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Abstract 

 

During Drosophila embryogenesis, an extra-embryonic tissue, known as the 

amnioserosa (AS), is required for the morphogenetic processes of germ band retraction 

(GBR) and dorsal closure (DC).  Being extra-embryonic, the AS is not part of the embryo 

proper but is eliminated via programmed cell death (PCD) in the late stages of 

embryogenesis.  Programmed elimination of the AS during normal development can be 

prevented by directly inhibiting apoptosis, either through the deletion of the pro-apoptotic 

genes hid, grim and reaper, or through the expression of the pan-caspase inhibitor P-35.  

PCD in the AS can also be prevented by indirect inhibition of apoptosis via inactivation 

of autophagy, either through activation of the InR/PI3K pathway, or through activation of 

the Ras signalling pathway.  The timing of AS elimination is critical to development as 

mutants associated with premature AS loss fail in GBR.  To better characterize this 

premature AS death, a detailed phenotypic analysis of the AS behaviour in the GBR 

mutant hindsight (hnt) was performed.  Direct inactivation of apoptosis failed to rescue 

the GBR defects in hnt mutant, though the premature AS death was completely rescued.  

Inactivation of autophagy, however, rescued AS cell behaviour and contacts during GBR, 

with partial rescue of the GBR defects in the hnt mutant.  The nature of premature AS 

loss is characterized as a possible model for anoikis, a form of cell death that is triggered 

through reduced cell-cell or cell- matrix contact.   
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Chapter 1 – Introduction 

 

Morphogenesis is the creation of biological structure, or ‘morphology’, through 

the regulation of the spatial relationships between cells and among group of cells over 

time (Gilbert, 2003).  Morphogenesis can involve modifications in cell shape, cell-cell 

adhesion, cell proliferation, and cell death (Davies, 2005).  Coupled with cellular growth 

and cell fate determination, morphogenetic movements are an integral part of broader 

developmental programs that specify the final form of tissues and organisms (Stronach 

and Perrimon, 2001).  In general, tissue morphogenesis is essential for embryonic 

development and adult tissue physiology.   

This study concerns the analysis of a morphogenetic mutant in the model genetic 

organism Drosophila.  The mutant in question, known as hindsight, disrupts 

morphogenesis and cell death during embryonic development.  While these mutant 

phenotypes are related, the topics of morphogenesis and programmed cell death are 

reviewed separately in this introduction. 

 
1.1 Morphogenesis in the Drosophila embryo 

The first two hours of Drosophila embryonic development involve rapid nuclear 

division and result in a syncytium containing approximately 5000 nuclei.  The vast 

majority of these nuclei migrate to the blastoderm cortex where they are “cellularized” by 

invaginations of plasma membrane.  The completion of cellularization at the end of the 

third hour of embryonic development creates the cellular blastoderm embryo.  

Gastrulation of the Drosophila blastoderm involves the internalization of cells through 

the formation of the ventral and cephalic furrows, as well as the anterior and posterior 
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midgut invaginations. Gastrulation segregates three distinct layers of cells—the 

endoderm, ectoderm, and mesoderm (Gilbert, 2003). 

Morphogenesis begins soon after the formation of the Drosophila cellular 

blastoderm.  There are four main morphogenetic movements in the post-gastrulation 

embryo: germband extension, germband retraction, dorsal closure and head involution.  

(The “germband” is generally considered to be the part of the embryo that gives rise to 

the thoracic and abdominal segments (Irvine and Wieschaus, 1994)).  Germband 

extension starts shortly after the onset of gastrulation and continues through the fourth 

hour of development concomitant to posterior midgut invagination (Irvine and 

Wieschaus, 1994).  During germband extension, also known as germband elongation, the 

length of the germband increases along the anterior-posterior axis through the 

intercalation of cells along the dorsoventral axis (Schöck and Perrimon, 2002).  The 

developing embryo, however, is encased by the vitelline membrane, which creates a 

spatial restriction for the elongating germband.  As a consequence, the elongating 

germband appears to push itself around the posterior end of the embryo, essentially 

folding over top of itself (Irvine and Wieschaus, 1994) (Table 1.1; Figure 1.1).  By the 

end of elongation, the posterior tip of the germband has traveled approximately 70% of 

the embryo length towards the head region (da Silva and Vincent, 2007). 

The germband remains in the extended state for about three hours, during which 

segmentation of the epidermis occurs (Ashburner, 1989) (Table 1.1).  The second 

morphogenetic event, germband retraction, begins at the end of this three-hour period 

when the embryo is approximately 7 hours old (stage 12) (Table 1.1).  The event or signal 

that triggers the onset of germband retraction is not known.  During GBR, also known as 
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germband shortening, the process of germband elongation is reversed, and as the 

germband shortens, the caudal end of the germband returns to its final posterior position 

(Yip, Lamka, and Lipshitz, 1997) (Figure 1.1).  Unlike germband elongation, the 

mechanism of GBR is not associated with intercalation, but involves regulated cell shape 

changes in the lateral epidermis (Schöck and Perrimon, 2002).  During retraction, the 

germband doubles along its dorsoventral axis, while decreasing by 50% along its 

anterior-posterior axis (Schöck and Perrimon, 2002).  As the germband retracts, the extra-

embryonic amnioserosa (AS) unfolds and is exposed on the dorsal side of the embryo 

(Figure 1.1).  (The ontogeny and characteristics of the AS are described in section 1.1.1). 

Following GBR the AS is completely exposed on the dorsal surface of the 

embryo, and dorsal closure (DC) is initiated (Table 1.1).  Unlike germband extension and 

retraction, there is no pause between retraction and DC.  DC occurs from 10 to 13.3 hours 

of development and during this time the AS is flanked by lateral epidermal cells (Figure 

1.1).  During DC, the two lateral epithelial sheets advance to close the opening transiently 

covered by the AS (Toyama et al., 2008) (Figure 1.1).  The dorsal-most row of cells of 

each lateral epithelial sheet (the row of cells which abut the AS) is collectively known as 

the leading edge (LE) (Reed, Wilk and Lipshitz, 2001).  As DC progresses, the LE cells 

extend filopodia and lamellipodia that contact the AS as well as each other (Reed, Wilk 

and Lipshitz, 2001).  LE cells are also associated with high Jun N-terminal Kinase (JNK) 

signalling, while the AS cells have little or no JNK signalling activity; the maintenance of 

this high/low JNK signalling boundary between the LE and AS cells has been suggested 

to be necessary for the proper progression of DC (Reed, Wilk, and Lipshitz, 2001).  

During DC, the LE cells elongate in the dorsoventral axis of the embryo, while the AS 
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cells contract (Gorfinkiel and Arias, 2007) (Figure 1.1).  The co-ordinated activity of both 

cell types contributes to the completion of DC (Kiehart et al., 2000).  DC is completed 

when the LE cells approach each other, meet and fuse at the dorsal midline; a process 

known as zippering (Reed, Wilk and Lipshitz, 2001).  As the LE cells zipper, the AS cells 

are internalized, and die through programmed cell death (Gorfinkiel and Arias, 2007).   

The last morphogenetic event to be discussed is head involution.  The regulation 

and mechanism of head involution is generally considered to be more complex than 

germband extension, GBR, or DC.  In general, head involution is not well understood, 

although there is some evidence that DC and head involution may be linked in terms of 

both mechanism and regulation (VanHook and Letsou, 2008).  Head involution involves 

the progression of the epidermis over the head segments, which simultaneously move 

into the embryo (VanHook and Letsou, 2008).  Head involution is complete when the 

head epithelium completely covers the anterior end of the embryo (VanHook and Letsou, 

2008) (Figure 1.1). 

Upon completion of these main morphogenetic events, the mature Drosophila 

embryo has adopted its final form—that of the first instar larva.   
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Table 1.1:  Stages of development in Drosophila embryo (modified from Ashburner, 1989) 

 

STAGE 

NUMBER 

HOURS AFTER 

EGG LAYING 

(AEL) 

DEVELOPMENT 

1-5 0 – 2:50 hr Fertilization to cellularization of the embryo 

6 2:50 – 3 hr 
Onset of gastrulation; the three germ layers are 

formed 

7 3 – 3:10 hr 
Gastrulation complete; germband elongation 

begins 

8 3:10 – 3:40 hr Rapid germband elongation 

9 3:40 – 4:20 hr Slow germband elongation 

10-11 4:20 – 7:20 hr 
Germband elongation ends; segmentation of the 

epithelia 

12 7:20 – 9:20 hr Germband retraction begins 

13 9:20 – 10:20 hr Germband retraction ends 

14 10:20 – 11:20hr Dorsal closure initiates; head involution begins 

15 11:20 – 13 hr End of dorsal closure and head involution 

16-17 
13 – hatching 

(21-22 hr) 

Mid gut constrictions; muscle movements; 

trachea fill with air; first instar larva hatching 
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(a) Stage 9 

(b) Stage 11 

(c) Stage 12 

(d) Stage 13 

(e) Stage 14 

(f) Stage 15 

*

*

*

 

Figure 1.1:  Morphogenesis in the Drosophila embryo; SEM images; dorsal view.  (a) Gastrulation 

completed and germband (blue asterisks *) has been differentiated (approximately 3.5 hrs old).  Germband 

extension is initiated. Refer to Table 1.1 for details. (b) Germband extension is completed (approximately 

7.5 hrs old).  The germband is folded on top of itself, and the AS (indicated in red) fills the space between.  

The asterisk represents the future posterior ventral epidermis of the embryo.  (c) Mid-GBR (9 hrs old); the 

germband shortens and the AS begins to be exposed on the dorsal side of the embryo.  (d) Near the end of 

GBR (approximately 9.5 hrs old) where the folded AS peels off the caudal region of the embryo.  (e) 

Beginning of DC (approximately 10.5 hrs old); the AS is fully exposed on the dorsal side of the embryo.  

(f) Late DC stage (approximately 12.5 hrs old); the LE cells start to zipper up around the AS, while being 

internalized into the embryo proper; head involution is also almost completed with the epithelium almost 

covering all the anterior region.  All embryos are oriented with the anterior to the left.  (Modified from 

Turner and Mahowald, 1979).
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1.1.1 The Amnioserosa, an extra-embryonic tissue involved in morphogenesis 

The amnioserosa (AS) plays a pivotal role in guiding major morphogenetic 

movements, including GBR and DC (Jacinto and Martin, 2001; Reed et al., 2004).  The 

AS is a squamous epithelial monolayer that derives from the dorsal-most region of the 

cellular blastoderm (Frank and Rushlow, 1996).   

The AS forms during gastrulation from columnar epithelial cells generated at 

cellularization (Pope and Harris, 2008).  As germband extension begins, the AS cells 

flatten and elongate to fill the space between the dorsal and ventral half of the germband 

as it folds on top of itself (Frank and Rushlow, 1996).  Interestingly, the cells of the 

presumptive AS do not undergo any post-blastoderm mitotic divisions, whereas most 

other tissues generally undergo two or three divisions post-blastoderm (Foe, 1989).  At 

the end of germband extension and during the early stages of GBR, the posterior most AS 

cells maintain adhesions with the caudal end of the germband, and form a layer of 

overlapping cells on the germband epithelia (Schöck and Perrimon, 2002).  As GBR 

continues, the AS and the germband move as one coherent sheet (Figure 1.1); the overlap 

of the AS on the germband gradually decreases as the contact with the yolk sac increases 

(Schöck and Perrimon, 2002).  The AS is fully exposed on the dorsal side of the embryo 

by the end of GBR and the beginning of DC (Figure 1.1).  As DC proceeds, 10% of the 

AS cells are basally extruded from the epithelium; these extruded cells undergo apoptosis 

upon losing contacts with neighbouring cells (Mohseni et al., 2009).  The remaining 90% 

of AS cells undergo programmed cell death following DC (Mohseni et al., 2009).  Since 

the AS is eliminated during the normal course of embryogenesis and is not part of the 

embryo proper, the tissue is considered extra-embryonic. 
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The AS tissue is essential for the completion of GBR and DC; it plays crucial 

roles in generating force between the epithelial cells and the AS (Lamka and Lipshitz, 

1999; Schöck and Perrimon, 2002), as well as providing signals for the proper 

completion and co-ordination of the morphogenetic events (Lamka and Lipshitz, 1999; 

Reed et al., 2004).  The AS maintains important connections with the yolk sac, as well as 

with the LE cells which contribute to the completion of GBR and DC (Reed et al., 2004).  

Premature loss of the AS leads to a lack of completion of these morphogenetic events and 

embryonic lethality. 

 

1.2 Programmed cell death 

Programmed cell death (PCD) plays a critical role in morphogenesis where it can 

have two main purposes: first, to control cell populations while forming a new shape, and 

second, to remove damaged cells during morphogenetic events (Davies, 2005).  PCD is a 

genetically regulated process that is involved in a variety of developmental events 

(Baehrecke, 2002).  There are three main kinds of PCD—apoptosis, autophagy, and non-

lysosomal cell death (Debnath, Baehrecke, and Kroemer, 2005).   

