
Detection of Java EE EJB
Antipattern Instances using
Framework-Specific Models

by

Matthew Stephan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2009

c© Matthew Stephan 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Matthew Stephan

ii

Abstract

Adding flexibility to a process or technology often comes with a price. This
holds true in the case of the amendments made to Java EE platform to upgrade to
version 5. Java EE 5 allows Enterprise Java Bean (EJB) developers the ability to
configure EJBs via Java 5 annotations, through XML deployment descriptors, or
through a combination of both. While this adds flexibility to the EJB configuration
process, it also comes with the price of an EJB project’s stakeholder not being able
to ascertain the current configuration of an EJB project until runtime, due to the
multiple sources of configuration and the complex overriding rules. Furthermore, to
detect errors in configuration or perform antipattern instance detection it is clearly
beneficial to have a representation of an EJB project that accurately represents the
current configuration of the system.

This thesis first presents an EJB Framework Specific Modeling Language
(FSML) that formalizes the EJB domain’s specific components in the form of a
cardinality-based feature model. By having such a model and using and extending
the existing FSML infrastructure, one retrieves a Framework Specific Model (FSM)
through reverse engineering that represents all the information from the various
sources of EJB configuration. By analyzing this FSM, we can create another model
that represents the resolved configuration of an EJB project. We employ model
filtration to highlight specific sources of configuration. We then use open-source
and custom EJB projects to evaluate the EJB FSML and the resolved model.

Models admit antipattern instance detection. This thesis presents two methods
for running antipattern instance detection on an EJB project using existing EJB
antipatterns in literature: 1) queries in Java that execute against the resolved
configuration model; and 2) queries written in .QL, an object-oriented query
language, against the EJB project’s source code. We compare these two techniques
qualitatively and propose a new approach based on this comparison that entails
modeling the antipatterns and their symptoms within an FSML model declaratively.

We then discuss possible extensions to the work presented in this thesis including
the ability to support round-trip engineering for the EJB domain, the detection of
new EJB antipatterns, and techniques that account for the strength of symptoms
within the context of their respective antipatterns.

iii

Acknowledgements

I would like to give my thanks to the ones who have contributed to this thesis.

Firstly, I want to thank my supervisor Professor Krzysztof Czarnecki. He
provided me enough freedom to allow me to explore various topics independently
but at the same time provided ideas, ensured I stayed on track, and kept my vision
properly scoped. He was always there to challenge me to go farther and deeper into
the work and never let me get complacent, which is something I will carry with me
as I continue my studies. I am grateful that I was able to work with him early in
my academic career so that I can take the lessons and advice he gave me and apply
them in both my professional and personal life.

Next, I want to thank my colleague Micha l Antkiewicz, the mind behind FSMLs.
Without him my masters would have been a much more difficult journey, not to
mention this thesis topic would be completely different. No matter how busy he
was or what I was working on, he always provided a helping hand with a smile and
with patience. He is a model researcher and person and one that I will attempt to
emulate during the next stage of my academic career.

I would also like to thank Professor Patrick Lam and Professor Sebastian
Fischmeister for agreeing to be my thesis readers. I can only imagine how busy
they are and for them to be willing to do this for me is something that I am
extremely grateful for.

I am grateful to my entire family for always checking up on me and supporting
me in every way possible.

Lastly, I would be remiss if I did not thank my fraternity of friends for ensuring
that I do not spend my entire time reading papers or on the computer doing work
and showing me that balance is important to one’s happiness.

iv

Dedication

I would like to dedicate this thesis to my family and to my fraternity of friends.

v

Contents

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Research Contributions . 2

1.2 Thesis Organization . 3

2 Background Material 5

2.1 Framework-Specific Modeling Languages 5

2.1.1 Reverse Engineering with FSMLs 6

2.1.2 Notation . 7

2.2 Enterprise JavaBeans Architecture 7

2.3 Antipatterns . 11

2.3.1 Enterprise JavaBeans Antipatterns 12

2.4 .QL: An Object-Oriented Query Language 13

3 Engineering the EJB FSML 15

3.1 Iteration 1: Information from All Sources 15

3.1.1 Inception . 15

3.1.2 Elaboration . 16

3.1.3 Construction . 18

3.1.4 Transition . 22

3.2 Iteration 2: EJB 2.1 Projects . 23

3.2.1 Inception . 23

3.2.2 Elaboration . 23

vi

3.2.3 Construction . 24

3.2.4 Transition . 25

3.3 Iteration 3: Facilitate Antipattern Instance Detection 26

3.3.1 Inception . 26

3.3.2 Elaboration . 26

3.3.3 Construction . 28

3.3.4 Transition . 31

3.4 Evaluation . 32

3.4.1 Sample EJB Projects Tested 32

3.4.2 Threats to Correctness of FSML 38

3.4.3 Further Limitations of the EJB FSML 38

3.5 Discussion . 38

4 Providing a Resolved Model of an EJB3 Project 40

4.1 Model Filtration of EJB FSM . 40

4.2 Model Analysis of EJB FSM . 42

4.2.1 Meta Model of Resolved Model 43

4.2.2 Model Analysis . 43

4.3 Evaluation . 47

4.3.1 Sample EJB Projects Tested 47

4.4 Discussion . 47

5 Detecting Antipattern Instances 49

5.1 Existing Antipatterns . 49

5.2 Detecting Antipattern Instances via Resolved EJB Model 52

5.2.1 Categorizing Antipattern Symptoms for Analysis 52

5.2.2 EJB Antipattern Meta model 53

5.3 Detecting Antipattern Instances via .QL 54

5.4 Discussion . 56

5.4.1 Comparison of Techniques 57

5.4.2 Combination of Techniques 59

5.5 Evaluation . 61

5.5.1 Detection Results . 61

5.5.2 Limitations . 62

vii

6 Future Work 64

6.1 Round-Trip and Refactoring Capabilities 64

6.2 Detecting New Antipatterns . 65

6.3 Compare Multiple Projects . 65

6.4 Techniques that Account for Strength of Symptoms 66

6.5 New Detection Technique on Other Frameworks 66

7 Related Work 68

7.1 Java EE Development Tools . 68

7.2 Static Code Analysis Tools . 68

7.3 Dynamic Analysis for EJB Antipatterns 70

8 Conclusion 71

APPENDICES 73

A Equivalent Ecore Models for EJB FSML Feature Models 74

A.1 Iteration 1 . 74

A.2 Iteration 2 . 81

A.3 Iteration 3 . 87

B Equivalent Ecore Models for Resolved Meta Model Feature Mod-
els 94

C Extended J2EE library for Semmle .QL 97

References 99

viii

List of Tables

2.1 Cardinality-based feature modeling notation 7

3.1 Additional mapping types added for Iteration 1 22

3.2 Additional mapping types added for Iteration 3 31

3.3 EJB Projects Used For Testing . 33

5.1 Antipattern Instances detected in Open-Source Projects 62

ix

List of Figures

1.1 Overview of Process Yielding Current Configuration Model 3

2.1 Excerpt from Workbench Part Interactions FSML 6

2.2 Scope of EJBs within a Java EE System 8

2.3 Annotated JavaBean Class . 9

2.4 Excerpt from session-BeanType from EJB 3.0 Specification 10

2.5 Layout of an EJB Jar file . 10

2.6 Example of .QL Query . 13

2.7 Example of a .QL Class definition 14

3.1 Overall Structure for Feature Model 17

3.2 Iteration 1-Annotation Information Feature Model 18

3.3 Iteration 1-Deployment Descriptor Information Feature Model . . . 19

3.4 Iteration 2-Additional Features . 25

3.5 Sample Deployment Descriptor EJB References 27

3.6 Iteration 3-Features for Clients and Entity Users 29

3.7 Iteration 3-Additional Antipattern-Specific Features 30

3.8 FSM yielded from eMal Payment System Project 34

3.9 FSM yielded from Time to Work Project 35

3.10 FSM yielded from Redwood Web Log Mining Project 36

3.11 FSM yielded from Custom EJB Project 37

4.1 Information from Annotation View 41

4.2 Information from Deployment Descriptor View 42

4.3 Feature Model of Resolved Meta Model 44

4.4 Bean Component of Resolved Meta Model 45

4.5 Overview of Model Analysis/Merging Process 46

x

4.6 Example of a Resolved Session Bean 48

5.1 Bloated Session Symptoms in Predicate Logic 50

5.2 Data Cache Symptom in Predicate Logic 50

5.3 Fragile Links Symptom in Predicate Logic 50

5.4 Sessions a Plenty Symptoms in Predicate Logic 51

5.5 Transparent Facade Symptom in Predicate Logic 51

5.6 Thin Session Symptoms in Predicate Logic 52

5.7 Meta Model for Discovered EJB Antipatterns 54

5.8 Example of Antipattern Instances in Antipattern View 55

5.9 .QL Queries for Bloated Session Symptoms 57

5.10 .QL Query for Data Cache Symptom 57

5.11 .QL Queries for Sessions-A-Plenty Symptoms 57

5.12 .QL Queries for Thin Session Symptoms 58

5.13 .QL Queries for Transparent Facade Symptom 58

5.14 FSML elements for Bloated Session Antipattern 60

5.15 FSML elements for Data Cache Antipattern 60

5.16 FSML elements for Thin Sessions Antipattern 61

xi

Chapter 1

Introduction

Adding flexibility to an existing mechanism or technology often comes with a cost.
This holds true in the case of the amendments made to the Java 2 Enterprise Edition
1.4 (J2EE 1.4) platform to create the current version, Java Enterprise Edition 5
(Java EE 5). Specifically, the Enterprise JavaBean architecture in J2EE 1.4 requires
developers configure properties of Enterprise Java Bean(EJB)s and other system
properties via an extended markup language (XML) file known as a deployment
descriptor. Java EE 5, specifically the EJB 3.0 specification [16] for the EJB 3.0
architecture, provides the additional flexibility of allowing configuration of EJBs
in the deployment descriptor, as done in J2EE 1.4; via Java 5 annotations; or by
using a combination of both and following complex merge and overriding rules.
While this benefits Java EE developers because configuration is more flexible, it is
much more difficult to understand the current configuration of a Java EE system
during development because the two sources of configuration, the overriding rules,
and default values given to certain properties must be considered. Developers and
others involved an EJB project will know the final result of their configuration only
once the project is deployed and executed, which involves a large investment of
time and effort.

Furthermore, one issue that Object-Oriented Framework developers and main-
tainers, such as those that work on Java EE projects, should be concerned with
is the notion of Antipatterns. Software Antipatterns, contrary to patterns, are
commonly found errors in software projects that arise from any number of factors
including lack of understanding or misunderstanding of a framework’s application
programming interface (API), the need for a quick fix, incorrect documentation,
or many others [10]. There is also the notion of project or organisation-specific
violations, which are violations that are relevant only in the context of a specific
project or organisation. Many times, these can be detected statically by looking for
indicators within a project’s artifacts. In the context of Java EE projects, however,
it would be difficult and less useful to perform static antipattern detection, either
manual or automatic, without consulting the current configuration of a Java EE
system, that is, it would be difficult without having some representation of the
system that accounts for the various sources of configuration and other factors

1

mentioned earlier. This problem of determining the current/resolved configuration
at development time of a Java EE project and detecting antipatterns on it was
posed by Rational engineers during the IBM Rational/WebSphere University Day
at CAS Toronto in September 2007 [20].

One mechanism that has been shown to assist with understanding Object-
Oriented Frameworks, like Java EE, is the use of a Framework-Specific Modeling
Language (FSML). FSMLs are created by a framework expert and formalize
framework concepts. Furthermore, once formalized, the FSML generic infras-
tructure defined in [1] allows for reverse engineering of a framework’s artifacts
into a framework specific model (FSM) that represents a specific instance of the
framework. This paper outlines the creation of such an FSML for the Java
EE EJB framework. This FSML facilitates the construction of a model that
represents the current configuration of the system at development time. Figure 1.1
provides a bottom-to-top view of this process. Reverse engineering through the
FSML infrastructure using the EJB FSML produces the EJB FSM and we analyze
this FSM, represented by the cloud within the figure, to present the current
configuration. Furthermore, this paper shows that we can detect antipattern
instances within an EJB project by analyzing this current configuration model.
We compare this method of detecting antipatterns against a solution using the .QL
object-oriented query language, and, based on the experiences with both methods,
we suggest a new method that entails modeling the antipatterns within the FSML
declaratively.

1.1 Research Contributions

The following are novel contributions made by this thesis:

• A Java EE EJB framework specific modeling language. This FSML expresses
a framework specific model that represents the EJB properties configured
from the various sources of configuration. This FSM then undergoes analysis
to create another model that represents the configuration at development time
and provides traceability to the configuration sources. The analysis takes into
account the merge and overriding rules. Furthermore, we present other models
generated from analysis on the FSM that showcase the information obtained
from the deployment descriptor alone or Java annotations alone.

• Two techniques for static EJB antipattern detection. The first is queries
formulated against the FSM. The second is queries written in .QL, an object-
oriented query language, on the project’s code. Based on the experiences of
creating and working with these two approaches, we propose a new approach
that entails modeling the antipatterns within an FSML declaratively.

2

Figure 1.1: Overview of Process Yielding Current Configuration Model

1.2 Thesis Organization

The remainder of this thesis begins with Chapter 2, which presents the necessary
background material required to appreciate the content of this thesis, notably, the
relevant information on Framework-Specific Modeling Languages, the Enterprise
JavaBeans Architecture, Antipatterns, and the .QL query language. Chapter 3
presents the EJB FSML created in three separate sections, with each section
containing the elements and information corresponding to each iteration within
the development process of the EJB FSML. Chapter 4 discusses the analysis that
we perform on the FSM expressed from the EJB FSML to achieve a resolved
configuration model/view of an EJB project. Chapter 5 then continues by
discussing the analysis of such a model to present existing EJB antipattern instances
of EJB antipatterns found in literature. Chapter 6 and Chapter 7 discuss future

3

work and related work, respectively, and the thesis concludes in Chapter 8 with
some concluding remarks.

4

Chapter 2

Background Material

The following chapter provides background information on Framework-Specific
Modeling Languages in 2.1; the Enterprise JavaBeans Architecture in 2.2; An-
tipatterns in 2.3, including Enterprise JavaBeans antipatterns in 2.3.1; and the .QL
object-oriented query language in 2.4. A person unfamiliar in any of these topics
can understand the contents of the paper following this chapter.

2.1 Framework-Specific Modeling Languages

Object-oriented frameworks allow for developers to use framework components
without being concerned with underlying component code. Rather, developers
using object-oriented frameworks need be concerned only with the various ways
of instantiating a framework. This is accomplished by creating completion
code using the appropriate application programming interfaces [1]. One way of
representing the different possible implementations of a framework is framework-
specific models (FSM). A way of expressing these models, proposed in [1], is the
use of Framework-Specific Modeling Languages (FSML). An FSML is developed by
an expert well versed with the specific framework. The expert models declaratively
the components and constraints that exist within that framework as well as all the
points of variability among these components.

In order to express these components and variability, each FSML metamodel
is modeled declaratively as a feature model, which is a modeling notation
that is an established method for modeling commonality and variability [12].
Figure 2.1 taken from [1] provides a small excerpt from the Eclipse Workbench
Part Interactions(WPI) FSML showcasing the basic components that comprise
the Eclipse WPI framework. Interpreting this feature model, we see that a WPI
project can contain, as indicated by the empty circle over a filled circle, zero to
many ViewParts or EditorParts, both of which are inherited from Part. They
contain an optional, as indicated by the empty circle, part identification string.
A ViewPart component must implement, as indicated by the filled circle, the

5

Figure 2.1: Excerpt from Workbench Part Interactions FSML

IViewPart interface and may optionally extend ViewPart. An EditorPart feature
must implement the IEditorPart interface and may optionally extend EditorPart
class. In the context of FSMLs, each of these features are related to Java completion
code through a mapping type and definition, which is utilized by the FSML mapping
interpreter [2]. So, for example, the feature implementsIViewPart has a mapping
type implementsInterface and a mapping definition IViewPart that can be written
as implementsInterface=IViewPart, which determines if the class being evaluated
implements the IViewPart interface. We omit the mapping types and definitions
from this figure but include them in later FSML feature models presented in this
paper as text between 〈angular brackets〉 beside the specific features.

2.1.1 Reverse Engineering with FSMLs

One of the facilities provided by FSMLs and the FSML infrastructure is the
ability to reverse engineer a framework specific model from existing completion
code. Specifically, the infrastructure traverses the FSML’s metamodel; then the
infrastructure queries the completion code for features from the metamodel based
on the mapping types and definitions; and, for each feature found in the code,
the infrastructure instantiates the corresponding model element in the framework
specific model [2]. Furthermore, each model element includes a traceability link that
links the specific model element/feature to the completion code that it represents.

6

2.1.2 Notation

As noted in [1], we define FSMLs using cardinality-based feature models [13].
Specifically, the FSML we define in this thesis is an Eclipse Modeling Framework
Ecore model [49] and we use the tool defined in [50] to render the Ecore model as
a feature model. As such, the notation we use in this thesis is the slight variation
of cardinality-based feature models defined in [50] and presented in table 2.1.

Table 2.1: Cardinality-based feature modeling notation
icon feature model or configuration element

package
root feature
optional feature [0..1]
mandatory feature [1..1]
optional multiple feature [0..*]

[0..m] optional multiple feature [0..m]
mandatory multiple feature [1..*]

[n..m] mandatory multiple feature [n..m], n > 0

inheritance

feature group <1-1> (XOR)

<n..m> feature group <n..m>
grouped feature [0..1]

2.2 Enterprise JavaBeans Architecture

Java Enterprise Edition (Java EE) is a large set of technologies that work
together to allow organizations to easily develop, place in production, and manage
multi-tier enterprise applications that are developed in the Java programming
language [39]. The latest version of Java EE, Java EE 5, contains the latest
version of the Enterprise JavaBeans (EJB) architecture, version 3.0. Figure 2.2,
modified from [30], showcases the scope of EJBs within a Java EE project and,
therefore, the scope of the work done in this thesis within the context of Java EE.
An enterprise bean is a component inside a Java EE program that encapsulates
business logic that operates on an enterprise’s data [16]. The EJB architecture
contains three types of enterprise bean objects: session beans, message-driven
beans, and entities. Session beans are enterprise beans that perform a task for a
single client. Session beans come in two variants, either stateful or stateless, where
stateful session beans are transaction aware and can retain their state variables
throughout multiple transactions. Message-driven beans are beans that act as
message listening objects within an enterprise application and have the ability to
receive messages asynchronously and react to them. Lastly, there are entities,
which provide a Java object view of enterprise data that is stored in the system’s

7

Figure 2.2: Scope of EJBs within a Java EE System

database. Session beans and Message-driven beans typically act on entities during
transactions.

The EJB architecture version prior to 3.0, version 2.1, required that each
JavaBean has an entry in an Extended Markup Language (XML) file called
the deployment descriptor. Each entry specifies the properties of the JavaBean
including its EJB name, the corresponding Java class for the bean, the type of bean,
the bean’s various EJB interfaces provided to clients, and more [17]. Furthermore,
each JavaBean’s Java class must implement the appropriate interface for its Jav-
aBean type, for example, a session bean must implement the javax.ejb.SessionBean
interface [17].

In the current version of the EJB architecture, version 3.0, developers configure
a JavaBean in a variety of ways. Firstly, they can use Java 5 annotations on
the JavaBean’s Java class. As seen in Figure 2.3, many of the configuration
properties for the JavaBean corresponding to the Java class StatefulClass are
specified via annotations and the details of the annotations. Specifically, the
annotation @Stateful indicates that the class annotated represents a stateful
session JavaBean. The details inside the parameters indicate that the bean
will have the ejb-name StatefulClassAnnotationName as entered via the name

detail, a description of StatefulClassEJBDescription, and a mapped name
of StatefulMappedNameFromAnot. In version 2.1, each of these were required
elements of the JavaBean’s deployment descriptor element. The @Local an-
notation indicates that this JavaBean’s local business interface is the interface
DerivedLocalInterface1.

In order to support backwards compatibility and interoperability, version 3.0

8

import i n t e r f a c e f o l d e r . De r i v edLoca l In t e r f a c e1 ;
import javax . e jb . Local ;
import javax . e jb . S t a t e f u l ;

@State fu l (name= ‘ ‘ StatefulClassAnnotat ionName ’ ’ , d e s c r i p t i o n = ‘ ‘
S ta te fu lC la s sEJBDesc r ip t i on ’ ’ ,mappedName= ‘ ‘StatefulMappedNameFromAnot ’ ’)
@Local (De r i v edLoca l In t e r f a c e1 . class)
public class S t a t e f u l C l a s s {

//EJB c l a s s implementation goes here . . .
}

Figure 2.3: Annotated JavaBean Class

also allows JavaBeans to be configured via the XML deployment descriptor as
was done in version 2.1 and earlier [39]. The XML schema for the version 3.0
deployment descriptor differs: it needs to account for the possibility in which
configuration is done by both annotations and the deployment descriptor. The
XML schema needs to allow for the XML elements that configure EJBs that
can be configured by annotations be optional in the schema whereas they were
mandatory before. For example, Figure 2.4 taken from [15] displays an excerpt of
the 3.0 version of the XML schema. This excerpt presents the schema for a session
bean, which has optional XML elements: minOccurs=‘‘0’’ means the element
is optional and the minimum number of occurrences defaults to one/mandatory
if not specified. The ejb-class element indicates the fully-qualified name of the
Java class implementing the bean. It is optional because if the current XML bean
entry has its mandatory ejb-name XML element set to the same ejb-name specified
in one of the Java classes via the annotation detail name then the ejb-class value
is taken as the fully-qualified name of the annotated class [16]. Therefore, the
ejb-name element in the bean’s XML entry maps to the ejb-name specified via
the name detail on the @Stateless,@Stateful, or @MessageDriven annotation on
a Java class. In this case, the XML entry can be used in conjunction with Java
annotations on the class to configure the bean. When EJB users use both sources
of configuration, there are specific override rules and default values. For example,
per [16], the deployment descriptor cannot override the value of the bean type
(Stateless, Stateful, or Message-Driven) if it has been specified by a Java annotation.
If the type is specified in the deployment descriptor, it has to be the same as the
one specified in the annotation. [42] provides a listing of some overriding rules
extracted from the EJB 3.0 specification.

If no match in the descriptor’s ejb-name is found in any Java Class, then
the ejb-class element must be present and must identify a Java class within
the EJB project. In this case, the deployment descriptor must specify all the
appropriate information because there is no configuration information arising from
the annotations.

