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ABSTRACT 
 

 

In this work, the compounding of polycarbonate (PC) / poly-butylene terephthalate (PBT) 

blends was studied for the purpose of  improving  quality of products with reduced  

wastage and finally to satisfaction of end users. The effect of material rheological 

characteristics and processing conditions on compounding of PC /PBT was investigated 

through statistical experiments carried out on a 58 mm twin-screw extruder at SABIC 

Innovative Plastics Limited (formerly GE Plastics Limited) in Cobourg, Ontario.  

 

Melt Volume-Flow Rate (MVR) is the most commonly used property to monitor the 

quality of products of PC/PBT blends. The MVR was studied with different sampling 

times and correlations between product properties (melt flow) and processing conditions 

(screw speed, flow rates) were discussed. 

 

The rheological behavior of PC/PBT blends was investigated by dynamic and capillary 

rheometers. The effects of processing conditions (screw speed, feed rate) on viscosity 

were measured and it was found that the Cox-Merz rule is not valid for PC/PBT blends. 

 

The change of morphology of PC/PBT blends was observed under a scanning electron 

microscope (SEM) by using different types of samples. Those samples were (i) PC/PBT 

blends pellets, (ii) PC/PBT blend samples, but collected after completing the rheological 

tests in the parallel plate rheometer, and (iii) PC/PBT blend samples, but collected after 

completing the rheological tests in the capillary rheometer. There was evidence that the 

samples collected after completing the tests in the parallel and capillary rheometer might 

be degraded due to temperature and time. 
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Chapter 1 

INTRODUCTION 
 

Polymer blends offer an important route toward the development of new desired 

properties of materials. They represent one of the most attractive techniques to generate 

materials with unique combination of properties not available in a single polymer. If a 

polymeric material can be generated /developed at a lower cost with properties meeting 

specifications, then manufacturers would rather use it to remain competitive. Blending 

allows for the beneficial properties of two or more polymers to be combined in one 

material while shielding their mutual drawbacks. 

 

Blends of poly (butylene terepthalate) (PBT) and polycarbonate (PC) materials are of 

commercial interest because of their potential in combination. The semi-crystalline PBT 

provides chemical resistance and thermal stability, while PC provides impact resistance, 

toughness and dimensional stability at elevated temperatures. Blend properties can be 

tailor-made by changing the percentage of PBT and PC in their blends. Most polymers 

are mutually immiscible from a thermodynamic standpoint since entropic contribution to 

the free energy of mixing is negligible. Most commercial polymer blends are multiphase 

systems. 

 

In PC/PBT blends, the PC and the PBT are physically mixed involving transesterfication 

which results in the formation of PC-PBT co-polyesters. To control or prevent the 

transesterification reaction, some additives may be used. Also, some special additives 

may be used to serve as compatibilisers or as impact modifiers. 

 

Twin  screw  extruders (TSE)  are  normally  used  for  compounding  of  PC  and   PBT. 

Modular  intermeshing  TSEs  have  been  considered  the most  important  machines  for  
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continuous melt compounding. Co-rotating and counter-rotating are two classes of 

intermeshing TSEs. Co-rotating TSEs have self wiping screw designs that enable them to 

avoid the build-up of deposits and they have been more widely used than counter-rotating 

intermeshing TSEs in compounding applications. 

 

During polymer compounding, the blend components are transported and mixed along 

the axial direction of an extruder which consists of partially and completely filled 

sections of screw. Generally, PC and PBT are fed through two separate gravity hoppers 

into a TSE. The rotating action of the screws contributes in producing a homogeneous 

melt blend which is pumped through a manifold hanger die. At the die exit, the melted 

material is cooled in a water trough and subsequently goes through pelletizing, drying, 

screening, packaging and shipping to customers. 

 

Polymer blending has been one of the most important areas of research and development 

in polymer processing in the past few decades. There are numerous publications 

addressing various topics in this area. In chapter 2 of this dissertation, a review is 

provided with emphasis on PC and PBT blends. In the first section of chapter 2, 

properties, rheology, morphology and applications of PC/PBT blends are overviewed. In 

the second section of chapter 2, compounding of PC/PBT blends in TSE as well as 

processing and diagnostics topics are discussed.  

 

PC/PBT blends must have acceptable properties for customers or end users. Melt 

Volume-Flow Rate (MVR) or Melt Flow Index (MFI) is the most common quality index 

which characterizes the flow behavior of polymer melts with a single number. Normally, 

MVR is measured offline using a MVR indexer located in a quality control laboratory, 

however a few manufacturing companies use on-line measurements. Knowing the  MVR  

of  a  polymer  is  vital to anticipating  and  controlling  its  processing. It is an 

assessment of average molecular mass and is an inverse measure of the melt viscosity. 
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Generally, higher MVR polymers are used in injection moulding, and lower MVR 

polymers are used with blow moulding or extrusion processes. 

 

In chapter 3, the experimental procedures including design of experiments, materials and 

equipment used along with characterization of PC/PBT blends are presented.  The melt 

volume-flow rate (MVR), dynamic (parallel plate) rheometry, capillary rheometry and 

scanning electron microscopy (SEM) measurement procedures and observations are 

described in the characterization section. 

 

The results of melt volume-flow rate (MVR), dynamic (parallel plate) rheometry, 

capillary rheometry and scanning electron microscopy (SEM) are discussed in chapter 4. 

The dynamic response of PC/PBT blends is presented in section 4.2 of this chapter. In 

section 4.3, the validity of the Cox-Merz rule for PC/PBT blends is discussed. The 

morphology of PC/PBT blend pellets and that of samples collected from the parallel plate 

and capillary measurements are presented and discussed in section 4.4. 

 

Finally, the conclusions of this research work are summarized in chapter 5 along with 

recommendations for future research directions.  
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Chapter 2 

LITERATURE  REVIEW 
 

Polymer blending has been one of the most important areas of research and development 

in polymer science in the past few decades. Judging from the number of publications in 

this area, it continues to maintain a prominent position. In this chapter, a review is 

provided focusing on polycarbonate (PC) / poly(butylene terephthalate) (PBT) blends. In 

the first section, properties, morphology, rheology and applications of PC/PBT blends are 

overviewed. In the second section, compounding of PC/PBT blends in twin-screw 

extruders (TSE) as well as processing and diagnostics topics are discussed. 

 

2.1 PC/PBT Blends 

 

Polymer blends are mixtures of at least two polymers and/or copolymers comprising 

more than 2 wt% of each macromolecular component [1]. Polycarbonate (PC) and poly 

(butylene terephthalate) (PBT) are important commercial engineering polymers, each of 

them providing superior performance in a variety of applications. PC is an amorphous 

polymer and is characterized by its dimensional stability, transparency, flame resistance, 

high impact strength, and a very wide range of service temperature. However, PC has 

some shortcomings, such as poor solvent resistance, low fatigue strength, and high melt 

viscosity. PBT is a semicrystalline polymer with good chemical resistance, electric 

insulation, and processability. The PC/PBT blends can inherit the toughness of PC and 

the chemical resistance of PBT, and are available commercially [2].  The blend has high 

ductility, toughness, and the dimensional stability and low shrinkage of polycarbonate as 

well as the stress-crack resistance and gasoline resistance of the semi-crystalline PBT. 

Blends of PC and PBT show a complex morphology and exhibit partial miscibility of PC 

and PBT. Stabilization of the morphology and preventing continuous randomization by 

ester exchange are some of the important characteristics of these blends. Critical 
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inventions involve such discoveries that combine properties such as high impact strength, 

flow, and solvent stress crack resistance [3]. 

 

In general, for homopolymers and polymer blends, the molecular weight influences the 

impact toughness and the viscoelastic properties such as the tensile modulus and, thus the 

toughness of the material [4]. The mechanical properties of PC/PBT blends such as 

tensile strength and low temperature falling weight impact strength tend to deteriorate 

slightly when the number of extrusion times increases, but if the process is strictly 

controlled, recycling of this blend would be acceptable [5].  

 

PBT and PC form semicompatible blends and the presence of PC affects the 

crystallization behavior and crystalline morphology of PBT. Crystallization of PBT is 

largely hindered by the presence of PC in their blends and the rate of crystallization is 

found to decrease with increasing level of PC [6]. Wahrmund et al. [7] studied melt 

blends of bisphenol A polycarbonate (PC) with PBT by differential thermal analysis 

(DTA) and dynamic mechanical behavior to determine their state of miscibility. Both 

techniques showed multiple glass transition temperatures indicative of incomplete 

miscibility in the amorphous phase. They demonstrated that there are amorphous phases 

containing both components, i.e., partial miscibility of the PC-PBT system.  

 

Sanchez et al. [8] showed that the PC/PBT blends, although transparent in the melt state 

and mostly in the solid state, are partially miscible blends. They are composed by a PC-

rich phase, an amorphous PBT-rich phase, and a crystalline PBT phase. The crystalline 

phase increases in volume when heated using PBT crystallized from both amorphous 

phases. Lee et al. [9] examined the phase behavior of PC/PBT blends by dynamic 

mechanical testing. They demonstrated that the blends of PC/PBT show two distinct 

relaxation peaks, indicating immiscibile behavior. Marchese et al. [10] analyzed PBT/PC 

samples, obtained through reactive blending with titanium (Ti) and samarium (Sm) based 
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catalyst, for determining a correlation between the chemical architecture, crystallizability, 

and miscibility. They showed that the samples have complete miscibility. 

 

Pompe and Haubler [11] postulated that the miscibility of polycarbonate PC and 

poly(butylene terephthalate) PBT is controversially discussed in the literature. Partial 

miscibility has been generally found in melt blends of the two polymers. However, in 

solution cast blends they were found to be immiscible. It is known that the 

transesterification takes place in the melt and co-polyesters formed by the 

transesterification change the compatibility of PC and PBT. 

 

The three possible mechanisms for the PC/PBT transesterification are suggested by 

Devaux and co-workers [12]. The exchange reaction can result either from an alcoholysis 

between an –OH terminated polycondensate (PC or PBT) and another macromolecular 

species (PBT or PC) or from an acidolysis reaction involving carboxyl terminated PBT. 

The transesterification can also proceed via a direct reaction between PBT unit and a PC 

group. The exact mechanism of the exchange reaction between PC and PBT was assessed 

by the study of model reactions. They concluded that the main process is that of direct 

transesterification.  Wilkinson and Tattum [13] studied the crystallization behavior of 

PBT and a 50/50  PC/PBT blend with added transesterification catalyst using differential 

scanning calorimetry (DSC) and synchrotron small  angle X-ray scattering (SAXS) / wide 

angle X-ray scattering (WAXS). They demonstrated that PBT crystallization was 

inhibited in the blend by both the presence of PC and transesterification. Also, increasing 

transesterification resulted in a progressive reduction in the melting and crystallization 

temperature and degree of crystallinity. They postulated that transesterification also 

induced a significant change in blend morphology.  

