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Abstract

Novel methods and apparatus used to measure high-speed state of polarization

changes are developed. Knowledge of the effects of mechanical impacts on the state

of polarization will benefit the reliability of optical communication systems. The

impact creates a high-speed but continuous motion of the state of polarization over

the Poincaré sphere. The maximum speed at which the state of polarization changes

due to an impact is shown to be higher than what has been reported previously.

The investigation into the state of polarization changes led to the discovery of

the repeatability and elasticity of state of polarization changes due to mechanical

impacts. The repeatability and elasticity allow novel measurements of important

polarization effects in optical fibres such as high-speed polarization mode dispersion

and rotation vector measurements.
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Chapter 1

Introduction

Optical communications are a key element of the world-wide information transfer

structure. Optical fibre networks connecting cities together currently allow high

quality and rapid data exchange between almost any pair of cities in the world.

With the ever-increasing demand for data transmission, higher speeds and more

complex encoding methods are required to convey the maximum possible amount

of data through pre-installed fibres. However, some rapid changes in the polar-

ization dependent behaviour of the pulse response cannot be easily compensated.

Uncompensated fluctuations can lead to infrequent system outages in currently

installed fibres that inhibit the adoption of high data rate systems.

In this thesis, we investigate polarization mode dispersion (PMD), which can

severely limit the achievable rate of data transmission. In particular, if the PMD

varies sufficiently slowly, it can be compensated optically or electronically. Thus

characterizing and modelling the speed of the change in PMD is an important aspect

of compensation system design. Since the time scale of PMD change is related to

the correlation time of polarization changes, polarization measurements reveal the

general behaviour of the fibre link.

In this chapter, Section 1.1 discusses basic electromagnetic theory of relevance to

optical communications. Next, Section 1.2 summarizes optical fibre properties. The

structure of optical communications systems is examined in Section 1.3. Section 1.4

considers optical data transmission and important optical system impairments. In

the final section, we describe our experimental work and its relationship to previous

research.
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1.1 Properties of Light

1.1.1 Wave Properties of Light

Since light travels as an electromagnetic wave, [6] fibres can be designed to support a

single mode (of two polarizations) that exhibits minimal dispersion, enabling high-

speed transmission in long distance communication networks. Light waves in a

homogeneous non-birefringent medium consists of transverse electric and magnetic

field components which oscillate in time and space.[10] The distance the light travels

during one period of temporal oscillation is its wavelength. The index of refraction

(n) of a material determines the phase velocity of the light (Eq. 1.1)

v = c/n (1.1)

where c is the speed of light in vacuum. For optical fibres a typical value of n is

around 1.5, and the velocity of light in a fibre is therefore 2
3
c.

1.1.2 Polarization

Another property of light that is important to optical communications is polar-

ization. Since modal fields in a fibre exist in different polarizations, the evolution

of the field direction (field polarization) with time at a given position along the

direction of travel has a different effect on the delay time of each modal field polar-

ization. The electric field vector in a locally homogeneous medium can be projected

into any two orthogonal directions perpendicular to the direction of travel. In this

thesis, we specify the direction of travel as the z-axis and project two electric field

vector components along the x and y axes.[9] The reference frame for these axes is

generally taken to be the laboratory frame. For linearly polarized light, these x and

y polarizations oscillate either in phase or 180◦ out of phase. Circular polarization,

for which the electric field vector oscillates around a circular path, instead occurs

when the two orthogonal components are equal in amplitude but oscillate out of

phase by an odd multiple of a quarter of the light wavelength. A field that is neither

linearly nor circularly polarized is termed elliptically polarized.

1.1.3 Poincaré Sphere

The state of polarization of light in an optical fibre can be specified in terms of

the Stokes parameters S0, S1, S2, S3, which are respectively the total intensity
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S3
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Figure 1.1: Poincaré sphere

of electric field, the field intensity in the horizontal linear polarization minus the

intensity of the field in the vertical linear polarization, the intensity of the field in

the 45◦ linear polarization state minus the intensity of the field in the −45◦ state,

and the intensity of the field in the left-hand circular polarization state minus

the intensity of the field in the right-hand state. The Stokes parameters can be

simplified for fully polarized light for which the total power can be normalized to

one and the Stokes parameters s1, s2, s3 defined by (Eq. 1.2).

sj =
Sj√

S12 + S22 + S32
, j = 1, 2, 3 (1.2)

can then be employed. The resulting sphere, shown in Fig. 1.1, was introduced

by Poincaré in 1892 [24]. Each position on the sphere corresponds to a unique

polarization state. The states located along the equator correspond to linearly

polarized light while the two states at the north and south poles represent the two

states of circular polarization. The remainder of the sphere maps to the elliptically

polarized states. Hence any point on the sphere yields a unique state of polarization

with normalized Stokes parameters {x, y, z} → {s1, s2, s3}.

1.2 Optical Fibres

1.2.1 Physical Properties

Fibres in optical fibre networks are formed from glass with doping concentration

variations that induce a spatially varying refractive index profile.[4] A single mode
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communications fibre possesses a high-index core with a diameter of the order of

8µm that is typically doped with germanium, surrounded by a lower index cladding

region with a much larger diameter, for example 125µm, generally composed of pure

silica glass. The higher refractive index of the core enables the total internal re-

fraction of rays with a large incidence angle that are directed primarily in the z,

propagation, direction. To produce high quality modern optical fibres, the index of

refraction profile of the core and cladding are carefully controlled. First preforms

with carefully graded dopant concentrations and therefore refractive index varia-

tions are formed. These are then drawn into fibres with lengths of up to several

hundred kilometres.

1.2.2 Power Attenuation

Light is attenuated as it travels through optical fibres as a result of numerous phys-

ical effects including Rayleigh scattering, absorption due to metallic impurities and

water in the fibre, and intrinsic absorption by the silica molecule itself. Rayleigh

scattering, the scattering of light due to small inhomogeneities as it propagates

through a medium, is wavelength dependent since shorter wavelengths scatter more

than longer wavelengths. Impurities in the fibre such as metal ions and water in the

glass produce a power loss through absorption and scattering. In fact, metal ions

at levels of one part per billion could increase the attenuation by 1 dB/km, and

water at levels of one part per million could increase the attenuation by 4 dB/km.

However, with modern fibre production techniques, these impurities can be reduced

to a negligible level. At wavelengths longer than 1650nm the intrinsic infrared ab-

sorption of light due to vibrational resonances in silica becomes appreciable. If all

impurities are eliminated, light at 1550 nm still experiences a theoretical attenu-

ation of 0.16 dB/km. Commercially available fibres accordingly display minimum

attenuations as low as 0.19 dB/km.[23]

1.2.3 Power Amplification

Attenuation in optical fibre networks can be compensated along the fibre span by

optical amplifiers, such as the erbium doped fibre amplifier (EDFA), or by repeaters

which decode and retransmit data. An EDFA is a short length of fibre which

amplifies the signal light by stimulated emission. The energy for amplification is

obtained from a “pump laser” that excites the erbium ions in this section of fibre.

An EDFA increases light amplitude without affecting the pulse shape. A repeater
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is a transceiver which reads the data and retransmits the information. A repeater

must be designed for the bit rate and type of signal being transmitted, and replaced

or upgraded when the signal is upgraded. The EDFA is independent of the signal

bit rate and type, which makes upgrades in EDFA links simple and inexpensive.

1.2.4 Chromatic Dispersion

Signal degradation in optical fibre networks also results from chromatic dispersion.

Chromatic dispersion refers to the pulse broadening induced by the differing phase

velocities of different wavelengths. Pulse broadening causes intersymbol interfer-

ence, which implies that the signal from one bit overlaps with light from adjacent

bits. When intersymbol interference is present, the power in a given bit is affected

by the bit pattern. Two principle forms of chromatic dispersion exist in single

mode fibres: waveguide dispersion, which results from the geometry of the fibre

waveguide, and material dispersion, which is induced by the intrinsic wavelength

dependence of the refractive index of glass. The net dispersion of a fibre can be ei-

ther positive or negative. When the dispersion is positive longer wavelengths travel

slower than shorter wavelengths while the opposite is true for negative dispersion.

