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Abstract 

Wear of the polyethylene (PE) bearing surface and wear particle-

induced osteolysis (bone resorption) can lead to failure of modular total knee 

replacements and make expensive revision surgery necessary.  Gamma-in-air 

sterilization of the PE insert and having a modular tibial component are both 

risk factors for excessive backside wear that contribute to osteolysis and implant 

failure.  The overall wear (backside and topside) of modular total knee 

replacements has been subjected to considerable research in order to avoid such 

implant failure.  The investigations reported in the present thesis evaluated both 

the clinical and in vitro wear performance of modular total knee replacements.  

The clinical investigations included damage assessment of retrieved PE 

inserts.  A semi-quantitative grading method was developed and used to assess 

backside surface damage on 52 PE inserts retrieved from contemporary total 

knee replacement surgeries.  Statistical analyses, such as univariate and multiple 

linear regression analysis, were performed to identify factors that influence 

backside damage including implant design features and patient characteristics. 

The damage features on the retrieved tibial PE inserts were also assessed with 

surface characterization techniques, such as scanning electron microscopy, 

energy dispersive X-ray analysis, and surface profilometry.  To reduce surface 

damage and thus wear, PE inserts should be either gas-plasma or ethylene-oxide 

sterilized, used with polished tibial trays and held in place with a partial-

peripheral locking mechanism.  

Synovial fluid samples were aspirated from a total of twenty patients 

and some basic biochemical analyses were performed.  The total protein 

concentration, protein constituent fractions, the level of osmolality, and trace 

element concentrations were measured and compared with the same 

characteristics of four serum lubricants that were frequently used in simulator 

wear testing to mimic synovial fluid.   

In vitro investigations were conducted to explore the effects of some 

major constituents of the serum lubricants on the wear rate using a knee 



iv 

simulator apparatus.  Increased protein constituent degradation led to increased 

wear.  Such findings suggested that a protein layer acted as a boundary lubricant 

to protect the PE surfaces of knee implants.  The protein constituent fractions of 

alpha calf serum (ACS) were similar to those measured for synovial fluid.  

These ACS lubricants were used in further wear studies in which hyaluronic 

acid (HA) and phosphate buffer solution (PBS) were successively added.   The 

PBS was used in place of the distilled water to generate a serum lubricant with a 

clinically relevant level of osmolality.  The thermal stability of the ACS 

lubricants and synovial fluid were measured.  The thermal stability of the ACS 

lubricant that contained HA and PBS was about the same as that of human 

synovial fluid.  The simulator wear rate of PE was significantly influenced by 

both HA and PBS.   

In further investigations, sodium azide, which has been used to inhibit 

microbial growth in simulator wear testing, was shown to be highly ineffective. 

Microbial contamination was recognized and the organism responsible was 

identified using standard microbiological methods.  The use of an antibiotic-

antimycotic mixture as the microbial inhibitor in the ACS + PBS + HA 

lubricant created a sterile environment and thus very clinically relevant 

environment for wear testing.   

The content of this thesis represents a comprehensive data collection 

on retrieval analysis and lubricant-specific knee simulator wear testing of 

modular total knee replacements.  A more clinically relevant lubricant 

composition for simulator wear testing was proposed (U.S. patent Serial number 

60/899,894; pending since February 9th, 2007) that improved upon the current 

guideline from the International Standards Organization for knee simulator 

wear testing.  The present thesis should serve as a guide for the surgeon, 

researcher and the implant manufacturer to evaluate retrieved implant 

components and to select lubricant additives for wear testing that closely 

mimics the in vivo wear conditions.  
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Chapter 1: Introduction 

1.1 Total Knee Replacements and Implant Wear 

The healthy human knee is a synovial joint consisting of articular 

surfaces that are covered with cartilage.  The adjacent ligaments and muscles 

ensure the stability of the joint and the collagen-rich menisci dissipate the load 

(Fig. 1.1).  The articulating cartilage surfaces are lubricated by synovial fluid 

(SF) in a sterile environment.  SF is a protein-rich fluid that contains a variety of 

dissolved chemical substances, such as NaCl and hyaluronic acid (HA), which 

are responsible for the level of osmolality and the viscosity of SF, respectively.  

The integrity of cartilage lubrication may be compromised by trauma or various 

forms of arthritis such as osteoarthritis (OA) and/or rheumatoid arthritis (RA), 

leading to damage of the cartilage bearing surface.  Such damage is often 

followed by structural degradation and wearing away of the cartilage so that 

direct bone-on-bone contact can occur (Fig 1.2).  Cartilage degradation may be 

facilitated by increased patient age, mass and level of activity.  Severe 

degradation is frequently referred to as end-stage arthritis and is associated with 

severe pain and reduced joint function for the patient.  Immobility can cause an 

increase in patient weight leading to obesity and consequently lead to coronary 

heart disease that advocates morbidity 1.   

In order to eliminate pain and restore joint function, the worn bearing 

surfaces of the knee can be replaced with artificial bearing materials such as a 

total knee replacement (TKR) 2,3.  Depending on the age of the patient, end-

stage arthritis location and severity, partial surface replacements such as uni-

condylar knee replacements or patella-femoral (trochlear) replacements may 

alternatively be chosen.  In 2005, approximately 450,000 TKRs were implanted 

in the US alone 4 and approximately 60,000 in Canada 2.   It was estimated that 

the number of  patients undergoing TKR surgery (referred to as total knee 

arthroplasty; TKA) will increase by 673 % to 3.48 million procedures by 2030 4.  

At present, the majority of TKR systems are implanted by cemented 

fixation which has been shown to extend the durability 2,3.  Replacing the 
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natural, somewhat shock-absorbing knee joint with an artificial, stiffer bearing 

material reduces the effective contact area, depending on the TKR system 5.  

Today’s TKR systems are categorized into either fixed or mobile bearings both 

of which consist in most cases of a cast cobalt-chrome alloy (CoCr alloy) 

femoral component.  Fixed bearings are either classified into modular or non-

modular systems.  In modular systems, the ultra-high molecular weight 

polyethylene (PE) tibial component is locked onto a cast titanium alloy (Ti 

alloy) or a cast cobalt-chromium alloy (CoCr alloy) tibial tray at time of 

implantation and can be removed and replaced during surgery.  In non-modular 

systems, the PE insert may consist of a mono-block component or a one-piece, 

metal-backed PE insert both of which are fixed by cement directly onto the 

tibia.  In contrast, mobile bearings are characterized by a PE insert that is not 

solidly fixed onto the tibial tray but is able to translate or rotate.  Such implants 

may have highly conforming articulations which reduce the contact pressure on 

the tibial PE inserts and wear 6.  According to the Swedish Arthroplasty 

Registry 3, modular TKR systems represented the majority of implants used to 

treat end-stage arthritis in 2006.  The patella can either be replaced or left non-

resurfaced, independent of the TKR system. 
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Figure 1.1: Anatomy of the human knee joint: ligaments, and bearing surfaces. 
The patella (not shown) articulates in the trochlear groove (from Clarke et al. 7). 
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(a) 
 

 
(b) 

 

Figure 1.2:  Intraoperative view of a right human knee joint during joint 
replacement surgery of a 62-year old female patient: a) showing severe cartilage 
wear on the medial condyle and b) showing the replaced knee joint.  The 
femoral articulation, tibial articulation and the patella were replaced.  The 
patient received a fixed, modular TKR system with PE insert of posterior 
ligament substituting (PS) design (Genesis II, Smith & Nephew, Memphis, TN).  
All components were implanted by cemented fixation. 

Severely worn cartilage 
(medial condyle) 
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Cruciate ligament 
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Ninety percent of the patients that received a TKR performed well after 

ten years 4,8.  However, there is a remaining group of 10 % for which the TKA 

is not successful and require revision surgery (Fig. 1.3) 9.  A number of different 

circumstances can lead to revision surgery and may be characterized into early 

failure and late failure 8,9.  Early failure (~ 2 years after implantation) includes 

mainly infection, ligament imbalance, and insufficient knee flexion.  Late 

failure (~ 7 years) includes severe fatigue wear of the PE insert due to gamma-

in-air (GA) sterilization, implant loosening, and instability.  Implant loosening 

is dominantly caused by wear particle-induced bone resorption (osteolysis) 

around the implant fixation. Osteolysis is governed by both an immunological 

reaction of the body to insidious wear particles and elevated fluid-pressure due 

to implant micro-motion 10-12.  Such a reaction obliterates the bone adjacent to 

the implant, leading to compromised fixation and even further accelerated 

osteolysis.  However, osteolysis is often detected around apparently well-fixed 

implants and thus implant wear is probably the most dominant root cause.  In 

many cases, multiple mechanisms of implant failure may occur simultaneously 

and thus, the dominant reason of failure is difficult to establish.  Severe PE wear 

may lead to both osteolysis-mediated implant loosening and instability.  

Osteolytic regions have a lower density than the adjacent bone and thus appear 

darker on radiographs (Fig. 1.3).   Intraoperatively, such regions emerge as 

substantial cavities and are located around the implant.   

Osteolysis is a major clinical concern in modular TKA 13 and was 

deemed as the failure mechanism most relevant to this thesis.  The interface 

between the tibial tray and the PE insert, so called backside wear, is regarded as 

the main source of wear particles with osteolytic potential.  This may be 

supported by the fact that non-modular components have not been associated 

with osteolysis 14,15.  Consequently, the initial idea for this thesis was to 

combine retrieval analysis and simulator wear tests with a concise focus on 

backside wear to propose recommendations of certain tibial tray design 

modification to reduce the amount of insidious wear particles.   
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(a) 

 

 
b) 

 

Figure 1.3: Anterior radiograph of the left knee of a patient following cemented 
modular TKA (AMK®, DePuy Orthopaedics Inc., Warsaw, IN).  The circled, 
dark area in a) shows an example of osteolysis on a radiograph; b) 
intraoperative view the knee joint during revision surgery. 
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Wear of materials, such as PE, is part of the discipline of tribology 

(derived from the Greek word tribos meaning “rubbing”).  Tribology is the 

science and technology of interacting surfaces in relative motion and includes 

the study of friction, lubrication, and wear (Fig. 1.4).  The mechanical 

performance of machinery with surfaces in relative motion depends to a large 

extent on tribology because excessive friction and/or wear can impair the 

motion and prevent the machine from performing efficiently.  Zum Gahr 16 

noted that the cost of poor tribology can reach an estimated 4.5 % of a country’s 

gross national product.  A report by the National Research Council of Canada 17 

estimated that in the 1980’s, poor tribological practice cost the Canadian 

economy an estimated 5 billion 1982$ per year and the potential savings, using 

technology available in 1986, was estimated at 1.3 billion 1982$ per year.  
Many of these savings can be made by relatively minor changes such as 

reducing the friction by adding a lubricant or by modifying the interface using 

solid lubricants or surface coatings.  Orthopaedic tribology is a specific area of 

research with a focus on the friction and the wear of joint replacements and 

involves multiple disciplines such as Medicine, Mechanical Engineering, 

Materials Science, Biochemistry, and also Microbiology to some extent. 

 

 
Figure 1.4:  Schematic drawing of two surfaces is relative motion to each other.  
Some asperity contact may occur and lead to material removal due to adhesion 
or abrasion, for example. 
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1.2 The Significance of Retrieval Analysis and Wear Testing 

Failure of the TKAs result in the need for expensive, time-intensive 

revision surgery 18,19.  This is associated with a higher risk of morbidity for the 

patient than the primary surgery and causes the patient to suffer more pain and 

loss of both time and often income.  In the United States alone, approximately 

38,000 revision TKA were undertaken in 2005 with a total cost of 

approximately US $ 11 billion 4,20.  According to the report by Canadian Joint 

Registry 2, PE wear, late instability, and osteolysis accounted for the majority of 

revision surgeries performed in 2006.  An example of a failed modular TKR 

system due to both severe PE wear and osteolysis is shown in Figure 1.5.   

 

 

 
Figure 1.5:  A failed modular TKR system (AMK®, DePuy Orthopaedics Inc., 
Warsaw, IN) retrieved from the left knee of a 70-year old male patient (mass of 
95 kg) after 5 years of implantation.  The implant was initially implanted by 
cemented fixation and was revised for both severe PE wear and osteolysis. 
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Both the need for and the extended operating time of revision surgery 

makes fewer resources available for patients needing primary TKA and thus 

cause the waiting lists to increase which can have significant socioeconomic 

implications 21-25.  Patients with arthritis may be unable to work, may become 

isolated, suffer from depression and have increased obesity.  Such reduced 

quality of life is likely to lead to long-term medical treatments and additional 

costs.  Reducing the timely wait lists for replacement surgery will increase the 

quality of life of the patient and reduce the care costs, particularly in societies 

with public funded health systems such as in Canada.  Thus, using TKRs with 

improved wear characteristics may lead to increased implant durability 

consequently reducing revision surgery rates and waiting lists.   

The research and development of new TKR systems with improved 

wear behavior is largely governed by the clinical wear performance of 

contemporary implanted TKRs as well as by the results from wear simulator 

testing.  One way to quantify clinical performance of TKR systems is semi-

quantitative damage assessment of retrieved components using grading systems, 

because the in vivo PE wear rate is unknown.  Damage assessment of retrieved 

implants supplies direct evidence of in vivo failure mechanisms which is 

particularly useful for the surgeon and implant designer.  Also, such damage 

assessment can be performed on implants undergoing simulator wear testing 

and the comparison of damage features to retrievals may permit test protocols to 

be adjusted for improved and more clinically relevant simulation.  For example, 

both the retrieval assessment and simulator wear testing of gamma-in-air (GA) 

sterilized PE inserts showed severe fatigue wear on the PE component which 

caused catastrophic failure in vivo 26-29.   

Knee wear simulators are used for pre-clinical investigation of the in 

vivo wear behavior and wear particle characteristics, both of which are highly 

sensitive to the lubricant composition that mimics SF 30.  Recent findings by 

Mazzucco et al. 31-34 suggested that none of the SF constituents affected the joint 

tribology based on friction experiments while others 35-39 suggested quite the 

opposite based on hip simulator wear tests.   
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The effects of SF constituents on PE wear have not received significant 

attention in knee simulator wear testing.   It was deemed possible that the 

lubricant composition, which varied significantly between wear testing 

laboratories 37, may affect the PE wear rate in TKA.  The guidelines for TKR 

wear testing supplied by the International Standards Organization (ISO) 40,41 do 

not give recommendations on the protein constituent fractions, level of 

osmolality, or suggest the use of HA.  Although the use of microbial growth 

inhibitors are necessary to maintain sterile environment for wear testing, their 

efficacy remained uncertain 30.  All major implant manufacturers now use knee 

wear simulators for their pre-clinical screening which is commendable.  

However, the implemented test conditions 40-42 still remain under scrutiny and 

vary significantly between implant manufacturers.  The uncertainty regarding 

appropriate test conditions may ultimately result in wear related implant failure 

even for new designs and make revision surgery necessary and result in 

increased patient care costs and waiting lists. 

 
 
 
1.3 Thesis Objectives and Outline 

The main goal of this thesis was to develop strategies that significantly 

improve the current methods used for wear evaluation of TKR systems.  Such 

improved methods may result in improved clinical performance of TKR 

systems and thus, provide benefit to the patient, surgeon and researcher.  It was 

deemed necessary to review both the clinical performance of TKR systems and 

in vitro wear testing protocols as shown in Chapter 2.  The Materials and 

Methods relevant for this thesis are shown in Chapter 3.  Results, analyses and 

discussions were conducted in two consecutive Chapters; clinical investigations 

shown in Chapter 4 and included the retrieval analysis of PE inserts with a focus 

on backside wear.  Chapter 4 was complimented by some biochemical analysis 

of SF sampled from a number of patients with OA.  In vitro investigations 

shown in Chapter 5 contained substantial knee simulator wear tests with the 

focal point on SF lubricant constituents and their effects on PE wear.  Creating a 
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sterile environment for implant wear testing was deemed particularly important 

and received further attention.  The findings of both Chapter 4 and Chapter 5 

were summarized in Chapter 6.   

Some unanticipated circumstances, such as the delayed installation of 

the knee simulator and funding politics, influenced the strategy of the present 

thesis.  Although the simulator was delivered in early 2003, restructuring of the 

laboratory space in the University Hospital at the London Health Sciences 

Centre (LHSC) delayed the initiation of the wear tests until late 2005.  

Extensive retrieval analyses with the focus on backside wear were initiated in 

2002 43,44 to overcome the delay, as shown in Section 4.2 and Section 4.3.  

Significant funding was eventually obtained from the Canadian Arthritis 

Network in 2005 to specifically focus on backside wear in knee wear simulator 

wear testing.  Meanwhile, backside wear had received considerable attention 

from the fast-evolving, product-driven orthopaedic research community.  

Several knee wear simulator investigations on backside wear were completed by 

McNulty et al. 45-47 (DePuy Orthopaedics Inc., Warsaw, IN) in 2005 and, rather 

than repeat them, the present author decided to focus his wear simulator studies 

on the lubricant used to mimic SF.  Such facts motivated the author to initiate a 

SF analysis on patients with OA undergoing primary TKA (Section 4.4) and to 

further investigate the effects of protein constituent fractions, level of 

osmolality, HA, and microbial inhibitor on PE wear (Chapter 5).  Such 

investigations were considered a logical approach to significantly improve the 

current wear evaluation of TKR systems.   
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Chapter 2: Literature Review 

2.1 Introductory Remarks 

The present thesis involved interdisciplinary research into the wear 

performance of TKR systems and thus, required a review of diverse subject 

areas such as Tribology, Orthopaedics, Biochemistry, and Microbiology.  

Background information on Tribology included explanations of lubrication 

regimes, friction, and wear mechanisms.  The lubrication concepts proposed for 

natural joints and joint replacements were reviewed and summarized.  The 

literature was reviewed on the composition of SF surrounding the natural 

synovial joint, OA joint and the composition of the lubricant used in the 

simulator wear tests of artificial joint replacement.  The literature was also 

reviewed on the properties and characteristics of the PE bearing surface from 

the tribological and clinical perspective.  Additional information was obtained 

on general polymer wear, specific PE wear and thin film boundary lubrication.  

The recent strategies for simulator wear testing were reviewed with a specific 

focus on the management of microbial contamination in the lubricant and the 

effects of simulator hardware on PE wear.  Information was found on the 

clinical performance of TKRs to identify the predominant source of wear 

particles that causes osteolysis and implant failure in TKR systems.  This 

included the review of implant survivorship to identify possible implant design 

features that may be considered as precursors for osteolysis.  The techniques 

used to quantify clinical wear were investigated, particularly the damage 

assessment of retrieved implants.   
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2.2 Tribology  

2.2.1 Theory 

Tribology has been studied by many famous engineers and scientists 

such as Leonardo da Vinci, Amontons, and Colomb.  They started with attempts 

to mathematically describe friction forces that opposed sliding motion 48.  The 

friction force (Ff) that acted in the tangential direction and opposed sliding 

motion was found, in many cases, to be proportional to the normal load (Fn), 

independent of the area of apparent contact (Aa) and the sliding velocity.  This 

resulted in the definition of the coefficient of friction (μ = Ff/Fn) that was often 

called as Amontons’ Law.  However, the coefficient of friction at the initiation 

of sliding motion (μs) was often higher than its value during sliding (μk) and so 

a distinction between the two was made 49. 

In journal bearings of large width, Stribeck 50 found that μk could be 

significantly reduced if a fluid lubricant was present and if a continuous fluid 

film of lubricant separated the surfaces.  This phenomenon depended on the on 

the Sommerfeld number that was the product of lubricant viscosity and sliding 

velocity divided by the normal load per unit width.  The value of μk increased 

slowly with increasing Sommerfeld number when fluid film lubrication 

separated the surfaces (Fig. 2.1) and depended on the viscous resistance of the 

lubricant film, but increased rapidly when the Sommerfeld number fell below 

the value needed to maintain a continuous fluid film.  Bowden and Tabor 49 

investigated the relationship between μk and the lubricant film thickness.  They 

reported that the rapidly increasing μk values were a result of increasing asperity 

contact and consequently increasing adhesive forces.  With further decreases in 

the Sommerfeld number, there was a complete breakdown of the fluid film 

leaving only a less reliable surface protection afforded by boundary lubrication 

that depended on elements of the lubricant which chemically adhered to the 

surfaces.  Thus, when a fluid lubricant was present, μk and thus the friction 

forces associated with the interaction of the surface asperities depended on three 

“classical” lubrication regimes.  These lubrication regimes were boundary 
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lubrication (asperities in contact), mixed lubrication (asperity tip contact), or 

fluid film lubrication (asperities separated).   

 

 
Figure 2.1: Schematic showing the dependence of the friction coefficient (μk) 
on the lubrication regime (boundary lubrication, mixed lubrication, and fluid 
film lubrication).  
 

 

In boundary lubrication, the protective molecules might only form a 

several nanometers thick layer and might be removed by the friction forces and 

thus, providing only limited surface protection 16,51.  This layer may consist of 

molecules that are able to adsorb to the surface where the polarity of the 

adsorbent is essential.  Fatty acids, for example, may consist of a hydrophobic (-

CH3) and a hydrophilic part (-COOH).  The hydrophilic part is then attracted by 

the hydrophilic part of the surface and may create a dense formed layer.  The 

opposing hydrophilic layers may then provide a low interfacial shear stress.  

Stachowiak and Batchelor 51 noted that the adsorption of molecules could occur 

by physisorption (van der Waal’s, low-energy bonding mechanisms) at ambient 

temperatures or by chemisorption (chemical bonding) at elevated temperatures 

μk 
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that could develop from frictional heating.  The wettability of the lubricant on a 

surface could be used as an indicator on how well the molecules comprising the 

fluid will “stick” to the surface and promote boundary lubrication 52.  In the 

boundary lubrication regime, the material properties are considered the main 

precursor of the wear process and the viscosity of the lubricant may only play a 

minor role 16,51.  In mixed lubrication, the surfaces are partially separated by a 

lubrication film and thus some asperity contact may still occur 16,51.  However, 

these contacting asperities may still be very well boundary lubricated.  In fluid 

film lubrication, the fluid pressure may be high enough to cause a bulk 

deformation of the interacting surfaces thus creating a larger interacting zone in 

which a lower fluid pressure can act to separate the surfaces; this phenomenon 

is referred to as elastohydrodynamic lubrication (EHL).  The ratio between the 

calculated EHL film thickness and the combined root mean square surface 

roughness (defined as Rq = (Rq1
2 + Rq2

2)0.5 ) is referred to as lambda-ratio and 

used as an indicator of asperity contact and wear 53.  An increasing lambda ratio 

indicates a lower incidence of asperity contact and, for almost complete 

separation; Chan et al. 2 suggest that it must be greater than about 3.  As the 

Sommerfeld number increases, the film pressure moves forward from the point 

of load application and the bearing surfaces are completely separated by a thick 

fluid film giving full hydrodynamic lubrication 16,51.  In hydrodynamic 

lubrication, the fluid is entrained into the gap by the relative motion of the 

surfaces and carries the applied load (normal load). 

 

 

2.2.2 Wear and Wear Mechanisms 

Surface damage and wear can occur for any surfaces in relative motion 

whether or not they are in direct contact.  The surface asperities are always 

subjected to changing load levels (from normal or tangential friction forces) and 

can fail in fatigue.  However, in most cases, significant wear involves direct and 

continuous asperity contact 16,51.  In these cases, wear can occur due to material 

removal from one or both surfaces.  This wear can either be on the large scale or 
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on the molecular level.  The material removal from two materials in contact 

under relative motion may follow Archard’s law 16,51.   Essentially, Archard’s 

law suggests that wear volume is proportional to the product of the real area of 

contact (Ar) which is the sum of all the small contact areas associated with each 

surface asperity contact) and the sliding distance (d).  A proportionality factor 

(k) is included with the product of Ar and d because not every asperity 

interaction results in wear.  In its classic form, the asperity contacts are assumed 

to be purely plastic and thus the real area of contact can be equated to the 

normal load divided by the hardness of the softer surface (H).   Thus, Archard’s 

law gives the following expression for the volumetric wear: 

 

H
dF

kW n=                                                                                                       (2.1) 

 

The k value basically represents the proportion of asperity contacts that cause 

wear.  A high k value indicates that wear is caused by the majority of asperity 

contacts 51.  The total sliding distance traveled requires adjustment if k is 

compared between unidirectional and multidirectional tests.  Archard’s law is a 

useful approach to relate wear to asperity contact and also to the input 

parameters (Fn and d) whose product is proportional to the work done on the 

interface by the sliding action if the μk remains constant.  Since many polymeric 

materials do not have a distinct hardness value, a wear factor (K) is often 

defined and used to replace k/H in Archard’s law.   

However, the problem arises that the k and H values often change 

during the wear process as new wear mechanisms act or as existing ones change 

in severity.  Mathematical models implementing some mechanical and physical 

properties have been developed based on the microstructural and environmental 

conditions of the tribosystem 16.  However, these models remain remarkably 

inept at predicting wear performance of a given contact.  Another approach is to 

classify the wear process as some combination of four fundamental wear 

mechanisms (adhesive, abrasive, tribochemical, and fatigue) and then look for 
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mechanism specific material response at the interface using surface analysis 

techniques.  This approach yields an understanding of the wear occurring and 

some approximate idea of the expected wear performance over the lifetime of 

the contact.   

Adhesive wear is caused by direct asperity contact that is accompanied 

by bonded junctions that can be caused by some combination of three 

mechanisms.  These mechanisms are diffusion, electronic, and adsorption.   The 

diffusion mechanism is caused by atoms or molecules diffusing between the 

surfaces at the interface and requires that the molecules are sufficiently mobile 

and mutually soluble 16,51.  The electronic mechanism suggests that electrons are 

transferred between the interfaces that possess different electron band 

structures.  This may cause the donor surface to expel electrons during contact 

and it may remain positively charged after separation. The adsorption 

mechanism relies on ionic, covalent, metallic, hydrogen and/or van der Waal’s 

bonds that form between the surfaces.  In polymeric-metal contacts, a polymer 

transfer layer can be generated on a metallic surface and this is often used as a 

dramatic illustration of the adhesive wear mechanisms 16.   

Abrasive wear is caused by a “ploughing” action of surface asperities 

or detached particles.  It can be classified into grooving and rolling abrasion 
16,54,55.  In the grooving abrasion mode, a surface asperity of the harder surface 

or a trapped wear particle (often called a “third-body” because it is not attached 

to either of the two contacting “bodies”) can penetrate into the softer surface 

and cause material removal during sliding.   In the rolling abrasion mode, a 

wear (or third-body) particle rolls between the surfaces and causes repeated 

indentations in the opposing softer interface.  The material removal in grooving 

abrasion mode is generally much higher than in rolling abrasion mode 55.  In any 

case, the material removal in abrasion depends on the applied load, shape of the 

of particle (i.e. the angle of attack) and number of particles in the contact which 

can cause cutting, ploughing, fatigue and cracking 54,55.   

Tribochemical wear is characterized by chemical reactions at the 

interface.   Adhesive asperity contact may be accompanied by significant heat 
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generation 49,56,57 that causes a chemical interaction of the surfaces and lubricant 

to generate a new material at the surface of one or both of the original 

contacting materials.  The new material often involves various oxides and may 

enhance or reduce wear 16,51,58-60.  Tribochemical wear depends on the reactivity 

of the surrounding medium/lubricant and on the ability of the interface to 

generate and maintain such oxide layer.  If the new material forms into a layer 

and reaches a certain thickness, it may crack, become detached from the surface 

and promote abrasive wear.  If the corrosion process is rapid, the layer may be 

quickly generated and may also be quickly removed by abrasive action.  

Tribochemical wear processes are often part of boundary lubrication in which 

the formation of a wear reducing, newly formed material is facilitated by 

specific chemical compounds (or additives) in the lubricant.   

Fatigue wear can occur after cyclic loading (sliding/rolling) which can 

be associated with crack formation due to high shear and normal stresses in the 

contact 16,51.  A fatigue-like process also occurs in the other basic wear 

mechanisms because not every asperity contact in adhesive, abrasive or 

tribochemical wear produces a wear particle.  However, the classification of 

fatigue wear is reserved for larger scale material removal that depends mostly 

on the normal stress to initiate and propagate cracks.  These cracks can either 

propagate from the surface or originate from the sub-surface and can lead to 

flaking of the material (small-scale pit formation) or to delamination wear 

(large-scale material removal).  Repeated cyclic loading during sliding wear of 

ductile surfaces can initiate work-hardening at the interface due to dislocation 

movement 16,51.  This can produce a thin work-hardened layer that is eventually 

detached after sub-surface crack propagation.  These thin detached layers can 

then be extruded from the contact to form filmy wear particles; such a process is 

referred to as plastic ratchetting.  For polymeric surfaces, fatigue wear depends 

on the molecular structure in that surface cracking is observed on amorphous 

polymers while stretching and reorientation of the molecular structure is 

observed on semi-crystalline polymers 16,51.   
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It is important to note that each wear mechanism can occur 

simultaneously or consecutively and cause a different material response.  Thus, 

it is essential to observe the worn surface with surface analysis techniques at 

early stages of the wear process to determine the acting wear mechanism with 

the goal to implement possible countermeasures to reduce wear.  For example, 

adhesive wear at early stages of wear may be associated with material transfer 

from one interface to the other.  The microstructure of the transferred material 

may be affected by work-hardening with progressive wear and may eventual 

detach from the surface, act as a third-body wear particle and cause abrasive 

wear.  Observing the damage features after advanced wear may suggest that 

increased hardness would be beneficial to counteract abrasive wear.  Increasing 

hardness, however, may have limited success since it does not inhibit the 

initially acting adhesive wear mechanism.  In this particular case, adhesion may 

be reduced by adding a lubricant and then abrasive wear could be reduced by 

increasing the surface hardness.   

 

 

2.2.3 Wear of Polyethylene 

Since it is relevant to this thesis, a short review on the wear behaviour 

of semi-crystalline polymers, i.e. polymers with an amorphous and crystalline 

structure 61, such as PE will briefly be given.  In contrast to the elastomers and 

duroplastics, the polymeric chains of the thermoplastics such as PE are not 

directly bonded.  However, as discussed subsequently in the present thesis, it is 

possible to cut the polymeric chains and, if oxidization is avoided, the chains 

can reform with numerous cross-links thus becoming somewhat similar to 

elastomers and duroplastics.  

Transfer films have been reported for PE on several counterfaces and it 

appears that the test temperature, lubrication, and sliding velocity may be 

precursors of this phenomenon 62 and may also occur in the water lubricated 

CoCr-PE interface 63 or alumina-PE interface 64.  Surprisingly, a transfer film 

has not been reported for PE when the lubricant contained proteins 63,64.  Adding 
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proteins to the lubricant increased its wettability which was suggested to reduce 

the μk and may inhibit adhesion 65.  Thus, increasing the hydrophilic nature of 

the PE surface was shown to promote adsorption of protein to the surface and to 

reduce μk 64.  Linear sliding under lubricated conditions with protein-rich fluid 

may allow the molecular chains of PE to become oriented at the interface 

referred to as orientation softening, which leads to low μk and low wear 66.  

Multidirectional motion has shown to disrupt these anisotropic films which even 

further increased the PE wear rate 67,68.  PE wear has also been found to be 

sensitive to the magnitude of multidirectional shear and the ratio of 

rolling/sliding contact kinematics in combination with the applied load 69-71.  

Muratoglu et al. 72 showed that gamma-irradiation of PE with subsequent melt-

annealing in an inert environment led to cross-linking of the PE chains in the 

amorphous region.  Such cross-linking counteracted the anisotropic surface 

change and led to reduced wear.  It was also noted that fluid was mainly 

absorbed by the amorphous regions of the bulk of the PE which caused a 

decrease in mechanical properties such as hardness, modulus of elasticity and 

shear strength 62.  Such an effect was reduced after cross-linking 73. 

Both conventional non-cross linked PE and cross-linked PE (XPE) are 

visco-elastic materials that exhibit both viscous and elastic characteristics under 

deformation (strain).  Such a characteristic gives PE a time dependent stain rate 
61.  A visco-elastic material loses energy during a loading cycle which is 

referred to as hysteretic loss.  Such visco-elasticity is associated with 

rearrangements of polymer chains.  Consequently, strain applied to the PE will 

result in some PE chains altering their position.  Such polymer chain movement 

is referred to as creep and describes the ability of the material to deform 

permanently to mitigate stress (relaxation) 61.  In general, the creep behavior is 

characterized by three stages.  The initial, primary stage of creep is associated 

with a high strain rate at a constant load.  The strain rate declines and becomes 

steady-state which is referred to secondary stage of creep.  Tertiary creep is 

associated with an exponential increase in strain rate at increased strain.  The 
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creep of PE may be recoverable when the unloaded samples are heated to ~ 130 

ºC in an inert environment for ~ 20 min  (melt-annealing) 74.   

Another characteristic feature of polymers is that their modulus of 

elasticity is temperature dependent 75.  Increased temperature may reduce the 

modulus of elasticity and may cause the PE to be extruded in the CoCr-PE 

interface.  This may be promoted by low thermal conductivity of the PE (~ 0.42 

Wm-1k-1) compared with the CoCr alloy (~ 16 Wm-1k-1).  Low thermal 

conductivity of the PE may promote heat accumulation at the CoCr-PE interface 

and affect the wear behaviour.   

 

 

2.2.4 Boundary Lubrication  

In the present thesis, a very general and broad-based treatment of the 

various topics is given to provide a background on boundary lubrication that 

may be of relevance for the specific behaviour of implants.  Recently conducted 

friction experiments and wear tests on the CoCr-PE interface suggested that the 

artificial joints may be boundary lubricated 45,63,76-78.  Thus, it was deemed 

important to review the literature on boundary lubrication.   

Some interactions between adsorbed molecules/layers in the boundary 

lubrication regime were presented by Bowden and Tabor 49 and further 

investigated on a more fundamental molecular level by Israelachvili and co-

workers 79-81 who proposed a concept on the liquid dynamics of molecular films 

based on some experimental results and computer simulations.  The viscosity of 

the confined molecular layer was found to be no longer comparable to the bulk 

fluid viscosity.  The effective viscosity of confined molecular layer, as thick as 

10 molecular diameters, can be 105-times and relaxation times 1010-times slower 

than the bulk fluid viscosity.  At high shear rates, the confined film was 

suggested to take on non-Newton like behaviour, i.e. the film experienced 

severe shear-thickening with increased shear rates 80.   It was suggested that 

shear-thickening occurs when the shear rate exceeds the molecular relaxation 
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time and may be associated with entanglements between the adsorbed 

molecules on the surface.   

Klein and co-workers 82-85 considered the fact that many boundary 

lubricants that were adsorbed to the interface consist of polymer chains.  It was 

suggested that the adsorbed polymer chains became entangled and experienced 

a resistance towards motion (increase in μk) as each of the substrate surfaces’ 

slide past each other under strong compressive load.  A large enough normal 

load consequently causes an increase in effective viscosity and thus, the drag 

between the entangled polymer brushes may be large enough so that the film 

rips at the polymer-substrate interface, with bonds anchoring the brush chains to 

the substrate breaking and reforming (Fig. 2.2).  Kong et al. 86 conducted 

molecular dynamic simulations of the boundary film and proposed that μk 

decreased with increasing normal load, decreased with increased density of 

adsorbed polymer chains, and increased with increasing shear velocity.  Under 

shear, this film was suggested to dissipate frictional energy and may reduce 

wear and be beneficial for biological applications 87.   

 

 

 
                    (a)                                                                        (b) 

 

Figure 2.2: Schematic illustration of the polymer chains adsorbed to both 
substrate surfaces under (a) pristine and (b) after being displaced by a distance 
δx (from Klein et al. 85).  
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Most recently, Tsarkova et al. 88,89 showed that the polymer brushes 

adsorbed to each surface were highly interactive and interpenetrated (Fig. 2.3).  

The head groups of the polymers were entangled with each other.  On sliding, 

these entangled polymers stretched to provide shear force and increased the μk. 

Increased sliding may cause the polymer-substrate bonds to break and to 

reform.  The polymer brushes adsorbed on each surface were shown to 

interpenetrate at a constant load and resulted in a reduction of film thickness 

from ~ 575 Å to ~ 350 Å.  This was accompanied with an increased spacing 

between polymer brushes.  The shear rate (displacement/time) and following 

cessation of the displacement clearly affected the resulting shear force 

behaviour of this consolidated film.  At a low shear rate, the polymer brushes 

were given time to relax and only slightly increased the shear force upon 

cessation.  At a high shear rate, the polymer brushes did not relax and the film 

remained in its solid-like state and significantly increased the shear force.   

Depending on the test conditions and environment it may be possible that 

adsorbed protein chains may slip on both the polymer-substrate interface and 

inside the solid-lubricant interface 90.   

Confined films in boundary lubrication were also suggested to be 

mediated by colloidal suspensions with particles that exceed the molecular size 

(~10 Å) 91.  Colloidal suspensions are defined as homogenous mixture 

consisting of two phases; one phase consists of dispersed, small sizes 

particles/macromolecules while the other consists of a continuous solvent.  

Georges et al. 92 conducted friction tests with colloids suspension with an 

average particle size of  ~ 50 - 100 Å.  They also found that the interfacial film 

consolidated upon increased compressive load.  The colloidal film does not flow 

in the contact of two approaching surfaces at a pressure of 106 Pa which allowed 

the film to form a compacted contact zone 91.  The mechanical properties and 

the dynamic behaviour of these colloidal films were then assessed in more detail 

elsewhere 93-96.  In any case, the films in boundary lubrication comprised of 

compacted molecules or colloids may fail and allow direct asperity contact.   
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     (a) 

 
 

 
 Time [sec] 

 

 (b) 
 

Figure 2.3: (a) Kinetics of thinning of the polymer brush bilayer following the 
jump into adhesive contact, fitted by exponential decay (solid line).  The 
drawings indicate the proposed configuration of the polymer brush bilayer 
shortly after the jump-in (left drawing) and at the end of the measurements 
(right drawing; also note the increase in mean brush-anchor spacing). (b) The 
lateral motion applied to the upper surface and the transmitted shear force at the 
lower surface at the points of the time/thickness indicated by corresponding 
letters in (a): (A) Motion between opposing polymer brushes following the 
jump-in proceeds with low shear force (from Tsarkova et al. 89). 
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         Time [sec] 

 

              (c) 
 
 

 
         Time [sec] 

 

             (d) 
 

Figure 2.3 (continued): (c) and (d): The lateral motion applied to the upper 
surface and the transmitted shear force at the lower surface at the points of the 
time/thickness indicated by corresponding letters in (a):  The shear force across 
the bilayer increases with decreasing layer thickness B (shown in (c)) until a 
quasi-solid-like behavior is reached C (shown in (d)) (from Tsarkova et al. 89).  
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Persson et al. 97,98 suggested that the yield of the boundary layer may 

be reached when the boundary layer is squeezed out of the confined zone at 

high enough normal load which may result in asperity contact and increase μk 

and possibly wear.  The squeeze-out of the confined film may be initiated by a 

thermal nucleation process in which the density fluctuation forms a small “hole” 

of approximately ~ 10 - 15 Å.  After a hole of a critical size has been generated, 

it was likely to spread across the entire contact area.  The squeeze-out rate (and 

thus, the nucleation rate) was suggested to be amplified by lateral sliding, 

permitting the confined layer to take on a fluidized or disordered state and 

facilitate the ejection of the layer.  

As a final comment, it needs to be noted that the above mentioned 

occurrences were only observed in friction tests and it remains uncertain how 

the inherent properties of a boundary layer may play a role in knee simulator 

wear testing.  It may be beneficial to investigate the interactions between 

macromolecules, such as proteins, comprising the possible boundary layer; 

estimating the amount of sheared polymer chains by ultrafiltration 99 and linked 

to wear may indirectly confirm the involvement of the boundary lubricant in the 

lubrication process.    

 

 

2.3 Lubrication and Wear of Natural Synovial Joints and Knee 
Implant 

2.3.1 Synovial Fluid Constituents and Characteristics 

The natural knee joint is a freely moving synovial joint that is 

encapsulated by fibrous tissue (synovium) and contains 0.2 - 10 ml of SF 77.  

The synovium provides the SF with nutrition for the chondrocytes of the 

articular cartilage.  SF is a complex fluid which consists of many different 

solutes, including proteins, HA, and phospholipids (Table 2.1) that may aid in 

lubrication 100.  It is important to note that the synovium is nowadays generally 

retained after total knee replacements, enabling the capsule to recover and to 

maintain its SF generating ability.  Therefore, it is very likely that the SF 
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composition in the replaced joint is comparable to the SF of the diseased 

(usually OA) joint 33.  The role of the synovium is to transport nutrients, to 

remove biological waste from the joint, to provide a lubricant and to add to joint 

stability 100.  The synovium is composed of a relatively avascular structure with 

two distinct layers.  The layer in contact with the joint cavity is referred to as the 

synovial lining (intima) and is responsible for the synthesis of 

glycosaminoglycans such as HA which is responsible for the high viscosity of 

SF.  The intima consists of two types of cells, called type A and type B cells 101.  

The type A cells are macrophages which are derived from the bone marrow 

which have migrated to the synovium via blood vessels.  The type B cells are 

fibroblasts which serve as the dominant secretion of enzymes that are necessary 

in the synthesis of HA.  The second layer is referred to as the subintima and is 

composed of fatty and fibrous forms of connective tissue.  Every solute entering 

the synovial cavity from the lymphatic system must cross the intima and 

subintima.  
 

 

Table 2.1:  The main constituents of synovial fluid (SF) for the healthy patient 
and for the OA patient 31,102. 

Patients 
Main constituents 

Healthy OA 

Protein [g/l] 10 - 30 24 - 44 

HA concentration [g/l] 1 - 4 ~ 1.5  

HA molecular weight [MDa] 6 - 7 1.8 

Phospholipid concentration [g/l] ~ 0.1 0.52 
 

 

Proteins consist of multiple amino acids (peptides) that are linked 

together by peptide bonds and referred to as polymeric peptides or simply 

polypeptides 103 (Fig. 2.4).  Proteins are also considered to be polyelectrolytes, 

which are substances whose repeating units bear an electrolyte group (amino 

acid group).  Once the protein is placed into an aqueous environment, the amino 

acid groups dissociate and make the proteins “charged” which may affect the 

coil-like protein structure.   
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The thermal stability of proteins depends on the ionic strength 104 

which can be determined by measuring the osmolality of a solution.  The 

osmolality of a solution is the concentration of osmotically active particles (for 

example NaCl ions) in solution 105.  An osmotically active particle is one that 

contributes to its osmotic pressure.  Osmosis is the passage of water through a 

semi-permeable membrane from a region of low concentration of active 

particles to one of higher concentration.  Apparently, osmosis occurs because 

osmotically active particles have charges that make them repel each other and 

thus encourage water to move between them.  This is a more powerful effect in 

the solution with the higher concentration and thus water is drawn through the 

membrane from the lower concentration solution 105.  Osmotic pressure is the 

pressure required to prevent the passage of water through a semi-permeable 

membrane from a region of low concentration of solutes to one of higher 

concentration.  The osmolality of SF depends on the activity of the patient 106.  

In SI units, patients at rest have an osmolality of 404 ± 57 mmol/kg while 

patients after exercise had an osmolality of 303.3 ± 1.5 mmol/kg.   

 
Figure 2.4: Schematic drawing of the human serum albumin structure showing 
the primary, secondary and tertiary structure (from Sugio et al. 103). 
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The main protein constituents of SF are human serum albumin 

(referred to as albumin), α-1-globulin, α-2-globulin, β-globulin, and γ-globulin 

and their fractions have been estimated for patients with rheumatoid arthritis 107.  

Yao et al. 108 showed that albumin accounted for almost 70 % of the total 

protein concentration in SF drawn from OA patients (n = 5).  The total protein 

concentration of SF was ~ 30 g/l, and was not different between patients 

undergoing primary or revision surgery 33.  Albumin has an average molecular 

weight 67 kDa and is produced by the liver.  It has an ability to bind certain 

antibiotics onto its molecular structure 109-111 and this allows it to be used for 

drug delivery.  The acting forces (attraction and repulsion) between proteins in 

solution have been reported to be similar to those of colloids 112-114, which may 

suggest that the tribological behaviour of proteins can be approached from a 

colloidal perspective 92-96.  

HA consists of long unbranched polysaccharide chains that are 

composed of repeated disaccharide chains (Fig. 2.5) 115.  It has been shown 31,116 

that HA is a main constituent of SF, is responsible for its viscosity and has the 

ability to bind a number of proteins.  Healthy patients carry approximately 1 - 4 

g/l HA in their SF while patients with OA only contain  approximately 1.5 g/l 

HA in their SF (Table 2.1) 31.  The concentration of HA increases with 

increasing age of the patient while its molecular weight decreases 117.  Injecting 

a solution rich in high-molecular weight HA has become a pharmacologic 

alternative for patients who are functionally limited due to OA knee pain, 

especially patients who wish to postpone surgical intervention or for whom 

surgery is inappropriate 118-120.  It is also important to note that HA retains water 

molecules and this characteristic has been used for cosmetic applications 121.  SF 

is a non-Newtonian fluid because its viscosity decreases with increased shear 

rate 102.   The type of bond (covalent, van der Waal’s) between the HA chains 

and albumin was suggested to depend on the pH 122; low pH  showed to promote 

covalent bonds while higher pH enabled only van der Waal’s bonds. Recently, 

Oates et al. 123 suggested that HA in the presence of albumin builds a strong 

protein-HA network with rheopectic behaviour at low shear rates (Fig. 2.6).  
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Such rheopectic behaviour suggested that the viscosity of SF may increase with 

increased duration of shear.   

 

 

 
Figure 2.5: Chemical structure of HA.  Note that the “disaccharide” chain of 
HA consists of a glucuronic acid compound and an N-acetyl glucosamine 
compound. 

 

 

Figure 2.6: The proposed microstructure of synovial fluid: globular proteins 
(light grey) aggregate to form a tenuous polymeric network and the long HA 
chains (dark grey) entangle with this network (from Oates et al. 123). 
 

Proteins 

HA chains 
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At higher shear rates, Mazzucco et al. 32 suggested the SF to have 

thixotropic characteristics, i.e. the viscosity decreases with increased shear rate 

(shear thinning).  In any case, rheological measurements only give the 

behaviour of viscosity and may not relate directly to wear at all.  The protein-

HA network plays a role in the wear process of implants, as recently indicated 

by DesJardins et al. 102 who performed knee wear testing in a bovine serum + 

HA fluid.  However, it remains uncertain to what extent HA interacts with the 

protein constituents in wear testing at clinically relevant levels of osmolality.  It 

is uncertain whether adding HA to a protein rich medium affects the thermal 

stability and whether it is different from the thermal stability of SF.  In any case, 

the thermal stability of SF has not been reported in the literature.  

The involvement of phospholipids in the lubrication process has been 

suggested by in vivo and in vitro studies 124-126.  In particular, L-α-dipalmitoyl 

phosphatidcholine, referred to as surface active phospholipids (SAPLs), is a 

pulmonary surfactant and may add to the boundary lubrication process, despite 

its low concentration (Table 2.1).  These SAPLs consist of a hydrophilic head 

group and a hydrophobic tail and may organise themselves into a bilayer 

structure 127,128.  The measured organic phosphate (organic P) fluid 

concentration indicates the total phospholipid concentration while the measured 

free phosphate (inorganic P) may indicate vitamin D imbalance and kidney 

disease and may affect the protein structure.  It still remains uncertain if 

phospholipids play a role in the lubrication process in the presence of several 

protein constituents and HA in knee simulator wear testing of PE.  In recent 

years, a glycoprotein called lubricin has been identified as having a role in 

boundary lubrication at the cartilage-cartilage interface 129-134, but its 

tribological implications at the CoCr-PE interface remain uncertain.   
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2.3.2 Lubrication of the Natural and Artificial Joint 

The lubrication of the cartilage-cartilage interface has received 

tremendous attention in the past 50 years 124,127,128,135-143.  Krishnan et al. 142,144 

suggested that a superficial zone of proteins was present at the articular cartilage 

surfaces but such proteins were deemed not to play a role tribologically.  The 

study by Graindorge et al. 128 suggested the presence of a biphasic lipid layer at 

the cartilage-cartilage interface.  Such a layer was suggested 128 to consist of 

two bimolecular sheets of phospholipids with their hydrophobic end pointing 

inwards of the layer.  Graindorge et al. 127 reported that the μk obtained from 

cartilage-on-cartilage friction tests was still low even if the lipid layer was 

removed from the articulating surfaces.  Such a finding suggested that the lipid 

layer was replenished from inside the cartilage.  Recently, Basalo et al. 145 

suggested that chondroitin sulphate, a major constituent of articular cartilage, 

reduced the μk. However, these friction tests were performed on a cartilage-on-

glass interface which may not be clinically relevant. 

The lubrication conditions in TKRs remain uncertain.  Wang et al. 146 

so stated that “one of the areas in artificial joint tribology that is still the least 

understood is the mechanism of lubrication”.  Fluid film lubrication 53 and 

mixed lubrication 147,148 have been proposed for total hip replacements (THRs).  

Design concepts such as the use of compliant layers that may facilitate fluid 

film lubrication in TKR have been proposed 149-151 but have not reached or come 

close to clinical application.  In the author’s opinion, the higher conformity in 

THR may allow some fluid-film action to occur while the lower conformity in 

contemporary TKR may only permit boundary lubrication to occur.  Wear 

mechanisms and the effect of lubricant composition on the PE wear in artificial 

joints is frequently discussed 30,34-36,53,76,78,102,125,147,152-158.  Using human SF as 

the lubricant for wear testing would be the most clinically relevant but it is not 

available in large enough quantities with a maximum of only 0.5 - 10 ml per 

synovial joint 77.  A volume of 40 - 400 ml per wear station is usually needed 

for a test interval of 0.5 million cycles (Mc).  McKellop et al. 152 suggested that 

protein rich media, such as calf serum, be used rather than distilled water (DW) 
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for the wear testing of the CoCr-PE interface.  The presence of proteins in the 

test lubricant was deemed essential to mimic SF and to reproduce damage 

features seen on retrieved PE acetabular components.  As mentioned in Section 

2.2.3, using a protein rich lubricant inhibited a PE transfer layer onto the CoCr 

surface 63.  Serro et al. 159 used atomic force microscopy to obtain direct 

evidence of protein adsorption onto the CoCr and PE bearing surfaces.  This 

was surprising since the PE surface is considered hydrophobic.  Proteins are 

known to adsorb onto hydrophobic surfaces but this is a thermodynamically 

driven process 160-164.  During surface adsorption, the protein structure may 

become damaged and become denatured.  Such denaturation is often also 

referred to as degradation of the native protein structure.  The extent of protein 

denaturing upon adsorption depends on the thermal stability of the protein 

solution, i.e. the higher the thermal stability, the lower the denaturation upon 

adsorption 164.   Heuberger et al. 76 suggested this in their friction tests in which 

artificially denatured albumin proteins were adsorbed on the PE surface rather 

than native ones.  This suggested that a compacted denatured protein layer 

adsorbed onto the hydrophobic PE surface.  Increasing the concentration of 

denatured proteins correlated with increased μk
76.  Such an increase in μk was 

suggested to be associated with an enrichment of the protein boundary layer by 

denatured proteins.  However, an increased μk does not necessarily coincide 

with a higher wear rate.  For example, PE was reported to have a higher μk than 

poly-tetra-fluor-ethylene (PTFE) but also had a lower wear rate 108,165.  Thus, it 

was deemed possible that higher μk coincided with lower wear, since wear 

depends on local energy release rates rather than overall dissipation and a 

strongly adsorbed denatured-layer might help reducing local peaks while still 

increasing overall dissipation 166.  It remains to be investigated whether the 

concentration of denatured proteins impact the PE wear behaviour.  The wear 

process may damage the proteins and that alters the native, folded protein 

structure. Such damage may initiate to protein unfolding, protein precipitation, 

and protein shear (Fig. 2.7).  Protein unfolding may be promoted by load and 

motion during the wear test that generates heat at the CoCr-PE interface.   
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Figure 2.7:  Schematic showing how the wear process may affect the native, 
folded protein structure.  Wear may lead to protein damage and cause protein 
unfolding, protein precipitation and protein shear. 