Apoptotic cell death is the most common form of PCD and has been studied 

extensively.  Apoptosis is often described as a “suicide” program, that, when activated, 

leads to the caspase-mediated death of individual cells (Alberts et al., 2008).  The 

morphological manifestation of this evolutionarily conserved process comprises 

shrinkage, chromatin condensation, nuclear fragmentation, and membrane blebbing 

(Debnath, Baehrecke, and Kroemer, 2005).  Apoptotic corpses are engulfed by 

phagocytic macrophages.  Apoptosis plays major roles in tissue homeostasis and removal 
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of cells during embryonic development (Baehrecke, 2002).   

Autophagic cell death, on the other hand, is less well characterized and is more 

highly debated than apoptosis.  Autophagy, meaning “self-eating”, is a process by which 

a cell undergoes partial auto-digestion under starvation conditions (Tsujimoto and 

Shimizu, 2005).  Autophagy has been shown to have cytoprotective functions, yet it is 

also linked to PCD – a situation that has often been viewed as paradoxical in the field 

(Klionsky, 2007; Yoshimori, 2007).  Autophagy is a ubiquitous process that occurs in 

low levels in eukaryotic cells to recycle cytoplasmic components (Yoshimori, 2007).  

Basal levels of autophagy are associated with the clearance of misfolded or toxic proteins 

and damaged organelles, especially mitochondria (Klionsky, 2007; Yoshimori, 2007).  

Autophagy is upregulated in response to several conditions of cellular stress, the most 

notable being starvation.  While the removal of individual cells is believed to be achieved 

through the caspase-dependent apoptosis, elimination of whole tissues is often attributed 

to autophagy (Mohseni et al., 2009).   

The morphological manifestation of autophagy greatly differs from apoptosis.  

Cells undergoing autophagy have an excess number of autophagic vacuoles and 

autophagolysosomes that are used for self degradation (Baehrecke, 2005).  Autophagy is 

independent of phagocytes; the cells undergoing autophagy are not engulfed by 

phagocytic macrophages as in apoptosis.  Autophagic cell death is known to play a role in 

the development of insects and mammals, including humans (Scott, Juhasz, and Neufeld, 

2007).    

The third type of PCD, non-lysosomal cell death, is the least characterized of the 

three forms of PCD.  Non-lysosomal cell death is rarely observed in development.  Non-
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lysosomal cell death is associated with swollen organelles and lysosome-independent 

formation of “empty spaces” in the cytoplasm (Baehrecke, 2005).    

 

1.3 The Regulation of Apoptosis 

Apoptosis can be activated through an extrinsic or an intrinsic pathway.  Extrinsic 

activation of apoptosis is induced by extracellular signals, such as death ligands, binding 

to death receptors on the cell membranes (Shiozaki and Shi, 2004).  On the other hand, 

intrinsic activation of apoptosis is triggered by internal signals, such as DNA damage or 

viral infection, which leads to the release of intermembrane mitochondrial proteins 

(Shiozaki and Shi, 2004).  Regardless of the method of activation of apoptosis, it results 

in a cascade of signalling events that lead to the activation of intracellular proteases 

called caspases (Davies, 2005).   

Caspases are cysteine proteases which cleave protein substrates to dismantle the 

cell.  Caspases exist in inactive forms called procaspases, which are catalytically cleaved 

to form active enzymes (Debnath, Baehrecke, and Kroemer, 2005).  Caspases are 

classified into two groups—apical or initiator caspases, and effector or executioner 

caspases (Cashio, Lee and Bergmann, 2005; Debnath, Baehrecke, and Kroemer, 2005).  

Initiator caspases are activated in response to cell death stimuli which then, in turn, 

activate downstream effector caspases via proteolytic cleavage (Cashio, Lee and 

Bergmann, 2005).  Effector caspases are responsible for the degradation of a wide 

spectrum of substrates leading to the typical apoptotic morphological manifestations. 

The cell membrane of apoptotic cells undergoes a change in chemical 

composition, signalling neighbouring cells or macrophages to engulf the apoptotic 
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corpses, and thereby preventing an inflammatory response (Martin and Baehrecke, 2004).  

Unlike healthy cells, apoptotic corpses contain the lipid phosphatidylserine within the 

outer leaflet of the cell membrane; this acts as a recognition signal for phagocytic 

macrophages (Martin and Baehrecke, 2004). 

Apoptosis is an all-or-nothing event and its onset is tightly regulated.  One 

component of apoptosis regulation involves the negative regulation of active caspases 

through Inhibitor of Apoptosis Proteins (IAPs) (Hay and Guo, 2006).  IAPs bind to the 

active site of caspases, and use their E3-ubiquitin ligase activity to promote degradation 

of these caspases (Cashio, Lee, and Bergmann, 2005; Kornbluth and White, 2005). 

Several techniques have been developed to detect the onset of apoptosis in cells 

and tissues.  These methods include detection of DNA fragmentation by terminal 

deoxynucleotide transferase (TdT)-mediated dUTP-biotin nick end-labelling (TUNEL) 

(Debnath, Baehrecke, Kroemer, 2005), anti-active caspase antibodies, and acridine 

orange staining. 

1.3.1 Apoptosis in Drosophila and in the Amnioserosa 

Embryonic apoptosis is characterized by extensive cell death throughout the 

developing embryo.  PCD via apoptosis is required during Drosophila embryogenesis in 

a number of developmental events, including segmentation of the epithelia (Pazdera, 

Janardhan and Minden, 1998), the elimination of the AS tissue from the embryo proper 

(Mohseni et al., 2009), and formation of the central nervous system as well as head 

development in embryos (Rusconi, Hays and Cagan, 2000). 

In Drosophila, unlike other organisms, many cells experience chronic activation 

of an initiator caspase (Hay and Guo, 2006).  Cells survive this continuous death stimulus 
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through the expression of Drosophila IAPs (DIAPs).  In this system, cell death is 

activated by disrupting DIAP-caspase interactions through the targeting of DIAPs for 

ubiquitin-mediated degradation, thus freeing caspases and inducing apoptosis (Hay and 

Guo, 2006).  DIAPs are targeted for degradation upon interactions with the products of 

the H99 genes: head involution defective (hid), grim, and reaper (rpr) (Bangs, Franc, and 

White, 2000).  The H99 genes are regulated independently of each other resulting in the 

precise control of developmental apoptosis (Figure 1.2). 

H99 genes 

DIAPs 

Caspases 

Apoptosis 

p35 

 

Figure 1.2:  Induction of apoptosis in Drosophila.  The H99 genes, hid, rpr and grim, inhibit the DIAPs 

which, in turn, negatively regulate caspases.  Activated caspases induce apoptosis.  Caspases can also be 

inhibited by ectopic expression of the baculovirus derived protein known as p35. 

 

The pro-apoptotic H99 genes, hid, grim, and rpr, are located in a cluster on the 

third chromosome.  A chromosomal deletion in the region, known as Df(3L)H99 

(hereafter referred to as H99), has been shown to eliminate virtually all caspase-
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dependent programmed cell death in Drosophila embryos (Cashio, Lee, and Bergmann, 

2005; Mohseni et al., 2009).  The absence of PCD in homozygous H99 mutant embryos 

results in the persistence of the AS as an intact coherent tissue several hours beyond its 

normal time of degeneration (Mohseni et al., 2009). 

Many viruses express anti-apoptotic genes that efficiently inhibit apoptosis; this is 

likely a strategy that evolved to keep host cells alive while viral replication is completed 

(Tschopp et al., 1998).  The baculovirus protein, p35, acts as a broad-spectrum caspase 

inhibitor (Bangs, Franc, and White, 2000) (Figure 1.2).  Embryos that ectopically express 

p35 phenocopy H99 mutants and are associated with a persistent AS (Mohseni et al., 

2009).   

1.3.2 Anoikis 

An interesting sub-category of apoptosis is a mechanism whereby cell death is 

induced upon the loss of cell-cell or cell-matrix adhesions, or due to inappropriate cell-

matrix interactions (Frisch and Screaton, 2001).  This type of apoptotic cell death is 

called “anoikis”, a Greek word meaning “homelessness” (Frisch and Screaton, 2001).  

The initiation and execution of anoikis is mediated by different pathways, all of 

which merge into the activation of caspases and downstream molecular pathways, 

resulting in DNA fragmentation and cell death (Yin and Thummel, 2004).  Anoikis 

following a loss of cell anchorage is of physiological relevance for development, tissue 

homeostasis and disease. 

 

1.4 The Regulation of Autophagy 

Evolutionarily conserved pathways regulate autophagy in response to nutrient 
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conditions, including the Target of Rapamycin (TOR) kinase pathway (Levine and Yuan, 

2005).  The TOR kinase pathway provides the major negative control of autophagy 

(Codogno and Meijer, 2005).  Downstream of TOR kinase are the evolutionarily 

conserved autophagy-related genes, Autophagy genes (Atg), which encode proteins 

required for the induction of autophagy, and the formation and recycling of the 

autophagosome (Levine and Yuan, 2005).  Upstream of the TOR kinase pathway are the 

members of the insulin receptor/phosphotidylinositol-3-kinase (InR/PI3K) pathway, 

which also play a major role in repressing autophagy (Britton et al., 2002). 

Upon binding of insulin-like molecules, the insulin receptor (InR) 

autophosphorylates, and in turn phosphorylates InR substrate (IRS) proteins within the 

cell.  The IRS proteins bind downstream targets, resulting in the initiation of a conserved 

kinase cascade, including PI3K.  PI3K phosphorylates phosphatidylinositol-4,5-

bisphosphate (PIP2), to form phosphatidylinositol-3,4,5-trisphosphate (PIP3).  Interactions 

of protein kinase B (PKB)/Akt with PIP3 at the cortex leads to the activation of PKB/Akt 

(Figure 1.3) resulting in the initiation of a signalling cascade inducing cell survival 

(Britton et al., 2002).  Activation of Akt, in turn, activates TOR kinase pathway (Berry 

and Baehrecke, 2007), thus downregulating autophagy (Figure 1.3).   

Another method through which the PI3K pathway is induced is through activation 

of Ras upon nutrient signalling (Berry and Baehrecke, 2007).  Ras controls the activity of 

a number of effector pathways.  Ras proteins are small GTPase switch proteins that 

function in transducing external signals in a cell through a common cascade of 

serine/threonine kinases (Lodish et al., 2004).  Activation of Ras, in turn, activates PI3K 

which inhibits autophagy.   
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Ras activation also positively controls the activity of the cAMP-dependent protein 

kinase (PKA) (Figure 1.3), which negatively regulates the sublocalization of Atg protein 

to the preautophagosomal structure, a precursor for the formation of autophagosomes 

(Klionsky, 2007; Stephan and Herman, 2006).  Thus the activation of Ras inhibits 

autophagy through multiple pathways. 

 

Insulin Receptor 

IRS 
PI3K 

PIP2 PIP3

PKB/Akt 

TOR 

Atg1 

Autophagy 

Ras 

Growth factors, insulin 

PKA 

cAMP 

Atg1 

Figure 1.3:  Induction of autophagy in Drosophila.  Two main pathways are discussed in this study, namely 

the insulin receptor/phosphatidylinositol -3-kinase (InR/PI3K) pathway and the Ras activated pathway. 

 

1.4.1 Autophagic cell death 

Autophagy is also induced by up-regulating several Atg genes (Debnath, 

Baehrecke, and Kroemer, 2005).  Clonal ectopic expression of Atg1, an autophagy 
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specific protein kinase, has been associated with increase in cell death in larval fat bodies 

and larval imaginal discs (Scott, Juhasz, and Neufeld, 2007).  This study shows that the 

death of larval wing discs was delayed by the pan caspase inhibitor, p35, but the cells 

were eventually eliminated in an Atg1 overexpression background, suggesting a role of 

excess autophagy leading into caspase dependent apoptosis or an autophagic cell death.   

Autophagy can be downregulated by activating the InR/PI3K pathway.  Using 

Drosophila embryos expressing a constitutively active form of InR, Mohseni et al. (2009) 

have shown that the downregulation of AS autophagy results in a strong persistent AS 

phenotype.  The presence of this persistent AS phenotype suggests that autophagic cell 

death may be involved in the elimination of the AS (Mohseni et al., 2009).   Another 

method of downregulating autophagy is associated with the activation of Ras (Berry and 

Baehrecke, 2007).  Drosophila larval salivary gland degradation is inhibited by 

expression of activated Ras (Berry and Baehrecke, 2007); also the AS (Mohseni et al., 

2009), again providing evidence for autophagic cell death or autophagy leading into 

apoptosis. 

