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Abstract

In this dissertation, we study the interplay between a firm’s operations strategy,

with regard to its capacity management, and its marketing decision of product dif-

ferentiation. For this, we study a market comprising heterogeneous customers who

differ in their preferences for time and price. Time sensitive customers are willing

to pay a price premium for a shorter delivery time, while price sensitive customers

are willing to accept a longer delivery time in return for a lower price. Firms exploit

this heterogeneity in customers’ preferences, and offer a menu of products/services

that differ only in their guaranteed delivery times and prices. From demand per-

spective, when customers are allowed to self-select according to their preferences,

different products act as substitutes, affecting each other’s demand. Customized

product for each segment, on the other hand, results in independent demand for

each product. On the supply side, a firm may either share the same processing

capacity to serve the two market segments, or may dedicate capacity for each seg-

ment. Our objective is to understand the interaction between product substitution

and the firm’s operations strategy (dedicated versus shared capacity), and how they

shape the optimal product differentiation strategy.

To address the above issue, we first study this problem for a single monopolist

firm, which offers two versions of the same basic product: (i) regular product at

a lower price but with a longer delivery time, and (ii) express product at a higher

price but with a shorter delivery time. Demand for each product arrives according

to a Poisson process with a rate that depends both on its price and delivery time.

In addition, if the products are substitutable, each product’s demand is also influ-

enced by the price and delivery time of the other product. Demands within each

category are served on a first-come-first-serve basis. However, customers for express

product are always given priority over the other category when they are served us-

ing shared resources. There is a standard delivery time for the regular product,

and the firm’s objective is to appropriately price the two products and select the

express delivery time so as to maximize its profit rate. The firm simultaneously
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needs to decide its installed processing capacity so as to meet its promised delivery

times with a high degree of reliability. While the problem in a dedicated capac-

ity setting is solved analytically, the same becomes very challenging in a shared

capacity setting, especially in the absence of an analytical characterization of the

delivery time distribution of regular customers in a priority queue. We develop a

solution algorithm, using matrix geometric method in a cutting plane framework,

to solve the problem numerically in a shared capacity setting.

Our study shows that in a highly capacitated system, if the firm decides to

move from a dedicated to a shared capacity setting, it will need to offer more dif-

ferentiated products, whether the products are substitutable or not. In contrast,

when customers are allowed to self-select, such that independent products become

substitutable, a more homogeneous pricing scheme results. However, the effect of

substitution on optimal delivery time differentiation depends on the firm’s capac-

ity strategy and cost, as well as market characteristics. The optimal response to

any change in capacity cost also depends on the firm’s operations strategy. In a

dedicated capacity scenario, the optimal response to an increase in capacity cost is

always to offer more homogeneous prices and delivery times. In a shared capacity

setting, it is again optimal to quote more homogeneous delivery times, but increase

or decrease the price differentiation depending on whether the status-quo capacity

cost is high or low, respectively. We demonstrate that the above results are cor-

roborated by real-life practices, and provide a number of managerial implications

in terms of dealing with issues like volatile fuel prices.

We further extend our study to a competitive setting with two firms, each of

which may either share its processing capacities for the two products, or may dedi-

cate capacity for each product. The demand faced by each firm for a given product

now also depends on the price and delivery time quoted for the same product by

the other firm. We observe that the qualitative results of a monopolistic setting

also extend to a competitive setting. Specifically, in a highly capacitated system,

the equilibrium prices and delivery times are such that they result in more differ-
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entiated products when both the firms use shared capacities as compared to the

scenario when both the firms use dedicated capacities. When the competing firms

are asymmetric, they exploit their distinctive characteristics to differentiate their

products. Further, the effects of these asymmetries also depend on the capacity

strategy used by the competing firms. Our numerical results suggest that the firm

with expensive capacity always offers more homogeneous delivery times. However,

its decision on how to differentiate its prices depends on the capacity setting of the

two firms as well as the actual level of their capacity costs. On the other hand, the

firm with a larger market base always offers more differentiated prices as well as

delivery times, irrespective of the capacity setting of the competing firms.
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Chapter 1

Introduction

1.1 Time-Based Competition

Increasing market competition has forced modern businesses to introduce new prod-

ucts and ever greater variety at rapid rates, and speed has evolved as the competi-

tive paradigm (Blackburn 1991, Hum and Sim 1996). As speed became a driver of

business success, lead time reduction emerged as a dominant issue in manufacturing

strategy (Van Beek and Van Putten 1987, Suri 1998, Hopp and Spearman 2000).

In fact, the ability to offer customized products with short lead times is becoming

a competitive advantage among suppliers (Andel 2002). This new shift in firms’ fo-

cus is termed as time-based competition. Time-based competition mandates speed

in every aspect of the business. Firms today compete primarily on three com-

ponents of time: product development time, manufacturing lead time, customer

response/delivery time (Kim and Tang 1997). Product development time is the

time a firm needs to transform an idea into a product. Manufacturing lead time is

the time to convert raw materials to finished goods. Response time is the time it

takes to fulfill a customer’s order. Competing in time gives a firm the advantage

of increased market share, increased price premium, and reduced cost (Stalk and

Hout 1990). Shorter product development time gives a firm an early entry into the

market, enabling it to establish itself as a market leader. Shorter manufacturing

1



lead time allows a manufacturer to provide the same level of customer service even

with reduced finished goods and work-in-process inventories, which in turn helps

mitigate the risk of obsolescence and cut inventory costs. Shorter response time

increases customer satisfaction, which further helps repeat business.

In this thesis we focus on service and Make-to-Order (MTO) manufacturing

industries where firms commonly use shorter response time as a competitive prior-

ity. As firms are moving from Make-to-Stock (MTS) to Make-to-Order (MTO) to

reduce costs and increase market responsiveness, quoting effective prices and reli-

able lead times becomes especially important (Martin 2000, Vinas 2006). In service

industries, customers regard total service time as a key concern (Stevenson 1999).

The importance of a shorter response/delivery time has been highlighted in liter-

ature by several stories of their successful implementation. Progressive Insurance,

an automobile insurance company based in Ohio, achieved a sevenfold growth of

sales from $1.3 billion in 1991 to $9.5 billion in 2002 as a result of introducing an

Immediate Response claims system, which dramatically reduced the claim handling

time from 7-8 days to just nine hours (Hammer 2004). Shell Lubricants redesigned

its order fulfillment process, thus reducing the cycle time by 75% and operating

expenses by 45%, and boosting customer satisfaction 105% (Hammer 2004). Ray

(2001) reports the case of an Electronics Manufacturing Service (EMS) company

in Toronto, which specializes in supplying electronic components for a number of

international Original Equipment Manufacturers (OEMs). The OEMs were ready

to pay for many of the lead time reduction initiatives undertaken by the EMS since

it helped them reduce the delivery time to their customers. Atlas Door, a leading

supplier of customized industrial overhead doors in the United States, is able to

fill an order for a door within four weeks, one third the industry average. Respon-

siveness has earned Atlas Door a large customer base, which is often willing to pay

the premium price for quick delivery. Atlas is growing three times faster than the

industry, and is five times more profitable than the industry average (Stalk and

Hout 1990). Thomasville Furniture markets its quick-ship program, under which a

customer order delivered within 30 days against the competitors’ average response
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time of more than three months. Thomasville is growing four times faster than the

industry, and the company is twice as profitable as the U.S. industry average (Stalk

and Hout 1990). Other successful stories can be found in Charney (1991), Stalk

and Hout (1990) and Blackburn (1991).

There are three basic response/delivery time based strategies that firms use

to attract customers: (i) to serve customers as fast as possible, (ii) to encourage

potential customers to get a delivery time quote before placing orders, and (ii) to

guarantee a uniform delivery time to all potential customers (Ray and Jewkes 2004,

So and Song 1998). The second strategy of encouraging customers to get a delivery

time quote is more popular in make-to-order manufacturing industry where firms

dynamically change the quoted delivery time based on the congestion in the system

(Plambeck 2000). Our focus in this thesis is on the strategy of offering a uniform

delivery time guarantee, which is also popular in make-to-order industries but has

been more popularized by retail and service industries as it eliminates the uncer-

tainty in receiving the service. Many firms today use their uniform delivery time

guarantee in their promotion campaigns. For example, Cat Logistics, a subsidiary

of Caterpillar, promises to ship service parts within 24 hours to its clients (Schmidt

and Aschkenase 2004). Ameristock quotes maximum 10 seconds per internet eq-

uity trade (Boyaci and Ray 2003, Zhao et al. 2008). Tradewinds Coffee waives

its shipping charges if the product is not delivered on time (Ho and Zheng 2004).

Domino’s Pizza advertises its 30 minutes delivery guarantee (Charney 1991). In

freight services, Federal Express offers next day mail delivery by 11:00 a.m. (So

and Song, 1998).

1.2 Market Segmentation and Product Differen-

tiation

Shorter delivery time guarantee can have a major impact on both demand as well

as price. Sterling and Lambert (1989), Blackburn et al. (1992), Maltz and Maltz
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(1998) and Smith et al. (2000), besides others, have empirically shown the impact

of delivery time on customer demand. In Industrial markets, a 5% increase in

delivery time can lead to a loss of 24% of the demand from the existing customer

base (Ballou 1998). The importance of speed or shorter lead times has also provided

firms with new business opportunities. Firms try to exploit customers’ sensitivity

to speed/time to extract price premium for the same product by promising them

a shorter delivery time. Amazon.com, for example, charges more than double the

shipping costs to guarantee a delivery in two days against its normal delivery time

of around a week (Ray and Jewkes, 2004). Amazon.com thus tries to serve both

the market segments - one that is price sensitive and is willing to wait for a week

for its delivery, and the other that is more time sensitive and is willing to pay a

premium price for a faster delivery. Firms, like Amazon.com, that differentiate

their products based on delivery times try to exploit heterogeneity in customers’

preference for time and willingness to pay in order to create market segments that

maximize the firm’s revenue (Boyaci and Ray 2003).

Heterogeneity in customers’ willingness to pay for delivery time guarantees may

be inherent in their personalities. Some customers may be price sensitive and may

not mind waiting to be served if that can reduce the price they need to pay. Others

may be more impatient and thus willing to pay a price premium if that will shorten

their waiting time. Heterogeneity may also be caused by situational factors. For

example, whether or not a customer is willing to pay a premium may depend on the

urgency of her need. Ultimately, a customer’s choice from a menu of delivery times

offered will depend on her perception of the price difference relative to the difference

in the delivery times offered. If a particular customer feels the extra price she needs

to pay is worth the improved service she is offered in return, she is likely to select

an express delivery option; otherwise she will select a slower delivery. The services

offered are thus often substitutable, and customers’ decisions can be influenced by

designing a menu that carefully discriminates between the services offered using

differential pricing and delivery times. Market segmentation together with product

differentiation can thus provide firms with a unique business opportunity to make
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greater revenues by influencing some customers to opt for express delivery at a

higher price. For example, Plantgel, a firm selling nutrition gels for plants online,

offers to process an order within a day for an extra $3, against a regular delivery

of 10 days (Zhao et al. 2008). FedEx offers logistic services like “FedEx Next

Flight”, “FedEx First Overnight”, “FedEx Priority Overnight” and “FedEx 2Day”,

each with a different price and delivery time guarantee to target different customer

segments having different sensitivities to price and delivery time. Similarly, UPS

offers “UPS Express Early A.M.”, “UPS Express”, “UPS Express Saver” and “UPS

Expedited” for different categories of customers.

1.3 Product Differentiation and Operations Strat-

egy

A firm’s marketing decisions are often closely linked to its operations strategies.

Different firms in an industry compete with each other by offering better deals,

either in the form of a lower price, better service or both to their customers. In

a make-to-stock industry, a higher service level (a faster delivery) translates into

a better inventory management, whereas in a make-to-order or service industries,

this usually translates into a better (server) capacity/queue management. One

question that naturally arises in a firm’s pursuit of market segmentation and prod-

uct differentiation in a make-to-order or service industry is whether to pool or to

differentiate the facilities used for each market segment. Examples from industry

suggest the use of both, each having its own merits. FedEx, for example, uses

separate facilities for its express and ground services. In the words of Frederick

W. Smith, chairman, president and CEO of FedEx, “the optimal way to serve

very distinct market segments, such as express and ground is to operate highly

efficient, independent networks with different facilities, different cut-off times and

different delivery commitments1”. In contrast, UPS delivers express and ground

1http://www.fedex.com/us/about/express/pressreleases/pressrelease011900.html?link=4
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services using one integrated network. According to UPS,“it is their integrated air

and ground network that enhances pickup and delivery density and provides them

with the flexibility to transport packages using the most efficient and cost-effective

transportation mode or combination of modes2”.

Boyaci and Ray (2003) present other cases from industry that use dedicated ca-

pacities. For example, web hosting and content delivery firms maintain dedicated

servers for customers like news sites whose content for online delivery is time sen-

sitive. This makes possible real time update to their data. Other customers whose

data do not require frequent updates are served using a different set of servers.

Boyaci and Ray (2003) cite another example of a Southeast Asia based printing

company, which uses separate facilities for time sensitive magazines like the Asian

editions of Time, Neewsweek, etc., and separate facilities for books printed in mass

scale. Further, the company uses a dedicated delivery system for time sensitive

materials.

In contrast to the above examples, photo development stores offering one-hour

express service and a cheaper three-day regular service share their capacities for

the two different services. A mobile telephony service provider shares its facilities

with other service providers to provide roaming services to their customers. The

service provider in this case normally charges a higher price for roaming services

compared to the basic service provided to its own customers. Similarly, a third

party logistics service provider shares its fleet of vehicles to serve multiple firms

with different delivery time guarantees (Sinha et al. 2008). Another interesting

example provided by Sinha et al. (2008) is the possible sharing of rail-linked inland

container depots (ICDs), required for inland rail container movement in India,

which was until recently solely managed by Container Corporation of India Ltd.

(Concor). Due to the recent opening up of inland rail container movement to private

players, new firms may seek to lease these ICDs from Concor in the initial years

due to their high infrastructural set up cost.

2http://sec.edgar-online.com/1999/10/20/11/0000940180-99-001230/Section2.asp
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In the academic literature, authors advocate the use of dedicated channels when

different customer segments have very different needs (Fuller et al. 1993, Farris

2002, Smith et al. 2000). In the transportation and logistics industry, for exam-

ple, with a recent dramatic rise in “time-definite” premium transportation services,

many carriers now maintain two totally separate capacities (trucks and informa-

tion systems), one dedicated to time sensitive premium shipments and another

dedicated to normal cost-effective shipments (Farris 2002). Whitt (1999) techni-

cally justifies this by arguing that when customer classes have different service time

distributions, serving them using a common capacity increases the overall coeffi-

cient of variation of the service times, resulting in service quality for time sensitive

customers being degraded by customers with longer service times. Thus there is a

natural motivation for separate express checkout lines in supermarkets. However,

if different classes of customers have the same service time distribution, it is known

that shared capacity is more efficient as it exploits the benefits of pooling (Whitt

1999). In a call center, capacities (equipment and employees) are generally shared

between normal and priority calls, with time sensitive priority customers served on

a priority basis. Similarly, while boarding an aircraft, the same server generally

serves economy as well as business/priority customers, although business class cus-

tomers are prioritized. Offering different delivery time guarantees using a shared

capacity (SC), however, creates supply-side interaction and requires mechanism for

prioritizing orders. This creates operational complexities and potentially increas-

ing costs. Providing different services using dedicated capacities (DC), on the other

hand, requires additional capacity investment (Zhao et al. 2008).

1.4 Research Agenda and Organization of the The-

sis

From the above discussion, we see that time has emerged as a key competitive

priority in today’s business, which is highlighted by several stories of successful
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implementation of time-based strategies. Firms that traditionally competed only

based on costs have gradually shifted their focus to time. This shift in focus has

come from a realization that customers do not only value money but also time,

often to an extent that they are willing to pay a premium to get a faster service.

Consequently, the last decade has witnessed vast literature on time-based compe-

tition. So and Song (1998), Palaka et al. (1998), Ray and Jewkes (2004), Hill and

Khosla (1992), Tsay and Agarwal (2000), So (2000), Allon and Federgruen (2007),

to name a few, have studied the problem of pricing and delivery time decisions for

make-to-order/service industries in a time sensitive market. In this thesis, we aim

to build upon some of the existing works to further contribute to this literature

by identifying research avenues that are still unexplored. As discussed above, we

find that often heterogeneity exists in customers’ sensitivity to time (and their will-

ingness to pay), which firms try to exploit by offering the same basic product or

service with different delivery time guarantees and at different prices. However, we

observe that different firms doing this may use very different operations strategies.

For example, some firms use a dedicated set of resources for each market segment,

while others pool their resources to serve the different market segments. This leads

to the basic research question: how does the operations strategy, specifically capac-

ity strategy, of a firm affect its pricing and delivery time differentiation strategy in

a time sensitive market. This is the central issue we try to investigate in this thesis.

The rest of the thesis is organized as follows. In Chapter 2, we define our

research problem in detail, and develop a basic modelling framework of a firm’s

pricing and delivery time decisions in a monopolistic setting. The mathematical

models and the solution methods developed in Chapter 2 allow us to compare the

price and delivery time differentiation strategies of a firm under dedicated and

shared capacity settings. We study this problem extensively in chapter 3 to derive

important managerial insights. In Chapter 4, we further extend our modelling

framework to a competitive setting. We address the same research question to

investigate if and how market competition affects our results. The competitive

models developed in Chapter 4 are studied extensively in Chapter 5. Finally, we
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summarize our work and provide directions for future research in Chapter 6. We

differ slightly from the usual convention in our presentation of this thesis in that

we do not have a separate chapter for literature review. We instead dedicate a

separate section on literature review in each of the Chapters 2 and 4. This allows

us to position our work better with respect to the literature on monopolistic and

competitive settings, which are reviewed separately in these two chapters.

1.5 Research Contribution

• We extend the existing literature on product differentiation in a segmented

market by developing a modelling framework in a shared capacity setting. To

the best of our knowledge, it is the first attempt to study product differen-

tiations in a shared capacity framework. This allows us to study the effects

of a firm’s capacity strategy (dedicated versus shared) on its price and de-

livery time differentiation strategies. It also allows us to study the effect of

substitution between different market segments on the product differentiation

strategies, and how it interacts with the capacity strategy of a firm in shaping

its optimal differentiation decisions.

• We further extend our modelling framework to study price and delivery time

decisions in a competitive setting. This allows us to investigate if, and how,

the capacity strategy of firms affect their product differentiation strategies

in presence of market competition. This also allows us to better understand

the effects of competition, per se, on price discrimination, given that research

thus far has produced very contradictory results.

• Our study makes a significant technical contribution to the study of price and

delivery time decisions by presenting a novel solution method, which links

matrix geometric method to a cutting plane algorithm, to solve a complex

mathematical model for the shared capacity setting.
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• Our study provides several important insights of special interest to operations

managers.

Some of the important managerial insights we generate from our study can be

summarized as:

• A firm’s capacity cost plays a major role in determining the relative product

differentiation in the two capacity settings. Whereas the relative sensitivities

of customers to price and time determines the effect of product substitution

on product differentiation.

• In a high capacity cost environment, a firm with shared capacity should of-

fer products with greater differentiation (both in terms of prices and delivery

times) than a firm with dedicated capacities, irrespective of whether the prod-

ucts are substitutable or not.

• When a firm selling two non-substitutable products in independent markets

decides to make both products available to all customers (thus introduc-

ing substitutability), it should reduce its price differentiation, irrespective

of whether it operates under shared or dedicated capacity regime. However,

as regards delivery times, whether the products should be more differentiated

or more homogeneous depends on the firm’s capacity strategy (as well as on

its marginal capacity cost and market characteristics).

• The optimal response to any change in the capacity cost depends on the ca-

pacity strategy as well as the existing level of capacity cost. As the capacity

cost increases, the optimal strategy for a firm with dedicated capacities is to

offer a more homogeneous pricing and delivery time scheme for both substi-

tutable and non-substitutable products. A shared capacity firm should also

always offer more homogeneous delivery times, but needs to increase or de-

crease the price differentiation, depending on whether the status-quo capacity

cost is high or low, respectively.
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• Pure price competition decreases individual prices as well as price differen-

tiation. Whereas when firms use delivery times, in addition to prices, as a

strategic variable to compete, the effect of competition on product differenti-

ation depends on customer behavior.

The second insight above has major implications for FedEx and UPS who use ded-

icated and shared capacity strategy, respectively. We show that the differentiation

policies adopted by these firms indeed support our results. The third insight is

important for firms thinking about modifying the customer access to their product

offerings. The fourth insight is relevant in view of volatile fuel prices, which trans-

lates into fluctuations in capacity costs, and how firms like FedEx and UPS should

change their product differentiation in order to adapt to this new reality.
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Chapter 2

Monopolistic Market: Models &

Solutions

2.1 Introduction

Progressive Insurance, an automobile insurance company based in Ohio, achieved a

sevenfold growth of sales from $1.3 billion in 1991 to $9.5 billion in 2002 as a result

of introducing an Immediate Response claims system, which dramatically reduced

the claim handling time from 7-8 days to just nine hours (Hammer 2004). Shell

Lubricants redesigned its order fulfillment process, thus reducing the cycle time

by 75% and operating expenses by 45%, and boosting customer satisfaction 105%

(Hammer 2004). The above examples highlight the importance of response/delivery

time, in addition to pricing policy, to a firm’s success. Firms, especially in service

and make-to-order manufacturing sectors, are increasingly using explicit delivery

time guarantees as a marketing strategy (Hammer 2004, Liu et al. 2007, Zhao

et al. 2008). One form of delivery time guarantee, commonly used in retail and

service industries, is to announce the delivery time in advance to all prospective

customers1. For example, Cat Logistics, a subsidiary of Caterpillar, promises to

1Another form of time guarantee, popular in make-to-order manufacturing industry, is to

dynamically change the quoted delivery time based on congestion in the system when a demand
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ship service parts within 24 hours to its clients (Schmidt and Aschkenase 2004).

Such guarantees are also used by firms like Ameristock, FedEx, UPS and Domino’s

Pizza (Zhao et al. 2008, Boyaci and Ray 2003).

Keeping the above discussion in mind, we study a setting where the end cus-

tomer demand is sensitive to both the price charged and the delivery time guarantee

offered. In that case, a firm needs to address two basic issues. The first is related

to marketing, and involves determining whether to offer the same product to all

its customers (i.e., guarantee the same delivery time at the same price for all), or

to offer price-and-delivery-time differentiated products (different delivery times at

different prices). Offering the same product/service with different different delivery

time guarantees at different prices is popular when customers are heterogenous in

their sensitivity to price and time. For example, Plantgel, a firm selling nutrition

gels for plants online, offers to process an order within a day for extra $3, against

a regular delivery of 10 days (Zhao et al. 2008). FedEx offers logistic services like

“FedEx Next Flight”, “FedEx First Overnight”, “FedEx Priority Overnight” and

“FedEx 2Day”, each with a different price and delivery time guarantee to target

different customer segments having different sensitivities to price and delivery time.

Similarly, UPS offers “UPS Express Early A.M.”, “UPS Express”, “UPS Express

Saver” and “UPS Expedited” for different categories of customers. Obviously, man-

agers also need to decide on the optimal prices and delivery times for whichever

policy they choose. A firm’s marketing decision cannot be decoupled from its op-

erations strategy in a capacitated environment. So, if a firm decides to guarantee

different delivery times to its different customer segments, the second choice to

be made is whether to dedicate separate capacities for each market segment or to

pool/share the capacities used for all segments, and what will be the corresponding

optimal capacity level.

We study firms offering a menu of differentiated products/services to exploit

heterogeneity in customers’ preference for time and willingness to pay. Such firms

arrives (Plambeck 2004).
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then need to deal with the issue of whether a given product be accessible to all

customers, or need to be customized (and available) for only one segment. For

example, the price and delivery time combinations that Dell quotes to government

and health-care companies are very different from what they quote to individuals

(MacWilliams 2001). In this case, Dell designs a specific service for each mar-

ket segment, which is not available to the other. Dell’s options are, therefore,

non-substitutable, and the demand for each segment is independent of the other.

Similarly, in the steel, chemical and consumer product industries, the price and

delivery time quoted to a customer is tailored based on its geographical location

and industry segment (Plambeck 2004 and references therein). On the other hand,

FedEx and UPS offer logistic services like “FedEx First Overnight”, “FedEx 2Day”,

“UPS Express”, “UPS Express Saver”, etc., each with a different guaranteed de-

livery time, to every customer willing to pay the corresponding price. In this case,

customers self-select the (delivery time) option based on their preference for speed

and willingness to pay. This allows them to switch their preferences, depending on

the relative values of prices/delivery times for the products and/or their situational

needs. For example, a customer that is otherwise price sensitive may opt for a

faster delivery (and more expensive) option in case of an emergency. The menu of

products offered are thus substitutable, creating a demand-side interaction between

the different market segments.

Like the demand side, the supply side for different customer segments may also

be independent or related to each other depending on the operations (capacity)

strategy used by the firm. By operations (specifically capacity) strategy, we mean

whether there are dedicated capacities (DC) for each customer segment or there

is one shared capacity (SC) for all segments. Both strategies are used in practice.

FedEx, for example, uses separate facilities for its express and ground services. In

contrast, UPS delivers express and ground services using one integrated network.

Photo development stores offering express and regular services also share capacity

used for the two services. Note that offering different delivery time guarantees using

a shared capacity creates a supply-side relationship between the different market
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segments a firm serves, and thus requires mechanisms for prioritizing orders. This

creates operational complexities, potentially increasing costs. Providing different

services using dedicated capacities implies that there is no such interaction, but

requires additional capacity investment (Zhao et al. 2008).

Our primary objective in this thesis is to understand the interaction between

(demand-side) product substitution and (supply-side) operations strategy in a ca-

pacitated environment, and how it affects a firm’s optimal product differentiation

policy. Specifically, we study the following issues.

• How does the operations strategy (dedicated or shared capacity) of a firm

affect its optimal price and delivery time decisions for the two products,

and hence its product differentiation policy? Are these effects impacted by

whether there is a demand-side interaction or not (i.e., whether the products

are substitutable or non-substitutable)?

• How does the substitutability between the products a firm offers shape its

optimal differentiation decisions, and are these effects influenced by the firm’s

capacity strategy?

• How does the optimal product differentiation strategy of a firm change with

increase in capacity cost under different demand and supply conditions?

In order to answer the above questions, we analyze and compare the four scenarios

shown in Table 2.1. Comparison of the two scenarios under the dedicated and

shared capacity columns demonstrates the effect of product substitution under two

different capacity regimes. On the other hand, comparison of the two scenarios in

the “without substitution” and “with substitution” rows shows the effect of the

capacity strategy, depending on whether the products are substitutable or not.

Note that, although our focus is on comparing different scenarios, our work also

distinguishes itself by analyzing the problem of optimal product differentiation in

a shared capacity setting, which has not been studied much in the literature (there

are some studies in this setting but with very different objectives).
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Table 2.1: Different scenarios

Dedicated capacity ↓ Shared capacity ↓

Without Non-substitutable products; Non-substitutable products;

substitution → dedicated capacity shared capacity

With Substitutable products; Substitutable products;

substitution → dedicated capacity shared capacity

We first derive the optimal delivery times that the firm should guarantee and

the optimal prices it should charge for the two products (consequently, the opti-

mal level of product differentiation) as well as the optimal capacity level it should

have/build2 for each scenario. Note that while the dedicated capacity cases can

be solved by functional optimization, for the shared capacity scenarios we utilize

a novel methodology involving the matrix-geometric, the cutting plane and the

golden section search methods.

Comparison of the results of the four scenarios for various levels of capacity cost

enables us to illustrate the individual and joint effects of product substitution and

operations strategy on the optimal product differentiation policy of the firm. The

rest of the chapter is organized as follows. In §2.2, we briefly review the related

literature. §2.3 defines the modelling framework, followed by a discussion on the

solution methodology in §2.4. Analysis of results to draw important managerial

insights is deferred to chapter 3.

2.2 Related Literature

The literature related to our study can be categorized into four groups, based on

whether they consider demand-side and/or supply side interaction (like in Table

2.1).

2To satisfy the promised delivery times with a certain degree of reliability.
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The papers in the first category study a single product, and hence product dif-

ferentiation or substitutability is not an issue. These papers can thus be categorized

as those that deal with “non-substitutable products; dedicated capacity” scenario.

These include So and Song (1998), Palaka et al. (1998) and Ray and Jewkes (2004).

All these papers study optimal pricing, delivery time and capacity decisions, while

modelling the firm’s operations as a single server queue. So and Song (1998) use

an M/M/1 queueing model for a firm serving a stream of demands with a mean

that has log-linear (Cobb-Douglas) relationship with the price charged and the de-

livery time guaranteed. They propose a mathematical framework to understand

the interrelations among the pricing, delivery time and capacity decisions. They

characterize the optimal decisions, and use numerical results to provide managerial

insights into the effects of a firm’s different operating characteristics on its optimal

strategy.

Palaka et al. (1998) use a similar framework but with a linear relationship

between the mean demand, price and the delivery time. They also take into account

the work-in-process and lateness penalty costs. Ray and Jewkes (2004) further

extend this line of work by explicitly modelling price as a function of delivery time,

besides demand being a function of price and delivery time. Hill and Khosla (1992)

also study a similar tradeoff between price and delivery time but in a deterministic

framework.

Besides these, So (2000), Tsay and Agarwal (2000), Allon and Federgruen (2007)

and Pekgun et al. (2006) also study similar problems but they are in a competitive

setting, where two firms selling a common product compete on price and delivery

time. Again, their models do not study product differentiation. We review these,

and other papers using a competitive framework, in chapter 4.

The second category of papers takes into account product differentiation and

substitution among multiple products, and assume that the products are processed

using dedicated capacities. Boyaci and Ray (2003, 2006) are examples of such

“substitutable products; dedicated capacity” scenario papers. Boyaci and Ray
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(2003) study a firm selling the same product to two customer classes with different

delivery time guarantees and at different prices. The firm uses dedicated facilities,

each of which is modelled as an M/M/1 queueing system, to serve the two customer

classes. The mean demand from each customer class is modelled as a linear function

of its own price and delivery time as well as price and delivery time quoted to the

other class. They develop a mathematical model that jointly determines the prices,

delivery times and the capacity decisions, and study scenarios where the firm is

constrained in capacity for none, one or both the customer classes.

Boyaci and Ray (2006) further extend this work to model the dependence of

demand rates on delivery reliability guarantees (with which customers are served

within their promised delivery times), in addition to prices and delivery times. Zhao

et al. (2008) also use a similar modelling framework, but focus on comparing two

different delivery time strategies - providing one uniform guaranteed delivery time

(and charging one price) for all customers versus providing different guaranteed

delivery times (and charging different prices) for different customer segments. Fur-

ther, rather than explicitly modelling the demand rates for the two customer classes,

they use an optimization model for the customers’ product selection problem.