 

 

Liao et al. 154 conducted a hip simulator wear test and associated 

increased PE wear with increased lubricant temperature and increased protein 

precipitation. Exposing proteins to increased temperature (~ 60 ºC) can lead to 

denaturation in form of protein unfolding 167-169 that results in protein 

degradation and protein precipitation.  The amount of total protein degradation 

can be determined by measuring the amount of amino acid molecules in the 

lubricant before and after the wear test using bicinchoninic acid (BCA) assay 
170-173.  The reagents comprising the BCA assay are added to the diluted calf 

serum lubricant and react with the amino acid molecules.  Such a reaction 

causes the diluted calf serum lubricant to alter its color.  The extent of 

colorization indicates the protein concentration which can be measured using a 

spectrophotometer.  Although the BCA assay is used to determine the total 

protein concentration it does not supply information about the protein 
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constituents.  The calf serum lubricant is comprised of proteins constituents 

such as albumin, α-1-globulin, α-2-globulin, β-globulin, and γ-globulin which 

differ mainly in their structure and molecular weight.   The protein constituent 

fractions can be determined by using electrophoresis.  Liao et al. 35 suggested 

that the protein constituents played a role in the wear process and that the 

protein constituents were affected by the wear process.  Such profiling separated 

the proteins constituents by their molecular weight.  In any case, the PE wear 

rate was shown to increase with reduced total protein concentration (native + 

degraded + precipitated) in both hip and knee simulator wear tests 45,174.  Wang 

et al. 156 suggested that the PE wear rate increased with decreasing total albumin 

to total globulin ratio (A/G).  Other constituents such as HA and phospholipids 

were also suggested to affect the PE wear rate 30,102,126,175 and these other 

constituents were included in an attempt to create a more clinically relevant 

lubricant for implant wear testing.   

However, Mazzucco et al. 34 concluded from their pin-on-disc friction 

apparatus that neither proteins (albumin and globulins), phospholipids, or HA 

played a role in the lubrication process of artificial joints.  As mentioned earlier 

in this Section, friction studies may not be useful to gain insight into the actual 

wear process.  Thus, it remains uncertain whether the protein constituents such 

as albumin, α-1-globulin, α-2-globulin, β-globulin, and γ-globulin in presence 

of HA affect the thermal stability 76,176 of the lubricant and thus the boundary 

lubrication which ultimately may affect the wear rate in knee simulator wear 

tests.    

 

 

2.3.3 Joint Simulator Wear Testing 

In the early days of implant wear testing, a simple test configuration 

such as a unidirectional pin-on-disc test was assumed to be sufficient to predict 

the clinical wear behavior of bearing materials 152,177.  However, this approach 

was lacking clinically relevant geometry and motion.  Knee simulators have 
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been developed to perform wear testing under conditions that closely mimic the 

clinical environment 157,178-181.  Simple tests may still be important to gain 

fundamental information of the tribosystem and may be used as screening tests 

prior to simulator wear testing but they must, as a minimum condition, impose 

reciprocating crossing-path motion at clinically realistic contact stress levels.  

Knee wear simulators are believed to be more realistic but they are 

very expensive to both purchase and maintain.  Also, there is no general 

consensus on conditions that must be imposed by the simulator.  For example, 

force-controlled (FC) and displacement-controlled (DC) simulators were 

developed 178,182,183.  In both types of simulator, the flexion/extension (FE) 

motion was applied by a displacement actuator and vertical loading was applied 

by a load actuator. The anterior-posterior (AP) and internal-external (IE) 

displacements in FC simulators were a consequence of an applied AP load and 

an applied IE torque rather than imposed by displacement actuators as in DC 

simulators.  The extent of these FC simulator displacements was directly 

influenced by the implant design and attenuating springs that represent some 

soft-tissue constraints and both took an increasing share of the force and torque 

as displacements increased.  The most recent AMTI (Advanced Mechanical 

Technology Inc., Waltham, MA) knee simulator applies a “software” spring so 

that the force and torque drop as if a spring were there.  The spring stiffness 

values in FC simulators were chosen based on various knee laxity studies 184-186 

and this was further investigated by DesJardins et al. 180,181.  As previously 

mentioned, these springs were meant to simulate the soft tissue load attenuation 

(constraints) that would occur in vivo and thus allow realistic load components 

to act on the tibial insert.  If the soft tissue constraints were well represented, the 

FC simulator had the advantage of allowing the wear to develop cycle by cycle 

in response to realistic tangential force components whereas the DC simulator 

would have the tangential load dropping off as wear progressed.   

Although FC simulators allow the wear testing of any type of implant 

design, they may be particularly useful for more constrained implant designs 

such as those with PS fixed bearing inserts or those with fixed bearing, high 
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conformity inserts.  Problems may arise with the FC simulator when low 

conformity or mobile bearings are tested which requires very careful spring 

adjustment to obtain a clinically relevant wear scar.  Conversely, DC simulators 

apply a defined AP displacement and IE displacement, independent of the 

conformity or constraint of the implant.  Consequently, testing high conformity 

inserts with the DC simulator may result in non-clinically relevant forces on the 

insert.  Thus, DC simulators may be best suited for testing CR type inserts and 

mobile bearings.  However, attempts were made to test high conformity CR 

insets in DC simulators.  McNulty et al. 187 suggested to limit the AP 

displacement based on the actual tibiofemoral contact that was mediated by the 

implant conformity.  Haider et al. 188 tested one type of implant under similar 

conditions in both FC and DC simulators and found no difference in wear rate, 

but showed some differences between AP motion and IE motion.  Using the DC 

simulators requires knowledge about the in vivo kinematics of the specific 

implant.  This is not necessary when FC simulators with quick acting feedback 

control systems are used with accurate representation of the soft tissue 

constraints and would favour such simulators particularly for the wear 

evaluation of new designs that have not been implanted.   

The test condition such as loading, displacements and lubricant 

composition for FC simulator and DC simulators are specified in standard 

protocols (ISO-14243-1 and ISO-14243-3, respectively) 40,41.  The 

recommended lubricant is calf serum, diluted with deionized water to a total 

protein concentration of 17 g/l.  A microbial inhibitor such as sodium azide 

(SA) is recommended.  Specifications on the protein constituent fractions or 

level of osmolality are not given. HA and phospholipids are not considered as 

constituents of the test lubricant.  Kaddick and Wimmer 36 noted that different 

types of calf sera may lead to different wear rates in THR simulator testing.  

The types of calf sera used for implant wear testing vary between independent 

research laboratories and implant manufacturers 37.  Wang et al. 156 suggested 

that the test lubricant should be classified based on physiological A/G ratio.  

They also added 0.34 g/l HA to the lubricant with SA as the microbial inhibitor 
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and did not observe an effect on the PE wear rate in their hip simulator study.  

DesJardins et al. 102 added 1.5 g/l HA with a molecular weight of 2.3 MDa to 

bovine calf serum, used SA as the microbial inhibitor, and observed and 6.8-

times in increase in PE wear rate.  Antimicrobial inhibitors, such as SA, are still 

widely used in simulator wear tests despite their ineffectiveness in inhibiting 

bacterial growth in pin-on-plate tests 30.   Recently, Wimmer et al. 189 reported a  

6.5-times higher PE wear rate in pin-on-disc test when microbial growth was 

observed in the lubricant.  Clinically, bacterial contamination of SF is only a 

concern in the case of septic arthritis 190.   Thus, various antibiotics have been 

used in knee wear testing to inhibit microbial contamination 157.  Using 

antibiotics , however, may cause the microbes to develop resistance which may 

result in hazardous contaminants 157 that may be only controlled by living 

antibiotics 191-193.  It remains uncertain to what extent bacterial contamination in 

knee simulator wear testing may affect PE wear and what the underlying 

reasons may be.   In addition, the author was not aware of a study that 

investigated the effect of protein constituents, osmolality or HA in a sterile wear 

testing environment.   Using API®-films 194 to identify the bacterium and Kirby-

Bauer 195 method to determine the susceptibility of the contaminant towards 

certain antibiotics may be beneficial to develop a sterile environment for 

implant wear testing. 

Circulation of the lubricant in the wear station may be another factor to 

affect the PE wear rate.  Wang et al. 156 suggested to circulate the lubricant at a 

turnover rate of 2 ml/hour to mimic the clinical turnover rate of SF in the hip 

joint.  Simulators such as the Endolab® knee simulator 157 and the Orbital hip 

simulator 35,53,154 do not circulate the lubricant while both the AMTI knee 

simulator and AMTI hip simulator circulate the lubricant.  During wear testing 

proteins become degraded and eventually precipitate out.  Such protein 

precipitates have led to boundary lubricant films that reduced the PE wear rates 

in hip simulator tests without lubricant circulation 35,196.  Wang et al. 156,197 

suggested to increase the lubricant volume from 100 ml to 500 ml to overcome 

both lubricant circulation and protein precipitation.  Such an increased lubricant 
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volume was accompanied by 4-times lower PE wear rate and a lower protein 

precipitation.  Thus, it remained unclear whether the increased lubricant volume 

or the reduced protein precipitation lowered the PE wear rate.  Some research 

groups attempted to overcome the lubricant circulation and protein precipitation 

by replacing the lubricant as often as every 0.1 Mc 156,198 or every 0.25 Mc 35,157.  

The ISO standard for knee simulator wear testing recommends replacing the test 

lubricant every 0.5 Mc without giving recommendations on the lubricant 

volume 41.  Recently, McNulty et al. 45 reported a 4.7-fold increase in PE wear 

rate when the total protein concentration was reduced from ~ 62 g/l to ~ 17 g/l.  

These tests were facilitated in an AMTI knee simulator that circulated the 

lubricant volume of 500 ml through each wear station and an externally located 

lubricant container adjacent to each wear station.  The lubricant was replaced 

every 0.5 Mc.  Such an arrangement may promote sedimentation of the protein 

precipitates in the external lubricant container which may inhibit the protein 

precipitates from reducing the PE wear rate.  However, this hypothesis remains 

to be proven. 

Wear of the PE component may either be evaluated by gravimetric 

assessment using a precision balance or by geometric assessment using a 

coordinate measurement machine (CMM), as described in ISO 14243-2 42.  The 

CMM is a mechanical system designed to move a measuring probe over the 

geometry of the PE inserts to determine its dimensions.  Consequently, 

measuring the geometry of PE inserts at different wear test intervals allows a 

volumetric PE wear rate to be calculated.  Using the CMM to determine the PE 

wear rate may be merited when the majority of geometric change is due to creep 

and not wear as it is the case for wear resistant XPE.  Gravimetric wear 

assessment is not sensitive to geometric changes.  However, PE is prone to 

absorb fluid, despite its hydrophobic properties, which may significantly affect 

the gravimetric wear assessment.   In respect to wear testing, the amount of fluid 

absorption can be so high that it may outweigh the amount of PE wear.  Fluid 

uptake is generally more pronounced at the beginning of the wear testing and 

stabilizes with advanced testing.  Specimens of clinically relevant geometries 
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were pre-soaked in DW at room-temperature (RT) for 3 weeks or more to 

ensure that the fluid uptake of the PE inserts reached equilibrium.  Although the 

procedures during wear testing are clearly stated, there is no clear guideline on 

how to pre-soak PE inserts prior to wear testing.  Standardized methods of wear 

measurements 42 suggest the PE inserts to be exposed to “a lubricant” and to 

“repeatedly remove” them for weight assessment until reaching a steady level.  

Several other researchers 73,157,199-204 conducted fluid absorption studies to gain 

valuable insight on the fluid absorption behaviour.  However, there is no clear 

definition on the intervals of repeated weight assessment, the lubricant or the 

temperature.  It remains uncertain whether the pre-soaking period, repeated 

weight assessment, the weight assessment protocol itself (consecutive cleaning, 

desiccation, weighing), the type of lubricant and temperature would affect the 

weight gain of conventional, non-cross linked PE of geometries intended for 

implantation.   

 

 

2.4 Bearing Surface 

2.4.1 Manufacturing Process  

PE is composed of long polymeric chains of ethylene which consists of 

two carbon atoms and four hydrogen atoms.  A fine granular PE powder is 

produced by polymerization of ethylene.  Such chemical reaction is a catalytic 

process that is driven by metal compounds which are referred to Ziegler-Natta 

catalysts 205.   The PE powder may then be further processed by three methods 

to manufacture orthopaedic devices.  The first method is ram-extrusion of the 

powder into cylindrical bar stock (50, 62.5 and 75 mm diameter; 1.5 - 3 m in 

length) with the powder compacted and heated between T = 180 - 200 ºC  for 

consolidation 206-208.  In the second method, sheets (usually 120 cm x 320 cm) 

are produced after placing the PE powder into a mould.  At first, the powder is 

cold pressed at a pressure of 5 - 10 MPa to remove excessive air and then 

completely fused under a temperature of 200 ºC.  The moulds are then cooled at 

a pressure of 7 - 10 MPa producing a sheet of thickness up to 75 mm.  In the 
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third method, orthopaedic components can also be made by direct compression 

moulding where the powder is directly converted into the final product.  

Compared with the ram-extrusion and moulded sheet processes, the 

compression moulding requires no additional machining to produce the final 

component and a smooth surface finish can be achieved.  

 

 

2.4.2 Properties 

PE is called ultra-high molecular weight (or UHMWPE) when its 

molecular weight exceeds 1 x 106 g/mol 206-208.  In conventional PE, secondary 

forces hold the molecular chains together that result in crystalline lamellae (Fig. 

2.8).  Therefore this group of polymers can be re-melted and welded which is a 

characteristic of thermoplastics.  As mentioned earlier in Section 2.2.3, 

thermoplastics may also be called partial-crystalline polymers due to their 

crystalline and amorphous structure.  With increasing molecular weight of the 

thermoplastic, the melt temperature increases proportionally.  Generally, when 

the temperature in these polymers is increased, firstly the amorphous area 

softens followed by the crystalline area due to the higher binding energy 

between individual polymer chains.  Currently the PE used in the medical 

industry has a molecular weight of 3 - 6 x 106 g/mol, a melting point of 125 - 

145 ºC , and a density ranging from 0.930 to 0.940 mg/mm3.  The main grades 

of powders used in orthopaedic devices are shown in the Table 2.2 208,209.  The 

degree of polymerization is proportional to the molecular weight of the polymer 

while the crystallinity varies in the different types of resins and decreases with 

increasing molecular weight.  This property has an influence on the fracture and 

fatigue characteristics of the polymer. With increasing crystallinity the 

resistance to propagation of fatigue cracks was found to improve, provided 

oxidation did not occur 208,209.  The oxidation of the PE surface can cause 

embrittlement and increases the possibility of crack initiation and hence, results 

in more severe wear.   
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Figure 2.8: Microstructure of PE: transmission electron microscopy (a) and 
schematic (b) (from Kurtz et al. 210). 
 

 

 

 

Table 2.2: Properties of three main grades of PE resin used for orthopaedic 
devices (data adapted from 208,210). For the GUR resins, the first digit “1” stands 
for polyethylene, the second digit for the presence (“1”) or absence (“0”) of 
calcium stearate that was used for corrosion resistance, as a whitening agent and 
as a lubricant to facilitate the extrusion process.  The third digit indicates the 
average molecular weight (“2” for 3.5 x 106 g/mol; “5” for 5.5-6 x 106 g/mol).  
The GUR stands for Granular UHMWPE Ruhrchemie (where Ruhrchemie AG 
(changed to Hoechst AG and is now known as Celanese AG) was a company in 
Oberhausen, Germany). 

Resin name 
Former resin 
designation 

Ave. MW 
[106g/mol]d 

Tensile 
modulus   
[MPa] 

Yield 
stress 
[MPa] 

Impact 
strength 
[kJ/m2] 

Particle 
size  

[μm] 

Calcium 
stearate 

GUR 1150a GUR 4150 5.5-6 680 ≥17 ≥130 140 Yes 

GUR 1050a GUR 4050 5.5-6 680 ≥17 130 140 No 

GUR 1120a,c GUR 4120 3.5 720 ≥17 210 140 Yes 

GUR 1020a,c GUR 4020 3.5 720 ≥17 210 140 No 

1900b - 4.4-4.9 750 ≥19 65 300 No 

1900Hb - >4.95 750 ≥19 65 300 No 
a Ticona (Summit, NJ); b Montel (former Himont; Wilmington, DE); c also known as CHIRULENTM 

 

 

(a) (b) 
Amorphous 

regions

Crystalline lamellae
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2.4.3 Sterilization Techniques and Oxidative Degradation 

All implant components must be sterilized before they are distributed 

to the surgeon for implantation 207,209,211.   Until the early 1990’s, gamma-in-air 

sterilization (GA) was widely used by orthopaedic companies with a dosage of 

2 - 3.5 MRad.  Besides the actual sterilization of the components, the gamma-

irradiation disrupts the covalent PE bonds of the tibial insert, causing free 

radicals to occur which changes the mechanical properties of the PE 206,212-216.  

These changes in the mechanical properties occur because the free radicals can 

combine with ambient oxygen during the GA process, the shelf storage time 214 

or even in vivo 217.  Oxidative reaction of PE results in chain shortening, 

reduction of the molecular weight, reduced toughness, increased density as well 

as in a reduction in fracture strength and elongation to fracture.  It also causes 

excessive wear in vivo.  Delamination wear is a characteristic damage feature of 

oxidized PE inserts and has been reported to occur on the top side of the PE 

insert 218, on the post 219 of PS type inserts, but not on the distal (backside) 

surface 220 (Fig. 2.9).  The peak level of oxidation can be typically observed 

from 0.5 - 2 mm below the surface and can be observed as so called “white 

bands” after sectioning inserts.  Although GA has been abandoned as a 

sterilization method, gamma-irradiation in inert atmosphere is still being used.  

Recently, Brandt et al. 221 reported severe delamination wear on two gamma-in-

nitrogen sterilized PE inserts retrieved after 76 months (shelf storage prior to 

implantation = 13.6 months) and 170 months of implantation (shelf storage 

prior to implantation = 4.8 months), possibly indicating that in vivo oxidation 

had occurred as had been found by Kurtz et al. 217,222 and Currier et al. 223.  

Another sterilization technique is gamma-in-vacuum foil 224.  The process is 

similar to gamma-in-nitrogen, only that the tibia insert is irradiated in a barrier 

bag that contained a vacuum environment.  Thus, the oxidation is suppressed 

pre-operatively, but can start again once the tibia insert is implanted because the 

synovial fluid carries oxygen that is able to react with the free radicals of PE.   

In any case, oxidation of the PE inserts may also be facilitated by the use of 

oxygen permeable packaging for irradiated inserts 225.  
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(a) 

(b) 

Figure 2.9: A failed AMK® (DePuy Orthopaedics Inc., Warsaw, IN) in a) 
intraoperative view during revision surgery and b) the retrieved PE insert.  The 
PE insert was GA sterilized prior to implantation and showed severe 
delamination wear after its retrieval. 

Severe  
delamination 

5 mm 
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Other sterilization techniques without irradiation, such as gas-plasma 

(GP) and ethylene oxide (ETO) have been used.  Non-gamma-in-air (NGA) 

sterilized PE, such as those exposed to ETO 226, did not show any oxidation 

degradation in the form of white bands or delamination after prolonged 

implantation.  GP is a surface sterilization method using plasma (ionized gas; 

peracetic acid, hydrogen peroxide) to oxidize biological organisms.  A GP 

sterilization interval can take up to 4 h at low temperature (< 50 ºC) and at low-

pressure in a dry environment.  ETO sterilization is performed by diffusing ETO 

into the near-surface regions.  The process involves an 18 h preconditioning 

period at a temperature of 46 ºC with a relative humidity of 65 %, accompanied 

by a 5 h exposure of 100 % ETO gas at a temperature of 46 ºC and a pressure of 

0.04 MPa.  To guarantee the diffusion out of the polymer, an 18 h forced 

aeration period at the same temperature is required.  So far, these sterilization 

techniques have not been associated with PE oxidation (on the shelf or in vivo) 

or with severe delamination wear on retrieved components 227.   

 

 

2.4.4 Microstructural Effects 

Different PE resins have been shown to have also different mechanical 

properties and therefore affect the clinical wear behaviour of these implants.  

Incomplete fusion (weakness of bonding at the intergranular boundaries) during 

the manufacturing process of PE was shown to produce defects in the 

components that led to an increase in the occurrence of severe damage features 

such as cracking and delamination in vivo 207-209,228,229.  Fusion effects can leave 

cavities behind that can serve as an onset for crack initiation during fatigue.  

Calcium stearate, a non-toxic stabilizer and lubricant, was originally added to 

facilitate PE processing and to enhance the white color of the PE but, 

unfortunately, lead to incomplete fusion and promoted long-term oxidation.  

The presence of fusion defects combined with calcium stearate has been 

associated with a decrease in ultimate tensile strength, elongation to fracture, 

fracture toughness, and fatigue resistance.  Himont 1900 resins in both ram-



 

  46 

extrusion and direct compression moulding process have been shown to have 

superior resistance towards oxidation, delamination 230 and excellent long-term 

results 231.  White bands were observed on GUR 1150 (GUR 4150) while they 

did not occur on inserts made of Himont 1900 resin.  Oxidation in Himont 1900 

resin was significantly lower compared with the GUR resin after GA 

sterilization and implantation 230.  It was suggested that compression moulded 

PE inserts from Himont 1900 resin were less susceptible to chain scission 

caused by GA sterilization.  Another reason for improved in vivo performance 

of Himont 1900 resin may be associated with its larger virgin particle size (~ 

300 µm) compared with the GUR types (~ 140 µm).  Increased particle size 

created fewer boundaries after consolidation.  In addition, Himont 1900 resin 

was calcium stearate free and therefore, with the fewer boundaries, less prone to 

oxidation then the GUR 4150 resin.  Berzins et al. 232 suggested in their retrieval 

study that GA sterilized inserts made of compression moulded resins may be 

more wear resistant than the GA sterilized machined components.  They found 

that the severity of delamination increased with implantation period.  

Delamination was only observed on the compression moulded inserts after 60 

months while it was already observed after as early as 10 months in the ram-

extruded group 233.  In any case, GA sterilization should have been avoided.   

 

 

2.4.5 Alternative Tibial Bearing Materials  

Although only conventional PE was investigated in the present study, it 

was felt necessary to give a brief summary of bearing material alternatives to 

conventional PE.  In the past thirty years, four major alternative bearing 

materials have been introduced into the orthopaedic field, as comprehensively 

summarized by Kurtz et al. 206.  In the 1970’s, carbon fiber reinforced 

polyethylene (Poly IITM, Zimmer inc, Warsaw, IN) was introduced to the market 

with the goal to reduce wear.  Adding short carbon fibers to the PE increased 

the compressive strength and ultimate tensile strength.  It was hoped that this 

would increase extent the implant durability.  Poly IITM failed after short 
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implantation periods, with patients showing severe osteolysis and catastrophic, 

mechanical failure of the insert.  Fracture mechanical analysis revealed that the 

Poly IITM inserts had an 8-fold faster crack propagation compared with PE, 

suggesting that the carbon fiber-polyethylene interface may have enabled crack 

initiation.  Clearly, this alternative bearing material was not adequately tested in 

knee wear simulators.  

In the early 1990’s, DePuy DuPont introduced a hot isostatically 

pressed PE for the hip replacements (HylamerTM) and as an alternative bearing 

material to PE on the knee side Hylamer-MTM.  Hylamer-MTM had a higher 

crystallinity and a higher modulus of elasticity than PE; yet lower than the 

HylamerTM acetabular inserts.  The increase in crystallinity made Hylamer more 

susceptible to oxidation after GA sterilization compared with GA sterilized PE 

and resulted in higher wear rate.  Hylamer-MTM utilized in the in TKR was 

associated with severe delamination wear facilitated by GA sterilization 234,235 

Thus, product lines of HylamerTM and Hylamer-MTM were both discontinued.  

Recently, Brandt et al. 236 showed that the surface damage on Hylamer-M 

inserts was dependent on the sterilization technique.  GA sterilized Hylamer-

MTM showed delamination wear while GP sterilized Hylamer-MTM did not show 

such damage feature.  The revision rate for Hylamer-MTM (10 %) was 

comparable to the revision rate for conventional PE in primary total knees.  

Once again, this alternative bearing material was not adequately tested in knee 

wear simulators.  

As mentioned earlier, GA sterilization of PE was replaced with non-

gamma-in-air sterilization techniques (NGA) such as GP sterilization, ETO 

sterilization, gamma sterilization in inert atmospheres and gamma sterilization 

in vacuum to counteract the problems of oxidation.  In the study performed by 

McKellop et al. 229, the in vitro wear rate of ETO sterilized PE was higher than 

that of PE that was sterilized in gamma-inert or gamma-vacuum environment, 

suggesting that the gamma irradiation could sometimes be beneficial to the wear 

process.  This was attributed to the cross-linking of the polymeric chains that 

was produced by the GA process.  Such findings were also supported by in vivo 
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findings 216.  Reduced wear resistance of highly gamma-irradiated PE was first 

suggested by Oonishi in 1971 206.  An irradiation dosage of 100 MRads was 

used to sterilize acetabular PE liners in air.  Although the link between oxidative 

degradation and GA sterilization was not yet established as a precursor of white 

bands and delamination wear, the wear of the irradiated PE was lower than the 

non-irradiated PE.  In any case, the increased wear resistance of gamma-

irradiated PE and the oxidative stability of NGA inserts initiated the 

development of XPE.  Cross-linking can either be achieved by irradiation,  

electron beam, peroxide chemistry or silane chemistry 206.  Most frequently, 

XPE is produced in inert atmospheres under irradiation followed by annealing 

or remelting to permit all the free radicals to bond and produce cross-links.  This 

process has produced an alternative bearing material to conventional PE that 

resists oxidative degradation and wear 72,206,237-239. 

Although cross-linking may clearly improve the wear resistance and 

oxidative stability of XPE in simulator studies, a drawback may be the reduction 

in fatigue properties and fracture toughness 240,241. So far, these possible 

limitations of XPE could not be confirmed in knee simulator studies, even under 

more aggressive wear testing using higher loading 242.   However, Muratoglu et 

al. 242 used SA as the microbial inhibitor and did not add HA to the calf serum 

lubricant in their wear tests which may affect the wear behaviour of XPE.  

Recently, Medel et al. 243 suggested an annealing process be used rather than a 

re-melting process for XPE since it preserves the fatigue and fracture resistance.  

In the application of XPE to hip implants, Bradford et al. 244 assessed the 

surface damage on retrieved XPE acetabular inserts after a mean of 10 months 

of implantation showing some deformation and cracking on the surface that had 

not been seen after simulator wear testing.  Although none of the acetabular 

XPE inserts were revised for implant failure, the use of XPE was cautioned 245.  

Fisher et al. 245 reported that the wear process produced a larger volume of wear 

particles with higher biological potential compared with PE and may increase 

the incidence of osteolysis and thus implant failure after long implantation 

periods.  This view was corrected recently by Galvin et al. 246, suggesting that 
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XPE produced both a lower volume and lower number of biologically active 

wear particles in hip simulations.  However, the lubricant used contained SA 

and did not contain HA as a clinically relevant additive 246.  Despite these 

concerns, highly XPE (irradiated with up to 10 MRads) is frequently used in 

THR.  For TKR, XPE (irradiated with 2 - 5 MRads) is offered as an alternative 

to NGA sterilized PE but many surgeons are still hesitating to use it.  The 

irradiation dosage is reduced for XPE intended for TKR because contact stress 

is higher and thus surface fatigue more likely 247.    

The current decision to use PE or XPE depends on the type of insert 

used.  In the case of CR type insert, XPE may be considered an attractive 

alternative; in the case of PS type insert, NGA sterilized PE remains the insert 

of choice due to concerns of possible post fracture due to reduced fracture 

toughness of XPE.  It may therefore solely depend on the surgeon’s preference 

for a specific insert type on whether a patient receives XPE or PE in their TKR 
248,249.  The more conservative surgeon appears to be inclined to use NGA 

sterilized PE over any type of XPE based on the inferior performance of 

historically used alternative tibial bearing materials.  The properties of currently 

available XPE were further described by Lewis 250 and Collier et al. 251.   

Last but not least, ceramic-on-ceramic bearings have been successfully 

utilized in the hip 252 and consequently have also found some attention for TKR.  

A fully ceramic, mobile bearing was proposed by Heimke et al. 253 and has 

successfully been tested in a knee simulator 254.  To the author’s knowledge, the 

fully ceramic TKR is still in its infancy and more research appears to be 

necessary.   It needs to be ensured that the ceramic meniscal components of this 

mobile design are not subject to dislocation 255 or component fracture 256,257. 
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2.5 Clinical Wear and Osteolysis 

2.5.1 The Source of Biologically Active Wear Particles 

Wear particles are produced in all PE articulations involved in the wear 

process, i.e. top side, post, backside surface, and the patella.  The characteristics 

(shape and size) of these wear particles are likely to be different and may 

depend on the motion in the individual articulations and on whether a mobile or 

a fixed TKR system is used.  The mobile TKR may allow the PE insert to slide 

and rotate on the tibial tray while also articulating with the femoral component 

whereas the fixed TKR does not allow any gross motion between the PE and the 

tibia.  Nowadays, fixed TKR represent the largest fraction of systems implanted 

and are classified into either modular (PE locked onto a metal tibial tray with a 

clamping mechanism that can be released) or non-modular (mono-block, 

components or PE components with a permanent mechanical interlock to a 

metal tibial tray) systems 3,258.  Only the fixed, modular TKR were considered in 

the present thesis. 

TKR systems evolved mainly during the 1970’s and led to several 

favorable designs that were used clinically 259.  One of the most popular and 

successful TKR system was the mono-block, non-modular design with a 

posterior cruciate ligament substituting (PS) PE insert which was introduced by 

Insall et al. 260 (Insall-Burstein®, Zimmer Inc., Warsaw, IN).  This particular 

system was implanted by cemented fixation and had excellent long-term results 

(> 20 years) and osteolysis apparently did not occur in the older, inactive patient 

cohort 14,261-263.  In addition, osteolysis had not been found for other cemented 

non-modular PE inserts that were directly compression moulded using Himont 

1900 resin 264-268.  A failure mechanism of early non-modular, mono-block 

inserts was associated with the collapse of the medial tibial plateau and was 

found problematic for patients with RA due to the reduction in bone quality.  

However, some patients with medial bone collapse actually started to heal again 

and did not require revision surgery 269.  Bartel et al. 270 suggested that the PE 

insert should be metal-backed to allow the load to be more evenly distributed 

over the tibial bone and thus, many mono-block PE inserts were consequently 
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transformed into metal-backed PE inserts.  Nowadays, TKR systems using non-

modular, mono-block PE tibial components have comparable functional 

outcome to those using matched non-modular, metal-backed tibial components 
271,272.  Such indifference stimulated the orthopaedic companies to no longer 

offer the more expensive metal-backed non-modular TKR for implantation.  

Today, mono-block PE TKRs are preferred for use in older patients (> 70 years) 

with good bone stock and OA as their primary diagnose.  Furthermore, Ranawat 

et al. 273 reported on a follow-up of 430 TKR systems with mono-block PE that 

were implanted in younger (≤ 60 years of age), more active patients.  None of 

the patients showed any indication of osteolysis on radiographs after a mean 

implantation of 5 years (range, 2 to 11 years) suggesting the benefits of mono-

block PE inserts.  However, the long-term performance of the mono-block PE 

inserts in younger, more active patients remains uncertain. 

Modular TKR systems were introduced with the aim to offer the 

surgeon a larger intraoperative versatility of PE inserts.  Such versatility was 

intended so that surgeon may select PE inserts of different thicknesses during 

the surgery to manage the flexion-extension gap most appropriately.  It 

consequently reduced inventory costs and allowed an isolated exchange of the 

PE insert without revising the entire tibial component.  The latter has only rarely 

been practically applied when GA sterilized PE was used which made the 

revision of the entire prosthesis necessary 274-277.  These modular components 

could either be implanted by cemented fixation or cementless fixation.  Some 

surgeons 278,279 were advocates of the cementless fixation, suggesting that it 

would reduce the shear stress at the interface between the tibia and the implant.  

However, tibial osteolysis was reported for cementless modular TKA 13,218,280-

282.  Such cementless fixation permitted PE to protrude into the screw holes 

(Fig. 2.10).  Such protrusions in combination with cyclic loading and relative 

motion of the PE insert due to the slack in tibial tray locking mechanism (that 

can occur with advanced implantation period) caused osteolysis.  Surrace et al. 
282 reports a linear relationship between PE protrusion height and depth of tibial 

osteolysis.   
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Conditt et al. 283 estimated a backside wear volume of up to 138 

mm3/year for a modular TKR system with screw holes (AMK®, DePuy 

Orthopaedics Inc., Warsaw, IN).  In any case, cementless fixation and the use of 

trays with screw holes had been widely abandoned 15,258,263,284-288 with the goal 

to create a barrier between the modular PE insert and the tibia to inhibit 

osteolysis.  

The backside volumetric wear from PE inserts from contemporary 

modular TKR without screw holes and implanted by cemented fixation has been 

estimated in in vitro tests at a substantial 30 % of the total wear 6,46.  The 

damage features at this highly conforming interface somewhat similar to the 

head-cup articulation in total hip implants 220 in that the wear particles generated 

from the backside surface may be smaller than the wear particles from the top 

side surface 220,289.  They are also more concentrated at the implant-bone 

interface than the particles produced at the tibiofemoral articulation 290-292.  

Unfortunately, such implants can still have an associated osteolysis 293-296, 

particularly if the patient is young and overweight 297.  Currently, the 

Orthopaedic companies offer tibial trays made of either CoCr alloy or Ti alloy 

with a variety of tibial locking mechanisms and tray surface finishing. 

Backside damage has been investigated in a number of studies of 

retrieved tibial inserts and various relationships of backside damage to backside 

wear have been suggested 220,283,289,292,298-303.  The limited availability of 

retrieved knee implants has caused these studies to consider a variety of implant 

models and features with large differences in patient histories and still attempted 

to identify statistically significant influential factors for the backside damage.  

While such efforts are commendable and should be attempted, it is unfortunate 

that their findings have been uncertain enough to prevent clear confirmation of 

the effectiveness of many design features such as the tibial tray locking 

mechanism, the tibial tray surface finish, and the role of sterilization technique 
304,305.   
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(a) 

 

 
(b) 

Figure 2.10: Image showing (a) the distal (backside) surface of the PE insert 
and (b) the proximal surface of the Ti alloy tibial tray of a retrieved TKR system 
(AMK®, DePuy Orthopaedics Inc., Warsaw, IN).  Note the wear pattern on the 
PE insert as well as on the tibial tray possibly caused by insert micromotion and 
presence of third-body wear particles. Such damage feature was referred to as 
stippling by Engh et al. 299 and associated with osteolysis. 
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PE            
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Metal-backed PE used for patella replacements were also deemed as a 

precursor of osteolysis 13,306.  If the patella is resurfaced, which is still 

controversial 307 and not frequently performed 3 , it may be best to cement an 

all-PE patella button  to avoid any possible problem with patella backside wear 
308.  Dorr 15 suggested that wear and osteolysis are not issues for implants with 

mono-block PE tibial and patellar components along with CoCr femoral 

components all of which are implanted using cemented fixation.   

 

 

2.5.2 Mechanisms of Bone Loss 

The loss of bone can lead to implant instability and implant failure that 

makes revision surgery necessary.  This can be initiated by both stress (and 

strain) shielding and periprosthetic osteolysis which have different mechanisms.  

Stress shielding causes bone loss in the absence of bone loading or more 

correctly in the absence of bone strain.  This occurs when the implant carries the 

majority of the load as a result of its high modulus of elasticity 309 and can occur 

in the distal aspect of the cementless implanted femoral components 310.  

Periprosthetic osteolysis is defined as bone resorption that is mediated by both 

wear particles and fluid-pressure 10,12,311-314 and is considered most relevant to 

the present thesis.   

In 1977, Willert 10 was perhaps the first to suggest an adverse reaction 

of  macrophages to wear particles and implicated this reaction as a precursor of 

implant loosing.  This finding did not receive much attention for another 

decade; it was not until 1987 when osteolysis was only considered as cement 

disease 315.  Jones and Hungerford 315 suggested that wear particles produced at 

the implant-bone cement interface initiated an inflammatory response that 

generated giant cells and activated bone resorption.  Shortly after, PE wear 

particles were suggested to cause osteolysis particularly when a Ti alloy femoral 

head was articulated against a PE acetabular cup 316,317.  Osteolysis became also 

apparent in TKR when cementless modular tibial components were used 13,281. 
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In periprosthetic osteolysis, the generated wear particles are suspended 

in body fluid that surrounds the implant-bone interface and are taken up by the 

adjacent tissue where they elicit a foreign body reaction. Concurrently, some 

wear particles are phagocytosed and carried away by the lymphatic system.  If 

the level of wear particle generation exceeds the ability of the body to carry 

them away, the wear particles become more concentrated at the implant-bone 

interface.  Micromotion between the implant-bone interfaces may result in 

pistoning and increase the local fluid pressure 12,314.  Both the increased wear 

particle concentration and the increased localized fluid pressure may stimulate 

periprosthetic macrophages and various cytokines such that osteolysis is 

induced directly or indirectly (Fig. 2.11).  Direct osteolysis is caused by the 

action of macrophages that are induced by foreign bodies. These macrophages 

can adopt osteoclast-like behaviour and initiate bone resorption.  Indirect 

osteolysis is caused by the stimulation of macrophages which leads to enhanced 

production of proinflammatory mediators or cytokines.  The cytokines that are 

released by these stimulated macrophages can be interleukin-1β (IL-1β), 

interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and prostaglandin (PGE2) 

and these cytokines act as osteoclast stimulants.  The osteolytic response 

depends on the particle size and volume as well as on the patient immune 

system particularly with regard to their cytokine production 318,319.  TNF-α was 

deemed to be the key cytokine involved in osteoclast stimulation 320.  In recent 

years, several in vitro studies 321-325 were undertaken to investigate the 

inhibition/blockage of cytokines on osteoclastgenesis. The results have been 

encouraging in animal studies and may suggest that inhibitors/blockers may be 

useful as therapeutic agents for the treatment of prosthetic loosening in humans 

and may be soon facilitated in clinical trails. 
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Figure 2.11: Display of the pathway of direct and indirect osteolysis mediated 
by wear particles and fluid pressure.   
 

 

Wear particles can be characterized by their size and shape and were 

distinctively different in THR compared with modular TKR 290,291,326.  The 

particles that caused with the highest cytokine production in macrophages and 

thus had the highest biological activity were of 0.1 - 1.0 μm in size at a volume 

of 10 - 100 mm3/year 327.  Large flake-like shaped particles having in-plane 

diameters of several micrometers were commonly observed in TKR but not in 

THR.  In general, particles obtained from modular TKR were found to be much 

larger (up to 20 μm) compared with those from THR (mostly < 1 μm or 

“submicron”).  The particle size dissimilarities between THR and modular TKR 
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may be related to the effect on wear of their different contact stress distributions 

and motions.  The ball-in-socket geometry in THR results in a more uniform 

stress distribution and more multi-directional motion. Thus, the difference in 

particle morphology and size may be due to difference in the wear mechanisms 

acting in THRs and modular TKRs.  However, the numbers of submicron wear 

particles and their volumetric concentrations in TKA were still substantial and 

have caused wear particle-induced osteolysis 281.   

A large variety of particle sizes, shapes and textures have been found 

after modular TKA but “submicron” particles were less prevalent than in 

modular THR.  The reduced number of submicron particles in TKR may explain 

the lower incidence of osteolysis in TKR because the submicron particles are 

the most active in the periprosthetic osteolysis process  15.  Recently, Tipper et 

al. 328 conducted an in vitro wear test on THR and modular TKR with matched 

bearing materials (GUR 1020, gamma-vacuum-foil sterilized PE) and reported 

no significant difference between wear rates.  Although nanometre-sized wear 

particles were isolated from both joint replacements, THR was shown to 

produce a larger number of small wear particles compared with TKR and thus, 

the particles from THR were found to have a higher osteolytic potential 

compared with particles found in modular TKR. 

As a final comment, wear particles produced from any type of bearing 

surface such as metal-on-metal, ceramic-on-ceramic, ceramic-on-PE/XPE may 

be associated with osteolysis but the onset is delayed if the volumetric wear is 

low and thus, fewer wear particles are produced 329-331.  In addition, the 

differences between the biological activity of various PMMA products 332,333 

suggested that the surgeon must/should also carefully select the type of bone 

cement for cemented fixation.  Although the use of XPE is associated with 

lower volumetric wear it also produces a larger number of smaller wear 

particles with a higher biological potential 245,334,335.  So far, XPE has not been 

associated with osteolysis, however, this may occur with more advanced 

implantation periods and increased application of XPE in younger, more active 

patients.  Many studies were conducted on the shape of wear particle 
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characteristics in modular knees 290,291,336,337, however there is no study to date 

that directly compared the particle shape, size and population from non-modular 

TKR systems to modular TKR systems.   

 

 

2.5.3 Clinical Wear Assessment  

The current standard of the in vivo wear assessment of TKR systems is 

by visually evaluation of radiographs.  The surgeon observes the gap between 

the metal femoral component and the metal tibial tray and attempts to estimate 

the severity of the wear.  Unless the wear is very high, this technique fails to 

detect wear accurately 338.  Recently, radiostereometric analysis (RSA) has been 

introduced in an attempt to measure the linear depth penetration of the femoral 

component into the PE insert more accurately in TKR 339.  A short explanation 

on the basic principle of the RSA technique will be briefly given 340.  Tantalum 

beads, approximately 1 mm in diameter, are placed in the PE insert and in the 

adjacent bone of the tibial and femoral implant components during implantation.  

Radiographs are taken in the medial-lateral (ML) direction and in the anterior-

posterior (AP) direction that show the location of the implanted beads and the 

implant components.  These radiographs are then digitized to permit the 

computerized analysis via the RSA software program.  This software program 

facilitates algorithms that calculate the distance between the beads and also 

enables the calculation of the change in distance between two radiographs taken 

from one patient after different implantation periods.  This method gives some 

estimate on how much the flexion-extension gap was reduced due to wear or 

creep and is represented by the measured linear penetration.  For a particular 

non-modular, metal-backed TKR system (AGC®, Biomet Inc., Warsaw, IN), 

RSA was performed on 4 patients that received 6 TKRs339.  A mean linear 

penetration of 0.075 mm/yr was estimated 339.  In addition, Gill et al. 339 

recorded the linear penetration at different flexion angles.  A computer aided 

design (CAD) model of a femoral component and of a PE insert in contact was 

created and combined with the linear penetrations.  This resulted in the 
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interpenetration of the femoral CAD model and the PE insert model which was 

calculated at different flexion angles to calculate the wear volume of 

approximately 100 mm3 per year.  Simulator wear tests have shown that 

approximately 30% of the total wear volume in modular TKR is caused by the 

backside surface 6,46 and thus, a total wear may be as high as 143 mm3/year.   

The use of RSA for in vivo wear evaluation in TKR is still being developed and 

requires expensive computer/instrumentation facilities (so-called RSA suite). 

To gain insight into the in vivo wear process, the damage on retrieved 

implant components is routinely assessed.  The damage analysis of retrieved 

implant components attempts to give some quantitative information on implant 

performance and can be compared with implants tested in knee wear simulators 

to estimate the fidelity of the simulation.  Generally, measurements of mass and 

geometry are not used to determine wear of retrieved tibial inserts because the 

exact starting values are usually not known and the influence of fluid uptake 

would be difficult to determine.  To quantify wear in an approximate manner, 

grading systems can be applied to produce damage scores under the assumption 

that surface damage correlates with wear 26,302,341.  The damage score is usually 

based on both the extent of the damage area and the damage severity compared 

with the unworn surface.  A number of different damage features can be 

observed on the retrieved insert and are subsequently assessed and graded.  The 

sum of all scores is then reported as the total damage score.  The most 

frequently used grading method was introduced by Hood in 1983 26.  In this 

method, a damage score of 0, 1, 2 and 3 corresponds with 0 %, 0-10 %, 10-50 

%, and 50 - 100 % surface damage.  

Wasielewski et al. 341 slightly altered the Hood-method by measuring 

the damage area and damage severity for the proximal insert surface.  They used 

generated digitized wear maps of the worn area of individual damage features 

and assigned the Hood-score based on the damage area.  The damage severity 

was separately assessed with a subjective score of 1 (mild damage; just visible), 

2 (moderate damage) or 4 (severe damage).  For example, a moderately 

damaged implant with 70 % burnished area would receive a score of 3 
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following the Hood-method and a severity score of 2 which results damage 

score of 3 x 2 = 6.  Reporting this type of damage score was believed to be more 

objective.  This technique was used by others in its original and/or somewhat 

modified form for the proximal and the distal PE insert surface 289,301,342.  

Protrusions of the PE into the tibial tray screw holes (located underneath the 

tibiofemoral contact area and optionally used for temporary fixation when 

cementless fixation is employed) were assessed by measuring the protrusion 

height 218,282 or assigning a severity score depending on the protrusion height 342.  

Cornwall et al. 343 introduced a method  that used digitized wear maps to 

quantify proximal PE bearing surface damage and represented the surface 

damage by the measured surface area over which it occurred.  They suggested 

that the Hood-method was unsuitable for the damage assessment of severely 

worn (largely cracked and delaminated) PE inserts because it would 

underestimate surface damage.  Although the method of Cornwall et al. 343 was 

more reproducible 344 it could only differentiate between either “no damage” or 

“complete damage” on the insert surface and thus, did not incorporate damage 

severity.  

The examination of retrieved implants has been widely used by other 

investigators and has been described as a useful method for gaining insight into 

the in vivo wear process, particularly for the backside wear 13,218,289,302,303,341,342.  

There are differences between the wear scar generation on the insert in the 

tibiofemoral, post (if it is a PS insert) and backside articulations.  The damage 

on the backside surface of modular TKR systems is deemed to develop more 

gradual compared with that of the tibiofemoral surface or post surfaces of the 

PE insert.  Thus, a sensitive assessment method that permits the detection of 

such gradually surface damage may be necessary.  Recently, in a backside wear 

study, Conditt et al. 302 modified the Hood-method (referred to as the Modified-

method) by using equally spaced score intervals (severity score of 1 = 10 %, 2 = 

20 %, … 10 = 100 %).  This particular method has been used on PE inserts from 

tibial trays with and without screw-holes, but not solely on PE inserts from trays 

without screw holes.  In addition to the surface damage other clinical parameters 
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such as patient demographics, implant characteristics (shelf storage, resin type, 

insert type, sterilization technique, etc.), and treatment history (x-rays, medical 

treatment) were also collected 302.  Both the damage scores and clinical 

parameter were implemented in a statistical multiple linear regression model to 

determine possible design features that reduce backside damage.  It remains 

uncertain if the backside damage scores of retrieved PE inserts from cemented 

tibial trays without screw holes are different for the Hood-method compared 

with the Modified-method.  

 

 

2.6 Factors Influencing the Clinical Wear Performance 

2.6.1 Implant Design 

As mentioned previously, TKR systems can be classified as fixed 

bearings or mobile bearings.  All mobile and some fixed bearing systems have a 

metal (Ti alloy or CoCr alloy) tibial tray.  In fixed bearings, either modular (PE 

locked onto a metal tibial tray with a clamping mechanism that can be released) 

or non-modular (mono-block PE components or PE components with a 

permanent mechanical interlock to a metal tibial tray) systems are rigidly fixed 

onto the tibia by either cemented or cementless (only when a metal tibial tray is 

used) fixation.  Fixed bearing designs have the following inherent design 

conflict.  Higher tibiofemoral conformity, as seen, for example, in the classic 

condylar knee design 260, is accompanied with high stress transfer to the 

component-bone interface.  However, lower tibiofemoral conformity, as seen, 

for example, in a round-on-flat knee design 345, is accompanied by reduced 

interface shear stresses but higher contact stresses and thus higher PE wear.   

Despite this design conflict, both the high and low conforming designs have 

shown excellent long-term clinical performance 14,231.  

Another design factor influencing in vivo performance of fixed 

bearings depends on whether the insert is of CR or PS type.  Generally, CR 

inserts allow more of the natural kinematics, including femoral rollback, to 

occur while the PS type inserts constrain the motion more and thus add to the 
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stability.  A PS type insert is also used in patients with insufficient posterior 

cruciate ligament stability.  In some cases, CR type inserts may be associated 

with slightly higher stiffness (resistance towards joint motions) because of pain 
346.  Rand et al. 258 reported a survivorship of 91 % of patients with CR insert 

type and 76 % of patients with PS insert type at 10 years.  The differences in 

survivorship between the CR type inserts and PS type inserts might have been 

reflected the use of modular tibial PE inserts components rather than the non-

modular designs employed by Colizza et al. 347, reporting a 98 % survivorship at 

10 years follow up for PS type inserts.   Impingement between the side walls of 

the intercondylar housing of the femoral component and the PS peg may 

transmit increased forces to the interface between the tibial PE insert and the 

metal tibial tray, resulting in wear and loosening 295.  Recently, Lee et al. 348 

showed that PS type inserts were affected by condylar lift-off at various flexion 

angles.  Such condylar lift-off may promote eccentric loading an accelerate PE 

wear 349.  In addition, using a PS type insert introduces an additional bearing 

surface 219,350 that produced more wear particles compared with the CR type 

inserts 351 and may facilitate osteolysis in the long-term.  Using a CR type insert 

or PS type inset is largely dependent on the patient joint stability 352,353 and 

according to Tanzer et al. 354 may yield similar outcomes as long as the flexion-

extension gap is balanced properly.  

In mobile bearings, the PE insert is far less constraint than the PE insert 

in fixed bearings, allowing it to move somewhat freely over the tibial tray that 

can be implanted using cemented or cementless fixation. The PE insert may be 

allowed to “rotate” or to “rotate and translate” on the tibial tray.  Here, the 

cruciate ligament is not sacrificed and only CR type inserts are available.  The 

mobile bearing knee was developed to reduce contact stresses, thus decreasing 

fatigue wear of the PE insert, and to allow more normal kinematics to occur 
355,356.  The articulating surfaces are usually highly conforming and have shown 

to be associated with lower PE wear compared with fixed bearings, as long as 

the PE insert is allowed to rotate only 6 and translational movement is inhibited 
357.  It was suggested that the rotating platform mobile bearing knee designs 
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permit less multi-directional shear at the interface, allowing the PE chains to 

orient themselves in the direction of the linear-tracking motion 39,67.  Such 

implants are deemed to be beneficial for younger, more active patients that 

require durability from their implant.  However, insert dislocation in the 

miniscal mobile bearings is considered a limiting factor among surgeons.  The 

superiority of mobile bearings over fixed bearing still remains to be proven 
255,356,358 and they only account for a small fraction of the TKR implanted on an 

annual basis 3.  It is deemed possible that mobile bearings will gain more 

popularity in the coming years with a higher population of young patients 

requiring TKA.  In any of the implant designs described above, insert thickness 

and insert conformity are features of the PE insert that may affect the clinical 

performance 270,359-361.  A minimum insert thickness of 6 mm for metal-backed 

fixed bearings was recommended for both modular an non-modular PE inserts 
360.   

 

 

2.6.2 Femoral Component 

Increased surface roughness of a hard surface facilitates abrasive wear 

when it is articulating against a softer bearing material such as PE 362.  The 

femoral components can be scratched during implantation due to the presence of 

third wear particles and increase the wear of the PE insert 363,364.  Ti alloy 

femoral components articulating against PE were associated with black 

discoloration of the synovium (metallosis) and increased PE wear that caused 

implant failure 317 (Fig. 2.12).  CoCr alloys can be used because they have a 

higher surface hardness than Ti alloys and they are nowadays the most 

frequently used femoral components.  However, the surface roughness of CoCr 

alloy femoral components was reported to still increase due to abrasive wear 363 

and tribochemical reaction 102 in vivo which may accelerate PE wear.  Also,  

Raab et al. 365 showed that the CoCr femoral component can be scratched by 

surgical instruments during arthroscopy of TKR.   
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Figure 2.12: Intraoperative view of the discoloured synovium due to excessive 
wear of the Ti alloy femoral component against PE.  
 