 

1.5 Premature amnioserosa loss in hindsight, a morphogenetic mutant 

The morphogenetic mutant used in this study, hindsight (hnt), fails in the 

completion of GBR and is associated with premature AS loss.  The gene hnt encodes for 

a nuclear zinc-finger protein, HNT, which is expressed in the AS, the midgut, as well as 

the tracheae of the embryo (Yip, Lamka and Lipshitz, 1997).  HNT is also expressed in 

the photoreceptor cells of the developing adult retina (Pickup et al., 2002).   

Expression of HNT in these epithelia regulates several local and global 

 16



morphogenetic processes.  HNT expression in the AS is required for the proper 

completion of GBR (Yip, Lamka, and Lipshitz, 1997).  During tracheal and eye 

development, HNT expression has been suggested to maintain the state of differentiation 

as well as epithelial integrity (Wilk et al., 2000; Pickup et al., 2002).  Mutations in hnt 

result in failure of GBR and DC, and undergo premature AS loss that is associated with a 

failure to downregulate JNK signalling in the AS (Lamka and Lipshitz, 1999; Reed, 

Wilk, and Lipshitz, 2001).   

A study of several GBR mutants by Frank and Rushlow (1996) suggests that this 

category of embryonic mutant is, in general, associated with the premature loss of the 

AS.  In this study, a subset of the mutants, including hnt, show reaper positive cells in the 

area of the AS by RNA in situ hybridization.  This suggests that the premature loss of AS 

in hnt mutants is attributable to premature reaper-mediated apoptosis (Frank and 

Rushlow, 1996), suggesting a role for HNT promoting AS survival.   

Rescue of the GBR defect in the hnt mutant has been observed following heat 

shock overexpression of InR, suggesting that HNT acts upstream of InR (Lamka and 

Lipshitz, 1999).    InR is an active component of the InR/PI3K signalling cascade, which 

ultimately decreases autophagy; thus suggesting a role for HNT in regulating autophagy. 

HNT is also expressed in the adult ovaries, and several genetic screens have 

identified hnt mutants through disrupting cell shape changes that occur in the follicular 

epithelium during the development of the egg chamber.  Recent studies using somatic 

mosaics to create patches of ovarian follicular cells mutant for hnt show an increase in 

cell-cell adhesion molecules, including Armadillo, Drosophila homolog for β-catenin, 

and Drosophila E-Cadherin (Melani et al., 2008) within the hnt mutant patch.  The study 
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also showed that reduction of expression of the mammalian homolog of HNT, Ras-

response element binding protein (RREB-1), in mammalian epithelial cells led to the 

formation of immobile, tightly adherent cell colonies (Melani et al., 2008).  This suggests 

that HNT negatively regulates these important cell-cell adhesion molecules.   

 

1.6 Objectives 

The gene hnt encodes a nuclear zinc-finger protein whose expression is required 

in the AS for the proper completion of GBR.  Previous work in our lab has established 

that the bulk of the AS undergoes apoptotic cell death in a manner that is dependent on 

autophagy (Mohseni et al., 2009).  Prior to this study, the generally accepted explanation 

as to why hnt mutant embryos fail in GBR has involved the loss of the AS through 

premature cell death (Frank and Rushlow, 1996; Lamka and Lipshitz, 1999).  The nature 

of the AS loss in hnt mutants, however, has not been described in detail and the most 

accurate descriptions refer to the loss of “AS integrity”.  Since the AS is required for 

GBR (possibly through the generation of mechanical force, or in a cell signalling 

capacity, or both), the primary role of hnt in the AS has been proposed to be of a pro-

survival or anti-apoptotic nature.  The role of hnt in the AS, however, has not been 

carefully examined and such interpretations remain suppositional.   

This study encompasses three general aims regarding hnt, its role in 

morphogenesis and the maintenance of AS integrity.  The first objective of this study was 

to better characterize the premature degeneration of the AS in hnt mutants using GFP-

based live imaging techniques.  The second objective was to determine if AS loss was 

indeed a premature onset of AS death as it occurs during development, and the third 
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objective was to determine if hnt is involved in the regulation of cell adhesion in the AS 

during GBR and DC.   
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Chapter 2 – Materials and Methods 

 

2.1 UAS-GAL4 expression system 

The yeast UAS-GAL4 system is a popular method used in Drosophila to promote 

ectopic gene expression.  The ectopic gene can be expressed under spatial or temporal 

control (Brand and Perrimon, 1993).  The ability to express a gene in a directed fashion is 

a useful means of analyzing its role in development (Brand and Perrimon, 1993).  The 

GAL4 protein is a yeast transcription factor that binds to a specific target DNA sequence: 

the Upstream Activating Sequence (UAS).  GAL4 responsive sequences are not found in 

the Drosophila genome, rather are introduced using genetically engineered transposable 

elements, usually P-elements.  A promoter or enhancer directs the expression of GAL4 

activating transcription of the gene downstream of the UAS sequence (Brand and 

Perrimon, 1993).  The advantage of using the UAS-GAL4 system is that the activator 

(GAL4) and the target sequence (UAS) are separated into distinct transgenic lines.  

Generating a UAS-GAL4 combination is a simple matter of performing a genetic cross 

between the two transgenic lines.  Only the progeny carrying both constructs would have 

targeted gene expression.  In this way, the UAS-GAL4 system can be used to ectopically 

express any gene of interest, including lethal mutations (Brand and Perrimon, 1993) 

(Figure 2.1).  To refine the pattern of GAL4-dependent expression, a negative regulator 

of GAL4, GAL80 protein was used.  GAL80 protein binds to the activation domain of 

GAL4 protein, inhibiting the transcriptional activation of downstream UAS genes (Perler, 

2004).  Expressing GAL80 in a pattern that overlaps GAL4 expression inhibits 

expression from UAS-GAL4 expression system.  
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Figure 2.1:  UAS-GAL4 gene expression system.  To activate ectopic gene expression 

of target gene, a GAL4 enhancer trap line is crossed with a UAS transgenic line.  Progeny 

of the genetic cross express the target gene under the spatial/temporal control of GAL4.   
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Tissue specific GAL4 expression Transcriptional activation of gene X
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2.2  Drosophila mutant lines and genetic crosses 

The genotypes and source of all Drosophila transgenic stocks used in this study 

are summarized in Table 2.1.  The nomenclature of these stocks is ordered by 

chromosome number separated by a semi-colon (;) i.e. in order of X; 2; 3 chromosomes.  

The mating scheme to recognize H99/ED225 mutants is summarized in Figure 2.2.  The 

mating scheme to recognize hnt308 mutants using GAL80 is summarized in Figure 2.3.  

The tubulinGAL80 suppression of GAL4 induced GFP expression was tested by collecting 

embryos from the crossing scheme illustrated in Figure 2.3.  The embryos were separated 

on basis of presence or absence of GFP expression, and allowed to grow at normal 

conditions.  The non-GFP expressing embryos yielded female adult progeny comprised 

of the duplication (straight wings) or the balancer chromosome (curly wings), and male 

adult progeny with the duplication (straight wings).  The GFP expressing embryos 

yielded no adult progeny.     

 

2.3  Cuticle preparations 

Embryos were collected overnight on grape juice agar plates at 25°C.  Embryos 

were aged for another 24 hours at the same temperature to allow for any viable embryos 

to complete embryonic development and hatch as larvae.  The unhatched embryos were 

collected in a mesh using PBT and dechorionated in 50% commercial bleach for 3 mins.  

The dechonionated embryos were then flushed with water to remove any residual bleach.  

The embryos were transferred to a drop of Hoyer’s mountant on a glass slide and covered 

with a glass coverslip.  The slide was baked overnight at 60°C.  Cuticle preparations were 
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visualized using the Zeiss Axiovert 200 microscope, and images were captured using the 

OpenLab Software by Improvision. 
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Table 2.1:  A list of all genotypes used in this study.  The parental genotypes of all 

transgenic lines used in genetic crosses in this study are listed, along with the source of 

the genetic stocks.  The nomenclature is written in order of chromosomes, and 

chromosome location is indicated on the bottom right corner.  The genotypes FM7, CyO, 

Gla, TM3 and TM6UW23-1 represent balancer chromosomes which prevent 

recombination and, thus, are used to maintain a heterozygous stock.   
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 GENOTYPE 

(Chromosome)
SOURCE 

(1) yw67 

(X)

Bloomington 
Stock Center 

(2) whnt308/w ;; puclacZ/TM3 
(X ;; 3)

Reed Lab* 

(3) daGAL4 

(3)

Bloomington 
Stock Center 

(4) whnt308/w ;; daGAL4 

(X ;; 3)
Reed Lab** 

(5) whnt308; Dp(1;2)4FRDup/CyO 
(X ; 2)

Reed Lab* 

(6) w ;; UAS-GFPnls+LP-1GAL4/TM3 
(X ;; 3)

Reed Lab* 

(7) whnt308/w ; Dp(1;2)4FRDup/+ ; UAS-GFPnls+LP-1GAL4/+ 
(X ; 2 ; 3)

Reed Lab** 

(8) whnt308; Dp(1;2)4FRDup/CyO,cMar14GAL4

(X ; 2)
Reed Lab* 

(9) w ; ftzGAL4UASnuclacZ+Ubi-DEcadGFP/CyO 
(X ; 2)

Reed Lab* 

(10) w1118 ;; UAS-GFPnls 

(X ;; 3)

Bloomington 
Stock Center 

(11) w ; ftzGAL4UASnuclacZ+Ubi-DEcadGFP/+ ; UAS-GFPnls/+ 
(X ; 2 ; 3)

Reed Lab** 

(12) w ; UAS-hntRNAi(2A) ; UAS-hntRNAi(2B)  
(X ; 2 ; 3)

Lipshitz Lab 

(13) ywhnt1142{FRT101}/FM7 
(X)

Lipshitz Lab 

(14) w ; crqGAL4+UASmCD8GFP/Gla 
(X ; 2)

Reed Lab* 

(15) y(w) ;; LP-1GAL4+Df(3L)ED225/TM6UW23-1 
(X ;; 3)

Reed Lab* 

(16) whnt308/y(w) ;; LP-1GAL4+Df(3L)ED225/TM3 
(X ;; 3)

Reed Lab** 

(17) y(w) ;; UASmCD8GFP+Df(3L)H99/TM6UW23-1 
(X ;; 3)

Reed Lab* 

(18) UAS-p35 
(2)

Bloomington 
Stock Center 
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(19) (y)w ; CyO,KrGAL4+UAS-GFP/+ ; LP-1GAL4/(LP-1GAL4) 
(X ; 2 ; 3)

Reed Lab* 

(20) whnt308 ; Dp(1;2)4FRDup/CyO,KrGAL4+UAS-GFP ; (LP-
1GAL4) 

(X ; 2 ; 3)                                          

Reed Lab** 

(21) tubGAL80-LL-1 ; PinYt/CyO 
(X ; 2)

Bloomington 
Stock Center 

(22) tubGAL80-LL-1 ; UAS-p35 
(X ; 2)

Reed Lab** 

(23) w ;; UAS-dInRACT “G” 
(3)

Bloomington 
Stock Center 

(24) tubGAL80-LL-1 

(X)

Bloomington 
Stock Center 

(25) Ly/Tm3 
(3)

Kyoto Stock 
Center 

(26) tubGAL80-LL-1 ;; Ly/Tm3 
(X ;; 3)

Reed Lab** 

(27) tubGAL80-LL-1 ;; UAS-dInRACT “G” 
(X ;; 3) Reed Lab** 

(28) UAS-RasV12 

(3)

Bloomington 
Stock Center 

(29) tubGAL80-LL-1 ;; UAS-RasV12 

(X ;; 3)
Reed Lab** 

(30) ftzGAL4UASnuclacZ/CyO 
(2)

Reed Lab* 

(31) UAS-hnt6-1 

(3)
Lipshitz Lab 

(32) ftzGAL4+Ubi-DEcadGFP+UAS-actinGFP/CyO 
(2)

Reed Lab* 

(33) w ;; armGFParm[83] 

(3)

Bloomington 
Stock Center 

(34) ftzGAL4+UASnuclacZ/CyO ; armGFParm[83]/(armGFParm[83]) 
(2 ; 3)

Reed Lab* 

* recombinant chromosome or multiple insertion stocks made in Reed Lab 
** crossing schemes for construction of the multiple insertion stocks are presented in Appendix A 
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Figure 2.2:  Crossing scheme to recognize H99/ED225 mutants.  Each of the 

deficiencies, Df(3L)H99 and Df(3L)ED225 are embryonic lethal as homozygotes, and 

thus are maintained as a heterozygous stock.  The LP-1GAL4 driver is AS specific, and 

allows expression of the UAS-mCD8GFP.  Only progeny from the cross that contain both 

GAL4 and UAS constructs have GFP detection, thus allowing the deficiencies to be 

recognized in embryos.  Only the male progeny are illustrated. 
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                     X                       

whnt308 ;; LP-1GAL4+  Df(3L)ED225 y(w) ;; UASmCD8GFP + Df(3L)H99 

 

  y(w)                     TM3 TM6UW23-1

                        

