, it is difficult to objectively

compare index results across different locations and time periods. Results can be

calibrated to account for the differences in local reference conditions with much

effort, but there is no universally accepted calibration scheme. Therefore, calibra-

tion introduces additional subjectivity into the process. It is also often of interest

to determine the relationships between health and environmental or impact-related

covariates, such as water depth or urbanization, as these factors are known to af-

fect the distribution of species and hence, health; however, conventional indices do

not lend themselves easily to an analysis of these relationships except in a crude

manner. Finally, properly assessing the variation in the indices as estimates of

health is difficult, as is prediction of a certain site’s health, under the conventional

procedure. Typically, to carry out prediction of a new site’s health, scientists use a

regression of computed indices (i.e. health estimates) to environmental covariates

after indices have already been computed. However, this method is problematic

because computed indices are treated as observed data (Chiu et al., 2008). In fact,

more statistically rigourous methods of prediction do not exist.

1.3 Latent Health Factor Index

Recently, a new statistical-model based index has been proposed by Chiu et al.

(2008) called the Latent Health Factor Index (LHFI). This section describes the

LHFI and provides a comparison to the conventional indices, as discussed originally

in Chiu et al. (2008).
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In the conventional indices, metrics are combined according to a formula to

produce an estimate for health. This suggests that the metrics are the explanatory

variables and health is a response variable. In reality, metrics provide indications

of health and perhaps should be better considered as response variables. The LHFI

adopts this reversal of roles: metrics are regressed upon health, and health can

be further regressed upon other explanatory covariates, forming a multiple lay-

ered regression (see Fig. 1.1). Note that health is a latent variable since it is

unobservable. With data on metrics and covariates, latent health and the effect

of the explanatory covariates on health can be estimated. Thus, the LHFI is a

multi-level, mixed-effects, Analysis of Covariance (ANCOVA), generalized linear

regression model. Note that it is an ANCOVA since it can involve both categorical

factors and continuous variables: the model involves factors, and in addition, ex-

planatory covariates can be either continuous or factors, as we shall see in Section

3.1.

Chiu et al. (2008) designed the LHFI with the goals of retaining the advan-

tages of the conventional indices while addressing their shortcomings. Specifically,

the LHFI produces a single number, like the conventional indices, so it retains

easy interpretability. Thus, sites within an ecosystem can still be ranked easily

by their estimated health. The LHFI is less arbitrary than conventional indices

since it is based upon standard modelling procedures. It is expected to be less

sensitive to random variability since it uses field data directly instead of requiring

any intermediate stages to adjust the data. As it involves not only metrics but

also environmental and impact-related covariates, it allows for proper analysis of

relationships between health and covariates, i.e. identifying those covariates that

affect health and quantifying their impacts on health. This last capability could be

particularly useful to policy makers. The LHFI also allows proper comparisons of

different time periods and different locations through the addition of geographical

and temporal blocking factors1.

1Here we are interested in the difference between strata, or blocks, although blocks are not

usually introduced for this purpose, but instead with the aim of controlling variability.
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(a)

(b)

Figure 1.1: Relationships between metrics, health and covariates implied by (a)

conventional indices, and (b) the latent health factor model
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The LHFI appears to be more quantitatively sound than conventional indices,

since it uses standard modelling procedures while conventional indices do not. Un-

der the conventional scheme, model inference and prediction are quite difficult due

to the scheme’s ad hoc nature. Model inference and prediction can however be ac-

complished in an unambiguous manner with the LHFI model. Confidence intervals

for estimates are straightforward to calculate, which means that the reliability of

health estimates can be properly assessed. As well, once an LHFI model has been

specified, prediction of a new site’s health can be accomplished simply with infor-

mation on covariates, thus bypassing the expensive benthic taxonomic laboratory

procedures that are required to gather the metric data for conventional indices.

This capability could prove an enormous asset to scientists, particularly if budgets

or time are limited.

Thus, if the LHFI produces similar results about health compared to the con-

ventional indices, the LHFI would generally be preferred. Note that the LHFI is

potentially applicable to any context in which a latent “health” factor is desired to

be estimated.

1.4 Thesis Objectives

In order to demonstrate the validity of the LHFI, Chiu et al. (2008) applied the

LHFI modelling methodology to stream ecosystems, focussing on a 1997 data set

for the Puget Sound Lowlands in Washington State.

This thesis aims to apply the LHFI modelling methodology to estuarine ecosys-

tems. Since metrics, or indicators of health, are quite different for estuarine and

freshwater ecosystems, two specific objectives of this thesis are to investigate if the

LHFI is even applicable to estuarine systems, and if so, the form of the LHFI model.

A third objective is to assess the health of the previously unassessed Richibucto,

NB estuarine system using the LHFI. Note that the second objective includes deter-

mining which environmental covariates may have a significant impact on estuarine
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health in order to facilitate the prediction of health in the absence of benthic taxo-

nomic data. To address the objectives, this thesis considers building LHFI models

using metrics from AMBI and ITI, since they have been previously used by scien-

tists to measure estuarine ecosystem health.

In this chapter, we discussed existing methods for quantifying ecosystem health,

the motivation behind the design of the latent health factor model as a new alter-

native method, and presented the objectives of this thesis. The second chapter

provides a general latent health factor model for estuarine ecosystems and the ac-

companying methods for inference in a Bayesian framework. The third and fourth

chapters discuss the results of fitting LHFI models for the Richibucto estuary using

the AMBI data alone, and the AMBI and ITI data combined, respectively. The

fifth and last chapter presents some general conclusions and considers future work.
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Chapter 2

An LHFI Model for Estuarine

Ecosystems

2.1 Building the Model

Recall Fig. 1.1(b) illustrating the relationships between metrics, health and covari-

ates in the LHFI. We begin the model building process by developing mathematical

equations to explain these relationships.

First consider the top regression layer between metrics and health. We introduce

some notation: let Yijk denote the value of the kth replicate of the jth metric for

the ith site, where there are n sites in total, J metrics measured at each site, and ri

replicates of each of the J metrics at each site. Let Hi represent the latent health

of site i and let βj represent the effect of metric j. As, among all the variables

under consideration, Yijk is governed by the latent health at site i and the effect on

health of metric j, Chiu et al. (2008) naturally consider the following generalized

linear mixed model for the regression between metrics and health:

νij = Hi + βj (2.1)

where νij = g(E(Yijk)) and g is a link function chosen based on the form of the

metrics Yijk. The metric effects βj’s are block effects and since their estimates are
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not of primary interest, they are essentially error terms. Thus, we consider them

to be random effects and we set their means to be zero, since there is no reason

to introduce a mean parameter to error terms. As metrics are not necessarily

independent, an appropriate covariance structure for the βj’s should be chosen.

Note that one could argue that βj’s should be fixed effects since they correspond

to the same metrics for a specific type of ecosystem, and thus are not chosen

randomly from a wider population. However, having βj’s as fixed effects would,

firstly, not allow for covariance structures, which form an important part of the

model, and, secondly, introduce more parameters to estimate. Hence, we consider

βj’s as random effects instead.

As well, the Hi’s are random effects, and considered to be independent of each

other and of the βj’s, since the Hi’s correspond to sites which are typically chosen

at random.

Next, recall Fig. 1.1(b) and consider the lower, optional regression layer between

Hi and any explanatory covariates that are of interest. Let xi denote a vector of the

values of covariates at site i that may influence health. Chiu et al. (2008) consider

for this layer the following latent regression:

Hi = α0 + f(α,xi) + εi (2.2)

where α0 is the overall health of the region from which the sample sites were taken,

f() is an appropriately chosen regression function of the covariates, α is the cor-

responding vector of regression coefficients, and the εi’s are independent and iden-

tically distributed errors with mean zero. If there are no covariates, (2.2) reduces

to

Hi = α0 + εi (2.3)

Together (2.1) and (2.2) constitute the basic LHFI model, which is a hierarchical

mixed-effects, ANCOVA, generalized linear regression model.
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2.1.1 Extension to Multiple Time Periods or Locations

Next, consider an extension of the basic LHFI model to allow for proper comparisons

of different time periods and locations. We describe here an extension to incorporate

multiple time periods, but the principles are the same for an extension to multiple

locations. Note that here we discuss the situation where each site is measured once

and not all sites are measured at the same point in time, but the LHFI can also

be adapted to situations where each site is measured at multiple time points (not

discussed in this thesis).

The extended model does not directly address complex temporal correlation

patterns, but as Chiu et al. (2008) point out, ecological data used in indices are

typically too variable and too sparse for such complex models to be feasible. Their

proposed model is a compromise between statistical complexity and practicality.

Let Yijkl denote the value of the kth replicate of the jth metric for the ith site in

the lth temporal domain. Let λl denote a blocking factor representing the temporal

effect on health:

νi(l)×j = Hi(l) + βj (2.4)

Hi(l) = α0 + f(α,xi(l)) + λl + εi(l) (2.5)

Note that () in subscripts represents nesting and × represents crossing. The tem-

poral effect λl could be a fixed or random effect depending on the context. The

placement of λl in the equation for Hi and not νi(l)×j acknowledges that health

directly depends on time.

Note in the above model that health is now nested in temporal domain but the

metric effect is unchanged. Depending on the data structure, having both Hi(l) and

βj×l in the model could lead to inseparability issues, and we do not include both

to safeguard against any weakness in identifiability in practice. Specifically we can

employ the following reasoning.

Implicit in the term Hi(l) is a breakdown into several factors, i.e.

Hi(l) = intercept + effect due to i nested in l
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Similarly, βj×l can be regarded as

βj×l = effect due to l + effect due to j + interaction due to j × l

Since the last term of each of the two preceding equations contains an l component,

the LHFI approach could run into problems of not being able to estimate these two

components well enough, especially since the type of ecological data that will be

used with the LHFI is typically sparse, and there are many parameters to estimate.

Thus, a choice had to be made between a model with Hi(l) and βj, and a model with

Hi and βj×l. Since it is necessary for site to be nested within temporal domain, and

additionally since it is unlikely that the effect of metrics on health (i.e. the concept

of abundance and diversity being indicators of health in this context) would change

over time, the first option was chosen.

2.2 Model Inference in a Bayesian Framework

Hierarchical models with latent factors are often best handled with a Bayesian

framework. Bayesian inference is especially appropriate for dealing with ecological

data since it does not rely on asymptotics which are often inappropriate for the

small sample sizes and unbalanced designs that occur frequently with ecological

studies (Chiu et al., 2008). This section provides background information on the

Bayesian school of thought and discusses methods of Bayesian inference for the

latent health factor model.

2.2.1 Bayesian Standpoint

In statistical inference, there are two main philosophies: the frequentist, and the

Bayesian. The methods used by frequentists and Bayesians are not very different

from each other; however, it is in the interpretation of the results where the two

philosophies disagree. Frequentists consider parameters as deterministic, whose
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true values one attempts to estimate; and data are realizations of random exper-

iments and are thus variable. On the other hand, Bayesians consider parameters

as random variables, in addition to the data. Any existing knowledge about a

parameter θ can be expressed through its prior distribution π(θ). Data can be

used to update the knowledge on θ, and the combined knowledge from the prior

and the data can be expressed through the posterior distribution π(θ|x) which is

conditional on the data x. This fundamental difference in philosophy leads, for

example, to very different interpretations of confidence intervals. To a frequentist,

a confidence interval resulting from a specific set of data is not random nor is the

parameter around which it is focussed. Thus, a specific confidence interval either

contains or does not contain the parameter, and statements such as, “this confi-

dence interval will contain the parameter 95% of the time” do not make sense. To

a Bayesian, however, this statement makes perfect sense as the parameter itself is

random. Please refer to Hogg et al. (2005), Chapter 11 for more details on Bayesian

methods.

2.2.2 Inference

We return to the basic LHFI model, that is (2.1) and (2.2), in discussing methods

for inference which were outlined originally in Chiu et al. (2008).

Let H = (H1, . . . , Hn)T and β = (β1, . . . , βJ)T . Additionally let ν denote the

vector of νij’s; Y denote the vector of Yijk’s which has length J×
∑n

i=1 ri; X denote

the matrix whose ith rows is xi and which has dimension n × r where r is the

number of covariates; and Ω denote the vector of the remaining parameters, i.e.

α0, α and any parameters from the distributions of εi and β.

Let P () denote a distribution, so that P (Ω) is the prior distribution for Ω,

P (Y |ν) = P (Y |H ,β) is the likelihood function of the data, P (H|Ω,X) is the

distribution of H , and P (β|Ω) is the distribution of β. The forms of these dis-

tributions depend on the knowledge of the relationships between the data and the

parameters.
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We are mainly interested in estimating Hi and the regression coefficients α

which provide information on which covariates are useful in determining health.

Bayesian inference on Hi and α proceeds from the joint posterior distribution of

H , β and Ω, i.e. P (H ,β,Ω|Y ,X). By rules of conditional probability,

P (H ,β,Ω|Y ,X) ∝ P (Y ,X,H ,β,Ω)

= P (Y |X,H ,β,Ω)P (X,H ,β,Ω) (2.6)

= P (Y |X,H ,β,Ω)P (H ,β|Ω,X)P (Ω,X)

But P (Y |X,H ,β,Ω) = P (Y |H ,β) since Y depends on X and Ω only

through H and β; P (Ω,X) = P (Ω)P (X) since Ω and X are independent; and

P (H ,β|Ω,X) = P (H|Ω,X)P (β|Ω) since H and β are independent. As well,

P (X) is constant since X is considered fixed in a regression. Thus,

P (H ,β,Ω|Y ,X) ∝ P (Y |H ,β)P (H|Ω,X)P (β|Ω)P (Ω) (2.7)

We take the posterior mean of Hi to be the latent health factor index:

Ĥi = E(Hi|Y ,X) (2.8)

=

∫
Hi P (Hi|Y ,X) dHi (2.9)

=

∫
Hi

∫ ∫ ∫
P (H ,β,Ω|Y ,X) dβ dΩ dH−i dHi (2.10)

where H−i is H without Hi and P (Hi|Y ,X) is the marginal posterior distribution

of Hi.