 

Replacing the CoCr alloy with a harder, oxidized zirconium femoral 

component significantly reduced the PE wear in simulator tests 52,366,367.   It was 

suggested that the smoother and harder oxidized zirconium components had 

increased wettability (hydrophilicity) than the rougher CoCr alloy component 

which reduced adhesive wear and abrasive wear.  In addition, Hallab et al. 368 

estimated that nearly 10 - 15 % of Americans are sensitive to Ni.  CoCr alloy 

usually contains approximately 1 % Ni whereas it is not traceable in oxidized 

zirconium.  Thus, an oxidized zirconium femoral component may be suitable for 

patients with Ni allergy 369 in addition to its wear reducing characteristics.  

Alumina ceramic femoral components articulating against PE inserts have also 
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been used to offer a more wear resistant femoral component 370,371.  The tibial 

tray can either be made of metal or even ceramic.  Apparently, ceramic femoral 

components have been successfully used in Japan without any indication of 

component fracture 371.  Nevertheless, the recent case report by Mochida et al. 
372 illustrated osteolysis in four patients that received a cementless full-alumina 

TKR with an ETO sterilized PE insert. 

 

 
2.6.3 Patient Characteristics 

Patients conduct a variety of activities during their daily living 373-376 

and increased patient activity has been associated with higher PE wear, 

particularly in the heavier male patient 377.  Weiss et al. 378 showed that despite 

increasing age, many patients with TKR participate in a wide range of 

recreational activities. Activities such as stretching, kneeling and gardening 

were most prevalent and important to the patients; they were also the most 

difficult to perform after TKA.  Low impact/demand activities such as golf and 

swimming can be performed 379, however, patients frequently ignore these 

suggestions and get involved in high demand activities such as marathon 

running which has resulted in catastrophic implant failure 380.  Patients that 

decided to expose their implant to activities such as cross-country or alpine 

skiing were more prone to osteolysis and implant failure 381.  In addition, it also 

needs to be considered that the type of daily activities vary between cultures 

around the globe 382.  Patients from non-western societies perform more a 

squatting, kneeling, or sitting cross-legged and many implants that are designed 

to accommodate such activities.  The average number of walking steps taken by 

each leg has been estimated to be 2 Mc per year 383.   
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2.6.4 Surgical Factor 

The variability in surgical technique is another factor affecting the 

performance of implants and consequently the outcome for patients.   Some 

indicators of patient outcome included the assessment of the post-operative 

behaviour such as pain and functional scores as well as the revision rate.  

Furthermore, some knee registries 2,3 report the number of surgeries performed 

and the type of implant used.  However, there is usually no comment on the 

surgeon specific outcome.  Clearly, there are better outcomes and morbidities 

for patients receiving their joint replacements at high volume centres compared 

with low volume centres 384-389.  This suggests that a surgeon performing at a 

high volume centre may have developed a superior surgical technique compared 

with a surgeon operating at a low volume centre.  However, there may also be 

superior care before and after surgery from the various support staff such as 

nurses and physiotherapists.  It has been suggested that it would be in the best 

interest of the patient to receive the joint replacement by a surgeon operating at 

a high volume  centre ( > 200 procedures/year) 387.  In recent years, computer-

assisted TKA has been introduced to aid surgery and has shown to produce 

encouraging results 390.  Although it remains uncertain whether computer-

assisted TKA produces an improved outcome compared with conventional 

TKA, computer-assisted TKA may serve as a “teaching or control tool” for 

clinicians at low volume centres.  Computer-assisted TKA may also aid in 

complex cases where patient factors can affect the visualization of implant 

placement, such as for severely morbidly obese patient. 
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2.7 Concluding Remarks 

The present thesis attempts to address both the clinical and the in vitro 

testing aspects of the wear behaviour of TKR systems.  The most frequently 

implanted contemporary TKR systems are of fixed, modular design and fixed 

by cement.  Micromotion between the tibial PE insert and the cemented tibial 

tray is regarded as the predominant source of inflammatory wear debris in 

modular total knee replacements 13,281,299 because, apparently, non-modular 

tibial components have not been associated with implant failure due to 

osteolysis 14,264.  It remains uncertain to what extent the tibial clamping 

mechanism, surface finish, and other design features contribute to the amount of 

backside wear.  Direct evidence for such influential factors on backside wear 

may be obtained by assessing the extent of surface damage on retrieved tibial 

components.  Specifically, grading methods coupled with some statistical 

analysis are frequently used to assess the amount of damage on retrieved 

implants with the goal to gain some insight into the in vivo wear process.  Such 

grading systems have been successfully used for the assessment of backside 

damage on retrieved tibial inserts from cementless and cemented tibial trays  
283,300,302.  The most frequently used grading systems are the Hood-method and 

the Modified-method.  They both permit the simultaneous assessment of both 

the damage severity and damage area representing them both in one damage 

score.   It is not clear which of these methods is the best for damage assessment 

of retrievals.   

To gain further insight into the possible in vivo wear process, knee 

simulator wear testing under clinically relevant conditions is necessary.  The 

lubrication in TKR systems may be mediated by boundary layers as indicated 

by some knee simulator wear tests and friction tests 45,63,76-78.  The review of 

boundary lubrication and joint simulator wear testing indicates that proteins, 

which are amino acid polymers, are likely to adsorb to the bearing surfaces and 

interact when the surfaces approach each other under loading.  Such interaction 

may result in shear of interacting protein chains and the extent to which this 

occurs may be inferred from biochemical tests to determine the quantity of 
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damaged proteins.  It may also be possible that proteins become damaged by the 

circulation system of the knee simulator and not only in the CoCr-PE contact 

zone.  The International Standards Organization (ISO) recommends the use of 

calf serum without giving recommendations on the protein constituent fractions, 

level of osmolality, consideration of HA as a relevant constituent, or 

recommends a clinically relevant level of thermal stability of SF that may be 

necessary for adequate boundary lubrication process.  The thermal stability of 

the lubricant may be directly related to the amount of PE wear.   

In addition, a variety of microbial growth inhibitors are tolerated by the 

ISO standards, such as SA and various antibiotics, without knowing much about 

the microbial contaminants.  Furthermore, it remains uncertain to what extent 

such microbial inhibitors are effective in creating a necessary sterile 

environment for implant wear testing.  Overall the literature review suggests 

conducting both clinical and laboratory studies of the wear in modular TKR 

systems.  In particular, the review suggests that the fidelity of wear simulator 

testing could be improved from a biochemical, boundary lubrication 

perspective.  Also, knowledge of clinical wear rates is deficient and so more 

studies of clinical wear are needed.  The recent RSA analysis approaches to 

measuring wear in vivo are very promising but clinical wear assessment via 

grading methods are still most frequently used. 
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Chapter 3: Materials and Methods 

3.1 Introductory Remarks 

The present chapter gives the details of the materials and methods 

involved in the clinical investigations and in vitro investigations of the present 

thesis.  The chapter is organized into seven sections.  The methods and materials 

involved in an extensive retrieval study are presented in Section 3.2 involving 

52 modular total knee replacements giving details of the implant and patient 

characteristics, damage features and damage assessment protocols.  Four types 

of bovine calf serum solutions with various additives were used as lubricants in 

the knee wear simulator studies that were part of the present thesis.  In addition, 

SF (the natural lubricant) from twenty human subjects was characterized and 

compared with the calf sera used in the simulator.  All of these lubricants are 

described in Section 3.3.   Next, a detailed description of the knee simulator 

wear apparatus and testing procedures are provided in Section 3.4.  Biochemical 

and microbiological analyses were performed on the lubricants as described in 

Sections 3.5 and 3.6.  Volumetric wear was determined from weight loss of the 

PE inserts. Surface analysis techniques such as SEM, X-ray analysis, and 

contact profilometry were used to investigate the wear mechanisms. All of these 

wear assessment procedures are described in Section 3.7.  Finally, statistical 

tests were used extensively in both clinical investigations and in vitro 

investigations as described in Section 3.8.  The approach taken in the present 

thesis was almost purely experimental and this accounted for the large number 

of different sections. 
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3.2 Implant Retrieval Analysis  

3.2.1 Implant Characteristics 

The retrieved tibial components, used in the present thesis, were 

selected from a larger collection of retrievals that had been collected, stored and 

catalogued at the LHSC.  Upon retrieval from the patient, each component had 

been submersed in a 10 % buffered formalin solution, then cleaned in a non-

abrasive fashion and stored in air at room temperature (RT).  None of the 

retrieved implant components were subjected to ultra-sonic cleaning.  For the 

present study, a total of 52 implants were selected and investigated including 12 

model A implants (AMK®, DePuy Orthopaedics Inc., Warsaw, IN), 16 model B 

implants (Genesis I®, Smith & Nephew, Memphis, TN) and 24 model C 

implants (Genesis II®, Smith & Nephew, Memphis, TN).  Each model (A, B, or 

C) had a specific tray locking mechanism, surface finish and alloy (Table 3.1, 

Fig. 3.1).  The surgeries were for both primary (42) and revision (10) cases.  

This further distinction was denoted as implant “type” because the primary 

implants (P) had shorter stems and less bulk than the revision implants (R).   

 

 

Table 3.1: Implant design characteristics and the resultant classification. 

Implant Name  
(Manufacturer) 

Model 

 
No. 

Retrieved 
 

FEATURES 
locking mechanism, tray surface finish, 

tray alloy, implant type, insert type, 
sterilization 

AMK® 
Anatomical Modular Knee 

(DePuy Orthopaedics, Warsaw, IN) 
A 12 

central dove-tail, polished 
CoCr alloy (ASTM F1537 or F75), all P, 

CR or PS, GA (2.5 - 4.0 MRad) or GP 

Genesis I® 
(Smith & Nephew, Memphis, TN) 

B 16 
partial-peripheral, grit-blasted, 

Ti alloy (ASTM F136 or F1472), P or R 
CR or PS, GA (~3 MRad) or ETO 

Genesis II® 
(Smith & Nephew, Memphis, TN) 

C 24 
partial-peripheral, polished, 

Ti alloy (ASTM F1472), P or R 
CR or PS, ETO 

P = Primary, R = Revision, CR = Cruciate retaining,  PS = Posterior stabilized, 
GA = Gamma-in-air; GP = Gas Plasma, ETO = Ethylene oxide, ASTM = 
American Society for Testing and Materials. 
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Figure 3.1: Typical backside surfaces of retrieved polyethylene (PE) inserts and 
their corresponding tibial trays for cases 12, 13 and 51 (see Table 3.1 for 
specific details).  Model A is the AMK®, model B is Genesis I and model C is 
Genesis II®.  The six regions for damage analysis are shown on the PE insert of 
the model C implant. 

 
 

 

The selected trays had all been fixed with cement and thus lacked 

screw holes that were typically used for the initial fixation associated with the 

application of bone in-growth surfaces. However, model B implants did have a 

central instrumentation hole to facilitate tray positioning.  In the present study, 
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tables were developed that contained the detailed data values for each of the 

retrievals.  The purpose of this level of detail and rigor was to permit the 

addition of new data and subsequent, or perhaps alternative, statistical analyses.  

Besides the implant model (A, B, or C) which essentially denoted a specific 

geometry and the femoral component alloy, each individual case had a number 

of specific implant features (Table 3.2).  

 

 

Table 3.2: Implant characteristics for individual cases (Implant type: P = 
primary, R = revision; Insert type: CR = posterior cruciate retaining, PS = 
posterior cruciate substituting). 

Case 
No. 

Implant 
model 

Insert 
type 

Sterilization 
Implant 

type 

Shelf 
storage 

[months] 

Insert 
thickness 

[mm] 

1 A PS NGA P 38.2 10 

2 A CR GA P 2.73 16 

3 A PS GA P 38.7 24 

4 A CR NGA P 13.8 16 

5 A PS NGA P 21.6 16 

6 A CR GA P 9.63 14 

7 A PS GA P 2.93 12 

8 A PS NGA P 35.8 18 

9 A CR NGA P 20.3 14 

10 A CR GA P 2.73 14 

11 A CR NGA P 56.1 12 

12 A CR NGA P 26.1 14 

13 B PS GA P 11.5 20 

14 B PS GA P 69.8 20 

15 B CR NGA P 3.29 12 

16 B PS GA P 56.8 10 

17 B PS NGA P 7.82 10 

18 B CR NGA P 25.1 12 

19 B PS NGA P 16.3 10 

20 B PS GA R 2.14 25 

21 B PS GA R 3.58 12 

22 B PS GA R 17.9 20 

23 B PS GA R 24.0 12 

24 B CR GA R 17.7 12 
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Table 3.2 (continued): Implant characteristics for individual cases (Implant 
type: P = primary, R = revision; Insert type: CR = posterior cruciate retaining, 
PS = posterior cruciate substituting). 

Case 
No. 

Implant 
model 

Insert 
type 

Sterilization 
Implant 

type 

Shelf 
storage 

[months] 

Insert 
thickness 

[mm] 

25 B PS GA P 32.2 20 

26 B CR GA P 6.61 10 

27 B CR GA P 12.6 8 

28 B PS GA P 18.8 15 

29 C PS NGA R 1.58 15 

30 C PS NGA P 5.49 11 

31 C PS NGA P 5.29 18 

32 C PS NGA P 14.6 11 

33 C PS NGA R 56.4 21 

34 C PS NGA P 9.47 11 

35 C PS NGA P 5.00 13 

36 C PS NGA P 2.73 11 

37 C PS NGA P 19.9 13 

38 C PS NGA P 26.5 13 

39 C PS NGA P 5.16 11 

40 C PS NGA P 7.89 15 

41 C PS NGA P 6.67 13 

42 C PS NGA P 18.8 11 

43 C PS NGA R 29.5 21 

44 C PS NGA R 59.8 21 

45 C PS NGA P 4.77 11 

46 C PS NGA P 37.6 15 

47 C PS NGA P 11.5 15 

48 C PS NGA P 19.2 13 

49 C CR NGA P 16.5 13 

50 C PS NGA P 38.2 18 

51 C PS NGA P 6.35 11 

52 C PS NGA R 19.6 18 

 

 

There were 13 CR and 39 PS inserts.  All tibial inserts were machined 

from ram-extruded PE bar stock (GUR 1050, Ticona® Inc., Summit, NJ) with 

17 sterilized by GA irradiation and 35 sterilized by NGA methods of either GP 
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or ETO.   None of these PE inserts had been subjected to any additional cross-

linking treatment for the specific purpose of reducing the wear.  The mean tibial 

insert thickness was 14 mm (range, 8 mm - 25 mm) and for each of the B and C 

implant models an identification number was engraved into the backside surface 

of the PE insert by the manufacturer.  Shelf storage time prior to implantation 

for the GA inserts was 19.4 months (range, 2.14 - 69.8 months) and for the 

NGA inserts 19.8 months (range, 1.58 - 58.2 months). 

 

 

3.2.2 Patient Characteristics 

Prospectively collected surgical data and clinical demographics were 

compiled for each patient from his/her individual data registered in the 

International Orthopaedic On-line Database 391 (Table 3.3).  These data included 

the implantation period (IP), gender, mass, height, age, and the stated reason for 

the surgery itself.  Model A implants were retrieved after a mean IP of 45 

months (range, 1 - 86 months), model B implants after a mean IP of 64 months 

(range, 9 - 139 months), and model C implants after a much lower mean IP of 

12 months (range, 0.5 - 34 months).  The mean patient mass was 91.61 kg 

(range, 55 - 156 kg), the mean height was 1.66 m (range, 1.47 - 1.88 m) and the 

mean age was 68 years (range, 42 - 88 years).  The original primary joint 

replacement surgeries were performed because of OA except for case 26 which 

was RA. The implants were retrieved from 24 male and 28 female patients.  

Some of the patients had been subjected to a second revision surgery and thus 

revision type implants were available for examination in the present study.    

The stated reasons for revision surgery (both first and second) included 

infection (27), instability (10), and osteolysis (5).  The remaining reasons for 

surgery included stiffness (3), for idiopathic (origin of unknown) pain (2), 

delamination at the tibiofemoral articulation (2), periprosthetic fracture (1), 

recurrent effusion (1), and patellar dislocation (1). The mean IP to revision 

surgery was 18 months for infection (range, 0.5 - 83 months), 49 months for 
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instability (range, 5 - 101 months), 84 months for osteolysis (range, 40 - 139 

months) and 46 months due to all the remaining reasons (range, 3 - 97 months). 

 

 

Table 3.3: Patient features for individual cases (M = male, F = female, IP = 
implantation period). 

Case 
No. 

IP 
[months] Gender Mass [kg] Height [m] Age [yrs] 

 
Reason for Surgery 

 

1 37.2 M 93.0 1.70 62 Idiopathic pain 

2 76.6 M 93.0 1.75 74 Femoral osteolysis 

3 49.1 F 79.0 1.58 80 Instability 

4 35.2 M 72.0 1.62 48 Instability 

5 38.0 F 82.0 1.60 84 Infection 

6 66.5 F 95.3 1.70 77 Instability 

7 70.3 M 88.0 1.70 74 Instability 

8 16.6 F 83.0 1.70 42 Instability 

9 1.18 M 89.0 1.83 78 Infection 

10 86.4 F 82.0 1.62 79 Periprosthetic fracture 

11 16.1 M 156.0 1.80 68 Infection 

12 47.1 M 95.0 1.68 83 Instability 

13 83.6 M 92.0 1.80 78 Recurrent effusion 

14 34.9 M 96.6 1.73 70 Delamination 

15 25.6 F 72.0 1.60 64 Infection 

16 9.57 M 88.0 1.75 70 Infection 

17 30.3 F 79.4 1.56 81 Infection 

18 10.1 F 89.0 1.65 82 Stiffness 

19 24.9 F 60.5 1.47 80 Infection 

20 89.6 F 73.0 1.58 88 Instability 

21 97.9 F 127.0 1.68 61 Delamination 

22 96.2 M 77.7 1.73 74 Femoral osteolysis 

23 87.4 M 121.0 1.81 75 Idiopathic pain 

24 70.1 M 113.0 1.70 66 Femoral osteolysis 

25 40.8 F 89.0 1.56 62 Tibial osteolysis 

26 140. F 55.0 1.62 59 Tibial osteolysis 
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Table 3.3 (continued): Patient features for individual cases (M = male, F = 
female, IP = implantation period). 

Case 
No. 

IP 
[months] Gender Mass [kg] Height [m] Age [yrs] 

 
Reason for Surgery 

 

27 101.0 M 101.0 1.71 64 Instability 

28 82.8 F 58.0 1.65 77 Infection 

29 2.27 M 95.7 1.70 54 Infection 

30 16.3 F 117.0 1.52 50 Stiffness 

31 9.80 F 93.4 1.56 71 Infection 

32 0.53 F 73.0 1.61 74 Infection 

33 3.39 F 86.0 1.57 61 Infection 

34 3.42 F 117.0 1.52 60 Stiffness 

35 23.3 M 78.0 1.53 49 Infection 

36 17.3 F 92.0 1.53 66 Infection 

37 12.3 M 82.0 1.72 74 Infection 

38 13.2 F 105.0 1.72 50 Infection 

39 17.0 F 97.0 1.52 49 Instability 

40 25.3 F 69.0 1.68 80 Infection 

41 5.26 F 65.0 1.59 78 Instability 

42 15.2 M 114.0 1.88 72 Infection 

43 6.87 M 132.0 1.70 63 Infection 

44 1.78 F 90.0 1.57 61 Infection 

45 4.31 F 92.0 1.52 51 Patellar dislocation 

46 12.9 M 83.9 1.80 74 Infection 

47 22.8 F 111.0 1.60 55 Infection 

48 3.81 M 125.0 1.87 73 Infection 

49 11.8 M 98.8 1.80 75 Infection 

50 26.7 F 68.0 1.50 75 Infection 

51 34.0 M 91.4 1.75 77 Infection 

52 1.94 M 90.0 1.73 83 Infection 
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3.2.3 Damage Features 

Generally, surface damage was indicated when the appearance was 

different from the original machining marks.  At low IP, creep 392,393  might have 

crushed the machining marks to some extent and thus the backside damage 

score (BDS) would be related to creep not wear.  However, this distortion of the 

BDS by creep was deemed to be small.  Retrieved tibial inserts were graded 

under 10X - 40X magnification using a stereo-light microscope (SZ-40, 

Olympus, Tokyo, Japan).  Various damage features (burnishing, grooving, 

indentations, deformation, pitting, and stippling) were identified. An image of a 

worn backside area on a retrieved PE insert is shown in Figure 3.2.  Burnishing 

was represented by a very smooth, highly polished and reflective area.  

Grooving was identified by detection of relatively long scratches having clear 

directional orientation.  Elongated craters were also characterized as grooving 

(Fig. 3.3) and might have been caused by third-body abrasion.  However, when 

the craters were round-shaped in the plane of the surface, they were classified as 

“pits” (Fig. 3.4).  Indentations were characterized by randomly organized short 

scratches.  Deformation was denoted by a depressed PE surface without major 

material removal which still permits the machining marks to be visible.    

Stippling was identified as a circumferential wear pattern on both the PE insert 

and the tibial tray.  It was described explicitly by Engh et al. 299 and such 

damage was shown in earlier in Figure 2.10.  
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Figure 3.2:  Macrograph of a worn PE backside surface showing damage 
features such as burnishing, grooving, indentations, deformation, and pitting 
relative to the unworn, pristine machining marks.  
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Figure 3.3:  SEM image of an elongated surface crater possibly due to third-
body abrasion.  Such elongated craters were characterized as “grooving”.  
 
 
 

 
 

Figure 3.4:  SEM image of a round surface crater possibly due to surface 
fatigue.  Such craters were characterized as “pitting”. 
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3.2.4 Damage Assessment Protocol 

The backside surfaces of the tibial inserts were divided into six regions 
44,300 as shown in Fig. 3.1 (Model C insert) to facilitate the estimation of areas 

exhibiting the various damage features.  In each of the six regions, two semi-

quantitative grading methods were applied to identify damage features based on 

severity and the proportion of the regions’ surface area that was affected.  The 

first method is referred to as the Hood-method 26 (see Section 2.5.3).  Several 

studies 220,282,300 have applied the Hood-method to identify backside damage in 

which the surface damage was assessed in severity increments of  0 %, 0 - 10 

%, 10 - 50 % and  50 - 100 % were assigned scores of 0, 1, 2 and 3, 

respectively.  The worst possible BDS for this method would be 108 (maximum 

score of 3 in each of the 6 sections for each of the 6 damage features) but it 

would be very difficult to distinguish the 6 damage features and judge their 

severity when they all applied over the total area available.  The second method, 

referred to as the Modified-method, assessed the surface damage severity in 

regular decimal steps from 0 %, 0 % ≤ 10 %, > 10 ≤ 20 % up to > 90 ≤ 100 %, 

assigning a score of 0, 1, 2 up to 10.  The principle of the second Modified-

method was developed independently by the author of the present thesis 44,  but 

it had been used first by another research group 302.  The worst possible BDS for 

this method would be 360 (maximum score of 10 in each of the 6 sections for 

each of the 6 damage features).   

To illustrate the complexity of the Hood-method and the Modified-

method of damage assessment, a conceptual example of surface damage is 

shown that has only one damage feature, two damage areas of varying amounts 

and damage intensities of varying extents (Fig. 3.5).  Twelve different cases of 

surface damage are devised to illustrate how the two damage assessment 

methods function.  In the conceptual example, the outer circle (of radius ro) 

represents the total area that can be affected by surface damage.  The inner 

circle (of radius ri) represents an region (area B) with a certain severity of the 

damage feature.  The difference between the total area and area B is labeled area 

A.   The different gray scales are used to indicate the damage severity.  For 
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example, a white area represents the unworn surface.  To include the severity in 

the assessment, damage severity factors (DSF) were assigned as follows: no 

damage (DSF = 0), just visible damage (DSF = 0.33), clearly visible damage 

(DSF = 0.66), and complete damage (DSF = 1) to the approximated damage 

area.  Implementing such damage severity factors was shown to permit a more 

objective assessment of surface damage. 

 

 

 
Figure 3.5:  Schematic showing the illustration of 12 cases with 2 different 
areas of surface damage caused by one damage feature for the backside PE 
surface. Each of the large circles represents the total surface area. The increased 
darkness of the grey scales represented increasing damage and thus damage 
severity factors (DSF).  The areas of damage and their severity were included in 
determining the total BDS for each case (Tables 3.4 and 3.5) (ri ≡ radius of the 
inner circle; ro ≡ radius of the outer circle). 
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Combining both area and severity in the aforementioned manner had been 

performed earlier by Wasielewski et al. 341 in combination with the Hood-

method.   Increasing the resolution of the DSF, i.e. using a scale from 1 to 10 

rather than from 0 to 4 as used in the present study, was not conducted because 

it was difficult to differentiate between subtle changes in damage severity.  The 

backside damage scores (BDS) were determined for the twelve cases, following 

both the Hood-method and the Modified-method as explained in Tables 3.4 and 

3.5.   

For example, the surface damage in case 4 is given as follows: area A 

was approximately 30 % of the total area, area B accounted for approximately 

70 % of the total area.  Area A was determined to have experienced surface 

damage but some machining marks remained and thus a DSF of 0.66 was 

assigned.  Area B was complexly damaged with no machining marks remaining 

and thus a DSF of 1 was assigned.  Depending on the grading method, the score 

for each area was multiplied with their corresponding DSF and then summed to 

give the total damage score.  The total damage score for case 4 was 4.32 

following the Hood-method and 8.98 following the Modified-method. 

The actual assessments of the 6 damage features in the 6 regions of the 

inserts on each of the 52 inserts giving a total of 1836 values of BDS were not 

performed with the precision of the illustrative example. After looking at the 

insert with a low power optical microscope, the percentage of the total area that 

had a particular damage feature was estimated by eye rather than measured and 

the severity was estimated rather than quantified in some manner.  Obviously 

some judgment was involved in both of the estimates and even if the areas had 

been determined more precisely, their boundaries would still be a judgment and 

so would the severity.  These shortcuts did introduce a certain lack of precision 

but the overall accuracy was not considered to be compromised.  Thus, the 

illustrative example was only intended to indicate the guiding principles of the 

damage assessment methods.  

The total damage scores for all twelve cases were determined with both 

the Hood-method and the Modified-method (Figure 3.6). The total damage 
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scores were about the same for both methods when small amounts of surface 

area (10 - 30 %) were damaged (cases 9 - 11) but were varying amounts higher 

for the Modified-method when the damaged surface area was greater than 30% 

and the DSF was greater than zero (cases 1 - 8 and 12). These observations 

suggested that the modified method might provide better differentiation of the 

more damaged surfaces and this might be advantageous when correlating 

damage with certain features of the inserts.  However, in severely damaged or 

worn surfaces damage features may overlap, making their identification and 

assessment more difficult. 

Anterior BDS and posterior BDS values were assigned for comparison 

purposes by grouping the three anterior and the three posterior regions, 

respectively.  Similarly, medial and lateral BDS were assigned by grouping the 

two medial and the two lateral regions, respectively.  All specimens were 

randomized prior to the examination and the reported scores were the mean of 

the values found by two designated “observers”, the present author and a trained 

undergraduate student, Christopher M. Haydon, HBSc.  The BDS obtained by 

the author and the student using both the Hood-method and the Modified-

method on the 52 retrieved PE inserts are shown in the Appendices A and B. 
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Table 3.4: Scoring procedure used with the Hood-method (see Fig. 3.5). 
Approx. Damage Area 

[%] 
Damage Severity Factor 

(DSF) 

BDS (0% ≡ 0;  0 ≤ 10% ≡ 
1; >10 ≤ 50% ≡ 2; >50 ≤ 

100% ≡ 3) x DSF Case 

A B A B A B 

Total BDS 

1 100 - 0.33 - 3 x 0.33 - 0.99 

2 100 - 0.66 - 3 x 0.66 - 1.98 

3 0 70 0 1 0 3 x 1 3 

4 30 70 0.66 1 2 x 0.66 3 x 1 4.32 

5 30 70 0 0.33 0 3 x 0.33 0.99 

6 50 50 0 0.66 0 3 x 0.66 1.98 

7 70 30 0 1 0 2 x 1 2 

8 90 10 0.66 1 3 x 0.66 1 x 1 2.98 

9 70 30 0 0.33 0 2 x 0.33 0.66 

10 80 20 0 0.66 0 2 x 0.66 1.32 

11 90 10 0 1 0 1 x 1 1 

12 90 10 0.33 1 3 x 0.33 1 x 1 1.99 

 
 
 
 

Table 3.5: Scoring procedure used with the Modified-method (see Fig. 3.5). 
Approx. Damage Area 

[%] 
Damage Severity Factor 

(DSF) 

BDS (0% ≡ 0;  0 ≤ 10% ≡ 
1; >10 ≤ 20% ≡ 2; …; > 
90 - 100% ≡ 10) x DSF Case 

A B A B A B 

Total BDS 

1 100 - 0.33 - 10 x 0.33 - 3.3 

2 100 - 0.66 - 10 x 0.66 - 6.6 

3 0 70 0 1 0 7 x 1 7 

4 30 70 0.66 1 3 x 0.66 7 x 1 8.98 

5 30 70 0 0.33 0 7 x 0.33 2.31 

6 50 50 0 0.66 0 5 x 0.66 3.3 

7 70 30 0 1 0 3 x 1 3 

8 90 10 0.66 1 9 x 0.66 1 x 1 6.94 

9 70 30 0 0.33 0 3 x 0.33 0.99 

10 80 20 0 0.66 0 2 x 0.66 1.32 

11 90 10 0 1 0 1 x 1 1 

12 90 10 0.33 1 9 x 0.33 1 x 1 3.97 
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Figure 3.6: The damage score for the cases 1 - 12 obtained with the Hood-
method and the Modified-method.  Note the similarities between the damage 
score obtained with either method for mode 9 - 11 (small surface damage) and 
higher damage score for Modified-method. 
 

 

3.2.5 Melt Annealing 

A “melt-annealing” treatment, developed by Muratoglu et al. 74, was 

used to take advantage of the shape memory effect of PE and thus reverse some 

of the PE deformation.  Retrieved PE inserts were placed in a nitrogen-flushed, 

low pressure oven and subsequently heated at rate of ~ 2 ºC per min to an 

annealing temperature of ~ 120 ºC.  The samples were kept at the annealing 

temperature for 20 min and then cooled down to RT.  If all the deformation 

were caused by creep, the original machining marks were expected to return 

because of this treatment.  Afterwards, the surfaces were re-examined using a 

contact profilometer (Tencor® P-10, KLA-Tencor, Milpitas, CA) to evaluate the 

surface change whether the original machining marks had returned or not.  

However, this method ran into problems for PE inserts that had been sterilized 

in a way that caused polymeric chains to be severed and free radicals at the 

chain ends to combine with oxygen, such as for GA inserts.  The oxidized PE 
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lost its internal structure and thus could be subject to creep and the machining 

marks would not recover.   

 

 

3.3 Lubricants 

3.3.1 Collection of Synovial Fluid 

Prior to the initiation of the SF study, an application was submitted to 

the Ethics Committee at the University of Western Ontario for permission to 

obtain a sample of the SF from the knee of a patient just prior to surgical 

replacement of the knee with a primary TKR. Upon approval of the ethics 

application (Ethical Board Review Number 12536E), patients were recruited 

with the assistance of the research nurse Julie Marr.  Each patient was provided 

with a consent form that had been approved by the Ethics Committee.  

Signatures were obtained prior to surgery.  Patients who had previously 

received any knee injections for pain relief (i.e. Cortisone (a steroid hormone) 

or Synvisc® HYLAN G-F 20 (Genzyme, Cambridge, MA)), or patients with 

rheumatoid arthritis (RA) or other inflammatory arthritis, were eliminated from 

the study.  Also, patients were excluded who were undergoing revision surgery 

or who had received a high tibial osteotomy.   

Twenty patients were selected to participate in the present study (Table 

3.6):  ten male and ten female patients, with a mean age of 64.7 years (range, 60 

- 70 years), undergoing surgery for primary TKA.  Ten were right knee 

surgeries and ten were left knee surgeries.  Based on the pre-admission notes, 

the patient-specific body-mass-index (BMI) measured on average 31 (range, 26 

- 41 BMI).  SF was drawn just prior to the first incision of the primary knee 

arthroplasty procedure, by four independent physicians (Drs. Robert B. Bourne, 

Steven J. MacDonald, Richard W. McCalden, and Douglas D. Naudie).  Sterile 

techniques, as per hospital protocol, were maintained to protect the patient.  The 

obtained SF quantity varied with a mean of 4 ml (range, 1 - 8 ml).   
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Table 3.6: Nomenclature and patient characteristics of SF samples. 
SF identification BMI Gender Knee Age 

SF1 41 F Left 61 

SF2 33 F Left 64 

SF3 31 M Left 62 

SF4 31 F Right 68 

SF5 24 F Right 63 

SF6 40 F Left 69 

SF7 26 M Left 65 

SF8 30 M Left 70 

SF9 27 F Right 66 

SF10 29 M Right 70 

SF11 32 F Right 64 

SF12 38 F Left 62 

SF13 31 F Right 65 

SF14 26 M Left 63 

SF15 38 F Right 61 

SF16 27 M Right 60 

SF17 26 M Left 64 

SF18 31 M Left 60 

SF19 30 M Right 66 

SF20 36 M Right 70 

 
 

 

3.3.2 Calf Sera 

A number of calf sera were obtained from Hyclone (Logan, UT) and 

used in the wear simulator studies of the present thesis.  They were bovine calf 

serum (BCS), newborn calf serum (NCS), alpha-calf serum (ACS) and iron-

supplemented alpha-calf serum (ACS-I) with compositions as listed in Table 

3.7.  ACS and ACS-I had a low in γ-globulin fraction.  All calf sera were 

delivered frozen in 500 ml containers and they were stored at -20 ºC.  Individual 

certificates of analysis were obtained for each batch of serum used to provide 

data on the individual protein and inorganic component concentrations.  The 

total protein concentration and individual protein constituents fractions, varied 

to some extent for the different sera.  The albumin fraction of ACS was 
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consistently found to be highest and very similar to that of ACS-I.  The iron 

(Fe) concentration in ACS-I was at least 6.5-times higher than that for the other 

three sera.  ACS-I was used consistently in actual wear testing experiments due 

to unavailability of ACS from the manufacturer. 

 
 
 

Table 3.7: Characteristics of four calf sera. Note the difference in constituents. 
Specifications BCS NCS ACS ACS-I 

Lot # AQC23290 APE21200 APL22372 AQE23894 

Albumin [%] 51.7 40 71.7 66.3 

α-1-globulin  [%] 3 11.2 3.8 4.5 

α-2-globulin [%] 12.7 22.8 8.4 8.2 

β-globulin [%] 20.4 14.2 15.8 19.2 

γ-globulin [%] 12.2 11.8 0.3 1.1 

Total protein [g/l] 69 52 42 41 

Fe [mmol/L] 0.0065 0.0157 0.0085 0.0877 

Ca [mmol/L] 2.78 2.70 <0.5 <0.5 

Inorganic P [mmol/L] 3.16 2.82 <0.2 <0.2 

Mg [mmol/L] 1.02 1.06 0.06 0.08 

pH 7.29 7.49 7.65 7.71 

Osmolality [mmol/kg] 301 290 291 283 

 

 

3.3.3 Lubricant Mixtures  

Prior to commencing the wear tests, the calf sera were allowed to thaw 

overnight at RT.  All sera were diluted to a total protein concentration of 

approximately 17 g/l as recommended by ISO 14243-3 41 using either distilled 

water (DW), obtained from the internal hospital supply system, or phosphate-

buffered, blood-bank saline solution (PBS; Cat. # 72060-034, VWR, 

Mississauga, ON).  The PBS had a pH equivalent to that of human blood and 

was free of preservative.  The PBS was recommended for serological testing as 

well as for general laboratory use and had been used by other research groups 

for implant wear testing 35.  The osmolality of PBS was 286 ± 0.57 mmol/kg 

and this was about 6 times higher than that of DW having an osmolality of 46 ± 
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2.08 mmol/kg. The serum composition, dilution and additives were selected to 

match the conditions of tests conducted by DePuy Orthopaedics using the same 

implant model (Warsaw, IN) and thus allow comparisons of the wear data.  

Sodium hydroxide pellets were dissolved to raise pH level to a target value of 

7.63 ± 0.1 which corresponded to that of the human body.  Ethylene-diamine-

tetraacetic acid (EDTA), a chelator with the ability to bind dissolved calcium 

and  metal ions 394, was added to a final concentration of 20 mmol/l to inhibit 

precipitates in the articulation that could affect the PE wear rate 35, as suggested 

by McKellop et al. 152 and the wear studies at DePuy Orthopaedics by McNulty 

et al. 45-47.   

Two types of anti-microbial agents were added to the lubricants to 

inhibit microbial growth.  SA was used as a microbial inhibitor based on the 

recommendations of McNulty et al. 45-47 . SA was added to lubricants to achieve 

a final concentration of 0.2 % per volume lubricant 30.  Alternatively, an 

antibiotic-antimycotic (AA) mixture (Cat. # 15240-062, Invitrogen, 

Missassauga, ON) was added to the lubricant to inhibit microbial growth.  The 

AA was expected to target a broad spectrum of bacteria, fungi, and yeasts.  The 

AA contained 10,000 units of penicillin, 10,000 µg streptomycin, 25 µg 

amphotericin B/ml, and streptomycin sulfate as the antibiotic.  The antimycotic 

constituent of AA was amphotericin B (Fungizone®) which was diluted by the 

manufacturer with a 0.85 % saline solution.  

 The AA was added to the lubricant at a concentration of 5 ml AA to 

500 ml of the diluted serum lubricant that included all the previous additions at 

the beginning of the wear test for each station.  Additional 5 ml of AA was 

periodically added (about every 0.16 Mc) to each wear station to maintain 

antimicrobial efficacy.  In some of the lubricants, HA (Lifecore Biomedical, 

Inc.; MW = 1.78 MDa) was added to a final concentration of 1.5 g/l and 

dissolved by stirring for 12 h at 37 ºC 102.  Considering the various solutions, a 

total of six different lubricants were used in the studies of the present thesis 

(Table 3.8). 
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Table 3.8: Lubricants used in the simulator wear tests. 
Lubricant  identification Calf  serum Dilutive 

media 
Antimicrobial 

agent HA 

BCS lubricant (BCS + DW + SA) BCS DW SA No 

NCS lubricant (NCS + DW + SA) NCS DW SA No 

ACS lubricant (ACS + DW + SA) ACS DW SA No 

DW lubricant ACS-I + DW + AA) ACS-I DW AA No 

PBS lubricant (ACS-I + PBS + AA) ACS-I PBS AA No 

HA lubricant (ACS-I + PBS + AA + HA) ACS-I PBS AA Yes 

 
 
 
 
3.4 Knee Simulator Wear Testing 

3.4.1 Test Apparatus  

A six station AMTI knee simulator (KS3-6-1000, Serial # 120219, 

AMTI, Waltham, MA) was acquired.  This simulator was obtained to 

specifically test TKRs under physiological load and motions.  After 

considerable delay, the knee simulator was installed in a large laboratory, 

located at the basement of the University Hospital at the LHSC.  The simulator 

consisted of a left (L) bank and a right (R) bank with separate load and motion 

actuators.  Each bank had three dynamic wear stations and two load-soak (LS) 

stations (Fig. 3.7 and 3.8).  The wear stations were subject to vertical loading, 

flexion-extension (FE) motion, anterior-posterior (AP) motion and internal-

external (IE) rotation.  The AP and IE motions caused additional loading on the 

implant depending on the geometric constraints and this was recorded by multi-

component load cells at each dynamic wear station. A pneumatically driven, 

medial-lateral loading actuator was installed (and could have been re-oriented to 

apply AP loading) but it was not used in the studies of the present thesis because 

the ISO recommendations for displacement controlled testing were followed 41. 

The LS stations only experienced vertical loading but had the same 

lubricant as the dynamic wear stations.  The LS stations were used to provide 

control values for the change in fluid content of the PE inserts.  It was assumed 

that any change in fluid content of the LS inserts would also have occurred for 
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the wear station inserts.  Thus, the fluid content change could be used to correct 

the weight loss measurements of the wear station inserts that were then used to 

determine the volumetric wear.  This approach to implant wear testing of PE 

components was well established 152 and had been used in the wear tests 

performed by DePuy Orthopaedics by McNulty et al. 45,47. 

 
 

 

Figure 3.7: The left (L) bank of the AMTI knee simulator (AMTI, Waltham, 
MA). The stations L1, L2, and L3 are the wear stations (dynamic) while L4 and 
L5 are the load-soak (LS) stations (only vertical loading, no motion). 
 
 

The knee simulator was controlled and operated by an external PC that 

used the AMTI (Waltham, MA) software packages (SIMMAC for wear testing 

and SIMCAL for calibration procedures).  The software ran on a Windows XP 

operating system.  The simulator had a L bank control and a R bank control, 

allowing the separate actuators (mentioned previously) on each bank to operate 

independently.  In terms of computer hardware, each bank had separate control 

cards for each individual motion and for the vertical loading.  Each control card 

had multiple potentiometers that could be adjusted during the calibration 

process.  These adjustments made the actuators move in accordance with the 

x 

y 

z 

LS stations 
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specified loading or displacement.  For the linear and angular displacements and 

the vertical load, the control was closed loop and feedback control was present 

in the cycle-by-cycle operation of the wear simulator.  The calibration settings 

were checked about every 1 Mc and a full scale calibration was performed about 

every 3 Mc♠.  The vertical displacement was measured by a position sensor 

located in each station that uses a pair of magnets to measure the movement.  As 

mentioned previously, each wear station had an embedded multi-component 

force sensor that allowed the recording of Fx, Fy, Fz and Mx, My, Mz.  This 

allowed the loads that resulted from the motions to be monitored.   

The latest version of the AMTI knee wear simulator allows lateral 

loads to be controlled by a “software spring” that is meant to represent the soft 

tissue constraints acting on a knee implant in vivo.  However, the extent of soft 

tissue constraint is difficult to estimate and varies considerably depending on 

the patient and soft tissue balancing performed during the surgery.  In any case, 

the studies of the present thesis were conducted under conditions of motion 

control that was imposed in a closed loop fashion during a calibration 

procedure.  The vertical load was imposed with some precision and 

continuously monitored and was considered a dominant factor in implant wear.   

Each wear station had its own lubricant recirculation unit with a 500 ml 

reservoir, both externally located relative to each wear station.  An externally 

located heater/chiller unit was set at 37.5 ºC to ensure that each serum container 

was heated to a temperature of 37 ± 2 ºC.  A custom-built pneumatic 

intravenous (IV) bag inflation system was built to ensure that the IV bags 

covering the wear stations were permanently inflated during the wear tests.  

Inflating the bags ensured that no lubricant leakage occurred.  Otherwise the bag 

collapsed, got pinched and eventually was punctured thus causing lubricant 

leakage that stopped the wear test.  The LS stations did not have a recirculation 

unit and thus remained at RT. All wear tests were performed at a frequency of 1 

Hz. The data from the force sensor and the displacement sensor were recorded 

at a rate of 200 data points/second at either every 0.01 Mc or every 0.1 Mc. 

                                                 
♠ AMTI recommends calibrating the simulator once a year (~ 12 Mc). 
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Figure 3.8: Image showing station L2 of the AMTI knee simulator (AMTI, 
Waltham, MA) with the following components:  (1) an intravenous (IV) bag 
that contains the lubricant; (2) an externally located and heated fluid container; 
(3) a peristaltic recirculation pump; (4) a data transfer ribbon cable; (5) a PE 
hose that is connected to the IV bag and used to supply pressurized air to inflate 
the bag; (6) a thermo couple connected to the wear station to measure the 
lubricant temperature.  
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3.4.2 Calibration 

Prior to the calibration, the knee simulator was run for 0.005 Mc 

following ISO 14243-3 without implant components to ensure the appropriate 

warming up of the hydraulic fluid and, subsequently, the simulator.  The 

calibration of each wear station was performed after the author obtained specific 

training from AMTI (Waltham, MA) which involved using the supplied knee 

simulator manual and calibration kit.  The calibration was performed by two 

individuals (the author and the laboratory technologist, Kory Charron) and 

required about 3 - 4 h.  Calibrations were performed in four consecutive steps. 

These calibration steps involved the static displacements (i.e. FE motion, IE 

rotation, and AP translation), vertical load actuator, static force sensor, and 

dynamic performance.  The calibrations were performed in accordance with the 

“user manual” supplied by AMTI (Waltham, MA) 395. 

Essentially, the calibration procedures involved using a screwdriver to 

adjust potentiometers that were located on the control boards of the simulator.  

These potentiometers were identified in the user manual as the loop gain 

(affecting the speed on which the actuator was driven to meet a certain 

command), the feedback gain (affecting the span of the feedback), and the offset 

gain (affecting the offset of the feedback).  The actual linear and angular 

displacements were measured with gauging tools.  These included a digital 

vernier for the AP motion, a digital protractor for the FE motion, and an analog 

protractor for the IE rotation.  The analog protractor was calibrated and 

measured with the digital protractor.  The actual load calibration was done with 

the use of an S-beam load cell connected to the simulator to provide instant 

feedback to computer control unit.  The vertical load actuator was set such that 

an applied 100 lbs resulted in the feedback of 1 V.   

The control function implemented in the present knee simulator is 

briefly explained for the vertical load and a schematic is shown in Fig 3.9.  A 

voltage command enters the load circuit board and passes the loop gain, loop 

offset, and feedback potentiometer.  The command voltage is fixed by the 

machine setup values.  The pump pressure is set for 800 psi and the area of the 
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actuator is 3.14 square inches.  The static calibrations adjustments ensure that 

the actual applied load agrees with command voltage.  Thus, the present knee 

simulator controls the load by measuring the manifold pressure which is applied 

to all stations on each bank. 

 

 
Figure 3.9: Schematic of the control function for the vertical load implemented 
in the knee simulator. 

 

 

Such static calibration was followed by dynamic calibration where 

square waveforms were run for all motions and the vertical load.  This was used 

to compare the commanded waveform with the feedback waveform.  If 

necessary, the loop gain of each motion and load actuator was adjusted so the 

feedback waveform closely followed the applied square wave from.  It is 

important to note that the dynamic calibration of the vertical load actuator was 

performed with all implants in place on the bank. 

Prior to the calibration of the vertical load actuator, the units for the 

vertical load were switched from SI-units (N) to pounds (lbs).  Thus, the load 

range of 0 - 4500 N became a range of 0 - 1012 lbs.  After the calibration, the 

units of the vertical load were again switched back into N.  If this was not 

Low friction hydraulic actuator 

 Load applied to the implants in a bank 
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performed, the simulator would apply the load values in N as if they were lbs 

which would severely alter the wear test. 

 

 

3.4.3 Imposed Loads and Displacements 

Vertical loading and both linear and angular displacements were 

applied according to ISO 14242-3 41 (Fig. 3.10 - 3.12).  The ISO standard had 

taken values from various previous publications.  For example, the vertical 

loading in the ISO standard had originated from Morrison et al. 396.  Text-files 

for the ISO load and displacement values were created and imported into the 

SIMMAC software to create a wear test program as illustrated in the AMTI 

manual 395.  In all wear tests of the present thesis, the ISO motion for DC 

simulator wear testing was applied to the low-conforming PE inserts of the 

AMK® implants.  McNulty et al. 45 did the same in their wear testing of AMK® 

implants.   
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Figure 3.10: Vertical loading for level walking according to ISO 14243-3. Note 
the loading pattern during the stance phase and the constant low loading during 
the swing phase. 
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Figure 3.11: The anterior/posterior (AP) linear displacement according to ISO 
14243-3. 
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Figure 3.12: The flexion/extension (FE) and internal/external (IE) angular 
displacements according to ISO 14243-3. 
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To place the AMK® femoral components in clinically realistic position, 

they had to be offset by 11.4 mm in the posterior direction from the simulator 

zero position.  Thus, the “user settings” were altered under the “system settings” 

dialog box in SIMMAC, where the “user zero” for the AP output channel was 

placed at 11.4 mm.  The medial-to-lateral load distribution was 60-to-40 % and 

this distribution was achieved by off-setting the tibial tray fixture in the medial 

direction by approximately 0.07 times the width of the tibial tray 41. 

 

 
3.4.4 Implants  

The implant model that was chosen for the wear tests was a cruciate 

retaining design (AMK®, DePuy Orthopaedics Inc., Warsaw, IN) (Fig. 3.13).  

All implants tested were size three and intended for the right knee.  The PE 

inserts were machined from ram-extruded GUR 1050 (Ticona®, NJ) to a 

thickness of 10 mm and were GP sterilized.  This implant model had a history 

of clinical application and had been subjected to several design modifications.  

In particular, the tibial tray was originally manufactured of a cast Ti alloy with 

screw holes and the PE was GA sterilized.  These features were blamed for 

severe osteolysis and catastrophic implant failure 281.  Recent design 

modifications included a highly polished cast CoCr alloy tibial tray and the use 

of inert sterilization techniques 397.  The articulation was considered to be a low-

conforming, ellipsoidal contact with relatively high contact stresses compared 

with other more conforming designs 360.  However, the AMK® did allow the 

retained natural tissues to guide knee motion and had relatively low transmitted 

lateral forces.  
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Figure 3.13: The AMK® total knee system (DePuy Orthopaedics Inc., Warsaw, 
IN).  The patella was not used in the wear tests. 
 

 

3.4.5 Implant Mounting 

The femoral and tibial components were cemented onto their customized 

simulator fixtures 47 using antibiotic-free bone cement (SmartSetTM Endurance 

Bone Cement, DePuy Orthopaedics, Warsaw, IN).  For each station a volume of 

approximately 80 g (two packages) was mixed under a fume hood. 

Approximately 60 g was used to cement the tibial tray into the customized tibial 

fixture and approximately 20 g was used to cement the femoral component.  

The bone cement was of medium viscosity and was allowed to cure for almost 5 

min.  The cemented implant components were then loaded in a vice for their 

final positioning.  Careful attention was paid to ensure that no implant surfaces 

were scuffed or scratched during the mounting procedure.  Any excessive bone 

cement that squeezed out between the implant components and their fixtures 

was then carefully removed with a non-abrasive nylon stick.   

Polished CoCr 
alloy tibial tray 

GP sterilized   
PE 

CoCr alloy femoral 
component 

PE patella 

10 mm 
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Prior to the fixation of the tibial trays, a custom-made tibial tray template 

was fastened onto each tibial fixture to ensure the accuracy and precision of the 

tibial tray mounting for each wear station within a tolerance of ± 0.5 mm.  A 

tapered style friction locking mechanism was located at the end of the femoral 

fixture shaft intended for the fine adjustment of the locking mechanism into the 

knee simulator. The inserts of each femoral shaft were tightened with a torque 

of 35 ft-lbs, as recommended by AMTI.  The effective femoral shaft length was 

eventually defined by the depth penetration of the spigot into the shaft.  A 

custom-made fixture was utilized to enable accurate adjustment of the shaft 

length (101.6 ± 0.2 mm). The torque and effective shaft length was checked 

every 2 Mc.  All fixture components were ultrasonically cleaned prior to their 

assembly. 

 

 

3.5 Biochemical Analyses 

3.5.1 Protein Concentration and Degradation 

The lubricants used in the wear simulations were damaged during the 

wear process. Such damage led to protein degradation that had to be 

characterized to be able to explain the overall acting wear mechanism.  At the 

beginning of the wear tests the fresh lubricant used as the “starting material 

(SM)” was often translucent and yellow.  As the wear test progressed, the 

lubricants lost their translucent feature and became opaque.  Such altered visual 

appearance suggested that some protein constituents were damaged and had 

precipitated out of solution (Fig. 3.14).  To separate the damaged proteins from 

the unworn proteins the lubricant samples had to be centrifuged. The lubricant 

samples were then placed in a  centrifuge apparatus (Model 5417 R, Eppendorf 

AG, Hamburg, Germany) and subjected to a centrifugal acceleration of 20,000 

G (where G = 9.80665 m/s2) for 40 min at 17 oC.    This caused the suspended 

proteins to become compacted on the bottom of the tubes which resulted in a 

pellet.  The fluid on top of the pellet was called the supernatant (SUP) and was 

free of any precipitates.   
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The pellets were stored at -20 ºC and defrosted in some particular 

cases, to determine the precipitated protein concentration. The pellet was 

subsequently resuspended by adding 500 μl of a SDS-DTT solution, consisting 

of 10 % sodium-dodecyl-(lauryl)-sulfate (SDS) in PBS, containing 5 mmol/l 

dithiothreitol (DTT).  The samples were then mixed for 1 min each and placed 

at 55 ºC for 25 min, being mixed in 5 min intervals.  Such a procedure had to be 

performed as it was not possible to determine the protein concentration directly 

on the compacted pellet. 