   

 

                        

                      TM6UW23-1 
whnt308 ;; LP-1GAL4+ Df(3L)ED225 

TM3
whnt308 ;; UASmCD8GFP + Df(3L)H99 

whnt308 ;; TM6UW23-1 whnt308 ;; LP-1GAL4+ Df(3L)ED225 
UASmCD8GFP + Df(3L)H99 TM3
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Figure 2.3:  Crossing scheme to recognize hnt308 mutants using tubGAL80.  An example 

of how GAL80 was used to recognize hnt308 mutants.  GAL80 binds and inhibits GAL4 

activity, and thus prevents the expression from UAS downstream genes.  This procedure 

was also utilized with various constructs on the second and third chromosomes. 
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                     X                       

 

                        

   

whnt308 ;        Dp(1;2)4FRDup 

whnt308       CyO,KrGAL4+UAS-GFP 

tubGAL80-LLI

whnt308 ;        Dp(1;2)4FRDup whnt308 ;        Dp(1;2)4FRDup 
+ tubGAL80-LL1+

 

                         whnt308 ;        CyO,KrGAL4+UAS-GFP
+

whnt308 ;        CyO,KrGAL4+UAS-GFP
tubGAL80-LL1 +

 31



2.4 Embryo fixation 

Embryos were collected on grape juice agar plates at 25°C.  The embryos were 

washed off the plate into a mesh using PBT and dechorionated in 50% commercial bleach 

for 3 mins.  The embryos were then flushed with distilled water to remove any residual 

bleach, and transferred to the fixative in a glass scintillation vial.  Fixative was composed 

of 1:1 mixture of heptane to 3.7% formaldehyde (made from 37% histological grade 

formaldehyde in 1X PBS).  Heptane creates holes in the vitelline membrane of the 

embryos allowing the fixative to enter the embryo.  Embryos were incubated in the 

fixative for 10 mins for TUNEL and α-HNT dual staining protocol, and 20 mins for RNA 

in-situ hybridization with constant shaking.  For α-HNT staining, the fixative was 

composed of 1:1 mixture of heptane and methanol.  Upon completion of fixation period, 

the formaldehyde (lower layer) was replaced with methanol.  Vigorous shaking for 30 

secs removes the vitelline membrane of the embryos, and embryos sink into the 

methanol.  The embryos were collected and washed with methanol several times.  

Embryos for RNA in-situ hybridization were stored at -20°C in methanol.  For TUNEL + 

α-HNT staining, the embryos were washed twice in 100% ethanol after the methanol 

washes, and then stored at -20°C in 70% ethanol.  Embryos expressing GFP were not 

stored in methanol. 

For α-ARM staining, the hot-methanol fixation procedure was used.  Embryos 

were collected and dechorionated as described above.  Embryos were flushed with 

distilled water and then incubated in hot PBT (heated to 90°C) for 30 secs.  Embryos 

were then transferred to chilled PBT (on ice) for 2 mins.  Embryos were then transferred 

to a 1:1 mixture of heptane and methanol, and shaken vigorously for 30 secs.  Embryos 
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were allowed to settle in the methanol.  They were then collected and washed several 

times with methanol.  The hot-methanol fixation procedure extracts most of the 

cytoplasmic ARM protein, but maintains the plasma membrane bound form of the protein 

(Muller and Wieschaus, 1996). 

 

2.5 RNA in-situ hybridization 

An amnioserosa specific probe, CG12011, was used to visualize the presence or 

absence of the AS tissue in various backgrounds.  The probe was generated from cDNA 

clones housed in pFLC-1 vector obtained from the Canadian Drosophila Microarray 

Center.  All steps for RNA in-situ hybridization were performed as described by Henry 

M. Krause (accessed 2008 November 23).  Whole mount embryos were viewed using 

Zeiss Axiovert 200 microscope, and images were captured using the OpenLab Software 

by Improvision. 

 

2.6 Confocal Live Imaging 

Embryos were collected on grape juice agar plates at 3 hour intervals using the 

FlyMax Automated Egg Collector (FlyMax Scientific Equipment Ltd.).  The embryos 

were allowed to age to the desired stage at 25°C.  Approximately a half hour before 

imaging, the embryos were hand-dechorionated by rolling on double-sided sticky tape 

using forceps as described by Reed et al. (2004) and Mohseni et al. (2009). 

Live imaging performed on the Zeiss Axiovert 100 confocal microscope had 

embryos mounted on a double-sided sticky tape on a gas permeable membrane in 

halocarbon oil (1:1 mixture of series 56: series 700).  Images were captured every 2 mins 
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using the LSM510 software.  NIH ImageJ software was used to process the image stacks 

and compile AVI movies.  NIH ImageJ software was also used to make montages of the 

AVI movies. 

Live imaging performed on the Nikon Eclipse confocal microscope had 

dechorionated embryos mounted in a drop of halocarbon oil on a glass coverslip.  The 

coverslip was inverted over a polycarbonate depression slide and secured in place with 

tape.  The halocarbon oil formed a hanging drop in which the embryos floated to the top 

to touch the surface of the coverslip.  Two holes were cut into the tape on either side of 

the coverslip to allow for ventilation within the depression.  Images were captured as z-

stacks with 6 slices of 2μm increments at 2 or 4 minute intervals using the EZ-C1 

software.  The software was also used to project the z-stacks, process the image stacks 

and compile AVI movies.  NIH ImageJ software was used to make montages of the AVI 

movies. 

 

2.7 Antibody staining 

Embryos were collected, fixed and stored as described above.  Embryos in 

methanol were serially re-hydrated in PBS, and incubated in blocking solution (9:1 

mixture of 0.5% Bovine Serum Albumin (BSA) to 1% Normal Goat Serum) for 2 hrs at 

room temperature.  Embryos were then incubated overnight at 4°C in primary antibody 

diluted in blocking solution (mouse monoclonal α-HNT 27B8 1G9 in a 1:20 dilution or 

mouse monoclonal α-ARM in a 1:400 dilution).  After the incubation period, the primary 

antibody was removed and embryos were washed three times with PBT for 15 mins each.  

Embryos were incubated at room temperature for 2 hrs in secondary antibody (TRITC 
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conjugated goat α-mouse or FITC conjugated goat α-mouse) in a 1:500 mixture for α-

HNT and 1:400 for α-ARM staining with blocking solution.  Secondary antibody was 

removed at the end of the incubation period and embryos were washed three times with 

PBT for 15 mins each, and once with PBS.  Embryos were allowed to settle overnight in 

a fluormount (DABCO).  Embryos were mounted on a glass slide in the fluoromount, and 

visualized using either the Zeiss Axiovert 100 confocal microscope or the Nikon Eclipse 

confocal microscope. 

 

2.8 TUNEL and α-HNT dual staining 

The TUNEL assay is a simple method of labelling the ends of fragmented DNA 

present in apoptotic cells with fluorescent molecules (Potten and Wilson, 2004).  

Embryos were collected, fixed, and stored as described above.  Embryos were re-

hydrated by immersion in 30% ethanol for 10 mins and then two washes in PBS.  

Staining was performed by following a protocol from Krieser et al., (2007), using the 

primary antibody (α-HNT) at a 1:20 dilution and secondary antibody (TRITC-

conjugated) at 1:500 dilution.  The In situ cell death detection kit, Fluorescein kit (Roche) 

was used to perform the TUNEL assays.   

Embryos were mounted on a glass slide in fluoromount (DABCO) and visualized 

using the Zeiss Axiovert 100 confocal microscope.  Images were captured using the 

LSM510 software, and processed using NIH ImageJ software. 
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Chapter 3 – Results 

 

Previous work using amorphic (null) alleles showed that the AS dies prematurely 

in hnt mutants (Frank and Rushlow, 1996).  The main objective of this study was to 

analyze and determine the cause of premature AS loss that is associated with hnt mutants.  

Most experiments in this study used the hypomorphic mutant allele, hnt308, rather than 

amorphic alleles (such as hntXE81, a known protein null allele).  The hnt308 allele has 

reduced HNT protein expression in all tissues where hnt is expressed, and this effect of 

reduced expression is particularly noticeable in the AS (Reed, Wilk, and Lipshitz, 2001).  

Having reduced HNT expression in the AS, the hnt308 allele is attractive for studies 

relating to phenotypic suppression.  That is to say, given a phenotype that is intermediate 

between the null and wild type, suppression by backgrounds that alter programmed cell 

death pathways may be more easily detected.  The first objective of this study was, 

therefore, to revisit the hnt308 phenotype with particular attention to the fate of the AS.   

 

3.1 Revisiting the hindsight phenotype 

The hnt308 mutant stock was initially examined to address the question of the 

penetrance and expressivity of the mutant phenotype.  The hnt308 mutation itself is 

associated with the insertion of a P-element in the 5’ upstream regulatory region of hnt 

(Reed, Wilk and Lipshitz, 2001).  The P-element construct itself was designed as an 

enhancer trap that expresses bride-of-sevenless (boss); hnt308 mutants, while being 

recessive for embryonic lethality, are also associated with a dominant rough eye 

phenotype.  This rough eye phenotype serves as a convenient marker for the presence of 
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the hnt308 allele in heterozygotes.  The hnt308 mutant is maintained as a balanced 

heterozygous stock using standard balancer chromosomes.  Since hnt maps to the X 

chromosome, hemizygous male (hnt/Y) progeny of heterozygous females (hnt/FM7) 

show the embryonic lethal phenotype.  At full penetrance (100% embryonic lethality) 

these embryos are expected to represent 25% of all progeny.  Previous analysis of hnt308 

measured just over 10% of total progeny as embryonic lethal, which corresponds to 41% 

embryonic lethality associated with the hnt308 mutant (Reed, Wilk and Lipshitz, 2001).   

To confirm the hnt308 phenotype, cuticle preparations were performed on embryos 

collected from heterozygous hnt308/+ females mated to “wild type” males (following the 

convention of many Drosophila research labs, our lab uses a stock which carries the 

genetic markers yellow white (yw) as a wild type reference) (Figure 3.1).  In these cuticle 

preparations, numerous embryos displayed “twisted” phenotypes (Figure 3.1b), GBR 

failures, or dorsal holes (Figure 3.1c).  The completion of GBR in presumptive 

heterozygous control siblings (sibs) is evident by the ventral position of all eight 

abdominal segments (Figure 3.1a).  These observations confirm that the genetic stock had 

not accumulated any modifiers that could alter the previously reported phenotype. 

Although cuticle preparations provided evidence of GBR failure as well as DC 

failure, the AS cannot be visualized by this method.  RNA in-situ hybridization using a 

probe to detect transcripts of the gene CG12011, whose expression is highly AS-specific, 

was performed on 12-15 hr staged embryo collections (embryo collection was as 

described for cuticle preparation) (Figure 3.2).  In control sibs (representative of wild 

type), normal AS degeneration was evident in late stage 15 embryos which are 

recognized by midgut morphology (Figure 3.2a).  The CG12011 signal appears in cells 
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Figure 3.1:  Cuticle preparations on hnt308 mutants  The hnt308 stock is maintained as a 

heterozygous stock, therefore only 25% of the embryos illustrate the hnt mutant 

phenotype.  (a)  Heterozygous siblings were used as a control for cuticle preparations.  

The black arrows indicate the eight abdominal segments (denticle bands) found on the 

ventral surface of the embryo.  The red arrow indicates the telsons – the terminal tail 

structure.  (b)  A hnt308 mutant embryo that illustrates a “twisted” phenotype.  Since the 

embryo proper is twisted within the vitelline membrane, the abdominal segments are not 

visible, making it difficult to distinguish between structures.  (c)  A hnt308 mutant embryo 

that has failed in GBR and illustrates a large dorsal hole.  The red arrow indicates the 

telsons which are located more anteriorly than in control embryos (a) indicating GBR 

failure.  The black dashes surround the dorsal hole in the embryo.  Embryos collected 

from females of stock 4 crossed to males of stock 1 (See Materials and Methods).  All 

embryos are oriented with the anterior to the left and dorsal side up. 
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Figure 3.2:  RNA in-situ hybridization on hnt308 embryos.  The black arrow indicates 

AS cells that were labelled with probe for the AS-specific gene CG12011.  RNA in-situ 

hybridization was performed on 12-15 hr stage embryo collections.  (a)  Control embryos 

exhibit normal tissue degeneration where apoptotic corpses are seen surrounding the AS 

tissue.  (b and c)  hnt308 mutants that have failed in GBR and lack CG12011 AS staining, 

indicating premature AS loss (red arrow).  Embryos were collected from females of stock 

4 crossed to males of stock 1 (See Materials and Methods).  All embryos are oriented 

with the anterior to the left and dorsal side up. 
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that have dissociated from the AS tissue most likely indicative of AS apoptotic corpses 

that have been engulfed by phagocytic macrophages.  These are particularly visible at the 

anterior and posterior of the degenerating tissue (Figure 3.2a).  On the other hand, hnt308 

mutant embryos, which in this experiment are recognized by GBR failure, lack signal 

associated with the CG12011 probe (Figure 3.2b; Figure3.2c).  This observation suggests 

that like the null allele, hnt308 is also associated with premature AS loss.  Of all embryos 

examined in these experiments, 8.4% were associated with GBR or DC failure, and all 

such embryos lacked CG12011 signal, indicative of AS loss.  This corresponds to a 

penetrance of 33.6% of AS loss in hnt308 m tants.  This confirms the hypomorphic nature 

of the hnt308 allele and that the AS loss phenotype is also hypomorphic.  