As shown in Figure 2.5 taken from [30], once EJB developers create and
configure the enterprise Java beans, either through annotations or the deployment
descriptor, the deployer places class files for the beans and their business interfaces
within an EJB Java Archive (JAR) file. They include this with the appropriate

9

<xsd:complexType name=” se s s i on−beanType”>
<xsd : sequence>

<xsd :e l ement name=” ejb−name” type=” j a v a e e : e j b−nameType”/>
<xsd :e l ement name=”mapped−name” type=” javaee :xsdStr ingType ”
minOccurs=”0”/>
<xsd :e l ement name=”home” type=” javaee:homeType” minOccurs=”0”/>
<xsd :e l ement name=”remote” type=” javaee:remoteType ” minOccurs=”0”/
>
<xsd :e l ement name=” l o c a l−home” type=” j a v a e e : l o c a l−homeType”
minOccurs=”0”/>
<xsd :e l ement name=” l o c a l ” type=” javae e : l o ca lType ” minOccurs=”0”/>
<xsd :e l ement name=” bus iness−l o c a l ” type=” j a v a e e : f u l l y −q u a l i f i e d−
c lassType ” minOccurs=”0”

maxOccurs=”unbounded”/>
<xsd :e l ement name=” bus iness−remote” type=” j a v a e e : f u l l y−q u a l i f i e d−
c lassType ” minOccurs=”0”

maxOccurs=”unbounded”/>
<xsd :e l ement name=” ejb−c l a s s ” type=” j a v a e e : e j b−c lassType ”
minOccurs=”0”>
<xsd :e l ement name=” se s s i on−type ” type=” j a v a e e : s e s s i o n−typeType”
minOccurs=”0”/>

</ xsd : sequence>
</xsd:complexType>

Figure 2.4: Excerpt from session-BeanType from EJB 3.0 Specification

meta data including the deployment descriptor (ejb-jar.xml). The deployer then
places this file within an Application Server that will host the enterprise application.
During runtime, the EJB container interprets information from all the various
sources of EJB configuration and makes the enterprise beans’ interfaces available
through dependency injection and name space lookups [16]. The EJB container
performs this runtime resolution of EJBs and their configuration and is not available
during development time.

Figure 2.5: Layout of an EJB Jar file

10

2.3 Antipatterns

Much like software patterns are well-established methods and techniques to solve
frequent problems or inherent issues within a specific context, such as Object-
Oriented programming, software antipatterns are commonly made mistakes and
non-optimal solutions that arise in a software project. As noted in [10], an
antipattern must be a commonly repeated mistake that at first seems correct and/or
beneficial but in fact is not. Each antipattern must have a solution associated
with it that corrects the antipattern. Patterns distill allegedly useful and positive
experiences to emulate. Antipatterns distill allegedly useful negative experiences
to avoid and how to fix them.

Antipatterns are not limited to code and can be found at various levels
within the field of Software Engineering. Brown and others introduce antipatterns
that exist within the context of software configuration management [8]. Rather
than antipatterns that exist within the design and architecture of software code,
antipatterns deal with commonly occurring problems in the way that software
is stored and changes are tracked and controlled. They later on, in [9],
discuss antipatterns at an even higher level, specifically, those that are found
within software project management. They identify three types or categories
of software project management antipatterns: people-management antipatterns,
technology-management antipatterns, and process-management antipatterns. Sim-
ilarly, Kuranuki introduces Antipractices, which are antipatterns for the Extreme
Programming (XP) development methodology that were discovered when observing
XP projects [34].

Architecture is another level at which the notion of both patterns and
antipatterns can be applied. Lauder and Kent examine a number of mid-sized
legacy systems and discover 12 general antipatterns that deal with the architecture
of the software [35]. Kis, on the other hand, outlines a number of architectural
antipatterns that result in poor application security [32]. Even the relatively new
architectural paradigm of Service Oriented Architecture (SOA) has antipatterns
that are associated with it, as discussed by Kral and others [33]. Based on the
authors’ experiences with SOA and analogous projects, they identify 5 antipatterns
that are crucial to look for within an SOA project.

Antipatterns have also been discovered that are applicable to specific areas
of computer science. Multi-threaded applications have a number of antipatterns
that can be detected statically [23]. Furthermore, attempts have been made to
detect dynamic antipatterns in multi-threaded applications through the use of
custom antipattern detectors represented by finite state machines [6]. Database
antipatterns are elaborated on in [31] and Smith discusses antipatterns that relate
specifically to software performance [47, 48]. Even the modeling of software,
for example, object-oriented concept modeling, has antipatterns as elaborated on
in [18].

This concept of antipatterns extends to frameworks: Having detailed application

11

programming interfaces (API)s, specifications, and documentation for a framework
do not imply that the framework will be implemented or used correctly by
framework implementors. Furthermore, framework components can be used in
ways that are either unintended or ways that are unanticipated by framework
developers when creating the framework. Thus, frameworks are also susceptible to
antipatterns. Some examples include Ajax antipatterns [24] and JSP, Web Services,
and Servlet antipatterns [19].

2.3.1 Enterprise JavaBeans Antipatterns

Enterprise JavaBeans are no exception. Although EJBs provide many capabilities,
such as transaction support, security, portability, and more [39], they can often
be misused in a variety of ways. In [19], Dudney et. al. provide a catalog of
various types of Java EE antipatterns including EJB antipatterns. They choose to
categorize the EJB antipatterns based on the type of bean that the antipattern
is related to, namely Entity Bean antipatterns, Session EJB antipatterns, and
Message-Driven Bean antipatterns. For each antipattern listed, they provide a
general description, symptoms and consequences of the antipattern, refactorings to
correct the antipattern, and real-world examples. Crawford and Kaplan discuss
some more EJB antipatterns in a chapter within their book about J2EE design
patterns [11]. The 3 antipatterns in this book consist of 1) using EJBs when not
necessary, 2) using stateful beans when stateless beans are more appropriate, and 3)
performance problems that arise when using remote EJBs incorrectly by requesting
too many small pieces of data rather than combining multiple requests into larger
ones [11]. These 3 antipatterns are not considered for the work presented in this
thesis as their symptoms are not as statically-identifiable, concretely enumerated,
and programmable as the ones presented by Dudney in [19] or are already accounted
for.

Because FSMLs formalize and work with only the static implementation of a
framework, the only EJB antipatterns that are considered are the ones that have
symptoms that can be analyzed statically. So, antipatterns that have symptoms
with dynamic behavior, such as symptoms that deal with system performance; or
antipatterns that have symptoms that deal with social implications, such as reduced
maintainability or project-team effectiveness, are unable to be discovered via the
models expressed through the FSML. Thus, they are considered out of scope for
the work done in this thesis but are addressed in the related work section discussing
Parsons’ dynamic EJB antipattern detection solution [40].

There also exists a notion of organisation-specific violations that are relevant
and important only within a specific organisation or project within an organisation.
Sources of these types of violations can be those related to regulations, company-
wide policies, project-specific requirements, and others. Some EJB examples
include naming, such as all EJBs must begin with “ejb” or all EJB names must end
with a number; security with respect to configuration, for example, only certain

12

roles are allowed to be used in certain places, some roles are prohibited, or all
configurations must be done via annotations; or security with respect to code, such
as the overriding of certain methods being prohibited, limiting or restricting public
visibility, and other restrictions. Because tools can detect statically many of these
types of violations, an FSML should be able to detect them assuming there is some
facility to specify them.

2.4 .QL: An Object-Oriented Query Language

.QL is an object-oriented query language that is implemented as an Eclipse plug
in. This language supports queries of both Java code and XML files. As noted
in [14], .QL stores Java projects as relational databases, thereby allowing standard
SQL-like queries to be executed. .QL is based on Datalog [21], a logic programming
language used for querying databases. Any Datalog program is comprised of 3 parts:
a query, which is the predicate to be computed; intensional predicates, which are the
relations to be computed that are specified by a user; and extensional predicates,
which are the components stored in the database that are being evaluated [21]. Each
.QL query is first translated into a Datalog program/query as an intermediate step
and then these Datalog queries are implemented over the relational database(s)
containing the Java project(s) [14]. Figure 2.6 provides an example .QL query
taken from [14]. It identifies the case where a class implements the compareTo
method but does not overwrite the equals method. This is usually indicative of
a bug: to compare something, it is mandatory to have the ability to know if it
is equal to something else or not. There are three parts to each .QL query; note
that the order differs from that of an SQL query. The from clause indicates the
variables that will be used throughout the query and the type of the variable, with
Class being the type and c being the variable name in the example. The where
clause contains predicates that use the variable and test certain conditions and, as
a whole, must resolve to true for the current set of variables being evaluated for
them to be matched or of interest. Lastly, the select clause indicates the return
results of the query and can be the variable itself, properties of the variable, or any
other data available during the query. These return results are returned in various
output formats provided by the .QL plug in and appear in the order given in the
select clause [14].

from Class c

where c.declaresMethod("compareTo")

and

not(c.declaresMethod("equals"))

select c.getPackage(), c

Figure 2.6: Example of .QL Query

The type Class in the from clause is an example of a .QL class and can have
certain properties and queries associated with it, such as declaresMethod(. . .) in

13

the example. .QL classes are matches of logical properties, that is, “when a
value satisfies that property, it is a member of the corresponding type” [14]. So,
each .QL class’ constructor contains properties that must hold true for it to be
an instance of the .QL class. For example, if one wanted to do a query of all
private classes, the where clause in the example from Figure 2.6 could instead be
c.hasModifer(“private”). Rather than doing this query, however, one could create
a new .QL class that extends the existing .QL class entitled Class as in Figure 2.7.
This example defines a new class, PrivateClass, that matches all private classes,
as noted by the constructor. If only static-private classes are desired, then an
and clause could follow the private modifier test in the constructor followed by
this.hasModifer(“static”). As a result, .QL is extensible as new libraries of classes
and queries can be built on top of existing .QL libraries of .QL classes and queries.

class PrivateClass extends Class {

PrivateClass () {

this.hasModifer("private")

}

}

Figure 2.7: Example of a .QL Class definition

14

Chapter 3

Engineering the EJB FSML

This chapter outlines the steps we took and design decisions we made in engineering
an EJB FSML that facilitates model analysis for the purpose of understanding the
current configuration at development time. We introduce a new FSML for the
EJB framework as none yet exists. We engineer the EJB FSML using the FSML
Engineering Method defined in [3], which is a method that follows the Rational
Unified Process [29]. The method is iterative and the EJB FSML went through
multiple iterations. As such, rather than presenting the EJB FSML and its elements
all at once, the following sections in this chapter discuss the iterations, the activities
we performed, and the FSML components we created in each of the iterations of
development in the creation of the EJB FSML. We discuss only steps that differ
among subsequent iterations, that is, anything that does not change from one
iteration to the next does not appear in the iterations that follow.

3.1 Iteration 1: Information from All Sources

3.1.1 Inception

The problem we identify for this iteration is the need to have a single source/model
that accounts for all methods of configuration. Without such a model, applying
the override rules defined in the EJB 3.0 specification would be difficult. Such
a model will help assist the people in the various roles of an EJB Project. As
such, the purpose for this iteration is to create an FSML that is able to capture
all the information necessary from an EJB project’s XML deployment descriptor
and annotated Java classes. At this point, we consider only projects that follow
the EJB 3.0 specification to simplify the functionality provided by this iteration.

[3] defines many use cases for an FSML but not all of them are applicable for
every FSML and for every iteration. The first use case we consider applicable
to achieving the goal of this iteration for EJB FSML is Completion Code
Understanding. This use case describes when the framework-specific model is to

15

provide users with an understanding of the specific instance of the framework the
completion code represents. So, in the case of the EJB FSML, EJB developers
and deployers should be able to read through the EJB FSM and determine what
configuration has taken place and from what sources. The second and main use case
that is to be supported for this iteration is Model Analysis. This use case involves
using the EJB FSM extracted through reverse engineering to perform model
analysis on it to ensure that the EJB FSM accounts for all the necessary sources of
configuration. Lastly, this iteration must support the use case of relatively simple
API Constraint Checking, namely cardinality constraints and ensuring referential
integrity of interfaces specified by beans.

For this iteration, the FSML’s sources of domain knowledge need to cover all
the various means of configuration for an EJB 3.0 project. Our initial reference
is the Java EE 5 tutorial [30], specifically the section on Enterprise Java Beans.
This provides a high-level walk-through example of configuring an Enterprise Java
Bean via Java 5 annotations and covers the case where an EJB is configured
through annotations only. The EJB 3.0 specification [16] and included EJB XML
deployment descriptor schema [15] provide detailed information about configuring
an EJB via XML and Java annotations and the accompanying override rules.
The specification, although a bit terse, contains the most information about the
resolution by EJB containers at deployment-time.

The horizontal scope of the FSML refer to which top-level API concepts /
components are included in the language [3]. For this iteration we must include
EJBs and EJB business interfaces identified either by a Java 5 Annotation or
through a 3.0 XML deployment descriptor entry. That is, if either source of
configuration identifies or configures either an EJB or an EJB interface, then it
must be included in the FSML for this iteration. The vertical scope of the FSML
means the depth/detail level of the feature models specifying the concepts [3]. For
this iteration, the FSML must facilitate the identification and merging of an EJB
that has been overridden by another source of configuration and must be deep
enough to provide basic details in order to assist completion code understanding.

3.1.2 Elaboration

As mentioned previously, the top-level concepts in scope for this iteration are each
EJB and EJB business interface defined via Java 5 annotations and the XML
deployment descriptor. Per the EJB 3.0 tutorial [30], it is clear that the fully
qualified class name for each annotated EJB is a concept that must be included
in the language. Furthermore, the specific EJB Java annotation (@Stateless,
@MessageDriven, et cetera) must be a concept in scope as it contains useful
information regarding the EJB within its details.

The tutorial mentions that a developer can specify a EJB business interface
in two ways via a Java annotation: Either the Java class file representing
the interface can be annotated with @Remote or @Local or the bean class

16

implementing the interface can be annotated with @Remote(InterfaceName.class)
or @Local(InterfaceName.class) where InterfaceName is the name of the Java file
representing the interface. Four framework-provided concepts arise out of this:
local and remote EJB interfaces that are explicitly EJB interfaces by having
@Local or @Remote, respectively, annotated on their class; and local and remote
EJB interfaces that are derived to be EJB interfaces from the fact that the class
implementing them has used the @Local or @Remote annotation, respectively. For
the XML deployment descriptor concepts, the top-level concepts, as mentioned
previously, are the entries for the the various EJB types (Session, Message-Driven,
and Entity). Also, the EJB interfaces the infrastructure identifies within the
XML bean entries are framework-provided concepts that are within scope for this
iteration.

The enterprise beans the FSML infrastructure detects via annotations and the
deployment descriptors are component-oriented concepts as they do not relate to
other concepts. The EJB interfaces the infrastructure recognizes from both of
the configuration sources are port-oriented concepts because they provide access
to EJBs to users of EJBs. The annotations for the most part are component-
oriented as they do not relate multiple concepts, however, the @Local and
@Remote annotations that are on EJBs are connector-oriented concepts because
they represent a connection between an EJB and an EJB interface.

The root feature for the EJB FSML feature model is the EJB project containing
the Java files and the XML deployment descriptors. While an EJB project
root feature contains all the concepts the FSML infrastructure identifies, there
is a logical grouping that can be represented in the feature model for grouping
concepts that come from annotations and those that come from deployment
descriptors. Figure 3.1 presents the overall structure of the feature model for the
EJB FSML. The root element, indicated by the root image, is the EJBProject
feature. We represent the grouping by the two sub features of the EJBProject
feature: informationFromAnnotations and deploymentDescriptors. The feature
informationFromAnnotations is optional because there are EJB projects that may
not have any information derived from annotations. The same goes for the
deploymentDescriptors feature, except it has multiple optional cardinality because
an Eclipse EJB project may contain multiple deployment descriptors. It also has a
mandatory project name, which we represent as the feature of type String entitled
projectName.

Figure 3.1: Overall Structure for Feature Model

17

3.1.3 Construction

Figure 3.2 and Figure 3.3 display the resulting feature models we constructed during
this iteration that will be discussed in this section. The text between the angular
brackets for each feature represents the feature’s annotation and is related to the
mapping types and definitions discussed below. Appendix A contains the equivalent
Ecore class models for these feature models, as these feature models are generated
from Ecore models using Ecore.FMP [50].

Figure 3.2: Iteration 1-Annotation Information Feature Model

Using the feature model structure we outlined previously, the informationFro-
mAnnotations feature is the parent feature for all the EJB project concepts/features
that the infrastructure discovers from looking at annotations or Java source alone.
That is, the sub features of the informationFromAnnotations feature are the EJBs

18

Figure 3.3: Iteration 1-Deployment Descriptor Information Feature Model

and the EJB interfaces, both derived and explicit, found from annotations as they
semantically imply the information acquired from annotations. The same holds
true for the EJBs the FSML infrastructure discovers via the XML deployment
descriptor(s), so they are sub features of the deploymentDescriptors parent
feature. The EJB interfaces the infrastructure discovers from the XML deployment
descriptor(s) are sub features of the EJB features under deploymentDescriptors
because they are defined within the EJB XML deployment descriptor entry and
are, thus, logically dependent.

Within the informationFromAnnotations feature, the features representing Java
annotations themselves are sub features of the respective EJB or EJB interface
features they were discovered in as the annotations are logically dependent on
the classes those features represent. For each of these annotation features, the
Java annotation details belonging to the annotations are logically dependent on
the annotations and are, thus, sub features. Also, sub features of the session beans
found from annotations, that is sub features of the SessionBean—|〉EJBean feature,
include the local and remote annotations as well as a String list of and references

19

to the implemented explicit local and remote interfaces. Lastly, each feature
representing an EJB that the FSML infrastructure discovers within the deployment
descriptor has sub features representing the ejbName, ejbClass, mappedName, and
description XML elements found within the XML entry and each of those has a
sub feature representing the textual value found within that element.

Throughout the feature model, there are a number of instances where we can
generalize features, thus allowing for features to be abstracted and be inherited
from, analogously to class modeling. All abstract features within the feature
models begin with the text abstract: followed by the feature’s name. One notable
case of an abstract feature within the information from annotations hierarchy is
the abstract feature abstract:SessionBean—|〉EJBean, which represents a session
bean and contains all the interface related sub features that can be present on
a Java session bean class. We specialize it with the features StatelessEJB and
StatefulEJB, which differ only in the type of annotation the classes are annotated
with. Regarding deployment descriptors, the abstract feature DDBean, contains
sub features that are common to all features representing EJB entries the FSML
infrastructure finds within a deployment descriptor. Note that the Ecore.FMP tool
renders the DDBean feature as a Root feature (and not abstract) because of the fact
that it is not directly contained within the feature model even though subclasses
of it are. This is the way that the Ecore.FMP tool chooses to interpret the Ecore
model and render the feature model [50].

We discussed previously the cardinality of informationFromAnnotations and
deploymentDescriptors in the elaboration section. The EJBs and EJB interface
features the FSML infrastructure discovers from Java annotations have a cardinality
of 0..*, that is, these features are multiple features with an unbounded upper bound
as there are no restrictions as to the number of these that must be present in any
EJB project. For each EJB and explicit EJB interface feature the infrastructure
discovers from annotations, the sub feature representing the Java annotation is an
essential feature with cardinality 1..1 meaning that there must be one and only
one instance of the relevant annotation for the parent feature to be considered
an instance. For example, the StatefulEJB feature cannot exist without its sub
feature statefulAnnotation. The features representing the annotation details from
these annotations are optional features having a cardinality of 0..1 as they are
not necessary and can have at most one instance. The features representing a
local or remote annotation on an EJB session bean Java class that indicate a
derived local or derived remote interface specification, respectively, have an optional
cardinality (0..1) and have an essential (1..*) sub feature, derivedLocalInterfaces
and derivedRemoteInterfaces, respectively, that represent the EJB interface Java
classes specified in the annotation’s detail. Furthermore, an EJB session bean
class feature, abstract:SessionBean—|〉EJBean, additionally has optional (0..1)
sub features representing both a String list of names and references to all the
explicit local and remote interfaces that are implemented by the class the features
represents.

The cardinality of the EJBs the FSML infrastructure discovers from the XML

20

deployment descriptor(s) via XML entries is 0..* as there are no constraints on
the number of the entries in the schema. Each of the three types of XML
EJB entries, session; entity; and message-driven, generalize the abstract feature
DDBean and have a mandatory (1..1) ejbName feature representing an ejb-
name XML element and optional (0..1) ejbClass, mappedName, and description
features representing the corresponding XML elements. Each of these have a
sub feature representing the String value within the element that has mandatory
(1..1) cardinality. These cardinalities correspond to those specified in the EJB 3.0
schema [15]. The local and remote EJB 3.0 business interfaces the infrastructure
identifies for both session beans (feature abstract:SessionBean—|〉DDBean) and
entity beans (feature abstract:entityBeans—|〉DDBean) within the deployment
descriptor(s) are of type multiple optional, having cardinality of 0..*. The features
belonging to DDStatefulEJB and DDStatelessEJB that represent session-type and
the corresponding sub feature that indicates if it is the appropriate session type
are mandatory (1..1) and essential. The justification for this is all deployment
descriptor session beans identified as either Stateful or Stateless must have their
session type specified as the expected type, otherwise it is not the instance of
interest.

The features in the displayed EJB FSML feature models shown also contain
annotations, listed in the figures between the angular brackets, which correspond
to mapping types and definitions. Mapping types refer to the type/nature of the
query to be performed on the code/artifact while mapping definitions are the exact
values to be used in the query. For example, the feature statefulAnnotation with
parent feature StatefulEJB has a mapping type of annotatedWith and a mapping
definition of javax.ejb.Stateless, meaning it will look for Java classes that are
annotated with that type of annotation. Mapping definitions for the information
from Java annotation elements use the Java mapping interpreter while the mapping
definitions for the information obtained from the deployment descriptor use the
XML mapping interpreter. All mapping types and definitions that were in existence
before the construction of the EJB FSML can be found in [1]. Furthermore, there
are some mapping types that are unique to EJB projects, that is, some feature to
code mappings that are relevant only in the EJB domain. Thus, we create a new
mapping interpreter, EJBMappingInterpreter. Examples of mapping types are the
implementsExplicitLocalInterface and implementsExplicitRemoteInterface mapping
types, which gather all the string representations of the interfaces that are EJB local
or remote interfaces, respectively, implemented by the class in context. Table 3.1
presents all the new mapping types that we introduced in iteration 1. Following the
same structure of the analogous tables presented in [1], the first column presents
a SmallTalk-like representation of the pattern the infrastructure is matching, the
second column presents a description of the elements being matched, and the last
column is the abbreviated version of the pattern that we use within the feature
model and in this paper.

