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Abstract

A primary challenge in wireless networks is to use available resources efficiently so that

the Quality of Service (QoS) is satisfied while maximizing the throughput of the net-

work. Among different resource allocation strategies, power and spectrum allocations

have long been regarded as efficient tools to mitigate interference and improve the

throughput of the network. Also, achieving a low transmission delay is an important

QoS requirement in buffer-limited networks, particularly for users with real-time ser-

vices. For these networks, too much delay results in dropping some packets. Therefore,

the main challenge in networks with real-time services is to utilize an efficient power

allocation scheme so that the delay is minimized while achieving a high throughput.

This dissertation deals with these problems in distributed wireless networks.

In Chapters 2 and 3, a distributed single-hop wireless network with K links is

considered, in which the links are partitioned into a fixed number (M) of clusters, each

operating in a subchannel with bandwidth W
M

. The subchannels are assumed to be

orthogonal to each other. A general shadow-fading model, described by parameters

(α,̟), is considered where α denotes the probability of shadowing, and ̟ (̟ ≤ 1)

represents the average cross-link gains. The main goal of these chapters is to find the

maximum network throughput in the asymptotic regime of K → ∞, which is achieved

by: i) proposing a distributed and non-iterative power allocation strategy, in which the

objective of each user is to maximize its best estimate (based on its local information,

i.e., direct channel gain) of the average throughput of the network, and ii) choosing

the optimum value for M . In Chapter 2, the network throughput is defined as the

average sum-rate of the network, which is shown to scale as Θ(logK). Moreover, it is
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proved that in the strong interference scenario, the optimum power allocation strategy

for each user is a threshold-based on-off scheme. In Chapter 3, the network throughput

is defined as the guaranteed sum-rate, when the outage probability approaches zero. In

this scenario, it is demonstrated that the on-off power allocation scheme maximizes the

throughput, which scales as W
α̟

logK. Moreover, the optimum spectrum sharing for

maximizing the average sum-rate and the guaranteed sum-rate is achieved at M = 1.

Chapter 4 investigates the delay-throughput tradeoff of the underlying network with

M = 1 (or equivalently K = n). The analysis relies on the distributed on-off power

allocation strategy for the deterministic and stochastic packet arrival processes. In

the first part, the effective throughput maximization of the network is analyzed. It

is proved that the effective throughput of the network scales as logn
α̂

, with α̂ , α̟,

despite the packet arrival process. Then, the delay characteristics of the underlying

network in terms of a packet dropping probability are presented. In addition, the

necessary conditions in the asymptotic case of n→ ∞ are derived such that the packet

dropping probabilities tend to zero, while achieving the maximum effective throughput

of the network. Finally, the trade-off between the effective throughput of the network

and delay-bounds for different packet arrival processes is analyzed. In particular, it is

determined how much degradation will be enforced in the throughput by introducing

other constraints.
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Chapter 1

Introduction

1.1 Background and Motivation

A wireless communication network is a system of interconnected facilities designed to

transfer information from a variety of telecommunication sources with high reliability.

There are currently two variations of wireless networks. The first is known as central-

ized networks, including cellular telephone systems and Wireless Local Area Networks

(WLANs). In this category of networks, users communicate exclusively with the cor-

responding base stations or central nodes (Fig. 1.1-a). The second type is distributed

or decentralized networks, including ad hoc wireless networks. An ad hoc wireless net-

work is a collection of mobile nodes which can be rapidly and flexibly deployed without

any inherent infrastructure (Fig. 1.1-b). An important aspect of both centralized and

distributed wireless networks is that the nodes can share a single wireless channel. In

this case, there is significant interference among simultaneously communicating nodes,

1



CHAPTER 1. INTRODUCTION 2

Base Station

(a)

(b)

Figure 1.1: a) Centralized and b) Distributed wireless networks.
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resulting in performance (e.g. network throughput) degradiation as the number of

nodes in the network increases. Thus, smart interference management should be im-

plemented to efficiently harvest high data rates. To deal with interference mitigation,

a primary challenge is to use resources (e.g., power and spectrum) efficiently so that

the throughput of the network is maximized.

On the other hand, achieving a low transmission delay is an important Quality of

Service (QoS) requirement in buffer-limited networks [1], particularly for backlogged

users1 with real-time services (e.g., interactive games, live sport videos, etc). For these

networks, too much delay results in dropping some packets. Therefore, the main chal-

lenge in wireless networks with real-time services is to utilize efficient resource allocation

schemes so that the delay is minimized, while achieving a high throughput.

Motivated by the above considerations, this thesis addresses the following specific

questions in distributed single-hop wireless networks with many nodes in the network:

• What is the optimum power allocation strategy (based on local information)

which maximizes the throughput of the network?

• How does the network’s throughput scale with the number of links in the network?

• How does the delay characteristics of the underlying network scale with the num-

ber of links in the network?

• What is the tradeoff between delay and throughput?

1For each user, there is always a packet available to be transmitted.
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1.2 Network Throughput Maximization

Throughput maximization in multi-user wireless networks has been addressed from

different perspectives; including resource allocation (e.g., power and bandwidth allo-

cations [2–5]), scheduling [6], routing by using relay nodes [7], exploiting mobility of

the nodes [8] and exploiting channel characteristics (e.g., power decay-versus-distance

law [9–11], geometric pathloss and fading [12,13] and random connections [14]). Central

to the study of network throughput maximization is the problem of resource allocation.

Among different resource allocation strategies, power and spectrum allocation have

long been regarded as efficient tools to mitigate interference and improve the through-

put of the network. In recent years, various power and spectrum allocation schemes

have been extensively studied in cellular and multihop wireless networks [2, 3, 15–21].

In [18], the authors provide a comprehensive survey in the area of resource allocation,

in particular, in the context of spectrum assignment. Much of these works rely on cen-

tralized and cooperative algorithms. Clearly, centralized resource allocation schemes

provide a significant improvement in the throughput of the network over decentralized

(distributed) approaches. However, these schemes require extensive knowledge of the

network’s configuration. In particular, when the number of nodes is large, deploy-

ing centralized schemes may not be practically feasible. In addition, in a cooperative

wireless network, when the number of nodes becomes large, the amount of exchanged

information grows extensively. This is critical for time-varying networks, as the algo-

rithms cannot perfectly track the speed of the channel variations. Due to significant

challenges in using centralized approaches, the attention of researchers has been drawn
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to the decentralized resource allocation schemes [4, 22–26].

The main goal of applying a decentralized mechanism is that operational decisions

concerning network parameters (e.g., rate and/or power) are made solely by the indi-

vidual nodes based on their local information. The local decision parameters that can

be used for adjusting the rate are the Signal-to-Interference-plus-Noise Ratio (SINR)

and the direct channel2 gains. Most of the works on decentralized throughput max-

imization target the SINR parameter by using iterative algorithms [22, 24, 25]. This

leads to the use of game theory concepts such as repeated game [27], in which the

main challenge is the convergence issue. For instance, Etkin et al. [22] develop power

and spectrum allocation strategies in multiple wireless systems by using game theory.

Under the assumptions of the omniscient nodes and strong interference, the authors

show that Frequency-Division Multiplexing (FDM) is the optimal scheme in the sense

of throughput maximization. They use an iterative algorithm that converges to the op-

timum power values. In [24], Huang et al. propose an iterative power control algorithm

in an ad hoc wireless network, in which the receivers broadcast adjacent channel gains

and interference prices to optimize the throughput of the network. However, this al-

gorithm incurs a great deal of overhead in large wireless networks. Deploying iterative

power allocation algorithms leads to more power consumption, which is a dominant

factor in ad hoc wireless networks with battery life constraints (e.g. Wireless Sensor

Networks (WSNs)).

A more practical approach in time-varying networks is to rely on the channel gains

2The direct channel is different from the Line-of-Sight (LOS), and is referred to as the link between

a transmitter and its corresponding receiver.
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as local decision parameters, and to avoid iterative schemes. Motivated by this consid-

eration, the throughput maximization of a distributed single-hop wireless network with

K links, operating in a bandwidth W is studied. To mitigate the interference, the links

are partitioned into a fixed number (M) of clusters, each operating in a subchannel

with bandwidth W
M

. Throughput maximization of the underlying network is achieved

by proposing a distributed and non-iterative power allocation strategy based on the

direct channel gains, and then choosing the optimum value for M .

1.3 Delay-Throughput Tradeoff

The throughput maximization problem in cellular and multihop wireless networks has

been extensively studied in [8–11,14]. In these works, delay analysis is not considered.

However, it is shown that the high throughput is achieved at the cost of a large delay

[28]. This problem has motivated the researchers to study the relation between the

delay characteristics and the throughput in wireless networks [29–32]. In particular, in

most recent literature [28,33–40], the tradeoff between delay and throughput have been

investigated as a key measure of the performance of the network. The first studies on

achieving a high throughput along with a low delay in ad hoc wireless networks are

framed in [29] and [32]. This line of work is further expanded in [28, 33, 34] by using

different mobility models. El Gamal et al. [28] analyze the optimal delay-throughput

scaling for some wireless network topologies. For a static random network with n nodes,

the authors prove that the optimal tradeoff between throughput Tn and delay Dn is

given by Dn = Θ(nTn). Reference [28] also shows that the same result is achieved in
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random mobile networks, when Tn = O(1/
√
n logn). Neely and Modiano [34] consider

the delay-throughput tradeoff for mobile ad hoc networks under the assumption of

redundant packets transmission through multiple paths. Sharif and Hassibi [36] analyze

the delay characteristics and the throughput maximization in a broadcast channel.

They propose an algorithm to reduce the delay without too much degradation in the

throughput. This line of work is further extended in [37] by demonstrating that it is

possible to achieve the maximum throughput and short-term fairness simultaneously

in a large-scale broadcast network.

In Chapter 4, the same model in Chapter 2 with M = 1 (or equivalently K = n) is

used. The analysis relies on the distributed on-off power allocation strategy proposed

in Chapter 2. In this chapter, the effective throughput maximization of the network is

analyzed. Also, the question: “How does the delay characteristics of the network scale

with the number of links n” is addressed? In addition, the delay-throughput tradeoff

of the underlying network is analyzed.

1.4 Overview of Contributions

In Chapters 2 and 3, a distributed single-hop wireless network with K links is consid-

ered, where the links are partitioned into a fixed number (M) of clusters each operating

in a subchannel with bandwidth W
M

. The subchannels are assumed to be orthogonal

to each other. A general shadow-fading model, described by parameters (α,̟), is

considered where α denotes the probability of shadowing, and ̟ (̟ ≤ 1) represents

the average cross-link gains. The main goal of these chapters is to find the maxi-
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mum network throughput in the asymptotic regime of K → ∞, which is achieved by:

i) proposing a distributed and non-iterative power allocation strategy, in which the

objective of each user is to maximize its best estimate (based on its local information,

i.e., direct channel gain) of the average throughput of the network, and ii) choosing

the optimum value for M . In Chapter 2, the network throughput is defined as the

average sum-rate of the network, which is shown to scale as Θ(logK). Moreover, it is

proved that in the strong interference scenario, the optimum power allocation strategy

for each user is a threshold-based on-off scheme. In Chapter 3, the network throughput

is defined as the guaranteed sum-rate, when the outage probability approaches zero. In

this scenario, it is demonstrated that the on-off power allocation scheme maximizes the

throughput, which scales as W
α̟

logK. Moreover, the optimum spectrum sharing for

maximizing the average sum-rate and the guaranteed sum-rate is achieved at M = 1 3.

Chapter 4 investigates the delay-throughput tradeoff of the underlying network with

M = 1 (or equivalently K = n). The analysis relies on the distributed on-off power

allocation strategy for the deterministic and stochastic packet arrival processes. In the

first part, the effective throughput maximization of the network is analyzed. It is proved

that the effective throughput of the network scales as logn
α̂

, with α̂ , α̟, despite the

packet arrival process. It is shown that increasing the number of links gives rise to

increasing the throughput of the network, at the cost of increasing the delay. This

results in higher packet droppings in real-time applications with limited buffer sizes.

In the second part, the delay characteristics of the underlying network in terms of a

3The material in Chapters 2 and 3 has been previously presented in CISS’07 and ISIT’08 conferences

[41, 42] and has been submitted to IEEE Transactions on Information Theory [43].
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packet dropping probability are presented. In addition, the necessary conditions in the

asymptotic case of n→ ∞ are derived such that the packet dropping probabilities tend

to zero, while achieving the maximum effective throughput of the network. Finally,

the tradeoff between the effective throughput of the network and delay-bounds for

different packet arrival processes is analyzed. In particular, it is determined how much

degradation will be enforced in the throughput by introducing other constraints4. .

Finally, Chapter 5 outlines a summary of the thesis contributions and discusses

possible future research directions.

4The material in Chapter 4 has been previously presented in ISIT’08 conference [44] and to be

submitted to IEEE Transactions on Information Theory [45].



Chapter 2

Utility-Based Power Allocation

Strategy

2.1 Introduction

In this chapter, we study the throughput maximization of a spatially distributed wire-

less network with K links, where the sources and their corresponding destinations

communicate directly with each other without using relay nodes. Wireless networks

using unlicensed spectrum (e.g. Wi-Fi systems based on IEEE 802.11b standard [46])

are typical examples of such networks. It is assumed that the links are partitioned into

M clusters each operating in subchannels with bandwidth W
M

. The cross channel gains

are assumed to be Rayleigh-distributed with shadow-fading, described by parameters

(α,̟), where α denotes the probability of shadowing, and ̟ represents the statistical

average cross-link gains. This configuration differs from the geometric models proposed

10



CHAPTER 2. UTILITY-BASED POWER ALLOCATION STRATEGY 11

in [8–11, 17], in which the signal power decays based on the distance between nodes.

Unlike [22–25] which rely on iterative algorithms using SINR, it is assumed that each

transmitter adjusts its power solely based on its direct channel gain.

Clearly, if each user maximizes its rate selfishly, the optimum power allocation

strategy for all users is to transmit with full power. This strategy results in excessive

interference, degrading the network throughput. To prevent this undesirable effect,

one should consider the negative impact of each user’s power increment on the other

links performance. A reasonable approach for each user is to choose a non-iterative

power allocation strategy to maximize its best local estimate of the throughput of the

network. In this setup, the optimization problem is subject to the power constraint

for each individual link, instead of a total power constraint. This assumption is more

practical for decentralized wireless networks.

The throughput in this chapter is defined as the average sum-rate of the network,

which is shown to scale at most as Θ(logK) in the asymptotic case of K → ∞. This

order is achievable by the distributed threshold-based on-off scheme (i.e., links with a

direct channel gain above certain threshold transmit at full power and the rest remain

silent). Moreover, in the strong interference scenario, the on-off power allocation scheme

is the optimal strategy. These results are different from the link activation strategy

studied in [47], where the authors use a similar on-off scheme for M = 1 and prove its

optimality only among all on-off schemes. This work also differs from [14] and [48] in

terms of the network model. In this thesis, a distributed power allocation strategy in

a single-hop network with M disjoint subchannels is used; while [14] and [48] consider

an ad hoc network model with random connections (for M = 1) and relay nodes.
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The average throughput of the network in terms of the number of clusters (M) is

optimized. It is proved that the maximum average sum-rate of the network for every

value of α is achieved at M = 1. In other words, splitting the bandwidth W into M

orthogonal subchannels does not increase the throughput.

The rest of the chapter is organized as follows. In Section 2.2, the network model

and objectives are described. The distributed on-off power allocation strategy and

the average sum-rate of the network are presented in Section 2.3. In Section 2.4, the

numerical results are provided. Finally, in Section 2.5, an overview of the results and

some conclusion remarks are indicated.

2.2 Network Model and Description

2.2.1 Network Model

In this work, a single-hop wireless network consisting of K pairs of nodes1 indexed by

{1, ..., K}, operating in bandwidth W is considered. All the nodes in the network are

assumed to have a single antenna. The links are assumed to be randomly divided to

M clusters denoted by Cj, j = 1, ...,M so that the number of links in all clusters are

the same. Without loss of generality, Cj , {(j− 1)n+1, ..., jn}, where n , K
M

denotes

the cardinality of the set Cj , and it is assumed to be known to all users2. To eliminate

the mutual interference among the clusters, an M-dimensional orthogonal coordinate

1The term “pair” is used to describe a transmitter and its corresponding receiver, while the term

“user” is used only for the transmitter.
2It is assumed that K is divisible by M , and hence, n = K

M
is an integer number.
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system3 is considered, in which the bandwidth W is split into M disjoint subchannels

each with bandwidth W
M

. It is assumed that the links in Cj operate in subchannel j. It

is also assumed that M is fixed, i.e., it does not scale with K. The power of Additive

White Gaussian Noise (AWGN) at each receiver is supposed to be N0W
M

, where N0 is

the noise power spectral density.

The channel model is assumed to be flat Rayleigh fading with shadowing effect.

The channel gain4 between transmitter k and receiver i is represented by the random

variable Lki. For k = i, the direct channel gain is defined as Lki , hii where hii is

exponentially distributed with unit mean (and unit variance). For k 6= i, the cross

channel gains are defined based on a shadowing model as follows5:

Lki ,











βkihki, with probability α

0, with probability 1 − α,

(2.1)

where hki’s have the same distribution as hii’s, 0 ≤ α ≤ 1 is a fixed parameter, and

the random variable βki, referred to as the shadowing factor, is independent of hki and

satisfies the following conditions:

• βmin ≤ βki ≤ βmax, where βmin > 0 and βmax is finite,

• E
[

βki
]

, ̟ ≤ 1.

It is also assumed that {Lki} and {βki} are mutually independent random variables for

different (k, i).

3There are several ways to generate M orthogonal subspaces such as M different frequency bands,

M different time slots, or M orthogonal codes (e.g., Walsh-Hadamard codes).
4In this work, channel gain is defined as the square magnitude of the channel coefficient.
5For more details, the reader is referred to [49] and [50] and references therein.
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All channels in the network are assumed to be quasi-static block fading, i.e., the

channel gains remain constant during one block, and change independently from block

to block. In addition, it is assumed that each transmitter knows its direct channel gain.