The amount of material and waveguide dispersion, as well as the total dispersion,

is wavelength dependent[23] and can be controlled by changes to the fabrication

of the fibre induced by the dopant levels and core diameter. Fibres can therefore

be fabricated that display zero dispersion at specified wavelengths. Fibres can also

be designed to have a high negative dispersion. These are called dispersion com-

pensating fibres. Dispersion compensating fibres are often packaged as dispersion

compensating modules that can be employed to reverse the chromatic dispersion of

a standard fibre.

1.2.5 Dispersion Compensating Modules

Millions of kilometres of optical fibre are currently deployed that are dispersion

shifted to insure zero dispersion at a wavelength of 1310nm. Since light at 1550nm

experiences minimum attenuation in a fibre and falls within the operational band

of the current generation of EDFAs, this wavelength is preferred for optical fibre

networks. Currently installed legacy dispersion shifted fibre however possesses typ-

ical dispersion around 17ps/km · nm at 1550nm. While this value is associated

with large pulse distortion, replacing the fibre with low dispersion fibre would be

prohibitively expensive. Consequently, dispersion compensating modules (DCMs)
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are used at the ends of the links to reverse the dispersion. These modules contain

a tightly wound spool of dispersion compensating fibre (DCF) wrapped around a

metal core and sealed within a metal box. The DCF in turn is an optical fibre

designed to exhibit a large negative dispersion on the order of −100ps/km · nm at

1550nm. The length of DCF in a DCM is calibrated to reduce the total dispersion

of the link fibre and the DCM to a near-zero value. For fibres with these levels of

dispersion, approximately 17km of DCF is typically required for every 100km of

standard fibre.

1.2.6 PMD and PDL

Polarization mode dispersion (PMD) refers to the pulse broadening caused by the

net fibre birefringence. Birefringence is generated when light polarized along each

of the two principal polarization axes experiences a different average index of refrac-

tion and group velocity. In this case, one of these two polarizations will experience

a greater group delay than the other polarization. The birefringence changes along

the length of the fibre and as a function of time resulting in a randomly varying

distortion. This PMD-induced pulse distortion limits the speed of current com-

munications systems, and must be actively compensated due to its time varying

nature. Polarization dependent loss (PDL) occurs when the attenuation of the light

is dependent on its polarization. PDL both rotates the state of polarization and

affects the relative power in the two polarizations.

1.2.7 SOP Rotation

When light is launched into a single mode fibre, the light polarization has different

projections along two orthogonally polarized (in the absence of polarization depen-

dent loss) “principal axes” of the birefringence, which we take to be the x and y

axes. In a circular fibre and in the absence of stresses, these polarizations would

be degenerate. In practise, single mode fibres possess different effective indices of

refraction due to internal or external mechanical stresses, a non-circular core, bend-

ing or the presence of electrical and magnetic fields.[20] This birefringence leads to

orthogonal polarizations having different group velocities as well as differing rela-

tive phases at the output. Only if these components are identical, however, will the

state of polarization at the output be the same as the input state. As well, in most

fibres the external stresses change with time as a result of temperature changes,

vibrational noise, and other physical effects.
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1.3 Optical Communications

1.3.1 Optical Communications Networks

Communications networks consist of hubs and connections between hubs. In optical

communications networks, the hubs are generally located in or near cities, and each

hub is connected to several other hubs in nearby cities.[21] Some coastal hubs are

connected to each other via undersea links. [8] Each hub receives incoming data

and transmits the data either along a link to another hub or to a local address.

1.3.2 Optical Communications Links

Communication links employ optical fibres, repeaters, compensators, transmitters,

and receivers. In modern links EDFAs replace electronic repeaters, and undersea

links also contain power transmitting wires along the fibre cables. Signal degra-

dation during transmission results from attenuation, chromatic dispersion, PDL

and PMD. In older links, the resulting distortion and attenuation is compensated

by repeaters. These contain a receiver and transmitter pair that read the digital

signal and subsequently retransmit the data after eliminating most or all of the

accumulated distortion from the optical fibre. [6] In newer links EDFAs instead

compensate the attenuation along the link, while DCMs counteract chromatic dis-

persion. The PMD and PDL however vary with time due to environmental factors

such as temperature and vibration and thus must be actively monitored to facilitate

compensation.

1.3.3 Optical Communication Hubs

Optical hubs, which are located at the ends of optical fibre links, contain the hard-

ware, in particular transmitters and receivers that route the incoming signal to the

next hub or network. Such hubs often include compensators such as DCMs that

counteract the distortion of the optical signal by the transmission medium. How-

ever, such units can be accessed by personnel and can therefore be disturbed by

work on or in the vicinity of the device.
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1.4 Optical Data Encoding

1.4.1 Transmission Errors

An error in the transmission of a (non-corrected) signal in a digital communications

system occurs if the receiver circuitry interprets a 1 bit as a 0 bit or vice-versa.

In general, if the number of detected photons is smaller than a certain decision

threshold during the bit timeslot, the bit is interpreted as a 0 bit; otherwise it is

considered a 1 bit. Detection theory requires a semi-classical approach where the

light is viewed as a stream of photons. The rate of photons Γ at a time t is related

to the optical power P at time t by (Eq. 1.3).

Γ(t) =
P (t)

hf
photons/s (1.3)

Photon arrival statistics for a coherent source follow a Poisson process in which the

photon intensity Γ corresponds to a certain average number of photons during a

period of time T . This probability distribution is shown in Fig. 1.2 for different

values of Γ within one bit period. Thermal noise generates an additional current in

the photodiode circuit which in turn can result in a fictitious detection of photons.

The number of these additional photons is a Gaussian random variable.[8] Fig.

1.3 illustrates the potential impact of chromatic dispersion on a sequence of bits

transmitted through a fibre [19]. Other sources of pulse broadening produce similar

effects. The Poisson and thermal noise processes impart a random component to

the number of detected photons, while pulse broadening results in an overlap of

adjacent pulses. Such effects yield errors in the detection of the transmitted bits.

1.4.2 Error Handling

Errors in digital communication transmissions can be corrected by incorporating

redundant information into the transmitted data. The information to be trans-

mitted is encoded onto a larger data set such that an error in a small number of

bits does not induce an error in the transmitted data. This error-correction coding

enables the error-free transmission of information if the number of errors in a frame

is less than a code-dependent threshold, above which data will be lost. To correct

a high density of errors in this manner however requires a large number of extra

symbols.[5][18] The amount of redundancy is governed by the system requirements

so that a balance between error correction and information-carrying capacity must

be established through detailed system design.
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Figure 1.2: The Poisson distribution of the probabilities of recieving different num-

bers of photons during a bit period for intensities averaging 5, 10, and 40 photons

per bit

1.4.3 On-Off Keying

The most common encoding method for optical communications is on-off keying

(OOK). With OOK, data is encoded by modulating the laser according to the bit

sequence and the coding scheme. For example, a non-return to zero (NRZ) code

turns the laser on for a 1 bit and off for a 0 bit. In a return to zero (RZ) code, the

laser instead is turned on for part of a bit period for a one and off for the rest of

the bit and stays off for a zero.[16]

Another procedure for data encoding is amplitude shift keying, in which each

symbol carries more than one bit of information, by accordingly modulating the

light among levels of different amplitude. Amplitude shift keying is rarely employed

since it requires a far higher signal to noise ratio than OOK for equivalent error

probabilities. [8]

1.4.4 Advanced Encoding Methods

Recently proposed advanced encoding methods for optical communications encode

data through polarization modulation. One method encodes two OOK bit patterns

simultaneously on orthogonal polarizations. Ideally this yields two independent

data signals, but state of polarization (SOP) rotations can mix the two signals.

A similar but much more advanced method employs the two orthogonal polariza-
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tions by transmitting quadrature phase shift keying (QPSK) data along each axis.

