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Abstract

In non-rotating fluids, boundary-layer separation occurs when the nearly inviscid flow
just outside a viscous boundary-layer experiences an appreciable deceleration due to a
region of adverse pressure gradient. The fluid ceases to flow along the boundary due to a
flow recirculation region close to the boundary. The flow is then said to be “detached.”

In recent decades, attention has shifted to the study of boundary-layer separation in
a rotating reference frame due to its significance in Geophysical Fluid Dynamics (GFD).
Since the Earth is a rotating sphere, the so-called β-plane approximation f = f0 + βy is
often used to account for the inherent meridional variation of the Coriolis parameter, f ,
while still solving the governing equations on a plane. Numerical simulations of currents
on the β-plane have been useful in understanding ocean currents such as the Gulf Stream,
the Brazil Current, and the Antarctic Circumpolar Current to name a few.

In this thesis, we first consider the problem of prograde flow past a cylindrical obstacle
on the β-plane. The problem is governed by the barotropic vorticity equation and is
solved using a numerical method that is a combination of a finite difference method and
a spectral method. A modified form of the β-plane approximation is proposed to avoid
computational difficulties. Results are given and discussed for flow past a circular cylinder
at selected Reynolds numbers (Re) and non-dimensional β-parameters (β̂). Results are
then given and discussed for flow past an elliptic cylinder of a fixed aspect ratio (r = 0.2)
and at two angles of inclination (90◦, 15◦) at selected Re and β̂. In general, it is found
that the β-effect acts to suppress boundary-layer separation and to allow Rossby waves
to form in the exterior flow field. In the asymmetrical case of an inclined elliptic cylinder,
the β-effect was found to constrain the region of vortex shedding to a small region near
the trailing edge of the cylinder. The shed vortices were found to propagate around
the trailing edge instead of in the expected downstream direction, as observed in the
non-rotating case.

The second problem considered in this thesis is the separation of western boundary
currents from a curved coastline. This problem is also governed by the barotropic vorticity
equation, and it is solved on an idealized model domain suitable for investigating the ef-
fects that boundary curvature has on the tendency of a boundary current to separate. The
numerical method employed is a two-dimensional Chebyshev spectral collocation method
and yields high-order accuracy that helps to better resolve the boundary-layer dynamics
in comparison to low-order methods. Results are given for a selection of boundary curva-
tures, non-dimensional β-parameters (β̂), Reynolds numbers (Re), and Munk Numbers
(Mu). In general, it is found than an increase in β̂ will act to suppress boundary-layer
separation. However, a sufficiently sharp obstacle can overcome the β-effect and force
the boundary current to separate regardless of the value of β̂. It is also found that in the
inertial limit (small Mu, large Re) the flow region to the east of the primary boundary
current is dominated by strong wave interactions and large eddies which form as a result
of shear instabilities. In an interesting case of the inertial limit, strong waves were found
to interact with the separation region, causing it to expand and propagate to the east as
a large eddy. This idealized the mechanism by which western boundary currents such as
the Gulf Stream generate eddies in the world’s oceans.
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Chapter 1

Introduction

1.1 Problem Overview

Boundary-layer separation which occurs when the flow just outside a viscous boundary-
layer undergoes an appreciable deceleration that can often be associated with an adverse
pressure gradient. As evident by its name, the result of boundary-layer separation is that
the fluid no longer flows along the boundary (“attached”), but deviates from its original
path due to a region of flow recirculation close to the boundary (“detached”). Batchelor
[4] states that the separation process occurs when the advection of vorticity away from
a point is greater than the diffusion towards that point. This is consistent with the em-
pirical observations that a larger Re promotes separation, since a larger Re implies the
non-linear advection terms become relatively more important in the governing equations.

The problem of boundary-layer separation in non-rotating fluids is a classical problem
that is well-documented in the literature. For a rotating fluid, the topic of boundary-layer
separation has only received attention in recent decades. The sub-case of rotating fluids
that includes the effects of differential rotation, as in a β-plane model, has only received
attention very recently.

The separation process is discussed in the classical context by Marshall and Tansley
[18] and Munday [22] who cite several older works in the literature. The works they cite
include a popular review by Smith [33] on the modern “triple-deck theory” of boundary-
layer separation which will be outlined in the literature review (section 1.2).

Munday [22] mentions that although the terms “flow deceleration” and “adverse pres-
sure gradient” are often used interchangeably, they are only equivalent in the inviscid
case. Furthermore, Smith [33] demonstrates that the fundamental ingredient to induce
boundary-layer separation is a flow deceleration and not an adverse pressure gradient.

The classical paradigm for visualizing boundary-layer separation is viscous flow past
a cylinder. Schlitchting [32] and Zdravkovich [40,41] attempt to quantify the extent to
which a flow past a cylinder separates. It is found that in the non-rotating case, the most
important non-dimensional parameter that drives the extent of the separation is the
Reynolds number (Re). This non-dimensional parameter measures the ratio of inertial
to viscous forces. It is generally found that as Re increases, the separation present in the
flow becomes more dramatic.
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In chapter 3, a model is derived to study boundary-layer separation for flows past
cylindrical obstacles on the β-plane. Two cylindrical geometries are considered: a circular
geometry, and an elliptical geometry. Our study of elliptic cylinders in the rotating frame
is, to the best of our knowledge, the first of its kind. The model considered is a variation
of the so-called β-plane approximation to encompass the effects of differential rotation
that is inherent to the Coriolis effect. The non-dimensional parameter that measures the
strength of the differential rotation is the non-dimensional β parameter β̂. It can also be
thought of as a ratio of the rotational forces to inertial forces and thus is similar to an
inverse Rossby number, Ro.

The numerical method used in chapter 3 invokes a scheme that is a combination of a
spectral method and a finite difference method. Similar numerical methods were employed
by Badr et. al. [3], Collins and Dennis [7], and Badr and Dennis [2] for unsteady flow past
cylindrical obstacles in the non-rotating frame. The combination of a spectral method
with a finite difference method ensures a high-level of spatial accuracy with a relatively
small computational cost. It is found that the β effect acts to suppress the extent of
boundary-layer separation. This result, as well as other phenomenological results, are
found to be consistent with those of Tansley and Marshall [36].

In chapter 4, a model is derived to study the separation of western boundary currents
from a curved coastline. The set-up of the flow is the same as that used by Munday and
Marshall [23], and the equations that are solved are the same as those solved in chapter 3:
the streamfunction/vorticity formulation of the barotropic vorticity equation. However,
a non-dimensionalization more suited for western boundary current dynamics is used
which introduces a third dimensionless parameter Mu, the “Munk number” of Munday
and Marshall [23]. Although there are three non-dimensional parameters in chapter 4
(Re, β̂, Mu), it is important to note that only two of them are linearly independent.

The numerical methods presented in chapter 4 use a Chebyshev spectral collocation
method. We believe this is the first study of western boundary current separation to use
a spectral method in the framework of a viscous boundary-layer. The spectral method
yields high-order accuracy that helps to better resolve the boundary-layer dynamics in
comparison to the finite difference method or the finite element method. Similarly, an
increase in β̂ promotes the flow to stay attached. Additionally, it is observed that a
western boundary with a large enough curvature can instigate separation, regardless of
the strength of the β-effect. Both these observations agree with what was observed by
Munday and Marshall [23].

In his thesis, Munday [22] modeled boundary current separation with both a finite dif-
ference scheme with a piece-wise linear western boundary and the finite element method.
He found that his results depended to some degree on the choice of numerical scheme.
In particular, he found that in cases where his finite difference scheme reported small to
moderate amounts of separation that the finite element method widely reported attach-
ment. The results of our spectral method in chapter 4 also report attachment in many
more instances than Munday and Marshall’s [23] finite difference scheme. Thus, it is clear
that the choice of numerical method plays a key role in the ensuing simulation dynamics
and is an area worthy of further study.

Chapter 5 gives a complete summary of the results found in chapters 3 and 4 and
draws conclusions based on these results.
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In the following section, a literature review is given to outline the findings of previous
works which studied boundary-layer separation in the context of a rotating reference
frame.

1.2 Literature Review

Perhaps the most important recent theoretical contribution to the problem of boundary-
layer separation is the modern “triple deck theory,” as reviewed extensively by Smith [33].
Triple-deck theory is a means to provide a flow solution when the classical “attached flow
strategy” breaks down due to the Goldstein (pressure) singularity that is coincident with
the onset of boundary-layer separation. The underlying idea of triple-deck theory is to
decompose the flow into three “decks” that are nested asymptotic boundary-layers. The
first two decks lie within the viscous boundary-layer, and the third deck lies outside it.
Inside the third deck an unknown displacement drives an unknown pressure gradient that,
in turn, drives the dynamics of the deck nearest the surface. Triple-deck theory readily
accommodates a detached flow paradigm since flow separation is built into the structure
of the triple-deck.

Among the earliest studies of boundary-layer separation for flow past a cylinder in a
rotating frame was the analytical study of Walker and Stewartson [39] who considered flow
past a cylinder between two horizontal plates in a frame rotating with some constant rate
Ω (hence, on the f -plane). They used asymptotic expansions to argue that a separation
criterion must depend on Re and the Ekman number (Ek), a non-dimensional number
number which gives the ratio between viscous and rotational forces. An extension of
Walker and Stewartson’s work was performed by Brevdo and Merkine [5], who studied
boundary layer separation of a two-layer rotating flow on the f -plane using both analytical
and numerical techniques. They found that the existence of a downstream separation
region corresponded to an increase in inertial effects, which they measured by the non-
dimensional ratio Ro/

√
Ek. They also found that the inclusion of density stratification

to the problem allowed for the existence of a fully-attached boundary-layer containing a
flow reversal region, a set of dynamics that is truly exceptional.

A Notable work that includes the effects of differential rotation is Merkine’s analytical
study [21] that considered flow past a circular cylinder for both prograde (eastward)
and retrograde (westward) flows. He found that the β effect inhibits boundary-layer
separation for prograde flows by shifting the region of adverse pressure gradient towards
the rear stagnation point. However, the β-plane exerts no influence on the structure
of the boundary-layer for retrograde flows. Matsuura [19] extended Merkine’s study by
considering the effects of the top and bottom Ekman layers. He found that the Ekman
friction alleviates the β-effect on the exterior flow and hence dampens out Rossby waves
which can manifest downstream of the cylinder. However, the E

1/4
k layer causes the

boundary-layer thickness at the cylinder’s surface to be thin, and thus delays separation.
Thus, Ekman friction and the β-effect interact in a way that is not straightforward.

A more recent numerical study by Tansley and Marshall [36] apply the paradigm of
flow past a circular cylinder on the β-plane to understand the separation of the Gulf
Stream at Cape Hatteras as well as the interaction between the Antarctic Circumpolar
Current and various topographical features. Their numerical method utilized a finite

3



difference scheme on a channel of finite width with a piece-wise linear approximation for
the cylindrical obstacle. They found that for a prograde flow to separate, it was necessary
to have both a sufficiently large Reynolds number Re and a moderate β̂ parameter. In
addition, they found that for large Re the Rossby waves break downstream of the cylinder
leading to the formation of separated zonal jets.

In a brief but informative contribution, Garrett [13] gives a detailed discussion of the
concept of flow separation within the context of geophysical fluid dynamics, stressing the
importance of shallow water and bottom friction effects. He remarks that in some in-
stances, it is unclear as to whether flow separation is the result of a viscous boundary-layer,
or if it is an inviscid response to topographical features. Indeed, Stern and Whitehead [35]
considered the inviscid effect of a boundary jet reaching an abrupt change in boundary
angle θ while flowing along a straight wall. Using a piece-wise constant vorticity model
and contour dynamics, they were able to show that for a given ratio s of offshore vorticity
to inshore vorticity, the jet would separate if θ exceeded a critical angle. For this inviscid
study, they remarked that rotation did not enter into their theory and was used in their
experiments to force the jet to remain two-dimensional and non-turbulent.

Da Silveira et. al. [9] used a piece-wise constant vorticity model similar to the one
employed by Stern and Whitehead [35] in their study of the dynamics of separated western
boundary currents. Their model made the assumption of a northward boundary jet
colliding with a southward jet along a straight western boundary at a predetermined
separation latitude. The coastal current convergence then forms a separated zonal jet in
the ocean interior. They could only include the β-plane approximation in a crude sense
that satisfied the requirement of piece-wise constant potential vorticity. They found
that in the case of strong coastal current asymmetry, a retroflection type of separation
occurred. While in the case of nearly symmetrical coastal currents, a smoother separation,
like that of the Gulf Stream, occurred.

In subsequent work, Marshall and Tansley [18] stress the importance of boundary
curvature as a contributing factor to flow separation on the β-plane. By area-integrating
the governing equations, they show that there is a critical value of coastline curvature
beyond which separation of a boundary jet is possible. The formula reads

r <

(
U

β∗

) 1
2

, (1.1)

where r is the radius of curvature of the coastline, U is the speed of the boundary current,
and β∗ is the gradient of the Coriolis parameter in the downstream direction.

In his thesis, Munday [22] attempted to validate this formula by using the results of
his numerical model of boundary currents. Unfortunately, he was unable to demonstrate
that the inequality held in a strict sense.

The results of Munday [22] and Munday and Marshall [23] reported that the β-effect
could only act to accelerate a boundary current, and hence tend to keep it attached. They
also found that the effect of the western boundary’s curvature could either accelerate or
decelerate the flow. Thus a western boundary with a sufficiently high degree of curvature
can always provoke a boundary current to separate, regardless of the β-effect.

This concludes the literature review and hence concludes chapter 1. Chapter 2 derives
the barotropic vorticity equation which governs both of the problems considered in this
thesis.
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Chapter 2

The Governing Equations

We begin by assuming we have an incompressible (Boussinesq), viscous fluid in a
rotating frame with no bottom friction. For these set of assumptions the Navier-Stokes
equations, as in Kundu [16] and Pedlosky [26] read

∂~u

∂t
+ (~u · ∇) ~u+ 2

(
~Ω× ~u

)
= −∇p

ρ
+ ~g + ν∇2~u , (2.1)

∇ · ~u = 0 , (2.2)

which correspond to the momentum balance and conservation of mass, respectively. Here,
~u is the fluid velocity as observed in the rotating frame, ~Ω is the angular velocity of the
rotating frame, p is the fluid pressure, ρ is the density of the fluid, ~g is the effective
acceleration due to gravity, and ν is the kinematic viscosity of the fluid.

If we apply the curl to (2.1) and identities from vector calculus, we obtain the evolution
equation for the relative vorticity ~ω = ∇× ~u:

∂~ω

∂t
+ (~u · ∇)

(
~ω + 2~Ω

)
=
(
~ω + 2~Ω

)
· ∇~u+

1
ρ2
∇ρ×∇p+ ν∇2~ω . (2.3)

Next, we assume that the free surface and bottom boundary may be approximated
by a rigid lid and a flat bottom, respectively. We also assume two-dimensional dynamics
~u = (u(x, y), v(x, y), 0) for all times considered. The two-dimensional assumption may be
justified on the grounds that the rotation is strong enough so that the flow is nearly in
geostrophic balance (ie. quasi-geostrophy). We further simplify our model by disregarding
the top and bottom Ekman layers. Finally, we assume that the fluid is homogeneous
(ρ = ρ0) so that baroclinic effects can be ignored.

Choosing the axis of rotation to lie along the z-axis, i.e. 2~Ω = (0, 0, f) for some
ambient vorticity f , we obtain that the vortex stretching/tilting term is identically zero.
This gives us the barotropic vorticity equation

∂ζ

∂t
+ (~u · ∇) (ζ + f) = ν∇2ζ , (2.4)

where ζ = ∂v
∂x −

∂u
∂y is the scalar vorticity observed in the rotating frame.

Since we are dealing with the surface of the Earth as our rotating frame, we define
the ambient vorticity f as the Coriolis frequency (parameter) f = 2ΩE sin θ, where ΩE
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is the Earth’s rotation rate, and θ ≈ y/R is the latitude of interest, where R is the
radius of the Earth. Here, y measures the departure from θ = 0. We have assumed
f to vary only in the meridional (or y) direction. We proceed by making the familiar
β-plane approximation used in atmospheric and oceanic dynamics (see Kundu [16] for a
discussion) by expanding f in a Taylor series about a reference latitude θ = θ0

f = 2ΩE sin θ ≈ 2ΩE sin θ0 +
(
df

dθ

)
θ0

(θ − θ0) (2.5)

≈ 2ΩE sin θ0 +
(
df

dθ

)
θ0

y

R
, (2.6)

where y measures the departure from θ0. Equation (2.6) can be written in the form

f ≈ f0 + βy , (2.7)

where β is defined by

β ≡ 1
R

(
df

dθ

)
θ0

=
2ΩE cos θ0

R
, (2.8)

and f0 = 2ΩE sin θ0 is the Coriolis frequency at θ0. The β-plane approximation is valid
for small departures from θ0 over which the effect of the curvature of the Earth may be
neglected.

Since the fluid is 2D and incompressible, it follows from vector calculus that, under
some light technical restrictions, there exists a streamfunction ψ with u ≡ −∂ψ

∂y and

v ≡ ∂ψ
∂x . Hence, we have reached the final form of the dimensional barotropic vorticity

equation that we will consider

∂ζ

∂t
+ J (ψ, ζ) + β

∂ψ

∂x
= ν∇2ζ , (2.9)

where J(a, b) = ∂a
∂x

∂b
∂y −

∂a
∂y

∂b
∂x is the Jacobian operator. This equation can then form a

closed system of two unknown functions (ψ, ζ) when coupled with the definition of relative
vorticity

ζ = ∇2ψ . (2.10)

Upon inspecting (2.9)-(2.10), we notice that the value of the Coriolis frequency f0 has
dropped entirely out of the equations. This means that any of the results discussed in this
thesis are independent of f0 and hence independent of the dimensionless Rossby number.

Both of the physical scenarios addressed in this thesis are governed by the system
of equations (2.9) and (2.10). However, we will see in the subsequent sections that
the non-dimensional forms of these equations will be different for each physical scenario
considered. Moreover, the numerics used to solve the system vary a great deal, although
they are both spectral methods by nature.
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Chapter 3

Simulating Flows Past Cylinders
on the β-plane

3.1 Problem Set-Up

We assume we have either a circular cylinder of radius a or an elliptic cylinder inclined
with angle η above the horizontal, with semi-major axis length a and semi-minor axis
length b, of infinite extent immersed in a fluid on the β-plane with some fixed value of
β. We assume a uniform eastward background flow of speed U0 that starts impulsively
at time t = 0.

Figure 3.1: The flow configuration

It is important to notice that the Cartesian coordinate frame (x, y) we are using is not
the absolute coordinate frame of the Earth as discussed in chapter 2, but rather it is fixed
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to lie along the axes of the cylinder. For the remainder of this chapter, we will denote the
absolute coordinate frame of the Earth as (x′, y′). However, the two coordinate frames
can be related by the rotation[

x′

y′

]
=
[

cos η − sin η
sin η cos η

] [
x
y

]
. (3.1)

Similarly, the velocity (u, v) can be related to its absolute counterpart (u′, v′) by[
u′

v′

]
=
[

cos η − sin η
sin η cos η

] [
u
v

]
. (3.2)

The streamfunction, or Poisson, equation (2.10) is the definition of relative vorticity, and
thus is invariant under this change of coordinates. However, in terms of the coordinate
frame fixed to the cylinder, the rotating barotropic vorticity equation (2.9) becomes

∂ζ

∂t
+ J (ψ, ζ) + βv′ = ν∇2ζ . (3.3)

Here we have taken into account the fact that the β effect acts purely in the meridional
direction. Rewriting v′ in terms of (u, v) =

(
−∂ψ
∂y ,

∂ψ
∂x

)
gives

∂ζ

∂t
+ J (ψ, ζ) + β

(
cos η

∂ψ

∂x
− sin η

∂ψ

∂y

)
= ν∇2ζ . (3.4)

One of the main goals of this thesis is to investigate the effect that the curvature
of a boundary has on boundary-layer separation. Thus, in later sections results will be
given for both circular cylinders (constant curvature), and elliptical cylinders (spatially-
dependent curvature).