In this work, we consider a homogeneous network in the sense that all the links have

the same configuration and use the same protocol. Thus, the transmission strategy for

all the users are determined in advance. The transmit power of user i is denoted by pi,

where pi ∈ P , [0,Pmax]. The non-negative vector P(j) = (p(j−1)n+1, ..., pjn) represents

the power vector of the users in Cj . Also, P
(j)
−i denotes the vector consisting of elements

of P(j) other than the ith element, i ∈ Cj. To simplify the notations, it is assumed that

the noise power N0W
M

is normalized by Pmax. Therefore, without loss of generality, it

is assumed that Pmax = 1. Assuming that the transmitted signals are Gaussian, the

interference term seen by link i ∈ Cj will be Gaussian with power

Ii =
∑

k∈Cj

k 6=i

Lkipk. (2.2)

Due to the orthogonality of the allocated subchannels, no interference is imposed

from links in Ck on links in Cj, k 6= j. Under these assumptions, the achievable data

rate of each link i ∈ Cj is expressed as

Ri(P
(j),L

(j)
i ) =

W

M
log

(

1 +
hiipi

Ii +
N0W
M

)

, (2.3)

where L
(j)
i , (L((j−1)n+1)i, ...,L(jn)i). To analyze the performance of the underlying

network, the network average sum-rate is used and is defined as follows:

R̄ave , E





M
∑

j=1

∑

l∈Cj

Rl(P
(j),L

(j)
l )



 , (2.4)

where the expectation is computed with respect to L
(j)
l .
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2.2.2 Objective

The main objective of this chapter is to maximize the average sum-rate of the network

when the interference is strong enough, i.e., E[Ii] = ω(1). This is achieved by:

- Proposing a distributed and non-iterative power allocation strategy, in which

each user maximizes its best estimate (based on its local information, i.e., direct

channel gain) of the average sum-rate of the network.

- Choosing the optimum value for M .

To address this problem, a utility function for link i ∈ Cj (j = 1, ...,M) is defined

which describes the average sum-rate of the links in cluster Cj as follows:

ui(pi, hii) , E





∑

l∈Cj

Rl(P
(j),L

(j)
l )



 , (2.5)

where the expectation is computed with respect to {Lkl}k,l∈Cj
excluding k = l = i

(namely hii)
6. As mentioned earlier, hii is considered as the local (known) information

for link i, however, all the other gains are unknown to user i, which is the reason behind

statistical averaging over these parameters in (2.5). User i selects its power using

p̂i = arg max
pi∈P

ui(pi, hii), i ∈ Cj , j = 1, ...,M. (2.6)

It will be shown that when the number of links is large and the interference is strong

enough, the optimum power allocation strategy for the optimization problem in (2.6)

is the on-off power scheme. Assuming that the channel gains change independently

6Since, the transmission power pl depends on the channel gain hll (i.e., pl = g(hll)), the utility

function of link i ∈ Cj (j = 1, ..., M) is a function of its direct channel gain and the power pi.
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from block to block, each user updates its on-off decision based on its direct channel

gain in each block. Given the optimum power vector P̂
(j)

= (p̂(j−1)n+1, ..., p̂jn) obtained

from (2.6), the average sum-rate of the network is then computed as (2.4). Next, the

optimum value ofM is chosen so that the average sum-rate of the network is maximized,

i.e.:

M̂ = arg max
M

R̄ave. (2.7)

Also, for the moderate and weak interference regimes (i.e., E[Ii] = O(1)), upper bounds

for the average sum-rate of the network are obtained.

2.3 Network Average Sum-Rate

2.3.1 Strong Interference Scenario (E[Ii] = ω(1))

In order to maximize the average sum-rate of the network, the optimum power alloca-

tion policy is first determined. Using (2.5), the utility function of link i ∈ Cj , j =

1, ...,M, can be expressed as

ui(pi, hii) = R̄i(pi, hii) +
∑

l∈Cj

l 6=i

R̄l(pi), (2.8)

where

R̄i(pi, hii) = E

[

W

M
log

(

1 +
hiipi

Ii +
N0W
M

)]

, (2.9)
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with the expectation computed with respect to Ii defined in (2.2), and

R̄l(pi) = E

[

Rl(P
(j),L

(j)
l )
]

(2.10)

= E

[

W

M
log

(

1 +
hllpl

Il +
N0W
M

)]

(2.11)

= E

[

W

M
log

(

1 +
hllpl

Lilpi +
∑

k 6=l,iLklpk + N0W
M

)]

, k, l ∈ Cj , l 6= i,(2.12)

with the expectation computed with respect to P
(j)
−i and {Lkl}k,l∈Cj

excluding l = i7.

It is worth mentioning that the power pi in (2.12) prevents the ith user from selfishly

maximizing its average rate given in (2.9). Using the fact that all users follow the same

power allocation policy, and since the channel gains Lkl are random variables with the

same distributions, R̄l(pi) becomes independent of l. Thus, by dropping the index l

from R̄l(pi), the utility function of link i can be simplified as

ui(pi, hii) = R̄i(pi, hii) + (n− 1)R̄(pi). (2.13)

Noting that pi depends only on the channel gain hii, in the sequel pi = g(hii) is used.

Lemma 2.1. Let us assume E[pk] , qn, 0 < α ≤ 1 is fixed and the interference is

strong enough (i.e., E[Ii] = ω(1)). Then with probability one (w. p. 1), we have:

Ii ∼ (n− 1)α̂qn, (2.14)

as K → ∞ (or equivalently, n → ∞), where α̂ , α̟. More precisely, substituting Ii

by (n− 1)α̂qn does not change the asymptotic average sum-rate of the network.

7Note that the power of the users are random variables, since they are a deterministic function of

their corresponding direct channel gains, which are random variables.
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Proof. See Appendix A.

Lemma 2.2. For large values of n, the links with a direct channel gain above hTh =

c logn, where c > 1 is a constant, have negligible contribution in the average sum-rate

of the network.

Proof. Denoting Tj , {l ∈ Cj | hll > hTh}, the cardinality of the set Tj is a binomial

random variable with the mean nP{hll > hTh}. From (2.4), we have

R̄ave =
M
∑

j=1

E





∑

l∈Cj

Rl(P
(j),L

(j)
l )



 , (2.15)

where

E





∑

l∈Cj

Rl(P
(j),L

(j)
l )



 = E





∑

l∈Tj

Rl(P
(j),L

(j)
l )



+ E





∑

l∈TCj

Rl(P
(j),L

(j)
l )



 ,

in which TC
j denotes the complement of Tj. Note that

E





∑

l∈Tj

Rl(P
(j),L

(j)
l )



 = n
W

M
E

[

log

(

1 +
hllpl

Il +
N0W
M

)∣

∣

∣

∣

∣

hll > hTh

]

P{hll > hTh}

≤ n
W

M
E

[

log

(

1 +
hll
N0W
M

)∣

∣

∣

∣

∣

hll > hTh

]

P{hll > hTh}

(a)

≤ n

N0

e−hThE [hll|hll > hTh]

=
n

N0
e−hTh(1 + hTh), (2.16)

where (a) follows from log(1 + x) ≤ x, for x ≥ 0. It is observed that for hTh = c log n,

where c > 1, the right hand side of (2.16) tends to zero as n→ ∞. Thus,

lim
n→∞

E





∑

l∈Tj

Rl(P
(j),L

(j)
l )



 = 0.
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Consequently,

lim
n→∞

M
∑

j=1

E





∑

l∈Tj

Rl(P
(j),L

(j)
l )



 = 0,

and this completes the proof of the lemma.

From Lemma 2.2 and for large values of n, we can limit our attention to a subset

of links for which the direct channel gain hii is less than c log n, c > 1.

Theorem 2.3. Assuming the strong interference scenario and sufficiently large K, the

optimum power allocation policy for (2.6) is p̂i = g(hii) = U(hii − τn), where τn > 0 is

a threshold level which is a function of n, and U(.) is the unit step function. Also, the

maximum average sum-rate of the network in (2.4) is achieved at M = 1 and is given

by

R̄ave ∼
W

α̂
logK. (2.17)

Proof. The steps of the proof are as follows: First, an upper bound on the utility

function given in (2.13) is derived. Then, it is proved that the optimum power allocation

strategy that maximizes this upper bound is p̂i = g(hii) = U(hii − τn). Based on this

optimum power allocation policy, in Lemma 2.5, the optimum threshold level τn is

derived. It is then shown that using this optimum threshold value, the maximum value

of the utility function in (2.13) becomes asymptotically the same as the maximum

value of the upper bound obtained in the first step. Finally, the proof of the theorem is

completed by showing that the maximum average sum-rate of the network is achieved

at M = 1.

Step 1: Upper Bound on the Utility Function
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Assuming E [pk] = qn and using the results of Lemma 2.1, R̄i(pi, hii) in (2.13) can

be expressed as

R̄i(pi, hii) ≈ W

M
E

[

log

(

1 +
hiipi

(n− 1)α̂qn + N0W
M

)]

(2.18)

(a)
=

W

M
log

(

1 +
hiipi
λ

)

, (2.19)

as K → ∞, where

λ , (n− 1)α̂qn +
N0W

M
. (2.20)

In the above equations, (a) follows from the fact that hii is a known parameter for user

i and pi = g(hii) is the optimization parameter. In this case, the SINR is equal to hiipi
λ

.

With a similar argument, (2.12) can be simplified as

R̄(pi) ≈ W

M
E

[

log

(

1 +
hllpl

Lilpi + (n− 2)α̂qn + N0W
M

)]

, i 6= l

(a)
= α

W

M
E

[

log

(

1 +
hllpl

βilhilpi + (n− 2)α̂qn + N0W
M

)]

+

(1 − α)
W

M
E

[

log

(

1 +
hllpl

(n− 2)α̂qn + N0W
M

)]

(2.21)

=
αW

M
E

[

log

(

1 +
hllpl

βilhilpi + λ′

)]

+ (1 − α)
W

M
E

[

log

(

1 +
hllpl
λ′

)]

(2.22)

as K → ∞, where the expectation is computed with respect to hll, hil, pl and βil, and

λ
′

, (n− 2)α̂qn + N0W
M

. Also, (a) comes from the shadowing model described in (2.1).

Using (2.19), (2.22), and the inequality log(1 + x) ≤ x, for x ≥ 0, the utility function

in (2.13) is upper bounded as8

ui(pi, hii) ≤
W

M

hii
λ
pi + n

αW

M
E

[

hllpl
βilhilpi + λ′

]

+ n(1 − α)
W

Mλ′
E [hllpl] . (2.23)

8Note that the factor (n− 1) in (2.13) is replaced by n in (2.23), which does not affect the validity

of the equation.
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Noting that hll is independent of hil, i 6= l, we have

E

[

hllpl
βilhilpi + λ′

∣

∣

∣
βil

]

= µ

∫ ∞

0

e−y

yβilpi + λ′
dy

= − µ

βilpi
e

λ
′

βilpi Ei

(

− λ
′

βilpi

)

, (2.24)

where

µ , E [hllpl] (2.25)

is a constant value, and Ei(x) , −
∫∞
−x

e−t

t
dt, x < 0 is the exponential-integral function

[51]. Thus, the right hand side of (2.23) is simplified as

ui(pi, hii) ≤
W

M

hii
λ
pi − n

αµW

M
E

[

1

βilpi
e

λ
′

βilpi Ei

(

− λ
′

βilpi

)]

+ n(1 − α)
W

M

µ

λ′
, (2.26)

where the expectation is computed with respect to βil. An asymptotic expansion of

Ei(x) can be obtained as [51, p. 951]

Ei(x) =
ex

x

[

L−1
∑

k=0

k!

xk
+O(|x|−L)

]

; L = 1, 2, ..., (2.27)

as x→ −∞. Setting L = 4, we can rewrite (2.26) as

ui(pi, hii) ≤ W

M

hii
λ
pi + n

αWµ

Mλ′
E

[(

1 − βilpi
λ′

+ 2

(

βilpi
λ′

)2

− 6

(

βilpi
λ′

)3
)]

+

n
αWµ

Mλ′
E

[

O

(

∣

∣

∣

βilpi
λ′

∣

∣

∣

4
)]

+ n(1 − α)
Wµ

Mλ′
(2.28)

(a)
≈ W

M

hii
λ
pi + n

αWµ

Mλ′

(

1 − ̟pi
λ′

+ 2κ
(pi
λ′

)2

− 6η
(pi
λ′

)3
)

+

n(1 − α)
Wµ

Mλ′
(2.29)

, Ξi(pi, hii), (2.30)

as λ′ → ∞, where κ , E
[

β2
il

]

and η , E
[

β3
il

]

, and (a) follows from the fact that for

large values of λ′, the term E

[

O

(

∣

∣

∣

βilpi
λ′

∣

∣

∣

4
)]

can be ignored.
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Step 2: Optimum Power Allocation Policy for Ξi(pi, hii)

Using the fact that pi ∈ [0, 1], the second-order derivative of (2.29) in terms of

pi,
∂2Ξi(pi,hii)

∂p2i
= nαWµ

Mλ′

(

4κ
λ′2

− 36η
λ′3
pi
)

, is positive9 as λ′ → ∞. Thus, (2.29) is a convex

function of pi. It is known that a convex function attains its maximum at one of the

extreme points10 of its domain [52]. In other words, the optimum power that maximizes

(2.29) is p̂i ∈ {0, 1}. To show that this optimum power is in the form of a unit step

function, it is sufficient to prove that pi = g(hii) is a monotonically increasing function

of hii.

Suppose the optimum power that maximizes Ξi(pi, hii) is pi = 1. Also, let us define

h
′

ii , hii + δ, where δ > 0. From (2.29), it is clear that Ξi(pi, hii) is a monotonically

increasing function of hii, i.e.:

Ξi(pi = 1, h
′

ii) > Ξi(pi = 1, hii). (2.31)

In this case, the optimum power that maximizes Ξi(pi, h
′

ii) is consistently equal to 1.

On the other hand, since the optimum power is pi = 1, it is concluded that

Ξi(pi = 1, hii) > Ξi(pi = 0, hii). (2.32)

Using the fact that Ξi(pi = 0, hii) = Ξi(pi = 0, h
′

ii), the following inequality is obtained:

Ξi(pi = 1, h
′

ii) > Ξi(pi = 0, h
′

ii). (2.33)

9It is observed from (2.27) and (2.29) that for any value of L > 4, the second-order derivative of

(2.29) in terms of pi is positive too.
10A real-valued function f defined on an interval [a, b] is called convex, if for any two points x, y ∈

[a, b] and t ∈ [0, 1], we have f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). In this case, the extreme points are

a and b.
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From (2.31)-(2.33), it is concluded that g(hii) is a monotonically increasing function

of hii. Consequently, the optimum power allocation strategy that maximizes Ξi(pi, hii)

is a unit step function, i.e.:

p̂i =











1, if hii > τn

0, Otherwise,

(2.34)

where τn is a threshold level to be determined. This optimum power allocation scheme

is termed the threshold-based on-off power allocation strategy. It is observed that the

optimum power p̂i is a Bernoulli random variable with parameter qn, i.e.:

f(p̂i) =











qn, p̂i = 1,

1 − qn, p̂i = 0,

(2.35)

where f(.) is the probability mass function (pmf) of p̂i. It is concluded from (2.34) and

(2.35) that the probability of the link activation in each cluster is qn , P {hii > τn}

which is a function of n.

Step 3: Optimum Threshold Level τn

From Step 1, it is observed that for every value of pi, we have

ui(pi, hii) ≤ Ξi(pi, hii). (2.36)

The above inequality is valid for the optimum power p̂i obtained in Step 2. Thus, using

the fact that for X ≤ Y , E[X] ≤ E[Y ], it is concluded

E[ui(p̂i, hii)] ≤ E[Ξi(p̂i, hii)], (2.37)

where the expectations are computed with respect to hii. In the following lemmas,

we first derive the optimum threshold level τn that maximizes E[Ξi(p̂i, hii)], and then
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prove that this quantity is asymptotically the same as the optimum threshold level

maximizing11 E[ui(p̂i, hii)], assuming an on-off power scheme. It is also shown that the

maximum value of E[ui(p̂i, hii)] (assuming an on-off power scheme) is the same as the

optimum value of E[Ξi(p̂i, hii)], proving the desired result.

Lemma 2.4. For large values of n and given 0 < α ≤ 1, the optimum threshold level

that maximizes E[Ξi(p̂i, hii)] is computed as

τ̂n ∼ logn. (2.38)

Also, the maximum value of E[Ξi(p̂i, hii)] scales as W
Mα̂

log n.

Proof. See Appendix B.

Lemma 2.5. For large values of n and given 0 < α ≤ 1,

i) The optimum threshold level that maximizes E[ui(p̂i, hii)] is computed as

τ̂n = log n− 2 log log n+O(1), (2.39)

ii) The probability of the link activation in each cluster is given by

qn = δ
log2 n

n
, (2.40)

where δ > 0 is a constant,

iii) The maximum value of E[ui(p̂i, hii)] scales as W
Mα̂

log n.

Proof. See Appendix C.

11In fact, since the threshold τn is fixed (i.e., it does not depend on a specific realization of hii),

finding the optimum value of τn requires averaging the utility function over all realizations of hii.
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Step 4: Optimum Power Allocation Strategy that Maximize ui(pi, hii)

In order to prove that the utility function in (2.13) is asymptotically the same as

the upper bound Ξi(pi, hii) obtained in (2.29), it is sufficient to show that the low SINR

conditions in (2.19) and (2.22) are satisfied. Using (2.19), (2.20) and (2.40), the SINR

is equal to hiipi
λ

, where

λ ≈ α̂δ log2 n +
N0W

M
. (2.41)

It is observed that λ goes to infinity as n → ∞. On the other hand, since we are

limiting our attention to links with hii < hTh = c log n, c > 1, we have

hiipi
λ

= O

(

1

log n

)

, (2.42)

when n→ ∞. Thus, for large values of n, the low SINR condition, hiipi
λ

≪ 1, is satisfied.

With a similar argument, the low SINR condition for (2.22) is satisfied. Hence, the

approximation log(1 + x) ≈ x, for x ≪ 1, can be used to simplify (2.19) and (2.22) as

follows:

R̄i(pi, hii) ≈
W

M

hii
λ
pi, (2.43)

R̄(pi) ≈
αW

M
E

[

hllpl
βilhilpi + λ′

]

+ (1 − α)
W

Mλ′
E [hllpl] . (2.44)

Consequently, the utility function ui(pi, hii) is the same as the upper bound Ξi(pi, hii)

obtained in (2.29), when n → ∞. Thus, the optimum power allocation strategy for

(2.6) is the same as the optimum power allocation policy that maximizes Ξi(pi, hii).