Another method is differential polarization shift keying (DPolSK), in which a polar-

ization shift of π radians would signal a 1 bit while the absence of a shift signals a 0

bit. [13] In these modulation schemes the data depends on the SOP of the light, so

that rotations in the SOP generated by link components limit the receiver’s ability

to decode the message. [26]

Rapid polarization changes do not affect the bit error rate of the system to

decode the bits properly for polarization independent encoding methods. Even

polarization dependent encoding methods are unaffected by polarization changes

if these are far slower the symbol rate and are properly compensated. However,

uncompensated or improperly compensated PMD degrades performance as a result

of the mixing of light in different polarizations as well as between different time slots.

Since PMD can vary with time it requires active compensation. Outages occur if

the PMD of a system changes too rapidly for any active compensators present in

the system to restore the signal. These PMD changes are generally caused by the

same processes that affect the polarization state of the output electric field.

1.5 Rapid Polarization Measurements

Interest in rapid polarization measurements as applied to optical communications

was principally the result of the work of Krummrich and Kotten who showed [17]

that high-speed oscillations in the SOP result from modest mechanical impacts on

DCMs. In their experiments mechanical vibrations were induced by dropping the

DCM onto a hard surface, and hitting with metal tools. Their investigation was

limited to examining the effect of uncontrolled impact events. Only the state of

polarization was measured and the repeatability of similar impacts was not inves-

tigated nor mentioned. They reported motion of the state of polarization of 45000

kRot/s.

Their work was extended by Boroditsky et al who measured high speed po-

larization changes in installed fibres. They observed the state of polarization in

a 40km fibre link, and recorded any polarization changed more than five degrees

within 10ms. They reported that some fast polarization effects in installed fibre

optic systems were elastic[3], which means that the light quickly returns to its ini-

tial SOP state following a disturbance. Their measurement rate was only 50 kHz

so they were unable to observe these fast polarization effect in detail.

In this thesis, we will examine polarization fluctuations generated by carefully
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controlled impacts on DCMs. We find, to our knowledge for the first time, that

such mechanical impacts also generate elastic changes in the SOP. Thus consecu-

tive impact measurements can be performed on the same initial state of the DCM.

From this we have been able to demonstrate the repeatability of polarization fluc-

tuation due to controlled impacts. This enables the characterization of transient

polarization properties that normally cannot be reliably measured.

1.6 Conclusions

In this chapter, we have discussed the elements of an optical communications net-

work with emphasis on the polarization properties that contribute to or degrade its

efficient and reliable operation. We observed that dispersion compensating modules

are integral to the optical network structure, and that high-speed state of polariza-

tion changes are therefore detrimental to network performance. We also surveyed

prior work in the area of this thesis. We concluded with our major achievements;

the discovery that polarization fluctuations due to mechanical impacts on DCMs

are repeatable between successive impacts as a result of the elastic response of the

DCM to deformations.

The second chapter will introduce the methods that we employed to measure

fast changes in the state of polarization generated by physical impacts on dispersion

compensating modules. In the third chapter we develop our experimental results

for the fast changes in polarization resulting from these impacts and the possible

influence on the reliable transfer of data through an optical system that is influ-

enced by such disturbances. The fourth chapter extends our results by presenting

a mathematical formalism based on polarization rotation vectors. Finally, in the

fifth chapter we discuss applications of our experimental methods based on the

repeatability of polarization evolution during successive experiments.
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Chapter 2

Measurements

This chapter presents methods for measuring the state of polarization at the output

of dispersion compensating modules during high-speed oscillations created by an

impact force. First we discuss the equipment employed in the experiment. Secondly

the procedures employed to create repeatable impact forces as well as to compare

the effects of separate impacts will be summarized.

2.1 Experimental Technique

2.1.1 Commerical Polarimeters

Numerous commercially available polarimeters can be employed to determine the

SOP of a light source. We in particular employ an HP8509B, which was designed

for low speed PMD measurements as a calibration device. While the HP8509B

easily determines the SOP, the sampling speed is limited to approximately 2000

data points per second. High-speed polarimeters are now available at sampling

rates of up to 1MHz, but these are expensive and complex.

2.1.2 Measuring Polarization

A measurement of the state of polarization of light requires the determination of

four different components. This can be achieved in many different ways. One set

of procedures employs a single photodetector, a polarizer and retardation plate.

The polarizer and retardation plate are placed in the path of the laser before the
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photodetector and are rotated to change the light polarization received by the pho-

todetector. The state of polarization is then calculated from the intensity of the

light received as a function of the angles relative to the laboratory axis of the po-

larizer and plates. Another group of methods splits the light into four paths, each

with a separate set of fixed optical elements, and the intensity of the light after each

path is recorded continuously with a separate photodetector[2]. Such techniques do

not require physical movement of the optical elements and therefore enable shorter

measurement times as well as simultaneous measurements of the different polar-

ization components as their speed is only limited by the photodetectors and the

sampling rate of the electronics. On the other hand, the first group of methods

require fewer optical elements and are therefore simpler and less expensive to con-

struct (although the adjustable optical elements somewhat increase the complexity

of the apparatus).

Since we require small measurement times, we followed the concepts of the

second set of measurement techniques in which our four paths measured the total

power, horizontal linear power, 45 degree linear power, and left-hand circular power.

The stokes parameters were then obtained from these power values according to

(Eq. 2.1).

S0 = Ptot

S1 = 2Phlp − Ptot

S2 = 2P45p − Ptot

S3 = 2Plcp − Ptot (2.1)

in which Ptot is the total measured power and Phlp, P45p, Plcp are the power mea-

surements from horizontal linear polarization, 45 degree linear polarization and

left-hand circular polarization respectively.

2.1.3 Polarimeter Design

To construct a high-speed polarimeter according to the second method of the pre-

vious section we first employed a 4x1 optical fibre power splitter at the input, and

connected one of the output fibres directly to a photodiode. Along each of the

other three paths a manual polarization controller is followed by a linear polarizer

and subsequently a photodiode according to the design of Fig. 2.1. The polarime-

ter requires a calibration step that aligns the manual polarization controllers. A
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Figure 2.1: Schematic diagram of high-speed polarimeter

95%-5% optical fibre power splitter was employed before the polarimeter with the

95% branch routed to the polarimeter while the polarization of the light in the 5%

branch was monitored with a commercial HP8509B polarimeter. A polarization

controller at the output of the laser was employed to vary the input polarization.

We accordingly generated three orthogonal input polarizations in sequence and ad-

justed the controller to minimize the power on one independent path for each of

the three input polarizations. The power tap connected to the HP8509B was then

employed to compare the polarization measurement of the HP8509B with those of

our polarimeter setup. Here we performed simultaneous measurements with both

the HP8509B and our polarimeter for 100 different input polarizations. Then from

a least squares fit to these measurements, we generated a matrix which translates

the voltages from the polarimeter to the corresponding stokes parameters values

that were obtained from the HP8509B. Subsequently, this calibration matrix was

employed to translate the measured voltages from the polarimeter to Stokes pa-

rameters.

2.1.4 Data Collection

We recorded data by connecting the output of the photodiodes through a tran-

simpedance amplifier circuit to a PC analog input data acquisition card. We de-

veloped a MATLAB program to read in and process the voltage data from the

input card. The program then estimated the Stokes parameters from the calibra-

tion matrix of the preceding section. We found here that the HP8509B and the

high-speed polarimeter measurements differed by less than 0.22 degrees over 200

measurements[22]. The standard deviation was ≈ 0.05◦ and the mean error was

≈ 0.07◦. Since the analog input card has a sampling frequency of 250,000 samples
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per second, we could measure changes in the state of polarization much more rapidly

than possible with commercial equipment, such as the HP8509B which is limited to

2000 samples per second[1]. We further acquired a high-speed digital oscilloscope

that increased the rate at which the state of polarization could be sampled to 50

million samples per second. Since this oscilloscope however can only store 120,000

samples in memory, most measurements were performed at a sampling rate of 2.5

or 5.0 million samples per second. This allowed the SOP to be measured for 24 or

48 ms, and provided a sufficiently high sampling rate for the impacts of interest.