To generalize our discussion we will henceforth assume that the cylinder is elliptical.
However, we remark to the reader that analogous versions of the non-dimensionalization,
mapping, and numerical solution procedure may be derived for the circular geometry
with no added difficulty.

3.2 Non-Dimensionalization

We begin by suitably non-dimensionalizing the equations (3.4) and (2.10) for the
problem set-up described in the above section. The non-dimensionalization is the same
as that given by Rohlf and D’Alessio [30] with an added non-dimensional parameter
corresponding to the β parameter.

First, the non-dimensional spatial coordinates are given by choosing the cylinder’s
semi-major axis length as the length scale (x∗, y∗) = (x, y)/a. The non-dimensional
streamfunction and vorticity are given by ψ∗ = ψ/aU0 and ζ∗ = aζ/U0. The dimension-
less time is given by the scaling t∗ = U0t/a. Plugging these dimensionless variables into
(3.4) and (2.10) gives

U0

a2

(
∂ζ∗

∂t∗
+ J∗ (ψ∗, ζ∗)

)
+ β

(
cos η

∂ψ∗

∂x∗
− sin η

∂ψ∗

∂y∗

)
=

ν

a3
∇∗2ζ , (3.5)

ζ∗ = ∇∗2ψ∗ , (3.6)
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where the derivatives in ∇∗ and J∗ are with respect to the dimensionless spatial vari-
ables. We comment that although the length and velocity scales immediately canceled
out in (3.6), we were not as lucky with (3.5). We must form dimensionless groupings
of dimensional parameters that will in turn give us the dimensionless parameters of the
problem. We divide (3.5) by U0/a

2 and drop *’s for notational convenience. We now
have the dimensionless version of (2.9)-(2.10)

∂ζ

∂t
+ J (ψ, ζ) + β̂

(
cos η

∂ψ

∂x
− sin η

∂ψ

∂y

)
=

2
Re
∇2ζ , (3.7)

ζ = ∇2ψ , (3.8)

where β̂ = a2β/U0 and Re = 2aU0/ν is the Reynolds number. The problem is now
completely characterized by the dimensionless parameters Re and β̂. Historically, the
Reynolds number is defined in terms of the cylinder’s major axis length 2a and not the
semi-major axis length a. To account for this, a factor of 2 has been introduced to the
right-hand side of (3.7).

Due to the fact that it is very difficult to solve or even formulate boundary conditions
for (3.7)–(3.8) for our problem, we must change to a set of coordinates that are more
suited to handle the geometry. This issue is discussed in the following section.

3.3 Mapping

We proceed by switching from the Cartesian coordinates (x, y) to the modified polar
coordinates (ξ, θ). The coordinates may be obtained by the conformal mapping

x+ iy = cosh [(ξ + ξ0) + iθ] , (3.9)

where tanh ξ0 = b/a. This conformal mapping maps the infinite region outside of the
cylinder to the semi-infinite rectangular strip [0,∞) × [0, 2π] as shown in Figure 3.2. It
is also useful to define the metric of the mapping

M =

√
1
2

(cosh [2 (ξ + ξ0)]− cos (2θ)) . (3.10)

For completeness, we also give the conformal mapping for the circular geometry

x+ iy = eξ+iθ . (3.11)

The metric of (3.11) is given by
M = eξ . (3.12)

In terms of modified polar coordinates, the governing equations (3.7) and (3.8) become

M2∂ζ

∂t
− ∂ψ

∂θ

∂ζ

∂ξ
+
∂ψ

∂ξ

∂ζ

∂θ
+

β̂
[
(sinh (ξ + ξ0) cos η cos θ − cosh (ξ + ξ0) sin η sin θ)

∂ψ

∂ξ

−(cosh (ξ + ξ0) cos η sin θ + sinh (ξ + ξ0) sin η cos θ)
∂ψ

∂θ

]
=

2
Re

(∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
, (3.13)
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xy

θ

2π

0 ξ

x+ iy = cosh [(ξ + ξ0) + iθ]

Figure 2.1: The conformal transformation

where tanh ξ0 = r, and r = a
b

is the ratio of the semi-minor to semi-major axes of

the ellipse.

This choice of the constant ξ0 is such that the contour ξ = 0 will coincide with

the surface of the cylinder. In terms of the coordinates (ξ, θ), the domain is confined

to the semi-infinite rectangular strip ξ ≥ 0, 0 ≤ θ ≤ 2π, (see figure 2.1). In the

above figure, θ = 0 and θ = π correspond to the leading and trailing tips of the

cylinder respectively.

This transformation has been used in several other works, including D’Alessio

[4] and Saunders [15].

Recalling that:

coshx =
ex + e−x

2

Figure 3.2: Illustration of the conformal mapping to modified polar coordinates.

M2ζ =
∂2ψ

∂ξ2
+
∂2ψ

∂θ2
. (3.14)

Although this new form of the governing equations comes with some non-constant coef-
ficients, the reader should immediately see the added benefits. For one, the introduction
of the periodic variable θ means that one of the dimensions can be solved with a Fourier
method. Moreover, the prescription of boundary conditions now involves only one vari-
able, ξ.

In the next subsection, we will see which boundary conditions are imposed on (3.13)–
(3.14) to form a physically well-posed problem.

3.4 Boundary Conditions and Integral Condition Reformu-
lation

First, we state the choice of boundary conditions used to formulate the problem.
Then we reformulate these boundary conditions in terms of integral conditions for later
computational ease. A similar formulation for uniform shear flows past rotating circular
cylinders can be found in Rohlf and D’Alessio [30].

The streamfunction ψ is subject to the usual impermeability and no-slip conditions

ψ = 0 on ξ = 0 , (3.15)
∂ψ

∂ξ
= 0 on ξ = 0 , (3.16)

on the cylinder’s surface. In the far-field we have

ψ → −1
2
eξ0+ξ sin(θ + η) as ξ →∞ , (3.17)

ζ → 0 as ξ →∞ , (3.18)
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which correspond to uniform flow in the far-field and zero vorticity. In the azimuthal
direction, ψ and ζ also satisfy the periodicity conditions

ψ(ξ, θ, t) = ψ(ξ, θ + 2π, t) , (3.19)
ζ(ξ, θ, t) = ζ(ξ, θ + 2π, t) . (3.20)

We now notice that there are three boundary conditions on the streamfunction ψ,
but there is only one on ζ. Although the problem is physically well-posed, it can be very
difficult to handle numerically. To see this, the reader should ask how the vorticity equa-
tion might be time-stepped without any explicit boundary conditions on the cylinder’s
surface.

This numerical difficulty has been reviewed extensively in the literature and many
techniques are available to solve it. The technique used here is to reformulate the problem
in terms of integral conditions. It has been invoked previously by Badr and Dennis
[2] in their study of flows past translating and rotating circular cylinders, and a good
introduction to the use of integral constraints for solving the Navier-Stokes equations is
given by Dennis and Quartapelle [11].

We proceed by recalling Green’s second identity of vector calculus, which states that
for any two functions g, h ∈ C2 on D ⊂ R2∫ ∫

D

(
g∇2h− h∇2g

)
dxdy =

∮
∂D

(
g
∂h

∂n
− h∂g

∂n

)
dS , (3.21)

where ∂
∂n refers to the normal derivative. If we let g = ψ and let h be given by the

harmonic functions e−nξ sin(nθ) and e−nξ cos(nθ), it can be shown that the vorticity ζ
satisfies ∫ ∞

0

∫ 2π

0
e−nξM2ζ sin (nθ)dθdξ = −πeξ0 cos ηδ1,n n = 1, 2, · · · , (3.22)∫ ∞

0

∫ 2π

0
e−nξM2ζ cos (nθ)dθdξ = −πeξ0 sin ηδ1,n n = 0, 1, · · · , (3.23)

where δi,n is the Kronecker delta given by

δi,n =
{

1 if n = i,
0 if n 6= i.

(3.24)

In the following sections we will see how these integral constraints can be used to find
an analytical expression for an initial solution to the problem. In addition, we will see
how these global constraints can be incorporated into a numerical method.

3.5 Boundary-Layer Transformation

Since the fluid flow is started impulsively from rest at time t = 0, a thin boundary
layer will encompass the cylinder. To better resolve this singular behaviour we follow
the convention adopted in the studies [7] and [34] and introduce the boundary-layer
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Figure 3.3: Illustration of the expanding computational grid.

transformation z = ξ/λ, where λ =
√

8t
Re is a measure of the boundary-layer thickness.

This change of variables allows the computational grid to grow as time progresses as
illustrated in Figure 3.3.

We introduce the scaled streamfunction and vorticity

Ψ =
ψ

λ
, ω = λζ . (3.25)

Under the boundary-layer transformation, (3.13) and (3.14) become

1
M2

∂2ω

∂z2
+ 2z

∂ω

∂z
+ 2ω = 4t

∂ω

∂t
− λ2

M2

∂2ω

∂θ2
− 4t
M2

(
∂Ψ
∂θ

∂ω

∂z
− ∂Ψ
∂z

∂ω

∂θ

)
+

4λβ̂t
M2

[
(sinh (λz + ξ0) cos η cos θ − cosh (λz + ξ0) sin η sin θ)

∂Ψ
∂z

−λ (cosh (λz + ξ0) cos η sin θ + sinh (λz + ξ0) sin η cos θ)
∂Ψ
∂θ

]
, (3.26)

∂2Ψ
∂z2

+ λ2∂
2Ψ
∂θ2

= M2ω . (3.27)

In boundary-layer coordinates, the boundary conditions (3.15)–(3.18) become

Ψ = 0 on z = 0 , (3.28)
∂Ψ
∂z

= 0 on z = 0 , (3.29)

Ψ→ − 1
2λ

eξ0+λz sin(θ + η) as z →∞ , (3.30)

ω → 0 as z →∞ , (3.31)
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and the integral conditions (3.22) and (3.23) become∫ ∞

0

∫ 2π

0
e−nλzM2ω sin (nθ)dθdz = −πeξ0 cos ηδ1,n n = 1, 2, · · · , (3.32)∫ ∞

0

∫ 2π

0
e−nλzM2ω cos (nθ)dθdz = −πeξ0 sin ηδ1,n n = 0, 1, · · · . (3.33)

The equations are now in a form which is suited to handle the small time behaviour of
the flow. It will also be shown that an initial solution can be readily obtained from the
boundary-layer equations (3.26) and (3.27).

For the purposes of computation, it is noteworthy that once the boundary layer has
thickened appreciably the switch can be made back to physical coordinates (ξ,θ) and the
equations (3.13) and (3.14) can be solved with a numerical scheme similar to the one
discussed in section 3.7.

3.6 Initial Solution

In order to evolve the solution in time, initial conditions (Ψ0,ω0) are required. Setting
t = 0 and hence λ = 0 in the boundary-layer equations (3.26) and (3.27) we obtain

1
M2

0

∂2ω0

∂z2
+ 2z

∂ω0

∂z
+ 2ω0 = 0 , (3.34)

∂2Ψ0

∂z2
= M2

0ω0 , (3.35)

where
M2

0 (θ) =
1
2
(cosh(2ξ0)− cos(2θ)) . (3.36)

Here, we notice that equation (3.34) is a second order ordinary differential equation in
terms of z. However, instead of unknown constants we will have unknown functions of θ,
A(θ) and B(θ).

Equation (3.34) can be put into a more familiar form by the change of variables
s = M0z,

∂2ω0

∂s2
+ 2s

∂ω0

∂s
+ 2ω0 = 0 . (3.37)

The solution to (3.37) is well-known and is given by

ω0(s, θ) = A(θ)e−s
2
+B(θ)e−s

2

∫ s

0
eŝ

2
dŝ . (3.38)

If we apply the vorticity far-field condition ω0 → 0 as s → ∞, using l’Hôpital’s rule we
see that

lims→∞ω0 = lims→∞
B(θ)

∫ s
0 eŝ

2
dŝ

es2
= lims→∞

B(θ)es
2

2ses2
= lims→∞

B(θ)
2s

= 0 . (3.39)
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Hence, ω0 ∼ B(θ)
2s as s → ∞. Therefore, in order for the integrals in (3.32)–(3.33) to

converge we must set B(θ) ≡ 0. The solution (3.38) simplifies to

ω0(s, θ) = A(θ)e−s
2
. (3.40)

To determine A(θ) we must apply the integral conditions (3.32)–(3.33). Setting t = 0 in
these conditions gives∫ ∞

0
e−s

2
ds

∫ 2π

0
M0(θ)A(θ) sin (nθ)dθ = −πeξ0 cos ηδ1,n n = 1, 2, · · · , (3.41)∫ ∞

0
e−s

2
ds

∫ 2π

0
M0(θ)A(θ) cos (nθ)dθ = −πeξ0 sin ηδ1,n n = 0, 1, · · · . (3.42)

The integral with respect to s is
√
π/2. The integrals with respect to θ can be simplified

by expanding the product M0(θ)A(θ) in a Fourier series of the form

M0(θ)A(θ) =
a0

2
+

∞∑
k=1

(ak cos(kθ) + bk sin(kθ)) . (3.43)

Upon plugging this expansion into (3.41)-(3.42) and applying orthogonality, it is easy to
see that the only non-zero Fourier coefficients in (3.43) are a1 and b1. Thus,

M0(θ)A(θ) = a1 cos(θ) + b1 sin(θ) . (3.44)

The countably infinite set of integral conditions represented by (3.41)–(3.42) now reduces
to two conditions ∫ π

−π
b1 sin2(θ)dθ = −2

√
πeξ0 cos η , (3.45)∫ π

−π
a1 cos2(θ)dθ = −2

√
πeξ0 sin η , (3.46)

which can be easily evaluated to give

a1 = − 2√
π

eξ0 sin η , (3.47)

b1 = − 2√
π

eξ0 cos η . (3.48)

Now (3.44) yields

A(θ) = −2eξ0 sin(η + θ)√
πM0(θ)

. (3.49)

Finally, ω0(z, θ) is found to be

ω0(z, θ) = −2eξ0 sin(η + θ)√
πM0(θ)

e−M
2
0 z

2
. (3.50)

Solving for Ψ0 amounts to twice integrating equation (3.35) and applying the surface
conditions (3.28) and (3.29). This yields

Ψ0(z, θ) =
√
πA(θ)
2

(M0zerf(M0z)−
1√
π

(1− e−M
2
0 z

2
)) . (3.51)
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The reader may notice that the far-field condition (3.30) has not been invoked in
finding the solution (3.51). We remark that for the initial stages of the flow, it is more
important to impose conditions at the surface of the cylinder than in the far-field due to
the impulsive start-up.

Small-time approximate analytical solutions have been constructed using perturbation
series expansions for circular and elliptic cylinders in [7] and [34], respectively. Although
it is beyond the scope of this thesis to look for approximate analytical solutions, the
reader may look to Rohlf and D’Alessio [30] who found such solutions for impulsively
started sheared flows past rotating circular cylinders. Perera [28] performed a similar
expansion in his study of free convection from heated elliptic tubes.

In the next section, a robust numerical scheme for solving the boundary-layer equa-
tions (3.26) and (3.27) is described.

3.7 Numerical Solution Procedure

The coupled system of nonlinear partial differential equations (3.26) and (3.27) can be
solved numerically with a procedure similar to Rohlf and D’Alessio [30]. Before proceeding
to outline the scheme we first discretize the computational domain bounded by 0 ≤ z ≤
z∞ into L equally spaced grid points located at

zi = j∆z, j = 0, 1, ..., L , (3.52)

where H = z∞/L and z∞ denotes the outer boundary approximating infinity.

The flow variables (Ψ, ω) are next expanded in the truncated Fourier series

Ψ =
F0(z, t)

2
+

N∑
n=1

(Fn(z, t) cos (nθ) + fn(z, t) sin (nθ)) , (3.53)

ω =
G0(z, t)

2
+

N∑
n=1

(Gn(z, t) cos (nθ) + gn(z, t) sin (nθ)) . (3.54)

Substituting these series into (3.26) and (3.27) yields the following system of 4N + 2
equations for the Fourier coefficients

∂2F0

∂z2
=

1
2
(cosh [2(λz + ξ0)]G0 −G2) , (3.55)

∂2Fn
∂z2

− (nλ)2Fn =
1
2

cosh [2(λz + ξ0)]Gn

− 1
4
(Gn+2 +G|n−2|) , (3.56)

∂2fn
∂z2

− (nλ)2fn =
1
2

cosh [2(λz + ξ0)] gn

− 1
4
(gn+2 + sgn(n− 2)g|n−2|) , (3.57)
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where n = 1, 2, · · · , N , and,

∂2G0

∂z2
+ cosh[2(λz + ξ0)](z

∂G0

∂z
+G0)

− 4β̂λt
(

cos η sinh(λz + ξ0)
∂F1

∂z
− sin η cosh(λz + ξ0)

∂f1

∂z

+ λ cos η cosh(λz + ξ0)F1 − λ sin η sinh(λz + ξ0)f1

)
= 2t cosh[2(λz + ξ0)]

∂G0

∂t
− 2t

∂G2

∂t
+ z

∂G2

∂z
+G2 − 4tS0 , (3.58)

∂2G1

∂z2
+ cosh[2(λz + ξ0)]z

∂G1

∂z
+ (cosh[2(λz + ξ0)]− λ2)G1

− 2β̂λt
(

cos η sinh(λz + ξ0)
[
∂F0

∂z
+
∂F2

∂z

]
− sin η cosh(λz + ξ0)

∂f2

∂z

− 2λ sin η sinh(λz + ξ0)f2 + 2λ cos η cosh(λz + ξ0)F2

)
= −t

(
∂G3

∂t
+
∂G1

∂t

)
+
z

2

(
∂G3

∂z
+
∂G1

∂z

)
+ 2t cosh [2(λz + ξ0)]

∂G1

∂t
+

1
2
(G3 +G1)− 2tS1 , (3.59)

∂2Gn
∂z2

+ cosh [2(λz + ξ0)] z
∂Gn
∂z

+ (cosh [2(λz + ξ0)]− (nλ)2)Gn

− 2β̂λt
(

cos η sinh(λz + ξ0)
[
∂Fn−1

∂z
+
∂Fn+1

∂z

]
+ sin η cosh(λz + ξ0)

[
∂fn−1

∂z
− ∂fn+1

∂z

]
− λ sin η sinh(λz + ξ0) [(n+ 1)fn+1 + (n− 1)fn−1]

+ λ cos η cosh(λz + ξ0) [(n+ 1)Fn+1 − (n− 1)Fn−1]
)

= −t
(
∂Gn+2

∂t
+
∂G|n−2|

∂t

)
+
z

2

(
∂Gn+2

∂z
+
∂G|n−2|

∂z

)
+ 2t cosh [2(λz + ξ0)]

∂Gn
∂t

+
1
2
(Gn+2 +G|n−2|)− 2tSn , (3.60)

∂2g1
∂z2

+ cosh [2(λz + ξ0)] z
∂g1
∂z

+ (cosh [2(λz + ξ0)]− λ2)g1

− 2β̂λt
(

sin η cosh(λz + ξ0)
[
∂F2

∂z
− ∂F0

∂z

]
+ cos η sinh(λz + ξ0)

∂f2

∂z

+ 2λ cos η cosh(λz + ξ0)f2 + 2λ sin η sinh(λz + ξ0)F2

)
=
z

2

(
∂g3
∂z

− ∂g1
∂z

)
− t

(
∂g3
∂t
− ∂g1

∂t

)
+ 2t cosh [2(λz + ξ0)]

∂g1
∂t

+
1
2
(g3 − g1)− 2tT1 , (3.61)
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∂2gn
∂z2

+ cosh [2(λz + ξ0)] z
∂gn
∂z

+ (cosh [2(λz + ξ0)]− (nλ)2)gn

− 2β̂λt
(

cos η sinh(λz + ξ0)
[
∂fn−1

∂z
+
∂fn+1

∂z

]
+ sin η cosh(λz + ξ0)

[
∂Fn+1

∂z
− ∂Fn−1

∂z

]
+ λ sin η sinh(λz + ξ0) [(n+ 1)Fn+1 + (n− 1)Fn−1]

+ λ cos η cosh(λz + ξ0) [(n+ 1)fn+1 − (n− 1)fn−1]
)

=
z

2

(
∂gn+2

∂z
+ sgn(n− 2)

∂g|n−2|

∂z

)
− t
(
∂gn+2

∂t
+ sgn(n− 2)

∂g|n−2|

∂t

)
+ 2t cosh [2(λz + ξ0)]

∂gn
∂t

+
1
2
(gn+2 + sgn(n− 2)g|n−2|)− 2tTn , (3.62)

where sgn(m) denotes the sign of m with sgn(0) = 0, and n = 2, 3, · · · , N . The quantities
S0, Sn, Tn represent nonlinear terms and are given by

S0 =
N∑
n=1

∂

∂z
[n(fnGn − Fngn)] , (3.63)

Sn =
N∑
m=1

(∂Gm
∂z

[(m+ n)fm+n + |m− n|f|m−n|]

+ mGm

[∂fm+n

∂z
+ sgn(m− n)

∂f|m−n|

∂z

]
− mgm

[∂Fm+n

∂z
+
∂F|m−n|

∂z

]
− ∂gm

∂z
[(m+ n)Fm+n + (m− n)F|m−n|]

)
+ nfn

∂G0

∂z
− ngn

∂F0

∂z
, (3.64)

Tn =
N∑
m=1

(∂gm
∂z

[|m− n|f|m−n| − (m+ n)fm+n]

− mGm

[∂Fm+n

∂z
−
∂F|m−n|

∂z

]
− mgm

[∂fm+n

∂z
− sgn(m− n)

∂f|m−n|

∂z

]
− ∂Gm

∂z
[(m+ n)Fm+n − (m− n)F|m−n|]

)
+ nGn

∂F0

∂z
− nFn

∂G0

∂z
. (3.65)

The details of calculating equations (3.55)–(3.62) are given in Appendix A.