Step 5: Maximum Average Sum-rate of the Network

Using (2.5), the average utility function of each user i, E [ui(p̂i, hii)] , i ∈ Cj , is the
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same as the average sum-rate of the links in cluster Cj represented by

R̄(j)
ave ,

∑

i∈Cj

E

[

Ri(P̂
(j)
,L

(j)
i )
]

, j = 1, ...,M. (2.45)

where P̂
(j)

is the on-off powers vector of the links in cluster Cj. In this case, the average

sum-rate of the network defined in (2.4) can be written as

R̄ave =
M
∑

j=1

R̄(j)
ave (2.46)

(a)
≈ Wτ̂n

α̂
, (2.47)

where (a) follows from (C-18) of Appendix C. Using (2.39), and noting that n = K
M

,

we have

R̄ave ∼
W

α̂
log

K

M
. (2.48)

Step 6: Optimum Spectrum Allocation

According to (2.47), the average sum-rate of the network is a monotonically increas-

ing function of τ̂n. Rewriting equation (C-15) of Appendix C, which gives the optimum

threshold value for the on-off scheme:

−e−τ̂n log

(

1 +
τ̂ne

τ̂n

nα̂

)

+
1 + τ̂n

nα̂ + τ̂neτ̂n
= 0, (2.49)

it can be shown that12

τ̂ 2
ne

τ̂n ≈ nα̂, (2.50)

which implies that τ̂n is an increasing function of n. Therefore, the average sum-rate

of the network is an increasing function of n and consequently, noting that n = K
M

, is

12In deriving (2.50), we have used the fact that τ̂neτ̂n

nα̂
≪ 1, which is feasible based on the solution

given in (2.39).
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a decreasing function of M . Hence, the maximum average sum-rate of the network for

the strong interference scenario and 0 < α < 1 is obtained at M = 1 and this completes

the proof of the theorem.

Motivated by Theorem 2.3, in the following, the proposed threshold-based on-off

power allocation strategy for single-hop wireless networks is described. Based on this

scheme, all users perform the following steps during each block:

1- Based on the direct channel gain, the transmission policy is

p̂i =











1, if hii > τn

0, Otherwise.

2- Knowing its corresponding direct channel gain, each active user i transmits with

full power and rate

Ri = log

(

1 +
hii

(n− 1)α̂e−τn + N0W
M

)

. (2.51)

3- Decoding is performed over a sufficiently large number of blocks, yielding the

average rate of W
α̂K

logK for each user, and the average sum-rate of W
α̂

logK in

the network.

Remark 2.6. Theorem 2.3 states that the average sum-rate of the network for fixed M

depends on the value of α̂ = α̟ and scales as W
α̂

log K
M

. Also, for values of M such

that logM = o(logK), the average sum-rate of the network scales as W
α̂

logK.

Remark 2.7. Let mj denote the number of active links13 in Cj. Lemma 2.5 states that

the optimum selection of the threshold value yields E[mj ] = nqn = Θ
(

log2 n
)

. More

13Note that the number of active links in each cluster is a binomial random variable with parameters

(n, qn).
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precisely, it can be shown that the optimum number of active users scales as Θ
(

log2 n
)

,

with probability one.

2.3.2 Moderate and Weak Interference Scenarios (E[Ii] = O(1))

Theorem 2.8. Let us assume K is large and M is fixed. Then,

i) For the moderate interference scenario (i.e., E[Ii] = Θ(1)), the average sum-rate

of the network is bounded by R̄ave ≤ Θ(logn).

ii) For the weak interference scenario (i.e., E[Ii] = o(1)), the average sum-rate of

the network is bounded by R̄ave ≤ o(log n).

Proof. i) From (2.4), we have

R̄ave =

M
∑

j=1

∑

l∈Cj

E

[

W

M
log

(

1 +
hllp̂l

Il +
N0W
M

)]

(2.52)

(a)

≤
M
∑

j=1

∑

l∈Cj

W

M
E

[

log

(

1 +
p̂lc logn

Il +
N0W
M

)]

(2.53)

≤
M
∑

j=1

∑

l∈Cj

W

M
E

[

log

(

1 +
p̂lc logn
N0W
M

)]

(2.54)

(b)

≤
M
∑

j=1

∑

l∈Cj

W

M
log

(

1 +
cqn log n
N0W
M

)

(2.55)

(c)

≤ cM

N0

nqn log n, (2.56)

where (a) follows from Lemma 2.2, which implies that the realizations in which hll >

c logn for some c > 1 has negligible contribution in the average sum-rate of the network,

(b) results from the Jensen’s inequality, E [log x] ≤ log(E [x]), x > 0. Also, (c) follows

from the fact that log(1 + x) ≤ x, x ≥ 0. Since for the moderate interference, E[Ii] =
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α̂(n − 1)qn = Θ(1), and using the fact that M is fixed, the following inequality is

derived:

R̄ave ≤ cM

α̂N0
Θ(1) logn (2.57)

= Θ(logn). (2.58)

ii) For the weak interference scenario, where E[Ii] = α̂(n− 1)qn = o(1), and similar

to the arguments in part (i), it is concluded from (2.56) that

R̄ave ≤ cM

α̂N0
o(1) logn (2.59)

= o(log n). (2.60)

Remark 2.9. It is concluded from Theorems 2.3 and 2.8 that the maximum average

sum-rate of the proposed network is scaled as Θ(logK).

2.3.3 M Not Fixed (Scaling With K)

So far, it has assumed that M is fixed, i.e., it does not scale with K. In the following,

some results for the case that M scales with K are presented14. It should be noted that

the results for M = o(K) are the same as the results in Theorem 2.3.

Theorem 2.10. In the network with the on-off power allocation strategy, if M = Θ(K)

and 0 < α < 1, then the maximum average sum-rate of the network in (2.4) is less

14Obviously, the values of M which are in the interval [1, K], i.e., M = o(K) and M = Θ(K) are

considered.
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than that of M = 1. Consequently, the maximum average sum-rate of the network for

every value of 1 ≤ M ≤ K is achieved at M = 1.

Proof. Let us define Aj as the set of active links in cluster j. The random variable

mj denotes the cardinality of the set Aj. Noting that for M = Θ(K), limK→∞
M
K

is constant, it is concluded that n and mj ∈ [1, n] do not grow with K. To obtain

the network’s average sum-rate, it is assumed that among M clusters, Γ clusters have

mj = 1 and the rest have mj > 1. First, an upper bound on the average sum-rate

in each cluster is obtained when mj = 1, 1 ≤ j ≤ M . Clearly, since only one user

in each cluster activates its transmitter, Ii = 0. Thus, by using (2.45), the maximum

achievable average sum-rate of cluster Cj is computed as

R̄(j)
ave =

W

M
E

[

log

(

1 +
M

N0W
hmax

)]

, (2.61)

where hmax , max {hii}i∈Cj
is a random variable. Since log x is a concave function of x,

an upper bound of (2.61) is obtained through Jensen’s inequality, E [log x] ≤ log(E [x]),

x > 0. Thus,

R̄(j)
ave ≤

W

M
log

(

1 +
M

N0W
E [hmax]

)

. (2.62)

Under a Rayleigh fading channel model and noting that {hii} is a set of i.i.d. random

variables over i ∈ Cj, we have

Fhmax (y) = P{hmax ≤ y}, y > 0 (2.63)

=
∏

i∈Cj

P{hii ≤ y} (2.64)

=
(

1 − e−y
)n
, (2.65)
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where Fhmax (.) is the Cumulative Distribution Function (CDF) of hmax. Hence,

E [hmax] =

∫ ∞

0

nye−y
(

1 − e−y
)n−1

dy. (2.66)

Since (1 − e−y)
n−1 ≤ 1, the following inequality is derived:

E [hmax] ≤
∫ ∞

0

nye−ydy = n. (2.67)

Consequently, the upper bound of (2.62) can be simplified as

R̄(j)
ave ≤

W

M
log

(

1 +
K

N0W

)

. (2.68)

For mj > 1 and due to the shadowing effect with parameters (α,̟), the average

sum-rate of cluster Cj can be written as

R̄(j)
ave =

∑

i∈Aj

W

M
E



log



1 +
hii

∑

k∈Aj

k 6=i
ukβkihki +

N0W
M







 , (2.69)

where uk’s are Bernoulli random variables with parameter α. Thus,

R̄(j)
ave =

W

M

∑

i∈Aj

mj−1
∑

l=0

(

mj − 1

l

)

αl(1 − α)mj−1−l
E

[

log

(

1 +
hii

Σl +
N0W
M

)]

(2.70)

=
W

M

∑

i∈Aj

(1 − α)mj−1
E

[

log

(

1 +
hii
N0W
M

)]

+

W

M

∑

i∈Aj

mj−1
∑

l=1

(

mj − 1

l

)

αl(1 − α)mj−1−l
E

[

log

(

1 +
hii

Σl +
N0W
M

)]

,(2.71)

where Σl is the sum of l i.i.d random variables {Zi}li=1, where Zi , βkihki, k 6= i. For

mj > 1, Σl is greater or equal than the interference term caused by one interfering link.

Thus, an upper bound on the average sum-rate of cluster Cj is computed as

R̄(j)
ave ≤ W

M
mj(1 − α)mj−1

E

[

log

(

1 +
Y
N0W
M

)]

+

W

M

∑

i∈Aj

mj−1
∑

l=1

(

mj − 1

l

)

αl(1 − α)mj−1−l
E

[

log

(

1 +
Y

Zi +
N0W
M

)]

,(2.72)
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where Y , hmax = max {hii}i∈Cj
. According to binomial formula, we have

mj−1
∑

l=1

(

mj − 1

l

)

αl(1 − α)mj−1−l = 1 − (1 − α)mj−1. (2.73)

Thus,

R̄(j)
ave ≤ W

M
mj(1 − α)mj−1

E

[

log

(

1 +
Y
N0W
M

)]

+

W

M
mj

(

1 − (1 − α)mj−1
)

E

[

log

(

1 +
Y

βkihki +
N0W
M

)]

. (2.74)

We have

E

[

log

(

1 +
Y

βkihki +
N0W
M

)]

≤ E

[

log

(

1 +
Y

βminhki

)]

. (2.75)

Defining Z , βminhki and X , Y
Z

, the CDF of X can be evaluated as

FX(x) = P{X ≤ x}, x > 0

= P{Y ≤ Zx}

=

∫ ∞

0

P{Y ≤ Zx|Z = z}fZ(z)dz

=

∫ ∞

0

(

1 − e−zx
)n 1

βmin
e
− z
βmin dz

=

∫ ∞

0

(

1 − e−tβminx
)n
e−tdt.

Thus, the probability density function (pdf) of X can be written as

fX(x) =
dFX(x)

dx

= βmin

∫ ∞

0

nte−t(1+βminx)
(

1 − e−tβminx
)n−1

dt

≤ βmin

∫ ∞

0

nte−t(1+βminx)dt

=
nβmin

(1 + βminx)2
. (2.76)
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Using (2.76), the right hand side of (2.75) can be upper-bounded as

E

[

log

(

1 +
Y

βminhki

)]

=

∫ ∞

0

fX(x) log(1 + x)dx (2.77)

≤ nβmin

∫ ∞

0

log(1 + x)

(1 + βminx)2
dx (2.78)

=
−n log βmin

1 − βmin
(2.79)

= Θ(1), (2.80)

where the last line follows from the fact that 0 < βmin ≤ 1, and n does not scale with

K. Substituting the above equation in (2.74) yields

R̄(j)
ave ≤ W

M
mj(1 − α)mj−1

E

[

log

(

1 +
Y
N0W
M

)]

+

W

M
mj

(

1 − (1 − α)mj−1
)

Θ(1) (2.81)

(a)

≤ W

M
mj(1 − α)mj−1 log

(

1 +
K

N0W

)

+ Θ

(

W

M

)

(2.82)

=
W

M
mj(1 − α)mj−1 log

(

1 +
K

N0W

)

[1 + o(1)] , (2.83)

where (a) follows from (2.68) and the fact that mj ∈ {2, ..., n} does not scale with K.

Let us assume that among M clusters, Γ clusters have mj = 1 and for the M −Γ of

the rest, the number of active links in each cluster is greater than one. By using (2.68)

and (2.83), an upper bound on the average sum-rate of the network is obtained as

R̄ave ≤ ΓW

M
log

(

1 +
K

N0W

)

+

(M − Γ)
W

M
mj(1 − α)mj−1 log

(

1 +
K

N0W

)

[1 + o(1)] . (2.84)

To compare this upper-bounded with the computed average sum-rate of the network in

the case of M = 1, we note that as ̟ ≤ 1 and α < 1, we have α̂ < 1 and consequently,

ΓW

M
log

(

1 +
K

N0W

)

<
ΓW

Mα̂
log

(

1 +
K

N0W

)

. (2.85)
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To prove that the maximum network’s average sum-rate obtained in (2.84) is less than

that value obtained for M = 1 from (2.17), it is sufficient to show

(M − Γ)
W

M
mj(1 − α)mj−1 log

(

1 +
K

N0W

)

< (M − Γ)
W

Mα̂
log

(

1 +
K

N0W

)

, (2.86)

or

mj(1 − α)mj−1 <
1

α̂
.

Since α̂ ≤ α, it is sufficient to show that mj(1 − α)mj−1 < 1
α
. Defining Λ(α) =

αmj(1 − α)mj−1, we have

∂Λ(α)

∂α
= mj(1 − α)mj−2(1 − αmj).

Thus, the extremum points of Λ(α) are located at α = 1 and α = 1
mj

, where mj ∈

{2, ..., n}. It is observed that

Λ(1) = 0 < 1,

and

Λ

(

1

mj

)

=

(

mj − 1

mj

)mj−1

< 1.

Since Λ(α) < 1, we conclude (2.86), which implies that the maximum average sum-rate

of the network for M = Θ(K) is less than that of M = 1. Knowing the fact that

for M = o(K), similar to the result of Theorem 2.3, one can show that the maximum

average sum-rate of the network is achieved at M = 1, it is concluded that using the

on-off allocation scheme, the maximum average sum-rate of the network is achieved at

M = 1, for all values of 1 ≤M ≤ K.

So far, we have investigated the average sum-rate of the network for 0 < α < 1. In

the next theorem, R̄ave for α = 0 and for every value of 1 ≤M ≤ K is derived.
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Theorem 2.11. Assuming α = 0, the maximum average sum-rate of the network for

every value of 1 ≤ M ≤ K is achieved at M = 1.

Proof. According to the shadow-fading model proposed in (2.1), it is seen that for

α = 0, with probability one, Lki = 0, k 6= i. This implies that no interference exists

in each cluster. In this case, the maximum average sum-rate of the network is clearly

achieved by all users in the network transmitting at full power. Using (2.3) and (2.4)

and for every value of 1 ≤ M ≤ K and α = 0, the average sum-rate of the network is

simplified as

R̄ave =

M
∑

j=1

∑

i∈Cj

E

[

W

M
log

(

1 +
hii
N0W
M

)]

, (2.87)

where the expectation is computed with respect to hii. Under a Rayleigh fading channel

condition and using the fact that n = K
M

, (2.87) can be written as

R̄ave = nW

∫ ∞

0

e−x log

(

1 +
M

N0W
x

)

dx (2.88)

=
KW

M
e
N0W
M E1

(

N0W

M

)

(2.89)

=
KW

M
e
N0W
M

∫ ∞

1

e−t
N0W
M

t
dt, (2.90)

where E1(x) = −Ei(−x) =
∫∞
1

e−tx

t
dt, x > 0 [51]. Taking the first-order derivative of

(2.90) in terms of M yields,

∂R̄ave

∂M
= −KW

M2
e
N0W
M

(

1 +
N0W

M

)

E1

(

N0W

M

)

+
KW

M2
. (2.91)

Since for every value of N0W , ∂R̄ave
∂M

is negative, it is concluded that the network’s aver-

age sum-rate is a monotonically decreasing function of M . Consequently, the maximum

average sum-rate of the network for α = 0 and every value of 1 ≤ M ≤ K is achieved

at M = 1, where all the links in the network transmit with full power.
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Theorem 2.12. Assuming M = K and for every value of 0 ≤ α ≤ 1, the average

sum-rate of the network is asymptotically obtained as

R̄ave ≈W (logK − logN0W − γ), (2.92)

where γ is Euler’s constant

Proof. Noting that for M = K only one user exists in each cluster, all the users can

communicate using an interference free channel, i.e., Ii = 0 and pi = 1, i = 1, ..., K.

From (2.3) and (2.4), the average sum-rate of the network is given by

R̄ave = E

[

K
∑

i=1

Ri(P̂
(j)
,L

(j)
i )

]

=
W

K

K
∑

i=1

E

[

log

(

1 +
hii
N0W
K

)]

,

where the expectation is computed with respect to hii. Under a Rayleigh fading channel

condition, we have

R̄ave = W

∫ ∞

0

e−x log

(

1 +
K

N0W
x

)

dx

= We
N0W
K E1

(

N0W

K

)

. (2.93)

To simplify (2.93), the following series representation for E1(x) is used:

E1(x) = −γ + log

(

1

x

)

+
∞
∑

s=1

(−1)s+1xs

s.s!
, x > 0,

where γ is Euler’s constant and is defined by the limit [51]

γ , lim
s→∞

(

s
∑

k=1

1

k
− log s

)

= 0.577215665...
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Thus, (2.93) can be simplified as

R̄ave = We
N0W
K

(

−γ + log

(

K

N0W

)

+

∞
∑

s=1

(−1)s+1

s.s!

(

N0W

K

)s
)

.

In the asymptotic case of K → ∞,

e
N0W
K ≈ 1,

and
∞
∑

s=1

(−1)s+1

s.s!

(

N0W

K

)s

≈ 0.

Consequently, the average sum-rate of the network for M = K is asymptotically ob-

tained by

R̄ave ≈W (logK − logN0W − γ).

Corollary 2.13. It is concluded from Theorem 2.12 that for every value of 0 < α < 1,

the average sum-rate of the network in (2.92) is less than that of M = 1 obtained in

(2.17).