21

Table 3.1: Additional mapping types added for Iteration 1
Structural Pat-
tern Expression

Structural Element(s) Matched Abbreviation

c ImplementsEx-
plicitLocalInter-
face eli

matches the fully qualified interface name of Java
interface eli that is annotated with @Local and
implemented by class c

ImplementsExplicitLocalInterface

c ImplementsEx-
plicitRemoteIntre-
face eri

matches the fully qualified interface name of Java
interface eri that is annotated with @Remote and
implemented by class c

ImplementsExplicitRemoteInterface

e noXMLElement
s

matches if XML element e has no sub elemen-
t/child with element name s

noXMLElement

e xmlElementVal-
ueEqualsString s

matches if the value of xml element e is equal to
string s

xmlElementValueEqualsString

3.1.4 Transition

Once we construct this iteration’s feature model, the FSML infrastructure reverse
engineers various EJB projects and generates the corresponding FSMs. Section 3.4
discusses these projects and FSMs in detail. At this point we perform various forms
of evaluation that correspond/are equivalent to those identified in [3].

Semantically, we show the feature model to be satisfiable as valid feature
configurations come from reverse engineering the projects. During this phase,
we discovered that the XML code queries for some of the mapping types in the
XML mapping interpreter were incorrect, so they we corrected them promptly.
Also, at first, the infrastructure was not identifying some of the explicit Local
and Remote interfaces as sub features of the appropriate session bean features,
so we determined that a String list of these interfaces, represented by the
featuresimplementedLocalInterface and implementedRemoteInterface, are necessary
in order to check this list against the already identified explicit interfaces the FSML
infrastructure has found in the project.

We consider the pragmatic quality of the EJB FSML feature model thus far to
be high given the fact that we utilized abstracted features whenever we felt that it
was both logical and helpful. The FSML feature model can be easily modified as
the only dependences existing in the model are the containment features that are
obtained by the modeling of the framework/domain. So the majority of changes
would be trivial except in cases of modifying containment relationships, in which
case the model may cease to be semantically correct.

The pragmatic quality of the generated EJB FSM in regards to comprehension
was originally not very high due to the use of generic/non-helpful icons and the
showing of containment references only (with non-containment references being
shown in the properties menu instead of the model). We added custom icons for
various EJB components and both containment and non-containment references are
shown when thought to be of assistance to viewers. Section 3.4 has examples of FSM
models and these pragmatic improvements. Pragmatic quality of the generated EJB
FSM in terms of ease of modification of the model is not applicable as modification
is disabled due to the fact that the only use case supported is reverse engineering,
so modification is unnecessary. Furthermore, the FSM is able to perform the three

22

identified use cases, Completion Code Understanding, Model Analysis, and basic
API Constraint Checking.

The organizational evaluation of the EJB FSML for this phase entails perform-
ing the model analysis on the EJB FSM, discussed in Section 4.2, and ascertaining
the ability to resolve the current configuration of the EJB 3.0 project that the EJB
FSM describes. Also, we verify traceability links as they add to the organizational
value for the EJB FSM.

3.2 Iteration 2: EJB 2.1 Projects

3.2.1 Inception

The goal for this iteration is the same as that in iteration 1, that is, to have an FSML
that expresses an FSM that accounts for all the methods of configuration when
reverse engineering is performed on an EJB project. However, in this iteration,
the FSML and associated mapping definitions must support EJB 2.1 projects. The
use cases supported are the same as those supported in iteration 1. The sources of
domain knowledge for this iteration are all those included in iteration 1 as well as the
materials that are related to 2.1 EJBs. This includes the Java 1.4 tutorial’s section
on 2.1 Java Beans [4], which provides a high-level description of how to create and
configure 2.1 EJBs; the EJB 2.1 specification [17], which provides detailed and
specific information; and the EJB 2.1 deployment descriptor schema [44].

As noted in the EJB 2.1 specification, “the Bean Provider is responsible for
providing the structural information for each enterprise bean in the deployment
descriptor.” As such, the horizontal scope (top-level concepts) for this iteration is
the same as the previous iteration because beans found in the EJB 2.1 deployment
descriptor can be considered the same as those found in the EJB 3.0 deployment
descriptor. However, the fact that the beans are the same implies that the vertical
scope (depth of the concepts) of these concepts from the last iteration needs to be
extended to include XML elements necessary for 2.1 EJBs, such as the different
interfaces.

3.2.2 Elaboration

As a developer must configure properties for EJB 2.1 beans via the deployment
descriptor, the new concepts for this iteration are all deployment descriptor related.
While all EJB 2.1 beans must implement the appropriate EJB 2.1 interface, such as
javax.ejb.SessionBean for session beans, the implementation of this interface alone
does not constitute a valid bean [17]. Since this iteration deals with identifying
beans and their main properties only, the only additional concepts in this iteration
are the 2.1 EJB local and remote interfaces and the local and remote home interfaces
for session beans and entity beans. Message-driven beans do not implement these

23

interfaces [17, 44]. In an EJB project, EJB Home, local or remote, interfaces are
used by a client (bean user) to create a session or entity object or a remote session
or entity object and to acquire meta data about the session or entity [17]. The
only difference between the 2.1 and 3.0 interfaces is that the EJB 2.1 interfaces are
not implemented directly by the Java classes as they are in EJB 3.0 projects. As
such, the new concepts within scope are the local and remote EJB 2.1 interfaces
and local and remote home interfaces for session beans and entities. All of these
interfaces are port-oriented concepts as they facilitate access to the beans.

One option for the overall structure of the feature model is to have a
different feature model or a different branch in the previous model for an EJB
2.1 project. However, some projects may use a combination of 2.1 and 3.0
EJB beans as supported by the framework [39]. As such, another option is
to have the overall structure of the feature model for this iteration remain
the same because information is still being retrieved from either annotations or
deployment descriptors. In the case of a pure (non 3.0) EJB 2.1 project, the
informationFromAnnotations feature in an FSM retrieved from reverse engineering
will have no feature instances underneath it, but we found this to be an acceptable
trade off for having a single feature model for the EJB FSML.

3.2.3 Construction

Figure 3.4 exhibits the amendments to the feature model underneath the deploy-
mentDescriptors feature. Appendix A contains the equivalent Ecore class model for
these feature model, as this feature model was generated from Ecore models using
Ecore.FMP [50].

We make the features representing local home and remote home interfaces and
the corresponding 2.1 local and remote interfaces as sub features of the features
representing the respective session bean and entity deployment descriptor XML
entries they are defined within. This is because these interface entries are logically
dependent on the bean entries. Each interface then has a sub feature that represents
the fully qualified class/interface name for the Java file embodying the interface.
We declare the cardinality for the interfaces are as optional, per the schema. The
string sub features of the interfaces representing the fully qualified interface name
are mandatory features.

We already have defined the mapping types xmlElements and xmlElementValue
within the XML mapping interpreter, so no new mapping types are required. We
obtain the mapping definitions for the xmlElements mapping type from the XML
schema. Specifically, 2.1 local and remote interfaces have mapping definitions of
local and remote, respectively, and the local home and remote home interfaces
have mapping definitions of local-home and home, respectively. The string feature
representing the interface qualified name uses xmlElementValue with no definition,
indicating that it is the string value located within the XML element in context.

24

Figure 3.4: Iteration 2-Additional Features

3.2.4 Transition

At this point, we use projects that conform the EJB 2.1 architecture to the verify
manually the FSMs. Section 3.4 outlines these projects and provides the FSMs
generated.

For semantic evaluation, we show the feature model for this iteration to be
satisfiable through the various feature configurations that we discover from reverse
engineering the projects. Since no new mapping types are used, we need verify the
mapping definitions only.

Pragmatically, the feature model gained relatively few elements, so pragmatic
quality remains relatively constant compared to the last iteration. In terms of
comprehensibility and modification, an option is to abstract away the commonalities
between DDSessionBean and entityBeans into a feature that represents beans that
utilize interfaces. While this would aid modification, since the interfaces and their
mapping definitions would need to be modified only once, we believe that the
comprehension of the feature model would suffer as a result. The pragmatic quality

25

of the EJB FSM is unaffected by the addition of the new EJB 2.1 features. We
provide additional custom icons to the appropriate feature instances to assist with
understanding. The use cases we identified for this iteration are still supported.

We examine the organizational quality of the EJB FSML feature model by
analyzing, via the method discussed in Section 4.2, the EJB FSMs to create the
resolved model. If projects that use a combination of the EJB 3.0 and EJB 2.1
architectures or projects that use the EJB 2.1 architecture in isolation can have
their current configuration established and displayed through this analysis, then
the organizational quality is satisfactory.

3.3 Iteration 3: Facilitate Antipattern Instance

Detection

3.3.1 Inception

The goal for this iteration is to have an EJB FSML that is able to express an EJB
FSM that can indicate whether or not antipattern instances are present within an
EJB project. We discuss the specific antipatterns considered in Chapter 5. Thus,
the FSML needs to contain features specified in the feature model that can provide
the information necessary to detect antipattern instances. This iteration does not
support additional use cases because the only use case necessary to achieve the
iteration’s purpose of detecting antipattern instances is advanced Model Analysis.

Information regarding the additional features and concepts within this iter-
ation’s scope is mainly the material from Dudney’s antipattern book [19], the
predominant source of existing EJB antipatterns we found. The horizontal scope of
the language remains relatively unchanged as the antipattern properties/features
are related to existing top-level elements, except for the addition of clients that use
EJBs. We extend the vertical scope, however, to include these properties of concepts
within an EJB project that represent symptom properties and other indicators of
antipattern instances.

3.3.2 Elaboration

Many of the antipatterns within scope have symptoms that are related to properties
of clients, that is, Java classes that reference and use beans defined within the
project. Beans can also be clients themselves (EJB clients) as they may reference
and utilize other beans. Such clients need to be accounted for in the current
iteration. Any client using the EJB 3.0 architecture will be using the @EJB
annotation on fields to specify the reference to other beans [30]. Thus, we must
include this annotation, its details, and the field it is placed on in the language. For
clients using the EJB 2.1 architecture, a developer must specify these references in

26

the appropriate deployment descriptor entries: all EJB clients must specify all
remote and local references within the XML deployment descriptor by placing
an ejb-ref or an ejb-local-ref entry, respectively, within their XML bean entry.
Figure 3.5, modified from [16], provides an example of an EmployeeService session
bean that has two references to other beans, a 2.1 EJB EmplRecord and a 3.0 EJB
Payroll, within the project. These XML reference entries and all sub entries within
the deployment descriptor are concepts we include in the language.

<s e s s i o n>
. . .

<ejb−name>EmployeeService</ ejb−name>
<ejb−c l a s s>com . wombat . empl . EmployeeServiceBean</ ejb−c l a s s>
. . .

<ejb−r e f>
<d e s c r i p t i o n>
This i s a r e f e r e n c e to an EJB 2 .1 e n t i t y bean that
encapsu l a t e s a c c e s s to employee r e co rd s .
</ d e s c r i p t i o n>
<ejb−r e f−name>e jb /EmplRecord</ ejb−r e f−name>
<ejb−r e f−type>Entity</ ejb−r e f−type>
<home>com . wombat . empl . EmployeeRecordHome</home>
<remote>com . wombat . empl . EmployeeRecord</ remote>

</ ejb−r e f>
<ejb−l o c a l−r e f>

<d e s c r i p t i o n>
This i s a r e f e r e n c e to the l o c a l bu s in e s s i n t e r f a c e
o f an EJB 3 .0 s e s s i o n bean that prov ide s a p a y r o l l
s e r v i c e .
</ d e s c r i p t i o n>
<ejb−r e f−name>e jb / Payro l l</ ejb−r e f−name>
< l o c a l>com . aardvark . p a y r o l l . Payro l l</ l o c a l>

</ ejb−l o c a l−r e f>
</ s e s s i o n>

Figure 3.5: Sample Deployment Descriptor EJB References

A number of the antipatterns are concerned specifically with usage of entities by
EJBs. When using an entity within an EJB, no annotations are necessary. In EJB
3.0 an entity manager is used to populate a local variable/field that is typed with
the corresponding Java entity class [30]. In EJB 2.1, one uses the entity’s home
interface as an entity manager in that it also populates a local variable/field [17].
We include these entity references as concepts in this iteration.

We include any other properties of existing EJB concepts that occur in one or
more antipattern definitions, such as the number of public methods implemented
by a bean, whether or not a bean implements a specific interface, and others.

The clients identified are component-oriented concepts. The concepts involved
in referencing other EJB beans and entities, such as the @EJB annotation, entity
fields and local variables, and the XML reference entries, are connector-oriented
concepts as they relate concrete concepts like EJBs and entities to other concepts
like clients, EJB clients, or entity users.

The overall structure of the feature model for this iteration remains the same
as the previous iteration as the concepts we identify are still either derived from

27

information from annotations or from XML deployment descriptors. As such, the
top-level structure/organization of the feature model remains the same.

3.3.3 Construction

The first concepts we add and decompose into features are the features necessary
to represent clients and EJB clients that are derived from annotation information.
Figure 3.6 highlights these additional features, along with their mapping definitions,
within the informationFromAnnotations feature. The clients feature represents
clients and is a child of informationFromAnnotations as it is logically dependent.
To ensure that it is not a bean, it has the mandatory and essential feature
isNotAnEJB. Both clients and all EJBs (client or not) contain a child feature
fieldsAnnotatedWithEJB however the cardinalities are different. Clients have this
feature with an essential mandatory unbounded cardinality as it is necessary to
have at least one field annotated with EJB to be considered a client. EJBs (client
or not) represented by the EJBean feature from the previous iteration contain
the fieldsAnnotatedWithEJB feature with an optional unbounded cardinality as
it is not necessary for all EJBs to be EJB clients. The fieldsAnnotatedWithEJB
feature itself contains both its field name and the EJB annotation feature
EJBInterfaceAnnotation as a child. The EJBInterfaceAnnotation contains children
features, which have an optional cardinality and represent the corresponding
annotations’ details.

Figure 3.6 exhibits more additional features to facilitate EJB 3.0 entity uses
within an EJB. We add two children features to the EJBean feature: entityFields
and entityLocalVariables. entityFields represents fields within an EJB Java class
that are typed with a Java class that is an entity while entityLocalVariables
represents local variables within an EJB java class that are typed with a Java class
that is an entity. A Java class is known to be an EJB 3.0 entity if it is denoted with
the @Entity annotation. If the entity is an EJB 2.1 entity, then there must be a
corresponding XML entry in the deployment descriptor. So EJB 2.1 entity uses can
not be detected until the model analysis stage. The entityFields feature contains a
mandatory essential feature, entityReference, that indicates the corresponding field
is typed with an EJB 3.0 entity. The entityLocalVariables feature also contains the
same entityReference feature, but this feature indicates the local variable is typed
with an EJB 3.0 entity.

Figure 3.7 displays new features added to detect antipattern instances. The
child feature publicMethods underneath both the SessionBean and Entity features
represents the names of public methods the FSML infrastructure finds within the
respective session bean and entity Java classes. The cardinality of this child feature
is mandatory unbounded as every one of these classes must have at least one public
method beyond the excluded public methods from [16]. SessionBean also contains
the feature implementsSessionSynchronization that indicates whether the session
bean within context implements the SessionSynchronization interface included in
the Java EE framework.

28

Figure 3.6: Iteration 3-Features for Clients and Entity Users

Many of the mapping types used in this iteration are already implemented
within the Java Mapping Interpreter. However, we still added some mapping
type additions to the interpreter, as shown in Table 3.2. Firstly, there is no
support yet for local variable declarations as it was not necessary for the FSMLs

29

Figure 3.7: Iteration 3-Additional Antipattern-Specific Features

developed to date. We therefore add the localVariable context, localVariableName,
and localVariableType mapping types to the interpreter along with the appropriate
mappings. The mapping type publicMethods provides a string list of all the
public methods in the class. Furthermore, the mapping definition for this
mapping type includes the parameter excludes, which indicates methods to ignore
and the parameter excludeConstructors with no value, which indicates that
constructors should be excluded in the string list. We add the mapping types
fieldTypeAnnotatedWith and localVariableTypeAnnotatedWith to match entity uses
by EJBs and to find all fields and local variables, respectively, that reference types
that are entities.

There were also some mapping type additions for the EJB mapping interpreter.
We include these in Table 3.2 along with their descriptions. isNotAnEJB, for
example, is one such mapping type that ascertains whether a Java Class is not
an EJB by ensuring that it does not implement any interfaces or contain any
annotations that would indicate that it is an EJB. referenceNameEJBAttribute
is another example. It determines the unique reference name/namespace based on
the annotation detail values within the @EJB annotation. Depending on the type,
marker or normal, of the annotation and the value of the name detail, it obtains
the reference name according to the EJB 3.0 specification.

In order to test the feature model for this iteration, we modify the custom/test
EJB project by adding a number of various EJBs and clients to it that contain both
antipattern instances and any borderline cases, if applicable.

30

Table 3.2: Additional mapping types added for Iteration 3
Structural Pat-
tern Expression

Structural Element(s) Matched Abbreviation

c IsNotAnEJB matches if the class c is an not an EJB according
to annotations or implemented interfaces

IsNotAnEJB

f referenceNameE-
JBAttribute

matches the proper EJB reference name used to
reference a field, f, that is annotated with EJB
based the annotation’s details. This is done
according to the rules in [16] for the resolution of
EJB reference name

referenceNameEJBAttribute

field beanInter-
faceEJBAttribute

matches the appropriate bean interface name used
for a field, f, that is annotated with EJB based on
its details. Calculated as per [16]

beanInterfaceEJBAttribute

f fieldTypeAnno-
tatedWith t

matches if the qualified type of the field f is
annotated with qualified annotation type t

fieldTypeAnnotatedWith

localVariable matches a local variable localVariable
lv localVariable-
Name

matches the name of local variable lv localVariableName

lv
localVariableType

matches the type of local variable lv localVariableType

lv
localVariableTy-
peAnnotatedWith
t

matches if the qualified type of the local variable
lv is annotated with the qualified annotation type
t

localVariableTypeAnnotatedWith

c publicMethods
excludingList ex-
cludeConstructors

matches methods that have public visibility; do
not have a method name contained in the exclud-
ingList, which is a comma delimited string list;
and is not a constructor if excludeConstructors is
in the definition

publicMethods

3.3.4 Transition

For semantic evaluation, we determine the feature model to be satisfiable as
different feature configurations are generated by running reverse engineering on
the various projects. We test the new mapping types and definition parameters
accordingly. So, for example, we test the mapping type isNotAnEJB by reverse
engineering projects that have non-EJB clients. We verify manually the mapping
type referenceNameEJBAttribute after reverse engineering the various reference
name resolution outcomes listed in the specification.

In regards to pragmatics of the feature model, there are few issues in this
iteration. Some of the EJB specific mapping types, such as beanInterfaceEJBAt-
tribute and referenceNameEJBAttribute have relatively cryptic names, which may
hinder feature model understanding. The breadth of the model increases only by
the addition of clients and the depth increases only minimally by the addition of
the EJBInterfaceAnnotation. The pragmatics of the FSM obtained from reverse
engineering stay relatively constant with respect to the last iteration as the new
feature instances added are mainly sub features within existing top-level features.

We evaluate the organizational quality of the feature model through reverse
engineering and manually verifying that the FSML infrastructure discovers all the
appropriate instances and that there are no false positives or false negatives. As
discussed in Section 2.3.1, we display the antipatterns in another Eclipse view and
in a tree-like structure.

31

3.4 Evaluation

3.4.1 Sample EJB Projects Tested

One notable limitation of the EJB FSML presented in this chapter is the lack of
depth in the examples that are used for testing and verification. Seeing as Enterprise
Java Beans are, by nature, intended for enterprise ventures, it is difficult to obtain
concrete examples that organizations are willing to share. However, a number of
instances of open-source EJB projects do exist and we use them for testing the EJB
FSML. Furthermore, to address the lack of depth of the open-source examples,
we construct and use a custom EJB project that ensures that the EJB FSML
accomplishes its goals for the specific iteration in question and also tests all special
or unique cases that may not exist in many projects. Overall, we use 11 EJB open-
source projects in conjunction with the custom EJB project. Table 3.3 lists these
open-source projects; a brief description of the project and its depth; and a website
location for each project and where its documentation can be found. Rather than
discuss each of the projects listed in the table, we discuss only the ones with both
significant depth and purpose in detail in this paper.

32

Table 3.3: EJB Projects Used For Testing
Project Description & URL

eMal Payment System Internet-Based Payment System. EJB 3.0 project with 19 entities, 4
interfaces, and 2 session beans. FSM presented in Figure 3.8. http:

//sourceforge.net/projects/emal/

WebDiary WebDiary is multi-user web application where users define tasks. EJB 3.0
with 1 interface, 1 session bean, and 3 entities. http://sourceforge.net/

projects/web-diary/

BellWhistle An mp3 jukebox server. Few EJB 2.1 session beans, entities, and interfaces.
http://sourceforge.net/projects/bellwhistle/

Storm Web based management tool for XP user stories. Entity Beans only http:

//sourceforge.net/projects/xpstorm/

Redwood Web Log Mining
System

A tool for mining web logs for information and statistics. Huge EJB 2.1
project with many sub projects and multiple deployment descriptors. 51
resolved entities, 698 EJB and EJB Home Interfaces, 6 Message Driven beans,
and 47 Session Beans. FSM presented in Figure 3.10. http://sourceforge.

net/projects/redwood/

Rowing Club Management
Software

Manages the activities of a rowing club. Contains only entities for persistence.
http://sourceforge.net/projects/clra/

Time to Work Web based employee time tracking tool. No source currently, but contains
deployment descriptor with 7 entities, 20 interfaces, and 3 session beans. FSM
presented in Figure 3.9. http://sourceforge.net/projects/timetowork

WordNet Web Application A four-tier web application that queries the WordNet lexical database. Only
a single session bean. http://sourceforge.net/projects/wnwa/

Saeed Web-based document management system. Uses entities only. http://

sourceforge.net/projects/saeed

JUnitEJB JUnitEJB can run Junit on a remote EJB server. Uses only a single EJB 2.1
session bean. http://sourceforge.net/projects/junitejb

Java Issue Tracker Provides issue-tracking abilities to an EJB project. Contains EJBs but
uses hibernate instead entities for persistence. http://sourceforge.net/

projects/jissuetracker/

33

http://sourceforge.net/projects/emal/
http://sourceforge.net/projects/emal/
http://sourceforge.net/projects/web-diary/
http://sourceforge.net/projects/web-diary/
http://sourceforge.net/projects/bellwhistle/
http://sourceforge.net/projects/xpstorm/
http://sourceforge.net/projects/xpstorm/
http://sourceforge.net/projects/redwood/
http://sourceforge.net/projects/redwood/
http://sourceforge.net/projects/clra/
http://sourceforge.net/projects/timetowork
http://sourceforge.net/projects/wnwa/
http://sourceforge.net/projects/saeed
http://sourceforge.net/projects/saeed
http://sourceforge.net/projects/junitejb
http://sourceforge.net/projects/jissuetracker/
http://sourceforge.net/projects/jissuetracker/

The eMal payment system is an open-source payment system that is intended
to facilitate use by merchants and consumers that owe them money. It provides an
example of an EJB 3.0 system with a notable amount of EJBs, including 19 entities
that represent users, admins, merchants, and others. The FSM for this project is
in Figure 3.8. In the figure, the session bean element ConsumerSessionBeanBean
shows 2 entity uses via local variables of the model.User entity and implementation
of a local and remote explicit EJB interface, ConsumerSessionBeanLocal and
ConsumerSessionBean, respectively. There is also an example of an entity using one
or more other entities as the model.Agent entity uses two entities, model.Account
and model.Country, as fields.