2.1.5 Dispersion Compensating Module Impact Measure-

ments

To observe rapid polarization changes, we inserted light from a continuous wave

laser into a dispersion compensating module and then into our high-speed po-

larimeter. When a small impact was applied to the DCM, by manually striking the

DCM with a hex screwdriver, the output of the polarimeter revealed that the polar-

ization described numerous rapid rotations around the Poincaré sphere that could

not be resolved by the HP8509B (Fig. 2.2). Fig. 2.3 illustrates this by displaying

the Stokes parameters during an impact as recorded by both the high-speed po-

larimeter and the HP8509B. Clearly only our new polarimeter can record the rapid

polarization activity of the DCM that rapidly decreases in amplitude and frequency

as the SOP returns to its position prior to impact(Fig. 2.4).This confirms that an

impact on a DCM creates an “elastic” SOP change as observed by Boroditsky et

al[3] during measurements of installed fibre optic systems.

In this study we examined the effect of impacts on four different DCMs. The

first DCM was produced by Avanex, and is therefore referred to here as the Avanex

DCM. This DCM contained approximately three kilometres of DCF wrapped around

a circular metal core and secured in place with epoxy covering the outer layer of

fibre. The second DCM was sourced from Nortel, and contained approximately

twelve kilometres of DCF wrapped around a circular metal core and secured in

place with vertical strips of epoxy. The third and fourth DCMs were also produced

by Nortel but were of a different design. The DSCM10 had around one and a half

kilometres and the DSCM20 had three kilometres of DCF wrapped around a cir-

cular metal core and secured with vertical strips of epoxy. The numbers 10 and 20

in the model names refer to the length of standard fibre (in kilometres), for which

the DCMs are designed to compensate the chromatic dispersion.
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Figure 2.2: A comparison of the evolution of the polarization state on the Poincaré

sphere with time after an impact on a Nortel DCM as recorded by an HP8509B

(black lines) and by our high-speed polarimeter (blue on near side of sphere and

red on the far side of sphere)
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Figure 2.3: The Stokes parameters as simultaneously measured by the HP8509B

(dots) and our high-speed polarimeter (open circles) during an impact on the Nortel

DCM (Red s1,Blue s2,Green s3)
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Figure 2.4: Stokes Parameters vs Time for Impact on Avanex DCM

2.2 Repeatable Measurements

2.2.1 Repeatable Ball Drop Device

In order to more rigorously investigate the changes in the state of polarization from

physical impacts on the DCM we require a method for generating reproducible

impact forces. Accordingly, we designed an electromagnetic mechanism which pre-

cisely released a steel ball from a fixed but adjustable position such that the impact

point for a group of impacts was within one millimetre of the mean impact point.

For the resulting impact force to be repeatable to within our specifications, after

numerous attempts we chose the design of Fig. 2.5. The ball release mechanism

consisted of a steel ball fastened to an optical table screw with magnet wire wrapped

around the screw to form the electromagnet. The wire was connected through a

switch to a power supply via a current control circuit, and the electromagnet was

held in place above the DCM with optical table posts. In this manner, the electro-

magnet could be easily positioned at any given height above the DCM and tight-

ened so that it would remain in position throughout the series of measurements.

An image of the setup is shown in Fig. 2.6
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Figure 2.5: Diagram of the electromagnet employed in the ball release mechanism

Figure 2.6: Image of the ball release mechanism
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Figure 2.7: The sound wave generated by two impacts. The offset between the two

sets of measurements is employed to align the polarization data.

2.2.2 Multiple Time Series Comparison

To compare the polarization traces of multiple impacts with the same or different

input polarizations as a function of time, the starting time of all measurements in

the series has to be aligned with a degree of precision that is dependent on the

timescale of the polarization fluctuations. Simply employing a voltage-controlled

switch triggered by our computer program yielded uncontrollable, varying time

delays between the time that the ball was released under software control and

the beginning of the recorded data sequence. Instead, we simply employed the

audio signal recorded with a microphone after impact to align the time series. The

audio data was collected with the same analog input card as the photodetector

voltages. This eliminated any potential timing difference between the acoustic and

optical signals from each measurement. We found that the acoustic waveforms were

identical for any two impacts of the same position and height while the recorded

time offset between any two sound waves coincided with the offset between the

respective polarization data, as illustrated in Fig. 2.7. Such measurements justify

our employing sound data to align the time of impact in each data set.
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2.2.3 Signal Repeatability

Once we could create a repeatable impact and were able to align the time series

arising from successive drops, we could analyze the polarization effects generated

by a given impact in detail. Here we found by repeatedly measuring the polariza-

tion evolution of many identical impacts that the recorded time evolution of the

state of polarization of the impacts was nearly identical among different ball drops.

The time between impacts must be large enough for mechanical equilibrium to be

restored. We consider the time at which equilibrium is attained to be the point at

which the SOP returns to the initial position so that the change in measured SOP

is dominated by measurement noise. This time, which depends on the impact and

the DCM, was found to be ≈500ms for the Avanex DCM and ≈10s for the Nortel

DCM. However, the equilibrium SOP of the DCM varies on the order of 10 degrees

per hour as a result to environmental factors.

Fig. 2.8 displays the recorded SOP evolution for multiple drops registered within

a 5 minute time interval. As we will demonstrate in the next chapters, the repeata-

bility of our impact measurements enables the analysis of polarization effects that

could not normally be examined at such high speeds. In particular, we measure

quantities which require repeated measurements at different wavelengths and input

polarization states such as the PMD. Of course our measurement flexibility is lim-

ited by slowly changing but difficult to control environmental effects, in particular

ambient temperature changes.

2.3 Conclusions

We have discussed the design of a high-speed polarimeter that we have employed to

measure the changes in the polarization state after a carefully controlled mechanical

impact on a dispersion compensating module. In particular, we have demonstrated

that these transient responses, while very rapid, are identical among successive

impacts if sufficient care is taken to create highly repeatable impact forces. Through

a simple yet accurate procedure, we were able to generate such impacts through an

optimized electromagnetic ball release mechanism, and a stable triggering source.

The reproducibility of these measurements, which we were the first to observe,

enables the determination of the full time-dependent trajectory of the polarization

in the two subsequent chapters.
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Figure 2.8: The state of polarization as a function of time after three impacts on a

DCM.
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Chapter 3

Analysis

We now examine the change in the state of polarization induced by mechanical

impacts as measured with the apparatus of the previous chapter. We examine in

particular the velocity of the SOP on the Poincaré sphere and its local behaviour

but will also investigate further the repeatability of the SOP trace for consecutive

identical impacts on the dispersion compensating module.

3.1 Rotation of SOP during Impact

3.1.1 SOP Evolution

The time evolution of the output state of polarization from a DCM after an impact

on the DCM follows certain deterministic patterns. Thus immediately after impact

the motion is dominated by large nearly uniform arcs on the sphere in many mea-

surements. This can be clearly seen in Fig. 3.1 which depicts the SOP evolution

on the Poincaré sphere for the first 100 µs after a Nortel DCM is impacted with a

half inch steel ball from a height of 11cm.

3.1.2 SOP velocity

Perhaps the simplest measure of the polarization change is provided by the speed of

the polarization vector on the Poincaré sphere. The speed of the SOP is calculated

from the angular separation between two measurements separated by a time interval

∆t (Eq. 3.1). From these values, vsop(t), the SOP change in radians per millisecond,

is obtained from (Eq. 3.2).
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Figure 3.1: The SOP on the Poincaré sphere during the first 100µs after impact.