In the following subsections, we will describe the numerical solution procedures used
to solve for both the vorticity and streamfunction.
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3.7.1 Vorticity Integration Procedure

We first outline the procedure for solving for the vorticity. This requires solving (3.58)–
(3.62) subject to the far-field condition (3.31) which, in terms of the Fourier coefficients,
becomes

Gn, gn → 0 as z →∞ , (3.66)

for n = 0, 1, 2, · · · , N . Rewriting the integral conditions in terms of the boundary-layer
coordinate z and the Fourier coefficients G0, Gn, gn yields∫ ∞

0
(cosh[2(λz + ξ0)]G0 −G2)dz = 0 , (3.67)

∫ ∞

0
e−nλz(2 cosh[2(λz + ξ0)]Gn

−Gn+2 −G|n−2|)dz = −4eξ0 sin ηδ1,n , n = 1, 2, · · · , N , (3.68)∫ ∞

0
e−nλz(2 cosh[2(λz + ξ0)]gn

− gn+2 − sgn(n − 2)g|n−2|)dz = −4eξ0 cos ηδ1,n , n = 1, 2, · · · , N . (3.69)

For simplicity, we illustrate the numerical method using equation (3.58) with the un-
derstanding that (3.59)–(3.62) are solved in a similar manner. Equation (3.58) may be
rewritten in the generic form

2t
∂G0

∂t
− 2t

cosh[2(λz + ξ0)]
∂G2

∂t
= Q(z, t) , (3.70)

where

Q(z, t) =
1

cosh[2(λz + ξ0)]
∂2G0

∂z2
+ z

∂G0

∂z
+G0

+
1

cosh[2(λz + ξ0)]
(z
∂G2

∂z
+G2) +

4t
cosh[2(λz + ξ0)]

S0

− 4β̂λt
cosh[2(λz + ξ0)]

(
cos η sinh(λz + ξ0)

∂F1

∂z
− sin η cosh(λz + ξ0)

∂f1

∂z

+ λ cos η cosh(λz + ξ0)F1 − λ sin η sinh(λz + ξ0)f1

)
. (3.71)

Assuming the solution at time t is known, we can advance the solution to time t+ ∆t by
integrating equation (3.70). Integration by parts yields

2τG0

∣∣t+∆t

t
− 2

∫ t+∆t

t
G0dτ −

2
cosh[2(λz + ξ0)]

(τG2)
∣∣t+∆t

t

− 2
cosh[2(λz + ξ0)]

∫ t+∆t

t
G2dτ =

∫ t+∆t

t
Qdτ, (3.72)

where ∆t is the time increment. In arriving at (3.72) we have made the reasonable
approximation of treating cosh[2(λz + ξ0)] as a constant over the time increment. We
now approximate the integrals using∫ t+∆t

t
χdτ ≈ ∆t[$χ(z, t+ ∆t) + (1−$)χ(z, t)] , (3.73)
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where $ is a weight factor and χ is a generic function. In general, 0 ≤ $ ≤ 1 and we
treat $ as a computational parameter still to be specified. When $ = 1/2 we obtain the
well known Crank-Nicolson scheme while $ = 1 yields the fully implicit scheme. The
case $ = 0 corresponds to an explicit scheme which will not be considered.

With this approximation in place, equation (3.72) brings us to the expression

2[t+ (1−$)∆t](G0(z, t+ ∆t) − G0(z, t))

− 2
cosh[2(λz + ξ0)]

[t+ (1−$)∆t](G2(z, t+ ∆t) − G2(z, t)) =

∆t[$Q(z, t+ ∆t) + (1−$)Q(z, t)] . (3.74)

If we now substitute Q(z, t + ∆t) given by (3.71) into (3.74) and replace all spatial
derivatives by central differences at the point z, i.e.

∂H(z, t)
∂z

≈ H(z + ∆z, t)−H(z −∆z, t)
2∆z

, (3.75)

∂2H(z, t)
∂z2

≈ H(z + ∆z, t)− 2H(z, t) +H(z −∆z, t)
∆z2

, (3.76)

where ∆z is the uniform grid spacing in the z direction and H is one of the Fourier
coefficients Fn, fn, Gn, gn. Now (3.74) can be written in the form

A(z, t+ ∆t)G0(z −∆z, t+ ∆t) + B(z, t+ ∆t)G0(z, t+ ∆t)
+C(z, t+ ∆t)G0(z + ∆z, t+ ∆t) = D(z, t+ ∆t) + E(z, t) . (3.77)

The functions A,B,C,D,E can be easily obtained and do not involve G0. The function
E is known from the previous time step while the functions A,B,C,D are computed
using the most recent available information as an initial guess. Thus, when represented
in matrix form equation (3.77) becomes a tri-diagonal system for the unknown values of
G0 at the grid points z = 0,∆z, 2∆z, · · · . If the region 0 ≤ z ≤ z∞ is divided into L
equally spaced intervals of ∆z then an (L− 1)× (L− 1) tri-diagonal matrix results.

At each time step we need to solve this system subject to the far-field condition
G0(z∞, t + ∆t) = 0 and the integral condition given by (3.67). To enforce the integral
constraint we proceed as follows. First, we obtain the homogeneous solution, Gh0 , by
setting the right-hand side in (3.77) to zero, with Gh0 satisfying Gh0(0, t + ∆t) = 1 and
Gh0(z∞, t+ ∆t) = 0. Then, we find the particular solution, Gp0 to (3.77) again satisfying
Gp0(0, t+ ∆t) = 1 and Gp0(z∞, t+ ∆t) = 0. We form the complete solution as

G0(z, t+ ∆t) = γGh0(z, t+ ∆t) +Gp0(z, t+ ∆t) . (3.78)

Plugging the decomposition(3.78) into the integral condition (3.67) and solving for γ
yields

γ =
−
∫∞
0 (cosh[2(λz + ξ0)]G

p
0 −G2)dz∫∞

0 cosh[2(λz + ξ0)]Gh0dz
. (3.79)

The integrals appearing in the above expression are approximated by replacing ∞ by z∞
and are computed using Simpson’s rule. An efficient solver is implemented to solve the
tri-diagonal systems for Gh0 and Gp0 in O((L−1)) FLOPS. With our approximate solution
to G0(z, t + ∆t) now found, we then repeat this procedure for obtaining approximate
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solutions to Gn(z, t+ ∆t), gn(z, t+ ∆t) for n = 1, 2, · · · , N . It must be remembered that
when solving for Gn or gn, quantities having a subscript greater than n (such as n + 2)
are unknown and therefore must be approximated using the values at the previous time
step and then continually updating their values during the iterative procedure.

The streamfunction coefficients fn, Fn are updated at each iteration with stable march-
ing schemes using the coefficients Gn, gn to compute the right-hand sides. The marching
schemes utilized will be discussed in the following subsections.

The entire cycle described above is repeated until convergence is reached. The con-
vergence criterion adopted is given by

|G(k+1)
0 (z, t+ ∆t)−G(k)

0 (z, t+ ∆t)| < ε , (3.80)

|G(k+1)
n (z, t+ ∆t)−G(k)

n (z, t+ ∆t)| < ε , (3.81)
|g(k+1)
n (z, t+ ∆t)− g(k)

n (z, t+ ∆t)| < ε , (3.82)

for n = 1, 2, · · · , N . Here, the superscripts k, k + 1 refer to two successive iterates in
the cyclic procedure and ε is some specified tolerance. Lastly, to initiate the integration
procedure, initial conditions for G0, Gn, gn, F0, Fn, fn for n = 1, 2, · · · , N are furnished by
computing the Fourier coefficients of the initial solution (3.50)-(3.51) by the Fast Fourier
Transform (FFT) algorithm.

We will now discuss the procedure used to solve the equations for the streamfunction
coefficients (3.55)–(3.57).

3.7.2 Streamfunction Integration Procedure

The method used to solve (3.55)–(3.57) for the stream function is identical to that
described in Dennis and Chang [10]. First, the right-hand sides of these equations are
obtained using the computed solutions G0, Gn, gn for n = 1, 2, · · · , N . These streamfunc-
tion coefficient equations are then integrated using stable marching algorithms satisfying
the no-slip and impermeability conditions

F0 = Fn = fn = 0 at z = 0 , (3.83)
∂F0

∂z
=
∂Fn
∂z

=
∂fn
∂z

= 0 at z = 0 , (3.84)

and the far-field conditions

F0 → 0 as z →∞ , (3.85)

Fn → − 1
2λ

eξ0+λz sin ηδ1,n as z →∞ , (3.86)

fn → − 1
2λ

eξ0+λz cos ηδ1,n as z →∞ , (3.87)

for n = 1, 2, · · · , N .

Before outlining the marching schemes utilized, we first recognize that at a given time
t, the equations for fn, Fn can be viewed as ODEs of the type

d2F
dz2

− κ2F = c(z) , (3.88)
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where F = F(z) is one of fn, Fn, κ = nλ, and c(z) depends on the vorticity coefficients
gn, Gn. We assume that F and c are spatially discretized according to Fj = F(∆zj) and
cj = c(∆zj).

The important point to note here is that the particular marching algorithm to be
used is dependent on the parameter κ = nλ. It is shown in Dennis & Chang [10] that
most step-by-step procedures become increasingly unstable as κ becomes large. Hence,
two sets of step-by-step methods are utilized: one for the case κ < 0.5 while another for
κ ≥ 0.5. The details for both cases will be outlined below.

3.7.3 Streamfunction Integration: case κ < 0.5

For κ < 0.5, we make use of the marching scheme

Fj+1 =
24 + 10κ2∆z2

12− κ2∆z2
Fj −Fj−1 +

∆z2

12− κ2∆z2
(cj+1 + 10cj + cj−1) , (3.89)

which is accurate to O(∆z6) . The marching procedure is initiated with the lower-order
scheme

F1 =
∆z2

6
(2c0 + c1) +

dF0

dz

(
∆z +

κ2∆z3

6

)
, (3.90)

which makes use of the boundary conditions F0 = 0, dF0
dz (here dF0

dz = 0).

3.7.4 Streamfunction Integration: case κ ≥ 0.5

For κ ≥ 0.5, we use the idea of Dennis & Chang [10] that equation (3.88) can be
factored as (

d

dz
− κ
)(

d

dz
+ κ

)
F = c(z) . (3.91)

We can now make the change of variables

p =
dF
dz

+ κF , (3.92)

q =
dF
dz
− κF . (3.93)

This allows equation (3.91) to be written as the non-coupled system of first order DE’s

dp

dz
− κp = c(z) , (3.94)

dq

dz
+ κq = c(z) . (3.95)

Once p and q have been solved for, F and dF
dz can be obtained by the relations

F =
p− q
2κ

, (3.96)

dF
dz

=
p+ q

2
. (3.97)
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Equation (3.94) is marched forwards from z = 0 to z = z∞, and equation (3.95) is marched
backwards from z = z∞ to z = 0. Marching the equations in this way ensures that both
the boundary conditions on the cylinder’s surface as well as the boundary conditions in
the far-field are utilized.

We now list the marching scheme for (3.94) with the understanding that a similar
scheme, used backwards, is used to integrate (3.95). The scheme’s derivation details can
be found in Dennis & Chang [10]. The scheme reads

Fj+2 = e−2κ∆zFj +
1
κ

(
e−2κ∆zcj − cj+2

)
+

1
2κ2∆z

[
3cj+2 − 4cj+1 + cj − e−2κ∆z (4cj+1 − 3cj − cj+2)

]
+

1
κ3∆z2

[2cj+1 − cj − cj+2]
(
1− e−2κ∆z

)
, (3.98)

which is initiated with the scheme

F1 = e−κ∆zF0 +
1
κ

(
e−κ∆zc0 − c1

)
+

1
2κ2∆z

[
c2 − c0 − e−κ∆z (4c1 − 3c0 − c2)

]
+

1
κ3∆z2

[2c1 − c0 − c2]
(
1− e−κ∆z

)
, (3.99)

where F0 depends on the surface conditions.

3.7.5 Streamfunction Integration: case κ = 0

We will now describe the marching procedure for the case κ = 0 (hence n = 0).
Equation (3.88) becomes

d2F
dz2

= c(z) . (3.100)

Here, F = F0 since n = 0. The problem then amounts to twice numerically integrating
the function c(z) using Simpson’s rule. We first use the scheme to compute F ′ = dF

dz as
follows

F ′j = F ′j−2 +
∆z
3

(cj−2 + 4cj−1 + cj) , (3.101)

which is initiated with

F ′1 = F ′0 +
∆z
24

[9c0 + 19c1 − 5c2 + c3] , (3.102)

which makes use of the no-slip condition F ′0 = 0. Once F ′ is known, the same marching
algorithm, subject to the impermeability condition F0 = 0, is used again to compute F .

In the next section, an alternative approximation to the traditional β-plane will be
introduced. This alternative approach has been found to keep the numerical scheme stable
for larger times t, while giving good agreement with results found using the traditional
β-plane approximation.
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3.8 The Modified β-Plane

The numerical solution procedure discussed in the previous section solves the barotropic
vorticity equation on the β-plane in an unbounded domain. However, the approximation
f = f0 + βy′ can be problematic for unbounded domains since it is only valid for small
departures from the central latitude of interest θ0 (see Ch. 2). Here, y′ is the absolute
coordinate that points in the meridional direction (see section 3.1). We propose a new
β-plane approximation given by

f = f0 + αβR tanh
(
y′

αR

)
, (3.103)

where α is an adjustable dimensionless parameter, and R is the radius of the Earth. For
small y′, it is clear that (3.103) will recover the familiar β-plane approximation. Tansley
and Marshall [36] circumvent this problem by solving the equations in a channel of finite
meridional extent and applying relaxation conditions in a sponge region surrounding the
domain. Equation (3.103), on the other hand, limits f to the interval:

2ΩE(sin θ0 − α cos θ0) < f < 2ΩE(sin θ0 + α cos θ0) . (3.104)

The extent to which (3.103) behaves linearly is controlled by the parameter α. Using
(3.103) enables us to solve the problem on a much larger domain without having to apply
relaxation.

An added advantage of expression (3.103) is that it is more accurate than the expres-
sion f = f0 + βy′ at the equator. To see this we note that at the equator

f = 2ΩE sin θ ≈ 2ΩE sin
(
y′

R

)
≈ 2ΩE

(
y′

R
− y′3

6R3

)
, (3.105)

and if we expand (3.103) in a Taylor series we find that

f ≈ 2ΩE

(
y′

R
− y′3

3α2R3

)
. (3.106)

If we set α =
√

2, then (3.103) agrees with the exact expression for f to order O((y′/R)5)
and hence is a better approximation in this region.

Equation (3.103) can easily be incorporated into the governing equations by simply
replacing β in the dimensional barotropic vorticity equation (2.9) with β sech2(y′/αR).
In non-dimensional form, this modification yields

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
+ β̂ sech2

(
y′

α̂

)(
cos η

∂ψ

∂x
− sin η

∂ψ

∂y

)
=

2
Re

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
, (3.107)

where α̂ = α(R/a) remains an adjustable dimensionless parameter, and a is the cylinder’s
semi-major axis length. β̂ = a2β/U0 and Re = 2aU0/ν are the same as those given by
(3.7).

23



Equation (3.107) is then written in terms of the modified polar coordinates (ξ, θ), and
the boundary-layer equations are re-derived. The equations are then solved by the same
numerics as discussed in section 3.7.

In the next section, results are presented for both circular and elliptical cylinders
inclined at different angles to the free stream. Results will be given for a variety of
Reynolds number Re and dimensionless beta parameters β̂. In addition, comparisons
will be made with previous studies for the case β̂ = 0 to validate the numerical scheme.

3.9 Results and Discussion

3.9.1 Computational Parameters Used

To confirm numerical convergence, numerous numerical experiments were carried out
with different grids and time steps. From these experiments we have found the scheme
to be both flexible and robust. From our numerical experiments the following values
for the computational parameters were used: z∞ = 10, N = 25, L = 201, α̂ = 25 and
ε = 10−6. We have decided to run the scheme in fully implicit mode ($ = 1). Running in
Crank-Nicolson mode ($ = 1/2) exhibited similar convergence characteristics; however,
it produced oscillations in the drag and lift coefficients for a brief time after start up,
which is a signature of the Crank-Nicolson scheme. Initial time steps of 10−4 were used
for the first 10 advances. Then, the next 10 time steps were proceeded with ∆t = 10−3

and continued after with ∆t = 0.01. At t = 1 the time step was increased to ∆t = 0.05.
No stability difficulties were encountered with the choice of grid and parameters listed
above.

3.9.2 Comparisons

In order to validate our numerical scheme, we compare the results of our numerical
scheme with results in the literature which pertain to the classical non-rotating case
β̂ = 0. We illustrate the robustness of our numerical scheme by making comparisons at
two Regimes of Reynolds number Re: small Re (Re < 100), and large Re (Re > 1000).

We proceed by introducing the dimensionless drag CD and lift CL coefficients, which
are of particular importance in the classical literature of flow past cylinders in the non-
rotating context. The drag and lift coefficients are obtained by integrating the pressure
and frictional stresses on the surface of the cylinder. Defining

XP =
2π sinh ξ0
λ2Re

∂g1(0, t)
∂z

,

XF = −2π cosh ξ0
λRe

g1(0, t),

YP = −2π cosh ξ0
λ2Re

∂G1(0, t)
∂z

,

YF =
2π sinh ξ0
λRe

G1(0, t) , (3.108)
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and letting X = XP +XF , Y = YP + YF we then arrive at

CD = X cos η − Y sin η ,
CL = X sin η + Y cos η , (3.109)

for the expressions for the drag and lift coefficients in terms of boundary-layer coordinates
and the Fourier coefficients.