Measures of uncertainty for Hi are provided by posterior credible intervals, or

more simply, credible intervals, which are Bayesian analogies of frequentist confi-

dence intervals and are derived from the posterior distribution. Credible intervals

serve for more informal tests instead of formal Bayesian hypothesis testing: they

can be used to compare health at different sites; for example, one can determine

if two sites have the same level of health by comparing their credible intervals and
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examining the amount of overlap between them. Point and interval estimates of

the elements of α can be obtained similarly.

The posterior distribution also provides a simple method of predicting a new

site’s health once a model has been specified and given that measurements of co-

variates are available. We postpone the details for this until Chapter 5.
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Chapter 3

Fitting an LHFI Model to

Richibucto AMBI

Benthic data for the Richibucto estuary had already been gathered and the AMBI

and ITI indices had accordingly been calculated and analyzed using this data before

the start of this thesis project. Dr. Jonathan Grant and Dr. Lin Lu, Department

of Oceanography at Dalhousie University, who had collected the benthic data for

the indices, both believe that AMBI is a more appropriate measure than ITI for

Richibucto since it is an estuary in which benthic fauna are not only affected by

organic enrichment but also by freshwater input (salinity gradient), variability of

sediment particle size, and topography (channel, water depth). Thus, we begin the

modelling process by fitting a latent health factor model to the AMBI data alone

and call these models LHFI-AMBI.

3.1 The AMBI data

The Richibucto benthic data were collected from 18 sites ranging through the entire

estuarine system (see Fig. 3.1). Due to time constraints, the 18 sites could not

all be sampled in one day, and thus were sampled during two days separated by

approximately a month. Sites 1-3 and 9-18 were sampled during a single day in
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September 2008, and sites 4-8 during a single day in October 2008. At each site,

grab samples1 of the benthic organisms were taken underwater and the organisms

in each sample were identified in a laboratory.

Two or three replicates of benthic data were taken at each site; the aim was to

take three samples at each site, but at some sites only two were obtained due to

physical difficulty. As well, 9 supplementary covariates were measured once at each

site, i.e not replicated: water depth (m), which is the distance from water surface to

estuary bed at the location of the station; water temperature (◦C); salinity (parts

per thousand or ppt); silt-clay (%), which is the fraction of sediment grains of size

< 63µm; mdφ, which is the median grain size of the sediment; sorting, which is

a measure of the variability of sediment grain size 2; organic content (%) of the

sediment; and distance downstream (km), which is the perpendicular distance from

Site 1 along a straight line between Sites 1 and 18 as illustrated in Fig. 3.1. The

data are included in Appendix A.

Each organism observed at Richibucto belonged to one of 88 species, and the

number of animals observed per species was quite variable, ranging from 0 to several

hundred. Grant and Lu believe, based on their ecological expertise, that they have

observed all the main species and most of the species in Richibucto, although

physically proving this would be difficult.

To calculate AMBI, the benthos were sorted into five disjoint groups organized

by their relative sensitivity to environmental stress. A. Borja and Erez (2000), in

their paper proposing AMBI, describe the five taxonomic groups as follows:

“Group I : Species very sensitive to organic enrichment and present under un-

polluted conditions (initial state). They include the specialist carnivores and

some deposit-feeding tubicolous polychaetes.

1For more details on grab samples, please refer to the National Oceanic and Atmo-

spheric Administration Coastal Services Center, http://www.csc.noaa.gov/benthic/mapping/

techniques/sensors/grab.htm.
2The formula for sorting is: sorting = φ84−φ16

4 + φ95−φ5
6.6 where φα denotes the αth percentile

of the grain size distribution. Sorting is unit-less.
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Figure 3.1: Map of Richibucto estuarine system with the 18 sample sites labelled;

the straight black lines illustrate the calculation of distance downstream for sites 3

and 5; this figure was provided by Lin Lu
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Group II : Species indifferent to enrichment, always present in low densities with

non-significant variations with time (from initial state to slight unbalance).

These include suspension feeders, less selective carnivores and scavengers.

Group III : Species tolerant to excess organic matter enrichment. These species

may occur under normal conditions, but their populations are stimulated by

organic enrichment (slight unbalance situations). They are surface deposit-

feeding species, as tubicolous spionids.

Group IV : Second-order opportunistic species (slight to pronounced unbalanced

situations). Mainly small sized polychaetes: subsurface deposit-feeders, such as

cirratulids.

Group V : First-order opportunistic species (pronounced unbalanced situations).

These are deposit- feeders, which proliferate in reduced sediments.”

The abundances of the five taxonomic groups relative to the entire sample are

combined via the following formula to produce a continuous scalar coefficient of

health, which can also be mapped to a discrete index. AMBI is negatively correlated

with health:

AMBI = [(0×GI) + (1.5×GII) + (3×GIII) + (4.5×GIV) + (6×GV)] (3.1)

where GI, GII, GIII, GIV and GV are the proportions of abundance of taxonomic

Groups I-V relative to the entire sample.

A high abundance in taxonomic Group I is considered an indicator of “good

health” while a high abundance in taxonomic Group V is considered an indicator of

“poor health”. Taxonomic Groups II-IV are on a gradually changing scale between

the two extremes; high abundance in taxonomic Group IV is also an indicator of

“poor health” but to a lesser extent than taxonomic Group V; and the same is true

with taxonomic Group III to an even lesser extent; on the other hand, abundance in

taxonomic Group II is neither an indicator of “good health” nor of “poor health”.

Thus, taxonomic Group I is positively related to health, taxonomic Groups III, IV

and V are negatively related to health, and taxonomic Group II is indifferent to
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health.

3.2 An Initial Model

The abundances of the five disjoint taxonomic groups in the calculation of AMBI are

the metrics modelled in the LHFI framework. It was possible to exclude the second

taxonomic group as it is not a strong indicator of health. However, it was included,

as it may be statistically significant even though it is biologically insignificant: since

the indifferent taxonomic group is of the same type of biological data in the same

context referring to biodiversity and abundance, even if it is indifferent to health,

it is not necessarily irrelevant to modelling of abundances and diversity.

3.2.1 Metric Groups

The metrics are considered in two groups depending on whether they are positively

or negatively related to health. Thus, we denote metric j as nested in metric group

s, where s = 1 for the metric group negatively related to health, and s = 2 for the

metric group positively related to health. We place the indifferent second metric

in metric group s = 2 as this group contains only one other metric, taxonomic

Group I; providing more data may improve parameter estimation associated with

this metric group.

As the five metrics are disjoint and exhaustive, an appropriate distribution for

these data would be multinomial, specifically a quint-nomial, and the corresponding

link function would be a generalized logit. However, since we want to consider the

metrics in two groups, s = 1 and s = 2, we split them into a quadrinomial (III, IV,

V, non-III-IV-V) and trinomial (I, II, non-I-II), respectively. Note that there are

overlap and dependency between the two resulting multinomials, and we address

these issues later in the section.
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For metric group s = 2, the trinomial, the distribution and logit are[
Yi×1(2)×k, Yi×2(2)×k, Ni×k −

2∑
j=1

Yi×j(2)×k|Ni×k, pi×1(2), pi×2(2)

]

∼ multinomial

(
Ni×k, pi×1(2), pi×2(2), 1−

2∑
j=1

pi×j(2)

)
(3.2)

νi×j(2) = ln
pi×j(2)

1−
∑2

j=1 pi×j(2)

, j = 1, 2 (3.3)

where Yi×j(s)×k denotes the value of the kth replicate of the jth metric (nested

within the sth metric group) for the ith site, Ni×k denotes the sample cardinality

(i.e. total # organisms) for the kth replicate of the ith site, and pj(s) denotes the

probability of an organism being in the j(s)th taxonomic group or metric.

Taken together with (2.1), link function (3.3) implies that each metric j is non-

negatively related to health; so while (3.3) is appropriate for the positively related

metric group s = 2, it is not so for the negatively related metric group s = 1. Thus,

the link for the negatively related metric group is inverted, and the corresponding

quadrinomial and logit for this metric group are[
Yi×3(1)×k, Yi×4(1)×k, Yi×5(1)×k, Ni×k −

5∑
j=3

Yi×j(1)×k|Ni×k, pi×3(1), pi×4(1), pi×5(1)

]

∼ multinomial

(
Ni×k, pi×3(1), pi×4(1), pi×5(1), 1−

5∑
j=3

pi×j(1)

)
(3.4)

νi×j(1) = ln
1−

∑5
j=3 pi×j(1)

pi×j(1)

, j = 3, 4, 5 (3.5)

Notice here that link functions (3.3) and (3.5) are designed such that higher

values of LHFI, i.e. estimates of Hi, indicate better ecosystem health, as we now

explain. Link function (3.3) is such that higher abundances of the positively related

metrics (j = 1 and 2) imply higher values of corresponding pi×j(2)’s and νi×j(2)’s;

and these in turn imply higher values of Hi due to the positive relationship be-

tween ν and H as shown in (2.1). Similarly, link function (3.5) is such that higher

abundances of the negatively related metrics (j = 3 and 4) imply higher values

of corresponding pi×j(1)’s, thus, lower values of νi×j(1)’s, and thus, lower values of
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Hi. Recalling that a high abundance in metric 1 indicates “good health”, high

abundances in metrics 3-4 indicate “poor health”, and a high abundance in metric

2 indicates neither, these two link functions therefore are such that high values of

estimated Hi indicate better health.

To address overlap between the metric groups, we add a parameter, θs, to (2.1),

to account for the effect on ν of different metric groups:

νi×j(s) = Hi + βj(s) + θs (3.6)

Note that we choose not to model θs to explain Hi in (2.2) because it is a nuisance

parameter. However, it would be acceptable to model θs as a component of βj(s),

giving βj(s) a non-zero mean. Such a change would affect the interpretation of θs

but not the estimation of Hi.

Moreover, we consider θs a fixed effect, as there is no reason to or gain from

considering it as a random effect, it having only two levels. A constraint must

accordingly be placed upon θs; we take θ2 = 0 since s = 2 contains the indifferent

group and thus may be regarded as the baseline.

We did not explicitly address dependency between the metric groups; instead,

metric effects βj(s) were considered independent for simplicity and as a starting

point for our initial models. The multinomial distribution already accounts for

some dependency in the metrics. As well, we assume that each metric has a different

variance as it is possible that the distributions of metrics are quite different. Thus,

we have [
βj(s)|σj(s)

] ind∼ N(0, σ2
j(s)) (3.7)

It may appear that (3.2)-(3.7) is unidentifiable in σj(s) since for each σj(s) we

have a single βj(s). This situation could likely lead to trouble under the frequentist

framework, but it is not an issue in the Bayesian framework as shown by Chiu

(2008).
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3.2.2 Temporal Blocks

Since the sites were measured in two days separated by a month, the model should

incorporate blocking by time as well. As stated previously, sites 1-3 and 9-18 were

sampled in September 2008, and sites 4-8 were sampled in October 2008. Thus, let

blocks l = 1 and l = 2 correspond to September and October sites, respectively.

As discussed in Section 2.1, health is nested in block, while metric effects remain

as they would have been without blocking. We consider εi(l) ∼ N(0, σ2
H(l)) which

signifies that the variation in health may differ over time. A blocking factor λl is

introduced into the model to account for an effect on health of the different time

periods, which was also discussed in Section 2.1. We consider λl as a fixed effect

for the same reasons as with θs and adopt the constraint λ1 = 0.

3.2.3 The Model

An initial LHFI model for the Richibucto AMBI data incorporating metric group

divisions and blocking is as follows.

[Yi3kl1, Yi4kl1, Yi5kl1, Nikl − Yi3kl1 − Yi4kl1 − Yi5kl1|Nikl, pi3l1, pi4l1, pi5l1]

∼ multinomial(Nikl, pi3l1, pi4l1, pi5l1, 1− pi3l1 − pi4l1 − pi5l1)

νijl1 = ln
1− pi3ls − pi4ls − pi5ls

pijls
, j = 3, 4, 5

[Yi1kl2, Yi2kl2, Nikl − Yi1kl2 − Yi2kl2|Nikl, pi1l2, pi2l2]

∼ multinomial(Nikl, pi1l2, pi2l2, 1− pi1l2 − pi2l2) (3.8)

νijl2 = ln
pijl2

1− pi1l2 − pi2l2
, j = 1, 2

νijls = Hi(l) + βj(s) + θs, Hi(l) = α0 + f(α,xi(l)) + εi(l) + λl[
βj(s)|σj(s)

] ind∼ N(0, σ2
j(s)),

[
εi(l)|σH(l)

] iid∼ N(0, σ2
H(l))

θs=2 = 0, λl=1 = 0
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where

temporal block l =

{
1 if data collected in September
2 if data collected in October

site i =

{
1, . . . , 3, 9, . . . , 18 if l = 1

4, . . . , 8 if l = 2

metric group s =

{
1 negatively related to health
2 positively related to health

metric j =

{
3, 4, 5 in metric group s = 1
1, 2 in metric group s = 2

replicate k = 1, . . . , ri where ri is the number of replicates at site i

The notation has become rather complicated: the value of the kth replicate of

the jth metric (nested within the sth metric group) for the ith site (nested within

the lth temporal block) is now denoted by Yi(l)×j(s)×k, and the sample cardinality

for the kth replicate of the ith site (nested within l) is now denoted by Ni(l)×k.

These, however, have been written above as Yijks and Nik to reduce clutter. Other

parameters have been similarly simplified: pi×j(s) as pijs, and vi×j(s) as vijls.

We adopt diffuse priors for the elements of Ω =

(α0,α, λ2, θ1, σH(1), σH(2), σ1(2), σ2(2), σ3(1), σ4(1), σ5(1))
T as we do not have any

specific prior information about these. We apply normal and inverse-gamma

distributions as priors, which are commonly used for unbounded parameters and

parameters left-bounded at 0, respectively, due to their conjugate properties under

some conditions (but not necessarily here):

α0, λ2, θ1, elements of α
iid∼ N(0, 100) (3.9)

σH(l), σj(s)
iid∼ Inv-Gamma(1, 1)

It may appear to be a concern that we are attempting to fit a highly complex

model with many parameters to only 18 sites. However, recall that we have a

somewhat large set of benthic data including replicates: 5 metrics ×
∑18

i=1 ri =

245 benthic data-points in total. Even still, this could have been an issue in the
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frequentist framework since there are not many replicates. However, under the

Bayesian framework, this issue is somewhat less acute since it is countered partially

by introducing priors to parameters.