The blue and red lines and circles are the SOP on the near side and far sides of the

sphere respectively. The circles indicate the actual measurements spaced by 400 ns

while lines connect consecutive measurements.
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θ(t,∆t) = arccos (ŝ(t) · ŝ(t−∆t)) (3.1)

vsop(t) =
θ(t,∆t)

∆t
(3.2)

(Eq. 3.1) then yields

θ(t,∆t) = arccos

(
1− 1

2
∆s2

)
(3.3)

in which ∆s ≡ |ŝ(t)− ŝ(t−∆t)|.

Fig. 3.2 displays the speed of the change of the state of polarization as a function

of time for the single impact considered in Fig. 3.4. The SOP fluctuations observed

for low velocities results in large part from measurement noise. In these regions

the change in SOP is small due to the high measurement rate, while the noise

level remains constant. To calculate vsop(t) accurately in both the low and high

velocity regions ∆t was increased at lower speeds to preserve the signal to noise

ratio. Isolating the noise term from the ŝ term, we can transform (Eq. 3.3) into

θ(t,∆t) = arccos

(
1− 1

2

(
(∆p̂)2 + 2 cos(φ)∆p̂∆n+ (∆n)2

))
(3.4)

Here ŝ = p̂ + n, p̂ is the state of polarization without noise and n is the noise.

∆p̂ is the difference between p̂(t) and p̂(t−∆t). ∆n is the difference between n(t)

and n(t−∆t). In most cases ∆p̂ grows monotonically with ∆t while φ and ∆n are

independent of ∆t. Therefore, increasing ∆t yields a larger signal to noise ratio as

expected. Since the velocity of the SOP varies with time, augmenting ∆t decreases

the precision of the local measured value of the velocity. In the extreme case that

∆t is chosen to be excessively large, the SOP traverses an angle greater than π

radians and the angular displacement becomes ambiguous. Therefore we select the

smallest possible value of ∆t for each time t subject to the condition that ∆s is

above the noise floor.

In Fig. 3.2, random angular variations of up to 0.05 radians are associated with

the measurement noise. The angular speed of the SOP was calculated at each time

t with the smallest ∆t value for which angular change θ(t,∆t) > 0.05 radians. Fig.

3.2 then indicates that the angular speed of the SOP reaches a maximum just after

impact after which it rapidly decreases toward zero.

Table 3.1 indicates the maximum speed as a function of release height of the

ball for two different dispersion compensating modules. The average speed of the
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Figure 3.2: Time variation of the SOP after impact

Table 3.1: Maximum Velocity of SOP on Poincaré sphere

Avanex DCM Nortel DCM

Height Arc Velocity (radians/ms) Height Arc Velocity (radians/ms)

5cm 73.861 5cm 606.008

7cm 101.521 7cm 791.450

9cm 106.439 9cm 799.637

11cm 110.982 11cm 1052.642

SOP varies similarly with release height for these DCMs as evident from table 3.2.

For both DCMs the maximum and average speed of the SOP increases with the

release height. A one half inch diameter steel ball dropped onto the Nortel DCM

from a height of 5 cm induces rotations in the state of polarization of 90 kRot/s

while a release height of 11 cm yields rotations of up to 180 kRot/s, which is four

times as fast as the rotations reported by Krummrich and Kotteo [17]. Clearly the

design of a DCM greatly influences its response to mechanical impacts.
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Table 3.2: Average velocity of SOP on Poincaré sphere during the first 40 ms after

impact

Avanex DCM Nortel DCM

Height Arc Velocity (radians/ms) Height Arc Velocity (radians/ms)

5cm 1.7111 5cm 4.3785

7cm 2.0101 7cm 4.9346

9cm 2.2933 9cm 5.4427

11cm 2.5762 11cm 6.0902

3.2 Measurement Repeatability

As noted above, our ball drop mechanism yields repeatable impacts.

However, to quantify the degree of repeatability, we compare the angular sepa-

ration, θsep(t), between the recorded SOP traces of two successive impacts at each

time t as calculated with (Eq . 3.5).

θsep(t) = arccos (ŝ1(t) · ŝ2(t)) (3.5)

where the subscripts on ŝ refer to the number of the measurement. We can further

compare this angular separation to the angular noise calculated from the SOP data

recorded before the actual impact (i.e. for t < 0). This noise is defined as the

difference between the measured SOP at time t < 0 and the mean measured SOP

for all time t < 0 (Eq. 3.6).

θnoise(t) = arccos (ŝ(t) · ŝ) (3.6)

If the distribution of angular separations between the SOP for two impacts coincides

with the distribution of angular noise, the SOP traces can be considered identical.

As a result of the discrete nature of the recorded data, the two data records can be

misaligned by a time as large as ∆t; that is, the assumed impact time can be any

value within the interval t = −∆t/2 and t = ∆t/2. Fig. 3.3 illustrates this effect

of discrete sampling using a simulation of data sampling. For two measurements, if

for the first measurement the sample at time slot zero happens to be measured at

t = τ1 and the second at t = τ2, in the absence of noise the difference in SOP at any

time t will be the distance in SOP travelled between t+τ1 and t+τ2. As a result, for

high velocity SOP changes the angular difference associated with alignment errors

can exceed the angular noise.
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Figure 3.3: Illustration of the effect of the discrete data sampling rate on measured

data, where the green, red and blue stars are the sampled data for the same function.

The black lines are the true t = 0 value for the function.

To quantify these effects, the angular difference associated with the SOP velocity

is given by

θvel = arccos (p̂1(t) · p̂2(t)) (3.7)

while for two impacts with identical SOP the angular difference θvel resulting from

the misalignment within an interval δt is

θvel = arccos (p̂1(t) · p̂1(t+ δt)) (3.8)

The angle between p̂1(t) and p̂1(t + δt) approximately equals the angular velocity

at time t multiplied by δt.

θvel ≈ vsopδt ≤ vsop∆t (3.9)

When vsopδt is large, the measured angular difference between two identical SOP

can significantly exceed the angular noise and the two SOP values cannot be reli-

ably compared. Increasing the sampling rate decreases both ∆t and the possible

misalignment range δt, insuring that vsopδt remains lower than the angular noise.
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Figure 3.4: The time evolution of the Stokes parameters for two impact events with

11cm release heights for the Avanex DCM

3.2.1 Avanex DCM Repeatability

The repeatability of the SOP measurements for identical impacts was first tested

with an Avanex DCM. The SOP was measured for two identical ball drop heights,

cf. Fig. 3.4. The angular noise was calculated from the measured SOP during the

pre-impact time of the first ball drop. The angular difference between the two SOP

measurements for each time t was then evaluated, cf. Fig. 3.6. The angular speed

as a function of time was generated with the procedure in Section 3.1.2. Finally,

Fig. 3.5 displays the cumulative distribution function for the angular noise as well

as the angular difference between SOPs. The cumulative distribution function of x

is the probability that the angular separation is less than x. The similarity between

the distributions of the angular noise and the angular differences demonstrates that

the two impacts yielded nearly identical SOP traces as functions of time.
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Figure 3.5: The cumulative distribution function of the pre-impact angular noise

and the angular difference in SOP between two impacts
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Figure 3.6: The angular difference between the SOP of two impacts
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Figure 3.7: Stokes parameters as a function of time for two impact events with a

11cm release height onto the Nortel DCM

3.2.2 Nortel DCM Repeatability

We have also examined the repeatability of the SOP time evolution after mechani-

cal impacts on a Nortel DCM. Here we again measured the SOP for two identical

ball release heights (Fig. 3.7) in which the angular noise and angular velocity of

the polarization were respectively evaluated from the SOP during preimpact and

the method of Section 3.1.2. The angular difference between the two SOP measure-

ments is displayed in Fig. 3.9 while Fig. 3.8 displays the cumulative distribution

function for the angular noise, and the angular difference between SOPs. Note that

these latter distributions indicate that some SOP points possess a larger angular

difference than that generated by the noise contributions. Comparing the angu-

lar velocity in Fig. 3.10 to the angular difference as functions of time (Fig. 3.9)

demonstrates that large SOP angular speeds correspond to large angular differences

between measurements.
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Figure 3.8: Cumulative distribution function of the angular noise before impact

and the angular difference in SOP between two impacts
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Figure 3.9: The angular difference between the SOP for two impacts
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Figure 3.10: The angular speed of the SOP for an 11cm release height

3.3 Conclusion

In our analysis of the polarization evolution after mechanical impacts on a disper-

sion compensating module, we have observed a higher speed for the polarization

change than reported previously. Furthermore, we have demonstrated that the

manner in which the DCM is manufactured greatly affects the nature of the po-

larization oscillations. We have also quantified the degree to which the oscillation

from a controlled impact is the same for successive impacts. This result, which has

not be reported previously, can be employed to determine numerous polarization

dependent physical quantities as will be detailed in subsequent chapters.
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Chapter 4

Numerical Analysis

In the previous chapter we demonstrated that successive controlled mechanical

impacts yield the same polarization response for a DCM. We now examine the

manner in which data from successive impacts with different input polarizations can

be combined to generate a comprehensive time dependent model of the polarization

rotation vector that characterizes the impact at a single wavelength. These rotation

vectors will then be analyzed to quantify the frequencies generated by the impact.