There is another stream of literature that models scenarios where capacities are

shared for serving different customer segments. For example, Dewan and Mendel-

son (1990), Mendelson and Whang (1990), Stidham (1992), Afeche (2004), Afeche

and Mendelson (2004) and Katta and Sethuraman (2005) study pricing and/or ca-

pacity selection issues for heterogeneous customers in a queuing context, wherein

all customers are served by the same service facility. Since they do not deal with

substitution issue, these papers fall under the “non-substitutable products; shared

capacity” category. In general, the problem considered in these papers, except

Afeche (2004), is to design an incentive compatible pricing and scheduling policy

that maximizes the expected net value of the jobs processed by the system. In

contrast, our model has the firm’s profit maximization as its objective. Moreover,

these models employ user delay costs, which is fundamentally different from our
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approach of using a delivery time guarantee. In further contrast, we do not ex-

plicitly model the customers’ utility/value functions but assume that the demand

function is an outcome of some underlying process whereby customers select the

service class that maximizes their utility3.

The work that is closest to ours in this category is by Sinha et al. (2008). They

consider an operational setting in which a resource/server, which already serves an

existing class (called primary class) of customers, is shared with a new class (called

secondary class) of customers. The resource owner uses a delay dependent priority

discipline (see Kleinrock 1964, Kanet 1982) to serve the two classes of customers.

The problem is to determine the optimal price and the guaranteed delivery time

(called quality of service) to the secondary customers, and the optimal parameter

that specifies the relative delay dependent priority of one class of customers over

the other. They use a linear demand function for the secondary class customers,

which depends on its own price and delivery time, but is independent of the price

and delivery time already being offered to the existing customers. In this sense,

the services offered to the two customer classes are non-substitutable. They also

assume that the resource owner has already entered into a long term agreement

with the primary customers, and hence the price and delivery time offered to them

are assumed as fixed. In contrast, we consider prices of both the classes as decision

variables. Further, they consider service levels based on average delivery times of

served customers, which is very different from our definition of service level based

on probability distribution of the delivery times of served customers. This does

not provide any bound on instances of unusually long delivery times. It is quite

possible then that a large portion of the demands are actually not served within their

promised delivery times, even if the promised delivery times are met on average.

We, therefore, assume that firms select their capacity levels so as to fulfill their

promised delivery times with a high level of reliability (generally 99%). This makes

the delivery time guarantees more attractive, although it makes the problem a lot

3Liu et al. (2007) shows the equivalence between a utility function and the corresponding

demand model.
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more challenging to solve. In further contrast, they assume the installed capacity

as fixed, whereas we assume that it is possible to alter the processing capacity in

the short term by, for example, adding a shift or installing additional equipment.

Lastly, Ata and Van Mieghem (2008) study the conditions under which het-

erogeneous customers should be served by dedicated resources or by an integrated

network through partial pooling of resources. In their setting, customer segments

are served by capacities dedicated for each, but capacities can also be dynamically

substituted. Their main goal is to understand the value of network integration.

We can place this paper in the “substitutable products; shared capacity” cell since

they consider resource substitution. However, note that they do not deal with

product substitution or pricing/delivery time decisions, and so do not capture the

interaction between product substitution and capacity strategy.

Our work also fits in the stream of price discrimination, extensively studied in

the Economics (Industrial Organization) literature. The case of “without substitu-

tion” corresponds to third-degree price discrimination wherein different customers

are quoted different prices based on their distinctive characteristics. Whereas

the case of “with substitution” corresponds to second-degree price discrimination

wherein customers are allowed to self-select from a given menu of options. More

discussion on price discrimination can be found in Talluri and Van Ryzin (2004).

Our study complements the existing literature on pricing and delivery time de-

cisions by delineating the individual and joint effects of supply and demand side

interactions in a capacitated environment. This allows us to generate new man-

agerial insights regarding how the optimal product differentiation strategy for firms

should vary depending on their operations strategy, product offering portfolio, mar-

ket characteristics and capacity costs.
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2.3 Decision Models

2.3.1 Modelling Assumptions

We model a Make-to-Order (MTO) or a service firm, and hence delivery time is a

key element to customer service. The firm offers a single product/service (hence-

forth called product) in a market comprising heterogenous customers that differ in

their preferences for speed and willingness to pay. The firm exploits this hetero-

geneity in customers’ preferences to create market segments in which customers are

quoted a menu of different delivery times and corresponding prices for (otherwise)

the same product. For simplicity, we assume the market is segmented into two cus-

tomer classes, indexed by k ∈ {h, l}. Class h customers are high priority/express

customers who are more time sensitive and are willing to pay a price premium

for a shorter delivery time. Class l customers are low priority/regular customers

who are more price sensitive and are willing to accept a longer delivery time for a

price discount. pk and Lk denote the price and delivery time offered by the firm to

customer class k ∈ {h, l}.

Demand from customer class k arrives according to a Poisson process with rate

λk(pk, Lk, k ∈ {h, l}), which depends not only on its own absolute price and deliv-

ery time but also on its price and delivery time quoted relative to the other class.

The firm can, therefore, attract new customers through price reductions and/or by

offering shorter delivery times. Lowering the price and/or delivery time for one

class can also induce customers to switch preferences. We assume that customers

cannot observe the congestion levels of the firms, and their choices are only based

on the prices and delivery times announced by the firms. The demand rates are

modelled using the following linear functions, inspired by Tsay and Agrawal (2000)

and Boyaci and Ray (2003):

λh = a− βh
p ph + θp(pl − ph)− βh

LLh + θL(Ll − Lh) (2.1)

λl = a− βl
ppl + θp(ph − pl)− βl

LLl + θL(Lh − Ll) (2.2)
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where,

2a : market base

βk
p : sensitivity of class k demand to its own price

βk
L : sensitivity of class k demand to its own guaranteed delivery time

θp : sensitivity of demand to inter-class price difference

θL : sensitivity of demand to inter-class delivery time difference

2a parameterizes the total market base. Mathematically, it is the total demand

when price and delivery time offered to each customer class is zero. It captures the

aggregate effect of all the factors other than price and delivery time on demand. For

logistics service providers like FedEx and UPS, for example, these other factors may

include factors like the convenience of pick-up, the ease with which deliveries can

be tracked and the likelihood of the packages being damaged. For internet service

providers, these may include factors like the frequency of service interruptions and

the quality of the support staff (Allon and Federgruen 2008). Our demand model

generalizes the one used by Tsay and Agrawal (2000) and Boyaci and Ray (2003) by

using different sensitivities (to price and time) for regular and express customers.

We feel it is necessary to use different sensitivities for the two customer classes as

this is essentially what differentiates express customers from regular ones. However,

the sensitivities of demand switchovers (θp and θL) are still the same across the two

classes, as is required to make the total market size invariant to changes in these

sensitivities. Our demand model differs from Pekgun et al. (2006) for similar

reasons. We make the following assumptions regarding the market parameters:

Assumption 2.1. βk
p > 0, βk

L > 0, θp ≥ 0, θL ≥ 0, βh
p < βl

p and βh
L > βl

L.

This is to ensure that demand from a market segment is decreasing in its own price

and delivery time, and is increasing in price and delivery time offered to the other

segment. βh
p < βl

p and βh
L > βl

L are required by definition of the two customer

classes.

Assumption 2.2. The market base a is sufficiently large.
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This assumption is required, as we will see in §2.4, to ensure that the optimal

prices and demands are non-negative and that the optimal delivery time offered to

time sensitive express customers is smaller than what is offered to price sensitive

customers, i.e., Lh < Ll.

The exact behavior of the market depends on the specific combination of market

parameter values. One extreme case is when θp = θL = 0, which models the

“without substitution” scenario. In a “with substitution” scenario, two cases of

special interest, as we see in chapter 3, are described as:

• Time Difference Sensitive (TDS): We say the market is TDS type when the

relative sensitivity of customers to the difference in delivery times (with re-

spect to their own delivery time) is greater than their relative sensitivity to the

price difference (with respect to their own price), such that θL/βk
L > θp/β

k
p ,

k ∈ {h, l}.

• Price Difference Sensitive (PDS): We say the market is PDS type when the

relative sensitivity of customers to the price difference (with respect to their

own price) is greater than their relative sensitivity to the difference in delivery

times (with respect to their own delivery time), such that θp/β
k
p > θL/βk

L,

k ∈ {h, l}.

The choice of a linear demand function arises partly from its simplicity, which

makes the model tractable, and allows us to obtain qualitative insights without

much analytical complexity. Besides, it also possesses some desirable properties

that are not exhibited even by the more popular Cobb-Douglas function (Palaka

et al. 1998). This is clear from the expressions for the price and delivery time

elasticities of demand:

Epk
=− dλk

dpk

pk

λk

=
(βk

p + θp)pk

a− βk
ppk + θp(pj − pk)− βk

LLk + θL(Lj − Lk)
, k, j ∈ {h, l}, j 6= k
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ELk
=− dλk

dLk

Lk

λk

=
(βk

L + θL)Lk

a− βk
ppk + θp(pj − pk)− βk

LLk + θL(Lj − Lk)
, k, j ∈ {h, l}, j 6= k

Clearly, the price elasticity of demand (Epk
) for a given segment k is increasing in

its own delivery time Lk. Similarly, the delivery time elasticity of demand (ELk
) for

a given segment k is increasing in its own price pk. These properties are desirable

since we expect customers to be more sensitive to their price when they have longer

waiting times, and more sensitive to their delivery time when they are paying a

higher price.

We assume the time it takes to serve a demand from class k is exponentially dis-

tributed with rate µk, k ∈ {h, l}. The service facility is thus modelled as an M/M/·

queuing system. M/M/· queuing model is a traditional abstraction employed to

make the problem tractable, especially when the emphasis is more on manage-

rial insights than on accuracy (Palaka et al. 1998). Moreover, Lariviere and Van

Mieghem (2004) have shown that self interested customers try to spread themselves

out as much as possible and the arrival pattern this generates approaches a Pois-

son process as the number of customers and arrival points gets large. We further

assume customers within each class are served on a first-come-first-serve (FCFS)

basis. The firm can invest in its installed capacity to increase its processing rate

µk. Since the pricing and delivery time decisions are generally short-term operating

decisions, the capacity decision we consider here typically refers to expanding short

term capacity in the existing facilities such as adding a shift or installing an addi-

tional equipment, rather than some long-term strategic decisions such as building

new service facilities. We assume there is no economies of scale in investing in ca-

pacity. So a unit increment in µk per unit time always costs $A. A may be different

for different customer classes if they are served by different service capacities (e.g.,

express customers served by airplanes and regular customers served by trucks in a

service logistics industry) or they may be equal if both the classes are served by the

same service capacity. Using the same marginal capacity cost for the two customer

classes, however, allows a meaningful comparison between the dedicated and the

24



shared capacity settings. We also assume that the firm incurs the same operating

cost of $m in serving a customer of either class.

The industry is assumed to have established a standard delivery time Ll for

regular customers. The objective of the firm is to set the guaranteed delivery

time Lh for express customers and the prices ph and pl for both classes, so as to

maximize its profit per unit time. Obviously, a firm’s pricing and delivery time

decisions depend crucially on its capacity decision. Firms may charge premium

prices by committing to shorter delivery times. This, however, puts pressure on the

firm’s available resources to reliably meet its promised delivery times. Failure to

meet the guarantee may lead to penalties, either in the form of a discount, partial

refund or an expedited delivery without additional charge to the customer (Liu et al.

2007). FedEx, for example, offers a money-back guarantee for every U.S. shipment

that is even 1 minute late compared to its guaranteed delivery time 4. Similarly,

Black Angus Restaurants offer their customers free lunches if not served within 10

minutes (Charney 1991). A striking example is the case of seven online retailers,

including Macys.com, Toysrus.com and CDNOW, that paid fines to the tune of $1.5

million to settle a Federal Trade Commission lawsuit over late deliveries made in

1999 (Pekgun 2007). The firm, therefore, needs to simultaneously select the optimal

service rates (i.e., capacities) µh and µl in order to meet the guaranteed delivery

times with at least a minimum level of reliability α (called the target service level).

The target service level α is set by the management as an internal performance

measure, which is not quoted to the customers. Thus, we do not explicitly consider

its impact on the mean demand in our demand model (2.1) and (2.2). However,

since failure to honor its promised delivery time often leads to penalties for the

firm, α is set to a high value, close to 1. This means that the chances of a customer

of class k having to wait longer than Lk are very small. A schematic representation

of the model is shown in Figure 2.1.

4http://www.fedex.com/us/services/options/mbg.html
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Figure 2.1: Schematic representation of a monopolistic model

Notation

k : index for customer class; k ∈ {h, l}

λk : mean demand rate from customer class k (units/unit time)

µk : mean processing rate for customer class k (units/unit time)

pk : price charged to customer class k ($/unit)

Lk : delivery time quoted to customer class k (time units)

Wk : steady state actual sojourn (waiting + service) time of customer class

k (time units)

α : target service level (no unit)

Sk(Lk) : actual service level achieved for quoted delivery time Lk, i.e., P(Wk ≤

Lk) (no unit)

m : unit operating cost ($/unit)

A : marginal capacity cost ($/unit)
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2.3.2 Mathematical Model

The firm’s problem of determining the optimal prices, delivery times and processing

rates can be mathematically stated as:

PDTDP :

max
ph,pl,Lh,µh,µl

π = (ph −m)λh + (pl −m)λl − A(µh + µl) (2.3)

subject to:

Lh < Ll (2.4)

ph, pl, λh, λl, µh, µl, Lh ≥ 0 (2.5)

Stability condition (2.6)

Sh(Lh) = P (Wh ≤ Lh) ≥ α (2.7)

Sl(Ll) = P (Wl ≤ Ll) ≥ α (2.8)

where λh and λl are given by (2.1) and (2.1) respectively. Constraint (2.4) requires

that the guaranteed delivery time for high priority customers be shorter than that

for the other class. Constraint set (2.5) is needed to define a realistic problem

setting. Constraint (2.6) is the stability condition for the queuing system, which

models the service facility at the firm. Later, we will see that, irrespective of the ca-

pacity setting, this condition is automatically satisfied by the remaining constraints,

and hence excluding this constraint leaves the feasible region of the problem un-

changed. Constraints (2.7) and (2.8) are delivery time reliability constraints (also

called service level constraints), which say that the steady state actual delivery time

Wh (resp., Wl) of a customer should not exceed the guaranteed delivery time Lh

(resp., Ll) with a probability of at least α. We call the above mathematical model

a Pricing and Delivery Time Decision Problem (PDTDP).

A special case of PDTDP is where the delivery times are fixed such that the

prices and capacities are the only decisions made by the firm. This is relevant to

situations where a firm may face a significantly higher stickiness for their delivery

time decisions compared to their ability to vary prices (Allon and Federgruen 2007).
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A relatively higher stickiness for delivery time decisions may arise, for example,

when the services are partly outsourced to a third party. For example, a logistics

firm like FedEx may maintain its own fleet of airplanes for international or inter-

state deliveries but beyond that it may outsource its delivery services to a third

party logistics service provider. In such a situation, its delivery times are dictated

partly by its service level agreement with the third partly logistics service provider.

Any change in its delivery time guarantee to its own customers thus requires a

renegotiation of its service level agreements with the third party logistics service

provider. In such a situation, the firm may not be able to revise its delivery time

decisions as frequently as it can revise its prices.

Higher stickiness in delivery time decisions may also arise because of human

resource practices or labor contracts that prohibit frequent changes to installed

capacity via changes to workforce. Or it may arise due to long lead times for tech-

nology purchases (Allon and Federgruen 2007). In such a case, a firm may fix a

part of its capacity investment, which varies with its guaranteed service level, by

maintaining a fixed delivery time standard over a longer horizon. For example, air-

line call centers are designed to handle 80% of the economy class passengers within

20 seconds. Airlines have stuck for years to the same waiting time standard, while

willing to change prices daily (Allon and Federgruen 2007). A significantly high

stickiness in delivery time decisions may prevent a firm from frequently adjusting

its delivery times in response to any change in market parameters (β’s and θ’s) or in

its operating parameters (m, A). Under such situations, a firm optimizes its prices,

treating its delivery times as fixed. We call this special case a Pricing Decision

Problem (PDP).

Note that the above model ((2.1) - (2.8)) is a general one that is applicable

to all the scenarios in Table 1. In what follows, we develop the exact framework

for each of the four scenarios by specifying: i) the form of constraints (2.6)-(2.8)

depending on the capacity strategy used (shared or dedicated), and ii) the form of

the demand function that signifies absence or presence of product substitution.
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Dedicated Capacity Setting

For a dedicated capacity setting, where each customer class is served by a separate

M/M/1 server, the sojourn time distribution for either class of customers is known

to be exponential. In this case, there is a separate stability condition for each of

the queues. Hence, constraints (2.6), (2.7) and (2.8) can be expressed as:

λk − µk < 0, k ∈ {h, l} (2.6DC)

Sh(Lh) = P (Wh ≤ Lh) = 1− e(λh−µh)Lh ≥ α (2.7DC)

Sl(Ll) = P (Wl ≤ Ll) = 1− e(λl−µl)Ll ≥ α (2.8DC)

The two demand scenarios, substitutable and non-substitutable products, can be

obtained with θp > 0, θL > 0 and θp = θL = 0, respectively, in (2.1) and (2.2). We

denote the resulting models of Pricing and Delivery Time Decision Problem in a

Dedicated Capacity setting by PDTDPDC .

As noted above, although we have explicitly included (2.6DC) in PDTDPDC to

ensure stability of the system, this is implicitly satisfied by the delivery time reli-

ability constraints (2.7DC) and (2.8DC)). This is clear from the following alternate

representation of constraints (2.7DC) and (2.8DC):

µk ≥ − ln(1− α)

Lk

+ λk, k ∈ {h, l}

For a practical problem, Ll is finite, and Lh is also finite since Lh < Ll for any

feasible solution. For a finite Lk,
ln(1−α)

Lk
< 0 since α < 1. This implies that any

solution that satisfies (2.7DC) and (2.8DC) will automatically satisfy the stability

condition: µk > λk, k ∈ {h, l}.

Shared Capacity Setting

The firm’s choice of shared capacity is modelled using a single server, which serves

both customer classes employing a simple fixed priority scheme that always gives

priority to time-sensitive customers. In other words, the firm reserves its capacity
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to serve high priority customers who pay a premium price, and uses the remaining

capacity to serve low priority customers. This somewhat reflects the practice at

UPS (Ata and Van Mieghem 2008). Dedicated capacities with partial pooling more

accurately model the operational setting used by UPS where fast airplanes can serve

both express and regular markets, while the slow trucks can serve only the regular

market. We use shared capacity (with complete pooling) to study the extreme

scenario and compare it with the dedicated capacity setting, typical of FedEx. The

fixed priority scheme is also used by Plambeck (2004) where premium customers

are given priority in scheduling. Customers within each class are served on a first-

come-first-served (FCFS) basis. In this paper, we use a preemptive priority scheme,

but the analysis can easily be extended to a non-preemptive priority discipline.

For a shared capacity setting, the sojourn time distribution Sh(·) for high pri-

ority customers in a preemptive priority queue is known to be exponential (So

2000). Hence, the delivery time reliability constraint (2.7) has the same analytical

representation as that for the dedicated capacity setting. However, a closed form

expression for the sojourn time distribution Sl(·) for low priority customers, appear-

ing in equation (2.8) of PDTDP, is not known (Abate and Whitt 1997). We assume

the single server serves customers of either class at the same rate µh = µl = µ, which

is a decision variable. Constraints (2.6) and (2.7) in a shared capacity setting can

then be expressed as:

λh + λl − µ < 0 (2.6SC)

Sh(Lh) = P (Wh ≤ Lh) = 1− e(λh−µ)Lh ≥ α (2.7SC)

We discuss how we tackle the issue of delivery reliability for regular customers

(corresponding to Equation (2.8)) in the next section. Like before, the substitutable

and non-substitutable demand cases can be obtained with θp > 0, θL > 0 and

θp = θL = 0, respectively, in (2.1) and (2.2). We denote the resulting models

of Pricing and Delivery Time Decision Problem in a Shared Capacity setting by

PDTDPSC (including Sl(Ll) constraint).

We now show that any solution that satisfies the two delivery time reliability
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constraints of PDTDPSC will automatically satisfy the stability condition (2.6SC).

We first note that the delivery time reliability constraint for express customers

has the same form in both the dedicated and shared capacity settings. Therefore,

as shown for dedicated case, any feasible solution will always satisfy: λh < µ.

However, if λh < µ but λh + λl → µ, then the queue of regular customers will grow

infinitely long such that the probability of serving a regular customer within a

finite time will approach 0. Thus, the delivery time reliability constraint for regular

customers can never be satisfied. Therefore, any solution that satisfies the two

delivery time reliability constraints of PDTDPSC will always satisfy the stability

condition: λh + λl < µ.

We summarize the above mathematical models in the following table, which

corresponds to the four scenarios described in Table 2.1.

Table 2.2: Mathematical Models for the different scenarios as special cases of

PDTDP

Dedicated capacity ↓ Shared capacity ↓

Without PDTDPDC with PDTDPSC with

substitution → θp = θL = 0 θp = θL = 0

With PDTDPDC with PDTDPSC with

substitution → θp > 0, θL > 0 θp > 0, θL > 0

2.4 Solution Methodology

We now discuss the solution methodology for the models discussed in §2.3. The

four different mathematical models for the corresponding scenarios described in

§2.1 (Table 2.1) are shown in Table 2.2. We essentially have two different mathe-

matical models: PDTDPDC and PDTDPSC , corresponding to dedicated capacity

and shared capacity settings. The corresponding mathematical models for “without
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substitution” and “with substitution” scenarios in each of the two capacity settings

are obtained simply by substituting θp = 0, θL = 0 and θp > 0, θL > 0, respectively.

We now discuss the solution to PDTDPDC and PDTDPSC .

2.4.1 Dedicated Capacity Setting

We first state some propositions, which are used to arrive at the final results.

Proposition 2.1. In a dedicated capacity setting, both the delivery time reliability

constraints (2.7DC) and (2.8DC) in PDTDPDC are binding at optimality.

Proof. Delivery time reliability constraints (2.7DC) and (2.8DC) can be restated as:

µk ≥ − ln(1− α)

Lk

+ λk k ∈ {l, h}

The profit function π is decreasing in µk. Therefore, to maximize profit, the two

service rates should be at their minimum levels that guarantee the desired service

level α. This implies that at optimality, the two delivery time reliability constraints

(2.7DC) and (2.8DC) must be binding, and the service rates are given by:

µk = − ln(1− α)

Lk

+ λk, k ∈ {h, l}

Proposition 2.1 suggests that it is optimal for firms to stick to their minimum

delivery time reliability (α) since a better service level to customers comes at an

extra cost to the firm. As a result of Proposition 2.1, PDTDPDC reduces to maxi-

mizing (2.3) with µi as given above. Note that the stability conditions (2.6DC) are

automatically satisfied by the above equation. This allows us to reduce PDTDPDC

to the following optimization problem:
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PDTDP
′
DC :

max
ph,pl,Lh

π = (ph −m− A)λh + (pl −m− A)λl + A
ln(1− α)

Lh

+ A
ln(1− α)

Ll

(2.9)

subject to:

Lh < Ll

ph, pl, λh, λl, Lh ≥ 0

Proposition 2.2. For a fixed Lh, the objective function (2.9) of PDTDP
′
DC is

strictly concave in ph and pl.

Proof. The Hessian for (2.9), for a fixed Lh, is given by:

 −2(βh
p + θp) 2θp

2θp −2(βl
p + θp)


Clearly, the first order leading principal minor of the Hessian is negative, while its

determinant is positive. This proves that the objective function (2.9) in PDTDP
′
DC

is strictly concave for a fixed Lh.

Proposition 2.2 suggests that, for a fixed Lh, PDTDP
′
DC has a unique maxi-

mum, which can be obtained using functional optimization of its objective function

(2.9), as long as ph, pl, λh and λl are non-negative and Lh < Ll. We ensure that

these constraints are satisfied at optimality by imposing restrictions on our model

parameter values.

Proposition 2.3. For a fixed express delivery time Lh, the optimal prices in a

dedicated capacity setting are given by:

pDC∗
h (Lh) =

A + m

2
+

(βl
p + 2θp)a− (βl

pβ
h
L + βl

pθL + βh
Lθp)Lh + (βl

pθL − βl
Lθp)Ll

2(βh
p βl

p + βh
p θp + βl

pθp)

(2.10)

pDC∗
l (Lh) =

A + m

2
+

(βh
p + 2θp)a + (βh

p θL − βh
Lθp)Lh − (βh

p βl
L + βh

p θL + βl
Lθp)Ll

2(βh
p βl

p + βh
p θp + βl

pθp)

(2.11)
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Proof. pDC∗
h (Lh) and pDC∗

l (Lh) are obtained by solving the following system of

equations:

∂π(Lh)

∂ph

=0

∂π(Lh)

∂pl

=0

Since (2.9), for a fixed Lh, is strictly concave in ph and pl, solving the above system

of equations gives a unique pair of prices that maximizes π(Lh).

The corresponding optimal price differentiation is then:

pDC∗
h (Lh)− pDC∗

l (Lh) =
(βl

p − βh
p )a + βh

p βl
LLl − βl

pβ
h
LLh + (βh

p + βl
p)θL(Ll − Lh)

2(βh
p βl

p + βh
p θp + βl

pθp)

(2.12)

Example 2.1: Assume the parameter values as shown in Table 2.3. The optimal

prices obtained using Proposition 2.3, and other related variables, for Lh = 0.50

are shown in Table 2.4.

Table 2.3: Parameter values for Example 2.1

βh
p βl

p θp βh
L βl

L θL a m A α Ll

0.5 0.7 0.2 0.9 0.7 0.5 10 3 0.5 0.99 1

Table 2.4: Results for Example 2.1

p∗h(Lh) p∗l (Lh) µ∗h(Lh) µ∗l (Lh) λ∗h(Lh) λ∗l (Lh) π∗(Lh)

10.7585 8.7797 13.2353 7.9052 4.0250 3.3000 39.7305

Proposition 2.4. The optimal express delivery time LDC∗
h in a dedicated capacity

setting is given by the unique root of (2.13) in the interval [0, Ll)

∂π(Lh)
∂Lh

=−
(
βh

L + θL

) (
pDC∗

h (Lh)−m−A
)

+ θL

(
pDC∗

l (Lh)−m−A
)
− A ln(1− α)

L2
h

(2.13)

where, pDC∗
h (Lh) and pDC∗

l (Lh) are given by (2.10) and (2.11).
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Proof. Substituting the optimal prices, given by Proposition 2.3, into the objective

function, and differentiating it with respect to Lh gives (2.13). Also,

∂2π(Lh)
∂L2

h

=
(βl

p + θp)(βh
L)2 + (βh

p + βl
p)(θL)2 + 2βl

pβ
h
LθL

2(βh
p βl

p + βh
p θp + βl

pθp)
+

2A ln(1− α)
L3

h

(2.14)

∂3π(Lh)
∂L3

h

=− 6A ln(1− α)
L4

h

(2.15)

Let us understand the nature of the profit function π(Lh) as we vary Lh. Since

Lh ∈ [0, Ll), we are interested in its behavior only for non-negative values of Lh.

Property 2.1. As Lh → 0+, π(Lh) → −∞.

This is obvious from the expression for π(Lh) in (2.9).

Property 2.2. π(Lh) is increasing concave in Lh in the vicinity of Lh = 0+.

This can be easily verified by noting that as Lh → 0+, (2.13) → +∞ and (2.14)

→ −∞.

Property 2.3. As Lh increases from 0, π(Lh) changes from concave to convex for

some Lh ∈ (0, +∞), and never becomes concave again.

Since (2.15) is always positive for Lh ∈ [0, +∞)⇒ (2.14) is monotonically increasing

in [0, +∞). This implies that as Lh increases from 0, (2.14) changes sign from

negative to positive, and hence π(Lh) changes from concave to convex, for some

Lh ∈ (0, +∞), and never changes to concave again. Using properties 2.1, 2.2 and

2.3, the nature of π(Lh) in [0, +∞) can be summarized as shown as in Figure 2.2.

It is clear from the behavior of π(Lh), as shown in Figure 2.2, that it has a unique

maximum and at most one minimum in [0, +∞). The stationary points are given

by the roots of (2.13) in [0, +∞), and the maximum is always the smaller of the two.

Further, ∂π(Lh)
∂Lh

∣∣
Lh=Ll

< 0 is sufficient to guarantee that (2.13) has a unique root in

the interval [0, Ll), and that it is the point of maximum. The condition simplifies to:

−
{
(βl

p − βh
p )θL + βl

pβ
h
L + 2βh

Lθp

}
a +

{
(βl

pβ
h
L + βh

Lθp + βl
Lθp)βh

L + (βl
pβ

h
L − βh

p βl
L)θL

}
Ll

2(βh
p βl

p + βh
p θp + βl

pθp)

+
βh

L(A + m)
2

− A ln(1− α)
(Ll)2

< 0 (2.16)

35



Lh

π(
L h)

Ll  

0 1 2 3 4 5 6
22

24

26

28

30

32

34

36

38

40

Lh

π(
L h)

Ll  

Figure 2.2: Behavior of the profit function for Lh ∈ [0, +∞)

Since βh
p < βl

p (Assumption 2.1), a necessary condition for (2.16) to hold is a to

be high (Assumption 2.2). A sufficiently high value of a also guarantees pk > 0,

ph > pl and λk > 0.

Proposition 2.4 gives the optimal express delivery time LDC∗
h in a dedicated

setting. LDC∗
h does not have a closed-form analytical solution. However, it can be

obtained numerically using a simple bisection method (Burden and Faires 2000)

since π(Lh) is unimodal in [0, Ll) (see proof of Proposition 2.4). The optimal prices

can be obtained using Proposition 2.3 by substituting Lh = LDC∗
h . If θp > 0, θL > 0

in the above equations then we have the solution for the “substitutable products;

dedicated capacity” case, while θp = θL = 0 in the above equations will generate

the solution for the “non-substitutable products; dedicated capacity” scenario.

Example 2.2: Assume the parameter values as shown in Table 2.3. The optimal

decisions, obtained using Proposition 2.4, demand and profit are shown in Table

2.5.

The above example suggests that if the firm had flexibility in selecting its express

delivery time as well then Lh = 0.5 in Exampe 2.1 was not optimal. The firm should,
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Table 2.5: Results for Example 2.2

L∗
h p∗h p∗l µ∗h µ∗l λ∗h λ∗l π∗

0.5562 10.7032 8.7830 12.2653 7.9192 3.9857 3.3141 39.7753

in fact, increase its delivery time offered to express customers from 0.5 to 0.5562,

and at the same time decrease its express price from 10.7585 to 10.7032 and increase

its regular price from 8.7797 to 8.7830. This increases its profit from 39.7305 to

39.7753.

Example 2.3: Table 2.6 shows the optimal price, delivery time and capacity de-

cisions, obtained using Proposition 2.4, for the parameter combinations shown in

Table 2.3 and for various combinations of substitution parameters and capacity

cost.

Table 2.6: Results for Example 2.3

Without substitution With substitution

(θp = θL = 0) (θp = 0.2, θL = 0.5) (θp = 0.4, θL = 0.3)

A=0.10 A=1.0 A=0.10 A=1.0 A=0.10 A=1.0

L∗
h 0.2494 0.8405 0.2389 0.8201 0.2569 0.8716

p∗h 11.3255 11.2436 10.8152 10.6938 10.3582 10.3639

p∗l 8.1929 8.6429 8.5642 9.0487 8.8789 9.2512

µ∗h 22.5768 9.1010 23.5846 9.2912 22.1447 8.9103

µ∗l 8.1702 7.8552 7.9799 7.8102 8.0587 7.8359

2.4.2 Shared Capacity Setting

The shared capacity model PDTDPSC is relatively more challenging to solve, espe-

cially in the absence of an analytical characterization of the delivery time reliability

constraint (2.8) for regular customers. While the Laplace transform of the sojourn

37



time distribution Sl(·), appearing in (2.8), and its first few moments are well known

(see Stephan 1958, Cohen 1982, Heyman and Sobel 1982), the distribution itself is

somewhat complicated and requires numerical computation for the inverse Laplace

transform, thereby preventing its analytical characterization. There are approx-

imations proposed in the literature for the sojourn time distribution. However,

they are very complex and often not sufficiently accurate (Abate and Whitt 1997).