3.2.4 A Note on Replicates

In this and several previous subsections, we have discussed in detail the various

components of the initial LHFI model for Richibucto. The remainder of this chapter

is mainly devoted to describing methods and results of implementing this model

(and variations of it) using the Richibucto metrics. However, before continuing to

implementation, we revisit the topic of replicates per site, an important side-note

to the model. Recall that there are either 2 or 3 replicates at each site. Here, we

view the number of replicates measured per site as fixed, although alternatively one

could consider each site as having three replicates with some randomly missing. One

could make an argument for both viewpoints. However, adopting the alternative

view would require imputation of the missing values; this would increase model

complexity and likely be computationally intensive, which is not desirable as we

do not wish to begin our modelling exercise with a very complex model. As well,

imputation could increase the variance of the estimates. As it was not crucial to

view these as missing data in the context of an unbalanced design, we chose not to

adopt this alternative view.

3.2.5 Markov Chain Monte Carlo Methods

The LHFI models in this thesis were all implemented using Markov chain Monte

Carlo methods. The goal of Markov chain Monte Carlo methods is to generate

a random sample via a Markov chain from a distribution that approximates the

target distribution, which in this case is the posterior distribution of (H ,β,Ω)T .

An often large number of steps must be generated before a stationary distribution

is reached; these initial steps before convergence are known as the “burn-in” and
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must be discarded from the analysis.

One of the major difficulties with Markov chain Monte Carlo methods is de-

termining if and when a Markov chain has reached convergence. This is a current

topic of research and many “convergence diagnostic” methods have already been

developed. It is important to note that these methods cannot determine if and

when convergence has been reached; they can only ascertain when convergence has

not been reached. Please refer to Gentle (2002) for more details on Markov chain

Monte Carlo methods.

3.2.6 Markov Chain Monte Carlo Software

The latent health factor models of this thesis were run using OpenBUGS, an open-

source computer software which specializes in the Bayesian analysis of statistical

models using Markov chain Monte Carlo methods. OpenBUGS is available online

at http://mathstat.helsinki.fi/openbugs/. Methods of checking convergence

used for the running of the LHFI models in this thesis, many of which are built

into OpenBUGS since they are popular tools, are described in Appendix B.

3.2.7 Implementing a Baseline Model

We began the model-fitting process by implementing a baseline model (i.e. without

covariates x), and refining that model by removing superfluous parameters. Once

a final baseline model was determined, covariates were incorporated and the form

of f() was determined e.g. linear, quadratic etc. To improve mixing, which roughly

refers to behaviour of the Markov chains with respect to the number of iterations

required to reach the target distribution, the model specified by equations (3.8)-

(3.9), denoted Model 3.8, was partially hierarchically centred, as were all subsequent

models (details in Appendix C). For this and all subsequent models, two chains

from the posterior distribution of (H ,β,Ω)T were generated from different starting

values: one chain’s starting values were numbers randomly generated from normal
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distributions centred at 0 with variances around 20 to 30, and the other chain’s

were 0 for means and 1 for variances. Estimates of (H ,β,Ω)T were obtained from

these two chains.

Health estimates Ĥi, denoted LHFI(3.8), along with their 95% centred posterior

credible intervals (i.e. constructed using the 2.5% and 97.% percentiles)3 are plotted

in Fig. 3.2 in black. We also are interested in the precision of health estimates.

Thus estimates and 95% credible intervals for σH(l) are plotted in Fig. 3.3 along

with similar estimates for all later AMBI models for easy comparison. In this figure,

estimates for Model 3.8 are the furthest left. As well, estimates and 95% credible

intervals for σj(s) are plotted in Fig. 3.4. In addition, summary statistics for Ω are

in Table 3.14. In Table 3.1, the column “MC error” represents the Monte Carlo

standard error of the mean, i.e. an estimate of s/N1/2; more details on the MC

error are included in Appendix B, third bullet point. Note here that some values of

MC error in Table 3.1 are listed as 0.00; this does not indicate that the MC error

is actually 0, but is due to it being rounded to two decimal points.

It is clear from the plot of the 95% credible intervals for health (Fig. 3.2) that the

LHFI has somewhat succeeded in its purpose of distinguishing the health levels of

different sites. Some of the estimates are distinct from each other: although many

of the 95% intervals overlap a great deal, the LHFI makes reasonable quantitative

distinction between several sites (e.g. sites 1, 2, 6, 7).

The 95% credible interval for λ2 contains 0 (Table 3.1), which suggests that

the sampling time period does not significantly affect average health; in fact, the

confidence level of λ2 was 50-60% i.e. the widest centred credible level that does not

3Note that all of the posterior credible intervals mentioned in this thesis are centred intervals.

Alternatively, we could have used highest posterior density intervals, but opted not to for conve-

nience. A highest posterior density interval at a specified confidence level is the interval with the

smallest width of all possible intervals at the same confidence level (for more details please see

Hogg et al. (2005)).
4Focus should be on medians instead of means for σ’s since their distributions are left bounded,

somewhat asymmetrical and therefore produce some extreme values.
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contain 0 has a confidence level between 50 and 60%. However, posterior credible

intervals for σH(1) and σH(2) are distinctly different although they do overlap a

large amount (Fig. 3.3)5. These two together signify that temporal blocking is

important although λl is a superfluous parameter and can be removed. As well, the

autocorrelation for Monte Carlo draws of λ2 was low but long-living, which could

be an artifact of λl being superfluous.

As well, there is significant overlap in the credible intervals for σj(s)’s within

metric group, which could mean that distinct variances are not required for each

metric, but perhaps only for each metric group (Fig. 3.4). Thus, the model could

be reduced by using σβ(s) in place of σj(s).
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Figure 3.2: Estimates and 95% credible intervals for LHFI-AMBI baseline models;

‘-’ denotes Ĥi

In addition to analyzing point and interval estimates of parameters as described

above, we also examined the Deviance Information Criterion (DIC) for this model

(and for all subsequent models). The DIC is a useful tool in model comparison

and selection and we use it for this purpose: it is a measure of model fit penalized

for the complexity of the model, and is similar to the Akaike Information Criterion

5It is quite possible that the variance in σH(l) (hence, the length of the corresponding credible

interval) in the second temporal block is much higher than in the first block simply because the

second block contains only 5 sites whereas the first block contains 13 sites. However, we cannot

confidently assume that this is the case, and so we do not attempt to collapse σH(1) and σH(2)

into a single term.
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Figure 3.3: Estimates and 95% credible intervals for σH(1) in black and σH(2) in

grey for all LHFI-AMBI models considered in this thesis; numbers 1 to 10 denote

the 10 models run with covariates in Table 3.3 in that order; ‘-’ denotes posterior

median
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Figure 3.4: Model 3.8 estimates and 95% credible intervals for σj(s) on a log-scale; ‘-’

denotes posterior median; note that this and all following plots of credible intervals

for metric effect standard deviations, which are represented by σj(s)’s here, use a

log scale on the y-axis since the intervals are highly skewed. This, however, was

not required for plots of σH(l) which were less skewed.
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Table 3.1: Summary statistics of posterior draws for LHFI-AMBI baseline models
Mean Median 2.5th %-ile 97.5th %-ile MC Error # Draws

Model 3.8 α0 -1.46 -1.47 -3.14 0.29 0.01 40000
λ2 -0.40 -0.40 -1.43 0.64 0.01
θ1 2.00 1.99 -0.19 4.24 0.01
σ1(2) 3.13 1.16 0.26 13.89 0.33
σ2(2) 2.67 1.10 0.25 12.85 0.07
σ3(1) 4.36 1.70 0.33 20.72 0.13
σ4(1) 2.86 1.10 0.25 13.14 0.21
σ5(1) 2.79 1.09 0.25 13.41 0.10
σH(1) 0.82 0.80 0.57 1.22 0.00
σH(2) 1.00 0.92 0.56 1.90 0.00

Model 3.10 α0 -1.54 -1.55 -3.20 0.18 0.01 48000
θ1 1.99 1.98 -0.20 4.23 0.01
σ1(2) 2.93 1.17 0.26 14.38 0.07
σ2(2) 2.57 1.09 0.25 13.22 0.04
σ3(1) 4.82 1.71 0.33 20.94 0.50
σ4(1) 2.98 1.09 0.25 13.43 0.26
σ5(1) 2.66 1.09 0.25 13.28 0.06
σH(1) 0.83 0.80 0.57 1.23 0.00
σH(2) 0.97 0.90 0.55 1.77 0.00

Model 3.11 α0 -1.55 -1.56 -3.40 0.38 0.01 54000
θ1 2.09 2.09 -0.41 4.55 0.01
σβ(1) 2.12 1.28 0.39 8.68 0.02
σβ(2) 1.94 0.91 0.23 9.54 0.02
σH(1) 0.83 0.81 0.57 1.23 0.00
σH(2) 0.96 0.89 0.55 1.76 0.00

Model 3.12 α0 -1.61 -1.61 -3.32 0.13 0.01 50000
θ1 2.09 2.10 -0.11 4.26 0.00
σβ 1.46 1.02 0.34 5.19 0.01
σH(1) 0.83 0.81 0.58 1.23 0.00
σH(2) 0.95 0.88 0.55 1.72 0.00
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Figure 3.5: Model 3.11 estimates and 95% credible intervals for σβ(s) on a log-scale;

‘-’ denotes posterior median

but more appropriate for Bayesian models implemented with MCMC (Spiegelhalter

et al., 2002). For Model 3.8, the DIC was 4380 as evaluated by OpenBUGS.

3.2.8 Refining the Baseline Model

In the previous subsection, it was found that λ2 was not statistically significant

although there was evidence that temporal blocking might not be discounted. As

well, it was found that distinct variances are perhaps only required for each metric

group. It would have been equally acceptable to first reduce the model by addressing

either of these two issues, but we chose to remove λl first. Thus, the equation for

health in this second baseline model changed to:

Hi(l) = α0 + εi(l) (3.10)

Posterior estimates for this Model 3.10, were quite similar to those of Model 3.8.

Health estimates, denoted LHFI(3.10) and their 95% credible intervals were practi-

cally unchanged (Fig. 3.2 in dark grey), as were estimates and credible intervals for

σj(s) (not plotted). Comparing Models 3.8 and 3.10, estimates for σH(l) were virtu-

ally unchanged, although 95% credible intervals were slightly narrower (Fig. 3.3).

As well, the DIC remained the same and summary statistics for the remainder of Ω

were quite similar to those for Model 3.8 (Table 3.1). Since the overlap in credible

intervals for σj(s) was again quite substantial, the next step taken in refining the

baseline model was to reduce σj(s) to σβ(s).
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Note that in this subsection we are mainly concerned with baseline models i.e.

without covariates since our focus is on refining the baseline, but versions of Model

3.10 (and subsequent baseline models) with covariates also exist. The version of

Model 3.10 with covariates would differ only in its equation for health, which would

read Hi(l) = α0 +f(α,xi(l))+εi(l), where covariates x are also nested in l. Refining

models with covariates appears in Section 3.3.

Returning to the discussion of refining the baseline models, the next baseline

model, denoted Model 3.11, takes the following distribution for metric effects βj(s):[
βj(s)|σβ(s)

] ind∼ N(0, σ2
β(s)) (3.11)

The 95% credible intervals for σβ(s) (Fig. 3.5) are much narrower than those for

σj(s) in the previous two baseline models (Table 3.1), which is a good sign as

a more appropriate model is frequently revealed through increased precision of

estimates. For the most part, other estimates remained the same. Health estimates

LHFI(3.11) virtually did not change, though their 95% credible intervals widened

slightly (Fig. 3.2 in medium grey). Metric group effect θ1 was not as precisely

estimated as with the two previous models, since its 95% credible interval widened

slightly (Table 3.1). The remainder of the summary statistics for Ω were largely

unchanged, as were the estimates and credible intervals for σH(l), and the DIC was

again 4380. There was substantial overlap in 95% credible intervals for σβ(1) and

σβ(2), which meant that the baseline model could be further refined by reducing

σβ(s) to σβ.

The distribution of metric effects for the next baseline, Model 3.12, is thus:[
βj(s)|σβ

] ind∼ N(0, σ2
β) (3.12)

Again, the 95% credible interval for σβ is much narrower than those for σβ(s) (Ta-

ble 3.1), thus validating the decision to use σβ. Estimates for this model are again

very similar to the previous baseline models: 95% credible intervals for health es-

timates LHFI(3.12) are slightly narrower than for LHFI(3.11) (Fig. 3.2), though

the estimates themselves virtually did not change. Statistics for Ω including σH(l)

virtually did not change (Table 3.1, Fig. 3.3), nor did the DIC.
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3.2.9 Summary of Baseline Models

Overall, the four baseline models were very similar to each other. Markov chains for

these models all mixed very well, with the slight exception (high autocorrelation)

for several of the p’s in all of the models and λ2 in the first model. Slight changes in

widths of credible intervals as the model was reduced step-by-step were likely due to

the struggle between parsimony and goodness-of-fit. Model 3.12 was employed from

this point onwards as a base upon which the environmental covariates described in

Section 3.1 were added.

3.3 Incorporating Covariates

As mentioned previously, Jonathan Grant and Lin Lu, the scientists who collected

the data, had conducted their own examination of the data before the start of this

thesis (Lu et al., 2008). Based on their examination, they believed that salinity,

silt-clay % (SC), organic content % (OC) and sorting (SI) should be important

for determining health in the Richibucto estuary. They also note that SC, OC

and SI are highly correlated; SC and OC are always correlated by definition, and

SC/OC and SI happened to be correlated for the Richibucto data. Regarding depth,

temperature and mdφ, Grant and Lu believed that these three covariates were

probably not important for the Richibucto sites, since the ranges of values for these

covariates are all narrow, although these covariates may be useful in determining

health in other estuaries. Finally, Grant and Lu note that distance downstream

should be correlated with salinity since proximity to the estuary mouth implies a

higher site label as well as higher salinity.