Comparisons were made for the small Reynolds number case with η = 0◦ and r = 0.2
against Dennis and Young’s study [12] of steady-flow past an elliptic cylinder. Since we
solve the unsteady equations, time-stepping was carried out to t = 30, when the flow
had settled down appreciably. It should be possible to obtain better agreement if time-
stepping is carried out for larger times. Comparisons were made using the drag coefficient
CD in table 3.1.

Dennis and Young Present
(steady state) (t = 30)

Re CD CD
20 0.789 0.806
40 1.228 1.224

Table 3.1: Comparison between present results and Dennis and Young’s [12] steady results
for the drag coefficient CD.

Comparisons were also made for the asymmetrical case for r = 0.2, Re = 20, and
inclinations of η = 20◦,40◦,60◦ against the results for steady flow found by D’Alessio and
Dennis [8] and Dennis and Young [12]. Full agreement could not be demonstrated because
time-stepping was not carried out to very large times. Time-stepping was carried out to
t = 10 since numerical instabilities occurred for larger times. The numerical instabilities
are largely due to the fact that the boundary-layer coordinate is not suitable for such
large t at small Re. Results at larger times can be obtained by making the switch back
to the physical (ξ, θ) coordinates. Comparisons were made using the drag coefficient CD
and the lift coefficient CL in table 3.2.

Dennis & Young (steady) D’Alessio & Dennis (steady) Present (t = 10)
η CD CL CD CL CD CL

20◦ 1.296 0.741 1.305 0.751 1.382 0.737
40◦ 1.602 0.947 1.620 0.949 1.786 0.985
60◦ 1.9ll 0.706 1.931 0.706 2.228 0.748

Table 3.2: Comparison between present elliptic cylinder results, Dennis and Young’s [12]
steady results, and D’Alessio and Dennis’ [8] steady results for the drag coefficient CD
and the lift coefficient CL.

A comparison for the large Reynolds number case was made using the parameters
Re = 6250, r = 0.6, η = 15◦ with the unsteady results of Staniforth [34]. Figure 3.4
compares the time-variation of both the drag and lift coefficients between the present
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study and Staniforth’s. A discrepancy is observed in the time-variation of the drag and
lift coefficient between the two studies. We speculate that this discrepancy is due to the
fact that, because of the impulsive start, CD and CL are infinite at t = 0. One of the
studies may be better resolving this singular behaviour than the other.

Figure 3.4: Comparison between present elliptic cylinder results and Staniforth’s [34]
for time-variation of drag CD and lift CL coefficients for the case Re = 6250, r = 0.6,
η = 15◦.

For completeness, we will now give a comparison which validates the numerics when
they are applied to the circular geometry. Comparisons were made using the drag coef-
ficient CD for small Reynolds numbers against the steady-state results of two previous
studies as shown in table 3.3. The first study was by Dennis and Chang [10], and the sec-
ond was by D’Alessio and Dennis [8]. Because our simulation is unsteady, time-stepping
was carried out to t = 25, when the flow had settled down appreciably. Again, better
agreement is to be expected for larger times.

In the next subsection, results will be presented and discussed for the circular geometry
for small β̂ parameters. Since Rossby waves are present in our numerical solutions, they
will be introduced using linear wave theory.
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Re Reference CD
20 Present (t = 25) 2.128

Dennis & Chang (steady) 2.045
D’Alessio & Dennis (steady) 1.941

40 Present (t = 25) 1.612
Dennis & Chang (steady) 1.522
D’Alessio & Dennis (steady) 1.443

100 Present (t = 25) 1.195
Dennis & Chang (steady) 1.056
D’Alessio & Dennis (steady) 1.077

Table 3.3: Comparison between present circular cylinder results, Dennis and Chang’s [10]
steady results, and D’Alessio and Dennis’ [8] steady results for the drag coefficient CD.

3.9.3 Results: Circular Cylinders

We begin with results for flow past circular cylinders on the β-plane by presenting
streamlines for the case Re = 1000, β̂ = 0 in Figure 3.5 at selected times. The case β̂ = 0
corresponds to the classical non-rotating case. Figure 3.6 gives the surface vorticity for
the same parameters and times as in Figure 3.5. We choose to show distributions of
vorticity at the surface of the cylinder because a necessary condition for separation to
occur is that the surface vorticity ζ0 changes sign, and hence the tangential component
of velocity near the surface changes direction, i.e. a flow reversal. ζ0 is given by

ζ0 =
1
M0

(
∂vθ
∂ξ

)
0

, (3.110)

where vθ is the tangential velocity.

Figure 3.7 gives streamlines for the case Re = 1000, β̂ = 1, and Figure 3.8 gives
the vorticity at the surface of the cylinder for the same parameters and times. The
qualitative features of the flow in the transient states given by Figure 3.7 should be
contrasted against those given by Figure 3.5 to see the effects of including the β-plane
model into the equations.

In contrasting Figures 3.5 and 3.7, the differences are immediately evident. First, we
notice that for any of the three given times the separation region is smaller in Figure 3.7
than in Figure 3.5. This is due to the constraining effect the β-plane has on the separation
of prograde flows which was discussed in chapter 1. Second, at sufficient distances from
the cylinder’s surface we notice the presence of waves in the flow field. These are known
as Rossby waves (see Pedlosky [26,27]). They are a result of the meridional variation
of the Coriolis parameter f and possess the property that the zonal component of the
phase speed is always directed westward. Above and below the cylinder the waves are
carried downstream (or eastward) since they are superimposed on the strong eastward
background flow. However, directly in front of the cylinder where the background flow is
retarded, the waves are seen to propagate upstream in the expected westward direction.

We will now demonstrate the existence of Rossby waves as wave-type solutions using
linear theory. Consider the inviscid form of the dimensional barotropic vorticity equation
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(a)

(b)

(c)

Figure 3.5: Streamlines of flow past a circular cylinder for the case β̂ = 0, Re = 1000 at
times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.6: Surface vorticity distributions of flow past a circular cylinder for the case
β̂ = 0, Re = 1000 at times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.7: Streamlines of flow past a circular cylinder for the case β̂ = 1, Re = 1000 at
times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.8: Surface vorticity distributions of flow past a circular cylinder for the case
β̂ = 1, Re = 1000 at times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(2.9) in the absolute coordinate frame (x′, y′):

∂∇2ψ

∂t
+ J(ψ,∇2ψ) + β

∂ψ

∂x′
= 0 , (3.111)

where we have used ζ = ∇2ψ. Assume the streamfunction ψ consists of a uniform
eastward background flow ψ(y′) = −U0y

′ and a perturbation field ϕ = ϕ(x′, y′, t), i.e.

ψ = −U0y
′ + ϕ . (3.112)

Plugging this decomposition into equation (3.111) yields

∂∇2ϕ

∂t
+ J(ϕ,∇2ϕ) + U0

∂∇2ϕ

∂x′
+ β

∂ϕ

∂x′
= 0 , (3.113)

which can be linearized as

∂∇2ϕ

∂t
+ U0

∂∇2ϕ

∂x′
+ β

∂ϕ

∂x′
= 0 . (3.114)

We wish to look for traveling wave solutions of the form

ϕ(x′, y′, t) = ϕ0 ei(kx
′+ly′−σt) , (3.115)

where ϕ0 is a constant wave amplitude, σ = σ(k, l) is the angular frequency of the wave,
and k and l are the zonal and meridional wavenumbers, respectively. If we plug the ansatz
(3.115) into (3.114) we obtain the dispersion relation

σ(k, l) =
−βk
k2 + l2

+ U0k . (3.116)

The phase velocity of the waves is given by

~c =
(σ
k
,
σ

l

)
=
(

−β
k2 + l2

+ U0,
−βk

l(k2 + l2)
+
U0k

l

)
, (3.117)

and the group velocity is given by

~cg =
(
∂σ

∂k
,
∂σ

∂l

)
=
(
β(k2 − l2)
(k2 + l2)2

+ U0,
2βkl

(k2 + l2)2

)
. (3.118)

Upon inspecting the phase velocity (3.117), we notice that the zonal component con-
sists of westward traveling wave crests superimposed on the constant eastward background
flow. This fact is indicative of the observation that Rossby wave crests typically prop-
agate with a westward component. In the case of a uniform eastward background flow,
the condition for westward propagation is

σ

k
< 0 , (3.119)

which implies that

k2 + l2 <
β

U0
. (3.120)

That is, only sufficiently long waves will propagate with a westward component for a
given ratio β/U0.
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It is worth mentioning that if we include the effects of viscosity in our linear analysis,
we obtain damped traveling wave solutions. Thus, increasing the viscosity (decreasing
Re), will dissipate the waves and tend to make them less prevalent in the overall flow.

For the sake of demonstrating Rossby wave activity, we present a more extreme case
where the flow field is dominated by Rossby waves. Figure 3.9 shows streamlines at
selected times for the case Re = 1000, β̂ = 10. As we should expect, the separation
region in the cylinder’s wake is much smaller than in the other cases and the external
flow possesses many new features due to undissipated Rossby waves.

We also illustrate the effects of increasing the effective viscosity of the flow by pre-
senting results for a smaller Reynolds number, Re = 200. As with Figures 3.5 and 3.7,
we first illustrate the non-rotating case β̂ = 0 in Figures 3.10 and 3.11, and we then
introduce the β-effect with β̂ = 1 in Figures 3.12 and 3.13.

In comparing the streamlines for the case with Re = 1000 (Figures 3.5 and 3.7) to
the case with Re = 200 (Figures 3.10 and 3.12), we notice that the flows are qualitatively
quite similar. A primary difference is that the Rossby waves with β̂ = 1 are much more
noticeable with Re = 1000 when compared to the case with Re = 200. As discussed
above, this is due to the additional dissipation that comes with a smaller Re. Another
difference is that there are more contours present in the separation eddies with Re = 1000
than with Re = 200. Since the contour interval is the same for all of the streamline plots,
more contour lines within an eddy suggests a stronger re-circulation.

All of the results presented here for the circular geometry agree phenomenologically
with the results observed by Tansley and Marshall [36]. Namely, increasing β̂ decreased
the extent of the separation as well as increased the prevalence of Rossby waves in the
exterior flow. One disagreement between the results, however, is in the depiction of the
downstream separation in the cylinder’s wake. In Tansley and Marshall’s results, they
found that for large Re (Re ∼ 1000) the separation eddies became unstable leading to
the famous von Kármán vortex street while here they remain symmetrical. We suspect
this discrepancy is due to the differences in numerical methods.

The focus of Tansley and Marshall’s [36] study was on moderate to large β̂ parameters
(β̂ ≤ 750) so their results could be applied to Gulf Stream separation and the Antarctic
Circumpolar Current. We, on the other hand, are content to examine smaller β̂ parame-
ters (β̂ ≤ 10) to illustrate the differences between flows on the β-plane and non-rotating
flows. It is also worth noting that the parameter regime β̂ ∼ 1 is suitable for realistic
ocean flow values of L ∼ 105 m, β ∼ 10−11 m−1s−1, U ∼ 0.1 ms−1. These parameter
values correspond to conservative estimates for the Florida current as given by Marshall
and Tansley [18].

In the following subsection, results will be presented and discussed for the elliptical
geometry.
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(a)

(b)

(c)

Figure 3.9: Streamlines of flow past a circular cylinder for the case β̂ = 10, Re = 1000 at
times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.10: Streamlines of flow past a circular cylinder for the case β̂ = 0, Re = 200 at
times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.11: Surface vorticity distributions of flow past a circular cylinder for the case
β̂ = 0, Re = 200 at times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.12: Streamlines of flow past a circular cylinder for the case β̂ = 1, Re = 200 at
times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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(a)

(b)

(c)

Figure 3.13: Surface vorticity distributions of flow past a circular cylinder for the case
β̂ = 1, Re = 200 at times (a) t=1.98, (b) t=8.03, and (c) t=13.98.
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3.9.4 Results: Elliptic Cylinders

With the elliptical geometry, we have many more degrees of freedom to explore than
with the circular geometry. In addition to the parameters Re and β̂, we also have the
aspect ratio r to vary, which allows us to prescribe a narrower body and hence increase
the curvature of the body at its ends. We also have the ability to incline the cylinder to
the horizontal at some angle η.

Although it is not the goal of this thesis to give a comprehensive mapping of the
parameter space for flow past an elliptical cylinder on the β-plane, it is certainly a study
worth pursuing. As with the case with circular cylinders, we are content with considering
selected parameter values to serve as an introduction to this complicated flow paradigm.

We proceed by considering the case r = 0.2, η = 90◦, Re = 1000, β̂ = 0.25. This case
serves as another bluff body, and we expect the flow to possess similar qualities to the
circular cylinder case. In particular, we expect symmetry about y′ = 0. Our intuition
tells us that at the narrower ends of the cylinder the surface vorticity ζ0 should obtain
its greatest values. Figure 3.14 gives streamlines for the flow, and Figure 3.15 gives the
surface vorticity distribution.

One thing to note in comparing the streamlines in Figure 3.14 to those found for the
circular geometry in Figure 3.7 is that Rossby waves are not nearly as evident. This
can be explained by our smaller choice of β̂ parameter. The dispersion relation (3.116)
demonstrates that β̂ = 0.25 should produce waves of 1/4 the frequency and speed of the
waves observed with β̂ = 1.

Although we do not present the β̂ = 0 case for the elliptical geometry with η = 90◦,
it was examined in our numerical experiments. The separation region was found to be
larger in all cases with β̂ = 0 than when β̂ > 0.

Decreasing Re to Re = 200 has a similar effect to what we observed with the circular
geometry. First, the Rossby waves become more damped out and more difficult to observe.
Second, a weaker recirculation is present in the cylinder’s separation region than in the
case with Re = 1000.

We next present results for an asymmetrical flow past an elliptic cylinder on the beta-
plane. The parameters r and η were held fixed at r = 0.2 and η = −15◦. To establish the
dependence of the flow on the remaining parameters β̂ and Re we will discuss the flow
patterns in the following order. First, we will discuss the non-rotating case β̂ = 0 with
Re = 1000. Following this we present the cases β̂ = 0.25 and Re = 1000, and β̂ = 0.75
and Re = 1000 to illustrate the beta effect. Lastly, we consider the case β̂ = 0.25 and
Re = 200 to portray the effect of changing the Reynolds number. Whenever possible we
contrast flow patterns at the same times.

Shown in Figure 3.16 are instantaneous snap shots of the flow at times t = 1.95, 7.95
and 13.95. In the non-rotating case vortices are formed at the leading (θ = 180◦) and
trailing (θ = 0◦) edges of the cylinder and are eventually swept downstream to form a
vortex street. The vortices weaken as they propagate downstream and are usually associ-
ated with wavy streamlines. The vortices formed at the leading edge tend to grow in size
before detaching from the cylinder and are significantly smaller than those observed for
the case η = 90◦ shown in Figure 3.14. The corresponding surface vorticity distributions
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(a)

(b)

(c)

Figure 3.14: Streamlines of flow past an elliptic cylinder for the case r = 0.2, η = 90◦,
β̂ = 0.25, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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(a)

(b)

(c)

Figure 3.15: Surface vorticity distributions of flow past an elliptic cylinder for the case
r = 0.2, η = 90◦, β̂ = 0.25, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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(a)

(b)

(c)

Figure 3.16: Streamlines of flow past an elliptic cylinder for the case r = 0.2, η = −15◦,
β̂ = 0, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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(a)

(b)

(c)

Figure 3.17: Surface vorticity distribution of flow past an elliptic cylinder for the case
r = 0.2, η = −15◦, β̂ = 0, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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(a)

(b)

(c)

Figure 3.18: Streamlines of flow past an elliptic cylinder for the case r = 0.2, η = −15◦,
β̂ = 0.25, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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(a)

(b)

(c)

Figure 3.19: Surface vorticity distribution of flow past an elliptic cylinder for the case
r = 0.2, η = −15◦, β̂ = 0.25, Re = 1000 at times (a) t=1.95, (b) t=7.95, and (c) t=13.95.
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are depicted in Figure 3.17. The main feature in these plots is the spike near the leading
edge.

Illustrated in Figure 3.18 are streamline patterns for β̂ = 0.25 and Re = 1000 at
times t = 1.95, 7.95 and 13.95. At t = 1.95 a very small separation region is noticed near
the trailing edge. With the passage of time this region grows and finally detaches. The
shed vortex appears to get swept around the trailing edge rather than downstream. At
t = 13.95 a small vortex forms near the leading edge. The presence of Rossby waves is not
easily discernible. This is likely due to the small value of β̂ used. Convergence problems
were encountered values of β̂ ∼ 1. Comparing these plots with the previous case it is
clear that the beta effect does suppress the formation of vortices, especially those formed
near the leading edge.

The effect of increasing β̂ for the asymmetrical case is illustrated in figure 3.20.
Streamlines are given for β̂ = 0.75 and Re = 1000 at times t = 1.95, 5.95, and 7.95.
Numerical solutions could not be obtained beyond t ≈ 10 due to convergence problems.
For this larger choice of β̂ parameter, Rossby waves are more visible in the exterior flow
than in the case with β̂ = 0.25. The separation patterns in Figure 3.20 are similar to
those shown in Figure 3.18 except the vortex at the trailing edge is swept around the
trailing edge at an earlier time. After the shed vortex is swept around the trailing edge, it
was observed to propagate to the south and grow with time (not shown here). This obser-
vation can be explained by conservation of potential vorticity (see Kundu [16]). Consider
the inviscid form of the dimensional barotropic vorticity equation (2.4)

∂

∂t
(ζ + f0 + βy) + (~u · ∇) (ζ + f0 + βy) = 0 , (3.121)

where we have used f = f0 + βy and the fact that f is time-independent. Define the
scalar quantity q ≡ ζ + f0 + βy to be the potential vorticity. Equation (3.121) can then
be written as the conservation law

∂q

∂t
+∇ · (q~u) = 0 , (3.122)

which states that potential vorticity is conserved following the flow.

As the shed vortex propagates southward, the planetary vorticity f = f0 + βy de-
creases, so by conservation of potential vorticity, the relative vorticity of the vortex must
increase. This explains why the southward propagating vortex was found to strengthen
and expand as it traveled south.

The flow patterns for Re = 200 and β̂ = 0.25 are displayed in Figure 3.21. For this
reduced Reynolds number very little activity in vortex shedding is noticed. For this case
numerical solutions beyond t ≈ 10 were not possible due to convergence problems. As
a final note, the surface vorticity distributions for Re = 1000 and Re = 200 shown in
Figures 3.19 and 3.22, respectively, are very similar apart from a scaling in the spike. The
surface vorticity distributions for Re = 1000, β̂ = 0.75 (not shown) exhibited the similar
patterns as with the β̂ = 0.25 case, except for the spike increased in magnitude for earlier
times.

This concludes the results section for flow past a cylinder on the β-plane, and hence
concludes chapter 3 itself. A summary of the results found in chapter 3 are given in
chapter 5, which serves as a comprehensive summary of the thesis. The following chapter,
chapter 4, solves the problem of western boundary current separation from a curved coast-
line.
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(a)

(b)

(c)

Figure 3.20: Streamlines of flow past an elliptic cylinder for the case r = 0.2, η = −15◦,
β̂ = 0.75, Re = 1000 at times (a) t=1.95, (b) t=5.95, and (c) t=7.95.
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(a)

(b)

(c)

Figure 3.21: Streamlines of flow past an elliptic cylinder for the case r = 0.2, η = −15◦,
β̂ = 0.25, Re = 200 at times (a) t=1.95, (b) t=7.95, and (c) t=9.95.
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(a)

(b)

(c)

Figure 3.22: Surface vorticity distribution of flow past an elliptic cylinder for the case
r = 0.2, η = −15◦, β̂ = 0.25, Re = 200 at times (a) t=1.95, (b) t=7.95, and (c) t=9.95.
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Chapter 4

Simulating Western Boundary
Currents along a Curved Coastline

In this chapter, we study the problem of western boundary current separation from a
curved coastline. We proceed by describing an idealized model geometry. The governing
equations are then non-dimensionalized and solved numerically using the method of lines
and a Chebyshev spectral method. Results are presented and discussed for selected non-
dimensional numbers and obstacle parameters.