Remark 2.14. Note that for M = 1, in which the average number of active links scales

as Θ(log2K) (in the optimum on-off scheme), we have significant energy saving in the

network as compared to the case of M = K, in which all the users transmit with full

power.

2.4 Numerical Results

So far, we analyzed the average sum-rate of the network in terms of M and α̂, and in

the asymptotic case of K → ∞. For a finite number of users, the network’s average



CHAPTER 2. UTILITY-BASED POWER ALLOCATION STRATEGY 38

sum-rate versus the number of clusters (M) through simulation is evaluated. For this

case, it is assumed that all the users in the network follow the threshold-based on-off

power allocation policy, using the optimum threshold value. In addition, the shadowing

effect is assumed to be lognormal distributed with mean ̟ ≤ 1 and variance 1. Fig.

2.1 shows the average sum-rate of the network versus M for K = 20 and K = 40, and

different values of α and ̟. It is observed from this figure that the average sum-rate

of the network is a monotonically decreasing function of M for every value of (α,̟),

which implies that the maximum value of R̄ave is achieved at M = 1.

Based on the above arguments, we have plotted the average sum-rate of the network

and the optimum threshold level τn versus K for M = 1 and different values of (α,̟).

It is observed from figures 2.2 and 2.3 that the network’s average sum-rate and τn

depend strongly on the values of (α,̟).

2.5 Conclusion

In this chapter, a distributed single-hop wireless network with K links was considered,

where the links were partitioned into a fixed number (M) of clusters each operating in

a subchannel with bandwidth W
M

. The network’s throughput is defined as the average

sum-rate of the network, which is shown to scale as Θ(logK). It was proved that in

the strong interference scenario, the optimum power allocation strategy for each user

was a threshold-based on-off scheme. Moreover, it was demonstrated that the optimum

spectrum sharing for maximizing the average sum-rate is achieved at M = 1. In

other words, partitioning the bandwidth W into M subchannels has no gain in terms
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Figure 2.1: Network’s average sum-rate versus M for a) K = 20, α = 1, 0.5, 0.1 and

shadowing model with ̟ = 0.5 and variance 1, and b) K = 40, α = 0.5 and shadowing model

with ̟ = 1, 0.4, 0.1 and variance 1.
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Figure 2.2: Network’s average sum-rate versus K for M = 1 and a) shadowing model

with ̟ = 0.5 and variance 1, and α = 1, 0.7, 0.4, 0.1, and b) shadowing model with

̟ = 1, 0.7, 0.4, 0.1 and variance 1, and α = 0.5.
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Figure 2.3: Optimum threshold level τn versus the number of links K for M = 1 and

shadowing model with ̟ = 0.5, variance 1, and α = 1, 0.5, 0.1.

of enhancing the throughput. The interesting point is that under the on-off power

allocation strategy, the total network energy for M = 1 is significantly lower when

compared to the case that all the users transmit with full power all the time. Also, the

proposed on-off scheme has the advantage of not requiring a central controller and is

simple to implement in practical time-varying networks.



Chapter 3

Network Guaranteed Sum-Rate

3.1 Introduction

Chapter 2 is centered on maximization of the average sum-rate of the network, by

proposing the on-off power scheme. In this chapter, the throughput of the network

is defined as the network’s guaranteed sum-rate, in which decoding is performed over

each separate block. This metric is useful when there exists a stringent decoding delay

constraint. In the first part of this chapter, an upper-bound and a lower-bound for the

network’s guaranteed sum-rate is derived. It is then shown that these bounds converge

to each other as K → ∞. Also, it is proved that the maximum guaranteed sum-rate

is achieved by using the on-off scheme and scales as
W

α̂
logK. Moreover, the optimum

spectrum sharing for maximizing the network’s guaranteed sum-rate is the same as the

one maximizing the network’s average sum-rate (M = 1).

42
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3.2 Problem Formulation

In the present chapter, the same network model introduced in Chapter 2 is considered.

It is also assumed that M is fixed. The performance metric used in this chapter is

different from the network’s average sum-rate used in the previous chapter which is

defined over arbitrary large number of blocks. We use the network’s guaranteed sum-

rate, denoted by R̄g, as the throughput of the network as follows:

R̄g ,
M
∑

j=1

∑

l∈Cj

Eh
ll

[R∗(hll)] , (3.1)

in which for all hll, l ∈ Cj , we have

R∗(hll) , sup R(hll), (3.2)

such that

P

{

Rl(P
(j),L

(j)
l ) < R(hll)

}

→ 0. (3.3)

This metric is useful when there exists a stringent decoding delay constraint, i.e, de-

coding must be performed over each separate block. In this case, as the transmitter

does not have any information about the interference term, an outage event may oc-

cur. Network’s guaranteed throughput is the average sum-rate of the network which is

guaranteed for all channel realizations.

The main objective of this chapter is to find the maximum achievable network’s

guaranteed sum-rate in the asymptotic case of K → ∞. For this purpose, a lower

bound and an upper-bound on the network’s guaranteed sum-rate are presented and

shown to converge to each other as K → ∞ (or equivalently n → ∞). Also, the

optimum power allocation scheme and the optimum value of M are obtained.
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3.3 Network Guaranteed Sum-Rate

In order to compute the guaranteed rate for link l ∈ Cj , we first define the corresponding

outage event as follows:

O(j)
l ≡

{

Rl(P
(j),L

(j)
l ) < R(hll)

}

. (3.4)

In this case, the corresponding outage probability is defined as follows:

P

{

O(j)
l

}

, P

{

Rl(P
(j),L

(j)
l ) < R(hll)

}

(3.5)

= P

{

log

(

1 +
plhll

Il +
N0W
M

)

< R(hll)

}

. (3.6)

In the next sections, we use (3.6) to obtain an upper-bound and a lower bound on the

network’s guaranteed sum-rate in the asymptotic case of K → ∞.

3.3.1 Upper-Bound

In the next lemma, an upper-bound on the guaranteed sum-rate by using lower-bounding

the outage probability is derived.

Lemma 3.1. For the strong and moderate interference regimes, the outage probability

defined in (3.6) is lower bounded as

P

{

O(j)
l

}

≥ 1 − e
− γN0W

2Mβmax

“

1− t(hll)

R(hll)

”

, (3.7)

where γ , min
(

1, M(n−1)qnα̂
N0W

)

and t(hll) = plhll
(n−1)α̂qn+(1− γ

2
)
N0W
M

.

Proof. Using (3.6) and log(1 + x) ≤ x, for x ≥ 0, we have

P

{

O(j)
l

}

≥ P

{

plhll

Il +
N0W
M

< R(hll)

}

(3.8)

= P

{

plhll −
N0W

M
R(hll) < IlR(hll)

}

, (3.9)
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Denoting ν = hll, we can write

P

{

O(j)
l

} (a)

≥ P

{

e−Ilξ(ν)R(ν) ≤ eξ(ν)(
N0W
M

R(ν)−plν)
}

(3.10)

(b)

≥ 1 − e−ξ(ν)(
N0W
M

R(ν)−plν)E
[

e−Ilξ(ν)R(ν)
]

, (3.11)

for some positive ξ(ν), where the expectation is computed with respect to Il. In the

above equations, (a) results from (3.9), noting that ξ(ν) > 0, and (b) comes from the

following Markov’s inequality [53, p. 77]:

P {X ≥ a} ≤ E[X]

a
, a > 0, (3.12)

where X is a nonnegative random variable. The above equations imply that finding an

upper-bound for E
[

e−Ilξ(ν)R(ν)
]

is sufficient for the lower-bounding the outage proba-

bility. For this purpose, using (2.2), we can write

E
[

e−Ilξ(ν)R(ν)
]

= E

[

e
−ξ(ν)R(ν)

P

k∈Cj

k 6=l
Lklpk

]

(a)
=

∏

k∈Cj

k 6=l

E
[

e−ξ(ν)R(ν)Lklpk
]

(b)
=

∏

k∈Cj

k 6=l

E
[

e−ξ(ν)R(ν)uklβklhklpk
]

(c)
=

(

E
[

e−ξ(ν)R(ν)uklβklhklpk
])n−1

, k 6= l. (3.13)

In the above equations, (a) follows from the fact that {Lkl}k∈Cj
with k 6= l, and {pk}k∈Cj

are mutually independent random variables, (b) results from writing Lkl as uklβklhkl

(from (2.1)), in which ukl is an indicator variable which takes zero when Lkl = 0 and

one, otherwise. Also, (c) follows from the symmetry which incurs that all the terms

E
[

e−ξ(ν)R(ν)uklβklhklpk
]

, k ∈ Cj , are equal and independent of index k. Noting that ukl,
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βkl, hkl, and pk are independent of each other, we have

E
[

e−ξ(ν)R(ν)uklβklhklpk
]

= Eβkl

[

Ehkl

[

Eukl

[

Epk

[

e−ξ(ν)R(ν)uklβklhklpk
]]]]

(a)

≤ Eβkl

[

Ehkl

[

Eukl

[

(1 − qn) + qne
−ξ(ν)R(ν)uklβklhkl

]]]

(b)
= Eβkl

[

Ehkl

[

(1 − qn) + qn
(

1 − α + αe−ξ(ν)R(ν)βklhkl
)]]

(c)
= Eβkl

[

1 − αqn +
αqn

1 + βklξ(ν)R(ν)

]

= Eβkl

[

1 − αqnβklξ(ν)R(ν)

1 + βklξ(ν)R(ν)

]

. (3.14)

In the above equations, (a) follows from the fact that e−θx ≤ (1 − x) + xe−θ, ∀θ ≥ 0

and 0 ≤ x ≤ 1, noting that E[pk] = qn. (b) results from the definition of ukl, which

is an indicator variable taking zero with probability 1 − α and one, with probabil-

ity α. (c) follows from the fact that as hkl is exponentially-distributed, we have

Ehkl

[

e−ξ(ν)R(ν)βklhkl
]

= 1
1+βklξ(ν)R(ν)

. Since βkl ≤ βmax and E[βkl] = ̟, and using the

fact that for X ≤ Y , E[X] ≤ E[Y ], (3.14) can be simplified as

E
[

e−ξ(ν)R(ν)uklβklhklpk
]

≤ 1 − αqn̟ξ(ν)R(ν)

1 + βmaxξ(ν)R(ν)
(a)

≤ e
− α̂qnξ(ν)R(ν)

1+βmaxξ(ν)R(ν) , (3.15)

where (a) results from the facts 1 − x ≤ e−x, ∀x and noting that α̟ = α̂. Combining

(3.13) and (3.15) and substituting into (3.11) yields

P

{

O(j)
l

}

≥ 1 − e−ξ(ν)(
N0W
M

R(ν)−plν)e−
(n−1)α̂qnξ(ν)R(ν)
1+βmaxξ(ν)R(ν) (3.16)

= 1 − e
−ξ(ν)R(ν)( (n−1)α̂qn

1+βmaxξ(ν)R(ν)
+
N0W
M )(1− t(ν)

R(ν)), (3.17)

where

t(ν) ,
plν

(n−1)α̂qn
1+βmaxξ(ν)R(ν)

+ N0W
M

. (3.18)
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Let us define γ , min
(

1, M(n−1)qnα̂
N0W

)

and set ξ(ν) ,
γ
2
N0W
M

βmaxR(ν)((n−1)α̂qn− γ
2
N0W
M )

. Clearly,

in the cases of E{Il} = (n− 1)α̂qn = ω(1) (strong interference) or E{Il} = Θ(1) (mod-

erate interference), we have ξ(ν) > 0. From the above setting, it is concluded that

(n− 1)α̂qn
1 + βmaxξ(ν)R(ν)

+
N0W

M
= (n− 1)α̂qn + (1 − γ

2
)
N0W

M
, (3.19)

and

t(ν) =
plν

(n− 1)α̂qn + (1 − γ
2
)N0W

M

. (3.20)

Thus, (3.17) can be simplified as

P

{

O(j)
l

}

≥ 1 − e
−
γ
2
N0W
M [(n−1)α̂qn+(1−

γ
2 )
N0W
M ]

βmax[(n−1)α̂qn−
γ
2
N0W
M ]

(1− t(ν)
R(ν))

(3.21)

≥ 1 − e−
γN0W

2Mβmax
(1− t(ν)

R(ν)), (3.22)

and this completes the proof of the lemma.

Lemma 3.2. The guaranteed sum-rate of the underlying network in the asymptotic

case of K → ∞ is upper bounded by

R̄g ≤
W

α̂
logK. (3.23)

Proof. For the strong and moderate interference regimes, γN0W
2Mβmax

= Θ(1). Thus, it

follows from (3.22) that the necessary condition to have P

{

O(j)
l

}

→ 0 is to have

R(ν) . t(ν) = plν

(n−1)α̂qn+(1− γ
2
)
N0W

M

. In other words,

R∗(ν) .
plν

(n− 1)α̂qn + (1 − γ
2
)N0W

M

, (3.24)

which implies that R̄g defined in (3.1) is upper bounded by

R̄g . nWEν

[

plν

(n− 1)α̂qn + (1 − γ
2
)N0W

M

]

(3.25)

=
nWEν [plν]

(n− 1)α̂qn + (1 − γ
2
)N0W

M

. (3.26)
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Assuming Ψn > 0, we have

Eν [plν] ≤ E [plν|ν ≤ Ψn] P{ν ≤ Ψn} + E [plν|ν > Ψn] P{ν > Ψn}. (3.27)

To simplify the first term on the right hand side of (3.27), we use the fact that for

X ≤ Y , E[X] ≤ E[Y ]. Thus,

E [plν|ν ≤ Ψn] P{ν ≤ Ψn} ≤ ΨnE [pl|ν ≤ Ψn] P{ν ≤ Ψn} ≤ ΨnE[pl] = Ψnqn. (3.28)

Also using 0 ≤ pl ≤ 1, the second term on the right hand side of (3.27) can be simplified

as

E [plν|ν > Ψn] P{ν > Ψn} ≤ E [ν|ν > Ψn] P{ν > Ψn}. (3.29)

Now, defining Ψn , log n+ 2 log log n, and using (3.28) and (3.29), we have

Eν [plν] ≤ qnΨn + E [ν|ν > Ψn] P{ν > Ψn} (3.30)

(a)
= qnΨn + (Ψn + 1)e−Ψn (3.31)

(b)∼ qn log n. (3.32)

In the above equations, (a) comes from the fact that ν is exponentially-distributed.

Also, (b) follows from the facts that i) as we are considering the strong and moderate

interference scenarios, it yields that (n − 1)α̂qn = Ω(1), or equivalently, qn = Ω( 1
n
),

and ii) the term (Ψn + 1)e−Ψn scales as 1
n logn

(due to the definition of Ψn) which is

negligible with respect to the first term qnΨn. Combining (3.26) and (3.32) yields

R̄g .
Wnqn logn

(n− 1)α̂qn + (1 − γ
2
)N0W

M

(3.33)

(a)

.
W

α̂
log n (3.34)

.
W

α̂
logK, (3.35)



CHAPTER 3. NETWORK GUARANTEED SUM-RATE 49

where (a) follows from the strong and moderate interference regimes.

In the case of weak interference, we have γ = o(1) which results in

R̄g ≤ nW
E[plν]
N0W
M

(3.36)

=
Mn

N0

E[plν]. (3.37)

Rewriting (3.31) and selecting Ψn = log(q−2
n ), we obtain

E[plν] ≤ qnΨn + (Ψn + 1)e−Ψn , ∀Ψn > 0 (3.38)

≈ qn log(q−2
n ). (3.39)

Defining ε , nqn, we have

R̄g .
2Mnqn
N0

log(q−1
n ) (3.40)

=
2Mε

N0

(

log n+ log(ε−1)
)

. (3.41)

As in the weak interference scenario we have ε = o(1), it follows from the above equation

that R̄g = o(W log n) in this scenario. Comparing with (3.35), it follows that

R̄g .
W

α̂
logK. (3.42)

3.3.2 Lower-Bound

For the lower-bound, the on-off power allocation scheme with the threshold level τn is

considered. Also, assume that M = 1 (or equivalently, n = K). In this section, it is

proved that the lower bound converges asymptotically to the upper bound obtained in

(3.42).
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Lemma 3.3. Let us assume that M = 1, where all the users follow the on-off scheme

with τn = log n− 2 log logn. In this case

R̄g &
W

α̂
logK. (3.43)

Proof. Noting qn = e−τn and τn = log n − 2 log logn, we have the strong interference

scenario, i.e.:

E[Il] = (n− 1)α̂qn = Θ(log2 n). (3.44)

Therefore, using the result of Lemma 2.1, it is realized that with probability one (n−

1)α̂qn(1 − ǫ) ≤ Il ≤ (n− 1)α̂qn(1 + ǫ), for some ǫ = o(1). In other words, defining

Φ(hll) , W log

(

1 +
plhll

(n− 1)α̂qn(1 + ǫ) +N0W

)

, (3.45)

it follows that

P

{

Rl(P
(j),L

(j)
l ) < Φ(hll)

}

= P

{

W log

(

1 +
plhll

Il +N0W

)

< Φ(hll)

}

(3.46)

= o(1), (3.47)

which implies that R∗(hll) ≥ Φ(hll). Thus from (3.1), we have

R̄g ≥ nE[Φ(hll)] (3.48)

= nWE

[

log

(

1 +
plhll

(n− 1)α̂qn(1 + ǫ) +N0W

)]

(3.49)

(a)
= nW

∫ ∞

τn

log

(

1 +
ν

(n− 1)α̂qn(1 + ǫ) +N0W

)

e−νdν (3.50)

≥ nW

∫ Ψn

τn

log

(

1 +
ν

(n− 1)α̂qn(1 + ǫ) +N0W

)

e−νdν, (3.51)

where Ψn , log n+2 log logn and (a) follows from the on-off power allocation assump-

tion. As (n− 1)α̂qn(1 + ǫ) = Θ(log2 n), it follows that ν
(n−1)α̂qn(1+ǫ)+N0W

= o(1) in the
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interval [τn,Ψn], which implies that

log

(

1 +
ν

(n− 1)α̂qn(1 + ǫ) +N0W

)

∼ ν

(n− 1)α̂qn(1 + ǫ) +N0W
, (3.52)

in the interval of integration [τn,Ψn]. Hence,

R̄g & nW

∫ Ψn

τn

ν

(n− 1)α̂qn(1 + ǫ) +N0W
e−νdν (3.53)

=
nW

(n− 1)α̂qn(1 + ǫ) +N0W

∫ Ψn

τn

νeνdν (3.54)

=
nW

(n− 1)α̂qn(1 + ǫ) +N0W

(

(τn + 1)e−τn − (Ψn + 1)e−Ψn
)

(3.55)

(a)∼ nWτnqn
(n− 1)α̂qn(1 + ǫ) +N0W

(3.56)

∼ W

α̂
logn (3.57)

=
W

α̂
logK, (3.58)

where (a) results from the facts that (Ψn + 1)e−Ψn ≪ (τn + 1)e−τn and e−τn = qn.