 

Tattum et al. [14] formed a series of 50:50 PC/PBT blends via reactive melt blending in a 

torque rheometer. In their work, a controlled degree of transesterification between the 
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two homopolymers was initiated by the incorporation of an alkyl titanium catalyst during 

melt blending and finally quenching by the addition of a transesterification inhibitor. 

They discussed that as the degree of transesterification increased, the composition of the 

blends became increasingly complex, comprising of mixtures of the homopolymers and 

various AB-type copolymers of PC and PBT, resulting in significant changes in their 

thermal behavior. Also, a corresponding transformation in the morphology of the blends 

was observed due to the formation of increasing concentrations of co-polyesters. Hopfe et 

al. [15] studied melt blends of PC and PBT which were characterized for their 

transesterification and crystallization behavior using Fourier transform infrared 

spectroscopy (FTIR) as well as nuclear magnetic resonance (NMR) spectroscopy and 

differential scanning calorimetry (DSC). They suggested that the transesterification can 

be analyzed by FTIR spectroscopy using certain spectral features.  

 

Sanchez [16] studied the aging of a PC/PBT blend with and without pigment by natural 

and accelerated methods. He analyzed tensile and impact properties and melt flow index 

was evaluated before and after aging, and also after recycling. He showed that the rupture 

elongation of the recycled material was very good, showing the recycling potential of this 

material. He suggested that tensile modulus and tensile strength were not affected by the 

processes to which the blend was submitted. He concluded that the impact strength of the 

recycled material showed a decrease after aging. 

 

Utracki [17] suggested that most polymer blends are immiscible and need to be 

compatibilized. The compatibilization must accomplish: (i) optimization of the interfacial 

tension, (ii) stabilize the morphology against high stresses during forming, and (iii) 

enhance adhesion between the phases in the solid state. Compatibilization is 

accomplished either by addition of a compatibilizer or by reactive processing. His review 

focused on three aspects: description of the interphase, compatibilization by addition and 
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reactive compatibilization. He pointed out that the compatibilization methods can be 

divided into two categories:  

 

a) By addition of: (i) a small quantity of a third component that is miscible with both 

phases (cosolvent, e.g., phenoxy), (ii) a small quantity of copolymer whose one part is 

miscible with one phase and another with another phase (e.g., 0.5 to 2 wt% of tapered 

block copolymer), (iii) a large amount of a core-shell, multi-purpose compatibilizer- 

cum-impact modifier. 

 

b) By reactive compatibilization, which uses such strategies as: (i) trans-reactions, (ii) 

reactive formation of graft, block or lightly crosslinked copolymer, (iii) formation of 

ionically bonded structures, and (iv) mechano-chemical blending that may lead to chains’ 

breakage and recombination, thus generation of copolymers (even at liquid nitrogen 

temperature). 

 

Utracki [17] also showed that the reactive compatibilization (RC) engenders a thick 

interphase that results in high stability of morphology during the forming stage (e.g., 

during injection molding under high stress and strain), but it increases the viscosity. In 

some cases, as for example in PC/PBT blends, transesterification seems to be the easiest 

compatibilization strategy. However, since PBT crystallinity is of utmost importance, the 

method is neither easy to control nor of great advantage. 

 

Mishra and Venkidusamy [18] characterized blends of PC with PBT using density 

measurements, DSC, IR, and TGA. They suggested addition of PBT increases the density 

values of blends linearly. Also, all the blends showed a single glass transition 

temperature, indicating the miscibility of two polymers in the amorphous phase. They 

discussed that with more than 6% addition of PBT to PC, PBT crystallizes as per its own 

crystal structure and the addition of 4% PBT to PC improves the thermal stability at 
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higher temperature compared to pure PC. Also, IR studies showed that addition of PBT 

improves the intermolecular forces in PC. Pesetskii et al. [19] showed that processes of 

phase separation in blends consisting of PC and PBT can cause variations in properties of 

both the amorphous and crystalline phases. They postulated that adhesion interaction 

between phases in the blend becomes weaker between the glass transition temperatures 

(Tg) of PBT and PC. They demonstrated that over the temperature range where 

interphase interactions occur and two components are in the glassy state, the blend is not 

impact resistant.  Over the temperature range between Tg of PBT and Tg of PC, the 

blends become impact resistant materials because of the energy of crack propagation in 

the PBT amorphous phase. 

 

Functional group containing MBS (graft terpolymer made from methyl methacrylate(M), 

butadiene(B) and  styrene(S)) impact modifiers for the PC/PBT alloy were synthesized 

and characterized by Tseng and Lee [20]. They proposed that the functional group was 

used to improve the adhesion between the MBS and the PC/PBT alloy. Their results 

showed that the layer composition of the MBS exhibited a significant effect on the impact 

strength. 

 

Reekmans and Nakayama [21] studied the mechanical reinforcement and the molecular 

structure development upon deformation of the blend PC and PBT. They showed that 

elastic modulus increases with the extension ratio for all compositions and temperatures 

and that blends with 25 - 40 wt % of PC have higher elastic modulus at low temperature 

than pure PBT. Also, crystallinity increases with extension ratio and is relatively smaller 

with increasing PC content. 

 

Delimoy et al. [22] studied the crystallization of PC/PBT blends at low undercoolings 

(<6 0 C) in isothermal conditions by rapidly cooling samples from the melt. On the basis 

of their studies, original mechanisms of crystallization were proposed. The main feature 
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of these mechanisms is the slowness of the PBT crystallization when it is finely dispersed 

and this behavior is attributed to a low nucleation density. They argued that 

crystallization is thought to result from a homogeneous PBT nucleation which becomes 

effective at such high undercoolings. This is followed by a very rapid growth of the 

crystals. Also, Bennekom et al. [23] postulated that the phase behavior is strongly 

dependent on blending and cooling conditions in blends of an amorphous polymer and a 

semi-crystalline polymer. In the case of partial or complete miscibility of the components 

in the molten state, the cooling rate and kinetics of non-isothermal crystallization will 

influence the final extent of phase separation at room temperature. 

 

Hobbs et al. [24] discussed the partial melt miscibility of the PC/PBT system. They 

showed that among the unique morphological features of PBT/PC blends are the 

consistent isolation of the core/shell impact modifier (IM) in the PC phase, and 

crystallization and phase separation of the PBT from the partially miscible PBT/PC melt 

on slow cooling.  Nabar and Kale [25] studied the miscibility and rheological behavior of 

PC/PBT blends. They suggested that the rheology of PC/PBT blends seems to show 

systematic variation with time of mixing and same result showed DSC data also.  

However, for PC/PBT blends, the processing time in an extruder and residual catalyst 

present in the commercial sample cause sufficient degree of transesterfication. In their 

work, the blends were mixed for different time periods for rheological studies. They 

suggested that as the mixing time is increased, the blends show decrease in viscosity.  

 

Wu et al. [26] prepared PBT/PC blends with different interfacial adhesion strength by 

melt blending of the PBT and PC together with in situ formed PBT/PC copolymers. They 

showed that the enhanced interfacial adhesion can effectively transfer the applied stress 

from one phase to the other, reduce the flaws in the material and result in improved  yield 

strength, elongation at break and Young’s modulus. They demonstrated that fracture 

toughness of the blends increases with the reactive extrudate (RE) content. 
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Bai et al. [27] investigated the mechanical properties and morphology of PBT/PC/PTW 

(poly(ethylene-butylacrylate-glycidyl methacrylate)) blend. They showed that adding 

PTW (poly-ethylene–butylacrylate–glycidyl methacrylate)  to a brittle PBT/PC (50/50) 

blend  resulted in decreased tensile strength,  flexural strength and flexural modulus, and 

increased  the elongation at break and impact strength. 

 

Hobbs et al. [28] carried out DSC measurements on a number of PBT/PC blends prepared 

by melt compounding and solution casting from hexafluoroisopropanol (HFIP). Their 

results clearly indicate that appreciable mixing of the two polymers takes place in the 

melt phase whereas complete separation is observed in cast films. The failure of the 

casting procedure to mimic the melt blending results is related in part to liquid-liquid 

phase separation and to crystallization of both polymers from the casting solvent. 

 

The linear viscoelastic oscillatory shear properties of a PC and PBT, 60/40 by weight, 

blend and its nanocomposites with various concentrations of organically modified 

organoclay and clay surface treatment were studied by Depolo et al. [29]. They argued 

that the decrease in properties is attributed to a decrease in molecular weight. They 

observed a relatively small decrease in Tg and attributed it to increased compatibility. 

 

The rheological behavior of materials is very complex, and polymers are usually more 

complex than alternative materials of construction [30]. A parallel plate rheometer has 

been developed for the study of nonlinear viscoelastic phenomena in molten plastics. By 

making use of a novel shear stress transducer, the effects of instrument friction and edge 

phenomena on the stress determination are eliminated. This makes possible the study of 

the response of a melt to large, transient deformations involving large shear rates [31]. 

 

The rheological behavior of molten polymers is of prime importance as it relates to their 

microstructure and governs their processing characteristics [32]. Rotational rheometers, 
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specifically cone-plate, parallel plate, and sliding plate rheometers are routinely used to 

characterize the linear viscoelastic properties of polymer melts. Small amplitude 

oscillatory shear experiments are employed to measure the storage (G’) and loss moduli 

(G”), which are related to the elastic and viscous character of the material, respectively, 

and the complex viscosity (η *) as functions of angular frequency (ω ) [33]. 

 

A well-known empiricism in the rheology of polymer melts is the Cox-Merz rule, which 

relates the linear dynamic moduli as functions of frequency to the steady shear flow 

viscosity as a function of shear rate. The Cox-Mexz [34] rule states that the (steady) 

viscosity versus shear rate curve is virtually identical to the dynamic viscosity versus 

frequency curve. It is valid for most common polymers. Since it is easier to get the 

dynamic data over a very wide range of frequencies, it is used extensively in industry. 

 

Scanning electron microscopy (SEM) is widely used to elucidate the phase morphology 

of polymer blends. Samples for SEM are easy to prepare and the morphology can be 

observed under high resolution [35]. 

 

Polymer blends have become a very important subject for scientific investigation in 

recent years because of their growing commercial acceptance. Copolymerization and 

blending are alternative routes for modification of properties of polymers. Blending is the 

least expensive method. It does not always provide a satisfactory alternative to 

copolymerization, of course, but polymer blends have been successfully used in an 

increasing number of applications in recent years. Such successes encourage more 

attempts to apply this technique to wider range of problems in polymer-related industries 

[30]. 