4.1 Model Geometry

The idealized model we use to study western boundary currents is the same as that
of Munday [22]. We first assume a meridional channel of zonal extent L and meridional
extent 2L, with the western boundary along x = 0. We introduce a curved obstacle 3/8
of the way up the domain in the form of the ‘Witch of Agnesi’ or turning curve

o(y) =
Wd2

s

d2
s + (y − y0)2

, (4.1)

where W is the maximum width of the obstacle, ds is the meridional decay scale of the
obstacle, y0 is the latitude of the obstacle’s peak, and of course, y is the latitude.

A schematic diagram of the model domain is given in Figure 4.1. We will make the
notational convention that the interior of the domain is given by Ω ⊂ R2 whose boundary
∂Ω is given by ∂Ω = Γ1∪Γ2∪Γ3∪Γ4, which correspond to the northern, eastern, southern,
and western boundaries, respectively.

The eastern and western boundaries will be treated as no-slip walls. As Munday [22]
suggests, this choice of boundary conditions is driven by our desire to promote boundary-
layer separation as observed in the world’s oceans. A free slip condition will not allow
the formation of a viscous boundary-layer and hence will not allow separation to occur.
A discussion of our choice of boundary conditions will be given in section 4.4.1.

We impose an inflow/outflow condition along the southern/northern boundaries that
is Munk’s solution to the linearized governing equations in the meridional ‘Munk layer,’ as
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Figure 4.1: The model geometry where L is the channel width, W is the obstacle width,
and ds is the obstacle’s meridional decay scale. An inflow/outflow condition is prescribed
on the southern and northern boundaries (Γ3 & Γ1), and the eastern and western bound-
aries (Γ2 & Γ4) are given by no-slip walls.
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described by Pedlosky [26,27]. A mathematical description of all the boundary conditions
used is given in section 4.4.

The flow in the interior of the domain is initialized with Munk’s linear solution in
the case of a linear coastline mapped to flow around the obstacle. This choice of initial
flow profile can be seen as a leading-order approximation to an exact initial solution in
the case of a straight coastline. For the case of a curved coastline, the error in this
approximation is proportional to the amplitude of the protruding coastline. A derivation
of Munk’s solution will be given in the next section.

4.2 The Munk Layer

To derive the Munk layer solution, we begin with the dimensional barotropic vortic-
ity equation (2.9) (Pedlosky [26]). We take our domain to consist of a straight Western
boundary and a basin of infinite extent. We assume that within the western boundary-
layer, the dominant balance is between the rotational and viscous terms. These assump-
tions give to leading order that

β
∂ψ

∂x
= ν∇2ζ . (4.2)

Next, we assume that there is no zonal component of velocity, i.e. u = 0, hence ψ = ψ(x)
and ζ = ψxx. In this case, equation (4.2) reduces to

∂ψ

∂x
= δ3m

∂4ψ

∂x4
, (4.3)

where δm = (ν/β)
1
3 is the Munk layer thickness as given by Pedlosky [26] and Munk [24].

The general solution to (4.3) is given by

ψ(x) = c1 + c2e
x

δm + c3e
− x

2δm cos

(√
3x

2δm

)
+ c4e

− x
2δm sin

(√
3x

2δm

)
. (4.4)

To determine the coefficients c1, c2, c3, and c4, we first impose the condition that at
large distances from the western boundary the meridional component of velocity vanishes.
That is,

∂ψ

∂x
→ 0 as x→∞ . (4.5)

This condition requires that c2 = 0. To ensure impermeability on the western boundary,
we make the choice

ψ = 0 on x = 0 , (4.6)

which yields c1 = −c3. In the general model, the solution will tend to an interior Sverdrup
solution ΨI(x, y) for x� δm, i.e.

ψ → ΨI as x→∞ , (4.7)

which gives c1 = ΨI . In our model, we neglect wind-stress and henceforth assume that
ΨI = 1. This assumption ensures a northward mean flow since the streamfunction in-
creases eastwards of the western boundary where ψ = 0.
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Neglecting wind-stress can be justified on the grounds that we are only interested in
the boundary-layer dynamics and not the dynamics in the interior gyre of the basin. As
shown by Pedlosky [26], the effects of wind-stress are negligible in the boundary-layer.

The final constant is set by the particular choice of surface condition we impose along
the western boundary. Throughout the thesis we assume no-slip,

∂ψ

∂x
= 0 on x = 0 , (4.8)

which yields that c4 = − 1√
3
. Hence, the solution to the linear Munk problem satisfying

our choice of boundary conditions is given by

ψ(x) = 1− e−
x

2δm

[
cos

(√
3x

2δm

)
+

1√
3

sin

(√
3x

2δm

)]
. (4.9)

Plots of the dimensionless form of (4.9) are given in Figure 4.2 for a selection of dimen-
sionless Munk numbers. The Munk number is defined in the following section in equation
(4.16).

In the next section, we invoke a suitable non-dimensionalization for the governing
equations that originates from the classical theory on oceanic gyre circulation

4.3 Non-dimensionalization

We begin with the dimensional barotropic vorticity equation (2.9) rewritten in the
form

∂ζ

∂t
+ ~u · ∇ζ + βv = ν∇2ζ . (4.10)

The non-dimensionalization we introduce is the same as that used by Munday [22] and
can be originally traced back to Bryan [6] in his numerical study of the wind-driven gyre.

The non-dimensional spatial coordinates are given by (x∗, y∗) = (x, y)/L. The non-
dimensional velocity is given by ~u∗ = ~u/U . Thus, the non-dimensional streamfunction
is given by ψ∗ = ψ/LU . The velocity scale U is taken to be the average speed of the
inflow/outflow profile. The non-dimensional vorticity is given by ζ∗ = ζL/U . Finally, the
non-dimensional time is given by t∗ = βLt.

Plugging these scalings into (4.10) and (2.10) gives

βU
∂ζ∗

∂t∗
+
U2

L2
(~u∗ · ∇∗ζ∗) + βUv∗ =

νU

L3
∇∗2ζ∗ , (4.11)

ζ∗ = ∇∗2ψ∗ , (4.12)

where ∇∗ is with respect to the dimensionless spatial variables. If we rewrite u and v
in terms of the streamfunction, multiply (4.11) by L2/U2, and drop stars for notational
convenience we obtain

β̂
∂ζ

∂t
+ J(ψ, ζ) + β̂

∂ψ

∂x
=

1
Re
∇2ζ , (4.13)

ζ = ∇2ψ . (4.14)
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The two non-dimensional parameters that appear are β̂ = βL2/U , the non-dimensional
beta parameter, and Re = UL/ν the Reynolds number. It is useful to rewrite (4.13) as

∂ζ

∂t
+

1

β̂
J(ψ, ζ) +

∂ψ

∂x
= Mu∇2ζ , (4.15)

where Mu = 1/Reβ̂ is defined by Munday [22] as the ‘Munk’ Number, since

Mu =
1

Reβ̂
=

ν

L3β
=
(
δm
L

)3

, (4.16)

and thus, Mu can be thought of as the cube of the non-dimensional Munk-layer thickness.
Alternatively, it can be interpreted as a non-dimensional viscosity.

For our purposes, it is useful to have a dimensionless version of the solution to the
linear Munk problem (4.9). It is given by

ψ(x) = 1− e−
x

2δ∗m

[
cos

(√
3x

2δ∗m

)
+

1√
3

sin

(√
3x

2δ∗m

)]
, (4.17)

where δ∗m = Mu
1/3. We will henceforth denote (4.17) as ψin(x) to emphasize that it

is the choice of inflow/outflow condition for the numerical model. Figure 4.2 plots the
non-dimensional streamfunction (4.17) as well as the corresponding meridional velocity
field v and vorticity ζ for selected Munk numbers Mu.

In the next section, it will be shown how this profile is used to determine the boundary
and initial conditions for an obstacle of o(y) with arbitrary choices of W and ds.
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Figure 4.2: Solutions to the linear Munk problem for selected values of the Munk number
Mu. The non-dimensional fields are (a) streamfunction ψ, (b) meridional velocity v, and
(c) vorticity ζ.
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4.4 Boundary and Initial Conditions

The conditions at each of the channel’s boundaries are derived from the linear Munk
problem. However, since our channel is of finite zonal extent we must take L� δm (i.e.
Mu � 1) so that we can replace the conditions as x→∞ with conditions on the eastern
channel wall Γ2 . At the eastern channel wall we have

ψ = 1 on Γ2 , (4.18)
∂ψ

∂x
= 0 on Γ2 , (4.19)

and along the curved western boundary we have

ψ = 0 on Γ4 , (4.20)
∂nψ = 0 on Γ4 , (4.21)

where ∂nψ = ∇ψ · n̂ is the derivative of ψ in the outward normal direction with respect
to the boundary. These conditions ensure impermeability and no-slip on the meridional
boundaries.

As mentioned in the previous sections, along the southern and northern boundaries
we prescribe inflow/outflow conditions in the form of equation (4.17):

ψ = ψin(x) on Γ1 ∪ Γ3 , (4.22)
ζ = ψinxx on Γ1 ∪ Γ3 . (4.23)

The flow is initialized at t = 0 with a modified form of (4.9) that is mapped from the
rectangular domain to the model domain given in section 4.1. This forces the linear
solution to flow around the curved western boundary. This modified form is given by

ψ0(x, y) = 1− e−
x+o(y)
2δ∗m

[
cos

(√
3(x+ o(y))

2δ∗m

)
+

1√
3

sin

(√
3(x+ o(y))

2δ∗m

)]
, (4.24)

for 0 ≤ x+ o(y) ≤ 1, 0 ≤ y ≤ 2 with the initial vorticity profile given by

ζ0(x, y) = ∇2ψ0 , (4.25)

which is calculated numerically using a Chebyshev spatial differentiation method that is
introduced in section 4.5.1.

Since the initial conditions are not an exact solution to the nonlinear dynamics, there
is an initial time period where the solution relaxes to a more accurate solution. The
results that we show later on are chosen after this initial transient period is surpassed.

4.4.1 On Prescribing Boundary Conditions

The subject of boundary conditions has been one of much scrutiny since the very
conception of geophysical fluid dynamics. In engineering-based flow configurations, it is
quite easy to justify the use of no-slip conditions on the surface of a cylinder since the
flow is taking place in a controlled environment where the no-slip layer may be read-
ily observed. With 2D ocean models, however, it is unclear what the correct boundary
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conditions are. It is also unclear whether there is truly a “correct” condition to be im-
posed. Although any fluid coming in contact with a solid boundary is subject to a no-slip
condition, it is difficult to argue that any 2D ocean model is resolving a no-slip layer
in practice. Realistically, ocean flows never come into contact with completely vertical
solid walls. 3D effects such as bottom-sloping, bottom friction, stratification, and other
shallow water effects play a crucial role in how a flow will interact with a coastal boundary.

In the end, it is up to the numerical experimentalist to determine which boundary
conditions best suit his or her problem. Much of the literature invokes a shear-stress free
(or “free slip”) condition ζ = 0 on the boundary where it is possible. Although easy to
implement, this condition does not allow for a viscous boundary layer to form. This is
problematic since separation occurs in nature and we need our model to be able to exhibit
this behaviour. Another alternative, is “hyper slip” (Pedlosky [26]) ∂nζ = 0 which has
boundary-layers that are similar in nature to free slip boundary layers. Other models
consider “partial slip” boundaries which tend to involve the prescription of vorticity to
some non-zero value along the boundary. These partial slip conditions may or may not
induce the formation of a viscous boundary layer, but may also give unphysical results if
one is not careful.

To develop a good numerical model that well describes a particular phenomenon in
the ocean, one must make certain not to choose whichever boundary conditions that will
give the cleanest results. Rather, one must strive at every turn to ensure their model is
reflecting the behaviour of the physical processes in nature. If the model cannot cooper-
ate with nature when the most natural boundary conditions are chosen, then it may very
well be time for a new model.

Here, we begin with a very simple model that extends previous attempts to model
the same phenomena (Munday [22]).

4.4.2 Sponge Layers

Numerical instabilities can result if the solution inside the interior of the domain
“drifts away” from the prescribed inflow/outflow condition at the southern and norther
boundaries. To circumvent this problem, we introduce a relaxation term to the right-hand
side of the barotropic vorticity equation of the form

κ
(
ψxx − ψinxx

)
. (4.26)

This forcing is only non-zero in the northern and southern bands of the channel domain,
the extent of which is determined by κ, which is given by

κ(y) =
κmax

2
[(tanh(µ(y − ytop)) + 1) + (− tanh(µ(y − ybot)) + 1)] , (4.27)

where κmax gives the relaxation time, ytop and ybot determine where the forcing occurs,
and µ is a length scale which determines the abruptness of the transition between the
sponged and the non-sponged portions of the domain.
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The result of this additional term is that the flow solution in the interior of the domain
is forced to relax to the prescribed inflow/outflow condition in “sponge regions” that are
placed adjacent to the southern and northern boundaries. This approach follows Munday
and Marshall [23] who also used sponge regions in their numerical simulations of western
boundary currents. However, they opted to choose a linear form for their coefficient κ
rather than the hyperbolic tangent profile given by equation (4.27). Figure 4.3 gives a
graphical representation of equation (4.27).

Figure 4.3: The sponge layer coefficient κ(y) with κmax = 1, ytop = 1.25, ybot = 0.25,
µ = 25.

4.5 Numerical Method

The fundamental approach in our numerical method is to use the Method of Lines as
discussed by Trefethen [37]. That is, continuous variables of space and time are changed
to variables that depend on discrete values in space and time. As a result, infinite-
dimensional continuous spatial derivative operators in our PDEs are replaced with differ-
entiation matrices. The system reduces to a system of coupled ODEs that are integrated
in time using a finite difference method in t.

Figure 4.4: Illustration of the Method of Lines for a one-dimensional time-dependent
PDE. The lines “x=constant” are the lines referred to in the name.
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A high accuracy scheme for our spatial discretization is desired, and hence a spectral
method is the natural choice. The motivation to use a high-order method is driven by
the fact that a great deal of the physics lies in the thin Munk layer located along the
Western boundary. A high-order scheme should better resolve the Munk layer compared
to any low-order method. We compare our results with those generated from the finite
difference method, that was employed by Munday [22] in his study of western boundary
currents.

Although our spatial discretization is somewhat complicated by the curvilinear nature
of our model domain, the idea is much the same as if the domain were rectangular. The
spatial discretization and the differentiation matrices utilized will be introduced in the
following subsection.

4.5.1 Chebyshev Differentiation in One Spatial Dimension

As mentioned above, we will replace the spatial derivatives in our governing equations
with matrices on a discrete set of grid points. We would like to use a discretization scheme
that can deal with arbitrary boundary conditions and still retain spectral accuracy. A
good choice for this necessity is the Chebyshev spectral collocation method. For an
introduction to the Chebyshev collocation method, see Peyret [29] or Trefethen [37].

To better understand the idea of our method we consider a one dimensional exam-
ple. Consider the function f(x) defined on the continuous interval [−1, 1]. We wish to
interpolate f(x) with a polynomial at discrete points in [−1, 1]. A good choice of discrete
points is given by the Chebyshev collocation (or quadrature) points given by

xi = cos
πi

N
, (4.28)

where i = 0, · · · , N .

The xi’s are given by the extreme points of the Chebyshev polynomials, and their
choice comes from the desire to minimize the effect of Runge Phenomenon. Runge phe-
nomenon states that if a polynomial interpolant is used to interpolate a smooth function
on N+1 equally spaced points, the approximations fail to converge in general as N →∞.
Furthermore, the approximations can get worse at a rate as large as 2N . For a further
discussion, see Trefethen [37].

Equation (4.28) implies that near the boundaries at x ≈ ±1, the average spacing
between points is O(N−2), and in the interior the average spacing of points is O(N−1).
Therefore, the grid points are clustered near the boundaries, which helps to better resolve
the dynamics of the Munk Layer.

If we discretize f(x) at the Chebyshev points as fi = f(xi), then our goal is to
approximate the derivative f ′(xi) with some vector of values f ′i where i = 0, · · · , N . Let
fN (x) ∈ PN be the unique interpolating polynomial of degree at most N of the function
f(x) satisfying fN (xi) = fi for i = 0, · · · , N . That is, we choose fN to be the unique Nth
order polynomial that agrees exactly with f(x) at the Chebyshev points. This allows us
to define the approximation to the derivative at xi as

f ′i =
(
dfN (x)
dx

)
xi

. (4.29)
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Since differentiation is a linear operator it can be written as the matrix-vector product

f ′i = DNfi , (4.30)

where DN is an (N + 1)× (N + 1) full matrix. Its entries, as given by Trefethen [37], are

(DN )00 =
2N2 + 1

6
, (DN )NN = −2N2 + 1

6
,

(DN )jj = − xj
2(1− x2

j )
, j = 1, · · · , N − 1 ,

(DN )ij =
ci
cj

(−1)i+j

(xi − xj)
, i 6= j , i, j = 1, · · · , N − 1 , (4.31)

where

ci =
{

2 if i = 0 or N
1 otherwise.

(4.32)

We have succeeded in discretizing the derivative, which is a continuous operator, with
a matrix that approximates the derivative. For higher-order derivatives, we can approx-
imate differentiation matrices by multiplying the Chebyshev differentiation matrix by
itelf, i.e. D(2)

N = D2
N , D(3)

N = D3
N , · · · , D(k)

N = Dk
N . However, it is worth mentioning that

there are more efficient ways of furnishing the entries of the higher-order differentiation
matrices (see Peyret [29]).

Figure 4.5 illustrates the advantage of using the Chebyshev method for a function
that grows rapidly within a boundary-layer. It presents the error in approximating ζin =
ψinxx with the Chebyshev method and a 2nd order finite difference (FD) method using
Chebyshev collocation points at the interior points of the domain. The resolution is 128
grid points. The Munk number is Mu = 1/9000, that corresponds to a dimensionless
Munk layer thickness of δ∗m = 0.0481. At this value of Mu, the vorticity starts at the
western boundary with a value of ζ ≈ 400 and rapidly decays to zero as x→∞.

It is worth pointing out that at the given Munk number (Mu = 1/9000) and with
128 zonal grid points, the clustering of the Chebyshev points allows for 17 grid points
within the Munk layer. Equispaced points, as used by Munday and Marshall [23], would
only have 6 grid points within the Munk layer. At Mu = 1/3000, the Chebyshev method
clusters 23 grid points within the Munk layer, while the equispaced method would only
have 8 points in the Munk layer. Thus, the Chebyshev method inherently allows for a
higher resolution within the Munk layer than an equispaced finite difference method with
the same number of global grid points.

4.5.2 Chebyshev Differentiation in Two Spatial Dimensions

We now have a way to approximate derivatives of functions of one spatial variable
at the Chebyshev points in [−1, 1]. Since the model domain Ω is two-dimensional, it is
necessary to determine how to approximate derivatives of functions of two spatial variables
on Θ ≡ [−1, 1]× [−1, 1], and then construct a mapping from Ω to Θ and vice-versa. If we
let (χ, γ) refer to the Cartesian coordinate set in Θ and define the Chebyshev collocation
points independently in each direction,
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Figure 4.5: Error in approximating the inflow vorticity ζin = ψinxx with a Chebyshev
method and a 2nd order FD method. The FD approximation error is O(1) near the
western boundary, while the Chebyshev approximation error is O(10−8).
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Figure 4.6: Tensor product grid of the Chebyshev collocation points on Θ ≡ [−1, 1] ×
[−1, 1]. For illustrative purposes, the resolution is 32× 64.