Theorem 3.4. The guaranteed sum-rate of the underlying network in the asymptotic

case of K → ∞ is obtained by

R̄g ∼
W

α̂
logK, (3.59)

which is achievable by the decentralized on-off power allocation scheme.

Proof. It is concluded from (3.23) and (3.43) that the upper and lower bounds converge

to each other as K → ∞. Also, the maximum guaranteed sum-rate of the network is

achieved through utilizing the distributed on-off scheme (in Lemma 3.3) and scales as

W
α̂

logK.
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Remark 3.5. Similar to the proof steps of Theorem 2.3, it follows that the optimum

value of M is equal to one. In fact, since the maximum guaranteed sum-rate of the

network is achieved in the strong interference scenario in which the interference term

scales as nα̂qn with probability one, it follows that the maximum network’s average

sum-rate and the network’s guaranteed sum-rate are equal. Therefore, the optimum

spectrum sharing for maximizing the network’s guaranteed sum-rate is the same as the

one maximizing the average sum-rate of the network (i.e., the optimum value of M is

equal to one.).

3.4 Conclusion

In this chapter, we investigated the network’s guaranteed sum-rate, a different perfor-

mance metric of the network with a decoding delay constraint. It was demonstrated

that the on-off power allocation scheme maximizes the network’s guaranteed sum-rate,

which scales as W
α̂

logK. Moreover, the optimum spectrum sharing for maximizing the

network’s guaranteed sum-rate is the same as the one maximizing the average sum-rate

of the network (M = 1).



Chapter 4

Delay-Throughput Tradeoff

4.1 Introduction

In Chapters 2 and 3, we addressed the throughput maximization of a distributed single-

hop wireless network with K links, where the links are partitioned into a fixed number

(M) of clusters each operating in a subchannel with bandwidth W
M

. It was proved that

in the strong interference scenario, the optimum power allocation strategy for each user

is a threshold-based on-off scheme. Moreover, it was demonstrated that the optimum

spectrum sharing for maximizing the average sum-rate is achieved at M = 1. However,

the delay related issues were not addressed in Chapters 2 and 3.

In this chapter, we follow the distributed single-hop wireless network model proposed

in Chapter 2 with M = 1 (which is the case with the maximum throughput) and

address the delay-throughput tradeoff of the network. In the first part, we define a new

notion of throughput, called effective throughput, which denotes the actual amount of

53
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data transmitted through the links. In order to derive the effective throughput, we

obtain the full buffer probability of a link for the deterministic and stochastic packet

arrival processes. Then, we compute the optimum threshold level τn, and the maximum

effective throughput of the network, for each packet arrival process. It is proved that

the effective throughput of the network scales as logn
α̂

, with α̂ , α̟, despite the packet

arrival process.

In the second part, we present the delay characteristics of the underlying network

in terms of a packet dropping probability, and for the deterministic and stochastic

packet arrival processes. These are quite different from the delay analysis with the

ON/OFF Bernoulli scheme in [54]. Primarily, we utilize a distributed approach using

local information, i.e., direct channel gains, while [54] relies on a central controller

which studies the channel conditions of all the links and decides accordingly. We use

a homogeneous network with quasi-static block fading without path loss. This differs

from the geometric models proposed in [28, 33, 34], which are based on the distance

between the source and the destination (i.e., power decay-versus-distance law).

It is shown that increasing the number of links gives rise to increasing the network

throughput, at the cost of increasing the delay. This will cause the higher packet drop-

pings in the network with a limited buffer size. We derive the necessary conditions

in the asymptotic case of n → ∞ such that the packet dropping probabilities tend to

zero, while achieving the maximum effective throughput of the network. Finally, we

study the tradeoff between the effective throughput of the network and other perfor-

mance measures, i.e., dropping probability and delay-bounds for different packet arrival

processes. In particular, we determine how much degradation will be enforced in the



CHAPTER 4. DELAY-THROUGHPUT TRADEOFF 55

throughput by introducing other constraints, and how much this degradation depends

on the packet arrival process.

The rest of the chapter is organized as follows. In Section 4.2, the network model and

objectives are described. The throughput maximization of the underlying network is

presented in Section 4.3. The delay characteristics in terms of the dropping probability

are analyzed in Section 4.4. Section 4.5 establishes the delay-throughput tradeoff for

the network. In Section 4.6, the simulation results are presented. Finally, in Section

4.7, an overview of the results and conclusions are presented.

4.2 Network Model and Problem Description

4.2.1 Network Model

In this chapter, we follow the distributed single-hop wireless network model proposed

in Chapter 2 with M = 1 (or equivalently K = n) and W = 1 (Fig. 4.1). In addition,

it is assumed that each receiver knows its direct channel gain with the corresponding

transmitter, as well as the interference power imposed by other users. However, each

transmitter is assumed to be only aware of the direct channel gain to its corresponding

receiver.

We assume that the time axis is divided into slots with the duration of one transmis-

sion block, which is defined as the unit of time. The channel gain between transmitter

j and receiver i at time slot t is represented by the random variable L(t)
ji

1. For j = i,

1In the sequel, we use the superscript (t) for some events to show that the events occur in time slot

t.
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Figure 4.1: A distributed single-hop wireless network with n = 4.

the direct channel gain is defined as L(t)
ji , h

(t)
ii , where h

(t)
ii is exponentially distributed

with unit mean (and unit variance). For j 6= i, the cross channel gains are defined

based on a shadowing model as follows:

L(t)
ji ,











β
(t)
ji h

(t)
ji , with probability α

0, with probability 1 − α,

(4.1)

where h
(t)
ji s have the same distribution as h

(t)
ii s, and the shadowing factor β

(t)
ji is in-

dependent of h
(t)
ji . All the channels in the network are supposed to be quasi-static

block fading, where the channel gains remain constant during transmitting one block

and change independently from block to block. This model is also used in [37], [36]

and [32].

Assuming that the transmitted signals are Gaussian, the interference term seen by
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receiver i ∈ Nn at time slot t will be Gaussian with power

I
(t)
i =

n
∑

j=1
j 6=i

L(t)
ji p

(t)
j , (4.2)

where p
(t)
j is the transmission power of user j at time slot t. Under these assumptions,

the achievable data rate of each link i ∈ Nn is expressed as

R
(t)
i = E

I
(t)
i

[

log

(

1 +
h

(t)
ii p

(t)
i

I
(t)
i +N0

)]

nats/channel use, (4.3)

assuming no constraint on the decoding delay, i.e., decoding can be performed over an

arbitrarily large number of blocks.

We assume a limited buffer network, where each link has a buffer size equal to one

packet. Also, the transmission blocks of the users are assumed to be synchronous with

each other with the same duration. In this chapter, we assume that all the links utilize

the threshold-based on-off power allocation strategy proposed in Chapter 2. Unlike

most of the works in the literature that assume backlogged users, here we assume a

practical model for the packet arrivals in which the buffer of each link is not necessarily

full (of packet) all the time. Based on this observation, we adopt the on-off power

allocation scheme during each time slot t as follows:

1- Based on the direct channel gain, the transmission policy is2

p
(t)
i =











1, if h
(t)
ii > τn and the buffer of link i is full at time slot t

0, Otherwise.

(4.4)

2- Knowing its corresponding direct channel gain, each active user i transmits with

full power and the rate (4.3).

2In fact, if there is no packet in the buffer, it does not make sense for the user to be active, even if

its channel is good.



CHAPTER 4. DELAY-THROUGHPUT TRADEOFF 58

4.2.2 Packet Arrival Process

One of the most important parameters in the network analysis is the model for the

packet arrival process. The packet arrival process is a random process which is described

by either the arrival time of the packets or the interarrival time between the subsequent

packets. These quantities may be modeled by the deterministic or stochastic processes

(Fig. 4.2). In this chapter, we consider the following packet arrival processes:

• Poisson Arrival Process (PAP): In this process, the number of arrived packets

in any interval of unit length is assumed to have a Poisson distribution with the

parameter 1
λ
. This process is a commonly used model for random and mutually

independent packet arrivals in queueing theory [55].

• Bernoulli Arrival Process (BAP): In this process, in any given time slot, the

probability that a packet arrives is ρ , 1
λ

3. Moreover, the arrival of the packets

in different slots occurs independently. This model has been used in many works

in the literature such as [34] and [56].

• Constant Arrival Process (CAP): In this process, packets arrive continuously with

a constant rate of 1
λ

packets per unit length (Fig. 4.2-b) [57].

It is assumed that the packet arrival process for all links is the same. Let us denote

t
(i)
Ak

as the time instant of the kth packet arrival into the buffer of link i. It is observed

from Fig. 4.2-a that t
(i)
Ak

=
∑k−1

j=1 x
(i)
j + t

(i)
0 where t

(i)
0 is the starting time for link i, and

3We choose the parameter ρ as 1

λ
to be consistent with other packet arrival processes.
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Figure 4.2: A schematic figure for a) stochastic packet arrival process, b) constant packet

arrival process.

the random variable x
(i)
j is the interarrival time defined as

x
(i)
j , t

(i)
Aj+1

− t
(i)
Aj
, (4.5)

with E[x
(i)
j ] = λ. For the CAP, x

(i)
j = λ and t

(i)
Ak

= (k − 1)λ + t
(i)
0

4, while for the PAP,

x
(i)
j ’s are independent samples of an exponential random variable x with the probability

density function (pdf)

fX(x) =
1

λ
e−

1
λ
x, x > 0. (4.6)

Also for the BAP, x
(i)
j ’s are independent samples of a geometric random variable X

with the probability mass function (pmf)

pX(m) , P{X = m} = (1 − ρ)m−1ρ, m = 1, 2, ..., (4.7)

4For analysis simplicity, we assume that λ is an integer number.
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with ρ , 1
λ
.

We represent t
(i)
Dk

as the time instant at which either the kth arriving packet departs

the buffer of link i for the transmission or drops from the buffer. In such configuration,

we have the following definition:

Definition 4.1. (Delay): The random variable D
(i)
k , t

(i)
Dk

− t
(i)
Ak

for each link i

is defined as the delay between the departure and the arrival time of each packet k,

expressed in terms of the number of time slots.

Due to the finite buffer size and the on-off power allocation strategy, the existing

buffered packet may be dropped. The dropping happens when one packet arrives before

the previous arrived packet has any chance to be served. Therefore, the event that the

dropping of packet k occurs in link i ∈ Nn is defined as

Bi ≡
{

D
(i)
k ≥ t

(i)
Ak+1

− t
(i)
Ak

}

(4.8)

≡
{

D
(i)
k ≥ x

(i)
k

}

. (4.9)

The packet dropping probability in each link i ∈ Nn, denoted by P {Bi}, can be ob-

tained as

P {Bi} = P

{

D
(i)
k ≥ x

(i)
k

}

(4.10)

=

∫ ∞

0

P

{

D
(i)
k ≥ x

(i)
k

∣

∣

∣
x

(i)
k = x

}

fX(x)dx, for PAP, (4.11)

=
∞
∑

m=1

P

{

D
(i)
k ≥ x

(i)
k

∣

∣

∣
x

(i)
k = m

}

pX(m), for BAP, (4.12)

= P

{

D
(i)
k ≥ λ

}

, for CAP. (4.13)

where fX(x) and pX(m) are defined as (4.6) and (4.7), respectively. In Section 4.4, we

will obtain P {Bi} for different packet arrival processes.
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4.2.3 Objective

Part I: Throughput Maximization: The main objective of the first part of this

chapter is to maximize the throughput of the underlying network. To address this

problem, we first define a new notion of throughput, called effective throughput, which

denotes the actual amount of data transmitted through the links. In order to derive the

effective throughput, we obtain the full buffer probability of a link for the deterministic

and stochastic packet arrival processes. Then, we compute the optimum threshold

level τn, and the maximum effective throughput of the network, for each packet arrival

process.

Part II: Delay Characteristics: The main objective of the second part is to

analyze the delay characteristics of the underlying network in terms of the number of

links (n) and λ. For this purpose, we first formulate the packet dropping probabilities

based on the aforementioned packet arrival processes. Then, we derive the necessary

conditions in the asymptotic case of n→ ∞ such that the packet dropping probabilities

tend to zero, while achieving the maximum effective throughput of the network.

Part III: Delay-Throughput Tradeoff: The main goal of the third part is to

study the tradeoff between the effective throughput of the network and other perfor-

mance measures, i.e., the dropping probability and the delay-bound (λ) for different

packet arrival processes. In particular, we are interested to determine how much degra-

dation will be enforced in the throughput by introducing the other constraints, and

how much this degradation depends on the packet arrival process.
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4.3 Throughput Maximization

In this section, we aim to derive the maximum throughput of the network with a large

number (n) of links, based on using the distributed on-off power allocation strategy.

The throughput of the network is defined as the average sum-rate of all links. However,

to capture the effect of the packet arrival process, we define a new notion of through-

put, called effective throughput, which denotes the actual amount of data transmitted

through the links. In order to derive the effective throughput, we first obtain the full

buffer probability of each link i ∈ Nn for different packet arrival processes. Then, we

compute the optimum threshold level τn, and the maximum effective throughput of the

network, for each packet arrival process.

4.3.1 Effective Throughput

In this section, we present a new performance metric in the network, called effective

throughput, which is a function of the threshold level τn and λ. Let us start with the

following definition.

Definition 4.2. (Effective Throughput): Under the on-off power allocation strat-

egy, the effective throughput of each link i, i ∈ Nn, is defined (on a per-block basis)

as

Ti , lim
L→∞

1

L

L
∑

t=1

R
(t)
i I(t)

i , (4.14)

where R
(t)
i is defined as (4.3) and I(t)

i is an indicator variable which is equal to 1, if

user i transmits at time slot t, and 0 otherwise. Furthermore, the effective throughput
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of the network is defined as

Teff ,
n
∑

i=1

Ti. (4.15)

The quantity Ti represents the average amount of information conveyed through

link i in a long period of time. This metric is suitable for real-time applications, where

the packets have a certain amount of information and certain arrival rates. It should be

noted that I(t)
i = 1 is equivalent to the case in which the buffer is full and the channel

gain h
(t)
ii is greater than the threshold level τn at time slot t. Defining the full buffer

event as follows

C
(t)
i ≡ {Buffer of link i is full at time slot t}, (4.16)

we have

P

{

I(t)
i = 1

}

= P

{

h
(t)
ii > τn, C

(t)
i

}

(4.17)

(a)
= P

{

h
(t)
ii > τn

}

P

{

C
(t)
i

}

(4.18)

= qn∆n, (4.19)

where qn , P

{

h
(t)
ii > τn

}

, and ∆n , P

{

C
(t)
i

}

is the full buffer probability. In the above

equations, (a) follows from the fact that the full buffer event depends on the packet

arrival process as well as the direct channel gains h
(t

′

)
ii , for t

′

< t, which is independent

of the channel gain h
(t)
ii (due to the block fading channel model). Thus,

I(t)
i =











1, with probability qn∆n,

0, with probability 1 − qn∆n.

(4.20)

It is observed that I(t)
i is a Bernoulli random variable with parameter qn∆n. In fact,

qn∆n is the probability of the link activation which is a function of n. In the sequel,

we derive ∆n for the aforementioned packet arrival processes.



CHAPTER 4. DELAY-THROUGHPUT TRADEOFF 64

4.3.2 Full Buffer Probability

Let us denote t
(i)
a as the time instant the last packet has arrived in the buffer of link i

before or at the same time t. The event C
(t)
i implicitly indicates that during X

(t)
i ,

t− t
(i)
a time slots, the channel gain of link i is less than the threshold level τn. Clearly,

X
(t)
i is a random variable which varies from zero to infinity for the stochastic packet

arrival processes and is finite for the CAP5. Under the on-off power allocation scheme

and using the block fading model property, the full buffer probability can be obtained

as6

∆n = E

[

(1 − qn)
X

(t)
i

]

, (4.21)

where the expectation is computed with respect to X
(t)
i , and qn , P

{

h
(t)
ii > τn

}

=

e−τn .

Lemma 4.3. Let us denote the full buffer probability of an arbitrary link i ∈ Nn,

for the Poisson, Bernoulli and constant arrival processes as ∆PAP
n , ∆BAP

n and ∆CAP
n ,

respectively. Then,

∆PAP
n =

1

1 + λ log(1 − qn)−1
, (4.22)

∆BAP
n =

1

1 + (λ− 1)qn
, (4.23)

∆CAP
n =

1 − (1 − qn)
λ

λqn
. (4.24)

Proof. For the PAP, since X
(t)
i is an exponential random variable, (4.21) can be sim-

5Note that, here we assume that if a packet arrives at time t and the channel gain is greater than

τn at this time, the packet will be transmitted.
6As we will show in Lemma 4.3, ∆n is independent of index i.
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plified as

∆PAP
n =

∫ ∞

0

1

λ
(1 − qn)

xe−
1
λ
xdx (4.25)

=
1

1 + λ log(1 − qn)−1
. (4.26)

Also for the BAP, X
(t)
i is a geometric random variable with parameter ρ = 1

λ
. Thus,

(4.21) can be simplified as

∆BAP
n =

∞
∑

m=0

(1 − qn)
mρ(1 − ρ)m (4.27)

(a)
=

1

1 + (λ− 1)qn
, (4.28)

where (a) follows from the following geometric series:

∞
∑

m=0

xm =
1

1 − x
, |x| < 1. (4.29)

For the CAP, the full buffer probability in (4.21) can be written as

∆CAP
n

(a)
=

λ−1
∑

m=0

(1 − qn)
m

P{X (t)
i = m} (4.30)

(b)
=

λ−1
∑

m=0

(1 − qn)
m 1

λ
(4.31)

(c)
=

1 − (1 − qn)
λ

λqn
, (4.32)

where (a) follows from Fig. 4.2-b, in which X
(t)
i varies from zero to λ−1 and (b) follows

from the fact that for the deterministic process, X
(t)
i has a uniform distribution. In

other words, for every value of m ∈ [0, λ− 1], P{X (t)
i = m} = 1

λ
. Also, (c) comes from

the following geometric series:

s
∑

m=0

xm =
1 − xs+1

1 − x
. (4.33)
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Having derived the full buffer probability, we obtain the effective throughput of the

network in the following section.