 

Polymer blends are important industrial materials with good properties to satisfy a wide 

range of applications. Mechanical properties of the blends, to a great extent, are 
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controlled by their morphology [36]. Kalkar et al. [37] postulated that PBT and PC can 

form one of the most successful commercial polymer blends. The PBT/PC blends have 

been commercialized under several trade names such as Xenoy®, Makroblend®/Pocan® 

and Ultrablend®. Impact modified PC/PBT blends have been used extensively in 

applications such as automotive bumpers where low temperature impact resistance and 

resistance to automotive fluids such as gasoline are required [38].  

 

2.2 Compounding of PC/PBT in Twin Screw Extruders 

 
Twin screw extruders have established a solid position in the polymer processing 

industry. The two main areas of application for twin screw extruders are profile extrusion 

of thermally sensitive materials and specialty polymer processing operations, such as 

compounding, devolatilization, chemical reactions, etc. Twin screw extruders used in 

profile extrusion have a closely fitting flight and channel profile and operate at restively 

low screw speeds, in the range of about 20 rpm. These machines offer several advantages 

over single screw extruder. Better feeding and more positive conveying characteristics 

allow the machine to process hard-to-feed materials (powders, slippery materials, etc.) 

and yield short residence times and a narrow residence time distribution (RTD). Better 

mixing and larger heat transfer area allow good control of the stock temperatures. Good 

control over residence times and stock temperatures obviously are key elements in the 

profile extrusion of thermally sensitive materials [39]. 

 

Twin screw extruders are generally classified by the direction of rotation: co-rotating and 

counter-rotating, and by the degree of intermeshing: non-intermeshing (tangential), 

completely or partially intermeshing. Currently, a wide variety of twin screw machines 

are being offered. Some find niches in specific applications, particularly when extensive 

devolatilization, high additive loadings, and/or intensive dispersive melt mixing are 

important [40]. 
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The main distinction is made between intermeshing and non-intermeshing twin screw 

extruders. The latter are extruders where the flights of one screw do not protrude into the 

channel of the other screw. These extruders cannot form closed or semi-closed 

compartments and, therefore, do not have positive conveying characteristics. In 

intermeshing extruders, the degree of intermeshing can range from almost fully 

intermeshing to almost non-intermeshing with a corresponding range in the degree of 

positive conveying characteristics. However, it should be noted that fully intermeshing is 

a necessary, but not sufficient condition for positive conveying. In some geometrics, 

there is very little sealing of the screw channels, even when the screws are fully 

intermeshing. Positive conveying requires that the screw channels are closed off so that 

the material contained in the various channel sections is fully occluded. Any amount of 

back leakage into upstream channel sections will adversely affect the positive conveying 

behavior [41]. 

 

In intermeshing, co-rotating extruders, the materials are conveyed in a figure-eight 

pattern, alternating between moderate shear stress in the overflight zone (between screw 

and the barrel) and high shear stress in the apex zone. Owing to a segmented design, both 

the screw and the barrel can be custom-assembled to optimize for a specific production. 

The screw is usually made of several types of conveying and kneading mixing elements, 

both being able to convey the material either forward or backward. These extruders are 

easier to scale-up, provide good and adjustable balance between the dispersive and 

distributive mixing and they can be operated at restively high output rates [40]. 

 

The processes in the twin screw extruder depend primarily on the mode of operation (co- 

or counter-rotation) and degree of fill. The length of the feeding and melting zones can 

vary considerably, depending on the screw configuration and rotation speed, but in 

general these are much shorter in twin screw than for single screw machines. While in the 

single screw extruder, a continuous solid bed is formed, this does not happen in a twin 
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screw machine since the screw chambers are normally not totally filed and the solids 

conveying zone is continuously divided by intermeshing with the other screw [40]. 

 

The theory of twin screw extruders is not as well developed as the theory of single screw 

extruders. As a result, it is difficult to predict the performance of a twin extruder based on 

extruder geometry, polymer properties, and processing conditions. Conversely, it is 

equally difficult to predict the proper screw geometry when a certain performance is 

required in a particular application. This situation has led to twin screw extruders of 

modular design. These machines have removable screw and barrel elements. The screw 

design can be altered by changing the sequence of the screw elements along the shaft. In 

this way, an almost infinite number of screw geometries can be put together. The modular 

design, therefore, creates excellent flexibility and allows careful optimization of screw 

and barrel geometry of each particulars application. Unfortunately, modular screws and 

barrels also increase the cost of the extruder a great deal [39]. 

 

Experiments with two lab scale, intermeshing twin screw extruders were described by 

Rauwendall [41], one co- and one counter-rotating. Results are presented on power 

consumption, residence time distribution, and mixing characteristics of the two extruders. 

He postulated that the counter - rotating extruder exhibits a narrow residence time 

distribution and better dispersive mixing capability and the co-rotating extruder showed a 

better distributive mixing capability. He mentioned that the overall extruder performance 

seems to be dominated by the effect of the intermeshing region. He concluded that the co-

rotating extruder appeared to be best suited for melt blending operations, while the 

counter-rotating extruder seems to be preferred in operations where solid fillers had to be 

dispersed in a polymer matrix. 

 

Most of the information that has been published on co-rotating twin screw extruders has 

been the result of research and development studies conducted by machine manufactures 
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and a few of polymer producers. The isothermal flow of a Newtonian liquid in a co-

rotating twin screw extruder having screw elements with three tips has been analyzed 

when the effect of the intermeshing zone on flow can be neglected. It was found that the 

values for four dimensionless parameters must be specified in order to obtain a unique 

relationship between the dimensionless axial pressure gradient and the dimensionless 

volumetric flow rate. These parameters included the number of screw tips, the helix 

angle, the ratio of the clearance to the screw radius, and the ratio of distance between 

screw centers to the radius [42].  

 

Secor [43] postulated that twin-screw extruders are used very effectively, when partially 

filled, for mixing and surface renewal of high viscosity fluids. He suggested that the rate 

of energy input, often sufficiently high to be a major design consideration, determines the 

drive power, the heat input to the fluid, and the cooling requirements.  A simple model 

for the rate of energy dissipation in twin-screw extruders predicts that the power input is 

proportional to the square of the screw speed. Meijer and Elemans [44] showed  that a 

simplified model for a corotating twin-screw extruder is able to predict very well the 

correct  energy consumption, specific energy,  and temperature  rise, not only over the 

extruder as whole, but also locally during processing (depending on local screw 

geometry, processing conditions, and material properties). They emphasized that this is of 

great practical importance in polymer processing because an understanding of the process 

is within reach and gives a perspective for solving problems in scale-up. 

 

Gao et al. [45] presented and experimentally validated a physically motivated model for 

predicting the mean residence time in twin screw extruders. They showed that accurate 

estimation of the mean residence time and propagation delay through a plasticating 

extruder is critical for implementing feedback control schemes employing sensors 

mounted along the extruder. In their studies, experiments were carried out on a 30 mm 

Krupp Werner and Pfleiderer co-rotating twin screw extruder equipped with reflectance 
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optical probes over the melting section and mixing section and at the die. They 

demonstrated that the mean residence times predicted by their model are in good 

agreement with the experimentally measured ones. In their studies, both the model and 

experimental results indicate that the mean residence volume has a linear relationship 

with flow rate / screw speed ratio. They proposed that when the percent drag flow is not 

large, this model can be used to predict the mean residence time with an estimation error 

of no more than 10%. On the other hand, when the percent drag flow is large or higher 

estimation accuracy is required an improved mean residence time model can be used.  

They observed that operating conditions with equivalent specific throughput result in an 

equivalent residence-volume distribution (RVD) and residence-revolution distribution 

(RRD), and for a given screw configuration the axial mixing as measured by a tracer is 

essentially the same for all operating conditions.  This allows the experimental RVD 

curves to be superimposed to form a single master curve for a given screw geometry. 

They identified that those new tools motivate the development of a simple residence 

model that characterizes the partially filled and fully filled screw sections and is capable 

of distinguishing between screw configurations and operating conditions. 

 

Kumar et al. [46] developed a framework for improved operation of extruders in a wide 

range of applications by incorporating intelligent means for (i) on-line product quality 

estimation(inferential sensing), (ii) diagnostics for common process/material failures, and 

(iii) closed loop control of product quality based on the on-line  estimation. In their study, 

they have developed a novel model-based approach for the estimation, diagnostics and 

controls in a unified framework. 

 

Linjie and Xiaozheng [47] postulated that the melting of a polymer in co-rotating twin- 

screw extruders depends not only on screw configurations and operational conditions, but 

on the properties of the polymer as well. The progressive melting of polymer pellets in 

co-rotating twin-screw extrusion was so complicated and varying that it was nearly 
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impossible to be described and modeled by one single model. They suggested that it was 

modeled by selecting necessary melting sub-stages, so that the operating conditions and 

screw configuration could be optimized. Finally, Shah and Gupta [48] found that for 

similar screw cross-sections and rotational speed, the axial velocity as well as the degree 

of mixing is higher in the co-rotating extruder, whereas pressure builds up is higher in the 

counter-rotating extruder. In contrast to the flow in the co-rotating extruder, where the 

velocity was always maximum at the screw tips, in the counter rotating extruder the 

velocity was higher in the intermeshing zone. Since the counter-rotating twin-screw 

extruders, which are similar to gear pumps, provide the maximum positive displacement, 

they are the machine of choice for profile extrusion, whereas co-rotating twin-screw 

extruders are more suitable for other applications such as compounding, mixing, 

devolatization and chemical reaction. In this study, a co-rotating twin screw extruder was 

used for compounding of PC/PBT blends and details are explained in Chapter 3 of this 

thesis. 
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Chapter 3 

EXPERIMENTAL 

 
The experiments described in this chapter were all carried out on a WP ZSK 58 mm co-

rotating extruder at the compounding facility of SABIC Innovative Plastics in Cobourg, 

Ontario. The resin used was a commercial Xenoy® PC/PBT blend and three sets of 

experiments were completed.  

 

In these sets of experiments, the main objective was to evaluate the effects of processing 

conditions and resin composition on the rheological properties of the blend. For that 

purpose, a 2-level factorial design was employed with screw speed, and PC and PBT flow 

rates being the factors considered. The factorial design and experimental set up for these 

experiments are explained in section 3.1 and testing procedures for rheological property 

measurements are described in section 3.2. 

 

3.1 Factorial Design of Experiments  

 

A 2 3  factorial design provides the smallest number of runs for which 3 factors can be 

studied in a complete factorial design because there are only two levels for each factor. In 

this study, the three factors were screw speed, PC flow rate (feeder 1) and PBT flow rate 

(feeder 2), each at two levels. These levels were approximately 10 % from the nominal 

conditions which were used as the center point. The design was augmented with 5 

replicate runs at the center point. This design was run on two consecutive days as shown 

in Tables 3.1 and 3.2. Due to machine operating limitations, some of the combinations of  

the levels were not feasible and were adjusted to practical levels of the factors studied. 