Figure 3.8: FSM yielded from eMal Payment System Project

The Time to Work project, presented as a reverse engineered FSM in Figure 3.9,
is a system that allows employees to track their time spent working on various
tasks. It is an EJB 2.1 system with 20 interfaces and 10 EJBs. This system can

34

be used for testing EJB 2.1 projects and it also has no source/java code and has
compiled .class files, which makes it useful for testing the configuration of sources
/ resolution of the current configuration as discussed in Section 4.3. As shown in
Figure 3.9, the expanded stateless EJB from deployment descriptor information
contains local references and provides an example of EJB 2.1 local and remote
interfaces and corresponding local home and remote home interfaces that are defined
in the deployment descriptor.

Figure 3.9: FSM yielded from Time to Work Project

The Redwood Web Log Mining System extracts information and statistics from
website logs. It is an EJB 2.1 open-source project with all the corresponding
Java/source code. This project is important in testing the FSML infrastructure
due to is its large size. It is a Java project that contains many EJB 2.1 sub projects
and has, in total, 51 resolved entities, 698 EJB and EJB Home Interfaces, 6 message
driven beans, and 47 session beans. Furthermore, it has multiple deployment
descriptors, something the FSML did not support until we discovered this project.
Because the reverse engineered FSM in its entirety is too large to display in this
paper, we present an excerpt of the FSM in Figure 3.10. The FSM accounts for
multiple deployment descriptors in this project as multiple FSM elements with the
XML icon and subsequent file path information. It is also a good stress test and
can be used for testing and optimizing performance of the FSML infrastructure
in the future as it takes significant time to perform the reverse engineering of the
entire project.

35

Figure 3.10: FSM yielded from Redwood Web Log Mining Project

To test all the configuration override rules and EJB 3.0 cases not covered
in any of the open-source projects, a custom project is created. This project
ensures we verify all the mapping types/definitions at least once and verifies that
the resolved configuration is correct as discussed in Section 4.3. We present the
reverse engineered FSM in Figure 3.11. As expected, it contains both information
from annotations and information from deployment descriptors. A non-EJB client,
test.client.Client1, shows the use of an EJB annotation and that the appropriate
reference name is shown following the dependency element. Further down the FSM,
the test.combination.StatefulClass session bean element and its session bean Java 5
annotation is highlighted. The importance of highlighting is that whenever a user
selects an element within the FSM its properties come up in the property view
as seen near the bottom of the figure. We display the description, mapped name,
and name of the session bean as indicated by the annotation’s name/detail pairs.
Within the deployment descriptor information, the FSM has a no-type session bean,
that is, a session bean that does not have its type indicated in the deployment
descriptor and therefore must correspond to an annotated EJB Java class to map

36

to a valid session bean. There is also an expanded Stateless EJB within the
deployment descriptor information that contains both remote and local references
and that implements the remote interface test.FullyQualifiedName3, according to
the deployment descriptor.

Figure 3.11: FSM yielded from Custom EJB Project

We use each of these projects as well as those listed in Table 3.3 to ensure that,
for each iteration, the horizontal and vertical scope of the FSML feature model /
FSML meta model are encompassing enough to accomplish the goal of the iteration.
This evaluation does not show that our EJB FSML is the minimal language required

37

to accomplish each iteration’s goal. Rather, this evaluation shows only that our EJB
FSML accomplishes its goals. While a minimal language is desirable to maintain
simplicity, we do not consider it a necessary step at this time.

3.4.2 Threats to Correctness of FSML

The main threat to correctness of the FSML for each iteration is the fact that its
is validation is manual, so, of course, human error is a possibility. Specifically,
the FSML and infrastructure generate each FSM and we verify the corresponding
elements using either the traceability functionality of the FSML infrastructure or by
manually navigating to the element. This threat to correctness is more likely in the
case of the newly defined mapping types and definitions, that is, the ones defined
in Tables 3.1 and 3.2, because the pre-existing mapping types and definitions have
been used and verified by others through use [1, 2, 3]. The newly defined mapping
types and definitions have been used for only this FSML to date.

3.4.3 Further Limitations of the EJB FSML

One problem with the current implementation of the EJB FSML is that it can
not detect entity usage of EJB 2.1 or earlier entities via reverse engineering of the
project into an FSM. EJB 3.0 entities are known to be valid entities once a developer
annotates them with the @Entity annotation. As such, any usage of EJB 3.0 entities
the FSML infrastructure detects from annotations can be ascertained because each
field and local variable within scope can have their Class/type checked for the
@Entity annotation. EJB 2.1 and earlier entities, however, require the developer
both implement the appropriate interface witin the Java class and have the proper
entry within the deployment descriptor to be vaid. While the class/type of the
fields and local variables could be checked if the class implements the Entity 2.1
interface, this implementation of the Entity interface is more difficult to check as it
requires FSML model traversal [1]. It is possible to implement this, but we choose
not to implement it as EJB 2.1 entity usage is covered during the model analysis
phase, discussed in Chapter 4.

3.5 Discussion

We consider the order of the iterations. Iteration 2 and 1 can switch in that the
first iteration can support 2.1 EJBs and the iteration that follows can support 3.0
EJBs. This is because there are no conflicting or dependent changes/additions made
between the two iterations. Iteration 2 makes additions only to the deployment
descriptor and changes none of the existing elements. The iteration dealing
with antipatterns must always follow the iteration dealing with annotation/Java
information because many of the properties are source specific. The only other

38

way that the antipatterns could come before the iteration supporting 3.0 EJBs
is if the FSML for supporting 2.1 EJBs assumed that it was sufficient to have a
bean class implement the appropriate EJB session bean, entity, or message-driven
interface without the corresponding entry in the deployment descriptor. In regards
to breakdown of the iterations, another alternative is to focus on a specific type of
bean in each iteration. That is, for one iteration, focus on supporting all versions of
session beans and for the next, focus on supporting the different versions of entities.
There would also need to be an iteration that focuses on aspects of EJB domain
that are common to all beans, such as EJB references, entity usage, and others.

Another important consideration is the fact that the EJB FSML we present
in this thesis is for the purpose of future analysis. Specifically, iterations 1 and
2 are focused on creating an FSM that we analyze later to present the current
configuration of the project. Iteration 3 focuses on the analysis in that it deals
with adding FSML elements that will help with the EJB antipattern detection that
follows. This differs from to the way FSMLs have been created to date [3] in that
FSML creation is typically API-driven. That is, FSMLs to date have been created
by choosing scope related API elements of interest within a framework and then
modeling those elements as FSML elements. The way we modeled the final FSML
may have been impacted by the fact that we developed the EJB FSML with future
analysis in mind.

39

Chapter 4

Providing a Resolved Model of an
EJB3 Project

After reverse engineering an EJB project using the EJB FSML we discussed
in the previous chapter, the resulting FSM contains both elements the FSML
infrastructure discovers through means of code patterns in Java code and elements
it discovers via analyzing patterns in XML deployment descriptors. This chapter
discusses the way in which this FSM is filtered, in Section 4.1, and analyzed, in
Section 4.2, to provide various views and new models useful to those involved in
an EJB project. The resolved model refers to the configuration model that comes
from resolving the current configuration through analysis of the EJB FSM.

4.1 Model Filtration of EJB FSM

Providing various views that allow EJB users to see the configuration sources of
the beans in isolation may help in a number of scenarios. Before model analysis,
we perform simple model filtration to show only the information from annotations
and only the information from deployment descriptors in the Information from
Annotation View, shown in figure 4.1, and the Information from Deployment
Descriptor View, shown in figure 4.2, respectively. The models in the two figures
come from filtering the EJB FSM from the custom EJB project. Selecting the
option Navigate to Code on either of the views will open up the Model-Code
Navigation window, which provides traceability from the currently selected element
in the view to the respective code/artifact pattern allowing navigation to the
pattern instance. The use of element keys that the FSML expert specifies via key
annotations, such as key, parentKey, indexKey, on the FSML elements [1] facilitate
traceability. The FSML infrastructure uses these keys to uniquely identify the
instances within the FSM.

40

Figure 4.1: Information from Annotation View

41

Figure 4.2: Information from Deployment Descriptor View

4.2 Model Analysis of EJB FSM

Beans that developers configure in the deployment descriptor but that are not
configured/specified in annotations are still valid EJB 2.1 beans, assuming the Java
class implements the appropriate Java interface [17]. The same is true for beans that
the FSML infrastructure discovers from Java annotation code patterns that have
no corresponding deployment descriptor reference, except that these are EJB 3.0
beans. Furthermore, some, but not necessarily all, of the beans the infrastructure
finds from the XML deployment descriptors may correspond to beans found from
Java annotations. To have an artifact that is useful to developers we must merge
all this information into a single model that represents the current configuration
of the EJB project, which requires model analysis of the EJB FSM. Figure 1.1
provides a bottom-to-top view of the process involved in creating the resolved
configuration of an EJB project and the context of Model Analysis, represented
by the cloud, within the process. Initially, there are three sources of configuration:

42

Java 5 annotations, XML deployment descriptors, and default values from the EJB
specification [16]. The FSML infrastructure generates a project specific EJB FSM
via reverse engineering through the FSML infrastructure described in the previous
chapter. We then perform model analysis, providing a resolved model as the final
product of the process.

4.2.1 Meta Model of Resolved Model

Before we can perform FSM model analysis and merging of the information from
the various configuration sources, we must determine the structure of the resolved
model representing the current configuration. As such, we present the meta
model for the resolved model in figure 4.3 using a feature model to facilitate
comparison with the EJB feature model presented in Chapter 3. The clients
feature in the model is left collapsed and simply represents a non-EJB class
that contains one or more local or remote EJB references. The SessionBean
feature is abstract because all session beans must be specified as either stateful
or stateless in either the annotations or in a deployment descriptor, so the final
configuration would not contain any session beans that have not been further
specified in regards to their type. Furthermore, many of the features extend the
feature Bean, which we extracted from figure 4.3. Because Bean is not directly
contained by another feature it is considered a Root Feature by the Ecore.FMP’s
interpretation of the corresponding Ecore class model [50]. Figure 4.4 presents the
Bean feature. It contains properties that are common to all session beans, message-
driven beans, and entities. The meta model also contains some of the properties
necessary for antipattern detection, namely, the feature publicMethods beneath the
SessionBean and Entity features, the feature implementsSessionSynchronization
beneath SessionBean, and the EntitiesUsed feature that applies to all beans and is
thus a child feature under the Bean feature.

4.2.2 Model Analysis

We develop and specify the EJB FSML as an Ecore model, which generates the
corresponding Java code and object structure [49], and then later render it as a
feature model using the Ecore.FMP tool. The FSM from reverse engineering the
project becomes an Ecore instance model, which contains Java object instances.
Because the FSM artifacts are already in Java form, we choose to do the model
analysis and merging of information in Java. This also gives us the code-generation
benefits of Ecore modeling via the EMF framework. We discuss alternative
approaches in Section 4.4. We create the meta model presented in Figures 4.3 and
4.4 as Ecore models and then render them as feature models via the Ecore.FMP
plugin [50], similar to the EJB FSML. The full Ecore models can be found in
Appendix B.

43

Figure 4.3: Feature Model of Resolved Meta Model

Figure 4.5 provides a high-level overview of the process in which we analyze an
EJB FSM and merge its information from annotations and deployment descriptors.
It begins with the resolution of clients. This entails finding all the non-EJB bean
users by looking at the information from the annotations component of the FSM
and seeing what feature instances represent classes that reference beans. After we
find clients, the analysis continues by searching the FSM for all valid instances of
EJB interfaces. The interfaces discovered from deployment descriptor information
via the FSM are trivial to resolve as they are defined explicitly. The same goes for
the interfaces contained in the information from annotations component of the FSM
that are defined explicitly, that is, the Java interfaces that are annotated with either
the @Local or the @Remote annotations. This interface resolution is complicated
in the case of derived local and remote interfaces declared via annotations as it
requires that we iterate through each bean in the EJB FSM and we include any
derived interfaces found within a bean.

The subsequent 3 steps that follow, namely, resolution of entities, resolution of
session beans, and the resolution of message-driven beans, follow the same general
process. In Figure 4.5, we present this process to the right and link it to the 3
steps via a dashed line to show the steps’ compositions. At a high level, each
bean from the FSM is first configured appropriately depending on the source of
its configuration. We then add each bean to the resolved model, along with any

44

Figure 4.4: Bean Component of Resolved Meta Model

related interfaces, references, and entity uses.

A lower level description of the configuration process is as follows. We iterate
through each step-specific bean type that is found within the FSM’s information
from annotation element. We discover, using the bean class of the annotated bean
as a primary key and the EJB bean name provided as a second primary key in case
there is no match for the first, any corresponding deployment descriptor entries.
This accounts for the case where an annotated bean has properties overwritten
by the deployment descriptor. We base the primary search keys on the matching
used in the specification [16]. We then configure each of the beans discovered
through annotations according to the properties retrieved from annotations and
the properties that are overwritten via deployment descriptor, if applicable. We
then add any interfaces from either of the applicable sources by going through the
interface instances within the FSM related to the current bean. We then resolve
entity usage and EJB references similarly. The final step for each individual bean
is to configure properties related to antipattern discovery. This varies per bean
type. For example, the property of whether or not a bean class implements the
SessionSynchronization interface is only relevant in the case of session beans. After
we iterate through and evaluate the annotated-step-specific beans from the FSM,
we consider the beans defined from deployment descriptors alone individually. Once
we confirm the existence of the bean class identified in the deployment descriptor
information in the FSM, the process is the same as is done for annotated beans
discovered in the FSM without the overwriting check as there is no other source of
configuration in this instance. Default values come into play when a non-mandatory
value is not present in the FSM in the annotation or deployment descriptor
information elements. An example of this is the case where an “enterprise bean’s
name is not explicitly specified in meta data annotations or in the deployment
descriptor, it defaults to the unqualified name of the bean class” as noted in [16].

45

Figure 4.5: Overview of Model Analysis/Merging Process

Note the order of the 3 resolution steps of the three bean types, that is, the
fact that entities are resolved before the two other types. The usage of entities is
an important consideration for the analysis of any EJB project, as such, some of
the usage information is contained within the FSM and the resolved model that
follows needs to ascertain all entity usage. So, in order to detect entity usage,
one first needs to be aware of all entities in existence within an EJB project,
regardless of how they are configured. So, before entity usage is ascertained,
we first detect all the entities belonging to the resolved model. This is also the
justification for resolving the EJB interfaces before resolving the EJBs themselves.
We accomplish entity detection for each bean, the final step in the step-specific
bean configuration in Figure 4.5, differently based on the sources that the bean is
configured from. If the bean is configured from annotations alone, then we search
the annotated Java class’ fields and methods to find references to any entities that
are already present in the resolved model by checking against the entities’ qualified
class name. For any beans that have been configured by either a combination of
Java annotations and deployment descriptors or deployment descriptors alone, we
first check the deployment descriptors for their local and remote reference XML
entries as any entity usage for an EJB 2.1 bean must be indicated there [17]. After
this is done, we search the corresponding Java class for entities the same way as
for beans configured by annotations alone. This method accounts for entities that
are configured as either EJB 3.0 or EJB 2.1 beans. We must do entity usage by
other entities separately however, as noted by step # 6 on the main (left) flow in
Figure 4.5. This is because when we perform entity usage detection during the
entity resolution step of the flow, step # 3 of the main flow, we will miss out of any
entities that have yet to be resolved. As such, we add this additional step.

46

4.3 Evaluation

4.3.1 Sample EJB Projects Tested

Just as we evaluate and correct the EJB FSML manually using the projects listed
in Table 3.3, so is the resolved model from FSM analysis. We reverse engineer
each of the projects and we view the final/resolved configuration by clicking the
Final/Merged view tab in the FSM window. We then manually verify the model
by ensuring that only the elements that are supposed be present in the model are
present, that is, check for false positives. We then check that each of the elements
that are not supposed to be in the model are not, that is, check for false negatives.
We then verify manually the properties configured for each element. As shown in
figure 4.6, we accomplish this by selecting the element and using the properties view
to ensure the analysis executes the correct overriding rules. In this example, the
analysis has the name and mapped name of the stateful session bean StatefulClass
overridden in the deployment descriptor and properly listed in the resolution view,
as noted by the values taken from the deployment descriptor. The values within
the deployment descriptors end with with the string FromDD to make verification
easier. So, in this specific case, we see the deployment descriptor had an entry
for this specific class and the appropriate overriding took place. We evaluate and
verify manually these tests on all the sample projects, with corrections being made
to the analysis/resolution accordingly. To ensure we execute all cases, we modify
the custom EJB project to have the various situations that will lend itself to cover
all overriding scenarios.

4.4 Discussion

One possible alternative to providing a resolved view of an EJB project’s
configuration is to use .QL. As discussed previously, .QL classes encapsulate .QL
queries and can be extended much in the way Java classes are. Seeing as .QL is a
general query language that has an abstraction mechanism, it is likely that it will be
a very good tool for doing the type of merging/analysis that is done in this chapter.
From a resolution of configuration perspective, the existing .QL J2EE library [37]
can be extended to include information from the deployment descriptor, as .QL also
supports XML [14], and the overriding rules can be applied within the extended .QL
classes. Appendix C contains the extension of the .QL J2EE library to support EJB
3.0 beans that we create for detecting EJB antipatterns via .QL as we discuss in
the subsequent chapter. The beans listed in this extended library can be extended
to take in information from the deployment descriptors. For example, the .QL
class SessionBean can be extended into a class entitled ResolvedSessionBean and
can have methods that return its configuration values based on the information
from both the source and the deployment descriptor(s). To do this, .QL must be
able to retrieve the Java 5 annotation information, specifically the annotation’s

47

Figure 4.6: Example of a Resolved Session Bean

detail/value pair information, for example, the value of the name detail within the
Stateless annotation. This functionality is in the .QL documentation and encoded
within the .QL libraries, however, when we attempted this it was found that there
was a bug in the .QL implementation of this. We informed the .QL developers of
this, they have acknowledged the problem, and they have placed the fix within their
development build, which will be available sometime in the future during the tool’s
next release. Once this functionality is available, resolution of an EJB project’s
configuration can be attempted via .QL.

48

Chapter 5

Detecting Antipattern Instances

This chapter discusses the detection of EJB antipattern instances within an EJB
project. Section 5.1 presents the EJB Antipatterns that are used/detected within
the scope of this thesis. Section 5.2 discusses how we detect antipattern instances
within the resolved models from the model analysis presented in chapter 4 while
Section 5.3 demonstrates how antipattern instance detection can be accomplished
via the .QL query language. We compare both of the techniques and a new
technique is proposed that combines the strengths of both in Section 5.4. We
present the evaluation and limitations of the work presented in this chapter in
Section 5.5.

5.1 Existing Antipatterns

The EJB antipatterns we use for the purpose of this thesis are from Dudney’s work
on J2EE antipatterns [19]. We choose to use these antipatterns because the book
defines them well, provides concrete examples, and explicitly lists the corresponding
symptoms for each antipattern. We describe below briefly each of the antipatterns
in scope. We present each statically-detectable symptom and then we translate
them manually into a predicate logic formula. A more detailed description and
more information about them can be found in [19]. We take the of threshold
numbers for the antipattern symptoms, for example having more than 20 methods
in a Bloated Session, from the Dudney book. We propose in Chapter 6 one possible
way of discovering new threshold values.

Bloated Session

Bloated Session is used to refer to a session bean that, essentially, attempts to do
too much. Ideally, each session bean should deal with only one abstraction/entity,
but in the case of a bloated session, the session bean works with multiple
abstractions [19]. This antipattern is analogous with the God Object antipattern
from the Object-Oriented programming domain that has an Object taking on too
much responsibility. Figure 5.1 presents the symptoms associated with the Bloated

49

Session antipattern. The first symptom to check whether the number of entities
used is greater than 1. The second symptom checks whether the session bean has a
large number of methods and the third symptom determines if the project contains
a small number of session beans relative to entities.

1)∃bean(bean ∈ ProjectBeans),∀entity, entity2(entity, entity2 ∈
ProjectEntities)[entity! = entity2 ∧ bean.Uses(entity) ∧ bean.Uses(entity2)]

2)∃bean(bean ∈ ProjectBeans)[bean.PublicMethodCount > 20]

3)∃P (P ∈ Projects)[P.BeansInProject < P.EntitiesInProject]

Figure 5.1: Bloated Session Symptoms in Predicate Logic

Data Cache

The Data Cache antipattern deals with the case where one extends a session
bean to support data caching [19]. This violates the very nature of session beans:
they are intended for a single session and not for multiple users, where caching is
most useful. Caching should therefore not be necessary and will create performance
problems and possible deadlocking [19]. The symptom for this antipattern,
presented in Figure 5.2, is relatively straightforward, as the only way a session bean
can perform data caching is when it extends the interface SessionSynchronization
in the javax.ejb package.

∃sbean(sbean ∈ ProjectSessionBeans)∃interface(interface ∈
sbean.ImplementedInterfaces)interface = javax.ejb.SessionSynchronization

Figure 5.2: Data Cache Symptom in Predicate Logic

Fragile Links

Fragile Links is an antipattern where entities or other beans are referenced using
hard-coded links, typically within the default EJB context, java:comp/env/ejb/
[19]. This makes projects more susceptible to breakage as beans are not always
deployed within the default ejb context. Rather, it is better to add a level of
indirection by using an EJB reference alias, which creates a context that decouples
the application code reference with the actual location of the bean. The only tell-
tale symptom in this case is the situation where the default EJB location is used.
The symptom presented in Figure 5.3 uses of this default location.