4.3.3 Effective Throughput of the Network

Rewriting (4.14), the effective throughput of link i can be obtained as

Ti = lim
L→∞

1

L

L
∑

t=1

R
(t)
i I(t)

i

(a)
= E

[

R
(t)
i I(t)

i

]

= E

[

R
(t)
i I(t)

i

∣

∣

∣
I(t)
i = 1

]

P

{

I(t)
i = 1

}

+ E

[

R
(t)
i I(t)

i

∣

∣

∣
I(t)
i = 0

]

P

{

I(t)
i = 0

}

(b)
= qn∆nE

[

R
(t)
i

∣

∣

∣
h

(t)
ii > τn,C

(t)
i

]

(c)
= qn∆nE

[

log

(

1 +
h

(t)
ii

I
(t)
i +N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

, (4.34)

where the expectation is computed with respect to h
(t)
ii and the interference term I

(t)
i .

In the above equations, (a) follows from the ergodicity of the channels (due to the

block fading model), which implies that the average over time is equal to average over

realization. (b) results from (4.17)-(4.19) and E
[

R
(t)
i I(t)

i

∣

∣I(t)
i = 0

]

= 0. Finally, (c)

results from the fact that the term log

(

1 +
h
(t)
ii

I
(t)
i +N0

)

is independent of C
(t)
i .

In order to derive the effective throughput, we need to find the statistical behavior

of I
(t)
i which is performed in the following lemmas:

Lemma 4.4. Under the on-off power scheme, we have

E

[

I
(t)
i

]

= (n− 1)α̂qn∆n, (4.35)

Var
[

I
(t)
i

]

≤ (n− 1)(2ακqn∆n), (4.36)
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where α̂ , α̟ and κ , E

[

(

β
(t)
ji

)2
]

.

Proof. See Appendix D.

Lemma 4.5. The maximum effective throughput is achieved at λ = o(n) and the strong

interference regime which is defined as E[I
(t)
i ] = ω(1), i ∈ Nn.

Proof. Suppose that λ 6= o(n) which implies that λ = Ω(n). Using (4.34), we have

Ti ≤ qn∆nE

[

log

(

1 +
h

(t)
ii

N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

(4.37)

(a)

≤ qn∆n log



1 +
E

[

h
(t)
ii

∣

∣

∣
h

(t)
ii > τn

]

N0



 (4.38)

= qn∆n log

(

1 +
τn + 1

N0

)

, (4.39)

where (a) comes from the concavity of log(.) function and Jensen’s inequality, E [log x] ≤

log(E [x]), x > 0. Following (4.22) - (4.24), it is revealed that ∆n ≤ min
(

1, 1
λqn

)

for all

packet arrival processes. Substituting in (4.39), we have

Ti ≤ 1

λ
log

(

1 +
log λ+ 1

N0

)

∼ log log λ

λ
, (4.40)

which follows from the fact that the maximum value of qn∆n log
(

1 + τn+1
N0

)

with the

condition of ∆n ≤ min
(

1, 1
λqn

)

is attained at qn = 1
λ
. Noting that λ = Ω(n), we have

Ti ≤ Θ
(

log logn
n

)

.

Now, suppose that λ = o(n) but E[I
(t)
i ] 6= ω(1), or equivalently, E[I

(t)
i ] = O(1) for

some i. Since E[I
(t)
i ] = (n − 1)α̂qn∆n, the condition E[I

(t)
i ] = O(1) implies that there

exists a constant c such that qn∆n ≤ c
n
. Noting (4.22) - (4.24), it follows that either
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∆n ∼ 1
λqn

or ∆n = Θ(1). In the first case, the condition qn∆n ≤ c
n

implies that n ≤ cλ

which cannot hold due to the assumption of λ = o(n). Therefore, we must have qn ≤ c′

n
,

for some constant c′. Substituting in (4.39) yields

Ti ≤ c′

n
log

(

1 +
τn + 1

N0

)

(a)

≤ c′

n
log

(

1 +
log(n/c′) + 1

N0

)

= Θ

(

log logn

n

)

, (4.41)

where (a) results from the fact that qn log
(

1 + τn+1
N0

)

is an increasing function of qn

and reaches its maximum at the boundary which is c′

n
.

In the sequel, we present a lower-bound on the effective throughput of link i in the

region λ = o(n) and E[I
(t)
i ] = ω(1) and show that this lower-bound beats the upper-

bounds derived in the other regions, proving the desired result. For this purpose, using

(4.34), we write

Ti

(a)

≥ qn∆n log



1 +
τn

E

[

I
(t)
i

∣

∣

∣
h

(t)
ii > τn

]

+No





(b)
= qn∆n log

(

1 +
τn

(n− 1)α̂qn∆n +No

)

(c)
≈ qn∆n log

(

1 +
τn

(n− 1)α̂qn∆n

)

, (4.42)

where (a) follows from the convexity of the function log(1 + b
x+a

) with respect to x

and Jensen’s inequality, (b) results from the independency of I
(t)
i from h

(t)
ii , and (c)

follows from neglecting the term N0 with respect to (n − 1)α̂qn∆n due to the strong

interference assumption. Setting qn = log2 n
n

and λ = n
log2 n

, it is easy to check that

τn
(n−1)α̂qn∆n

= o(1) and hence, log
(

1 + τn
(n−1)α̂qn∆n

)

≈ τn
(n−1)α̂qn∆n

which gives the effective
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throughput as τn
(n−1)α̂

= Θ
(

logn
n

)

which is greater than the throughput obtained in the

other regimes.

Due to the result of Lemma 4.5, we restrict ourselves to the case of λ = o(n) and

the strong interference regime in the rest of the chapter.

Lemma 4.6. Let us assume 0 < α ≤ 1 is fixed and we are in the strong interference

regime (i.e., E

[

I
(t)
i

]

= ω(1)). Then with probability one (w. p. 1), we have

I
(t)
i ∼ (n− 1)α̂qn∆n, (4.43)

as n → ∞. More precisely, substituting I
(t)
i by (n − 1)α̂qn∆n does not change the

asymptotic effective throughput of the network.

Proof. Proof follows along the same line as the proof for Lemma 2.1.

Lemma 4.7. The effective throughput of the network for large values of n can be

obtained as

Teff ≈ nqn∆n log

(

1 +
τn

nα̂qn∆n

)

. (4.44)

Proof. Using (4.34), the effective throughput of the network in the asymptotic case of

n→ ∞ is obtained as

Teff =

n
∑

i=1

Ti (4.45)

(a)
≈ nqn∆nE

[

log

(

1 +
h

(t)
ii

(n− 1)α̂qn∆n +N0

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

(4.46)

(b)
≈ nqn∆nE

[

log

(

1 +
h

(t)
ii

nα̂qn∆n

)∣

∣

∣

∣

∣

h
(t)
ii > τn

]

, (4.47)
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where (a) results from the strong interference assumption and Lemma 4.6, and (b)

follows from approximating (n−1)α̂qn∆n+N0 by nα̂qn∆n due to the strong interference

assumption and large values of n. A lower-bound on (4.47) can be written as

T
l
eff = nqn∆n log

(

1 +
τn

nα̂qn∆n

)

. (4.48)

Furthermore, due to the concavity of log(.) function and Jensen’s inequality, an upper-

bound on Teff can be given as

T
u
eff = nqn∆n log



1 +
E

[

h
(t)
ii

∣

∣

∣
h

(t)
ii > τn

]

nα̂qn∆n





= nqn∆n log

(

1 +
τn + 1

nα̂qn∆n

)

. (4.49)

In order to prove that the above upper and lower bounds have the same scaling, it is

sufficient to show that the optimum threshold value (τn) is much larger than one. For

this purpose, we note that if τn = O(1), then the effective throughput of the network

will be upper-bounded by

Teff

(a)

≤ τn + 1

α̂
(4.50)

= O(1), (4.51)

where (a) follows from log(1 + x) ≤ x. In other words, the effective throughput

of the network does not scale with n, while the throughput of Θ(log n), as will be

shown later, is achievable. This suggests that the optimum threshold value must grow

with n, and hence, the bounds given in (4.48) and (4.49) are asymptotically equal to

nqn∆n log
(

1 + τn
nα̂qn∆n

)

and this completes the proof of the lemma.
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Lemma 4.8. The maximum effective throughput of the network is obtained in the region

that τn = o (nα̂qn∆n).

Proof. Rewriting the expression of the effective throughput of the network from (4.44)

and noting the fact that log(1 + x) ≤ x, for x ≥ 0, we have

Teff ≈ nqn∆n log

(

1 +
τn

nα̂qn∆n

)

≤ τn
α̂
. (4.52)

It can be shown that if the condition τn = o (nα̂qn∆n) is not satisfied, the ratio

log(1+ τn
nα̂qn∆n

)
τn

nα̂qn∆n

is strictly less than one. Having τn = o (nα̂qn∆n) results in

log

(

1 +
τn

nα̂qn∆n

)

≈ τn
nα̂qn∆n

, (4.53)

yielding the upper-bound τn
α̂

. This means that to achieve the maximum throughput,

the interference should not only be strong but also be much larger than τn.

Having the expression for the effective throughput of the network in (4.44), in the

next theorem, we find the optimum value of qn (or equivalently τn) in terms of n and

λ for the aforementioned packet arrival processes, i.e.:

q̂n = arg max
qn

Teff . (4.54)

As shown in the proof of Lemma 4.7, since the optimum threshold value is much larger

than one, the optimizer q̂n is sufficiently small, i.e., q̂n = o(1).

Theorem 4.9. Assuming the Poisson packet arrival process and large values of n, the

optimum solution for (4.54) is obtained as

qPAPn = δ
log2 n

n
(4.55)
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for some constant δ. Furthermore, the maximum effective throughput of the network

asymptotically scales as logn
α̂

, for λ = o
(

n
logn

)

.

Proof. Taking the first-order derivative of (4.44) with respect to τn yields

∂Teff

∂τn

(a)
= nqn

[

∂∆n

∂τn
− ∆n

]

log

(

1 +
τn

nα̂qn∆n

)

+ nqn
(1 + τn)∆n − τn

∂∆n

∂τn

nα̂qn∆n + τn

(b)
≈ nqn

[

∂∆n

∂τn
− ∆n

]

τn
nα̂qn∆n

+ nqn
(1 + τn)∆n − τn

∂∆n

∂τn

nα̂qn∆n + τn
, (4.56)

where (a) comes from qn = e−τn and ∂qn
∂τn

= −qn. Also, (b) follows from Lemma 4.8 and

using the approximation log(1 + x) ≈ x, for x≪ 1. Setting (4.56) equal to zero yields

nα̂qn∆
2
n =

(

∆n −
∂∆n

∂τn

)

τ 2
n . (4.57)

It should be noted that (4.57) is valid for every packet arrival process. Recalling from

(4.22), the full buffer probability for the PAP is given by

∆PAP
n =

1

1 + λ log(1 − qn)−1
(4.58)

(a)
≈ 1

1 + λqn
, (4.59)

where (a) follows from the fact that for qn = o(1), log(1 − qn)
−1 ≈ qn. In this case,

∂∆PAP
n

∂τn
= ∂∆PAP

n

∂qn

∂qn
∂τn

= λqn
(1+λqn)2

, which results in

∆PAP
n − ∂∆PAP

n

∂τn
≈ 1

(1 + λqn)
2 =

(

∆PAP
n

)2
. (4.60)

Thus for the Poisson arrival process, (4.57) can be simplified as

nα̂qn = τ 2
n . (4.61)

It can be verified that the solution for (4.61) is

τPAPn = logn− 2 log log n+O(1). (4.62)
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Using qn = e−τn , we conclude that

qPAPn = δ
log2 n

n
, (4.63)

for some constant δ.

To satisfy the condition of lemma 4.8, we should have

τn
nα̂qn∆PAP

n

≪ 1, (4.64)

Using (4.59), (4.62), and (4.63), it yields

λPAP = o

(

n

log n

)

. (4.65)

Thus, the maximum effective throughput of the network obtained in (4.44) can be

written as

Teff ≈ τn
α̂
. (4.66)

Theorem 4.10. Assuming the Bernoulli packet arrival process and large values of n,

the optimum solution for (4.54) is obtained as

qBAPn = δ
log2 n

n
(4.67)

for some constant δ. Furthermore, the maximum effective throughput of the network

asymptotically scales as logn
α̂

, for λ = o
(

n
logn

)

.

Proof. Using (4.23), we have ∂∆BAP
n

∂τn
= ∂∆BAP

n

∂qn

∂qn
∂τn

= −qn ∂∆BAP
n

∂qn
= qn(λ−1)

(1+(λ−1)qn)2
. In this

case,

∆BAP
n − ∂∆BAP

n

∂τn
=

1

(1 + (λ− 1)qn)
2 =

(

∆BAP
n

)2
. (4.68)
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Thus for the Bernoulli arrival process, (4.57) can be simplified as

nα̂qn = τ 2
n . (4.69)

It can be observed that (4.69) is exactly equal to (4.61) and hence, its solution can be

written as

τBAPn = logn− 2 log log n+O(1), (4.70)

and

qBAPn = δ
log2 n

n
, (4.71)

for some constants δ. Similarly, the maximum effective throughput of the network for

the BAP is obtained as

Teff ≈ τn
α̂
, (4.72)

which is achieved under the condition

λBAP = o

(

n

log n

)

. (4.73)

Theorem 4.11. Assuming a deterministic packet arrival process, the optimum solu-

tion of (4.54) and the corresponding maximum effective throughput of the network are

asymptotically obtained as

i) qCAPn = δ log2 n
n

and Teff ≈ logn
α̂

, for λ = o
(

n
log2 n

)

,

ii) qCAPn = δ′ log
2 n
n

and Teff ≈ logn
α̂

, for λ = Θ
(

n
log2 n

)

,

iii) qCAPn =
log

„

λ log2 λ
nα̂

«

λ
and Teff ≈ logn

α̂
, for λ = ω

(

n
log2 n

)

and λ = o
(

n
logn

)

,

for some constants δ and δ′.
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Proof. Using (4.24), we have

∂∆CAP
n

∂τn
=

∂∆CAP
n

∂qn

∂qn
∂τn

(4.74)

= −qn
∂∆CAP

n

∂qn
(4.75)

=
1 − (1 − qn)

λ

λqn
− (1 − qn)

λ−1 (4.76)

= ∆CAP
n − (1 − qn)

λ−1. (4.77)

Hence, ∆CAP
n − ∂∆CAP

n

∂τn
= (1 − qn)

λ−1. In this case, (4.57) can be simplifies as

nα̂qn

[

1 − (1 − qn)
λ
]2

(λqn)
2 = (1 − qn)

λ−1τ 2
n . (4.78)

or

nα̂ =
τ 2
nλ

2qn(1 − qn)
λ−1

[1 − (1 − qn)λ]
2 . (4.79)

Since qn = o(1), we have (1 − qn)
λ−1 = e(λ−1) log(1−qn)

(a)
≈ e−λqn, and 1 − (1 − qn)

λ
(b)
≈

1−e−λqn. It should be noted that (a) and (b) are valid under the condition λq2n
2

= o(1)7.

Thus, (4.79) can be simplified as

nα̂ =
τ 2
nλ

2qne
−λqn

[1 − e−λqn]2
, (4.80)

or

ν log ν−1

(1 − ν)2
= Ψ, (4.81)

where ν , e−λqn and Ψ ,
nα̂

τ 2
nλ

. For this setup, we have the following cases:

Case 1: Ψ ≫ 1

7As we will show the condition
λq2

n

2
= o(1) is satisfied for the optimum qn and the corresponding λ.
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It is realized from (4.81) that for Ψ ≫ 1, ν = 1 − ǫ, where ǫ = o(1). Thus, (4.81)

can be simplified as

Ψ ≈ log(1 − ǫ)−1

ǫ2
(4.82)

(a)
≈ ǫ

ǫ2
(4.83)

=
1

ǫ
, (4.84)

where (a) follows from the Taylor series expansion log(1−z) = −
∑∞

k=1

zk

k
≈ −z, |z| ≪

1. Since ν , e−λqn and ν = 1 − ǫ, we have

e−λqn = 1 − 1

Ψ
, (4.85)

=⇒ qn
(a)
≈ 1

Ψλ
=

τ 2
n

nα̂
, (4.86)

where (a) follows from the fact that as λqn = o(1), we have e−λqn ≈ 1 − λqn. It can be

verified that the solution for (4.86) is

τCAPn = logn− 2 log log n+O(1). (4.87)

Using qn = e−τn , we conclude that

qCAPn = δ
log2 n

n
, (4.88)

for some constant δ.

The above results are valid for Ψ , nα̂
τ2
nλ

≫ 1 or λ = o
(

n
log2 n

)

. Also, it can be

verified that λq2n
2

= o(1), and therefore the approximations (1 − qn)
λ−1 ≈ e−λqn and

1 − (1 − qn)
λ ≈ 1 − e−λqn are valid in this region.

To satisfy the condition of Lemma 4.8, we must have

τn
nα̂qCAPn ∆CAP

n

≪ 1. (4.89)
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From (4.24), (4.87) and noting that as λ = o
(

n
log2 n

)

,
[

1 − (1 − qn)
λ
]

≈ 1−e−λqn ≈ λqn,

we can write

τn
nα̂qCAPn ∆CAP

n

≈ λ logn

nα̂ [1 − (1 − qn)λ]
(4.90)

≈ log n

nα̂qn

= O

(

1

log n

)

, (4.91)

which means that the condition of Lemma 4.8 is automatically satisfied in this region.

Thus, the maximum effective throughput of the network obtained in (4.44) can be

simplified as

Teff ≈ τn
α̂

≈ log n

α̂
. (4.92)

Case 2: Ψ = Θ(1)

From (4.81) which gives ν log ν−1

(1−ν)2 = Ψ = Θ(1), we conclude that ν , e−λqn = Θ(1).