These amended combinations are specified with bold red color numbers in Tables 3.1and 

3.2. 
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Table 3.1 : Factorial design  of 1st set of experiments (die hole diameter = 4 mm) 

 

 

Run Order 

Screw  Speed  

(N )  

(RPM) 

Total 

Feed Rate  

(Q) (kg/hr) 

 

Feeder  PC 

(X1) 

 

Feeder PBT  

(X2) 

1 410 425 0.61 0.39 

2 451 434 0.66 0.34 

3 451 383 0.61 0.39 

4 410 425 0.61 0.39 

5 369 383 0.61 0.39 

6 410 425 0.61 0.39 

7 369 434 0.66 0.34 

8 451 468 0.61 0.39 

9 410 425 0.61 0.39 

10 451 416 0.56 0.44 

11 400 (410) 468 0.61 0.39 

12 400 (369) 416 0.56 0.44 

13 410 425 0.61 0.39 
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    Table 3.2: Factorial design 2nd  set of experiments (die hole diameter = 3 mm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Run 

Order r 

Screw Speed 

(N)  

(RPM) 

Feed 

Rate(Q) 

(kg/hr) 

Feeder  PC 

(X1) 

Feeder  PBT  

(X2) 

1 410 425 0.61 0.39 

2 451 434 ( 456) 0.66 0.34 

3 451 383 0.61 0.39 

4 410 425 0.61 0.39 

5 369 383 0.61 0.39 

6 410 425 0.61 0.39 

7 369 (390) 434 0.66 0.34 

8 451 468 0.61 0.39 

9 410 425 0.61 0.39 

10 451 416 0.56 0.44 

11 400 (451) 468 0.61 0.39 

12 400 (369) 416 0.56 0.44 

13 410 425 0.61 0.39 
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A 3rd set of experiments was run as shown in Table 3.3. The screw speed, total feed rate, 

feed rate of PC (feeder 1) and feed rate of PBT (feeder 2) were kept constant for all nine 

runs in this set of experiments. The composition of the PC feeder was the only variable 

that was manipulated. These experiments were run randomly without any notice. In Table 

3.3, Q is the total feed rate, N is the screw speed, QPC is the total feed of polycarbonate in 

feeder1, QPBT is the feed rate of poly (butylene terephthalate), XPC1 is the weight fraction 

of polycarbonate of type1 in feeder 1 and XPC2 is the weight fraction of polycarbonate 

type 2 in feeder 1. The experimental set up for this set of experiments was similar as 

those of 1st and 2nd set of experiments. The die used had 17 holes each with 3 mm 

diameter. For the total of 9 runs of experiments, 36 polymer samples were collected at 

intervals of 1, 5, 10, and 15 minutes for each run. 

 

As indicated earlier, these experiments were carried out at the SABIC Innovative Plastics, 

Cobourg plant using a WP 58mm twin-screw extruder, with two feeders and a data 

acquisition system.  The extruder was capable of running at a maximum screw speed of 

620 rpm. The extruder was powered by a 250 HP drive, which provided a measurement 

of total screw load (estimated from motor current and voltage) and screw speed. The 

extruder had 9 thermocouples along the barrel length, 3 thermocouples along the die and 

heating elements to control the temperatures in the corresponding barrel zones. The 

signals for the machine variables were recorded using a data acquisition system. In these 

experiments the motor torque (or load), die pressure, feed-rates, screw speed, melt 

temperature were recorded at a sampling rate of 2 Hz. The die used on the first day had 

17 holes  each with 4 mm diameter and the die used on the second day had 17 holes but 

each with 3 mm diameter. The material used was again a Xenoy ® blend. Polymer 

samples were collected during each run. A total of 143 samples were collected on the first  

day at  intervals of 0.5 , 1  , 1.5  , 2  , 2.5  , 3  , 3.5  , 4  , 9  , 14 and 19 minutes for each 

run. On the second day, totally 156 samples were collected at intervals of   0.5 , 1  , 1.5  , 

2  , 2.5  , 3  , 3.5  , 4  , 6  , 8  ,10 and 15 minutes for each run. 
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Table 3.3 :  3rd   set of experiments  

 

Run 

Number 

Q 

Total 

feed 

rate  

(kg/hr) 

N 

Screw 

speed 

(rpm) 

QPC 

(kg/hr) 

Feeder1 

QPBT 

(kg/hr) 

Feeder2 

XPC 

in 

Feeder1 

XPBT 

in 

Feeder2 

XPC1 

in 

Feeder1 

XPC2 

in 

Feeder1 

1 425 410 259.25 165.75 0.61 0.39 0.428 0.389 

2 425 410 259.25 165.75 0.61 0.39 0.428 0.389 

3 425 410 259.25 165.75 0.61 0.39 0.478 0.339 

4 425 410 259.25 165.75 0.61 0.39 0.378 0.439 

5 425 410 259.25 165.75 0.61 0.39 0.428 0.389 

6 425 410 259.25 165.75 0.61 0.39 0.428 0.389 

7 425 410 259.25 165.75 0.61 0.39 0.328 0.489 

8 425 410 259.25 165.75 0.61 0.39 0.528 0.289 

9 425 410 259.25 165.75 0.61 0.39 0.428 0.389 
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3.2 Testing Procedures 

 

3.2.1 Melt Volume-Flow Rate (MVR) 

 

Melt Volume-Flow Rate (MVR) or Melt Flow Index (MFI) is the most common quality 

index which characterizes the flow behavior of polymer melts with a single number 

(single-point measurement). The melt flow indexer is normally located in the laboratory 

and not directly at the production line; hence the MFI value is determined ‘off-line’ [49].  

  

The major method used in the plastics industry today is the Melt Flow Rate Test (MFR), 

sometimes referred to as the Melt Flow Index (MFI). Although the limitations of this test 

have been known and discussed for many years, it is widely used and standard test 

procedures have been established for most polymers (ASTM D1238-95 or ISO 1133).  

 

The almost universal acceptance of this test has arisen from the fact that it gives an 

indication of quality while being simple, easy to operate, fast and, most importantly, 

inexpensive. These single point data are plotted versus time on control charts to establish 

the variability of the process and the consequential product quality [50].  

 

The Melt Flow Index test originated in the laboratories of ICI and was specified as a 

standard rheological quality control test in the ISO, BS, and ASTM. Despite the fact that 

MFI is an empirically defined parameter with certain limitations, it is still one of the most 

popular parameters in the plastics industry for distinguishing various grades of polymers. 

Polymer manufacturers have used it routinely to specify the most suitable end use of a 

particular grade of the polymer [51]. The melt flow index is related to the inverse of 

viscosity; however, no end-loss corrections have been developed. The molten polymer in 

the reservoir is extruded through a capillary by the force weights which load a piston. 
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According to the measuring procedure and the dimensions of the reservoir, the piston and 

the capillary are standardized worldwide [49].  

 

By ASTM standards, melt flow index (MFI) is defined as the number of grams of 

polymer that can be pushed out of a capillary die of standard dimensions (diameter: 2.095 

mm, length: 8.0 mm) under the action of standard weight (2.16 kg for PE, at 190°C) in 10 

minutes (ASTM Standard 1238). In this study, in all three sets of experiments MVR 

values were measured in the SABIC Innovative Plastics industry’s laboratory and 

followed their own standard. The amount of polymer that came out through the die after a 

specific interval was weighed and normalized to the number of grams that would have 

been extruded in 10 minutes.  It is noted that the test results are reported by melt volume 

flow rate (MVR), which is melt flow index (MFI) divided by polymer melt density i. e. , 

MVR (cm 3 /10 min) = MFI (g/10 min) / ρ  (g/cm 3 ) . 

 

 

3.2.2 Parallel Plate Rheometer 

 

In a parallel plate rheometer, one plate rotates whilst the other is stationary, and the 

torque and normal force are measured.  The sample volume is not as strong a function of 

the plate’s radius as for the cone-and-plate geometry. The shear rate in this geometry is a 

function of the radius measured from the centre. Dynamic shear properties, such as 

storage and loss moduli are measured when one plate oscillates relative to other. When 

small gaps are used, one must take into account the small yet finite movement of the non-

oscillating plate, even when a force rebalances torque head is used [49]. It is easier to 

load and unload viscous or soft solid samples with parallel plate geometry than with one 

and plate or concentric cylinders. Thus parallel plates are usually preferred for measuring 

viscoelastic material functions [52]. 
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Dynamic rheological measurements for storage modulus G' and loss modulus G" were 

made on a parallel plate rheometer (AR2000, TA Instruments) with 25 mm diameter 

parallel plates and a 900nm gap set. Samples were dried at 120 0 C in a vacuum oven for 

two hours. The sample were prepared as disks (Diameter=25mm, Thickness=1 mm) 

using hot press at 260 0 C. Liquid nitrogen run through to pressurize the oven in order to 

provide a nonreactive atmosphere during the experiment. The measurements were carried 

out at 270 0 C and dynamic frequency sweeps were made over range of 0.01 – 100 Hz for 

1st and 2nd set of experiments, and 1-100 Hz for 3rd set of experiments. Details results are 

discussed in chapter 4.2. 

 

3.2.3 Capillary Rheometer 

 

The simplest and most ubiquitous type of melt rheometer is the capillary rheometer. 

While it is not very versatile in its capabilities, its popularity makes it important for the 

practitioner to understand its proper use and limitations. Capillary rheometers are used 

primarily to determine the viscosity in the shear rate range of 5 to 1000 s 1− , although 

very long capillaries have occasionally been used to extend the range to much lower 

shear rates [32].  

 

The capillary rheometer, however, has many of the elements required to simulate the 

operation of the machines used in polymer processing. It is similar to the MFR 

instrument, with a temperature-controlled barrel containing a piston that forces molten 

polymer through a capillary die of fixed dimensions. In the capillary rheometer, however, 

extrusion of the polymer is driven by a motor and screw or servo-hydraulic system. A 

load cell on the piston or a pressure transducer in the rheometer barrel measures the 

extrusion forces. The force necessary to produce flow (shear stress) and the rate of flow 

(shear rate) are then used to calculate the viscosity or resistance to flow: 
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Viscosity, (η) = Shear Stress/Shear Rate 

 

This rheometer is able to reproduce the deformation rates and forces at which polymer is 

actually processed (many of the early extruders and injection molding machines used a 

ram instead of a screw) and thus can simulate the conditions seen in a conversion process 

[50]. 

 

Capillary viscosity measurements were made by a Galaxy V Capillary Rheometer (Model   

8052; Kayeness Inc. : A  Dynisco  Company). The capillary size was 0.03 inch in 

diameter and 1.2 inch in length (L/D = 40). The samples were dried in a vacuum oven at 

temperature 120 0 C for two hours. The dry sample was charged into the heated barrel of 

the capillary rheometer which was set at 270 0 C. Test was started after a 5 minute soak 

time. 