∀bean(bean ∈ ProjectBeans)∃reference(reference ∈
ProjectReferences)[reference ⊆ bean.References ∧ (java : comp/env/ejb ⊆

reference.getJNDIName)]

Figure 5.3: Fragile Links Symptom in Predicate Logic

Sessions a Plenty

50

Sessions a Plenty is an antipattern that refers to unnecessary uses of session
beans. Session beans are intended for transactional processes that work with entities
within a single session. This antipattern identifies session beans that are purely
algorithmic, such as for currency conversion or product pricing [19]. The symptoms
for this antipattern are listed in Figure 5.4. The first symptom reflects the fact
that having sessions of an algorithmic nature will result in an inordinate amount
of sessions within the project. The second symptom accounts for the fact that
sessions that are algorithmic in nature will likely have few public methods. The
last symptom notes that a session bean that is purely algorithmic will likely not
use any persistence/entities.

1)∃Project(Project ∈ Projects)Project.SessionBeans > 30

2)∃sbean(sbean ∈ ProjectSessionBeans)sbean.PublicMethodCount < 4

3)∃sbean(sbeaninProjectSessionBeans)sbean.EntitiesUsed = ∅

Figure 5.4: Sessions a Plenty Symptoms in Predicate Logic

Transparent Facade

Transparent Facade is a more common EJB antipattern according to [19]. It
refers to the case where there is a one-to-one direct mapping of public methods in
an entity to those in the corresponding session. Rather than having a useful facade
that hides details within an entity, a transparent facade between the session and
the entity is created that is essentially useless. The symptom for the transparent
facade, demonstrated in Figure 5.5, verifies if the majority of public methods in the
session bean are in the entity.

∃sbean(sbean ∈ ProjectSessionBeans), ∃entity(entity ∈
sbean.EntitiesUsed)sbean.publicMethodNames

⋂
entity.publicMethodNames ≥

(0.75 ∗ entity.PublicMethodCount)

Figure 5.5: Transparent Facade Symptom in Predicate Logic

Thin Session

Thin Session is an EJB antipattern that refers to sessions that perform only one
or a few methods on an entity, that is, sessions are too fine grained [19]. Ideally,
only one session should deal with each entity. This antipattern causes problems
for program understanding, as logic is spread across multiple sessions, and causes
worsened performance of the system because of the large number of sessions. We
present the symptoms for the Thin Session antipattern in Figure 5.6. The first
symptom ascertains if there is more than one bean that works with a specific entity.
The second symptom checks for individual session beans that utilize more than one
entity. The last symptom represents the fact that projects with thin sessions will
likely have a large number of session beans within it.

51

1)∃bean, bean2(bean, bean2 ∈ ProjectBeans)bean! =
bean2 ∧ (bean.EntitiesUsed

⋂
bean2.EntitiesUsed = ∅)

2)∃bean(bean ∈ ProjectBeans)bean.NumberEntitiesUsed =
1 ∧ bean.NumberOfPublicMethods < 4

3)∃Project(Project ∈ Projects)Project.NumberOfSessionBeans > 30

Figure 5.6: Thin Session Symptoms in Predicate Logic

5.2 Detecting Antipattern Instances via Resolved

EJB Model

Once we perform model analysis on an FSM, we can do antipattern analysis on the
EJBs resolved. Like the reasons we chose for doing the analysis in Java, we perform
the antipattern detection on the resolved model in Java. That is, because we model
the resolved model is as an EMF meta model and the instances of the resolved model
are EMF instance models, the artifacts of interest are already Java objects / class
instances. To accomplish antipattern instance detection, we use the iterator Java
design pattern from [22] to iterate through each of the antipattern detectors and
analyze the model and code for the EJB antipatterns. That is, each antipattern
detector extends an abstract EJBAntipatternDetector class and provides a specific
implementation depending on the antipattern instances of interest. Each concrete
antipattern detector registers itself with the collection of EJBAntipatternDetectors
and is executed when instructed to via the detect antipattern view.

5.2.1 Categorizing Antipattern Symptoms for Analysis

Antipatterns can be categorized along various dimensions. For example, in the
J2EE antipattern book [19], the EJB antipatterns are classified based on what
specific bean type that the antipattern is applicable to. In [9], the project
management antipatterns are classified by the aspects of management that they
relate to: people, technology, or process. For the purpose of antipattern detection,
however, categorization of the antipatterns themselves is not important. We
categorize the symptoms associated with the antipatterns and, specifically, we
categorizing the symptoms based on the elements of interest within the symptom.
This is helpful from the perspective of the antipattern detectors in that we can
scope a particular symptom check at a given time accordingly based on the scope
of the symptom. From the developers perspective this categorization is beneficial
as it helps them find the symptoms’ locations and also assists with traceability to
the actual elements in question.

The first category of symptom is the individual-bean symptom. This category
consists of symptoms that can be applied to a single bean independently of any other

52

elements. Straightforward examples of this include the symptom that indicates a
bloated session: a single session has an inordinate amount of methods; as well as
the symptom for a thin session or sessions-a-plenty antipatterns: a session has a
relatively low number of public methods beyond the default EJB ones. While other
elements might appear in symptoms belonging to this category, the problem itself
exists with a single bean only. An example of this is the symptom indicating a
bloated session exists when a session bean works with multiple entities/persistent
objects. Even though multiple elements appear within this symptom, the problem
exists with only a single session bean and not the entities it references.

Symptoms that describe multiple elements are categorized as Multi-Bean or
relational symptoms. Consider the symptom where multiple beans are utilizing
the same entity, suggesting that the thin session antipattern is present. In this
case, the problem exists with the two or more session beans working on the same
entity. Looking at one of the session beans without the other offending session
beans would fail to capture the case the symptom is describing, thus this symptom
is a multi-bean symptom rather than an individual bean symptom.

Lastly, there exist a number of symptoms that describe antipattern indicators
at the project level and, as such, lend themselves to the category of Project-Wide
symptoms. These symptoms do not refer to a problem with a bean or a group of
beans in particular. They instead refer to antipattern indicators at a project level.
Examples of this are the symptoms for the thin and sessions-a-plenty antipattern
that check for an inordinate amount of session beans as well as the symptom for
the bloated-session antipattern that checks for a relatively low number of session
beans within a project relative to the number of entities.

5.2.2 EJB Antipattern Meta model

Like the other artifacts in this thesis, the EJB FSML meta model and resolved
meta model, we model the antipattern instance meta model as an Ecore model and
display it as a feature model, as shown in Figure 5.7. Each project contains 0 to
many antipattern instances. Antipatterns have both a name and text description.
Each antipattern has 0 to many associated symptoms. Multi-bean symptom
instances contain the various beans that match the symptom, while individual-
bean instances have the specific bean that matches the properties of symptom.

The meta model is instantiated as follows and produces the results of Figure 5.8,
which displays antipattern detection results from antipattern detection run on the
custom EJB project in the detect antipattern view. For each antipattern detector
registered within the antipattern view, the view creates an antipattern instance
and lists its associated symptoms, regardless of whether or not an instance is
found. The antipattern detector then checks first for project-wide symptoms on the
resolved model in context, followed by multi-bean symptoms and individual bean
symptoms. The view adds each symptom instance discovered to the antipattern’s
list of symptom instances as well as any related information for the symptom, such

53

Figure 5.7: Meta Model for Discovered EJB Antipatterns

as the related bean(s). For example, the Sessions-A-Plenty antipattern expanded
within the figure lists multiple individual bean instances followed by the possible
symptoms associated with it. If one was to expand one one of these instances,
it would be similar to the individual bean instance expanded within the Bloated
Session antipattern in the figure, which displays the offending class file associated
with the bean and the particular bean related to the symptom. In the case of a
multi-bean instance, such as the Thin Session antipattern within Figure 5.8, the
view displays the multiple offending classes underneath the multi-bean instance
along with the associated symptom.

5.3 Detecting Antipattern Instances via .QL

Some of the more substantial uses of .QL to date have been auditing code and
checking certain rules within Java projects [14]. Because the tool performs static
analysis of Java source code, some of the EJB antipatterns detected via analyzing
the resolved model from FSM analysis should also be detectable using .QL. As
noted in Section 4.4, providing a current resolved view of an EJB project via .QL is
not possible at this time, but will can be in the future. Hence, only antipatterns or
beans that do not require a resolved view/model can be detected with .QL. That
is, antipatterns that deal with any of the configuration properties of beans can
not be detected at this time with .QL. The only antipattern identified earlier that
fits this category of needing a resolved model showing configuration is the Fragile
Links antipattern, as the EJB name resolution is a configuration property and can
have many sources of configuration. Furthermore, this inability to have a current

54

Figure 5.8: Example of Antipattern Instances in Antipattern View

resolved view implies that any EJB 2.1 beans would not be able to be analyzed by
the .QL method because EJB 2.1 beans must implement the appropriate interface
in the Java Class and must be specified along with its properties in a deployment
descriptor [17]. In order to allow for EJB 2.1 beans to be analyzed with .QL,
we assume that the implementation of the appropriate EJB 2.1 interface, such as
javax.ejb.SessionBean;javax.ejb.EntityBean; or javax.ejb.MessageDrivenBean, by
Java classes is sufficient to indicate a valid bean.

As noted at [37], currently the .QL J2EE libraries do not support EJB 3.0
beans. The library accounts only for beans that extend the EJB 2.1 interfaces
by identifying beans as the classes that implement the appropriate interface. As
such, we extend the library to include EJB 3.0 beans so that these beans can
be tested for the EJB antipatterns and we include this library in Appendix C.
Specifically, each enterprise bean definition now includes both classes that extend
the appropriate EJB 2.1 interface and those classes that annotate themselves with
the appropriate EJB 3.0 Java 5 annotation. Furthermore, we create two completely

55

new .QL classes that represent EJB 3.0 local and remote business interfaces that
are annotated appropriately.

Now that we can detect the beans after updating the J2EE .QL library, we can
write queries that detect antipatterns through their symptoms. The approach we
chose entails writing each symptom for each antipattern as an individual .QL query.
The alternative to this is to encapsulate some of the symptoms together in a .QL
class. For example, one could write a .QL class that extends the .QL SessionBean
class called BloatedSessionBean with the two symptoms that are the individual-
bean symptoms for that antipattern from Figure 5.1. Unfortunately, symptoms that
are multi bean or project wide are still required to be individual .QL queries, so it
just seems more fitting to stay consistent and have each symptom be an individual
.QL query. Even if there was a .QL class like BloatedSessionAntipatternInstance
that encapsulated all the symptoms/queries, it would be difficult to obtain the
granular level of traceability to the specific bean, beans, or elements in question,
because it would need to be made clear which symptom(s) are shown to be in
existence for the antipattern instances and the symptoms would need to contain
the traceability information. The EJB antipattern instance meta model presented
earlier in Figure 5.7 did this but it would be a non-trivial task to accomplish in .QL
and would also cause a loss of much of the declarative power of .QL as noted in
Section 5.4.1 because of this inability to encapsulate all the symptoms and queries.

Figures 5.9, 5.10, 5.11, 5.12, and 5.13 present the .QL queries implemented
for the Bloated Session, the Data Cache, the Sessions-A-Plenty, the Thin Session,
and the Transparent Facade antipatterns, respectively. In the case of single-bean
instance symptoms, the bean in conflict is returned via the select clause. Multi-
bean and project-wide instance symptom queries return all the offending beans
within the specific symptom and the offending projects discovered, respectively.
Each return/select clause also includes some text that helps explain the symptom.
All of these queries presented work, except for the project-wide instance ones, which
yield a runtime error. The reasoning for this is at this time unknown to us, but we
informed the Semmle .QL team of the problem and sent them the extended library
in use. They are working on the problem.

5.4 Discussion

We next compare the two techniques presented for finding EJB antipattern
instances: finding EJB antipattern instances via a resolved model retrieved through
analysis of an FSM model and finding EJB antipattern instances detected through
.QL. We then propose how to combine aspects of both techniques to achieve the
benefits of both.

56

1)
from Sess ionBean sb
where sb . getNumberOfNonDefaultPublicMethods () > 20
select sb , ‘ ‘ Session Bean conta in s many pub l i c methods i n d i c a t i n g a b loated
session . ’ ’

2) from Sess ionBean sb
where sb . getNumberOfEntit iesReference () > 1
select sb , ‘ ‘ Session Bean uses more than one e n t i t y . Session Beans should i d e a l l y

dea l with only one a b s t r a c t i o n / e n t i t y . ’ ’

3) from JavaEJBProject jp
where jp . getNumberOfEntit ies () > jp . getNumberOfSessionBeans ()
select jp , ‘ ‘ Java Pro j e c t has more e n t i t i e s than i t has Session Beans , i n d i c a t i n g
Bloated S e s s s i o n s may be pre sent ’ ’

Figure 5.9: .QL Queries for Bloated Session Symptoms

1) from Sess ionBean
where sb . getASupertype () . getQual i f iedName () . matches (‘ ‘ javax . e jb .
Se s s i onSynchron i za t i on ’ ’)
select sb , ‘ ‘ Session Bean should not be implementing the Session Synchron izat ion
i n t e r f a c e as i t should not be doing data caching . ’ ’

Figure 5.10: .QL Query for Data Cache Symptom

1) from JavaEJBProject jp
where jp . getNumberOfSessionBeans () > 30
select jp , ‘ ‘ Java Pro j e c t has a l a r g e number o f s e s s i o n s (more than 30) i n d i c a t i n g

that too many s e s s i o n s may be in play . ’ ’

2) from Sess ionBean sb
where sb . getNumberOfNonDefaultPublicMethods () < 4
select sb , ‘ ‘ S e s s i o n s that support only a smal l number o f methods may i n d i c a t e
t r i v i a l or a l go r i thmi c s e s s i o n s . ’ ’

3) from Sess ionBean sb
where sb . getNumberOfEntit iesReference () = 0
select sb , ‘ ‘ Session Bean i s not dea l i ng with any e n t i t i e s / a b s t r a c t i o n s and i s
l i k e l y a l go r i thmi c or t r i v a l . ’ ’

Figure 5.11: .QL Queries for Sessions-A-Plenty Symptoms

5.4.1 Comparison of Techniques

We first compare how we express symptoms. For resolved models from the FSM, we
express antipattern symptoms as Java code that ascertains if a symptom is present.
In the .QL method, we express symptoms in the SQL-like .QL format. Note that
the .QL method of expressing the symptoms is much more declarative than the
Java code representation. As noted in [36], declarative approaches focus on the
logic or components of the program irrespective of how the program accomplishes
it. Furthermore, declarative programming and modelling enable users to disregard
control flow and focus only on what they are attempting to create/model [36].
As such, the .QL approach has an advantage with respect to expressiveness and
representation of the antipattern symptoms. This advantage is also apparent when

57

1) from Sess ionBean sb , EntityBean entityUsed , Sess ionBean sb2
where depends (sb , ent i tyUsed) and depends (sb2 , ent i tyUsed) and sb != sb2
select sb , sb2 , ‘ ‘ Mul t ip l e Session Beans dea l with the same e n t i t y implying they
are th in and should be combined . ’ ’

2) from Sess ionBean sb
where sb . getNumberOfNonDefaultPublicMethods () < 4 and sb .
getNumberOfEntit iesReference () = 1
select sb , ‘ ‘ Bean has one e n t i t y but only a few methods meaning i t may be th in and

can be combined with another Session Bean . ’ ’

3) from JavaEJBProject jp
where jp . getNumberOfSessionBeans () > 30
select jp , ‘ ‘ Java Pro j e c t has a l a r g e number o f s e s s i o n s (more than 30) i n d i c a t i n g

that the re may be th in s e s s i o n s pre sent . ’ ’

Figure 5.12: .QL Queries for Thin Session Symptoms

1) from Sess ionBean sb
where count (Method m, Method m2 | declaresMember (sb ,m) and m. i s P u b l i c () and
declaresMember (sb . getEntityUsed () ,m2) and m2. i s P u b l i c () and m. getS ignature () .
toLowerCase () . matches (m2. ge tS ignature () . toLowerCase ())

and (not m. getName () . matches (‘ ‘
e jbAct iva te ’ ’))
and (not m. getName () . matches (‘ ‘
e j bPas s i va t e ’ ’))
and (not m. getName () . matches (‘ ‘ ejbRemove ’
’))
and (not m. getName () . matches (‘ ‘
s e tSe s s i onContext ’ ’)))
>= (0 . 7 5 ∗ sb . getEntityUsed () .
getNumberOfNonDefaultPublicMethods ()) and

sb . getEntityUsed () .
getNumberOfNonDefaultPublicMethods () != 0

select sb , sb . getEntityUsed () , ‘ ‘ The major i ty o f methods in the Session Bean are
in the Entity implying the session bean i s a t ransparent facade ”

Figure 5.13: .QL Queries for Transparent Facade Symptom

one considers the steps necessary to facilitate user-defined antipatterns for both
approaches. The .QL approach already allows this:users can simply write new
queries for each new symptom/case they want to check for. For the FSM/resolved
model approach, one could create an interface that would use the existing elements
of the FSM or resolved model and specify acceptable or unacceptable values for the
specific elements. Essentially, this interface would be a customizable model query
tool, similar to what .QL is for Java code, that, given a specific FSM or resolved
model, a user could specify all the attributes and elements along with the values
to search for. Obviously, this is more work than having users write another .QL
query.

Each antipattern symptom in the .QL method is analyzed as an individual query,
due to the varying categories of the symptoms and the difficulty in encapsulating
these queries into a single .QL class. As such, the antipattern instance analysis
results are symptoms displayed as single query results. While the results of a
query can be output in various ways, such as a table or graph [14], this approach

58

supports only one query at a time. The FSM method instead allows for an
antipattern instance meta model to be configured in a variety of ways assuming
the analysis continues to use the appropriate resolved model elements. The results
of the FSM method support more structure than those from the .QL method.
Another advantage of the FSM approach over the .QL approach is in regards to
traceability. The traceability of the FSM approach is at the model level: the
antipattern symptom instances presented have a traceability link back to the FSM,
which in turn provide a traceability link back to the source. The .QL approach
provides traceability to the source code only. It is better to have the option of
viewing the antipattern instance at a higher level and then going to a lower one if
so desired.

5.4.2 Combination of Techniques

After detecting EJB antipattern instances using both methods, it is clear that there
should be a way to accomplish antipattern instance detection via an FSML or a
model derived from an FSML more declaratively, as done with .QL. The mutation
of the EJB FSML in iteration 3 to facilitate antipattern detection presented in
Section 3.3 should be possible in a more declarative manner, rather than by
specifying properties for antipattern detection and then performing antipattern
analysis later. It should be possible to specify the antipatterns and symptoms as
elements and mapping types directly within the FSML, rather than having FSML
elements that represent the information necessary to detect antipatterns as is done
in iteration 3.

Since the antipatterns and symptoms are going to be expressed declaratively
within the FSML, the analysis of the FSM to retrieve the resolved model, presented
in Chapter 4, will be ignored in this context. That is, as was done for the .QL
queries, we focus only on antipatterns that do not deal with configuration properties
and assume that extending the appropriate EJB 2.1 interface alone is enough
to indicate a valid bean within Java source. We consider only the information
from annotation/Java code components in the FSML. In terms of generalizing
this approach to other domains and their FSMLs, ignoring FSM analysis and the
other stated assumption should not negate the use of this declarative approach to
FSML antipattern detection for those domains unless there are similar issues in
that domain. For example, this approach could be attempted on the FSMLs in
existence such as WPI, struts, and applets [1] as they have no similar FSM analysis
requirements.

Figure 5.14 presents how this integrated approach would apply to detecting a
bloated session bean. An even better way to accomplish this would be to have
the list of symptoms/children be an essential 1 to many (!1..*) feature group, thus
the existence of any symptom is necessary for the parent, but such functionality is
not yet supported by the current FSML infrastructure presented in [1]. As such,
the bloatedSessionAntipatternExists mapping type presented in the figure checks

59

if the bean uses multiple entities or checks if there are an inordinate amount of
methods. Beneath this feature are the specific symptoms that have specific mapping
types that duplicate the check done for the overall antipattern. The mapping type
multipleEntitiesUsed checks if there is more than one entity used by the session
bean. The mapping type tooManyPublicMethods checks if there are too many public
methods given a mapping definition that contains the upper bound of methods used,
any excluded methods, and if constructors should be excluded by the parameters
upperBound(hidden in the feature model since the first parameter is hidden by
Ecore.FMP), excludes, and excludesConstructors, respectively. In other words, the
parent feature checks for the existence of either symptom and the children recheck
for each symptom individually, allowing for the specific symptoms in existence to
be identified. Furthermore, if one was to eventually consider strength of symptoms,
this method is preferable as the instance of the antipattern itself may not be
dependent on the existence of any one symptom but, instead, a specific combination
of symptoms. Regarding the third, project-wide, bloated session symptom, we could
add a feature that has a mapping type that checks the number of session beans
relative to entities as a child under the EJB project feature.

Figure 5.14: FSML elements for Bloated Session Antipattern

A trivial example of this declarative approach is the DataCache antipattern
instance. Considering this antipattern has only one symptom that already has an
existing mapping type, no new mapping type would be required. As shown in
Figure 5.15, only the feature would need to be renamed to indicate whether or not
the antipattern is present for the specific bean. The mapping type would remain
unchanged as it is already present in the existing FSML infrastructure.

Figure 5.15: FSML elements for Data Cache Antipattern

We now consider multi-bean instance symptoms. In this case, the features

60

representing the antipattern instances can be placed under the EJB project but
they must have non-containment references to the elements of interest within the
symptom in order to differentiate itself from a project-wide symptom. Figure 5.16
demonstrates one possible way of specifying the thin session antipattern instance
within the EJB FSML. Specifically, the thinSessionAntipatternInstance mapping
type ascertains if there are any beans that utilize the same entity. The
moreThanOneSessionUsesSameEntity does the same thing but it also populates
its children with the appropriate references to the two or more beans, of type
EJBean, that share the same entity and the entity being shared. Since there is only
one symptom in this case, an alternative to this is to make the single symptom
essential, which would require only one check.

Figure 5.16: FSML elements for Thin Sessions Antipattern

This approach to declaratively modelling antipattern instances and their
symptoms applies to other domains if and only if the domain in question requires no
intermediate analysis to obtain information necessary for the antipattern instance
detection. Furthermore, the antipatterns being detected must exhibit static
properties/patterns that can be matched by evaluation of the artifacts in context.
Essentially, each antipattern symptom can be a feature with a mapping type
containing mapping definitions that specify qualities of interest. These features
should be placed in the context that they are relevant in. For example, individual-
bean symptoms should be placed within the context of a bean, while Applet-specific
antipattern symptoms should be placed within the specific Applet. Ideally, with
the implementation of essential feature groups within the FSML infrastructure, an
antipattern can be a feature with no mapping type on its own, but which contains
a mandatory essential feature group containing its relevant symptoms. We assume
that the strength of symptoms with respect to each antipattern are not known or
not considered. Chapter 6 considers the implications of strength of symptoms in a
declarative approach.