Thus,

qn =
c1
λ

(4.93)

(a)
=

c2τ
2
n

nα̂
(4.94)

where c1 and c2 are constants and (a) follows from Ψ , nα̂
τ2
nλ

= Θ(1). It can be verified

that the solution for (4.94) is

τCAPn = log n− 2 log logn +O(1). (4.95)

qCAPn = δ′
log2 n

n
, (4.96)

for some constant δ′.
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The above results are valid for Ψ , nα̂
τ2
nλ

= Θ(1) or λ = Θ
(

n
log2 n

)

. Also, it can be

verified that λq2n
2

= o(1), and therefore, the approximations (1 − qn)
λ−1 ≈ e−λqn and

1 − (1 − qn)
λ ≈ 1 − e−λqn are valid in this region.

Similar to the argument in Case 1, the condition of Lemma 4.8 is satisfied, and

therefore, the maximum effective throughput of the network is obtained as

Teff ≈ τn
α̂

≈ log n

α̂
. (4.97)

Case 3: Ψ ≪ 1

It is concluded from (4.81) that ν log ν−1

(1−ν)2 = Ψ, where Ψ = o(1). In this case, ν = o(1),

and therefore, ν log ν−1 ≈ Ψ. The solution for this equation is ν ≈ Ψ
log(Ψ)−1 . In other

words,

e−λqn ≈
nα̂
λτ2
n

log
(

λτ2
n

nα̂

) . (4.98)

Thus,

λqn ≈ log

(

λτ 2
n

nα̂

)

+ log log

(

λτ 2
n

nα̂

)

(4.99)

(a)
≈ log

(

λτ 2
n

nα̂

)

, (4.100)

where (a) follows from λqn = ω(1) which comes from ν = o(1). The solution for the

above equation can be written as τn = log λ − f(λ) or qn = ef(λ)

λ
= o(1), where we

assume f(λ) = o(log λ). Substituting in (4.100), we obtain

ef(λ) = log

(

λ(log λ− f(λ))2

nα̂

)

(4.101)

= log

(

λ log2 λ

nα̂

)

+ 2 log

(

1 − f(λ)

log λ

)

(4.102)

(a)
≈ log

(

λ log2 λ

nα̂

)

, (4.103)
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where (a) follows from the fact f(λ) = o(log λ). Thus, using τn = log λ−f(λ), it yields

τCAPn = log λ− log log

(

λ log2 λ

nα̂

)

. (4.104)

It should be noted that (4.104) is derived from (4.98) for Ψ , nα̂
τ2
nλ

≪ 1. This translates

the condition nα̂
τ2
nλ

≪ 1 to nα̂
λ log2 λ

≪ 1, which incurs that λ = ω
(

n
log2 n

)

.

Also, in the following we show that the condition λq2n
2

= o(1) is satisfied. It follows

from (4.100) that

λq2
n =

log2
(

λτ2
n

nα̂

)

λ
(4.105)

(a)

≤
log2

(

λ log2 λ
nα̂

)

λ
(4.106)

(b)
= o(1), (4.107)

where (a) follows from (4.104) and (b) comes from λ = ω
(

n
log2 n

)

.

To satisfy the condition of Lemma 4.8, we must have

τn
nα̂qCAPn ∆CAP

n

≪ 1. (4.108)

From (4.24) and (4.104), we can write

τn
nα̂qCAPn ∆CAP

n

≈ λ log λ

nα̂ [1 − e−λqn]
(4.109)

(a)
≈ λ log λ

nα̂
, (4.110)

where (a) follows from e−λqn = o(1). In order to have λ log λ
nα̂

= o(1), one must have

λ = o
(

n
logn

)

. In this case, the maximum effective throughput of the network can be

simplified as

Teff ≈ τn
α̂

≈ log λ

α̂
. (4.111)
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Noting that λ satisfies λ = ω
(

n
log2 n

)

and λ = o
(

n
logn

)

, it follows that logλ ∼ log n.

In other words, Teff ≈ logn
α̂

.

The above theorems imply that the effective throughput of the network scales as

logn
α̂

, despite the packet arrival process. Note that this value is the same as the sum-rate

scaling of the same network with backlogged users (Theorem 2.3), which is an upper-

bound on the effective throughput of the current setup. In other words, the effect of

the real-time traffic in the throughput (which is captured in the full buffer probability)

is asymptotically negligible. However, we did not consider the effect of dropping on

the calculations. In the subsequent section, we include the dropping probability in

the analysis and find the maximum effective throughput of the network such that the

dropping probability approaches zero.

4.4 Delay Analysis

In this section, we analyze the delay characteristics of the underlying network in terms

of the number of links (n) and λ. First, we formulate the packet dropping probabilities

based on the aforementioned packet arrival processes. Then, we derive the necessary

conditions in the asymptotic case of n→ ∞ such that the packet dropping probabilities

tend to zero, while achieving the maximum effective throughput of the network.

Lemma 4.12. Let us denote the packet dropping probability of a link i, i ∈ Nn, for

the Poisson, Bernoulli and constant arrival processes as P
{

BPAP
i

}

, P
{

BBAP
i

}

and
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P
{

BCAP
i

}

, respectively. Then,

P
{

B
PAP
i

}

=
1

1 + λ log(1 − qn)−1
, (4.112)

P
{

B
BAP
i

}

=
(1 − qn)(λqn)

−1

1 + (1 − qn)(λqn)−1
, (4.113)

P
{

B
CAP
i

}

= (1 − qn)
λ. (4.114)

Proof. Recalling t
(i)
Ak

as the time instant of the kth packet arrival into the buffer of link i,

each user i is active at time slot t ≥ t
(i)
Ak

only when h
(t)
ii > τn. In other words, assuming

the buffer is full, no transmission (or no service) occurs in each slot with probability

1− qn. From (4.5) and (4.8)-(4.12), since the time duration between subsequent packet

arrivals is x
(i)
k , the packet dropping probability for a link i is obtained as

P {Bi} = E

[

(1 − qn)
x
(i)
k

]

, (4.115)

where the expectation is computed with respect to x
(i)
k . For the PAP, since x

(i)
k is an

exponential random variable, (4.115) can be simplified as

P
{

B
PAP
i

}

=

∫ ∞

0

1

λ
(1 − qn)

xe−
1
λ
xdx (4.116)

=
1

1 + λ log(1 − qn)−1
. (4.117)

Also for the BAP, x
(i)
k is a geometric random variable with parameter ρ =

1

λ
. Thus,

(4.115) can be simplified as

P
{

B
BAP
i

}

=

∞
∑

m=1

(1 − qn)
mρ(1 − ρ)m−1 (4.118)

=
ρ

1 − ρ

∞
∑

m=1

[(1 − qn)(1 − ρ)]m (4.119)

(a)
=

(1 − qn)(λqn)
−1

1 + (1 − qn)(λqn)−1
, (4.120)
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where (a) comes from the following geometric series:

∞
∑

m=1

xm =
x

1 − x
, |x| < 1. (4.121)

According to Fig. 4.2-a, x
(i)
k for the CAP is a deterministic quantity and is equal

to λ. Thus, we have

P
{

B
CAP
i

}

= (1 − qn)
λ. (4.122)

It should be noted that (4.117), (4.120) and (4.122) are valid for every value of

qn ∈ [0, 1]. In particular, in the extreme case of qn = 1, P
{

BCAP
i

}

= P
{

BPAP
i

}

=

P
{

BBAP
i

}

= 0.

We are now ready to prove the main result of this section. In the next theorem,

we derive the necessary conditions on λ, such that the corresponding packet dropping

probabilities tend to zero, while achieving the maximum effective throughput of the

network.

Theorem 4.13. For the optimum qn obtained in Theorems 4.9-4.11 resulting in the

maximum effective throughput of the network,

i) limn→∞ P
{

BPAP
i

}

= 0, if λPAP = ω
(

n
log2 n

)

and λPAP = o
(

n
logn

)

,

ii) limn→∞ P
{

BBAP
i

}

= 0, if λBAP = ω
(

n
log2 n

)

and λBAP = o
(

n
logn

)

,

iii) limn→∞ P
{

BCAP
i

}

= 0, if λCAP = ω
(

n
log2 n

)

and λCAP = o
(

n
logn

)

.

Proof. i) From (4.112), we have

P
{

B
PAP
i

}

=
1

1 − λPAP log(1 − qPAPn )
. (4.123)
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It follows from (4.123) that achieving P
{

BPAP
i

}

= ǫ results in

λPAPǫ =
1 − ǫ−1

log(1 − qPAPn )

(a)
≈ ǫ−1 − 1

qPAPn

, (4.124)

where (a) comes from qPAPn = o(1) and the following approximation:

log(1 − z) ≈ −z, |z| ≪ 1. (4.125)

Noting the fact that the optimum value of qPAPn scales as Θ
(

log2 n
n

)

, having λPAP =

ω
(

n
log2 n

)

results in limn→∞ P
{

BPAP
i

}

= 0. On the other hand, from Theorem 4.9, the

condition λPAP = o
(

n
logn

)

is required to achieve the maximum Teff , and this completes

the proof of the first part of the Theorem.

ii) It is realized from (4.113) that achieving P
{

BBAP
i

}

= ǫ results in

λBAPǫ =
1

qBAPn

[

(1 − qBAPn )ǫ−1 − (1 − qBAPn )
]

≈ ǫ−1

qBAPn

, (4.126)

for small enough ǫ. Noting the fact that the optimum value of qBAPn scales as Θ
(

log2 n
n

)

,

having λBAP = ω
(

n
log2 n

)

results in limn→∞ P
{

BBAP
i

}

= 0. On the other hand, from

Theorem 4.10, λBAP = o
(

n
logn

)

guarantees achieving the maximum effective through-

put of the network.

iii) From (4.114), we have

P
{

B
CAP
i

}

= eλ
CAP log(1−qCAPn ) (4.127)

(a)
≈ e−q

CAP
n λCAP (4.128)
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where (a) follows from (4.125) for qCAPn = o(1). To achieve P
{

BCAP
i

}

= ǫ, we must

have

λCAPǫ =
1

qCAPn

log ǫ−1. (4.129)

It follows from (4.128) that setting qCAPn λCAP = ω(1) makes e−q
CAP
n λCAP → 0. Us-

ing part (iii) in Theorem 4.11, it turns out that choosing λCAP = ω
(

n
log2 n

)

satisfies

qCAPn λCAP = ω(1) which yields limn→∞ P
{

BCAP
i

}

= 0. We also need the condition

λCAP = o
(

n
logn

)

to ensure achieving the maximum effective throughput of the net-

work.

Remark 1- It is worth mentioning that the delay-bound (λ) in each link for the CAP

scales the same as that of the PAP and the BAP. However, P
{

BCAP
i

}

decays faster

than P
{

BPAP
i

}

and P
{

BBAP
i

}

, when n tends to infinity.

An interesting conclusion of Theorem 4.13 is the possibility of achieving the max-

imum effective throughput of the network while making the dropping probability ap-

proach zero. More precisely, there exists some ǫ ≪ 1 such that P {Bi} ≤ ǫ, ∀i ∈ Nn,

while achieving the maximum Teff of logn
α̂

. This is true for all arrival processes. How-

ever, for arbitrary values of ǫ, there is a tradeoff between increasing the throughput, and

decreasing the dropping probability and the delay-bound (λ). This tradeoff is studied

in the next section.

4.5 Delay-Throughput Tradeoff

In this section, we study the tradeoff between the effective throughput of the network

and other performance measures, i.e., the dropping probability and the delay-bound (λ)
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for different packet arrival processes. In particular, we are interested to know how much

degradation will be enforced in the throughput by introducing the other constraints,

and how much this degradation depends on the packet arrival process.

4.5.1 Tradeoff Between Throughput and Dropping Probabil-

ity

In this section, we assume that a constraint P {Bi} ≤ ǫ must be satisfied for the

dropping probability. It can be easily shown that the constraint P {Bi} ≤ ǫ is equivalent

to P {Bi} = ǫ. The aim is to characterize the degradation on the effective throughput

of the network in terms of ǫ for different packet arrival processes. First, we consider

PAP.

Looking at the equations (4.22) and (4.112), it turns out that P
{

BPAP
i

}

= ∆PAP
n .

Hence, the condition P
{

BPAP
i

}

= ǫ is translated to ∆PAP
n = ǫ. Therefore, using (4.44),

the effective throughput of the network can be written as

Teff ≈ nqnǫ log

(

1 +
τn

nα̂qnǫ

)

. (4.130)

From the above equation, it can be realized that the effective throughput of the network

is equal to the average sum-rate of the network with nǫ users in the case of backlogged

users, which is given in Theorem 2.3 as log(nǫ)
α̂

for the case of nǫ≫ 1 or ǫ = ω( 1
n
). Also,

the optimum value of qn is shown to scale as δ log2(nǫ)
nǫ

for some constant δ and hence, the

optimum value of λ is given as ǫ−1

qn
= n

δ log2(nǫ)
. Let us denote ∆Teff as the degradation

in the effective throughput of the network, which is defined as the difference between

the maximum effective throughput in the case of no constraint on P {Bi} (Theorem
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4.9-4.11) and the case with constraint on P {Bi}. Using Theorem 4.9, ∆Teff for the

PAP can be written as

∆Teff ≈ log n

α̂
− log(nǫ)

α̂

=
log(ǫ−1)

α̂
, (4.131)

for ǫ = ω
(

1
n

)

8. Moreover, for values of ǫ such that log(ǫ−1) = o(log n), it can be

shown that the scaling of the effective throughput of the network is not changed, i.e.,

Teff ∼ logn
α̂

.

For the BAP, and using (4.23) and (4.113), we have

P
{

B
BAP
i

}

=
1 − qn

1 + (λ− 1)qn
(a)
≈ 1

1 + (λ− 1)qn

= ∆BAP
n , (4.132)

where (a) follows from the fact that qn = o(1). Therefore, similar to the case of the

PAP, we have P
{

BBAP
i

}

≈ ∆BAP
n = ǫ and as a result, the rest of the arguments hold.

In particular,

∆Teff ≈ log(ǫ−1)

α̂
. (4.133)

For the CAP, and using (4.24) and (4.114), we have

(1 − qn)
λ = ǫ =⇒ λqn ≈ log(ǫ−1), (4.134)

8In the case of ǫ = O( 1

n
), it is easy to see that the effective throughput of the network does not

scale with n.
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which gives

∆CAP
n =

1 − (1 − qn)
λ

λqn
(4.135)

≈ 1

log(ǫ−1)
. (4.136)

Hence, using (4.44), the effective throughput of the network can be written as

Teff ≈ n

log(ǫ−1)
qn log

(

1 +
τn

n
log(ǫ−1)

α̂qn

)

, (4.137)

which is equal to the average sum-rate of a network with n
log(ǫ−1)

backlogged users

and is asymptotically equal to
log

“

n

log(ǫ−1)

”

α̂
, for values of ǫ satisfying log(ǫ−1) = o(n).

Therefore, the degradation in the effective throughput of the network for the CAP can

be expressed as

∆Teff ≈ logn

α̂
−

log
(

n
log(ǫ−1)

)

α̂

=
log log(ǫ−1)

α̂
. (4.138)

Comparing the expressions of ∆Teff for the Poisson, Bernoulli and constant packet

arrival processes, it follows that the degradation in the effective throughput of the

network in the cases of PAP and BAP both grow logarithmically with ǫ−1, while in the

case of CAP it grows double logarithmically. In other words, the degradation in the

throughput in the cases of the PAP and BAP is much more substantial compared to

the CAP. This fact is also observed in the simulation results in the next sections.

4.5.2 Tradeoff Between Throughput and Delay

In this section, we aim to find the tradeoff between the effective throughput of the

network and the delay-bound (λ), for a given constraint on the dropping probability,
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i.e., P {Bi} ≤ ǫ.

1-PAP: Using (4.22) and (4.112), it follows that for a given λ and ǫ ≪ 1, we have

qn ≈ ǫ−1

λ
,

=⇒ τn ≈ log(λǫ), (4.139)

and

qn∆n ≈ 1

λ
. (4.140)

Substituting qn∆n and τn from the above equations in (4.44) yields

Teff ≈ n

λ
log

(

1 +
λ log(λǫ)

nα̂

)

. (4.141)

Taking the first-order derivative of (4.141) yields

∂Teff

∂λ
= − n

λ2
log

(

1 +
λ log(λǫ)

nα̂

)

+
n

λ

1 + log(λǫ)

nα̂ + λ log(λǫ)
. (4.142)

Setting (4.142) equal to zero yields

λ log2(λǫ) ≈ nα̂. (4.143)

It can be verified from (4.143) that Teff has a global maximum at λPAPopt ≈ nα̂
log2(nα̂ǫ−1)

.

In other words, for λ < λPAPopt , there is a tradeoff between the throughput and delay,

meaning that increasing λ results in increasing both the throughput and delay. How-

ever, the increase in the throughput is logarithmic while the delay increases linearly

with λ. It should be noted that the region λ > λPAPopt is not of interest, since increasing

λ from λPAPopt results in decreasing the throughput and increasing the delay which is not

desired.
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2-BAP: Due to the similarity between the values of P {Bi} and ∆n for the PAP

and the BAP, the results obtained for the PAP are also valid for the BAP.

3-CAP: Using (4.24) and (4.114), it follows that for a given λ and ǫ≪ 1, we have

qn ≈ log(ǫ−1)

λ
,

=⇒ τn ≈ log

(

λ

log(ǫ−1)

)

, (4.144)

and

qn∆n ≈ 1

λ
. (4.145)

As can be observed, all the results for the cases of PAP and BAP are extendable to the

case of CAP by substituting ǫ−1 with log(ǫ−1). In particular, the optimum value for λ

can be written as λCAPopt ≈ nα̂
log2(nα̂ log(ǫ−1))

, and for λ < λCAPopt , the effective throughput

of the network can be given as Teff ≈ 1
α̂

log
(

λ
log(ǫ−1)

)

. This means that in the region

λ < λCAPopt , which is the region of interest, there is a tradeoff between the throughput

and delay such that by increasing λ, Teff increases logarithmically, while the delay

increases linearly with λ. Furthermore, comparing the value of λopt for the PAP and

BAP with the CAP, it is realized that λCAPopt > λPAPopt . This fact is also observed in the

simulations.