In practice, it is crucial to consider the scientists’ viewpoints in incorporating

the covariates; using only the results of exploratory analysis on data and nothing

else to design the model, and then fitting the model to that same data would have

been a circular and somewhat flawed approach. In this case, the biological meaning

of the resulting LHFI models could be suspect. Thus, we consider the scientists’
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viewpoints in conjunction with our own analysis.

3.3.1 Preliminary Analysis

With multiple covariates, a common difficulty is the presence of too many possible

combinations of covariates to be modelled. Therefore, before running any mod-

els, we conducted a preliminary analysis on health estimates LHFI(3.12) and the

covariates; the results of this analysis were considered in conjunction with the sci-

entists’ viewpoints in determining which models to run. We used plots and linear

regressions to find covariates that potentially had relationships with health and to

determine appropriate transformations or powers. This analysis focussed on the

first block of data, as the second block did not contain enough data points (five)

on its own. This preliminary analysis served as a guide, complementary to the

scientists’ expert knowledge, to what combinations of covariates would be worth

modelling. Although this analysis implicitly assumed a single-level model where

health is incorrectly viewed as an observed variable, it still provided some useful

information towards arriving at a final model for constructing a useful LHFI.

A matrix plot of the covariates and LHFI(3.12) indicated that depth should

be log-transformed, as points were clumped towards the left side of the plot of

health and depth. SC and OC were also log-transformed in order that they may

not be restricted to the 0-100 range; extra constraints such as restricted ranges are

undesirable since they may lead to computational issues and they can also affect

dependent structures, i.e. regression errors may no longer be independent. Note

that temperature was excluded from the model, and hence the preliminary analysis

since the ranges of temperature during the two sampling times are very distinct

from each other and thus temperature would be confounded with blocking. A

matrix plot of the transformed covariates and LHFI(3.12) and a table of correlation

values (Fig. 3.6(a), Table 3.2) reveal potential linear relationships between health

and salinity, health and distance, and (possibly) health and log(SC). A quadratic

relationship between health and log(depth) also appears somewhat plausible; such
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a relationship, however, is likely too convoluted for sensible interpretation in the

physical context of the ecosystem. As well, since log(SC), log(OC) and SI were

highly correlated as expected (Fig. 3.6(b), Table 3.2)6, they were treated as one

covariate from this point onwards, called the “trivariate”, and only log(SC) was

included in Fig. 3.6(a) for simplicity. Of the three, SI is the least valuable to the

LHFI because it is a derived variable and not field data like the others; any derived

variable is less valuable since it is in a sense further from the raw field data. Log(SC)

was chosen to represent the trivariate as its data points are less clumped than those

of log(OC), though either might be acceptable. As expected, distance was found to

be highly correlated with salinity (r = 0.88). As well, it turns out that log(depth)

is somewhat highly correlated with the trivariate (r = −0.76 with log(SC), -0.73

with SI, and -0.64 with log(OC)).

Table 3.2: Correlations between LHFI(3.12) and transformed covariates
LHFI(3.12) log(depth) salinity log(SC) mdφ distance log(OC) SI

LHFI(3.12) 1 0.43 0.64 -0.42 -0.01 0.8 -0.23 -0.33
log(depth) 0.43 1 0.32 -0.76 0.17 0.31 -0.64 -0.73

salinity 0.64 0.32 1 -0.37 -0.05 0.88 -0.37 -0.26
log(SC) -0.42 -0.76 -0.37 1 0.02 -0.47 0.92 0.95

mdφ -0.01 0.17 -0.05 0.02 1 -0.04 -0.14 -0.2
distance 0.8 0.31 0.88 -0.47 -0.04 1 -0.44 -0.39
log(OC) -0.23 -0.64 -0.37 0.92 -0.14 -0.44 1 0.9

SI -0.33 -0.73 -0.26 0.95 -0.2 -0.39 0.9 1

Fitting simple and multiple linear regressions of LHFI(3.12) on various combina-

tions of the five usable covariates (log(depth), salinity, log(SC), mdφ and distance)

provided further indications as to which covariates could be useful in an LHFI

model. The adjusted R2, t-test results and F-test results were particularly use-

ful in comparing regressions. The regressions suggested that salinity, distance and

(possibly) log(SC) were the most useful covariates of those available in determining

health, and additionally that the three sets of interactions, log(depth)× log(SC),

6The correlation between these three appears to be mainly due to the three points in the

bottom left corners of plots in Fig. 3.6(b). These points correspond to sites 12, 15, and 16.

Speaking to Grant and Lu revealed no reason to consider these as outliers; thus, excluding these

sites from analysis was not advisable as this could lead to nonsensical estimates.
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Figure 3.6: Matrix plot using the first block of data of (a) LHFI(3.12) and trans-

formed covariates and (b) the transformed trivariate
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log(depth)× salinity, and log(SC)× distance, could be of use. Note that since dis-

tance and salinity were very highly correlated, we did not consider models that

included both of these; however, we did consider including log(depth) and log(SC)

in the same model as they were less highly correlated and we did not want to

rule out anything yet in a preliminary model, and by the same reasoning we also

considered the interaction log(depth)× log(SC).

3.3.2 Implementing the Models

Ten models with covariates of the form of Model 3.12 were implemented with

MCMC. Determining the most appropriate form of f() was an iterative process.

Roughly speaking, if a specific covariate was found to have no significant impact

on health, it was removed from the model, and the modified model was run. The

results from the modified model would then be examined, and the process would be

repeated. Or as another example, an interaction might be introduced, if the data

exploration described above indicated it could be useful in determining health.

The motivation behind each choice of model together with the confidence levels

for each regression coefficient in the model are described in Table 3.3 (recall that

the confidence level of a coefficient is the level of the credible interval at which

the coefficient becomes significant). The models are listed in roughly the order

in which they were run, so as to illustrate the evolution of the final LHFI-AMBI

model with covariates. For all of the models in Table 3.3, the estimates and 95%

credible intervals for health, the estimates and 95% intervals for σβ and θ1, and

the DIC values were very similar; and these values were also very similar to those

of the baseline model (Model 3.12) upon which they were based. However, the

estimated precision of health estimates σH(l) varied somewhat with the combination

of covariates; estimates and intervals for each model are plotted in Fig. 3.3 and

labelled 1 to 10 according to their order in Table 3.3.

MCMC chains of the models mixed fairly well for the most part. Minor mixing

problems were observed: autocorrelation was consistently low but long-living for
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coefficients involving log(SC) (for both main effects and interactions), and autocor-

relation was high for some of the p’s. As well, the model with log(depth), salinity,

log(SC), and log(depth)×log(SC) required an unusually long burn in (300,000 itera-

tions). This could have been due to the high level of correlation between log(depth)

and log(SC), or alternatively due to chance, if the randomly chosen initial values

happened to be far from the convergence values.

The form of f() for these models is a linear regression using centred covariates

that have been transformed (if necessary). As an illustration of models with only

main effects, the form of f() for the first model in Table 3.3 with log(depth), salinity,

log(SC), and mdφ is:

f(α,xi) = α1(x1i − x1+) + α2(x2i − x2+) + α3(x3i − x3+) + α4(x4i − x4+) (3.13)

where for each i,

x1i = log(depth), x2i = salinity, x3i = log(SC), (3.14)

x4i = mdφ, x5i = distance downstream.

As an illustration of models with interactions and main effects, the form of

f() for the model with log(depth), salinity, log(SC), and log(depth)×log(SC) is as

follows:

f(α,xi) = α1(x1i−x1+) +α2(x2i−x2+) +α3(x3i−x3+) +α∗13(x1i−x1+)(x3i−x3+)

(3.15)

Note that covariates are centred to reduce correlation (and thus perhaps improve

mixing) between the intercept α0 and coefficients αr where r indicates the covariate.

The motivation for centring covariates lies within the theory of linear regression: if

there is one covariate, centring it in this way completely removes any correlation

between the maximum likelihood estimators (assuming normality) of α0 and αr; if

there are multiple covariates, centring reduces correlation in the same way, although

not to 0. Since the likelihood is a major component of the Bayesian framework,

centring covariates could also reduce correlation within a Bayesian hierarchical

model, though it will not remove correlation entirely.

37



Table 3.3: LHFI-AMBI models implemented with covaraites

Covariates Motivation Confidence levels of slopes

associated with covariates
1 log(depth),

salinity,

log(SC), mdφ

With data for only 18 sites, we were loath to

begin with a complex model, e.g. one with

interactions. Thus, the first model we imple-

mented included the four covariates available

at the time: log(depth), salinity, log(SC) and

mdφ7. As stated earlier, we did not avoid in-

cluding both log(depth) and log(SC) although

they are correlated (r = −0.76) since we do

not want to exclude any possibilities in a pre-

liminary model. As well, although mdφ did

not appear significant in the preliminary anal-

ysis, it was included to begin with, as it could

have been easily removed if found unimpor-

tant.

log(depth): 60-70%,

salinity: 95-99%,

log(SC): <20%,

mdφ: 30-40%

2 log(depth),

salinity, log(SC)

An adaptation of the model above: mdφ was

removed since it was the second least signif-

icant in the previous model, and it appeared

to be least significant in the preliminary anal-

ysis. Although least significant in the previous

model, log(SC) was not removed since it ap-

peared significant throughout the preliminary

analysis and according to the scientists’ view-

points.

log(depth): 70-80%,

salinity: 95-99%,

log(SC): <20%

3 log(depth),

salinity,

log(SC),

log(depth)×

log(SC)

An adaptation of the model above:

log(depth)×log(SC) was added since it

appeared promising in preliminary analysis.

Again, note that we do not avoid including

this interaction although its elements are

correlated since this is a preliminary model.

log(depth): 30-40%,

salinity: >99%,

log(SC): 90-95%,

log(depth)× log(SC): 95-99%

Continued on Next Page. . .

7Distance downstream data were obtained part-way through the modelling process.
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Table 3.3 – Continued
Covariates Motivation Confidence levels of slopes

associated with covariates
4 log(depth),

salinity,

log(SC),

log(depth)×

salinity

Another adaptation of the 2nd model:

log(depth)×salinity was added since it also ap-

peared promising in the preliminary analysis.

log(depth): 40-50%,

salinity: 85-90%,

log(SC): 60-70%,

log(depth)× salinity: 85-90%

5 log(depth),

salinity,

log(SC),

log(depth)×

salinity,

log(depth)×

log(SC)

An attempt at combining the previous two

models since both log(depth)× log(SC) and

log(depth)× salinity appeared significant.

log(depth): 30-40%,

salinity: 95-99%,

log(SC): 90-95%,

log(depth)× salinity: 20-30%,

log(depth)× log(SC): 90-95%

6 distance At this point in time, the distance downstream

data were obtained. Since the preliminary

analysis revealed that distance was very highly

correlated with salinity (r = 0.88), we avoided

including salinity in the same model with dis-

tance. Other than distance, that left three

covariates log(depth), log(SC) and mdφ, but

since mdφ seemed by all indications to be not

useful, that actually left only log(depth) and

log(SC). Since the preliminary analysis also

revealed a strong linear relationship between

health and distance, we began with a model

with only distance (here), and later imple-

mented models with log(depth) and log(SC)

as well.

distance: >99%

7 log(depth), dis-

tance

See previous note. log(depth): 80-85%,

distance: >99%
8 log(depth),

distance,

log(depth)×

distance

See previous note. As well, the interaction

log(depth)× distance also appeared promising

in the preliminary analysis.

log(depth): 70-80%,

distance: 95-99%,

log(depth)× distance: 70-80%

Continued on Next Page. . .
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Table 3.3 – Continued
Covariates Motivation Confidence levels of slopes

associated with covariates
9 log(SC), dis-

tance, log(SC)×

distance

See previous note. Since log(depth) did not

appear to be significant in the previous two

models, we did not include it in this model.

As well, the interaction log(SC)× distance is

included since it appeared promising in pre-

liminary analysis.

log(SC): 60-70%,

distance: >99%,

log(SC)× distance: 60-70%

10 log(depth),

log(SC),

distance,

log(depth)×

log(SC)

An adaptation of the third model, which was

also one of the two most successful models

at this point: substitute distance for salinity

since they are strongly correlated.

log(depth): 70-80%,

log(SC): 30-40%,

distance: >99%,

log(depth)× log(SC): 70-80%

Of the ten models with covariates implemented with MCMC, that with log(depth),

salinity, log(SC), log(depth)×log(SC), and that with distance are the two that pro-

vided the “best” fits to the data, in that the confidence levels for the covariates in

these models were among the highest and there were no extraneous non-significant

covariates at the 90% confidence level. As well, the estimated precisions of health

σH(l) were among the lowest for these two models (numbers 3 and 6 in Fig. 3.3).

Denote these models respectively as Model 3.12a and Model 3.12b. Note that it

is hard to quantitatively determine if one of the two models is “better” than the

other, since their posterior means and credible intervals for health and their DIC

were empirically identical.

Some summary statistics for α0 and α for Model 3.12a and Model 3.12b are

shown in Table 3.4. The credible intervals indicate confidence levels at which the

covariates have statistically significant effects on health. For example, the 99%

credible interval for α2 in Model 3.12a reveals that salinity has a statistically sig-

nificant impact on health at a 99% confidence level after adjusting for the other

covariates. Furthermore, the sign of an estimated coefficient indicates the direc-

tion of its corresponding covariate’s effect on health. For example, in Model 3.12a,
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α̂1 = 0.18 and α̂2 = 0.39 signify that within the observed range, increasing depth

(and log(depth)) and salinity are both associated with better health. As stated

in the first chapter, this aspect of the LHFI could be particularly useful to policy

makers: scientists may believe that a certain covariate has an effect to health, and

the LHFI can provide quantitative evidence to support (or oppose) such beliefs. As

well, as Chiu et al. (2008) point out, policy makers who are presented with several

factors that have potential impact on ecosystem health and who must devise con-

servation policies in response to selected factors with limited resources would likely

find this capability of the LHFI approach useful.