 

3.2  Visualizing premature Amnioserosa death in hindsight mutants 

Techniques such as cuticle preparations and RNA in-situ hybridization of whole 

mount embryos are limited to working with dead or fixed embryos.  In order to perform 

more detailed phenotypic analysis, GFP-based live imaging was used.  Live imaging 

analysis during GBR stage (7 – 9 hrs AEL) was used to further characterize the AS tissue 

in the hnt308 mutants.  Using green fluorescent protein (GFP) with a nuclear localizing 

signal (UAS-GFPnls), confocal live imaging was performed to visualize the AS in hnt308 

mutants (Figure 3.3).  In these experiments UAS-GFPnls was expressed in the epidermis 

as well as the AS, and GFP expressing embryos were selected at stages prior to the onset 

of hnt related phenotypes.  In the course of live imaging, embryos were determined as 

being hnt308 mutants based on their terminal phenotype.  By examining the live imaging 

Figure 3.3:  Confocal live image sequences of hnt308 mutants.  The AS tissu  (using 

u

e
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the LP-1GAL4 driver), as well as the epidermis (using the cMar14GAL4 driver), is visualized 

by detection of GFP localized to the nuclei of cells.  Live imaging was performed using 

the Zeiss Axiovert 100 at 40X objective.  Images were captured at 2 minute intervals.  

Embryos that lacked the hnt phenotype were considered as controls.  The AS is indicated 

by the yellow arrow, and the germband is indicated by the red arrow.  (a) Progression of 

GBR (stage 13) in control embryos.  The AS stretches out, covering the dorsal surface of 

the embryo.  (b) Progression of GBR (stage 13) in hnt308 mutants.  The AS collapses from 

the germband, and does not cover the dorsal surface.  The germband fails to retract to its 

final posterior position.  Embryos were collected from females of stock 8 crossed to 

males of stock 7 (See Materials and Methods).  All embryos were oriented with the 

anterior at the top left and the dorsal side facing top right. 
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Figure 3.4:  Nuclear fragmentation of amnioserosa cells in hnt308 mutants.  Two AS 

nuclei, indicated by the white asterisks, from hnt308 mutant embryos, that undergo 

complete nuclear fragmentation within 16 minutes.  Image sequence montage illustrated 

is from the hnt308 mutant embryo shown in Figure 3.3b.  Live imaging was performed 

using the Zeiss Axiovert 100 confocal microscope.   
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sequences of hnt308 mutants detected in this manner, the early onset of AS phenotype was 

characterized.  Using this approach, the first indication of an abnormality in hnt308 

mutants was seen at mid-GBR stage embryos. Compared to wild type development, the 

AS appears to collapse into the gap that is found between the posterior cephalic region 

and the tip of the retracting germband (Figure 3.3).  Concomitant to this collapse of the 

AS, AS nuclei can been seen in live imaging to undergo nuclear fragmentation, a 

characteristic typically associated with apoptotic cell death (Figure 3.4).  

In wild type development, approximately 10% of AS cells are basally extruded 

from the epithelium.  These extrusion events are readily observed in live imaging analysis 

using GFP-tagged membrane markers.  Since genetic backgrounds that are associated 

with the absence of cell death lack these extrusion events, it has been suggested that 

extrusion is the consequence of apoptosis (Mohseni et al., 2009).  It was therefore of 

interest to determine if hnt mutant embryos are associated with extensive AS extrusion.  

To address this question, an RNAi mediated knock down approach was used.  HNT 

expression was reduced along parasegment boundaries that run through the AS by means 

of a UAS-hntRNAi stock crossed to a stock carrying a fushi tarazu GAL4 (ftzGAL4) driver.  

This allowed for a comparison of AS cells having endogenous levels of HNT expression 

(those AS cells not in the ftz stripe) to AS cells in which HNT expression is reduced 

(those AS cells within the ftz stripe).  GFP markers also used in this experiment were 

Ubi-DEcadGFP to visualize apical membranes, and nuclear GFP (UAS-GFPnls) (see 

Materials and Methods for stock descriptions).   The result of downregulating HNT 

expression was an increase in the number of extrusion events that occurred during 100 

minute intervals in mid-DC staged embryos.  Control embryos on average showed only 
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Figure 3.5:  Scoring extruding amnioserosa cells in UAS-hntRNAi embryos.  The nuclei 

f AS cells were visualized using the ftzGAL4 driver and UAS-GFPnls.  The background 

 which allows for the detection of cell memb

Confocal live imaging was performed on the icroscope using 

20X objective.  Embryos were 10 hrs old (shown) and imaged for 100 minutes, at 2 

inute intervals.  (a) Indicated by the pink dot, only one extrusion was observed in the 

RNAi

number of extrusions was detected in embryos expressing UAS-hntRNAi.  The extrusions 

were detected closer to the anterior of the AS tissue.  Embryos were collected from 

females of stock 1 crossed to males of stock 11 (a) and from females of stock 12 crossed 

to males of stock 11 (b) (See Materials and Methods).  These embryos are oriented with 

the anterior to the left and dorsal side up. 

o

also contained Ubi-DEcadGFP ranes.  

Nikon Eclipse confocal m

m

control embryos (lacking UAS-hnt ).  (b)  Indicated by the pink dots, an increase in the 

 48



 

 (a)

 

  Control 

(b) hntRNAi
 

 

 49



Figure 3.6:  Extrusion and nuclear fragmentation in UAS-hntRNAi expressing 

embryo.  Indicated by the white asterisks, two AS cells, from UAS-hntRNAi expressing 

embryo, shrink in size as they extrude from the epithelium.  These cells were visualized 

using by Ubi-DEcadGFP, and the nuclei visualized using UAS-GFPnls.  Nuclear 

fragmentation of the cells begins 4 minutes after extrusion.  Image sequence montage 

illustrated is from the UAS-hntRNAi expressing embryos in Figure 3.5b.  Live imaging was 

performed using the Nikon Eclipse confocal microscope. 
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Table 3.1:  Extrusion scores in hntRNAi embryos.  The numbers of cells that extrude 

from the AS surface and undergo nuclear fragmentation were counted (See Figure 3.5 

and Figure 3.6).  The average number of extrusions in hntRNAi embryos is significantly 

increased when compared to control embryos. 
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Genotype No. of embryos Average no. of extrusions 

Control 2 1 

hntRNAi 6 17 
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one extrusion event whereas the UAS-hntRNAi expressing embryos had an average of 17 

extrusions (Table 3.1).  The extrusion events of the UAS-hntRNAi expressing embryos were 

spatially restricted to the anterior half of the AS (Figure 3.5).  Extrusion events did not 

correspond to stripes of ftzGAL4 expression, but neither did the UAS-GFPnls expression in 

the AS, although ftz-GFP stripes were evident in the lateral epidermis.  Also in this 

background, the extruded cells were observed to undergo nuclear fragmentation (Figure 

3.6).  These RNAi results are consistent with the hnt308 mutant phenotype and suggest 

that AS loss could be associated with premature or inappropriate induction of apoptosis. 

 

3.3  Macrophage activity in hindsight mutants 

It is well established that apoptotic corpses are engulfed by phagocytic 

macrophages.  To determine if the extrusion and nuclear fragmentation of the AS cells in 

hnt embryos is due to apoptosis, macrophage activity in null hnt mutants was examined 

using live imaging.  Macrophages are readily visualized using a macrophage specific 

driver, croquemortGAL4 (crqGAL4) in combination with UAS-myristoylatedCD8GFP (UAS-

mCD8GFP) from stage 13 onwards.  In control embryos, macrophages were visible in the 

head region as well as around the AS tissue.  Macrophage activity was evident as 

vacuoles were observed in the macrophage cells, seen as big black spots in the cytoplasm 

of these cells (Figure 3.7).   

In hnt null mutants (hnt1142), macrophages were localized near the anterior region 

of the embryo where they tended to remain concentrated during development (Figure 

3.8).  This pattern of localization of the macrophages suggested that they were associated 

with the degenerating AS.  Looking at the mutant embryo using DIC, GBR failure was 
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Figure 3.7:  Confocal live image sequence illustrating macrophage activity.  A 

macrophage specific driver, crqGAL4, was used to detect active macrophages by labelling 

the cytop crophages with indicate

imaging was performed using the Ziess Axiovert 100 confocal microscope.  Images were 

captured using the 40X objective at 2 minute intervals.  GFP expression was initially 

visible at stage 13, and expression remained until late stages of embryogenesis.  

Engulfment of apoptotic corpses was seen by the appearance of black vacuoles in the 

cytoplasm acrophages.  Macrophages were present and active in the head region 

and around the AS tissue throughout the late stages of embryogenesis.  Embryos were 

collected from females of stock 1 crossed to males of stock 14 (See Materials and 

Methods).  All embryos were oriented with the anterior located at the top left corner and 

dorsal side facing up. 

lasm of ma  UAS-mCD8GFP, d by yellow arrows.  Live 
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Figure 3.8:  Confocal live image sequence of macrophage activity in hnt1142 mutants.  

The macrophage specific driver, crqGAL4, was used to detect macrophage activity in 

hnt1142 mutants by labelling the macrophage cytoplasm with UAS-mCD8GFP (yellow 

arrows).  Live imaging was performed using the Ziess Axiovert 100 confocal microscope.  

Images were captured using the 40X objective at 2 minute intervals.  Embryos were aged 

to 10 hours prior to imaging.  The majority of active macrophages were detected in the 

anterior region of the embryo.  Embryos were collected from females of stock 13 crossed 

to males of stock 14 (See Materials and Methods).  These embryos were oriented with the 

anterior located at the top left corner and dorsal side facing up. 
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Figure 3.9:  Macrophage localization in hnt1142 mutants.  (a) Confocal z-stack 

projection of hnt null mutant showing the pattern of macrophage localization through the 

embryo (yellow arrows).  (b)  DIC image of same embryo to confirm the GBR failure in 

the embryo.  White arrow illustrates the caudal end of the germband.  These images were 

taken with Ziess Axiovert 100 confocal microscope using the 40X objective.  These 

embryos were oriented with the anterior located at the top left corner and dorsal side 

facing up. 
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confirmed (Figure 3.9b).  The macrophages had enlarged vacuoles in their GFP-

expressing cytoplasm.  The presence of vacuoles as well as the movement of the 

macrophages suggested that they were active and engulfing apoptotic corpses.  These 

observations support the interpretation that the degeneration of the AS in hnt mutants is 

associated with the production of apoptotic corpses. 

 

3.4  Deleting pro-apoptotic genes in hindsight mutants 

Examination of the AS by RNA in-situ hybridization, live imaging analysis, or the 

examination of macrophage activity suggests that the loss of the AS in hnt mutants is 

associated with either premature or inappropriate activation of apoptosis.  Previous 

studies in our lab have established that the degeneration of the AS during wild type 

development is inhibited in mutants that lack the pro-apoptotic genes, hid, grim, and rpr 

(Mohseni et al., 2009).  Chromosomal deficiencies Df(3L)H99 (H99) and Df(3L)ED225 

(ED225) are deleted for these three genes, and either deficiency, when homozygous, or 

the trans-heterozygous (H99/ED225) is associated with a persistent AS phenotype.  This 

persistent AS typically adopts an elongated “tube-like” structure that is readily observed 

beneath the dorsal epidermis along the midline of the embryo.  It was therefore of interest 

to determine if the hnt mutant phenotype and, in particular, the premature loss of the AS 

in hnt mutants is rescued by the H99 or ED225 deficiencies.  To address this question, a 

genetic strategy was devised that would allow hnt mutants to be unambiguously 

identified as also being H99/ED225. Briefly, in this experiment, α-HNT labelling permits 

identification of the hnt308 mutant by virtue of decreased HNT expression while only the  
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igure 3.10:  Anti-HNT antibody staining in apoptotic deficient hnt mutants.  

Staining using α-HNT antibody labels the nuclei of all cells (TRITC).  The apoptotic 

deficient background, H99/ED225 embryos were detected by the presence of cytoplasmic 

GFP in the AS using the AS specific driver, LP-1GAL4.  The hnt308 mutants were detected 

by the absence of α-HNT staining in the AS.  Images were captured using the Ziess 

Axiovert 100 confocal microscope at 40X objective.  The AS tissue is indicated by the 

yellow arrows.  (a) Control embryos show strong -HNT staining in the AS and an 

absence of GFP.  (b)  H99/ED225:  Embryo illustrate strong α-HNT staining and GFP 

expression in the AS.  (c) H99/ED225:  Embryo at a late stage of development with a 

persistent AS in a “tube-like” structure.  (d and e) hnt;H99/ED225:  Double mutant 

embryos were detected by GFP expression in the AS, and a lack of -HNT staining. 