Similar measurements at different wavelengths can also be employed to quantify

more complex quantities such as different orders of the PMD.

4.1 Rotation Vectors

A rotation in a three dimensional space moves points along circles centred on and

perpendicular to a given axis. The angle around the circle travelled by each point

is the angle of rotation. The direction of a positive rotation is determined by the

direction of the axis and the right-hand rule. The rotation can be represented

by a three dimensional rotation vector, for which the magnitude is the angle of

rotation and the axis of rotation coincides with the vector direction. The rotation

can further be represented by a matrix such that a rotated vector is simply the

rotation matrix times the initial vector.

Any two points on a unit sphere can be connected by a group of rotations. The

axes of the rotations in the group are all co-planar. This plane bisects the two

points and is at right angles to the line connecting the two points. The angle of

rotation associated with each axis varies with their position. If a second set of
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points can be connected by the same rotation as the first set the axis and angle will

both match at two antipodal points.

The time-dependent rotation of the polarization cannot be extracted from a

single measurement with a single input SOP. Rather, each input SOP yields one

set of points at each time t, the initial SOP and the SOP at time t. Therefore to

define the rotation uniquely at each time t at least two measurements are required.

For points that are close to the axis of rotation, the errors in the rotation axis and

angle principally result from the influence of the measurement noise on the recorded

SOP value. Therefore we have employed four or more sets of initial polarizations

that are randomly distributed around the Poincaré sphere, as described below.

4.1.1 Measurements

The repeatability among measurements discussed in the previous chapter can be

employed to perform measurements of the optical response to the same excitation

for multiple input polarizations simply by changing the input polarization between

identical impacts. Thus, to determine the rotation vector, a ball is released from

a specified height and the polarization is recorded as a function of time. This

measurement is then repeated with the input polarization controller set to a new

polarization. After two or more measurements of the output SOP with different

input polarizations are recorded, the time dependent rotation matrix can be calcu-

lated using the SVD method [15] (Eq. 4.4) for each time t. The best fit rotation

matrix R(t) will minimize

N∑
α=1

||ŝα(t)−R(t)ŝα(t = 0)||2 (4.1)

where ŝα is the SOP vector of measurement α, and N is the number of measure-

ments. Minimizing (Eq. 4.1) is equivalent to maximizing

Tr

(
RT (t)

N∑
α=1

ŝα(t)ŝT
α(0)

)
(4.2)

Tr
(
RT (t)B(t)AT

)
(4.3)

for which the solution is

R(t) = U(t)VT (t) (4.4)

where by singular value decomposition

U(t)Σ(t)VT (t) = B(t)AT (4.5)
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Figure 4.1: The maximum error between the SOP calculated from the rotation

matrix and the measured SOP for a single measurement of the rotation vector

B(t) is a matrix of the SOP at time (t) for all the input polarizations, and A is

B(t) at t = 0.

The accuracy with which the rotation matrix is determined depends on the ori-

entation of the input SOPs. Of course a measurement for which the input SOP

is coincident with a previous input SOP negligibly improves the accuracy of the

estimated rotation matrix. We can determine the precision of the rotation matrix

by comparing the measured Stokes parameters as a function of time to the product

of the time-dependent rotation matrix and the corresponding initial Stokes param-

eters. The angular error for each data point is calculated using (Eq. 4.6).

error(t) = arccos

(
2− |R(t)ŝ(0)− ŝ(t)|2

2

)
(4.6)

The maximum error as a function of time for a typical measurement, shown in

Fig. 4.1, does not exceed 5.0◦ for any measurements while the mean is less than

1.0◦.
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4.1.2 Rotation Axis and Angle

To extract the rotation axis and angle of rotation from the time dependent rotation

matrix, we apply[7] (Eqs.4.7–4.10). However, a rotation is not uniquely represented

by its rotation axis and angle. That is, if â is a rotation axis with rotation angle θ

then so is −â with a different rotation angle −θ. Further, an angular change of 2πk

of course still represents the same rotation for any value of k. We accordingly select

the axis and angle in order to ensure that the rotation vector varies smoothly with

time. To do this, we select either −â or â as the rotation axis depending on which

of these two minimizes the angular separation between the axis at the previous time

step and the axis at the current time step. The angle for the chosen axis is then

incremented if required by an appropriate multiple of 2π to avoid discontinuities.

This procedure ensures that the rotation vector, ~v(t), and angles are smoothly

varying functions of time.

θ(t) = arccos (0.5× (Tr(R(t))− 1)) (4.7)

~r(t)× = R(t)−R(t)T (4.8)

â(t) =
~r(t)

|~r(t)|
(4.9)

~v(t) = θ(t) · â(t) (4.10)

4.2 Rotation Vector Analysis

The rotation matrix for an impact is independent of the input SOP. Therefore

once the rotation matrix is known as a function of time, the output SOP can be

determined by multiplying the initial SOP by the rotation matrix. That is, noting

that the change in SOP for a given rotation is a function of the angle between the

initial SOP and the axis of rotation such that

Ŝ(t) = R(t)Ŝ(0) (4.11)

the rotation matrix can be expanded as

R(t) = I cos(θ) + (1− cos(θ))ââT − â× sin(θ) (4.12)

which yields

Ŝ(t) = I cos(θ)Ŝ(0) + (1− cos(θ))â(â · Ŝ(0))− â× Ŝ(0) sin(θ) (4.13)
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Ŝ(t) = cos(θ)Ŝ(0) + (1− cos(θ))â(cos(φ))− sin(θ) sin(φ)n̂ (4.14)

Here n̂ is a vector orthogonal to both Ŝ(0) and â.

Ŝ(t) · Ŝ(0) = cos(θ)Ŝ(0) · Ŝ(0) + (1− cos(θ))(cos(φ))â · Ŝ(0)

− sin(θ) sin(φ)n̂ · Ŝ(0)

Ŝ(t) · Ŝ(0) = cos(θ) + (1− cos(θ))(cos2(φ)) (4.15)

Accordingly, if cos(θ) is not unity, the difference between Ŝ(0) and Ŝ(t) depends

on φ such that the angular distance between Ŝ(t) and Ŝ(0) is the inverse cosine of

(Eq. 4.15).

4.2.1 Spectrum of SOP

The frequencies of oscillation of the SOP and the rotation vector can be employed

to partially quantify the polarization evolution after impact. We determine the

frequency spectrum of the time evolution of the SOP and rotation vector after

impact from (Eq. 4.17).

yi(f) = DFT (xi) (4.16)

Y (f) =
√
y1(f)2 + y2(f)2 + y3(f)2 (4.17)

in which xi, for i = 1, 2, 3 are the time dependent Cartesian components of the

vector and DFT (·) is the discrete Fourier transform function.

Since the SOP depends on the input polarization, the spectrum of the SOP

components also varies with input polarization. Further, the frequencies of rotations

for which the rotation axis aligns with the SOP will be absent from the spectrum.