Moreover, the appropriate form of approximation to use depends on the relative

demand rates of the two customer classes, which can only be determined endoge-

nously, and are not known in advance in our model. Further, even an analytical

characterization of the sojourn time distribution or a good approximation will not

produce an analytical solution similar to that for PDTDPDC since it cannot be

guaranteed at the outset which of the constraints will be binding at optimality. So

PDTDPSC does not lend itself to an easy solution using conventional optimiza-

tion methods. We resolve this difficulty by solving it in two stages. We first solve

PDTDPSC for a fixed Lh (we term it as Pricing Decision Problem (PDPSC)) nu-

merically using the matrix geometric method in a cutting plane framework. We are

able to obtain some analytical results for PDPSC for the special case where Lh is

sufficiently small. However, it is not possible to provide a rigorous mathematical

proof for these results in absence of any analytical characterization of Sl(·). We,

therefore, state these analytical results in a shared capacity case as observations

rather than as propositions. Solution to PDPSC is then used to solve PDTDPSC

using the golden section search method. Again, some analytical results are possible

for PDTDPSC for the special case where A is small, which we state as observations.

We now describe the matrix geometric method to numerically evaluate the so-

journ time distribution, Sk
l (·), at a given point (pk

h, pk
l , µk) in the solution space

of PDPSC , which is used in the solution algorithm for PDPSC and PDTDPSC .

We refer the reader to Neuts (1981) and Nelson (1991) for details of the matrix

geometric method. The use of the matrix geometric method yields explicit recur-

sive formulas for the joint stationary queue length distribution, which can provide

significant computational improvements over the transform techniques also in use
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(Miller 1981). Another recursive relation for the joint stationary queue length dis-

tribution has been obtained by White and Christie (1958). However, the use of the

matrix geometric method also provides a recursive formula for Sk
l (·). Moreover, the

matrix geometric method gives exact solutions, in contrast to simulation, which is

another alternative method to evaluate Sk
l (·) that at best gives point estimates.

The matrix geometric method is also computationally efficient compared to sim-

ulation. This is important in solving PDTDPSC , which requires solving PDPSC

repeatedly for different values of Lh.

Matrix Geometric Method

Joint Stationary Queue Length Distribution: If we define Nh(t) and Nl(t) as state

variables representing the number of high and low priority customers in the system

at time t, then {N(t)} := {Nl(t), Nh(t), t ≥ 0} is a continuous-time two-dimensional

Markov chain with state space {n = (nl, nh)}. The key idea we employ here is that

{N(t)} is a quasi-birth-and-death (QBD) process, which allows us to develop a

matrix geometric solution for the joint distribution of the number of customers

of each class in the system. A simple implementation of the matrix geometric

method, however, requires the number of states in the QBD process to be finite.

For this, we treat the queue length of high priority customers (including the one

in service) to be of finite size M , but of size large enough for the desired accuracy

of our results. Since high priority customers are always served in priority over low

priority customers, it is reasonable to assume that its queue size will always be

bounded by some large number.

In the Markov process {N(t)}, a transition can occur only if a customer of either

class arrives or a customer of either class is served. The possible transitions are

given in Table 2.7, where λh and λl at a given point (pk
h, pk

l , µk) are obtained using

(2.1) and (2.2), respectively.

The infinitesimal generator Q associated with our system description is thus block-
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Table 2.7: Transition rates for the priority queue

From To Rate Condition

(nl, nh) (nl, nh + 1) λh for nl ≥ 0, nh ≥ 0

(nl, nh) (nl + 1, nh) λl for nl ≥ 0, nh ≥ 0

(nl, nh) (nl, nh − 1) µ for nl ≥ 0, nh > 0

(nl, nh) (nl − 1, nh) µ for nl > 0, nh = 0

tridiagonal:

Q =


B0 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


where B0, A0, A1, A2 are square matrices of order M + 1. These matrices can be

easily constructed using the transition rates described above.

A0 =



λl

λl

. . .

. . .

λl


;

A2 =



µ

0
. . .

. . .

0


;
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B0 =



∗ λh

µ ∗ λh

µ ∗ λh

. . . . . . . . .

µ ∗


where ∗ is determined such that A0e + B0e = 0 is satisfied. A1 = B0 − A2.

We denote x as the stationary probability vector of {N(t)}:

x = [x00, x01, . . . , x0M , x10, x11, . . . , x1M , . . . , . . . , xi0, xi1, . . . , xiM , . . . , . . .]

The vector x can be partitioned by levels into sub vectors xi, i ≥ 0, where xi =

[xi0, xi1, . . ., xiM ] is the stationary probability of states in level i (nl = i). Thus,

x = [x0,x1,x2,x3, . . . , . . .]. x can be obtained using a set of balance equations, given

in matrix form, by the following standard relations (Latouche and Ramaswami 1999,

Nelson 1991, Neuts 1981):

xQ = 0; xi+1 = xiR

where R is the minimal non-negative solution to the matrix quadratic equation:

A0 + RA1 + R2A2 = 0

The matrix R can be computed using well known methods (Latouche and Ra-

maswami 1999). A simple iterative procedure often used is:

R(0) = 0 ; R(n + 1) = −
[
A0 + R2(n)A2

]
A−1

1

The probabilities x0 are determined from:

x0(B0 + RA2) = 0

subject to the normalization equation:

∞∑
i=0

xie = x0(I −R)−1e = 1
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where e is a column vector of ones of size M + 1.

We are aware that there are other recursive relations, not based on the matrix

geometic method, in the literature to compute the joint stationary probabilities (see

White and Christie 1958). However, the use of matrix geomatric method gives us

the matrix R, required in the computation of Sl(·). We are also aware that there is

a specialized method presented by Miller (1981) that exploits the special structure

of the R matrix to compute the joint stationary probabilities for M/M/1 priority

queues. However, we use the more general method since our main focus is on the

managerial insights generated from our research, and not as much on the elegance

of the solution algorithm.

Estimation of Sl(·): The delivery time Wl of a low priority customer is the time

between its arrival to the system till it completes service. It may be preempted by

one or more high priority customers for service. So it is difficult to characterize the

distribution Sl(·). Ramaswami and Lucantoni (1985) present an efficient algorithm

based on uniformization to derive the complimentary distribution function of the

stationary waiting times in phase-type and QBD processes. The same approach is

used by Leemans (2001) to derive the complimentary distribution of waiting times

in a more complex queuing system. We adopt their algorithm to derive Sl(·), the

distribution of the waiting time plus the time in service of low priority customers.

Consider a tagged low priority customer entering the system. The time spent

by the tagged customer depends on the number of customers of either class al-

ready present in the system ahead of it, and also on the number of subsequent

high priority arrivals before it completes its service. All subsequent low priority

arrivals, however, have no influence on its time spent in the system. The tagged

customer’s time in the system is, therefore, simply the time until absorption in a

modified Markov process {Ñ(t)}, obtained by setting λl = 0. Consequently, matrix

Ã0, representing transitions to a higher level, becomes a zero matrix. We define

an absorbing state, call it state 0
′
, as the state in which the tagged customer has

finished its service. The infinitesimal generator for this process can be represented
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as:

Q̃ =



0 0 0 0 0 · · ·

b0 B̃0 0

0 A2 Ã1 0

0 A2 Ã1 0
...

. . . . . . . . .


where B̃0 = B0+A0; Ã1 = A1+A0; and b0 = [µ 0 · · · 0]TM+1. The first row and

column in Q̃ corresponds to the absorbing state 0́. The time spent in system by the

tagged customer, which is the time until absorption in the modified Markov process

with rate matrix Q̃, depends on the prices (ph and pl), through the arrival rates

(λh and λl), and the service rate µ. For given prices (pk
h, pk

l ) and service rate µk,

the distribution of the time spent by a low priority customer in the system is Sk
l (y)

= 1−Sk
l (y), where Sk

l (y) is the stationary probability that a low priority customer

spends more than y units of time in the system. Further, let Sk
li(y) denote the

conditional probability that a tagged customer, who finds i low priority customers

ahead of it, spends a time exceeding y in the system. The probability that a tagged

customer finds i low priority customers is given, using the PASTA property (see

Wolff 1982), by xi = x0R
i. Sk

l (y) can be expressed as:

Sk
l (y) =

∞∑
i=0

xiSk
li(y)e (2.17)

Sk
li(y) can be computed more conveniently by uniformizing the Markov process

{Ñ(t)} with a Poisson process with rate γ, where

γ = max
0≤i≤M

(−Ã1)ii = max
0≤i≤M

− (A0 + A1)ii
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so that the rate matrix Q̃ is transformed into the discrete-time probability matrix:

Q̂ =
1

γ
Q̃ + I =



1 0 0 0 0 · · ·

b̂0 B̂0 0

0 Â2 Â1 0

0 Â2 Â1 0
...

. . . . . . . . .


where Â2 = A2

γ
, Â1 = Ã1

γ
+ I, b̂0 = b0

γ
. In this uniformized process, points of a

Poisson process are generated with a rate γ, and transitions occur at these epochs

only. The probability that n Poisson events are generated in time y equals e−γy (γy)n

n!
.

Suppose the tagged customer finds i low priority customers ahead of it. Then, for

its time in system to exceed y, at most i of the n Poisson points may correspond

to transitions to lower levels (i.e., service completions of low priority customers).

Therefore,

Sk
li(y) =

∞∑
n=0

e−γy (γy)n

n!

i∑
v=0

G(n)
v e, i ≥ 0 (2.18)

where, G
(n)
v is a matrix such that its entries are the conditional probabilities, given

that the system has made n transitions in the discrete-time Markov process with

rate matrix Q̂, that v of those transitions correspond to lower levels (i.e., service

completions of low priority customers). Substituting the expression for Sk
li(y) from

(2.18) into (2.17), we obtain:

Sk
l (y) =

∞∑
n=0

dne
−γy (γy)n

n!
(2.19)

where, dn is given by:

dn =
∞∑
i=0

x0R
i

i∑
v=0

G(n)
v e, n ≥ 0 (2.20)
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Now,

∞∑
i=0

Ri

i∑
v=0

G(n)
v e

=
n+1∑
i=0

Ri

i∑
v=0

G(n)
v e +

∞∑
i=n+2

Ri

n∑
v=0

G(n)
v e

(
since G(n)

v = 0 for v > n
)

=
n+1∑
v=0

n+1∑
i=v

RiG(n)
v e + (I −R)−1Rn+2e

(
since

n∑
v=0

G(n)
v e = e

)

=
n+1∑
v=0

(I −R)−1(Rv −Rn+2)G(n)
v e + (I −R)−1Rn+2e

=
n∑

v=0

(I −R)−1RvG(n)
v e + (I −R)−1Rn+1G

(n)
n+1e

(
since

n+1∑
v=0

G(n)
v e = e

)

=
n∑

v=0

(I −R)−1RvG(n)
v e

(
since G(n)

v = 0 for v > n
)

= (I −R)−1Hne n ≥ 0

where, Hn =
∑n

v=0 RvG
(n)
v . Therefore,

Sk
l (Ll) = 1− Sk

l (Ll) =
∞∑

n=0

e−γLl
(γLl)

n

n!
x0(I −R)−1Hne (2.21)

Hn can be computed recursively as:

Hn+1 = HnÂ1 + RHnÂ2; H0 = I

Therefore, for given prices (pk
h, pk

l ) and service rate (µk), Sk
l (·) can be computed

using (2.21).

Example 2.4: Assume the parameter values as shown in Table 2.3. Further,

assume Lh = 0.5, ph = 10.7585, pl = 8.5297, µ = 13.1853. Substituting these

values in the demand model (2.1) - (2.2) gives λh = 3.9750 and λl = 3.5250.

The service level Sl(Lh = 0.5) for regular customers, obtained using the matrix

geometric method, is 0.968901.

The above example shows that for the given prices and delivery times, the

capacity level of µ = 13.1853 is insufficient to provide the target service level of
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0.99 to regular customers, and the firm either needs to invest more in its capacity

level or alter its prices and/or delivery times to influence its regular demands in

such a way that they can be served with a 99% reliability.

Example 2.5: Assume again the parameter values as shown in Table 2.3. Now

assume a different set of values for the decision variables: Lh = 0.5, ph = 10.9061,

pl = 8.7012, µ = 14.7843. The service level Sl(Lh = 0.5) now is 0.9900.

This example shows that for the given prices and delivery times, the capacity

level of µ = 14.7843 is just sufficient to provide the target service level of 0.99 to

regular customers. Thus, the firm is able to satisfy the guaranteed service level by

investing in its capacity level, which not only allows it to serve its regular customers

with the desired reliability but also to charge higher prices to its regular as well

as express customers. The net effect of this change in prices on customer demands

is a drop in λh and λl from 3.9750 and 3.5250 to 3.9060 and 3.4001, respectively,

allowing the firm to meet the new demand level λl reliably.

We now state an important property of Sl(·) based on our extensive numerical

experiments, which provides the basis for the cutting plane method, described in

the next section, to solve PDPSC .

Property 2.4. The sojourn time distribution of regular customers, Sl(·), in a

shared capacity setting is:

• concave in (ph, pl)

• concave in µ.

Figure 2.3 shows plots of Sl(·) vs. (ph, pl), and Sl(·) vs. µ, obtained using the matrix

geometrix method described above. These plots suggest that Sl(·) is concave in (ph,

pl) and separately in µ, although it is not possible to prove it mathematically in

absence of an analytical characterization of Sl(·).
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Figure 2.3: Service level vs. prices and capacity

Pricing Decision Problem (PDPSC)

We first solve the firm’s optimization problem for a fixed Lh, which reduces it to

a Pricing Decision Problem, which we denote as PDPSC . On substituting (2.1)

and (2.2) into (2.3), the objective function for PDPSC is quadratic and concave.

All constraints but (2.8), which does not have a closed form expression, are linear.

Although the exact form of Sl(·) in constraint (2.8) is unknown, we exploit its special

structure, determined numerically using the matrix geometric method. Property

2.4 suggests that for a fixed Lh, Sl(·) is concave in (ph, pl) and separately in µ.

However, this does not necessarily show the joint concavity of Sl(·) in (ph, pl, µ).

We will, therefore, integrate into our solution method a mechanism to ensure that

the concavity assumption is not violated.

Assuming Sl(·) is concave, it can be approximated by a set of tangent hyper-

planes at various points (pk
h, pk

l , µk), ∀ k ∈ K, as shown in Figure 2.4. That is:

Sl(·) = min
k∈K

{
Sk

l (·) + (ph − pk
h)
(

∂Sk
l (·)

∂ph

)
+ (pl − pk

l )
(

∂Sk
l (·)

∂pl

)
+ (µ− µk)

(
∂Sk

l (·)
∂µ

)}
where Sk

l (·) denotes the value of Sl(·) at a fixed point (pk
h, p

k
l , µ

k), and
∂Sk

l (·)
∂ph

,
∂Sk

l (·)
∂pl

and
∂Sk

l (·)
∂µ

are the partial gradients of Sl(·) at (pk
h, p

k
l , µ

k). Constraint (2.8) can thus
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Figure 2.4: Piecewise linear approximation of Sl(·)

be replaced by the following set of linear constraints:

Sk
l (·)+(ph−pk

h)
(

∂Sk
l (·)

∂ph

)
+(pl−pk

l )
(

∂Sk
l (·)

∂pl

)
+(µ−µk)

(
∂Sk

l (·)
∂µ

)
≥ α ∀k ∈ K (2.22)

Substituting the above set of constraints in place of (2.8), and the expressions (2.1)

and (2.2) for λh and λl results in the following quadratic programming problem

(QPP) with a finite but a large number of constraints, which makes it suitable for

the cutting plane method (Kelley 1960).

48



PDP(K) :

max
ph,pl,µ

π = −(βh
p + θp)p

2
h − (βl

p + θp)p
2
l + 2θpphpl

+
{
−βh

LLh + θL(Ll − Lh) + mβh
p + a

}
ph

+
{
−βl

LLl + θL(Lh − Ll) + mβl
p + a

}
pl

− Aµ + (βh
LLh + βl

LLl)m− 2ma (2.23)

subject to:

− (βh
p + θp)ph + θppl − µ ≤ ln(1− α)

Lh

− a + (βh
L + θL)Lh − θLLl (2.24)(

∂Sk
l (·)

∂ph

)
ph +

(
∂Sk

l (·)
∂pl

)
pl +

(
∂Sk

l (·)
∂µ

)
µ ≥ α− Sk

l (·)+(
∂Sk

l (·)
∂ph

)
pk

h +

(
∂Sk

l (·)
∂pl

)
pk

l +

(
∂Sk

l (·)
∂µ

)
µk ∀k ∈ K (2.25)

− βh
p ph − βl

ppl − µ < βh
LLh + βl

LLl − 2a (2.26)

− (βh
p + θp)ph + θppl ≥ (βh

L + θL)Lh − θLLl − a (2.27)

θpph − (βl
p + θp)pl ≥ −θLLh + (βl

L + θL)Ll − a (2.28)

ph, pl, µ ≥ 0 (2.29)

Proposition 2.5. The Karush-Kuhn-Tucker (KKT) conditions are both necessary

and sufficient for the global optimal solution of PDP(K).

Proof. The Hessian of (2.23) is given by:


−2(βh

p + θp) 2θp 0

2θp −2(βl
p + θp) 0

0 0 0


This shows that the Hessian is negative semidefinite. Therefore, PDP(K) has

a quadratic concave objective function. Moreover, all its constraints are linear.

Hence, KKT conditions are both necessary and sufficient for its global optimal

solution (Luenberger 1984).

PDP(K) can be solved using any of the standard algorithms like Wolfe’s Algo-

rithm (Cooper 1974, Wolfe 1959). We use the matrix geometric method, described
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in §2.4.2, to numerically evaluate Sk
l (·) at a given point (pk

h, pk
l , µk). Once Sk

l (·) is

evaluated at a point (pk
h, pk

l , µk), its gradients are obtained using the finite difference

method, described below.

Estimation of the Gradient of Sl(·): There are several methods available in the lit-

erature to compute the gradients of Sl(·) (Carson and Maria 1997, Andradottir

1998). We use a finite difference method as it is probably the simplest and most

intuitive, and can be easily explained (Atlason et al. 2004). Using the finite differ-

ence method, the gradients can be computed as:

∂Sk
l (·)

∂ph

=
S

(pk
h+dph,pl,µ)

l (·)− S
(pk

h−dph,pl,µ)

l (·)
2dph

∂Sk
l (·)

∂pl

=
S

(ph,pk
l +dpl,µ)

l (·)− S
(ph,pk

l −dpl,µ)

l (·)
2dpl

∂Sk
l (·)

∂µ
=

S
(ph,pl,µ

k+dµ)
l (·)− S

(ph,pl,µ
k−dµ)

l (·)
2dµ

where dph, dpl and dµ (referred to as step sizes) are infinitesimal changes in the

respective variables. These estimates of the gradients are used in the cutting plane

algorithm to generate constraints/cuts of the form (2.25), which are added itera-

tively in the cutting plane algorithm, described next.

Cutting Plane Algorithm: We now describe the cutting plane algorithm to solve

PDP(K). The algorithm fits the framework of Kelley’s cutting plane method (Kel-

ley 1960). It differs from the traditional description of the algorithm in that we

use the matrix geometric method to generate the cuts and evaluate the function

values instead of having an algebraic form for the function and using analytically

determined gradients to generate the cuts. Figure 2.5 shows a flowchart of the

cutting plane algorithm. The algorithm works as follows: We start with an empty

constraint set (2.25), which results in a simple QPP, and obtain an initial solution

(p0
h, p0

l , µ0). We use the matrix geometric method to compute the distribution

S
(p0

h,p0
l ,µ0)

l (·) of Wl. If S
(p0

h,p0
l ,µ0)

l (·) meets the delivery time reliability constraint α,

we stop with an optimal solution to PDP(K). Otherwise we add to (2.25) a linear
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Figure 2.5: Cutting Plane Algorithm

constraint/cut generated using the finite difference method. The new cut eliminates

the current solution but does not eliminate any feasible solution to PDP(K). This

procedure repeats until the delivery time reliability constraint is satisfied within a

sufficiently small tolerance limit ε such that |Sl(·)− α| ≤ ε. The method has been

proved to converge (Atlason et al. 2004).

The success of the cutting plane algorithm relies on the concavity of Sl(·). We

have already demonstrated, using computational results obtained by the matrix

geometric method, that Sl(·) is concave in (ph, pl) and separately concave in µ.

However, it is difficult to establish the joint concavity of Sl(·) in (ph, pl, µ). If

the concavity assumption is violated, then the algorithm may cut off parts of the

feasible region and terminate with a solution that is suboptimal. We include a

test to ensure the concavity assumption is not violated. This is done by ensuring
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that a new point, visited by the cutting plane algorithm after each iteration, lies

below all the previously defined cuts, and that all previous points lie below the

newly added cut. The test, however, cannot ensure that Sl(·) is concave unless it

examines all the points in the feasible region. Still, it does help ensure that the

concavity assumption is not violated at least in the region visited by the algorithm.

Details of the test can be found in Atlason et al. (2004).

Example 2.6: Assume the parameter values as shown in Table 2.3. For Lh = 0.5,

iteration 0 of PDP(K) corresponds to:

PDP(k=0) :

max
ph,pl,µ

π = −0.70p2
h − 0.90p2

l + 0.40phpl + 11.30ph + 11.15pl − 0.50µ− 56.55

subject to:

− 0.70ph + 0.20pl − µ ≤ −19.0103

− 0.50ph − 0.70pl − µ < −18.85

− 0.70ph + 0.20pl ≥ −9.80

0.20ph − 0.90pl ≥ −9.05

ph, pl, µ ≥ 0

For the solution algorithm, a bound (M) on the high priority queue size needs to be

specified to facilitate use of the matrix geometric method. Finding an appropriate

value of M requires some experimentation. Computational experiments of a priority

queue with a reasonable range of parameter values suggested M = 100 to be a good

choice with little effect on the accuracy of results. For the cutting plane algorithm,

we set the tolerance limit (ε) at 10−6, and the step sizes (dph, dpl, dµ) for gradient

estimation at 0.001. Table 2.8 shows the results of successive iterations. The

optimal solution is (ph = 10.9061, pl = 8.7012, µ = 14.7843), which is obtained

after 5 iterarions. Computational results, showing the number of cuts used and

the time (in seconds) taken by the algorithm for a range of parameters values, are

reported in Table 2.9. All computations are performed on a Pentium IV (3.06 GHz,

512 MB RAM) machine. The results suggest that the proposed algorithm is very

52



efficient, taking only a few seconds.

Table 2.8: Iterations of the cutting plane algorithm

Iter. (ph, pl, µ) (Sh(Lh), Sl(Ll)) Cut generated

0 (10.7585, 8.5297, 13.1853) (0.990000, 0.968901) 0.0170ph + 0.0074pl + 0.0195µ ≥ 0.5243

1 (10.8725, 8.7163, 14.0965) (0.993793, 0.984251) 0.0093ph + 0.0033pl + 0.0100µ ≥ 0.2760

2 (10.8935, 8.7062, 14.6575) (0.995350, 0.989084) 0.0067ph + 0.0021pl + 0.0069µ ≥ 0.1945

3 (10.9038, 8.7020, 14.7807) (0.995645, 0.989964) 0.0062ph + 0.0019pl + 0.0064µ ≥ 0.1794

4 (10.9061, 8.7012, 14.7843) (0.995657, 0.990000) not needed

Table 2.9: Performance of the cutting plane algorithm

A → 0.10 0.25 0.50 0.75 1.00

Lh ↓ Cuts T ime Cuts T ime Cuts T ime Cuts T ime Cuts T ime

0.10 0 0.08 0 0.09 0 0.08 0 0.05 0 0.09

0.20 0 0.08 0 0.11 0 0.08 0 0.09 0 0.08

0.30 0 0.09 0 0.08 0 0.08 0 0.09 0 0.09

0.40 0 0.13 0 0.17 0 0.16 0 0.13 0 0.16

0.50 4 3.81 4 3.16 4 2.42 4 2.39 4 2.38

0.60 5 3.17 5 3.16 5 3.14 5 3.13 5 3.14

0.70 6 4.02 6 4.03 6 4.02 6 3.95 6 3.94

0.80 6 4.48 6 4.47 6 4.39 6 4.42 6 4.41

0.90 7 5.7 7 5.7 7 5.67 7 5.63 7 5.59

An important observation to make from Table 2.9 is that the number of cuts

generated by the algorithm is always 0 when Lh is small (≤ 0.40 in the above ex-

ample). This means that the complicating delivery time reliability constraint for

regular customers, which lacked any analytical characterization, is never binding at

optimality for small Lh. This is depicted in Figure 2.6 in which the threshold value

of Lh below which the delivery time reliability constraint for regular customers is

never binding is indicated as LT
h . Although this is depicted for a specific combina-

tion of parameter values, this is true in general. To give an intuitive explanation
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for this observation, we first state the following proposition.
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Figure 2.6: Service levels for high and low priority customers in a shared capacity

setting

Proposition 2.6. In a shared capacity setting, at least one of the delivery time

reliability constraints is binding at optimality.

Proof. Delivery time reliability constraint for express customers (2.7SC) can be

restated as:

µ ≥ µα
h = − ln(1− α)

Lh

+ λh (2.30)

Although the actual analytical characterization of delivery time reliability con-

straint for regular customers is unknown, we still know that the service level always

increases with the service rate, irrespective of the priority discipline. This implies

that:

µ ≥ µα
l (2.31)

where µα
l is the minimum service rate required to meet the desired service level α

for low priority customers. Combining (2.30) and (2.31), we have:

µ ≥ max{µα
h , µα

l } (2.32)

54



Further, the profit function π is decreasing in µ. Therefore, to maximize profit, the

service rate µ should be at its minimum level that guarantees the desired service

level α for the two customer classes. This implies that at optimality, (2.32) should

hold with equality, which means that at least one of the delivery time reliability

constraints should be binding. Thus, the service rate at optimality is given by:

µ = max{µα
h , µα

l } (2.33)

Clearly, µα
h increases as Lh decreases. Further, λl decreases as Lh decreases.

This suggests that for Lh sufficiently small, µ = max{µα
h , µα

l } = µα
h such that the

capacity requirement is dictated solely by the demand from express customers. This

allows us to solve PDPSC analytically for small Lh. We state this result formally

as an observation rather than a proposition since in the absence of an analytical

expression for Sl(·), we are unable to provide a rigorous mathematical proof.

Observation 2.1. When Lh is small, the optimal prices in a shared capacity setting

are given by:

pSC∗
h (Lh) =

A + m

2
+

(βl
p + 2θp)a− (βl

pβ
h
L + βl

pθL + βh
Lθp)Lh + (βl

pθL − βl
Lθp)Ll

2(βh
p βl

p + βh
p θp + βl

pθp)
(2.34)

pSC∗
l (Lh) =

m

2
+

(βh
p + 2θp)a + (βh

p θL − βh
Lθp)Lh − (βh

p βl
L + βh

p θL + βl
Lθp)Ll

2(βh
p βl

p + βh
p θp + βl

pθp)
(2.35)

As noted earlier in §2.3.2, the stability condition (2.6SC) is automatically satisfied

by the two delivery time reliability constraints of PDTDPSC or PDPSC . Further,

we observe that for small Lh, the service rate µ is decided solely by the delivery

time reliability constraint for express customers, such that:

µ = λh −
ln(1− α)

Lh

Substituting the expression for µ in the objective function, pSC∗
h (Lh) and pSC∗

l (Lh)

can be obtained by solving simultaneously ∂π/∂ph = 0 and ∂π/∂pl = 0, in very

much the same way as we did for the dedicated capacity case.
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When the prices are described by the above relations (2.34) and (2.35), it can

be shown that a small Lh, in fact, results in a relatively large express demand

compared to regular demand, such that the capacity requirement µ is dictated only

by the delivery time reliability constraint of express customers. Using (2.34) and

(2.35), we obtain:

dλh

dLh

= −(βh
p + θp)

∂ph

∂Lh

+ θp
∂pl

∂Lh

− (βh
L + θL)

= −βh
L + θL

2
< 0

dλl

dLh

= −(βl
p + θp)

∂pl

∂Lh

+ θp
∂ph

∂Lh

+ θL

=
θL

2
> 0

This suggests that when Lh gets sufficiently small, express demand gets much larger

compared to regular demand. Thus, the capacity requirement µ is dictated only

by the demand from express customers, something we used to arrive at the results

(2.34) and (2.35) at first place.

Observation 2.1 is important in that it provides us some basis to compare the

pricing decisions in a shared versus dedicated capacity settings when the delivery

times are fixed.

Pricing and Delivery Time Decision Problem

The Pricing and Delivery Time Decision Problem (PDTDPSC) adds an additional

dimension to PDPSC by treating Lh as a decision variable, which the firm tries

to jointly optimize along with ph, pl and µ. This makes constraint (2.7SC) non-

linear, and the model substantially more challenging to solve. We use the solution

to PDPSC and the golden section search method (Luenberger 1984, Winston and

Venkataramanan 2003) to solve PDTDPSC , which can be rewritten as:

max
Lh∈ [0, Ll)

f(Lh)

where f(Lh) is a PDPSC for a fixed Lh. We have shown in a dedicated capacity

setting that f(Lh) has a unique maximum when a is high. Our extensive numerical
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experiments with f(Lh) suggests that a sufficiently large a guarantees that f(Lh)

has a unique maximum in a shared capacity setting as well, and hence PDTDPSC

can be solved efficiently using the golden section search method. At each step, the

algorithm solves PDPSC to evaluate f(Lh) for a given value of Lh.

Example 2.7: Assume the parameter values as shown in Table 2.3. The optimal

decisions, demand and profit for a shared capacity setting are shown in Table 2.10.

Table 2.10: Results for Example 2.7

L∗
h p∗h p∗l µ∗ λ∗h λ∗l π∗

0.5562 10.7032 8.7830 12.2653 3.9857 3.3141 39.7753

Example 2.8: Table 2.11 shows the optimal price, delivery time and capacity

decisions for the parameter combinations shown in Table 2.3 and for various com-

binations of substitution parameters and capacity cost.

Table 2.11: Results for Example 2.8

Without substitution With substitution

(θp = θL = 0) (θp = 0.2, θL = 0.5) (θp = 0.4, θL = 0.3)

A=0.10 A=1.0 A=0.10 A=1.0 A=0.10 A=1.0

L∗
h 0.2494 0.42755 0.2393 0.4277 0.2572 0.4276

p∗h 11.3255 11.8355 10.8148 11.2960 10.3580 10.9126

p∗l 8.1429 8.3985 8.5142 8.7753 8.8289 9.0739

µ∗ 22.5774 14.4659 23.5440 14.5170 22.1047 14.3657

Observation 2.2. When A is small, the optimal express delivery time LSC∗
h is

given by the unique root of (2.36) in the interval [0, Ll).