 

 

 
Figure 3.14:  Schematic of lubricant protein precipitation and centrifuging. The 
fresh unworn lubricant is referred to as the starting material (SM). After the 
wear test the worn lubricant contains suspended protein precipitates.  
Centrifuging the worn lubricant separates the protein precipitates from the 
remaining lubricant (supernatant; SUP) in from of a compacted pellet. 
 

 

The percent of protein degradation [%] caused by wear testing in the 

knee simulator was calculated from the measured protein concentration of the 

SM lubricant samples before testing and from the measured protein 
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concentration of the SUP samples of the lubricant that had been collected after 

the wear test.  The protein concentrations in g/l of the SF samples from patients 

described in 3.3.1 and lubricants used in wear testing were determined using a 

bicinchonic acid protein assay kit (BCATM protein assay kit, Cat. # P123227, 

Pierce Chemicals, Rockford, IL).    The key to this process was the biuret 

reaction that is well known in the field of biochemistry.  In this reaction, the 

biuret reagent (copper sulfate in a strong base) builds a coloured complex 

between the peptide bonds of a protein and the Cu atoms.  This is accompanied 

by reduction of Cu2+ to Cu+ by the protein in such an alkaline environment.  A 

brief description on the current protein assay protocol is given subsequently and 

described in more detail in the BCA assay manual.  The lubricant samples were 

diluted 100-times with PBS (10 μl lubricant sample + 990 μl PBS) and placed 

in 1 ml tubes (Eppendorf AG, Hamburg, Germany). Twelve measurements per 

lubricant sample were obtained and pipetted onto a microplate at volume of 25 

μl each (Microtiter 96-well UV microplate; VWR Cat. # 14227-680) (Fig. 

3.15).  A volume of 200 ml of the BCA working reagent was added to each 25 

μl in the wells.  The microplate was then incubated at 37 ºC for 30 ± 2 min.  The 

absorbance of the incubated 225 μl fluid in each well was then measured using a 

spectrophotometer (Multiskan Spectrum, Thermo Labsystems, Thermo Electron 

Corporation, Milford, MA) at wave length of 562 nm.   

The measured absorbance values needed to be transformed into protein 

concentration in g/l.  Bovine serum albumin (BSA standard, BCATM protein 

assay kit, Cat. # P123227, Pierce Chemicals, Rockford, IL) with a protein 

concentration of 2 g/l was diluted with PBS to 0.0625, 0.125, 0.250, 0.375, 0.5, 

0.750, and 1 g/l concentration to create a standard curve of the absorbance 

versus protein concentration.  The BCA assay was used as in the 

aforementioned manner to obtain an absorbance for every BSA dilution. The 

equation of the standard curve was then used to convert the absorbance to a 

protein concentration for the lubricant.  This allowed the absorbance 

measurements of the fluids to be converted into total protein concentration on 

g/l.  The mean and SD for those measurements were then determined.   
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Figure 3.15: Procedure summary of running a BCA protein assay. 
 

 

3.5.2 Electrophoresis 

As mentioned in Section 3.3.2, the lubricants consisted of different 

types of proteins.  Although the BCA assay can be used to determine the total 

protein concentration it is unable to measure the fractions of different types of 

proteins.  Electrophoresis is a useful tool to determine the relative concentration 

of protein fractions in such lubricants that are comprised of different types of 

proteins 398.  Here, the protein is charged by an electric source and travels 
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though a porous membrane, which is referred to as the electrophoretic gel.  The 

velocity of proteins travelling through a porous gel depends on several factors 

such as the applied electric strength, protein net charge, the viscosity of the 

protein mixture, and on the protein size (Fig. 3.16).  Thus, the proteins with a 

small radius migrate deeper and faster into the gel, whereas proteins with a 

larger radius stay on top of the gel near the point of application of the fluid.  

 

 
Figure 3.16: Sieving of proteins by a porous polyacrylamide gel (reproduced 
from 398). 

 

 

Electrophoresis was applied to the SF samples and all lubricants used 

in the wear tests.  Samples were brought to the Department of Immunology 

located at the University Hospital of the LHSC for electrophoretic analysis that 

were performed by the laboratory technician Janice Restorick.  The apparatus 

used for the electrophoresis (Sebia Hydrasys®, Sebia, Norcross, GA) permitted 

the running of 30 individual samples on one alkaline buffered (pH = 8.5) agar-

based gel (Hydragel 30 β1-β2, Sebia, Norcross, GA).  The apparatus was 

calibrated on a daily basis and was mainly used to evaluate the protein 

constituent fractions in patients.  This gel separated five major protein fractions: 

albumin, α-1 globulin, α-2 globulin, β-globulin, and γ-globulin (Fig. 3.17).  The 

gel was stained with Coomassie blue to allow the visualization of bands 
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indicating the protein content of the gel.  The gels were scanned using an Epson 

scanner (Expansion 1600, Epson, Long Beach, CA). A software program 

(Sebia, Phoresis Release 4.9.0, Norcross, GA) was used to measure the relative 

intensities of each protein band.  This apparatus has a calibrated densitometer 

that determines the intensity of individual protein bands which produces a 

sample specific density curve.  The area under each peak represents the fraction 

[%] of each protein constituent.  The loading volume per gel was 10 μl. 

 

 

 

Figure 3.17: Image showing the characteristic migration pattern of a SF sample 
for the Hydragel 30-β1-β2 gel 399. 

 

 

The SF had to be treated with hyaluronidase to reduce the viscosity of 

the lubricant.  Hyaluronidase is an enzyme that catalyzes HA and increases the 

permeability of the protein constituents into the gel.  Hyaluronidase powder 

(Hyalurono-glucosaminidase, H 3506, Sigma-Aldrich, St.Louis, MO) was 

diluted with PBS to a 71 g/l solution and was then added to 100 μl of synovial 

fluid in a ratio of 1:20.  Hyaluronidase samples were run by themselves as 

control specimens.   

Albumin 
(79.2 %) 

α-1-globulin 
(1.8 %) 

α-2-globulin 
(5.5 %) 

β-globulin 
(7.2 %) γ-globulin 

(6.3 %) 
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3.5.3 Peptide Concentration 

As described in Section 2.2.4, proteins, colloids, and other polymers in 

solution may adsorb to bearing surfaces and affect the boundary lubrication 

process.  Such adsorbed substances may become entangled under applied load 

and motion which may lead to damage at such entanglements.  Mechanical 

shear 400 or enzymatic digestion (proteolysis) 401 may cause the polypeptide 

chains in proteins to break into short amino acid chunks (peptides)  (Fig. 3.18).  

The latter causes the digestion of covalent peptide bonds between amino acids 

and is considered an irreversible process.  Thus, it was of interest to investigate 

how much the proteins became damaged by the wear process that led to such 

peptides that remained suspended in the lubricant sample after centrifuging.   

 

 
Figure 3.18: The effect of shear and enzymatic digestion on the protein 
structure.  The native proteins (polypeptides) change from a globular 
conformation into small protein chunks, referred to as peptides. 
 

 

Lubricant samples (SF, SM, SUP) were filtered through an ultrafine 

membrane (VIVASPIN 2, Vivascience Ltd., Stonehouse, UK) with a 2,000 Da 

molecular weight cut-off (MWCO).  The VIVASPIN tubes were loaded with 

the lubricant (1 ml) and were spun at a fixed angle of 25 º for 10 min at 10,500 

G (Sorvall® RC-5B Refrigerated Superspeed Centrifuge).  The peptide 

concentration was directly determined without any dilution using the 

aforementioned BCA assay.  Ten measurements per lubricant sample were 

conducted and the mean and SD was reported.   
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According to the manufacturer of the ultrafine membrane, the 

concentrate recovery at a loading volume of 2 ml is 95% for the 2,000 Da 

MWCO.  No standard fluid with a certain peptide concentration is supplied by 

the manufacturer to evaluate the accuracy and precision of the VIVASPIN 

tubes.  Therefore it was decided to repeatedly measure BCS + DW + SA that 

was obtained from the knee simulator after a test interval of 0.5 Mc.  The 

accuracy of the VIVASPIN tubes was regarded as the mean value of the five 

repeatedly measured peptide concentrations, and was within ± 1.65 % of the 

mean from all measurements (0.146 ± 0.024 g/l) (Fig. 3.19).   
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Figure 3.19: Peptide concentration of worn BCS determined in five separate 
VIVASPIN tubes to determine the accuracy and precision of the measurements 
(MWCO = 2,000 Da). 

 

 

The precision of the repeated measurements can be interpreted as the 

standard deviation of all measurements (± 0.036 g/l or ± 2.45 %).  Thus, such 

results suggested that one VIVAPSIN tube per test would be sufficient to 

determine an accurate and precise peptide concentration.  
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3.5.4 Osmolality 

As described in Section 2.3.1, the osmolality is a direct measure of the 

ionic strength of a solution and is a regarded as a systemic, patient specific 

value 106.  The calf sera were either diluted with DW or PBS which had different 

levels of osmolality (see Section 3.3.3).  Osmolality has been shown to affect 

the thermal stability of proteins in solution 104 and thus may affect the protein 

degradation and the PE wear rate in simulator wear testing.  In the present 

study, an osmometer (Osmometer 5520, Wescor, Logan, UT) was used to 

determine the osmolality of the SF, different lubricants and their dilutive media.  

The osmometer determined the osmolality following the freezing-point 

depression test strategy at atmospheric pressure.  This strategy permits the 

determination of the difference between freezing points of a pure solvent and a 

solution mixed with a solute.  The difference between freezing points is directly 

proportional to the molar concentration of the solution.  Prior to testing, the 

instrument was calibrated using a reference sample that had 290 mmol/kg 

(Calibration OPTI-Mole™, Wescor, Logan, UT).  Triplicate measurements 

were obtained for each of the lubricant samples. 

 

 

3.5.5 Differential Scanning Calorimetry  

The stability of the folded protein conformation can be compromised 

by environmental changes such as temperature, pH, osmolality, and the 

presence of chemical denaturants (Fig. 3.20).  Asperity interactions between 

articulating surfaces may cause an increase in localized temperature (flash-

temperature) 56 and affect the interfacial behaviour of proteins, protein 

adsorption 164, and thus may promote adhesion/abrasion and  PE wear.  

Differential Scanning Calorimetry (DSC) is a frequently used technique to study 

the stability of proteins.  This technique permits one to obtain data on the 

calorimetric heat or enthalpic changes (ΔH) and entropic changes (ΔS) that 

occur as the protein is denatured.  This technique appeared more appropriate for 

the lubricants consisting of multiple protein types than the circular-dichroism 
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technique that has been utilized to investigate the unfolding of pure albumin 

solutions 76,78.  Since this is a thermodynamically driven process, the values are 

given in Kelvin [K] rather than in degrees Celsius [ºC]. 

 

 

 
Figure 3.20: Schematic showing the principle of an irreversible unfolding 
process of a globular protein.  Exposure to a heat source causes the protein to 
unfold from and to take on a random coil like structure.  

 

 

The protein stability of a dilute protein solution depends on the partial 

molar heat capacity, cp, at constant pressure.  The change in cp reflects the 

ability of the protein solution to absorb heat and cope with a defined increase in 

temperature.  A protein in a dilute solution is in equilibrium between the native 

(folded) conformation and its denatured (unfolded) conformation.  The stability 

of the native state is based on the magnitude of the Gibbs free energy (ΔG) of 

the system and the thermodynamic relationships between enthalpy (ΔH) and 

entropy (ΔS) changes:  

 

ΔG = ΔH - TΔS                                                                                              (3.1) 

 

A positive ΔG indicates the native state is more stable than the 

denatured state; the more positive the ΔG, the greater the stability.  In order to 

allow a protein to become unfolded, stabilizing forces need to be broken.  

Protein unfolding occurs when the entropic changes are significantly increased 
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to overcome stabilizing enthalpic interactions between protein hydrogen bonds, 

hydrophobic interactions and electrostatic interactions, resulting in an 

endothermic peak at a certain melting temperature Tm (Fig. 3.21). The Tm 

directly indicates the thermal stability of the protein.  The higher the Tm the 

more stable is the protein at lower temperatures.  ΔH is primarily due to changes 

in hydration of side chains that are buried in the native state and become 

exposed in the denatured state.  The shift in baseline before and after the 

transition represents the change in cp (Δcp) of the protein in association with the 

solvent caused by unfolding.  
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Figure 3.21:  Schematic representation of a thermogram. 
 
 

The sharpness of the transition peak is an index of the cooperative 

nature of the transition from native formation to denatured formation. The 

unfolding process becomes a multi-stage process when more than one peak is 

observed which means it is less cooperative.  At temperature below Tm the 

concentration of native proteins is higher than of denatured proteins.  The Tm at 

maximal cp (Tm (cp-max)) is referred to as the transition point where half the 
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proteins are folded and half are unfolded.  At this point ΔG = 0 and the 

conformational entropy ΔS = ΔH/Tm (cp-max) can be directly calculated.  During 

unfolding, a protein transforms from a single folded conformation to many 

random unfolded conformations.  ΔS is the measure of disorder/randomness in a 

system and an increase in ΔS indicates the amount energy dissipated to 

transform proteins from native, folded conformation to random, unfolded 

conformation.  Higher ΔS indicates higher conformational protein stability.  

Conformational entropy overcomes the stabilizing forces allowing the protein to 

unfold at temperatures where entropy becomes dominant. 

A MicroCal VP-DSC calorimeter (MicroCal, Northhampton, MA) was 

used in the present study to obtain the thermogram for several lubricant 

mixtures.  In particular, this was used to investigate the effects of osmolality and 

HA on the thermal stability of calf serum.  Firstly, a baseline for the 

thermogram was established by scanning a buffer solution which consists of the 

medium used to dilute the calf serum.  Secondly, each lubricant was diluted 

with a buffer solution to a total protein concentration of 6 g/l and were 

subsequently scanned.  A scan rate of 60 K/hour was applied from 283 K to 368 

K.  The concentration molality was uniformly set at 0.05 mmol/L.  A precise 

molar concentration of the sample calf serum was not available since the exact 

concentration of each of the individual protein constituents was unknown.  

Thus, only relative comparison between Tm, ΔH, and ΔS can be made.  The 

contribution of the proteins to the calorimetrically measured cp was determined 

by subtracting a scan of a buffer solution from the data prior to lubricant 

analysis.  Such a procedure ensured that any effects of the solvent on the 

proteins were eliminated and the thermal signal is entirely due to the serum 

constituents.  A software program (Origin 5.0, MicroCal, Northhampton, MA) 

was used to analyze the data.  Tm, ΔH, and ΔS of the transition are calculated by 

fitting the data to a non-two-state transition model using non-linear least squares 

regression analysis (Levenberg-Marquardt non-linear least-square method) 402.  

The unfolding of the protein constituents of the calf serum based lubricants was 

considered an irreversible process 169. 
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3.5.6 Trace Elements 

The concentrations of some trace elements such as calcium (Ca), 

magnesium (Mg), inorganic phosphorus (P) and iron (Fe) were determined for 

the SF samples and compared with the concentrations found in the various calf 

serum mixtures that were used in the wear testing with the knee simulator.  A 

chemical analyzer (Synchron LX 20® Pro, Beckman Coulter, Fullerton, CA) 

was utilized to measure these concentrations. Depending on the element, 

different methodologies were used in the analyzer that is described elsewhere in 

more detail 403-406.  These measurements were performed by Janice Restorick at 

the Immunology laboratory at the LHSC.  Triplicate measurements were 

obtained for each of the lubricant samples. 

 

 

3.5.7 pH 

Assessing the pH of the lubricant was recommended by ISO 14243-3 

for displacement controlled wear testing.  The pH of the lubricant indicates the 

level of acidity (pH < 7.00) or alkalinity (pH > 7.00) which is directly related to 

the activity of hydrogen ions in the solution.  A pH-meter (SevenEasy, Mettler-

Toledo, Columbus, OH) was utilized to conducted the pH measurements.  The 

apparatus was calibrated prior to every measurement using four reference 

solutions with a pH of 4.01, 7.00, 9.21, and 10.01.  The electrode tip was rinsed 

with DW after every measurement and remained in suspended in DW until the 

next measurement.  Three measurements per lubricant were performed and then 

reported as the mean with the according SD.   
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3.6 Microbiological Analysis 

Some basic microbiological tests were performed with the goal to 

create a sterile environment for implant wear testing.  Bell et al. 30 suggested 

that SA was ineffective in eliminating bacterial growth from wear tests.  The 

subsequent techniques were used to identify the microbial contaminant and to 

investigate its biological behaviour during the wear tests. 

 

 

3.6.1 Microbial Identification 

A characteristic culture sample of the microbial contamination found in 

the knee simulator test lubricant was grown on LB agar on a petri dish 195.  A 

colony was carefully picked from that petri dish without disturbing the LB Agar 

surface.  The microbes were investigated using Gram stains. The Gram 

classification system is empirical, and largely based on differences in cell wall 

structure.  Gram-negative microbes appear pink while Gram-positive microbes 

appear purple.  To further identify the microbial contamination it was decided to 

use API® 20E system (Analytical Profile Index, Biomerieux, Inc., Hazelwood, 

MO).  Such a system provided an easy way to identify members of the family 

Enterobacteriaceae and consisted of twenty microtubes and cupules, partly 

filled with dehydrated substrates 194,195. Each microtube indicates a certain 

compound in the microbial suspensions.  Bacterial suspensions are then added 

to the microtubes, rehydrate the medium and cause a biochemical reaction, 

leading to color changes during their incubation or after specific reagents are 

added.   Color changes indicate the presence or absence of a chemical action 

and thus, a positive or negative result.   
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3.6.2 Microbial Growth  

Gaining insight into the growth behaviour of a microbe is performed by 

placing the present bacterium into a nutrient over a certain time frame and is 

considered a routine procedure in Microbiology 195.  Microbial growth can be 

described as the process in which two daughter cells are produced by the cell 

division of one organism.  Such a process is accompanied by local doubling of 

the bacterial population.  If both daughter cells survive the microbial growth 

usually progresses in an exponential manner (Fig. 3.22).  However, the 

microbial growth curve can be categorized into four major phases: Lag Phase: 

Immediately after inoculation of the cells into fresh medium, the population 

remains temporarily unchanged. Although there is no apparent cell division 

occurring, the cells may be growing in volume or mass, synthesizing enzymes, 

proteins, and increasing in metabolic activity.  The microbes adapt themselves 

to growth conditions in the present environment.  The length of the lag phase is 

apparently dependent on a wide variety of factors including the size of the 

inoculums; time necessary to recover from physical damage or shock in the 

transfer; time required for synthesis of essential coenzymes or division factors; 

and time required for synthesis of new (inducible) enzymes that are necessary to 

metabolize the substrates present in the medium; Exponential Phase: The 

exponential phase of growth is a pattern of balanced growth wherein all the cells 

are dividing regularly by binary fission, and are growing by geometric 

progression. The cells divide at a constant rate depending upon the composition 

of the growth medium and the conditions of incubation.  The rate of exponential 

growth of a bacterial culture is expressed as generation time or doubling time of 

the bacterial population; Stationary Phase:  Exponential growth cannot be 

continued forever in a batch culture (e.g. a closed system such as a test tube or 

flask).  Population growth is limited by one of three factors: (1) exhaustion of 

available nutrients; (2) accumulation of inhibitory metabolites or end products; 

(3) exhaustion of space, in this case called a lack of “biological space”.  During 

the stationary phase, if viable cells are being counted, it cannot be determined 

whether some cells are dying and an equal number of cells are dividing, or the 
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population of cells has simply stopped growing and dividing; Death Phase: If 

incubation continues after the population reaches stationary phase, a death phase 

follows, in which the viable cell population declines. During the death phase, 

the number of viable cells decreases exponentially, essentially the reverse of 

growth during the log phase. The bacteria run out of nutrients and die in an 

altered environment.  
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Figure 3.22: The microbial growth behaviour versus incubation period shown 
for an example bacterium.  Note the four characteristic phases of bacterial 
growth: lag, exponential, stationary and death. 

 
 

In the present study, lysogeny broth, also known as Luria-Bertani (LB) 

Agar (Cat. # 22700025, Invitrogen Canada Inc., Burlington, ON) served as a 

nutrient rich environment for bacterial growth and was obtained in powder 

form.  This method has been widely utilized for investigations on bacterial 

growth 407,408.  A mass of 15 g of LB Agar was diluted with 400 ml of double-

deionized water and placed in a 1000 ml bottle.  The mixture was then placed in 

a microwave oven and heated for 4 min.  The bottle was then placed in an 
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autoclave for 15 min at approximately 20 ºC.  Parafilm (American National 

Can, Menasha, WI) was wrapped around the bottle neck to seal the lid.  The 

bottle was left at RT for 24 h, causing the LB Agar to solidify.  When needed, 

the LB agar bottle was placed in a microwave to be heated and liquefied.  The 

liquid LB-agar was then poured on Petri dishes (100 mm diameter, Cat # 

CA73370-010, VWR, Mississauga, ON) around an open propane flame to 

inhibit contamination (aseptic environment).  The prepared dishes were then 

placed at approximately 4 ºC until further use.  

Serum samples were taken from the wear stations by disconnecting the 

tubing from the external serum container to the peristaltic pump and switching 

the pump position to drain, thus removing fluid from the actual wear station.  

Prior to this, the surrounding environment was sprayed with alcohol to inhibit 

further possible contamination.  Serum samples were drawn from all simulator 

stations (wear and load-soak) and diluted with LB medium to achieve countable 

colony-forming units (CFU/ml) on the LB Agar plates.  The CFU/ml is 

determined by counting the number of cultures observed on the petri dish in 

consideration of the dilution factor.  A total volume of 100 ml per sample was 

spread on each LB Agar Petri dish, with triplicates of each sample.  The dishes 

were incubated for 18 ± 2 h at 37 ºC.  The grown colonies were then counted 

and the CFU/ml was then determined.  Afterwards, the samples were placed in 

bio-hazardous container and sent for incineration.  

 

 

3.6.3 Antimicrobial Susceptibility Test  

Many substances used to treat infections are synthetically produced and 

referred to as antibiotics 105,195.  No antibiotic inhibits all organisms and some 

microbes are naturally resistant to certain antibiotics.  To evaluate the efficacy 

of certain antimicrobial agents, a disk diffusion test (or Kirby-Bauer Method) 

was applied.  Five antibiotics were selected which are known to be effective 

against a number of Gram-negative and Gram positive microbes (Table 3.9).  

Penicillin and Carbenicillin are called β-lactam antibiotic because of their 
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chemical structure which is lethal to the microbial cell wall.  Streptomycin and 

Tetracycline are aminoglycosides and are effective by binding to the microbial 

subunits and inhibit the microbe to synthesize proteins vital to its growth.  

Chloramphenicol is a bacteriostatic antibiotic which inhibits the growth or 

reproduction of microbes without killing them.  

 

 

Table 3.9: Properties of the antibiotic discs. 
Antimicrobial agent Antibiotic Type 

Penicillin β-lactam  

Carbenicillin β-lactam  

Streptomycin Aminoglycoside 

Tetracycline Aminoglycoside 

Chloramphenicol Bacteriostatic 

 

 

The observed microbial contaminant was plated onto petri dishes 

(Müller-Hinton agar, 4 mm agar thickness) and inoculated to form a microbial 

lawn.  Antibiotic-doped paper discs were placed onto the inoculated petri dish.  

The inoculated petri dishes were then incubated for 16 - 18 h at 37 ºC to allow 

microbial growth and time for the agents to diffuse from the paper disks into the 

agar on triplicate samples.  The agent progressively diffuses into the agar and 

established a concentration gradient around the disk if the organism is 

susceptible to the agent, a clear concentric zone will form around the disk; this 

zone is called zone of inhibition (ZOI) and is antibiotic specific (Fig. 3.23).  The 

diameter of the zone consequently depends upon the sensitivity of the bacteria 

to the specific antimicrobial agent and the radius at which the agent’s minimum 

inhibitory concentration is reached.   
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Figure 3.23:  Schematic diagram showing the antimicrobial susceptibility test. 
Disk A and disk B represent antimicrobial disks; the zone of inhibition (ZOI) is 
larger for A than for B; agent in disk A more effective than B in inhibiting 
bacterial growth. 
 

 
3.6.4 β-lactamase Test 

This test was used to rapidly identify whether an isolated bacterium 

was resistant towards β-lactam antibiotics 195.  The β-lactam ring is part of the 

chemical structure of many antibiotics and is known to have a lethal effect on 

bacteria by interfering with the cell wall synthesis.  However, many bacteria 

have developed resistance towards these antibiotics by producing enzymes 

called β-lactamase.  Such a production by bacterium hydrolyzes the β-lactam 

ring in the antibiotics and causes them to be ineffective.  Partial chemical 

structure of an β-lactam antibiotic (penicillin) and the site of action for β-

lactamase are illustrated in Figure 3.24.  To test the bacterium’s ability to 

produce β-lactamase, a paper disc containing nitrocefin (Cefinase® disks, 

Becton Dickinson, Franklin lakes, NJ) is smeared with the test organism on 

triplicate petri dishes.  Nitrocefin is a cephalosporin and susceptible to most β-

lactamases.  If the organism produces β-lactamase at RT it will hydrolyze 

nitrocefin and show a pink/red spot on the disk (positive results).  If no β-

lacatamase was produced by the bacteria the disk maintained its initial color or 

turned light yellow (negative result).  
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Figure 3.24: Image showing the β-lactam antibiotic structure for penicillin. The 
arrow indicates the site where the antibiotic can be neutralized by β-lactamase, 
generated by the microbe (from 195). 
 

 

3.7 Analytical Techniques and Methods 

3.7.1 Cleaning and Desiccation  

The implant components were carefully retrieved from each of the 

knee simulator stations after every test interval of 0.5 Mc so the gravimetric 

change (change in weight) of the PE inserts could be assessed. This was 

performed under consideration of ISO 14243-2 41 and recommendations by 

DePuy Orthopaedics Inc., Warsaw, IN.  The PE inserts were detached from the 

tibial tray and immediately placed in a 1000 ml beaker filled with DW at RT.  

This was followed by gently cleaning the PE inserts under hand-warm water 

with a non-abrasive nylon brush and water-diluted liquid soap (1:100; 

LiquiNox®, Alconox, White Plains, NY) to remove serum residuals. The 

femoral components and cemented tibial trays were cleaned in the same 

manner, sprayed with ethyl-alcohol and left to dry at RT.  

The PE inserts were then further processed: (1) placing the PE inserts 

in beaker with DW, (2) placing beaker in ultrasonic cleaner for 5 min, (3) 

rinsing with DW, (4) placing the PE inserts in beaker filled with water-diluted 

liquid soap, (5) placing the beaker with the PE inserts in the ultrasonic cleaner 

for 10 min, (6) rinsing the inserts with DW, (7) placing the PE inserts in beaker 

with DW, (8) placing beaker with the PE inserts in ultrasonic cleaner for 10 

min, (9) rinsing the PE inserts with ethyl alcohol, (10) placing PE inserts in 



 

  120 

ethyl alcohol for 5 min, (11) drying PE inserts with compressed nitrogen gas, 

(12) placing PE inserts in a desiccator for 30 min at 16 inHg.  After the last 

process, the implants were left in the desiccator at atmospheric pressure, ready 

for their weight assessment.   Desiccation of the PE inserts was found to be a 

necessary part of the protocol because non-desiccated PE inserts did not achieve 

a stable weight reading during weight measurements. 

 

 

3.7.2 Weighing and Precision 

The PE inserts were gravimetrically assessed during test intervals using 

a balance (AX 205, Mettler-Toledo, Columbus, OH) under some considerations 

of ISO 14243-2 41 and recommendations by DePuy Orthopaedics Inc., Warsaw, 

IN.  Prior to every weight assessment session, the balance was internally 

calibrated, following the instructions shown in the operating manual.  A 

polonium bar serving as an anti-static tool was placed in the inner chamber of 

the balance to compensate for charging effects of the PE inserts that may 

interfere with the weight measurements.  Prior to the weight assessment the 

precision of the balance had to be established.  To do this, two reference 

weights were purchased (20 g, 100 g; ASTM Class 1; Troemner, Thorofare, 

NJ).  The precision of the balance was estimated over five consecutive days, 

where each day the reference weights were measured five times during the time 

of 15 min (Table 3.10).  The temperature and room humidity was also recorded.  

Although the precision of the balance was established, it was decided to both (a) 

internally calibrate the balance and to (b) measure the reference weight of 20 g 

and 100 g before and after every measurement session of each individual PE 

insert.  Every PE insert was measured three times and then the mean and SD 

was reported. 
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Table 3.10:  Repeated measurements of the 20 g and 100 g reference weights to 
establish the precision of the balance.  

Reference Weight [mg] Day Measurement 

“20 g” “100 g” 

Temperature 
[ºC] 

Relative 
Humidity 
[% r. H.] 

1 20000.07 100000.07 20 59 

2 20000.04 100000.05 20 59 

3 20000.04 100000.03 21 59 

4 20000.03 100000.02 21 59 

1 

5 20000.02 100000.01 21 59 

1 20000.02 100000.05 20 58 

2 20000.03 100000.01 20 58 

3 20000.01 99999.98 20 58 

4 19999.96 99999.94 20 58 

2 

5 19999.96 99999.96 20 58 

1 19999.99 100000.04 20 61 

2 20000.01 100000.02 20 61 

3 20000.00 100000.02 20 61 

4 19999.98 100000.01 20 61 

3 

5 19999.99 100000.01 20 61 

1 20000.04 100000.04 20 59 

2 20000.06 100000.08 20 59 

3 20000.01 100000.00 20 59 

4 20000.00 100000.00 20 59 

4 

5 19999.99 99999.99 20 59 

1 20000.03 100000.01 21 58 

2 20000.02 100000.02 21 58 

3 19999.99 100000.00 21 58 

4 20000.01 99999.99 21 58 

5 

5 20000.01 99999.99 21 58 

Mean 20000.0124 100000.0136 20.32 59 

SD 0.0272 0.0316 0.476 1.118 

Min. 19999.96 99999.94  20 58 

Max. 20000.07 100000.08 21 61 

Rel. range 0.11 0.14 1 3 
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3.7.3 Interval Wear Volume and Wear Rate 

The measured weight of the PE inserts was recorded and divided into 

two groups for both the L bank and the R bank into three wear stations and two 

LS stations.  The total weight loss of each PE insert was determined after every 

0.5 Mc by adding the mean mass gain of the PE inserts from the LS stations to 

the mean weight loss of the PE inserts from the wear stations.  The total wear 

rate was then determined by first converting the gravimetric wear data into 

volumetric data using the PE density of 0.935 mg/mm3.  Secondly, the 

cumulative volumetric wear was plotted versus the number of Mc.  Linear 

regression analysis was performed on the volumetric wear of each implant over 

Mc and the slope of the trend line represented the wear rate.  A mean 

gravimetric wear rate [mm3/Mc] and SD were calculated for three implants per 

bank. 

 

 

3.7.4 Surface Characterization 

The backside surfaces of the PE inserts and tibial tray were examined 

in more detail than was needed to determine BDS.  In characterizing primary 

surface features, a scanning electron microscope (SEM) with field-emission (S-

4500, Hitachi Electronics Ltd., Naka, Japan) was used under an accelerating 

voltage of 5, 15 and 20 keV.  Images were taken using the secondary electron 

(SE) or backscattered-secondary electron (BSE) modes. The elemental 

compositions of some selected areas were investigated using energy dispersive 

X-ray analysis (EDX) with a special hardware attachment (EDAX® Phoenix 

Model, Mahwah, NJ).  PE specimens were sputter coated with gold to eliminate 

charging effects on the surface.  A contact profilometer (Tencor® P-10, KLA-

Tencor, Milpitas, CA) with a stylus tip radius of 2 μm was used to obtain the Ra 

(centre-line average) surface roughness at various locations on the tray surface 

and with various cut-off lengths following DIN 4768 409 and to produce surface 

maps of specific damage features.  The referenced DIN standard suggests 

basing the cut-off length on the Ra value. Consequently, surface waviness may 
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have been reduced in a more equivalent manner.  Ten measurements per sample 

were taken and their means and standard deviations were reported.  

Surface roughness measurements and surface profiles were obtained 

from retrieved femoral components and from femoral components from knee 

simulator wear tests using a non-contact profilometer (Wyko® NT1100, Veeco 

Instruments Inc., Woodbury, NY).  This was necessary because the contact 

profilometer was unable to conduct roughness measurements on the curved 

surface of the femoral condyles. A software program (Wyko® Vision32TM, 

Veeco Instruments Inc., Woodbury, NY) was used to flatten the raw surface 

profile data using the tilt function.   In addition to Ra, the root-mean-square 

roughness, Rq, of the femoral component was also recorded.  The Rq parameter 

weights the square of the asperity peak heights and is more sensitive than Ra, 

that averages the peak heights 51.  This was deemed important to characterize 

the wear on the femoral component. 

 

3.8 Statistical Analysis 

The retrieval data and the wear test data were analyzed using a statistic 

software program (SPSS Version 14, SPSS Inc., Chicago, IL).  The manual 

under the help-menu for this software contained detailed description of the 

statistical tests.  The following Sections the SPSS manual of the statistical tests 

in the present thesis were summarized and the rationale for their application is 

briefly noted (see Appendix C for details).  Statistical Services (Erin P. Harvey) 

at the Department of Statistics and Actuarial Science, University of Waterloo, 

was consulted for guidance thought the statistical analysis.   

 
3.8.1 Univariate Analysis 

Data exploration was performed using bar-graphs, correlation analysis, 

descriptive statistical tests and univariate methods.  Bar-graphs were plotted 

showing the mean and the standard deviation (SD) with a 95% confidence 

interval.  Pearson correlation was applied to identify linear, parametric 
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correlations and the Spearman correlation was applied for non-parametric 

correlations.  Logarithmic regression analysis (R2
log) was applied for the BDS of 

either assessment methods and IP.  Linear regression analysis was applied to 

obtain a BDS-gradient between the BDS and IP for either grading method.  

Based on the Kolmogorov-Smirnov test for normality and histograms the 

Paired-samples t-test (parametric data) or the Wilcoxon-Rank test (non-

parametric data) was applied to test for significant differences in BDS between 

observers and to compare matched groups of continuous variables.  For multiple 

pair-wise comparisons between groups with the same dependent variable the 

Bonferroni-correction term 410 was applied to establish the level of significance  

for each comparison (p = 0.05/(number of comparisons per group)). 

Student’s t-tests (parametric data) or Mann-Whitney-U tests (non-

parametric data) was applied to compare groups of independent samples.  

Analysis of variance coupled with the Fisher’s protected least-square-different 

test as the post-hoc method (ANOVA and Fisher’s) was used to compare groups 

of more than two categorical variables with non-harmonic sample sizes.  

Analysis of variance coupled with Tamhane as the post-hoc method (ANOVA 

and Tamhane) was used to compare groups of more than two categorical 

variables with harmonic sample sizes and unequal variances.  A general linear 

model coupled with the Fisher’s protected least-square-different test as the post-

hoc method (GLM and Fisher’s) was used to repeatedly measured groups of 

more than two categorical variables with non-harmonic sample sizes.  A general 

linear model coupled with the Fisher’s protected least-square-different test as 

the post-hoc method (GLM and Tamhane) was used to repeatedly measure 

groups of more than two categorical variables with harmonic sample sizes.   

Normal distribution was assumed for the PE wear data obtained in the 

in vitro investigations. The use of statistical methods to the in vitro 

investigations may have been compromised by the relatively small number of 

wear results per wear test.  Applying parametric statistical analysis to assess the 

differences between wear tests was used by other academic groups that also 
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work in the field of TKR wear 157,179 and thus such assumption was adapted 

when PE wear rates were compared. 

 

3.8.2 Multiple Linear Regression Analysis 

In many cases, retrieval studies are associated with some sort of 

statistical analyses but, unfortunately, there is no uniform statistical 

methodology 13,26,27,219,282,301,302,341,342,411,412.  This apparent failure to apply 

engineering methods to statistical analysis is perhaps a consequence of the many 

different types of data collected and the variety of proposed hypotheses.  The 

application of multiple linear regression analysis (MLRA) has only occasionally 

been applied in retrieval studies 282,302,411,412.  Even here, the methodology does 

not appear uniform and interaction terms between independent variables have 

not been considered. After some initial data exploration, the present study 

applied MLRA using the enter-method followed by a backwards-stepwise 

procedure and included a consideration of some interaction terms 413.  At first, a 

linear regression analysis between BDS and IP was performed for specific 

categorical variables to determine the slope (BDS gradient) and intercept with 

the BDS-axis.  Independent categorical variables were transferred into dummy-

variables.  First-order interactions (X*Z) between the independent continuous 

variables (X) and independent categorical variables (Z) were considered in 

some cases:  
 

Y = β0 + β1 X + β2Z + β3 X*Z + e                                                                   (3.2) 
 

The regression coefficients are represented by βn; e is the error term. 

This type of analysis was followed by utilization of MLRA to test if significant 

differences between specific BDS gradients of various categorical variables 

existed 413.  To reduce multicollinearity problems, IP was centered by 

subtracting the respective mean (i.e. IP minus mean IP) before creating their 

interaction terms.  Incrementally testing sum of squares was performed for 

categorical variables that had three or more degrees of freedom, resulting in 
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reduced regression models.  An absolute minimum of five observations per 

variable for each categorical variable was the criterion to be included in the 

MLRA.   

In Section 4.3, the total BDS for each insert along with the BDS values 

for individual damage features on an insert were the dependent continuous 

variables that were separately analyzed.  Due to the unequal distribution of 

some independent categorical variables in Section 4.3, it was not appropriate to 

employ implant model, insert type and sterilization technique simultaneously in 

the MLRA.  Their populations were unequally spread and therefore these 

variables were inter-related.  For example, the model C implants had only one 

CR insert and only inserts of NGA sterilization.  So, these independent 

categorical variables (implant model, insert type and sterilization method) were 

individually analyzed while accounting for other significant independent 

variables.  The insert thickness was considered separate from implant model and 

was generally selected by surgeons based on their idea of appropriate soft tissue 

tensions, balancing for the individual patient and the intraoperative gap apparent 

between the femur and tibia.   

Standardized residuals of the each MLRA for each grading method 

were plotted versus IP to assess for remaining patterns that could not be 

expressed in the regression model.  An adjusted R2-value was reported to 

describe the regression analysis for each group since it accounted for changes 

by incorporating significant factors for small data sets 413.  To determine the 

power (κ) of each regression model, an additional software program was applied 

(SamplePower™ 2.0, SPSS Inc., Chicago, IL) based on the total number of 

observations involved per model and the corresponding cumulative adjusted-R2-

value obtained from the MLRA.  In the MLRA analysis, the level of 

significance was set at p = 0.05 for all tests.  The p-value times 100 is the 

percent chance that some characteristics of 2 or more samples indicate that they 

all come from the same population.  In other words, if p < 0.05, there is a less 

than 5 % chance that the samples come from the same population.  Such a 

finding is often used to indicate a “statistically significant difference”. 
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Chapter 4: Clinical Investigations: Results, Analysis and 
Discussion 

4.1 Introductory Remarks 

The present chapter has three Sections reporting on clinical 

investigations.  In Section 4.2, the application of the Modified-method for 

damage assessment was investigated and comparisons were made with a similar 

damage assessment evaluation technique known as the Hood-method.  Both of 

these methods require an observer to study the worn surface under a low power 

optical light microscope to determine values of backside damage score (BDS), 

as described in the previous chapter (Section 3.2).   

In Section 4.3, the data values obtained from Modified-method were 

further analyzed; using advanced statistical methods (univariate analysis, 

MLRA).  In addition, surface analysis (surface profilometry, SEM, EDX) was 

performed to gain more specific insight into dominant damage features of the in 

vivo backside wear.  Based on both the statistical and surface analyses, wear 

mechanisms acting on the backside surface were proposed and implant design 

recommendations were given.   

In Section 4.4, results were presented for the analysis of SF samples 

that were obtained from patients.  Their protein composition, osmolality and 

trace elements (Ca, Mg, inorganic P and Fe) were then compared with four 

bovine serum mixtures that had been used in knee simulator wear testing in the 

present thesis (as described in Section 3.3).  This investigation was conducted to 

link the retrieval and wear simulator studies of the present thesis with clinical 

reality and to support the focus on the influence of boundary lubrication on the 

wear of TKR implants.  
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4.2 Retrieval Analysis: Part 1, A Comparison Between Grading 
Methods 

4.2.1 Introductory Remarks 

It was hypothesized that the link between surface damage and clinical 

wear would depend on the ability of the grading method to find more surface 

damage for implants with features that were known to cause high clinical wear.  

For example, GA sterilized implants were known to sustain more volumetric 

wear than NGA sterilized implants when all other factors are equivalent.  Thus, 

grading methods should detect more surface damage for GA sterilized implants 

when compared with NGA sterilized implants.  Unfortunately, there were few 

other well-established features of clinical wear that could be used to evaluate 

and perhaps “calibrate” a grading method.  In fact, grading methods were used 

because techniques had not been established to quantify clinical wear, although 

some recent efforts in this regard were beginning to show promise 339.  In the 

present section, the backside damage of 52 retrieved implants were assessed 

with two semi-quantitative grading methods (Section 3.2.4), referred to as the 

well-established Hood-method 26 and the Modified-method 414 that was recently 

developed by the present author.  Both methods require the observer to combine 

both the severity and area of damage into one BDS.  Individual damage features 

were given a BDS and the total BDS was determined by summing them.  The 

total BDS values for each grading method were compared along with the BDS 

values for individual damage features.  Also, multiple linear regression analysis 

(MLRA) was performed on the total BDS values from each grading method to 

investigate statistically whether the BDS and the BDS-gradient (slope of the 

curve fitted line for total BDS versus IP) were significantly different.  

Additional MLRA was performed on the BDS for individual damage features 

from the Hood-method and the Modified-method.  In each MLRA model, the 

interaction (denoted by the * symbol) between sterilization technique (GA or 

NGA) and gender (M or F) were chosen as the independent interaction 

variables (GA*F, GA*M, NGA*M, NGA*F) along with implant type (A, B or 

C) as an independent categorical variable, and both insert thickness (IT) and 
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implantation period (IP) as independent continuous variables.  The sole 

dependent variable was BDS.  Such advanced statistical analysis was deemed 

necessary to illustrate the relative ability of the two grading methods to 

represent the surface damage. 

 

 

4.2.2 Preliminary Data Exploration 

Both the Hood-method and the Modified-method were used to detect 

surface damage on the distal (backside) surface of retrieved polyethylene 

inserts.  The total BDS and individual damage feature scores obtained with the 

Modified-method showed no significant differences between observers.  The 

total BDS and individual damage feature scores obtained with the Hood-method 

also showed no significant difference between observers except for the BDS for 

burnishing (p = 0.004, Paired-samples t-test) (Table 4.1). 

 

Table 4.1: Comparison of the backside damage score (BDS) values obtained by 
the two observers.   

p-value 
BDS 

Hood-method Modified-method1 

Total 0.653 0.758 

Total burnishing 0.004 0.096 

Total grooving 0.337 0.385 

Total indentations 0.338 0.776 

Total deformation 0.3661 0.198 

Total pitting 0.1141 0.908 

Total stippling 0.5181 0.231 

Paired-samples t-test; 1Wilcoxon-Rank; level of significance = 0.05/6 = 0.0083 
following the Bonferroni-correction for multiple pair wise comparisons. 

 

Since the Modified-method had 11 grading choices and awarded 

integer scores from 0 to 10, the mean BDS (36.47 ± 29.71) was significantly 

higher (p = 0.003, Wilcoxon-Rank) than the mean BDS (25.49 ± 12.93) of the 

Hood-method that had only 5 grading choices and awarded integer scores from 

0 to 4.   Also because of the larger number of grading choices, the SD of the 
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Modified-method was also higher than that of the Hood-method.  More 

importantly, the correlation between the BDS and IP for the Modified-method 

and IP was stronger (R = 0.716, p < 0.001, Spearman correlation) compared 

with the correlation between BDS and IP for the Hood-method (R = 0.487, p < 

0.001, Spearman correlation) (Fig. 4.1).  Neither of these correlations 

intercepted with the origin.  The BDS-gradient (the slope of the straight line 

fitted to the BDS versus IP data shown in Fig. 4.1) for the Modified-method was 

of 0.623 BDS/month while for the Hood-method it was 0.197 BDS/month.  

Furthermore, the BDS of both assessment methods revealed some indication of 

a logarithmic relationship of BDS versus IP with a rapid increase of BDS at low 

IP and a levelling off of the BDS at the higher values of IP (R2
log-Hood = 0.261, p 

< 0.001; R2
log-Modified = 0.422, p < 0.001).    
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Figure 4.1:  Backside damage score (BDS) obtained from the Hood-method 
and the Modified-method correlated with the implantation period (IP). 

 

 

When the Modified-method was applied, the mean BDS values were 

significantly higher for both the model A implants (p = 0.001, Paired-samples t-
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test) and the model B implants (p = 0.001, Paired-samples t-test) (Fig. 4.2).  

However, there was no statistically significant difference between the BDS 

values from the two grading methods for the model C implants (p = 0.054, 

Paired-samples t-test) perhaps because the mean IP values were significantly 

higher for model A implants and model B implants compared with the model C 

implants (p ≤ 0.001, ANOVA and Fisher’s).  There was no statistically 

significant difference between the mean IP values for model A and B implants 

(p = 0.058, ANOVA and Fisher’s).  
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Figure 4.2:  Backside damage score (BDS) for the three implant models 
analyzed with both damage assessment methods. Level of significance for each 
interaction term p = 0.05/3 = 0.016 following the Bonferroni-correction for 
multiple pair wise comparisons 
 

 
A closer look was taken at the differences between the grading 

methods and the interactions between sterilization techniques and gender 

(sterilization*gender) (Fig. 4.3).  The BDS for the Modified-method was 

significantly higher than the BDS for the Hood-method for both male and 

female patients that received GA inserts (GA*M versus GA*F; p ≤ 0.009, 

Paired-samples t-test).  Such differences were not observed for the male and 



 

  132 

female patients that received NGA inserts (p ≥ 0.262, Paired-samples t-test).  

The BDS for GA*M was not different than the BDS for GA*F when the Hood-

method was used (p = 0.245, ANOVA and Fisher’s).  Interestingly, the BDS for 

GA*M was significantly higher than the BDS for GA*F when the Modified-

method was used (p = 0.021, ANOVA and Fisher’s). 
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Figure 4.3:  Backside damage score (BDS) for the interaction between 
sterilization and gender (Sterilization*Gender) which resulted in four 
interactions terms such as GA*M, GA*F, NGA*M, and NGA*F. Level of 
significance for each interaction term p = 0.05/4 = 0.012 (Bonferroni-
correction). 
 

 
To clarify where the significant differences may originate, the BDS 

values of each damage feature on each implant model (A, B and C) were 

individually assessed (Table 4.2).  The main features of the data were 

considered as follows.  For the model A implants, the mean burnishing BDS 

was higher (p < 0.001, Paired-samples t-test) when the Modified-method was 

used.  Interestingly, the BDS for deformation for the model A implants was 

uncharacteristically higher when using the Hood-method compared with the 

Modified-method (p = 0.002, Paired-samples t-test).  Stippling damage features 
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were not observed on retrieved model A implants.  For model B implants, the 

mean indentation BDS was higher (p < 0.001, Paired-samples t-test) for the 

Modified-method.  The mean indentation BDS was higher for the Modified-

method (p < 0.001, Paired-samples t-test).  The deformation damage feature was 

not a detected damage feature on the retrieved model B implants.  For model C 

implants, the mean BDS for grooving and pitting (p < 0.001, Paired-samples t-

test) and deformation (p = 0.002, Wilcoxon-Rank) showed higher mean BDS 

when the Hood-method was used.  Stippling damage features were not observed 

on retrieved model C implants.   

 
 
Table 4.2: The BDS values (mean and the SD) for individual damage features 
found on the surfaces of model A, B and C implants. 

BDS [Mean ± SD] 

Comparison Implant 
Model 

Damage Feature 
Hood-method Modified-method Modified 

(Hood) p-value 

Burnishing 14.04 ± 3.76 29.83 ± 12.31 higher <0.001 

Grooving 8.41 ± 2.48 10.79 ± 6.31 not diff. 0.060 

Indentations 8.00 ± 3.12 10.06 ± 6.13 not diff. 0.052 

Deformation 2.16 ± 1.88 1.72 ± 1.69 lower 0.002 

Pitting 6.54 ± 2.14 6.50 ± 4.91 not diff. 0.2091 

A 
 

Stippling - - N/A N/A 

Burnishing 3.18 ± 3.41 3.07 ± 3.77 not diff. 0.752 

Grooving 1.68 ± 2.16 1.14 ± 1.71 not diff. 0.095 

Indentations 13.78 ± 4.27 28.98 ± 16.07 higher <0.001 

Deformation - - N/A N/A 

Pitting 1.62 ± 2.23 1.53 ± 3.01 not diff. 0.738 

B 
 

Stippling 6.50 ± 8.11 15.62 ± 21.78 not diff. 0.0351 

Burnishing 6.29 ± 1.98 5.51 ±3.77 not diff. 0.100 

Grooving 3.70 ± 2.32 2.79 ± 1.94 lower <0.001 

Indentations 5.54 ± 3.22 6.20 ±5.77 not diff. 0.372 

Deformation 0.83 ± 1.06 0.55 ± 0.83 lower 0.0021 

Pitting 1.41 ± 1.48 0.94 ± 1.08 lower <0.001 

C 
 

Stippling - - N/A N/A 

N/A = not applicable; SD = standard deviation; ( ) = compared with; level of 
significance for each implant model p = 0.05/6 = 0.0083 (Bonferroni-
correction); Paired-samples t-test or 1Wilcoxon-Rank. 
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4.2.3 Multiple Linear Regression Analysis 

Using MLRA, the BDS for the Modified-Method was significantly 

higher than for the Hood-method (p ≤ 0.001) (Table 4.3).  This was not 

surprising since the preliminary data analysis showed a higher BDS for the 

Modified-method for model A and model B implant but not model C implant.  

The Modified*IP interaction term was different from the Hood*IP interaction 

term (p = 0.001).  When the meaning of the interaction terms was considered, 

this finding confirmed that the BDS-gradient (slope of the straight line fitted to 

the BDS versus IP data shown in Fig. 4.1) for the Modified-method was 

significantly higher than the BDS gradient for the Hood-method.   

MLRA confirmed that males with GA inserts had significantly higher 

BDS than females with GA inserts using both the Hood-method (p = 0.030) and 

the Modified-method (p < 0.001) (Table 4.4 and 4.5).  However, the Modified-

method enabled the detection of significant differences between the BDS of 

males with NGA inserts and males with GA inserts (p = 0.005) as well as 

between the BDS of females with NGA inserts and males with GA inserts (p = 

0.005) whereas the Hood-method (p ≥ 0.081) did not show these differences.  

The type of surgery (primary or revision), insert thickness and IP were also 

significant in both the regression models obtained for Hood-method and the 

Modified-method (Table 4.4 and 4.5).  An adjusted R2 of 0.655 was found when 

applying MLRA to the data from the Modified-method whereas a much lower 

adjusted R2 of 0.372 was found when applying MLRA to the data from the 

Hood-method (Table 4.4 and 4.5).   

The power for both regression models was greater than 95% (κ > 0.95).  