Fig. 4.2 displays the frequencies of the movement of the SOPs and of the rotation

vector for multiple input polarizations after a DSCM10 is impacted at position

1 (see Fig. 4.3) for a 9cm release height. The spectra associated with each of

the input polarizations differ from both each other and from the spectrum of the

rotation vector spectrum, as these exhibit considerable differences in the amplitudes

of the different maxima and minima.

To compare the energy in the rotation of the SOP during an impact the spectral

power of the oscillation frequencies of the rotation are calculated. The spectral

power (Eq. 4.18), which is the integral of the spectrum of the rotation vector,

can be calculated for specific frequency ranges, time ranges, or frequency and time

ranges. For example, to calculate the spectral power within a certain frequency

range, the endpoints of the integral are set to the limits of this range. For a time
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Figure 4.2: SOP component (red) and rotation vector (black) frequency spectra

range, Y (Eq. 4.17) must be calculated for the rotation vector within this interval,

that is, the xi in the previous equations are the rotation vector components during

the time range.

Yp =

∫ fmax

f=fmin

Y (f)df (4.18)

in which Yp is the spectral power.

4.2.2 Impact Amplitudes

The impact amplitude can be adjusted by varying the release height. The total

power in the rotation vector spectrum is displayed in Fig. 4.4 as a function of

release height in which each line corresponds to a different impact position. The

positions of impact on the DCMs are shown in Fig. 4.3. The blue lines correspond to

a DSCM10, and the red lines are the corresponding values for a DSCM20. Impacts

with different release heights at the same position clearly generate similar rotation

vectors (Fig. 4.5) and frequency spectra, except that the amplitude of the spectrum

is smaller at lower heights (Fig. 4.6).

42



1
2
3
4

6

8

10

12

Figure 4.3: Impact positions on DCM

4

5

6

7

8

9

10

11

12

3 6 9

T
ot

al
 P

ow
er

 o
f S

pe
ct

ru
m

Height of Ball Drop (cm)

DSCM10
DSCM20

Figure 4.4: Total power in the rotation spectrum as a function of release heights

for different impact locations and DCMs.

43



-3

-2

-1

0

1

2

0 5 10 15 20

Time (ms)

3cm
6cm
9cm

Figure 4.5: The rotation vector for different release heights for a fixed impact

location on a DCSM10

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10

A
m

pl
itu

de

Frequency (kHz)

3cm
6cm
9cm

Figure 4.6: The spectrum from 0 to 10kHz of the rotation vectors for different

release heights on a fixed impact location on a DCSM10

44



4.3 Rotation Vector Derivative

4.3.1 Numerical Simulation

The derivative of the rotation vector ~V (t), which can be employed to characterize

the temporal response of the DCM, is more sensitive to measurement noise than

the vector itself. By simulating the rotation vector as a function of time after

impact, we can compare different procedures for calculating the derivative. Our

model consists of a product of a series of time dependent rotation matrices, each of

which has a random axis of rotation and a rotation angle that varies as a damped

sinusoidal function of time. The frequencies and decay rates for the rotations are

selected to emulate the measured behaviour of the rotation after impact. From our

simulation, numerical values can be derived for the rotation parameters for any

time t.

The simulated SOP for each input polarization at time t is calculated by apply-

ing the rotation matrix for a given time t to a random initial SOP (Eq. 4.19).

p̂sim(t) = Rsim(t)p̂sim(t = 0) (4.19)

The variable p̂sim denotes the simulated SOP before adding noise. Subsequently, we

add a noise term with an amplitude that is chosen to coincide with that of the mea-

sured noise to the simulated SOP to simulate the observed polarization behaviour.

We performed multiple measurements to evaluate the actual system noise. Each

measurement was made with a random SOP. We found that the observed standard

deviation of the Stokes parameters depended on the mean value of a given Stokes

parameter, si according to (cf. Eq. 4.20)

σ(si) = 0.0010 + 0.0045 · (1− si
2
) (4.20)

Here si denotes the mean of si over the measurements while σ(si) represents the

standard deviation of the Stokes parameter.

To incorporate system noise into our simulation, for each Stokes parameter a

random section of a record of the sampled noise is selected. Then corresponding

noise point n(t) is added to the simulated Stokes parameter σ(pi(t)) at each time

t according to

Sisim = σ(pisim(t))n(t) + pisim(t) (4.21)
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with

σ(pisim(t)) = 0.0010 + 0.0045 · (1− pi2sim(t)) (4.22)

The simulated SOP including the noise at each time t is the normalized vector

constructed from this sum of the Stokes parameters and the additive noise(Eqs.

4.23 and 4.24).

~Ssim(t) = [S1sim(t) S2sim(t) S3sim(t)] (4.23)

ŝsim(t) =
~Ssim(t)

|~Ssim(t)|
(4.24)

4.3.2 Derivative Comparison

For reference, the standard result for the derivative of ~V (t) can be calculated from

our simulated rotation matrix. In particular we have in Section 4.3.1 determined

the rotation matrix (Rsim(t)) for any time t. In this evaluation, the two point

central derivative was employed to calculate ~V (t) from Rsim(t− δt) and Rsim(t+ δt)

for a sufficiently small value of δt. As δt approaches zero, the two point central

derivative approaches the exact derivative. We therefore employed δt = ∆t/10000

which ensured that the squared error between the values of ~V (t) calculated with δt

and δt/2 did not exceed 10−2. The calculated numerical derivative of the rotation

vector is shown in Fig 4.7.

The calculation of the derivative from the methods below proceeds as in the

Numerical Derivative Algorithms subsection. Here, the Lanczos and Pavel methods

employ either two or four degree polynomials and a variable filter length while the

level of wavelet decomposition in our wavelet calculations was varied. The squared

error of the derivative was then found from the sum of the square of the difference

at each time t (Eq. 4.25)

Esq(t) =
k=kmax∑

k=0

(
~V (k∆t)− ~Vm(k∆t)

)2

(4.25)

in which ~Vm is the derivative of the rotation vector from one of the methods, and

kmax is chosen so that the edge effects near the end are not summed.

For each of the methods ~V (t) is evaluated from the rotation vector obtained

from the simulated SOP data according to the same prescription as that applied to
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Figure 4.7: Angular velocity of the simulated rotation

the measurement data (cf. Section 4.1.2). In all cases ~V (t) is calculated from θ, r̂

and the derivative of ~r (Eq. 4.26) according to

~V = (r̂ · ~r ′)r̂ + sinc

(
θ

π

)
(~r ′ − (r̂ · ~r ′)r̂)− 1

2
sinc2

(
θ

2π

)
~r ′ × ~r (4.26)

in which ~r ′ is the derivative at time t calculated by one of the derivative methods.

The Lanczos method with a four degree polynomial and a 27 point filter produced

the best estimate of ~V (t) as can be seen from Fig. 4.8 which displays the results

of all the methods and the associated errors. The calculation for the coefficients

for the four degree polynomial Pavel method was only able to produce reliable

coefficients up to a filter length of 21 points. The calculation required a matrix

inverse that was singular to computer precision for filter lengths greater than 21

points.

For each procedure ~V (t) was evaluated from the rotation matrix, which again

was determined from the simulated SOP data in the same manner as in the case

of the measurement data(Eq. 4.4). ~V (t) is calculated from R(t) according to (Eq.

4.27).
~V (t)× = R′(t)R−1(t) (4.27)

Here R′(t) is the derivative of R(t), and R−1(t) is the matrix inverse of R(t). The
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Figure 4.8: Squared error of ~V (t) determined from the derivatives of the rota-

tion vector as computed from different methods with varying filter length and for

wavelets, different decomposition levels.
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Figure 4.9: Squared error of ~V (t) from the derivatives of the rotation matrix for

varying filter length or decomposition level of wavelets.

Lanczos method with a four degree polynomial and a 23 point filter here produced

the best results, (cf. Fig. 4.9). Again the coefficients of the four degree Pavel

method were inaccurate for a filter length greater than 21. As well, the calculation

of the derivative from the rotation vector proved more accurate than the calculation

based on the rotation matrix.