∂π(Lh)
∂Lh

= −
(
βh

L + θL

) (
pSC∗

h (Lh)−m−A
)

+ θL

(
pSC∗

l (Lh)−m
)
− A ln(1− α)

L2
h

(2.36)

where, pSC∗
h (Lh) and pSC∗

l (Lh) are given by (2.34) and (2.35).
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We know from Observation 2.1 that when Lh is known to be small (≤ LT
h ),

pSC∗
h (Lh) and pSC∗

l (Lh) can be obtained using (2.34) and (2.35). Substituting

pSC∗
h (Lh) and pSC∗

l (Lh), given by (2.34) and (2.35), in the profit function π, and dif-

ferentiating it with respect to Lh gives (2.36), while ∂2π(Lh)/∂L2
h and ∂3π(Lh)/∂L3

h

are given by the same relations (2.14) and (2.15) as for the dedicated capacity case.

Thus, for small A, the properties 2.1, 2.2 and 2.3 of π hold true in a shared capacity

case as well. This implies that for a sufficiently high, π has a unique maximum, as

shown in Figure 2.2, given by the root of (2.36).

We obtain the above result assuming that Lh is known to be small. We now

show that when A is small, LSC∗
h is indeed small, such that the above result holds

true. Using the Implicit Function Theorem, we get:

∂LSC∗
h

∂A
= −

(
∂2π/∂Lh∂A

∂2π/∂L2
h

) ∣∣∣∣
Lh=LSC∗

h

,

where
∂2π

∂Lh∂A

∣∣∣∣
Lh=LSC∗

h

=
βh

L + θL

2
− ln(1− α)

(L∗
h)

2
> 0.

Since we know that

∂2π

∂L2
h

∣∣∣∣
Lh=LSC∗

h

< 0 ⇒ ∂LSC∗
h

∂A
> 0.

This implies that LSC∗
h is increasing in A. Therefore, a sufficiently small A guaran-

tees that L∗
h is small, which we used at first place to arrive at the result.

2.5 Conclusions

In this chapter, we developed the modelling framework to study the optimal prod-

uct differentiation strategy of a firm selling two ”products”, which are similar in all

respect except in their prices and guaranteed delivery times, in a capacitated envi-

ronment. Our primary objective was to understand how the demand-side product

substitution and the supply-side operations strategy of the firm (using dedicated

versus shared capacity) affect the optimal pricing and delivery time decisions as
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well as the optimal capacity level. For this, we developed a general mathematical

model, special cases of which capture different scenarios depending on whether the

products are substitutable or not, and whether the capacity strategy is shared or

dedicated. The dedicated capacity setting allowed us to obtain analytical results.

From a technical perspective, our methodology for dealing with the analytically-

difficult shared capacity setting is somewhat novel. This involved linking a matrix

geometric model for queuing performance analysis to a cutting plane algorithm for

optimization.

In the following chapter, we use the solution methods developed in this chapter

to extensively study and compare the results for the different scenarios to derive

important managerial insights.
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Chapter 3

Monopolistic Market: Analysis &

Insights

In chapter 2, we developed a general mathematical model PDTDP for a firm’s pric-

ing and delivery time decision problem. We further studied how the same model

can be adapted for the four different scenarios described in §2.1, and discussed

the solution approach for each. We now study the different scenarios described in

§2.1, and address the research issues posed therein. Specifically, we first study the

individual and joint roles played by product substitution and a firm’s operations

(capacity) strategy in shaping its price and delivery time differentiation decisions.

We then investigate how rising capacity costs affect product differentiation pol-

icy under different demand and supply conditions. Since the mathematical model

for the shared capacity scenario does not, in general, have an analytical solution,

we test our models numerically under different combinations of parameter values.

Generalizations based on observable patterns that emerge from these numerical

experiments are reported as observations. From these observations, we derive con-

clusions of managerial interest.

We first discuss the results for the pricing decision problem (PDP) for fixed de-

livery times. As discussed in chapter 2, PDP is appropriate when there is stickiness

in a firm’s delivery time decisions. Then we discuss the more general problem of
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pricing and delivery time decision (PDTDP).

3.1 Numerical Experiment Design

Our model setting described in chapter 2 involves the following parameters: a, m,

α, Ll and A. Of these, we fix the value of Ll = 1 (so, delivery time differential

= 1−L∗
h). As regards the other parameters, we experiment with a large combination

of their values as given in Table 3.1:

Table 3.1: Parameter settings for numerical experiments

Parameter Number of Choices Possible Values

a 5 {10, 50, 100, 200, 400}

m 6 {1, 2, 3, 4, 5, 6}

A 6 {0.1, 0.25, 0.5, 0.75, 1, 2}

α 5 {0.95, 0.96, 0.97, 0.98, 0.99}

Note that not all possible combination of values given in Table 3.1 are used in

our experiment. An important assumption we have made throughout is that a is

sufficiently high (see Assumption 2.1). This was required to guarantee a unique

L∗
h that maximizes a firm’s profit. We use only those combinations of parameter

values from Table 3.1 that make a sufficiently large for our purpose. However, the

figures that we present in this chapter use a = 10, m = 3, α = 0.99, A = 0.5

(unless otherwise stated). Since the behavior of the prices depends on the market

characteristics, we compare their optimal values under the different market settings.

We use the following market parameter values:

• Time Difference Sensitive (TDS): βh
p = 0.5, βl

p = 0.7, βh
L = 0.9, βl

L = 0.7,

θp = 0.2, θL = 0.5, such that θL/βh
L > θp/β

h
p and θL/βl

L > θp/β
l
p.

• Price Difference Sensitive (PDS): βh
p = 0.5, βl

p = 0.7, βh
L = 0.9, βl

L = 0.7,

θp = 0.4, θL = 0.3, such that θL/βh
L < θp/β

h
p and θL/βl

L < θp/β
l
p.
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3.2 Pricing Decision Problem

In this section, we assume the firm faces a significantly higher stickiness for their

delivery time decisions compared to their ability to vary prices. Situations in which

such a model will be more relevant are discussed in chapter 2. Under such situations,

a firm optimizes its prices, treating its delivery times as fixed.

We start by studying the behavior of the optimal prices in response to a change

in the guaranteed express delivery time Lh in each of the four scenarios. First of

all, a change in operating philosophy from dedicated to shared capacity setting has

no effect on the way the two prices behave with respect to Lh, except for a sudden

jump in their values at a specific value of Lh, denoted as LT
h , in a shared capacity

setting. LT
h is the value of Lh at which delivery time reliability constraint is binding

for both the classes of customers (refer to Figure 2.6). Product substitution, on the

other hand, affects the behavior of regular price only. Figure 3.1 shows the behavior

of the two prices under different scenarios as we vary Lh, which is summarized in

the following observation:

Observation 3.1. In both the dedicated capacity (DC) and the shared capacity

(SC) settings, a decrease in Lh results in (Refer to Figure 3.1): (a) an increase in

p∗h (b) a decrease in p∗l if θL/βh
L > θp/β

h
p ; an increase p∗l if θL/βh

L < θp/β
h
p ; and no

change in p∗l if θp = θL = 0.

In a DC setting as well as for small A in an SC setting, the above observation follows

directly from Proposition 2.2 and Observation 2.1. Figure 3.1 shows the behavior of

the two prices in different scenarios as we vary Lh. This behavior is quite intuitive

and is similar to what has been shown by Boyaci and Ray (2003) for the dedicated

capacity case. Since express customers are time-sensitive, a firm can always charge

them a higher price for a guaranteed shorter delivery time, as also evident from the

expressions for the optimal prices ((2.10) and (2.11) for DC and (2.34) and (2.35)

for SC). However, in absence of product substitution (θp = θL = 0), customers

from a given class are not concerned about what is offered to the other class.
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Thus, the price charged to regular customers is unaffected by any change in the

delivery time guaranteed to the express ones (see (2.11) and (2.35)). With product

substitution, the behavior of the optimal price for the regular class depends on the

market conditions. In a TDS type market, the relative sensitivity of customers to

the difference in delivery times (with respect to their own delivery times) is greater

than their relative sensitivity to the price difference (with respect to their own

price), such that θL/βk
L > θp/β

k
p , k ∈ {l, h}. In such a market, a decrease in Lh

results in a small gain in new express customers but a relatively larger number of

regular customers switch to the express option. By increasing ph and decreasing

pl simultaneously, the firm can attract new regular customers without causing a

significant number of express customers to switch option, thus increasing the profit.
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Figure 3.1: Comparison of prices in the four different scenarios
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On the other hand, in a PDS type market, the relative sensitivity of customers

to the difference in delivery times (with respect to their own delivery times) is

less than their relative sensitivity to the price difference (with respect to their own

prices), such that θL/βk
L < θp/β

k
p , k ∈ {l, h}. In such a market, reducing Lh

attracts a significant number of new customers who choose the express delivery

option but relatively few of the regular customers switch to the express delivery

option. Since customers preference between the two options is driven mainly by the

price difference now, the firm cannot afford to increase the price difference, which

will cause a significant number of express customers to switch options, causing a

loss of profit. Thus the optimal strategy for the firm is to increase the price for the

regular customers corresponding to an increase in price for the express customers.

We next do a comparison of the values of the optimal prices in the four scenarios

to study the effects of product substitution and capacity strategy.

Observation 3.2. If the express delivery time Lh is fixed and is sufficiently small,

the relations shown in Table 3.2 hold between DC and SC.

Table 3.2: Comparison between DC and SC when Lh is given and sufficiently small

Shared Capacity Relation Dedicated Capacity

pSC∗
h = pDC∗

h

pSC∗
l < pDC∗

l

λSC∗
h ≤ λDC∗

h

λSC∗
l > λDC∗

l

λSC∗
h + λSC∗

l > λDC∗
h + λDC∗

l

µSC∗ < µDC∗
h + µDC∗

l

The relation between the prices in the two capacity settings follow directly by

comparing (2.10) with (2.34) and (2.11) with (2.35). The relation between the

demands can be explained by comparing the resulting demand functions obtained

by substituting the prices (pDC∗
h , pDC∗

l ) and (pSC∗
h , pSC∗

l ) in the demand model (2.1)
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and (2.2). These relations suggest that when the express delivery time is sufficiently

small, regular customers get a better price from the firm using shared capacities.

For the relation between the capacity requirements in the two settings, we have:

µSC∗ = λSC∗
h − ln(1− α)

Lh

≤ λDC∗
h − ln(1− α)

Lh

< λDC∗
h − ln(1− α)

Lh

+ λDC∗
l − ln(1− α)

Ll

= µDC∗
h + µDC∗

l

This shows that when Lh is chosen to be small, a firm that shares its capacities

achieves the benefits of capacity pooling. This is a well established fact and holds

true even for larger Lh, as our numerical results suggest. However, the other rela-

tions between individual prices and demand may not hold true for larger Lh. The

next observation shows a comparison between the two capacity settings that hold

true irrespective of the value of the express delivery time chosen by a firm.

Observation 3.3. For a given delivery time differentiation (Refer to Figure 3.1):

- a change in capacity strategy from dedicated to shared results in (a) a generally

higher p∗h, (b) a lower p∗l , and hence (c) a higher optimal price differentiation

- introduction of product substitutability results in (a) a lower p∗h, (b) a higher p∗l ,

and hence (c) a lower optimal price differentiation.

Managerially speaking, the above observation is significant. It shows that for

a capacitated, pure-price competition environment, a firm’s operations strategy

(dedicated or shared capacity), as well as its marketing strategy (whether to make

the products available for all market segments or to customize them for separate

segments), affects both the absolute product prices as well as the optimal product

differentiation. For small capacity costs, this observation follows directly from

the comparison of the optimal prices in the two capacity settings, as given by

Proposition 2.3 and Observation 2.1, respectively. Comparing the prices in the two

settings, we see that the price for express customers remains the same, whereas that
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for regular customers in SC decreases by a constant amount A/2, thereby increasing

the price differentiation.

As Lh increases, demand for express customers decreases, while that for regular

customers increases. The supply system then faces increasing pressure to satisfy

the demand from regular customers. Indeed, beyond LT
h , the supply capacity in SC

is dictated solely by the demand from regular customers. The problem is difficult

to solve analytically in absence of a closed form expression for constraint (2.25).

However, the numerical results suggest that as Lh increases to LT
h , the firm needs to

suddenly increase the prices for both the products. This further increases the price

difference for express customers between the two capacity settings, and decreases it

for regular customers. The price differentiation between the two customer classes

is still higher in SC compared to DC.

The effect of product substitution in a dedicated capacity setting follows directly

from (2.10) and (2.11).

pDC∗
h (Lh)

∣∣
θp,θL>0

− pDC∗
h (Lh)

∣∣
θp,θL=0

=
−(βl

p − βh
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l
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p βl
p + βh

p θp + βl
pθp)

The above relations show that for a sufficiently high a (Assumption 2.2), ph de-

creases whereas pl increases with substitution. The net result is a decrease in price

differentiation. The effect is most pronounced when the market is simultaneously

TDS for express customers and PDS for regular customers. The effect of product

substitution in a shared capacity setting for small Lh can be explained similarly by

substituting θp = θL = 0 in (2.34) and (2.35).

It is important to point out here that the effect of product substitution on the

two prices for a given delivery time differentiation has been studied by Boyaci and
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Ray (2003), albeit only in a dedicated capacity setting. However, their results dif-

fer significantly from ours. Their results suggest that product substitution may

increase or decrease price differentiation, depending on the customers’ behavior.

Our results, in contrast, suggest that product substitution, for a given delivery

time differentiation, always results in a lower price differentiation, irrespective of

customers’ behavior. This difference in the two results arises due to the difference

in the modelling assumptions made. Boyaci and Ray (2003) use the same (price

and delivery time) sensitivities (βh
p = βl

p = βp, βh
L = βl

L = βL) for the two customer

classes, even though the customers are essentially categorized as price or time sen-

sitive only based on the difference in their price and delivery time sensitivities.

Observation 3.4. A change in capacity strategy from dedicated to shared results

in higher profits, whereas introducing substitutability erodes profit. The effect, in

general, is stronger at higher delivery time differentiation. (Refer to Figure 3.2).
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Figure 3.2: % Profit gain for different scenarios over the “non-substitutable prod-

ucts; dedicated capacity” scenario

Figure 3.2 shows the % gain in profit in different scenarios over the “non-substitutable

products; dedicated capacity” scenario. Regardless of the market characteristics,

shared compared to dedicated capacity always leads to higher profits. The relative
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gain in profit in SC over DC increases with an increase in the delivery time differ-

entiation (decrease in Lh). This gain in profit is attributed mostly to the savings in

capacity related costs due to capacity pooling in SC. A unit decrease in the express

delivery time Lh (corresponding to a unit increase in the delivery time differentia-

tion) generates additional demand from express customers at a rate of (βh
L + θL),

out of which βh
L are new customers and θL are regular customers who now switch to

the express delivery option. The net result is an increase in the total demand at a

rate βh
L. A larger delivery time differentiation, therefore, leads to a larger capacity

required to serve the increased demand, which increases the savings due to capacity

pooling in SC. An increase in capacity cost will, therefore, increase such a gain in

profit. Product substitution, on the other hand, results in lower profits. This is

consistent with the revenue management theory, which suggests that a properly

designed fence that prevents leakage of demand from high price segment to the

low price segment enhances a firm’s profit (Zhang 2007). Results obtained in this

section are summarized in Table 3.3.

Table 3.3: Summary: Observations for the Pricing Decision Problem

Decision Effect of SC Effect of product

Variables compared to DC substitution

p∗h(Lh) ↑ ↓

p∗l (Lh) ↓ ↑

p∗h(Lh)− p∗l (Lh) ↑ ↓

π∗(Lh) ↑ ↓

3.3 Pricing and Delivery Time Decision Problem

The last section focussed on the optimal pricing (and price differentiation) strategy,

for a given delivery time differentiation. In this section we address the issue of

overall product differentiation - both in terms of delivery time and price. So we now
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solve the pricing and delivery time decision problems PDTDPDC and PDTDPSC .

We first study the comparison of the optimal product differentiation under the four

scenarios for a given marginal capacity cost A, and then study their behavior as A

increases.

3.3.1 Optimal Product Differentiation for a Given Marginal

Capacity Cost

We have performed extensive numerical experiments for our models for the four

different scenarios to study the effects of capacity strategy and product substitu-

tion on a firm’s price and delivery time decisions, and also on its optimal product

differentiation. We present a small sample of these studies to illustrate our compar-

ison of the optimal decisions in the four scenarios. We use the demand parameter

values as defined in §3.1 for PDS and TDS type markets. Firm specific parameters

are fixed at: a = 10, m = 3, α = 0.99, Ll = 1. We use two different values for A

to illustrate the difference in the behavior of optimal decisions in a shared capacity

setting when capacity cost is high versus when it is small: (i) A = 0.10 (small

capacity cost) (ii) A = 1.0 (high capacity cost). The results are presented in Table

3.4 for “without substitution” scenario and in Table 3.5 for “with substitution”

scenario.

Table 3.4: Numerical Results: Without Product Substitution

A = 0.10 A = 1.0

DC SC DC SC

L∗
h 0.2494 0.2494 0.8405 0.42755

Ll − L∗
h 0.7506 0.7506 0.1595 0.57245

p∗h 11.3255 11.3255 11.2436 11.8355

p∗l 8.1929 8.1429 8.6429 8.3985

p∗h − p∗l 3.1326 3.1826 2.6007 3.4370

We now state some observations, based on the above numerical results, to il-

lustrate the behavior of the optimal price and delivery time decisions of a firm,
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Table 3.5: Numerical Results: With Product Substitution

A = 0.10 A = 1.0

TDS PDS TDS PDS

DC SC DC SC DC SC DC SC

L∗
h 0.2389 0.2393 0.2569 0.2572 0.8201 0.4277 0.8716 0.4276

Ll − L∗
h 0.7611 0.7607 0.7431 0.7428 0.1799 0.5723 0.1284 0.5724

p∗h 10.8152 10.8148 10.3582 10.358 10.6938 11.29595 10.3639 10.9126

p∗l 8.5642 8.5142 8.8789 8.8289 9.0487 8.775273 9.2512 9.0739

p∗h − p∗l 2.251 2.3006 1.4793 1.5291 1.6451 2.520679 1.1127 1.8387

Table 3.6: Effect of Capacity Sharing

in absence of in presence of

product substitution product substitution

small A large A small A large A

L∗
h – ↓ ↑ ↓

Ll − L∗
h – ↑ ↓ ↑

p∗h – ↑ ↓ ↑

p∗l ↓ ↓ ↓ ↓

p∗h − p∗l ↑ ↑ ↑ ↑

Table 3.7: Effect of Product Substitution

DC SC

TDS PDS TDS PDS

small A large A small A large A

L∗
h ↓ ↑ ↓ ↑ ↑ ↑

Ll − L∗
h ↑ ↓ ↑ ↓ ↓ ↓

p∗h ↓ ↓ ↓ ↓ ↓ ↓

p∗l ↑ ↑ ↑ ↑ ↑ ↑

p∗h − p∗l ↓ ↓ ↓ ↓ ↓ ↓
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and also its optimal product differentiation decisions, as a result of its operations

strategy or product substitution. These observations are summarized in Tables 3.6

and 3.7. These observations hold true in general, independent of the system param-

eter values chosen even though we are unable to establish such results analytically,

especially for large A for which we do not have analytical results in a shared ca-

pacity setting. Some of these observations can be explained analytically, especially

when the capacity cost A is small (see Appendix A.1). These observations are

summarized in the following:

Observation 3.5. - If a firm decides to change its operations (capacity) strategy

from dedicated to shared, then (whether the products are substitutable or not): (a)

it should increase price differentiation, and (b) should also increase delivery time

differentiation if capacity is expensive, but decrease it (or keep it at the same level)

when capacity is cheap.

- If a firm decides to make its market-customized products available to all customers

(i.e, introduces substitutability), then: (a) it should decrease price differentiation

irrespective of the capacity strategy, but (b) may need to increase or decrease deliv-

ery time differentiation, depending on the capacity strategy, market conditions and

marginal capacity cost.

Managerial Implications: It is evident from Table 3.6 that when the marginal

capacity cost is large, sharing capacities always increases both the optimal deliv-

ery time differentiation and price differentiation of a firm, regardless of the prod-

uct/market characteristics. This is in contrast to the argument presented by Boyaci

and Ray (2003) that sharing capacity will lead to “averaging” such that all cus-

tomers are served at an average speed and charged an average price. This will

happen only if the firm’s operations department does not discriminate between the

two market segments. However, as long as the firm has a mechanism to prioritize

the orders from its time sensitive customers, it is always optimal for the marketing

department to differentiate its product/service based on its price and delivery time

guarantee for the different market segments. In fact, we find that such a prior-

71



ity mechanism in a shared capacity setting requires it to maintain even a higher

level of product differentiation between the two customer classes compared to the

dedicated capacity setting if the capacity cost is high.

We further look at the example of FedEx versus UPS to see if the industry

practice corroborates our finding. As noted earlier, FedEx uses separate facilities for

its express and ground services, whereas UPS delivers express and ground services

using one integrated network. Table 3.8 shows two different price and delivery

time combinations offered by FedEx1 and UPS2 for a normal package (within 1 lb)

delivery between Waterloo and Toronto, Canada. Clearly, UPS, which uses a shared

capacity policy, maintains a greater delivery time and price differentiation between

the two options offered, compared to FedEx, which uses dedicated capacity. This

seems to be in close agreement with our observation, assuming that the marginal

capacity cost is sufficiently large.

Table 3.8: Price and delivery time differentiation by FedEx vs. UPS

FedEx UPS

Service Guaranteed Rate Service Guaranteed Rate

Delivery Delivery

FedEx First by 9:00 AM $ 33.40 UPS Express by 8:00 AM $ 42.2

Overnight next day Early A.M. next day

FedEx Priority by 12:00 PM $ 18.84 UPS Express by 12:00 PM $ 15.32

Overnight next day Saver next day

The above observation also has important implications for Dell or steel, chemical

and consumer product industries, cited in §2.1, that quote a specific price and

delivery time combination to one segment of customers, which is not available to

the other segment. The products/services offered to different market segments

1http://www.fedex.com/ratefinder/home?cc=ca&language=en
2https://wwwapps.ups.com/ctc/request?loc=en CA
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are thus non-substitutable. If these firms decide to make their products available

across different market segments, allowing the customers to self-select their options,

then this will require them to reduce price differentiation between the different

products irrespective of the capacity strategy used. This is intuitive since the

customers’ preference for a given product are now affected not only by its absolute

price, but also by its price compared to the other option. By keeping this price

difference small, a firm can minimize the migration of customers to the lower price

option, and hence its loss of revenue. The effect on the delivery time quotation

will, however, depend on the market characteristics and capacity strategy used. In

a dedicated capacity setting, the firm’s optimal strategy will be to offer delivery time

options with a greater differentiation if the market is TDS type. This is because

increasing the delivery time difference in a TDS type market will induce more

regular customers to switch to the express option than will the price difference

cause express customers to switch to the regular option, thereby increasing its

revenue. On the other hand, in a PDS type market, the firm should offer more

homogeneous delivery time options. Since the customers are now more sensitive to

the price difference, the firm can reduce the delivery time difference, which allows

it to further decrease the price difference, thereby minimizing the migration of

customers to the lower price option. In a shared capacity environment, optimal

delivery time differentiation for a PDS type market will be the same as in DC,

but for a TDS type, market the differentiation will further depend on the firm’s

marginal capacity cost.

3.3.2 Effects of Capacity Cost Increase

Another issue of potential managerial interest is how should the product differenti-

ation strategy for a firm change as its marginal capacity cost A increases. Optimal

delivery time and price differentiation decisions under various scenarios are shown

in Figures 3.3 and 3.4 for a TDS type market and a PDS type market, respectively.

The following observation summarizes our main finding in this context.
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Observation 3.6. - For a firm using a dedicated capacity strategy, its optimal

response to any increase in marginal capacity cost is to decrease both the delivery

time differentiation as well as the price differentiation.

- For a firm using a shared capacity strategy, its optimal response to any increase

in marginal capacity cost is to decrease the delivery time differentiation and may

still need to increase the price differentiation, especially if the status-quo capacity

cost is high. (Refer to Figures 3.3 and 3.4).
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Figure 3.3: Effects of operations strategy and product substitution in a TDS type

market

One would expect increasing capacity cost to drive the prices higher. However, when

the customers are also sensitive to the delivery time, the optimal strategy appears
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Figure 3.4: Effects of operations strategy and product substitution in a PDS type

market

to be otherwise. The optimal strategy is to react to an increase in capacity cost by

offering longer express delivery time. Therefore, the delivery time differentiation

always decreases with an increase in the marginal capacity cost, irrespective of

the firm’s operations strategy, absence or presence of product substitution or the

market conditions. This can be intuitively explained as follows. With an increase

in capacity cost, it becomes increasingly expensive for the firm to offer a shorter

delivery time. Hence, for a given delivery time offered to the regular customers, the

optimal strategy for the firm then is to offer a longer delivery time to the express

customers, and hence reduce its delivery time differentiation. A longer express
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delivery time, in turn, decreases price differentiation in a dedicated capacity setting,

as evident from (2.12).

An increase in the capacity cost in a shared capacity setting has similar effects

if the status-quo capacity cost is small. However, the effect is more pronounced

in a dedicated capacity setting. This is because an increase in capacity cost has a

greater effect on the firm’s profit in a dedicated capacity setting due to larger total

capacity requirement. On the other hand, if the capacity cost is already high, any

further increase in cost may require the firm to increase price differentiation in a

shared capacity setting (although delivery time differentiation decreases).

Managerial Implications: Observation 3.6 suggests that rising fuel prices, which

effectively increases capacity cost, has different implications for FedEx and UPS.

The best strategy for FedEx, which operates in a dedicated capacity environment,

in such a situation is to make its products more homogeneous, both in terms of

delivery times and prices. Whereas UPS, which uses a shared capacity policy, needs

to increase the price differentiation for its products, despite making them more

homogeneous in terms of guaranteed delivery times, if the status-quo capacity cost

is already high. This is likely to induce a portion of its express customers to switch

to the regular delivery option. Note that the two firms should also be careful about

altering their decisions properly as fuel prices start going down, as has been the

case recently.

3.4 Conclusions & Future Research

In this chapter, we extensively studied the different mathematical models devel-

oped in chapter 2, which helped us generate important managerial insights. Our

analytical/numerical study of the models clearly shows that the firms’s operations

strategy as well as its policy regarding whether to customize products for different

markets or to make them available for all plays a major role in determining its

optimal prices and delivery time. In a high capacity cost business environment,
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sharing the same capacity for processing the two products results in express (regu-

lar) customers being offered faster (slower) and more expensive (cheaper) products,

compared to when there are dedicated capacities for each of them. This implies

that the firm offers products with greater differentiation under a shared capacity

setting. Interestingly, the above effect of the capacity strategy does not depend on

any end customer characteristics or whether the products are substitutable or not.

In contrast, the effects of substitutability of the products on delivery time decision

do depend on the operations strategy used by the firm and the behavior of the end

customers, in addition to the capacity cost. Specifically, the guaranteed delivery

times for the two products may be more differentiated or more homogeneous when

non-substitutable products become substitutable, depending on the values of the

three factors. However, introduction of substitutability always results in cheaper

express products and more expensive regular products, i.e., in a more homogeneous

pricing scheme. We also demonstrated that as the capacity becomes more costly,

the optimal response of the firm depends on its operations strategy, but not on

demand characteristics. In that case, a dedicated capacity firm should always re-

duce (both price and delivery time) differentiation of its products, whereas a shared

capacity firm should always offer more homogeneous delivery times, but needs to

increase or decrease the price differentiation depending on whether the system is

already highly capacitated or not, respectively.

The above results are managerially quite relevant. First of all, they show how

capacitated firms should alter their product differentiation strategy when they make

changes in their market coverage of product offerings and/or capacity strategy. We

also show that managers need to pay close attention to two other factors - capacity

cost of the business environment they are operating in and the behavior of their

end customers - both of which play crucial role in many circumstances. As we

demonstrated through the FedEx/UPS example, our results are corroborated by

real-life practice. Our analysis regarding the effects of increasing capacity cost

is especially relevant keeping in mind the volatility of fuel price, which directly

impacts capacity cost in a number of sectors. We demonstrate how managers
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should optimally respond to these changing business environments in order to gain

competitive advantage.

There are a number of directions in which this research can be extended. One

possible extension would be to develop a good approximation for the sojourn time

distribution Sl(·) of the low priority customers in a shared capacity setting, which

can be used in the optimization model to simplify its analysis. Another possible

extension may be to include the guaranteed delivery time for regular customers also

as a decision variable. This will, however, bring in additional complexity in that

determining the sufficiency condition for the optimal solution will be extremely

challenging. In our present study, when Ll is treated as fixed, finding the sufficient

condition required the profit function to be concave in Lh. This required imposing

restrictions on the demand parameter a. Treating Ll also as a variable will require

the profit function to be jointly concave in both Lh and Ll. This will require

additional restrictions on the parameter values, which is extremely challenging to

determine.

Further, in the shared capacity setting, we have assumed that the firm uses a

static priority discipline that always prioritizes express customers. Occasionally,

it may be prudent for the firm to give higher priority to regular customers when

the queue of regular customers gets sufficiently long. As such, employing a delay

dependent dynamic priority discipline (Kleinrock 1964, Kanet 1982) will be a better

strategy. This will, however, make the problem extremely challenging, especially

with service levels based on probability distribution of realized delivery times.

We have so far considered a monopolistic setting. It would be interesting to

incorporate horizontal competition in the model as has been done by So (2000),

Tsay and Agarwal (2000) and Pekgun et al. (2006). However, firms in all these

studies compete for a single product, and hence product substitutability is not an

issue. Modelling two competing firms each of which sells a menu of substitutable

products (as is the case for FedEx and UPS) is another possible extension of our

work, and is the focus of our study in the next chapter. In the following chapter, we
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answer the same research questions about the effects of a firm’s capacity strategy

on its product differentiation, but in a competitive setting, where the demand from

a given customer segment is not only influenced by the service offered to other

segments but also by what is offered by other competing firms.
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Chapter 4

Competitive Market: Models &

Solutions

4.1 Introduction

In chapters 2 and 3, we studied the effects of a firm’s operations strategy, specifi-

cally sharing versus dedicating service capacities to different market segments, and

product substitution on its price and delivery time differentiation strategy. Our

study provided us with some useful insights. We found that sharing capacity re-

sults in a larger price differentiation between the different market segments and

also a larger delivery time differentiation if the capacity cost is high. So, if FedEx,

which uses dedicated capacities for different market segments, ever decides to pool

its resources, it should make the two prices more different. However, the decision

to make the delivery time more different or more similar will depend on its capacity

cost. Further, we showed that product substitution always reduces price differenti-

ation even if it makes the services more homogeneous in terms of their guaranteed

delivery times. This has an important implication for Dell, used as an example in

our earlier discussion that makes customized offers to a given customer segment,

which are not available to other customer segments. If Dell decides to make a

segment-specific offer available to the other segment as well, it should decrease the
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difference in the prices charged to the two segments. Although these are important

managerial insights, they are based on the assumption that a firm makes these de-

cisions in isolation, and the presence of other firms in the industry has no bearing

on its price and delivery time decisions. In the FedEx versus UPS example, this

is tantamount to saying that FedEx makes its price, delivery time and capacity

decisions independent of the corresponding decisions by UPS, and vice-versa. That

is to say, each firm operates as a monopolist.