Insert type, and patient mass, height and age were not significant in either 

regression model (p > 0.05).  Standardized residuals showed that no 

unexplainable pattern remained after both regression models were applied (Fig. 

4.4). 
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Table 4.3: MLRA of the BDS from the Hood-method and from the Modified-
method. 

Regression model  Grading methods 

Independent  Variables βn Dependent variable p-value 

Grading method  BDS  

Modified (Hood)  10.983 higher <0.001 

Modified*IP (Hood*IP) 0.425 different 0.001 

IP 0.410 correlates pos. <0.001 

Adjusted R2-value  0.488  

( ) = compared with; * indicates an interaction variable; IP = implanation 
period; level of significance = 0.05 
 

 

 

 

Table 4.4:  MLRA of the BDS from the Hood-method.  
Regression model Hood -method 

Independent  Variables βn Dependent variable p-value 

Sterilization*gender  BDS  

GA*F (GA*M)  -11.765 lower 0.030 

NGA*M (GA*M) -6.136 not different 0.309 

NGA*F (GA*M) -10.578 not different 0.081 

Implant type    

P (R) 10.221 higher 0.016 

Insert thickness 1.037 correlates pos. 0.019 

IP 0.184 correlates pos. 0.022 

Adjusted R2-value 0.372 

GA = gamma-in-air; NGA = Non-gamma-in-air; M = male; F = female; IP = 
implantation period; ( ) = compared with; * indicates an interaction variable; βn 
= regression coefficients; level of significance = 0.05. 
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Table 4.5:  MLRA of the BDS from the Modified-method. 

Regression model Modified-method 

Independent  Variables βn Dependent variable p-value 

Sterilization*gender  BDS  

GA*F (GA*M)  -36.428 lower <0.001 

NGA*M (GA*M) -30.084 lower 0.044 

NGA*F (GA*M) -20.993 lower 0.005 

Implant type    

P (R) 18.926 higher 0.009 

Insert thickness 1.703 correlates pos. 0.023 

IP 0.574 correlates pos. <0.001 

Adjusted R2-value 0.655 

GA = gamma-in-air; NGA = Non-gamma-in-air; M = male; F = female; IP = 
implantation period; ( ) = compared with; *indicates an interaction variable; βn = 
regression coefficients; level of significance = 0.05. 
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Figure 4.4:  Standardised residuals obtained for the MLRA using the BDS from 
the Hood-method and from the Modified-method. 
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4.2.4 Discussion  

The BDS assessment was directly influenced by the utilized damage 

assessment method.  The BDS assessment by the two observers showed 

significant differences for the burnishing damage feature for the Hood-method, 

but not for the Modified-method.  The IP appeared to affect the BDS for both 

methods.  However, the stronger correlation between the BDS from the 

Modified-method versus the IP suggested that the Modified-method was more 

appropriate to try to relate to clinical wear that was known to be highly time-

dependent.   

Correlations between the topside damage scores and the IP (with a 

positive damage score offset) were reported when tibiofemoral PE damage 26 

and tibial PE post damage 219 were analyzed.  The suggested logarithmic 

behaviour between the BDS and IP that was observed for both grading methods 

might represent a general feature of semi-quantitative damage assessment 

methods.  The high of BDS in both methods at low IP suggested that damage 

was quickly established.  It was likely that deformation and creep were 

prevalent during this phase and thus the damage did not cause a higher run-in 

wear.  Also, some initial surface damage on the PE insert prior to implantation 

may have occurred due to manufacturing and handling processes 415, which 

might have increased the BDS at low IP.   The logarithmic regression at the 

high IP values suggested a leveling off of BDS for both the methods (Fig. 4.1).  

At this stage, further BDS might not be possible because the entire surface 

would be damaged. The backside surface might continue to experience PE 

damage (and wear) but it cannot be distinguished by any grading method.  This 

might be a general limitation of these grading methods.  However, it is 

considered likely that the BDS gradient at low to intermediate IP correlates with 

the wear rate. 

The mean and the SD of the BDS obtained with the Modified-method 

were higher for implants retrieved after advanced IP (model A and B implant) 

and for damage features with high BDS (Table 4.2). At both high surface 

damage and advanced implantation periods that the Hood-method may have 
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underestimated surface damage as it assigns a score of 3 to a surface damage of 

≥ 50 % to ≤ 10 %.  In contrast, the Modified-method assigned a score of 5 to a 

surface damage ≥ 50 % and would have an assigned a maximal score of 10 to a 

surface damage ≤ 100 %.  Thus, using the Modified-method to assess surface 

damage may have produced a BDS with a higher resolution compared with the 

Hood-method.  However, the retrieved model C implants (that had a low mean 

IP) and damage features with low mean BDS showed a significantly higher 

Hood-BDS.  A ~ 30 % damaged surface would receive a score of 2 from the 

maximal score of 3 according to the Hood-method.  In contrast, the Modified-

method would assign a score of 3 from a maximal score of 10 to such surface 

damage.  Thus, the assigned score relative to the maximal score possible was 

much higher for the Hood-method when small amounts of surface damage were 

assessed.  This may explain why the BDS the Hood-method under-estimated 

surface damage at the higher IP but over-estimated it at the lower IP.   

Normalizing damage scores by IP (i.e. BDS/IP), as suggested by 

Puloski et al. 219, was inappropriate for the present data set because such a 

procedure required a linear BDS versus IP relationship that had an intercept at 

the origin.  Using MLRA was more appropriate for this set of retrieval data 

since the intercept was based on the data supplied and did not have to be at the 

origin.  The MLRA revealed that the mean BDS and the BDS-gradient were 

significantly higher for the Modified-method (Table 4.3).  In addition, the BDS 

from the Modified-method combined with the MLRA enabled the detection of 

more significant factors that may describe the clinical backside wear behaviour.  

It was of particular concern that the Hood-method failed to detect a significant 

difference between the BDS of NGA inserts compared with males with GA 

inserts.  GA sterilization as well as extended shelf storage time had been 

associated with premature and catastrophic PE insert failure due to severe 

cracking and delamination on the proximal surface due to alteration and 

reduction of mechanical properties 213,214.  It was plausible that such effects 

allowed an increase in insert micromotion and were responsible for the increase 
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in BDS.  Thus, it was reassuring to observe that the Modified-method detected 

such plausible effects caused by difference in sterilization technique.   

 

4.2.5 Concluding Remarks 

The Modified-method has shown to be a useful and superior tool to 

assess backside damage on retrieved tibial PE inserts from cemented tibial trays 

without screw holes.  The Hood-method was found to be less appropriate for the 

assessment of backside damage in the present cohort of retrievals.  In addition, 

the Modified-method accounted for more data variation and identified the type 

of sterilization technique as an influential factor on backside damage. The 

Hood-method did not detect such an influential factor.   Hence, it was suggested 

to further use the Modified-method in retrieval analysis as it permitted the 

detection and confirmation of beneficial implant design features.  
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4.3 Retrieval Analysis: Part 2, Factors Influencing BDS 

4.3.1 Introductory Remarks 

The former Section established the superiority of the Modified-method 

compared with the Hood-method.  The BDS obtained with the Modified-method 

was further analyzed in detail with univariate analysis and MLRA.  This was 

conducted to gain some more insight on the possible clinical performance of the 

retrievals with the goal to give the physician and implant manufacturer 

recommendations on beneficial implant design improvements to reduce the 

incidence of severe backside damage and thus osteolysis.  Based on these 

findings, some specific implants from the retrieval cohort were selected and 

characteristic damage features were assessed using surface analysis techniques.  

Such an analysis was deemed essential to illustrate the possible acting wear 

mechanisms in the boundary lubrication processes.  An attempt was also made 

to answer the question whether the backside damage was caused by wear or 

dominantly deformation using a melt-annealing technique.  A detailed statistical 

analysis coupled with detailed surface analysis was considered beneficial to 

support the possible suggestions for design modifications and raise awareness 

for the physician on the possible in vivo performance of such contemporary 

fixed bearings. 

 

 

4.3.2 Preliminary Data Exploration 

Correlation analysis suggested that IP was the only significant 

independent continuous variable overall that influenced BDS (R = 0.688, p < 

0.001, Spearman correlation).  Descriptive statistics suggested that IP had a 

significant influence on BDS for model A implants (R = 0.614, p = 0.034, 

Pearson correlation) and for model B implants (R = 0.595, p = 0.015, Pearson 

correlation) but not for model C implants (R = 0.251, p = 0.238, Pearson 

correlation) (Fig. 4.5).  However, model C implants with IP greater than 15 
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months had significantly higher BDS than those implanted less than or equal to 

15 months (p = 0.028, Student’s t-test). 
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Figure 4.5: Linear correlations of BDS versus IP for implant models A, B, and 
C. 
 

 

There appeared to be a gender related effect on BDS, particularly for 

the model B implant (Fig. 4.6).  The BDS was higher for males than for females 

with model B implants (p < 0.001, ANOVA and Fisher’s) but not for model A 

or model C implants (p ≥ 0.722, ANOVA and Fisher’s).  GA inserts had both a 

higher mean BDS (p < 0.001, Student’s t-test) and an obvious gender influence 

compared with NGA inserts (Fig. 4.7).  The BDS was higher for GA inserts 

from males compared with GA inserts from females (p = 0.021, ANOVA and 

Fisher’s), but there was no difference between gender in the NGA group (p = 

0.252, ANOVA and Fisher’s). When only the GA sterilized inserts were 

considered, shelf storage had a strong negative correlation with IP (R = - 0.546, 

p = 0.023, Spearman correlation) and an even stronger correlation when only 

regarding GA inserts of group B (R = - 0.762, p = 0.004, Spearman correlation).  
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A correlation between the shelf storage and IP was not observed for the NGA 

inserts (R = - 0.072, p = 0.680, Pearson correlation). 
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Figure 4.6:  BDS grouped by implant model and gender. 
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Figure 4.7:  BDS grouped by sterilization techniques and gender. 
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CR inserts had significantly lower insert thickness values than PS 

inserts (p = 0.027, Student’s t-test).  Lower BDS was found for cases revised for 

infection compared with those revised for osteolysis (p < 0.001, ANOVA and 

Fisher’s) but BDS did not differ for cases revised for osteolysis, instability or 

other reasons (p > 0.079, ANOVA and Fisher’s).  Only five cases were reported 

to be revised for osteolysis but these had the highest average IP (p ≤ 0.023, 

ANOVA and Fisher’s).  Primary implants had a lower insert thickness than the 

revision components (p = 0.003, Student’s t-test).  Male patients had higher 

mass (p = 0.013, Student’s t-test) and height (p < 0.001, Student’s t-test) 

compared with female patients.  The anterior BDS values were not different 

from the posterior BDS values (p = 0.289, Wilcoxon-Rank). The medial BDS 

values were not significantly higher than the lateral BDS values (p = 0.083, 

Wilcoxon-Rank), but a trend could be observed.  The BDS gradients and 

intercepts with the BDS-axis for various categorical variables are shown in 

Table 4.6.   

 

 

Table 4.6: Estimation of the BDS-gradient (and intercept) by linear regressions 
between BDS and IP for various independent categorical variables (BDS (IP) = 
BDS gradient (IP) + Intercept). 

Independent categorical variables BDS-gradient Intercept 

Reason for surgery    

IF 0.420 12.96 

IS 0.190 37.714 

O 0.776 5.334 

OT 0.632 22.885 

Sterilization   

GA 0.245 46.84 

NGA 0.880 8.047 

Gender   

M 0.779 16.834 

F 0.488 11.662 

BDS = Backside Damage Score; IP = Implantation Period; M = Male, F = 
Female; GA = Gamma-in-Air, NGA = Non-Gamma-in-Air; IF = Infection, IS = 
Instability, O = Osteolysis, OT = Others. 
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4.3.3 Multiple Linear Regression Analysis 

The correlations and descriptive statistics used in the previous section 

were not as reliable as multiple linear regression analysis (MLRA) that 

determined the actual contribution of specific independent variables to the data 

variance and also allowed the study of the “interaction” terms between 

variables.  Thus, the interactions between implant model and gender accounting 

for the variation in IP were considered using MLRA in analysis M1 (Table 4.7).  

After adjusting for the IP, several observations that were suggested by the data 

exploration could be confirmed by MRLA analysis.  As shown in analysis M1, 

males with model B implants (B*M) were not different to either males of model 

A (A*M) or females of model A (A*F) implants (p = 0.806, p = 0.235 

respectively or combined as p ≥ 0.235).  The findings of analysis M1 in Table 

4.7 could be stated in somewhat more compact fashion.  For example, females 

with model B implants were not different from either males or females with 

model C implants (p ≥ 0.191).  However, the males with model B implants plus 

both males and females with model A implants did have significantly higher 

BDS than females with model B implants plus both males and females with 

model C implants (p < 0.001).  This last finding was suggested by Fig. 4.6 but 

confirmed here by MLRA. 

Analysis M2 examined the interaction between sterilization techniques 

and gender on BDS and confirmed the findings illustrated in Fig. 4.7.  There 

was a gender related effect on BDS for GA inserts with males having higher 

BDS (p < 0.001) while such an effect was not observed on NGA inserts (p = 

0.137).  Also, males with GA inserts had higher BDS than males with NGA 

inserts (p = 0.044), but such effect was not observed for females (p = 0.137).  

Additional factors emerged as significant in this analysis: patients with primary 

implant types had higher BDS than the patients with revisions implant types (p 

= 0.009); continuous variables such as insert thickness and IP correlated 

positively with BDS (p ≤ 0.023).  Furthermore, analysis M3 revealed that BDS 

was a function of gender, IP and shelf storage when only GA sterilized inserts 

of model B implants were selected.  The exploration of insert type on BDS in 



 

  145 

analysis M4 showed no difference in BDS between both CR and PS inserts (p = 

0.830) after adjusting for other variables such as gender, insert thickness and 

implant type. 

A higher adjusted-R2-value was obtained in analysis M4 and this 

permitted an investigation on the influence of reason for surgery, sterilization 

technique, gender, insert thickness and IP on BDS and to test differences 

between BDS-gradients.  Interestingly, the independent variables corresponding 

to the reason for surgery showed the lowest total BDS for cases with osteolysis 

(p ≤ 0.004) (Table 4.7).  It was not surprising to observe higher BDS for GA 

inserts (p = 0.012) and male patients (p = 0.001).  The interaction terms between 

dummy-variables and IP (IF*IP, IS*IP, O*IP, OT*IP; GA*IP, NGA*IP; M*IP, 

F*IP) were included in M6 to test for differences between BDS-gradients.  The 

interaction term for osteolysis (O*IP) was different to infection (IF*IP), 

instability (IS*IP), and others (OT*IP) (p ≤ 0.001); NGA*IP was different to 

GA*IP (p = 0.002); F*IP was different to M*IP (p = 0.007).  This confirmed 

that the BDS-gradients, initially obtained with linear regression analysis, were 

highest for cases with osteolysis, NGA inserts, and male patients (Table 4.6). 

MLRA was applied to individual damage features in analysis M6 and 

M7 and showed that the extent of burnishing was reduced for a partial-

peripheral compared with a central dove-tail locking mechanism.  This finding 

was indicated by Fig. 4.8 but confirmed by MLRA as follows.   Model C 

implants with a polished tray surface and a partial-peripheral locking 

mechanism had a lower burnishing score than model B with a grit-blasted tray 

surface and a partial-peripheral locking mechanism (p = 0.003), thus suggesting 

that grit-blasted surfaces did cause less burnishing.  However, model A with a 

polished tray and a central dove-tail had a much higher burnishing score than 

model C, thus suggesting that the partial-peripheral locking mechanism reduced 

burnishing.  Indentation score was the highest for model B implants with the 

grit-blasted tray surface.  The power in the preceding applications of MLRA 

was always calculated to be greater than 95% (κ > 0.95). 
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Table 4.7: Multiple linear regression analysis (MLRA); see the legend at the 
bottom of the table for an explanation of the various terms. 

Analysis  
(Adj.  R2) Independent variables βn Dependent 

variable p-value1 

Model*Gender  BDS  

A*M (B*M) -2.079 not diff. 0.806 

A*F (B*M) -10.764 not diff. 0.235 

B*F (B*M) -41.558 lower <0.001 

C*M (B*M)  -34.579 lower <0.001 

C*F (B*M) -31.445 lower 0.001 

A*M (B*F) 39.479 higher <0.001 

A*F (B*F) 30.794 higher 0.001 

B*M (B*F) 41.558 higher 0.001 

C*M (B*F)  6.979 not diff. 0.388 

C*F (B*F) 10.113 not diff. 0.191 

M1 
(0.743) 

IP 0.481 pos. corr. <0.001 

Sterilization*gender  BDS  

GA*M (GA*F)  36.428 higher <0.001 

NGA*M (GA*F) 15.435 not diff. 0.204 

NGA*F (GA*F) 6.344 not diff. 0.596 

GA*M (NGA*M) 20.993 higher 0.044 

NGA*F (NGA*M) -9.091 not diff. 0.137 

Implant type  BDS  

P (R) 18.926 higher 0.009 

Insert thickness 1.703 pos. corr. 0.023 

M2 
(0.655) 

IP 0.574 pos. corr. <0.001 

Gender  BDS  

M (F) 30.636 higher 0.032 

IP 1.059 pos. corr. 0.006 

M32 
(0.643) 

Shelf storage  1.312 pos. corr. 0.030 

Type  BDS  

CR (PS) -1.444 not diff. 0.830 

Gender  BDS  

M (F) 18.656 higher 0.001 

Implant type  BDS  

P (R) 18.188 higher 0.019 

Insert thickness 1.563 pos. corr. 0.040 

M4 
(0.603) 

IP 0.643 pos. corr. <0.001 
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Table 4.7 (continued): Multiple linear regression analysis (MLRA); see the 
legend at the bottom of the table for an explanation of the various terms. 

Analysis  
(Adj.  R2) Independent variables βn Dependent 

variable p-value1 

Reason for surgery  BDS  

IF (O) 47.311 higher 0.004 

IS (O) 56.353 higher 0.001 

OT (O) 61.169 higher <0.001 

IF*IP (O*IP) -1.125 different 0.001 

IS*IP (O*IP) -1.566 different <0.001 

OT*IP (O*IP) -1.064 different <0.001 

Sterilization  BDS  

GA (NGA) 23.653 higher 0.012 

GA*IP (NGA*IP) -0.925 different 0.002 

Gender  BDS  

M (F) 16.142 higher 0.001 

M*IP (F*IP) 0.381 different 0.007 

Insert thickness 1.154 pos. corr. 0.045 

M5 
(0.766) 

IP 1.831 pos. corr. <0.001 

Model  Burnishing Score  

A (C) 20.562 higher <0.001 

B (C) -8.337 lower 0.003 

 
M6 

(0.766) 
 
 IP 0.114 pos. corr. <0.002 

Model  Indentation 
Score  

A (B) 14.543 lower <0.001 

C (B) 3.746 lower 0.004 

M7 
(0.655) 

IP 0.231 pos. corr. <0.002 

*indicates an interaction variable; ( ) ≡ compared with; pos. = positive, neg. = 
negative, corr. = correlation; BDS = Backside Damage Score; IP = Implantation 
Period; M = Male, F = Female; GA = Gamma-in-Air, NGA = Non-Gamma-in-
Air; CR = Cruciate Retaining, PS = Posterior Stabilized; IF = Infection, IS = 
Instability, O = Osteolysis, OT = Others; P = Primary, R = Revision; βn = 
Regression coefficients; 1Level of significance is p ≤ 0.05; 2BDS of GA for 
model B implants only. 
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Figure 4.8:  The backside damage scores of individual damage features 
grouped by implant model A, B and C. 
 

 

4.3.4 Univariate Analysis 

Further descriptive statistical analysis was performed to provide some 

preliminary data exploration that was not followed up with MLRA.  Thus, the 

findings here were rather tentative.  Grooving, deformation and pitting damage 

showed no relationship with IP or any other variable and were further 

investigated on the univariate level.  Grooving was highest for model A 

implants (p < 0.001, ANOVA and Fisher’s) with model B and C implants 

showing no significant differences (p = 0.141, ANOVA and Fisher’s).  

Deformation was only observed in model A and C implants and was higher for 

the model A implants (p = 0.015, Mann-Whitney-U).  Pitting was highest in 

model A implants (p < 0.001, ANOVA and Fisher’s) with model B and C 

implants showing no significant differences. 

Stippling was observed on some of the GA inserts of model B implants 

(cases 13, 14, 16, 21 - 24, 26, and 28; see Section 3.2 and for specific details) 

with a mean IP of 78.1 months (range, 9.57 - 139.9 months) and on most of the 
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PS type implants.  Patient mass, height and age were not significantly different 

between model A, B and C implant (p = 0.084, ANOVA and Fisher’s). 

 

 

4.3.5 Surface Characterization 

A typical surface of an insert that opposed a polished tibial tray (case 

2; see Section 3.2 and for specific details) was examined in the SEM.  Some 

micro damage was evident including ripples (aligned rows of nodules) and 

dispersed smeared nodules (Fig. 4.9).  Submicron pulled-out fibrils were also 

present.  Such an appearance was characteristic of the burnishing damage 

feature and low magnification. 

 

 

 
Figure 4.9:  SEM image in SE mode of the backside of a PE insert from a 
model A implant (case 2; see Section 3.2 and for specific details) that had a 
polished tibial tray.  Note the presence of ripples (aligned rows of nodules), 
dispersed smeared nodules and submicron pulled-out fibrils. This appearance 
was characteristic for the burnishing damage feature, most abundant on PE 
inserts from polished tibial trays. 
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A typical surface of an insert that opposed a grit-blasted tibial tray of 

model B implant (case 24) was also examined.  For this insert, indentations had 

been observed during the BDS assessment and were now seen under higher 

magnification in the SEM (Fig. 4.10).  The indentations at the circumference of 

the backside PE insert surface (Fig. 4.10.a) appeared to result from direct 

contact with the surface asperities of the rough tray surface.  However, the 

surface directly under the centre of the tibiofemoral bearing surface revealed 

short grooves oriented in the anterior-posterior direction (Fig. 4.10.b).  Some of 

the inserts from the model A implants (cases 5, 7, 8, and 12) and model C 

implants (cases 42, 47 and 51) also showed localized damage (mostly 

burnishing) directly under the centre of the tibiofemoral bearing surface.  

 

 

 
(a) 

Figure 4.10: SEM image in SE mode of the backside of a PE insert from a 
model B implant (case 27): (a) at the circumference (anterior direction ≡ top of 
page). 
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(b) 

Figure 4.10 (continued): SEM image in SE mode of the backside of a PE insert 
from a model B implant (case 27): (b) directly underneath the tibiofemoral 
bearing surface (anterior direction ≡ top of page). 

 

 

Nine retrieved grit-blasted model B tibial trays were available from 

inserts where indentations and stippling were observed (cases 13, 14, 16, 21-

28).  All of them showed some evidence of wear despite articulating with 

relatively soft PE.  Only indentations were found in cases 13, 14, 16, 21 and 25.  

However, six trays from cases 22 - 24, 26 - 28 showed stippling (Fig. 4.11) and 

they had a mean IP of 96.24 months (range, 70.09 - 139.9 months).  SEM of 

these areas for case 27 revealed localized wear with small grooves (width of 

approximately 3 μm) being present.  There were no indications that abrasive 

particles were dragged into the area of stippling from the periphery, despite 

recent suggestions 300.  

 

 



 

  152 

Deposits on the retrieved grit-blasted trays of were mainly of carbon 

composition, which might indicate that they were PE or acrylic (Fig. 4.12.a, 

4.13.a).  Embedded and fractured particles were observed on three new, never 

implanted tibial trays on the superior surface (Fig. 4.12.b, 4.13.b).  Localized 

EDX analysis and EDX mapping revealed that these particles were rich in 

silicon and oxygen (presumably SiO2) (Fig. 4.13 and Fig. 4.14).  Six retrieved 

trays showed no embedded particles and three trays (cases 22, 25, and 27) 

revealed about two particles for every ten EDX measurements of suspicious 

areas that were rich in aluminum and oxygen (presumably Al2O3) (Fig. 4.13.c).  

For reference, an EDX spectrum of the tibial tray substrate of a model B implant 

was also taken (Fig. 4.13.d).  According to the manufacturer, the final grit-

blasting process for the tibial trays of the model B implants stayed the same for 

the duration of the production.  

 

 

 
Figure 4.11: SEM image in SE mode of an individual stippling mark on the tray 
surface of a model B implant (case 27). 
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(a) 

 
(b) 

Figure 4.12:  SEM image: (a) a retrieved model B tray (case 26) with the dark 
area rich in carbon and (b) a model B new, never implanted  tibial tray (done in 
the BSE mode) with the dark area rich in silicon and oxygen (anterior direction 
≡ top of page ). 

Area rich in carbon

Area rich in silicon
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(a) 

 

 
(b) 

Figure 4.13:  EDX spectra at 15 keV of (a) the carbon rich area on a retrieved 
model B tray (case 26), (b) the silicon and oxygen rich area on an as-
manufactured model B tibial tray. 
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(c) 

 

 
(d) 

Figure 4.13 (continued):  EDX spectra at 15 keV of (c) the aluminum and 
oxygen rich areas on a retrieved model B tibial tray (case 27), and (d) the tibial 
tray substrate of a model B implant. 
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(a) BSE image 

 

 
(b) Silicon (yellow) 

Figure 4.14:  EDX mapping on a specific area conducted on the as-
manufactured tibial tray: (a) the surface image taken in the BSE mode and 
specifically running the EDX mapping for (b) silicon. 
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(c) Oxygen (turquoise) 

 

 
(d) Titanium (red) 

Figure 4.14 (continued):  EDX mapping on a specific area conducted on the as-
manufactured tibial tray: specifically running the EDX mapping for (c) oxygen 
and for (d) titanium. 
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The indentations that were found on the PE of model C implants were 

predominantly in the peripheral region of the backside surface of the PE insert.  

Visual observation of the matching area on the polished tibial tray revealed that 

machining marks were still somewhat apparent.  Measurements taken on three 

new, never implanted tibial trays (one from each implant model) revealed that 

the grit-blasted trays of model B implants had the highest roughness (Ra = 935.9 

± 172.2 nm) compared with trays of model A and C implants (p < 0.001, 

ANOVA and Tamhane).  Also, the roughness of the model A implant (Ra = 16.0 

± 5.6 nm) was significantly lower than that of the model C implant (Ra = 32.9 ± 

5.4 nm) (p < 0.001, ANOVA and Tamhane). 

 

 

4.3.6 Melt-Annealing 

Burnishing was the most abundant damage feature on PE inserts 

retrieved from polished tibial trays.  It was uncertain if burnishing was mainly 

due to deformation or due to wear.  Load and motion may not necessarily cause 

PE wear but may result in creep of PE asperities 74.  Such surface creep was 

shown to recover after the retrieved PE was melt-annealed.  Thus, a PE insert 

from the retrieved model A implants was selected to elucidate on whether 

backside damage is caused by wear or by creep.  The sections of the retrieved 

PE insert (case 4; GP sterilized PE insert) revealed a transition from original 

machining marks to a relatively smooth burnished zone (Fig. 4.15).  After melt-

annealing, the burnished surface was roughened with nearly no recovery of the 

machining marks (Fig. 4.16).  Ra roughness measurements were taken before 

and after the melt-annealing well within the burnished area and in the area with 

visible machining marks.  Such measurements revealed an increase in roughness 

from Ra = 33.5 ± 5.5 nm to Ra = 783.5 ± 124.1 nm (∆Ra = 750.2 nm) in the 

burnished area.  Interestingly, the surface roughness in the area with the visible 

machining marks increased only by ∆Ra = 131.2 nm from Ra = 1315.9 ± 130.4 

nm to Ra = 1430.8 ± 134.2 nm.   
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(a) 

 

 

 
(b) 

Figure 4.15: Surface profile of the retrieved model A implant PE inserts before 
melt-annealing: (a) retrieved and (b) the magnified area. 
 

 

Visible machining marks 
Burnished area 

Magnified in (b) 
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(a) 

 

 

(b) 

Figure 4.16: Surface profile of the retrieved model A implant PE inserts after 
melt-annealing: (a) retrieved and (b) the magnified area. 

 

 

Visible machining marks 

Magnified in (b) 
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A static compression test was performed on a new, never implanted 

model A insert of 12 mm thickness (GP sterilized PE insert) in PBS at 37 ºC for 

336 h under a static axial load of Fn = 4000 N.  The PE insert was submersed in 

the PBS at 37 ºC for 72 h prior to the compression test to pre-soak the PE and 

again for 48 h after the compression test to “relax” the PE.  The pre-soaking was 

performed to permit the surface asperities to gain fluid prior to the loading 

period.  The post-conditioning was performed to allow the PE insert surface 

asperities to relax in the testing fluid so that equilibrium was achieved.    

The Ra was measured at (i) after the 72 h of pre-conditioning (prior to 

loading), (ii) after the compression tests followed by 48 hours of relaxing (post 

to loading), and (iii) after the melt-annealing procedure (melt-annealed) (Table 

4.8).  The Ra was measured both directly under tibiofemoral bearing surface 

(loaded area) and at the centre of the PE insert near the locking pin (see Fig. 3.1 

for details) (unloaded area).  The surface roughness was reduced for the loaded 

area but increased for the unloaded area (possibly due to fluid sorption) during 

the compression test.  After melt annealing, the loaded area as well as the 

unloaded area recovered to almost the same amount.  Linear surface scans were 

taken from the loaded area at the different stages of the static compression test 

(Fig. 4.17).  It appeared that the asperity height was reduced after the implant 

was subject to the static vertical load.  The melt-annealing clearly increased the 

surface asperity height beyond the asperity height at test initiation.   
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Table 4.8: Ra roughness measured on a new, never implanted model A type PE 
inserts during the compression test. 

Ra Roughness [nm] 
Measurements 

Loaded Area Unloaded Area 

i. Prior to loading 998.4 ± 65.9 1026.4 ± 96.1 

ii. Post loading 704.1 ± 54.9 1252.7 ± 59.1 

iii. Melt-annealed 1241.9 ± 160.5 1733.9 ± 83.6 

iii minus ii 537.7 ± 189.9 481.2 ± 95.4 

 

 

 

 

0

10

20

30

40

50

60

0 1 2 3 4

X [mm]

Z 
[ μ

m
]

 (i) 

(iii) 

(ii) 

 
Figure 4.17:  Linear surface scans taken on the backside surface of a new, 
never implanted model A insert: (i) before the compression tests (72 h pre-
conditioned in PBS at 37 ºC), (ii) after the compression test (48 h “relaxed” in 
PBS at 37 ºC), and (iii) after melt annealing.  During the compression test, a 
static vertical load of Fn = 4000 N was applied to the PE insert for 336 h. 
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4.3.7 Discussion on Retrieval Analysis 

The present results have to be interpreted with caution since the 

findings were taken from implants that had failed clinically and thus they might 

not represent the cohort of well-functioning implants.  Also, factors such as 

implant alignment, implant position, soft-tissue balance, patient activity and 

individual synovial fluid composition were not investigated.  Nevertheless, the 

examination of retrieved implants had been widely used by other investigators 

and had been described as a useful method for gaining insight into the in vivo 

backside wear process 13,218,289,302,303,341,342.  Unfortunately, direct measurements 

of mass and geometry could not be used to determine backside wear of retrieved 

tibial inserts because the exact starting values of both mass and geometry, the 

extent of creep and the amount of topside wear were not known.  To quantify 

wear in an approximate manner, grading systems could be applied to produce 

damage scores.  

The grading system approach was supported by the expectation that 

wear increases with IP and the positive correlations between the total BDS and 

IP reported by other investigators 220,300,301.  Additional support was provided in 

the recent study by Hirakawa et al. 289, reporting that the number of wear 

particles released into the soft tissue increased with IP for modular total knee 

replacements.  However, a direct comparison between particles generated at the 

tibiofemoral articulation and at the backside surface regarding their osteolytic 

potential remained to be investigated.  Unfortunately, a quantitative relationship 

between surface damage and volumetric wear has not yet been established 

accurately. 

  

 

4.3.8 Discussion on Implant Design Issues 

A number of key issues were clarified in the present study for the 

implant designer with evidence from a fairly large number of retrievals.  

Perhaps the most interesting aspect of the present study was the relative 

performance of the three implant models (Fig. 3.1).  The Pearson correlation 
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also showed that IP did not significantly influence the BDS scores for model C 

implants and this finding was contrary to the overall positive correlation 

between BDS and IP.  The MLRA showed that male patients had the lowest 

BDS values for model C compared with models A and B that were not different 

from each other (Fig. 4.6).  For female patients, the MLRA showed that models 

B and C were not different from each other and had lower BDS than model A.  

The certainty of these findings was reduced by the low IP of the recently 

designed model C implants and the fact that most were removed for infection 

that might have limited patient mobility and thus BDS.  In addition, the BDS 

was significantly higher for model C implants that were retrieved after an IP of 

greater 15 months (p = 0.028, Student’s t-test), suggesting some degradation of 

the tibial locking mechanism might have occurred after about 15 months.  

Specific information regarding implant design was ascertained from 

the comparisons of BDS values for the different implant models.  The BDS 

values for the model C implants were lower for both males and females 

compared with model A.  The main difference between these two implant 

models was the locking mechanism for the PE insert.  Thus, it was considered 

likely that the lower BDS values for the model C implants occurred because 

their locking mechanism held the PE insert more tightly and reduced 

micromotion, and thus wear.  This likely superiority of the partial-peripheral 

locking mechanism was the first major finding of the present study regarding 

implant design.  

It was further supported when individual damage features were 

examined.  The model C implants had less burnishing damage compared with 

the model A implants, thus supporting the idea that less micromotion occurred.  

In support, the retrieval study of Akisue et al. 301 also suggested lower BDS for 

inserts from trays with partial-peripheral locking mechanism compared with 

those from trays with central locking mechanism, but they did not apply MLRA 

to their data set.  To the contrary, the retrieval study of Conditt et al. 302 recently 

suggested that backside damage was independent of tray locking mechanism 

design.  Although they applied a stepwise linear regression analysis, the method 
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might have failed to separate out the relationship because of the many other 

differences.  For example, their retrieval cohort contained 124 PE inserts of 12 

different designs and included trays with and without screw holes.   

More information regarding implant design was apparent when 

considering the BDS values for both model B and C implants.  For the male 

patients, who often had higher mass and perhaps on average more intense 

physical activities than female patients 377,416, the BDS scores were higher.  

However, for female patients, the BDS values for the model B implants were 

lower compared with those of the male patients with the model B implants but 

the BDS values were not different for all patients with implant model C.  This 

finding suggested that only under mild conditions did the grit-blasted surface of 

the tibial trays of model B implants hold the insert thus reducing backside 

motion and wear.  This idea was also suggested by Silva et al. 417 but without 

the same authority because the average IP of their retrieved tibial components 

was much lower (average of 22 months; range 2 days to 42 months) compared 

with the present study.  So, in the present study, male patients were likely to 

cause insert micro motion and subsequent damage from the rough grit-blasted 

surface despite the partial-peripheral locking mechanism.  However, if a smooth 

tibial tray was employed, as in model C implant, the BDS values were reduced. 

Thus, the present retrieval study suggested that implant models with smooth 

surfaced tibial trays might be needed to reduce backside damage and thus wear 

for the heavier, more active patient even when a partial-peripheral locking 

mechanism was employed.  The likely utility of a smooth surfaced tibial tray 

was the second major finding of the present study regarding implant design. 

Both of the major findings of the present study regarding implant 

design were supported in a recent simulator wear study on model A implants by 

McNulty et al. 46. They compared the wear effect of tray surface finish and 

insert modularity (modular versus non-modular) on wear.  A polished cobalt 

alloy tray was compared with a grit-blasted titanium alloy tray and the wear was 

reduced by 38 % (5.56 ± 0.42 mm3/Mc and 8.98 ± 1.71 mm3/Mc, respectively).  

Furthermore, there was no significant difference in wear for model A implants 
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of non-modular design compared with inserts that were clamped to tibial trays 

of both polished cobalt alloy and grit-blasted titanium thus representing a highly 

constrained locking mechanism.  Thus, McNulty et al. 46 suggested that a highly 

constraining locking mechanism could reduce the need for tibial trays with 

smooth surfaces.  It was also mentioned that additional simulator tests under 

more severe conditions should be conducted to confirm whether wear was 

indeed independent of surface finish for a highly constraining locking 

mechanism.   

Further support for the findings of the present study was provided in 

the recent retrieval study by Collier et al. 397 involving a 5 - 10 year follow-up 

of 300 patients with 365 CR knee replacements of model A implants.  Based on 

their performed Cox-regression analysis, the incidence of osteolysis was 

significantly reduced for polished tibial trays and NGA sterilization.  The 

benefit of NGA compared with GA sterilization was not a surprise and was 

supported by the findings of the present study.  Effects of gender and extended 

shelf storage time were also identified as significant promoters of osteolysis.  

However, the role of locking mechanism apparently could not be ascertained 

from their data set. 

Surprisingly, the BDS increased with increasing insert thickness in 

several of the regression models (M2, M4, and M5) in the present study.  This 

result was contrary to recommendations for insert thickness based on other 

studies 301,341,418 of implants with tibial trays having screw holes under the 

tibiofemoral contact area for cementless fixation.  However, for the implants in 

the present study, the thinner inserts might have sustained more creep that 

allowed the partial-peripheral locking mechanism to better grip the insert and 

thus be more effective in preventing micromotion and wear.  In the case of a 

large flexion-extension gap that requires the use of a thicker PE insert it may be 

best advised to use augments with the femoral component and below the tibial 

tray.  Using augments reduces the flexion-extension gap and allows the 

implantation of a thinner PE insert in such a case. 
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As mentioned previously when discussing the recent study of Collier et 

al. 397, retrieved inserts in the present study that were GA sterilized, had overall 

higher BDS and the BDS also increased with shelf storage for GA inserts of 

model B implants. GA sterilization with extended shelf storage was a well-

known precursor 213,214 of high wear and it was reassuring to find that the 

present grading system detected this effect. Recently, Rasquinha et al. 296 

hypothesized that GA sterilized PE insert possibly allowed more backside wear 

to occur.  The lower BDS gradient for GA compared with NGA (M5) might 

have been caused by the GA inserts having enough damage to reach a BDS 

“saturation” level.  In any case, the use of GA sterilization was condemned by 

the results of the present study. 

The two insert types (CR or PS) did not show statistically different 

BDS values.  The PS inserts had been expected to show more backside damage 

than the CR inserts because moments and tangential forces might be generated 

by the cam-post 419, resulting in a less effective locking mechanisms, more 

micro motion, and in higher BDS.  However, this did not occur significantly and 

so BDS was found to be insensitive to whether a PS or CR implant was used.    

The “reasons for surgery” in the present study reflected current trends 

to some extent 8.  To date, only three studies 293-295 reported severe tibial 

osteolysis in cemented modular total knee replacements.  The five cases of 

osteolysis in the present study, with their higher BDS-gradient, but low BDS 

values, should cause some immediate concern.  It was considered plausible that 

once osteolysis was initiated, because of a higher backside wear rate, it 

developed rapidly enough that the implants were replaced before they could 

achieve higher BDS values.  On the other hand, the BDS of inserts revised for 

infection (dominantly of model C implant) might have been somewhat over-

estimated since some surface damage might have occurred during insert 

manufacturing and packing 415.  Of further interest was the higher BDS for 

inserts from primary implant types over inserts from revision implant types.  

Jones et al. 420 recently reported an increased metabolic activity for patients 

having primary implant types compared with patients having revision implant 
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types which may have led to increased BDS due to higher activity levels for 

patients with primary implant types. 

 

 

4.3.9 Discussion on Surface Characterization 

In addition to studying backside damage with a stereo microscope, the 

modified-method for BDS and statistical analysis, it was considered valuable to 

perform detailed surface characterization to obtain a better fundamental 

understanding of the damage features.  The micro damage of burnishing 

observed on PE inserts retrieved from polished tibial trays was similar to micro 

damage seen on the main articulation of acetabular cups that were retrieved for 

osteolysis 421.  It had been suggested that grit-blasted tibial trays had higher 

friction forces and thus less micro motion of the insert 417.  However, micro-

damage for the inserts opposing the grit-blasted tibial trays of the model B 

implants showed short grooves, suggesting that micromotion and damage still 

occurred. 

The presence of the stippling damage feature mostly on PS inserts 

retrieved from grit-blasted trays suggested the frictional transmission of 

tibiofemoral rotational stresses and the presence of third-body wear particles 295.  

The observed embedded and fractured particles in the new, never implanted 

grit-blasted trays were probably caused by repeated impacting of blunt particles 

from the slurry jet during the grit-blasting procedure, combined with the low 

fracture toughness of the abrasive particles (Al2O3 and SiO2) and the low 

hardness of the titanium alloy 422-424.  Embedded particles were rarely found on 

retrieved grit-blasted tibial trays, suggesting that these particles were eventually 

released into the body.  However, before being released, they probably 

contributed, with their high hardness and blunt shape, to third-body abrasive 

wear that appeared as stippling on the PE insert and metal tray.  Although these 

observations and speculations amounted to circumstantial evidence, it might be 

beneficial for the proximal surface of titanium alloy tibial trays to be thoroughly 

cleaned or to avoid grit-blasting altogether.  
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4.3.10 Discussion on Melt-Annealing 

The observed surface contour and profile changes after melt-annealing 

suggested some recovery of both the retrieved PE insert and the PE insert from 

the compression test.  For the PE retrieval, the burnished area as well as the area 

with clearly visible machining marks recovered after melt-annealing which 

suggested some recovery of plastic deformation.  The additional compression 

tests on one model A insert supplied more information.  The amount of recovery 

for the PE insert in the loaded area and unloaded area test was similar.  This 

suggested that residual stresses due to the manufacturing process may also be 

involved in the recovery process.  Considering the recovery of both the 

retrieved insert and the insert from the compression test one may conclude that 

the removal of machining marks was due mostly to wear rather than 

deformation.  Such recovery was suggested to diminish with increased level of 

oxidation in the PE 425.   However, the analyzed inserts were GP sterilized 

which was documented as being stable regarding oxidation 206.  This behaviour 

is likely to be different for highly XPE 74.  In any case, it was recognized that 

only one retrieved sample and only one as manufactured sample were utilized 

and may limit the conclusion of this smaller study. 

 

 

4.3.11 Concluding Remarks 

The selection of relatively large numbers of inserts of only three 

implant models combined with a modified grading system and a sophisticated 

statistical analysis allowed the identification of major influential factors in the 

multi-factorial process of backside wear.  Evidence was obtained to support the 

use of the partial-peripheral locking mechanism and polished tibial tray 

surfaces.  These features might be particularly beneficial for active male 

patients with high body weight.  Insert thickness should be considered part of 

locking mechanism design.  Some evidence was found for a high BDS gradient 

indicating that osteolysis, once initiated, developed rapidly in some patients.  As 

expected, the use of GA sterilization with extended shelf-storage led to 
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increased BDS.  Surface characterization suggested that a grit-blasted tibial tray 

still had PE insert micromotion and thus backside damage.  Some contamination 

by the grit-blasting particles was found on new, never implanted tibial trays that 

might have caused third-body abrasive wear on the backside of the insert.  The 

burnishing damage feature dominantly observed on inserts retrieved from 

polished tibial trays was suggested to be associated with an adhesive/abrasive 

wear mechanism.  As a final comment, for all of the implant models, some 

backside damage was considered inevitable since deformation of the PE insert 

under cyclic loading had to allow some micromotion and slip to occur at the 

backside interface.  Thus, either much better clamping mechanisms 46 or non-

modular tibial components should perhaps be considered 15,233,258,262,264,426-428. 

 

 

4.4 Lubricant Composition 

4.4.1 Introductory Remarks 

To gain more insight on the boundary lubrication process of PE, SF 

were sampled from twenty patients and analyzed for their biochemical 

properties (see Section 3.3.1 for details on SF).  Total protein concentration, 

electrophoretic profiles, osmolality, and trace elements (Ca, Mg, inorganic P, 

and Fe) were measured and compared with the composition of calf sera that are 

frequently used for in vitro wear testing.  This investigation was deemed 

necessary to set the precedence for the subsequently performed in vitro wear 

tests with the focus on the effects of SF constituents on PE wear. 

 

 

4.4.2 Protein Concentration  

The protein concentration of each SF sample was determined using the 

BCA assay immediately after sample collection from the patient.  Visually, the 

SF samples varied in color from light yellow, to dark yellow up to light red.  

The light red color may have been due to some blood contamination caused 
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during sampling that could not be eliminated even by centrifuging the samples.  

The total protein concentration was measured from quadruplicate samples for 

each patient.   The mean total protein concentration was 34.18 ± 4.77 g/l (Fig. 

4.18).  The distribution was Gaussian based on the histograms and was 

confirmed with the test for normality (p = 0.932, Kolmogorov-Smirnov test).  
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Figure 4.18:  Protein concentration of the SF samples collected from patients 1 
- 20. 
 

 

4.4.3 Electrophoresis  

As mentioned in Section 3.3, the SF samples were treated with 

hyaluronidase to break down the HA compound to facilitate electrophoresis.  It 

remained uncertain whether hyaluronidase interfered with the electrophoresis.  

It was decided to conduct electrophoretic measurements in sextuplicate on a SF 

sample hyaluronidase treated from one patient (SF 20) and sextuplicate of 

hyaluronidase diluted with PBS to a concentration 10 g/l (Fig. 4.19).  It can be 

clearly seen from the gel that hyaluronidase migrated towards the intensity of 

albumin.  Comparing the intensity of both groups showed that the hyaluronidase 
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accounted for 9.66 ± 1.66 % of the albumin intensity.  This suggested that a 

correction term for each SF sample has to be implemented to calculate the real 

protein constituent fractions.  The corrected initial protein constituent fraction, 

icc, was then calculated for the remaining four protein fractions, α-1-

globulin , α-2-globulin , β-globulin , and γ-globulin based on their initial 

measured fraction, icm: 

 

m
album

c ic
ic

ic += −

4
0966.0*min                                                                    (4.1) 

 

After conducting this correction, the albumin fraction was slightly 

reduced, while the individual fractions of the remaining protein constituents 

were consequently increased (Fig. 4.20).  The distributions of all corrected 

constituents were Gaussian on histograms which were confirmed with the test 

for normality (p ≥ 0.154, Kolmogorov-Smirnov test). 

 

 

 

 
Figure 4.19: Electrophoretic profiles of six SF samples (patient SF 20) and six 
hyaluronidase samples. Note the migration of hyaluronidase towards albumin in 
the gel. 
 

Hyaluronidase Albumin 



 

  173 

0

10

20

30

40

50

60

70

80

90

100

Albumin α-1-globulin α-2-globulin β-globulin γ-globulin

Protein constituents

Fr
ac

tio
n 

[%
]

Measured Corrected

 
Figure 4.20: The measured fractions and the corrected fractions of albumin, a-
1-globulin, α-2-globulin, β-globulin, and γ-globulin. 

 

 

The distribution of all constituents for both male and female patient 

groups was Gaussian on histograms and was confirmed with the test for 

normality (p ≥ 0.200 and p ≥ 0.277, Kolmogorov-Smirnov test, respectively) 

(Fig. 4.21).  There was no difference between male and female patients in the 

individual fractions of albumin, α-1-globulin, β-globulin , and γ-globulin (p ≥ 

0.409, Student’s t-test).  The α-2-globulin fraction was significantly higher for 

the female patients (p = 0.010, Student’s t-test).  

The calculated protein constituent fractions of the SF samples were 

graphed with the protein constituent fractions supplied from the manufacturer 

for BCS, NCS, ACS, and ACS-I (Fig. 4.22).  It can clearly be seen that the 

albumin, α-1-globulin , α-2-globulin fractions of SF were closest to ACS and 

ACS-I.  The β-globulin fraction of the SF samples was fairly similar to NCS 

and ACS.  The γ-globulin fraction of the SF samples was closely matched by 

BCS and NCS. 
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Figure 4.21:  The corrected fraction of albumin, α-1-globulin, α-2-globulin, β-
globulin, and γ-globulin for the male patients (n = 10) and the female patients (n 
= 10). 
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Figure 4.22: The fraction of albumin, α-1-globulin, α-2-globulin, β-globulin, 
and γ-globulin for the corrected SF (n = 20) and the calf sera such as BCS, 
NCS, ACS, and ACS-I according to the manufacturer (HyClone, Logan, UT). 
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4.4.4 Osmolality 

The osmolality was determined for all SF samples and measured 

310.20 ± 11.84 mmol/kg and was normally distributed (p = 0.995, Kolmogorov-

Smirnov test) (Fig. 4.23).  The mean osmolality value for all SF samples was 

compared with the values obtained for the calf sera such as BCS, NCS, ACS, 

and ACS-I that were either diluted with DW or PBS to a target protein 

concentration of 17 g/l according to ISO 14243-3 41 (Table 4.9).  It can be seen 

that the measured osmolality of SF, 100 % BCS, 100 % NCS, 100 % ACS, and 

100 % ACS-I was equivalent to the osmolality for the sera diluted with PBS 

(Fig. 4.24).  Strikingly, the serum dilution with DW resulted in approximately 

only half of the osmolality compared with SF samples. 
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Figure 4.23:  Osmolality of the SF samples collected from patient 1 - 20. 
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Table 4.9: Calf sera diluted with either DW or PBS to different amounts to 
obtain a protein concentration of 17 g/l according to ISO-14243-3 41. 

Diluted calf sera Dilutive Media Dilution [%] 

BCS + DW DW 25 

NCS + DW DW 33 

ACS + DW DW 40 

ACS-I + DW DW 41.5 

BCS + PBS PBS 25 

NCS + PBS PBS 33 

ACS + PBS PBS 40 

ACS-I + PBS PBS 41.5 
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Figure 4.24:  The osmolality for all SF samples, the undiluted calf sera (100 % 
BCS, 100 % NCS, 100 % ACS, 100 % ACS-I), and calf sera diluted with DW 
(BCS + DW, NCS + DW, ACS + DW, ACS-I + DW) and PBS (BCS + PBS, 
NCS + PBS, ACS + PBS, ACS-I + PBS) to a protein concentration of 17 g/l.   
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4.4.5 Trace Elements 

The concentrations of Ca, Mg, inorganic P, and Fe were determined in 

all SF samples, 100 % BCS, 100 % NCS, 100 % ACS, and 100 % ACS-I (Fig. 

4.25).  The distribution of all trace elements were shown to be Gaussian on 

histograms and confirmed with the test for normality (p ≥ 0.616, Kolmogorov-

Smirnov test).  The Ca and inorganic P concentration were highest in SF 

samples followed by Mg and Fe.  A similar pattern can be observed for BCS, 

NCS and ACS, but not for ACS-I with a Fe concentration (0.087 mmol/l) close 

to its Mg concentration (0.080 mmol/l).  However, none of the calf sera trace 

element concentrations were close to the concentrations of human SF samples. 
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Figure 4.25:  The trace element concentration of Ca, Mg, inorganic P, and Fe 
for SF, 100 % BCS, 100 % NCS, 100 % ACS, and 100 % ACS-I. 
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4.4.6 Discussion 

Apart from water, proteins count for the largest fraction of constituents 

in SF.  From the tribological perspective, proteins have been considered to play 

a role in the boundary lubrication process in natural human joints and therefore 

may also be of importance to artificial joints 76,429.  In the present study, the 

average total protein concentration reached 34.19 ± 4.78 g/l and was 

comparable to historical values reported for OA hip (31.8 ± 1.9 g/l; n = 21) 116 

and to OA knees (27 ± 10 g/l; n = 43) 33.  In any case, the total protein 

concentration was severely lower compared with any of the calf sera (BCS = 69 

g/l; NCS = 52 g/l; ACS = 42 g/l; ACS-I = 41 g/l) in the undiluted form.  In total 

knee wear testing, increased protein concentration resulted in reduced wear 

rates when an AMTI knee simulator was used 45. The use of calf serum with 

different protein constituent fractions may affect the PE wear rate but such an 

effect has not been established in knee wear testing. 