5.5 Evaluation

5.5.1 Detection Results

We test both of the antipattern instance detection approaches presented in this
chapter using the EJB projects presented in Section 4.3.1. Furthermore, we extend

61

the custom EJB application to ensure that each symptom is properly identified
within an EJB project. That is, we included an example of each symptom for
each EJB antipattern in the custom EJB project to ensure that it can be detected
appropriately. In regards to the open-source projects, table 5.1 presents a listing
of the projects and the antipattern instances present. The eMal payment system
project contains examples of both bloated and thin sessions. The Webdiary project
contains one bean that, as expected, is an example of a bloated session bean. The
Redwood logging system contains examples of sessions-a-plenty, thin sessions, and
bloated sessions. An interesting case is the Employee Timesheet EJB Project,
which has Java class files and XML deployment descriptors but no corresponding
Java source. Because there is no source, we could not perform .QL analysis on
it. However, we could do antipattern analysis on the resolved model showing that
there are instances of bloated, thin, and sessions-a-plenty antipatterns from the
information retrieved from the deployment descriptors alone.

Table 5.1: Antipattern Instances detected in Open-Source Projects
Project Antipatterns Instances Found

eMal Payment System 2 bloated beans and 1 thin session bean.
WebDiary 1 bloated bean and project-wide bloated symptom.
BellWhistle 2 Sessions-A-Plenty beans.
Storm Project contains entities only. Tool dectected no antipatterns.
Redwood Web Log Mining
System

8 bloated session beans and 1 project-wide symptom. 42 sessions-a-plenty
bean symptoms and 1 project-wide symptom. 10 thin session single-bean
symptoms, 7 thin session multi-bean symptom, and 1 project-wide.

Rowing Club Management
Software

Project contains entities only. Tool dectected no antipatterns.

Time to Work 3 bloated session beans and 1 project-wide symptom. 3 session-a-plenty bean
symptoms. 4 thin session bean symptoms.

WordNet Web Application The tool detected no antipattern instances.
Saeed The tool detected no antipattern instances.
JUnitEJB The tool detected no antipattern instances.
Java Issue Tracker The tool detected no antipattern instances.

5.5.2 Limitations

One major limitation with all the techniques presented is that none of them account
for the strength of the symptoms in terms of how indicative they are of a specific
antipattern. That is, no symptom has a stronger implication of an antipattern
than any other and only one symptom is necessary to indicate the existence of an
instance. Possible techniques for accomplishing this are discussed further in the
Future Work chapter, Chapter 6.

Categorization of Antipattern Symptoms

The categorization of the transparent facade symptom is somewhat ambiguous
and may indicate a weakness/limitation in the categorization: the symptom is
both a multi-bean or an individual-bean symptom. The individual-bean symptom

62

argument is as follows; seeing as the session bean is acting as the facade and the
problem is with the facade itself, in that it is transparent, then the symptom should
be categorized as an individual-bean symptom. However, the problem need not
necessarily lie with the facade alone; it could be that the methods in the entity are
at too coarse-grained a level rather than fine grained as entities are intended to be
considering they are essentially wrappers or a facade to the data in the underlying
database/persistent layer. In either case, the fact that a ambiguous area like this
exists may lend itself to the idea that this categorization is not strong enough as
ideal categorizations typically do not have any ambiguities.

63

Chapter 6

Future Work

6.1 Round-Trip and Refactoring Capabilities

As noted in [1], FSMLs and the FSML infrastructure support both round-trip and
forward engineering. The work presented in this thesis utilizes reverse engineering
only, that is, going from code/other artifacts to models. Forward engineering entails
going from models to code/artifacts and round-trip engineering involves going in
both directions and being able to identify conflicts and merge the deltas that arise
from each direction. That is, changes to the model must be propagated to the
code and vice versa. [1] elaborates on round-trip engineering via an FSML. To
facilitate round-trip engineering, the mapping type must contain mappings in both
the forward and reverse direction. The EJB FSML created in this thesis implements
the reverse engineering mappings only as reverse mappings suffice for the language’s
goals. That being said, however, value may come out of implementing the forward
engineering mappings and this is left for future work. By having both the forward
and reverse engineering mappings implemented for this EJB FSML, the language
would be much more useful.

Having both mappings would allow EJB developers to migrate all of a project’s
configuration to a single source of configuration rather than having configuration
interspersed between source code and deployment descriptors. So, for example, if an
organization prefers to have all its configuration done via deployment descriptors
rather than Java annotations or vice versa, then this can be facilitated without
changing the final resolved configuration. Furthermore, another possible benefit of
implementing the forward mappings is the ability of EJB developers to configure
an EJB from scratch through the model rather than ever using code or XML
directly. Lastly, having the forward mappings would help facilitate the possibility
of refactoring capabilities based on antipattern instance detection. That is, once
an antipattern instance has been detected, refactoring solutions can be presented
in the form of an FSM instance and the actual refactorings can be accomplished
via the appropriate forward mappings.

64

6.2 Detecting New Antipatterns

Another possible extension to the work is the notion of discovering/cataloging
new EJB antipatterns beyond those already in existence by analyzing various
EJB projects. The main obstacle in this, however, is having a good working
sample set of EJB projects to analyze due to the fact that the majority of EJB
projects are proprietary. One technique that may be helpful in accomplishing this
is the feature/pattern mining work performed in [45]. Feature mining refers to
reverse engineering a set of specific configurations to get a probabilistic feature
model [45]. Such a feature model has both hard and soft constraints, in addition
to the existing components in a feature model, that indicate the probability that a
specific feature is in existence given the specific hierarchy preceding it. Essentially,
many Java EE projects could be evaluated by the tool and one could use the
results to determined what methods are typically overwritten, how attributes are
set, et cetera, and this information can then be catalogued in order to derive new
EJB antipatterns. Furthermore, one could update the EJB FSML to include the
discovered probabilities, if the sample set is determined to be a reasonable sample.
Another approach to detecting new antipatterns may be to emulate what is done
in the CodeNose tool [46], that is, to have existing symptom instances, or smells, as
termed in the context of CodeNose, be detected and then placed through a reasoner
to see if any new EJB antipatterns can be derived.

6.3 Compare Multiple Projects

Currently, the reverse engineering of an EJB project through the presented EJB
FSML is limited to a single EJB project. While this may be sufficient for
smaller organizations that have few EJB projects, organizations with many EJB
projects may desire cross-project analysis that can help assist with standardization,
enforcing code practices, et cetera. Some companies may have typical settings or
rules that exist on the majority of their projects that they are unaware of. As
such, an extension of the EJB to provide the facility to reverse engineer multiple
projects at once may allow for additional analysis to be performed on a single FSM
representing multiple projects. This analysis can help determine existing standards
being used or help enforce standardization where it is lacking. A concrete example
of this is a case in which the majority of EJB projects within scope have their entity-
bean-implementing Java classes’ fully qualified name begin with the string “entity”.
For the EJB projects that do not enforce this apparent company standard, the tool
would present an option that would allow the appropriate forward engineering to
be executed that would update the appropriate artifacts.

65

6.4 Techniques that Account for Strength of

Symptoms

One of the major limitations of our techniques, including the declarative FSML
antipattern technique, is that the antipattern instance detector fails to account
for the strength of symptoms. That is, currently, the existence of any individual
symptom belonging to an antipattern is enough to imply the existence of an
antipattern instance. Realistically, however, symptoms are likely to be stronger
or weaker indicators of their respective antipatterns relative to one another. While
some symptoms may indeed be strong enough alone to imply existence, there may
be cases in which a symptom requires one or more other symptoms to imply the
instance, as the symptom itself does not have sufficient strength/implicative power.
One possible way of obtaining these strengths is to use the feature model mining
tool presented in [45]. Specifically, projects that are known to contain or projects
that are labeled as having particular antipattern instances could be mined, and
for each antipattern, the probability that the symptom is present could be used
as an indicator of strength. For a concrete example, imagine one has access to
many projects with examples of bloated session beans. The individual offending
beans can be analyzed to see what percentage have more than one entity being
used and what percentage of beans have the number of non-default public methods
over a certain threshold. Furthermore, such thresholds could be fine tuned by
observing what threshold yields the highest correct bloated session identification
percentage. While automatic detection of thresholds sounds ideal in theory, the
prerequisite problem of acquiring such projects remains and so does the problem
of having someone familiar with each project identify bloated beans based on their
familiarity with the project and EJBs in general.

6.5 New Detection Technique on Other Frame-

works

Lastly, as alluded to earlier, a notable area of exploration is to try the declarative
FSML antipattern modeling approach in other areas. While the current FSMLs
in existence from [1, 3] do not have an enumerated list of antipatterns in
their respective domains like EJBs, there are likely common errors in existence
based on user experiences such as those found for applets in [43], Eclipse WPI
development [41], and for struts [7, 38]. Based on examples such as these, one
could extend the existing FSMLs by declaratively modeling these problems and
creating the appropriate mapping types. Also, many of the antipatterns discussed
in Section 2.3 for the various domains discussed could be statically detectable if
an FSML existed for them. For example, the SQL antipatterns in [31] or the
SOA antipatterns from [33] may be able to detected if an FSML was created for
those domains. Lastly, as mentioned previously, the book containing the EJB

66

antipatterns, [19], also contains antipatterns for Servlet and JSP projects so these
domains are a viable application domain for the declarative FSML antipattern
modeling approach.

67

Chapter 7

Related Work

7.1 Java EE Development Tools

IBM’s WebSphere Application Server(WAS) is built on the Eclipse framework and
supports EJB 3.0 [5]. Its main functionality for EJBs includes creation wizards for
session beans and entities, packaging support, automatically generated EJB test
clients, and automatic generation of EJB clients [5]. In regards to its configuration
checking, however, it supports only individual beans: it will display the properties
configured and sources of configuration for a specific bean based on its annotations
and/or its deployment descriptor through a properties view on the specific bean [5].
This differs from the solution presented in this thesis because in the WAS solution,
each bean must be navigated to individually rather than having project-wide tools
that analyze an entire EJB project and showcase all the configuration sources at
once or provide an overall resolved view such as the one provided in the solution
presented in this thesis.

7.2 Static Code Analysis Tools

The antipattern detection work presented in this thesis is similar to a number
of existing static code analysis tools. Structural Analysis for Java(SA4J) is one
such tool developed by IBM that looks for structural antipatterns within Java
programs [28]. Essentially, it calculates what elements within the system will be
impacted significantly by changes other elements. It accomplishes this via analyzing
program dependencies and identifies structural problems or antipatterns [28]. This
work differs from the FSML and .QL approach as SA4J analyzes dependency
webs/graphs among components focusing on structure and the amount of impact a
change on an element will have on the entire system, something that the approaches
in this thesis do not consider. The FSML and .QL approaches do consider structure
and dependencies of EJB elements but they also consider properties of individual

68

constituents within a project as well as properties of the elements, the relationships,
and the project itself.

Structural Constraint Language (SCL) is another static code analysis tool that
can be used to detect antipatterns in a system. A system expert first specifies
constraints on the design of the system using the SCL syntax which is used to
express their design intent [26]. Once the model is complete, the developer can
run the SCL “conformance checking tool” to ensure that all constraints are not in
violation [26]. Like the techniques presented in this thesis, SCL focuses on structure
rather than behavior and is also a declarative language. SCL differs from the EJB
FSM and .QL antipattern detection approaches in two main ways. Fundamentally,
SCL is a constraint language comprised of declarations and formulas, whereas both
.QL and the EJB FSM analysis approach are query based. Also, the intent of
SCL differs from the presented techniques. SCL is intended as a tool that is to
be used during the design phase to specify constraints that should be enforced
throughout the implementation of a project [26], whereas the EJB FSM analysis
and .QL technique are intended to be used on existing projects. While SCL can add
constraints to existing projects, it is more geared toward use in the design phase.

Another tool that is intended to be used on existing projects is the FindBugs
tool that discovers bugs in projects [27]. Its “bug detectors” perform analysis at
the level of byte code and can even do data and control flow analysis. FindBugs
differs from the FSM analysis approach as its analysis is at a much lower level.
As noted in [27], the level of analysis performed is at the level of individual class
structure/hierarchy and at the linear code level through linear code scans, which is
somewhat similar to .QL except for the byte-code analysis aspect.

Lastly, CodeNose is an Eclipse-based tool that detects generic Java code smells
and visualizes them within in Eclipse [46]. It utilizes the Java Development Tools
(JDT) parser to construct abstract syntax trees representing the code and, thus,
forms a structural view of the system. The tool visits each node within the abstract
syntax tree and records any primitive smells that can be detected directly within
the source [46]. Furthermore, the tool places these primitive smells into a relational
algebra reasoner called Grok [25] and Grok derives more complicated code smells.
As noted in [46], the code smells targeted are related to individual classes or
methods and on dependency problems. Because CodeNose performs analysis at the
source code level, it is more related to the .QL approach for antipattern detection
than the EJB FSM analysis approach. .QL visits/analyzes the source in the form of
database elements, while CodeNose visits abstract syntax trees. It differs from both
in that it visits all classes and nodes within the syntax tree and looks for smells at
that point, whereas the approaches proposed in this paper scope their searches and
perform the analysis on different types of artifacts, namely Java source and XML.
It may be possible, however, to extend CodeNose to search only syntax trees that
are for EJBs and look for symptoms the way that is currently done for smells.

69

7.3 Dynamic Analysis for EJB Antipatterns

Parsons outlines a prototype in [40] that monitors a running J2EE system and
uses data mining techniques to analyze performance and identify EJB performance
antipatterns. These antipatterns are detected using rule-based inference on the
performance data. The tool works in three phases: monitoring, in which the system
is monitored and data is collected; analysis, which parses the XML deployment
descriptors to provide context to the currently executing code and uses data mining
and statistical techniques; and detection using a rule-engine approach [40]. Parsons’
work is similar to ours in that it is working in the same domain as the approaches
presented in this paper and the rules used in the Parsons’ tool are analogous to
the symptoms used within this work. The obvious difference between Parsons’
detector and the work presented in this thesis is that Parsons’ detector is able to
identify the existence of dynamic symptoms only and is able to work with running
EJB projects. Combining Parsons’ approach in conjunction with the approaches
presented in this paper may prove fruitful. For example, in [40], they consider
the Sessions-A-Plenty dynamic symptom that states suboptimal performance will
result when using sessions unnecessarily. This symptom can not be accounted for
in the static techniques presented in this thesis. As such, combining the results
yielded from Parsons’ approach and results yielded from the techniques presented
in this thesis would entail the majority of symptoms being accounted for. The
only remaining symptoms would be those containing social/project management
implications, such as lengthened change cycles or reduced maintainability.

70

Chapter 8

Conclusion

In this thesis we present an EJB FSML that formalizes a subset of the EJB
framework and all the various sources of configuration for EJBs. Using the
FSML infrastructure, our tool can generate an FSM that represents a view of
the configuration sources for a specific EJB project. This FSM can then, in
turn, be analyzed to generate a resolved model/view that represents the current
configuration of the underlying EJB project. Developers in an EJB project can
now use this work to gain various views on their EJB project: namely the entire
configuration view, the view showing annotation configuration information only,
the view showing deployment descriptor configuration information only, and the
view showing a resolved model that represents the current configuration. The
EJB FSML we presented utilizes only the reverse engineering aspect of the FSML
infrastructure. Round-trip and forward engineering are a viable extension to the
work done in this thesis; only the forward mappings need to be implemented. This
extension may prove to be useful in that EJB developers may be able to work
at the model level rather than the Java/XML level and may also prove useful for
migrating from one source of configuration to another.

This thesis also presented two EJB antipattern instance detection techniques:
namely, codified model queries run against the resolved model from FSM analysis
and .QL queries written against EJB project source code. The codified model
queries provided better-structured results and provided traceability at the model
level rather than the source level, but, the .QL queries were easier to develop
and are easier to understand, as they are declarative. As such, we propose
the notion of a third technique that entails modeling the antipatterns and their
symptoms within the original FSML model declaratively. So, rather than ensuring
the FSML elements contain the properties necessary for antipattern detection, as
was done originally, the antipattern detection itself should be done by modeling
the antipatterns and their symptoms declaratively within the FSML, including the
corresponding FSML mapping types and definitions.

The antipattern detection techniques presented in this thesis have limitations.
Firstly, all of the techniques fail to account for the notion of symptom strength

71

within the context of a specific antipattern. Furthermore, these techniques
are limited to statically-detected symptoms only. However, this work could be
combined with work on dynamic-antipattern instance detection to cover a wider
range of symptoms.

The antipattern detection work presented in this thesis can be extended to other
frameworks. We hope that the results from specifying antipatterns declaratively
within FSMLs will prove to be another benefit of modeling a framework as an
FSML. Ideally, assuming the appropriate reverse and forward mappings exist within
an FSML, a project implementing a framework will be reverse engineered into an
FSM including antipattern instances and a tool will present and enforce refactoring
solutions in both the FSM and the artifacts it represents. This will be a great
step toward developing better quality software projects that utilize object-oriented
frameworks.

72

APPENDICES

73

Appendix A

Equivalent Ecore Models for EJB
FSML Feature Models

This section contains the corresponding XML Ecore Model representations of the
Feature Models presented in Chapter 3. Each XML snippet, saved as a .ecore file,
is the Ecore model that is rendered as a feature model in the corresponding figure.

A.1 Iteration 1

Figure 3.2

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ecore :EPackage xmi :ve r s i on=” 2 .0 ”

xmlns:xmi=” h t t p : //www. omg . org /XMI” xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema
−i n s t ance ”
xmlns : ecore=” h t t p : //www. e c l i p s e . org /emf /2002/ Ecore ” name=” e jb ”
nsURI=” ht tp : // ca . uwater loo . gsd . e jb ” nsPre f i x=” e jb ”>

<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” InformationFromAnnotations ”>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e j b I n t e r f a c e s ”
upperBound=”−1”

eType=”#//B u s i n e s s I n t e r f a c e ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e j b s ” upperBound=”−1”
eType=”#//EJBean”

containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBean” abs t r a c t=” true ” eSuperTypes=
” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” c l a s s ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”className” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fu l lyQua l i f i edName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” B u s i n e s s I n t e r f a c e ” ab s t r a c t=” true ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” c l a s s ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” interfaceName ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

74

<eAnnotat ions source=” fu l lyQua l i f i edName ”/>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” d e r i v e d L o c a l I n t e r f a c e s ” eSuperTypes=
”#// B u s i n e s s I n t e r f a c e ”>

<eAnnotat ions source=”parentKey”/>
<eAnnotat ions source=” indexKey”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Der ivedRemoteInter face ” eSuperTypes=
”#// B u s i n e s s I n t e r f a c e ”>

<eAnnotat ions source=”parentKey”/>
<eAnnotat ions source=” indexKey”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” E x p l i c i t L o c a l I n t e r f a c e ” eSuperTypes=
”#//B u s i n e s s I n t e r f a c e ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lAnnotat ion ”
lowerBound=”1”

eType=”#//Inter faceMarkerAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Local ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Exp l i c i tRemote In t e r f a c e ” eSuperTypes
=”#//B u s i n e s s I n t e r f a c e ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteAnnotation ”
lowerBound=”1”

eType=”#//Inter faceMarkerAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Remote”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBean ” abs t r a c t=” true ”
eSuperTypes=”#//EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
l o c a l I n t e r f a c e S p e c i f i c a t i o n ”

eType=”#//Sess ionBeanLoca l Inte r faceAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Local ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
r e m o t e I n t e r f a c e S p e c i f i c a t i o n ”

eType=”#//Sess ionBeanRemoteInter faceAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementedLoca l Inter face ”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” Imp l ement sExp l i c i tLoca l In t e r f a c e ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementedRemoteInterface ”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” ImplementsExpl i c i tRemoteInter face ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e x p l i c i t L o c a l I n t e r f a c e ”

upperBound=”−1” eType=”#// E x p l i c i t L o c a l I n t e r f a c e ”>
<eAnnotat ions source=”where”>

<d e t a i l s key=” a t t r i b u t e ” value=” inter faceName ”/>
<d e t a i l s key=” in ” value=” . . / implementedLoca l Inter face ”/>

75

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e x p l i c i t R e m o t e I n t e r f a c e
”

upperBound=”−1” eType=”#//Exp l i c i tRemote In t e r f a c e ”>
<eAnnotat ions source=”where”>

<d e t a i l s key=” a t t r i b u t e ” value=” inter faceName ”/>
<d e t a i l s key=” in ” value=” . . / implementedRemoteInterface ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” State lessEJB ” eSuperTypes=”#//
Sess ionBean ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” s t a t e l e s s A n n o t a t i o n ”
lowerBound=”1”

eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . S t a t e l e s s ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” StatefulEJB ” eSuperTypes=”#//
Sess ionBean ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” s ta t e fu lAnnota t i on ”
lowerBound=”1”

eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . S t a t e f u l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”MessageDrivenEJB” eSuperTypes=”#//
EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” messageDrivenAnnotation
”

lowerBound=”1” eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . MessageDriven ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Entity ” eSuperTypes=”#//EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ent i tyAnnotat ion ”
lowerBound=”1”

eType=”#//EntityAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . p e r s i s t e n c e . Entity ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” BeanClassAnnotation ” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”name” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”name”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”mappedName”/>

76

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=” d e s c r i p t i o n ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” EntityAnnotation ” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”name” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”name”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Inter faceMarkerAnnotat ion ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” isMarker ” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” hasNoAttribute ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBeanLoca l Inte r faceAnnotat ion ”

eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” d e r i v e d L o c a l I n t e r f a c e s ”

lowerBound=”1” upperBound=”−1” eType=”#// d e r i v e d L o c a l I n t e r f a c e s ”
containment=” true ”>

<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” a t t r i b u t e ”>

<d e t a i l s key=” attributeName ” value=” value ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBeanRemoteInter faceAnnotat ion
”

eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” der ivedRemote Inte r face s
”

lowerBound=”1” upperBound=”−1” eType=”#//Der ivedRemoteInter face ”
containment=” true ”>

<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” a t t r i b u t e ”>

<d e t a i l s key=” attributeName ” value=” value ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>

</ ecore :EPackage>

Figure 3.3

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ecore :EPackage xmi :ve r s i on=” 2 .0 ”