Embryos were collected from females of s ales of stock 17 (See 

Materials and Methods).  Control and H99/ED225 embryos were oriented with the 

anterior located at the top right and dorsal side facing up.  The double mutants were 

oriented with the dorsal side facing the top left corner (d and e). 
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H99/ED225 embryos carry the necessary GAL4 and UAS constructs to result in GFP 

expression (See Materials and Methods, Figure 2.2). 

As seen in Figure 3.10, hnt+ sibs that are not H99/ED225 show strong α-HNT 

staining of the AS which lacks GFP expression.  In contrast, the H99/ED225 mutants 

show strong GFP expression in the AS, and the AS is present in late stage embryos which 

have normally completed AS elimination (Figure 3.10b; Figure 3.10c).  hnt308 mutants, 

which in this experiment, were unambiguously recognized on the basis of reduced α-

HNT staining (although this is not apparent in Figure 3.10 due to different confocal 

settings used in acquiring the images) showed strong GBR defects regardless of whether 

or not they were also H99/ED225 (data not shown).  Two examples of hnt308 + 

H99/ED225 double mutant embryos are shown in Figure 3.10d and Figure 3.10e.  In 

these embryos, the AS is observed as a small remnant.  Based on these observations, it 

can be concluded that the AS degeneration in hnt mutants is independent of the pro-

apoptotic activators, hid, grim and rpr.    

 

3.5  Blocking caspases in hindsight mutants 

Although the pro-apoptotic genes were removed in the above experiment, it 

remained possible for cell death to occur as a consequence of an alternative pathway for 

caspase activation.  Ultimately, apoptotic cell death requires activated caspases.  Another 

approach for inhibiting apoptosis involves the use of the baculovirus derived pan-caspase 

inhibitor p35.  Embryos expressing UAS-p35 under the control of the daughterlessGAL4 

driver (daGAL4) show a persistent AS phenotype very similar to the H99 phenotype 

(Figure 3.11).  The absence of apoptotic activity in this p35 expressing background was 
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Figure 3.11:  TUNEL staining on embryos with ectopic p35 expression.  TUNEL 

staining was used to detect apoptotic cells in embryos during the late stages of DC (late 

stage 15), when the AS begins to degenerate en masse.  The AS was detected by α-HNT 

staining seen in red.  (a)  Wild type embryos (yw) embryos show TUNEL stained cells in 

green (white arrows) surrounding the AS near the anterior and posterior regions.  

Embryos collected from stock 1 (See Materials and Methods). (b) p35:  Embryos 

ubiquitously expressing p35 through the use of daGAL4 driver (females of stock 3 crossed 

to males of stock 18 (See Materials and Methods)).  These embryos show no TUNEL 

stained cells near the AS.  The AS is persistent, and the morphology of the AS resembles 

that of the H99 phenotype.  The AS has been flanked on both sides with white asterisks.  

Images were captured using the Ziess Axiovert 100 confocal microscope and 40X 

objective.  Both embryos were oriented with the anterior facing the top right corner and 

dorsal side facing up. 
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confirmed using the TUNEL staining protocol (absence of TUNEL signal compared to 

wild type control).  To examine the effect of caspase inhibition, the AS was examined by 

CG12011 RNA in-situ hybridization in hnt mutants that also carried daGAL4 + UAS-p35.  

In this experiment, hnt308 mutants were recognized by GBR/DC failure (as seen in Figure 

3.2b).  Very similar to the H99/ED225 observation, the AS in the p35 expressing 

background was also reduced to a small remnant (Figure 3.12).  Control sibs showed a 

prominent persistent AS phenotype.   

Further analysis involved quantification and comparison of the mutant phenotypes 

associated with the following genotypes: hnt308; UAS-p35 expression alone; and hnt308 + 

UAS-p35 expression.  While it might have been expected that p35 expression could 

rescue the hnt mutant, the data surprisingly indicated an increase in GBR and DC failure 

from 8.4% to 17% (these values refer to the total number of embryos examined with the 

maximum possible value being 25%) (Table 3.2).  Clearly, p35 expression does not 

rescue GBR or DC failure of hnt mutants.  A consistent feature observed in the hnt308 + 

UAS-p35 embryos, which was not observed in the hnt308 mutants without p35 expression, 

was the presence of AS tissue as detected by CG12011 RNA in-situ hybridization.  The 

interpretation of these observations is that there is a loss of AS integrity in hnt mutants 

that is independent of caspase-dependent apoptotic cell death.   

The previous experiment, although intriguing, used a ubiquitously expressed 

GAL4 driver, and relied on GBR/DC defects for the identification of hnt mutants.  This 

work was, therefore, repeated using a live imaging approach which incorporated a genetic 

system to unambiguously identify hnt308 mutants, without relying on the expression of the 

mutant phenotypes.  Briefly, this approach uses the GAL80 repressor in combination with 
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Figure 3.12:  RNA in situ hybridization on hnt308 mutants expressing p35.  RNA in-

situ hybridization was performed using the probe for the AS-specific CG12011 gene 

(black arrow) on 12-15 hr old embryo collections.  (a) p35:  Embryos ectopically 

expressing p35 using the daGAL4 driver show a persistent AS phenotype, illustrated as a 

“tube-like” structure during late stages of embryogenesis.  Embryos collected from 

females of stock 3 crossed to males of stock 18 (See Materials and Methods).  (b and c) 

hnt308;p35:  Ectopic p35 sion in a hnt308 mutant background with daGAL4 driver.  

The AS has fallen off the tail and the embryo has failed GBR.  The GBR failure 

resembles that seen in hnt308 mutants (refer to Figure 3.2b), though hnt308 mutants 

expressing p35 have AS tissue present.  Embryos were collected from fe ales of stock 4 

crossed to males of stock 18 (See Materials a d Methods).  Embryos are oriented with the 

anterior to the left and dorsal side up. 
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Table 3.2:  Summary of RNA in-situ hybridization on hnt308 with ectopic p35 

expression.  Embryos expressing ectopic p35 do not fail in GBR.  The ectopic expression 

of p35 fails to rescue the GBR failure observed in hnt308 mutants. RNA in-situ 

hybridization was performed on 12-15 hour old embryos.  The hnt308 embryos were 

collected from females of stock 4 crossed to stock 1; the p35 embryos were collected 

from females of stock 3 crossed to stock 18; and the hnt308; p35 embryos were collected 

from females of stock 4 crossed to stock 18 (See Materials and Methods). 
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Total embryos 95 194 183 

% Persistent AS 

(completed GBR 

and DC) 

0% 40% 56% 

% GBR + DC 

failure 
8.4% 0% 17% 

 

 

 
 
 
 
 
 
 
 
 

 

  

 71



GAL4/UAS-GFP backgrounds such that only hemizygous hnt308 mutant embryos express 

GFP (See Materials and Methods Figure 2.3).   In addition, the GAL4 drivers used in this 

design are associated with elevated AS expression.  The live imaging results confirm the 

interpretation that p35 expression does not rescue the hnt mutant phenotype. Remarkably, 

in this live imaging analysis, the AS of hnt308 + UAS-p35 embryos, although abnormal in 

appearance, was persistent as evidenced by the onset of somatic muscular innervation 

(which occurs at stage 16) (Figure 3.13).  Interestingly, all of these embryos which were 

recognized independent of GBR mutant phenotypes do, in fact, show GBR defects.  This 

key observation confirmed that GBR failure is not a direct or indirect consequence of 

premature AS death. 

 

3.6  Analysis of cell behaviour in hindsight mutants 

The previous section established that it was possible to recover a hnt mutant with 

a persistent AS through caspase inhibition.  It was, therefore, of interest to examine AS 

cell shapes and behaviour at earlier stages of development when hnt mutants (without 

p35 expression) are normally associated with premature AS loss.  Unlike the previous 

live imaging analysis which used a nuclear GFP (Figure 3.3), these experiments used 

cytoplasmic GFP expression, which better facilitates examination of cell shape changes 

and cellular extensions.  Mid-GBR stage embryos were examined representing the 

following genotypes: wild type, AS-specific UAS-p35 expression, hnt308, and hnt308 + 

AS-specific UAS-p35 expression (Figure 3.14).  In both the wild type and the AS-specific 

UAS-p35 expressing embryos, the posterior-most AS cells form prominent lamellipodia 

and show contact with the epidermal cells of the extended tip of the germband.  In both, 
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Figure 3.13:  Visualization of the AS in various backgrounds.  The AS, indicated by 

white arrow, is visualized using the krGAL4 driver with UAS-GFP.  The germband is 

labelled with a white asterisk.  Im re captured using the Nikon Eclipse confocal 

and 20X objective.  Embryos were at late stage 15, the stage prior to muscle twitching.  

(a)  Control:  The AS tissue degenerates and apoptotic corpses are seen surrounding the 

tissue.  Embryos collected from females of stock 19 crossed to stock 1 (See Materials and 

Methods) (b) p35:  Embryos ectopically expressing p35 exhibit a persistent AS.  Embryos 

were collected from females of stock 19 crossed to stock 18 (See Materials and Methods) 

(c) hnt308; p35 :  The hnt308 embryos with ectopic p35 expression results in an AS that 

remains intact but does not rescue GBR failure.  Embryos were collected from females of 

stock 20 crossed to stock 22 (See Materials and Methods).  Embryos are oriented with the 

anterior to the left and dorsal side up. 
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Figure 3.14:  Amnioserosa cell behaviour in various backgrounds.  The AS, indicated 

by yellow arrow, is visualized using the krGAL4 driver with UAS-GFP.  The germband is 

labelled with a white asterisk.  Images were captured using the Nikon Eclipse confocal 

and 20X objective.  Embryos were at mid-GBR stage.  (a)  Control:  The posterior-most 

AS cells form prominent lamellipodia (white arrows) and contact the extended germband.  

Embryos were collected from females of stock 19 crossed to stock 1 (See Materials and 

Methods).  (b)  hnt308:  In hnt mutants, the lamellipodia extensions are not observed, 

indicating a lack of contact between the AS cells and the germband.  Embryos were 

collected from females of stock 20 crossed to stock 24 (See Materials and Methods).  (c) 

p35:  Embryos expressing p35 show lamellipodia extending from the AS cells, as seen in 

the control embryos (a).  Embryos were collected from females of stock 19 crossed to 

stock 18 (See Materials and Methods).  (d) hnt308; p35:  The hnt mutant embryos 

expressing p35 lack the lamellipodia extensions, resembling hnt308 embryos, suggesting 

no rescue of the phenotype.  Embryos were collected from females of stock 20 crossed to 

stock 22 (See Materials and Methods).  All embryos are oriented with the anterior to the 

left and the dorsal side up. 
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the hnt308 mutant and the hnt308 + AS-specific UAS-p35 expressing embryos, the posterior 

most AS cells were not maintained in this position and no lamellipodia were observed.  

Subsequently, over a period of 160 min, the AS of the hnt308 mutant was eliminated with 

evidence of apoptotic cell death (i.e. rapid cell fragmentation).  Over the same time 

period, the hnt308 + AS-specific UAS-p35 expressing embryos did not show any evidence 

of similar AS elimination or apoptosis.  These observations suggest that the earliest 

manifestations of the hnt mutant phenotype involve a localized loss of contact between 

the AS and epidermal cells; it is likely that this loss of contact is the primary defect 

associated with hnt mutants and that it leads to activation of apoptosis and premature AS 

loss. 

 

3.7  Analysis of Armadillo in hindsight mutant and Hindsight overexpression 

embryos 

A recently published study implicated hnt as a regulator of the levels of Armadillo 

(β-catenin) and shotgun (DE-cadherin) in the anterior ovarian follicular cells.  In this 

study, somatic mosaics were generated in the follicular epithelium such that patches of 

follicular cells were recovered that were mutant for hnt.  These mutant patches were 

found to show elevated levels of Armadillo (hereafter referred to as ARM) and shotgun 

(Melani et al., 2008).  The same study also demonstrated reductions in the levels of these 

cell adhesion molecules in follicular cells overexpressing HNT (Melani et al., 2008).  It 

was, therefore, of obvious interest to test if similar alterations of the levels of these cell 

adhesion molecules could be observed in the AS of hnt mutants and HNT overexpressing 

embryos.  This section describes experiments that were done to address the levels of 
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ARM in these backgrounds (DE-cad was not examined).   

Antibody staining using the mouse monoclonal antibody for ARM N27A1 

(hereafter referred to as α-ARM) proved to be an excellent membrane marker on whole 

mount embryos fixed using hot-methanol fixation procedure (Figure 3.15).  The hot-

methanol fixation procedure extracts most of the cytoplasmic form of ARM, while 

maintaining the tightly membrane-bound form of ARM (Muller and Wieschaus, 1996).  