The BCA assay has been shown to be a consistent and reliable method 

for testing human fluids 430.  The individual protein structure, the number 

peptides and the presence of four amino acids (cysteine, cystine, tryptophan and 

tyrosine) were known to be responsible for the colorimetric response in this 

biuret reaction 173.  Although the phospholipid concentration (here the amount 

of organic P) was not evaluated in the present study, phospholipids are a 

constituent of SF but only at small concentrations of ~ 0.52 g/l 33.  Thus, such 

small amounts of phospholipids in the SF may have somewhat affected the 

measurements obtained with the BCA  171. 

The electrophoresis measurements of the SF sample and of the calf 

sera allowed the comparison of the main protein constituents quantitatively.  

Implementing the correction term to calculate the real protein constituent 

fraction was necessary as hyaluronidase migrated towards albumin. Such 

correction, although only marginal, affected the fraction of the other protein 

constituents.  Although there were ought to be differences between human and 

calf protein compounds, it was interesting to observe that albumin was most 

abundant in SF as well as in the calf sera.  The fractions of the remaining 
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protein constituents were quite different from the human SF samples.  Small et 

al. 107 reported the composition of SF samples taken from 13 patients with 

rheumatoid arthritis, infectious arthritis (Reiter’s syndrome) and chronic 

effusions.  They reported concentrations of 48 % albumin, 5 % α-1-globulin, 9 

% α-2-globulin, 12 % β-globulin and 25 % γ-globulin which were greatly 

different from the present.  Yao et al. 108,431 determined the fractions of five 

human SF samples and compared their fractions to fresh BCS and bovine SF 

and found noticeable differences between both fluids which confirms some of 

the trends observed in the present study.  Although further differences in 

viscosity and protein degradation were noted 108,431, no comment on the effect of 

the different sera on the PE wear was made and remained under scrutiny. 

Even though the osmolality of normal, healthy SF from human knees 

has been reported 106, it has not been addressed in patients with OA.  The 

osmolality of SF samples from healthy patients 106 appeared not to be different 

to the OA samples or human serum samples in the present study.  The 

osmolality of human SF samples from the present study was similar to the 

osmolality of the four undiluted calf sera (Fig. 4.24).  Nevertheless, the dilution 

of any calf serum with DW to a target protein concentration of 17g/l 41, as 

recommended by ISO, was shown to result in non-clinically relevant osmolality 

levels.  Others 35,157,175,432 used PBS or saline solution to dilute their serum for 

wear testing but without support to clinical relevance and whether osmolality 

may affect the PE wear rate.  The present data recommend the use of PBS as the 

dilutive medium for the calf sera used in wear simulations, but the effects of 

osmolality on PE wear still remained uncertain.  It may be possible that the 

increased ionic presence in the serum may improve the protein stability 104, 

affect protein degradation and thus PE wear.  Yet, this hypothesis remains to be 

proven.  The measured trace elements such as Ca, Mg, inorganic P and Fe were 

somewhat different in concentration to the SF.  While such elements are known 

to bind or add to proteins and other substances in the SF and calf sera 398, their 

effect on PE wear remained also unknown.  
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The four calf sera analyzed represent the main groups of calf sera that 

are currently used in the orthopaedic community to evaluate the wear 

performance of total joint replacements.  HA, another main constituent of SF, 

was not measured in the SF samples in the present study, but their concentration 

in OA patients was recently reported elsewhere 31.  As a final comment, a recent 

improvement in the protein detection technique allows the identification of 

twenty highly abundant proteins in human plasma 433.  This may also be of 

benefit for the analysis of human SF samples but such analysis went beyond the 

scope of this thesis. 

 

 

4.4.7 Concluding Remarks 

The analysis of the SF samples revealed that the total protein 

concentration was 2-fold greater than the total protein concentration 

recommended by ISO-14243-3 41 for simulator wear testing of TKRs.  The 

protein constituent fractions of the calf sera were different from these in SF.  

ACS and ACS-I were closest in their protein constituent fractions to SF.  

Diluting the calf sera with DW to a target protein concentration of 17 

g/l, as recommended by ISO-14243-3 41, resulted in non-clinically relevant 

levels  of osmolality for the serum mixture.  Using PBS as the dilutive media 

appeared more appropriate and produced osmolality levels similar to the levels 

measured in SF.  In addition, the trace elements were also vastly different 

between SF and the calf sera.  This investigation illustrated major differences of 

SF compared with the calf sera used for implant wear testing.  It remains 

uncertain whether these differences affect the in vitro wear process and requires 

further attention.  
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Chapter 5: In vitro Investigations: Results, Analysis and 
Discussion 

5.1 Introductory Remarks 

As shown in Chapter 4, the surface damage appeared to occur in the 

boundary lubrication regime.  The SF composition appeared to be vastly 

different to the calf serum composition in many aspects and may therefore 

impact the PE wear in knee simulator wear testing.  The effect of test fluid 

composition, fluid-uptake and boundary lubrication on PE wear in vitro test 

environment was explored in this chapter.   

Chapter 5 is divided into three major Sections. In Section 5.2, the 

effects of pre-soak media composition and design features on the fluid-uptake 

are explored.  This was performed on GUR 1050 AMK® inserts that were 

sterilized in different environments (GA or GP) and varied in thickness.  These 

inserts were subjected to pre-soak media at different temperatures and their 

weight gain assessed following several different protocols.  In addition, a newly 

acquired displacement controlled knee simulator was commissioned for 3 Mc 

under consideration of a specifically designed commissioning protocol (CP) in 

combination with test parameters courteously supplied by DePuy Orthopaedics 

Inc. (Warsaw, IN).  Such a wear test was necessary to characterize the station 

variation and other associated factors such as protein degradation and the 

amount of protein shear (characterized by the peptide concentration).  In Section 

5.3, the wear test from Section 5.2 was continued until a test maximum of 6 Mc 

on the same implant components.  In particular, the effects of protein 

constituents of BCS, NCS, and ACS on PE wear were assessed and the extent of 

protein degradation, bacterial growth, and peptide concentration identified, 

which were then compared with the clinical findings illustrated in Section 4.4.  

In Section 5.4, the calf serum closest to human SF was then used to further 

explore the effects of serum osmolality and HA on PE wear using an alternative, 

but yet more effective bio-control agent to inhibit bacterial growth.  Additional 

information was obtained by characterizing the protein degradation and peptide 
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concentration of different serum compositions and by applying surface 

characterization techniques.  Such developments led to a possibly more 

clinically relevant lubricant for the evaluation of total knee joints.  

 

 

5.2 Simulator Commissioning Tests 

5.2.1 Introductory Remarks 

The simulator commissioning tests were performed to gain insight into 

PE fluid uptake during soak testing (or, in other words, the PE mass gain 

behaviour when immersed in fluid), to perform initial wear tests with the knee 

simulator and to examine the biochemistry of the lubricating fluid during these 

initial wear tests.  The AMK® knee implant made with GUR 1050 PE inserts 

was used in all wear testing in the present thesis.  The PE fluid uptake was 

important because wear was assessed by measuring the overall mass loss and 

any fluid uptake that occurred during a wear test had to be added to the overall 

mass loss to determine the true wear.  For the soak testing, 11 tests with 3 

AMK® inserts in each (for a total of 33 inserts) were conducted to investigate 

the effect of measurement frequency, temperature, insert thickness, sterilization 

technique, soak period and fluid composition.  The initial wear testing was 

conducted for a total of 3 Mc and identified variations in wear for individual 

stations and banks of stations in the knee simulator.  The wear rates were 

compared with those obtained from previous testing conducted by DePuy 

Orthopaedics (Warsaw, IN) for the same AMK® implants in the same type of 

knee simulator under the same kinematics input and lubricating fluid 

composition.  Finally, the biochemistry of the lubricating fluid was examined 

before and during the wear testing.  This activity involved determining the 

amount of protein degradation, protein precipitation, and sedimentation. The 

peptide concentration was measured before and after the wear test to determine 

whether the proteins were damaged during the wear process.  In addition, 

standard tests were performed to assess possible microbial contamination.  All 

of the above commissioning tests were deemed important to identify possible 
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factors that could affect the PE wear behaviour and to establish a baseline for 

the planning of subsequent wear tests.   

 

 

5.2.2 Soak Testing 

Eleven soak tests were performed with each test involving three inserts 

(Table 5.1).  Tests 1 - 5 were conducted first and used DW as the soaking fluid.  

Test 1 and 2 were performed to assess the effect of soaking period on fluid 

uptake (mass gain), with inserts left undisturbed in DW for either 46 days or 92 

days.  Tests 2 and 3 examined the influence of the mass measurement frequency 

on the mass gain with the inserts in Test 3 being repeatedly “disturbed” 

(removed from DW, cleaned, desiccated and weighing) during the test interval 

of 46 days.  Tests 3 and 4 were conducted to assess the effects of insert 

thickness (10 mm versus 14 mm).  Tests 4 and 5 were conducted to examine the 

influence of sterilization technique (GP versus GA).  Tests 6 - 11 were 

conducted after Tests 1 - 5 and lasted for 46 days using only 14 mm thick 

inserts that had been GP sterilized. 

 

 

Table 5.1:  Illustration of 11 soak tests performed on three AMK® inserts each 
(n = 3)*. 

Soak 
test 

PE insert                   
[Sterilization, thickness] 

Measurement 
frequency Temp. Soak period 

[days] 
Fluid      

composition 

1 GP, 10 mm Undisturbed RT 92 DW 

2 GP, 10 mm Undisturbed RT 46 DW 

3 GP, 10 mm Disturbed RT 46 DW 

4 GP, 14 mm Disturbed RT 46 DW 

5 GA, 14 mm Disturbed RT 46 DW 

6 GP, 14 mm Undisturbed RT 46 DW 

7 GP, 14 mm Undisturbed RT 46 BCS + DW + SA 

8 GP, 14 mm Undisturbed 37 ºC 46 DW 

9 GP, 14 mm Undisturbed 37 ºC 46 BCS + DW + SA 

10 GP, 14 mm Disturbed 37 ºC 46 DW 

11 GP, 14 mm Disturbed 37 ºC 46 BCS + DW + SA 

*see Table 3.8 in Chapter 3 for details of this lubricating fluid. 
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The issues of measurement frequency (undisturbed versus disturbed), 

temperature (RT versus 37 ºC) and fluid (DW versus BCS + DW + SA) were 

examined (see Section 3.2.3 for details on the lubricant composition).  There 

was no significant difference in fluid uptake between Tests 1 and 2 (p = 0.064, 

Student’s t-test) (Fig. 5.1).  Interestingly, repeatedly disturbing the inserts in 

Test 3 increased the mass gain by 116 % compared with Test 2 (p ≤ 0.001, 

Student’s t-test) over the same soak period.   
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Figure 5.1: The fluid uptake of PE inserts soaking in DW at RT.  Note the 
increased fluid uptake for the disturbed inserts over the undisturbed inserts and 
GA inserts over GP inserts. 

 

 

Increasing the insert thickness from 10 mm to 14 mm (Test 3 versus 

Test 4) resulted in a slightly higher mass gain for the thicker insert but this was 

not significant (p =0.063, Student’s t-test).  GA sterilized PE inserts gained 

significantly more mass than GP sterilized inserts, as shown in Test 4 and Test 5 

(p ≤ 0.001, Student’s t-test).  Also, the mass gain for the GP inserts appeared to 

approach steady-state after 46 days while the mass gain for the GA inserts 
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continued (Fig. 5.2).  When considering the fluid uptake versus time behaviour 

of the inserts of Test 3 - 5, it was observed that the fluid uptake increased 

uniformly except for 3 distinct intervals in which fluid uptake decreased.  

According to the records, these intervals corresponded to a drop in RT from 25 

ºC to 21 ºC caused by an electrical power surge disturbing the temperature 

control of the laboratory.  This finding suggested that the fluid uptake of the PE 

inserts was sensitive to changes in temperature.   
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Figure 5.2: The mass gain of PE inserts submersed in DW at RT.  The RT 
dropped from 25 ºC to 21 ºC three times during the 46 days and this drop was 
associated with some temporary mass loss.  The changes in RT occurred during 
power surges in the laboratory. 
 

 

Tests 6 - 11 involved immersing 14 mm thick, GP sterilized inserts for 

46 days in either in DW or BCS lubricant (Table 3.8, Chapter 3) at either RT or 

37 ºC and performing frequent (disturbed) or infrequent (undisturbed) mass loss 

measurements (Table 5.1).  The inserts showed various changes in their fluid 

uptake (Fig. 5.3).  The reason for the change in fluid uptake for the BCS 
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lubricant fluid might be related to the addition of proteins and solved ions that 

are expressed in the osmolality.  There was a statistically significant difference 

between the infrequently measured (undisturbed) fluid uptake for Test 6 using 

DW and Test 7 using the BCS lubricant at RT (p = 0.044, Student’s t-test). 

Increasing the soak temperature from RT to 37 ºC showed a significant increase 

for Test 9 using the BCS lubricant compared with Test 8 using DW (p = 0.036, 

Student’s t-test).  Similar behaviour was observed when the measurement 

frequency was increased (disturbed) in Test 11 and Test 10 (p = 0.005, 

Student’s t-test).  In all cases, the mass gain was significantly higher for inserts 

that were repeatedly disturbed during the soak period of 46 days, independent of 

the soak medium (p ≤ 0.001, ANOVA and Fisher’s). 
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Figure 5.3: The mass gain of PE inserts submersed in DW and in the BCS 
lubricant at RT and 37 ± 2 ºC of GP, 14 mm insert.  The inserts were either left 
undisturbed or were repeatedly disturbed for 46 days.  Note the increased mass 
gain for PE inserts subjected to the BCS lubricant, increased temperature and 
repeated disturbances. 
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5.2.3 Discussion of Soak Testing 

All PE inserts gained mass during their specific soaking period.  

Increasing the soak period for the undisturbed inserts (Test 1 versus Test 2) 

from 46 days to 92 days did not affect the total mass gained.  The insert 

possibly gained fluid more rapidly during the first 46 days and approached a 

soak-equilibrium after 92 days.  Increasing the insert thickness from 10 mm to 

14 mm (Test 3 and 4) increased the surface area, resulting in a higher mass gain 

(not significant).  Thus, increasing the sample size per Test or using PE inserts 

with a thickness greater than 14 mm may have revealed a higher mass gain 

compared with the 10 mm thick inserts.  However, increased mass gain for GA 

sterilized inserts over GP inserts was observed.  Klapperich et al. 201  reported a 

higher mass gain for GA inserts over inert sterilized inserts which is in 

agreement with the present study.  In addition, Nusbaum and Rose 199 reported a 

higher mass gain for irradiated PE samples than non-irradiated PE samples used 

for tensile strength tests.  They suggested that the free radicals created during 

irradiation lead to an increase in carbonyl groups which may have made the PE 

more hydrophilic.  Small temperature fluctuations affected the fluid uptake of 

the inserts during Tests 3, 4, and 5.  Blanchet et al. 73 reported a 2-fold increase 

in mass for PE discs when the temperature of the medium was increased from 

RT to 37 ºC and this was about the same as found in the present study.  It was 

decided to pre-soak inserts at 37 ºC since they would be exposed to this 

temperature when implanted and during wear testing. 

Repeatedly disturbed PE inserts gained 2.2 times more mass than 

undisturbed inserts (Test 2 versus Test 3), despite the similar soak period.  This 

suggests that repeated exposure of the inserts to the desiccation in the mass 

measuring protocol might have removed air inclusions in the insert surface layer 

and thus increased the porosity of the PE insert.  This might be damaging and 

might influence the wear.  Unfortunately, no universal consensus was reported 

in the literature regarding how frequently the PE inserts should be removed 

from the fluid during the pre-test soaking period.  Schwenke et al. 157 repeatedly 

measured the mass gain of inserts until steady-state mass gain was reached.   In 
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contrast, Yao et al. 203 argued that pre-test soaking of the PE pins should not be 

performed since it significantly increased the wear in a pin-on-flat wear test and 

was not clinically realistic.  Based on the present study, it was decided to 

subject the inserts to similar repeated disturbances during the pre-test soaking 

period as would occur during actual wear tests.  Thus, fluid uptake would be 

measured about every 138 h (≡ 0.5 Mc of a wear test interval) for at least 46 

days until steady-state mass gain was achieved. 

It still remained unclear why inserts submersed in DW (Test 6, Test 8, 

and Test 10) gained significantly less mass than inserts submersed in the BCS 

lubricant (Test 7, Test 9 and Test 11).  Replacing DW with the BCS lubricant 

clearly increased the osmolality from 46.3 ± 2.08 mmol/kg for DW to 120.66 ± 

1.15 mmol/kg for the BCS lubricant.  The increase in osmolality was associated 

with an increase in ions and an introduction of proteins.  Thus, it was uncertain 

if either the increase in ions or the presence of proteins was responsible for the 

increased mass gain.  To explore this issue, an additional soak test on two 

groups of three GA inserts each was performed (LCS rotating platform PE 

inserts, GA sterilized; DePuy Orthopaedics, Warsaw, IN).  Ideally, AMK® 

inserts should have been used but such inserts were no longer available since 

the model was discontinued in 2005.  The inserts were submersed at 37 ºC for 

46 days in DW with an osmolality of 46 ± 2.08 mmol/kg and in PBS (no 

proteins) with an osmolality of 286 ± 0.57 mmol/kg (Fig. 5.4), which was 

similar to the test conditions of Test 8 and Test 9.  There was no difference 

between the total mass increase of implants soaked in DW or PBS (p = 0.302, 

Student’s t-test).  Hence, the proteins may have been the driving force for 

increased mass gain and not the increased presence of ions.  Such mass gain 

might be related to protein adsorption onto solid surfaces which in turn 

depended on the hydrophilic/hydrophobic surface characteristics, protein-

protein interactions, protein-surface interactions, protein-solvent interactions, 

pH, ionic strength and consequently the conformational stability of the proteins 
160,162,163,434.  This finding was contrary to the pioneering study by Clarke et al. 
200 in which a higher mass gain was reported for inserts submersed in DW.  
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However, they used acetabular inserts manufactured from compression moulded 

PE, carbon-fibre reinforced PE and machined PE with calf serum diluted to only 

50 % without EDTA and only 0.1 % SA.  Clinically, the inserts are exposed to 

protein-rich body-fluids without weight bearing for some time after 

implantation which may allow some protein adsorption onto the surface.  Thus, 

the inserts should be pre-soaked in the same fluid that would be used in the 

wear test.  Nevertheless, it remained unknown if the pre-test soaking fluid 

would affect the PE wear behaviour during wear testing. 
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Figure 5.4: The total mass gain (fluid uptake) of GA inserts soaked in DW or 
PBS at 37 ºC undisturbed for 46 days.  There was no significantly different 
between groups despite the higher osmolality of PBS (286 ± 0.57 mmol/kg) 
compared with DW (46 ± 2.08 mmol/kg). 

 

 

5.2.4 Concluding Remarks for Soak Testing 

The soak tests showed that weight gain of the PE inserts was 

significantly influenced by the measurement frequency, temperature, 

sterilization technique and fluid composition.  Thus, in wear testing, it was 

considered important that the soak controls have all these factors maintained the 
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same.  In the measurement frequency influenced the fluid uptake.  This 

suggested that the surface of the insert was physically altered by the act of 

measuring its mass and this might affect wear rates.  The vacuum drying of the 

insert or desiccation was considered to be the likely cause of this change.  While 

it might have been useful to explore a mass measurement protocol that involved 

less desiccation time and less powerful vacuum strengths, such explorations 

were beyond the scope of the present thesis.  However, to ensure that the inserts 

were at steady-state saturation, pre-test soaking was done for at least 46 days 

with mass loss measurement every 138 h (≡ 5 Mc) for all wear tests of the 

present thesis except the following commissioning wear tests.  

 

5.2.5 Wear Testing 

A total of 10 inserts (of 10 mm thickness) were soaked in DW and left 

undisturbed at RT for 92 days prior to wear testing to match the 

recommendations by DePuy.   These inserts were used for a commissioning 

wear test that was conducted for 3 Mc.  A complex commissioning protocol 

(CP) was developed (Table 5.2).  All implants had their mass measured every 

0.5 Mc.  The implants for wear tests were named based on their initial 

placement at 0 Mc in the left bank of the knee wear simulator as L1, L2 and L3.  

Similarly, implants in the right bank were named R1, R2 and R3.   The implants 

for load-soak tests were named L4 and L5 for the left bank and R4 and R5 for 

the right bank.  All of the implants remained in their initial placement for the 

first test interval (0 - 1 Mc).  After 1 Mc, the implants L1, L2, L3, L4, and L5 of 

the L bank were symmetrically “exchanged” with implants R1, R2, R3, R4, and 

R5 of the R bank for a second test interval (1 - 2 Mc).  This second test interval 

was performed to assess possible differences in wear between banks.  After 2 

Mc, all the implants were returned to their initial positions.  Then, the left bank 

implants were “rotated”, in that L1 was moved into station 2, L2 was moved 

into station 3, and L3 was moved into station 1 while L4 and L5 were simply 

exchanged.  The right bank implants were also “rotated” in a similar manner.  
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This third test interval (2 - 3 Mc) was performed to assess possible differences 

in wear between stations within a bank. 

 

 

Table 5.2:  Illustration of the commissioning protocol (CP) used in the knee 
wear simulator testing from 0 - 3 Mc. 

Knee Simulator 
L bank R bank 

Wear stations LS stations Wear stations LS stations 

Test  
interval  
number 

Test 
interval 

[Mc] 

1 2 3 4 5 6 7 8 9 10 

0 – 0.5 L1 L2 L3 L4 L5 R1 R2 R3 R4 R5 
1 

0.5 – 1  L1 L2 L3 L4 L5 R1 R2 R3 R4 R5 

1 – 1.5 R1 R2 R3 R4 R5 L1 L2 L3 L4 L5 
2 

1.5 – 2  R1 R2 R3 R4 R5 L1 L2 L3 L4 L5 

2 – 2.5 L3 L1 L2 L5 L4 R3 R1 R2 R5 R4 
3 

2.5 – 3  L3 L1 L2 L5 L4 R3 R1 R2 R5 R4 

 

 

There was no significant difference between the wear rates (slopes of 

the linear least squares curve fits of each implant) for the L implants (23.98 ± 

2.85 mm3/Mc) and R implants (23.22 ± 1.01 mm3/Mc) from 0.5 - 3 Mc (p = 

0.686, Student’s t-test).  The total mean wear rate from 0.5 - 3 Mc for the L 

implants and R implants combined was 23.60 ± 1.96 mm3/Mc (Fig. 5.5). 

 Symmetrical exchange of the L implants with the R implants between 

the L bank and the R bank at 1 Mc did not show a significantly different interval 

wear for the L implants or for the R implants (p ≥ 0.082, ANOVA and Fisher’s) 

(Fig. 5.6).  In contrast, the return of the L implants and R implants at 2 Mc to 

their original positions, combined with “rotation” among wear stations, did 

significantly affected the interval wear (p ≤ 0.036, ANOVA and Fisher’s).  The 

fluid uptake values for the load-soak L and R implants were only marginal 

affected by the alteration of the implant location and only had a small effect on 

the wear calculations in any case (Fig. 5.7).   
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(a) L implants 
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(b) R implants 

Figure 5.5: The wear of (a) the L implants (L1, L2, and L3) and b) the R 
implants (R1, R2, and R3) during the commissioning protocol (CP) wear tests.  
The least squares linear-regression lines were fit through the wear data from 0.5 
- 3 Mc.  The interval from 0 - 0.5 Mc was regarded as the “run-in” phase.  
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Figure 5.6: Interval wear volume of the L implants and the R implants during 
the 6 test intervals from 0 - 3 Mc.  Note that the interval wear volumes of the L 
implants and R implants were significantly different between 1.5 - 2 Mc and 2 - 
3 Mc (p ≤ 0.036, ANOVA and Fisher’s). 
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Figure 5.7:  The average fluid uptake behaviour of the L4 and L5 implants and 
the R4 and R5 implants located in the LS stations (4 and 5; 9 and 10) from 0 - 3 
Mc.  
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5.2.6 Discussion of Wear Testing 

In the present commissioning wear tests, the implants were 

symmetrically exchanged between banks without a statistically significant 

difference in the interval but with p = 0.082 for the R implants there might 

actually be a difference that would emerge with more implant testing.  

However, when the implants were “rotated” between stations within a bank, the 

L implants had a statistically significant drop and the R implants had a 

statistically significant increase in interval wear.  It would appear likely that 

there was a small difference from bank-to-bank and a somewhat larger 

difference from station-to-station with sometimes higher and sometimes lower 

wear.  It was not clear whether implants should be kept in the same stations 

throughout a wear test or periodically shifted to be the most clinically realistic.  

However, the wear versus Mc data values of Fig. 5.5 did not show any drastic 

effects of changing banks or stations, it might be concluded that either changing 

or not changing stations would be acceptable. 

To provide a check on the protocols of the wear testing of the present 

study, a comparison was made with similar wear testing performed by DePuy 

Orthopaedics Inc., Warsaw, IN.  The DePuy wear rate 45 was determined using 

3 implants in one bank of an AMTI knee wear simulator in a test interval from 3 

- 5 Mc.  The loads and motions imposed in the DePuy testing were essentially 

the same as those imposed in the present study.  The DePuy implants had been 

first tested with 90 % BCS + DW + SA (~ 61 g/l total protein concentration) 

from 0 - 3 Mc and then tested with 25 % BCS + DW + SA (~ 17 g/l total protein 

concentration) from 3 - 5 Mc.  Since wear is considered a cascading process, the 

0 - 3 Mc history of the DePuy implants might have influenced the wear from 3 - 

5 Mc and compromised the comparison with the results of the present study.  

Their implants were “rotated” among the stations within the bank every 0.5 Mc 

such that each implant moved to a higher number station except the implant in 

station 3 that moved back to station 1.  Two load-soak implants were also run 

and every 0.5 Mc they were switched in position.  At 3 Mc, each of DePuy’s 3 

wear test implants had run in each station for a total of 1 Mc.  In this manner, 
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DePuy avoided having to consider any station-to-station variation because each 

implant had been subjected to wear in each station.  However, they had slightly 

changing wear patterns of their implants each time they changed the station in a 

manner that might, or might not, be a good representation of clinical wear 

patterns. A single patient would impose fairly specific load and motion 

conditions on an implant but they would be much more varied than those found 

in the wear simulator testing of both DePuy and the present study that followed 

ISO standards. 

To compare the present wear rates with those of DePuy 45 presented a 

difficult problem.  Since bank-to-bank variations were small, it was decided to 

calculate individual wear rates for the L implants and for the R implants from 

0.5 - 2 Mc and from 2 - 3 Mc (Fig. 5.8) and to compare these rates to the wear 

rate of 30.80 ± 1.97 mm3/Mc found by DePuy.    
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Figure 5.8: Illustration of wear rates obtained with the commissioning protocol 
(CP) and the wear rate found by DePuy in a 3 - 5 Mc interval for AMK® 
implants (GP, 10mm, GUR 1050).  There was no significant difference between 
the wear rate of the R implants from 2 - 3 Mc and the DePuy wear rate (p = 
0.053, ANOVA and Fisher’s). 
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In the present study, the mean wear rate for the L implants decreased 

significantly from 24.72 ± 3.36 mm3/Mc to 21.64 ± 0.53 mm3/Mc when going 

from the interval of 0.5 - 2 Mc to the interval of 2 - 3 Mc (p = 0.115, ANOVA 

and Fisher’s).  Conversely, the wear rate for the R implants increased 

significantly from 20.25 ± 1.03 mm3/Mc to 26.88 ± 2.70 mm3/Mc when going 

from the interval of 0.5 - 2 Mc to the interval of 2 - 3 Mc (p = 0.004, ANOVA 

and Fisher’s).  The wear rates for the L implants in the interval of 0.5 - 2 Mc, 

the L implants in the interval of 2 - 3 Mc and the R implants in the interval of 

0.5 - 2 Mc were significantly lower than the DePuy wear rate (p ≤ 0.007, 

ANOVA and Fisher’s).  However, the wear rate of the R implants from 2 - 3 Mc 

was not statistically significantly different from the DePuy wear rate (p = 0.053, 

ANOVA and Fisher’s).   

To explore the differences between the stations, the loads and motions 

in the AP direction were recorded.  The tangential force in the AP direction (AP 

force) of the L and R implants was compared at 1, 2 and 3 Mc (Fig. 5.9).  The 

“peaks” of the AP force were higher in the L bank than in the R bank at similar 

points in the gait cycle and this behaviour was not influenced by exchanging the 

implants between banks.  This suggested that the L bank and the R bank expose 

the implants to slightly different kinematics which could affect the wear rate.  

Such suggestions were confirmed when the vertical load FB of the L bank and 

the R bank were assessed (Fig. 5.10).   
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(a) L implants 

 

-250

-200

-150

-100

-50

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80 90 100

Gait cycle [%]

A
P 

fo
rc

e 
[N

]

R implants at R bank [1 Mc]
R implants at L bank [2 Mc]
R implants at R bank + rotated [3 Mc]

L bank "peak"

R bank "peak"

R bank "peak"

L bank "peak"

 
(b) R implants 

Figure 5.9: The AP force for (a) the L implants and (b) the R implants at test 
intervals of 1 Mc, 2 Mc, and 3 Mc. 
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Figure 5.10: The vertical load FB of the L bank and the R bank at 3 Mc in 
reference to the vertical load waveform recommended by ISO.  Note the distinct 
differences in vertical load between banks at approximately 8 % of the gait 
cycle. 
 

 

5.2.7 Concluding Remarks on Wear Testing 

Some overall concluding remarks on wear testing were formulated.  

The changes from bank-to-bank and station-to-station were essentially quite 

small.  The total mean wear rate of the commissioning wear test was 22 % 

lower than those found by DePuy.  Thus, it was considered likely that the 

present operation of the wear simulator and the mass measurements were 

equivalent to those of DePuy.  One explanation for the lower wear rates of the 

present study was the reduced effect of a symmetric exchange of implants from 

bank-to-bank compared with station-to-station rotation.  While the progressive 

changing of stations as performed by DePuy might, or might not, produce more 

clinically realistic wear rates, it was decided, in the present thesis, to keep 

implants at the same station throughout wear testing (thus avoiding changes in 

wear patterns caused by slight changes in loads and kinematics of the banks and 

stations) and to treat the L and R banks as essentially independent simulators 
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thus allowing the author to put sets of 3 implants with the same lubricant in 

each bank.  In this manner, the wear behaviour for a number of different 

lubricating fluids could be explored in a fairly rigorous yet timely fashion and 

could be compared with each other.     

 

 

5.2.8 Biochemical Testing of the Lubricating Fluid   

The last test interval of the CP from 2.5 - 3 Mc was chosen to assess 

the damage behaviour of the BCS lubricant.  Such an assessment included some 

biochemical analyses (see Section 3.4 for details) that were deemed important to 

identify some lubricant related factors that may play a role in the PE wear 

process.  BCS lubricant samples were collected after the SM was prepared prior 

to wear testing and after the wear tests from each of the wear stations.  The 

protein concentration of the SM of the BCS lubricant samples was 20.74 ± 0.82 

g/l at the beginning of the test interval from 2.5 - 3 Mc and this value closely 

matched the ISO recommendations 41.  The BCS lubricant changed its 

appearance from being translucent at the start of the test (SM) to an opaque 

appearance after 0.5 Mc.  This suggested that some proteins may have been 

precipitated during the wear tests.  The serum samples collected from each wear 

station were centrifuged to obtain the precipitate-free SUP.  The SUP and the 

SM were then used to calculate the protein degradation in each wear station.  

The protein degradation for the L implants was 31.21 ± 3.72 % and 29.85 ± 

4.12 % for the R implants (Fig. 5.11).  The total mean protein degradation for 

all implants was 30.53 ± 3.96 %.   
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Figure 5.11: The protein degradation determined for each implant (L1, L2, 
L3, R1, R2, and R3) after the test interval of 2.5 - 3 Mc. 

 

 

The SUP from each wear station was further used to investigate if 

sheared proteins that were not affected by precipitation remained suspended as 

peptides in the BCS lubricant.  Peptides are fragments of proteins that can be 

measured using ultrafiltration methods, as described in Section 3.5.3.  The SM 

and SUP for both the L implants and R implants were filtered through an ultra 

fine membrane (MWCO = 2,000 Da).  Peptides that passed through the filter 

were further analyzed via BCA assay to determine their remaining 

concentration.  Peptides were observed in all filtered BCS lubricant samples 

(Fig. 5.12).  The mean peptide concentration in the SUP for the L implants was 

0.138 ± 0.011 g/l and 0.124 ± 0.009 g/l for the R implants.  The mean peptide 

concentration of the SUPs combined for the L and R implants was 0.131 ± 

0.012 g/l, which was 3.3 times greater than the mean peptide concentration for 

the SM of 0.039 ± 0.004 g/l.  

At disassembly of the implants from the simulator, it was generally 

recognized that some of the precipitates had settled that led to precipitate 
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deposits.  A major precipitate deposit was found on the bottom of all six 

external fluid containers after each test interval of 0.5 Mc.  Such deposits were 

approximately 5 - 10 mm in thickness.  Precipitate deposits were only rarely 

observed in the wear station and when they were the location was usually on the 

circumference of the tibial tray fixture below the articulating tibial surface of 

the PE insert.  A schematic of such precipitation occurring after each test 

interval is illustrated in Fig. 5.13.  To compare the protein precipitate 

concentration in the wear station and the external fluid container, BCS lubricant 

samples were collected immediately at the end of the wear test of the 2.5 - 3 Mc 

test interval from both locations. At the end of the wear test interval, the 

peristaltic pump that circulated the lubricant was stopped.  The external fluid 

container was disconnected from the circulating system and agitated to suspend 

the deposit.  Lubricant samples were then obtained from both the wear station 

and the external fluid container. All samples were centrifuged to separate the 

precipitate from the BCS lubricant samples, which resulted in a compacted 

precipitate protein pellet and SUP for each wear station.  The SUP was 

separated from the precipitate protein pellet so that the precipitate protein pellet 

could be further analyzed.  The precipitate protein pellet was then re-suspended 

in a SDS-DTT solution (500 μl).  Samples were taken from this solution to 

determine the protein concentration with a BSA assay.  The precipitate protein 

concentration in the external fluid container was found to be 2.6-times greater 

than the precipitate protein concentration that was circulated though the wear 

station for the L implants and the R implants (Fig. 5.14).   
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Figure 5.12:  The peptide concentration of the starting material (SM) and 
implant-specific supernatant (SUP) for the BCS lubricant after a test interval of 
2.5 - 3 Mc. 
 

 
Figure 5.13:  Schematic showing the settling out of protein precipitates in the 
BCS lubricant after 0.5 Mc compared with the BCS lubricant at 0 Mc.  Such 
settling out of precipitated proteins led to obvious deposits in the each external 
fluid container after each test interval of 0.5 Mc. Note that the nozzle connected 
to the pump did not reach completely to the bottom of the fluid container. 
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Figure 5.14:  The protein precipitate concentration of the BCS lubricant 
samples obtained from the wear stations and the external fluid containers for 
the L implants and the R implants. 
 

 

A distinct odor was recognized on the BCS lubricant samples after 

every the test interval of 0.5 Mc.  Such an odor was not observed on any 

samples of the SM.  This suggested that the air-inflated wear stations, in 

company with the protein degradation and 310 K test temperature may have 

enabled some bacterial growth.  To confirm this suspicion, worn BCS lubricant 

samples were collected after 3 Mc, immediately placed onto LB agar and 

incubated for 18 h.  Triplicate plates for each BCS lubricant indicated the same 

culture and thus one isolated organism was present.  The specimen was then 

sent for identification to the Department of Microbiology at the University of 

Western Ontario, where an API®-film was used to identify the strain.  The 

bacterium was highly motile and of a Gram-negative strain, identified as 

Enterobacter (genus) Cloacae (typos).  The specific strain had to be named (JK-

1; first initial of the author and of the colleague (K.K.E Mahmoud), since it was 

the only contaminant present in the test environment (Fig. 5.15). 
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Figure 5.15: Micrograph showing the isolated bacterium Enterobacter Cloacae 
JK-1 (E. cloacae JK-1) present in the BCS lubricant after the test interval of 2.5 
- 3 Mc.  
 

 

5.2.9 Discussion of Biochemical Testing 

The effect of protein concentration on wear has been considered in 

several hip simulator studies with either PE or PTFE as the bearing material 
35,37,155,156,165.  However, to the present author's knowledge, there were no 

studies that assess the effects of protein constituents using knee simulators.  

Liao et al. 35 investigated the effect of protein constituents on the wear of CoCr 

femoral heads and ceramic femoral heads articulating against acetabular PE 

inserts.  They used a 12-station hip simulator with the implants in a non-

anatomical position (cup-below-ball).  The lubricating fluid chamber 

surrounding the implant was an open-system and filled with 40 ml of lubricant 

that was not circulated.  The fluid loss due to evaporation was replenished with 

DW.  They suggested that protein precipitates were trapped between the cup 

and the ball and acted as a solid lubricant thus reducing wear.  A similar 

mechanism was suggested by Polineni et al. 196.  There was concern in the 

5 μm 
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present study that some protein precipitates would have had a similar wear-

reducing effect in total knee wear testing.  As the wear in the test interval 

proceeds, it was considered likely that the sheared proteins cluster 435, build 

aggregates and eventually precipitate which lead to deposits.  Such phenomenon 

suggests that sheared proteins may behave similar to colloids.  If sheared 

proteins behaved like colloids, their aggregation and sedimentation could be 

described with the diffusion-limited cluster aggregation model for colloids 436.  

In this model, colloids traveled by diffusion and then clustered together to 

create aggregates that under the force of gravity fell down to produce a deposit.  

However, circulating the BCS lubricant through both the wear station and the 

external fluid container may have been beneficial by allowing protein 

precipitates to deposit preferably in the external fluid container.  Such 

deposition of precipitated proteins may have prohibited the creation of a wear-

reducing solid lubricant when a large lubricant volume of 500 ml was used.  

Although protein precipitation was considered clinically realistic, it was deemed 

unlikely that substantial protein precipitates deposits were formed at the CoCr-

PE interface and affect the PE wear rate in vivo at relatively small volumes of 

SF.  Interestingly, the total protein degradation for the BCS lubricant was close 

to the initial fractions of the β-globulins + γ-globulins protein fractions (32.6 

%).  It remained to be determined which specific protein constituents were 

precipitated and whether some protein constituents acted as a possible boundary 

lubricant. 

Direct evidence was obtained that increased low-molecular-weight 

proteins after knee simulator wear testing remained suspended in the SUP after 

the wear process.  The increased peptide concentration in the SUP of the BCS 

lubricant from all wear stations compared with that of the SM indicated that 

some specific proteins became denatured during the wear process and turned 

into peptides.  The presence of peptides may suggest that certain protein 

constituents act as an active boundary lubricant, confirming studies conducted 

on a more fundamental tribological tests 64,76.  If this is the case, the protein 

constituents and peptide concentration in the lubricant may be important to the 
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wear process because such peptides may adsorb to the bearing surfaces.  In a 

series of seven additional tests, an attempt was made to find various factors 

(Table 5.3) besides the tribology of the implant contact responsible for 

increasing the peptide concentration in the BCS lubricant using ultrafiltration 

techniques (see Section 3.5.3 for details). All testes were conducted for 138 h to 

mimic a test interval of 0.5 Mc.  All BCS lubricant samples were aseptically 

prepared.  The BCS lubricant samples in Test 3, 5 and 6 were each mounted on 

the stations of the simulator.  No bacterial growth was detected before and after 

those tests.  The peptide concentration was the lowest for SM in Test 1 (p ≤ 

0.001, ANOVA and Tamhane) (Fig. 5.16).  Circulating the BCS lubricant 

through the closed pipe circulation system of the knee simulator (Test 7) 

resulted in the highest peptide concentration for the tests (p ≤ 0.001, ANOVA 

and Tamhane). This high peptide concentration was probably caused by the 

shear at the peristaltic pump-tube interface.  Exposing the BCS lubricant to air 

at RT, in air at RT while shaking, in  air at 37 ºC, , and shaking at 37 ºC in a 

closed system and  tube shear in a closed pump circuit all increased the peptide 

concentration (Tests 2 - 7).  This behaviour might have been related to 

proteolytic activity 401 with the directed digestion of proteins by enzymes but 

further exploration was considered to be beyond the scope of the present thesis.     
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Table 5.3:  Test protocol used in additional tests to find causes of peptide 
generation besides the tribology of the implant contact (BCS lubricant used in 
all tests). 

Test Protocol Exposure to 

1 - fresh BCS + DW + SA - N/A 

 
2 

- RT 
- 138 h 
- open cap tubes 

- air at RT  

3 

- RT 
- 138 h 
- open cap tubes 
- shaken under ISO I/E rotation 

- air at RT while shaking 

 
4 

- 37 ºC  
- 138 h 
- open cap tubes  

- air at 37 ºC 

5 

- 37 ºC  
- 138 h 
- open-cap tubes  
- shaken under ISO I/E rotation 

- air at 37 ºC while shaking  

6 

- 37 ºC  
- for 138 h 
- closed cap tubes 
- shaken under ISO I/E rotation 

- shaking at 37 ºC in a closed system 
 

7 

- RT  
- 138 h 
- closed-pipe system 
- circulated by the peristaltic pump 

- tube shear in a closed pump circuit 
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Figure 5.16: The peptide concentration of the BCS lubricant samples used in 
the additional tests described in Table 5.3.  These tests were conducted to 
isolate sources that increased the peptide concentration besides the tribology of 
the implant contact.  
 

 

The bacterial contamination despite the use of SA was a worrisome 

finding because such test conditions did not mimic the sterile environment 

found in the clinical application of TKRs.  SA had been successfully used to 

inhibit a large number of microbes from growing on nutrient-rich Petri dishes, 

even after 48 h at 37 ºC with a concentration of only 0.02 % 437,438.  Therefore, it 

was surprising to observe bacterial growth in all of the wear stations after 3 Mc, 

despite the higher SA concentration of 0.2 %.  It may have been possible that 

high concentrations of SA were ineffective after 48 h.  It is suggested that some 

contamination was introduced by the air hoses used to inflate the IV bags in 

each station throughout each wear test interval.  According to the manufacturer, 

the BCS is passed through a membrane with 0.45 μm porosity (United States 

Pharmacopeia XIII, Chapter 71).  The filter was incubated for 14 days, 

continuously monitored and when no growth was found the BCS was declared 

negative for bacteria and fungi.  Thus, serum contamination by the 
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manufacturer was deemed unlikely.  Furthermore, incubating SM samples on 

LB agar did not show any bacterial growth even after 72 h.  Some bacterial 

contamination might have remained on the customized fixtures (despite 

thorough cleaning) after they were exposed to metalworking fluids during the 

milling process than can contain E. cloacae 439.  Bell et al. 30 recognized 

bacterial growth in their pin-on-plate wear tests with SA, but did not isolate the 

type of bacterium.  Therefore, using SA as a bio-control for implant wear 

testing was obviously inappropriate.  Evaluating knee implants in presence of 

bacterial contamination was not considered clinically relevant and introduced 

the risk that the bacteria might influence the proteins which in turn might 

change the implant tribology.  Alternative microbial inhibitors such as certain 

antibiotics were used in the past in knee wear simulators 157, but the possible 

effect on the PE wear rate had not been determined.  

 

 

5.2.10 Concluding Remarks for Biochemical Testing 

The protein degradation, precipitate protein concentration and peptide 

concentration should have been evaluated after every test interval of 0.5 Mc.  In 

this manner, it might be possible to correlate wear with protein degradation and 

obtain information relevant to the boundary lubrication mechanisms acting in 

various knee simulator wear tests.  Proteins seemed to play a role in the wear 

process by acting as boundary additives in the lubricating fluid. The total 

protein degradation may be considered as a function of both the precipitated 

protein concentration and the relative change in peptide concentration. The 

characteristics of the BCS + DW + SA changed during a test interval of 0.5 Mc 

as summarized in Fig. 5.17.  Microbial contamination was not inhibited by SA 

and thus other means of bacterial control should be considered in subsequent 

wear testing.   
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(a) 
 

(b) 

           
Figure 5.17:  Schematic of the BCS lubricant at (a) 0 Mc and (b) after a test 
interval of 0.5 Mc. Note the presence of proteins, peptides and perhaps enzymes 
suspended in the fluid at 0 Mc. The characteristics of the BCS lubricant at 0.5 
Mc were vastly different, showing precipitates (degraded, clustered proteins), 
more peptides (suspended protein chunks) and bacterial contamination (E. 
cloacae JK-1). 
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5.3 The Effects of Calf Sera on Wear, Protein Degradation, and 
Bacterial Growth 

5.3.1 Introductory Remarks 

After completing the clinical investigations and after successfully 

commissioning of the knee simulator, the effect of calf sera on PE wear was 

further explored.  As shown in Table 3.7 of Section 3.3.2, the initial 

concentrations of the protein constituents were different for the various calf 

sera. In the present section, wear tests were performed on three calf sera that 

had been frequently used in wear simulations.  These calf sera were diluted with 

DW and had SA added as the microbial inhibitor.  Protein degradation, 

electrophoresis, peptide concentration, and bacterial growth were assessed 

during specific test intervals for the purpose of gaining insight into the possible 

boundary lubrication conditions.   

In addition, a pilot study was conducted to examine the influence of AA 

compared with SA on protein degradation, peptide concentration and bacterial 

growth.  The purpose of this pilot study was to gain insight into the wear 

process with and without microbial contamination to determine whether it was 

necessary to create a sterile environment in order to obtain clinically-relevant 

wear.   

 

 

5.3.2 Wear 

After the commissioning wear tests that were described in Section 5.2 

had been conducted, the same implant components were tested for an additional 

3 Mc, first in a new lubricant and then again in the original BCS lubricant, as 

indicated in Table 5.4.  After the commissioning wear test, the implants were 

not switched between wear stations.  The L implants were tested in the ACS 

lubricant for 1.5 Mc and then in the original BCS lubricant for another 1.5 Mc.  

Similarly, the R implants were tested in the NCS and then in the BCS lubricant.  

The volumetric wear of the individual L implants and individual R implants 
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from 0.5 - 6 Mc was determined (Fig. 5.18).  Linear-regression analysis was 

performed to determine the wear rate for each implant.  

 
 

Table 5.4: Test protocol from 0 - 6 Mc. 
Lubricant 

Mc 
L implants R implants 

0 – 3 BCS + DW + SA BCS + DW + SA 

3 – 4.5 ACS + DW + SA NCS + DW + SA 

4.5 – 6 BCS + DW + SA BCS + DW + SA 

BCS = bovine calf serum; DW = distilled water; SA = sodium azide; ACS = 
alpha calf serum; NCS = newborn calf serum. 
 
 
 

For the L implants (Fig. 19.a), the average wear rate of 23.98 ± 2.85 

mm3/Mc for the BCS lubricant changed to a statistically significantly different 

lower average wear rate of 14.38 ± 0.85 mm3/Mc when the ACS lubricant was 

used (p < 0.001, GLM and Fisher’s).  When the lubricant was changed from the 

ACS back to the BCS, the average wear rate of 25.50 ± 1.66 mm3/Mc was not 

statistically significantly different from the average value that was found the 

first time using the BCS lubricant (p = 0.377, GLM and Fisher’s).   

For the R implants (Fig. 19.b), the average wear rate of 23.22 ± 1.01 

mm3/Mc for the BCS lubricant changed to a statistically significantly different 

lower average wear rate of 18.23 ± 3.48 mm3/Mc for when the NCS lubricant 

was used (p = 0.016, GLM and Fisher’s). 

When the lubricant was changed from the NCS back to the BCS, the 

average wear rate of 20.59 ± 2.78 mm3/Mc was not statistically significantly 

different from the average value that was found the first time using the BCS 

lubricant (p = 0.145, GLM and Fisher’s).   
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(b) R implants 

Figure 5.18:  The wear behaviour of the (a) L implants (L1, L2, L3) and (b) R 
implants (R1, R2, R3) during 0.5 - 6 Mc.   
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(b) R implants 

Figure 5.19: The wear rates of (a) the L implants and (b) the R implants 
obtained after the wear tests during 0.5 - 6 Mc.   
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Based on visual observations, the damage features on the top side 

surface of the PE inserts were burnishing, grooving, indentations and some 

striations.  The backside PE surface showed large areas of burnishing 

accompanied by small amounts of grooving and indentations.  Pitting and 

delamination were not seen at any stage of testing. 

To determine whether the differences in the wear rates were related to 

individual or combinations of the initial serum components (Table 3.7, Section 

3.3.2), a series of correlations were performed.  The highest correlation 

coefficient (R = 0.865, p < 0.001, Spearman corrlelation) occurred when the 

wear rates were correlated with the combined albumin + α-globulin fraction 

(Fig. 5.20).  This correlation suggested that a combination of these constituents 

may act as an effective boundary lubricant. 
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Figure 5.20: The correlation of wear rates with initial combined albumin + α-
globulin fraction for the lubricants.  Each data point represents the value 
obtained from a single wear test. 
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5.3.3 Protein Degradation  

 Section 5.2 indicated that the wear process led to significant protein 

degradation for the BCS lubricant.  Hence, the protein degradation was 

evaluated for all three lubricants used in the present study.  For the L implants 

(Fig. 5.21.a), the average protein degradation of 31.21 ± 3.72 % for the BCS 

lubricant changed to a statistically significantly lower average protein 

degradation of 7.77 ± 3.87 % when ACS lubricant was used (p < 0.001, GLM 

and Fisher’s).  When the lubricant was changed from the ACS lubricant back to 

the BCS lubricant, the average protein degradation of 32.22 ± 7.77 % was not 

statistically significantly different from the average value that was found the 

first time using the BCS lubricant (p = 0.444, GLM and Fisher’s).  For the R 

implants (Fig. 5.21.b), the average protein degradation of 29.85 ± 4.12 % for the 

BCS lubricant changed to a statistically significantly somewhat lower value of 

25.14 ± 2.87 % when NCS lubricant was used (p < 0.001, GLM and Fisher’s).  

When the lubricant was changed from the NCS lubricant back to the BCS 

lubricant, the average protein degradation of 29.53 ± 8.31 % was not 

statistically significantly different from the average value that was found the 

first time using the BCS lubricant (p = 0.804, GLM and Fisher’s).   

 To determine whether the differences in the protein degradation were 

related to individual or combinations of the initial serum components (Table 

3.7, Section 3.3.2), a series of correlations were performed.  The highest 

correlation coefficient (R = 0.836, p < 0.001, Spearman) occurred when the 

protein degradation rates were correlated with the combined β-globulin + α-

globulin fraction (Fig. 5.22).  This correlation suggested that a combination of 

these protein constituents were the most susceptible to degradation. 
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Figure 5.21: The protein degradation of (a) the L implants and (b) the R 
implants. 
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Figure 5.22:  The correlation of protein degradation during the wear tests with 
initial combined β-globulin + γ-globulin fraction.  Four protein degradation 
values were determined for each wear station and so each data value above 
represents a single value. 
 

 
5.3.4 Protein Degradation versus Time 

Visually, all sera in all the wear stations become more opaque after 

only 0.06 Mc indicating that some degradation had occurred.  Protein 

degradation increased with time but perhaps not in the same manner for all 

lubricants.  The protein degradation was evaluated for each of the three 

lubricants mentioned in Table 5.4 every 0.1 Mc of one test interval of 0.5 Mc.  

These measurements were performed on the L implants (Fig. 5.23.a) 

when the ACS lubricant was used from 4 - 4.5 Mc and when the BCS lubricant 

was used form 5.5 - 6 Mc.  Also, these measurements were performed on the R 

implants (Fig. 5.23.b) when the NCS lubricant was used form 4 - 4.5 Mc and 

the BCS lubricant was used from 5.5 - 6 Mc.    
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(b) R implants 

Figure 5.23: Protein degradation measured every 0.1 Mc during a test interval 
of 0.5 Mc for the BCS lubricant, NCS lubricant, and ACS lubricant.  The data 
points represent the mean value accompanied with their standard deviation. 
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The protein degradation proceeded in an approximately the same linear 

fashion to reach about 30 % at 0.5 Mc for the BCS lubricant used with both L 

and R implants and for the NCS lubricant used with the R implants.  However, 

the ACS lubricant used with the L implants reached a maximum of about 8 % at 

0.1 Mc and then stayed at this value until 0.5 Mc and thus had less protein 

degradation than the other lubricants. 