Businesses in real world, however, rarely operate as monopolists. FedEx, for

example, faces competition form UPS, DHL and others. Similarly, Dell competes

with Hewlett Packard, IBM, Acer and others for its market share in the PC indus-

try. In face of competition, firms make their decisions keeping in mind reactions

from other firms. For example, in 2002, Sony announced to cut the price of its

PlayStation 2 game console from $299 to $199. Micrsoft, in response, marked down

the price of its Xbox console the very next day, which was followed by a similar

price cut by Nintendo for its GameCube platform from $149 to $50 (Rudy 2002).

Similary, Wal-Mart trumped price cuts by Netflix and Blockbuster by slashing the

price of its standard DVD rentals-by-mail plan by 7.5% (Borland and Hansen 2004).

UPS launched a new service that guarantees next day mail delivery by 8:30 a.m. in

response to FedEX’s “next day mail delivery by 11:00 a.m.” (So and Song 1998).

Other examples of price and/or lead-time competition can be found in Pekgun et

al. (2006).

We know competition, in general, drives prices down. In the specific exam-

ples cited above, Sony, Microsoft, Nintendo, Wal-Mart, Netflix and Blockbuster all

decided to cut their prices to compete with each other. However, whether competi-

tion increases or decreases price differentiation (price discrimination, as is popularly

termed in Economics literature) is not clear, all the more so when the price discrim-

ination is based on some endogenous category such as the delivery time guarantee

(second degree discrimination (Talluri and Van Ryzin 2004)).

The textbook theory argues that competitive firms cannot price discriminate
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since they are price takers, while monopolists can price discriminate to the extent

that there exists both homogeneity in consumers’ demand elasticities and a useful

sorting mechanism to distinguish between consumer types (Gerardi and Shapiro

2007). The textbook theory, therefore, predicts that competition should decrease

price discrimination. This is further corroborated by the theoretical model of Ro-

chet and Stole (2002) on second degree price discrimination. However, the theoret-

ical models of Gale (1993) and Stole (1995) produce exactly the opposite results.

As there is no overarching theoretical model, the relation between competition and

price discrimination becomes an empirical question. However, different empirical

studies have again produced very contrasting results. Borenstein (1989) and Boren-

stein and Rose (1994) found evidence of increasing price dispersion with competition

in airline industry, thereby suggesting that competition increases price discrimina-

tion. However, a more detailed empirical study by Gerardi and Shapiro (2007)

found a negative relation between market competition price dispersion, thereby

suggesting that competition decreases price discrimination. Further, a more com-

plex analysis is necessary when the firm must price discriminate on the basis of some

endogenous category such as the delivery time preference (Varian 1989). Moreover,

the effect of competition on delivery time differentiation between different customer

segments itself is not clear.

We now extend the model for price and delivery time decisions, developed in

chapter 2, to a competitive setting in which a firm’s decisions are influenced by

other firms in the industry. Our primary objective is to investigate if the managerial

insights generated in the previous chapter for a monopolistic setting hold true, in

general, for a competitive setting. Through our study, we try to shed more light

into the effect of market competition, and also of firms capacity strategies, on price

and delivery time differentiation/discrimination. Specifically, we try to address the

following:

• How does the operation strategy (dedicated or shared capacity) of a firm

affect its price and delivery time decisions for its substitutable products, and
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hence its product differentiation strategy, in presence of competition from

other firms in the industry?

• How does asymmetry in firms’ operating conditions (in terms of capacity

settings or cost parameters) affect the equilibrium prices and delivery times?

• How does competition affect the price and delivery time differentiation deci-

sions of a firm relative to a monopolistic setting?

To explore the impact of a firm’s operations strategy (dedicated versus shared

capacity), we compare the following three scenarios given in Table 4.1:

Table 4.1: Different capacity scenarios in a competitive market

Scenario Capacity Setting

Firm 1 Firm 2

DD Dedicated Dedicated

SS Shared Shared

DS Dedicated Shared

Comparisons among the three scenarios brings out the effect of a firm’s operations

strategy on its price and delivery time differentiation in a competitive market.

Comparing the results of a competitive market with those of a monopolistic market

further brings out the effect of market competition.

Rest of the chapter is organized as follows. In §4.2, we provide a review of

the related literature. We present our mathematical model and the underlying

assumptions in §4.3. In §4.4, we describe the best response of a firm, given its

competitor’s price and delivery time decisions, for both the dedicated and shared

capacity settings. Equilibrium solution for the duopoly problem is presented in

§4.5. Discussion of results is deferred to chapter 5.
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4.2 Literature Review

Literature on price and/or time competition can mostly be classified into (Cachon

and Harker 2002) (i) papers on inventory games, and (ii) those on queueing games.

Papers on inventory games are relevant in a make-to-stock setting where firms

use inventory as their strategic tool to compete in the market. Parlar (1988), Li

(1992), Ha et al. (2003), Dai (2003), Bernstein and Federgruen (2003), Bernstein

and Federgruen (2004) are some of the papers that fall in this category. Papers on

queueing games are pertinent to make-to-order or service industries, where firms

use better (server) capacity/queue management to adjust their price and delivery

time decisions, and thus compete in the market. Since our model is relevant to

make-to-order or service industries, our focus is on the latter category.

One of the first papers on queueing games is by Levhari and Luski (1978), who

consider two competing firms providing identical service to customers and having

identical service time distribution. However, customers are heterogenous in their

sensitivity to waiting times, which is captured using different costs that they attach

to their delay in service. Customers decide whether or not to seek service from one

of these firms. It is shown that at equilibrium, the firms charge different prices in

general, and that the firm charging higher price specializes in serving more time

sensitive customers. Kalai et al. (1992) consider competition between two firms

with service speed as a strategic tool to capture a larger market share, but pricing

is not a decision variable.

Literature on queueing games can further be categorized into (i) papers that

aggregate price and waiting time cost into a single measure called “full price”, and

(ii) those that model price and delivery/waiting time as independent explanatory

variables. Levhari and Luski (1978), Loch (1991), Lederer and Li (1997), Chen and

Wan (2003) and Armony and Haviv (2003) belong to the former category. All these

papers assume that customers associate a specific cost rate with their waiting time,

and that they make their selection of a firm based only on their “full price”, which

is the sum of the actual price charged and the expected delay cost, disregarding any
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other service attributes. Further, they assume that all customers are in a position

to assess the equilibrium steady state waiting times they will experience.

Chen and Wen (2003) study a duopoly market with two service providers, each

modelled as an M/M/1 server, that compete for a single customer class on the basis

of full price, but charge the same full price in the long run. Loch (1991) considers

a duopoly market with service providers operating as M/G/1 servers with given

service rates, and two customer classes, each with a given waiting cost rate and

average service time. A customer selects the firm that offers the lowest full price.

The author shows the existence of a Nash Equilibrium in which the customers

are prioritized according to the “cµ rule” (see Mendelson and Whang 1990 for a

discussion of the “cµ rule”). The author shows that the game has a unique pure-

strategy Nash equilibrium when the two firms are symmetric, i.e., have the same

service rates. However, pure-strategy equilibrium may not exist when the firms are

asymmetric.

Armony and Haviv (2003) study a similar duopoly problem with two customer

classes with each firm modelled as an M/M/1 server. Competition is modelled in

two stages. In the first stage, firms compete on the basis of their prices. In the

second stage, given the prices, the two customer classes decide whether or not to

seek service or how to allocate their demand between the two firms.

Lederer and Li (1997) consider a more generalized model with an arbitrary

number of competing firms, each modelled as an M/G/1 server, and an arbitrary

number of customer classes. Firms compete in the market by selecting their prices,

production rates and scheduling policies. The authors establish the existence of a

Nash Equilibrium in which customers are prioritized according to the “cµ rule”.

The second category of papers, which model price and delivery time as inde-

pendent explanatory variables, include So (2000), Pekgun et al. (2006), Allon and

Federgruen (2007, 2008). These papers model customers’ aggregate demand for a

firm’s service as a function of its price, delivery time and/or other service attributes,

each of which is explicitly advertised by the firm. So (2000) uses a multiplicative
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competitive interaction (MCI) model to represent the market shares of an arbitrary

number of firms competing for the same product based on their prices and delivery

time guarantees. Each firm is modelled as an M/M/1 server, which targets to meet

its promised delivery time guarantee with at least a certain degree of reliability.

The author shows how heterogeneous firms exploit their competitive advantage, in

terms of a higher capacity or a lower operating cost, to differentiate their services.

Pekgun et al. (2006) study two firms competing in a common market based on

their price and lead-time decisions, and explore the impact of centralization versus

decentralization of these decisions, as quoted by the marketing and production

departments, respectively. They model the competing firms as M/M/1 servers,

and each firm’s expected demand as a linear function of the prices and delivery

times quoted by both the firms.

Allon and Federgruen (2007) study competition between an arbitrary number

of firms, each modelled as an M/M/1 server, for a class of homogeneous customers.

They model the expected demand for each firm as a separable function of all firms’

prices and service levels, which is also linear in the prices. The service level is defined

as the difference between an upper bound benchmark for waiting time and the firm’s

actual waiting time standard. They study three types of competition depending on

the order in which the decision variables are selected: (i) service-level first, (ii) price

first, and (iii) simultaneous game. Allon and Federgruen (2008) further extend this

to a setting with multiple customer classes, all served by shared service facilities.

Each firm competes by advertising its price and expected waiting time, and selects

its optimal capacity level and a priority discipline to serve the customers. Their

demand model is separable by customer class, i.e., the demand rate for a firm from a

given customer class is independent of the prices and waiting time standards offered

to other customer classes. They study the equilibrium behavior of the firms under

three types of competition: (i) price competition, (ii) waiting time competition,

and (iii) simultaneous competition.

It is worth mentioning the work of Tsay and Agrawal (2000) whose demand
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model, although in a deterministic setting, bears some similarity with Pekgun et

al. (2006) and Allon and Federgruen (2007). They study a distribution system

in a non-queueing framework in which a manufacturer supplies a common product

to two retailers, who compete for end customers based on their retail prices and

service.

There is another line of research on duopolies in price and time sensitive markets,

where customers strategically choose the firm that maximizes their utility, which is

generally a function of their price and other service attributes. Besbes and Zeevi

(2005) model utility as a function of price and waiting time. Ho and Zheng (2004)

model customers’ utility as a function of their expected delivery time and service

quality, whereas Li and Lee (1994) model it as a function of price, response time and

quality. It is possible to derive an aggregate demand function from the underlying

utility model (see Anderson et al. 1992, Farahat and Perakis 2008 Liu et al. 2007).

We position our work in the second category since we treat price and delivery

times as independent variables announced by a firm. Although our demand model

bears some similarity with those used by Tsay and Agrawal (2002), Pekgun et al.

(2006) and Allon and Federgruen (2007), it is fundamentally different from them in

that these models consider only a single customer class, and thus there is no market

segmentation. To our knowledge, Loch (1991), Lederer and Li (1997), Armony and

Haviv (2003) and Allon and Federgruen (2008) are the only works to have addressed

the phenomenon of market segmentation. As noted earlier, these papers, except

for Allon and Federgruen (2008), assume that customers aggregate the price and

delivery time into a full price, and that they select the service provider on the

basis of this full price only. In doing so, they assume that all customers are in a

position to assess the equilibrium steady state waiting times they will experience,

while in our model, waiting time standards are advertised to the different classes.

Moreover, they consider the firms’ capacity levels as exogenously given, and not

a decision variable. Thus, Allon and Federgruen (2008) appears to be the closest

to our work. However, they study completely segmented markets, which means

87



that each customer is strictly assigned to a specific class, and she cannot switch

between different classes. This is tantamount to saying that the specific service

package (price and delivery time combination) offered to a given customer class is

not available to any other class, and hence is non-substitutable. Our demand model

is more generalized, which also captures product substitution. Moreover, Allon and

Federgruen (2008) use a service level that is based on expected delivery times. In

other words, they assume that firms select their capacity levels so that customers

from each segment are served within their promised delivery times on average. As

discussed in 2, this does not provide any bound on instances of unusually long

delivery times.

4.3 Decision Models

4.3.1 Modelling Assumptions

We consider a service or a make-to-order manufacturing industry with two firms,

indexed by i ∈ {1, 2} and j = 3 − i, competing in a market that is segmented

into 2 customer classes, indexed by k ∈ {h, l}. As described in chapter 2, class

h customers are high priority/express customers who are more time sensitive and

are willing to pay a price premium for a shorter delivery time. Class l customers

are low priority/regular customers who are more price sensitive and are willing to

accept a longer delivery time for a price discount. Firm i competes for its market

share by selecting its prices pi
k and guaranteed delivery times Li

k offered to market

segment k ∈ {h, l}. Firm i faces a demand from class k, generated according to

a Poisson process with rate λi
k (pi

k, L
i
k, k ∈ {h, l}, i ∈ {1, 2}), which depends on the

decisions of both firms in the following way: each firm’s expected demand from a

given market segment is (i) decreasing in its price and delivery time offered to that

segment, (ii) increasing in its price and delivery time offered to the other market

segment, and (iii) increasing in the price and delivery time offered offered by the

other firm to the same segment. We model this using the following system of linear
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equations:

λi
h = ai−βh

p pi
h +θp(p

i
l−pi

h)−βh
LLi

h +θL(Li
l−Li

h)+γp(p
j
h−pi

h)+γL(Lj
h−Li

h) (4.1)

λi
l = ai − βl

pp
i
l + θp(p

i
h − pi

l)− βl
LLi

l + θL(Li
h −Li

l) + γp(p
j
l − pi

l) + γL(Lj
l −Li

l) (4.2)

where,

2ai : market base of firm i

βk
p : sensitivity of class k demand to its own price

βk
L : sensitivity of class k demand to its own guaranteed delivery time

θp : sensitivity of demand to inter-class price difference

θL : sensitivity of demand to inter-class delivery time difference

γp : sensitivity of demand to inter-firm price difference

γL : sensitivity of demand to inter-firm delivery time difference

2ai parameterizes firm i′s market base. Mathematically, it is the demand faced by

firm i when price and delivery time offered by each firm to each customer class is

zero. It captures the aggregate effect of all the factors such as a firm’s brand image,

service quality, etc other than price and delivery time on demand. Hence, the firm

offering the lowest price and the shortest delivery time to a market segment need

not capture its entire demand. The relative values of ai and aj can be loosely used

to describe comparative advantage in terms of a firm’s market penetration. This

may reflect the underlying preferences of customers for one firm over the other,

which may be due to customers’ appeal for a brand.

The behavior of the market depends on the relative sensitivities of customers

to prices and delivery times, described through various market parameters. Two

specific combinations of these parameters are of special interest, as we will see in our

analysis in the next chapter. These combinations define specific market behavior,

which are extensions of their counterparts described for the monopolistic setting in

chapters 2 and 3.

• Time Difference Sensitive (TDS): We say the market is TDS type when

the relative sensitivity of customers to the inter-class delivery time differ-
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ence (with respect to their own delivery time and inter-firm delivery time

difference) is greater than their relative sensitivity to the inter-class price dif-

ference (with respect to their own price and inter-firm price difference), such

that θL/(βk
L + γL) > θp/(β

k
p + γp), k ∈ {h, l}.

• Price Difference Sensitive (PDS): We say the market is PDS type when the

relative sensitivity of customers to the inter-class price difference (with respect

to their own price and inter-firm price difference) is greater than their relative

sensitivity to the inter-class delivery times difference (with respect to their

own delivery time and inter-firm delivery time difference), such that θp/(β
k
p +

γp) > θL/(βk
L + γL), k ∈ {h, l}.

The above demand model ((4.1) - (4.2)) is an extension of the monopolist demand

model used in Chapters 2 and 3, and captures the cross-firm effect on a firm’s

demand. It also generalizes the demand model used by Boyaci and Ray (2003) to a

competitive setting, and those used by Tsay and Agarwal (2000) and Pekgun et al.

(2006) to segmented markets. Further, it generalizes the demand model used by

Allon and Federgruen (2008) by taking into account product substitution (θp and

θL). The total market size (
∑

i∈{1,2}
∑

k∈{h,l} λi
k) in our model is invariant to any

changes in inter-firm or inter-class sensitivities, which only affects the distribution of

the total demand among the firms and the customer classes. However, the pricing

and delivery time decisions of the two firms affect both the total market size as

well as the resulting demand for each firm and from each market segment. This

is in sharp contrast to the multiplicative competitive interaction model used by So

(2000), which assumes the total market size to be constant. We make the following

assumptions regarding the market parameters:

Assumption 4.1. βk
p > 0, βk

L > 0, θp ≥ 0, θL ≥ 0, γp ≥ 0, γL ≥ 0, βh
p < βl

p and

βh
L > βl

L.

This is to ensure that demand from a market segment is decreasing in its own price

and delivery time; increasing in price and delivery time offered by the same firm to
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the other segment; and increasing in price and delivery time offered by the other

firm to the same segment. βh
p < βl

p and βh
L > βl

L are required by definition of the

two customer classes. θp > 0, θL > 0 signifies product substitution, while γp > 0,

γL > 0 signify the presence of price competition and delivery time competition in

the market. γp = γL = 0 makes the demand of two firms independent, and hence

decouples their decision making, resulting in a monopolistic setting.

Assumption 4.2. The market base ai is sufficiently large.

This assumption is similar to Assumption 2.2 of chapter 2, and is required, as we

will see in §4.4, to ensure that firm i′s best response always consists of non-negative

prices and demands and a smaller delivery time to express customers compared to

that offered to regular customers, i.e., Li
h < Li

l.

It is important to note that our demand model does not explicitly consider the

impact of the reliability of delivery time guarantees. Firms that constantly miss on

their promised delivery time will eventually lose their credibility with customers for

future business, which defeats the very purpose of exploiting delivery time guaran-

tees to attract customers. In fact, in the airline industry, independent government

agencies (e.g., the Aviation Consumer Protection Division of the DOT) and In-

ternet travel services (e.g., Expedia) report, on a flight-by-flight basis, the average

delay and percentage of flights arriving within 15 minutes of their schedule (Allon

and Federgruen 2007). Indeed, firms target to meet their guaranteed delivery times

with at least a given level of reliability, and carefully monitor their delivery per-

formance. To take this into consideration in our model, we use a reliability level

αi with which firm i tries to meet its delivery time guarantee. In our model, we

restrict our discussions only to cases where the service reliability for each firm is the

same, i.e., αi = α. This is applicable in situations where there exists some industry

standard and published reports (like those published by the Aviation Consumer

Protection Division of the DOT and Expedia for airline industry) such that the de-

livery performance of each firm is readily available to customers. In this way, firms

are discouraged from performing below the standard such that the market share is
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  Firm’s decision
Customers’ response

capacity ሺߤ௛ଵ, ௟ଵሻߤ

 

Firm 1 

market base ሺ૛ࢇ૚ሻ, operating cost ሺ࢓૚ሻ,                     

capacity cost ሺ࡭૚ሻ, target service level ሺࢻ૚ሻ 

demand 
ቀߣ௛ଵ൫݌௛ଵ, ,௟ଵ݌ ௛ଵܮ , ,௟ଵܮ ,௛ଶ݌ ௛ଶܮ ൯ቁ

price ሺ݌௛ଵሻ
delivery time ሺܮ௛ଵ ሻ 
 

price ሺ݌௟ଵሻ 
delivery time ሺܮ௟ଵሻ
 

demand
ቀߣ௟ଵ൫݌௛ଵ, ,௟ଵ݌ ௛ଵܮ , ,௟ଵܮ ,௟ଶ݌ ௟ଶ൯ቁܮ

Potential express 
customers 

   ࢎࡸࢼ ,ࢎ࢖ࢼ

Potential regular 
customers 

࢒࢖ࢼ ࢒ࡸࢼ ,  

 

Firm 2 

market base ሺ૛ࢇ૛ሻ, operating cost ሺ࢓૛ሻ,                     

capacity cost ሺ࡭૛ሻ, target service level ሺࢻ૛ሻ 

price ሺ݌௛ଶሻ
delivery time ሺܮ௛ଶ ሻ 
 

demand 
ቀߣ௛ଶ൫݌௛ଶ, ,௟ଶ݌ ௛ଶܮ , ,௟ଶܮ ,௛ଵ݌ ௛ଵܮ ൯ቁ

demand
ቀߣ௟ଶ൫݌௛ଶ, ,௟ଶ݌ ௛ଶܮ , ,௟ଶܮ ,௟ଵ݌ ௟ଵ൯ቁܮ

price ሺ݌௟ଶሻ 
delivery time ሺܮ௟ଶሻ
 

capacity ሺߤ௛ଶ, ௟ଶሻߤ

ࡸࣂ ,࢖ࣂ

Figure 4.1: Schematic representation of a competitive model

then mainly affected by their promised times and prices, as depicted by our demand

model. Of course, our model and analysis also allow for different service reliabilities
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for different firms.

We assume the time firm i takes to serve a customer from class k is exponentially

distributed with a rate µi
k. Firm i, therefore, behaves like an M/M/· queuing

system. Further, it serves its customers within a given class on a first-come-first-

serve (FCFS) basis. We assume firm i incurs the same operating cost of $mi and a

marginal capacity cost of $Ai in serving a customer of either class.

The industry is assumed to have established a standard delivery time for regular

customers, and hence Li
l = Lj

l = Ll. Firm i selects and announces its express

delivery time and the two prices (Li
h, pi

h, pi
l) so as to maximize its profit. Firm

i does so taking into account the delivery time and prices (Lj
h, pj

h, pj
l ) selected

by firm j = 3 − i since they have an impact on firm i′s demands, and hence

on its profit. It also needs to simultaneously select its optimal service rates (i.e.,

installed capacities) µi
k in order to meet the guaranteed delivery times with at least

a minimum level of reliability α. A schematic representation of the model is shown

in Figure 4.1.

93



Notation

i, j : indices for firm; i ∈ {1, 2}, and j = 3− i

k : index for customer class; k ∈ {h, l}

λi
k : mean demand rate for firm i from customer class k (units/unit time)

µi
k : mean processing rate of firm i for customer class k (units/unit time)

pi
k : price charged by firm i to customer class k ($/unit)

Li
k : delivery time quoted by firm i to customer class k (time units)

W i
k : steady state actual sojourn (waiting + service) time of customer class

k at firm i (time units)

αi : target service level set by firm i (no unit)

Si
k(L

i
k) : actual service level achieved by firm i for quoted delivery time Li

k, i.e.,

P(W i
k ≤ Li

k) (no unit)

mi : unit operating cost of firm i ($/unit)

Ai : marginal capacity cost of firm i ($/unit)

In the next section, we describe the best response of a firm, given its competitor’s

price, delivery time and capacity decisions.

4.4 The Best Response of a Firm

Given the price, delivery time and capacity decisions (pj
h, p

j
l , L

j
h, µ

j
h, µ

j
l ) of firm

j = 3 − i, firm i ∈ {1, 2} selects its own corresponding decisions (pi
h, p

i
l, L

i
h, µ

i
h, µ

i
l)

that maximize its profit and also ensure that its delivery time commitments are

met reliably. As clear from the demand model ((4.1) - (4.2)), the demands for firm

i ∈ {1, 2}, and its decisions in turn, depend on the price and delivery time decisions

made by firm j = 3− i. Firm i′s demand and its decisions, however, do not depend

on the capacity level (µj
h, µ

j
l ) selected by firm j. While competing with the other

firm, each firm, therefore, possesses only two types of essential strategic instruments:

prices and the delivery times. Firm i′s strategy can be defined as a vector of its

strategic decision variables si := (pi
h, p

i
l, L

i
h), which it uses to compete against the

94



other firm j. The best response of firm i to firm j′s strategy, sj := (pj
h, p

j
l , L

j
h), is

thus a strategy si∗ := (pi∗
h , pi∗

l , Li∗
h ) such that πi(si∗, sj) = maxsi πi(si, sj), i ∈ {1, 2}

and j = 3− i. Firm i′s best response is the solution to the following optimization

problem:

PDTDPi :

max
pi

h,pi
l ,L

i
h,µi

h,µi
l

πi = (pi
h −mi)λi

h + (pi
l −mi)λi

l − Ai(µi
h + µi

l) (4.3)

subject to:

Li
h < Li

l (4.4)

pi
h, p

i
l, λ

i
h, λ

i
l, µ

i
h, µ

i
l ≥ 0 (4.5)

Stability condition (4.6)

Si
h(L

i
h) = P (W i

h ≤ Li
h) ≥ α (4.7)

Si
l (L

i
l) = P (W i

l ≤ Li
l) ≥ α (4.8)

We call it the Pricing and Delivery Time Decision Problem for firm i (PDTDP i).

As noted in chapter 2, in certain situations delivery times may be relatively sticky.

In such situations, firms use prices as the only strategic variables for competition.

Firm i′s best response is then obtained by solving PDTDP i for fixed Li
h and

Li
l. We call the resulting problem a Pricing Decision Problem, denoted by PDP i.

Notice that a firm’s best response problem has a form very much similar to a

firm’s optimal decision problem in a monopolistic setting, described in chapter 2.

Difference still arises between the two due to a different demand model for a firm

in a competitive setting, which also takes into account the effect of the price and

delivery time decisions of its competitor. Therefore, the best response of a firm

can also be solved using similar solution methods as developed in chapter 2. We,

therefore, keep our discussion of the solution method very brief, citing important

results, which are later used to obtain the equilibrium decisions of competing firms.

PDTDP i is a generalized model of a firm’s best response, irrespective of its

capacity strategy. In what follows, we develop the specialized model of PDTDP i
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for firm i using dedicated or shared capacities by specifying the exact form of

constraints (4.6)-(4.8), and discuss the solution method for each.

4.4.1 Dedicated Capacity Setting

As discussed in chapter 2, for a dedicated capacity setting, where each customer

class is served by a separate M/M/1 server, the tail of the sojourn time distribution

for either class of customers is known to be exponential. In this case, there is a

separate stability condition for each of the queues. Hence, constraints (4.6), (4.7)

and (4.8) can be expressed as:

λi
k − µi

k < 0, k ∈ {h, l} (4.6DC)

Si
h(L

i
h) = P (W i

h ≤ Li
h) = 1− e(λi

h−µi
h)Li

h ≥ α (4.7DC)

Si
l (L

i
l) = P (W i

l ≤ Li
l) = 1− e(λi

l−µi
l)L

i
l ≥ α (4.8DC)

We denote the resulting Pricing and Delivery Time Decision Problem for firm i in

a dedicated capacity setting by PDTDP i
DC .

Proposition 4.1. In a dedicated capacity setting, both the delivery time reliability

constraints (4.7DC) and (4.8DC) are binding at optimality.

Proof. Delivery time reliability constraints (4.7DC) and (4.8DC) can be rewritten

as:

µi
k ≥ − ln(1− α)

Li
k

+ λi
k k ∈ {l, h}

The profit function πi is decreasing in µi
k. Therefore, to maximize profit, the two

service rates should be at their minimum level that guarantees the desired service

level α. This implies that at optimality, the two delivery time reliability constraints

(4.7DC) and (4.8DC) must be binding, and the service rates are given by:

µi
k = − ln(1− α)

Li
k

+ λi
k, k ∈ {h, l}
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Proposition 4.1 suggests that it is optimal for firms to stick to their minimum de-

livery time reliability (α) since a better service level to customers comes at an extra

cost to the firm. As a result of proposition 4.1, PDTDP i
DC reduces to maximizing

(4.3) with µi as given above. The stability conditions (4.6DC) are automatically sat-

isfied by the above equation. This allows us to reduce PDTDP i
DC to the following

optimization problem:

PDTDPi′
DC :

max
pi

h,pi
l ,L

i
h

πi = (pi
h −mi − Ai)λi

h + (pi
l −mi − Ai)λi

l + Ai ln(1− α)

Li
h

+ Ai ln(1− α)

Ll

(4.9)

subject to:

Li
h < Ll

pi
h, p

i
l, λ

i
h, λ

i
l, L

i
h ≥ 0

Proposition 4.2. For a fixed Li
h, the objective function (4.9) of PDTDP i′

DC is

strictly concave in pi
h and pi

l.

Proof. The Hessian for (4.9), for a fixed Li
h, is given by:

 −2(βh
p + θp + γp) 2θp

2θp −2(βl
p + θp + γp)


Clearly, the first order leading principal minor of the Hessian is negative, while its

determinant is positive. This proves that the objective function (4.9) in PDTDP i′
DC

is strictly concave for a fixed Li
h.

Proposition 4.2 suggests that, for a fixed Li
h, PDTDP i′

DC has a unique maxi-

mum, which can be obtained using functional optimization of its objective function

(4.9), as long as pi
h, pi

l, λi
h and λi

l are non-negative. Proposition 4.3 gives the best

response prices of firm i in a dedicated capacity setting to a given strategy used by

firm j.
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Proposition 4.3. If firm i operates in a dedicated capacity setting, then for a given

strategy sj := (pj
h, p

j
l , L

j
h) by firm j = 3−i, the best response si∗ := (pi∗

h (Li
h), p

i∗
l (Li

h))

for a fixed Li
h by firm i ∈ {1, 2} is given by:

pi∗
h (Li

h) =
(βl

p + 2θp + γp)ai − {βl
p(θL + γL) + βh

L(βl
p + θp + γp) + θpγL + γLγp + θLγp}Li

h

2D

+{(βl
p + γp)θL − (βl

L + γL)θp}Li
l + (βl

pγp + γpθp + γ2
p)pj

h + (θpγp)p
j
l

2D

+(βl
pγL + γLγp + θpγL)Lj

h + (θpγL)Lj
l

2D
+

Ai + mi

2
(4.10)

pi∗
l (Li

h) =
(βh

p + 2θp + γp)ai − {βh
p (θL + γL) + βl

L(βh
p + θp + γp) + θpγL + γLγp + θLγp}Li

l

2D

+{(βh
p + γp)θL − (βh

L + γL)θp}Li
h + (θpγp)p

j
h + (βh

p γp + γpθp + γ2
p)pj

l

2D

+(θpγL)Lj
h + (βh

p γL + γLγp + θpγL)Lj
l

2D
+

Ai + mi

2
(4.11)

where D = βh
p βl

p + βh
p θp + βl

pθp + βh
p γp + βl

pγp + 2θpγp + γ2
p .

Proof. pi∗
h (Lh) and pi∗

l (Lh) are obtained by solving the following system of equa-

tions:

∂π(Li
h)

∂pi
h

=0

∂π(Li
h)

∂pi
l

=0

Since (4.9), for a fixed Li
h, is strictly concave in pi

h and pi
l, solving the above system

of equations gives a unique pair of prices that maximizes πi(Li
h).

The corresponding optimal price differentiation is then:

pi∗
h (Li

h)− pi∗
l (Li

h) =
{(βl

p − βh
p )ai + (βh

p + βl
p)θL + (γL + 2θL)γp}(Li

l − Li
h)

2D

−(βl
pβ

h
L + βl

pγL + βh
Lγp)Li

h + (βh
p βl

L + βh
p γL + βl

Lγp)Li
l + (βl

p + γp)γpp
j
h

2D

−(βh
p + γp)γpp

j
l + (βl

p + γp)γLLj
h − (βh

p + γp)γLLj
l

2D
(4.12)
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Example 4.1: Assume the customer specific and firm specific parameter values

as shown in Table 4.2. Given firm 1′s strategy s1:= (p1
h = 10, p1

l = 8, L1
h = 0.5),

firm 2′s best response prices and other related variables for L2
h = 0.5 are given in

Table 4.3.