Table 3.4: Summary Statistics for α0 and α for Model 3.12a and Model 3.12b
Covariate Mean 99% Credible

Interval

95% Credible

Interval

90% Credible

Interval

MC Er-

ror

#

Draws

Model 3.12a
α0 intercept -1.33 (-3.92, 1.37) (-3.04, 0.41) (-2.69, 0.03) 0.009 80000
α1 log(depth) 0.18 (-1.01, 1.37) (-0.70, 1.05) (-0.55, 0.90) 0.002
α2 salinity 0.39 (0.05, 0.77) (0.13, 0.67) (0.18, 0.62) 0.001
α3 log(SC) -0.87 (-2.14, 0.47) (-1.80, 0.09) (-1.64, -0.08) 0.008
α∗13 log(depth)×

log(SC)

1.96 (-0.36, 4.17) (0.30, 3.58) (0.60, 3.29) 0.019

Model 3.12b
α0 intercept -1.57 (-4.21, 1.07) (-3.27, 0.15) (-2.91, -0.23) 0.008 50000
α5 distance 0.37 (0.09, 0.66) (0.17, 0.58) (0.20, 0.54) 0.001

We attempted to combine the covariates from these two models into one inte-

grated model (see models 7-9 in Table 3.3) but were ultimately unsuccessful. When

other covariates were added to the model with distance, they were not significant

at any reasonable level (i.e. at the least with a confidence level of 90%), even if

they had been significant in other models. One possible explanation for this phe-

nomenon is that distance likely has much less measurement error than the other

covariates, since it is easier to measure accurately in the field than other variables

that required lab work. An effect on health from distance would therefore come

across more clearly than an effect from the other covariates, i.e. distance might

“smother” effects from the noisier covariates.
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In another attempt to combine covariates from these two models, we experi-

mented with building a new covariate from salinity and distance since these are

highly correlated. Specifically, we attempted to build a density measure, that is,

either salinity/distance or distance/salinity. These would be interpreted as a mea-

sure of saltiness per unit of distance, and a measure of how far sites are located

relative to salinity level. We chose to build a density measure as it seemed to

be more interpretable given the physical context than a traditional simple linear

combination of the two covariates, salinity and distance having two different scales.

We fit four separate simple linear regressions: LHFI(3.12) on salinity, LHFI(3.12)

on distance, LHFI(3.12) on salinity/distance and LHFI(3.12) on distance/salinity,

and compared the results of the four regressions. As the two fitted regressions on

the density measures were each found to be quite similar to either the regression

on salinity or the regression on distance, it appeared that this approach was not

helpful and was thus abandoned.

In light of the scientists’ expertise and our quantitative analyses, we would

endorse both Model 3.12a and Model 3.12b equally as latent health factor models

for the Richibucto estuary based on AMBI.

3.4 Comparing LHFI-AMBI, AMBI and ITI

A matrix plot of AMBI, ITI and LHFI-AMBI (i.e. LHFI(3.12), LHFI(3.12a),

LHFI(3.12b) which are all equivalent empirically) is provided to illustrate the rela-

tionships between LHFI-AMBI and AMBI and ITI (Fig. 3.7). Note that we include

ITI in this comparison although we have not yet discussed models involving ITI so

as to compare AMBI and ITI as well.

LHFI-AMBI is strongly negatively correlated with AMBI itself (r = −0.81).

The negative relationship is not unexpected since a high AMBI value indicates poor

health and a low AMBI value indicates good health (A. Borja and Erez, 2000), while

the LHFI is designed such that a high LHFI value will always indicate good health.
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The strong linear relationship between LHFI-AMBI and AMBI testifies that the

LHFI model is no less effective in estimating health as the index upon whose data

it is based.

On the other hand, there is no strong relationship between LHFI-AMBI and ITI

(r = 0.01), nor between AMBI and ITI (r = −0.33). Again, this is not unexpected

since it is known that AMBI and ITI measure different aspects of health. The

next chapter discusses a more comprehensive latent health model that incorporates

metrics from both AMBI and ITI.

Figure 3.7: Matrix plot of LHFI(3.12) (empirically equivalent to LHFI(3.12a) and

LHFI(3.12b)), AMBI and ITI; a black ‘◦’ denotes a point in the first temporal block

and a grey ‘◦’ denotes a point in the second block
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Chapter 4

Fitting an LHFI Model to

Richibucto AMBI and ITI

Since AMBI and ITI focus on different aspects of health, it was our aim to create

a more comprehensive index for Richibucto by incorporating metrics from both

indices into a single model. We chose to fit a combined model instead of building

a model for ITI on its own, since as mentioned in Chapter 3, Grant and Lu believe

that the ITI data are not as important in indicating health as AMBI for Richibucto.

We call the models in this chapter LHFI-AMBI+ITI models.

4.1 The ITI data

In many ways, the ITI data for Richibucto are similar to the AMBI data. The same

taxonomic data set can be used to calculate both AMBI and ITI. Note, however,

that while both indices rely on the same taxonomic data set, ITI still provides

additional information beyond that from AMBI. For ITI, the 88 species observed at

Richibucto were organized into four disjoint taxonomic groups according to species

feeding habits (listed below as described by Cromey et al. (2002)), instead of five

disjoint taxonomic groups by sensitivity for AMBI. As the same data set was used

for both indices, many of the issues discussed in Chapter 3 regarding the AMBI data
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apply to the ITI data as well, e.g. temporal blocking, diffuse priors, considering the

number of replicates per site as fixed, and considering simple parameters as fixed.

“Group I (suspension feeders): these animals feed on detritus from the water

column and usually lack sediment grains in their stomach contents, e.g. Spio,

Spiophanes, Sabella, Ampelisca, Corophium, Phaxas pellucidus, Mya arenaria,

Ophiothrix fragilis and Amphiura filiformis.

Group II (interface/surface detrital feeders): these animals obtain the same

types of food as suspension feeders but usually from the upper 0.5 cm of the

sediment, e.g. Nephtys incisa, Levinsenia gracilis, Polydora, Cirratulidae, Scal-

ibregmatidae, Photis, Mysella and Ophiura.

Group III (deposit feeders): these invertebrates generally feed from the top few

centimetres of the sediment and feed on encrusted mineral aggregates, deposit

particles or biological remains. While carnivores have been classified as Group

2 by Word (1980), they are included here in Group 3 as in Codling and Ash-

ley (1992), e.g. Anaitides, Goniada maculata, Nephtys hombergii, Scoloplos

armiger, Nucula and Thyasira.

Group IV (specialised environment feeders): mobile burrowers that feed on de-

posited organic material. While exhibiting variable feeding behaviour, they

are all adapted to live in highly anaerobic sediment, e.g. Ophryotrocha, Schis-

tomeringos, Capitella capitata, Notomastus latericeus, Oligochaeta and Bit-

tium.”

The relative abundances of these four taxonomic groups are combined via the

following formula to produce a continuous scalar index, with values ranging from 0

to 100, and is positively correlated with health:

ITI = 100− 33.3

(
0×GI + 1×GII + 2×GIII + 3×GIV

GI + GII + GIII + GIV

)
(4.1)

where GI, GII, GIII and GIV are the abundances of taxonomic Groups I-IV.

High abundances in taxonomic Groups I and II indicate “good health” (taxo-

nomic Group II to a lesser degree), while a high abundance in taxonomic Group
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IV indicates “poor health”. Abundance in taxonomic Group III is neither an indi-

cator of “good health” nor of “poor health”. Thus, taxonomic Groups I and II are

positively related to health, taxonomic Group IV is negatively related to health,

and taxonomic Group III is indifferent to health.

4.2 The Model

The LHFI-AMBI+ITI is essentially an extension of the LHFI-AMBI model; an

extra component for ITI was constructed in the same fashion and with the same

reasoning as for AMBI, and this was added to the existing LHFI-AMBI model

to form the LHFI-AMBI+ITI model. Let m denote the data set, where m = 1

represents the AMBI data set and m = 2 represents the ITI data set.

Similar to the LHFI-AMBI model, the ITI metrics are split into two groups:

s = 1, containing the third and fourth metrics which are indifferent and negatively

related to health; and s = 2 containing the first and second metrics which are

positively related to health. For s = 1, the link function is inverted as in (3.5).

Since s = 1 and s = 2 have the same interpretation regardless of the value of m,

we crossed s with m. Thus, metric effects are nested in s × m; that is, βj(m×s)

denotes the effect on ν of the jth metric in the sth metric group and the mth data

set. For AMBI, we take the variance of β to be as it was in the LHFI-AMBI model

i.e. σβ(m=1). For ITI, however, we cannot make any prior assumptions about the

metric effect variances, and so we take σj((m=2)×s).

Note that crossing s and m as outlined above may not be entirely precise since

s = 1 contains the indifferent metric for ITI, but s = 2 contains the indifferent

metric for AMBI. This choice of allocating the indifferent metric is so that each

value of s is associated with at least two levels of j so as to avoid weak identifiability

of θs (see Section 3.2). At this point, the implications of changing the current

crossing scheme to address the issue of somewhat inconsistent denitions of s are

unclear, and this issue can be investigated in future work. For now we return to
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the model so far outlined above.

A term is needed in the model to explain the difference among the data set-

metric combinations (i.e m × s). Since we already chose to use βj(m×s), it was

most logical to use other terms associated with m× s to explain βj(m×s). Since any

crossed term can in principle be broken down into main effects and an interaction,

we defined

βj(m×s) = γm + θs + ξm×s + ωj(m×s) (4.2)

where θs, γm, and ξm×s represent the effects of metric group, data set and their

interaction on metric effect β, and they are all fixed effects. Under this formulation,

β is no longer an error term with mean 0 as for LHFI-AMBI, but this change is

acceptable as the β’s are essentially nuisance parameters1.

The LHFI-AMBI+ITI model includes temporal blocks, for the same reason as

the LHFI-AMBI model. As with the latter, health is nested in block with different

variances per block, but metric effect is not nested in or crossed with block. From

the results of the LHFI-AMBI model, we saw that λ for AMBI is unnecessary, but

a λ term was initially included for the ITI data since we had no prior quantitative

information on ITI. However, the model does not allow for a λm×l term since health

should not be affected by data set. If the model allowed it, the equation for health

would read

Hi(l) = α0 + f(α,xi(l)) + λm×l + εi(l) (4.3)

Even if the model did allow it, potential idenitifiability issues with γm could arise in

practice, similar to those described in Section 2.1, so it would not be recommended

to include a λm×l term. A model with λl instead of λm×l is mathematically viable,

but would be perhaps less realistic since the effect λ would be the same for ITI

and AMBI. However, since λl was already found to be insignificant for the LHFI-

AMBI models, it was quite possible that it a corresponding term would also be

insignificant for the LHFI-AMBI+ITI models. Thus, we chose to fit a model with

1Alternatively, if a 0-mean β was desired, θs, γm, and ξm×s could be placed in the equation to

explain ν instead of β.
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λl and would have returned to consider this problem only if λl was found to be

significant.

An initial LHFI model for the Richibucto AMBI and ITI data incorporating met-

ric groups, temporal blocking, and multiple data sets is as follows. Let Yi(l)×j(m×s)×k

denote the value of the kth replicate of the jth metric (nested within the sth metric

group of the mth data set) for the ith site (nested within the lth temporal block).

For simplicity, this is written as Yijklms. Other parameters are similarly simplified:

pi(l)×j(m×s) as pijlms, vi(l)×j(m×s) as vijlms, βj(m×s) as βj(ms), σj((m=2)×s)) as σj(2s), and

σβ(m=1) as σβ(1).

For m = 1 (AMBI):

[Yi3kl11, Yi4kl11, Yi5kl11, Nikl − Yi3kl11 − Yi4kl11 − Yi5kl11|Nikl, pi3l11, pi4l11, pi5l11] (4.4)

∼ multinomial(Nikl, pi3l11, pi4l11, pi5l11, 1− pi3l11 − pi4l11 − pi5l11)

νijl11 = ln
1− pi3l11 − pi4l11 − pi5l11

pijl11

, j = 3, 4, 5 (4.5)

[Yi1kl12, Yi2kl12, Nikl − Yi1kl12 − Yi2kl12|Nikl, pi1l12, pi2l12] (4.6)

∼ multinomial(Nikl, pi1l12, pi2l12, 1− pi1l12 − pi2l12)

νijl12 = ln
pijl12

1− pi1l12 − pi2l12

, j = 1, 2 (4.7)

For m = 2 (ITI):

[Yi3kl21, Yi4kl21, Nikl − Yi3kl21 − Yi4kl21|Nikl, pi3l21, pi4l21] (4.8)

∼ multinomial(Nikl, pi3l21, pi4l21, 1− pi3l21 − pi4l21)

νijl21 = ln
1− pi3l21 − pi4l21

pijl21

, j = 3, 4 (4.9)

[Yi1kl22, Yi2kl22, Nikl − Yi1kl22 − Yi2kl22|Nikl, pi1l22, pi2l22] (4.10)

∼ multinomial(Nikl, pi1l22, pi2l22, 1− pi1l22 − pi2l22)

48



νijl22 = ln
pijl22

1− pi1l22 − pi2l22

, j = 1, 2 (4.11)

For both ITI and AMBI:

νijlms = Hi(l) + βj(ms), Hi(l) = α0 + f(α,xi(l)) + λl + εi(l)[
εi(l)|σH(l)

] ind∼ N(0, σ2
H(l)), βj(ms) = γm + θs + ξms + ωj(ms) (4.12)[

ωj(1s)|σβ(1)

] iid∼ N(0, σ2
β(1)),

[
ωj(2s)|σj(2s)

] ind∼ N(0, σ2
j(2s))

And linear constraints:

λl=1 = 0, γm=1 = 0, θs=1 = 0, ξ11 = ξ12 = ξ21 = 0 (4.13)

where

data set m =

{
1 if AMBI
2 if ITI

temporal block l =

{
1 if data collected in September
2 if data collected in October

site i =

{
1, . . . , 3, 9, . . . , 18 if l = 1

4, . . . , 8 if l = 2

metric group s =

{
1 negatively related to health
2 positively related to health

AMBI metric j =

{
3, 4, 5 in metric group s = 1
1, 2 in metric group s = 2

ITI metric j =

{
3, 4 in metric group s = 1
1, 2 in metric group s = 2

replicate k = 1, . . . , ri where ri is the number of replicates at site i

This model, which encompasses equations (4.4)-(4.12) and is denoted Model 4.4,

considers metric effects βj(ms) to be independent for simplicity as a preliminary step,

like the LHFI-AMBI models. Again, we wanted to avoid complications in modelling

and implementation to begin with. Diffuse priors are adopted for parameters,

similar to those in 3.9.