 

3.2.4 Scanning Electron Microscopy (SEM)   

 

According to literature reports, particle characterization can be achieved using electron 

spectroscopy for chemical analysis (ESCA), photon correlation spectroscopy (PCS), X-

ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy 

(SEM), and various other physical methods. Among all the techniques, SEM is the easiest 

visual technique to obtain information about the average size, size distribution, and the 

surface morphology of particles [53].  

 

In the conventional scanning electron microscope (SEM), image contrast can be produced 

either by variations in sample topography or by differences in chemical composition. 

Secondary electron images, which are most commonly used in SEM analyses, are 

generally dominated by topographical features and only weakly modulated by variations 

in substrate composition. Although more sensitive to compositional variations, 
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corresponding backscattered images have been of less interest because of their poorer 

quality and resolution. These deficiencies have only recently been overcome with 

improved detection systems. Chemical contrast differences provide a viable and useful 

means of characterizing multiphase polymer systems by scanning electron microscopy 

[54].  

 

Scanning Electron Microscopy (SEM) is a popular technique for assessing the structure 

in a polymer blend. This method focuses an electron beam onto a surface, and the 

emission of electrons from specimen is detected and amplified to obtain a image. The 

resultant image is often viewed on a video monitor.  SEM exhibits a relatively large depth 

of fields, thus can show topological features better than other microscopy methods 

(except perhaps atomic force microscopy).  Staining and etching processes can be 

employed to provide improved contrast. SEM is particularly useful for the observation of 

fracture surfaces [55]. Ruthenium tetraoxide (RuO4) is a powerful oxidizing agent and 

readily attacks a variety of functional groups and aromatic systems. Ruthenium would 

appear to offer several practical advantages in that it is less volatile, less toxic, less 

expensive, and more readily available than osmium [56]. 

 

The morphologies of the fractured surfaces of the blends were observed in a scanning 

electron microscope (FESEM 1530, with EDX Pegasus 1200 integrated). The blend 

specimens were cryo-fractured in liquid nitrogen to produce brittle surfaces, which were 

then stained by RuO4 vapour. Ruthenium tetraoxide was obtained by reacting RuCl3 with 

excess amount of NaIO4.  RuO4 staining was employed in order to reveal more detail 

information on the morphology at a better contrast under a SEM microscope. They were 

then coated with a thin layer of gold prior to SEM observations. Both secondary electron 

(SE) detector and reel backscattering electron (RBSE) detector were used in this study. 

Three time durations were used for staining the samples. Those were: a) overnight 
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(around 14 hrs), b) 2 hrs, and c) 1 hr. Unstained samples were also prepared for 

comparisons. 

 

In this study, three different types of samples were used for SEM tests. Those were:      

     a)  PC/PBT blend pellets, 

     b)  PC/PBT blend sample, but collected after completing the rheological test in the   

           parallel plate rheometer, and 

c) PC/PBT blend  sample, but collected after completing the  rheological test in the 

capillary  rheometer  

 

These samples were obtained from the 2nd set experiments, run number 13 at a 10 minute 

time interval. 
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Chapter 4 

RESULTS AND DISCUSSION 
 

PC/PBT blends were characterized in this study. Melt volume-flow rate (MVR) data were 

measured by using an extrusion plastomer, rheological properties were obtained by using 

parallel plate and capillary rheometers, and finally the morphology of PC/PBT blends 

was observed by scanning electron microscopy (SEM). The results of melt volume-flow 

rate for all of three set of experiments are presented in section 4.1 of this chapter. In 

sections 4.2 and 4.3, the rheological properties of PC/PBT blends are discussed along 

with the Cox-Merz rule validity. The morphology of PC/PBT blend pellets and samples 

collected after testing in both parallel plate and capillary rheometers is finally discussed 

in section 4.4 of this chapter. 

 

 

4.1 Melt Volume-Flow Rate (MVR)  
 

Polymer samples were collected as a function of time during all three sets of experiments. 

The method for MVR measurements was described in chapter 3. All the MVR 

measurements were carried out on an extrusion plastomer at SABIC Innovative Plastics 

plant in Cobourg, ON. Each MVR measurement took around 20 minutes and results are 

shown in Tables 4.1.1, 4.1.2 and 4.1.3.  
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Table 4.1.1 : Melt Volume Rate  (MVR)  measurement results for 1st set of experiments (where N  

stands for the screw speed, Q for the volumetric flow rate, X1 for the weight fraction of  PC and 

X2 for the weight  fraction  of  PBT).  

 

 

* Missing sample indicated by -- 

 

 

 

 

 

 

 

 

Instantaneous Melt Volume Rate(MVR) measurements 

Sampling time(minute) 
Run 

No. 

N 

(rpm) 

Q 

(kg/ 

hr) 

X1 

(PC) 

X2 

(PBT) 
0.5 1 1.5 2 2.5 3 3.5 4 9 14 19 

1 410 425 0.61 0.39 15.4 14.2 15.8 14.8 18.7 17.2 17.4 16.8 16.8 17.2 17.2

2 451 434 0.66 0.34 16.9 16.7 13.8 15.4 15.6 14.9 15.6 15.6 15.0  *-- 12.4

3 451 383 0.61 0.39 18.2 19.5 17.9 18.9 18.6 18.8 19.4 19.1 20.0 20.9 20.7

4 410 425 0.61 0.39 17.2 16.4 16.3 16.1 15.8 16.2 16.6 16.3 15.8 15.7 16.3

5 369 383 0.61 0.39 16.5 16.7 17.0 15.9 16.4 16.1 16.1 16.1 16.3 17.5 16.3

6 410 425 0.61 0.39 16.8 16.4 16.2 16.8 15.4 16.0 15.6 15.4 18.2 18.5 17.2

7 369 434 0.66 0.34 15.9 15.9 16.5 16.0 15.0 14.7 15.0 14.5 13.3 13.4 13.2

8 451 468 0.61 0.39 17.8 18.1 16.8 16.3 17.1 17.0 16.5 16.4 16.8 15.7 17.6

9 410 425 0.61 0.39 14.5 15.4 15.2 15.8 15.8 16.2 13.9 16.3 17.4 16.8 17.1

10 451 416 0.56 0.44 20.6 21.3 21.6 20.7 21.0 20.6 21.8 22.4 21.0 20.3 21.4

11 410 468 0.61 0.39 15.3 15.7 16.6 16.3 19.8 16.4 15.6 15.2 15.2  --  -- 

12 369 416 0.56 0.44 16.9 16.0 16.6 16.4 16.9 16.9 17.3 17.2 17.4   --  -- 

13 410 425 0.61 0.39 16.8 17.2 16.8 17.1 17.6 17.8 18.3 17.4 17.4 18.0 17.7
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Table 4.1.2: Melt Volume Rate (MVR) measurement results for 2nd set of experiments (where N is the 

screw speed, Q is the volumetric flow rate, X1 is the weight fraction of PC and X2 is the weight 

fraction of PBT). 

 

 

 

 

 

 

 

 

 

 

 

Instantaneous Melt Volume Rate(MVR) measurements 

Sampling time(minute) Run 

No. 

N 

(rpm) 

 

Q 

(kg/ 

hr) 

X1 

(PC) 

X2 

(PBT) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 6.0 8.0 10 15 

1 410 425 0.61 0.39 16.2 17.7 18.7 18.2 18.7 20.5 19.4 18.0 16.8 18.5 15.3 18.6

2 451 456  0.66 0.34 17.4 15.6 18.4 17.0 19.9 20.1 19.0 19.0 20.4 19.3 20.7 19.5

3 451 383 0.61 0.39 21.7 23.0 23.4 26.3 26.0 25.5 24.5 25.0 24.8 24.3 25.4 23.8

4 410 425 0.61 0.39 18.5 19.1 19.0 18.7 18.6 18.8 18.8 19.1 19.2 19.3 20.1 19.2

5 369 383 0.61 0.39 17.9 19.5 18.9 19.0 18.7 18.8 19.1 20.0 18.2 19.2 19.5 17.9

6 410 425 0.61 0.39 16.7 18.2 19.0 18.8 19.3 19.8 18.6 18.9 19.3 19.1 19.4 19.8

7 390 434 0.66 0.34 17.9 16.9 16.5 18.6 17.5 17.5 17.5 16.2 16.9 17.4 16.4 17.3

8 451 468 0.61 0.39 20.5 20.5 20.4 20.6 20.9 20.1 20.3 20.5 20.9 20.4 21.0 20.1

9 410 425 0.61 0.39 19.2 19.3 19.6 18.6 19.4 20.3 19.3 20.5 20.2 20.7 21.2 20.3

10 451 416 0.56 0.44 25.8 25.0 25.3 25.0 25.0 24.9 25.9 25.0 25.9 24.0 25.7 26.4

11 451 468 0.61 0.39 19.5 20.5 20.6 21.0 20.9 20.9 20.0 23.0 19.8 20.0 20.5 20.4

12 369 416 0.56 0.44 20.5 20.2 20.3 19.8 20.4 20.1 21.5 20.8 19.7 19.6 19.5 20.5

13 410 425 0.61 0.39 18.3 19.6 20.0 20.0 20.1 20.3 20.9 20.6 21.1 21.0 20.2 20.8
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Table 4.1.3 : Melt Volume Rate (MVR) measurement results for 3rd  set of experiments (where Q is 

the total flow rate, N is screw speed, QPC is the total flow rate of PC, QPBT is flow rate of  PBT, F1 

means feeder1, and F2 means feeder2 ).  

Instantaneous Melt  

Volume -Flow Rate  

(MVR) measurements 

Sampling time(minute) 

Run   

No. 

Q 

(kg/h

r) 

N 

(rpm) 

QPC 

(kg/hr) 

F1 

QPBT 

(kg/hr) 

F2 

XPC 

in 

F1 

XPBT 

in 

F2 

XPC1 

in 

F1 

XPC2 

in 

F1 

1.0 5.0 10 15 

1 425 410 259.25 165.75 0.61 0.39 0.428 0.389 19.2 20.3 19.6 20.5

2 425 410 259.25 165.75 0.61 0.39 0.428 0.389 19.2 21.7 20.6 20.0

3 425 410 259.25 165.75 0.61 0.39 0.478 0.339 18.9 19.2 19.4 19.4

4 425 410 259.25 165.75 0.61 0.39 0.378 0.439 18.6 18.4 19.0 18.6

5 425 410 259.25 165.75 0.61 0.39 0.428 0.389 20.6 18.8 18.6 18.9

6 425 410 259.25 165.75 0.61 0.39 0.428 0.389 21.1 19.6 18.9 19.2

7 425 410 259.25 165.75 0.61 0.39 0.328 0.489 20.1 19.3 18.8 18.9

8 425 410 259.25 165.75 0.61 0.39 0.528 0.289 18.1 18.4 17.6 18.0

9 425 410 259.25 165.75 0.61 0.39 0.428 0.389 20.9 20.3 21.3 20.9
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In order to assess the measurement error, some melt volume-flow rate (MVR) 

measurements were randomly repeated under identical conditions. Results of the 

replicated measurements with the average value are shown in Tables 4.1.4, 4.1.5 and 

4.1.6. 