 

 

5.3.5 Electrophoresis 

The findings in Section 5.2 and Section 5.3.2 indicated that certain 

protein constituents in the lubricants might have acted as effective boundary 

lubricants.  Electrophoresis testing permitted the assessment of the protein 

constituent fractions of the lubricants before and after the wear tests.  Such 

information was deemed important to identify which protein constituents were 

damaged during the wear process. 

Triplicate samples were obtained from the SM at the beginning of a 

test interval (assuming the SM was the same for each station) and from the SUP 

of each station (1, 2, and 3) at the end of the test interval after 0.5 Mc.  

Specifically, the SUP samples of the BCS lubricant were obtained from the L 

implants after the 5.5 - 6 Mc test interval, the SUP samples of the NCS lubricant 

were obtained from the R implants after 4 - 4.5 Mc, and the SUP samples for 

the ACS lubricant were obtained from the L implants after 4 - 4.5 Mc.  The 

samples were sent to the Department of Immunology at the LHSC for 

electrophoresis testing and, as expected, there were differences between the SM 

and SUP (Fig. 5.24).   The SM of the BCS and NCS lubricants were rich in γ-

globulin, which corresponded well with the data given by the certificate of 

analysis from the manufacturer. 

The protein constituent fractions obtained from the electrophoresis of 

the SM and SUPs were then multiplied by the measured protein concentration 

that had been used to calculate the protein degradation in Section 5.3.3.  The 

concentration of each protein constituent was determined (Fig. 5.25).  Such 



 

  221 

analysis gave detailed information on the degradation of each protein 

constituent in each lubricant and indicated that all protein constituents were 

affected by the wear process.   
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Figure 5.24: Electrophoresis results for the starting material (SM) at the 
beginning of the test interval (0 Mc) and for the supernatants (SUPs) at the end 
of a test interval (after 0.5 Mc) for the BCS lubricant, NCS lubricant, and ACS 
lubricant. 
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(a) BCS lubricant 
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(b) NCS lubricant 

Figure 5.25: The protein constituent fractions for the starting material (SM) at 0 
Mc and the supernatant (SUP) after 0.5 Mc for each implant: (a) the BCS 
lubricant and (b) the NCS lubricant. 
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(c) ACS lubricant 

Figure 5.25 (continued):  The protein constituent fractions for the starting 
material (SM) at 0 Mc and the supernatant (SUP) after 0.5 Mc for each implant: 
c) the ACS lubricant. 
 

 

5.3.6 Peptide Concentration 

Sections 5.2 had shown that the SUP for the BCS lubricant showed a 

higher peptide concentration after the wear test.  The SUPs that were created for 

the electrophoresis tests were further analyzed using the VIVASPIN tubes and 

the BCA assay (Fig. 5.26).  As expected, the peptide concentration in the SUP 

was higher than the peptide concentration in the SM for all lubricants after wear 

test interval of 0.5 Mc. The SM of the NCS lubricant had the highest peptide 

concentration (p ≤ 0.006, ANOVA and Fisher’s), followed by the SM of BCS + 

DW + SA (p < 0.001, ANOVA and Fisher’s), while the SM of the ACS 

lubricant had the lowest peptide concentration (p < 0.001, ANOVA and 

Fisher’s).  Such a finding suggested that the ACS lubricant may have been more 

resistant towards protein damage compared with the BCS lubricant and NCS 

lubricant. 
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Figure 5.26:  The peptide concentration of the starting material (SM) and 
implant specific SUP (SUP1, SUP2, and SUP3) for all serum lubricants. 
 

 

5.3.7 pH  

The pH was measured before and after the wear test interval 0.5 Mc to 

investigate to what extent the pH changed for the three lubricants, especially 

when SA was used as the microbial inhibitor that may allow bacterial growth 

(see Section 5.2).  It was suspected that bacterial growth may have affected the 

pH.  The wear rates were fairly constant for a given lubricant over a number of 

0.5 Mc test intervals.  Thus, changes in pH values were considered likely to be 

the same for any 0.5 Mc test interval.  As shown in Fig. 5.27, the starting values 

for pH were all about the same but somewhat higher for the NCS lubricant. The 

pH changed over the 0.5 Mc in a statistically significantly manner only for the 

BCS and NCS lubricant (p ≤ 0.005, ANOVA and Fisher’s).  The pH of the ACS 

lubricant appeared not to be affected during the wear interval.  
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Figure 5.27:  The pH for the serum lubricants at the start (0 Mc) and at the end 
of a test interval (0.5 Mc). 
 

 

5.3.8 Bacterial Growth and Peptide Concentration 

Section 5.2 indicated that bacterial growth occurred in the wear tests. 

Since E. cloacae JK-1 was found in the protein rich BCS lubricant and proteins 

influenced the simulator wear of implants, it was considered important to 

investigate the bacterial growth in all three lubricants.  To determine the amount 

of bacteria in the lubricant, samples are plated on LB agar and incubated (see 

Section 3.6.2 for details on microbial growth).  The colony-forming units 

(CFU/ml) are then counted and graphed.  Thus, two additional wear tests were 

performed, each for 0.5 Mc, on the L implants.   These tests were conducted 

with a more specific focus on the effects of the two antimicrobial inhibitors on 

bacterial growth (SA and AA).  In the first 0.5 Mc wear test, each of the 

lubricants contained SA as the microbial inhibitor.  In the second 0.5 Mc wear 

test SA was replaced with AA.  An image of the L implants on the L bank was 

taken before and after the wear test (Fig. 5.28).  
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(a) Start of the test interval 
 

 
 

(b) End of the test interval 
 

Figure 5.28: Images showing the L implants located at the L bank of the knee 
simulator for the serum lubricants with SA. 
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It can be seen that all SMs were translucent, yet with a yellowish 

appearance at 0 Mc. Instead, the serum after 0.5 Mc appeared opaque, 

indicating that some degradation and precipitation had occurred.  The wear 

stations were sampled at the start of the tests (0 Mc) and every 0.1 Mc onwards.  

No bacterial growth was detected on triplicate LB agar petri dishes in any of the 

wear stations at 0 Mc.  Bacterial growth was observed after the first 0.1 Mc in 

all the wear stations with SA as the antimicrobial inhibitor (Fig. 5.29).  Each 

point of bacterial growth in the graph was reported as the mean of the three 

measurements (the SD of the CFU/ml were small and were not visible on the 

graph due to the logarithmic scale of this axis).  The NCS lubricant had a higher 

bacterial growth than the BCS lubricant until approximately 0.35 Mc. The 

bacterial growth was the least for the ACS lubricant.  As an illustration of the 

extent of bacterial growth, photographs of the LB agar petri dishes incubated 

with the lubricant samples after 0.5 Mc were obtained (Fig. 5.30).   
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Figure 5.29: The colony-forming units per ml serum (CFU/ml) for the BCS, 
NCS and ACS lubricants though a test interval from 0 - 0.5 Mc. Note that there 
was no bacterial growth at test initiation test but this could not be plotted above 
because the vertical axis had a log scale.  
 



 

  228 

  
(a) BCS + DW + SA (100 μl), 105-times diluted 

 

 
(b) NCS + DW + SA (100 μl), 105-times diluted 

 
Figure 5.30:  Images showing the incubated LB agar dishes after they were 
plated with serum sample from (a) the BCS lubricant and (b) the NCS lubricant 
obtained after 0.5 Mc.  Serum samples were diluted with LB buffer to allow the 
count of colony forming units. 
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(c) ACS + DW + SA (100 μl), 103-times diluted 

 
Figure 5.30 (continued):  Image showing the incubated LB agar dishes after 
they were plated with serum samples from (c) the ACS lubricant obtained after 
0.5 Mc.  Serum samples were diluted with LB buffer to allow the count of 
colony forming units. 
 

 

During the second wear test of 0.5 Mc, bacterial growth was 

completely eradicated when AA was used as the microbial inhibitor.  The serum 

lubricants remained translucent throughout the test interval.  Replacing SA with 

AA in all three lubricants (Fig. 5.31) did not cause a statistically significant 

change in the protein degradation (p = 0.059, GLM and Tamhane) but it did 

obviously increase the peptide concentration in all three serum lubricants (Fig. 

5.32).   This suggested that E. cloacae JK-1 possibly consumed the peptides. 
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Figure 5.31:  The protein degradation for BCS + DW, NCS + DW, and ACS + 
DW when either SA or AA was used as the microbial inhibitor.  Note that the 
protein degradation was not different for NCS + DW and ACS + DW. 
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Figure 5.32:  The peptide concentration of the serum lubricants after 0.5 Mc 
when SA was replaced with AA as the microbial inhibitor. 
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5.3.9 Discussion of Wear  

One of the major goals during the wear evaluation of total knee joints 

was to expose the implants to clinically relevant test conditions.  Such test 

conditions included physiological loading, displacements, implant mounting 

and lubrication.  Choosing the appropriate lubricant for wear testing has been 

important to the wear process in the past 152,421.  Using a protein based serum 

instead of DW as the lubricant had been shown to reproduce similar surface 

damage features observed on retrieved total hip replacements 152,421. Such 

findings suggested that proteins played an important role in the boundary 

lubrication process.  The effect of proteins on wear has received considerable 

attention in the past 35-37,165,440, but only in total hip wear simulations and 

without enough focus on individual protein constituents.  

The International Standards Organization (ISO) developed a standard 
41 that imposed some uniform procedures (such as testing in either load or 

motion control) for knee wear testing that permitted manufactures to sell 

implants that have performed adequately in one of the uniform test procedures.  

Such uniform test procedures were considered useful by the present author for 

comparison purposes between laboratories and for different implants.  However, 

given the complexity of knee simulator testing and the many “worst-case” 

scenarios that could occur for various patients and implants, the present author 

suggests that the limited number of uniform test procedures proposed by the 

ISO left the patient subject to clinical disasters that could have been anticipated 

and prevented by performing a series of true simulator tests that explored 

different scenarios.  In any case, the ISO uniform procedures could be changed 

as new laboratory investigations were performed and contributing to the 

changing of the ISO procedures was one of the goals of the present thesis. 

As discussed in Section 2.3.3, the ISO standard stipulated testing in 

“calf serum” diluted with DW to a total protein concentration of 17 g/l.  

However, certain ranges of protein constituents were not given.  Based on the 

present author’s observations of the serum market, a number of different types 

of calf sera were available and the protein constituents varied between serum 
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suppliers even when the trade name of the serum was identical.  Thus, wear test 

laboratories were able to use a variety of calf sera to evaluate their implant 

components 6,35,37,156,157 which would have affected the wear results and thus 

impaired judgments regarding the clinical performance of knee implants.  It was 

also considered relevant to note that very few studies of clinical wear of knee 

implants had been performed 339 because of the difficulties in measuring clinical 

wear and thus few clinical wear rates were available for comparison with 

simulator testing. 

 The analyses of human SF in Section 4.4 indicated that the ACS 

lubricant had protein constituents that were the closest to SF and quite different 

from the BCS and NCS lubricants.  However, it remained unknown whether 

protein constituents affected the simulator wear rate for knee implants although 

the proteins affected the PE wear rate in hip simulators.  This provided a strong 

argument for using the ACS lubricant in wear simulator testing.  Furthermore, 

the simulator wear studies revealed the ACS lubricant produced different wear 

compared with the typically used BCS lubricant and the occasionally used NCS 

lubricant.  This finding suggests that the different protein composition made a 

difference to the simulator wear and thus the type of serum lubricant was an 

issue that should not be ignored.  Finally, the simulator wear could be directly 

correlated with the combined albumin + α-globulin fraction and the ACS 

lubricant had the highest level of this combined constituent.  Overall, the 

findings in the present study suggested that the current ISO standard for knee 

implant wear testing should specifically specify the use of ACS lubricant.  

Some minor errors and uncertainties affected the present simulator 

wear investigation.  The BCA assay (Fig. 5.33) showed that the calf sera had a 

total protein concentration of 19 ± 2 g/l rather than being exactly equal to the 

target total protein concentration of 17g/l that was given in the ISO standard.   

The protein concentration was obtained by using the “certificate of analysis” to 

obtain the starting protein concentration and then diluting the solution 

accordingly with DW.  The higher measured value might have been a bias error 

in the BCA assay or in the actual mixing procedure.  In any case, it was deemed 
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unlikely that the relatively small fluctuations between the total initial protein 

concentrations of the three lubricants had a strong effect on the PE wear rate. 
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Figure 5.33:  The protein concentrations of the starting material (SM) for the 
serum lubricants that were measured prior to the various test intervals. 

 

 

 
On average, the LS specimens from both the L bank and the R bank 

had considerable fluctuations in their mass from 3 - 6 Mc (Fig. 5.34).  The 

interval mass gain from 0 - 3 Mc was given in Figure 5.7 of Section 5.2 and had 

somewhat less drastic fluctuations.  The change in serum lubricant might have 

caused the increased fluctuations since serum composition has been shown to 

influence the LS fluid uptake 157.  The reasons for these fluctuations are not 

known and might have been an accurate representation of the fluid uptake of the 

implants being subjected to motion and thus wear.  Fortunately, the wear was 

considerably larger in a given interval than the fluctuations in the LS implant 
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weights and thus the behaviour of the LS specimens did not significantly 

influence the wear or wear rates.   
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Figure 5.34: Graph showing the mass gain of the LS stations for the L implants 
(L4, L5) and the R implants (R4, R5).  Note the mass loss during the interval 
from 3 - 3.5 Mc and from 4.5 - 5 Mc when the lubricant was changed between 
wear tests.   
 

 

5.3.10 Discussion of Protein Degradation and Electrophoresis 

A relationship between the protein degradation and the wear rate 

results could now be discussed.  Increased protein degradation (Fig. 5.35) 

correlated with increased wear rates (R = 0.775, p < 0.001, Spearman 

correlation).  The ACS lubricant had the highest albumin + α-globulin fractions, 

the lowest protein degradation and the lowest wear rate.  As mentioned in the 

last section, it also had protein constituents that were closest to SF.  Thus, it 

would seem that using the BCS and NCS lubricants were likely to result in 

protein degradation and wear rates that were not clinically relevant. 
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Figure 5.35:  The correlation between the protein degradation and the wear 
rates. Each data point represented a single protein degradation measurement 
taken from one station.  

 

 

The electrophoresis results could be further consolidated to show 

clearly that all protein constituents were affected by the wear process (Fig. 

5.36).  The ratio of albumin/globulin had been used to correlate with wear in 

several hip simulator studies 37,156, but the individual involvements of other 

protein constituents (i.e. albumin, α-1-globulin, α-2-globulin, β-globulin and γ-

globulin) were not identified.  The present study suggested that the wear rate 

correlated best with the albumin + α-globulin fraction of the total protein 

content rather than the A/G ratio. 
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Figure 5.36:  A summary of the protein constituent degradation for the serum 
lubricants.    

 

 

5.3.11 Discussion of Boundary Lubrication 

Although some plausible lubrication mechanisms had been suggested 

for synovial joints 127,128,145, the lubrication mechanisms in knee implants 

remain uncertain.  Recent studies 64,76,441 indicated that the friction in joint 

replacements might depend on the surface chemistry of the bearing material and 

on the adsorption behaviour of proteins.  However, the effects of proteins on PE 

wear remain uncertain.  The present study suggested through correlations that 

protein constituents played a significant role in the wear process and thus acted 

as boundary lubricants.  In the next paragraphs, a speculative explanation for the 

boundary lubrication is devised and explained.  While such explanations cannot 

be proven with data from the present thesis, they were considered worth 

discussing as a possible foundation for future studies.  

The protein-containing lubricants used in the present study could be 

regarded as a homogenous suspension that consisted of two phases 442.  One 

phase could be comprised of dispersed proteins that were stabilized by stertic 
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repulsion which could protect against protein–protein attraction.  The other 

phase could be comprised of a continuous solvent.  Such a description had been 

used by Graham 443 and Ostwald 444 for colloidal dispersions.  Pauli 112-114 was 

the first to propose a direct relationship between colloids and proteins.  Thus, 

considering the protein-containing lubricants used in the present study as a 

colloidal dispersion might be an attractive approach to elucidate the possible 

lubricating effects of proteins in the present tribosystem.  Georges et al. 91,92,96 

were the first to propose a boundary lubrication model for colloids adsorbed to 

the bearing surface and such an approach may be transferable to the CoCr-PE 

bearing.  They suggested that some colloids (~ 100 Å = 10 nm) adsorbed to the 

interface and built a heterogeneous layer.   

A schematic diagram of the speculated condition at the CoCr-PE 

interface is shown in Fig. 5.37 and magnified in Fig. 5.38.  Increased normal 

loading (Fn) may reduce the surface separation (hc) of the CoCr-PE bearing and 

may cause the solvent to be expelled from the contact zone and cause some 

deformation (φ) of the softer PE insert 91.  It is further speculated that the 

occurrence of such a “squeeze” phenomenon may lead to consolidation 79,89,429 

and result in a compacted solid protein layer with possible entanglements 

between protein chains.  The applied load and motions as well as on the 

generated temperature at the interface may facilitate the degradation of certain 

protein constituents thus increasing the peptide concentration. In support of this 

theory, organic deposits have been found on the articulating surfaces of 

retrieved metal-on-metal hip implants 53,153,158 that may have been generated as 

a result of tribochemical interactions between surface asperities in the presence 

of proteins.  Such findings may support the present simulator wear studies and 

suggest that protein constituents are involved in the in vivo wear process.  
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(a) 

 
(b) 

Figure 5.37: Schematic of the protein constituents at the CoCr-PE interface: a) 
heterogeneous distribution of proteins when the normal force (Fn) is zero and 
some protein constituents are absorbed on the CoCr and PE surface; b) the 
protein constituents are compacted when the surfaces approach each other when 
Fn increases. This speculative model was based on the model by Georges et al. 
92 for a thin colloid layer. The arrows indicate the direction of surface motion. 
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Figure 5.38:  Magnified view of the compacted protein layer proposed in Fig 
5.37.b.  Protein adsorption may have led to protein-substrate bonds.  Increased 
Fn may have been associated with interpenetration of protein constituents which 
may have led to entangled protein chains. The arrows indicate the direction of 
surface motion. 
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The PE wear rate was reduced with increasing albumin + α-globulin 

concentration.  This suggested that both the type of protein constituents and the 

number of protein constituents comprising the proposed protein layer played a 

role in the wear process.  It is speculated that a decreased number of protein 

constituents may have reduced the mechanical properties of the protein layer 

and decreased hc 
94.  A decrease in hc possibly causes more asperity contact and 

thus, promotes adhesive and abrasive wear.  Such speculation may be supported 

by a recent study of McNulty et al. 45 who tested similar AMK® components (10 

mm PE (GUR 1050) inserts, GP sterilized) in an AMTI knee simulator with a 

similar BCS lubricant.  Reducing the total protein concentration from 61 g/l to 

17 g/l was associated with a 5.4-times increased PE wear rate. 

Shen et al. 445 reported that the AP force was susceptible to the 

lubricant composition in the knee wear testing.  They also associated a higher 

AP force with a higher PE wear rate, which may be supported by the present 

study.  For the L implants, the magnitude of AP force was lower for the ACS 

lubricant compared with the BCS lubricant (Fig 5.39).  For the R implants, the 

magnitude of AP shear force was similar between the NCS lubricant and the 

BCS lubricant.  All of this suggested that the ACS lubricant allowed lower μk 

and this would be consistent with the higher albumin + α-globulin fractions 

causing a thick, compacted protein layer that acted as a boundary lubricant and 

helped reduce the wear rate compared with the other serum lubricants. 
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(b) R implants 

Figure 5.39: The AP force for the serum lubricants. 
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5.3.12 Discussion of Bacterial Growth and Inhibition 

Bacterial contamination in the BCS lubricant was reported in Section 

5.2 and the type of organism was identified.  It was of further interest to 

investigate whether the amount of bacterial growth depended on the type of calf 

serum.  The CFU of the calf sera after 0.5 Mc correlated with their initial β-

globulin + γ-globulin fractions, suggesting that the bacterium was feeding on 

those specific constituents (Fig. 5.40).  The CFU/ml for the NCS lubricant 

obtained after 28 h was comparable with the CFU/ml for NCS + DW + SA 

reported by Bell et al. 30.  Clearly, SA should not be used in any of the three calf 

sera with the goal to inhibit bacterial growth but was chosen in the present study 

to be consistent with Section 5.2.  Although the protein degradation was not 

effected by the type of antimicrobial inhibitor, the peptide concentration 

significantly increased when SA was replaced with AA.  This suggested that E. 

cloacae JK-1 digested some denatured proteins which also caused an increase in 

pH.  It was deemed possible that E. cloacae JK-1 secreted some alkaline 

substance which may have been responsible for such an increase in pH.  This 

suggested that the bacterium and the proteins directly interact with each other 

and such a mechanism may be pharmacology related.  Certain proteins, human 

serum albumin in particular, are well known for their drug delivery function.  It 

can bind with certain chemical compounds of the antibiotic and deliver it to the 

place of need in the body.  Antibiotics such as penicillin and streptomycin, 

which were the main constituents of AA, were frequently used in clinical 

applications and were suggested to bind onto the albumin protein 109-111.  Such 

binding of AA onto proteins constituents may have preserved some specific 

proteins from bacterial attack.  It remains to be seen which constituents of the 

AA were actually effective in inhibiting bacterial growth, but such 

investigations went beyond the scope of this section of the present thesis.   

 



 

  243 

f(x) = 38.075e0.4523 (x)

15 20 25 30 35
Initial β-globulin + γ-globulin fraction [%]

C
ol

on
y-

fo
rm

in
g 

un
its

 [C
FU

/m
l]

BCS + DW + SA
NCS + DW + SA
ACS + DW + SA

104

105

108

107

106

 
Figure 5.40:  The relationship between the initial β-γ-globulin concentrations 
and the colony forming units (CFU/ml) for three types of calf sera. 

 

 

It remains uncertain if peptide concentration and the type of microbial 

inhibitor play a role in boundary lubrication process.  Wimmer et al. 189 reported 

a 6.5-times higher wear rate when microbial contamination was present in the 

calf serum but they did not investigate the effects of peptide concentration on 

PE wear.   

As a final comment, the presence of E. cloacae JK-1 was of concern, 

particularly since the knee simulator was located in a hospital environment.  

Paterson et al. 446 reported that hospital-bound Gram-negative bacteria may 

mutate and develop resistance to a wide range of antibiotics and may become a 

serious threat for patients with compromised immune response.  Thus, 

monitoring the bacterial growth was suggested during further testing to enable 

immediate actions if the bacterium develops AA resistance. 
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5.3.13 Concluding Remarks 

The type of serum and its individual constituents significantly affected 

the wear rate in displacement-controlled simulator wear testing.  All protein 

constituents were affected by the wear process.  BCS and NCS were condemned 

from knee simulator wear testing since their protein constituents were 

significantly different to SF and the difference in protein constituents affected 

the wear rate.  ACS, with closest composition to SF, was recommended for 

further wear testing and for future versions of the ISO standard. It was also 

recommended to further examine the serum protein constituents based on their 

effectiveness in the boundary lubrication process.  Using SA as a 

microbiological inhibitor was not a successful way to inhibit bacterial growth in 

any serum after 0.1 Mc of testing.   

The present study suggested that the microbial contaminant E. cloacae 

JK-1 fed on the peptides that remained suspended in the calf sera.  The use of 

AA effectively inhibited any bacterial growth that resulted in a high peptide 

concentration, which may or may not affect the boundary lubrication.   

It was speculated that a compacted protein layer formed at the CoCr-

PE interface which acted as a solid lubricant under high loads. The wear 

behaviour of total knee replacements was highly sensitive to changes in 

lubricant composition and requires further attention.  Aspects such as serum 

osmolality and the addition of HA to serum lubricants need to be assessed 

regarding their effects on PE wear. 
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5.4 Effects of HA Additions and Osmolality Levels on PE Wear  

5.4.1 Introductory Remarks 

In this final Section of Chapter 5, the effects of HA and osmolality of 

the dilutive medium (DW versus PBS) on the PE wear rate were investigated.  

ACS-I was selected as the calf serum base for the wear tests (see Section 3.2.2 

for details of its composition).  As shown in Section 5.2 and 5.3, SA was not an 

effective microbial inhibitor and thus AA was used enable sterile wear testing.  

Protein degradation, electrophoresis and peptide concentration were assessed to 

gain insight into the wear behaviour of the lubricants used in the present 

chapter.  Surface analysis methods such as SEM, roughness measurements, and 

surface profilometry were performed on the femoral CoCr components to assess 

the possible role of the metal bearing surface on the PE wear rate.  In addition, 

the thermal stability of the lubricants was assessed and compared with SF.  The 

efficacy of AA after prolonged testing periods was assessed and alternative 

microbial inhibitors were proposed.  Such extensive analysis was deemed 

necessary to explain the possible wear mechanisms occurring in the boundary 

lubrication regime that was imposed on the implants and to guarantee a sterile 

environment for knee implant wear testing. 

 

 

5.4.2 Wear 

Ten GP sterilized inserts (10 mm, GUR 1050) were pre-soaked in DW 

at 37 ºC, repeatedly disturbed, desiccated and weighed every 138 h (≡ 0.5 Mc).  

The pre-soaking period was 70 days which exceed the recommended pre-

soaking period of at least 46 days (see Section 5.2 for details).  DW was chosen 

as the pre-soaking fluid over the test lubricant to investigate whether the type of 

pre-soaking fluid would affect the PE wear rate.  As it turned out, it was a 

inappropriate to presoak in DW as explained subsequently.  The mass gain 

during the pre-soaking period for the L implants (2.68 ± 0.55 mg) and for the R 

implants (3.07 ± 0.40 mg) was not statistically significantly different (p = 0.312, 
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Paired-samples t- test).   The wear was determined after 5.5 Mc of simulator 

testing as described in Table 5.5.  The ACS-I + AA for the L implants was 

either diluted with PBS or PBS + HA.  A slight increase in osmolality from 312 

± 1.00 mmol/kg to 321 ± 2.64 mmol/kg was observed when HA was added to 

ACS-I + PBS + AA, possibly due to the inherent HA osmolality of ~ 50 

mmol/kg.  The ACS-I + AA for the R implants was either diluted with PBS or 

DW.  The implants remained in the same stations for the entire wear test. 

 

 

Table 5.5: Test protocol showing the lubricant compositions and their 
corresponding osmolality levels. 

Lubricants 
(Osmolality [mmol/kg]) Test interval  

[Mc] 
L implants (L1, L2, L3) R implants (R1, R2, R3) 

0 – 3.5 
ACS-I + PBS + AA 

(312 ± 1.00) 
ACS-I + PBS + AA 

(312 ± 1.00) 

3.5 – 5.5 
ACS-I + PBS + AA + HA 

(321 ± 2.64) 
ACS-I + DW + AA 

(145 ± 2.00) 

ACS-I + PBS + AA is referred to as the “PBS lubricant”; ACS-I + DW + AA is 
referred to as the “DW lubricant”, and ACS-I + PBS + AA + HA is referred to 
as the “HA lubricant”. 
 

The L and R implants both experienced a distinct mass gain (negative 

wear volume) during the test period of 1 Mc (Fig. 5.41).  The pre-soaking 

procedure in DW might have caused the implants to gain more mass once the 

soak media was replaced with the serum lubricants.  This mass gain might not 

have been mimicked adequately in the LS specimens and thus the mass loss due 

to wear would be overwhelmed by an unaccounted fluid uptake.  Thus, the wear 

results for the first 1 Mc were not considered and linear regression was only 

performed on the wear results from 1 - 3.5 Mc and from 3.5 - 5.5 Mc to 

determine the PE wear rates.  The average PE wear rate for the L implants 

increased 2-times from 5.04 ± 0.56 mm3/Mc to 10.24 ± 2.04 mm3/Mc when HA 

was added to the lubricant  (Fig. 5.42).  Such a change was statistically 

significant (p = 0.013, Student’s t-test).   
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Figure 5.41:  The wear behaviour for (a) the L implants (L1, L2, and L3) and 
(b) R implants (R1, R2, and R3) from 0 - 2 Mc.  Note the negative wear volume 
due to PE mass gain during the initial 1 Mc. 
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Figure 5.42:  The wear behaviour of the (a) L implants (L1, L2, and L3) and (b) 
R implants (R1, R2, and R3) from 1 - 5.5 Mc. 
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The mean PE wear rate for the R implants increased 2.3-times from 

1.29 ± 0.17 mm3/Mc to 2.99 ± 0.16 mm3/Mc when PBS was replaced with DW 

as the dilutive medium.  This change was also statistically significant (p = 

0.003, Student’s t-test).   

The differences between lubricant temperatures in the wear stations 

were small (Fig. 5.43).  In addition, the wear rate of the L implants was 

significantly higher than the R implants when ACS-I + PBS + AA was used on 

both banks from 1 - 3.5 Mc (p < 0.001, Student’s t-test).   
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Figure 5.43: The lubricant temperature in the wear stations of the L implants 
(L1, L2, and L3) and R implants (R1, R2, and R3) at 3.5 Mc and at 5 Mc. 
 
 
 

The AP force for the L implants was higher compared with AP force 

for the R implants at around 8 % of the gait cycle and again at around 45 % of 

the gait cycle (Fig. 5.44).  The higher AP force might have been caused by some 

slight motion difference of the L bank that caused minor interference at the 

interface compared with the R bank.  The higher wear rate of the L implants 

might have been caused by the higher AP force.   
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Figure 5.44:  The AP force for the L implants and the R implants tested with 
the PBS lubricants after 3.5 Mc. 
 

 
5.4.3 Protein Concentration and Electrophoresis 

The protein concentration of the lubricants used to test L implants and 

R implants was measured on the SM at 0 Mc and on the SUPs after 3 - 3.5 Mc 

and after 5 - 5.5 Mc of wear testing.  Electrophoresis measurements were also 

obtained to determine the amount of degradation of the individual protein 

constituents.   

For the L implants (Fig. 5.45.a), the protein concentration of the SM 

for the L implants tested with PBS lubricant was not statistically significantly 

different from SUP1 or SUP2 (p ≤ 0.409, ANOVA and Fisher’s) but SUP3 was 

higher than the SM (p = 0.002, ANOVA and Fisher’s).  When HA was added to 

the lubricant, the protein concentration of the SM for the L implants was higher 

than the SUPs (p ≤ 0.001, ANOVA and Fisher’s).   

For the R implants (Fig. 5.45.b), the protein concentration of the SM 

for the R implants tested with the PBS lubricant was not different to SUP1 or 
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SUP2 (p ≤ 0.171, ANOVA and Fisher’s) but SUP3 was higher than SM (p = 

0.003, ANOVA and Fisher’s).   

The protein concentration of the SM for the L and R implants 

measured at 3 - 3.5 Mc was lower than the SUP 3 but the average value was 

lower than all the SUPs.  Thus, the average protein degradation was not 

calculated because it would have resulted in negative values. Instead, it was 

decided to give the protein concentration of the SM and the SUP for each of the 

protein constituents from the electrophoresis measurements.  The protein 

constituent fractions obtained by the electrophoresis were multiplied by the 

mean protein concentration determined with the BCA assay for each station to 

obtain the protein constituent fractions (Fig. 5.46 and 5.47).  Interestingly, the 

total protein concentrations were higher for the SM after the 3 - 3.5 Mc test 

interval in contrast to the measurements using the BCA assay.  This suggested 

that errors had occurred in the BCA measurements for the 3 - 3.5 Mc test 

interval. 

The average protein concentration of the SUPs in Fig. 5.46 and 5.47 

were subtracted from that of the SM to obtain the concentration of degraded 

proteins.  All protein constituents were affected by the wear process in all four 

lubricants (Fig. 5.48).  However, it can be seen that ACS-I + PBS + AA only 

marginally degraded for the L implants and the R implants.  A greater change in 

protein degradation was observed for HA lubricant and for the DW lubricant. 
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Figure 5.45:  The protein concentrations for (a) the L implants and (b) the R 
implants. 
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(b) ACS-I + PBS + AA + HA (5 - 5.5 Mc) 

 
Figure 5.46:  The protein constituent fractions for the L implants after a test 
interval of 0.5 Mc: (a) the PBS lubricant and (b) the HA lubricant. 
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Figure 5.47:  The protein constituent fractions for the R implants after a test 
interval of 0.5 Mc: (a) the PBS lubricant and (b) the DW lubricant. 
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Figure 5.48:  The protein constituent degradation for the serum lubricants. 
 

 

5.4.4 Peptide Concentration 

The peptide concentration increased in all lubricants (Fig. 5.49).  For 

the L implants, the peptide concentration for the PBS lubricant increased 3.2-

times in the SUP and 5.2-times for the HA lubricant compared with the SMs. 

For the R implants, the peptide concentration for the PBS lubricant increased 

3.4-times in the SUP and 10.4-times for the DW lubricant.  The peptide 

concentration was highest in the HA lubricant (p ≤ 0.001, GLM with Tamhane), 

lower for the DW lubricant (p ≤ 0.001, GLM with Tamhane), and lowest for the 

PBS lubricant (p ≤ 0.001, GLM with Tamhane).  There was no significant 

difference between the mean peptide concentration of the PBS lubricant used in 

both L and the R implants (p = 0.438, GLM with Tamhane).  An increased 

relative change in peptide concentration (peptide concentration in the SUP 

minus the peptide concentration in the SM) coincided with increased wear rates 

when HA was added to the lubricant for the L implants and when PBS was 

replaced with DW as the dilutive medium (Fig. 5.50). 
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Figure 5.49: The peptide concentration of the SM and the SUPs. 
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Figure 5.50:  The wear rate plotted versus the relative change in peptide 
concentration (peptide conc. “SUP” minus peptide conc. “SM”). 
 
 
 

5.4.5 Microbial Resistance 

Microbial contamination was assessed after a total of 0.5 Mc and 5.5 

Mc.  Microbial contamination was not detected after 0.5 Mc but was detected 

after 5.5 Mc.  The serum samples from the L implants and the R implants after 

5.5 Mc showed that an isolated E. cloacae organism reoccurred.  This indicated 

that E. cloacae JK-1 might have developed some resistance toward AA and 

possibly resulted in an altered organism.  This organism was referred to as E. 

cloacae JK-2.  Thus, it was deemed necessary to investigate to which AA 

constituents the E. cloacae JK-2 developed its resistance.  To do this, the 

antimicrobial susceptibility test described in Section 3.5.3 was used.  Antibiotic 

discs containing streptomycin and penicillin were placed on the Müller-Hinton 

agar petri dishes.  The Müller-Hinton agar petri dishes were inoculated with 

either E. cloacae JK-1 or E. cloacae JK-2.  In addition, three more antibiotic 

discs containing carbenicillin, tetracycline, and chloramphenicol were also 
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placed on the petri dishes to investigate if they would inhibit the growth of E. 

cloacae JK-1 and of E. cloacae JK-2 for future knee simulator testing.  E. 

cloacae JK-1 was resistant towards penicillin and carbenicillin; intermediate 

resistant towards streptomycin and tetracycline; and highly susceptible to 

chloramphenicol (Fig. 5.51; Table 5.6).  E. cloacae JK-2 was resistant towards 

penicillin, streptomycin and carbenicillin; intermediate resistant towards 

tetracycline; and highly susceptible to chloramphenicol.   

 

 

 
(a) 

Figure 5.51:  The MH-plates incubated with a) E. cloacae JK-1 collected in 
Section 5.3 (no exposure to AA).  Note that E. cloacae JK-1 was resistant 
towards penicillin (P-10) and carbenicillin (CB-100). 
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(b) 

Figure 5.51 (continued): The MH-plates incubated with E. cloacae JK-2 
collected in Section 5.4 after 5.5 Mc. Note how E. cloacae JK-2 developed 
further resistant towards streptomycin (S-10) in Section 5.4 after 5.5 Mc. 
 
 
Table 5.6:  The zone of inhibition (ZOI) for several antibiotic disks (penicillin 
(P-10); streptomycin (S-10); carbenicillin (CB-100); tetracycline (CB-30), 
chloramphenicol (C-30)) incubated on E. cloacae JK-1 collected in Section 5.3 
(no exposure to AA) and E. cloacae JK-2 collected in Section 5.4 after being 
exposed to AA for 5.5 Mc. 

E. cloacae 
Zone of inhibition for several 

antibiotics 
(Nomenclature, disk potency) 

JK-1  
collected in Section 5.2; no 

exposure to AA 

JK-2  
collected in Section 5.4; 

exposure to AA 

Penicillin (P-10; 10 U*) 0 mm (R) 0 mm (R) 

Carbenicillin (CB-100; 100 μg) 14 ± 1 mm (R) 14 ± 1 mm (R) 

Streptomycin (S-10; 10 μg) 14 ± 1 mm (I) 0 mm (R) 

Tetracycline (TE-30; 30 μg) 15.33 ± 1 mm (I) 15 ± 2 mm (I) 

Chloramphenicol (C-30; 30 μg) 26 ± 1 mm (S) 27 ± 1 mm (S) 

R ≡ E. cloacae was resistant to AA; I ≡ E. cloacae JK has intermediate resistant 
to AA; S ≡ E. cloacae JK is susceptible to AA. Zone diameter interpretive 
standards: penicillin, R: ZOI ≤ 28 mm; streptomycin, I: ZOI = 12 - 14 mm; 
carbenicillin, R: ZOI ≤ 19 mm; tetracycline, I: ZOI = 15 - 18 mm; 
chloramphenicol, S: ZOI ≥ 18 mm 195 (*1U ≈ 1.660538782 x 10−27 kg). 

CB-100 P-10 

C-30 
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5.4.6 Differential Scanning Calorimetry   

The thermal stability of the lubricants indicated how resistant the 

proteins were to shear damage under load and motion and thus degradation.  

There was also some merit in comparing the thermal stability of the serum 

lubricants with SF since an ideal serum lubricant would have similar thermal 

stability to SF.  To gain some insight into the thermal stability of the lubricants 

triplicate samples of the DW lubricant, the PBS lubricant, the HA lubricant, and 

SF (SF 7, SF 8, and SF 18) were analyzed using Differential Scanning 

Calorimetry (DSC) methods.  Such basic DSC measurements were outsourced 

and performed by Lee-Ann Brière at the Department of Biochemistry, UWO 

(see Section 3.5.5 for details on the methods for DSC measurements).  The 

buffer solutions in the DSC tests were DW + AA, PBS + AA, PBS + AA + HA 

and PBS for the lubricants ACS-I + DW + AA, ACS-I + PBS + AA, ACS-I + 

PBS + AA + HA, and SF, respectively.  DW lubricant and ACS-I + PBS + AA 

had a significantly lower change in enthalpy (ΔH) compared with ACS-I + PBS 

+ AA + HA and SF (p ≤ 0.004, ANOVA and Tamhane) (Fig. 5.52 - 5.54).   

Both the transition midpoint temperature (Tm1) and the maximal specific heat 

capacity at constant pressure (cp-max) increased when ACS-I + AA was diluted 

with PBS instead with DW.  Such change in dilutive medium increased the 

osmolality of the lubricant (Table 5.5).  However, Tm1 for PBS lubricant was 

lower compared with SF.  The DW lubricant and PBS lubricant did not have a 

Tm3.  As explained earlier in Section 3.5.5, the unfolding, of the HA lubricant 

was highly cooperative (only one very well defined cp-peak during unfolding) 

and had a comparable Tm1 to SF.  The unfolding of SF samples was a multi-

stage process showing three Tm, with Tm1 having the highest cp (Table 5.7).  The 

unfolding of SF was consequently less cooperative (several cp-peaks during the 

unfolding) than for the HA lubricant.  ACS-I + DW + AA had a lower Tm1 and 

Tm (cp-max) compared with SF.  The thermograms of SF were similar between 

samples SF 7, SF 8, SF 18.  The unfolding of SF was less cooperative than 

ACS-I + PBS + AA + HA but showed similar in Tm (cp-max), ΔH and ΔS (Fig. 
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5.55, 5.56).  The ΔS for the lubricants was almost proportional to ΔH since the 

Tm (cp-max) was of the same order of magnitude between the lubricants. 
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Figure 5.52:  Thermogram of (a) the DW lubricant and (b) the PBS lubricant.  
Note the differences between the shapes of the curves of the DW lubricant and 
the PBS lubricant. 
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Figure 5.53:  Thermogram of (a) the HA lubricant and (b) SF 7.  Note the 
differences between the shapes of the curves of the HA lubricant and SF 7. 
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Figure 5.54:  Thermogram of SF 8 and SF 18.  Note the similarity between the 
shapes of the curves of SF 8 and SF 18. 

 
 

Tm2 

Tm1 

Tm3 

Tm2 

Tm1 

Tm3 



 

  264 

 
 
 
Table 5.7: Transition midpoint temperatures, Tm, of the DW lubricant, PBS 
lubricant, HA lubricant, SF 7, SF 8, and SF 18 (n = 3). 

Transition midpoint temperature Tm [K]  
Lubricant 

Tm1 Tm2 Tm3 

ACS-I + DW + AA 330.71 ± 1.55 336.30 ± 1.22 N/A 

ACS-I + PBS + AA 333.39 ± 1.05 336.46 ± 0.05 N/A 

ACS-I + PBS + AA + HA 337.32 ± 0.58 N/A N/A 

SF 7 337.32 ± 1.83 342.87 ± 1.33 347.72 ± 3.87 

SF 8 336.73 ± 0.52 342.63 ± 1.73 348.40 ± 2.22 

SF 18 336.35 ± 2.13 341.26 ± 4.26 347.48 ± 2.01 
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Figure 5.55: The change in enthalpy, ΔH, for the DW lubricant, the PBS 
lubricant, the HA lubricant and SF (SF 7, SF 8, SF 18).   Note the similarity in 
magnitude between the HA lubricant and SF. 
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Figure 5.56: The change in entropy, ΔS, for the DW lubricant, the PBS 
lubricant, the HA lubricant, and SF (SF 7, SF 8, SF 18).  Note the similarity 
between the HA lubricant and SF. 
 

 

5.4.7 Scanning Electron Microscopy  

Observing the bearing surface of an as-received (obtained directly from 

the manufacturer) femoral component under the SEM (Hitachi Electronics Ltd., 

Naka, Japan) revealed some voids (Fig. 5.57.a).  Some grooves from the 

polishing process were also observed.  Assessing the surface damage on femoral 

components, that had been retrieved from patients undergoing revision surgery, 

revealed a characteristic pitting feature (Fig. 5.57.b).  Interestingly, such pitting 

features were also observed on the femoral component of the L implants worn 

with both ACS-I + PBS and  ACS-I + PBS + HA and on the femoral 

components worn with both ACS-I + PBS and ACS-I + DW (Fig. 5.58).  This 

indicated that the retrieved cast femoral components, the cast R implants, and 

the cast L implants might have sustained by some corrosion type of surface 

damage (tribochemical wear mechanism). 
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(a) 

 

 
(b) 

 
 

Figure 5.57: SEM micrographs showing typical surface features on a) an as-
received cast femoral component and b) a retrieved cast femoral component (IP 
= 102.05 months).  Note the voids on the as-received femoral components and 
the pits on the retrieved femoral component (anterior direction ≡ top of page). 
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(a) 

 

 
(b) 

 
Figure 5.58: SEM micrographs showing typical surface features on (a) a cast 
femoral component of the L implants (L2; worn with ACS-I + PBS + AA and 
ACS-I + PBS + AA + HA) and (b) a cast femoral component of the R implants 
(R2; worn with ACS-I + PBS + AA and ACS-I + DW + AA) after 5.5 Mc.  
Note the pitting in both micrographs (anterior direction ≡ top of page). 
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5.4.8 Femoral Surface Roughness Measurements 

The centre line average (Ra) and root mean square (Rq) surface 

roughness values were measured using a non-contact profilometer (Wyko® 

NT1100, Veeco Instruments Inc., Woodbury, NY) on an as-received femoral 

component, on six retrieved AMK® femoral components (IP = 66.83 ± 39.05 

months; range, 16.14 - 114.15 months), and on the femoral components from 

the L implants and the R implants after 5.5 Mc.  The Ra and Rq for the as-

received component had the lowest surface roughness (p < 0.001, ANOVA and 

Fisher’s) (Table 5.8, Fig. 5.59).  The Ra and Rq for the L implants were 

significant lower than for the R implants (p ≤ 0.034, Student’s t-test).  The 

medial sides of the femoral components of the L implants had a higher Rq (p = 

0.024, Paired-samples t-test) and Ra (p = 0.031, Paired-samples t-test) compared 

with their lateral sides.  Such findings were not observed on the R implants (p ≥ 

0.470, Paired-samples t-test).  The Ra and Rq for the L implants was 

significantly lower than the Ra and Rq for the retrievals (p = 0.004, ANOVA and 

Tamhane).  The Ra and Rq for the R implants did not have a statistically 

significant difference compared with the values for the retrievals (p = 0.843, 

ANOVA and Tamhane). 

 

 

Table 5.8: Surface roughness measurements (Ra, Rq) for the AMK® femoral 
components. 

Surface roughness [nm] 
Femoral components 

Ra [mean ± SD] Rq [mean ± SD] 

New, never implanted  (n = 1) Medial 159.69 ± 47.90 196.98 ± 57.77 

Medial 401.11 ± 366.64 317.53 ± 286.56 
Retrieved (n = 6) 

Lateral 342.86 ± 279.39 260.03 ± 206.94 

Medial 213.93 ± 70.56 260.29 ± 91.42 
L implants (n = 3) 

Lateral 184.85 ± 59.78 185.95 ± 59.78 

Medial 290.46 ± 197.91 360.14 ± 244.46 
R implants (n = 3) 

Lateral 234.90 ± 183.79 293.82 ± 239.15 
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Figure 5.59: Surface roughness for several femoral components. 
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5.4.9 Surface Profiles  

Surface profiles were obtained from the femoral components that had 

been studied in the SEM as described in Section 5.4.8.  The as-received femoral 

component appeared to have few voids on the bearing surface (Fig. 5.60).  The 

smooth surface profile (see gray scale bar on the right of the figures) confirmed 

the low surface roughness measured in Section 5.4.9.  The retrieved femoral 

component revealed many imperfections, some of which were similar to the 

surface pitting features that were also observed in the SEM.  The surface profile 

of the retrieved femoral component was similar in appearance and scale to the 

surface profile of the L implants (L2; worn with ACS-I + PBS + AA and ACS-I 

+ PBS + AA + HA) after 5.5 Mc (Fig. 5.61).  The surface profile of the R 

implants (R2; worn with ACS-I + PBS + AA and ACS-I + DW + AA) appeared 

rougher than surface profile for the retrieved femoral components and the L 

implants.  The pitting damage feature was observed on the retrieved femoral 

components and all femoral components from the simulator wear tests (L 

implants and R implants).  
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(a) New, never implanted femoral component  
 

 
 

(b) Retrieved femoral component (IP = 102 months) 
 
 

Figure 5.60: Surface profile obtained with the WYCO profilometer (anterior 
direction ≡ top of page).   
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(a) L implant femoral component (L2; tested in ACS-I + PBS + AA and ACS-I 
+ PBS + AA + HA) 

 

 
 

(b) R implant femoral component (R2; tested in ACS-I + PBS + AA and ACS-I 
+ DW + AA) 

 
Figure 5.61: Surface profiles obtained with the WYCO profilometer after 5.5 
Mc.  Note the scaling difference between the surface profiles of (a) and (b), 
confirming the rougher surface for the R implants (anterior direction ≡ top of 
page). 
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5.4.10 Discussion of the Mass Gain Period 

Pre-soaking the PE inserts in DW and subsequently exposing the PE 

inserts to ACS-I + PBS + AA and wear testing resulted in a negative wear 

volume during the first Mc of testing.  As mentioned in Section 5.2, increased 

osmolality caused by the presence of proteins might have increased the fluid 

sorption if it had been used during the pre-soaking period of PE inserts rather 

than DW.  A sudden uptake of fluid was blamed for the measurements of 

negative wear that occurred in the wear testing of the present section.  Thus, the 

PE inserts should be subjected to the similar soaking medium (and measuring 

protocol) during the pre-soaking period as used during the actual wear testing 

and such practices should be included in ISO 14243 41,42. 

 

 

5.4.11 Discussion on the Effects of HA on PE Wear 

HA has been recognized in the past as a constituent of SF 116,447,448.  

However, this constituent has only received minor attention in pin-on-plate 

friction tests 34 and a more substantial but limited attention in simulator wear 

testing of knee implants 102,156.  Mazzucco et al. 34 used HA in their friction 

studies and reported that HA did not affect the boundary lubrication process 

under unidirectional sliding.  Their HA had an average molecular weight (MW) 

of 1.8 MDa and an average concentration of 1.5 g/l based on measurements of 

SF from a 42 patients. Such values were adopted for the lubricant mixtures in 

the present thesis.  Wang et al. 156 based their HA concentration of 0.34 g/l on a 

study by Saari et al. 116 which was less than a quarter of the concentration 

suggested by Mazzucco 31.  Although Wang et al. 156 used ACS diluted to a 

protein concentration of 35 g/l, an effect of HA on PE wear was not reported in 

their hip simulator wear tests.  DesJardins et al. 102 conducted the simulator 

wear tests on knee implants using HA in the lubricant and using a force 

controlled simulator.  They selected the HA concentration and its MW from 

earlier published work 116,448,449 since the data by Mazzucco et al. 31 was not 

available at that time.  DesJardins et al. 102 reported a higher PE wear rate when 
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HA was added to the lubricant.  The investigations of the present thesis also 

found that the PE wear rate was higher.  As shown in Table 5.9, there were 

many differences between the wear test conditions of DesJardins et al. 102 and 

those of the present thesis such as differences in serum type, total protein 

concentration, microbial inhibition, dilutive media and the MW of the added 

HA.  DesJardins et al. 102 did not investigate the amount of protein degradation, 

change in peptide concentration or the effects of HA on the thermal stability of 

the lubricant. 

 

 

Table 5.9:  The lubricant composition used in the present study compared with 
the composition utilized by DesJardins et al. 102. 

Lubricant composition Present Study DesJardins et al. 102 

Serum type ACS-I BCS 

Total protein concentration [g/l] 17 30 

Type of microbial inhibitor AA SA 

Dilutive media PBS DW 

HA molecular weight [MDa] 1.78 2.3 

HA concentration [g/l] 1.5 1.5 

 

 

The amplifying effect of adding HA on the PE wear rate in the 

investigations of the present thesis was only 29 % of that value reported by 

Desjardins et al. (2-times rather than 6.88-times).  They suggested that some 

tribo-corrosion occurred on the femoral components due to the presence of Cl 

ions in the HA compound which increased its surface roughness, and thus 

increased abrasive wear.  Such tribo-corrosion might have included the repeated 

removal of a passive layer from the CoCr surface.  The wear behaviour of such 

a passive layer under sliding conditions might depend on the friction forces, 

bearing material properties, surface topography, and the electrolytic 

conductivity and potential of the lubricant 60. In the present study, the as-

received femoral components showed small round voids, so called Kirkendall 

holes, which were possibly introduced during the casting process.  Such voids 
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might have affected the roughness measurements and might have promoted 

tribo-corrosion which could cause pitting surface damage 102,363.  DesJardins et 

al. 102 did not observe any tribo-corrosion on the femoral components worn in 

the lubricant without HA, which was contrary to the present study.  The HA 

used in the present wear tests did not contain any Cl ions (Lifecore Biomedical, 

Chaska, MN).  However, the L implants and the R implants were exposed to 

PBS that contained Cl ions and these ions might have promoted the tribo-

corrosion.   It was then expected that a higher Ra and Rq of the femoral 

components would have caused a higher PE wear rate when HA was added to 

the lubricant 102.  Surprisingly, the femoral components of the L implants worn 

with HA in the lubricant had lower Ra and Rq values than the femoral 

components of the R implants worn without HA.  However, comparing the wear 

behaviour of the L implants and the R implants might have been compromised 

because the L implants had higher wear for all lubricants perhaps because the 

kinematics of the L bank differed somewhat for that of the R bank. 