Note as well that the linear constraint θs=1 = 0 here is different from the cor-

responding constraint on the LHFI-AMBI Model (3.8), that is, θs=2 = 0. This

discrepancy was due to an oversight, but should not have any serious repercussions:
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changing the constraint to be consistent with that of LHFI-AMBI could possibly

lead to a slight offset in the health estimates, which is inconsequential since health

estimates are only considered relative to each other and not in absolute terms.

Again, we are attempting to fit a highly complex model with multiple parameters

to only 18 sites, which may be of concern to the reader. But, as stated before in

Chapter 3, we do have a somewhat large benthic data set, which is even larger

than that in Chapter 3 with (5 AMBI metrics + 4 ITI metrics) ×
∑18

i=1 ri = 441

data points, and additionally, the use of priors in the Bayesian framework helps to

mitigate concerns.

4.2.1 The Baseline Model

The model building process for the combined AMBI and ITI data was very similar

to the process for LHFI-AMBI. We began by fitting the baseline model above

(Model 4.4), refined that model, and then proceeded to add various combinations

of the covariates to the model to see which covariates are most useful in determining

health.

Health estimates for this baseline, denoted LHFI(4.4), and corresponding 95%

credible intervals are plotted together with those for all later AMBI+ITI models

and with all AMBI models for comparison in Fig. 4.1 (those for LHFI(4.4) are in

the bottom panel, in black). Estimates and 95% credible intervals for σH(l) are

plotted in Fig. 4.3. Summary statistics for Ω are in Table 4.1, and estimates and

95% credible intervals for σj(s) are also plotted in Fig. 4.2.

Rankings of health by site are somewhat similar to rankings using the AMBI

data alone (Fig. 4.1). However, health is more precisely estimated for AMBI+ITI

than for AMBI, since the credible intervals using AMBI+ITI data are substantially

narrower. As well, the estimated precision of health σH(l) for Model 4.4 is somewhat

improved in terms of posterior credible intervals compared to that of the LHFI-

AMBI models (compare Fig. 4.3 to Fig. 3.3). On the other hand, it appears that

this increased precision of estimates has not greatly changed the ability of the LHFI
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Figure 4.1: Estimates and 95% credible intervals for LHFI-AMBI baseline models

(top panel) and LHFI-AMBI+ITI baseline models (bottom panel); ‘-’ denotes Ĥi

to distinguish between different sites, as credible intervals for health for LHFI-AMBI

and LHFI-AMBI+ITI appear to overlap by roughly the same amount. It is difficult

to interpret this phenomenon, and it is unclear whether one set of models is superior

to the other.

The temporal block effect λ2 is insignificant in this model, which is not surprising

given the results of LHFI-AMBI; its 95% credible interval contains 0, and in fact

its confidence level was very low at 20-30%. Minor mixing problems, i.e. high

autocorrelation, were observed for λ2 as well. Also unsurprisingly, credible intervals

for σH(1) and σH(2) are distinctly different. Thus, temporal blocking is important

although λl is inessential. The interaction ξ22 was also found to be insignificant

considering its 95% credible interval (confidence level <20%). In addition, distinct

σj(2s) are unnecessary for each metric, as there is significant overlap in their credible

intervals within metric group, and could perhaps be replaced by distinct variances

for each metric group. Thus, the model could have been reduced by addressing any
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of these three points. However, we first removed λl as the previous chapter suggests

that it was very unlikely to be significant. Thus, in the second baseline model, the

equation for health became:

Hi(l) = α0 + f(α,xi(l)) + εi(l) (4.14)

0
.5

2
.0

5
.0

2
0
.0

!!(1) !1(22) !2(22) !3(21) !4(21)

- - -

- -

Figure 4.2: Model 4.4 estimates and 95% credible intervals for σβ(1) and σj(2s) on a

log-scale; ‘-’ denotes posterior median

The results of implementing this model, denoted Model 4.14, were quite similar

to those of the previous model. Health estimates, denoted LHFI(4.14) and their 95%

credible intervals were practically unchanged (Fig. 4.1, bottom panel), although

credible intervals for σH(l) narrowed (Fig. 4.3). Estimates and credible intervals

for σβ(1) and σj(2s) were virtually unchanged (not plotted), and so were summary

statistics for Ω (Table 4.1). This indicates that this model, like the previous one,

can be refined by employing distinct variances for each metric group instead of

for each individual metric. As well, since ξ22 (and hence, ξms for all m and s) is

insignificant in this model (confidence level <20%), we could also refine the model

additionally by removing ξms. We chose to address the latter issue first in refining

the baseline model, although addressing the former first would have been equally

acceptable. Thus, in the third baseline model, the effects γm and θs are simply

additive and this model adopts the following equation for metric effect:

βj(ms) = γm + θs + ωj(ms) (4.15)

For this third baseline model, health estimates LHFI(4.15) and their 95% credi-

ble intervals were practically unchanged, though the intervals were perhaps slightly

52



Table 4.1: Summary statistics for LHFI-AMBI+ITI baseline models
Mean Median 2.5th %-ile 97.5th %-ile MC Error # Draws

Model 4.4 α0 0.64 0.63 -0.77 2.05 0.01 52000
γ2 1.76 1.76 -0.37 3.86 0.01
λ2 -0.13 -0.13 -0.98 0.71 0.01
θ2 -2.11 -2.11 -4.24 0.02 0.01
ξ22 -0.07 -0.06 -3.76 3.58 0.01
σβ(1) 1.46 1.02 0.34 5.21 0.01
σ1(22) 2.70 1.08 0.25 13.02 0.08
σ2(22) 2.78 1.08 0.25 13.07 0.13
σ3(21) 5.67 1.99 0.31 29.03 0.15
σ4(21) 5.71 1.97 0.31 29.29 0.16
σH(1) 0.64 0.62 0.44 0.95 0.00
σH(2) 0.81 0.75 0.45 1.55 0.00

Model 4.14 α0 0.62 0.62 -0.77 2.03 0.01 50000
γ2 1.75 1.75 -0.35 3.85 0.01
θ2 -2.11 -2.11 -4.28 0.07 0.01
ξ22 -0.07 -0.05 -3.80 3.61 0.01
σβ(1) 1.45 1.02 0.35 5.21 0.01
σ1(22) 2.56 1.07 0.25 13.08 0.04
σ2(22) 2.64 1.07 0.25 13.12 0.06
σ3(21) 5.60 2.00 0.31 29.64 0.12
σ4(21) 5.91 1.97 0.31 30.72 0.20
σH(1) 0.63 0.62 0.44 0.93 0.00
σH(2) 0.76 0.71 0.44 1.36 0.00

Model 4.15 α0 0.65 0.65 -0.59 1.90 0.01 60000
γ2 1.73 1.73 0.04 3.41 0.00
θ2 -2.13 -2.13 -3.78 -0.51 0.00
σβ(1) 1.32 0.97 0.34 4.38 0.01
σ1(22) 2.43 1.03 0.25 11.71 0.07
σ2(22) 2.53 1.04 0.25 12.07 0.06
σ3(21) 4.91 1.88 0.32 24.58 0.13
σ4(21) 4.80 1.78 0.32 23.90 0.15
σH(1) 0.64 0.62 0.44 0.94 0.00
σH(2) 0.76 0.71 0.44 1.36 0.00

Model 4.16 α0 0.63 0.63 -0.57 1.85 0.01 44000
γ2 1.73 1.73 0.12 3.34 0.00
θ2 -2.14 -2.14 -3.69 -0.60 0.00
σβ(1) 1.29 0.95 0.33 4.33 0.01
σβ(21) 1.48 0.82 0.22 6.69 0.01
σβ(22) 3.98 2.13 0.61 15.76 0.30
σH(1) 0.63 0.61 0.44 0.94 0.00
σH(2) 0.76 0.70 0.44 1.37 0.00
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Figure 4.3: Estimates and 95% credible intervals for σH(1) in black and σH(2) in grey

for all LHFI-AMBI+ITI models considered in this thesis; numbers 1 to 7 denote

the 7 models run with covariates in Table 4.2 in that order; ‘-’ denotes posterior

median

narrower (Fig. 4.1, bottom panel in medium grey). Estimates for σH(l) also re-

mained the same. Estimates of the remainder of Ω are also quite similar, though

accompanying 95% credible intervals are somewhat narrower (Table 4.1); this cor-

responds to an increase in confidence levels of θ2 and γ2 from 90% to 95%. Note

that credible intervals for σj(2s) appeared quite similar on a log-scale to those for

the two previous baseline models (and thus a figure was not included), although

they were in fact slightly narrower as shown in Table 4.1). Since the overlap in

credible intervals for σj(2s) within metric group s remained quite substantial as in

the previous two baseline models, the model was next refined by reducing σj(2s) to

σβ(2s). Thus, the fourth baseline model adopts the following change:

[
ωj(2s)|σβ(2s)

] ind∼ N(0, σ2
β(2s)) (4.16)

Unsurprisingly, 95% credible intervals for σβ(2s) are much narrower than for

σj(2s) in the three previous baseline models (compare Fig. 4.2 to Fig. 4.4). As

well, the median estimates for σβ(21) and σβ(22) are more distinct from each other

54



0
.2

0
.5

1
.0

2
.0

5
.0

!!(1) !!(22) !!(21)

-
-

-

Figure 4.4: Model 4.16 estimates and 95% credible intervals for σβ(1) and σβ(2s) on

a log-scale; ‘-’ denotes posterior median

compared to σj(21) and σj(22) (Table 4.1). Otherwise, results for this model are

similar to the previous baseline model: health estimates LHFI(4.16) and their 95%

credible intervals are virtually unchanged (Fig. 4.1, bottom panel in light grey), as

were those for σH(l). As well, summary statistics for the remainder of Ω are mostly

unchanged (Table 4.1).

The four stages of the baseline model are quite similar. MCMC chains of pos-

terior draws mixed fairly well, though not as well as those for LHFI-AMBI baseline

models, as evidenced in the greater number of draws generally required for LHFI-

AMBI+ITI models. As well, λ2 and some of the p’s experienced some mixing

problems (high autocorrelation). The DIC was nearly the same for all models at

either 8358 or 8359. Model 4.16 was employed from this point onwards as a base

upon which covariates were added.

4.3 Incorporating Covariates

In the process of incorporating covariates into the LHFI-AMBI+ITI model, it was

again important to consider the scientists’ views regarding which covariates were

important for determining health in Richibucto, as discussed in Section 3.3.
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4.3.1 Preliminary Analysis

Preliminary analysis examining LHFI(4.16) and the covariates was conducted in

much the same way as in Section 3.3 and with the same goal of finding covariates

that potentially had relationships with health.

LHFI(4.16)
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Figure 4.5: Matrix plot using the first temporal block of data of LHFI(4.16) and

transformed covariates

A matrix plot of the covariates and LHFI(4.16) indicated that the same trans-

formations should be taken as in Section 3.3. Thus, depth was log-transformed,

and SC and OC were log-transformed since they are percentages. A matrix plot

of the transformed covariates is provided in Fig. 4.5. (Recall that the trivariate

components are highly correlated, and thus we only include log(SC) in this plot.)

Comparing this to the corresponding plot for LHFI-AMBI (Fig. 3.6), it is clear that

patterns between health and covariates are somewhat similar, though there appears

to be a great deal more random scatter for LHFI-AMBI+ITI. As such, any relation-

ships that may exist between health and covariates are no longer obvious. Recall
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that there were strong linear relationships between LHFI(3.12) and salinity, dis-

tance, and log(SC) (somewhat strong); these no longer are evident for LHFI(4.16).

Correlations between LHFI(4.16) and these three covariates are r =0.26, 0.45 and

-0.27, respectively, as compared to r =0.64, 0.8 and -0.42 with LHFI(3.12). How-

ever, that is not to say that these relationships are not present, only that they

are perhaps less easily detectable. A quadratic relationship between health and

log(depth) still appears somewhat plausible; however, as explained previously we

did not feel it was worthwhile to make use of this uninterpretable relationship.

Fitting linear regressions of LHFI values to various combinations of the five

usable covariates provided some guidance as to which combinations of covariates

should be implemented in a hierarchical LHFI model. They suggested that all

five covariates could be useful in determining health, particularly salinity and dis-

tance, and so could the interactions log(depth)×log(SC), log(depth)×salinity, and

log(SC)× distance.