Table 4.2: Parameter values for Example 4.1

βh
p βl

p θp βh
L βl

L θL γp γL a2 m2 A2 α Ll

0.5 0.7 0.4 0.9 0.7 0.1 0.4 0.4 10 3 1 0.99 1

Table 4.3: Results for Example 4.1

p2∗
h (Lh) p2∗

l (Lh) µ2∗
h (Lh) µ2∗

l (Lh) λ2∗
h (Lh) λ2∗

l (Lh) π2∗(Lh)

9.0894 8.0405 14.2103 8.6302 5.0 4.025 27.8944

(4.10) and (4.11) in proposition 4.3 suggest that in pricing its product for a given

customer segment, a firm should take into account the price quoted by the other firm

not only to the same customer segment but also to the other customer segment.

This, at first thought, sounds surprising. This is because our demand functions

(4.1) and (4.2) suggest that a firm’s demand from a given segment is not influenced

by what is offered to the other segment by the other firm. To make things clear,

our demand function (4.1), for example, suggests that the demand faced by firm

1 from the express segment depends on the price charged by firm 2 to the express

segment, but is not influenced by what firm 2 charges to the regular customers.

However, (4.10) suggests that in pricing its product for express customers, firm 1

should keep in mind not only the price charged by firm 2 to the express customers

but also the price charged by firm 2 to the regular customers. This is because firm

2′s price to regular customers influences its demand from express customers as well.

So, in pricing its product for express customers, firm 1 should take into account the

other factors that influence express customers’ decision, which includes the price

charged by firm 2 to regular customers.
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Proposition 4.4. If firm i operates in a dedicated capacity setting, then for a given

strategy sj := (pj
h, p

j
l , L

j
h) by firm j = 3− i, the best response express delivery time

Li∗
h of firm i ∈ {1, 2} is given by the unique root of (4.13) in the interval [0, Ll)

∂πi(Li
h)

∂Li
h

=−
(
βh

L + θL + γL

) (
pi∗

h (Li
h)−mi −Ai

)
+ θL

(
pi∗

l (Li
h)−mi −Ai

)
− A ln(1− α)

(Li
h)2

(4.13)

where, pi∗
h (Li

h) and pi∗
l (Li

h) are given by (4.10) and (4.11).

Proof. Substituting the optimal prices, given by 4.3, into the objective function,

and differentiating it with respect to Lh gives (4.13). Also,

∂2πi(Li
h)

∂(Li
h)2

=−
(
βh

L + θL + γL

)(∂pi
h(Li

h)
∂Li

h

)
+ θL

(
∂pi

l(L
i
h)

∂Li
h

)
+

2Ailn(1− α)
(Li

h)3
(4.14)

∂3πi(Li
h)

∂(Li
h)3

=− 6Ai ln(1− α)
(Li

h)4
(4.15)

Let us understand the nature of the profit function πi(Li
h) as we vary Li

h. Since

Li
h ∈ [0, Ll), we are interested in its behavior only for non-negative values of Lh.

Note the similarity of (4.13), (4.14) and (4.15) to the corresponding expressions

(2.13), (2.14) and (2.15) in chapter 2. Therefore, we expect the profit function

π(Li
h) to hold similar properties.

Property 4.1. As Li
h → 0+, πi(Li

h) → −∞.

Property 4.2. πi(Li
h) is increasing concave in Li

h in the vicinity of Li
h = 0+.

Property 4.3. As Li
h increases from 0, πi(Li

h) changes from concave to convex for

some Li
h ∈ (0, +∞), and never becomes concave again.

Using properties 4.1, 4.2 and 4.3, the nature of πi(Li
h) in [0, +∞) can be summarized

as shown as in Figure 4.2.

It is clear from the behavior of πi(Li
h), as shown in Figure 4.2, that it has a

unique maximum and at most one minimum in [0, +∞). The stationary points are

given by the roots of (4.13) in [0, +∞), and the maximum is always the smaller of

the two. Further,
∂πi(Li

h)

∂Li
h

∣∣
Li

h=Ll
< 0 is sufficient to guarantee that (4.13) has only
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Lh
i

πi (L
hi )

Ll  

Figure 4.2: Behavior of the profit function for Li
h ∈ [0, +∞)

one root in the interval [0, Ll), and that it is the point of maximum. The condition

simplifies to:

K1a
i + K2L

i
l + K3A

i + K4m
i

2(βh
p βl

p + βh
p θp + βl

pθp + βh
p γp + βl

pγp + 2θpγp + γ2
p)
− Ai ln(1− α)

(Li
l)

2
< 0 (4.16)

where K1, K2, K3, K4 are functions only of the market parameters (βk
p , βk

L, θp, θL,

γp, γL), and hence are constants. Further,

K1 = −
{
(βl

p − βh
p )θL + (βh

L + γL)(βl
p + 2θp + γp)

}
Since βh

p < βl
p (Assumption 4.1), a necessary condition for (4.16) to hold is ai to

be high (Assumption 4.2). A sufficiently high value of ai also guarantees pi
k > 0,

pi
h > pi

l and λi
k > 0.

Proposition 4.4 gives the best response express delivery time Li∗
h in a dedicated

setting. Li∗
h , like L∗

h for the monopolistic market in chapter 2, does not have a

closed-form analytical solution. However, it can be obtained numerically using a

simple bisection method since πi(Li
h) is unimodal in [0, Ll). The best response

prices can be obtained using proposition 4.3 by substituting Li
h = Li∗

h .
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Example 4.2: Consider again the customer specific and firm specific parameter

values as shown in Table 4.2. Given firm 1′s strategy s1:= (p1
h = 10, p1

l = 8,

L1
h = 0.5), firm 2′s best response response, s2∗:= (p2∗

h , p2∗
l , L2∗

h ) and other related

variables are shown in Table 4.4.

Table 4.4: Results for Example 4.2

L2∗
h p2∗

h p2∗
l µ2∗

h µ2∗
l λ2∗

h λ2∗
l π2∗

0.8452 8.8908 7.9990 10.2073 8.6474 4.7584 4.0423 29.3833

4.4.2 Shared Capacity Setting

The firm’s choice of shared capacity is modelled using a single server, which serves

both customer classes employing a simple fixed priority scheme that always gives

priority to time-sensitive customers. As discussed in chapter 2, for a shared setting

the delivery time reliability constraint (4.7) has an analytical closed-form repre-

sentation, similar to that for the dedicated capacity setting. However, a closed

form expression for the sojourn time distribution Sl(·) for low priority customers,

appearing in (4.8), is not known. We assume the single server serves customers of

either class at the same rate µi
h = µi

l = µi. Constraints (4.6) and (4.7) in a shared

capacity setting can then be expressed as:

λi
h + λi

l − µi < 0 (4.6SC)

Si
h(L

i
h) = P (W i

h ≤ Li
h) = 1− e(λi

h−µi)Li
h ≥ α (4.7SC)

In absence of a closed-form analytical expression for (4.8) in a shared capacity

setting, we approximate it by the following set of linear constraints, as described

in §2.4.2:

Sik
l (·)+(pi

h−pik
h )
(

∂Sik
l (·)

∂pi
h

)
+(pi

l−pik
l )
(

∂Sik
l (·)

∂pi
l

)
+(µi−µik)

(
∂Sik

l (·)
∂µi

)
≥ α ∀k ∈ K

(4.17)
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where Sik
l (·) denotes the value of Si

l (·) at a fixed point (pik
h , pik

l , µik), which can

be obtained numerically using the matrix geometric method described in §2.4.2.

∂Sik
l (·)

∂pi
h

,
∂Sik

l (·)
∂pi

l
and

∂Sik
l (·)

∂µi are the partial gradients of Si
l at (pik

h , pik
l , µik), which can

be obtaned using the finite difference method described in §2.4.2. Thus, for a given

strategy sj := (pj
h, p

j
l , L

j
h), of firm j, firm i′s best response prices (pi∗

h , pi∗
l ) for a

fixed Li
h in a shared capacity setting are given by the solution of the following

optimization problem:

PDPi
(K) :

max
pi

h,pi
l ,µ

i
πi = −(βh

p + θp + γp)(pi
h)2 − (βl

p + θp + γp)(pi
l)

2 + 2θpp
i
hpi

l

+
{
−βh

LLi
h + θL(Li

l − Li
h) + γL(Lj

h − Lj
l ) + γpp

j
h + mi(βh

p + γp) + ai
}

pi
h

+
{
−βl

LLi
l + θL(Li

h − Li
l) + γL(Lj

l − Li
l) + γpp

j
l + mi(βl

p + γp) + a
}

pl −Aiµ

+ (βh
L + γL)miLi

h + (βl
L + γL)Li

lm
i − γL(Lj

h + Lj
l )m

i − γp(p
j
h + pj

l )
i − 2miai (4.18)

subject to:

− (βh
p + θp + γp)pi

h + θpp
i
l − µi

≤ ln(1− α)
Li

h

− ai + (βh
L + θL + γL)Li

h − θLLi
l − γpp

j
h − γLLj

h (4.19)(
∂Sik

l (·)
∂pi

h

)
pi

h +
(

∂Sik
l (·)

∂pi
l

)
pi

l +
(

∂Sik
l (·)

∂µi

)
µi ≥ α− Sik

l (·)+(
∂Sik

l (·)
∂pi

h

)
pik

h +
(

∂Sik
l (·)

∂pi
l

)
pik

l +
(

∂Sik
l (·)

∂µi

)
µik ∀k ∈ K (4.20)

− (βh
p + γp)pi

h − (βl
p + γp)pi

l − µi

< (βh
L + γL)Li

h + (βl
L + γL)Li

l − γp(p
j
h + pj

l )− γL(Lj
h + Lj

l )− 2ai (4.21)

− (βh
p + θp + γp)pi

h + θpp
i
l ≥ (βh

L + θL + γL)Li
h − θLLi

l − γpp
j
h − γLLj

h − ai (4.22)

θpp
i
h − (βl

p + θp + γp)pi
l ≥ −θLLi

h + (βl
L + θL + γL)Li

l − γpp
j
l − γLLj

l − ai (4.23)

pi
h, pi

l, µ
i ≥ 0 (4.24)

The best response prices of firm i to a given strategy of firm j can thus be obtained

by solving PDP i
(K) using the cutting plane algorithm described in 2.4.2.

Example 4.3: Consider the same problem setting as described in Example 4.1.

Assume now firm 2 uses shared capacities. Firm 2′s best response response prices
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and other related variables for Lh = 0.5 are shown in Table 4.5.

Table 4.5: Results for Example 4.3

p2∗
h (Lh) p2∗

l (Lh) µ2∗(Lh) λ2∗
h (Lh) λ2∗

l (Lh) π2∗(Lh)

9.3545 7.8915 16.5226 4.5958 4.3545 33.9814

In chapter 2, we argued that when a firm’s express delivery time is sufficiently

small, its capacity requirement in a shared capacity setting is dictated solely by the

demand from express customers. Using a similar argument, when Li
h is small, we

have:

µi = λi
h −

ln(1− α)

Li
h

Substituting the expression for µi in the objective function, pi∗
h (Lh) and pi∗

l (Lh) can

be obtained by solving simultaneously ∂πi/∂pi
h = 0 and ∂πi/∂pi

l = 0, in very much

the same way as we did for the dedicated case.

Observation 4.1. When Li
h is small, the best response prices of firm i ∈ {1, 2} in

a shared capacity setting to a given strategy sj := (pj
h, p

j
l , L

j
h) by firm j = 3− i are

given by:

pi∗
h (Li

h) =
(βl

p + 2θp + γp)ai − {βl
p(θL + γL) + βh

L(βl
p + θp + γp) + θpγL + γLγp + θLγp}Li

h

2D

+{(βl
p + γp)θL − (βl

L + γL)θp}Li
l + (βl

pγp + γpθp + γ2
p)pj

h + (θpγp)p
j
l

2D

+(βl
pγL + γLγp + θpγL)Lj

h + (θpγL)Lj
l

2D
+

Ai + mi

2
(4.25)

pi∗
l (Li

h) =
(βh

p + 2θp + γp)ai − {βh
p (θL + γL) + βl

L(βh
p + θp + γp) + θpγL + γLγp + θLγp}Li

l

2D

+{(βh
p + γp)θL − (βh

L + γL)θp}Li
h + (θpγp)p

j
h + (βh

p γp + γpθp + γ2
p)pj

l

2D

+(θpγL)Lj
h + (βh

p γL + γLγp + θpγL)Lj
l

2D
+

mi

2
(4.26)

where D = βh
p βl

p + βh
p θp + βl

pθp + βh
p γp + βl

pγp + 2θpγp + γ2
p .
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When the prices are described by the above relations (4.25) and (4.26), it can

be shown that a small Li
h will, in fact, result in a relatively large express demand

compared to regular demand for firm i. Using (4.25) and (4.26), we obtain:

dλi
h

dLi
h

= −(βh
p + θp + γp)

∂pi
h

∂Li
h

+ θp
∂pi

l

∂Li
h

− (βh
L + θL + γL)

= −βh
L + θL + γL

2
< 0

dλi
l

dLi
h

= −(βl
p + θp + γp)

∂pi
l

∂Li
h

+ θp
∂pi

h

∂Li
h

+ θL

=
θL

2
> 0

This suggests that when Li
h gets sufficiently small, λi

h gets much larger compared

to λi
l. Thus, the capacity requirement µi is dictated only by the demand from

express customers, something we used to arrive at the results (4.25) and (4.26) at

first place.

The best response delivery time for express customers Li
h is given by:

arg max
Li

h ∈[0,Ll)
f(Li

h)

where f(Li
h) is a PDP i

(K) for a given Li
h and given price and delivery time decisions

(Lj
h, pj

h, pj
l ) of firm j. The best response Li

h can be obtained using the golden

section search method as we did for the monopolistic setting in chapter 2.

Example 4.4: The best response delivery time L2∗
h and the corresponding prices

(p2∗
h , p2∗

l ) of firm 2 for the same problem described in Example 4.3 are given in

Table 4.6.

Table 4.6: Results for Example 4.4

L2∗
h p2∗

h p2∗
l µ2∗ λ2∗

h λ2∗
l π2∗

0.3827 9.3371 7.8661 16.8042 4.7723 4.3740 34.7228
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Observation 4.2. When the capacity cost Ai of firm i is small, its best response

express delivery time Li∗
h in a shared capacity setting is given by the unique root of

(4.27) in the interval [0, Ll).

∂πi(Li
h)

∂Li
h

=−
(
βh

L + θL + γL

) (
pi∗

h (Li
h)−mi −Ai

)
+ θL

(
pi∗

l (Li
h)−mi

)
− Ai ln(1− α)

(Li
h)2

(4.27)

where, pi∗
h (Lh) and pi∗

l (Lh) are given by (4.25) and (4.26).

We know from Observation 4.1 that when Li
h is known to be small, pi∗

h (Li
h) and

pi∗
l (Li

h) can be obtained using (4.25) and (4.26). Substituting pi∗
h (Li

h) and pi∗
l (Li

h),

given by (4.25) and (4.26), in the profit function πi, and differentiating it with

respect to Li
h gives (4.27), while ∂2πi(Li

h)/∂(Li
h)

2 and ∂3πi(Li
h)/∂(Li

h)
3 are given

by the same relations (4.14) and (4.15) as for the dedicated capacity case. Thus,

the properties 4.1, 4.2 and 4.3 of πi hold true in a shared capacity case as well.

This implies that for ai sufficiently high, πi has a unique maximum, as shown in

Figure 4.2, given by the root of (4.27).

We obtain the above result assuming that Li
h is known to be small. We now

show that when Ai is small, Li∗
h is indeed small, such that the above result holds

true.
∂Li∗

h

∂Ai
= −

(
∂2πi/∂Li

h∂Ai

∂2πi/∂(Li
h)

2

) ∣∣∣∣
Li

h=Li∗
h

,

where
∂2πi

∂Li
h∂Ai

∣∣∣∣
Li

h=Li∗
h

=
βh

L + θL + γL

2
− ln(1− α)

(Li∗
h )2

> 0.

Since we know that

∂2πi

∂(Li
h)

2

∣∣∣∣
Li

h=Li∗
h

< 0 ⇒ ∂Li∗
h

∂Ai
> 0.

This implies that Li∗
h is increasing in Ai. Therefore, a small Ai guarantees that Li∗

h

is small, which we used at first place to arrive at the result.
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4.5 Duopoly Problem

We now study the price and delivery time decisions for a duopoly problem. One

basic question is to investigate whether an equilibrium exists, and if so, how will

the equilibrium change under different operational settings and market character-

istics. To study the impact of a firm’s operations strategy (dedicated versus shared

capacity), we study and compare the three scenarios shown in Table 4.1. The

optimization problem that each firm solves for its best response in each of these

scenarios is given in Table 4.7.

Table 4.7: Mathematical models for a firm’s best response in different capacity

scenarios

Scenario Capacity Setting

Firm 1 Firm 2

DD PDTDP 1
DC PDTDP 2

DC

SS PDTDP 1
SC PDTDP 2

SC

DS PDTDP 1
DC PDTDP 2

SC

Under competition, both firms simultaneously announce their price and delivery

time decisions. We assume that firm i ∈ {1, 2} has full knowledge of the operational

setting of firm j = 3− i, including its capacity strategy and also its parameters A,

m and a. Firm i can thus correctly anticipate the best response of firm j to its own

moves, and can hence strategically plan its own strategy. Equilibrium is reached

when none of the firms can do better by unilaterally deviating from its decisions.

A Nash equilibrium is thus a vector of strategies (si∗, sj∗) such that for each firm i,

πi(si∗, sj∗) = maxsi πi(si, sj∗), i ∈ {1, 2} and j = 3− i. In other words, the strategy

used by either firm is the best response to the strategy chosen by the other.

The equilibrium solution can be obtained by the simultaneous solution of the

best responses for firms i = 1, 2. Proposition 4.3 gives the best response prices of a

firm using dedicated capacities. Thus, when the delivery time decisions are fixed,
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such that firms compete purely using prices, equilibrium prices in a DD setting can

be obtained in closed-form by the simultaneous solution of the 4 linear equations

given by (4.10) and (4.11) (2 equations corresponding to each i ∈ {1, 2}). Since

the equilibrium prices in a DD setting have closed-form solution, we first study the

DD setting in a greater detail.

4.5.1 Competition in a DD Setting

We first study the Equilibrium results under pure price competition wherein the

firms face a significantly higher stickiness for their delivery time decisions compared

to their ability to vary prices. Situations in which such a model will be more relevant

are discussed in chapter 2. In such situations, firms compete using only prices as

their strategic variables, treating their delivery times as fixed.

Pure Price Competition

Proposition 4.5. Pure price competition in a DD setting always results in a unique

equilibrium. Further, if the firms are identical, then the equilibrium prices are

symmetric, given by:

p∗h(Lh) =
(2βl

p + 4θp + γp)a− {βh
L(2βl

p + 2θp + γp) + (2βl
p + γp)θL}Lh

D1

+{(2βl
p + γp)θL − 2βl

Lθp}Ll

D1

+(2βh
p βl

p + 2βh
p θp + βh

p γp + 2βl
pθp + 2βl

pγp + 4θpγp + γ2
p)(A + m)

D1
(4.28)

p∗l (Lh) =
(2βh

p + 4θp + γp)a + {(2βh
p + γp)θL − 2βh

Lθp}Lh

D1

−{βl
L(2βh

p + 2θp + γp) + (2βh
p + γp)θL}Ll

D1

+(2βl
pβ

h
p + 2βl

pθp + βl
pγp + 2βh

p θp + 2βh
p γp + 4θpγp + γ2

p)(A + m)
D1

(4.29)

where D1 = 4βh
p βl

p + 4βh
p θp + 2βh

p γp + 4βl
pθp + 2βl

pγp + 4θpγp + γ2
p .

108



Proof. The equilibrium prices in a DD setting are given by the simultaneous solution

of the 4 linear equations given by (4.10) and (4.11) for i ∈ {1, 2}. The system of

equations in matrix notation is given by Ax = b.

A =


1 0

−(βl
p+θp+γp)γp

2D

−θpγp

2D

0 1 −θpγp

2D

−(βh
p +θp+γp)γp

2D

−(βl
p+θp+γp)γp

2D

−θpγp

2D
1 0

−θpγp

2D

−(βh
p +θp+γp)γp

2D
0 1

 (4.30)

where D = βh
p βl

p + βh
p θp + βl

pθp + βh
p γp + βl

pγp + 2θpγp + γ2
p

x =
(

p1∗
h p1∗

l p2∗
h p2∗

l

)T

and b is a 4x1 matrix of constants. A is symmetric and strictly diagonally dominant

since we have Aij = Aji ∀i, j and
∑

j 6=i |Aij| < Aii ∀i. Hence, A is symmetric

positive definite (Horn and Johnson 1985). This implies that A is full-rank, and

hence the system of linear equations Ax = b has a unique solution. This proves

the uniqueness of the equilibrium.

Further, when the firms are identical, they have the same operating parame-

ter values (a1 = a2; m1 = m2; A1 = A2; α1 = α2; L1
l = L2

l ; L1
h = L2

h). De-

note the equilibrium solution by the 2-tuple (s1∗(Lh), s
2∗(Lh)), where si∗(Lh):=

(pi∗
h (Lh), p

i∗
l (Lh)). Assume the contrary that the equilibrium solution is not sym-

metric, i.e., s1∗(Lh) 6= s2∗(Lh). Since the two firms are identical, this implies that

(s2∗, s1∗) must also be a Nash Equilibrium, which contradicts the uniqueness of the

Nash Equilibrium. Hence, s1∗(Lh) = s2∗(Lh). Substituting p1∗
h (Lh) = p2∗

h (Lh) =

p∗h(Lh) and p1∗
l (Lh) = p2∗

l (Lh) = p∗l (Lh) in the expressions for the best response

prices, given by (4.10) and (4.11), and solving the resulting system of 2 equations

in 2 unknown gives (4.28) and (4.29).

The corresponding price differentiation for a given Lh is then:

p∗h(Lh)− p∗l (Lh) =
2(βl

p − βh
p )a + 2(βl

p + βh
p + γp)θL(Ll − Lh) + βl

L(2βh
p + γp)Ll

D1

−(2βl
p + γp)βh

LLh + (βl
p − βh

p )γp(A + m)
D1

(4.31)
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Example 4.5: Assume the customer specific and firm specific parameter values

as shown in Table 4.8. The equilibrium prices for L1
h = L2

h = 0.50 in a DD scenario

are shown in Table 4.9.

Table 4.8: Parameter values for Example 4.5

βh
p βl

p θp βh
L βl

L θL γp γL

0.55 0.75 0.15 0.9 0.7 0.5 0.4 0.4

a1 m1 A1 a2 m2 A2 α Ll

10 3 0.01 10 3 0.01 0.99 1

Table 4.9: Results for Example 4.5

Firm 1 Firm 2

p1∗
h p1∗

l p2∗
h p2∗

l

8.166499 6.800659 8.166499 6.800659

Price and Delivery Time Competition

We now study the equilibrium solution under both price and delivery time com-

petition. The equlibrium express delivery times in a DD setting are given by the

simultaneous solution of the system of 2 non-linear equations, given by (4.13) =

0 for i = 1, 2. In absence of a closed-form solution for this system of non-linear

equations, we design an iterative procedure, described in Figure 4.3, that always

converges to the equilibrium solution. We solve for an equilibrium solution assum-

ing the game is played dynamically, starting at an initial solution, until none of the

firms has an incentive to deviate from its decision unilaterally.

Proposition 4.6. The iterative algorithm given in Figure 4.3 converges to a unique

Nash Equilibrium in a DD setting.
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Proof. The proof of convergence of the equilibrium delivery times is based on an

important result that for a given set of parameter values, each firm monotonically

increases or decreases its express delivery time in response to an increase in the

correspoding express delivery time by its competitor. If the two firms play the

game iteratively, any one of the following will happen:

• Both L1
h and L2

h increase monotonically or both L1
h and L2

h decrease mono-

tonically

• L1
h increases monotonically and L2

h decreases monotonically or vice-versa

Since the express delivery times are bounded above and below (Li
h ∈ [0, Li

l)), they

will converge ultimately. The equilibrium prices are then given by the unique

solution to the system of linear equations given by the best response prices of the

two firms at the equilibrium express delivery times. Details of the proof are given

in Appendix B.1.

1. Initialization: For each firm i, set pi
h = pi

l = mi, Li
h = 0 or

Li
h = Ll.

2. Iterative step: Start with i = 1. Use the best response obtained

for Firm i problem. Repeat this for i = 2.

3. Convergence criteria: Repeat step 2 until each firm’s decision

values differ from their previous values by less than some prede-

termined tolerance level ε.

Figure 4.3: Iterative Algorithm for Nash Equilibrium

4.5.2 Competition in an SS or a DS Setting

When one of the competing firms uses shared capacities, we do not have a closed-

form analytical characterization of its best response prices and delivery time. In
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such a situation, equlibrium prices and delivery times are obtained using the it-

erative procedure, described in Figure 4.3. Our extensive numerical experiments

confirm its convergence to a unique Nash Equilibrium in all operational settings.

Further, in a pure price competition, the equlibrium prices can be obtained using

the same iterative procedure by fixing Li
h.

Observation 4.3. The iterative procedure given in Figure 4.3 always converges to

a unique Nash Equilibrium under all capacity settings.

Example 4.6: Assume the customer specific and firm specific parameter values

as shown in Table 4.8. The equilibrium result for each of the three operational

settings: (i) DD, (ii) SS and (iii) DS is shown in Table 4.10

Table 4.10: Results for Example 4.6

DD SS DS

Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

L∗
h 0.075916 0.075916 0.075927 0.075927 0.075915 0.075928

p∗h 8.487575 8.487575 8.487409 8.487409 8.48746 8.487527

p∗l 6.748059 6.748059 6.742129 6.742129 6.747257 6.742933

In the above example, we obtain a unique Nash Equilibrium for each of the

operational settings in the above example. Further, the equilibrium is symmetric

when both the firms are identical (i.e., have the same firm-specific parameters: ai,

Ai, mi, and use the same capacity strategy).

Observation 4.4. If the firms are identical, then pure price competition in an SS

setting results in symmetric equilibrium prices, which for small Lh are given by:
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p∗h(Lh) =
(2βl

p + 4θp + γp)a− {βh
L(2βl

p + 2θp + γp) + (2βl
p + γp)θL}Lh

D1

+{(2βl
p + γp)θL − 2βl

Lθp}Ll

D1

+(2βh
p βl

p + 2βh
p θp + βh

p γp + 2βl
pθp + 2βl

pγp + 4θpγp + γ2
p)m

D1

+(2βh
p βl

p + 2βh
p θp + βh

p γp + 2βl
pθp + 2βl

pγp + 3θpγp + γ2
p)A

D1
(4.32)

p∗l (Lh) =
(2βh

p + 4θp + γp)a + {(2βh
p + γp)θL − 2βh

Lθp}Lh

D1

−{βl
L(2βh

p + 2θp + γp) + (2βh
p + γp)θL}Ll

D1

+(2βl
pβ

h
p + 2βl

pθp + βl
pγp + 2βh

p θp + 2βh
p γp + 4θpγp + γ2

p)m
D1

+
θpγpA

D1
(4.33)

where D1 = 4βh
p βl

p + 4βh
p θp + 2βh

p γp + 4βl
pθp + 2βl

pγp + 4θpγp + γ2
p .

A mathematical justification for the above observation is given in Appendix B.2.

The corresponding price differentiation is given by:

p∗h(Lh)− p∗l (Lh) =
2(βl

p − βh
p )a + 2(βl

p + βh
p + γp)θL(Ll − Lh) + βl

L(2βh
p + γp)Ll

D1

−(2βl
p + γp)βh

LLh + (βl
p − βh

p )γpm

D1

+(2βh
p βl

p + 2βh
p θp + βh

p γp + 2βl
pθp + 2βl

pγp + 2θpγp + γ2
p)A

D1
(4.34)

Example 4.7: Assume the same parameter values as described in Table 4.8.

Assume that the firms’ delivery time decisions are sticky such that they compete

only in their prices. Further, assume that both the firms have a small express

delivery time, L1
h = L2

h = Lh = 0.10. The equilibrium prices in an SS scenario are

shown in Table 4.11.

4.6 Conclusions

In this chapter, we extended our models developed in chapter 2 for optimal product

differentiation strategy to a competitive setting. Our primary objective was to un-

derstand how the capacity strategies used by competing firms affect their price and
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Table 4.11: Results for Example 4.7

Firm 1 Firm 2

p1∗
h p1∗

l p2∗
h p2∗

l

8.469186 6.745116 8.469186 6.745116

delivery time differentiation decisions, and if the qualitative results of a monopo-

listic setting also extend to a competitive setting. For this we developed a general

mathematical model, special cases of which capture three different scenarios, de-

pending on the capacity strategy used by either firm. We extended the solution

methods developed for the monopolistic setting to obtain the best response of a

firm when competing with another firm. We finally designed an iterative algorithm

to obtain the price and delivery time decisions at equilibrium of competing firms.

In the following chapter, we study the models developed in this chapter to un-

derstand how equilibrium decisions of competing firms are shaped by the capacity

strategy they choose. We also use the results of the competitive setting to investi-

gate how competition, per se, affects the product differentiation of a firm.
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Chapter 5

Competitive Market: Analysis &

Insights

In chapter 4, we extended the models developed in chapter 2 to a competitive

framework, and adapted them for the different scenarios depending on the capacity

strategy used by the competing firms. In this chapter, we study in detail the

different models developed in chapter 4. Based on our numerical study, we draw

important insights into how the capacity strategies of competing firms influence

their product differentiation strategies. In §5.1, we describe the experimental setup

for our numerical study of various scenarios. §5.2 presents some general observations

on the best response of a firm. Comparisons of equilibrium results under pure price

competition and more general price and delivery time competition are presented

in §5.3 and §5.4, respectively. We conclude the chapter with a summary of main

results and directions for future research in §5.5.

5.1 Numerical Experiment Design

Our model setting described in chapter 4 involves the following parameters: ai, mi,

Ai, α and Ll. Of these, we fix the value of Ll = 1 and α = 0.99. As regards the
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other parameters, we experiment with a large combination of their values as given

in Table 5.1:

Table 5.1: Parameter settings for numerical experiments

Parameter Number of Choices Possible Values

ai 6 {10, 15, 20, 25, 50, 100}

mi 6 {1, 2, 3, 4, 5, 6}

Ai 2X4 {0.01, 0.025, 0.05, 0.1} (small A)

{0.25, 0.50, 0.75, 1.0} (large A)

Of these (6X6X2X4)2 possible choices, we select those combinations for our exper-

iments that satisfy the condition for unique Li∗
h , as given in the proof of proposition

4.4. For the market parameters, we use the following combinations:

• Time Difference Sensitive (TDS): βh
p = 0.5, βl

p = 0.7, βh
L = 0.9, βl

L = 0.7, θp =

0.2, θL = 0.5, (γp, γL) ∈ {(0, 0), (0, 0.4), (0.4, 0), (0.4, 0.4), (0.1, 0.95), (0.95, 0.1)},

such that θL/(βk
L + γL) > θp/(β

k
p + γp), k ∈ {h, l}.

• Price Difference Sensitive (PDS): βh
p = 0.5, βl

p = 0.7, βh
L = 0.9, βl

L = 0.7, θp =

0.4, θL = 0.1, (γp, γL) ∈ {(0, 0), (0, 0.4), (0.4, 0), (0.4, 0.4), (0.1, 0.95), (0.95, 0.1)},

such that θp/(β
k
p + γp) > θL/(βk

L + γL), k ∈ {h, l}.