77

xmlns:xmi=” h t t p : //www. omg . org /XMI” xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema
−i n s t ance ”
xmlns : ecore=” h t t p : //www. e c l i p s e . org /emf /2002/ Ecore ” name=” e jb ”
nsURI=” ht tp : // ca . uwater loo . gsd . e jb ” nsPre f i x=” e jb ”>

<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” InformationFromDeploymentDescriptor ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

<eAnnotat ions source=”xmlDocument”>
<d e t a i l s key=” f i leName ” value=” ejb−j a r . xml”/>

</ eAnnotations>
<eAnnotat ions source=”xmlElement”>

<d e t a i l s key=”name” value=” ejb−j a r ”/>
</ eAnnotations>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” f i l e ” lowerBound=”1”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=”documentPath”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ses s ionBeans ”
upperBound=”−1”

eType=”#//DDSessionBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans / s e s s i o n ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ent i tyBeans ” upperBound
=”−1”

eType=”#//DDEntityBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans / e n t i t y ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” messageDrivenBeans ”
upperBound=”−1”

eType=”#//DDMessageDrivenBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans /message−dr iven ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDBean” abs t r a c t=” true ” eSuperTypes=
” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”ejbName” lowerBound=”1”

eType=”#//DDEJBName” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−name”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e jbC la s s ” eType=”#//
DDEJBClass”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−c l a s s ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”mappedName” eType=”#//
DDEJBMappedName”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”mapped−name”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” d e s c r i p t i o n ” eType=”#//
DDDescription ”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” d e s c r i p t i o n ”/>
</ eAnnotations>

78

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBName”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”ejbName” lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBClass”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” e jbC la s s ” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBMappedName”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” lowerBound=
”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDDescription ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” lowerBound
=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDNoTypeSessionBean” eSuperTypes=”
#//DDSessionBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” noSessionTypeElement ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=”noXMLElement”>

<d e t a i l s key=”path” value=” s e s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDSessionBean” abs t r a c t=” true ”
eSuperTypes=”#//DDBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l B u s i n e s s I n t e r f a c e s
”

upperBound=”−1” eType=”#//DDLocalInter face ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
remoteBus in e s s In t e r f a c e s ”

upperBound=”−1” eType=”#//DDRemoteInterface” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDStatefulEJB” eSuperTypes=”#//
DDSessionBean”>

79

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” sess ionType ” lowerBound
=”1”

eType=”#//DDStatefulSess ionType ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” s e s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDStatelessEJB” eSuperTypes=”#//
DDSessionBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” sess ionType ” lowerBound
=”1”

eType=”#//DDState lessSess ionType ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” se s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDStatefulSess ionType ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” i s S t a t e f u l S e s s i o n T y p e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” xmlElementValueEqualsString ”>
<d e t a i l s key=” StringToSearchFor ” value=” S t a t e f u l ”/>

</ eAnnotations>
<eAnnotat ions source=”key”/>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDState lessSess ionType ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” i s S t a t e l e s s S e s s i o n T y p e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” xmlElementValueEqualsString ”>
<d e t a i l s key=” StringToSearchFor ” value=” S t a t e l e s s ”/>

</ eAnnotations>
<eAnnotat ions source=”key”/>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEntityBean” eSuperTypes=”#//DDBean
”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l B u s i n e s s I n t e r f a c e s
”

upperBound=”−1” eType=”#//DDLocalInter face ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
remoteBus in e s s In t e r f a c e s ”

upperBound=”−1” eType=”#//DDRemoteInterface” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDMessageDrivenBean” eSuperTypes=”
#//DDBean”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDLocalInter face ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
f u l l y Q u a l i f i e d I n t e r f a c e N a m e ”

80

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDRemoteInterface”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
f u l l y Q u a l i f i e d I n t e r f a c e N a m e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”/>

</ e C l a s s i f i e r s>
</ ecore :EPackage>

A.2 Iteration 2

Figure 3.4

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ecore :EPackage xmi :ve r s i on=” 2 .0 ”

xmlns:xmi=” h t t p : //www. omg . org /XMI” xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema
−i n s t ance ”
xmlns : ecore=” h t t p : //www. e c l i p s e . org /emf /2002/ Ecore ” name=” e jb ”
nsURI=” ht tp : // ca . uwater loo . gsd . e jb ” nsPre f i x=” e jb ”>

<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” InformationFromDeploymentDescriptor ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

<eAnnotat ions source=”xmlDocument”>
<d e t a i l s key=” f i leName ” value=” ejb−j a r . xml”/>

</ eAnnotations>
<eAnnotat ions source=”xmlElement”>

<d e t a i l s key=”name” value=” ejb−j a r ”/>
</ eAnnotations>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” f i l e ” lowerBound=”1”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=”documentPath”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ses s ionBeans ”
upperBound=”−1”

eType=”#//DDSessionBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans / s e s s i o n ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ent i tyBeans ” upperBound
=”−1”

eType=”#//DDEntityBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans / e n t i t y ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” messageDrivenBeans ”
upperBound=”−1”

eType=”#//DDMessageDrivenBean” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” e n t e r p r i s e−beans /message−dr iven ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDBean” abs t r a c t=” true ” eSuperTypes=
” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”ejbName” lowerBound=”1”

eType=”#//DDEJBName” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−name”/>

81

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e jbC la s s ” eType=”#//
DDEJBClass”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−c l a s s ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”mappedName” eType=”#//
DDEJBMappedName”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”mapped−name”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” d e s c r i p t i o n ” eType=”#//
DDDescription ”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” d e s c r i p t i o n ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteReference ”
upperBound=”−1”

eType=”#//DDRemoteReference” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−r e f ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l R e f e r e n c e ”
upperBound=”−1”

eType=”#//DDLocalReference ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−l o c a l−r e f ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBName”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”ejbName” lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBClass”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” e jbC la s s ” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBMappedName”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” lowerBound=
”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDDescription ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” lowerBound
=”1”

82

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDReference” abs t r a c t=” true ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” d e s c r i p t i o n ” upperBound
=”−1”

eType=”#//DDDescription ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” d e s c r i p t i o n ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”refName” lowerBound=”1”

eType=”#//DDEJBRefName” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−r e f−name”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” refType ” eType=”#//
DDEJBRefType”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−r e f−type ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”JNDIName” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” concatenate ”>

<d e t a i l s key=” element ” value=” . . / refName/refName”/>
<d e t a i l s key=” s t r i n g ” value=” java:comp /env/”/>
<d e t a i l s key=” p o s i t i o n ” value=” be f o r e ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ejbLink ” eType=”#//
DDEJBLink”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” ejb−l i n k ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBLink”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” l i n k ” lowerBound=”1”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDLocalReference ” eSuperTypes=”#//
DDReference”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l I n t e r f a c e ” eType=”
#//DDLocalInter face ”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lHomeInte r face ”
eType=”#//DDEJBLocalHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” l o c a l−home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>

83

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDRemoteReference” eSuperTypes=”#//
DDReference”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remote In t e r f a c e ” eType=
”#//DDRemoteInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteHomeInterface ”
eType=”#//DDEJBRemoteHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBRefName”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”refName” lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBRefType”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” refType ” lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBRemoteHomeInterface”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” remoteHomeInterface ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEJBLocalHomeInterface”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” loca lHomeInte r face ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDNoTypeSessionBean” eSuperTypes=”
#//DDSessionBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” noSessionTypeElement ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=”noXMLElement”>

<d e t a i l s key=”path” value=” s e s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDSessionBean” abs t r a c t=” true ”
eSuperTypes=”#//DDBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ddLoca l In t e r f a c e ” eType
=”#//DDLocalInter face ”

containment=” true ”>

84

<eAnnotat ions source=”xmlElements”>
<d e t a i l s key=”path” value=” l o c a l ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ddRemoteInterface ”
eType=”#//DDRemoteInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l B u s i n e s s I n t e r f a c e s
”

upperBound=”−1” eType=”#//DDLocalInter face ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
remoteBus in e s s In t e r f a c e s ”

upperBound=”−1” eType=”#//DDRemoteInterface” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteHomeInterface ”
eType=”#//DDEJBRemoteHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lHomeInte r face ”
eType=”#//DDEJBLocalHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” l o c a l−home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDStatefulEJB” eSuperTypes=”#//
DDSessionBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” sess ionType ” lowerBound
=”1”

eType=”#//DDStatefulSess ionType ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” se s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDStatelessEJB” eSuperTypes=”#//
DDSessionBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” sess ionType ” lowerBound
=”1”

eType=”#//DDState lessSess ionType ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” se s s i on−type ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDStatefulSess ionType ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” i s S t a t e f u l S e s s i o n T y p e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” xmlElementValueEqualsString ”>

85

<d e t a i l s key=” StringToSearchFor ” value=” S t a t e f u l ”/>
</ eAnnotations>
<eAnnotat ions source=”key”/>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDState lessSess ionType ”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” i s S t a t e l e s s S e s s i o n T y p e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” xmlElementValueEqualsString ”>
<d e t a i l s key=” StringToSearchFor ” value=” S t a t e l e s s ”/>

</ eAnnotations>
<eAnnotat ions source=”key”/>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDEntityBean” eSuperTypes=”#//DDBean
”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ddLoca l In t e r f a c e ” eType
=”#//DDLocalInter face ”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ddRemoteInterface ”
eType=”#//DDRemoteInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l B u s i n e s s I n t e r f a c e s
”

upperBound=”−1” eType=”#//DDLocalInter face ” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−l o c a l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
remoteBus in e s s In t e r f a c e s ”

upperBound=”−1” eType=”#//DDRemoteInterface” containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” bus ines s−remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteHomeInterface ”
eType=”#//DDEJBRemoteHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=”home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lHomeInte r face ”
eType=”#//DDEJBLocalHomeInterface”

containment=” true ”>
<eAnnotat ions source=”xmlElements”>

<d e t a i l s key=”path” value=” l o c a l−home”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDMessageDrivenBean” eSuperTypes=”
#//DDBean”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” DDLocalInter face ”>

<eAnnotat ions source=”xmlElement”/>

86

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
f u l l y Q u a l i f i e d I n t e r f a c e N a m e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DDRemoteInterface”>

<eAnnotat ions source=”xmlElement”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
f u l l y Q u a l i f i e d I n t e r f a c e N a m e ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=”xmlElementValue”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>

</ ecore :EPackage>

A.3 Iteration 3

Figure 3.6 and Figure 3.7 Combined

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ecore :EPackage xmi :ve r s i on=” 2 .0 ”

xmlns:xmi=” h t t p : //www. omg . org /XMI” xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema
−i n s t ance ”
xmlns : ecore=” h t t p : //www. e c l i p s e . org /emf /2002/ Ecore ” name=” e jb ”
nsURI=” ht tp : // ca . uwater loo . gsd . e jb ” nsPre f i x=” e jb ”>

<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” InformationFromAnnotations ”>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e j b I n t e r f a c e s ”
upperBound=”−1”

eType=”#//B u s i n e s s I n t e r f a c e ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” c l i e n t s ” upperBound=”−1
”

eType=”#//EJBClient” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e j b s ” upperBound=”−1”
eType=”#//EJBean”

containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBClient” eSuperTypes=” p la t f o rm : /
p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” c l a s s ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”className” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fu l lyQua l i f i edName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
hasFieldAnnotatedWithEJB”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” hasFieldAnnotatedWith ”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb .EJB”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”isNotAnEJB” lowerBound=
”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”isNotAnEJB”/>

87

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” fieldsAnnotatedWithEJB ”

lowerBound=”1” upperBound=”−1” eType=”#//FieldAnnotatedWithEJB”
containment=” true ”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBean” abs t r a c t=” true ” eSuperTypes=
” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” c l a s s ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”className” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fu l lyQua l i f i edName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” fieldsAnnotatedWithEJB ”

upperBound=”−1” eType=”#//FieldAnnotatedWithEJB” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e n t i t y F i e l d s ”
upperBound=”−1”

eType=”#//Fie ldOfEnt i tyClas s ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e n t i t y L o c a l V a r i a b l e s ”
upperBound=”−1”

eType=”#//Loca lVar iab leOfEnt i tyClas s ” containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”FieldAnnotatedWithEJB” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” f i e l d ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” fieldName ” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fieldName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” EJBInter faceAnnotat ion ”

lowerBound=”1” eType=”#//DependencyEJBAnnotation” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb .EJB”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Fie ldOfEnt i tyClas s ” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” f i e l d ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” fieldName ” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fieldName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” f i e ldType ” lowerBound=”
1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” f i e ldType ”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” ent i t yRe f e r enc e ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” fieldTypeAnnotatedWith ”>

<d e t a i l s key=” f u l l yQua l i f i edTy pe ” value=” javax . p e r s i s t e n c e . Entity ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Loca lVar iab l eOfEnt i tyClas s ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” l o c a l V a r i a b l e ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” localVariableName ”
lowerBound=”1”

88

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” localVariableName ”/>
<eAnnotat ions source=”key”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” loca lVar iab l eType ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” loca lVar iab l eType ”/>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” ent i t yRe f e r enc e ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” localVariableTypeAnnotatedWith ”>

<d e t a i l s key=” f u l l yQua l i f i edTy pe ” value=” javax . p e r s i s t e n c e . Entity ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” B u s i n e s s I n t e r f a c e ” ab s t r a c t=” true ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” c l a s s ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” interfaceName ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>
<eAnnotat ions source=” fu l lyQua l i f i edName ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Der i v edLoca l In t e r f a c e ” eSuperTypes=”
#//B u s i n e s s I n t e r f a c e ”>

<eAnnotat ions source=”parentKey”/>
<eAnnotat ions source=” indexKey”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Der ivedRemoteInter face ” eSuperTypes=
”#// B u s i n e s s I n t e r f a c e ”>

<eAnnotat ions source=”parentKey”/>
<eAnnotat ions source=” indexKey”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” E x p l i c i t L o c a l I n t e r f a c e ” eSuperTypes=
”#//B u s i n e s s I n t e r f a c e ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lAnnotat ion ”
lowerBound=”1”

eType=”#//Inter faceMarkerAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Local ”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Exp l i c i tRemote In t e r f a c e ” eSuperTypes
=”#//B u s i n e s s I n t e r f a c e ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteAnnotation ”
lowerBound=”1”

eType=”#//Inter faceMarkerAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Remote”/>
</ eAnnotations>
<eAnnotat ions source=” e s s e n t i a l ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBean ” abs t r a c t=” true ”
eSuperTypes=”#//EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
l o c a l I n t e r f a c e S p e c i f i c a t i o n ”

eType=”#//Sess ionBeanLoca l Inte r faceAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . Local ”/>
</ eAnnotations>

89

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=”
r e m o t e I n t e r f a c e S p e c i f i c a t i o n ”

eType=”#//Sess ionBeanRemoteInter faceAnnotat ion ” containment=” true ”>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l yQua l i f i edTy pe ” value=” javax . e jb . Remote”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementedLoca l Inter face ”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” Imp l ement sExp l i c i tLoca l In t e r f a c e ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementedRemoteInterface ”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” ImplementsExpl i c i tRemoteInter face ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e x p l i c i t L o c a l I n t e r f a c e ”

upperBound=”−1” eType=”#// E x p l i c i t L o c a l I n t e r f a c e ”>
<eAnnotat ions source=”where”>

<d e t a i l s key=” a t t r i b u t e ” value=” inter faceName ”/>
<d e t a i l s key=” in ” value=” . . / implementedLoca l Inter face ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e x p l i c i t R e m o t e I n t e r f a c e
”

upperBound=”−1” eType=”#//Exp l i c i tRemote In t e r f a c e ”>
<eAnnotat ions source=”where”>

<d e t a i l s key=” a t t r i b u t e ” value=” inter faceName ”/>
<d e t a i l s key=” in ” value=” . . / implementedRemoteInterface ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” publicMethods ”
lowerBound=”1”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” publicMethods ”>
<d e t a i l s key=” exc ludes ” value=” setSess ionContext , ejbRemove , e jbAct ivate ,
e j bPas s i va t e ”/>
<d e t a i l s key=” exc ludeConst ructor s ” value=””/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementsSess ionSynchron izat ion ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”>

<eAnnotat ions source=” implements Inte r face ”>
<d e t a i l s key=”name” value=” javax . e jb . Se s s i onSynchron i za t i on ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” State lessEJB ” eSuperTypes=”#//
Sess ionBean ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” s t a t e l e s s A n n o t a t i o n ”
lowerBound=”1”

eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . S t a t e l e s s ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” StatefulEJB ” eSuperTypes=”#//
Sess ionBean ”>

90

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” s ta t e fu lAnnota t i on ”
lowerBound=”1”

eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . S t a t e f u l ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”MessageDrivenEJB” eSuperTypes=”#//
EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” messageDrivenAnnotation
”

lowerBound=”1” eType=”#//BeanClassAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . e jb . MessageDriven ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Entity ” eSuperTypes=”#//EJBean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” publicMethods ”
lowerBound=”1”

upperBound=”−1” eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EString ”>

<eAnnotat ions source=” publicMethods ”>
<d e t a i l s key=” exc ludes ” value=” setEnt ityContext , unSetEntityContext ,
ejbRemove , e jbAct ivate , e jbPass ivate , ejbLoad , e jbS to r e ”/>
<d e t a i l s key=” exc ludeConst ructor s ” value=””/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ent i tyAnnotat ion ”
lowerBound=”1”

eType=”#//EntityAnnotation ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=”annotatedWith”>

<d e t a i l s key=” f u l l y Qua l i f i edTy pe ” value=” javax . p e r s i s t e n c e . Entity ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” BeanClassAnnotation ” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”name” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”name”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”mappedName”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=” d e s c r i p t i o n ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”DependencyEJBAnnotation” eSuperTypes
=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>

91

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” referenceName ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” referenceNameEJBAttribute ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”beanName” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”

d e f a u l t V a l u e L i t e r a l=””>
<eAnnotat ions source=” a t t r i b u t e ”>

<d e t a i l s key=” attributeName ” value=”beanName”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” bean In t e r f a c e ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” beanInter faceEJBAttr ibute ”/>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”mappedName”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=” d e s c r i p t i o n ”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” EntityAnnotation ” eSuperTypes=”
p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”name” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”>

<eAnnotat ions source=” a t t r i b u t e ”>
<d e t a i l s key=” attributeName ” value=”name”/>

</ eAnnotations>
</ eS t ruc tu ra lFea tu r e s>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Inter faceMarkerAnnotat ion ”
eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” isMarker ” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EBoolean”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” hasNoAttribute ”/>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBeanLoca l Inte r faceAnnotat ion ”

eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l I n t e r f a c e s ”
lowerBound=”1”

upperBound=”−1” eType=”#//Der i v edLoca l In t e r f a c e ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” a t t r i b u t e ”>

<d e t a i l s key=” attributeName ” value=” value ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBeanRemoteInter faceAnnotat ion
”

eSuperTypes=” p la t f o rm : / p lug in /ca . uwater loo . gsd . f sml /model/ f sml . e co re#//
Concept”>

92

<eAnnotat ions source=” annotat ion ”/>
<eAnnotat ions source=”parentKey”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” r e m o t e I n t e r f a c e s ”
lowerBound=”1”

upperBound=”−1” eType=”#//Der ivedRemoteInter face ” containment=” true ”>
<eAnnotat ions source=” e s s e n t i a l ”/>
<eAnnotat ions source=” a t t r i b u t e ”>

<d e t a i l s key=” attributeName ” value=” value ”/>
</ eAnnotations>

</ eS t ruc tu ra lFea tu r e s>
</ e C l a s s i f i e r s>

</ ecore :EPackage>

93

Appendix B

Equivalent Ecore Model for
Resolved Meta Model Feature
Models

The following is the XML source of the Ecore Model represented by the Feature
Model presented in both Figure 4.3 and Figure 4.4, with Figure 4.4 being the
bean root feature extracted from the main feature model presented in Figure 4.3.
The following XML, saved as a .ecore file, is the Ecore model for the resolved
configuration meta model.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
<ecore :EPackage xmi :ve r s i on=” 2 .0 ”

xmlns:xmi=” h t t p : //www. omg . org /XMI” xmlns :x s i=” h t t p : //www. w3 . org /2001/XMLSchema
−i n s t ance ”
xmlns : ecore=” h t t p : //www. e c l i p s e . org /emf /2002/ Ecore ” name=”mergedEjb”
nsURI=”mergedEjb” nsPre f i x=”mergedEjb”>

<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Pro jec tConta iner ”>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e j b P r o j e c t ” lowerBound=
”1”

eType=”#//EJBProject” containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBProject”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” i n t e r f a c e s ” upperBound=
”−1”

eType=”#//EJBInter face ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” c l i e n t s ” upperBound=”−1
”

eType=”#//Cl i en t ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” ses s ionBeans ”
upperBound=”−1”

eType=”#//Sess ionBean ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” messageDrivenBeans ”
upperBound=”−1”

eType=”#//MessageDrivenBean” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e n t i t i e s ” upperBound=”
−1”

eType=”#//Entity ” containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Cl i en t ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” c l a s s ” lowerBound=”1”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” r e f e r e n c e s ” upperBound=
”−1”

94

eType=”#//EJBReference” containment=” true ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBReference” ab s t r a c t=” true ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”referenceJNDIName”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” type ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” ejbLink ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” EJBLocalReference ” eSuperTypes=”#//
EJBReference”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” l o c a l I n t e r f a c e ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” loca lHomeInte r face ”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBRemoteReference” eSuperTypes=”#//
EJBReference”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” remote In t e r f a c e ” eType=
”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” remoteHomeInterface ”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” EJBInter face ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” f u l l y Q u a l i f i e d C l a s s ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”EJBHomeInterface” ab s t r a c t=” true ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” f u l l y Q u a l i f i e d C l a s s ”
lowerBound=”1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” LocalHomeInter face ” eSuperTypes=”#//
EJBHomeInterface”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”RemoteHomeInterface” eSuperTypes=”
#//EJBHomeInterface”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” RemoteInter face ” eSuperTypes=”#//
EJBInter face ”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” L o c a l I n t e r f a c e ” eSuperTypes=”#//
EJBInter face ”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”Bean” abs t r a c t=” true ”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”ejbName” lowerBound=”1”
eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” e jbC la s s ” lowerBound=”1
”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”mappedName” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” d e s c r i p t i o n ” eType=”
ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e jbRe f e r ence s ”
upperBound=”−1”

eType=”#//EJBReference” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” e n t i t i e s U s e d ”
upperBound=”−1”

eType=”#//Entity ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sess ionBean ” abs t r a c t=” true ”
eSuperTypes=”#//Bean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l I n t e r f a c e ” eType=”
#// L o c a l I n t e r f a c e ”

containment=” true ”/>

95

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lHomeInte r face ”
eType=”#//EJBHomeInterface”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remote In t e r f a c e ” eType=
”#//RemoteInter face ”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteHomeInterface ”
eType=”#//RemoteHomeInterface”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l B u s i n e s s I n t e r f a c e ”

upperBound=”−1” eType=”#// L o c a l I n t e r f a c e ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteBus ine s s In t e r f a c e
”

upperBound=”−1” eType=”#//RemoteInter face ” containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” publicMethods ”
upperBound=”−1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=”
implementsSess ionSynchron izat ion ”

lowerBound=”1” eType=” ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/
Ecore#//EBoolean”/>

</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sta t e l e s sSe s s i onBean ” eSuperTypes=”
#//Sess ionBean ”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Sta t e fu lSe s s i onBean ” eSuperTypes=”
#//Sess ionBean ”/>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=” Entity ” eSuperTypes=”#//Bean”>

<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” l o c a l I n t e r f a c e ” eType=”
#// L o c a l I n t e r f a c e ”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” loca lHomeInte r face ”
eType=”#//EJBHomeInterface”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remote In t e r f a c e ” eType=
”#//RemoteInter face ”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” ecore :ERe f e r ence ” name=” remoteHomeInterface ”
eType=”#//RemoteHomeInterface”

containment=” true ”/>
<eS t ruc tu ra lFea tu r e s x s i : t y p e=” eco r e :EAtt r ibu t e ” name=” publicMethods ”
upperBound=”−1”

eType=”ecore:EDataType h t t p : //www. e c l i p s e . org /emf /2002/ Ecore#//EString ”/>
</ e C l a s s i f i e r s>
<e C l a s s i f i e r s x s i : t y p e=” eco r e :ECla s s ” name=”MessageDrivenBean” eSuperTypes=”#//
Bean”/>

</ ecore :EPackage>

96

Appendix C

Extended J2EE library for
Semmle .QL

The following is an extended version of the J2EE library [37] that comes from the
current version of .QL. It is extended for the purpose of identifying EJB 3.0 beans
appropriately.