4.3.2 Implementing the Models

Seven models with covariates were implemented with MCMC. The motivation be-

hind each choice of model together with the confidence levels for each covariate in

the model are described in Table 4.2. This table illustrates the evolution of the

final LHFI-AMBI+ITI model with covariates. As with the LHFI-AMBI models,

the estimates and 95% credible intervals for health, σβ(1), σβ(2s), γ2 and θ2, and the

DIC values were similar for all the LHFI-AMBI+ITI models with covariates, and

also very similar to those of the final baseline Model 4.16. As well, σH(l) varied

with the combination of covariates (Fig. 4.3, models with covariates are labelled 1

to 7 according to their order in Table 4.2).
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Table 4.2: LHFI-AMBI+ITI models implemented with covariates

Covariates Motivation Confidence levels of slopes

associated with covariates
1 distance Distance was very useful on its own for the

LHFI-AMBI model, and in fact was one of the

two proposed models for LHFI-AMBI. In the

preliminary analysis on the AMBI+ITI base-

line, distance still appeared to be a somewhat

useful covariate, though its relationship with

health is not as pronounced.

distance: 80-85%

2 log(depth),

salinity,

log(SC),

log(depth)×

log(SC)

These three covariates and interaction con-

stituted the other proposed model for LHFI-

AMBI. Salinity and log(depth)× log(SC) also

appeared to be useful in the preliminary anal-

ysis on the AMBI+ITI baseline.

log(depth): 20-30%,

salinity: 60-70%,

log(SC): 70-80%,

log(depth)× log(SC): 80-85%

3 log(depth),

log(SC),

log(depth)×

log(SC)

Similar to the previous model but without

salinity, as salinity was least significant in that

model.

log(depth): 30-40%,

log(SC): 70-80%,

log(depth)× log(SC): 80-85%

4 log(depth),

salinity,

log(SC), mdφ

The preliminary analysis with plots and re-

gressions indicated that all of the five us-

able covariates could be useful in determin-

ing health. However, as distance and salin-

ity are highly correlated, we exclude distance

from this model.

log(depth): 30-40%,

salinity: 30-40%,

log(SC): <20%,

mdφ: 60-70%

5 log(depth),

salinity, mdφ,

log(depth)×

salinity

An adaptation of the model above: log(SC)

was the least significant covariate, so it was re-

moved. Log(depth)×Salinity was added since

it appeared promising in the preliminary anal-

ysis.

log(depth): 50-60%,

salinity: 30-40%,

mdφ: 50-60%,

log(depth)× salinity: 50-60%

6 log(depth),

log(SC), mdφ,

distance

Similar to the fourth model, but replace salin-

ity with distance.

log(depth): 40-50%,

log(SC): <20%,

mdφ: 60-70%,

distance: 60-70%
Continued on Next Page. . .
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Table 4.2 – Continued
Covariates Motivation Confidence levels of slopes

associated with covariates
7 log(depth),

mdφ, distance,

log(depth)×

distance

Similar to the two previous models above:

log(SC) was removed as it was the least sig-

nificant covariate in the previous model, and

salinity was replace with distance in the inter-

action.

log(depth): 40-50%,

mdφ: 60-70%,

distance: 60-70%,

log(depth)× distance: 40-50%

MCMC chains of the posterior draws for all models mixed fairly well, though not

as well as the LHFI-AMBI models. However, this is not a concern as they still mixed

quite well. Models 5 and 7 required long burn ins (250,000), and models in general

required more draws than for LHFI-AMBI model. In addition, autocorrelation was

high for some of the p’s.

Considering confidence levels as well as estimated precision of health (σH(l)),

Models 1-3 in Table 4.2 seem to be the best of the models with covariates. Models

1-2 are the same the two proposed for LHFI-AMBI and Model 3 is simply a mod-

ification of Model 2. Denote these models respectively as Model 4.16a, 4.16b, and

4.16c. Some summary statistics for α0 and α for these models are in Table 4.3.

It is important to note that confidence levels of covariates were generally much

lower; none of them came close to meeting the commonly accepted 95% level, but

this result was not entirely unexpected given the results of the preliminary analysis.

Two plausible explanations of the LHFI-AMBI+ITI model’s inability to determine

relationships between health and the covariates come to mind:

1. The LHFI construct is appropriate for describing health using AMBI and ITI

metrics and the available covariates, but the ITI data are too noisy for the

LHFI model to detect any patterns in the covariates.

2. AMBI and ITI are both good for describing health, and the data are not

noisy, but our modelling technique is inappropriate for combining them with

the available covariates.
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Table 4.3: Summary Statistics for α0 and α for Models 4.16a, 4.16b, and 4.16c
Covariate Mean 99% Credible

Interval

95% Credible

Interval

90% Credible

Interval

MC Er-

ror

#

Draws

Model 4.16a
α0 intercept 0.64 (-1.14, 2.44) (-0.56, 1.88) (-0.33, 1.63) 0.01 40000
α5 distance 0.14 (-0.14, 0.43) (-0.07, 0.35) (-0.03, 0.31) 0.00

Model 4.16b
α0 intercept 0.78 (-1.03, 2.57) (-0.45, 2.01) (-0.22, 1.77) 0.01 60000
α1 log(depth) 0.14 (-1.10, 1.38) (-0.76, 1.05) (-0.60, 0.88) 0.00
α2 salinity 0.12 (-0.24, 0.50) (-0.14, 0.40) (-0.10, 0.35) 0.00
α3 log(SC) -0.52 (-1.88, 0.84) (-1.50, 0.46) (-1.32, 0.29) 0.01
α∗13 log(depth)×

log(SC)

1.18 (-1.24, 3.49) (-0.54, 2.85) (-0.23, 2.55) 0.02

Model 4.16c
α0 intercept 0.79 (-1.02, 2.61) (-0.44, 2.03) (-0.20, 1.79) 0.01 40000
α1 log(depth) 0.21 (-1.00, 1.42) (-0.67, 1.10) (-0.52, 0.94) 0.00
α3 log(SC) -0.55 (-1.87, 0.82) (-1.52, 0.45) (-1.36, 0.26) 0.01
α∗13 log(depth)×

log(SC)

1.11 (-1.27, 3.39) (-0.64, 2.79) (-0.34, 2.51) 0.03

In light of the fact that field data have large measurement error by nature, the first

explanation is certainly conceivable. If this is the case, perhaps the model cannot

be fully remedied, and the models we have run are still useful. Then, these low

confidence levels should not necessarily lead us to immediately dismiss our models

as being unworthy.

The second explanation bears further investigation. We considered that AMBI

and ITI might be too different to be combined into a single model, but ultimately

rejected this viewpoint. The biologists who sampled the Richibucto data believe

that AMBI and ITI can be modelled together. Additionally, there are no theoretical

statistical objections to combining two different indices in a single LHFI model.

Thus, while we believe that an AMBI and ITI model can work, some components

of the model could perhaps be improved upon. For example, introducing a proper

covariance matrix for the metric effects could improve the statistical significance

of relationships between covariates and health. Recall that we assumed metric

effects to be independent for simplicity as a preliminary tool, particularly since
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implementing such a structured covariance matrix would be difficult in practice.

Or, since AMBI and ITI focus on different aspects of health, it could be that the

covariates measured are relevant to AMBI but less so to ITI. In consultation with

biologists, we might find more appropriate covariates to be regressed upon both the

AMBI and ITI metrics. However, further refinement of our current LHFI models

in either manner is deferred as future work; please see Chapter 5.

4.4 Comparing LHFI-AMBI, LHFI-AMBI+ITI,

AMBI and ITI

A matrix plot of AMBI, ITI, LHFI-AMBI (i.e. LHFI(3.12)), and LHFI-AMBI+ITI

(i.e. LHFI(4.16)) is provided to illustrate the relationships between the two sets of

model-based health indices and AMBI and ITI (Fig. 4.6).

LHFI-AMBI and LHFI-AMBI+ITI are strongly positively correlated with each

other (r = 0.85), and there is a clear linear trend between the two. Both LHFI mod-

els are strongly negatively correlated with AMBI itself (r = −0.81 for both) though

it appears that adding ITI degrades the relationship between LHFI and AMBI, as

the linear relationship with LHFI-AMBI+ITI contains more scatter. While ITI is

essentially uncorrelated with LHFI-AMBI (r = 0.01), it is somewhat correlated

with LHFI-AMBI+ITI (r = 0.44), and an upward trend between ITI and LHFI-

AMBI+ITI is visible. Thus, it appears that the LHFI-AMBI+ITI model may have

managed to incorporate both aspects of health from ITI and AMBI.

In this chapter and the previous, we discussed in detail and at great length the

design and implementation of LHFI models for Richibucto using the AMBI and

ITI metrics. The next and last chapter presents an overall summary of the findings

of this thesis, focussing on general conclusions for the LHFI for estuarine systems,

particularly for Richibucto, and also discusses future work.
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Figure 4.6: Matrix plot of LHFI(3.12), LHFI(4.16), AMBI and ITI; a black ‘◦’

denotes a point in the first block and a grey ‘◦’ denotes a point in the second block
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Chapter 5

Conclusion

5.1 Restatement of Objectives

The objectives of this thesis were to investigate whether the LHFI is applicable to

estuarine systems, since it has to date only been applied to freshwater ecosystems;

to determine the form of the LHFI model if it is applicable; and to assess the health

of the previously unassessed Richibucto system. Accordingly, this thesis described

the method of and motivation behind constructing a latent health factor model

for measuring ecosystem health, and applied this methodology to the estuarine

system in Richibucto, NB using metrics from AMBI and ITI, which are two indices

commonly used by biologists for measuring different aspects of estuarine health.

Using standard statistical modelling methods, the methodology for constructing

a latent health factor model is in many ways an improvement upon the conventional

methods used by biologists for estimating health. Standard statistical practices

allow the LHFI to avoid a great deal of the arbitrariness typically involved in con-

structing conventional indices, and also allow for straightforward model inference

and prediction. As well, the added statistical features of the LHFI do not neces-

sarily detract from its biological worthiness, since the LHFI involves the same data

as the indices and also can require input from scientists in model specification.
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5.2 Conclusions

The models resulting from applying this methodology to Richibucto performed

similarly to each other. Both LHFI-AMBI and LHFI-AMBI+ITI models were able

to make distinctions between health levels at different sites, and also provided

somewhat similar site rankings. While credible intervals for health were narrower

for LHFI-AMBI+ITI than for LHFI-AMBI, the former did not appear to have

a greater ability to distinguish between sites. Thus it was unclear whether an

LHFI based upon both AMBI and ITI is superior to an LHFI based upon only

AMBI. In addition, including covariates in both models through f() appeared to be

advantageous since estimates of the precision of health σH(l) were lower for certain

combinations of covariates, although estimates and credible intervals of health itself

were not affected. The best combinations of covariates for LHFI-AMBI and LHFI-

AMBI+ITI were quite similar: for LHFI-AMBI, we found two models involving

covariates that we felt would be of good use to ecologists: one containing distance,

and the other containing log(depth), salinity, log(SC), log(depth)×log(SC). For

LHFI-AMBI+ITI, the three best models were the same two as for LHFI-AMBI

and a model containing log(depth), log(SC), log(depth)×log(SC).

Overall, we can conclude that the LHFI modelling process is indeed applicable

to estuarine systems and that LHFI-AMBI and LHFI-AMBI+ITI are both ap-

propriate models for Richibucto which are useful for estimating ecosystem health.

Since LHFI-AMBI and LHFI-AMBI+ITI are both highly correlated with AMBI

and LHFI-AMBI+ITI is somewhat correlated with ITI, it appears that both mod-

els are still effective in comparison with the original indices, although we cannot

state whether LHFI is better at estimating health than AMBI and ITI on the

strength of this. Overall, the thesis objectives have largely been achieved.
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5.3 Suggestions for Future Work

Some more specific results of the analyses follow, leading into suggestions for further

work. Confidence levels for coefficients for the LHFI-AMBI+ITI models were quite

low (60-85% for the “best” models), especially when comparing them to levels

for LHFI-AMBI. This indicates that the extra data from ITI metrics helped to

improve the precision of health estimates but weakened the overall relationship

between health and covariates. Since confidence levels for the LHFI-AMBI+ITI

models were low, we suggested several options for improving the models in Chapter

4, with the hope that these changes could clarify relationships between health

and covariates. Firstly, the model could potentially be improved by including a

structured covariance matrix for the metric effects, instead of independent metric

effects as we assumed to keep the preliminary model uncomplicated. However, this

option may not be viable without the addition of more data. As well, implementing

a structured covariance matrix could prove quite difficult in practice. An inverse

Wishart prior is commonly used for unstructured covariance matrices, but imposing

a structure upon the covariance matrix rules out this option. Determining a prior

that will retain the structure of the posterior covariance matrix and that is also

positive definite seems to be a current popular topic of research, and such problems

appear to be addressed on a case-by-case basis. Another suggestion for improving

the LHFI-AMBI+ITI model stems from the possible explanation that the covariates

measured are relevant to AMBI but not necessarily ITI. Consultation with biologists

might lead to finding additional covariates that are more appropriate for ITI, which

could then be modelled along with the original AMBI covariates.

Although the latent health factor model has already provided useful information

on the health of Richibucto, it can be further developed in other ways as well. In the

preceding paragraph, we discussed introducing a structured covariance matrix to

metric effects for LHFI-AMBI+ITI as a potential means of improving relationships

with covariates; even though the LHFI-AMBI model is not prone to the same issues,

we could implement a similar change to it, with the hope of improving an already
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promising model1.

5.3.1 Introducing Additional Regression Layers

As well, since scientists believe in strong associations between some of the covari-

ates, additional levels of regression could be introduced. Given the results of the

analysis on covariates, we could regress salinity upon distance, or regress the vari-

ables of the trivariate (silt clay, sorting, and organic content) upon each other.

Recognizing these relationships between the covariates in the LHFI model could

perhaps improve parameter estimation, and the scientific meaning of the resulting

index.

As an illustration of how such a change would affect the model, consider intro-

ducing a regression of salinity upon distance. This would change the relationships

between health and covariates from as visualized in Fig. 1.1(b) to the more complex

schematic visualized in Fig. 5.1. The equation for health and the form of f() would

accordingly be altered, to perhaps the following:

Hi(l) = α0 + f(α,x∗i(l)) + λl + εi(l) (5.1)

x1i(l) = g(α∗, x5i(l)) + δ1i(l) (5.2)

where x∗i(l) represents xi(l) without salinity, f() is an appropriately chosen regression

of all covariates but salinity with corresponding intercept and regression coefficients

α0 and α∗, g() is an appropriately chosen regression of salinity (x1i(l)) on distance

(x5i(l)) with corresponding regression coefficents α∗, and δ1i(l)’s are independent

and identically distributed errors with mean zero2.

1Note that Chiu et al. (2008) fit LHFI models with unstructured covariance matrices, but these

were poorly estimated, quite likely because there were few sites (18) and many parameters.
2Note that in (5.2) there is no intercept term since inestimability issues could arise between

an intercept here and α0.
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Figure 5.1: Graphical depiction of relationships between health and covariates if

an additional regression of salinity upon distance is introduced, as described in

equations (5.1)-(5.2)

5.4 Prediction of Health for a New Site

Finally, we return to the discussion of site prediction under the LHFI framework

which was first mentioned in Chapter 2. As stated previously, the posterior dis-

tribution provides a simple means of predicting a new site’s health once a model

has been specified and given that measurements of covariates are available. This

capability is one of the major advantages of the LHFI over conventional indices,

as gathering benthic data is time-consuming and expensive. However, it was not

demonstrated with the Richibucto data, as benthic data had been gathered for all

sites under consideration. However, we outline the method of prediction here which

was originally described in Chiu et al. (2008) should the reader consider doing so

in practice.