4.3.3 Numerical Derivative Algorithms

To evaluate the derivatives required in Section 4.3.2 for the rate of change of the

polarization vector, we first applied the Lanczos smoothing derivative [11]. This

method selects for a local set of N points within a function f(x) a polynomial of

size M that minimizes the cost function Z (Eq. 4.28).

Z =

(N−1)/2∑
k=−(N−1)/2

(
f(k)−

M∑
j=0

ajk
j

)2

(4.28)
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Accordingly we require the values of a1 for which ∂Z/∂ai = 0.

0 =

(N−1)/2∑
k=−(N−1)/2

2ki

(
M∑

j=0

ajk
j − f(k)

)
(4.29)

0 =

(N−1)/2∑
k=−(N−1)/2

(
M∑

j=0

ajk
(j+i) − f(k)ki

)
(4.30)

for odd j + i
(N−1)/2∑

k=−(N−1)/2

ajk
(j+i) = 0 (4.31)

therefore for odd i, even j terms cancel out and we obtain

0 =

(N−1)/2∑
k=−(N−1)/2

(
M∑

j=0

a2j+1k
(1+2j+i) − f(k)ki

)
(4.32)

The constant a1 can now be obtained from (Eq. 4.32). In calculating the derivative

with the Lanczos method we employed M = 2, 4, and odd values of N > 2M .

A second group of methods are the so-called smooth noise-robust differentia-

tors, and are referred to here as the Pavel methods[12]. The coefficients of the

finite difference operator are chosen such that at low frequencies the differentiators

approach the exact derivative, while at high frequencies the differentiator asymp-

totically approaches zero. If the numerical derivative is written as in (Eq. 4.33) we

have

f ′(x) ≈ 1

h

M∑
k=1

ck · (f(k)− f(−k)) (4.33)

which yields the frequency response

H(ω) = 2i
M∑

k=1

ck sin(ωk) (4.34)

compared to the ideal frequency response of

Hd(ω) = iω (4.35)

To achieve the required frequency response, the ith derivatives of H and Hd with

respect to ω at ω = 0 are equated for i = 1..n while the jth derivative of H at ω = π

is set to 0, for j = 1..m. From these equations, the coefficients ck can be evaluated.

The choice of M and n determine the value of m such that the number of equations
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and unknowns is equal. In the derivative calculations for n = 2, M ≥ 2, and for

n = 4, M ≥ 3.

We have also applied discrete wavelet transforms to calculate the derivatives.

When a wavelet ψ(t) is the derivative of a smoothing function φ, the discrete wavelet

transform is the derivative smoothed by φ. The discrete wavelet transform is then

the inner product of the signal and the wavelets. The amount of smoothing from the

wavelet transform depends on the level of decomposition. A higher level smooths

over a longer time while a lower level smooths over a shorter time. The ’A Trous’

method was used to calculate the derivative [14]. The discrete wavelet transform

of level i is calculated recursively using the following equations

hi = gi−1 ∗Ψh,i (4.36)

gi = gi−1 ∗Ψg,i (4.37)

h1 = f ∗Ψh (4.38)

g1 = f ∗Ψg (4.39)

in which ∗ represents the convolution operator,Ψh and Ψg denote the decomposition

high pass and low pass filters respectively and Ψh,i and Ψg,i are the filters with 2i−1

zeros between each value in Ψh and Ψg. The derivative for a decomposition level

of n is calculated from hi (cf. Eq. 4.40).

f ′ = − hi

K(2n)3/2
(4.40)

In the expressions above K is a constant that is associated with a given wavelet. We

employed Spline and Harr wavelets with multiple levels of wavelet decomposition.

For Spline wavelets K = 1, Ψh =
√

2(1
8
, 3

8
, 3

8
, 1

8
), and Ψg = (−2

√
2, 2

√
2). For Harr

wavelets K = 1
4
, Ψh = (

√
2

2
,
√

2
2

), and Ψg = (−2
√

2, 2
√

2).

4.4 Conclusion

By considering the rotation vector, we have been able to characterize the effects

of the DCM impacts on polarization in a manner that is independent of the input

SOP. This however requires that the repeated impacts are largely identical. Once

the rotation matrix is determined as a function of time, the SOP trace can be

predicted for the impact for any initial SOP. Additionally, we have found that

different forces, when applied to the same position, create similar SOP oscillations.
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We also determined that the rotation vector derivatives were best evaluated with

the Lanczos method using a four degree polynomial and a 27 point filter applied to

the rotation vector rather than the rotation matrix.
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Chapter 5

Further Applications of this

Research

We have generated rapid and repeatable polarization oscillations associated with

physical impacts on a dispersion compensating module and have demonstrated

methods for characterizing these experimentally. These techniques can be employed

in different areas of fibre optics research. For example, our measurements can be

easily extended to determine the time-dependence of polarization mode dispersion

and the influence and compensation of system disturbances in the presence of high-

speed transients. Further investigations into these problems could therefore lead

to an increased comprehension of the physical effects that can reduce quality of

transmission and into procedures to counteract such disturbances.

5.1 PMD analysis

Our procedures can be directly applied to the measurement of rapid, time-dependent

PMD variations. In such measurements the dispersion compensating module would

be placed within the system under test. After multiple SOP measurements with

differing values of the input polarization and wavelength the Müller matrix method

[25] can be applied to determine the PMD. While this method normally requires

two input states of polarization at two wavelengths, by performing measurements

at additional wavelengths and input SOPs, increased accuracy can be achieved as

long as thermal and environmental influences on the system are minimal.
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5.2 Pattern Recognition

By measuring the response to impacts of differing parts of an optical communica-

tion system, disturbances in the system could potentially be identified from output

polarization measurements. Resources could then be efficiently allocated to correct

these effects. Different components of an optical communications system that are

subject to impact and other mechanical stresses can be investigated and categorized

so that a given pattern of SOP oscillations can be traced to specific equipment. As

well, knowledge of these patterns could be employed to optimize the active compen-

sation of such effects. An algorithm could recognize the initial impact signature and

then predict the subsequent polarization activity resulting from the disturbance. A

compensation algorithm could similarly follow from such studies.

5.3 Major Achievements

I have measured and analyzed rotational rates of SOP that to our knowledge are

higher than any previously reported. I have demonstrated that impacts on DCMs

yield reproducible variations of the SOP at the output of the DCM. I have also

demonstrated that the impact effect can be characterized by a time dependent

rotation which enables the prediction of the polarization variation as a function of

time for a known impact force. Finally, I have investigated the accuracy of various

methods for calculating the derivative of the rotation vector.

5.4 Conclusion

Our research has general significance for studies of high-speed optical communi-

cations systems. Application of our techniques could be employed to determine

the nature of high-speed PMD variations and could possibly even be extended to

the study of the influence of nonlinear effects on polarization evolution. Pattern

recognition techniques could also conceivably be applied to classify and catalogue

different types of oscillations according to the type of impact and the component

that created the disturbance. This thesis work would then be of considerable rele-

vance to compensation methods and algorithms for commercial optical systems.
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Chapter 6

Conclusion

We have designed and realized a method for generating and measuring repeated

identical mechanical impacts in optical communication system components. Here

we have designed and fabricated a mechanical device for releasing a weight under

precise timing conditions as well as a high-speed polarimeter that can measure the

change in the state of polarization during such impacts on a dispersion compensat-

ing module. With this apparatus, we were able to measure polarization fluctuations

that to our knowledge were faster than any previously measured. Perhaps more

importantly, we demonstrated that the state of polarization as a function of time

following the impact is highly reproducible among successive impacts. As a result,

we can experimentally study properties of optical systems at high sampling rates

that have not previously been accessible, such as the high-speed variation in PMD

of a communications system after a physical impact. Finally, the existence of such

measurement procedures could enable the application of pattern recognition meth-

ods to diagnose outage conditions generated by mechanical impacts or vibrations

in a optical communications link.
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