The biochemical analyses of the lubricants also gave some 

unanticipated findings.  It was intuitively felt that a lower thermal stability 

would suggest that the proteins in a lubricant would degrade more easily and 

this would be accompanied by an increased peptide concentration and higher PE 

wear.  Thus, it was expected that a lower thermal stability would occur for 

ACS-I + PBS + AA + HA compared with ACS-I + PBS + AA.  Instead, DSC 

analysis showed that the thermal stability of ACS-I + PBS + AA was lower than 

that of both ACS-I + PBS + AA + HA and SF.  The similar thermal stability of 

ACS-I + PBS + AA + HA and SF suggested that adding the selected HA was 

essential to mimic the thermal stability of SF.  Thus, a closer look at the 

possible interactions between proteins and HA was taken.   

In 2000, Xu et al. 122 showed that HA created covalent bonds with 

native albumin proteins when pH ≤ 5.  Interestingly, at the physiological pH of 

7.2, interactions between the long HA chains and the albumin were dominated 

by van der Waal’s forces and thus binding via strong covalent bonds was 

unlikely to occur.  In the present study, the pH-level uniformly dropped from 
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7.6 ± 0.1 at the start of the wear tests to approximately 6.8 ± 0.2 after a test 

interval.  Such decrease in pH was possibly due to the repeatedly added AA 

with a pH = 5.2.  Oates et al. 123 suggested that the proteins remained 

aggregated in a tenuous polymeric network and stayed entangled within the HA 

chains at such pH levels.  In addition, proteins were reported to be more 

thermodynamically stable in less hydrated environments 168,176.  Under such 

conditions, proteins were less vulnerable to rapid, reversible local disruption of 

their structure and therefore required higher ΔH to initiate unfolding.  Since HA 

is known for its ability to retain H2O 121, it followed that adding HA to the 

lubricant possibly decreased the amount of free H2O in the solvent and therefore 

increased the thermal stability of the proteins.  Reduced hydration possibly 

enhanced the hydrophobic effect in proteins, suggesting that the hydrophobic 

residues in proteins became buried inside the core of the proteins.  Such an 

effect may have contributed to protein aggregation in the protein-HA network 
123.  In the present study, the unfolding process of SF appeared to be less 

cooperative compared with ACS-I + PBS + AA + HA, despite the lubricants’ 

similarities in ΔH and ΔS.  Such findings suggested that the SF protein 

constituents required higher temperatures to complete their irreversible 

unfolding 104,169.  Higher thermal stability of human serum albumins compared 

with bovine serum albumin has been recently reported and may explain such 

higher unfolding temperature for SF 450.  Last but not least, it was likely that the 

remaining globulin protein constituents affected the thermal behaviour of ACS-

I.  However, it went beyond the scope of this thesis to conduct a detailed 

thermal analysis of individual protein constituents in solution with HA to gain 

insight on their individual effects on Tm, ΔH and ΔS. 

The protein constituent degradation and the relative change in peptide 

concentration were higher for ACS-I + PBS + AA + HA compared with ACS-I 

+ PBS + AA and coincided with a 2-times increase in PE wear rate.  In Section 

5.3, the author showed that the simulator wear process at the CoCr-PE interface 

depended significantly on the type of protein constituents and their individual 

concentrations.  It was speculated that the proteins were consolidated under load 
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and motion which possibly led to a solid-like protein layer that acted as a solid 

lubricant.  Generally, the ability of a solid-like structure to carry large loads 

without failure depends on the ductility of the material that comprises such a 

structure.  Highly ductile materials have a superior ability to dissipate applied 

stresses by plastic deformation compared with materials of low ductility.     

 

Figure 5.62:  Schematic showing the possible protein interactions in the protein 
layer at the CoCr-PE interface for ACS-I + PBS + AA and ACS-I + PBE + AA 
+ HA during the wear test.  Adding HA to ACS-I + PBS + AA increased the 
thermal stability of the lubricant.  It was speculated that ACS-I + PBS + AA + 
HA was less ductile under load and motion than ACS-I + PBS + AA due to the 
protein-HA network.  The limited ability of ACS-I + PBS + AA + HA to 
dissipate plastic deformation possibly led to higher temperature and higher 
shear inside the protein layer and increased the protein degradation and the 
peptide concentration despite its higher thermal stability compared with ACS-I 
+ PBS + AA.  It was speculated that such a conditions were comparable to the 
kneading effect, which is known to occur in ductile metals under high shear 
forces 451 and in polymer processing equipment 452 and was deemed responsible 
for the higher PE wear rate for ACS-I + PBS + AA + HA compared with ACS-I 
+ PBS + AA.  The arrows indicate the direction of surface motion. 
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It is speculated that adding HA to the ACS-I + PBS + AA possibly 

reduced the ductility of the compacted protein layer under load and motion but 

also increased the thermal stability of the lubricant.  Consequently, such a 

protein layer was impaired in its ability to dissipate large plastic deformation 

which may have led to a localized increase in temperature and shear inside the 

protein layer (Fig. 5.62).  Similar behavior can be observed in both ductile 

metals under high shear forces 451 and polymer processing equipment 452 and is 

referred to as the kneading effect.  Such an effect may have amplified both the 

unfolding of the protein constituents as well as the shearing of the entangled 

protein chains.  Increased protein constituent degradation might then have 

promoted adhesive/abrasive wear and increased the PE wear rate.  The AP force 

measured at the simulator was higher for ACS-I + PBS + AA + HA compared 

with ACS-I + PBS + AA which might support the present speculations (Fig. 

5.63). 

The protein constituents of ACS-I + PBS + AA + HA were affected by 

the wear process in vitro; but are SF protein constituents also affected by the 

wear process at the CoCr-PE interface?  In an attempt to answer this question a 

5,000 cycle (83 min) “SF wear test” with 10 ml of mixed SF was performed on 

implant L2.  SF samples of 10 patients (SF 3, SF 4, SF 5, SF 6, SF 7, SF 8, SF 

11, SF 13, SF 14, and SF 16) were mixed (SFmix).  The SFmix had a protein 

concentration of 30.90 ± 1.24 g/l and a peptide concentration of 0.397 ± 0.004 

g/l.  All bearing surfaces were wetted with SFmix prior to wear testing.  The test 

was performed in an open system and the SFmix was repeatedly pipetted (every 

3 – 5 cycles) onto the anterior aspect of the femoral component which allowed 

the SFmix to be dragged into the interface by the articulating surfaces.  The 

protein concentration of the SUP measured 25.98 ± 1.31 g/l.  The peptide 

concentration in SFmix increased by 56 % to 0.618 ± 0.010 g/l.  The 

electrophoretic profile of the SFmix was different between the SM and the SUP 

(Fig. 5.64).  This suggested that proteins in the SF were affected by the wear 

process at the CoCr-PE interface in vitro and it was deemed possible that such 

effects might also be observed in vivo.  
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Figure 5.63: The AP force for the L implants tested with ACS-I + PBS + AA 
after 3.5 Mc and tested with ACS-I + PBS + AA + HA after 5 Mc.  Note the 
higher AP force for the L implants at approximately 20 % gait cycle and 45 % 
gait cycle which may have been responsible for the higher wear rate for the L 
implants.  
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Figure 5.64:  The protein constituent fractions for the SFmix starting material 
(SM; protein concentration = 30.90 ± 1.24 g/l) and the SFmix supernatant (SUP; 
25.98 ± 1.31 g/l) after a test interval 5,000 cycles.  Note that all protein sub-
constituents wear affected by the wear process. 
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5.4.12 Discussion on the Effects of Osmolality on PE Wear 

To the author’s knowledge, this is the first study correlating PE wear 

with the osmolality and thermal stability of lubricants that is relevant to knee 

implants (and perhaps other joint replacements).  Reduced osmolality was 

associated with reduced Tm, ΔH, and ΔS and was accompanied with increased 

PE wear rates.  It was interesting to observe that non-clinically relevant levels of 

osmolality increased the PE wear and the ISO standard specifies using DW for 

serum dilution despite its low osmolality.  Increased osmolality in ACS-I + PBS 

+ AA over ACS-I + DW + AA was possibly due to increase in ions in PBS 

compared with DW.  The osmolality was an indicator of the ionic strength of a 

solution; an increase in osmolality (as occurred when PBS was used instead of 

DW) caused a reduction in PE wear rate, affecting the peptide concentration as 

well as the unfolding characteristics of the proteins.  The main difference 

between the dilutive media was that NaCl, the main constituent of PBS, was at a 

concentration of 150 mmol/l (pH = 7.2).  Gionacola et al. 104 investigated the 

effects of NaCl concentration (pH = 7.0) on the thermal stability of bovine 

serum albumin (BSA) using similar DSC methods.  A strong thermal 

stabilization effect of NaCl on BSA was observed with increased NaCl 

concentration, ranging from 0 - 1000 mmol/l.  It was suggested that the 

stabilizing effect of NaCl was due to the reduced electrostatic repulsion between 

the net charges of the proteins, consequently reinforcing the native protein 

conformation. Diluting ACS-I + AA with low osmolality DW reduced the 

thermal stability (Tm, ΔH, ΔS) of the lubricant compared with ACS-I + PBS + 

AA.  It was speculated that lower osmolality reduced the protein conformation 

and resulted in lower, non-native protein conformational stability.  Non-native 

protein conformation may have increased entanglements between neighboring 

proteins chains and reduced the ductility of the consolidated protein layer under 

load and motion during wear testing.  The lower Tm for ACS-I + DW + AA 

compared with ACS-I + PBS + AA may have initiated protein unfolding at a 

lower contact temperature, consequently increasing the protein constituent 

degradation and peptide concentration (Fig. 5.65).  Such circumstances may 
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have promoted adhesive/abrasive wear and increased the PE wear rate for ACS-

I + DW + AA compared with ACS-I + PBS + AA.  The slightly higher AP force 

measured for ACS-I + DW + AA compared with ACS-I + PBS + AA may 

support this suggestion (Fig. 5.66).   

 

 

Figure 5.65:  Schematic showing the possible protein interactions in the protein 
layer at the CoCr-PE interface for ACS-I + PBS + AA and ACS-I + DW + AA 
during the wear test.  The higher protein constituent degradation and peptide 
concentration for the latter lubricant may have been initiated by diluting the 
ACS-I + AA with DW.  The proteins in DW had a lower Tm, ΔH, and ΔS than 
the proteins in PBS and thus were deemed to have a lower conformational 
stability. Such lower conformational stability possibly caused more 
entanglements between protein chains which may explain the higher peptide 
concentration ACS-I + DW+ AA compared with ACS-I + PBS + AA after wear 
testing.  Such circumstances may explain the higher PE wear rate obtained with 
ACS-I + DW + AA compared with ACS-I + PBS + AA used as the lubricant.  
The arrows indicate the direction of surface motion. 
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Figure 5.66: The AP force for the R implants tested with ACS-I + PBS + AA 
after 3.5 Mc and tested with ACS-I + DW + AA after 5 Mc.  Note the higher 
AP force for the R implants at 30 % gait cycle to 45 % gait cycle.   
 

 

5.4.13 Discussion on Clinical Relevance of the PE Wear Rates 

The present study suggested that HA and clinically relevant levels of 

osmolality were important constituents in the lubricant to mimic the SF in vitro.  

However, it still remained uncertain how the in vitro wear tests related to the 

clinical wear performance of TKRs.  Very recently, Gill et al. 339 published a 

study that gave some insight into the in vivo volumetric wear of a total knee 

replacement.   Linear penetration of the femoral component into the PE insert 

was estimated using RSA techniques and calculating the mean penetration at 

flexion angles such as 0, 15, 30, 45 and 60 º under weight bearing.  The study 

was conducted on four patients with six, non-modular AGC total knee systems 

(Biomet, Warsaw, IN) which had been implanted for 76 months (range, 70 - 85 

months).  The mean linear penetration was reported to be 0.075 mm/year which 

was approximately equivalent  to a volumetric wear rate of 100 mm3/year 339.   

To compare the clinical findings by Gill et al. 339 to the findings of the 

present thesis, it was only necessary to compare their values with the linear 
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penetration of the femoral component into the PE insert in the knee simulator 

wear tests, a quantity which was routinely measured in the wear testing.  Of 

main interest were the recordings from 3.5 - 5 Mc (data from 5 - 5.5 Mc was 

lost) when the lubricant HA lubricant was used in the wear tests.  The linear 

penetration for the L implants was calculated as the mean at 3.5 Mc and 5 Mc, 

subtracted from each other and divided by 1.5 Mc, which resulted in a mean 

linear penetration of 0.06 ± 0.02 mm/Mc (range, 0.002 - 0.128 mm/Mc) for the 

HA lubricant.  Such linear depth penetration measured in simulator wear tests 

stood in quite good agreement with the clinical linear penetration reported by 

Gill et al. 339.   In comparison, wear tests with conventional BCS + DW + SA 152 

approached a mean penetration rate of 0.12 ± 0.04 mm/Mc, thus further 

questioning the clinically relevance of BCS + DW + SA.  Nevertheless, the 

AGC total knee system is somewhat different from the AMK® knee system and 

thus, a comparison between penetration rates should be conducted with caution.   

In addition, the level of activity simulated in the in vitro tests and 

found in the clinical environment might also be different which might affect the 

comparison between the values obtained for the linear penetration into the PE 

inserts.  The in vitro test protocol recommended by ISO 41 considered 1 Mc as 

the number of cycles performed by the patient under level walking on an annual 

basis.  However, the number of cycles might reach up to 2 Mc/year for patients 

with joint replacements 383 and might include a variety of different activities 453.  

Recently, other activity activities such as stair climbing 453,454 were added to the 

level walking activity simulations in knee implant wear testing which would 

increase the PE wear rate.  If 2 Mc/year were adopted, the simulator penetration 

rate would be 0.12 ± 0.04 mm/year with the HA lubricant compared with 0.24 ±  

0.08 mm/year for the conventional BCS + DW + SA.  The penetration rate with 

the HA lubricant was much closer to the clinical rate estimated by Gill et al. 339 

than the penetration occurring when the conventional lubricant was used. 
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5.4.14 Discussion on Microbial Resistance and Countermeasures 

It was deemed necessary to investigate to which antibiotic substances 

E. cloacae JK-1 became resistant.  The β-lactamase Test described in Section 

3.5.4 was used for this purpose.  It was observed that E. cloacae JK-1 developed 

resistance towards antibiotics with a β-lactam ring in their chemical structure 

such as penicillin and carbenicillin.  This suggested that the E. cloacae JK-2 

produced β-lactamase, which was confirmed with the pink colour of the disk 

place on the incubated E. cloacae JK-2 (Fig. 5.67).  The somewhat limited 

efficacy of aminoglycosides, streptomycin in particular, might have caused E. 

Cloacae JK-1 to develop resistance.  It was speculated that such resistance was 

mediated by the genetic mutation, particularly of the plasmid and chromosome 

constituents of E. cloacae JK-2 (Fig. 5.68) 105.   

 

 

Figure 5.67:  Image showing the positive response (pink color) of the 
Cefinase® disk placed on E. cloacae JK-2 grown on LB agar.  Cefinase® disk 
was placed on incubated E. coli ML35 as a control and showed no discoloration 
of the Cefinase® disk (negative response; not shown). 
 

 

2 mm 
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Figure 5.68:  Schematic of a microbe showing the chromosome, plasmid and 
flagellum. 
 

 

Plasmids are genetic deoxyribonucleic acid (DNA) elements of the 

bacteria that replicate independently of the host chromosome.  A chromosome is 

a single large macromolecule of DNA in a microbial cell 105.  Every plasmid 

contains at least one DNA sequence that serves as an origin of replication, 

which enables the plasmid DNA to be duplicated independently from the 

chromosomal DNA.  Plasmids often contain genes or gene cassettes that confer 

a selective advantage to the bacterium harboring them, such as the ability to 

make the bacterium antibiotic resistant 105.  Such streptomycin resistance may 

be due to a resistant plasmid-encoded enzyme that chemically alters the 

structure of the antimicrobic by processes such as phosphorylation or 

adenylation.  Some clinical isolates of E. Cloacae have been reported to contain 

plasmids with antibiotic resistance genes 455,456 which may support such 

speculation.  However, additional microbiological tests were deemed necessary 

but conducting such tests went beyond the scope of this thesis. 

E. cloacae JK-2 showed intermediate susceptibility towards 

tetracycline and susceptibility for chloramphenicol.  Although chloramphenicol 

appears to be the most effective antibiotic for further wear tests, it needs to be 

kept in mind that E. cloacae strains 457 and other Gram-negative bacteria can 

develop resistance towards this and other antibiotics 446,458.  Chloramphenicol 

resistance may develop due to a resistant plasmid-encoded enzyme that 
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chemically alters the structure of the antimicrobic agent by a process called 

acetylation.  Exposing wear testing personnel to such a multi-resistant microbe 

may be hazardous to their health.  In addition, with the simulator located in the 

basement of the hospital, such microbial contamination may significantly 

endanger the health of patients in the case the mutated and resistant 

microorganism spreads.  This may require the use of more powerful antibiotics 

for wear testing and patients and could consequently lead to antibiotic overuse 

and highly hazardous organisms that can not be controlled.  Although 

antibiotics should be used in wear tests to mimic the sterile in vivo environment, 

it is definitely not the intention to create a hazardous work environment.  The 

opportunity of abandoning SA due to its unsuitability for microbial inhibition in 

wear testing was very much appreciated due to its highly toxic characteristics 
459.  It is speculated by the author of the present thesis that microbial 

contamination may differ among wear test laboratories.  Thus, recommending 

one specific antibiotic to eliminate microbial contamination in wear tests cannot 

be made.  The cycling of antibiotics 460, as performed in hospitals dealing with 

chronic infections (i.e. intensive care units), may be an attractive alternative 

treatment for extensive wear testing.  In any case, a round robin test between 

implant wear testing laboratories may be beneficial with the goal to establish a 

database on microbial contaminates and show ways of more favorable 

treatments.   

The microbial contamination found in the present test was a Gram-

negative bacterium and its growth may be inhibited with the use of bacterial 

predator Bdellovibrio bacteriovorus strain 109J (referred to as Bdellovibrio; 

approximately 1 μm in length and 0.2 μm in width) 191-193,461.  This predator 

bacterium, both Gram-negative and antibiotic resistant, has the fascinating 

ability to prey on other Gram-negative bacteria.  It has shown potential 

usefulness as an active biological control of pathogenic and spoilage organisms 

in foods.  Since Bdellovibrio is a prey dependent bacterium, i.e. it lives off the 

bacterium 191; it is not able to grow in the nutrient rich media and loses viability 

once the contaminant is eliminated.  The life cycle of Bdellovibrio can be 
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separated into two major phases: (a) free-swimming phase to search and attack 

the prey and (b) the growth phase spend inside the periplasm, the space between 

the plasma membrane and the outer membrane of the prey (Fig. 5.69) 191-193,461.  

During the free-swimming phase the Bdellovibrio collides with the prey cell and 

attaches itself irreversibly to the surface.  Bdellovibrio penetrates the outer 

membrane of the prey and obliterates the prey by halting its respiration and 

growth.  While residing in the periplasm the Bdellovibrio grows and divides by 

exploiting the cells’ macromolecules for nutrients and essential building blocks.  

The Bdellovibrio grow inside the killed cell in a structure termed a bdelloplast.  

After all resources of the prey have been exhausted, the Bdellovibrio lyse the 

remains of the prey cell and swim away to target new hosts 191-193,461. 

 

 

 
 

Figure 5.69: Schematic of the two-phase life cycle of Bdellovibrio, which 
consists of a free-swimming phase in a solvent and a growth phase inside its 
Gram-negative prey bacterium193 (Max Planck Institute for Developmental 
Biology, Tübingen, Germany). 
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In a pilot study, Bdellovibrio was cultured on E. cloacae JK-2 in HM-

buffer (3 mmol/l 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Sigma-

Aldrich, St. Louis, MO), pH = 7.6, with 1 mmol/l CaCl2 and 0.1 mmol/l MgCl2) 

following recently published methods 461,462.  The predation of Bdellovibrio on 

E. cloacae JK-2 was monitored every 3 h using a phase contrast light 

microscope.  The turbidity (Klett units; 1 Klett unit ≈ 5 x 106 CFU/ml; Klett-

Summerson photoelectric colormeter with a green filter) was measured on 

triplicate samples (30 ºC, shaking at 175 rpm) to assess the predation of 

Bdellovibrio on E. cloacae JK-2 in sidearm flasks every 24 h up to 72 h.  

Reduced Klett units for E. cloacae JK-2 + Bdellovibrio indicated successful 

predation (Fig. 5.70).   
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Figure 5.70: Turbidity measurements of HM-buffer with both E. cloacae JK-2 
with AA and E. cloacae JK-2 + Bdellovibrio.  The turbidity in Klett units is an 
indicator of the number E. cloacae JK-2 in the HM buffer.  Note the decrease in 
turbidity for when E. cloacae JK-2 was doped with Bdellovibrio (1 Klett unit ≈ 
5 x 106 CFU/ml).  Such decrease in turbidity indicated that Bdellovibrio was 
able to prey on E. cloacae JK-2. 
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To authors knowledge this is the first approach towards developing a 

biological agent with the potential use in implant wear testing.  Further 

investigations are needed to test the predation of Bdellovibrio on E. cloacae JK-

2 in ACS-I + PBS + HA, to determine the appropriate dosage of Bdellovibrio 

cells to be applied for the wear test in the knee simulator, and how Bdellovibrio 

affects the lubricating properties.  This went beyond the scope of this thesis. 

 

 

5.4.15 Concluding Remarks 

The PE wear rate was affected by both HA and the dilutive media 

added to ACS-I + AA.  The lubricant composed of ACS-I + PBS + AA + HA 

had a higher wear rate compared with ACS-I + PBS + AA.  This was associated 

with higher protein degradation and increased peptide concentration despite the 

higher thermal stability (Tm, ΔH, ΔS) of ACS-I + PBS + AA + HA which was 

similar to the thermal stability of SF.  The higher thermal stability for ACS-I + 

PBS + AA + HA compared with ACS-I + PBS + AA might be due to the added 

HA, which has the ability to retain polar H2O from the solvent and consequently 

stabilizing the proteins by enhancing their hydrophobic interactions.  

Furthermore, it was suggested that the lubricating protein layer of ACS-I + PBS 

+ AA + HA was less ductile than ACS-I + PBS + AA under load and motion.  

Such lower ductility of ACS-I + PBS + AA + HA might have reduced the 

plastic deformation that could reduce surface friction and damage thus leading 

to high shear forces inside the protein layer and increased the temperature at the 

CoCr-PE interface.  It was speculated that this effect was similar to kneading 

effect, commonly observed in ductile metals and highly viscous polymer 

solutions under high shear forces 451,452 which increased both the protein 

degradation and peptide concentration compared with ACS-I + PBS + AA.   

Diluting ACS-I + AA with DW instead with PBS reduced the 

osmolality of the lubricant to non-clinically relevant osmolality levels.  Such a 

procedure showed to increase the PE wear rate, protein degradation and peptide 

concentration.  The thermal stability was lower for both ACS-I + DW + AA and 
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ACS-I + PBS + AA compared with both ACS-I + PBS + AA + HA and SF.  It 

was suggested that NaCl in PBS stabilized the protein structures by influencing 

their repulsive forces.  The present study suggested that the temperature in the 

contact point exceeded Tm = 58 ºC to initiate protein unfolding for ACS-I + DW 

+ AA.  The serum temperature in hip simulator studies was considered likely to 

cause protein degradation and wear rates with calf serum based lubricants 
154,463,464.  The temperature in CoCr-PE interface was suggested to reach up to 

60 oC and such surface temperatures probably occurred in the present study.  In 

any case, the thermal stability of ACS-I + DW + AA and ACS-I + PBS + AA 

were lower than SF and thus not clinically relevant.  This suggested that both 

HA and NaCl in PBS were essential additives to ACS-I + AA to mimic of SF.  

Using AA as the microbial inhibitor was accompanied with 

reoccurrence of E. cloacae after 5.5 Mc.  This indicated that the E. cloacae JK-1 

possibly mutated and developed resistance towards the AA constituents such as 

penicillin and streptomycin.  Such mutation resulted in a new organism, referred 

to as E. cloacae JK-2.  It was suggested that E. cloacae JK-2 produced β-

lactamase that disables the β-lactam ring.  Such a β-lactam ring is a part of the 

chemical structure in both penicillin and streptomycin and kills the organism by 

interacting with the cell wall of the bacterium.  E. cloacae JK-2 was also found 

to be resistant to carbenicillin (β-lactam antibiotic) and tetracycline, but was 

susceptible to chloramphenicol.  Based on the literature, it was deemed possible 

that E. cloacae JK-2 could further develop resistance even against 

chloramphenicol.  The use of the predator bacterium Bdellovibrio as a 

biological antibiotic was recommended so that it would prey on E. cloacae JK-

2 in HM buffer.  Further research on the use of Bdellovibrio use in ACS-I + 

PBS + HA is required. 
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Chapter 6: Conclusions and Future Work 

6.1 Clinical Investigations 

The type of grading method used to assess the surface backside surface 

damage of PE inserts significantly affected the outcome of the retrieval study.  

The strategy used in the Modified-method estimated the surface damage area in 

10 % increments and assigned a damage severity that translated into a BDS of 1 

- 10 and was found to be superior when compared with the Hood-method (see 

Chapter 3 and Section 4.2 for details).  The analysis of BDS data from implant 

retrievals with MLRA, in addition to univariate methods, allowed the 

identification of a substantial number of factors that were relevant to knee 

implant design.   

Further analysis of the BDS obtained with the Modified-method 

suggested that the backside damage process was influenced by patient factors 

and design features (Chapter 4.3).  A polished tibial tray with a partial-

peripheral locking mechanisms would significantly reduce the BDS for male 

patients.  Increased shelf storage was directly related to the IP of patients with 

GA sterilized inserts.  Thicker inserts caused higher BDS and a grit-blasted 

tibial tray was associated with damage features that were characteristic of 

abrasive wear.  Embedded particles from the grit-blasting process were likely to 

be released after implantation and to contribute to the abrasive wear.  The 

micro-damage of the burnishing was comparable to the micro-damage found on 

acetabular cups that were retrieved due to complications arising from osteolysis 
421.  Burnishing was significantly reduced with a partial-peripheral locking 

mechanism.  

In Section 4.4, the protein concentration of SF from patients with OA 

was found to be 2-fold higher than the protein concentration recommended by 

the standard, ISO-14243-3 41.  The total protein concentration, protein 

constituent fraction, and trace element concentration of SF was quite different 

from BCS, NCS, ACS, and ACS-I lubricants used in knee simulator wear 

testing. However, ACS and ACS-I were closest to SF in their protein constituent 
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fractions.  Using DW as the dilutive media resulted in non-clinically relevant 

levels of osmolality for BCS, NCS, ACS, and ACS-I.  The high osmolality of 

PBS allowed the serum dilution to clinically relevant osmolality levels.  

 

6.2 In vitro Investigations 

The commissioning tests for the knee wear simulator were reported in 

Section 5.2 and gave useful information on the pre-soak behaviour of PE and 

the variation in PE wear between the individual simulator stations.  The pre-

soaking protocol affected the fluid uptake that caused mass gain of the PE 

inserts.  The mass gain was higher for PE inserts soaking in protein-rich 

medium.  The pre-soaking of PE inserts should be conducted under the same 

protocols as would occur during wear testing.  These protocols included setting 

soak temperature, setting weighing frequency, cleaning, desiccating and weight 

measurement itself.  The pre-soaking media affected the PE wear rate as shown 

in Section 5.4. The fluid used for pre-soaking and for the LS stations should be 

the same as the lubricant used for wear testing.   

The wear rates obtained from the testing with the BCS lubricant, NCS 

lubricant, and ACS lubricant (Fig. 6.1) showed that protein constituent fraction 

had a significant influence. The wear rates behaved in the following manner:  

when the sera were diluted with: BCS lubricant > NCS lubricant > ACS 

lubricant.  Increased albumin + α-1-globulin fraction reduced the PE wear rate.  

SA was ineffective as a microbial inhibitor in all three lubricants.  The 

microbial contamination was identified as Gram-negative E. cloacae, strain JK-

1.  Increased β-globulin + γ-globulin fraction correlated with increased protein 

degradation and increased CFU/ml.  Under consideration of literature on 

boundary lubrication and the similarities of protein-rich lubricants to colloidal 

suspensions, the findings suggested that the boundary lubrication process was 

possibly governed by a compacted protein layer under load and motion. 

Adding HA to the lubricant increased the thermal stability of ACS-I + 

PBS + AA by dehydrating the solvent and the proteins compared with ACS-I + 

PBS + AA and increased the PE wear rate (Fig. 6.2).  The thermal stability of 
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ACS-I + PBS + AA + HA was equivalent to the thermal stability of SF from 

osteoarthritic patients.  It was proposed that adding HA to the lubricant reduced 

the ductility of the protein layer.  Such a reduction might have decreased the 

ability of the protein layer to accommodate plastic deformation without 

delaminating which lead to increased protein degradation, peptide concentration 

and ultimately also increased the PE wear rate.   

Using low-ion DW to dilute the ACS-I lubricant resulted in osmolality 

levels that were not clinically relevant and increased the PE wear rate.  Using 

high-ion PBS to dilute the ACS-I lubricant reproduced clinically relevant 

osmolality levels, increased the thermal stability and lowered the wear rates 

(Fig. 6.3).    It was suggested that the NaCl in solution (that caused the higher 

osmolality levels) stabilized the repulsive forces between the proteins in the 

lubricant and thus made the protein layer more resistant to the imposed loads 

and motions.  This protein layer possibly protected the PE surface and reduced 

the wear rates. 
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Figure 6.1: Wear rates for serum lubricants that did not have HA or PBS in 
them. 
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Figure 6.2:  Wear rates for serum lubricants that included PBS with or 
without HA. 
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Figure 6.3: Wear rates for serum lubricants diluted with PBS or DW. 

   

R implants 

L implants 



 

  295 

The wear rates of implants in the L and R banks were not significantly 

different when BCS + DW + SA was used as the lubricant.  However, the wear 

rates were significantly different when ACS-I + PBS + AA was used (Fig. 6.2 

and Fig. 6.3).  Consequently, the simulator consisted of L and R banks that were 

essentially independent and could be considered as two separate simulators.   

The wear rates of the lubricants were higher when SA was used as the microbial 

inhibitor compared with AA (Fig. 6.1, 6.2, and 6.3).  The findings in Section 5.3 

suggested that SA did not inhibit microbial growth after only 28 h (or 0.1 Mc) 

of wear testing.  Microbial growth in the lubricants was associated with reduced 

peptide concentration, suggesting that the E. cloacae JK-1 metabolized such 

peptides.  Replacing SA with AA in the ACS-I lubricant increased the peptide 

concentration 11-times (Fig 6.4).  The protein constituent fractions of ACS and 

ACS-I were similar.  There was no statistically significant difference between 

the peptide concentrations when Fe-rich ACS-I was used in wear tests 

compared with ordinary ACS (p = 0.170, ANOVA and Tamhane).  In any case, 

EDTA was added to all lubricants and which should have guaranteed the 

binding of free Fe.  Thus, when the wear rates of ACS + DW + SA were 

compared with the wear rate of ACS-I + DW + AA; (replacing SA with AA) 

caused a 4-times decrease in wear rate (Fig. 6.5). 
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Figure 6.4: The peptide concentration for various ACS lubricants (MWCO = 
2,000 Da). 
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Figure 6.5: Wear rates for ACS with either SA or AA. 
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An attempt was made to explain this phenomenon by considering the 

adsorption behaviour of degraded proteins onto the hydrophobic PE surface 

during wear 76,78,160,164.  Increased adsorption of degraded protein might form a 

boundary lubricant with the peptides adsorbed to the PE surface in form of a 

thin layer (or conditioning film), with an average molecular weight of 2,000 Da 

(Fig. 6.6).  This protein layer might require considerable energy to be squeezed 

out of the contact zone to allow the onset of adhesive/abrasive wear 97,98,465.  In 

any case, the suggested thin layer boundary lubrication should be further 

explored, in particular the suggested protein-mediated squeeze-out 

phenomenon.  It appears that the possibly surface near peptide layer in addition 

to the protein layer has a tremendous affect on PE wear. 

Future work might include the characterization of wear particles 

collected from implants worn with ACS-I + PBS + AA + HA.  Such wear 

particle should be compared with those obtained from patients with TKRs. 

Future research might also include knee simulator wear testing with ACS-I + 

PBS + AA + HA at a total protein concentration at 34 g/l to match the mean 

protein concentration of SF obtained from patients with OA.  Such wear tests 

should consider higher loads and increased motions to mimic other patient 

activities in addition to level walking.  The present study could then be followed 

by the wear evaluation of new bearing materials such as XPE. 
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(a) SA as the microbial inhibitor (few peptides) 

 

 
(b) AA as the microbial inhibitor (many peptides) 

 

    
 

Figure 6.6: Schematic showing a CoCr-PE asperity in contact.  
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Appendices  

Appendix A: BDS following the Hood-method 

The backside damage on the retrieved PE inserts was assessed by two 

observers.  The author of this thesis was referred to as “Oberver 1” who trained 

the student (Christopher M. Haydon, HBSc) “Observer 2” in the damage 

assessment methods.  

 

Observer 1 

BDS Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

1 18.0 8.0 10.0 5.0 9.0 N/A 

2 11.0 14.0 14.0 1.0 8.0 N/A 

3 16.0 10.0 11.0 0 8.0 N/A 

4 17.0 10.0 6.0 6.0 6.0 N/A 

5 10.0 9.0 11.0 3.0 6.0 N/A 

6 18.0 7.0 7.0 0 4.0 N/A 

7 15.0 11.0 10.0 4.0 6.0 N/A 

8 14.0 5.0 7.0 4.0 7.0 N/A 

9 7.0 7.0 7.0 2.0 4.0 N/A 

10 17.0 9.0 7.0 1.0 7.0 N/A 

11 13.0 8.0 7.0 0 6.0 N/A 

12 16.0 5.0 2.0 1.0 3.0 N/A 

13 6.0 6.0 18.0 N/A 0 18.00 

14 7.0 6.0 17.0 N/A 3.0 17.00 

15 3.0 1.0 10.0 N/A 3.0 1.00 

16 2.0 0 13.0 N/A 6.0 12.00 

17 0 0 9.0 N/A 1.0 .00 

18 1.0 0 5.0 N/A 1.0 .00 

19 0 1.0 11.0 N/A 0 .00 

20 8.0 2.0 12.0 N/A 1.0 .00 

21 1.00 3.0 14.0 N/A 4.0 1.00 
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Observer 1 (continued) 

Backside Damage Score Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

22 2.0 0 13.0 N/A 6.0 17.0 

23 0 0 9.0 N/A 1.0 18.0 

24 1.0 0 5.0 N/A 1.0 4.0 

25 .00 1.0 11.0 N/A 0 0 

26 8.0 2.0 12.0 N/A 1.0 18.0 

27 1.0 3.0 14.0 N/A 4.0 0 

28 4.0 0 18.0 N/A 2.0 3.0 

29 8.0 0 14.0 N/A 0 N/A 

30 0 0 18.0 N/A 0 N/A 

31 0 2.0 12.0 N/A 0 N/A 

32 10.0 0 18.0 N/A 0 N/A 

33 0 0 18.0 N/A 0 N/A 

34 1.0 1.0 17.0 N/A 4.0 N/A 

35 5.0 1.0 2.0 0 0 N/A 

36 10.0 4.0 1.0 0 1.0 N/A 

37 8.0 2.0 6.0 2.0 6.0 N/A 

38 6.0 0 0 0 0 N/A 

39 6.0 5.0 9.0 4.0 3.0 N/A 

40 6.0 6.0 5.0 6.0 1.0 N/A 

41 8.0 5.0 2.0 3.0 5.0 N/A 

42 6.0 3.0 14.0 1.0 2.0 N/A 

43 6.0 6.0 4.0 0 0 N/A 

44 6.0 2.0 7.0 2.0 1.0 N/A 

45 14.0 5.0 9.0 0 2.0 N/A 

46 5.0 6.0 8.0 0 0 N/A 

47 7.0 6.0 6.0 0 2.0 N/A 

48 13.0 4.0 1.0 0 0 N/A 

49 5.0 2.0 1.0 0 0 N/A 

50 4.0 6.0 11.0 0 2.0 N/A 

51 5.0 0 6.0 0 0 N/A 

52 6.0 1.0 1.0 2.00 1.0 N/A 
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Observer 2  

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

1 16.0 15.0 6.0 4.0 14.0 N/A 
2 16.0 12.0 13.0 2.0 11.0 N/A 
3 18.0 11.0 10.0 1.0 7.0 N/A 
4 17.0 9.0 6.0 6.0 7.0 N/A 
5 11.0 8.0 11.0 2.0 6.0 N/A 
6 16.0 6.0 6.0 2.0 7.0 N/A 
7 14.0 9.0 4.0 0 6.0 N/A 
8 12.0 5.0 8.0 5.0 6.0 N/A 
9 2.0 6.0 3.0 2.0 5.0 N/A 
10 17.0 4.0 15.0 0 5.0 N/A 
11 11.0 7.0 9.0 0 6.0 N/A 
12 15.0 7.0 2.0 1.0 3.0 N/A 
13 6.0 6.0 18.0 N/A 0 18.0 

14 6.0 4.0 17.0 N/A 2.0 18.0 

15 3.0 1.0 9.0 N/A 2.0 0 

16 2.0 2.0 14.0 N/A 11.0 4.00 

17 0 0 9.0 N/A 2.0 0 

18 0 1.0 6.0 N/A 1.0 0 

19 0 2.0 12.0 N/A 0 0 

20 8.0 2.0 12.0 N/A 1.0 0 

21 0 3.0 14.0 N/A 3.0 2.0 

22 4.0 0 18.0 N/A 2.0 18.0 

23 10.0 0 15.0 N/A 0 18.0 

24 0 0 18.0 N/A 0 0 

25 0 10.0 2.0 N/A 0 0 

26 8.0 0 18.0 N/A 0 18.0 
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Observer 2 (continued) 

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

27 2.0 0 18.0 N/A 0 0 

28 2.0 1.0 17.0 N/A 3.0 3.0 

29 6.0 0 3.0 1.0 0 N/A 
30 4.0 4.0 4.0 1.0 0 N/A 
31 7.0 4.0 8.0 2.0 1.0 N/A 
32 6.0 1.0 0 .00 0 N/A 
33 4.0 6.0 7.0 2.0 3.0 N/A 
34 6.0 7.0 5.0 1.0 3.0 N/A 
35 7.0 7.0 2.0 2.0 7.0 N/A 
36 6.0 4.0 15.0 0 2.0 N/A 
37 4.0 6.0 6.0 0 0 N/A 
38 6.0 4.0 7.0 2.0 1.0 N/A 
39 9.0 5.0 7.0 0 2.0 N/A 
40 4.0 6.0 8.0 0 4.0 N/A 
41 2.0 8.0 6.0 2.0 3.0 N/A 
42 7.0 4.0 13.0 0 1.0 N/A 
43 4.0 0 3.0 1.0 0 N/A 
44 5.0 7.0 10.0 0 3.0 N/A 
45 3.0 1.0 6.0 0 0 N/A 
46 6.0 0 2.0 1.0 2.0 N/A 
47 6.0 5.0 6.0 0 3.0 N/A 
48 5.0 0 8.0 0 0 N/A 
49 6.0 5.0 7.0 0 0 N/A 
50 3.0 0 2.0 0 0 N/A 
51 8.0 2.0 8.0 0 2.0 N/A 
52 8.0 7.0 7.0 1.0 1.0 N/A 
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Appendix B: BDS following the Modified-method 

Observer 1 

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

1 49.0 9.5 11.0 4.5 8.0 N/A 
2 37.0 23.0 21.0 1.5 15.5 N/A 
3 27.0 13.0 16.0 0 7.5 N/A 
4 38.0 15.5 5.5 5.0 5.5 N/A 
5 16.0 12.0 14.5 3.0 6.0 N/A 
6 44.0 5.5 7.0 0 2.0 N/A 
7 30.0 19.0 15.5 4.0 6.0 N/A 
8 25.0 3.5 8.0 3.5 6.0 N/A 
9 6.5 5.0 5.5 1.0 2.5 N/A 
10 38.0 10.5 7.5 0.5 6.0 N/A 
11 21.0 10.0 6.5 0 5.0 N/A 
12 34.0 4.5 1.5 0.5 2.0 N/A 
13 6.0 6.0 36.0 N/A 0 51.0 

14 8.0 5.0 43.0 N/A 1.5 36.0 

15 2.0 1.0 13.5 N/A 2.0 0 

16 1.5 0 22.0 N/A 3.0 21.0 

17 0 0 7.5 N/A 0.5 0 

18 0.5 0 3.0 N/A 0.5 0 

19 0 0.5 10.0 N/A 0 0 

20 5.0 1.0 19.5 N/A 0.5 0 

21 1.0 1.5 26.0 N/A 2.5 1.0 

22 2.0 0 41.0 N/A 2.0 37.0 

23 10.5 0 24.0 N/A 0 35.0 

24 0 0 49.0 N/A 0 2.0 

25 0 1.0 16.5 N/A 0 0 

26 12.5 0 35.0 N/A 0 48.0 
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Observer 1 (continued) 

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

27 0 0 56.5 N/A 0 0 

28 1.0 1.0 46.0 N/A 2.0 3.0 

29 2.5 0.5 1.0 0 0 N/A 
30 3.5 2.5 3.5 0.5 0 N/A 
31 8.5 2.0 4.5 1.50 5.5 N/A 
32 3.5 0.5 0 0 0 N/A 
33 4.5 3.5 8.0 3.0 2.5 N/A 
34 4.0 5.0 4.0 4.0 0.5 N/A 
35 6.5 2.5 1.0 3.5 3.0 N/A 
36 3.5 3.5 26.5 0 1.5 N/A 
37 3.5 5.5 3.0 0 0 N/A 
38 3.0 2.0 7.0 1.0 1.0 N/A 
39 19.5 4.0 9.5 0 1.5 N/A 
40 2.0 3.5 10.5 0 2.0 N/A 
41 1.0 8.0 6.0 1.0 1.5 N/A 
42 7.5 4.0 20.5 0 0.5 N/A 
43 2.5 1.0 0.5 0 0 N/A 
44 3.5 4.00 12.5 0 1.5 N/A 
45 2.5 0.5 4.0 0 0 N/A 
46 6.0 1.0 0.5 1.0 0.5 N/A 
47 19.0 2.5 0.5 0 0 N/A 
48 5.0 0 9.0 0 0 N/A 
49 4.0 4.5 7.0 0 0 N/A 
50 1.5 0.5 1.0 0 0 N/A 
51 10.0 2.0 8.5 0 1.5 N/A 
52 11.5 5.0 6.0 0.5 0.5 N/A 
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Observer 2  

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

1 41.0 30.0 5.5 2.5 27.50 N/A 
2 37.0 23.0 21.0 1.5 15.50 N/A 
3 47.0 14.5 12.0 0.5 4.00 N/A 
4 42.0 12.0 6.0 5.0 6.00 N/A 
5 12.5 9.0 16.0 1.0 4.00 N/A 
6 35.5 2.5 3.5 0.5 5.50 N/A 
7 26.5 10.0 2.5 0 5.50 N/A 
8 20.5 3.5 8.5 5.0 3.50 N/A 
9 3.0 3.5 1.5 1.5 2.50 N/A 
10 37.5 4.0 31.5 0 4.50 N/A 
11 15.5 7.5 12.0 0 4.00 N/A 
12 32.5 8.5 2.0 0.5 1.50 N/A 
13 6.0 6.0 45.0 N/A 0 54.0 

14 6.0 4.0 34.0 N/A 2.0 47.0 

15 2.5 0.5 11.5 N/A 1.0 0 

16 1.0 2.0 21.5 N/A 21.5 2.0 

17 0 0 10.5 N/A 1.5 0 

18 0 1.0 6.0 N/A 0.5 0 

19 0 2.0 16.0 N/A 0 0 

20 3.0 0 24.0 N/A 0.5 0 

21 0 1.5 27.0 N/A 2.5 2.0 

22 4.0 0 42.0 N/A 2.0 54.0 

23 13.0 0 32.0 N/A 0 54.0 

24 0 0 54.0 N/A 0 1.0 

25 0 1.5 11.5 N/A 0 0 

26 8.0 0 42.0 N/A 0 49.0 
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Observer 2 (continued) 

Damage Score 
Case No. 

Burnishing Grooving Indentation Deformation Pitting Stippling 

27 2.0 0 56.5 N/A 0 0 

28 3.0 1.0 45.5 N/A 3.0 3.0 

29 3.5 0 1.5 0.5 0 N/A 
30 11.5 2.0 1.0 0 0 N/A 
31 6.5 3.0 8.5 1.5 1.0 N/A 
32 3.0 0.5 0 0 0 N/A 
33 2.0 4.0 6.5 2.0 1.5 N/A 
34 3.5 8.0 2.5 0.5 1.5 N/A 
35 6.0 4.5 1.0 2.0 5.0 N/A 
36 4.5 2.0 21.0 0.5 1.5 N/A 
37 2.5 4.5 4.0 0 0 N/A 
38 3.5 2.0 6.0 0.5 1.0 N/A 
39 13.0 3.0 6.0 0 1.5 N/A 
40 3.0 4.0 7.5 0 0.5 N/A 
41 5.5 4.5 6.0 0 1.5 N/A 
42 6.5 2.0 18.5 0 0 N/A 
43 2. 0 1.5 0.5 0 N/A 
44 4.0 6.5 12.0 0 2.0 N/A 
45 3.0 0 3.0 0 0 N/A 
46 3.5 0 1.0 0.5 1.0 N/A 
47 7.5 4.0 20.5 0 0.5 N/A 
48 5.0 1.0 2.0 0.5 0 N/A 
49 4.0 3.5 4.5 0 0 N/A 
50 1.5 0 1.0 0 0 N/A 
51 12.5 2.5 4.0 0.5 0.5 N/A 
52 8.5 4.5 4.0 1.0 3.0 N/A 
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Appendix C: Statistical Analyses 

Tests for Normality 

The distribution of the data population can be assessed by evaluating 

histograms and by applying the Kolmorgorov-Smirnov test.  The latter test is 

used to decide if a sample comes from a population with a specific distribution 

and this is indicated by the obtained p-value. 

 

Correlation Analysis  

Correlalation is a common measure of the relation between two 

variables.  The Pearson correlation assumes that the data is normal distributed 

(parametric data).  The Spearman correlation assesses how well an arbitrary 

monotonic function could describe the relationship between two variables, 

without making any assumptions about the frequency distribution of the 

variables (non-paramtric data).  When measured in a population the correlations 

are designated by the letter R. The correlation coefficient reflects the degree of 

linear relationship between two variables. It ranges from + 1 to - 1.  A 

correlation of + 1 means that there is a perfect positive linear relationship 

between variables. A correlation of - 1 means that there is a perfect negative 

linear relationship between variables. A correlation of 0 means there is no linear 

relationship between the two variables. Correlations are rarely if ever 0, 1, or - 

1.  

 

Regression Analysis 

Regression analysis can be used as a descriptive method of data 

analysis (such as linear or logarithmic curve fitting) without relying on any 

assumptions about underlying processes generating the data.  The key 

relationship in a regression is the regression equation. A regression equation 

contains regression parameters whose values are estimated using the data. The 

estimated parameters measure the relationship between the dependent variable 

and each of the independent variables. When a regression model is used, the 
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dependent variable is modeled as a random variable because of either 

uncertainty as to its value or inherent variability. The data are assumed to be 

sample from a probability distribution, which is usually assumed to be a normal 

distribution. 

 

Paired Samples Analysis  

The paired samples t-test is used on parametric data to test the null 

hypothesis that the average of the differences between a series of paired 

observations is zero. Observations are paired when, for example, they are 

performed on the same samples or subjects.  The Wilcoxon-Rank test is used on 

data in place of a paired-samples t-test when the populations being compared 

are non-parametric.  Like the t-test, the Wilcoxon-Rank test involves 

comparisons of differences between measurements, so it requires that the data 

are measured at an interval level of measurement. However it does not require 

assumptions about the form of the distribution of the measurements. It should 

therefore be used whenever the distributional assumptions that underlie the t-

test cannot be satisfied.   

 

Independent Samples Analysis  

Student’s t-test requires that the samples are collected from two 

different populations of randomly selected individuals from the same 

populations at different times.  Normal distribution of the data set is also 

required. The Mann-Whitney-U test is is a non-parametric test for assessing 

whether two samples of observations come from the same distribution. It 

requires the two samples to be independent, and the observations to be ordinal 

or continuous measurements, i.e. one can at least say, of any two observations, 

which is the greater. 
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Analysis of Variance   

The analysis of variance (ANOVA) is used to test differences among 

three or more independent groups of samples and assumes normal distribution.  

The general linear model (GLM) is used to test differences among three or more 

independent groups of samples that have been repeatedly measured.  If either of 

the tests supply evidence that a significant difference exists it is necessary to 

investigate this by using a post-hoc (latin for: after the fact) test.  Such tests 

have a numerical way of objectively deciding if a certain difference is actually 

significant or not.  The post-hoc test actually compares the mean of each group 

comprising the data set and identifies in which group the significant differences 

are located.  The Fisher’s least squared post-hoc method and the Tamhane post-

hoc method were selected in the present thesis.  
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Nomenclature 

AA Antibiotic-Antimycotic 
Aa Apparent contact area               [mm2]
Ar Real asperity contact area [mm2]
ACS Alpha calf serum (low γ-globulin) 
ACS-I Alpha calf serum (low γ-globulin, Fe supplemented) 
ACS + DW + SA ACS lubricant 
ACS-I + DW + AA DW lubricant 
ACS-I + PBS + AA PBS lubricant 
ACS-I + DW + AA + HA HA lubricant 
A/G Albumin/globulin ratio 
ANOVA Analysis of variance 
AP Anterior-posterior 
BCS Bovine calf serum 
BCS + DW + SA BCS lubricant 
BDS Backside damage score 
CFU/ml Colony forming units/ml 
cp Heat capacity [kJ mol-1]
CP Commissioning protocol 
CR Cruciate ligament retaining 
DC Displacement control 
DSC Differential scanning calorimetry 
DSF Damage severity factor 
DW Distilled water 
ETO Ethylene oxide sterilization 
F Female patients 
Ff Frictional force [N]
Fn Normal load [N]
FC Force control 
FE Flexion-extension 
GA Gamma-in-air sterilization  
GLM General linear model  
GP Gas-plasma sterilization  
hc Protein layer contact layer thickness [nm]
ΔH Change in enthalpy [kJ mol-1]
HA Hyaluronic acid 
IE Internal-external 
IF Cases revised for infection 
IP  Implantation period [months]
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IS Cases revised for instability 
LB Luria-Bertani  
M Male patients 
Mc Million cycles 
ML Medial-lateral 
MLRA Multiple linear regression analysis 
MW Molecular weight [MDa]
MWCO Molecular weight cut off [Da]
NCS Newborn calf serum 
NCS + DW + SA NCS lubricant 
NGA Non-gamma-in-air sterilization 
OA Osteoarthritis  
OS Cases revised for osteolysis  
OT Other reasons for revision  
P Primary implant type  
p Level of significance 
PBS Phosphate-buffered saline solution  
PE Polyethylene 
PS Posterior ligament substituting  
PTFE Poly-tetra-fluor-ethylene  
R Revision implant type  
RA Rheumatoid arthritis 
Ra Centre-line surface roughness 
Rq Root-mean square surface roughness 
RT Room temperature ºC
SA Sodium azide 
SD Standard deviation 
ΔS Change in entropy [kJ mol-1K-1]
SF Synovial fluid 
SM Lubricant starting material  
SUP Lubricant supernatant  
THR Total hip replacement 
TKA Total knee arthroplasty (replacement surgery) 
TKR Total knee replacement 
Tm Transition midpoint temperature [K]
XPE Cross-linked polyethylene  
βn Regression coefficient 
φ Deformation [nm]
μs, μk Friction coefficient (static, kinetic)   
 