In com

differences could be observed in membrane-bound ARM protein levels (Figure 3.15).  

The hnt mutant used in this experiment was the 1142 allele, a HNT protein null.  The 

hnt1142 mutants were recognized on the basis of mutant phenotype which included failure 

of GBR and AS collapse. The hnt mutants were exam early stages of GBR failure 

where ample AS tissue was still present.   

backgrounds were also stained for ARM.  This included collections in which 50% of the 

embryos were expected to carry the ftzGAL4 driver and the UAS-hnt6-1 construct.  In 

examining numerous embryos (>100) of this background that were at mid-DC stages, no 

alterations in membrane-bound ARM protein could be detected (Figure 3.15).  This was 

done with particular attention to examination of the lateral epidermis where the ftzGAL4 

driver is known to have strong expression at parasegment boundaries.  No embryos were 

found to show any changes in the staining ent 

boundaries. 

 

 

paring α-ARM stained wild type and hnt mutant embryos, no appreciable 

hnt

ined at 

In addition to examining loss of function hnt mutants, HNT overexpressing 

 

 of ARM that would correspond to parasegm



Figure 3.15:  Antibody staining using α-ARM on various backgrounds.  A hot-

methanol fixation method was used to visualize plasma membranes in the embryos.  Th

AS tissue is indicated by the yellow arrows.  Images were captured using the Zeiss

Axiovert 100 confocal microscope using the 40X objective and identical con

settings.  (a and b) yw:  α-ARM staining on control embryos (stage 14) allow the AS to be

seen throughout DC.  Embryos collected from stock 1 (See Materials and Methods

and d) hnt

e 

 

focal 

 

).  (c 

ar 

w an 

 

 embryo (d).  Embryos were collected from females of stock 13 crossed to stock 1 

ee Materials and Methods).  (e and f) hnt1142:  The hnt1142 mutants (hemizygous males) 

ARM staining on the mutants show similar levels of staining as their heterozygous 

siblings

1142/FM7:  α-ARM staining on heterozygous siblings of hnt1142 show simil

levels of staining as yw.  Embryo is at stage 12 (early GBR) where the AS cells sho

overlap with the germband (c).  At late stage 13, the AS is exposed on the dorsal surface

of the

(S

were recognized by the AS collapse phenotype where the AS slips off the germband.  α-

.  Embryos were aged to 7-10 hrs (stage 12 and 13).  Embryos were collected 

from females of stock 13 crossed to stock 1 (See Materials and Methods).  (g) ftzGAL4:  α-

ARM staining on the ftzGAL4 driver (stage 14) yielded similar levels of the antibody 

staining compared to yw (a).  Embryos were collected from females of stock 1 crossed to 

stock 30 (See Materials and Methods).  (h) ftzGAL4;UAS-hnt6-1:  Embryos (stage 14) 

overexpressing HNT protein yielded similar staining levels as previous controls.  

Embryos were collected from females of stock 31 crossed to stock 30 (See Materials and 

Methods).  From this cross, 50% of the progeny carry the ftzGAL4 driver.  All embryos are 

oriented with the anterior located at the top right and dorsal side up, except in (a and g) 

where the dorsal side is facing down.  
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In the above experiment it was not possible to recognize those embryos carrying 

the GAL4 + UAS constructs because the ftzGAL4 stock is not homozygous viable.  This 

experiment was repeated using a different ftzGAL4 recombinant stock that carries UAS-

actinGFP in addition to the Ubi-DEcadGFP (abbreviated hereafter as ftzUA).  Progeny of 

ftzUA stock crossed to UAS-hnt6-1 can be confirmed as carrying ftzGAL4 and UAS-hnt6-1 by 

virtue of the stripes of UAS-actinGFP expression (surprisingly, actinGFP was found to 

maintain fluorescence following the hot-methanol fixation in antibody staining 

procedure).  Control embryos collected from ftzUA stock crossed to yw, as well as 

embryos collected from ftzUA crossed to UAS-hnt6-1 were fixed, stained and examined in 

parallel using identical conditions and confocal settings.  Again, with particular attention 

to the lateral epidermal cells, no alterations in ARM protein levels were detected (Figure 

3.16; Figure 3.17). 

The antibody staining procedure above examined the ARM protein levels in 

embryos having reduced and increased HNT expression.  The mechanism of the 

regulation of ARM protein levels by HNT in the ovarian study was not elucidated.  Given 

that HNT is a transcription factor, it is possible that this regulation could occur at the 

level of transcriptional activation/repression.  To test this, an armadillo reporter construct 

(armGFParm[83]) was used. The armGFParm[83] expresses ARM-GFP fusion protein under the 

control of the arm promoter.  The armGFParm[83] is a good marker for cell membranes, and 

appears to be an accurate reporter of endogenous ARM expression and protein 

localization (Figure 3.18a).  Live imaging was performed on control embryos collected 

from ftzGAL4 + armGFParm[83] crossed to yw, as well as embryos collected from ftzGAL4 + 

armGFParm[83] crossed to UAS-hnt6-1.  Like the previous experiment, only 50% of progeny 

 81



 82

Figure 3.16:   staining on ftzUA emb l images (captured using the 

Nikon Eclipse confocal using 40X objective) of embryos collected at various stages are 

shown.  The Y-axis indicates the genotype of the embryo, and the X-axis indicates the 

Ubi-DEcadGFP as well as the UAS-actinGFP detected in green, and the α-ARM staining is 

in red (TRITC).  Embr om females of stock 1 ed to stock 32 

(See Materials and Methods).  (a)  Embryos lacking expression of ftzUA do not have GFP 

expression.  (b)  Early GBR stage embryo sh ression seen as green stripes 

in the epidermis. The intensity of α-ARM staining is similar to the embryos lacking ftzUA 

expression (a).  (c)  Mid-DC stage embryo with ftzUA expression seen in the epidermis as 

green stripes.  The levels of α-ARM antibody are sim bryos.  

The embryos are oriented with the a ior located at the top left and dorsal side facing 

upwards. 

α-ARM ryos.  Confoca

yos were collected fr cross

ows ftzUA exp

ilar to the previous staged em

nter
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Figure 3.17:  α-ARM staining on embryos overexpressing HNT.  Confocal images 

(captured using the Nikon Eclipse confocal using 40X objective) of embryos collected at 

various stages are shown.  Embryos were collected from females of stock 31 crossed to 

stock 32 (See Materials and Methods).  The Y-axis indicates the genotype of the 2nd 

chromosome in the embryo, and the X-axis indicates the Ubi-DEcadGFP as well as the 

UAS-actinGFP detected in green, and the α-ARM staining is in red (TRITC).  HNT was 

overexpressed in embryos using the UAS-hnt6-1 construct with the ftzUA driver.  (a)  

Embryos lacking ftzUA do not express GFP.  (b)  Embryo overexpressing HNT show no 

changes in α-ARM staining through out the embryo during early GBR stage.  (c)  

Embryo overexpressing HNT show no alterations in ARM staining during late GBR 

stage.  When compared to non-GFP expressing stripes, the α-ARM staining does not 

differ from the GFP expressing stripes.  All embryos are oriented with the anterior 

located at the top left and dorsal side upwards. 
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of these crosses carry the ftzGAL4 driver since this driver is not homozygous viable.  In 

terms of gross morphology, there was no phenotype observed among these embryos; live 

imaging analysis showed no detectable alterations in armGFParm[83] expression in either 

the epidermis or the AS of eight embryos examined (Figure 3.18). 

In summary, a number of approaches were used to address the question of hnt’s 

role in regulating the levels of ARM.  These approaches included the analysis of antibody 

staining in hnt loss of function mutants and HNT overexpressing embryos, and embryos 

carrying the armGFParm[83] reporter in the HNT overexpressing background.  The 

observations of these experiments support the interpretation that ARM levels are 

unaffected by alterations in HNT expression in embryos. 

 

3.8  Blocking autophagy in hindsight mutants 

Recent work from our lab has established that cellular autophagy is a pre-requisite 

for the activation of caspase-dependent AS cell death during wild type development 

(Mohseni et al., 2009).  Persistent AS phenotypes result when autophagy is inhibited by 

the expression of activated InR (UAS-dInRACT) or activated Ras (UAS-RasV12) using AS-

specific GAL4 drivers.  It was of interest to examine the AS phenotype associated with 

these expression backgrounds in the hnt mutant to determine if they achieved rescue of 

AS loss and/or AS cell shape changes.   Using the genetic crossing scheme that was used 

to unambiguously recognize and obtain live images of hnt308 mutant embryos expressing 

p35, hnt308 mutant embryos having AS specific expression of UAS-dInRACT and UAS-

RasV12 were similarly imaged.  As described in Materials and Methods (section 2.2), 

these crosses used males of stocks carrying tubGAL80 with the UAS-dInRACT or the  
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F  3.18:  Confoca g armigure l ima es of mages of 

mbryos at mid-DC stage are shown.  The AS tissue is indicated by the yellow arrow.  (a)  

The armGFParm[83] marks the cell membranes in the em bryos collected from 

females of stock 1 crossed to stock 33 (See Materials and Methods).  (b) ftzGAL4 driver in 

armGFParm[83] background has similar levels of GFP throughout the embryo.  Embryos 

collected from fema  stock 34 (See Materials and Methods).  (c)  

os overexpressing HNT using ftzGAL4 driver in armGFParm[83] background do not 

show any differences in GFP expression throughout the embryo.  Embryos were collected 

from females of stock 31 crossed to stock 34 (See Materials and Methods).  Images were 

d using the Ziess Axiove 100 confocal microscope (40X objective) in (a), while 

the Nikon Eclipse confocal microscope (40X obj ) and (c).  Similar 

al settings were used to capture all images.  The embryos are oriented with the 

ior to the left and dorsal side up. 

GFParm[83] in various backgrounds.  I

e

bryo.  Em

les of stock 1 crossed to
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UAS-RasV12 constructs.  Five embryos selected at extended germband stages of 

development, prior to the manifestation of any hnt mutant phenotype, were imaged from 

each background.  In the background of AS-specific expression of activated InR, three of 

the five embryos successfully completed GBR while two failed to complete GBR.  In the 

two embryos which failed to complete GBR, there was some evidence of AS cells in 

apoptosis as determined by rapid cellular fragmentation.  These two embryos also 

displayed large cytoplasmic black spots interpreted as vacuoles (Figure 3.19a).  All three 

embryos of this background that completed GBR showed cellular morphologies typically 

associated with wild type, and that are absent in hnt308 mutants (see Section 3.6 above).  

Specifically, large cellular projections associated with lamellipodia in the posterior-most 

AS cells, normally absent in hnt308 mutants, were observed (Figure 3.19b).  These 

embryos proceeded to show wild type development and normal progression of DC.  In 

contrast to the two embryos that failed to complete GBR, these embryos displayed fewer 

and less prominent vacuoles.  The appearance of the lamellipodia projections in mutant 

embryos clearly indicates that this aspect of the hnt mutant phenotype can be rescued by 

activation of the InR pathway.   

In examining hnt308 mutant embryos that were expressing activated Ras in the AS, 

a similar rescue effect was observed.  Of the five embryos imaged, two showed gross 

morphological defects possibly associated with rupture of the yolk sac—and these were 

difficult to interpret.  The remaining three embryos, which did not display gross 

morphological abnormalities, displayed the prominent lamellipodia normally seen in wild 

type development, thus indicating rescue of this aspect of the hnt mutant phenotype 

(Figure 3.20a).  In this hnt rescued background, however, GBR was initiated but did not 
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Figure 3.19:  Visualization of AS in hnt308 mutants with UAS-dInRACT expression.  

The AS, indicated by yellow arrow, is visualized using the krGAL4  with UAS-GFP.  

The germband is labelled with a white asterisk.  Images were captured using the Nikon 

Eclipse confocal and 20X objective.  Embryos were at mid-GBR stage, collected from 

females of stock 20 crossed to stock 27 (See Materials and Methods).  (a)  Embryos 

which fail in GBR show presence of vacuoles in the AS cells, and lack extensions from 

the posterior-most AS cells.  (b)  Embryos, which successfully complete GBR and have 

normal DC completion, have prominent lam llipodia, indicated by white arrows, in the 

posterior-most AS cells, similar to those seen in wild type (Figure 3.14a).  Embryos are 

oriented with the anterior to the left and dorsal side up. 
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reach completion.  The point at which GBR stalled or failed correlated with an apparent 

loss of contact between the posterior-most AS cells and the tip of the retracting 

germband; as evidenced by a sudden anterior movement of this group of AS cells (Figure 

3.20b).   