Let “∗” denote a new site. Then, the predicted health of the new site is calcu-

lated as

Ĥ∗ = E(H∗|Y ,X,x∗) (5.3)
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A single draw of H∗ from the predictive posterior P (H∗|Y ,X,x∗) can be simulated

as follows: generate a Monte Carlo draw of Ω using (2.7), and substitute the

relevant parts of this draw along with x∗ into the equation for health in (2.2). The

predicted health Ĥ∗ can be estimated as the mean of a collection of draws simulated

in this manner. Credible intervals can also be estimated using quantiles of the same

collection of draws.

In summary, this thesis focussed on constructing latent health factor models for

estuarine systems, specifically for the Richibucto estuarine system using metrics

from the two conventional indices AMBI and ITI. Meaningful LHFI models were

found using the AMBI metrics alone, and using the AMBI and ITI metrics in

conjunction. These models were able to distinguish health levels of different sites

at Richibucto, and in fact both sets of models produced somewhat similar rankings

of sites by health level. Several environmental covariates were found to have a

significant impact on health as well, though such relationships were less clear under

the LHFI-AMBI+ITI model than under the LHFI-AMBI model. This matter led to

some suggestions for future development of the LHFI model for estuarine systems,

which were also discussed in detail.
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Appendix A

The Richibucto Data

Table A.1: Replicates and Total Organism Counts

Site Number of Replicates
Total Organism Counts

First Replicate Second Replicate Third Replicate
1 3 136 194 140
2 3 389 449 337
3 2 167 183 n/a
4 3 230 208 205
5 3 198 277 96
6 2 269 336 n/a
7 2 264 391 n/a
8 2 285 357 n/a
9 3 224 210 238
10 3 189 125 103
11 3 223 212 170
12 2 467 214 n/a
13 3 324 337 273
14 3 216 173 193
15 3 454 249 551
16 3 456 430 532
17 3 195 245 288
18 3 89 128 94
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Table A.2: AMBI Group Counts
Group Counts

Site
First Replicate Second replicate Third replicate

I II III IV V I II III IV V I II III IV V
1 2 11 55 61 7 0 17 104 65 8 1 13 69 53 4
2 3 121 109 152 4 8 139 146 156 0 8 108 81 140 0
3 20 9 76 56 6 17 18 88 57 3 n/a
4 9 29 112 79 1 8 23 118 57 2 8 25 96 72 4
5 9 34 27 53 75 8 96 47 86 40 4 33 29 26 4
6 8 39 134 85 3 3 31 213 81 8 n/a
7 15 121 77 50 1 37 163 112 74 5 n/a
8 13 39 125 81 27 32 37 141 98 49 n/a
9 23 63 50 78 10 23 62 62 63 0 16 45 69 102 6
10 19 30 76 58 6 9 21 25 61 9 10 9 23 57 4
11 21 46 68 83 5 17 49 57 77 12 26 23 50 62 9
12 53 116 52 246 0 79 30 82 22 1 n/a
13 31 60 59 126 48 37 65 67 83 85 16 27 58 105 67
14 20 28 82 64 22 20 23 66 54 10 22 34 54 72 11
15 120 45 223 66 0 42 32 142 33 0 146 94 254 55 2
16 91 73 243 46 3 74 70 220 65 1 109 146 217 60 0
17 35 70 36 43 11 56 92 56 38 3 44 96 72 45 31
18 20 25 13 24 7 42 58 4 19 5 25 42 8 11 8

Table A.3: ITI Group Counts
Group Counts

Site
First Replicate Second replicate Third replicate

I II III IV I II III IV I II III IV
1 0 121 8 7 0 177 9 8 0 128 8 4
2 0 378 7 4 3 441 5 0 2 330 5 0
3 19 127 15 6 15 130 35 3 n/a
4 5 191 33 1 1 184 21 2 1 176 24 4
5 0 117 6 75 0 230 7 40 0 89 3 4
6 6 244 16 3 5 314 9 8 n/a
7 1 236 26 1 2 355 29 5 n/a
8 7 225 26 27 16 261 31 49 n/a
9 14 174 26 10 1 185 24 0 7 197 28 6
10 2 161 20 6 8 102 6 9 3 86 10 4
11 6 155 57 5 3 158 39 12 3 113 45 9
12 9 431 27 0 11 146 56 1 n/a
13 32 194 49 49 24 195 33 85 18 160 28 67
14 34 123 37 22 32 108 23 10 24 130 28 11
15 16 325 60 53 27 174 27 21 46 368 100 37
16 48 331 61 16 39 317 44 30 43 386 69 34
17 7 156 21 11 19 191 31 4 14 224 18 32
18 2 72 7 8 7 105 11 5 4 76 6 8
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Table A.4: Environmental Covariates
Site Depth

(m)

Temp

(C◦)

Salinity

(ppt)

Silt-clay

(%)

Mdφ Sorting Organic

Content (%)

Distance

(km)
1 1 15.4 21.2 22.18 2.77 1.13 7.94 0
2 2.9 15.1 22.3 20.76 2.76 1.22 11.66 1.164
3 1.2 15.5 22.4 16.81 2.56 1.23 6.29 1.298
4 1.3 12.7 21.3 13.25 2.53 1.44 5.22 1.731
5 4.5 12.5 23 23.7 2.62 1.41 12.72 2.179
6 1.8 12.5 21.9 13.71 2.39 1.16 5.55 1.686
7 2.9 12.2 23.5 23.21 3.03 1.25 10.09 2.463
8 1.8 12.4 23.6 18.77 2.84 1.12 8.47 2.970
9 1.4 14.7 24.2 20.07 2.6 1.36 6.74 3.433
10 1.5 14.7 24.1 16.89 2.78 1.14 4.65 3.790
11 1.5 15 24.1 16.96 2.39 1.27 7.59 3.358
12 2.5 14.1 22.8 4.85 2.79 0.76 1.92 3.880
13 1.3 14.2 24 14.72 2.51 1.15 6.62 4.119
14 1.4 14.7 25 24.83 2.92 1.25 6.41 3.642
15 3.6 14.7 25.1 3.31 2.61 0.69 1.85 4.179
16 3.7 15.2 25.2 4.34 2.75 0.71 1.92 4.701
17 1.8 14.6 24.4 14.7 2.73 1.11 7.22 5.060
18 1.4 14.7 25.1 11.11 2.67 1.04 6.25 5.448
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Appendix B

Convergence Checks

This appendix discusses steps taken with the LHFI model to ensure convergence

inasmuch as possible. Many of the following methods are popular tools and as such

are facilitated by or built into OpenBUGS.

1. For every LHFI model, multiple chains were run concurrently, each with a

different set of initial values. This often facilitates the exploration of a greater

part of the parameter space, which lessens the chance of converging to a local

solution instead of the target distribution. In addition, the two chains can

be compared to each other; if the chains have converged, they should be

quite similar in behaviour, or provide estimates that differ at the most by a

slight constant offset. This situation occurred when the LHFI was fit to the

Puget Sound Lowlands data (Chiu et al., 2008, 2007): the relative rankings

of health remained the same, though the absolute estimates of health differed

by a small offset between two chains.

2. A visual inspection of the complete trace plot of all variables, that is, a plot

of the sample values versus the iteration number, is often used to give one a

general idea of if and when convergence has been reached, and the length of an

appropriate burn-in. An option to view the trace is available in OpenBUGS.
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3. An inspection of summary statistics, e.g. mean, median, quartiles, etc., for

each variable for each chain is another informal check of convergence, and

also available in OpenBUGS. One can compare the statistics for individual

chains; if the chains have converged, the means of individual chains should be

similar. (Comparing medians may be more appropriate for variables whose

distributions are bound at one end and tend to produce extreme values.) It

is also a good idea to look at the estimate of the Monte Carlo standard error

of the mean, MC error for short. This estimate is an indication of how well

the simulation has run. If the chains have converged, the MC error should be

similar between multiple chains. If the MC error is different among different

chains, it means that the simulation is different to chain, and could indicate

that the chains have not been run long enough.

4. A modified version of the Gelman-Rubin statistic is another commonly used

diagnostic (Spiegelhalter et al., 2007). This statistic determines whether in-

ferences from m chains are similar enough be believed to have converged by

comparing the pooled variance of all m chains to the within-chain variance of

individual chains. OpenBUGS plots the width of the central 80% interval of

the pooled runs, the average width of the 80% intervals stabilize within the

individual runs, and their ratio R. If the chains have converged, the pooled

variance and within-chain variance should both stabilize, and the ratio R

should approach 1.

5. Examining smoothed kernel density estimate plots (also provided by Open-

BUGS) for continuous variables can sometimes reveal non-convergence through

multi-modal posterior densities, or other irregular shapes.

6. Autocorrelation of Markov chains is often of interest, though high autocor-

relation is not necessarily an indication of non-convergence; it only indicates

that a model may be slow to converge. High autocorrelation can also make

it difficult to determine whether a chain has converged. OpenBUGS provides

autocorrelation plots up to lag 100. One way to lower the autocorrelation
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without losing much information is to take only every kth observation for

analysis, as several highly correlated values do not provide much more in-

formation than one value alone, and this will decrease the time and storage

space required as well.
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Appendix C

Hierarchical Centring

With complex hierarchical models involving many parameters, such as our LHFI

models in the Bayesian framework, there frequently exist strong correlations be-

tween parameters, which make MCMC methods slow to converge. MCMC meth-

ods that update the parameter space one parameter at a time, such as the Gibbs

Sampler, are often the most practical option for models with high dimensional pa-

rameter spaces (Dey et al., 2000). With these methods, high correlation between

parameters implies that each successive step of the MCMC is unlikely to be far

from the previous, and hence a long time is required to explore the parameter

space fully. The parameterisation of a complex model therefore can greatly affect

the correlation between parameters and accordingly the convergence time.

Gelfand et al. (1995) propose a technique called hierarchical centring to repa-

rameterise models and mitigate mixing problems. This technique roughly entails

splitting the model into as many levels as possible where each level has as few pa-

rameters as possible. As well, our experience is such that linearity of parameter

at each level of the hierarchy would be ideal; such a parameter can thus be typi-

cally modelled with a normal distribution or an approximately normal distribution.

Gelfand et al. (1995) argue that hierarchical centring will often result in “better

behaviour of the Markov chain Monte Carlo algorithm”. Hierarchical centring does

not necessarily provide an optimal parameterisation, and there are no set rules for

76



carrying out this technique. Often, experimenting with several parameterisations

is necessary before a useful one is found (Dey et al., 2000).

As a simple example of hierarchical centring, consider the model Yij = µ+αi+εij

where αi and εij are random effects such that αi
iid∼ N(0, σ2

α) and εij
iid∼ N(0, σ2). A

fully hierarchically centred parameterisation of this model can be constructed by

defining µi = µ + αi, i.e. Yij = µi + εij where µi
iid∼ N(µ, σ2

α). The centring of the

model is evident in diagram representations of these parameterisations (Fig. C.1).

The LHFI-AMBI models were similarly hierarchically centred, since Markov

chains from the original parameterisations in Chapter 3 mixed extremely slowly.

Several partial hierarchical centring parameterisations were attempted as full cen-

tring was difficult with such a complex model; the final parameterisation chosen

was the one that mixed the quickest. For Model 3.8 (the version with covariates)

this parameterisation was achieved by defining new parameters:
∼
H i(l)= Hi(l) − α0

ψs = α0 + θs
bj(s) = βj(s) + ψs

(C.1)

The parameterisation was thus:

νijls =
∼
H i(l) +bj(s)[ ∼

H i(l) |λl,α,x(l), σ
2
H

]
ind∼ N(f(α,x(l)) + λl, σ

2
H(l)) (C.2)[

bj(s)|ψs, σ2
j(s)

] ind∼ N(ψs, σ
2
j(s))

Note that α0 is no longer relevant by employing the above definition of
∼
H i(l). Dia-

gram representations of the original and centred parameterisations are in Fig. C.2,

and reveal the centredness of the new parameterisation. The other LHFI-AMBI

models were centred in the same manner.

The LHFI-AMBI+ITI models were also partially hierarchically centred in much

the same way. For Model 4.4, we defined:
∼
H i(l)= Hi(l) − α0

φms = α0 + γm + θs + ξms
bj(ms) = βj(ms) + α0 = φms + ωj(ms)

(C.3)
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The centred parameterisation was thus:

νijlms =
∼
H i(l) +bj(ms) (C.4)[ ∼

H i(l) |α,x(l), λl, σ
2
H

]
ind∼ N(f(α,x(l)) + λl, σ

2
H(l)) (C.5)[

bj(1s)|φ1s, σ
2
β(1)

] ind∼ N(φ1s, σ
2
β(1)) (C.6)[

bj(2s)|φ2s, σ
2
j(2s)

] ind∼ N(φ2s, σ
2
j(2s)) (C.7)

Diagram representations of the original and centred parameterisations are in Fig. C.3.

Yij

µ σα
2 σ2

(a)

Yij

µi

µ σα
2

σ2

(b)

Figure C.1: Diagram representations of (a) original and (b) hierarchically centred

parameterisations of Yij = µ+ αi + εij
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Yijkls

νijls

Hi(l) ßj(s) θs

α0 α σH (l)
2 λl σ j(s)

2

(a)

Yijkls

νijls

 
Hi(l) bj(s)

α σH (l)
2 ψ s

α0 θs

σ j(s)
2

(b)

Figure C.2: Diagram representations of (a) original and (b) hierarchically centred

parameterisations of Model 3.8
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Yijklms

νijlms

Hi(l) ßj(ms)

α0 α σH (l)
2 λl γ m θs ξms σβ(1)

2 /σ j(2s)
2

(a)

Yijklms

νijlms

 
Hi(l) bj(ms)

α σH (l)
2 λl φms

γ m α0 θs ξms

σβ(1)
2 /σ j(2s)

2

(b)

Figure C.3: Diagram representations of (a) original and (b) hierarchically centred

parameterisations of Model 4.4
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