/∗∗ −−− J2EE −−−

A l i b r a r y o f c l a s s e s to r e p r e s e n t J2EE bean t y p e s .
∗/

import Type
import JavaProject

/∗∗ An e n t i t y bean ∗/
class EntityBean extends Class {

EntityBean () {
e x i s t s (I n t e r f a c e i , Annotation a | (i . hasQualif iedName (” javax . e jb ” , ”
EntityBean”) and this . hasSupertype+(i))

or (a . getType () . hasQualif iedName (” javax . p e r s i s t e n c e ” , ”
Entity ”) and a = this . getAnAnnotation ()))

}

/∗∗ re turn the number o f p u b l i c member methods d e c l a r e d in t h i s type ∗/
int getNumberOfNonDefaultPublicMethods () { r e s u l t = count (Method m |
declaresMember (this ,m) and m. i s P u b l i c ()

and (not m. getName () . matches (” e jbAct iva te ”))
and (not m. getName () . matches (” e jbPas s i va t e ”))
and (not m. getName () . matches (”ejbRemove”))
and (not m. getName () . matches (” ejbLoad ”))
and (not m. getName () . matches (” e jbSto r e ”))
and (not m. getName () . matches (” setEnt i tyContext ”))
and (not m. getName () . matches (” unsetEntityContext ”))) }

}

/∗∗ An e n t e r p r i s e bean ∗/
class Enterpr iseBean extends RefType {

Enterpr iseBean () {
e x i s t s (I n t e r f a c e i , Annotation a | i . hasQualif iedName (” javax . e jb ” , ”
Enterpr iseBean ”) and this . hasSupertype+(i)

or (a . getType () . hasQualif iedName (” javax . e jb ” , ”
MessageDriven”) and a = this . getAnAnnotation ())
or (a . getType () . hasQualif iedName (” javax .
p e r s i s t e n c e ” , ” Entity ”) and a = this .
getAnAnnotation ())

97

or (a . getType () . hasQualif iedName (” javax . e jb ” , ”
S t a t e f u l ”) and a = this . getAnAnnotation ())
or (a . getType () . hasQualif iedName (” javax . e jb ” , ”
S t a t e l e s s ”) and a = this . getAnAnnotation ()))

}
}

/∗∗ A l o c a l EJB home i n t e r f a c e ∗/
class LocalEJBHomeInterface extends I n t e r f a c e {

LocalEJBHomeInterface () {
e x i s t s (I n t e r f a c e i | i . hasQualif iedName (” javax . e jb ” , ”EJBLocalHome”) and this
. hasSupertype+(i))

}
}

/∗∗ A remote EJB home i n t e r f a c e ∗/
class RemoteEJBHomeInterface extends I n t e r f a c e {

RemoteEJBHomeInterface () {
e x i s t s (I n t e r f a c e i | i . hasQualif iedName (” javax . e jb ” , ”EJBHome”) and this .
hasSupertype+(i))

}
}

/∗∗ A l o c a l 2 .1 EJB i n t e r f a c e ∗/
class Loca lEJBInter face extends I n t e r f a c e {

Loca lEJBInter face () {
e x i s t s (I n t e r f a c e i | i . hasQualif iedName (” javax . e jb ” , ”EJBLocalObject”) and
this . hasSupertype+(i))

}
}

/∗∗ A remote 2.1 EJB i n t e r f a c e ∗/
class RemoteEJBInterface extends I n t e r f a c e {

RemoteEJBInterface () {
e x i s t s (I n t e r f a c e i | i . hasQualif iedName (” javax . e jb ” , ”EJBObject”) and this .
hasSupertype+(i))

}
}

/∗∗ A remote 3.0 EJB i n t e r f a c e ∗/
class RemoteEJBBusinessInterface extends I n t e r f a c e {

RemoteEJBBusinessInterface () {
e x i s t s (Annotation a | a . getType () . hasQualif iedName (” javax . e jb ” , ”Remote”) and
a = this . getAnAnnotation ())

}
}

/∗∗ A l o c a l 3 .0 EJB i n t e r f a c e ∗/
class Loca lEJBBus iness Inter face extends I n t e r f a c e {

Loca lEJBBus iness Inter face () {
e x i s t s (Annotation a | a . getType () . hasQualif iedName (” javax . e jb ” , ” Local ”) and
a = this . getAnAnnotation ())

}
}

/∗∗ A message bean ∗/
class MessageBean extends Class {

MessageBean () {
e x i s t s (I n t e r f a c e i , Annotation a | (i . hasQualif iedName (” javax . e jb ” , ”
MessageDrivenBean”) and this . hasSupertype+(i))

or (a . getType () . hasQualif iedName (” javax . e jb ” , ”
MessageDriven”) and a = this . getAnAnnotation ()))

}
}

/∗∗ A s e s s i o n bean ∗/
class Sess ionBean extends Class {

Sess ionBean () {

98

e x i s t s (I n t e r f a c e i , Annotation a | (i . hasQualif iedName (” javax . e jb ” , ”
Sess ionBean ”) and this . hasSupertype+(i))

or (a . getType () . hasQualif iedName (”
javax . e jb ” , ” S t a t e f u l ”) and a =
this . getAnAnnotation ())
or (a . getType () . hasQualif iedName (”
javax . e jb ” , ” S t a t e l e s s ”) and a =
this . getAnAnnotation ()))

}

/∗∗ re turn the number o f p u b l i c member methods d e c l a r e d in t h i s type ∗/
int getNumberOfNonDefaultPublicMethods () { r e s u l t = count (Method m |
declaresMember (this ,m) and m. i s P u b l i c ()

and (not m. getName () . matches (” e jbAct iva te ”))
and (not m. getName () . matches (” e jbPas s i va t e ”))
and (not m. getName () . matches (”ejbRemove”))
and (not m. getName () . matches (” se tSe s s i onContext ”))) }

/∗ g e t the number o f E n t i t i e s Referenced by t h i s SessionBean ∗/
int getNumberOfEntit iesReference () { r e s u l t = count (EntityBean e | depends
(this , e)) }

/∗∗ re turn an e n t i t y used by t h i s SessionBean ∗/
EntityBean getEntityUsed () { depends (this , r e s u l t) }

}

/∗∗ An EJB 3.0 s t a t e f u l s e s s i o n bean ∗/
class Sta t e fu lSe s s i onBean extends Class {

Sta t e fu lSe s s i onBean () {
e x i s t s (Annotation a | a . getType () . hasQualif iedName (” javax .
e jb ” , ” S t a t e f u l ”) and a = this . getAnAnnotation ())

}
}

/∗∗ An EJB 3.0 s t a t e l e s s s e s s i o n bean ∗/
class Sta t e l e s sSe s s i onBean extends Class {

Sta t e l e s sSe s s i onBean () {
e x i s t s (Annotation a | a . getType () . hasQualif iedName (” javax .
e jb ” , ” S t a t e l e s s ”) and a = this . getAnAnnotation ())

}
}

/∗ An Java EJB Projec t ∗/
class JavaEJBProject extends JavaProject {

int getNumberOfSessionBeans () { r e s u l t = count (Sess ionBean sb | e x i s t s (this .
getASourcePackage ()) and is InPackage (sb , this . getASourcePackage ())) }
int getNumberOfEntit ies () { r e s u l t = count (EntityBean eb | e x i s t s (this .
getASourcePackage ()) and is InPackage (eb , this . getASourcePackage ())) }

}

99

References

[1] Michal Antkiewicz. Framework-Specific Modeling Languages. PhD thesis, University of Waterloo, 2008. 2, 5,
7, 21, 38, 40, 59, 64, 66

[2] Michal Antkiewicz, Thiago Tonelli Bartolomei, and Krzysztof Czarnecki. Automatic extraction of framework-
specific models from framework-based application code. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated software engineering, pages 214–223, New York, NY,
USA, 2007. ACM. 6, 38

[3] Michal Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering of framework-specific modeling
languages. Transactions of Software Engineering,Special Issue on Language Engineering, 2009. Accepted for
publication. Available at http://swen.uwaterloo.ca/~mantkiew/2009-antkiewicz-engineering-fsmls.pdf.
15, 16, 22, 38, 39, 66

[4] Eric Armstrong, Jennifer Ball, Stephanie Bodoff, Debbie Carson, Ian Evans, Dale Green, Kim Haase, and
Eric Jendrook. The java ee 1.4 tutorial: Getting started with enterprise beans, December 2005. http:

//java.sun.com/j2ee/1.4/docs/tutorial/doc/EJB.html. 23

[5] Roland Barcia and Jeffrey Sampson. Building ejb 3.0 applications with websphere application server,
2007. http://www.ibm.com/developerworks/websphere/techjournal/0712_barcia/0712_barcia.html,last
accessed Saturday March 28 2009. 68

[6] S. Boroday, A. Petrenko, J. Singh, and H. Hallal. Dynamic analysis of java applications for multithreaded
antipatterns. SIGSOFT Softw. Eng. Notes, 30(4):1–7, 2005. 11

[7] Daniel Bray. Struts: avoiding some common problems, 2003. http://www.braindelay.com/danielbray/

struts-top-tips/stt.html,last accessed Saturday March 28 2009. 66

[8] William Brown, Hays McCormick, and Scott W. Thomas. Anti-Patterns and Patterns in Software
Configuration Management. John Wiley and Sons, 1999. 11

[9] William Brown, Hays McCormick, and Scott W. Thomas. AntiPatterns in Project Management. John Wiley
and Sons, 2000. 11, 52

[10] William J. Brown, Raphael C. Malveau, Skip McCormick, and Thomas J. Mowbray. AntiPatterns:
Refactoring Software, Architectures, and Projects in Crisis. Wiley Publishing Inc, 1st edition, March 1998.
1, 11

[11] William Crawford and Jonathan Kaplan. J2EE Design Patterns. O’Reilly Publishing, 2003. 12

[12] Krysztof Czarnecki and Ulrich Eisenecker. Generative Programming: Methods, Tools, and Applications.
Addison-Wesley, June 2000. 5

[13] Krysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Formalizing cardinality-based feature models and
their specialization. In Software Process Improvement and Practice, special issue of best papers from SPLC04,
volume 10, pages 7 – 29, 2005. 7

[14] Oege de Moor, Damien Sereni, Mathieu Verbaere, Elnar Hajiyev, Pavel Avgustinov, Torbj orn Ekman, Neil
Ongkingco, and Julian Tibble. .ql: Object-oriented queries made easy. In Generative and Transformational
Techniques in Software 2007, page 78 133. Springer-Verlag Berlin Heidelberg, 2007. 13, 14, 47, 54, 58

[15] Linda DeMichiel and Michael Keith. Enterprise JavaBeans deployment descriptor schema 3.0, May 2006.
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd. 9, 16, 21

100

http://swen.uwaterloo.ca/~mantkiew/2009-antkiewicz-engineering-fsmls.pdf
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/EJB.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/EJB.html
http://www.ibm.com/developerworks/websphere/techjournal/0712_barcia/0712_barcia.html
http://www.braindelay.com/danielbray/struts-top-tips/stt.html
http://www.braindelay.com/danielbray/struts-top-tips/stt.html
http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd

[16] Linda DeMichiel and Michael Keith. JSR 220: Enterprise JavaBeans. Sun Microsystems Inc, 3.0 edition,
May 2006. http://java.sun.com/products/ejb/docs.html. 1, 7, 9, 10, 16, 27, 28, 31, 43, 45

[17] Linda G. DeMichiel. Enterprise JavaBeansTM Specification. Sun Microsystems Inc, 2.1 edition, November
2003. http://java.sun.com/products/ejb/docs.html. 8, 23, 24, 27, 42, 46, 55

[18] Frank Devos. Patterns and Anti-Patterns in Object-Oriented Analysis. PhD thesis, Katholieke Universiteit
Leuven, 2004. 11

[19] Bill Dudney, Stephen Asbury, Joseph K. Krozak, and Kevin Wittkopf. J2EE AntiPatterns. Wiley Publishing
Inc, 2003. 12, 26, 49, 50, 51, 52, 67

[20] IBM Centers for Advanced Studies. Cas toronto. https://www-927.ibm.com/ibm/cas/toronto/index.shtml.
2

[21] H Gallaire and J Minker. Logic and Databases. Plenum Press, New York, 1978. 13

[22] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: elements of reusable
object-oriented software. Addison-Wesley Professional, 1995. 52

[23] H. H. Hallal, E. Alikacem, W. P. Tunney, S. Boroday, and A. Petrenko. Antipattern-based detection of
deficiencies in java multithreaded software. Quality Software, International Conference on, 0:258–267, 2004.
11

[24] Jack D Herrington. Ajax and xml: Five ajax anti-patterns, March 2007. http://www.ibm.com/

developerworks/xml/library/x-ajaxxml3/index.html. 12

[25] Richard C. Holt. Structural manipulations of software architecture using tarski relational algebra. In WCRE
’98: Proceedings of the Working Conference on Reverse Engineering (WCRE’98), page 210, Washington,
DC, USA, 1998. IEEE Computer Society. 69

[26] Daqing Hou and H. James Hoover. Using scl to specify and check design intent in source code. IEEE
Transactions on Software Engineering, 32(6):404–423, 2006. 69

[27] David Hovemeyer and William Pugh. Finding bugs is easy. In ACM SIGPLAN Notices, pages 132–136. ACM
Press, 2004. 69

[28] Alex Iskold, Daniel Kogan, and Goran Begic. Structural analysis for java, 2004. http://www.alphaworks.

ibm.com/tech/sa4j,last accessed Saturday March 28 2009. 68

[29] Ivar Jacobson, Grady Booch, and James Rumbaugh. The unified software development process. Addison-
Wesley Longman Publishing Co., Inc., 1999. 15

[30] Eric Jendrock, Jennifer Ball, Debbie Carson, Ian Evans, Scott Fordin, and Kim Haase. The java ee 5 tutorial,
September 2007. http://java.sun.com/javaee/5/docs/tutorial/doc/. 7, 9, 16, 26, 27

[31] Bill Karwin. Sql antipatterns. MySql Conference and Expo 2008, April 2008. http://en.oreilly.com/

mysql2008/public/schedule/detail/1639. 11, 66

[32] Miroslav Kis. Information security antipatterns in software requirements engineering. In 9th Conference of
Pattern Languages of Programs (PloP), 2002. 11

[33] Jaroslav Kral and Michal Zemlicka. The most important service-oriented antipatterns. In ICSEA ’07:
Proceedings of the International Conference on Software Engineering Advances, page 29, Washington, DC,
USA, 2007. IEEE Computer Society. 11, 66

[34] Yoshihito Kuranuki and Kenji Hiranabe. Antipractices: Antipatterns for xp practices. In Proceedings of the
Agile Development Conference (ADC04), 2004. 11

[35] Anthony Lauder and Stuart Kent. Legacy system anti-patterns and a pattern-oriented migration response.
In Henderson, P. (ed.) Systems Engineering for Business Process Change. Springer-Verlag, 2000. 11

[36] J. W. Lloyd. Practical Advantages of Declarative Programming. In Joint Conference on Declarative
Programming, 1994. 57

[37] Semmle Ltd. Standard libraries: J2ee, 2009. 47, 55, 97

101

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html
https://www-927.ibm.com/ibm/cas/toronto/index.shtml
http://www.ibm.com/developerworks/xml/library/x-ajaxxml3/index.html
http://www.ibm.com/developerworks/xml/library/x-ajaxxml3/index.html
http://www.alphaworks.ibm.com/tech/sa4j
http://www.alphaworks.ibm.com/tech/sa4j
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://en.oreilly.com/mysql2008/public/schedule/detail/1639
http://en.oreilly.com/mysql2008/public/schedule/detail/1639

[38] Dustin Marx. Common struts errors and causes. http://www.geocities.com/dustinmarx/SW/struts/errors.
html,last accessed Saturday March 28 2009. 66

[39] Sun Microsystems. Java ee technologies at a glance, 2008. http://java.sun.com/javaee/technologies/. 7,
9, 12, 24

[40] Trevor Parsons. A framework for detecting performance design and deployment antipatterns in component
based enterprise systems. In DSM ’05: Proceedings of the 2nd international doctoral symposium on
Middleware, pages 1–5, New York, NY, USA, 2005. ACM. 12, 70

[41] G.R. Prakash. Top 10 mistakes in eclipse plugin development, 2009. http://eclipse.dzone.com/articles/

top-10-mistakes-eclipse-plugin,last accessed Saturday March 28 2009. 66

[42] Peter Purich, Debu Panda, and Raghu Kodali. What are enterprise javabeans?, 2007. http://download-uk.

oracle.com/docs/cd/B31017_01/web.1013/b28221/undejbs001.htm. 9

[43] David Reilly. What causes applets to fail, 2006. http://www.javacoffeebreak.com/articles/

greyboxapplets/index.html,last accessed Saturday March 28 2009. 66

[44] Bill Shannon. Enterprise JavaBeans deployment descriptor schema 2.1, November 2004. http://java.sun.

com/xml/ns/j2ee/ejb-jar_2_1.xsd. 23, 24

[45] Steven She. Feature model mining. Master’s thesis, University of Waterloo, 2008. 65, 66

[46] Stefan Slinger. Code smell detection in eclipse. Master’s thesis, Delft University of Technology, 2005. 65, 69

[47] Connie U. Smith. Software performance antipatterns. In Proceedings of the Second International Workshop
on Software and Performance (WOSP2000, pages 127–136. Technology, Inc, 2000. 11

[48] Connie U. Smith. Software performance antipatterns: Common performance problems and their solutions.
In In Int. CMG Conference, pages 797–806, 2001. 11

[49] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF Eclipse Modeling Framework.
Addison Wesley, second edition, 2009. 7, 43

[50] Matthew Stephan and Michal Antkiewicz. Ecore.fmp: A tool for instantiating class models as feature models.
Technical Report 2008-08, Electrical and Computer Engineering, University of Waterloo, 2008. 7, 18, 20, 24,
43

102

http://www.geocities.com/dustinmarx/SW/struts/errors.html
http://www.geocities.com/dustinmarx/SW/struts/errors.html
http://java.sun.com/javaee/technologies/
http://eclipse.dzone.com/articles/top-10-mistakes-eclipse-plugin
http://eclipse.dzone.com/articles/top-10-mistakes-eclipse-plugin
http://download-uk.oracle.com/docs/cd/B31017_01/web.1013/b28221/undejbs001.htm
http://download-uk.oracle.com/docs/cd/B31017_01/web.1013/b28221/undejbs001.htm
http://www.javacoffeebreak.com/articles/greyboxapplets/index.html
http://www.javacoffeebreak.com/articles/greyboxapplets/index.html
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd

	List of Tables
	List of Figures
	Introduction
	Research Contributions
	Thesis Organization

	Background Material
	Framework-Specific Modeling Languages
	Reverse Engineering with FSMLs
	Notation

	Enterprise JavaBeans Architecture
	Antipatterns
	Enterprise JavaBeans Antipatterns

	.QL: An Object-Oriented Query Language

	Engineering the EJB FSML
	Iteration 1: Information from All Sources
	Inception
	Elaboration
	Construction
	Transition

	Iteration 2: EJB 2.1 Projects
	Inception
	Elaboration
	Construction
	Transition

	Iteration 3: Facilitate Antipattern Instance Detection
	Inception
	Elaboration
	Construction
	Transition

	Evaluation
	Sample EJB Projects Tested
	Threats to Correctness of FSML
	Further Limitations of the EJB FSML

	Discussion

	Providing a Resolved Model of an EJB3 Project
	Model Filtration of EJB FSM
	Model Analysis of EJB FSM
	Meta Model of Resolved Model
	Model Analysis

	Evaluation
	Sample EJB Projects Tested

	Discussion

	Detecting Antipattern Instances
	Existing Antipatterns
	Detecting Antipattern Instances via Resolved EJB Model
	Categorizing Antipattern Symptoms for Analysis
	EJB Antipattern Meta model

	Detecting Antipattern Instances via .QL
	Discussion
	Comparison of Techniques
	Combination of Techniques

	Evaluation
	Detection Results
	Limitations

	Future Work
	Round-Trip and Refactoring Capabilities
	Detecting New Antipatterns
	Compare Multiple Projects
	Techniques that Account for Strength of Symptoms
	New Detection Technique on Other Frameworks

	Related Work
	Java EE Development Tools
	Static Code Analysis Tools
	Dynamic Analysis for EJB Antipatterns

	Conclusion
	APPENDICES
	Equivalent Ecore Models for EJB FSML Feature Models
	Iteration 1
	Iteration 2
	Iteration 3

	Equivalent Ecore Models for Resolved Meta Model Feature Models
	Extended J2EE library for Semmle .QL
	References