χi = cos
πi

Nχ
, i = 0, · · · , Nχ , γj = cos

πj

Nγ
, j = 0, · · · , Nγ , (4.33)

then we can construct a tensor product grid, as illustrated in Figure 4.6.
Assume a function f(χ, γ) on Θ is discretized according to fij = f(χi, γj) in row

lexicographical order, for i = 0, · · · , Nχ, j = 0, · · · , Nγ . The discrete derivatives (fij)χ,
(fij)γ , (fij)χγ , (fij)χχ, (fij)γγ are then given by

(fij)χ = Dχfij ,
(fij)γ = Dγfij ,

(fij)χγ = Dχγfij ,
(fij)χχ = Dχχfij ,
(fij)γγ = Dγγfij , (4.34)

where

Dχ = INγ+1 ⊗DNχ ,

Dγ = DNγ ⊗ INχ+1 ,

Dχγ = DχDγ ,

Dχχ = INγ+1 ⊗D(2)
Nχ

,

Dγγ = D
(2)
Nγ
⊗ INχ+1 , (4.35)
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Figure 4.7: The resulting irregular grid for the physical domain Ω. For illustrative pur-
poses, the resolution is 32× 64.

are the two-dimensional differentiation matrices, ⊗ denotes the Kronecker product be-
tween two matrices, and IN+1 denotes the (N + 1) × (N + 1) identity matrix. We have
approximated the mixed partial differentiation matrix Dχγ by the product of the first
derivative matrices Dχ and Dγ . The resulting two-dimensional differentiation matrices
are not full, however they are still much more dense than their finite difference analogues.

4.5.3 Chebyshev Differentiation in the Physical Domain

We proceed by constructing the grid for the physical domain Ω by mapping the
discrete Chebyshev points (χi, γj) to the discrete physical points (xi, yj) by the continuous
mapping

y = γ + 1 ,

x =
1
2

[(χ+ 1) + o(y) (1− χ)] , (4.36)

where o(y) is given by equation (4.1). An illustration of the result of this mapping is
given in Figure 4.7.

For the moment, our analysis will be on the continuous functions given by (4.36). To
compute derivatives in the physical domain Ω, we must make use of a standard result
of multivariate calculus that the derivatives in each domain are related by the Jacobian
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matrix linear transformation. That is, if f̃(x, y) = f(χ, γ), then[
f̃x
f̃y

]
=
[
χx γx
χy γy

] [
fχ
fγ

]
. (4.37)

Here, subscripts refer to the respective partial derivatives. Straight-forward differentiation
of the relations given by (4.36) gives the entries of the Jacobian matrix

χx =
2

1− o(y)
, (4.38)

χy =
2o′(y)(x− 1)
(1− o(y))2

, (4.39)

γx = 0 , (4.40)
γy = 1 . (4.41)

Thus, the continuous first partial derivatives of f̃(x, y) can be written in the “operator
form”

∂f̃

∂x
=

(
χx

∂

∂χ

)
f , (4.42)

∂f̃

∂y
=

(
∂

∂γ
+ χy

∂

∂χ

)
f , (4.43)

and the continuous non-mixed second partial derivatives of f̃(x, y) can be computed by
squaring the operators, i.e.

∂2f̃

∂x2
=

(
χx

∂

∂χ

)2

f ,

= χ2
x

∂2f

∂χ2
, (4.44)

∂2f̃

∂y2
=

(
∂

∂γ
+ χy

∂

∂χ

)2

f ,

=
∂2f

∂γ2
+ 2χy

∂2f

∂γ∂χ
+ χ2

y

∂2f

∂χ2
. (4.45)

Furthermore, we can write the discrete analogues of the expressions (4.42)-(4.45) to
find the spectral differentiation matrices for the physical domain Ω. First, let q(x, y) = χx,
r(x, y) = χy, s(x, y) = χ2

x, w(x, y) = χ2
y. We discretize these functions according to

row lexicographical ordering at the grid points so that qij = q(xi, yj), rij = r(xi, yj),
sij = s(xi, yj), wij = w(xi, yj) for i = 0, · · · , Nχ, j = 0, · · · , Nγ .

If we wish to replace the derivative operators in (4.42)-(4.45) with differentiation ma-
trices, then q, r, s, and w must be replaced by diagonal matrices with their discretizations
written along the diagonal. Hence, define the matrices Q, R, S, and W as the diagonal
matrices with the row lexicographical orderings of qij , rij , sij , and wij along their main
diagonal, respectively.

Using the known forms of the differentiation matrices for the computational domain
Θ from (4.35) and the discrete analogues of the continuous expressions (4.42)–(4.45), we
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can list the differentiation matrices for the physical domain Ω:

Dx = QDχ ,
Dy = Dγ +RDχ ,
Dxx = SDχχ ,
Dyy = Dγγ + 2RDγχ +W Dχχ . (4.46)

To prescribe the no-slip condition (4.21) on the western boundary we must compute
the normal derivative on the western boundary Γ4. To do this first notice that the western
boundary can be written as the parameterized curve

Υ(y) = (o(y), y) , (4.47)

where its tangent vector is given by

Υ̇(y) = (o′(y), 1) . (4.48)

Thus, the unit outward normal is given by

n̂(y) =
1√

1 + (o′(y))2
(−1, o′(y)) , (4.49)

and the normal derivative at η ∈ Γ4 is given by

∂nψ
∣∣
η

= ∇ψ · n̂
∣∣
η

=

[
1√

1 + (o′(y))2

(
−∂ψ
∂x

+ o′(y)
∂ψ

∂y

)]
η

. (4.50)

Given this final step, we are now able to rewrite all the derivatives in our problem
with matrices, as is required by the method of lines.

4.5.4 Time Stepping Procedure

To explain the time-stepping schemes used in our numerical integration we consider
a scalar ODE. Consider the following scalar ODE

U ′(t) = f(U, t) , (4.51)

which is discretized in time according to Un = U(tn). The time-stepping method used to
evolve the barotropic vorticity equation in time is a combination of the first-order implicit
Backward Euler (BE) method,

Un+1 − Un

∆t
= f(Un+1, tn+1) , (4.52)

and the third-order explicit Adams-Bashforth (AB3) method,

Un+1 − Un

∆t
=

1
12
(
23f(Un, tn)− 16f(Un−1, tn−1) + 5f(Un−2, tn−2)

)
, (4.53)
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as given by Leveque [17]. AB3 is useful because it is a third-order accurate linear multi-
step method, and it is much faster than the corresponding third-order single-step Runge-
Kutta methods.

Equation (4.52) is called implicit because it requires solving an equation for Un+1.
In general, the equation is non-linear since it depends on the form of the function f .
Equation (4.53) is called explicit because it gives an explicit formula for Un+1.

Explicit schemes have the advantage of being very inexpensive to solve numerically.
However, they are subject to a constraint on the time-step ∆t ≤ c(t) in order to achieve
numerical stability. Since c(t) can be very small, explicit schemes can become rather
expensive.

Trefethen [37] gives the following ‘rule of thumb’ for the stability criteria of numerical
integrators:

“The Method of Lines is stable if the eigenvalues of the (linearized) spatial discretiza-
tion operator, scaled by ∆t, lie in the stability region of the time-discretization operator.”

The stability region in λ∆t-space for the AB3 scheme applied to the ODE U ′ = λU
is given in Figure 4.8. An explanation of how to generate a stability region for a given
time-stepping scheme is given by Leveque [17].

Figure 4.8: Stability region in the complex plane for the third-order Adams-Bashforth
(AB3) scheme. The horizontal and vertical axes correspond to real and imaginary parts
of λ∆t, respectively.
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The rule of thumb implies that diffusion operators, such as the Mu∇2ζ term in the
barotropic vorticity equation, require a much smaller time-step to achieve stability than
the other terms. Although the non-linear advection terms

1

β̂

[
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

]
, (4.54)

when stepped with AB3 can result in a relatively small restriction on ∆t (∆t = O(10−2)
or O(10−3) in our simulations), implicit time-stepping becomes unfeasible due to the high
computational price of solving a nonlinear equation at each time-level.

It is important to notice that the terms given by equation (4.54) are scaled by 1/β̂.
This means that in simulations where β̂ is relatively larger we can use a larger time-step
than in the limit of small β̂.

In light of the above discussion, it is apparent that the nonlinear advection terms
should be time-stepped with an explicit scheme, such as AB3, and the linear diffusion
terms should be time-stepped with an implicit scheme, such as BE. The sponge-layer and
Coriolis terms are also time-stepped with AB3 since they are linear and do not enforce a
smaller restriction on the time-step ∆t in comparison to the non-linear advection terms.

We proceed discretizing the dimensionless vorticity (4.15) and streamfunction Poisson
equations (4.14) with respect to time. We use the notation that at time tn+1 = (n+1)∆t,
ψ (x, y, tn+1) = ψn+1 and ζ (x, y, tn+1) = ζn+1. In all our numerical simulations, we apply
the semi-implicit AB3/BE method on the time-derivative in equation (4.15). This gives

ζn+1 − ζn

∆t
= − 23

12
Un +

16
12
Un−1 − 5

12
Un−2

+ Mu∇2ζn+1. (4.55)

where Un = 1
β̂
J (ψn, ζn) + ∂ψn

∂x + κ
(
ψinxx − ψnxx

)
. To initialize the time-stepping process,

we use the appropriate low order methods Forward Euler/Backward Euler(FE/BE) and
second-order Adams-Bashforth/Backward Euler(AB2/BE). We now make the notational
short-hand that all terms from time-levels other than t = (n+ 1) ∆t are moved to the
right-hand side and we group them as the variable F . We further simplify the notation by
dropping the superscripts, so that ψ = ψn+1, and ζ = ζn+1. The semi-discrete equations
that then must be solved at each time-level are

ζ −∆tMu∇2ζ = F in Ω , (4.56)
ζ = ∇2ψ in Ω , (4.57)

where
F = ζn +

∆t
12
(
−23Un + 16Un−1 − 5Un−2

)
. (4.58)

These equations are subject to the inflow/outflow condition at the north and south
ends of the channel

ψ = ψin (x) on Γ1 ∪ Γ3 , (4.59)
ζ = ψinxx on Γ1 ∪ Γ3 , (4.60)
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and the impermeability and no-slip conditions on the eastern and western boundaries,

ψ = 1 on Γ2 , (4.61)
ψ = 0 on Γ4 , (4.62)

∂nψ = 0 on Γ2 ∪ Γ4 . (4.63)

The reader should immediately note the difficulty in solving the above boundary-value
problem. Namely, on each of the coastal boundaries Γ2 & Γ4 there are two boundary
conditions on ψ and none on ζ.

There are many methods available to overcome this problem. Chapter 3 uses Green’s
second identity to reformulate the problem in terms of integral conditions. Another
method involves rewriting the barotropic vorticity equation (4.15) in terms of a fourth-
order problem for the streamfunction and modifying the basis polynomials to satisfy the
Neumann condition (4.63). The approach we use in section 4.5.5 is known as the influence
matrix method as explained by Peyret [29].

4.5.5 The Influence Matrix Method

The influence matrix method has proven to be an effective approach for numerically
solving the incompressible Navier-Stokes equations in streamfunction-vorticity formula-
tion, and has been reviewed extensively by Peyret [29] for a series of spectral collocation
methods. The underlying idea is to solve a set of unknown Dirichlet conditions on ζ such
that the required Neumann conditions on ψ are satisfied, and then to solve the resulting
Dirichlet problems.

We apply the influence matrix method for the Chebyshev-Chebyshev spatial dis-
cretization in the special case of only the Γ2 and Γ4 boundaries possessing Neumann
conditions. We proceed by spatially discretizing the time-discretized system (4.56)–(4.63)
in the computational domain with the Chebyshev collocation points

χi = cos
πi

Nχ
, i = 0, · · · , Nχ , γj = cos

πj

Nγ
, j = 0, · · · , Nγ . (4.64)

We take ΩN as the set of collocation points in the interior of the domain, Γ1
N & Γ3

N to be
the set of collocation points on Γ1 & Γ3 , and Γ2

N & Γ4
N to be the set of collocation points

on Γ2 & Γ4 except for the corners, since the choice of inflow/outflow profile ensures that
the corners automatically satisfy the Neumann conditions.

Letting PN be the set of polynomials of degree at most Nχ in χ and Nγ in γ, it
follows that the time-discretized variables ζ and ψ are approximated by the Chebyshev
polynomials ζN , ψN ∈ PN . Thus, the Chebyshev approximation to (4.56)–(4.63) forms
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what Peyret denotes as the discrete P-problem:

ζN −Mu∆t∇2ζN = F in ΩN , (4.65)
ζN = ∇2ψN in ΩN , (4.66)
ψN = ψin on Γ1

N ∪ Γ3
N , (4.67)

ζN = ψinxx on Γ1
N ∪ Γ3

N , (4.68)
ψN = 1 on Γ2

N , (4.69)
ψN = 0 on Γ4

N , (4.70)
∂nψN = 0 on Γ2

N ∪ Γ4
N . (4.71)

Subsequently, the linear nature of the problem is exploited, and the flow variables are
decomposed as

ζN = ζ̃N + ζN , ψN = ψ̃N + ψN , (4.72)

with ζ̃N , ζN , ψ̃N , ψN ∈ PN . The pair (ζ̃N , ψ̃N ) satisfy Peyret’s discrete P̃-problem:

ζ̃N −Mu∆t∇2ζ̃N = F in ΩN , (4.73)
ζ̃N = ∇2ψ̃N in ΩN , (4.74)
ψ̃N = ψin on Γ1

N ∪ Γ3
N , (4.75)

ζ̃N = ψinxx on Γ1
N ∪ Γ3

N , (4.76)
ψ̃N = 1 on Γ2

N , (4.77)
ψ̃N = 0 on Γ4

N , (4.78)
ζ̃N = 0 on Γ2

N ∪ Γ4
N , (4.79)

which was chosen to satisfy shear-stress free ζ̃N = 0 conditions on the coastal bound-
aries instead of the original no-slip conditions. The P̃-problem also contains the non-
homogeneity of the total problem as well as the inflow/outflow conditions at the south-
ern and northern boundaries. It also has one boundary condition on vorticity ζ and
one boundary condition on the streamfunction ψ on each of the boundaries. Thus, the
P̃-problem is straight-forward to solve when the continuous differential operators are
replaced by Chebyshev differentiation matrices of the form (4.35).

The pair (ζN , ψN ) satisfy Peyret’s discrete P-problem:

ζN −Mu∆t∇2ζN = 0 in ΩN , (4.80)
ζN = ∇2ψN in ΩN , (4.81)

ψN = 0 on Γ1
N ∪ Γ2

N ∪ Γ3
N ∪ Γ4

N , (4.82)
∂nψN = −∂nψ̃N on Γ2

N ∪ Γ4
N , (4.83)

ζN = 0 on Γ1
N ∪ Γ3

N . (4.84)

This system is derived from the requirement that the total streamfunction ψN = ψ̃N+ψN
and the total vorticity ζN = ζ̃N + ζN satisfy the discrete P-problem. In particular,
equations (4.80) and (4.81) are obtained by subtracting equations (4.73) and (4.74) from
equations (4.65) and (4.66), respectively, and using ψN = ψN − ψ̃N . Similarly, the
Dirichlet conditions (4.82) and (4.84) are derived by subtracting (4.75)–(4.78) from (4.67)-
(4.70). Finally, the Neumann condition (4.83) is derived by plugging the decomposition
ψN = ψ̃N + ψN into the no-slip condition (4.71) and solving for ∂nψN .
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The P-problem has a homogeneous PDE (4.80), and same inversion equation (4.81)
as the original problem. It also satisfies homogeneous Dirichlet conditions on ψ on all
the boundaries. However, the no-slip condition is replaced with an equation that relates
the P and P̃ conditions. This is the only condition required to guarantee that the total
solution satisfies the original no-slip condition. Also, the Dirichlet conditions on vorticity
at the southern and northern boundaries are homogeneous because they are addressed in
the P̃-problem.

The homogeneity of the Helmholtz equation (4.80) and the Dirichlet condition (4.82)
allows us to reformulate the problem as a collection of time-independent Dirichlet prob-
lems with the conditions on ζN chosen to satisfy the Neumann condition (4.83). This
yields Peyret’s discrete P0-problem:

ζN −Mu∆t∇2ζN = 0 in ΩN , (4.85)
ζN = ∇2ψN in ΩN , (4.86)

ψN = 0 on Γ1
N ∪ Γ2

N ∪ Γ3
N ∪ Γ4

N , (4.87)
ζN = ξ on Γ2

N ∪ Γ4
N , (4.88)

ζN = 0 on Γ1
N ∪ Γ3

N . (4.89)

This problem is exactly the same as the P-problem except that the Neumann condition is
replaced by ζN = ξ. This is essentially prescribing an unknown vorticity on the western
and eastern boundaries that guarantee the no-slip boundary conditions are satisfied.

We must now set up a linear system to solve for the unknown ξ. The linear system
comes from the influence matrix method. It exploits the linearity of the problem and
decomposes the solution to the P0-problem as

ζN =
Lp∑
l=1

ξlζ l , ψN =
Lp∑
l=1

ξlψl , (4.90)

where Lp = 2 (Nγ − 2) is the number of collocation points on Γ2
N ∪ Γ4

N . If we substitute
the sums (4.90) into equations (4.85)-(4.89) of the P0-problem, we can derive Lp Dirichlet
problems. Each pair (ζ l, ψl) corresponding to a particular grid-point on the boundary
satisfies the discrete P l-problem:

ζ l −Mu∆t∇2ζ l = 0 in ΩN , (4.91)
ζ l = ∇2ψl in ΩN , (4.92)

ψl = 0 on Γ1
N ∪ Γ2

N ∪ Γ3
N ∪ Γ4

N , (4.93)
ζ l = δm,l for ηm ∈ Γ2

N ∪ Γ4
N . (4.94)

ζ l = 0 on Γ1
N ∪ Γ3

N , (4.95)

where δm,l is the Kronecker delta, and ηm, m = 1, ..., Lp, refers to the collocation points
on Γ2

N ∪Γ4
N . The decomposition can be interpreted as a Green’s functions decomposition,

where the total solution pair (ψN , ζN ) is a superposition of all of the Green’s functions.
With this choice of decomposition, the values of ζN at Γ2

N ∪Γ4
N are given by the constants

ξl, l = 1, ..., Lp. These constants can be determined by forcing ψN to satisfy the Neumann
condition (4.83), i.e. by plugging the decomposition (4.90) into equation (4.83). This
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yields the linear system of equations

Lp∑
l=0

(
∂nψl

∣∣
ηm

)
ξl = −∂nψ̃N

∣∣
ηm

, (4.96)

which can be written in matrix-vector form as

MΞ = Ẽ , (4.97)

where

M =


∂nψ1

∣∣
η1

∂nψ2

∣∣
η1

· · · ∂nψLp

∣∣
η1

∂nψ1

∣∣
η2

∂nψ2

∣∣
η2

· · · ∂nψLp

∣∣
η2

...
...

. . .
...

∂nψ1

∣∣
ηLp

∂nψ2

∣∣
ηLp

· · · ∂nψLp

∣∣
ηLp

 ,

is the influence matrix, and

Ξ =


ξ1
ξ2
...
ξLp

 , Ẽ =


−∂nψ̃N

∣∣
η1

−∂nψ̃N
∣∣
η2

...

−∂nψ̃N
∣∣
ηLp

 .

4.5.6 Solving the System Efficiently

We now take a moment to remark on how the above hierarchy of problems can be
solved efficiently at each time-level. We mostly follow Peyret’s [29] discussion of efficiency,
but we go into a little more depth.