4.6 Numerical Results

In this section, we present some numerical results to evaluate the tradoff between the

effective throughput of the network and other performance measures, i.e., dropping

probability and the delay-bound (λ) for different packet arrival processes. For this
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purpose, we assume that all users in the network follow the threshold-based on-off

power allocation policy. In addition, the shadowing effect is assumed to be lognormal

distributed with mean ̟ = 0.5, variance 1 and α = 0.4. Furthermore, we assume that

n = 500 and N0 = 1.

Figures 4.3 and 4.4 show the effective throughput of the network versus λǫ for the

PAP, BAP and CAP and different values of ǫ. It is observed from these figures that

for a given constraint on the dropping probability (e.g., ǫ = 0.05), and for λ < λopt,

increasing λ results in increasing both the throughput and delay. However, the increase

in the throughput is logarithmic while the delay increases linearly with λ as expected.

Also, increasing λ from λopt results in decreasing the throughput and increasing the

delay which is not desired. Furthermore, comparing the value of λopt for the PAP and

BAP with the CAP, it is realized that λCAPopt > λPAPopt and λCAPopt > λBAPopt , as expected.

To evaluate the degradation in the effective throughput of the network in terms of

dropping probability, we plot Teff versus log ǫ−1 for different packet arrival processes

in Fig. 4.5. It can be seen that the degradation in the throughput in the cases of the

PAP and BAP is much more substantial compared to the CAP, as expected. Hence,

the performance of the underlying network with the CAP is better than that of the

PAP and BAP from the delay-throughput tradeoff points of view.

4.7 Conclusion

In this chapter, the delay-throughput tradeoff of a single-hop wireless network in terms

of the number of links (n), and under the shadowing effect with parameters (α,̟) was
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Figure 4.3: Effective throughput of the network versus λǫ for N0 = 1, n = 500, α = 0.4, and

different values of ǫ a) PAP and b) BAP.
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Figure 4.4: Effective throughput of the network versus λǫ for the CAP and N0 = 1,

n = 500, α = 0.4, and different values of ǫ.

analyzed. It was proved that the effective throughput of the network scales as logn
α̂

,

with α̂ , α̟, despite the packet arrival process. Then, the delay characteristics of the

underlying network in terms of a packet dropping probability was presented. Also, the

necessary conditions in the asymptotic case of n→ ∞ was derived such that the packet

dropping probabilities tend to zero, while achieving the maximum effective throughput

of the network. Finally, the tradeoff between the effective throughput of the network

and delay-bounds for different packet arrival processes was studied. It was shown from

the numerical results that the performance of the deterministic packet arrival process

is better than that of the Poisson and the Bernoulli packet arrival processes, from the
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Figure 4.5: Effective throughput of the network versus log ǫ−1 for different packet arrival

processes and N0 = 1, n = 500, α = 0.4.

delay-throughput tradoff points of view.



Chapter 5

Conclusions and Future Works

5.1 Conclusions

In Chapter 2, a distributed single-hop wireless network with K links was considered,

where the links were partitioned into a fixed number (M) of clusters each operating in

a subchannel with bandwidth W
M

. The network throughput is defined as the average

sum-rate of the network, which is shown to scale as Θ(logK). It was proved that

in the strong interference scenario, the optimum power allocation strategy for each

user was a threshold-based on-off scheme. Moreover, it was demonstrated that the

optimum spectrum sharing for maximizing the average sum-rate is achieved at M = 1.

In other words, partitioning the bandwidth W into M subchannels has no gain in

terms of enhancing the throughput. The interesting point is that under the on-off

power allocation strategy, the total network energy for M = 1 is significantly lower

as compared to where all the users transmit with full power all the time. Also, the

94
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proposed on-off scheme has the advantage of not requiring a central controller and is

simple for implementation in practical time-varying networks.

In Chapter 3, we investigated the network guaranteed sum-rate, a different perfor-

mance metric of the network with a decoding delay constraint. It was demonstrated

that the on-off power allocation scheme maximizes the network’s guaranteed sum-rate,

which scales as W
α̂

logK. Moreover, the optimum spectrum sharing for maximizing the

network’s guaranteed sum-rate is the same as the one maximizing the average sum-rate

of the network (M = 1).

In Chapter 4, the delay-throughput tradeoff of a single-hop wireless network in terms

of the number of links (n), and under the shadowing effect with parameters (α,̟) was

analyzed. It was proved that the effective throughput of the network scales as logn
α̂

,

with α̂ , α̟, despite the packet arrival process. Then, the delay characteristics of the

underlying network in terms of a packet dropping probability was presented. Also, the

necessary conditions in the asymptotic case of n→ ∞ was derived such that the packet

dropping probabilities tend to zero, while achieving the maximum effective throughput

of the network. Finally, the tradeoff between the effective throughput of the network

and delay-bounds for different packet arrival processes was studied. It was shown from

the numerical results that the performance of the deterministic packet arrival process

is better than that of the Poisson and the Bernoulli packet arrival processes, from the

delay-throughput tradoff points of view.
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5.2 Proposal Summary

The dissertation can be continued in several directions as briefly explained in what

follows.

The results of Chapters 2 and 3 are based on the assumption that perfect channel

knowledge is available at the receiver. In practice, however, the channel estimation at

the receiver is often imperfect. Thus, the performance of the system is degraded due

to the channel estimation error. A natural extension of these works is to consider the

effect of imperfect channel estimation on the results.

In Chapters 2-4, it is assumed that the channels are block fading, i.e., there is no

correlation between the channel gains in the consecutive blocks. Investigating the effect

of the temporal correlation on the results of these chapters is an interesting direction

for future research. Also, an extension of the results in these chapters is to derive the

average network’s throughput for Rician fading channel model. Rician channel model

is one of the most widely-used models for wireless links, in particular, when there is a

line of sight (LOS) between the transmitter and the receiver.

In Chapter 4, we investigated the delay-throughput tradeoff where all the nodes in

the network are equipped with a single antenna. A fruitful future work is to investigate

the effect of increasing the number of antenna on the delay characteristics.



Appendix A

Proof of Lemma 2.1

Let us define χk , Lkipk, where Lki is independent of pk, for k 6= i. Under a quasi-

static Rayleigh fading channel model, it is concluded that χk’s are independent and

identically distributed (i.i.d.) random variables with

E [χk] = E [Lkipk] = α̂qn, (A.1)

Var [χk] = E
[

χ2
k

]

− E
2 [χk] (A.2)

(a)

≤ 2ακqn − (α̂qn)
2, (A.3)

where E [h2
ki] = 2 and α̂ , α̟. Also, (a) follows from the fact that p2

k ≤ pk. Thus,

E[p2
k] ≤ E[pk] = qn. The interference Ii =

∑

k∈Cj

k 6=i
χk is a random variable with mean µn

and variance ϑ2
n, where

µn , E [Ii] = (n− 1)α̂qn, (A.4)

ϑ2
n , Var [Ii] ≤ (n− 1)(2ακqn − (α̂qn)

2) ≤ (n− 1)(2ακqn). (A.5)
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Using the Central Limit Theorem [58, p. 183], we obtain

P{|Ii − µn| < ψn} ≈ 1 −Q

(

ψn
ϑn

)

(A.6)

(a)

≥ 1 − e
− ψ2

n

2ϑ2
n , (A.7)

for all ψn > 0 such that ψn = o
(

n
1
6ϑn

)

. In the above equations, the Q(.) function is

defined as Q(x) , 1√
2π

∫∞
x
e−u

2/2du, and (a) follows from the fact that Q(x) ≤ e−
x2

2 ,

∀x > 0. Selecting ψn = (nqn)
1
8
√

2ϑn, we obtain

P{|Ii − µn| < ψn} ≥ 1 − e−(nqn)
1
4 . (A.8)

Therefore, defining ε , ψn
µn

= O
(

(nqn)
− 3

8

)

, we have

P{µn (1 − ε) ≤ Ii ≤ µn (1 + ε)} ≥ 1 − e−(nqn)
1
4 . (A.9)

Noting that nqn → ∞, it follows that Ii ∼ µn, with probability one. Now, we show a

stronger statement, which is, the contribution of the realizations in which |Ii−µn| > ψn

in the average sum-rate of the network is negligible. For this purpose, we give a lower-

bound and an upper-bound for the average sum-rate of the network and show that

these bounds converge to each other in the strong interference regime, when nqn → ∞.

A lower-bound denoted by R̄
(L)
ave, can be given by

R̄(L)
ave , nWE

[

log

(

1 +
p̂ihii

Ii +
N0W
M

)∣

∣

∣

∣

∣

|Ii − µn| < ψn

]

P{|Ii − µn| < ψn} (A.10)

≥ nWE

[

log

(

1 +
p̂ihii

µn(1 + ε) + N0W
M

)]

[

1 − e−(nqn)
1
4
]

, (A.11)

which scales as W
α̂

log n (as shown in the proof of Theorem 2.3, by optimizing the power

allocation function). An upper-bound for the average sum-rate of the network, denoted
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by R̄
(U)
ave , can be given as

R̄(U)
ave = nWE

[

log

(

1 +
p̂ihii

Ii +
N0W
M

)∣

∣

∣

∣

∣

|Ii − µn| < ψn

]

P{|Ii − µn| < ψn} +

nWE

[

log

(

1 +
p̂ihii

Ii +
N0W
M

)∣

∣

∣

∣

∣

|Ii − µn| ≥ ψn

]

P{|Ii − µn| ≥ ψn} (A.12)

≤ R̄(L)
ave + nWE

[

log

(

1 +
p̂ihii
N0W
M

)]

e−(nqn)
1
4 (A.13)

(a)

≤ R̄(L)
ave + nWE

[

p̂ihii
N0W
M

]

e−(nqn)
1
4 (A.14)

(b)
= R̄(L)

ave +WO(nqn log n)e−(nqn)
1
4 (A.15)

(c)∼ R̄(L)
ave. (A.16)

In the above equations, (a) follows from the fact that log(1+x) ≤ x, for x ≥ 0, (b) comes

from the facts that E{pihii} . qn logn (this is shown in the proof of Lemma 3.2) and

N0W
M

is fixed, and finally, (c) results from the fact that as nqn → ∞, nqne
−(nqn)

1
4 → 0.

The above equations implies that substituting Ii by its mean ((n − 1)α̂qn) does not

affect the analysis of the average sum-rate of the network in the asymptotic case of

K → ∞.
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Proof of Lemma 2.4

Using (2.29), we have

E[Ξi(p̂i, hii)] ≈ W

Mλ
E[hiip̂i] + n

αWµ

Mλ′

(

1 − ̟

λ′
E[p̂i] +

2κ

λ′2
E[p̂2

i ] −
6η

λ′3
E[p̂3

i ]

)

+

n(1 − α)
Wµ

Mλ′
(B-1)

(a)
=

W

Mλ
(1 + τn)qn −

nα̂W

Mλ′2
(1 + τn)q

2
n +

nαW2κ

Mλ′3
(1 + τn)q

2
n −

nαW6η

Mλ′4
(1 + τn)q

2
n +

nW

Mλ′
(1 + τn)qn (B-2)

(b)
≈ W

Mα̂

(

1 + τn +
ξ1
n2

(1 + τn)e
τn − ξ2

n3
(1 + τn)e

2τn

)

, (B-3)

where ξ1 ,
2κ

̟α̂
and ξ2 ,

6η

̟α̂2
. In the above equations, (a) follows from the fact that

E[hiip̂i] = µ = (1 + τn)qn, and (b) results from i) λ = (n − 1)α̂qn + N0W
M

≈ nα̂qn and

λ′ ≈ nα̂qn incurred by the fact that λ ≫ 1, and ii) qn = e−τn . Since nα̂qn → ∞, it

follows that the right hand side of (B-3) is a monotonically increasing function of τn,

which attains its maximum when τn takes its maximum feasible value. The maximum
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feasible value of τn, denoted as τ̂n, can be obtained as

nα̂e−τn → ∞ =⇒ τ̂n ∼ logn. (B-4)

Thus, the maximum achievable value for E[Ξi(p̂i, hii)] scales as W
Mα̂

logn.



Appendix C

Proof of Lemma 2.5

i) Using (2.5) and assuming that all users follow the on-off power allocation policy,

E[ui(p̂i, hii)] can be expressed as

E[ui(p̂i, hii)] =
∑

l∈Cj

E

[

Rl(P̂
(j)
,L

(j)
l )
]

, j = 1, ...,M, (C-1)

where the expectation is computed with respect to hll and Il. Noting that qn =

P {hll > τn}, we have

E

[

Rl(P̂
(j)
,L

(j)
l )
]

= E

[

Rl(P̂
(j)
,L

(j)
l )
∣

∣

∣
hll > τn

]

P {hll > τn} +

E

[

Rl(P̂
(j)
,L

(j)
l )
∣

∣

∣
hll ≤ τn

]

P {hll ≤ τn} (C-2)

= qnE
[

Rl(P̂
(j)
,L

(j)
l )
∣

∣

∣
hll > τn

]

+ (1 − qn)E
[

Rl(P̂
(j)
,L

(j)
l )
∣

∣

∣
hll ≤ τn

]

.

Since for hll ≤ τn, p̂l = 0, it is concluded that

E

[

Rl(P̂
(j)
,L

(j)
l )
]

=
qnW

M
E

[

log

(

1 +
hll

Il +
N0W
M

)∣

∣

∣

∣

∣

hll > τn

]

. (C-3)
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For large values of K, we can apply Lemma 2.1 to obtain

E

[

Rl(P̂
(j)
,L

(j)
l )
]

≈ qnW

M
E

[

log

(

1 +
hll

(n− 1)α̂qn + N0W
M

)∣

∣

∣

∣

∣

hll > τn

]

(C-4)

=
qnW

M
E

[

log

(

1 +
hll
λ

)∣

∣

∣

∣

hll > τn

]

, (C-5)

where the expectation is computed with respect to hll. Using the Taylor series log(1 +

x) =
∑∞

k=1
(−1)k−1xk

k
, −1 < x ≤ 1, (C-5) can be written as

E

[

Rl(P̂
(j)
,L

(j)
l )
]

≈ qnW

M

∞
∑

k=1

(−1)k−1

kλk
E
[

hkll
∣

∣hll > τn
]

(C-6)

(a)
≈ qnW

M

∞
∑

k=1

(−1)k−1

k(nα̂qn)k
E
[

hkll
∣

∣hll > τn
]

(C-7)

(b)
≈ qnW

M

∞
∑

k=1

(−1)k−1τkn
k(nα̂qn)k

(C-8)

=
qnW

M
log

(

1 +
τn
nα̂qn

)

(C-9)

(c)
=

e−τnW

M
log

(

1 +
τne

τn

nα̂

)

, (C-10)

where (a) follows from the fact that for large values of n, λ ≈ nα̂qn. Also, (b) results

from the fact that under a Rayleigh fading channel model,

E [hll| hll > τn] = 1 + τn, (C-11)

E
[

hkll
∣

∣hll > τn
]

= τkn + kE
[

hk−1
ll

∣

∣hll > τn
]

. (C-12)

Since λ≫ 1, the term
E [hk−1

ll |hll>τn]
λk

≪ E [hk−1
ll |hll>τn]
λk−1 , which implies that we can neglect

this term and simply write E
[

hkll
∣

∣hll > τn
]

≈ τkn . (c) results from qn = e−τn . Thus,

(C-1) can be simplified as

E[ui(p̂i, hii)] ≈
ne−τnW

M
log

(

1 +
τne

τn

nα̂

)

. (C-13)
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In order to find the optimum threshold value:

τ̂n = arg max
τn

E[ui(p̂i, hii)], (C-14)

we set the derivative of the right hand side of (C-13) with respect to τn to zero:

−e−τ̂n log

(

1 +
τ̂ne

τ̂n

nα̂

)

+
1 + τ̂n

nα̂ + τ̂neτ̂n
= 0, (C-15)

which after some manipulations yields

τ̂n = log n− 2 log log n+O(1). (C-16)

ii) Using (C-16), it is concluded that

qn = e−τn

= δ
log2 n

n
,

where δ = e−O(1) is a constant.

iii) Using (C-16), we have

τ̂ne
τ̂n

nα̂
= Θ

(

1

log n

)

, (C-17)

which implies that the right hand side of (C-13) can be written as

RH (C-13) ≈ Wτ̂n
Mα̂

. (C-18)

Thus, the maximum value for E[ui(p̂i, hii)] in (C-13) scales as W
Mα̂

logn.
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Proof of Lemma 4.4

Let us define χ
(t)
j , L(t)

ji p
(t)
j , where L(t)

ji is independent of p
(t)
j , for j 6= i. Note that

P

{

p
(t)
j = 1

}

= P

{

h
(t)
jj > τn, C

(t)
j

}

(D-1)

(a)
= qn∆n, (D-2)

where (a) follows from (4.19). Thus for the on-off power scheme, we have

E

[

p
(t)
j

]

= qn∆n. (D-3)

Under a quasi-static Rayleigh fading channel model, it is concluded that χ
(t)
j s are in-

dependent and identically distributed (i.i.d.) random variables with

E

[

χ
(t)
j

]

= E

[

L(t)
ji p

(t)
j

]

= α̂qn∆n, (D-4)

Var
[

χ
(t)
j

]

= E

[

(

χ
(t)
j

)2
]

− E
2
[

χ
(t)
j

]

(D-5)

(a)

≤ 2ακqn∆n − (α̂qn∆n)
2, (D-6)
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where E

[

(

h
(t)
ji

)2
]

= 2, E

[

(

β
(t)
ji

)2
]

, κ and α̂ , α̟. Also, (a) follows from the

fact that
(

p
(t)
j

)2

≤ p
(t)
j . Thus, E

[

(

p
(t)
j

)2
]

≤ E

[

p
(t)
j

]

= qn∆n. The interference

I
(t)
i =

∑n
j=1
j 6=i

χ
(t)
j is a random variable with mean µn and variance ϑ2

n, where

µn , E

[

I
(t)
i

]

= (n− 1)α̂qn∆n, (D-7)

ϑ2
n , Var

[

I
(t)
i

]

≤ (n− 1)(2ακqn∆n − (α̂qn∆n)
2) ≤ (n− 1)(2ακqn∆n). (D-8)
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