To summarize, these experiments establish that the behaviour of AS cells in hnt308 

mutant embryos is rescued by either activation of InR signalling pathway or Ras.  At this 

point, however, the mechanism of this rescue is not understood.  Further experiments will 

be necessary to determine if autophagy, per se, or if other consequences of activating 

these pathways are responsible for the observed rescue.  While InR and Ras signalling 

pathways have been implicated in the regulation of autophagy, it is also possible that 

these pathways may have additional effects on the regulation of cell shape changes and 

cell adhesion properties that are independent of their roles in regulating autophagy. 
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Figure 3.20:  Visualization of the AS in hnt308 mutants with UAS-RasV12 expression.  

he AS, indicated by yellow arrow, is visualized using the krGAL4 driver with UAS-GFP.  

The germband is labelled with a white asterisk.  Images were captured using the Nikon 

Eclipse confocal and 20X objective.  Embryos were collected from females of stock 20 

crossed to stock 29 (See Materials and Methods).  (a)  During mid-GBR, the embryos 

show prominent lamellipodia, indicated by the white arrows, associated with the 

posterior-most AS cells extending to contact the tip of the germband.  This resembles the 

extensions seen in wild type embryos (Figure 3.14a).  (b) During late GBR, the posterior-

most AS cells attempt to contact the retracting germband as the AS moves in an anterio

irection.  This anterior movement suggests a loss of contact between the AS and the 

germband.  The embryo fails in GBR.  Embryos are oriented with the anterior to the left 

and dorsal side up.  
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Chapter 4 – Discussion 

 

 The main objective of this study was to better characterize the AS behaviour in 

hnt mutants.  The AS, a squamous epithelial monolayer, plays an important role in GBR 

and DC morphogenetic processes (Reed et al., 2004).  The hindsight (hnt) gene encodes a 

nuclear zinc-finger protein that is expressed in the amnioserosa (AS).  The hnt mutants 

display germband retraction failure associated with premature AS loss (Frank and 

Rushlow, 1996).  The cause of the premature loss of the AS tissue in hnt mutants was 

unclear prior to this study.   

 

4.1 Amnioserosa death does not cause the hnt GBR phenotype 

Premature loss of the AS tissue in hnt mutants was believed to be a consequence 

of reaper-mediated apoptosis (Frank and Rushlow, 1996).  Using RNA in-situ 

hybridization, Frank and Rushlow (1996) demonstrated a concentration of rpr positive 

cells within the AS, suggesting a premature apoptotic death of the tissue.  Another study 

on hnt mutants showed that GBR failure was not rescued by the genetic removal of 

apoptotic cell death using the homozygous deficiency H99 background (Lamka and 

Lipshitz, 1999).  Using an hnt null allele (hntXE81), Lamka and Lipshitz (1999) showed 

that hnt function in the AS is required for proper GBR completion.  In these experiments, 

TUNEL staining was used to confirm the absence of apoptosis in this background which 

still showed a GBR failure (Lamka and Lipshitz, 1999).  The authors looked at the gross 

morphology of the AS tissue rather than AS cell behaviour in hnt mutants. 

In this study, the morphology of the AS tissue, as well as AS cell shapes and 
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behaviours were further analyzed in hnt mutants using high resolution confocal 

icroscopy in combination with live imaging techniques.  Using a hypomorphic allele 

308) that is associated decreased HNT expression, particularly in the AS, the AS 

behaviour was analyzed in several backgrounds.  These included the direct inhibition of 

apoptosis using the homozygous deficiency H99, as well as the expression of the caspase 

inhibitor p35.  In addition, hnt phenotypes were examined in backgrounds that lack AS 

PCD through the inhibition of autophagy.   

Consistent with previously published data, the results presented in this thesis 

confirm that GBR failure in hnt mutants is not rescued by H99.  Moreover, it was shown 

that p35 expression resulted in an identical outcome.  The high resolution microscopy

sed in this study establishes that the “rescued” AS tissue, although persistent, is 

associated with abnormal morphology and behaviour during development.  The spatial 

positioning and the overall morphology of the persistent AS tissue in hnt mutants (in 

apoptotic deficient backgrounds) differed greatly when compared to apoptotic deficient 

backgrounds alone.  In hnt308 + p35 expressing embryos, the persistent AS was found to 

collapse between the head and the tail, while in p35 expressing embryos, the AS formed a 

“tube-like” structure under the dorsal epidermis. 

 

4.2 The inhibition of autophagy shows partial rescue of GBR and complete rescue 

of AS cell morphology in hnt mutants 

During GBR, the posterior most AS cells contact and migrate over the germband 

via lamellipodia extensions (Schöck and Perrimon, 2002).  In live imaging experiments 

using GFP-tagged proteins, hnt mutants were observed to lack these lamellipodia 

m

(hnt

 

u
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extensions to the epithelia of th and, as a consequence, the AS 

st contact with the germband and collapsed.  A similar phenotype of no lamellipodia 

 would best be described as anoikis.  

Strikingly, the inhibition of PCD in the hnt mutants using expression backgrounds 

pression) gave partial 

rescue 

y and that of 

Lamka

e germband during GBR 

lo

extensions was also observed in hnt mutants with ectopic p35 expression.  The loss of 

extensions in hnt mutants phenocopies maternal/zygotic mutants of the Drosophila 

homolog of βPS integrin, myospheroid (mys) (Schöck and Perrimon, 2003).  Embryos 

mutant for maternal/zygotic mys also display a GBR failure phenotype with early AS loss 

(Schöck and Perrimon, 2003).  The resemblance in phenotypes between hnt mutants and 

mys mutants suggest that the premature AS death in hnt mutants is due to cell-matrix or 

cell-cell adhesion loss, which

associated with the inhibition of autophagy (dInRACT and RasV12 ex

of GBR defects.  Moreover, the absence of AS lamellipodia in hnt mutants, which 

is a novel observation of these studies, was completely rescued in these expression 

backgrounds.  Previous studies have implicated the expression of the insulin receptor in 

rescue of the GBR defect of hnt mutants (Lamka and Lipshitz, 1999).  This study used a 

wild type insulin receptor under the control of a heat-shock promoter, and reported a 

partial rescue of GBR without any rescue of premature AS death.  This lead to the 

interpretation that the AS produces a diffusible signal that is transduced by the insulin 

receptor in the lateral epidermis, and that subsequent cell shape changes in the lateral 

epidermis drive GBR (Lamka and Lipshitz, 1999).  One obvious difference in this study 

and that of Lamka and Lipshitz (1999) is the use of an activated form of InR which was 

expressed specifically in the AS.  Another difference between this stud

 and Lipshitz (1999) is the use of different hypomorphic alleles; it is possible that 
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combined differences between the use of wild type and activated insulin receptor in these 

different allelic backgrounds could be responsible for the contradictory observations 

concerning the rescue of premature AS loss in hnt mutants.       

 

4.3 Amnioserosa cell extrusion 

During DC, approximately 10% of AS cells are basally extruded (Mohseni et al., 

2009).  Extruding AS cells display activation of apoptosis prior to extrusion, and it has 

been su

AS extrusion events in hntRNAi expressing embryos were restricted to the anterior 

leve ftzGAL4 driver, the expression of which is not 

uniform

ggested that the removal of AS cells from the epithelium contributes to the ability 

of the AS to generate the mechanical force required for DC (Toyama et al., 2008).  In 

experiments performed using the UAS-hntRNAi construct, the observed increase in the 

average number of extrusions during early DC likely reflects an increase in the number of 

cells entering apoptosis.  The analysis of hnt mutants, however, suggests that hnt does not 

function directly to suppress apoptosis.  The increased rate of extrusion in the hnt 

knockdown embryos is, therefore, likely to reflect loss of appropriate cell-cell contacts 

and could be a useful paradigm for anoikis.  Future experiments to examine extrusion 

rates in embryos that co-express p35 and UAS-hntRNAi will possibly be able to confirm the 

relevance of AS extrusion to study of anoikis.   

half of the AS.  One possible explanation for this observation may relate to different 

ls of HNT that result from the use of the 

 across the tissue. Possible interactions between cells expressing HNT and cells 

lacking HNT (through hntRNAi) may be the underlying cause of the spatial restriction of 

extrusion events.  A precedent for subdivisions within the AS in terms of cell shape and 
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behaviour is found in embryos that overexpress a protein of the adherins junction 

complex, crumbs (Harden et al., 2002).  In such embryos, there is a clear boundary 

demarking anterior cells that undergo premature constriction and posterior AS cells that 

remain unconstricted.  Curiously, this anterior region corresponds well to the region that 

shows elevated extrusion rates in UAS-hntRNAi expressing embryos.    

The cell-matrix detachment of MDCK cells is a model system for studying 

anoikis.  MDCK cells that lose integrin-mediated contacts with the matrix undergo 

anoikis, and are associated with an increase in JNK signalling activity (Cardone et al., 

1997).  Since, hnt mutants are associated with elevated JNK signalling in the AS at the 

onset of GBR (Reed, Wilk and Lipshitz, 2001), it is interesting to speculate that 

premature AS loss is fundamentally similar to anoikis described in mammalian systems.   

 

4.4 Armadillo expression in hindsight mutants 

In Drosophila ovarian follicular cells mutant for hnt, an increase in ARM levels 

was observed, while follicle cells overexpressing HNT displayed a 2-fold decrease in 

ARM levels (Melani et al., 2008).  The HNT overexpressing follicle cells were also 

observed to lack motility.  Using genetic modifications to decrease or increase HNT 

levels in Drosophila embryos, no significant changes were observed in ARM expression 

levels.   

Based on the observations of ovarian follicular cells that are mutant for hnt, one 

might expect the same to be true of the AS.  An increase in ARM, however, seems 

contrary to what one would expect in the anoikis-like death observed in the AS of hnt 

mutants.  A difference in constructs used in the two systems could account for the lack of 
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alterations in ARM levels in Drosophila embryos in this study.  The alterations in ARM 

levels observed in follicle cells of Drosophila ovaries with overexpression of HNT was 

performed using an enhancer trap line hntEP55 (Melani et al., 2008).  The construct used 

r overexpression of HNT in Drosophila embryos was UAS-hnt6-1.  In addition, any 

arian follicular epithelium may not be pertinent to the 

effects 

fo

comparison of the AS with the ov

of HNT on the levels of ARM.  In particular, the loss of HNT in the AS results in 

premature cell death where as the mutant patches of follicle cells remain viable.  Clearly, 

these two tissues respond very differently to alterations in hnt. 

 

4.5 Conclusion 

 The experiments described in this study illustrate that the germband retraction 

defect of hnt mutants is independent of the premature AS death.  hnt mutants were found 

to lack lamellipodia extensions emanating from AS cells and contacting the germband 

during the process of retraction.  Activation of either InR or Ras in the AS of hnt mutants 

rescued this defect.  Overall, the death of AS cells in hnt mutants and HNT knockdown 

backgrounds may represent a new paradigm for anoikis.   
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Appendix I 

 

 Genetic manipulations of the hnt mutant was used to study the AS cell shape and 

behaviour in various backgrounds.  Some of the backgrounds used for manipulations of 

the hnt mutant required extensive genetic crosses to build stable stocks.  The crossing 

schemes used to build multiple insertion stocks used in this study are illustrated in this 

Appendix.  The parental stocks used to build the multiple insertion stocks are listed in the 

figure heads.  Newly eclosed adult females (virgin females) were used for all crosses. 
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Figure A.1:  Crossing scheme used to build stock 4.  The parental stocks include stock 

2 and stock 3 (See Materials and Methods).  The resulting stock 4 requires maintenance 

through selection of females carrying the hnt308 by selecting adult rough eye phenotype 

associated with this allele. 
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Figure A.2:  Crossing scheme used to build stock 7.  The parental stocks include stock 

5 and stock 6 (See Materials and Methods). 
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Figure A.3:  Crossing scheme used to build stock 11.  The parental stocks used in this 

crossing scheme include stock 9 and stock 10 (See Materials and Methods). 
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Figure A.4:  Crossing scheme used to build stock 16.  The parental stocks used 

included stock 2 and stock 15 (See Materials and Methods).  The maintenance of stock 16 

s stable stock requires the selection of females with hnt308 using the adult rough eye 

phenotype associated with this allele. 

a
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Figure A.5:  Crossing scheme used to build stock 20.  The parental stocks used in this 

crossing scheme include stocks 19 and stock 5 (See Materials and Methods).   
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Figure A.6:  Crossing scheme used to build stock 22.  The parental stocks used 

included stock 21 and stock 18 (See Materials and Methods). 
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Figure A.7:  Crossing scheme used to build stock 26.  The parental stocks used

crossing scheme include stock 24 and stock 25 (See Materials 

 in this 

and Methods). 
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Figure A.8:  Crossing scheme used to build stock 27.  The parental stocks used in this 

crossing scheme include stock 23 and stock 26 (See Materials and Methods). 
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Figure A.9:  Crossing scheme used to build stock 29.  The parental stocks used in this 

crossing scheme include stock 26 and stock 28 (See Materials and Methods). 
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