Since the P l problems are time-independent, they only need to be solved once. Thus,
they can be solved for each l = 1, ..., Lp in the pre-processing stage. Solving the lth

Dirichlet problem subsequently gives the lth column of the influence matrix (M) after
∂nψl has been computed at the boundaries. The inverse of the influence matrix, M−1,
can then be computed using linear algebra and stored so that it can be re-used at each
time-level without further computation.

For the sake of saving computer memory, it is useful to find an approach that does not
involve constructing the final solution (ζN , ψN ) from the sums given by (4.72) and (4.90).
The approach we use is to determine the final solution pair by solving the P-problem
(4.65)–(4.71) with the Neumann condition (4.71) replaced by the Dirichlet condition

ζN
∣∣
ηm

= ξm for ηm ∈ Γ2
N ∪ Γ4

N , (4.98)

where ξm is known for m = 1, ..., Lp. The system only involves Dirichlet conditions and
can be solved in the same manner as the P̃-problem.

At each time step, the problem consists of the following sequence of computations:
solving the time-dependent P̃-problem, computing the vector Ẽ by computing the normal
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derivative of ψ̃N at each grid point on the coastal boundaries, solving for the vector Ξ
by Ξ = M−1Ẽ, and finally solving the appropriately modified Dirichlet version of the
P-problem.

Each of the Dirichlet BVPs described above involve solving a Helmholtz equation for
the vorticity ζ and a Poisson equation for the streamfunction ψ. Because we are using
a spectral collocation method with cross-derivative terms introduced by a mapping to
the computational domain, both of the ensuing linear systems are full (except for at the
boundary nodes). This poses quite a problem in terms of computation time and memory
requirements.

For starters, the matrices representing a Laplacian or Helmholtz operator at the re-
quired resolution (128× 256) are too large to store in memory, even for today’s modern
computers. This means that the full 2D operators are not constructed explicitly, and
applications of the Poisson and Helmholtz operators are performed by matrix products
of the 1D Chebyshev differentiation matrix and elements of the Jacobian matrix associ-
ated with the mapping. We remark the process could be sped up by differentiating with
the pseudospectral (FFT) method rather than matrix products, but for our purposes the
speed-up is negligible.

In general, a full Gaussian matrix solution takes O(n3) FLOPS as discussed in Tre-
fethen and Bau [38]. In our case, the matrix would have n = Nχ ·Nγ rows/columns. At
a resolution of 128× 256, Gaussian elimination would take O(3× 1012) FLOPS, and thus
we must be more clever in order to solve these linear systems.

We must use an iterative method to solve the linear systems. Since the linear oper-
ators of interest are neither symmetric nor skew-symmetric, conjugate gradient methods
are not applicable in this case. Instead, we make use of the Generalized Minimum Resid-
ual (GMRES) iterative method which is preconditioned with a 9-point finite difference
(FD) stencil with differencing performed on the Chebyshev-Chebyshev computational
grid. This method of pre-conditioning a linear system is very popular in cases where the
linear system comes from a high-order discretization of a PDE. For a thorough discussion
of GMRES and preconditioners, see Trefethen and Bau [38]. For a discussion on the
9-point FD stencil, see Iserles [15].

The 9-point FD stencil generates a very sparse banded linear systems with upper and
lower band-widths p and q, respectively with p, q � n. Using a preconditioner means that
solving systems of this type takes place at every iteration. Therefore, it must be possible
to solve these systems quickly in order for preconditioning to be worthwhile. Luckily,
Golub and Van Loan [14] show that systems of this type can be solved with a band LU
factorization and back-solve in O(pqn) FLOPS.

At the selected resolution with preconditioning, the Poisson and Helmholtz equations
can typically be solved in 10 or less iterations, depending on the obstacle parameters used.
As shown in Trefethen and Bau [38], the number of FLOPS for each GMRES iteration is
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O(n2) and we are on the right track to solving the problem efficiently. The preconditioning
process is further sped up by storing the LU -factorization of the preconditioner matrix
M in the pre-processing stage. L can then be used as a left-preconditioner and U can be
used as a right-preconditioner.

4.5.7 Spectral Filtering

Consider the nonlinear advection terms of the barotropic vorticity equation (4.15)

1

β̂

[
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x

]
. (4.99)

These nonlinear terms can transfer energy between different wavelengths and typically
they transfer energy both upscale and downscale. Because we are dealing with a dis-
crete number of grid points on a bounded domain, the spectrum of representable waves
is discrete and has some maximum horizontal wavenumber K and maximum vertical
wavenumber L. Numerical instabilities typically occur when energy accumulates at the
higher wavenumber modes.

There are two common approaches for removing energy from the higher wavenumber
modes. Both approaches are discussed and compared by Arbic and Flierl [1] in their study
of the effects of mean flow direction on baroclinically unstable beta-plane geostrophic tur-
bulence. The first approach is known as “hyperviscosity” and is to introduce a biharmonic
∇4ζ (or higher-order harmonic) term to the right-hand side of the barotropic vorticity
equation (4.15). The second approach is to filter all wavenumbers above a critical value.
The filter usually takes an exponential form. In our numerical method, we have opted to
use an exponential cut-off filter to avoid the computational cost of solving a fourth-order
problem, as would be the case with the hyperviscosity approach.

To perform our analysis of the spectrum in Fourier space, we must find a connection
between the discrete Chebyshev series and discrete Fourier series. Consider the one-
dimensional case as a simple example. The Chebyshev expansion of the function f(x) at
the Chebyshev points xi = cos(πi/N) takes the form

f(xi) =
N∑
k=0

f̂kTk(xi) , for i = 0, · · · , N , (4.100)

where Tk(x) = cos(karccos(x)) for k = 0, · · · , N is the Chebyshev polynomial of the first
kind of degree k. If we make the change of variables x = cos θ, (4.100) becomes

f(xi) =
N∑
k=0

f̂k cos
(
kπi

N

)
, for i = 0, · · · , N , (4.101)

which is a discrete Fourier cosine series.

To apply the exponential cut-off filter, splitting (see Leveque [17]) is applied to the
AB3/BE time-step (4.55) so that the filter can be applied between an explicit nonlinear
advection step and an implicit diffusion step. The algorithm is as follows:

1. Compute ζ∗ by: ζ∗−ζn

∆t = ζn + ∆t
12

(
−23Un + 16Un−1 − 5Un−2

)
.
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2. Filter: ζ∗∗ = IDCT2(filterHfilterV ×DCT2(ζ∗)).

3. Compute ζn+1 by ζn+1 = ζ∗∗ +Mu∆t∇2ζn+1 and the influence matrix method.

Here,DCT2 represents the two-dimensional discrete cosine transform with inverse IDCT2,
andfilterH and filterV are given by

filterH =

 1 if 0 ≤ k < kcrit,

exp
(
−α

(
k−kcrit
K−kcrit

)4
)

if kcrit ≤ k ≤ K ,
(4.102)

filterV =

 1 if 0 ≤ l < lcrit,

exp
(
−α

(
l−lcrit
L−lcrit

)4
)

if lcrit ≤ l ≤ L ,
(4.103)

where k = 0, · · · ,K, l = 0, · · · , L are the horizontal and vertical wavenumbers in the
computational domain. kcrit and lcrit correspond to the horizontal and vertical cut-
off wavenumbers, respectively, and α is an adjustable parameter that determines how
abruptly the filter acts. The values of kcrit, lcrit, and α used in our simulations are given
in section 4.6.1.

In the next section, results will be given for coastlines with various choices of obstacle
parameters W and ds, for a variety of Reynolds number Re and dimensionless beta pa-
rameters β̂, and some specific choices of Munk number Mu. Our choice of computational
parameters will also be discussed.

4.6 Results and Discussion

4.6.1 Computational Parameters Used

Many numerical experiments were performed to determine what time-step and filter-
ing parameters would ensure numerical stability throughout the simulations. As Peyret
[29] demonstrates, a spectral method is considered “well converged” provided the spectra
tail-off to zero in the limit of large wavenumber. For all physical parameters considered,
our spectra displayed this behaviour for the grid resolution of Nχ × Nγ = 128 × 256.
Our spectral filter was chosen to filter out the energy at the top 35% of wavenumbers in
each direction after each non-linear advection step with α = 18.4. This choice of filter
parameters is the same as the choice given by Arbic and Flierl [1] to study two-layer
geostrophic turbulence. Using the methodology presented in section 4.5.6 for solving the
linear systems, typical runs were found to take about 60 hours to achieve dimensionless
times of t = 300 with dt = 0.015. At the selected resolution, the amount of memory
required was approximately 600 MB.

For our choice of resolution, it was found that numerical stability could be attained
with the time-step size of ∆t = 0.015, particularly for the cases of large β̂. However, for
numerical experiments that used a smaller beta parameter (β̂ = O(10)), it was necessary
to set ∆t = 0.0015 to retain stability.

For all the results presented in this thesis, it was found that a sponge strength of
κmax = 1 was sufficient to ensure that the interior solution was forced to agree with the
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inflow/outflow conditions at the interior points that were adjacent to the southern and
northern boundaries. µ = 25 was chosen to ensure a relatively quick transition between
the sponged and non-sponged portions of the numerical domain. The sponge parameters
ybot and ytop were chosen to allow the sponge-layers to exist for y < 0.25 and y > 1.25.
See Figure 4.3 for an illustration of the sponge layer coefficient κ that uses the above
parameters.

4.6.2 Moderate Dissipation Results: Mu = 1/3000

We begin presenting results of our numerical simulations for a moderate Munk number
of Mu = 1/3000. This value corresponds to a moderately small amount of dissipation and
a dimensionless Munk layer thickness of δm ≈ 0.07, i.e. the Munk layer is approximately
7% of the width of the basin.

As discussed by Munday and Marshall [23], the flow behaviour in the interior of
the basin is dominated by westward propagating Rossby waves and the formation of
eddies due to shear instabilities. Rossby waves and eddies are two important factors that
contribute to the unsteadiness of the system. Munday and Marshall [23] explain that in
cases of extreme inertia, the existence of eddies can cause the boundary current to oscillate
between a separated and a non-separated state. Munday and Marshall only presented the
time-average of their numerical simulations. This approach has the advantage of showing
the averaged flow states, but it unfortunately loses some important details. It is for this
reason that we have instead decided to focus on snapshots of the numerical simulations
instead of the time-average. This has the advantage of showing us the instants of time
in which separation occurs. Furthermore, it shows the largest distance of separation,
information that is lost when we time-average over a duration of time. The particular
instants we choose to plot the solution are chosen to show the flow after the initial
adjustment period. This initial shock occurs because the initial state is not an exact
solution to the nonlinear dynamics and thus an adjustment period occurs.

Two sets of obstacle parameters are investigated. The first choice is an obstacle width
of W = 0.2 and a meridional decay scale of ds = 0.05. This choice of obstacle parameters
is chosen since it yields the smallest obstacle curvature that gives any separation of the
boundary current from the western boundary. This result is in contrast to the results
of Munday and Marshall [23] who found separation for obstacles of much less curvature.
In particular, they found separation in the case with W = 0.1, ds = 0.1. Since the
maximum curvature of the obstacle (defined at its peak) is given by W/d2

s, this indicates
that Munday and Marshall [23] report separation in obstacles that possess 1/8 of the
minimum curvature we require to provoke any separation. The second choice of obstacle
parameters is W = 0.2, ds = 0.035, and it is used to illustrate the effect an obstacle with
larger curvature has on the tendency of the boundary current to separate.

Since the streamfunction is fixed at ψ = 0 along the western boundary, a simple
criterion for boundary-layer separation is that ψ < 0 in regions adjacent to the obstacle.
We can adopt this criterion because a region of ψ < 0 to the right of the ψ = 0 streamline
implies a southward flow, i.e. a reversal of the expected northward flow of the boundary
current. For illustrative purposes, in this section flow regions with ψ < 0 are shaded in all
figures that possess separation. We only present the meridional region of the flow domain
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given by 0.4 < y < 1.25 since the remaining portions of the domain represent “sponged”
regions, and thus do not represent relevant physical processes.

Figures 4.9–4.11 give early time snapshots for a fixed obstacle W = 0.2, ds = 0.05 and
Reynolds numbers of Re = 12, 60, and 300 at Mu = 1/3000. At this Munk number, these
three Reynolds numbers correspond to β̂ = 250, 50, and 10, respectively. In Figures 4.9–
4.11, separation is not discernible in the images because it occurs in a very small region
at the obstacle’s peak that was only detectable by virtue of the fact that ψ < 0 close to
the obstacle’s peak. In all of these cases, ψmin ≈ −0.005. Since very little separation
occurs for this choice of parameters, there is no dramatic difference in the flow for these
three figures. The only differences present are in the behaviour of the eddies and Rossby
waves in the eastern part of the basin. Rossby waves become more predominant in the
limit of small Mu, since the waves are less damped by viscous forces. For an introduction
to Rossby waves see section 3.9.3.

In his thesis, Munday [22] considered the case Mu = 1/3000, Re = 20, β̂ = 150,
W = 0.2, ds = 0.05 with his finite difference model. In contrast to the results in Figures
4.9–4.11, he found a very large separation region that originated at the obstacle’s peak
that extended downstream and encompassed most of the obstacle’s lee side. We suspect
that this difference is widely due to the different treatment of the western boundary that
Munday used. He used a piece-wise linear approximation of the obstacle, while we used
a smooth mapping of the Chebyshev points onto the obstacle’s profile. Another source of
discrepancy is the fact that Munday used a low-order method. As we saw in Figure 4.5,
low-order methods yield a larger error in the boundary-layer than our spectral method.
Since our spectral model is more accurate in the boundary layer we believe that we are
better resolving the boundary layer dynamics.

Eddies form as a result of shear instability which occurs when the frictional boundary-
layer thickness δm = (ν/β)

1
3 is not large enough to contain the dynamics of the boundary

current. Instead, the boundary current becomes defined by the inertial boundary-layer
thickness δI = (U/β)

1
2 as defined by Pedlosky [26, 27]. The difference between inertial and

frictional boundary-layers is that inertial boundary layers have the inertial (nonlinear)
terms in the dominant balance, while frictional boundary-layers have the frictional (linear)
terms in the dominant balance. A condition for the presence of shear instability as stated
by Munday [22] is that the ratio δm/δI is sufficiently small. We can also write the ratio
δm/δI in terms of non-dimensional parameters

δm
δI

= β̂1/2M1/3
u =

(
β̂1/2

Re

)1/3

. (4.104)

Equation (4.104) indicates that flows with larger β̂ will require a larger Re to give shear
instabilities. This agrees with our intuition about the stabilizing nature of the β-effect.
For a complete discussion of the transient aspects of unsteady and steady flow solutions,
see [22]. The ratio (4.104) also gives us some insight into what the final state of the flow
will be. If the viscous boundary-layer dominates, the flow will settle down to a steady
state for large enough times. In the inertial limit, the flow will reach a periodic final
state.

In general, the initial flow for very small times displays artifacts of some numerical
instabilities due to the fact that we have initialized the model with a profile that is not an
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exact solution. These artifacts are visible as “saw-tooth” oscillations in the streamlines.
By time t = 0.14, the streamlines appear to have settled down to a smooth state. For
early times, t < 2 the separation region forms and quickly settles down to a relatively
stagnant state. The separation region can move around slightly depending on how strong
the eddy activity is just to the east of the separation region. In fact, in the purely inertial
limit the separation region can continue to grow and move around rapidly for large times.
These cases are interesting but are also very complicated and beyond the scope of this
thesis.

Figures 4.12–4.14 give early time snapshots for the obstacle parameters W = 0.2,
ds = 0.035 and Reynolds numbers of Re = 12, 60, and 300. As we should expect, more
separation is present as we increase Re since this corresponds to a smaller value of β̂ for
a fixed Munk number Mu. In contrast to Figures 4.9–4.11 (ds = 0.05), Figures 4.12–
4.14 (ds = 0.035) show much more separation. All three of the figures have their largest
separation region at the peak of the obstacle, which is to be expected since it is the point
of maximum curvature. Figure 4.12 (Re = 12) is the only case for this obstacle parameter
and Munk number that doesn’t have other separation regions aside from the expected one
at the peak. Another interesting observation about Figure 4.12 is the deformation of the
streamlines which occurs near the head of the coastline at t = 1.45. This phenomenon is
a signature of Rossby wave interactions. In Figure 4.13 (Re = 60), some small separation
regions are present downstream, on the obstacle’s lee side. Figure 4.13 (Re = 300) also
has separation regions downstream, but additionally has separation regions upstream of
the obstacle’s crest. There are also some deformations present in the streamlines in Figure
4.13 that are not present in the other figures. These deformations can be attributed to
the influence of the eddy train on the primary boundary current.
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(a)

(b)

Figure 4.9: Streamlines for the case Mu = 1/3000, Re = 12, β̂ = 250, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.10: Streamlines for the case Mu = 1/3000, Re = 60, β̂ = 50, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.11: Streamlines for the caseMu = 1/3000, Re = 300, β̂ = 10, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.

80



(a)

(b)

Figure 4.12: Streamlines for the case Mu = 1/3000, Re = 12, β̂ = 250, W = 0.2,
ds = 0.035 at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.13: Streamlines for the caseMu = 1/3000, Re = 60, β̂ = 50, W = 0.2, ds = 0.035
at times (a) t = 0.14 and (b) t = 0.58.
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(a)

(b)

Figure 4.14: Streamlines for the case Mu = 1/3000, Re = 300, β̂ = 10, W = 0.2,
ds = 0.035 at times (a) t = 0.14 and (b) t = 0.58.
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4.6.3 Weak Dissipation Results: Mu = 1/9000

We proceed with the results of our numerical simulations with a Munk number of
Mu = 1/9000, which gives 1/3 the dissipation considered in section 4.6.2. This Munk
number corresponds to a dimensionless Munk layer thickness of δm ≈ 0.05. In this
subsection we find that the effect of reducing the dissipation is to increase the speed of
the secondary flow features that are present in the eastern part of the basin. However,
they still remain relatively weak in comparison to the strength of the primary western
boundary current. In particular, the decrease in dissipation results in undissipated waves
propagating westward throughout the entire domain. In the limit of large Reynolds
number, these waves allow for large regions of recirculation to form that interact with
the shear instability eddies.

Figures 4.15–4.17 give early time snapshots for a fixed obstacleW = 0.2, ds = 0.05 and
Reynolds numbers of Re = 12, 60, and 300 at times t = 0.14 and t = 1.45. With Mu =
1/9000, these three Reynolds numbers correspond to β̂ = 750, 150, and 30, respectively.
In comparison to the results for the same choice of obstacle parameters and Mu = 1/3000
given by Figures 4.9–4.11, the separation behaviour is very similar, and ψmin ≈ −0.005
for each of these cases as well.

Figure 4.15 represents a case Munday and Marshall [23] considered with their finite
difference model. It corresponds to the parameters Re = 12, Mu = 1/9000, β̂ = 750,
ds = 0.05, W = 0.2 that has δm/δI ≈ 1.32. This implies the boundary current should
be controlled by the frictional boundary layer, and thus the flow should reach a steady
final state. To compare our model to the steady-state streamlines given by Munday and
Marshall [23], time-stepping was carried out to t = 150 when flow in the basin had settled
down appreciably (not shown here). We found a very small separation region at the peak
of the obstacle, while Munday and Marshall found a very small separation region slightly
downstream of the peak. Another difference was in the location of the eddies which
formed just east of the primary boundary current. In particular, Munday and Marshall
[23] found that the eddy outlined by the ψ = 1.2 streamline settled down just south of
the obstacle’s peak, where we found its final location to be slightly to the north of the
obstacle’s peak.

Figures 4.18–4.20 give early time snapshots for the fixed obstacle W = 0.2, ds = 0.035.
The results are, for the most part, qualitatively similar to those given by Figures 4.12–
4.14 for Mu = 1/3000. The differences are attributable to the dominance of the inertial
boundary layer that comes with decreasing Mu, as discussed in section 4.6.2.