 

          Table 4.1.4   :  Replicate MVR measurements for 1st set of experiments 

 

 

 

                    Table 4.1.5.   : Replicate MVR measurements for 2nd  set of experiments 

Run 
No. 

Sampling 
time  (min) 

MVR  
Measurement 

Replicate MVR 
Measurement 

Average 
  

1 10 15.3 14.2 14.8 
2 10 20.7 19.7 20.2 
3 10 25.4 24.5 25.0 
4 10 20.1 20.2 20.2 
5 10 19.5 20 19.8 
6 10 19.4 19.3 19.4 
7 10 16.4 16.6 16.5 
8 10 21 20.8 20.9 
9 10 21.2 20.5 20.9 

10 10 25.7 25.9 25.8 
11 10 20.5 20.7 20.6 
12 10 19.5 19.3 19.4 
13 10 20.2 19.9 20.1 

  

Run 
No. 

Sampling 
time 
(min) 

MVR 
Measurement 

Replicate 
MVR 
Measurement 

Average 
 

1 19 17.2 17.3 17.3 
5 19 16.3 16.6 16.5 

10 19 21.4 22.5 22.0 
13 19 17.7 17.7 17.7 
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      Table 4.1.6  : Replicate MVR measurements for  3rd   set of experiments 

Run 
No. 

Sampling 
time (min) 

MVR 
Measurement 

Replicate 
MVR 
Measurement 

Average 
 

3 15 19.4 19.2 19.3 
7 15 18.9 19.3 19.1 
8 15 18 17.9 18.0 
9 15 20.9 20.6 20.8 

 

 

Inspection of the data in Tables 4.1.4, 4.1.5 and 4.1.6 shows the measurement 

reproducibility is quite good and therefore the error is small. 

 

In extrusion, the total shear the polymer experiences is related to the shear rate and mean 

residence time. Shear rate and residence time depend on screw speed and polymer feed 

rate. Generally, when the feed rate increases, the average residence time decreases.  

When the screw speed increases, the shear rate increases.  The variation profiles of MVR 

with changing feed rates of PC and PBT, and also changing the screw speed are now 

discussed.  
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     Fig. 4.1.1: Variation of Melt Volume-Flow Rate (MVR) with sampling time for     

                       Run 3 and Run 5 of 1st set of experiments. 

 

Fig 4.1.1 compares the MVR measurements for the two runs from the 1st set of 

experiments. Run3 and Run5 have the same feed-rate (383 kg/hr), but different screw-

speeds (451 and 369 rpm respectively). The average MVRs of Run3 and Run5 are 19.3 

and 16.4, respectively. Fig. 4.1.1 shows that higher screw speed results in higher MVR 

value at constant feed rate.  Similar behaviour is observed in Fig. 4.1.2 for runs 10 and 12 

of the 2nd set of experiments.       
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                 Fig. 4.1.2: Variation of Melt Volume-Flow Rate (MVR) with sampling time for  

                                  Run 10 and Run 12 of 2nd set of experiments. 

 

                                

Run10 and Run12 have the same feed-rate (416 kg/hr), but different screw-speeds (451 

and 369 rpm, respectively). The higher screw-speed again results in higher MVR. The 

average MVRs of Run10 and Run12 are 25.3 and 20.2, respectively.   
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                   Fig. 4.1.3: Variation of Melt Volume-Flow Rate (MVR) with sampling time for  

                                    Run 8 and Run 5 of 1st set of experiments.     

      

                      

The effect of feed rate at constant screw speed is highlighted in Fig 4.1.3. Run 3 and Run 

8 have the same screw-speed (451 rpm), but different feed-rates (383 and 468 kg/hr, 

respectively). Increased flow rate results in lower residence time that leads to reduced 

MVR. The average MVR of Run 3 and Run 8 are 19.3 and 16.9,   respectively.  The same 

trends    are   shown   in  Fig. 4.1.4.   In  this  figure,  Run 5  and  Run 12  have  the   same  
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Fig. 4.1.4: Variation of Melt Volume-Flow Rate (MVR) with sampling time      

       for Run 8 and  Run 5  of 2nd  set of experiments. 

 

screw-speed (369 rpm), but different feed-rate (383 and 416 kg/hr, respectively). The 

average MVR of Run5 and Run12 are 18.9 and 20.2 respectively. 
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For all the centre points runs (i.e., run numbers 1, 4, 6, 9 and 13) of 1st and 2nd set of 

experiments screw speed, feed rate and composition of PC and PBT are the same. Tables 

4.1.7 and 4.1.8 show average MVR values for the 1st and 2nd set of experiments, 

respectively. In these experiments, the screw speed, feed rate and composition of PC 

were 410 rpm, 425 kg/hr and 0.61, respectively.  Figures 4.1.5 and 4.1.6 show variations 

of MVR with sampling times for the centre points runs. Although all the runs had the 

same variable levels, these figures show different MVR. This difference in MVR can be 

attributed to different levels of degradation due to different dies used in these 

experiments [57]. The die used in the second set of experiments was more restrictive 

resulting in higher degree of fill in the extruder, thus leading to more shearing and 

degradation. Finally, the MVR measurements show that the time interval from 0 to 5 

minutes is transient.  
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                      Table 4.1.7: Average MVR of Run 1, 4, 6, 9 and 13 of 1st set of experiments 

Run 
No. 
  

Average 
 MVR 
  

1 16.5 
4 16.2 
6 16.6 
9 15.9 
13 17.4 
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            Fig. 4.1.5: Variation of Melt Volume-Flow Rate (MVR) with sampling time for  

                              Runs 1, 4, 6, 9 and 13 (centre points) of 1st set of experiments 
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                Table 4.1.8: Average MVR of Run 1, 4, 6, 9 and 13 of 2nd set of experiments 

Run 
No. 

  

Average 
  
  

1 18.1 
4 19.0 
6 18.9 
9 19.9 
13 20.2 
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                   Fig. 4.1.6: Variation of Melt Volume-Flow Rate (MVR) with sampling time of Runs     

                                    1, 4, 6, 9 and 13 (centre points) of 2nd set of experiments 
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4.1.1 Statistical Analysis 
Analysis of variance (ANOVA) of the 1st and 2nd set of experiments was done in this 

section. It was already mentioned in section 3.1 that both of these set of experiments were 

conducted using 2 3 factorial design of experiments and due to machine operating 

limitations, some of the combinations of the levels were not feasible and were adjusted to 

practical levels of the factors studied. These amended combinations are specified with 

bold red color numbers in Tables 3.1 and 3.2 in Chapter 3.  

 

4.1.1.1 Variance Analysis 

Table 4.1.9: Analysis of variance (ANOVA) for 1st set of experiments 

ANOVA; Var.:MVR; R-sqr=.92288  

3 factors, 1 Blocks, 13 Runs; MS Residual=.4354181 

 

 

 

     Factor 
SS df MS F p-value 

N(rpm) 8.71360 1 8.71360 20.01203 0.00422 

QPC(kg/hr) 13.19721 1 13.19721 30.30928 0.00150 

QPBT(kg/hr) 3.26684 1 3.26684 7.50276 0.033775 

N by QPC 

Interaction  

4.85132 1 4.85132 11.14175 0.01565 

N by QPBT 

Interaction 

0.39655 1 0.39655 0.91073 0.37677 

QPC by QPBT 

Interaction 

0.02901 1 0.02901 0.06662 0.80494 

Error      2.61251                   6                   0.43542 

Total  SS     33.87692                  12 

 

Where, SS = Sum of squares, df = Degrees of freedom, MS = Mean squares, F = Variance ratio,  

p = Probability 
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Table 4.1.9 shows that the melt volume-flow rate (MVR) of 1st of experiments is 

significantly affected by the screw speed (N), flow rate of PC (QPC) and PBT (QPBT), and 

interaction between screw speed (N) and flow rate of PC (QPC).  

 

Table 4.1.10: Analysis of variance (ANOVA) for 2nd set of experiments 

ANOVA; Var.:MVR; R-sqr=.92288 

3 factors, 1 Blocks, 13 Runs; MS Residual=.4354181 

 

 

 

    Factor 
SS df MS F p-value 

N(rpm) 20.08822 1 20.08822 21.25202 0.00365 

QPC(kg/hr) 20.87503 1 20.87503 22.08441 0.00332 

QPBT(kg/hr) 0.00167 1 0.00167 0.00177 0.96780 

N by QPC 

Interaction  

0.01039 1 0.01039 0.01099 0.91993 

N by QPBT 

Interaction 

0.16812 1 0.16812 0.17786 0.68790 

QPC by QPBT 

Interaction 

0.76881 1 0.76881 0.81335 0.40188 

Error      5.67143                   6                   0.94524 

Total SS    64.74769                  12 

 

 

Table 4.1.10 shows that the melt volume-flow rate (MVR) of 2nd set of experiments is 

significantly affected by the main factors being screw speed (N) and flow rate of PC 

(QPC), and interaction between flow rate of  PC(QPC) and PBT (QPBT). 
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4.1.1.2 Effect of Different Factors by Variance Analysis 

 

Table 4.1.11: Effect Estimations by analysis of variance (ANOVA) for 1st set of experiments 

Effect Estimates; Var.:MVR; R-sqr=.92288; 3 factors, 1  Blocks,  13 Runs;  

MS Residual=.4354181 

 

 

 

 

Factor 

Effect Std. 

Err. 

t(6) p-

value 

-95.% 

Cnf.Limt 

+95.% 

Cnf.Limt 

Coeff Std.Err. 

Coeff. 

-95.% 

Cnf.Limt 

+95.% 

Cnf.Limt 

Mean/ 

Interc. 