For illustration, we use the parameter setting shown in Tables 5.2 and 5.3, unless

stated otherwise.

Table 5.2: Market parameters used in illustrative examples

Market Type ↓ βh
p βl

p θp βh
L βl

L θL γp γL

TDS 0.55 0.75 0.15 0.9 0.7 0.5 0.4 0.4

PDS 0.5 0.7 0.4 0.9 0.7 0.1 0.4 0.4
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Table 5.3: Firm-specific parameters used in illustrative examples

Firm 1 Firm 2

a1 A1 m1 α1 L1
l a2 A2 m2 α2 L2

l

10 0.25 3 0.99 1 10 0.25 3 0.99 1

We first make some general observations on the best response of firm i to a

given strategy of firm j under different capacity settings.

5.2 Best Response of a Firm

Observation 5.1. Given a strategy sj := (pj
h, p

j
l , L

j
h) of firm j = 3− i, a decrease

in the express delivery time Li
h by firm i ∈ {1, 2} results in: (a) an increase in

pi∗
h (b) a decrease in pi∗

l if θL/(βh
L + γL) > θp/(β

h
p + γp); and an increase in pi∗

l if

θL/(βh
L + γL) < θp/(β

h
p + γp).

For the best response of a firm using dedicated capacities, the above observation

follows directly from Proposition 4.3. In a shared capacity setting, the above ob-

servation follows from Observation 4.1 for small Li
h. Observation 5.1 suggests that

given the decisions of the other firm, a firm’s best response express price always

decreases with an increase in its express delivery time. The effect of any change

in its express delivery time on the regular price, however, depends on whether the

market is TDS (θL/(βh
L +γL) > θp/(β

h
p +γp))or PDS (θL/(βh

L +γL) < θp/(β
h
p +γp)).

In the remainder of this chapter, we compare the equilibrium results of compet-

ing firms under different capacity settings. We first study the Equilibrium results

under pure price competition wherein the firms face a significantly higher stickiness

for their delivery time decisions compared to their ability to vary prices.
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5.3 Pure Price Competition

5.3.1 Effect of Capacity Strategy

Observation 5.2. - Pure price competition under SS, compared to DD, results in:

(a) a larger price differentiation at equilibrium.

- Pure price competition under DS results in: (a) a larger price differentiation at

equilibrium for the firm using shared capacities compared to the other firm using

dedicated capacities.
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(a) price differentiation of symmetric firms in DD versus SS  (b) price differentiation of firms in DS 
 

Figure 5.1: Price differentiation in different capacity settings under pure price com-

petition

The above observation, for small Lh, follows directly by comparing (4.31) with

(4.34). This is shown in Figure 5.1(a) for a PDS type market. Although the be-

havior of the prices of each firm may change in a different market type, the above

observation still holds true, irrespective of the market behavior. Further, comparing

(4.28) with (4.32) and (4.29) with (4.33) suggests that when two symmetric firms

compete using shared capacities, their equilibrium prices for both the market seg-

ments are smaller than when they both compete using dedicated capacities. This

suggests that all customers are better off when the competing firms use shared ca-

pacities. Note that when the two firms competing in DD or SS setting are identical,
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their prices at equilibrium are symmetric so that the differentiation at equilibrium

of both the firms coincide. Our numerical results suggest that when the two firms

compete in a DS setting, their price decisions at equilibrium are not symmetric

even if the firms are otherwise identical. The asymmetry in their equilibrium prices

results from the asymmetry in the capacity strategies. The firm using shared ca-

pacities always maintains a higher price differentiation compared to the other firm

that uses dedicated capacities as shown in Figure 5.1(b).

5.3.2 Effect of Price Competition

We have so far analyzed our models in a competitive setting to study the effects

of firms’ capacity strategies on their price differentiation strategies. We now study

the effect of price competition on a firm’s price and delivery time decisions in a

given capacity setting. We know competition generally drives prices down. But

how does competition affect price differentiation? To answer this, we compare

the optimal prices of a monopolist with its equilibrium prices when it faces price

competition from an identical firm. A monopolist setting can be represented using

the mathematical model of chapter 2 for a single firm with a market base 2a.

Alternatively, it can be represented using a competitive model of chapter 4 for two

identical firms, each with a market base 2a, but with γp = γL = 0. The later case

represents two identical firms operating in geographically different markets such

that they do not poach each other’s market share. From the firms’ point of view,

there is no difference between the two scenarios as they both result in the same

monopolist prices. In contrast, a competitive setting represents a situation in which

two firms operate in the same geographical market, each with a market base 2a,

such that each firm’s demand is affected by the relative prices of the two firms.

Mathematically, this corresponds to γp > 0, γL > 0 in our competitive model.

The way competition affects price differentiation may also be influenced by the

operations (capacity) strategy of the competing firms. However, in absence of an

analytical characterization of optimal prices when one of the firms uses shared
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capacities, we restrict our study only to a setting where the firms use dedicated

capacities. The effect of price competition is summarized in the following proposi-

tion.

Proposition 5.1. Pure price competition in a dedicated capacity setting always

results in: (a) a lower express price p∗h, (a) a lower regular price p∗l , and (c) a

lower price differentiation (p∗h − p∗l ). Further, the effects are more pronounced in

presence of product substitution.

Proof. See Appendix C.1

The effect of competition on individual prices is not surprising. In fact, it is

well established in theory that competition always decreases prices (Varian 1989).

This is observed in practice as well as highlighted by various real-world examples

in §4.1. However, researchers seem to be divided in their understanding of the

effect of competition on price differentiation. Our model, with an important link-

age between marketing decision of price discrimination and operation’s capacity

related decisions, provides results that concur with the traditional theory on price

discrimination that predicts that market competition decreases a firms ability to

use price discrimination. Our results are also consistent with the findings of Ger-

ardi and Shapiro (2007), which suggest that price discrimination has decreased with

increase in competition in the airline industry. Our result, however, is in contrast

with empirical results of (Borenstein and Rose (1994), which conclude otherwise

for the airline industry. Further, our results suggest that the effects of competition

on individual prices as well as price discrimination are more pronounced in pres-

ence of product substitution. This suggests that the degree of price discrimination

(second degree in presence of product substitution, and third degree in absence of

product substitution) further plays a role in deciding the intensity of the effect of

price competition.
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5.4 Price and Delivery Time Competition

We now consider a more general situation where firms have flexibility in quoting

the delivery times to their express customers. We still assume there is a standard

delivery time for regular customers established by the industry.1 In such a situa-

tion, firms compete by strategically selecting both the express delivery time and the

two prices. We first study the effect of firms’ capacity strategies on product differ-

entiation at equilibrium, and then we study the effect of competition on the firms’

decisions. Finally, we study the effect of asymmetry, in terms of firms’ operating

parameters, on their price and delivery time decisions.

5.4.1 Effect of Capacity Strategy

Observation 5.3. - Price and delivery time competition under SS, compared to

DD, results in: (a) a larger price differentiation at equilibrium, and (b) a larger

delivery time at equilibrium if capacity cost is high, but a smaller delivery time dif-

ferentiation when capacity cost is small.

- Price and delivery time competition under DS results in: (a) a larger price dif-

ferentiation at equilibrium for the firm using shared capacities, and (b) a larger

delivery time differentiation at equilibrium for the firm using shared capacities if

capacity cost is high, but a smaller delivery time differentiation for the firm using

shared capacities when capacity cost is small.

The above observation is an extension of the results obtained in chapter 3 to a

competitive setting. This observation suggests that the capacity strategies of firms

have the same influence on their product differentiation decisions in a competitive

market as they have in a monopolist setting. The first part of the observation (for

DD versus SS) can be shown analytically for the case when the capacity cost A is

1In a more general situation, firms may optimally select delivery times for both the customer

segments. However, our assumption of a standard delivery time for regular customers is made

mainly for the tractability of the model.
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Table 5.4: Numerical Results for DD and SS settings

A = 0.01 A = 0.25

PDS TDS PDS TDS

DD SS DD SS DD SS DD SS

L∗
h 0.079835 0.07984 0.075916 0.075927 0.40887 0.375944 0.393785 0.382392

Ll − L∗
h 0.920165 0.92016 0.924084 0.924073 0.59113 0.624056 0.606215 0.617608

p∗h 8.48642 8.4861 8.487575 8.487409 8.475324 8.496719 8.397922 8.407862

p∗l 7.4262 7.42033 6.748059 6.742129 7.536979 7.410724 6.933531 6.790338

p∗h − p∗l 1.06022 1.06577 1.739516 1.74528 0.938345 1.085995 1.464391 1.617524

Table 5.5: Numerical Results for DS setting

A = 0.01 A = 0.25

PDS TDS PDS TDS

D S D S D S D S

L∗
h 0.079836 0.079838 0.075915 0.075928 0.409076 0.375427 0.393641 0.381862

Ll − L∗
h 0.920164 0.920162 0.924085 0.924072 0.590924 0.624573 0.606359 0.618138

p∗h 8.486179 8.486345 8.48746 8.487527 8.469203 8.502327 8.395587 8.410847

p∗l 7.425453 7.42108 6.747257 6.742933 7.520666 7.426818 6.914207 6.809853

ph − p∗l 1.060726 1.065265 1.740203 1.744595 0.948537 1.075509 1.481381 1.600994

small (see Appendix C.2). We illustrate this using numerical results obtained for

the parameter setting described in Tables 5.2 and 5.3 for two levels of capacity cost:

(i) A = 0.01 (for small capacity cost) and (ii) A = 0.25 (for large capacity cost).

A comparison of the equilibrium prices and delivery times in an SS versus a DD

setting is shown in Table 5.4, and for a DS setting is shown in Table 5.5.

5.4.2 Effect of Price and Delivery Time Competition

When firms use delivery time, in addition to price, as a strategic tool to attract

demand and compete in the market, this leads to another question of interest: how

does competition affect both price and delivery time differentiation? To answer

this, we compare the equilibrium prices and delivery time decisions in a competitive

setting with that under a monopolistic setting, discussed in chapter 2. Although

the effect may depend on the capacity strategy used by the firms, we restrict our
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study to the case where both firms use dedicated capacities since that leads to some

analytical results.

The effect of competition on price and delivery time differentiation, in gen-

eral, depends on the relative intensities of price competition (γp) and delivery time

competition (γL), as well as other demand parameters. The following proposition

summarizes the effect of competition for the following special cases: (i) γp = 0,

γL > 0 (ii) γp > 0, γL = 0.

Proposition 5.2. Price and delivery time competition in a dedicated capacity set-

ting:

- decreases both delivery time differentiation and price differentiation when γL = 0.

- increases both delivery time differentiation and price differentiation when γp = 0.

Proof. See Appendix C.3

The above proposition suggests that price and delivery time competition may

increase or decrease price and delivery time differentiation, depending on customers’

behavior. This is intuitive. When γL = 0, customers’ choice of a firm is not

influenced by the relative delivery times but by the relative prices offered by the

two firms. In such a situation, firms tend to cut prices to attract customers. At

the same time, they increase their express delivery time, and hence decrease their

delivery time differentiation, in order to cut their capacity cost and maintain their

profit. It further follows from (4.31) that a smaller delivery time differentiation in a

DD setting also results in a smaller price differentiation. On the other hand, when

γp = 0, customers’ choice of a firm is not influenced by the relative prices but by the

relative delivery times offered by the two firms. In such a situation, firms try to cut

their delivery times to attract customers. This results in a smaller express delivery

time, and hence a larger delivery time differentiation. Again, it follows from (4.31)

that a larger delivery time differentiation also allows the firms to maintain a larger

price differentiation.
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5.4.3 Effect of Asymmetry Between Firms

We have thus far studied firms that are symmetric with respect to their market base

a, capacity cost A and operating cost m, although they may use different capacity

strategies. For symmetric firms, we have studied the effects of firms’ capacity

strategies on their product differentiation strategies. However, competing firms,

in reality, may be asymmetric with respect to one or more of these parameters.

In such a scenario, a firm will try to exploit its competitive advantage of a lower

capacity cost A, or a higher market base a due to its better brand appeal. We

study the effects of such asymmetry on the equilibrium decisions of the competing

firms. We study such asymmetric competition in both DD as well as SS settings to

see if, and how, these effects vary with the capacity settings.

Asymmetry in Capacity Cost

Observation 5.4. If one of the firms, which are otherwise identical, has a higher

capacity cost, then compared to the other firm at equilibrium:

- in a DD setting, it has (a) a smaller delivery time differentiation, and (b) a

smaller price differentiation (Refer to Figure 5.2).

- in an SS seting, it has (a) a smaller delivery time differentiation, and (b) a

smaller price differentiation if the status-quo capacity cost is small, but a larger

price differentiation if the status-quo capacity cost is high (Refer to 5.3).

Figure 5.2 shows the equilibrium price and delivery time differentiations of the

two firms in a DD setting that differ in their capacity costs but are otherwise

identical. Figure 5.3 shows similar plots for an SS setting. We show these plots for

a PDS type market (parameter values shown in Table 5.2), although the qualitative

results are independent of the specific market parameters. Firm-specific parameters

are as shown in Table 5.3. In one set of experiments, we fix the capacity cost of

firm 1, A1, at 0.01 and vary that for firm 2, A2, from 0.01 to 0.10. In another

set of experiments, we fix A1 at 0.25 and vary A2 from 0.25 to 1.0. This helps
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Figure 5.2: Effects of capacity cost asymmetry on product differentiation decisions

in a DD setting

us capture the effect of a larger capacity cost incurred by firm 2 on the decisions

of the two firms at equilibrium. As evident from the plots, when the firms are

symmetric (A2 = A1), the delivery time and price differentiations of both firms

coincide. Any increase in firm 2′s capacity cost (A2) always decreases its delivery

time differentiation at equilibrium, irrespective of the capacity settings used by

the two firms. An increase in A2 also decreases firm 2′s price differentiation at

equilibrium in a DD setting. In an SS setting, an increase in A2 decreases firm

2′s price differentiation only for small capacity costs; for larger capacity costs, it

increases its price differentiation. Thus, our results for the monopolistic setting,
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Figure 5.3: Effects of capacity cost asymmetry on product differentiation decisions

in an SS setting

described in chapter 3, also extend to a competitive setting. However, the effect

of an increase in firm 2′s capacity cost may have a similar or contrasting effect

on firm 1, depending on the market parameters and the level of the capacity cost.

Whatever be the effects on individual firms, when A2 > A1, firm 2 always has a

smaller delivery time differentiation, irrespective of the capacity settings. It also

has a smaller price differentiation in a DD setting, but a higher price differentiation

for larger capacity costs in an SS setting.
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Asymmetry in Market Base

Observation 5.5. If one of the firms, which are otherwise identical, has a larger

market base, then compared to the other firm at equilibrium:

- it always has (a) a larger delivery time differentiation, and (b) a larger price

differentiation, irrespective of the capacity strategy of either firm (Refer to Figures

5.4 and 5.5).
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Figure 5.4: Effects of asymmetry in market base on product differentiation decisions

in a DD setting

We illustrate this result using a sample from our numerical experiments. We

consider two firms that have different market bases (a1 6= a2), but are otherwise

identical. Difference in the market bases of the two firms means that one firm

always has a higher mean demand even if they both offer the same delivery times

at the same prices. This may be the result of a difference in their brand appeal to

the customers or due to a more convenient locations or a better customer experience

at one of the firms. We assume the market is PDS type (parameter values shown

in Table 5.2), although the generalizations drawn are independent of the specific

market parameters. Firm specific parameters are as shown in Table 5.3. The

market base a1 for firm 1 is now fixed at 10, while that for firm 2 (a2) is varied.

Figures 5.4 and 5.5 show the equilibrium price and delivery time differentiations
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Figure 5.5: Effects of asymmetry in market base on product differentiation decisions

in an SS setting

of the two firms in a DD and an SS setting, respectively. This helps us capture

the effect of a larger market base of firm 2 on the decisions of the two firms at

equilibrium. As evident from the plots, when the firms are symmetric (a2 = a1),

the delivery time and price differentiations of both firms coincide. Any increase in

firm 2′s market base (a2) increases its delivery time differentiation as well as the

price differentiation at equilibrium, irrespective of the capacity settings used by the

two firms. Although firm 1′s price and delivery time differentiation decisions also

increase with a2 in this case, this is specific only to this set of market parameters.

In general, the behavior of firm 1′s decisions depends on the market parameters.

Whatever be the effects on individual firms, when a2 > a1, firm 2 always has a

larger delivery time differentiation and a larger price differentiation, irrespective of

the capacity settings and market parameters.

5.5 Conclusions & Future Research

In this chapter, we extensively studied the different mathematical models developed

in chapter 4, which helped us generate important managerial insights. Our analyt-

ical/numerical study of the models clearly shows that the qualitative results of a
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monopolistic setting regarding the effect of firms’ operations strategy on their price

and delivery time differentiation decisions also hold true in a competitive environ-

ment. Specifically, when processing capacities are expensive, the firm with shared

capacities offers faster and more expensive product to time sensitive customers and

slower and cheaper product to price sensitive customers compared to the firm using

dedicated capacities. This implies that the firm with shared capacities offers prod-

ucts with greater differentiation. Further, the above effect of the capacity strategy

does not depend on any end customer characteristics or whether the products are

substitutable or not.

We also demonstrated that when firms are asymmetric with respect to their

capacity related costs or their market bases, each firm tries to use its distinctive

advantage to uniquely differentiate its products. The way a firm exploits its distinc-

tive advantage of lower capacity cost further depends on its own capacity strategy

and also of its competitor. Specifically, the firm with cheaper capacities makes its

products more differentiated if both firms use dedicated capacities. If both firms

use shared capacities, then the firm with cheaper capacities again makes its delivery

times more differentiated, but may offer more homogeneous or more differentiated

prices depending on the level of capacity cost. Whereas the firm with a larger

market base always offers more differentiated products, irrespective of the capacity

strategy of either firm.

Our study provides further insight into the effect of competition on price dis-

crimination. We showed that when firms use dedicated capacities, pure price com-

petition always reduces individual prices as well as price discrimination. However,

when firms use delivery times, in addition to prices, as strategic variables to com-

pete in the market, the effect of competition on product differentiation further

depends on customers’ behavior.

The above results are managerially quite relevant. First of all, they show how

managers should anticipate the outcome of competition, in terms of product dif-

ferentiation, given its own capacity strategy as well as the capacity strategy of
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its competitor. It also enables managers to anticipate how its competitor will use

its distinctive advantage to differentiate its products, and hence how to respond

optimally.

The competitive framework studied in chapters 4 and 5 can also be extended

along the same directions discussed in chapter 3. As discussed in chapter 3, one

possible extension would be to develop a good approximation for the sojourn time

distribution Sl(·) of the low priority customers in a shared capacity setting, which

will allow for a closed-form solution to the best response problem. This will also

allow for a proof of convergence and uniqueness of the Nash Equilibrium when one

of the firms uses shared capacities. Further, the mathematical model for the best

response in a shared capacity setting can be extended to include delay dependent

dynamic priority discipline. Another possible extension may be to include the

guaranteed delivery time for regular customers also as a decision variable.
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Chapter 6

Summary & Future Research

6.1 Summary

In this dissertation, we focused on firms that exploit heterogeneity in customers’

preferences by offering a menu of products/services that differ only in their prices

and guaranteed delivery times. For such firms, we looked at two very different

operations strategies (sharing service/production capacities among different mar-

ket segments versus using dedicated facilities for each segment), and the way each

affects their marketing decision of differentiating their products for different cus-

tomer segments. We also looked at how a firm’s optimal product differentiation

is further affected by the degree of discrimination (second degree discrimination

versus third degree discrimination) it employs. From demand perspective, when

customers are allowed to self-select from the menu (second degree discrimination),

different products act as substitutes, affecting each other’s demand. Customized

product for each segment (third degree discrimination), on the other hand, results

in independent demand for each product. We tried to understand the interaction

between a firm’s operations strategy (dedicated versus shared capacities) and its

marketing strategy (second versus third degree discrimination), and how they shape

the optimal product differentiation decisions.

In chapters 2 and 3, we studied the above issues for a single profit maximizing
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monopolist firm, which offers two versions of the same basic product: (i) regular

product at a lower price but a longer delivery time, and (ii) express product with a

shorter delivery time but for a higher price. Demand was assumed to be uncertain,

modelled using a Poisson process. We modelled the price and time sensitivity

of customers using a mean of the Poisson demand as a deterministic function of

its price and delivery time, and used different price and time sensitivities for the

two customer segments. Further, we modelled product substitution by making the

mean demand for each product to also depend on the price and delivery time of

the other product. We modelled these dependencies of the mean demand using

linear functions for analytical tractability. However, we saw linear demand models

exhibit some important desirable properties, which are not exhibited by other more

complicated functions. We modelled the dedicated capacity strategy of a firm using

separate servers catering to each market segment. The shared capacity strategy, on

the other hand, was modelled using a single server, which serves both the market

segments, giving preemptive priority to customers for its express product. We

looked at how to optimally price the two products and select their guaranteed

delivery times so as to maximize the firm’s profit rate. For analytical tractability,

we assumed that the delivery time for the regular product is already established.

The firm simultaneously needs to decide its optimal processing capacity, represented

by its exponential processing rate, so as to meet its promised delivery times with a

predetermined minimum level of reliability.

Different combinations of operations strategy and marketing strategy of the

firm resulted in four possible scenarios: (i) Non-substitutable products; dedicated

capacity (ii) Non-substitutable products; shared capacity (iii) Substitutable prod-

ucts; dedicated capacity (iv) Substitutable products; shared capacity. Comparison

of the four scenarios allowed us to study the interactions between a firm’s opera-

tions and marketing strategies on optimal product differentiation. On the technical

side, the problem in a shared capacity setting became very challenging, especially

in the absence of an analytical characterization of sojourn time distribution of reg-

ular customers in a priority queue. We resolved this difficulty by developing a
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solution algorithm, using matrix geometric method in a cutting plane framework,

to solve the problem numerically. Numerical solution of the problem in a shared

capacity setting prevented analytical comparisons of the different scenarios, and we

derived most of our insights from a numerical study, giving intuitive explanations

and mathematical justification wherever possible.

Our study showed that in a highly capacitated system, the firm should offer

products with greater differentiation if they use shared capacities compared to if

they use dedicated capacities, whether the products are substitutable or not. In

contrast, when customers are allowed to self-select, such that independent products

become substitutable, a more homogeneous pricing scheme results. However, the

effect of substitution on optimal delivery time differentiation depends on the firm’s

capacity strategy and cost, as well as market characteristics. The optimal response

to any change in capacity cost also depends on the firm’s operations strategy. In

a dedicated capacity scenario, the optimal response to an increase in capacity cost

is always to offer more homogeneous prices and delivery times. In a shared ca-

pacity setting, it is again optimal to quote more homogeneous delivery times, but

increase or decrease the price differentiation depending on whether the status-quo

capacity cost is high or low, respectively. We also demonstrated that the above re-

sults are corroborated by real-life practices, and provided a number of managerial

implications in terms of dealing with issues like volatile fuel prices.

In chapters 4 and 5, we extended our analysis to a competitive setting with

two firms, each of which may either share its processing capacities for the two

products, or may dedicate capacity for each product. The demand faced by each

firm for a given product now also depends on the price and delivery time quoted

for the same product by the other firm. We first studied the best response of each

firm, given the price and delivery time decisions of the other firm. We developed a

solution algorithm, which always converges to a unique solution, to determine the

decisions of the competing firms at equilibrium. We used the solution algorithm

to study the equilibrium decisions in three different scenarios (i) both firms use
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dedicated capacities (DD); (ii) both firms use shared capacities (SS); (iii) one firm

uses dedicated while the other uses shared capacities (DS). Comparing the solutions

of different scenarios, we derived generalizations on the effects of capacity strategy

on the product differentiation decisions of competing firms.

From our study, we observed that the qualitative results of a monopolistic setting

also extend to a competitive setting. Specifically, in a highly capacitated system,

the equilibrium prices and delivery times are such that they result in products with

greater differentiation when both the firms use shared capacities as compared to the

scenario when both the firms use dedicated capacities. When the competing firms

are asymmetric, they exploit their distinctive characteristics to differentiate their

products. Further, the effects of these asymmetries also depend on the capacity

strategy used by the competing firms. Our numerical results suggested that the firm

with expensive capacity always offers more homogeneous delivery times. However,

its decision on how to differentiate its prices depends on the capacity setting of

the two firms as well as the actual level of their capacity costs. On the other

hand, the firm with a larger market base always offers more differentiated prices as

well as delivery times, irrespective of the capacity setting of the competing firms.

Comparing the equilibrium solutions of our competitive setting with the optimal

solution of the monopolistic setting, we observed that competition may increase or

decrease product differentiation depending on the market structure.

The insights generated from our study are managerially quite relevant. First

of all, they show how capacitated firms should alter their product differentiation

strategy when they make changes in their market coverage of product offerings

and/or capacity strategy. We also showed that managers need to pay close at-

tention to two other factors - capacity cost of the business environment they are

operating in and the behavior of their end customers - both of which play crucial

role in many circumstances. Our analysis regarding the effects of any change in

capacity cost is especially relevant keeping in mind the volatility of fuel price, which

directly impacts capacity cost in a number of sectors. We demonstrated how man-
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agers should optimally respond to these changing business environments in order to

gain competitive advantage. Our insights from the competitive model demonstrate

how managers should anticipate the outcome of competition, in terms of product

differentiation, given its own capacity strategy as well as the capacity strategy of

its competitor. It also enables managers to anticipate how its competitor will use

its distinctive advantage to differentiate its products, and hence how to respond

optimally.

6.2 Directions for Future Research

The summary presented in the previous section shows our understanding of the ef-

fects of operations strategy and product substitution on the product differentiation

strategy of a firm in a service or make-to-order (MTO) industry. The models devel-

oped in this dissertation have potential for being extended and further evolved. We

have already discussed in chapters 3 and 5 the directions along which the current

models can be extended. The models developed in this dissertation can further

be extended for Make-to-Stock (MTS) and Assemble-to-Order (ATO) manufactur-

ing environment. A key feature distinguishing MTS and ATO from our models

for MTO is the issue of inventory management. Models for MTS/ATO will thus

require integrating inventory decisions in the modelling framework. While MTS

produces to stock end-products, ATO pools the inventories of different products by

producing components that can be quickly assembled into different end-products.

It will be worthwhile to study how inventory pooling in ATO affects the product

differentiation decision of a firm.

The models studied in this thesis include static decisions. We see pricing and

lead time setting for segmented markets in a dynamic setting as another possible

extension. Further, there is also a scope for empirical research to understand how

firms actually manage their capacities to serve different market segments, and also

to estimate the different demand parameters.
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Appendix A

Mathematical Appendices for

Chapter 3

A.1 Explanations for Observation 3.5

For small A:
∂π(Lh)

∂Lh

∣∣∣∣
SC

− ∂π(Lh)

∂Lh

∣∣∣∣
DC

=
θLA

2
≥ 0 (A.1)

Absence of product substitution (θp = θL = 0) implies (A.1) = 0. This suggests

that sharing capacity, when it is relatively inexpensive, has no effect on the optimal

express delivery time, and hence on delivery time differentiation, in absence of

product substitution. Presence of product substitution (θp > 0, θL > 0), on the

other hand, implies (A.1) > 0. Further, π(Lh) is increasing concave in Lh for

Lh ≤ LDC∗
h . Similarly, π(Lh) is increasing concave in Lh for Lh ≤ LSC∗

h . This,

together with (A.1) > 0, implies that:

LSC∗
h := {LSC

h : ∂π/∂LSC
h = 0} > LDC∗

h := {LDC
h : ∂π/∂LDC

h = 0} for θL > 0

This implies that when A is small, sharing capacity in presence of product substitu-

tion increases optimal Lh, and hence decreases delivery time differentiation. This,

together with Proposition 2.3 and Observation 2.1, explains the effect of capacity

sharing on optimal ph.
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The effect of product substitution in a dedicated capacity setting follows from

the following expression:

∂π(Lh)

∂Lh

∣∣∣∣
θp,θL>0

− ∂π(Lh)

∂Lh

∣∣∣∣
θp,θL=0

=
−βl

p(β
l
p − βh

p )(βh
p θL − βh

Lθp)a

2βh
p βl

p(β
h
p βl

p + βh
p θp + βl

pθp)

+
{βh

p βl
p(β

h
p + βl

p)(θL)2 + βh
p (βl

p)
2βh

LθL + (βl
p)

2βh
L(βh

p θL − βh
Lθp)}Lh

2βh
p βl

p(β
h
p βl

p + βh
p θp + βl

pθp)

−
{βh

L(βl
pθL − βl

Lθp) + (βh
p + βl

p)(θL)2 + βh
p βl

LθL}Ll

2βh
p βl

p(β
h
p βl

p + βh
p θp + βl

pθp)
(A.2)

A high value of a (Assumption 2.2) makes (A.2) negative (resp., positive) if βh
p θL−

βh
Lθp > 0 (resp., < 0). Also, the profit function is increasing concave in Lh. There-

fore, (A.2) < 0 (resp., > 0) implies that optimal L∗
h decreases (resp., increases) with

substitution. This implies that product substitution decreases (resp., increases)

L∗
h := {Lh : ∂π/∂Lh = 0}, and hence increases (resp., decreases) the delivery

time differentiation for a TDS (resp., PDS) type market. The effect of product

substitution in a shared capacity setting for small A can be similarly explained.

A.2 Explanations for Observation 3.6

For a dedicated capacity setting, from Implicit Function Theorem, we get:

∂L∗
h

∂A
= −

(
∂2π/∂Lh∂A

∂2π/∂L2
h

) ∣∣∣∣
Lh=L∗

h

, where
∂2π

∂Lh∂A

∣∣∣∣
Lh=L∗

h

=
βh

L

2
− ln(1− α)

(L∗
h)

2
> 0

Since we know that
∂2π

∂L2
h

∣∣∣∣
Lh=L∗

h

< 0 ⇒ ∂L∗
h

∂A
> 0

This implies that the optimal delivery time differentiation decreases with an increase

in the marginal capacity cost A.