In Figure 4.18 (Re = 12), the separation region clearly grows from t = 0.14 to
t = 1.45. It then stagnates and remains approximately the same size for larger times.
The streamlines also exhibit a deformation due to waves similar to the case with Mu =
1/3000, Re = 12, ds = 0.035 in Figure 4.12. In Figure 4.19 regions of separation appear
downstream and at the obstacle peak. As before, the separation regions are larger at
the later time, but do not continue to grow in an unbounded sense for larger times. The
separation regions oscillate in size very slightly. These oscillations can be measured by
the small oscillations in the value of ψmin.

In Figure 4.20 we appear to be in the “strong wave/large eddy limit” that Munday [22]
discusses. In the strong wave/large eddy parameter regime the flow dynamics evolve very
rapidly due to the dominance of nonlinear advection. In particular, the basin is dominated
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by undissipated wave activity and eddies that are comparable in size to the basin width.
At the early time in Figure 4.20, there is a large region of separation downstream and
only very little upstream. For the later time, the separation region grows to be very large
in comparison to all the other cases we have presented. The large recirculation region
is considered to be a large eddy which develops because of the strong wave interactions
in the western boundary current. The recirculation region is like a ring since at the
perimeter the streamlines are closely packed and in the interior the streamfunction is
nearly uniform.

Due to the imposed outflow condition along the northern boundary and the forcing
imposed in the northern sponge region, the streamlines are forced to relax back to north-
ward flow in the northern part of the model domain. We appear to be reaching the
limitations of the methodology of our idealized model. In particular, the flow patterns in
Figure 4.20 suggest a boundary current that, physically, we would not expect to reattach
to the western boundary and only does so because of the restrictions imposed in our
numerical model.

At present, there are two common methodologies for modeling boundary currents.
The first methodology is to assume an attached boundary current and to examine what
physical processes allow the boundary current to separate from the western boundary, as
considered in this thesis and by Munday and Marshall [23]. The second methodology is
to assume a separated boundary current that behaves as a predominantly zonal jet and to
study the meander and wave patterns as considered by Da Silveira et. al. [9]. At present,
how to reconcile the two methodologies into a single model remains an open problem
and would require the ability to use variable outflow conditions. It is uncertain how to
address this problem numerically, and the problem is certainly beyond the scope of this
thesis.

This concludes the results section for western boundary current separation from a
curved coastline, and hence concludes chapter 4 itself. A summary of the results found
in chapter 4 are given in chapter 5. It also serves as a complete summary of chapters 3
and 4.
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(a)

(b)

Figure 4.15: Streamlines for the caseMu = 1/9000, Re = 12, β̂ = 750, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.16: Streamlines for the caseMu = 1/9000, Re = 60, β̂ = 150, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.17: Streamlines for the caseMu = 1/9000, Re = 300, β̂ = 30, W = 0.2, ds = 0.05
at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.18: Streamlines for the case Mu = 1/9000, Re = 12, β̂ = 750, W = 0.2,
ds = 0.035 at times (a) t = 0.14 and (b) t = 1.45.
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(a)

(b)

Figure 4.19: Streamlines for the case Mu = 1/9000, Re = 60, β̂ = 150, W = 0.2,
ds = 0.035 at times (a) t = 0.14 and (b) t = 0.58.
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(a)

(b)

Figure 4.20: Streamlines for the case Mu = 1/9000, Re = 300, β̂ = 30, W = 0.2,
ds = 0.035 at times (a) t = 0.14 and (b) t = 0.58.
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Chapter 5

Summary and Conclusions

We now draw the thesis to a close by summarizing and giving concluding remarks on
the main results of each chapter. We commence with a review of chapter 3, and finish
with a review of chapter 4.

5.1 Flow Past a Cylinder on the β-plane

In chapter 3, the problem of uniform prograde flow past a cylindrical obstacle on the
β-plane was considered. In section 3.3, the governing equations were posed in terms of
modified polar coordinates that are more suitable for the problem being considered. In
section 3.5, a boundary-layer transformation was introduced to allow the computational
grid to expand with time and to better resolve the boundary-layer dynamics for small
times following the impulsive start-up at time t = 0. The problem was then re-posed
in terms of integral conditions in section 3.4 to make up for the fact that there are no
surface conditions for the vorticity.

In section 3.7, a spectral/finite difference numerical scheme similar to the schemes
used by Badr et. al. [3], Collins and Dennis [7], and Badr and Dennis [2] was derived by
expanding the flow variables in truncated Fourier series. The resulting coupled system of
PDEs for the Fourier coefficients was then discretized in the radial direction and time-
stepped with a fully implicit time-stepping scheme. The resulting systems of equations
were then solved by iteration at each time-level.

Numerical difficulties associated with using the β-plane approximation on an un-
bounded domain are addressed in section 3.8. A modified β-plane approximation was
proposed and was given by equation (3.103). It was found that with the modified β-plane
approximation in place, numerical stability could be retained for larger times. For smaller
times, the modified β-plane approximation was found to agree well with the traditional
β-plane approximation.

To validate the numerical scheme, comparisons for the non-rotating case (β̂ = 0) were
made in section 3.9.2 with previous studies for both the elliptical and circular geometries.
For the elliptical geometry, two limiting cases were considered: small t with large Re, and
large t with small Re. In the small t with large Re limit, our results were found to give
good agreement with the unsteady results of Staniforth [34]. In the large t with small Re
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limit, our unsteady results agree well with the steady results of Dennis and Young [12],
and D’Alessio and Dennis [8] for a wide selection of inclination angles η. For the circular
geometry, comparisons were made for the large t with small Re limit. Again, our unsteady
results showed good agreement with the steady results of Dennis and Chang [10], and
D’Alessio and Dennis [8]. Although our agreement was found to be good overall, there
were found to be some discrepancies. These discrepancies are commented on in section
3.9.2.

With the inclusion of a non-zero beta parameter (β̂ > 0) the existence of two different
physical phenomena was confirmed. The first physical phenomenon is the existence of
Rossby waves in the exterior flow field. The Rossby waves are easily visible in the figures
for the circular geometry in section 3.9.3. The Rossby waves are also explained using linear
theory in section 3.9.3 where their dispersion relation (3.116), phase velocity (3.117), and
group velocity (3.118) are derived. Equations (3.116)–(3.118) show that the frequency
and speed of Rossby waves is proportional to the non-dimensional beta-parameter, β̂.

The second physical phenomenon is the tendency of the β-effect to suppress boundary-
layer separation. The constraining nature of the β-plane was illustrated by comparing
with cases where β̂ = 0. In all comparisons, the separation region was found to be
smaller in the case where β̂ > 0. For cases where the flow is symmetrical about y′ = 0,
the constraining nature of the β-plane was seen as a simple contraction in the region of
recirculation in the cylinder’s wake. However, in cases where the flow is asymmetrical
about y′ = 0 (i.e. an inclined elliptic cylinder), the situation is quite different. In
the β̂ = 0 case, one separation vortex forms at the leading edge of the cylinder while
another forms at the trailing edge. The vortices are eventually swept downstream by the
background flow and form a vortex street. In cases where β̂ > 0, the formation of a vortex
at the leading edge is suppressed by the β-effect, and only a small region of separation
is able to form at the trailing edge. As time progresses, the separation vortex eventually
detaches and is swept around the trailing edge, rather than downstream. As the vortex
propagates to the south, it strengthens and grows larger as a result of conservation of
potential vorticity.

The effects of increasing Re for flow past cylindrical obstacles on the β-plane were
also considered in section 3.9. In particular, it was found that the recirculation vortices
inside the separation region sped up with increasing Re. In the asymmetrical flow case,
an increase in Re was found to increase vortex shedding activity. These observations
are consistent with what we should expect for flow past cylindrical obstacles in a non-
rotating frame. Another side-effect of increasing the Reynolds number is that the Rossby
waves become more visible in the exterior flow. This can be explained by the fact that
increasing Re decreases the effective dissipation, and the Rossby waves are less damped
by frictional effects.

The results for the circular geometry were found to agree phenomenologically with the
results given by Tansley and Marshall [36]. In particular, increasing β̂ decreased the extent
of the separation as well as increased the prevalence of Rossby waves in the exterior flow.
One disagreement between the results, however, was in the depiction of the downstream
separation in the circular cylinder’s wake. In Tansley and Marshall’s results, they found
that for large Re (Re ∼ 1000) the separation vortices became unstable leading to the
famous von Kármán vortex street while in our results the separation vortices remained
both stable and symmetrical. We suspect this discrepancy is due to the differences in
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numerical methods.

This concludes the summary and conclusions for chapter 3. In the following section,
a similar treatment is given for chapter 4.

5.2 Separation of Western Boundary Currents from a Curved
Coastline

In chapter 4, the problem of western boundary current separation from a curved coast-
line was considered. An idealized model geometry appropriate for studying the effect that
boundary curvature has on boundary current separation was introduced in section 4.1.
The model geometry introduced parameters pertaining to the shape of the obstacle: W ,
the width of the obstacle, and ds, the meridional ‘decay scale.’ Linear theory was then
applied in section 4.2 to derive the linear Munk solution for western boundary currents as
first given by Munk [24]. The governing equations were then non-dimensionalized accord-
ing to scalings from ocean gyre theory in section 4.3. The non-dimensionalization intro-
duced three dimensionless parameters: the Reynolds number (Re), the non-dimensional
β-parameter β̂, and the Munk number (Mu). Although there are three non-dimensional
parameters, only two are linearly independent. Boundary and initial conditions were
given in section 4.4. ‘No normal flow’ and ‘no-slip’ conditions were imposed on the
coastal boundaries, while the southern and northern boundaries were subject to an in-
flow/outflow condition in the form of the linear Munk solution. The flow was initialized
at t = 0 using a transformed version of the linear Munk solution.

The numerical method used to solve the problem was introduced in section 4.5. The
numerical scheme employs the ‘method of lines’ (Trefethen [37]) coupled with a two-
dimensional Chebyshev spectral collocation method. In sections 4.5.1–4.5.3, the spatial
discretization scheme was explained by first considering the one-dimensional Chebyshev
method, extending the method to two-dimensions, and introducing a mapping to the
model domain. The semi-implicit time-stepping procedure we employ was then introduced
and discussed in section 4.5.4. The influence matrix method was explained in section 4.5.5
as a method of dealing with the lack of coastal boundary conditions for the vorticity. A
discussion of how the resulting linear systems were solved efficiently using the Generalized
Minimum Residual (GMRES) method was given in section 4.5.6. Finally, the exponential
cut-off filter employed to remove energy from the high wavenumber modes was introduced
in section 4.5.7.

Results of our numerical simulations were presented and discussed in section 4.6. The
effect of obstacle curvature on boundary current separation was illustrated by considering
two distinct obstacle curvatures. It was found that with obstacle parameters of W = 0.2,
ds = 0.05, only tiny amounts of separation occurred if β̂ was sufficiently small. Results
were given for two choices of Mu: Mu = 1/3000 and Mu = 1/9000. The effects of
increasing Re, hence decreasing β̂, for a fixed value of Mu were illustrated. It was found
that as Re increases, eddies form in the eastern part of the basin as a result of shear
instabilities. Also, in cases withW = 0.2, ds = 0.035, and larger Re (smaller β̂) separation
occurred both at the obstacle’s peak and downstream of it. For smaller Re and the same
obstacle parameters, separation was localized to the peak. Decreasing Mu decreases the
effective viscosity. Since the dimensionless Munk-layer thickness is proportional to Mu, it
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also decreases the Munk-layer thickness. It was found that the Rossby waves in the model
became less damped as a result of decreasing Mu. In the limit of small Mu and large Re
(inertial limit), a “strong wave/large eddy” parameter regime can be reached in which
the activity in the flow domain is dominated by strong waves and large eddies that are
comparable in size to the width of the basin. For the parameters Mu = 1/9000, Re = 300,
W = 0.2, ds = 0.035, strong waves were found to interact with the separation region,
causing it to expand and propagate to the east as a large eddy. This process idealizes
the mechanism by which the Gulf Stream, and other western boundary currents, pinch
off to form eddies in the world’s oceans. Unfortunately, due to limitations in the model
we were not able to explore the more realistic case with even smaller relative viscosity.

Similar to in chapter 3, our results were found to coincide with the hypotheses of
Marshall and Tansley [18]:

1. An increase in β̂ can suppress flow separation.

2. Regardless of the strength of the β-effect, the coastline can always induce separation
by having sufficient curvature.

However, our results did not coincide well with those reported by Munday and Marshall
[23] at the same obstacle parameters. In particular, they were able to find separation for
obstacles of much less curvature. This discrepancy can largely be attributed to the fact
that they constructed their obstacle with a piece-wise linear approximation, while we used
a smooth projection of the Chebyshev points onto the obstacle’s profile. Another factor
contributing to this discrepancy is that we used a spectral method that better resolves
the dynamics in the Munk layer than a finite difference method at a fixed resolution, as
illustrated in section 4.5.1. Our results did agree phenomenologically with Munday and
Marshall [23] for choices of the non-dimensional parameters Mu, Re, and β̂.

One extension of the work in chapter 4, as mentioned at the end of section 4.6.3, is
to construct a numerical model that can allow for the separation of a western boundary
current without requiring that it reattaches downstream along the western boundary.
This could reconcile models that can only address boundary-layer separation with models
that can only address the meanders of an a priori separated zonal jet. Other possible
extensions include considering the effects of density stratification, wind forcing, bottom
sloping, and bottom friction. All of these physical features are important in the dynamics
of real-world boundary currents. Another extension is to solve the governing equations
on a rotating sphere instead of using the β-plane approximation. Doing so would allow
for a more complete depiction of the effects of differential rotation on the surface of the
Earth than the simplified β-plane model.
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Appendix A

Calculation Details

A.1 Details of Computing Equations (3.55)–(3.62)

We now give the details of computing the equations for the Fourier coefficients (3.55)–
(3.62) given in chapter 3. For the sake of brevity, assume the governing equations are
in physical coordinates (ξ,θ) as in equations (3.13) and (3.14). The boundary-layer ver-
sions of the resulting equations can then be derived with the straight-forward change of
variables ξ = λz. Also, assume β̂ = 0. The terms due to the β-effect are linear and thus
straight-forward to calculate by the same methodology presented below. We leave the
details of their calculation as an exercise to the reader.

First, using the definition of the metric M for the elliptical geometry, equations (3.13)
and (3.14) can be rewritten as

1
2

cosh[2(ξ + ξ0)]
∂ζ

∂t
− 1

2
cos(2θ)

∂ζ

∂t
=

∂ψ

∂θ

∂ζ

∂ξ
− ∂ψ

∂ξ

∂ζ

∂θ
+

2
Re

(
∂2ζ

∂ξ2
+
∂2ζ

∂θ2

)
,(A.1)

∂2ψ

∂ξ2
+
∂2ψ

∂θ2
=

1
2

cosh[2(ξ + ξ0)]ζ −
1
2

cos(2θ)ζ . (A.2)

Next, expand the flow variables ψ and ζ in Fourier series of the form:

ψ =
F0(ξ, t)

2
+

N∑
n=1

(Fn(ξ, t) cos (nθ) + fn(ξ, t) sin (nθ)) , (A.3)

ζ =
G0(ξ, t)

2
+

N∑
n=1

(Gn(ξ, t) cos (nθ) + gn(ξ, t) sin (nθ)) . (A.4)

Plugging the decompositions (A.3) and (A.4) into equation (A.2) yields

1
2
∂2F0

∂ξ2
+

N∑
n=1

[
∂2fn
∂ξ2

sin(nθ) +
∂2Fn
∂ξ2

cos(nθ)
]
−

N∑
n=1

n2 [fn sin(nθ) + Fn cos(nθ)]

=
1
4

cosh[2(ξ + ξ0)]G0 +
1
2

N∑
n=1

cosh[2(ξ + ξ0)] (gn sin(nθ) +Gn cos(nθ))

− 1
4

cos(2θ)G0 −
1
2

N∑
n=1

[gn cos(2θ) sin(nθ) +Gn cos(2θ) cos(nθ)] , (A.5)
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which can be rewritten using the identities cos(2θ) sin(nθ) = 1
2 [sin[(n− 2)θ] + sin[(n+ 2)θ]]

and cos(2θ) cos(nθ) = 1
2 [cos[(n− 2)θ] + cos[(n+ 2)θ]] as

1
2
∂2F0

∂ξ2
+

N∑
n=1

[
∂2fn
∂ξ2

sin(nθ) +
∂2Fn
∂ξ2

cos(nθ)
]
−

N∑
n=1

n2 [fn sin(nθ) + Fn cos(nθ)]

=
1
4

cosh[2(ξ + ξ0)]G0 +
1
2

N∑
n=1

cosh[2(ξ + ξ0)] (gn sin(nθ) +Gn cos(nθ))

− 1
4

cos(2θ)G0 −
1
2

N∑
n=1

[gn
2

(sin[(n− 2)θ] + sin[(n+ 2)θ])
]

− 1
2

N∑
n=1

[
Gn
2

(cos[(n− 2)θ] + cos[(n+ 2)θ])
]
. (A.6)

The equation for F0 can be obtained by integrating both sides of equation (A.6) from
θ = 0 to 2π. This yields

∂2F0

∂ξ2
=

1
2

(cosh[2(ξ + ξ0)]G0 −G2) . (A.7)

The equations for Fk, k = 1, 2, · · · , N can be obtained by multiplying equation (A.6) by
cos(kθ) and integrating both sides from θ = 0 to 2π. This gives

∂2Fk
∂ξ2

− k2Fk =
1
2

cosh[2(ξ + ξ0)]Gk −
1
4
(
Gk+2 +G|k−2|

)
, k = 1, 2, 3, · · · , N . (A.8)

The equations for fk, k = 1, 2, · · · , N can be obtained by multiplying equation (A.6) by
sin(kθ) and integrating both sides from θ = 0 to 2π. This gives

∂2fk
∂ξ2

− k2fk =
1
2

cosh[2(ξ + ξ0)]gk −
1
4
(
gk+2 + sgn(k − 2)g|k−2|

)
, k = 1, 2, 3, · · · , N .

(A.9)
Equations (A.7)–(A.9) are in complete agreement with the equations given by Patel [25].
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Next, we plug the expansions (A.3) and (A.4) into equation (A.1). This yields

1
4

cosh[2(ξ + ξ0)]
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+

1
2
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4
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∂Gm
∂ξ

Fn +mgm
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]
sin(nθ) cos(mθ) , (A.10)

The equation for G0 can be obtained by integrating both sides of equation (A.10) from
θ = 0 to 2π. This yields

1
2

cosh[2(ξ + ξ0)]
∂G0

∂t
− 1

2
∂G2
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∂Gn
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. (A.11)

The equations for Gk, k = 1, 2, · · · , N can be obtained by multiplying equation (A.10)
by cos(kθ) and integrating both sides from θ = 0 to 2π. This gives

1
2

cosh[2(ξ + ξ0)]
∂Gk
∂t

− 1
4
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+
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2
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. (A.12)
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Similarly, the equations for gk, k = 1, 2, · · · , N can be obtained by multiplying equation
(A.10) by sin(kθ) and integrating both sides from θ = 0 to 2π. This gives

1
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+
1
2

N∑
m=1,m 6=k

[∂gm
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(
| m− k | f|m−k| − (m+ k)fm+k

)
+ mGm

(
∂F|m−k|

∂ξ
− ∂Fm+k

∂ξ

)
+ mgm

(
sgn(m− k)

∂f|m−k|
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− ∂fm+k

∂ξ

)
+

∂Gm
∂ξ

(
(m− k)F|m−k| − (m+ k)F|m+k|

) ]
. (A.13)

Again, equations (A.11)–(A.13) were found to fully agree with Patel [25].
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