16.89 0.18 92.21 0.000 16.44 17.34 16.89 0.18 16.44 17.34 

N(rpm) 2.09 0.47 4.47 0.004 0.95 3.23 1.04 0.23 0.47 1.61 

QPC 

(kg /hr) 

-2.53 0.46 -5.51 0.002 -3.66 -1.41 -1.27 0.23 -1.83 -0.70 

QPBT 

(kg/hr) 

1.24 0.45 2.74 0.034 0.13 2.34 0.62 0.23 0.07 1.17 

N by QPC 

Interaction 

-1.54 0.46 -3.34 0.016 -2.66 -0.41 -0.77 0.23 -1.33 -0.20 

N by QPBT 

Interaction 

0.43 0.45 0.95 0.377 -0.67 1.53 0.22 0.23 -0.34 0.77 

QPC by 

QPBT 

Interaction 

0.11 0.44 0.26 0.805 -0.97 1.20 0.06 0.22 -0.49 0.60 

 

From Table 4.1.11, ANOVA describes the relation between MVR and main factors and interaction 

effect for the 1st set of experiments as follows:  

         MVR  = 16.89 + 2.09×N – 2.53× QPC + 1.24× QPBT -1.54×N× QPC  

 

The above equation shows that MVR increases with increasing N and QPBT, and reverses with the 

value of   QPC and interaction of N × QPC. This is expected since: (i) increasing N increases shear 

rate and may lead to increased degradation that results in reduced viscosity and therefore increased 



 

 

 

46

MVR, (ii) PC is the high molecular weight component, so increasing its flow rate will decrease 

MVR and (iii) PBT is the low molecular weight component, so increasing its flow rate will 

increase MVR.   This agrees with the results of Figs. 4.1.1 and 4.1.2 where the MVR increases as 

screw speed increases.  

 

Table 4.1.12 Effect Estimations by analysis of variance (ANOVA) for 2nd  set of experiments 

Effect Estimates; Var.:MVR; R-sqr=.92288; 3 factors, 1  Blocks,  13 Runs;  

MS Residual=.4354181 
 

 

 

 

 

Factor 
Effect Std. 

Err. 

t(6) p-

value 

-95.% 

Cnf.Limt 

+95.% 

Cnf.Limt 

Coeff Std.Err. 

Coeff. 

-95.% 

Cnf.Limt 

+95.% 

Cnf.Limt 

Mean/ 

Interc. 

19.05 0.41 47.02 0.000 18.05 20.04 19.05 0.41 18.05 20.04 

N(rpm) 5.49 1.19 4.61 0.004 2.58 8.41 2.75 0.60 1.29 4.20 

QPC 

(kg /hr) 

-5.77 1.23 -4.70 0.003 -8.78 -2.77 -2.89 0.61 -4.39 -1.38 

QPBT 

(kg/hr) 

0.04 1.04 0.04 0.967 -2.51 2.60 0.02 0.52 -1.25 1.30 

N by QPC 

Interaction 

0.13 1.24 0.10 0.920 -2.91 3.17 0.07 0.62 -1.46 1.59 

N by QPBT 

Interaction 

0.40 0.95 0.42 0.688 -1.93 2.74 0.20 0.48 -0.97 1.37 

QPC by QPBT 

Interaction 

-1.02  1.13 -0.90 0.401 -3.78 1.74 -0.51 0.56 -1.89 0.87 

 

From Table 4.1.12, ANOVA describes the relation between MVR and main factors and interaction  

effect for the 2nd set of experiments as follows:  

MVR = 19.05 + 5.49×N – 5.77×QPC -1.02× QPC × QPBT 
 

It shows that the melt volume-flow rate (MVR) is significantly affected by screw speed (N), flow  

rate of PC(QPC); and  interaction of PC(QPC) and PBT(QPBT).  
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   4.1.1.3 Comparison of Predicted and Observed Values 

 

For the 1st set of experiments, variations of predicted values with observed values are 

shown in Fig. 4.1.7. It is demonstrated that a linear relationship exists between predicted 

and observed values of MVR, and five centre points are parallel to X-axis.  Same 

behavior for the 2nd set of experiments is shown in Fig.4.1.8. 

 

Observed vs. Predicted Values
3 factors, 1 Blocks, 13 Runs; MS Residual=.4354181
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Fig. 4.1.7: Variation of predicted values with observed values of MVR for 1st set of experiments 
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Observed vs. Predicted Values
3 factors, 1 Blocks, 13 Runs; MS Residual=.9452381

DV: MVR
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Fig. 4.1.8: Variation of predicted values with observed values of MVR for 2nd set of experiments 
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4.1.1.4 Three-Dimensional Response Surface Plot with Main Effects 

 

The response surface is shown graphically in Figs. 4.1.9 and 4.1.10 for the 1st set of experiments. 

Both figures indicate that MVR increases as PBT flow rate increases and PC flow rate decreases. 

MVR   values are   significantly  affected  by  the higher  value of screw speed (N) than the lower  

 
 

Fitted Surface; Variable: MVR
3 factors, 1 Blocks, 13 Runs; MS Residual=.4354181

DV: MVR

 > 16 
 < 15.75 
 < 14.75 

 

Fig. 4.1.9 : Three-dimensional  response surface plot showing main effects of the two factors PC flow  

                   rate and PBT flow rate with the lowest screw-speed (N) 369 rpm on MVR of 1st set of  

                   experiments 
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value of screw speed (N) with different flow rate of PC and PBT. In Fig. 4.1.9, five centre points are  

shown in the middle of the response surface. Same trends are shown in Figs. 4.1.11 and 4.1.12 for the  

2nd set of experiments.    
 

 

 

Fitted Surface; Variable: MVR
3 factors, 1 Blocks, 13 Runs; MS Residual=.4354181

DV: MVR

 > 21 
 < 20.5 
 < 19.5 
 < 18.5 
 < 17.5 
 < 16.5 
 < 15.5 
 < 14.5 

 
 

 

 

Fig. 4.1.10 : Three-dimensional  response surface plot showing main effects of the two factors PC flow  

                     rate and PBT flow rate with the highest screw-speed (N) 451 rpm on MVR of 1st set of  

                     experiments 
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3 factors, 1 Blocks, 13 Runs; MS Residual=.9452381
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Fig. 4.1.11  : Three-dimensional  response surface plot showing main effects of the two factors PC flow  

                      rate and PBT flow rate with the lowest screw-speed (N) 369 rpm on MVR of  2nd  sets of      

            experiments 
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Fitted Surface; Variable: MVR
3 factors, 1 Blocks, 13 Runs; MS Residual=.9452381

DV: MVR
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 < 24 
 < 22 
 < 20 
 < 18 

 

 

 

 

Fig. 4.1.12  : Three-dimensional  response surface plot showing main effects of the two factors PC flow  

                     rate and PBT flow rate with the highest screw-speed (N) 451 rpm on MVR of  2nd  sets of   

                     experiments. 
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4.2 Dynamic Rheological Properties from Parallel Plate Rheometer 
In dynamic rheometer testing, measurements were done on the last sample of each run for all 

three sets of experiments. That means using the sample obtained at sampling time of 19 

minute of each run in the 1st set of experiments and sampling time of 15 minutes for both the 

2nd and 3rd set of experiments. 

 

As mentioned in chapter 3, the TA Rheometer (AR 2000) was used to measure the dynamic 

viscoelastic properties including storage modulus (G’) and loss modulus (G”) of PC/PBT 

blends. Fig.4.2.1 presents the typical response of storage modulus (G') and loss modulus (G") 
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                     Fig. 4.2.1: Typical dynamic response behavior of PC/PBT blends 

                                      of 1st set of experiments  of  Run1.    
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against angular frequency for the sample of 1st set of experiments with run number 1.  

Here, the slope of the loss modulus (G") curve is greater than that of storage modulus 

(G'). Additionally, G" is greater than G' over the range of angular frequency greater than 

10 rad/s and vice versa over the angular frequency less than 10 rad/s. Here, G"> G' 

indicates that the viscous component of the modulus is dominant over the elastic counter 

part and G'> G" indicating vice versa. Same results were found for the 2nd set of 

experiments and more graphs were shown in Appendix. 
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Fig. 4.2.2:  Variation of viscosity with respect to angular frequency of 1st set of experiments                
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Fig. 4.2.2 shows the variation of viscosity with angular frequency for runs 5, 7 and 12 of 

the 1st set of experiments. Here, the compositions of PC in run numbers 5, 7 and 12 were 

0.61, 0.66 and 0.56, respectively. From Fig. 4.2.2, it is clear that the viscosity increases 

with increasing concentration of PC. Also, similar behavior is observed when loss 

modulus versus storage modulus is compared in Fig.4.2.3.  
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                       Fig. 4.2.3:  Loss modulus versus storage modulus of PC/PBT  

                                          blends of 1st set of experiments. 
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                  Fig. 4.2.4: Change of viscosity with respect to angular frequency of  

                                    PC/PBT blends of 2nd set of experiments. 

 

In this study, the viscosity depends on mainly the composition of PC rather than the variation 

of screw speed and flow rate. Fig. 4.2.4 demonstrates the variation of viscosity with angular 

frequency for runs 3 and 11 of the 2nd set of experiments. In these two runs, the compositions 
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of PC (0.61) and PBT (0.39) were the same, but the screw speed and total flow rate were 451 

and 410 rpm, and 383 and 468 kg/hr, respectively. It can be seen that both curves are 

superimposed with each other. This means that the viscosity of polymer blends depends on 

composition of PC rather than screw speed and feed rate. 
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                   Fig. 4.2.5:  Variation of viscosity with respect to angular frequency of                      

                                     PC/PBT blends of 1st set of experiments of Run3 and Run8. 

 

Fig. 4.2.5 represents the variation of viscosity with angular frequency for runs 3 and 8 of 

the 1st set of experiments. In this two runs, the screw speed was maintained the same at 

451 rpm, and also the composition of PC was 0.61 for both runs. The feed rates for runs 3 
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and 8 were 383 and 468 kg/hr, respectively. The viscosity curves were superimposed 

which indicates that the viscosity of the polymer blend does not depend on flow rate. 
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                      Fig. 4.2.6: Variation of viscosity with change of angular frequency  

                                        of  PC/PBT  blends of 2nd set of experiments. 

 

 

Fig. 4.2.6 shows the variation of viscosity with angular frequency for runs 5 and 12 of the 

2nd set of experiments. In these two runs, the screw speed was maintained the same at 
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369 rpm, but the composition of PC was 0.61 and 0.56 for run 5 and 12, respectively.  

Also the feed rates for runs 5 and 12 were 383 and 416 kg/hr, respectively. The results 

show that composition of PC affects the viscosity. 
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                           Fig. 4.2.7: Viscosity changes with variation of angular frequency   

                                                         of PC/PBT  blends of 1st  set of experiments. 