The effect of an increase in A on price differentiation in DC follows from:

d(p∗h − p∗l )

dA
=

∂(p∗h − p∗l )

∂A
+

∂(p∗h − p∗l )

∂L∗
h

∂(L∗
h)

∂A

= −
βl

pβ
h
L + βh

p θL + βl
pθL

2(βh
p βl

p + βh
p θp + βl

pθp)

∂(L∗
h)

∂A
< 0
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Appendix B

Mathematical Appendices for

Chapter 4

B.1 Proof of Proposition 4.6

Proof. Given the strategy of firm j ∈ {1, 2}, the best response express delivery time

of firm i = 3− j satisfies:

∂πi

∂Li
h

= 0

Taking the total derivative of the above relation with respect to the express delivery

time Lj
h of firm j, we get:

d

dLj
h

(
∂πi

∂Li
h

)
=

∂

∂Lj
h

(
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h

)
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∂
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∂

∂Li
h

(
∂πi

∂Li
h

)
dLi

h

dLj
h

= 0

⇒ dLi
h

dLj
h

=
−
[

∂2πi

∂Lj
h∂Li

h

+ ∂2πi

∂pj
h∂Li

h

∂pj
h

∂Lj
h

+ ∂2πi

∂pj
l ∂Li

h

∂pj
l

∂Lj
h

]
∂2πi

∂(Li
h)2

For a DD setting, the above relation simplifies to:

dLi
h

dLj
h

=

−
[
γp

{(
∂pj

h

∂Lj
h

)2

+
(

∂pj
l

∂Lj
h

)2
}

+ γL

(
∂pj

h

∂Lj
h

)]
∂2πi

∂(Li
h)2

(B.1)
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We know that for Lh ≤ L∗
h:

∂2πi

∂(Li
h)

2
< 0

The numerator in RHS of (B.1) consists of terms that are functions only of the

market parameters, and hence is a constant for a given parameter setting. Further,

γp


(

∂pj
h

∂Lj
h

)2

+

(
∂pj

l

∂Lj
h

)2
 > 0 and γL

(
∂pj

h

∂Lj
h

)
< 0

Therefore, we have:

dLi
h

dLj
h

≥ 0 if γp


(

∂pj
h

∂Lj
h

)2

+

(
∂pj

l

∂Lj
h

)2
 ≥ γL

(
∂pj

h

∂Lj
h

)
(B.2)

dLi
h

dLj
h

< 0 if γp


(

∂pj
h

∂Lj
h

)2

+

(
∂pj

l

∂Lj
h

)2
 < γL

(
∂pj

h

∂Lj
h

)
(B.3)

This suggests that if the market parameters are such that (B.2) holds, firm i always

increases (decreases) its express delivery time Li
h in response to a corresponding

increase (decrease) in firm j′s express delivery time Lj
h. We let pi

h(n), pi
l(n) and

Li
h(n) be the best response decisions of firm i at the nth iteration of the procedure.

If Li
h(0) = 0, then Li

h(n) ≥ Li
h(0) for all n. We will show that if (B.2) holds, Li

h(n)

is increasing in n for i ∈ {1, 2}. As Li
h is bounded above (Li

h < Ll), for i ∈ {1, 2},

this will establish that the iterative procedure converges. We prove the convergence

by induction as follows:

1. (Step n = 1): We know that Li
h(1) ≥ Li

h(0) for i ∈ {1, 2}.

2. (Step n− 1): Assume that Li
h(n− 1) ≥ Li

h(n− 2) for i ∈ {1, 2}.

3. (Step n): Given the inductive assumption from Step n−1, (B.2) implies that

Li
h(n) ≥ Li

h(n− 1) for i ∈ {1, 2}.

This completes our induction. In case (B.3) holds, convergence of the algorithm

can proved similarly by letting L1
h(0) = Ll and L2

h(0) = 0 and by showing that

L1
h(n) is decreasing in n while L2

h(n) is increasing in n.
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We show the uniqueness of the Nash Equilibrium by contradiction. For any

given (L1
h, L

2
h), the equilibrium prices are uniquely determined by the simultaneous

solution of the 4 linear equations given by (4.10) and (4.11) for i ∈ {1, 2}. Therefore,

an Equilibrium solution is completely specified by the pair of express delivery times

(L1
h, L

2
h). Suppose there exist two different equilibrium solutions Φ = (L1

h, L
2
h) and

Φ
′

= (L1′

h , L2′

h ). By numbering the firms and the two solutions appropriately, we

can assume that L1′

h > L1
h, which results in L2′

h > L2
h if (B.2) holds, else L2′

h < L2
h if

(B.3) holds. We will show that in either condition, such two equilibrium solutions

cannot both satisfy the optimality equation (4.13) = 0 for i ∈ {1, 2}.

For any given (L1
h, L

2
h), the equilibrium prices, obtained by the simultaneous

solution of the 4 linear equations given by (4.10) and (4.11) for i ∈ {1, 2}, can be

expressed as:

p1
h = K1

h + K11
h L1

h + K12
h L2

h

p2
h = K2

h + K12
h L1

h + K11
h L2

h

p1
l = K1

l + K11
l L1

h + K12
l L2

h

p2
l = K2

l + K12
l L1

h + K11
l L2

h

where K1
h, K2

h, K11
h , K12

h , K1
l , K2

l , K11
l , K12

l are functions of market and firm specific

parameters, and hence are constants for a given problem setting. Substituting the

equilibrium prices in the optimality equation (4.13) for i ∈ {1, 2}, we get:

f 1(L1
h, L

2
h) = K1 + K11L

1
h + K12L

2
h − A1 ln(1− α)/(L1

h)
2 = 0 (B.4)

f 2(L1
h, L

2
h) = K2 + K12L

1
h + K11L

2
h − A2 ln(1− α)/(L2

h)
2 = 0 (B.5)

For (L1′

h , L2′

h ) to also be an equilibrium, it should hold that f 1(L1′

h , L2′

h ) = f 2(L1′

h , L2′

h )

= 0. It should also hold that f 1∆ = f 1(L1
h, L

2
h) − f 1(L1′

h , L2′

h ) = 0 and f 2∆ =

f 2(L1
h, L

2
h)− f 2(L1′

h , L2′

h ) = 0, and therefore, f∆ = f 1∆ + f 2∆ = 0. However, given

(B.2) holds and ∂2πi/∂(Li
h)

2 < 0, ∂2πi/∂(Li′

h)2 < 0, f∆ 6= 0 for L1′

h > L1
h and

L2′

h > L2
h. Similarly, given (B.3) holds and ∂2πi/∂(Li

h)
2 < 0, ∂2πi/∂(Li′

h)2 < 0,

f∆ 6= 0 for L1′

h > L1
h and L2′

h < L2
h. Thus, we conclude that there is a unique

equilibrium solution in a DD setting.
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B.2 Explanation for Observation 4.4

When both the firms use shared capacities and both have small express delivery

times, the equilibrium prices can be obtained from the simultaneous solution of the

4 linear equations given by (4.25) and (4.26) for i ∈ {1, 2}. The system of equations

in matrix notation is given by Ax = b, where:

x =
(

p1∗
h p1∗

l p2∗
h p2∗

l

)T

and A is the same matrix as that for the DD setting, given by (4.30). The only

difference between the system of equations between a DD and an SS setting is in

the 4x1 matrix of constants, b. We have already shown (see proof of Proposition

4.5) that A is a full-rank matrix, and hence the system of linear equations Ax = b

has a unique solution. Proof for symmetry of the equilibrium solution is the same

as for the DD setting. Hence, s1∗(Lh) = s2∗(Lh). Substituting p1∗
h (Lh) = p2∗

h (Lh) =

p∗h(Lh) and p1∗
l (Lh) = p2∗

l (Lh) = p∗l (Lh) in the expressions for the best response

prices, given by (4.25) and (4.26), and solving the resulting system of 2 equations

in 2 unknown gives (4.32) and (4.33).
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Appendix C

Mathematical Appendices for

Chapter 5

C.1 Proof of Proposition 5.1

Comparing the monopolist prices, given by Proposition 2.3 with the equilibrium

prices, given by Proposition 4.3, we get:

pDD∗
h (Lh)

∣∣∣∣
duopoly

− pDC∗
h (Lh)

∣∣∣∣
monopoly

=
−γp

{
Kh

1 a + Kh
2 Lh + Kh

3 Ll + Kh
4 (A + m)

}
4βh

p βl
p + 4βh

p θp + 4βl
pθp + 2βh

p γp + 2βl
pγp + 4θpγp + γ2

p

(C.1)

pDD∗
l (Lh)

∣∣∣∣
duopoly

− pDC∗
l (Lh)

∣∣∣∣
monopoly

=
−γp

{
K l

1a + K l
2Lh + K l

3Ll + K l
4(A + m)

}
4βh

p βl
p + 4βh

p θp + 4βl
pθp + 2βh

p γp + 2βl
pγp + 4θpγp + γ2

p

(C.2)

(
pDD∗

h (Lh)− pDD∗
l (Lh)

) ∣∣∣∣
duopoly

−
(
pDC∗

h (Lh)− pDC∗
l (Lh)

) ∣∣∣∣
monopoly

=
−γp

{
Kd

1a + Kd
2Lh + Kd

3Ll + Kd
4 (A + m)

}
4βh

p βl
p + 4βh

p θp + 4βl
pθp + 2βh

p γp + 2βl
pγp + 4θpγp + γ2

p

(C.3)

where, Kh
1 , Kh

2 , Kh
3 , Kh

4 , K l
1, K l

2, K l
3, K l

4, Kd
1 , Kd

2 , Kd
3 , Kd

4 are some functions

only of the system parameters, and hence are constants. Clearly, when γp = 0,
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pDD∗
h (Lh)

∣∣∣∣
duopoly

= pDC∗
h (Lh)

∣∣∣∣
monopoly

and pDD∗
l (Lh)

∣∣∣∣
duopoly

= pDC∗
l (Lh)

∣∣∣∣
monopoly

. For,

γp > 0, (C.1), (C.2) and (C.3) are dictated mainly by Kh
1 and K l

1 and Kd
1 , respec-

tively since a is assumed to be large (see Assumptions 2.2 and 4.2). Further,

Kh
1 = 2(βl

p)
2 + 2βh

p θp + 6βl
pθp + 8θ2

p + βl
pγp + 2θpγp > 0

K l
1 = 2(βh

p )2 + 6βh
p θp + 2βl

pθp + 8θ2
p + βh

p γp + 2θpγp > 0

Kd
1 = (βl

p − βh
p )γp + 2{(βl

p)
2 − (βh

p )2}+ 4(βl
p − βh

p )θp > 0

Therefore, Kh
1 > 0, K l

1 > 0 and Kd
1 > 0 ⇒ (C.1) < 0, (C.2) < 0 and (C.3) < 0,

respectively if γp > 0. This shows that pure price competition decreases both the

express and regular prices as well as the price differentiation.

C.2 Explanations for Observation 5.3

∂π(Lh)

∂Lh

∣∣∣∣
SS

− ∂π(Lh)

∂Lh

∣∣∣∣
DD

=

{
(2βh

p βl
p + 2βh

p θp + 2βl
pθp + βl

pγp + 2θpγp)θL + (βh
L + γL)θpγp

}
Ah

4βh
p βl

p + 4βh
p θp + 2βh

p γp + 4βl
pθp + 2βl

pγp + 4θpγp + γ2
p

≥ 0 (C.4)

Further, for Lh ≤ LDC∗
h in DC, profit function is increasing concave in Lh. Also, for

Lh ≤ LSC∗
h in SC, profit function is increasing concave in Lh. This, together with

(C.4), shows that LSC∗
h := {LSC

h : ∂π/∂LSC
h = 0} ≥ LDC∗

h := {LDC
h : ∂π/∂LDC

h =

0}. Thus, SS setting results in a larger L∗
h and hence a smaller delivery time

differentiation if the products are substitutable (i.e., θp > 0 and θL > 0).

Further, comparison of equilibrium prices (comparison of (4.28) with (4.32) and

(4.29) with (4.33)) suggests that both express and regular prices are smaller under

SS setting compared to DD setting for a given Lh. Whereas, comparison of (4.31)

with (4.34) shows that the price differentiation increases in an SS setting for a given

Lh. A larger Lh in SS setting compared to DD setting partly offsets the difference

in the price differentiation in the two settings, but all our numerical results suggest

that the price differentiation is still higher in SS setting.
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C.3 Proof of Proposition 5.2

The effect of competition on the express delivery time when firms use dedicated

capacities is given by:

∂π(Lh)

∂Lh

∣∣∣∣
duopoly

− ∂π(Lh)

∂Lh

∣∣∣∣
monopoly

=
−{K1a + K2Lh + K3Ll + K4(A + m)}

2(4βh
p βl

p + 4βh
p θp + 4βl

pθp + 2βh
p γp + 2βl

pγp + 4θpγp + γ2
p)(β

h
p βl

p + βh
p θp + βl

pθp)

(C.5)

where, K1, K2, K3 and K4 are some functions only of the system parameters, and

hence are constants. For large a, (Assumptions 2.2 and 4.2), (C.5) is dictated

mainly by K1, which is given by:

K1 =
{
4βh

p (βl
p)

2 + 4(βl
p)

2θp + 8βh
p θ2

p + 8βl
pθ

2
p + 12βh

p βl
pθp

}
γL

−
{
βh

Lβl
p + 2βh

Lθp + [(βl
p)

2 − (βh
p )2]θL

}
γ2

p

−
{
2βh

p βh
Lθp + 2(βl

p)
2βh

L + 4βl
pθL + 8βh

Lθ2
p

}
γp

−
{
[6βl

pβ
h
L − 4βh

p θL]θp + 2[(βl
p)

2 − (βh
p )2]θL

}
γp

+2
{
βh

p βl
p + βh

p θp + βl
pθp

}
γLγp (C.6)

Clearly, the effect of competition on Lh, and hence on delivery time differentiation,

depends on the relative intensities of price competition (γp) and delivery time com-

petition (γL), as well as other demand parameters. γp = 0 and γL > 0 results in

C.6 > 0, and hence C.5 < 0. Thus, Lh is smaller under competition when γp = 0.

Further, (C.1), (C.2) and (C.3) suggest that for a given Lh, the equilibrium prices

as well as the price differentiation under DD coincide with the monopolist prices

and price differentiation under DC for γp = 0. However, a smaller Lh under DD

compared to DC results in a larger price differentiation.

γp > 0 and γL = 0, on the other hand, results in C.6 < 0, and hence C.5

> 0. Thus, Lh is larger under competition. A larger Lh results in a smaller price

differentiation.

145



References

[1] J. Abate and W. Whitt. Low-priority waiting-time tail probabilities. Queue-

ing Systems, 25:173–233, 1997.

[2] P. Afeche. Incentive compatible revenue managemet in queueing systems:

optimal strategic delay and other delaying tactics. Working paper, Kellog

School of Management, Northwestern University, Evasnton, IL, USA, 2004.

[3] P. Afeche and H. Mendelson. Pricing and priority auctions in queueing sys-

tems with a generalized delay cost structure. Management Science, 50(7):869–

882, 2004.

[4] G. Allon and A. Federgruen. Competition in service industries. Operations

Research, 53(1):37–55, 2007.

[5] G. Allon and A. Federgruen. Competition in service industries with segmented

markets. Working paper, Graduate School of Business, Columbia University,

NY, USA, 2008.

[6] T. Andel. From common to custom: The case for make-to-order. Material

Handling Management, November 2000.

[7] S. P. Anderson, A. de Palma, and J. F. Thisse. Discrete Choice Theory and

Product Differentiation. MIT Press, Cambridge, MA, USA, 1992.

[8] S. Andradottir. A review of simulation optimization techniques. In J. S. Car-

son D. J. Medeiros, E. F. Watson and M. S. Manivannan, editors, Proceedings

of the 1998 Winter Simulation Conference, pages 151–158, 1998.

146



[9] H. Armony and M. Haviv. Price and delay competition between two service

providers. European Journal of Operational Research, 147(1):32–50, 2003.

[10] B. Ata and J. A. Van Mieghem. The value of dynamic resource pooling:

Should a service network be integrated or product-focused? Working paper,

Kellog School of Management, Northwestern University, IL, USA, 2008.

[11] J. Atlason, M.A. Epelman, and S.G. Henderson. Call center staffing with

simulation and cutting plane methods. Annals of Operations Research, 127(1–

4):333–358, 2004.

[12] R. H. Ballou. Business Logistics Management. Prentice Hall, Upper Saddle

River, NJ, USA, 1998.

[13] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty. Nonlinear Programming:

Theory and Algorithm. John Wiley & Sons Publication, NY, USA, 1993.

[14] F. Bernstein and A. Federgruen. Pricing and replenishment strategies in a

distribution system with competing retailers. Operations Research, 51(3):409–

426, 2003.

[15] F. Bernstein and A. Federgruen. A general equilibrium model for indus-

tries with price and service competition. Operations Research, 52(6):868–886,

2004.

[16] O. Besbes and A. Zeevi. Implications of choice model parameter estimation

in a competitive environment. Working paper, Graduate School of Business,

Columbia University, NY, USA, 2005.

[17] J. D. Blackburn. Time-Based Competition: The Next Battleground in Amer-

ican Manufacturing. Business One Irwin, Homewood, IL, USA, 1991.

[18] A. S. Blinder, E. Canetti, D. Lebow, and J. Rudd. Asking About Prices: A

New Approach to Understanding Price Stickiness. Russell Sage Foundation

Publications, NY, USA, 1998.

147



[19] S. Borenstein and N. Rose. Competition and price dispersion in the U.S.

airline industry. The Journal of Political Economy, 102(4):653–683, 1994.

[20] J. Borland and E. Hansen. DVD price wars: How long can they go? CNET

News, URL http://news.cnet.com/2100-1026_3-5439388.html, Novem-

ber 05 2004.

[21] T. Boyaci and S. Ray. Product differentiation and capacity selection cost

interaction in time and price sensitive markets. Manufacturing and Service

Operations Management, 5(1):18–36, 2003.

[22] T. Boyaci and S. Ray. The impact of capacity costs on product differentiation

in delivery time, delivery reliability and price. Production and Operations

Management, 15(2):179–197, 2006.

[23] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks Cole, CA, USA,

2000.

[24] M. Busse and M. Rysman. Competition and price discrimination in yellow

pages advertising. The RAND Journal of Economics, 36(2):378–390, 2005.

[25] G. P. Cachon and P. T. Harker. Competition and outsourcing with scale

economies. Management Science, 48(10):1314–1333, 2002.

[26] Y. Carson and A. Maria. Simulation optimization: Methods and applications.

In D. H. Withers S. Andradottir, K. J. Healy and B. L. Nelson, editors,

Proceedings of the 1997 Winter Simulation Conference, pages 118–126, 1997.

[27] C. Charney. Time to Market: Reducing Product Lead Time. Society of Man-

ufacturing Engineers, Dearborn MI, USA, 1991.

[28] H. Chen and Y. Wan. Price competition of make-to-order firms. IIE Trans-

actions, 35:817–832, 2003.

[29] S. K. Clerides. Price discrimination with differentiated products: Definition

and identification. Economic Enquiry, 42(3):402–412, July 2004.

148

http://news.cnet.com/2100-1026_3-5439388.html


[30] J. W. Cohen. The Single Server Queue. North-Holland Publishing Company,

The Netherlands, 1982.

[31] L. Cooper. Applied Nonlinear Programming. Aloray Publisher, Englewood,

NJ, USA, 1974.

[32] Y. Dai. Game theoretic approach to supply chain management. PhD the-

sis, Industrial Engineering, North Carolina State University, Raleigh, North

Carolina, USA, 2003.

[33] S. Dewan and H. Mendelson. User delay costs and internal pricing for a

service facility. Management Science, 36(12):1502–1507, 1990.

[34] A. Farahat and G. Perakis. Price competition among multiproduct firms.

Working paper, Johnson Graduate School of Management, Cornell University,

Ithaca, NY, USA, 2008.

[35] M. T. Farris. The rise of premium transportation through technology. Work-

ing paper, Center for logistics education and research, University of North

Texas, TX, USA, 2002.

[36] J. B. Fuller, J. O’Conor, and R. Rawlinson. Tailored logistics: The next

advantage. Harvard Business Review, 71(3):87–98, 1993.

[37] I. Gale. Price dispersion in a market with advanced-purchases. Review of

Industrial Organization, 8:451–464, 1993.

[38] K. S. Gerardi and A. H. Shapiro. Does competition reduce price discrimi-

nation? new evidence from the airline industry. Working paper No. 07-7,

Federal Reserve Bank of Boston, 2007.

[39] A. Y. Ha, L. Li, and S. Ng. Price and delivery logistics competition in a

supply chain. Management Science, 49(9):1139–1153, 2003.

[40] M. Hammer. Deep change: How operational innovation can transform your

company. Harvard Business Review, 82(4):85–93, 2004.

149



[41] D. P. Heyman and M. J. Sobel. Stochastic Models in Operations Research,

volume 1. Dover Publications, Mineola, NY, USA, 2004.

[42] A. V. Hill and I. S. Khosla. Models for optimal lead time reduction. Producton

and Operations Management, 1(2):185–197, 1992.

[43] T. H. Ho and Y. S. Zheng. Setting customer expectation in service deliv-

ery: an integrated marketing-operations perspective. Management Science,

50(4):479–488, 2004.

[44] W. J. Hopp and M. L. Spearman. Factory Physics. McGraw-Hill Higher

Education, USA, 2nd edition, 2000.

[45] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,

Cambridge, UK, 1985.

[46] S. H. Hum and H. H. Sim. Time-based competition: Literature review and

implications for modeling. International Journal of Operations & Production

Management, 16(1):75–90, 1996.

[47] E. Kalai, M. Kamien, and M. Rubinovitch. Optimal service speeds in a

competitive environment. Management Science, 38(8):1154–1163, 1992.

[48] J. J. Kanet. A mixed delay dependent queue discipline. Operations Research,

30(1):93–96, 1981.

[49] A. K. Katta and J. Sethuraman. Pricing strategies and service differentiation

- a profit maximization perspective. Working paper, Department of Industrial

Engineering and Operations Research, Columbia University, NY, USA, 2005.

[50] J. E. Kelley. The cutting plane method for solving convex programs. SIAM

Journal on Applied Mathematics, 8(4):703–712, 1960.

[51] I. Kim and Tang C. S. Lead time and response time in a pull production con-

trol system. European Journal of Operational Research, 101:474–485, 1997.

150



[52] L. Kleinrock. A delay dependent queue discipline. Naval Research Logistics

Quarterly, 11:329–341, 1964.

[53] M. A. Lariviere and J. A. Van Mieghem. Strategically seeking service: How

competition can generate poisson arrivals. Manufacturing and Service Oper-

ations Management, 6(1):23–40, 2004.

[54] G. Latouche and V. Ramaswami. An Introduction to Matrix Analytic Meth-

ods in Stochastic Modeling. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1999.

[55] P. J. Lederer and L. Li. Pricing, production, scheduling and delivery-time

competition. Operations Research, 45(3):407–420, 1997.

[56] H. T. Leemans. Waiting time distribution in a two-class two-server heteroge-

neous priority queue. Performance Evaluation, 43(2–3):133–150, 2001.

[57] D. Levhari and I. Luski. Duopoly pricing and waiting lines. European Eco-

nomic Review, 11(1):17–35, 1978.

[58] L. Li. The role of inventory in delivery time competition. Management

Science, 38(2):182–197, 1992.

[59] L. Li and Y. S. Lee. Pricing and delivery-time performance in a competitive

environment. Management Science, 40(5):633–646, 1994.

[60] L. Liu, M. Parlar, and S. X. Zhang. Pricing and lead time decisions in

decentralized supply chains. Management Science, 53(5):713–725, 2007.

[61] C. Loch. Pricing in markets sensitive to delay. PhD thesis, Stanford Univer-

sity, Stanford, CA, USA, 1991.

[62] D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wiley Pub-

lishing Company, CA, USA, 1984.

[63] A. Maltz and E. Maltz. Customer service in the distrbution channel: empirical

findings. Journal of Business Logistics, 19(2):103–120, 1998.

151



[64] R. Martin. Kpi: Customer service rules. Technical report, June 10 2000.

[65] G. McWilliams. Lean machine: How Dell fine-tunes its pc pricing to gain

edge in a slow market. Wall Street Journal, June 8 2001.

[66] H. Mendelson and S. Whang. Optimal incentive-compatible priority pricing

for the m/m/1 queue. Operations Research, 38(5):870–883, 1990.

[67] D. R. Miller. Computation of steady-state probabilities for m/m/1 priority

queues. Operations Research, 29(5):945–958, 1981.

[68] R. Nelson. Matrix geometric solutions in markov models: A mathematical

tutorial. Technical report, IBM T.J. Watson Research Center, Yorktown

Heights, NY, USA, 1991.

[69] M. F. Neuts. Matrix Geometric Solutions in Stochastic Models. Dover Pub-

lications, Mineola, NY, USA, 1981.

[70] K. S. Palaka, S. Erlebacher, and D. H. Kropp. Lead time setting, capacity

utilization, and pricing decisions under lead time demand. IIE Transactions,

30(2):151–163, 1998.

[71] M. Parlar. Game theoretic analysis of the substitutable product inven-

tory problem with random demands. Naval Research Logistics Quarterly,

35(3):397–409, 1988.

[72] P. Pekgun. An analysis of pricing and leadtime policies within the market-

ing/operatons interface. PhD thesis, H. Milton Stewart School of Industrial

and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia,

USA, 2007.

[73] P. Pekgun, P. M. Griffin, and P. Keskinocak. Centralized vs. decentralized

competition for price and lead-time sensitive demand. Working paper, School

of Systems and Industrial Engineering, Georgia Institute of Technology, At-

lanta, GA, USA, 2006.

152



[74] E. L. Plambeck. Optimal leadtime differentiation via diffusion approxima-

tions. Operations Research, 52(2):213–228, 2004.

[75] V. Ramaswami and D. M. Lucantoni. Stationary waiting time distribution

in queues with phase type service and quasi-birth-and death processes. Com-

munication in Statistics - Stochastic Models, 1(2):125–136, 1985.

[76] S. Ray. Lead time management in supply chains. PhD thesis, Department of

Management Science, University of Waterloo, Waterloo, ON, Canada, 2001.

[77] S. Ray and E. M. Jewkes. Customer lead time management when both de-

mand and price are lead time sensitive. European Journal of Operational

Research, 153(3):769–781, 2004.

[78] J. Rochet and L. A. Stole. Nonlinear pricing with random participation. The

Review of Economic Studies, 69(1):277–311, 1997.

[79] J. Rudy. The video-game price war winners. Business Week, May 24 2002.

[80] M. S. Schmidt and S. Aschkenase. The building blocks of service. Supply

Chain Management Review, 8:34–40, 2004.

[81] S. K. Sinha, N. Rangaraj, and N. Hemachandra. Pricing surplus server capac-

ity for mean waiting time sensitive customers. Technical Report, Industrial

Engineering and Operations Research, Indian Institute of Technology, Bom-

bay, URL http://www.ieor.iitb.ac.in/~nh/sl-pricing-TR.pdf, 2008.

[82] M. Smith, J. Bailey, and E. Brynjolfsson. Understanding the Digital Economy,

chapter Understanding digital markets: Review and assessment. MIT Press,

Boston, MA, USA, 2000.

[83] K. C. So. Price and time competition for service delivery. Manufacturing and

Service Operations Management, 2(4):392–409, 2000.

[84] K. C. So and J. S. Song. Price, delivery time guarantees and capacity selec-

tion. European Journal of Operational Research, 111(1):28–49, 1998.

153

http://www.ieor.iitb.ac.in/~nh/sl-pricing-TR.pdf


[85] G. Stalk and T. M. Hout. Competing Against Time. The Free Press, NY,

USA, 1990.

[86] F. F. Stephan. Two queues under preemptive priority with poisson arrival

and service rates. Operations Research, 6(3):399–418, 1958.

[87] J. U. Sterling and D. M. Lambert. Customer service research: past, present

and future. International Journal of Physical Distribution and Materials

Management, 19(2):2–23, 1989.

[88] W. J. Stevenson. Production and Operations Management. Irwin McGraw-

Hill, USA, 1999.

[89] S. Stidham. Pricing and capacity decisions for a service facility: Stability and

multiple local optima. Management Science, 38(8):1121–1139, 1992.

[90] L. A. Stole. Nonlinear pricing and oligopoly. Journal of Economics & Man-

agement Strategy, 44(4):529–562, 1995.

[91] L. A. Stole. Price discrimination and competition. In M. Armstrong and

R. H. Porter, editors, HandBook of Industrial Organization, volume 3. North-

Holland, Amsterdam, 2007.

[92] R. Suri. Quick Response Manufacturing: A Companywide Approach to Re-

ducing Lead Times. Productivity Press, USA, 1998.

[93] K. Talluri and G. J. Van Ryzin. The Theory and Practice of Revenue Man-

agement. Kluwer Acedemic Publishers, Boston, USA, 2004.

[94] A. Tsay and A. N. Agrawal. Channel dynamics under price and service

competition. Manufacturing and Service Operations Management, 2(4):372–

391, 2000.

[95] P. Van Beek and C. Van Putter. OR contributions to flexibility improvement

in production/inventory systems. European Journal of Operational Research,

31:52–60, 1987.

154



[96] H. R. Varian. Price discrimination. In R. Schmalensee and R. Willig, editors,

Handbook of Industrial Organization, volume 1. North-Holland, Amsterdam,

1989.

[97] H. R. Varian. Intermediate Microeconomics: A Modern Apprach. W. W.

Norton & Company, NY, USA, 1990.

[98] T. Vinas. Swagelok CEO Arthur Anton on moving beyond ‘make-to-stock’.

Industry Week, 2006.

[99] H. White and L. G. Christie. Queuing with preemptive priority or with

breakdown. Operations Research, 6(1):79–96, 1958.

[100] W. Whitt. Partitioning customers into service groups. Management Science,

45(11):1579–1592, 1999.

[101] W. L. Winston and M. Venkataramanan. Introduction to Mathematical Pro-

gramming. Thomson Learning, CA, USA, 2003.

[102] P. Wolfe. The simplex method for quadratic programming. Econometrica,

27:382–398, 1959.

[103] R. W. Wolff. Poisson arrivals see time averages. Operations Research,

30(2):223–231, 1982.

[104] M. Zhang. Fencing in a revenue management context. PhD thesis, Richard

Ivey School of Business, University of Western Ontario, ON, Canada, 2007.

[105] X. Zhao, K. E. Stecke, and A. Prasad. Lead time and price quotation mode

selection: Uniform or differentiated? Working paper, The School of Manage-

ment, The University of Texas at Dallas, TX, USA, 2008.

155


	List of Tables
	List of Figures
	Introduction
	Time-Based Competition
	Market Segmentation and Product Differentiation
	Product Differentiation and Operations Strategy
	Research Agenda and Organization of the Thesis
	Research Contribution

	Monopolistic Market: Models & Solutions
	Introduction
	Related Literature
	Decision Models
	Modelling Assumptions
	Mathematical Model

	Solution Methodology
	Dedicated Capacity Setting
	Shared Capacity Setting

	Conclusions

	Monopolistic Market: Analysis & Insights
	Numerical Experiment Design
	Pricing Decision Problem
	Pricing and Delivery Time Decision Problem
	Optimal Product Differentiation for a Given Marginal Capacity Cost
	Effects of Capacity Cost Increase

	Conclusions & Future Research

	Competitive Market: Models & Solutions
	Introduction
	Literature Review
	Decision Models
	Modelling Assumptions

	The Best Response of a Firm
	Dedicated Capacity Setting
	Shared Capacity Setting

	Duopoly Problem
	Competition in a DD Setting
	Competition in an SS or a DS Setting

	Conclusions

	Competitive Market: Analysis & Insights
	Numerical Experiment Design
	Best Response of a Firm
	Pure Price Competition
	Effect of Capacity Strategy
	Effect of Price Competition

	Price and Delivery Time Competition
	Effect of Capacity Strategy
	Effect of Price and Delivery Time Competition
	Effect of Asymmetry Between Firms

	Conclusions & Future Research

	Summary & Future Research
	Summary
	Directions for Future Research

	APPENDICES
	Mathematical Appendices for Chapter 3
	Explanations for Observation 3.5
	Explanations for Observation 3.6

	Mathematical Appendices for Chapter 4
	Proof of Proposition 4.6
	Explanation for Observation 4.4

	Mathematical Appendices for Chapter 5
	Proof of Proposition 5.1
	Explanations for Observation 5.3
	Proof of Proposition 5.2

	References