 

The screw speed, feed rates and the composition PC for runs 1, 4, 6, 9 and 13 (centre 

points) of 1st and 2nd set of experiments were the same. Though all the runs had the same 
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variable levels, both figures 4.2.7 and 4.2.8 show different viscosity in different runs in 

each set of experiments. This is due to the different dies used in these sets of experiments 

as discussed earlier. In Figs. 4.2.7 and 4.2.8, it is shown that the viscosity values of all 

runs remain very close when angular frequency value is less than 1.00 rad/s and that the 

viscosity starts to deviate for angular frequency greater than 1.00 rad/s.  
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                    Fig. 4.2.8: Viscosity changes with variation of angular frequency   

                                     of  PC/PBT  blends of 2nd set of experiments. 
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                    Fig. 4.2.9 : Dynamic response  behavior of PC/PBT  blends 

                                     of 3rd set of experiments 

 

Fig. 4.2.9 shows the viscosity with angular frequency for runs 3, 7 and 8 of the 3rd set of 

experiments. In the 3rd set of experiments, all nine runs were maintained at the same 

screw speeds (410 rpm) and total feed rates (425 kg/hr). The compositions of PC and 

PBT were also the same in all runs. But two types of PC were used. Compositions of PC1 
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in Run 3, 7 and 8 were 0.478, 0.328 and 0.528, respectively. Also compositions of PC2 in 

Run 3, 7 and 8 were 0.339, 0.489 and 0.289. From Fig. 4.2.9, it is shown that the 

concentration of the more viscous PC2 affects the viscosity of the blend. 

 

 

4.3  Rheological Properties from Capillary Rheometer 
 

 

The complex viscosity when plotted versus angular frequency, often superposes with 

steady-shear viscosity as a function of the shear rate. This is known as the Cox-Merz rule, 

and it provides information about a nonlinear property from a measurement of a linear 

property. An attempt to apply the Cox-Merz relationship to the oscillatory viscosity and 

capillary viscosity was not successful in these measurements. 

 

The measurement procedure of steady-state shear viscosity, angular frequency, moduli 

and other related factors was described in chapter 3, section 3.2. Samples were used from 

both the 2nd and 3rd set of experiments and those were the last samples from each run in 

this study. 
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Fig. 4.3.1:  Complex Viscosity / Steady-shear Viscosity as a function of Angular         

                   Frequency / Shear Rate for run number 6 of the 2nd set of experiments.  

 

 

Fig.4.3.1 shows, complex viscosity / steady-shear viscosity (Pa.s)  versus angular 

frequency / shear rate (1/s) curves of run number 6 with sampling time 15  minutes in  the 

2nd set of experiments. It is shown that the Cox-Merz rule is not obeyed (viz, curves do 

not superimpose) in PC/PBT blend case. This was repeated for other samples of the same 

set of experiments. Fig. 4.3.2 shows, complex viscosity / steady-shear viscosity (Pa.s)  

versus angular frequency / shear rate (1/s) curves of run number 13 with sampling time 
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15  minutes in the 2nd set of experiments. This run also shows the same trend. Samples 

from the 3rd set of experiments were checked as well.  
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      Fig. 4.3.2: Complex Viscosity /Steady-shear Viscosity as a function of Angular 

                       Frequency /Shear Rate for run number 13 of the 2nd set of experiments.  

 

 

Fig.4.3.3 shows the curves of complex viscosity / steady-shear viscosity (Pa.s) versus 

angular frequency / shear rate (1/s) for run number 3 of the 3rd set of experiments with 

sampling  time  15  minute. The results are similar. Also Fig. 4.3.4 represents the curves for run 
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         Fig. 4.3.3: Complex Viscosity /Steady-shear Viscosity as a function of Angular 

                          Frequency /Shear Rate of run number 3 of 3rd set of experiments. 

 

number 8 of the 3rd set of experiment and the curves did not superpose.  So, it is 

postulated that the Cox-Merz rule is not obeyed for the compounding of PC/PBT. 

Schulken et al. [58] suggested that polymers composed of very stiff rod like molecules 

may not give agreement in comparing steady state shear rate with dynamic frequency. 

Also, Hsieh et. al [59] concluded that the Cox Merz rule is found not to be obeyed by all 

the polymers studied. As pointed out by Booij et al. [60], the Cox-Merz rule is not 

applicable to strongly nonlinear melts. Therefore, it is not surprising that the curves do 

not superimpose and Cox-Merz rule is not properly obeyed in PC/PBT blends. It is noted 
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that more curves for complex viscosity / steady-shear viscosity as a function of angular 

frequency / Shear Rate were shown in Appendix of this thesis. 
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Fig. 4.3.4: Complex Viscosity /Steady-shear Viscosity as a function of Angular 

                  Frequency /Shear Rate of run number 8 of the 3rd set of experiments.    
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4.4 Scanning Electron Microscopy (SEM) Results 
 

Changes in the morphology of PC/PBT blends were studied under a scanning electron 

microscopy (SEM). The SEM experimental procedure was described in chapter 3 and 

samples were used from the 2nd set of experiments of run number 13 at 10 minute time 

intervals. Both stained and unstained samples were used to compare the SEM 

photographs. Images from the Reel Back-Scattering Electron (RBSE) detector and 

Secondary Electron (SE) detector were taken for the element and topological contrast. 

The morphology depends strongly on composition, with bi-continuous morphologies 

usually observed at near critical composition, where PC and PBT can dissolve in each 

other in their blend [4].  Wu at el. [61] postulated that a 50/50 (PC/PBT) blend possessed 

a bicontinuous structure and the other blends had a dispersed phase of either PBT or PC 

depending on which was the minor component. In this study, PBT was the minor 

component and a dispersed phase of PBT in PC was found. It is noted that sample’s 

compositions of PC and PBT were 61% and 39%, respectively. 

 

Fig. 4.4.1 shows unstained samples and there is no significant difference in morphology 

of all three (a), (b) and (c) SEM micrographs.  
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Fig. 4.4.1 : SEM micrographs of unstained samples
 

 

Fig. 4.4.2 also shows the images of unstained samples and there was some difference 

between the morphology of pellets and samples collected after completing the tests both 

in parallel and capillary rheometers. The samples collected after completing the test in 

parallel and capillary rheometers may have degraded. After completing the tests in 
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parallel and capillary rheometers, the samples’ morphology may have changed due to 

degradation of PC/PBT blends. Same behavior was found in Fig. 4.4.3 where samples 

were stained by RuO4. 
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                                     Fig. 4.4.2 : SEM photographs of unstained samples  
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                                          Fig. 4.4.3 : SEM micrographs of stained samples 
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Since diffusion of ruthenium tetroxide (RuO4) vapor in the amorphous region would be 

expected to occur more readily than that in the crystalline region [62]. The dark stained 

lines in Figs.4.4.3 and 4.4.4 are probably the amorphous areas between crystallites. Also, 

Wu et al. [61] demonstrated that the black continuous phase is PC which was stained by 

RuO4. And also white dispersed particles are PBT, which were quite randomly and 

uniformly distributed in the PC matrix. 

 

The SEM photographs from the reel backscattering electron detector (RBSD) of the same 

samples stained by RuO4 have dominant information about element composition as 

shown in Figure 4.4.5.  No significant differences in morphology observed among the 

samples. 

 

Fig. 4.4.6 shows the morphology of RBSD stained by RuO4. There is no significant 

difference among the three images. 
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                                     Fig. 4.4.4 : SEM micrographs of stained samples 
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                                      Fig. 4.4.5 : SEM photographs from the reel backscattering electron  

                                                      detector (RBSD) 
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                                      Fig. 4.4.6 : SEM images from the reel backscattering electron detector 

                                                       (RBSD) stained by RuO4 
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS 

 
The objective of this work was to improve the quality of products of PC/PBT blends 

regarding customer satisfaction, minimized waste product and maximized profit. Melt 

Volume-Flow Rate (MVR) is the quickest method to find out the flow characteristics of 

blends. It measures the flowability of thermoplastic polymers and gives an indication of 

the flow properties of the melt, thus indicating processing qualities of polymer. 

 

Variations of MVR with sampling times were studied.  The screw speeds were increased 

with time at constant feed rates of PC and PBT. It was shown that when the feed rates 

increased, MVR decreased due to decrease of average residence time. Higher screw 

speed resulted in higher MVR value at constant feed rate and increased flow rate resulted 

in lower residence time that leads to reduced MVR. The measurements of MVR data 

were statistically analyzed by analysis variance (ANOVA). 

 

Dynamic rheological properties from parallel plate rheometer measurement were shown 

that the polymer blends viscosity increased with increasing the concentration of PC. The 

experimental results showed that viscosity of polymer blends depends on the composition 

of PC rather than the variations of screw speed and feed rates. Here, experiments were 

done with constant screw speeds or constant feed rates or constant PC compositions as 

well as with different screw speeds or different screw speeds or different PC 

compositions.  

 

An attempt to apply the Cox-Merz relationship to the oscillatory viscosity and capillary 

viscosity was not successful in this study. So, it would be concluded that Cox-Merz rule 

was found not to be obeyed by all the polymers studied. 
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The samples collected after completing the tests in parallel and capillary rheometers may 

be degradable when studied under scanning electron microscope (SEM). The samples 

with stained by RuO4 showed evidence that RuO4 reacted strongly with PBT, possibly 

leading to cross linking of PBT.  

 
5.1 Recommendation for Path Forward 

 

In this work, the 1st and 2nd sets of experiments were done by a 2 3  factorial design of 

experiments and due to machine operating limitations, some of the combinations of the 

levels were not feasible and were adjusted to practical levels of the factors studied.  

Minimizing machine operating limitation could be a future task of this works. 

 

Changes in the morphology of PC/PBT blends were studied under a scanning electron 

microscope (SEM). In this study, samples were used only from 2nd set of experiments of 

run 13 with a 10 minute time interval. So, more study has to be done on the other sets of 

experiments to compare the morphology and highlight the effect of all processing 

variables. 

 

The measurements of MVR data were statistically analyzed by analysis of variance 

(ANOVA). More statistical analysis needs to be done in the future and the results need to 

be evaluated against actual production data that are not well controlled. 
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Experimental Graphs 
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Fig. A.1  : Dynamic response behaviour of PC/PBT blends of 1st  set of experiments of Run6 
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Fig. A.2 : Dynamic response behaviour of PC/PBT blends of 1st  set of experiments of Run13 
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 Fig. A.3 :  Dynamic response behaviour of PC/PBT blends of 2nd set of experiments of Run7 
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Fig. A.4 : Dynamic response behaviour of PC/PBT blends of 2nd set of experiments of Run13 
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           Fig. A.5:  Complex Viscosity / Steady-shear Viscosity as a function of Angular         

                           Frequency / Shear Rate for Run9 of the 2nd set of experiments. 
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               Fig. A.6 :  Complex Viscosity / Steady-shear Viscosity as a function of Angular         

                                 Frequency / Shear Rate for Run11 of the 2nd set of experiments. 
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            Fig. A.7 :  Complex Viscosity / Steady-shear Viscosity as a function of Angular         

                             Frequency / Shear Rate for Run5 of the 3rd  set of experiments. 
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                     Fig. A.8 :  Complex Viscosity / Steady-shear Viscosity as a function of Angular         

                                        Frequency / Shear Rate for Run7 of the 3rd  set of experiments. 


